

Finally time has come to publish the second issue of our little eZine. The first
number went well, so unexpectedly well that we decided to do a second
issue☺.

This second issue has a fresh look, but what really matters, the content, is
there. We have a lot of contributions from team members as well from
friends.

We tried to cover most of the little requests we got on our forum, and that
were not possible to fit into standalone tutorials.

The content starts with some quite classical methods to patch programs,
written by Gabri3l, ThunderPwr and me. Gabri3l will explain a practical
method on how to add functionalities to an already existing program
(notepad), while ThunderPwr will explain how to more efficiently use what
the resources can say. I will instead dig a little into a faster trick to bypass
event driven nags.

Then it’s time for Buzifier to explain a little about scripting with Olly, and
CondZero to explain a trick to handle an ACProtected program, a not so
widespread packer but a powerful one nonetheless. Then it’s the time of
zyzygy which explains something more about Code Obfuscation methods.

Gabri3l again, will argue on a novel method of anti-debugging, based on
the NtYeldExecution while anorganix will teach how to code an Oraculum (a
serial sniffer) in Delphi.

For three documents deroko will bang our heads: a really interesting anti-
debugger trick, some deeper look into PEB and finally some thoughts on
recent TheMidas (plus its implementation as xADT plugin).

tHE mUTABLE then will close this issue explaining how to fool an interesting
protector, WTM Register Maker, for all skills levels.

I think there are enough goodies for another excellent issue, that will keep
you busy for few days..

But remember that next issues are also depending on your contributions.
Send them to us!

Have phun,
Shub

1. Forewords
Inside This Issue

1. Adding new functionality to

an old program by Gabri3l

2. Patching by using resource by

ThunderPwr

3. Patching Event Driven Nag, by

Shub-Nigurrath

4. Writing OllyDbg Scripts by

Buzifer

5. Utilizing Code Injection on an

ACprotected application by

condzero

6. Code Obfuscation by zyzygy

7. Testing for Olly using

NtYieldExecution by gabri3l

8. Coding a Serial Sniffer by

anorganix

9. Ring 3 debugger detection

via INVALID by deroko

10. PEB Dll Hooking Novel method

to Hook Dlls by deroko

11. TheMida, no more Ring0 by

deroko

12. WTM Register Maker v2.0 case

study by tHE mUTABLE

13. Call for Papers

Editor: Shub-Nigurrath

AARRTTeeaamm eeZZiinnee

VV OO LL UU MM EE 11 II SS SS UU EE 22

October 2006

PAGE 2 ARTEAM EZINE

1. The Cone of Experience, Shub-Nigurrath of ARTeam

I thought to start this issue with a famous sentence usually attributed to William Glasser1, with several
variations:

People generally remember:

10% of what they read

20% of what they hear

30% of what they see

50% of what they hear and see

70% of what they say or write

95% of what they teach to others

I experience myself the truth of this sentence each time I start writing a tutorial; this can perfectly explain
in my humble opinion why we do them! Moreover perfectly fits with our motto:

I hear and I forget, I see and I remember, I do and I understand

Since the last issue a lot of interesting things happened to the team. First of all the third birthday of the
team: 3 years on the scene and still kicking! Good!

Secondly, we launched the new site: EJ12N completely on his own developed it, starting from the
graphic up to the code. He wanted to do the best accessible and nice site of the reversing scene and I
think he hit the target.

We spent a lot of evenings/nights talking on what to add and how to solve some issues and so on. The
result is under the eyes of everybody!

9 Mobile version coming soon for all our members who would like to access the site on handheld

devices.
9 AA Accessibility: W3C WCAG (Web Content Accessibility Guidelines) and Section 508

(section508.gov). This is essentially equivalent to the AA Accessibility level defined by the W3C.
9 eZine will probably be available to read online and/or download plus a couple of other stuffs...
9 Tutorials system will get finished since right now we still have to implement key features such as

search and couple other features like RSS. After this we will most likely want to enhance it and ask
our members for suggestions.

1 Usually, because Glasser only reported it from another author, Edgar Dale author of The Cone of

Experience (http://schoolof.info/infomancy/?p=230)

http://schoolof.info/infomancy/?p=230

PAGE 3 ARTEAM EZINE

9 IRC Live Chat applet in the IRC section. Maybe this way we get more people to actually go in and
chat. There will be stats in forum and site for this so users know who’s in the channel.

9 Latest X Stats – It will keep you informed of latest forum posts, latest tutorials submitted, latest tools
released and well you get it latest everything happening with the site.

9 Tools section. – This is still being thought of but we do have something in mind like hosting most useful
RCE tools and such with of course author’s permission.

9 The RCE Links section will *not* be a link farm but it’ll be more like a guide to guide users to many
other RCE resources and sites which might be worth to visit.

9 Beginners Section – We are thinking to launch a whole new section for beginners which will include
video tutorials for beginners such as the ones from lena (with permission of course), our own video
tutorials, and many other stuff which will be only aimed at beginners. Videos in these sections will
most likely be available to watch online or download.

9 And a whole lot more you guys will see in the near future.

I forgot something? Ah, yes: new members, new tutorials, .. but I wrote too much and it’s time to stop it
here! Have a good reading!

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you
found it. This eZine is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within the different papers have been used only for the purpose of
demonstrating the theories and methods described. No distribution of patched applications has been
done under any media or host. The applications used were most of the times already been patched, and
cracked versions were available since a lot of time. ARTeam or the authors of the papers cannot be
considered responsible for damages to the companies holding rights on those programs. The scope of
this eZine as well as any other ARTeam tutorial is of sharing knowledge and teaching how to patch
applications, how to bypass protections and generally speaking how to improve the RCE art. We are not
releasing any cracked application.

PAGE 4 ARTEAM EZINE

Supplements

This eZine is distributed with Supplements for each paper; the supplements are stored in folders with the
same title of the paper. Almost all the papers have supplements, check it.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by
ARTeam and are unaltered. The ARTeamESFVChecker can be obtained in the release section of the
ARTeam site: http://releases.accessroot.com

Table of Contents

1. The Cone of Experience, Shub-Nigurrath of ARTeam... 2
Verification.. 4
1. Adding New Functionality to Old Software, Gabri3l of ARTeam.. 5
2. Patching by using resource, ThunderPwr of ARTeam... 24
3. Patching Event Driven Nags, Shub-Nigurrath of ARTeam.. 31
4. Writing OllyDbg Scripts, Buzifer of Team RESURRECTiON... 36
5. Utilizing Code Injection on an ACprotected application, condzero of ARTeam.................................. 40
6. Code Obfuscation, zyzygy.. 44
7. Testing for OllyDbg Using NtYieldExecution, Gabri3l of ARTeam .. 48
8. Coding a Serial Sniffer (Oraculum), anorganix of ARTeam ... 52
9. Ring 3 debugger detection via INVALID_HANDLE exception, deroko of ARTeam 55
10. PEB Dll Hooking, a novel method to hook dlls, deroko of ARTeam... 58
11. TheMida: no more Ring0?, deroko of ARTeam... 63
12. WTM Register Maker v2.0 case study, tHE mUTABLE .. 66
13. ARTeam eZine #3 Call for Papers.. 74

http://releases.accessroot.com/

PAGE 5 ARTEAM EZINE

1. Adding New Functionality to Old Software, Gabri3l of
ARTeam

1. Abstract

The goal of this paper is to add a new feature to Notepad that will allow us to, with the click of a menu,
add predefined text to the file we are working on. There have been other articles that deal with adding
functions to notepad2,3.In this paper, we are going to examine an old project with new tools. Instead of
using a code-cave, as the referenced papers do, we are going to instead create a dynamic link library
to perform most of our functionality for us. This will give us an easier and quicker way to write the new
functions. It will also allow us to develop future updates to our notepad by simple rewriting and
redistributing the DLL.

2. Adding a New Menu Item to Notepad

The first obstacle we face is how to edit the menu of a closed source, compiled executable. To know
how to proceed we need to understand how windows software is compiled. Most windows software
today contains both executable code and resources. The resources of an executable include icons,
dialogs, music and menus. When a windows program is compiled, the executable code of the program
is translated to machine code and stored in one section, while the resources the executable uses are
stored in another. Because resources are not executable code most compilers store them as plain text
representations.
Here is an example of compiled code within Notepad when viewed by a hex editor:

Image 1.1- Compiled Code

Here is an example of the resource section of Notepad when viewed in a hex editor:

Image 1.2 - Resource Section

The resources are not packed or altered. This means we have access to all the resources that the
program uses in one location. Many programs exist that allow us to edit the resource section of an
executable. I am going to use an open source editor called XN Resource Editor4, but any resource editor
will work.

Open Notepad in your resource editor and you will have a better understanding as to how resources are
included in an executable.

2 Razzia's Tutorial for Crippled Programs: www.woodmann.com/fravia/razzcripp.htm
3 How to Extend Notepad's Functionality by Adding Code to Caves:

http://www.woodmann.com/fravia/defiler_notepad.htm
4 XN Resource Editor: http://www.wilsonc.demon.co.uk/d10resourceeditor.htm

http://www.woodmann.com/fravia/razzcripp.htm
http://www.woodmann.com/fravia/defiler_notepad.htm
http://www.wilsonc.demon.co.uk/d10resourceeditor.htm

PAGE 6 ARTEAM EZINE

Image 1.3 – Notepad within a Resource Editor

The resource editor allows us to view and edit all the resources included within Notepad. Each resource is
nicely arranged within a folder system. If we wanted to edit the icon's we could choose the Icon Group
folder and browse down to the icon we wished to change. We are going to open the Menu of Notepad.
Browsing down we find there is only one menu within notepad, and that is the one we want are going to
want to edit. Before we can edit the menu, we need to understand how menus work.
When notepad is idle it is operating in a loop. This loop waits for input from the user. When input is
received it generates a message with information on what type of input was received. Depending on
the input Notepad responds accordingly. This is called message handling5. When notepad is informed
that a menu item has been selected it is also informed of the ID number. That way notepad can operate
differently depending on what menu item was selected. Each menu item usually has a distinct ID
number. For example the ID number for the Paste option in Notepad is 770.

Image 1.4 – ID Number for Paste

We have learned two important things here. First, we know that when we create 2 new menu items we
can give them distinct ID numbers to help determine how they are handled. Second, we know that
somewhere within notepad, there is a routine to check the ID number and redirect to the according
function. We will need to find that routine and modify it to redirect to our own functions when it receives
the ID number of our new menu items.
A new menu now needs to be added, I will call my menu “QuickText”. Within that menu we will create 2
new menu items called “QuickText1” and “QuickText2. Each menu item will have a unique ID number
assigned to them.

First lets add the QuickText menu. Inside XN Resource Editor browse to Notepads menu. Select the View
menu, right-click and select Add Item After. This will create a new menu item after View and before
Help.

Image 1.5 – Adding a New Menu

5 Windows Message Handling: http://www.codeproject.com/dialog/messagehandling.asp

http://www.codeproject.com/dialog/messagehandling.asp

PAGE 7 ARTEAM EZINE

Once the new menu is created we need to title it. The title of the menu is created by modifying the
Caption.

Image 1.6 – Modifying a Menu Caption

Now that the menu has been created we can add our menu items. The menu items are called Child
Items. We add child items by selecting the QuickText menu and right-clicking. In the new menu that
comes up, select Add Child Item.

Image 1.7 – Adding a Menu Item

The new menu item will need a caption, and it will also need a unique ID number. ID number needs to
be different then that of the other ID numbers already assigned to menu items. I used 55 for QuickText1.

Image 1.8 – Assigning the ID Number

Following the same steps we can add another menu item called QuickText2. I assigned that menu item
the ID number 66. Save the modified Notepad.exe as something such as Notepad.QuickText.exe.

We should now have a new Notepad, with a new menu and two new items. You can run notepad and
select either QuickText option, but you will notice that nothing happens. This is because the message
being passed to Notepad's message handler has an ID value that is not being handled. Our goal now is
to locate the message handler so we can find where the ID value is tested, and how we can redirect the
function.

3. Locating the Message Handler

The next tool we will use is Ollydbg6. We will be using it to analyze the executable and control program
execution. This will allow us to find the message handler and pinpoint where the ID value comparison
takes place. Open Notepad.exe within Ollydbg. The program will load and we will be at the Entry Point
of the executable.

Image 1.9 – Entry Point of Notepad

6 Ollydbg: http://www.ollydbg.de

http://www.ollydbg.de/

PAGE 8 ARTEAM EZINE

Creating a Message Loop

The system automatically creates a message queue for each thread. If the thread creates one or
more windows, a message loop must be provided; this message loop retrieves messages from the
thread's message queue and dispatches them to the appropriate window procedures.

Because the system directs messages to individual windows in an application, a thread must create at
least one window before starting its message loop. Most applications contain a single thread that
creates windows. A typical application registers the window class for its main window, creates and
shows the main window, and then starts its message loop — all in the WinMain function.

You create a message loop by using the GetMessage and DispatchMessage functions. If your
application must obtain character input from the user, include the TranslateMessage function in the
loop. TranslateMessage translates virtual-key messages into character messages. The following
example shows the message loop in the WinMain function of a simple Windows-based application.

We are going to begin by locating the Message Handler Loop. Take a quick look at how the message
handler loop is defined in the MSDN7:

By examining this definition we gain some valuable information. We know that within a standard
message loop we are going to find 3 distinct API calls: GetMessage, DispatchMessage, and
TranslateMessage. The GetMessage API function retrieves a message from the message queue.
TranslateMessage is performed if the message from the queue is a key-press, TranslateMessage then
interprets the ASCII character represented by the keyboard key. It then adds that character to the
message queue. Finally, DispatchMessage sends the message to the executable's message handler
where the program reacts accordingly. We can use these 3 API calls to find where our message loop is
located, and subsequently, our message handler.
Within Ollydbg, right-click inside the code frame and select Search For. In the new menu choose All
Intermodular Calls. Ollydbg will then search the executable for all the API calls made from within
Notepad.exe, a new window will open with the results of that search:

Image 1.10 – API Search Results

In the Search Results window, press the Destination column header, which will sort the results by the API
destination. Scroll down until you find DispatchMessageW. That was one of the API functions included in
the Message Loop description. Choose the first instance of DispatchMessageW and double-click on it.
You should be located here now in the code frame:

Image 1.11 – Message Loop

Look above DispatchMessage and you will see TranslateMessage. If you were to run the program and
break at CALL NEAR EDI, located below DispatchMessage you would find that it is our call to
GetMessage.
We have found the location of our message loop. The next goal is to find the comparison routine of our
ID number. Referring back to how the message loop works we know that Dispatch Message sends the
current message to Notepad's message handler. If we can stop the program as it is executing
DispatchMessageW we can use it to locate Notepad's message handler. Begin by setting a breakpoint
on the CALL to DispatchMessageW, do this by selecting the CALL to DispatchMessageW and pressing F2.
Now when we run Notepad and it enters the message loop we will stop execution before the message

7 Using Messages and Message Queues: http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/usingmessagesandmessa
gequeues.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/usingmessagesandmessagequeues.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/usingmessagesandmessagequeues.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/usingmessagesandmessagequeues.asp

PAGE 9 ARTEAM EZINE

handler is called. Make sure you have your breakpoint set and press F9 in Ollydbg to run Notepad. Wait
a few seconds and we should stop execution here in our Message Loop:

Image 1.12 – Stopping Execution on DispatchMessageW

We are now stopped at our CALL to DispatchMessageW. To find the message handler we are going to
use these facts to our advantage:

• DispatchMessageW calls our message handler
• Our message handler is inside Notepad
• As the call is executed we will leave Notepad's memory space and enter User32.dll
• We will have to re-enter Notepad to execute the message handler

What we are going to is step into the CALL DispatchMessageW, which will take us outside of Notepads
memory. We are going to then set a breakpoint when the code section of Notepad is accessed8, this will
stop execution when we re-enter Notepads memory space. When execution breaks it is because we
have returned to notepads message handler. We will be located right at the beginning of the message
handler.
Press F7 to step into DispatchMessageW and place ourselves in User32.dll. Now we need to place our
breakpoint on Notepad's code section. In Ollydbg, click on the View menu, in the drop down menu
select Memory.

A new window will open that displays the memory for this process.
In the Owner column of the memory window you will see the name
of the executable that resides in that memory space. In the
beginning of this paper we discussed that an executable stores
different data in different sections. Traditionally executable code is
stored in one section, while resources are stored in another. In
Ollydbg's memory window the Section column displays the different
section names for each of the executables sections. Locate
Notepad in the Owner column and we see that Notepad has 3
named sections, and a PE header9. Often times the .text section of
an executable contains the actual code. You can verify that this is

true for Notepad by looking in the Contains column; there you see .text contains code and imports. We
could also look at the Contains column and verify that our resources are contained in the named
section .rsrc. Back to the project, select the row that has Notepad's .text section, press F2 to set a
breakpoint-on-access for that section.

Image 13 – View Memory

Image 1.14 – Breakpoint on Memory Section Access

Now when we execute the program we will break when DispatchMessage returns to our Message
Handler located within the .text section of Notepad. Make sure you have stepped into the
DispatchMessageW call, and press F9 to continue execution.
You should trigger your page access breakpoint and find yourself here in Notepad.exe:

8 A breakpoint on access to memory section can also be referred to as PAGE_GUARD. Creating Guard

Pages: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/memory/base/creating_guard_pages.asp

9 For more information on PE files and their structure: Microsoft Portable Executable and Common Object
File Format Specification: http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/creating_guard_pages.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/creating_guard_pages.asp
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

PAGE 10 ARTEAM EZINE

Image 1.15 – Notepads Message Handler

We have located the beginning of Notepad's message handler. Within this section of code Notepad
compares the type of message it needs to handle and takes appropriate action. Before we can
continue we need to know what type of message is sent to Notepad when we choose a menu item. In
windows there are over 200 types of messages.10 A few examples of different types of messages:

WM_CREATE
your window receives this message only once, when it is first created. Use this message to perform tasks
that need to be handled in the beginning, such as initializing variables, allocating memory, or creating
child windows (buttons and textboxes).

WM_PAINT
This message indicates that it is time for the program to redraw itself. Use the graphical functions to
redraw whatever is supposed to be on the window. If you don't draw anything, then the window will just
be a boring white (or grey) background, and nobody likes that!

WM_COMMAND
This is a general message that indicates that the user has done something on your window. Either the
user has clicked a button, or the user has selected a menu item, or the user has pressed a special
"Accelerator" key sequence. The WPARAM and LPARAM fields will contain some descriptions on what
happened, so you can find a way to react to this. If you do not process the WM_COMMAND messages,
the user will not be able to click any buttons, or select any menu items, and that will be very frustrating
indeed.

WM_MOUSEMOVE
This message indicates that the user has moved the mouse. This message is posted to a window when
the cursor moves. If the mouse is not captured, the message is posted to the window that contains the
cursor. Otherwise, the message is posted to the window that has captured the mouse.

Windows has tried to accommodate every type of message your program would need. But obviously
you want to know more than if a button has been pressed or a mouse has moved. You need to know
what has been pressed or where the mouse moved to. The message WM_MOUSEMOVE is not enough
information to tell you what took place when the mouse was moved. That is why these windows
messages also carry parameters. Each message can carry two parameters wparam and lparam. The
parameters of a message help to specify what exactly happened during an event. For example, If you
opened an executable and moved your mouse, Windows will send the executable a WM_MOUSEMOVE
message. The message will also contain the wparam and lparam parameters. wparam carries the
keyflags, which allows you to see if a mouse button was held down during the mouse move. lparam
carries the x and y position of the mouse telling you exactly where the mouse is on the screen.
Parameters are also used when dealing with buttons and menu items. When a button or menu item is
pressed Windows sends a WM_COMMAND to the executable. This WM_COMMAND stores the ID number
of the button or menu item in the wparam parameter.
We have a better understanding of messages and message handling, now we can return to locating
where notepad compares our menu ID number. We know that when our menu item is selected it sends a
WM_COMMAND message. We also know that our ID is stored in the wparam parameter of the message.
So first we will try and locate where the program handles the WM_COMMAND message.
You should still be at the beginning of Notepads message handler in Ollydbg. There are different ways for
programs to handle the actual messages but the most common way is to use a switch.11 A switch is a
programming method that evaluates a variable and performs an action based on the variable's value.
The action performed is known as a case. Let’s say we have a program that takes the number of the
month and we want to return the name of the month. Using If-Then-Else statements we could write it as
such:

10 List of Windows Messages: http://wiki.winehq.org/List_Of_Windows_Messages
11 C++ Switch Case Statements: http://www.cprogramming.com/tutorial/lesson5.html

http://wiki.winehq.org/List_Of_Windows_Messages
http://www.cprogramming.com/tutorial/lesson5.html

PAGE 11 ARTEAM EZINE

Or it could be written using a switch statement:

IF month = 1
 print “January”
ELSE
 IF month = 2
 print “February”
 ELSE
 IF month = 3
 print “March”
 ...

Switch(month)
Case 1: print “January”
Case 2: print “February”
Case 3: print “March”

The switch statement is a much more efficient and aesthetic solution. Because of this many programs use
the switch statement to evaluate and handle messages. Using Ollydbg we can see the Notepads switch
statement for handling messages. Scroll down from the beginning of the message handler and you will
see:

Image 1.16 – Switch Statement in Notepad

This is the start of the switch statement that handles all the window messages. Using this switch we can
locate where Notepad evaluates WM_COMMAND. Highlight the line that says Switch (cases 2..8001) and
right-click. Choose Go-To from the right-click menu and in the new menu choose More Cases:

Image 1.17 – Locating Cases within Ollydbg

A new window should open within OllyDbg allowing you to see all the different cases that this switch
handles:

PAGE 12 ARTEAM EZINE

Image 1.18 – Viewing Cases within Ollydbg

We can see that Case 111 is WM_COMMAND. Highlight the line and press Follow to go directly to the
beginning of Notepads handler for WM_COMMAND. You will find yourself here in Ollydbg:

I
mage 1.19 – WM_COMMAND Handler in Notepad

Examining the code there is no noticeable functions that look as if they are comparing a button or menu
ID number. We do, however, see that there are 2 calls within the WM_COMMAND case. We have a call
to MessageBoxW and a call to Notepad.01002B87. Now keep in mind your offsets may look different for
the second call, but it does not change the call. Using common sense, since the comparison is not
taking place among the code we are in currently, and the comparison obviously is not taking place
within MessageBoxW, we can assume that within that second call is probably where our ID number
comparison is taking place.
Highlight the second CALL and right-click. In the new menu that opens up choose Follow. That will step
into the call to Notepad.01002B87.

Image 1.20 – Follow a CALL in Ollydbg

After following the CALL within Ollydbg you will find yourself at the beginning of a new function:

Image 1.21 – Function Beginning

Take a quick look at the code within this function. Scrolling down we see that we are quickly presented
with another switch statement. We see switch (cases 1..303) in the comments section to the right of one

PAGE 13 ARTEAM EZINE

of our code locations. Note, if you do not see the switch comment then press CTRL+A to analyze the
code.

Image 1.22 – Switch

We need to find out more information about exactly what numbers this switch is comparing. As we did
before, highlight the first line of the switch and choose Go-To, then select More Cases. We are presented
with a new box that contains the list of the cases for this switch. Scroll to the bottom and look at some of
the cases. The first number you see is the hexadecimal number; the next number in parentheses is the
decimal number equivalent. Do any of the numbers look familiar?

Image 1.23 – Switch Cases

Hopefully you recognize the number 770. If you did not recognize the number refer back to [Image 1.4].
770 is the decimal value for the Paste menu item in Notepad. If we were to look through the resource
section again we would find 768 is the ID number of Cut menu item, 769 is the ID number of Copy, etc...
This means that we have successfully found Notepads ID number comparison function and we also have
located the switch within that function that compares our ID number.
Write down the location of the comparison routine we will need to jump back to this location later in the
paper. In my case the comparison function begins at 1002B87 your address value may differ but refer to
[Image 1.21] to verify that the code is the same. We will also need to write down what register is being
used within our switch. This will let us know where our ID number is being stored. We will use that register
when we write our DLL. Scroll back to the beginning of the switch and we find that the register that is
being compared in our switch is EDI.

 Image 1.24 – ID Number Comparison

We have now found the location of the comparison function and we know what register is being
compared. The next step will be to redirect the function to account for our two new menu items. We
could redirect to a code-cave and hard-code all values and variables within Notepad. We are not
going to take that approach; instead we are going to develop a DLL. Notepad will be modified to load
the DLL and then we will redirect our ID comparison function to another function within the DLL. Before
we can continue within Notepad we need to start developing our DLL

4. Developing the QuickText DLL
4.1 Planning

Developing a DLL can be intimidating for someone new to the world of reverse-engineering and coding.
In this section we will determine how our DLL needs to function. We will then develop a flowchart to show
the desired execution. Finally I will walk you through creating your QuickText DLL. To begin we are going
to write a simple flowchart to demonstrate how our DLL is going to work. Even if you do not know how to
write a DLL this will help you understand how the code is functioning. The following is our desired
execution of Notepad and the QuickText DLL. The Red objects on our flowchart show the modifications
to Notepads execution. The dark blue objects illustrate the function of our DLL:

PAGE 14 ARTEAM EZINE

Image 1.25 – Simple Flowchart Representation of Desired Notepad Execution

� First Notepad begins
� Next there is a modification within Notepad that will load our Quicktext DLL
� Execution will continue until Notepad receives a WM_COMMAND message
� At that point Notepad has been modified to call a function within our QuickText DLL

9 Within that function EDI is being compared to our two Menu Ids
9 If EDI equals one of our Menu IDs then we will paste the string corresponding to that menu

into Notepad
9 Otherwise we will return to Notepad and allow it to continue.

We cannot modify Notepad yet because we do not have a working DLL to load or redirect to. First we
need to focus on how to achieve our desired DLL functionality. Writing a DLL will not be that hard, we
can use a simple skeleton to help us develop it. However, within our QuickText DLL we are going to need
to create a function that will compare EDI and paste the specific string into Notepad. I will be calling
that function QuickPaste. That will be the function we have Notepad call if it receives a WM_COMMAND
message. The next flowchart is an illustration of loading the DLL and the execution that needs to take
place within the QuickPaste Function:

Image 1.26 – Flowchart Representation of QuickText DLL

PAGE 15 ARTEAM EZINE

Examining this illustration gives us a better idea of how we need to develop our DLL. The chart at the top
shows how the DLL loads into memory. Below that we find the execution flow of the QuickPaste function.
If you noticed I decided to use the clipboard to accomplish our goal. If the value of EDI is equal to one
of our Menu ID's then we open the clipboard and place the string assigned to that Menu ID into the
clipboard. Before returning to Notepad I specifically placed the value of the Paste Menu ID into EDI.
When we return Notepad will execute the Paste function placing the string from the clipboard into it's
own text field. That cuts down on the amount of code we have to write. Working with the clipboard in
windows is not necessarily trivial, there isn't just a single API call you can use in this case. Because the
clipboard can store images, text, and files it becomes a little more complicated. Below are the actions
we need to take along with their corresponding Windows API functions:

Action API Function

Allocate memory within our process to store our string GlobalAlloc

We then need to lock the memory so Windows does not discard it. GlobalLock

Next we move our string into the allocated memory N/A

We can now open the clipboard to be used by Notepad OpenClipboard

Remove anything that was formerly in the clipboard EmptyClipboard

Set the clipboard data to TEXT and move our allocated memory into the
clipboard

SetClipboardData

Now close the clipboard so other processes can use it CloseClipboard

We then unlock our allocated memory so it can be deleted GlobalUnlock

We have now spent some time outlining and planning how our DLL will work. We know the flow of
execution and the desired functionality. We have established the API functions we will need to use, and
are finally ready to begin coding our DLL.

4.2 Coding

If you are completely new to ASM programming I will briefly walk you through your assembler and IDE.12
There are many different tutorials out there to help you learn assembly, If I were to explain the basics of
the language I would be repeating what is already available. I can recommend two great series of
tutorials to help you begin learning ASM13,14. For this paper you only need to know enough to install the
IDE and assembler. If you have read and understood the flow of execution so far you will be able to
follow along with the commented ASM code.
We will be using MASM3215 as our assembler language in this paper. For our IDE you will need both
RadASM v2.x and the RadASM Assembly Programming Pack. These are located at the RadASM site16. I
recommend installing both RadASM and MASM32 to your C: directory. This will help eliminate the need to
modify library and include paths in RadASM. If you have issues with setting up RadASM to work with
MASM refer to the RadASM help file. It can be downloaded from their website.
The basics of writing a DLL in MASM are simple. Since we are coding our DLL using the RadASM IDE
(Interactive Development Environment), it will remove some of the work when coding our assembly
programs.

1. Open RadASM and select File->New Project.
2. Choose MASM for the Assembler and check DLL Project. Enter in both the Project Name and

what the Project file will be called. I named my project QuickText. Press Next to continue.
3. Do not choose a Template, just press Next.
4. For File Creation only choose ASM and DEF, and choose BAK for the Folder Creation. Press Next

to continue.
5. In the next window press Finish to begin your project.

When you press Finish you will be presented with a new project in RadASM. In the right hand pane of the
program you will see your two files QuickText.asm and Quicktext.def. Quicktext.asm will contain the main

12 IDE is defined as: Interactive Development Environment
13 Iczelion's Tutorial Series: http://win32assembly.online.fr/tutorials.html
14 Win32 Assembler Coding for Crackers by Goppit: http://tutorials.accessroot.com
15 MASM32: http://www.masm32.com/
16 RadASM IDE: http://www.radasm.com/

http://win32assembly.online.fr/tutorials.html
http://tutorials.accessroot.com/
http://www.masm32.com/
http://www.radasm.com/

PAGE 16 ARTEAM EZINE

executable body of code for our DLL. Quicktext.def will contain definitions of any functions our DLL will
export. The large main pane in the center of the program is the coding window where you write the
assembly code.
First we need to open our QuickText.asm file in the coding window so we can begin writing the DLL.
Double-Click on QuickText.asm and that will open it up in the coding window. We have spent a lot of
time developing the function of this DLL and have thoroughly examined how it is going to work. We have
also discovered what functions are needed to achieve our desired execution. Because of this I am not
going to directly explain the QuickText code. I have commented every line and I recommend reading
through it. When you have read through the code, and feel comfortable that you understand how it is
functioning, you can past the source below directly into the coding window.

;QuickText DLL v1.0 by Gabri3l [ARTeam]
;Supplement to Adding New Functionality to Old Software
;##\
;Adds new functionality to a modified notepad.
;Allows interception of the Message handler for WM_COMMAND.
;Compares menu ID number against new modified numbers and acts accordingly
;##/

;##\ Processor definition and includes

.586
.model flat, stdcall
option casemap:none

include windows.inc
include user32.inc
include kernel32.inc
includelib user32.lib
includelib kernel32.lib

;##/

.data
wQuickText1 db "QuickText1",0Dh,0Ah,0 ;Character String to Paste into Notepad
wQuickText2 db "QuickText2",0Dh,0Ah,0 ;Character String to Paste into Notepad
dBytes dw 100h ;Buffer Size for Clipboard Memory

.data?
hMem dd 4 dup(?) ;Handle to Allocated Memory
pAlloc dd 4 dup(?) ;Pointer to First Byte in Allocated Memory

.code

DLLEntry proc hInstDLL:DWORD, reason:DWORD, unused:DWORD ;*QUICKTEXT ENTRY FUNCTION*

.if reason == DLL_PROCESS_ATTACH ;initialization code for when DLL is loaded
 mov eax,TRUE ;put TRUE in EAX to continue loading the DLL
.endif
 Ret ;Return

DLLEntry Endp ;*END OF QUICKTEXT ENTRY FUNCTION*

QuickPaste proc ;*QUICKPASTE FUNCTION*

.IF EDI==55
 Mov EDI, OFFSET wQuickText1 ;If Menu ID = 55 MOV offset of first Character

;String into EDI
.ELSEIF EDI==66
 Mov EDI, OFFSET wQuickText2 ;If Menu ID = 66 MOV offset of second Character
 ;String into EDI
.ELSE
 RET ;If Menu ID does not equal 55 or 66 Return to
Notepad
.ENDIF

INVOKE GlobalAlloc,GMEM_MOVEABLE, dBytes ;Allocate dBytes of Memory to load Character
String
mov hMem,EAX ;Move the Handle of the Allocated Memory into hMem

Invoke GlobalLock,EAX ;Lock the Allocated Memory

PAGE 17 ARTEAM EZINE

mov pAlloc,EAX ;Move Pointer to First Byte of Allocated Memory into
pAlloc

MOV ECX,EDI ;Move offset of Character String into ECX
XOR EBX,EBX ;Zero Out EBX
Mov BL, BYTE Ptr DS:[ECX] ;Move First Byte of Character string into BL

.While BL!=NULL ;Loop while BL is not a Null Character
 Mov Dword Ptr DS:[EAX],EBX ;Move Character stored in BL into Allocated Memory
 INC EAX ;Increment to next Byte in Memory
 INC ECX ;Increment to next Byte in String
 Mov BL, BYTE Ptr DS:[ECX] ;Move next Character into BL
.ENDW

Mov Dword Ptr DS:[EAX],00 ;Move NULL into Last Byte of Allocated Memory to end
string

INVOKE OpenClipboard,NULL ;Open Clipboard for this Process

MOV EBX, Dword PTR DS:[hMem] ;Move the Handle of Allocated memory into EBX

INVOKE EmptyClipboard ;Empty old Clipboard Contents
INVOKE SetClipboardData,CF_TEXT,EBX ;Set Clipboard Data equal to Allocated Memory
INVOKE CloseClipboard ;Close clipboard
INVOKE GlobalUnlock,hMem ;Unlock the Allocated Memory

MOV EDI, 302h ;Move "Paste" Menu ID number into EDI
ADD ESP,2 ;Balance the Stack
RET ;Return to Notepad

QuickPaste EndP ;*END OF QUICKPASTE FUNCTION*

end DLLEntry

After we have written the preceding code we need to export our QuickPaste function. This is done so
other programs, like Notepad, can use it. We do this by defining the exports in the QuickText.def file. Our
definition file needs to include two lines. We need to define the name of our dynamic library and we also
need to declare any functions we want to export from the DLL. When a function is exported that means
it is made available to any module in the address space that wants to call it. Exporting a function will
allow us to find the address of that function by using the GetProcAddress API feature.

Below are the definitions to be included in QuickText.def:

LIBRARY QuickText ;The name of our library
EXPORTS QuickPaste ;The name of the exported function

After all the code has been entered for both QuickText.asm and QuickText.def we can build our DLL.

1. In RadASM choose Make->Build to compile the DLL
2. Output results will be displayed in a window at the bottom of the program. Your DLL will be

located in the ...RadASM/MASM/Projects/QuickText/ folder

5. Modifying Notepad to Load and Use QuickText.dll

We have finally created our QuickText DLL. Now we need to modify Notepad so it will load our DLL
during initialization. We are going to begin by redirecting Notepad’s Entry Point to a Code Cave17. That is
done by adding a JUMP at the entry point that jumps to our code cave. This jump can overwrite some
commands if needed because we can emulate them within our cave. The next step will be to load
QuickText.dll. This can be done by calling LoadLibrary and using “QuickText.dll” as the argument.
LoadLibrary is a Windows API function that is used to map an executable module, like a DLL, into
memory. LoadLibrary will look in the programs directory for “QuickText.dll” and, if the dll is found, it will
load it into memory. LoadLibrary will then return the handle of our DLL in EAX. Once our module is loaded
we need to find the location of our QuickPaste function. Windows provides another API function that
allows us to do this easily. Because we exported our function in the QuickText.def file, it is listed in the
exports section of our DLL. We can look it up using the GetProcAddess API function. Calling
GetProcAddress and passing it the return of LoadLibrary (which was the handle of our DLL), and the

17 Code Cave: Unused memory space within a programs allocated memory. It can be used to store

information and code without changing the size of the original program.

PAGE 18 ARTEAM EZINE

argument “QuickPaste” will return the location of the QuickPaste function in EAX. We can then store that
address and use it in the Menu ID comparison. After we have stored the address we need to execute
any commands we overwrote with our JUMP and return to regular program execution. Finally we will
need to modify the Menu ID comparison so it will call the QuickPaste function using the address we
received from GetProcAddress.
We start by first loading Notepad.exe into Ollydbg. You will find yourself here at Notepad's Entry Point:

Image 1.27 – Notepad.exe Entry Point

A quick trick to finding a code cave is by scrolling Olly's code window until we get to the last real
instruction and just see 0's.

Image 1.28 – Code Cave in Notepad.exe

We see that our code cave starts at 1008747. This section is where we are going to redirect our entry
point to. Go back to Notepad's entrypoint where we are going to assemble a JUMP. Highlight the PUSH
70 line and Press SPACEBAR. This will open the assembly window which allows us to modify the programs
code.

Image 1.29 – Ollydbg Assembly Window

I prefer to leave a little space at the beginning of the code cave just in case I need to make some
modifications. So I will choose to jump to 1008765 instead of 1008747. Enter JUMP 1008765 into the
Assembly box. Make sure you check Fill with NOP's and press Assemble. You will see the JUMP has
overwritten PUSH 70 and PUSH NOTEPAD.01001989 with a JUMP NOTEPAD.01008765. We have now
redirected our entry point to the code cave. Your code should look like this:

Image 1.30 – Entry Point Redirected

We now need to figure out what code we enter into our code cave. The code I post below is incorrect in
it's syntax but will give you the idea of what we need to accomplish in our code cave.

PUSH “QuickText.dll” ; PUSH POINTER TO "Quicktext.dll" ONTO THE

PAGE 19 ARTEAM EZINE

STACK
CALL LoadLibrary ; CALL LoadLibraryA FUNCTION
PUSH “QuickPaste” ; PUSH POINTER TO “QuickPaste” ONTO THE
STACK
PUSH EAX ; PUSH THE HANDLE TO QuickText DLL RETURNED
BY LOADLIBRARY
CALL GetProcAddress ; CALL GetProcAddress
MOV Stored_Address, EAX ; MOVE LOCATION OF QuickPaste FUNCTION INTO
STORED_ADDRESS
PUSH 70 ; EMULATE OVERWRITTEN COMMAND
PUSH 01001898 ; EMULATE OVERWRITTEN COMMAND
JMP 010073A4 ; JUMP BACK TO PROGRAM EXECUTION

Most of this code we could enter just as it is written. However we cannot use variables and constants in
our code, like “QuickText.dll”, QuickPaste, and Stored_Address. Instead we have to define the variables
ourselves and reference their location in memory. It is simple to do, all we do is write the strings into
Notepad. When we need to reference them we just use whatever memory location they were written at.
Knowing that, it is time to start adding code to our code cave. We are going to start by creating our two
constants “QuickText.dll” and “QuickPaste” in Notepad. Go to the beginning of our code cave at
1008747. Highlight line 1008748 and, while holding the mouse button, down drag down to select about
15 lines below it. Once you have the lines selected, right-click and choose Binary and then Edit

Image 1.31 - Binary Edit

A new window will open that allows you to edit the memory you have selected. We are going to add
our first string “QuickText.dll” into our selected memory location. Type QuickText.dll into the ASCII box in
the edit menu. When you are finished press Okay.

Image 1.32 – Entering ASCII String into Memory

Once the string has been written into memory press CTRL+A to re-analyze the code. Olly will then
recognize the string and you will see it in your code window. We now need to do the same thing for the
next string “QuickPaste”. I entered the QuickPaste string starting at location 1008757, one BYTE after the
QuickText.dll. Follow the steps above to enter the QuickPaste string. Your final modification should look
like this:

PAGE 20 ARTEAM EZINE

Image 1.33 – String Constants

We now have our two string constants written into memory, the only other thing we need to do is find a
location for our variable Stored_Address, which will hold the location of the QuickPaste function. Finding
a variable location is easy; all we need to do is determine an empty code location that we will write
information into. In my case I chose a location farther down the code cave at 1008798. No preparation
is needed to use this location as a variable. We will just use that memory location as we enter the code
into our cave. Now that we have all our constants and variables memory locations defined we can use
them in our code:

PUSH 1008748 ; PUSH POINTER TO "Quicktext.dll" ONTO THE
STACK
CALL LoadLibraryA ; CALL LoadLibraryA FUNCTION
PUSH 1008757 ; PUSH POINTER TO “QuickPaste” ONTO THE
STACK
PUSH EAX ; PUSH THE HANDLE TO QuickText DLL RETURNED
BY LOADLIBRARY
CALL GetProcAddress ; CALL GetProcAddress
MOV DWORD PTR DS:[1008798],EAX ; MOVE LOCATION OF QuickPaste FUNCTION INTO
STORED_ADDRESS
PUSH 70 ; EMULATE OVERWRITTEN COMMAND
PUSH 01001898 ; EMULATE OVERWRITTEN COMMAND
JMP 010073A4 ; JUMP BACK TO PROGRAM EXECUTION

This code can now be entered directly into our code cave. We do this the same way we added the
JUMP to our cave. We will assemble each line of our cave with each line of code above. Start at
1008765, select the line and Assemble. In the Assembly Box enter the first line of our code; PUSH 1008748.
Press Assemble to write the code:

Image 1.34 – Assembling Code in a Code Cave

Next we will Assemble line 100876A. Usually your Assembly box will remain open, if it is not open then just
select the next empty line and press SPACE to assemble. Enter our next line of code into the Assembly
box; CALL LoadLibraryA and press Assemble18.

Image 1.35 – Assembling Code in a Code Cave (Continued)

Continue to Assemble each line of code until you are finished with the block of code. Your final product
should look like this:

18 A note: doing this way, the LoadLibrary will be directly called; when saved it will be resolved with the

address of the PC on which you assembled the code. Generally speaking it is better to do it through the
import gate, otherwise will not work on different systems. We left this as a note in order to keep the
discussion clear, but you should consider it.

PAGE 21 ARTEAM EZINE

Image 1.36 – Final Code Cave Code

We now need to save our modifications to a new executable. Right-click within the code window and
choose Copy To Executable from the right-click menu. Then select All Modifications.

Image 1.37 – Copy To Executable

A new window will open up with a new file which has all the modifications we have made to the
Notepad executable. We need to save this file as an new exe. Right-Click in the new window and
choose Save File. A dialog box will open up asking what you would like to name the new file. You can
use whatever name you desire, I named my file Notepad.Modified.exe.

Image 38 – Save new executable to

file

You can now close Ollydbg. Our Notepad is modified so it will
load our QuickText.dll. It can then find the location of the
QuickPaste function and store it in a variable to be used later.
There is only one problem. If you attempt to run the modified
Notepad you will encounter an error! Why? The reason is this
command:

; MOVE LOCATION OF QuickPaste FUNCTION INTO STORED_ADDRESS
MOV DWORD PTR DS:[1008798],EAX

That command is writing information directly into the memory location 1008798. We are getting an error
because Notepad has set a flag in it's characteristics saying that the section we located our variable in is
not writeable memory. Thankfully this is an easy thing to fix. All we have to do is edit the characteristics of
that section so we can write to memory. This can be accomplished with a Portable Executable editor
such as LordPE19. Once you have downloaded and installed LordPE open it up and choose the PE Editor
button. Locate and open your modified version of Notepad. You will be presented with the executable
editor menu. Our goal is to edit the section characteristics of Notepad so we can write to memory.
Select the Sections button to view Notepad's sections. You will be presented with a Sections Table
window.

Image 1.39 - Sections Table in LordPE

19 LordPE: http://mitglied.lycos.de/yoda2k/LordPE/info.htm

http://mitglied.lycos.de/yoda2k/LordPE/info.htm

PAGE 22 ARTEAM EZINE

Right-Click on the .text row, and choose Edit Section Header from the Right-Click menu. This will open up
a new window showing just the information for the .text section. We need to modify the flags for this
section. Choose the ... button located next to the Flags textbox:

Image 1.40 - Modify Flags in LordPE

A new window will open where we can set individual flags for this section. Set the Writeable flag by
checking the box next to its name.

When you have set the flag press OK until you return to the
Section Table. Close the table, and you will be find yourself
back at the PE Editor. Press SAVE to save the modified flag to
our executable. You can now close LordPE and test out
Notepad. It runs perfectly now! We can move onto the final
step; modifying the Menu ID number comparison.
The last thing we need to do is to add a CALL to QuickPaste in
the Menu ID comparison routine. We already have all the

information we need to accomplish this. We know where the routine is, we are finding the location of
QuickPaste and storing it in 1008798. All we need to do now is find a suitable location to place our CALL.
Begin by opening your modified Notepad in Ollydbg. Go to the beginning of our Menu ID comparison
located at 1002B87

Image 41 - Setting a Flag in LordPE

Image 1.42 – Beginning of Menu ID Comparison Function.

We are going to look for a suitable location to insert our CALL. We know that the Menu ID is going to be
stored in EDI. So we want to get as close to the location where the Menu ID is moved into the register as
we can. This will cut down on the amount of instructions we may need to emulate, because remember
that if we overwrite anything we need to make sure we emulate it so our program continues to function.
Scroll down in Ollydbg until we get to here:

Image 1.43 – Menu ID Moved Into EDI

We see above that our Menu ID is being moved into EDI directly above a compare. We do not
necessarily want to overwrite the compare function as it is critical to the switch. This does not give us
much room to work with. We are just going to have to overwrite the command that move the Menu ID
and the command directly above it if we are going to fit our CALL into this code. Select STOS WORD PTR
ES:[EDI] at line 1002BB8 and press SPACE to Assemble the line. We are going to now add our CALL to the
QuickPaste function. The code we are going to enter is: CALL DWORD PTR DS:[1008798]. That code will be
calling the address location stored at 1008798, which is where we stored the QuickPaste function
address. Enter the code above in the Assembly box and assemble the new CALL. Your modified code
will look like this:

PAGE 23 ARTEAM EZINE

Image 1.44 – Modified Menu ID Routine

Now that the modification has been made to the Menu ID comparison function we need to save it to an
executable. Follow the same steps we took before to copy all our modifications made in Ollydbg to a
new executable. You can name this final executable whatever you desire. I named my modified
Notepad; Notepad.Final.exe. We can now close out OllyDbg. We are finished modifying Notepad, we
added new menus, we modified it so it will load our QuickText dll during initialization, and finally we
added a CALL that will redirect the function that compares the Menu ID to our own QuickPaste function.
With our modified Notepad complete, we only have one more step to take.

6. QuickText DLL Revisited

We need to make a quick modification to the QuickText DLL. In Notepad we added the CALL to the
QuickPaste function by overwriting some commands. We need to emulate those same commands
within the QuickPaste function to ensure stability. Open up your QuickText DLL project in RadASM.
Navigate down to the beginning of the QuickPaste function and add the two highlighted lines below:

...
DLLEntry Endp ;*END OF QUICKTEXT ENTRY FUNCTION*

QuickPaste proc ;*QUICKPASTE FUNCTION*
STOS WORD PTR ES:[EDI] ;Emulate replaced Notepad function
MOVZX EDI, WORD PTR SS:[EBP+0Ch] ;Emulate replaced Notepad function

.IF EDI==55
 Mov EDI, OFFSET wQuickText1 ;If Menu ID = 55 MOV offset of first Character

;String into EDI
.ELSEIF EDI==66
...

Build the DLL the same way we did before:

1. In RadASM choose Make->Build to compile the DLL
2. Output results will be displayed in a window at the bottom of the program. Your DLL will be

located in the ...RadASM/MASM/Projects/QuickText/ folder

After the new QuickText DLL is built, be sure to copy it into the same folder as our Notepad.Final so it can
be loaded by Notepad. Now that we have emulated the replaced functions we are ready to move
onto the testing of our new Notepad.

7. Results &Final Remarks

We have completed all the work that needed to be done to on our quest to add a new feature to
Notepad. If we applied the steps correctly we will be able to add predefined text by simply choosing an
option from our menu. It is finally time to test our newly created Notepad functionality.

1. Locate Notepad.Final.exe
2. Verify that QuickText.dll is in the same folder as Notepad.Final.exe
3. Run the program...

PAGE 24 ARTEAM EZINE

Image 1.45 – Modified Notepad Running

The project was completed successfully, but that is not the end of the journey. You have the option to
build on this information by adding new menu items and changing the features they provide, creating a
custom program all on your own through editing more resources and menu's, or maybe enhancing the
portability by making the dll read from a file; allowing others to change the defined text. It is true that this
topic has been covered many times. Hopefully the application of new tools and a different approach
made the paper feel new and useful. I tried my best to put a lot of new information and strong
explanation into this paper.

2. Patching by using resource, ThunderPwr of ARTeam

1. Introduction

The aim of this paper is to show another way of patching one application and keep it registered by using
the information gathered from application resource.

Target used for this essay was DLL to Lib, a nice application useful for converting a DLL library into a static
library.

Target Name: DLL to LIB v1.42

Target URL: http://www.binary-soft.com/dll2lib/dll2lib.htm

Since this isn’t a full cracking tutorial I’ll not cover the unpacking stage, I’ve done it manually in a very
simple way (AsProtect 1.2 / 1.2c-> Alexey Solodovnikov). Take care by using Stripper v2.07f your PC may
reboot, as a hint reach OEP and use ImportREC, show invalid and use Trace 1, now you’ve only one
unresolved API, keep it by using the Disassemble/HexView function and is easy to show that is was the
GetProcAddress API.

2. Resource searching

Start ResHacker and perform a text search for the string “Unregistered Version” with ResHacker:

Image 2.1 – ResHacker

http://www.binary-soft.com/dll2lib/dll2lib.htm

PAGE 25 ARTEAM EZINE

Image 2.2 – Resource inspection with ResHacker

Image 2.2 shows that the needed resource ID is equal to 1063 in decimal, 0x427 hexadecimal.
Load the target in OllyDbg and perform a search for all constants equal to 0x427.

Image 2.3 – search the resource into OllyDbg

PAGE 26 ARTEAM EZINE

Image 2.4 – OllyDbg constant search form

Press Ok:

Image 2.5 – search result

Press Ctrl+G and write 0x00401302, we’re into this code:

Now place the software breakpoints (F2) showed above and restart the target by using Ctrl+F2 then
press Shift+F9, reach the address 0x004012D0 and enter into the call code (F7):

PAGE 27 ARTEAM EZINE

Target was search for the registration name, if no valid one will be found the function return with EAX=0
and then the PUSH 427 will be executed then our registration name will be Unregistered Version, ok now
we’ve got the trick. To defeat the protection system and keep the target registered simply put in
[46736C] a pointer to a valid string.

3. Patching

Restart the target and put a memory breakpoint on access on 0x0046736C, this is to make sure if the
same code will be called during startup to check if the target was registered or not, press Shift+F9.

OllyDbg on start and before show the main window will break into the same routine, now scroll down to
the end of the file to look for some free space and write the patch below:

Also apply the redirection to our cave:

Now run the target and look at the window caption:

PAGE 28 ARTEAM EZINE

Also look into the About menu:

Ok but this isn’t working, if you try to convert a dll target will crash, reason is about the reusing of this
code for another task: we need to patch all the code from the original call.
To do it apply this patch instead the previous one:

Above code is the original one but this time I have forced the registration string.
Now change also the redirection from the registration checking from 0x004012D0 then:

PAGE 29 ARTEAM EZINE

and also restore the original code:

This patch forces the About box and the target to be registered but we have also to patch the original
call for the caption window then simply put a breakpoint on 0x00416420 and run the target when
OllyDbg break simply reach the RETN instruction and press F8 to go into the caller code.

Now apply the patch below:

our routine is called on start and also into the converting process then we can’t simply patch the
redirection to our cave because for other task it crash the target, to solve in a simple way the trouble we
can patch the call to another cave, execute the patched code and then patch the original redirection
to go into the old call, let me explain better, first patch the call with a redirection to our new cave:

then write into the cave the following code:

PAGE 30 ARTEAM EZINE

In this way the first time we keep on execution with the patched code and for all the remainder time is
executed the original code, more simple but effective!

Well now we can said all done!

4. Final Remarks

This paper shown how to use resources to bypass protections, also I pointed some details about code
patching.

PAGE 31 ARTEAM EZINE

3. Patching Event Driven Nags, Shub-Nigurrath of ARTeam

1. Abstract

This is a little tutorial about a method, well known indeed, of patching event driven nags.
The target is Back2Life for TC where TC stands for Total Commander. This version of Back2Life is a file
system plugin for TC that unerases files found on the hard disks and drives generally, more or less like the
full program Back2Life, still of the same company.

Target Name: B2L4TC 2.33
URL: http://www.grandutils.com/Back2Life4TC/

An event driven nag is a dialog not created with a simple MessageBox, but a complex dialog with its
own message pump and different events, handling the nag itself. Example of these nags are nags with a
running timeout inside, or animated nags, or just nags that are meant to be a little more difficult to be
removed. The fact is that message pumps are on the one hand very simple to program and on the other
hand, not so simple to follow and are always a tedious task.. Most of the times moreover, like this one, the
messages also initializes parts of the programs checked later as an anti-tampering countermeasure.

2. Analyzing the target

The protection is quite simple as the author states, just to discourage illegal use of the program: a nag
with a countdown counter of 15 seconds after which a "Recover" button is activated. The program, a dll
renamed with extension .wlx as requested by TC, is packed with UPX and has no CRC checks that can
complicate things. It is programmed in Delphi

There is one specific issue anyway; the dialog initializes different program variables and internal function
pointers into different places. Its creation involves several variables and function pointers required to
correctly run the application after the nag has been shown. Just skipping the nag won't make the
program running. It's a clever nag..

Further analyzing the nag code we can see that the 14 seconds countdown is done setting 14 times a
1000 msec (1 sec) timer with a call to SetTimer.

Starting from the most distant point, open a resource editor and see which the resource responsible of
the nag is. You will easily recognize that it is the SCREENDLG dialog, which contains the text and a
hidden field which will contain the countdown message of the trial.

Image 3.1 SCREENDLG resource

As I already said, just skipping the nag like anyone might have thought won't work: the program in this
case has three different behaviors, depending where you skipped the dialog:

http://www.grandutils.com/Back2Life4TC/

PAGE 32 ARTEAM EZINE

1. Wont' recover the deleted files
2. Recovers the deleted files but doesn't place into the recovered file any data (the file will be

"empty").
3. Hangs because there are some function pointers not correctly initialized.

Definitely a cleaver dialog!

3. Approach and analysis

I thought of a different approach: rather than going into the program digging where it fixes all the
required function callbacks and variables I will force it to work exactly as it works when you wait the
timeout and press "Proceed" button; I am going to automate the dialog. The approach is general
enough to be applied to any other dialog you want to "automate" and allows you to not loose your time
searching where the program fill the check variables.

As I said the SCREENDLG is the resource involved with this dialog. Disassembling with the help of IDA the
plug-in allows us to export from IDA the .MAP file and import it into OllyDbg, so as the Delphi specific
things will be clear even from OllyDbg20.

The dialog is used here:

and the sub_41FE30 contains this body:

Where, clearly, a call to DialogBoxParamA is the call that creates the dialogbox. The important thing is
then, not to skip this call, but to follow where the messages sent to the dialogbox, are handled.
First of all place a Breakpoint to the call of DialogBoxParamA and you will immediately see (to see it you
must know how to use the plugin inside TC, and debug the whole TC with OllyDbg) that the DlgProc
passed is Back2Lif.sub_41FD5C.

The DlgProc is the following one:

20 I did this to allow reading more efficiently Delphi code into OllyDbg, as explained into several tutorials
of ours

PAGE 33 ARTEAM EZINE

The structure is the classical switch.case, where different cases handle different messages. What is
important for us is the WM_INIT_DIALOG message handler:

PAGE 34 ARTEAM EZINE

; loc_41FDC6; Case 110 (WM_INITDIALOG) of switch 013BFD70

and especially the call [EAX] that jumps out of the DlgProc.

016AFDE8 |. FF10 CALL DWORD PTR DS:[EAX] ; <Back2Lif.sub_41F7EC>

I then placed a BP to this location and saw where the program is jumping, which is the value of EAX. This
is the real message handler of the dialogbox. The previous code is just code stubs placed by the
compiler. What the programmer wrote starts at the call we just identified.

The program calls the call at 016AF7EC which contains another switch-case to handle windows
messages.

Remember that we are following the WM_INITDIALOG, we will concentrate on the corresponding case:

As you can see here there’s a call to SetTimer with a 100 ms seconds timeout, this is one of the 14 timers
we discussed before (for a total of 14 secondss). Just after SetTimer there's a call to SendMessage which
sends a WM_TIMER message in order to let the application immediately handle the timer.

The patch number 1, consists in fixing this SetTimer call and setting the timer's timeout to 0 msec, like the
following:

Patch 1:

Doing this way the program executes normally its timers, but it does them instantly!

We can now place a breakpoint into the case of WM_TIMER where the program does an interesting call
to KillTimer, this function is called when the delay imposed by shareware nag is over.

Just after the call to KillTimer the program does a series of graphic GUI system calls to set fonts, look &
feel.

PAGE 35 ARTEAM EZINE

Given that these functions are useless for us (because we want to skip the dialog and if doesn't look nice
is the same), we can use this space as a code cave where to code our patch number 2.

Particularly what we will change is the code between 016AFA89 and 016AFABB. We moved to the top
the final actions of the original code that were between 016AFAAC and 016AFABB and the modified the
code is added just after (from 016AFA9D to 016AFABF). The new code simply calls SendMessageA
posting a WM_COMMAND with wParam=64.

The new code becomes:

Patch 2:

Essentially I moved a piece of the original code on the top of the code piece to modify and I then
added a call like SendMessage(ESI, WM_COMMAND, 64, 0)

ESI is by definition for a DlgProc the window's handle. Sending a WM_COMMAND message makes the
system to call another time the DlgProc (nested call) and jumps to the WM_COMMAND case, with a
wParam (stored in EAX) equal to 64.

The following is the piece of code which is executed:

PAGE 36 ARTEAM EZINE

As you can see AX==64 and [EBX+14] (which is one of those values required to following working of the
program) is already set to 0 by previous calls nested into the nag. The result is that the EndDialog is
called.

The result is that the dialog appears for a moment and immediately disappears, just like if we waited for
the countdown and then pressed "Restore" button.

4. Final Remarks

Doing things this way prevents you from wasting your time analyzing where the nag sets the program
things and so on. You just skip the dialog doing like the user would have done, wait (actually less than
usual because of patch #1), press the button and exit from the nag.

The result of which, is that patching in the way described stops the program from hanging here:

016AE177 |. 8B40 0C MOV EAX,DWORD PTR DS:[EAX+C]
016AE17A |. E8 498BFEFF CALL <Back2Lif.sub_406CC8> ; if [EAX+1C]==0 doesn't work!

This call in any other case gives problems because EAX is not correctly initialized.

4. Writing OllyDbg Scripts, Buzifer of Team RESURRECTiON

Scripts have become a powerful way to automate tasks that sometimes can require a lot of time and
work. Most scripts are written to do some unpacking task and/or find the OEP of protected code. Usually
packers/protectors use a logical way to do their actions. If you know how and write a script, you
basically have a generic way to defeat it. Almost everything you can do in OllyDbg you can do with a
script. The reason behind this paper is for people who never have written scripts and want an
explanation of how it works and why.

1. Things Needed.

To use scripts in OllyDbg a plugin is required. Ollyscript has been updated to ODbgScript (by SHaG &
Epsylon). The scripting language is very similar to assembly. It has about 97 commands which can be
combined and manipulated to do almost everything.

A handy tool for writing scripts is OSEditor, the command list was for the old Ollyscript so I updated it. You
can find this tool and ODbgscript in the supplements package.

2. Variables and a first example

Let’s take an example: You want to retrieve the codesize of a program and save it for later use. First thing
is to declare a variable and give it a good name.

var codebase

Or maybe this one

var cbase

Example of bad naming:

PAGE 37 ARTEAM EZINE

var mycoolvariable

var declares a variable; this is needed to store things from a return value, think of variables as boxes.
You use them for storing items. You can name the variable to almost everything except using reserved
words; they are the commands in the scripting language. A good habit is to name things so they are self
explained and comment your code. This improves the readability of the script and makes it much easier
to make changes and track down errors. To write comments use // in the beginning.

To save things the function $RESULT is used. It returns values for other functions. This way we can have
the result saved for later use, Instead of being limited to just save one. It works this way:

Declare variable.
Do some action and store result in $RESULT
Transfer $RESULT to a variable.

An example

//This is an example of retrieving the codebase and display it
//in a msgbox.

var cbase //declares the variable cbase
GMI eip, CODEBASE // Now $RESULT is the address to the codebase
mov cbase, $RESULT //moves the result to our variable
msg cbase //Msgbox with the value
ret //End script

3. Execute commands

These are some basic run commands.

RUN Execute F9 in Ollydbg
STO Execute F8 in OllyDbg.
STI Execute F7 in OllyDbg.
RTR Executes "Run to return" in OllyDbg

4. Conditional jumps.

A script can repeat something until a statement is true or false. First we compare with the CMP
command.

CMP destination, source

Example:

cmp y, x (variables)
cmp eip, 401000

Jumps that can be used:

JNE Jump not equal
JMP Jump
JE Jump equal
JBE Jump If Below or Equal
JB Jump below
JA Jump above

Example of a script using conditional jumps:

var counter //declares the variable counter

start:
//Putting a ‘:’ after the text transform the text into a name of a label. This is useful
so we can make jumps to specific parts of the code.

cmp counter,10 //Compares the variable counter with 10

PAGE 38 ARTEAM EZINE

ja finish //jump if above 10

sto //executes F8 in OllyDbg

inc counter //Increase our counter by 1, otherwise it would
 //be an endless loop

jmp start //If the counter is lower than 10 we jump back

finish:
msg counter

5. Writing a script to unpack UPX

Searching for a specific sequence of bytes is very useful. The bytes of a Asm command is displayed to
the left in Ollydbg. You can also use binary edit to see them. This method can be applied to a couple of
other packers like Aspack.

sti //Executes F7 (step into)
findop eip, #60# //Searches code starting at addr
 //for an instruction, (Find command PUSHAD)
 //Wildcards can be used

bphws $RESULT,"x" //Set hardware breakpoint. Available modes are
 //"r" - read, "w" - write or "x" - execute.

run //Executes F9
sti
ret //Exit script

Another example: searching for kernel32.LoadLibraryA

find eip, #FF9674840600#
bp $RESULT
esto //Shift F9
ret

6. Writing scripts to set breakpoints.

All breakpoints in Ollydbg are supported in scripts.

BC Clear unconditional breakpoint at addr.
BP Set unconditional breakpoint at addr.
BPC Clear unconditional breakpoint at addr.
BPCND Set breakpoint on address addr with condition cond.
BPL Sets logging breakpoint at address addr that logs expression

expr
BPMC Clear memory breakpoint
BPHWC Delete hardware breakpoint at a specified address
BPHWS Set hardware breakpoint. Mode can be "r" - read, "w" - write or

"x" - execute.
BPRM Set memory breakpoint on read. Size is size of memory in bytes.
BPWM Set memory breakpoint on write. Size is size of memory in bytes.
BC Clear unconditional breakpoint at addr.

Example of putting breakpoint on MessageBoxA

start:
gpa "MessageBoxA", "user32.dll"
// Gets the address of the specified procedure in the specified library.
cmp $RESULT,0
je notfound
bp $RESULT
msg "Breakpoint on MessageBoxA"
ret

PAGE 39 ARTEAM EZINE

notfound:
msg "No breakpoint on MessageBoxA"
ret

Try to improve the following script to include the following:

GetDlgItemTextA
GetWindowTextA
lstrcmpA
GetPrivateProfileStringA
GetPrivateProfileIntA
RegQueryValueExA
WritePrivateProfileStringA
WritePrivateProfileIntA

This one can be useful to get the correct breaks when serial fishing. Included in the supplements there’s a
list of the commonly used API calls for different tasks..

7. Using flags

!CF Carry
!PF Parity
!AF Auxiliary carry
!ZF Zero flag
!SF Sign
!TF Trap
!IF Interrupt
!DF Direction
!OF Overflow

Using flags, the following script will execute F7 commands in OllyDbg until Zeroflag is 0.

var counter

start:
cmp !ZF,0
je end
inc counter
sti
jmp start

end:

msg "Zeroflag is 0"

8. Final Remarks

I hope you have got a basic understanding of how scripts work and continue to practice to code. As
soon as you understand the basics the real fun begins.

PAGE 40 ARTEAM EZINE

5. Utilizing Code Injection on an ACprotected
application, condzero of ARTeam

1. Introduction

Today’s target will deal with 1Click DVD Copy v5.0.2.9. protected by ACProtect or as it’s now known
Ultraprotect.

What is ACProtect?
ACProtect is a software protection application that allows developers to protect software against
cracking with special anti-crack techniques under all Windows platforms.

I particularly got a kick out of reading this bullet from the ACProtect website:
http://www.ultraprotect.com/

Many Software Vendors / Developers make the mistake, when choosing Software Protection, of not
protecting ALL their assets. Protecting the main application’s module is sometimes not enough. There are
many instances, where an application makes use of what I’ll call “Helper” dll(s), not to be confused with
System dll’s. In many cases, these helper dll’s are not protected, or if they are, not protected to the same
degree as the main module.

We will utilize a very powerful and often overlooked technique in overcoming the limitations of this
software, namely code injection. We can utilize a certain helper dll (vso_hwe.dll) to inject code into the
process.

2. So what is Code Injection?

The following excerpts on Code injection were taken from the following link (where you can read more):
http://en.wikipedia.org/wiki/Code_injection

Uses of Code injection:

Malevolent: We will not discuss this here.

http://www.ultraprotect.com/
http://en.wikipedia.org/wiki/Code_injection

PAGE 41 ARTEAM EZINE

Ahhh… this is perfect for our solution!

Some things to keep in mind. Timing is everything when we are modifying a process’s memory using an
indirect approach such as code injection. If using an external dll to introduce code injection, we can do
one of three things.

1. Does the dll load when our target is executed? If yes, then we can make the decision to choose
a particular function within the dll to hook for our injected code. Create a code cave and
patch the beginning of the function to jump to the code cave, perform some processing,
maybe insure that we only execute our changes once via a conditional switch, and jump back
to the function we hooked.

2. When the dll loads, is the target’s code unpacked and exposed to external modifications? If yes
(as we will do in this example) create a code cave with our code and change the original OEP
to point to our new code cave and simply jump to the original OEP after we’re done.

3. Some combination of the above.

3. Solution

Using a debugger, (OllyDbg in this case), uncheck the following options in the Exception tab of the
debugger’s options:

1. Memory Access Violation
2. Ignore also following exceptions or ranges.

Run (F9) the target. It will break on a handled exception and Olly’s CPU main thread code section will
look similar to the following:

Note: the actual address above may be different on your machine. Take a look at the Stack window
and you see something similar to the following:

PAGE 42 ARTEAM EZINE

This is our first indication that our chosen “Helper” dll (vso_hwe.dll) has been loaded into the process. Also
if you look at the Registers window we have another indication. Look at the EBX register below:

Note: The address maybe different on your machine. With
this in mind, we can Restart the target, but this time we will
check Break on new module (DLL) in Olly’s Events tab for
debugger options.

Follow the DLL load events to our chosen dll as seen below
and choose follow entry on the main module:

At this point, most of the code section that we are interested in is unpacked. Keep in mind that
Ultraprotect, similar to AsProtect, will not necessarily expose everything, so once again, Timing is critical.

I will quickly jump to the code section of interest. This section (function) performs what I’ll call the Boolean
“Is Application Registered / Activated” routine. Set a BP as shown below:

Uncheck the Break on new module in the events tab and Run (F9) the target. You will encounter several
exceptions. Simply hit Shift+F9 to get past them until we get to our BP. If you follow the code in the
routine, you can see it’s doing some serial code / activation code checking. If we follow the return from
this procedure, we notice a TEST AL,AL condition. If we did nothing, then AL == 00. The application will
break on this procedure many times during the course of executing depending on options / features
chosen. If we ran the application normally, we would either get a limitations nag screen and the option
to Continue or a registration screen which would allow you to go no further.

Restart the target again to our BP above. Make the following changes as shown below:

Run (F9) the target. There should be no registration screen this time. Now it’s time to implement our code
injection.

Open vso_hwe.dll in OllyDbg utilizing its Request to Load Dll feature. You will see something similar to the
following:

PAGE 43 ARTEAM EZINE

Notice there’s a whole bunch of binary zeroes beginning at address 0094D04C above. Note the address
may be different on your machine. Note our OEP at address 0094D010. We could change this line and
jump to our code cave or change the OEP using a PE editor which is what we will do in this Tutorial.

Make the following changes as shown below:

I chose to start at address 0094D050. Note we save our addresses and flags and restore them after our
changes.
Since the address of our intended target should always load at the same address (00400000) in the
process, we can move the hardcoded value of our target’s destination address as shown. We then load
this address in order to make our changes. The bytes (1 DWORD) are moved in reverse order. We then
jump back to our original OEP. Highlight all your changes and be sure to copy them to the executable.

We are not finished yet.

Using a PE editor, we need to change the OEP (Original Entry Point) of this dll as shown below and save
it.

Now when we Run the target again, our code will be injected when this dll loads and initializes.

PAGE 44 ARTEAM EZINE

4. Final Remarks

Code Injection is not very complicated and can greatly simplify the task of modifying the original
intended functionality of the program vs. MUP’ing and fixing, writing a loader, etc…
You may wish to insure that a chosen region of binary zeroes in the dll is not overwritten by the process.
Note: This application calls home with some possibly sensitive information (i.e. UserID=, MacID=, etc.) so
you may wish to uncheck the option to Enable Update Notification and do this on your own. I also noted
an application exception upon application exit if I turned off the Enable Update Notification feature and
had my internet connection disabled. Weird. Hope you enjoyed this paper.

6. Code Obfuscation, zyzygy

1. Abstract

This is just a preliminary stage of investigation so the approach might be crude but it works and may lead
to better ideas.

Let's begin.

What I understand from Code Obfuscation is that, the code is hidden in the pool of junk data. This trick is
extensively used nowadays in packers.

2. Approach

I propose an approach based on these two tools:

Editor: RADASM
Assembler: MASM32

I will use the following code throughout the article. It does nothing but display 2 message boxes.

.386
.model flat, stdcall ;32 bit memory model
option casemap :none ;case sensitive

include windows.inc
include kernel32.inc
include user32.inc
include shell32.inc

includelib kernel32.lib
includelib user32.lib
includelib shell32.lib

.data
caption db "Fine",0
text db "Hi!",0
text1 db "Bye!",0

.code
start:

 assume fs:nothing ;setting up an SEH in case things go awry
 push _seh
 push fs:[0]
 mov fs:[0],esp

 invoke MessageBox,NULL,addr text,addr caption,MB_OK

 call @call
@call:pop eax ;delta offset
 add eax,0Eh ;add eax with the no. of bytes that will land at the actual code.

PAGE 45 ARTEAM EZINE

 jmp eax ;jump to the actual code to be executed.

 dd 00E95564h ;garbage value, random
 dd 0E9830048h
 cmp eax,1 ;actual code
 jne next
 jmp exit
next:
 invoke MessageBox,NULL,addr text1,addr caption,MB_OK
exit:
 invoke ExitProcess,0

_seh:
 pop fs:[0]
 mov ebx,[esp+4]
 mov esp,ebx
 jmp next
end start

The code has been commented to guide you the execution flow. Now the garbage codes are:

dd 00E95564h
dd 0E9830048h

They mask the actual code. Now that we have the source with us, assemble it and load it in a debugger
(I used Ollydbg).

00401026 . E8 00000000 CALL testt.0040102B
0040102B $ 58 POP EAX
0040102C . 83C0 0E ADD EAX,0E
0040102F . FFE0 JMP EAX
00401031 64 DB 64 ; CHAR 'd'
00401032 55 DB 55 ; CHAR 'U'
00401033 E9 DB E9
00401034 . 0048 00 ADD BYTE PTR DS:[EAX],CL
00401037 . 83E9 83 SUB ECX,-7D
0040103A . F8 CLC
0040103B . 0175 02 ADD DWORD PTR SS:[EBP+2],ESI
0040103E . EB 13 JMP SHORT testt.00401053

Our main code lies at 00401039. Upon tracing we find that CMP EAX, 1 is executed. If such garbage
codes were present all over the actual code then the result would be a much mangled code. For this
we shall make use of macros.

Our main garbage code will be the macro and then we shall call it wherever we desire to.

Macro:

garbage macro
 db 0e8h,00,00,00,00 ;call to get delta offset
 pop eax ;delta offset
 add eax,0Ch ;add the necessary bytes to jump to the actual code
 jmp eax ;jump to the actual code
 dw 8965h ;garbage values
 dd 70e9a654h ;garbage values

endm

This macro does the job. One point I would like to state is that while calling the APIs, ensure that you use
call keyword rather than the invoke keyword. This will give you more area to add your garbage code.

So here is our new code with the macro:

garbage macro

 db 0e8h,00,00,00,00
 pop eax
 add eax,0Ch
 jmp eax
 dw 8965h
 dd 70e9a654h

PAGE 46 ARTEAM EZINE

endm

.data
caption db "Fine",0
text db "Hi!",0
text1 db "Bye!",0
data db 00h

.code
start:

 assume fs:nothing
 push _seh
 push fs:[0]
 mov fs:[0],esp

 invoke MessageBox,NULL,addr text,addr caption,MB_OK

 garbage

 cmp eax,1
 garbage
 je next
next:
 garbage
 push 0
 push offset caption
 garbage
 push offset text1
 push 0
 garbage
 call MessageBox
 garbage
 push 0
 garbage
 call ExitProcess
_seh:
 pop fs:[0]
 garbage
 mov ebx,[esp+4]
 mov esp,ebx
 garbage
 jmp next
end start

As you can see, I have freely used the macro and upon assembling and loading it into a debugger, this
is what you see (only a part):

0040104A . 70 74 00 ASCII "pt",0
0040104D > E8 00000000 CALL test.00401052
00401052 $ 58 POP EAX
00401053 . 83C0 0C ADD EAX,0C
00401056 . FFE0 JMP EAX
00401058 65 DB 65 ; CHAR 'e'
00401059 89 DB 89
0040105A 54 DB 54 ; CHAR 'T'
0040105B A6 DB A6
0040105C E9 DB E9
0040105D . 70 6A 00 ASCII "pj",0
00401060 > 68 00304000 PUSH test.00403000 ; ASCII "Fine"
00401065 . E8 00000000 CALL test.0040106A
0040106A $ 58 POP EAX
0040106B . 83C0 0C ADD EAX,0C
0040106E . FFE0 JMP EAX
00401070 . 65:8954A6 E9 MOV DWORD PTR GS:[ESI-17],EDX
00401075 . 70 68 JO SHORT test.004010DF
00401077 . 0930 OR DWORD PTR DS:[EAX],ESI
00401079 . 40 INC EAX
0040107A . 006A 00 ADD BYTE PTR DS:[EDX],CH
0040107D . E8 00000000 CALL test.00401082
00401082 $ 58 POP EAX
00401083 . 83C0 0C ADD EAX,0C
00401086 . FFE0 JMP EAX

PAGE 47 ARTEAM EZINE

00401088 65 DB 65 ; CHAR 'e'
00401089 89 DB 89
0040108A 54 DB 54 ; CHAR 'T'
0040108B A6 DB A6
0040108C E9 DB E9
0040108D 70 DB 70 ; CHAR 'p'
0040108E . E8 63000000 CALL <JMP.&user32.MessageBoxA> ;\MessageBoxA
00401093 . E8 00000000 CALL test.00401098
00401098 $ 58 POP EAX
00401099 . 83C0 0C ADD EAX,0C

Very mangled code. Only when you trace can the actual code be seen clearly.

The more you know about opcode construction the better you will be in coding more complex
algorithms. The stack is a very useful here. You can store the jump locations there for instance.

Consider that the code detects a debugger and with respect to the return value of the function you can
decide to decrypt it accordingly. One of the easiest ways to confuse is use registers to jump. This is
because if we hardcode the jump says:

 0044F42E |. 74 06 JE SHORT 0044F436

The assembler will assemble it such that the debugger will display the address 0044F436. But if you
change something like this:

mov eax, 0044F436
jmp eax

The assembler may or may not assemble the 0044F436 location as there is no hardcoded jump. Before
concluding this article I will present another piece of code, a macro within a macro.

garbage1 macro

dw 025FFh
add ebx,26h
db 53h,0C3h
dw 025ffh

endm

garbage macro

db 0e8h,00,00,00,00
pop eax
cmp data,1 ;a check will determine whether to take jmp eax/push ebx & ret
db 074h,10h
mov ebx,eax
add eax,13h
db 0ebh,0Ch
garbage1
add eax,26h
jmp eax
dw 8965h
dd 0560cee8h
db 00h

endm

I have coded another macro and am calling it from the first one. If you have a look at the import table,
FF25 in OllyDbg (or any debugger) is commonly used as a JMP DWORD PTR. So I used that as garbage
code.

What we are doing here is loading the correct address to jump in ebx, pushing it on the stack and
returning. A very common trick. Assemble and load it in your debugger for further analysis.

3. Final Remarks

This is just the basics of the code obfuscation. There are a lot of ideas and concepts that can be used to
obfuscate the code.
I hope this helped you to conceive ideas on this and similar topics.

PAGE 48 ARTEAM EZINE

7. Testing for OllyDbg Using NtYieldExecution, Gabri3l of
ARTeam

1. Introduction

I stumbled across this interesting OllyDbg detection method when I was trying to debug an error in a
small program I was writing. However, when debugging the program in OllyDbg I found that I could not
replicate the same results. This led me to dig deeper...

2. Analysis

The API function that was giving me trouble was NtYieldExecution. It was officially introduced in NT 4.0,
but according to the metasploit SYSCALL page21, it may have been undocumented and available in SP
3. Either way the functions purpose is the same. NtYieldExecution will pass execution to another running
thread, giving up it's scheduled CPU time.

There is no documented return for NtYieldExecution, but it does return a result stored in EAX. It was this
result that changed depending on whether or not the program was inside of OllyDbg. So I knew that
there was a return value but I didn't know what it meant. For a better idea of how NtYieldExecution
functions we can first look at it in OllyDbg:

7C90EA47 > B8 16010000 MOV EAX, 116 ;Move NtYieldExecution Syscall

 ;Number into EAX
7C90EA4C BA 0003FE7F MOV EDX, 7FFE0300
7C90EA51 FF12 CALL NEAR DWORD PTR DS:[EDX] ;ntdll.KiFastSystemCall
7C90EA53 C3 RETN

If you were to step into KiFastSystemCall we would see that it executes a SYSENTER. This enters the kernel
system call that was specified in EAX. EAX in this case was 116 which is the value for NtYieldExecution.
Because the function is located in the kernel we can't dig any deeper with Olly, so we cannot find the
return value.

We could use SoftICE or another Ring0 debugger to examine NtYieldExecution at the Kernel level. But
rather than go through all that trouble we will check a site that has already done the hard work for us:
http://www.winehq.com

“Wine is an Open Source implementation of the Windows API on top of X and Unix. Think of Wine as a
compatibility layer for running Windows programs. Wine does not require Microsoft Windows, as it is a
completely free alternative implementation of the Windows API consisting of 100% non-Microsoft code.”

While the code that Wine uses is not “Microsoft's” it still functions the same. And, even better, it is all open
source and documented. Lets take a look at their implementation of NtYieldExecution:
http://source.winehq.org/source/dlls/ntdll/sync.c?v=wine20050211#L767

765 /* NtYieldExecution (NTDLL.@)766 */
766
767 NTSTATUS WINAPI NtYieldExecution(void)
768 {
769 #ifdef HAVE_SCHED_YIELD
770 sched_yield();
771 return STATUS_SUCCESS;
772 #else
773 return STATUS_NO_YIELD_PERFORMED;
774 #endif

The code above is very easy to understand we can see that NtYieldExecution actually does return a
value based on whether it can yield its CPU cycles to another program. It returns either
STATUS_NO_YIELD_PERFORMED if it was unable to yield its CPU cycles or STATUS_SUCCESS if it successfully
passed its cycles to another thread.

21 http://www.metasploit.com/users/opcode/syscalls.html

http://www.winehq.com/
http://source.winehq.org/source/dlls/ntdll/sync.c?v=wine20050211#L767
http://www.metasploit.com/users/opcode/syscalls.html

PAGE 49 ARTEAM EZINE

I would like to cover quickly that NtYieldExecution may have been implemented slightly differently on NT
machines. On XP NtYieldExecution can return 2 values. In my tests on NT it seems to only return the
STATUS_SUCCESS value, rendering this test unusable on NT machines. We also have this implementation
of NtYieldExection found by Shub-Nigurrath22:
http://www.koders.com/c/fidD6698E8EFC18C0EB0D5D46FE74EAEE9E47347ED5.aspx?s=NtYieldExecution

NTSTATUS STDCALL
NtYieldExecution(VOID)
{
 PsDispatchThread(THREAD_STATE_RUNNABLE);
 return(STATUS_SUCCESS);
}

So it looks like this test will only work correctly on XP machines where the implementation of
NtYieldExecution returns 2 values. We can use the Wine source to discover the values for both of the
STATUS_NO_YIELD_PERFORMED and STATUS_SUCCESS return values:
http://source.winehq.org/source/include/ntstatus.h?v=wine20050211#L114

114 #define STATUS_NO_YIELD_PERFORMED 0x40000024
30 #define STATUS_SUCCESS 0x00000000

So here we discover the two results we receive from NtYieldExecution. EAX = 0 when we successfully yield
CPU cycles, and EAX = 40000024 when no cycles were yielded.

With this knowledge gained we can actually develop a test for Olly using this API function.

3. Coding

We will be developing our test as a DLL plugin for the eXtensible Anti-Debug Tester written by Shub-
Nigurrath. The eXtensible Anti-Debug Tester (xADT), is located at http://releases.accessroot.com

Our DLL will consist of 3 parts; each part performs a test that returns a different result based on what
computer it is running on and whether or not it is in a debugger
Why 3 parts? I had developed this test and I thought that I was able to get a consistent result inside a
debugger and a different result outside of a debugger. I then tried it on other XP machines and received
different results all together! So I had to rewrite it again with multiple parts. Each test in each part is
performed multiple times to help eliminate false positives. By implementing 3 parts and multiple tests we
can successfully determine whether or not the program is operating inside Olly.

The following is my development of the plugin. I am going to skip the trial and error, and just give you the
facts and the results.

Basically I encountered 2 types of computers. The results of each part are based on the type of
computer you are running and the test performed. I do not know the physical or technical differences
between types 1 and type 2 computers. These are just results based on observations and tests. Keep in
mind that false positives CAN occur from time to time; this means that the EAX will contain 0 even if it is
outside Olly. It happens from time to time when there is a high load on the system. We will take as many
precautions necessary to eliminate false positive, but they may still occur. If this approach was to be
used in an external protection or program then I would recommend increasing the number of times
each part is repeated giving you a better chance to dodge system load. You can also repeat the whole
test multiple times throughout program execution, and then see if there is an occurrence of a debugger
not being detected. Luckily all the false positives seem to go in one direction; I have never had an
occurrence where the program said it was NOT debugged when it was so. So if a debugger was not
detected at least once across multiple runs then the program is most likely not being debugged. There is
still a possibility that some “false” positives are not so false. I have noticed that some of them can occur
when you have OllyDbg open and idling at a breakpoint. While the xADT program is not being explicitly
debugged there is still the possibility that it is detecting an open debugger.

Anyway, we are going to ignore any false positives for this explanation. I called NtYieldExecution 2 ways.
The first way is by trying to create a process but passing the CreateProcess call an invalid executable file
name. The second way is by calling CreateProcess and passing it the path to a valid executable. Here I
will try and cover the different reactions I received from type 1 and type 2 computers when calling

22 through the search engine www.koders.com

http://www.koders.com/c/fidD6698E8EFC18C0EB0D5D46FE74EAEE9E47347ED5.aspx?s=NtYieldExecution
http://source.winehq.org/source/include/ntstatus.h?v=wine20050211#L114
http://releases.accessroot.com/
http://www.koders.com/

PAGE 50 ARTEAM EZINE

NtYieldExecution in those 2 different ways. I will also cover how they results can be interpreted and used
to determine if it is inside Olly.

Lets say that when EAX!=0 then that means NO
And when EAX=0 that means YES

1. Type 1 computers will always return NO when you call NtYieldProcess outside of a debugger
2. Type 1 computers will ONLY return YES when you are inside Olly and open a real process and then

call NtYieldProcess
3. Type 1 computer will return NO if you are inside a debugger and call NtYieldProcess without creating

a process
4. Type 2 computers will always return YES when the program is operating inside OLLY no matter how

NtYieldProcess is called
5. Type 2 computers will return YES outside Olly if a real process is opened and then NtYieldProcess is

called
6. Type 2 computers will ONLY return NO when NtYieldProcess is called without creating a process
7. HOWEVER! Type 2 computers will also return YES outside of Olly if a series of processes was recently

created, like happens in PART #2
8. We can use that fact to determine if the program is running on Type 1 computer and inside Olly or

running on Type 2 computers outside Olly

A little cheat table using the above information:

PART 1 PART 2 PART 3 RESULT

YES YES YES INSIDE OLLY – TYPE 2 COMPUTER

NO YES YES OUTSIDE OLLY – TYPE 2 COMPUTER

NO YES NO INSIDE OLLY – TYPE 1 COMPUTER

NO NO NO OUTSIDE OLLY – TYPE 1 COMPUTER

Now we can begin to develop our Debug test. First thing we are going to do is create a small program
that's only purpose it to close itself. I will call it Justclose. This will be the process our main test program
creates before calling NtYieldProcess.

The following is the code for our small justclose executable. In this program I am going to set its CPU
priority to maximum to have it try and request CPU cycles. Then I will just have it exit, no need to keep it
open.

Justclose.asm:
.386
.model flat,stdcall
option casemap:none

include windows.inc
include kernel32.inc
includelib kernel32.lib

.data?
hInstance HINSTANCE ?

.code
start:
INVOKE GetCurrentThread
INVOKE SetThreadPriority,eax,THREAD_PRIORITY_TIME_CRITICAL
INVOKE GetCurrentProcess
INVOKE SetPriorityClass,eax,REALTIME_PRIORITY_CLASS
INVOKE ExitProcess,EAX
end start

Our dll can now use justclose.exe by creating the process and then calling NtYieldExecution. We can
then monitor the results of the function to determine if the program is inside or outside of Olly. The
following is the steps I will take in my DLL and how I interpret the results of each part.

Deroko has written a plugin for xADT in ASM, and the source can be found in the plugin_examples
directory of the program. I have based my dll on the skeleton of his code. The first thing we are going to

PAGE 51 ARTEAM EZINE

do is retrieve the full path to our module. We can then modify that path to point to the location of our
previously created executable “justclose.exe”. This gives us a full path to justclose.exe and will allow us to
put it in our plugin directory. Now we can begin on the testing portion of the DLL. The test I perform
consists of 3 parts. I will briefly outline what the part does, and why each part is necessary.

Part #1 of the DLL performs a CreateProcess using an invalid string for the process name

• In every test outside Olly the return in EAX will be 0x40000024
• If 0 is returned in EAX then the program is operating inside Olly
• However, on some computers this test will return 0x40000024 in EAX even while in Olly that is why

we perform part 2

Part #2 opens a new process called justclose.exe which does nothing except close immediately.

3. However, by just opening a program, execution is now yielded differently
4. On some computers if the return of EAX is not 0 then it is outside Olly and we can assume that it

is not being debugged
5. However on other computers this test will always return 0 in EAX, inside or outside of Olly, if that

occurs we need to go to Part #3

Part #3 performs a CreateProcess using an invalid string for the process name again

3. However this time the results are counter intuitive.
4. When the program is operating outside Olly, specific computers that returned 0x40000024 in EAX

with PART #1 and 0 when opening a real process in Part #2 will now continue to return 0 for this
part

5. However for other computers that the program is open in Olly that returned a value in EAX with
PART #1 and 0 when opening a real process in Part #2 will now return 0x40000024, the same as
they did in Part #1

6. So if you consistently receive EAX=0 for part 3 you are operating outside Olly

You can view the final source for the xADT extension NtYieldExecution.asm in the Supplements folder of
the ARTeam ezine.

4. Final Remarks

So we have another Olly detection method, however this one is easily defeated by just constantly
returning 0x40000024 when NtYieldExecution is called. It could be more complicated if the protected
program included something along the lines of this:
http://www.winehq.com/hypermail/wine-devel/2005/08/att-0050/01-foo.c

There was another idea that deroko and I discussed however I did not implement it. It is possible to just
call NtYieldExecution by its interrupt. This would prevent a Ring-3 program from hooking the function. The
call could be implemented through either INT 2E or SYSENTER. Some sample code is provided below:

INVOKE CreateProcess,addrsInvalid,NULL,NULL,NULL,TRUE,00000008h,NULL,NULL,addr
startInfo,addr processinfo ;Begin a new process using an invalid name for the
 ;process name

xor edx,edx ;No Arguments Needed
MOV EAX,116h ;Move "NtYieldExecution" Syscall number into EAX
int 2eh ;Yield Execution to running process using Interrupt

ret ;Return from DebugTest1
DebugTest1 endp

Just some things to think about... I hope you found this interesting and enjoyed the read.

http://www.winehq.com/hypermail/wine-devel/2005/08/att-0050/01-foo.c

PAGE 52 ARTEAM EZINE

8. Coding a Serial Sniffer (Oraculum), anorganix of ARTeam

1. Opening words

First of all, I want to say that if you are an experienced reverser, then this article will look like child's play,
but for people that are new to reversing it will (probably) be useful. I remember how hard it was for me at
the beginning to understand things that were considered “everyone knows why this is done like that”.
This is why I want to try to explain things in an easy manner, for everyone to understand. Read ahead...

2. What is a Serial Sniffer and when to use it?

I know that the term used for this kind of programs is “Oraculum”23, but in this article I prefer to call it a
Serial Sniffer. The purpose of this paper is to cover a situation where you can’t understand the algorithm
of a target or can’t code a keygen for it. Our target here is a simple CrackMe that I wrote to be able to
show you in practice what needs to be done to defeat this situation. Please remember that the
registration algorithm of the CrackMe is very simple and has no protection; our purpose here is to write a
sniffer, not a keygen.

3. Things needed to get started

The tools:

Required Tools
» OllyDbg
» Borland Delphi (or any other programming language for writing the sniffer)

…and of course, do not forget our target CrackMe.

4. Inside the target

Let’s fire up OllyDbg and find the serial check. If you didn’t use PEiD before, now you’ll know that the
app was written in Delphi:

Target loaded in Olly

 0045073C PUSH EBP
 0045073D MOV EBP,ESP
 0045073F ADD ESP,-10
 00450742 MOV EAX,CrackMe.0045055C
 00450747 CALL CrackMe.00405BC8

Let’s run it and see what we get if we enter a dummy name/serial combination… we get a “invalid code
entered!” message. Open up the “Referenced text strings” window and search for the nasty message.
Place a breakpoint on the registration call, like below and press the “Check” button again:

Getting closer

 004503EF CALL CrackMe.0040421C
 004503F4 JNZ SHORT CrackMe.00450408
 004503F6 MOV EDX,CrackMe.00450450 ;ASCII "Code accepted!"
 004503FB MOV EAX,DWORD PTR DS:[EBX+2FC]
 00450401 CALL CrackMe.0042F44C
 00450406 JMP SHORT CrackMe.00450418
 00450408 MOV EDX,CrackMe.00450468 ;ASCII "Invalid code entered!"

23 See also the several tutorials of Shub-Nigurrath on the subject, into ARTeam tutorials pages

PAGE 53 ARTEAM EZINE

You will break at 004503EF. Have a look at the EAX and EDX registers… yup, EAX holds the good serial
and EDX holds the dummy serial we entered. It’s needless to say that if EAX and EDX were equal, the
program would give the “Code accepted!” message. In this case, this is all the information we need to
code a sniffer – we know that at address 004503EF (from now on, named magic address) EAX holds the
good serial. So let’s proceed to the coding part.

5. Coding a Serial Sniffer with Delphi

To develop the sniffer, I will use Delphi 7 Enterprise. You can use whatever language you like, as long as
you can follow my steps. Before the actual coding part, let’s think for a minute what we need to do:

� start the program in suspended mode
� read the original bytes we are going to patch at the magic address
� write some bytes at the magic address, to make program enter an infinite-loop
� let the program run
� monitor if the program arrived at the infinite-loop (at magic address)
� if previous step is done, suspend the program and sniff the serial from EAX
� restore the original bytes (clear the infinite-loop) and resume the program

The code is not commented 100%, hopefully you will understand:

Sniffer code (Delphi)

{...}

const
 // this is the code we will write go make
 // the program go into an infinite-loop
 LOOP: array [0..1] of Byte = ($EB,$FE);

{...}

function SniffSerial(PI: PROCESS_INFORMATION; Ctx: _Context): string;
var
 X: Cardinal;
 Buff: PChar;
begin
 // allocate some memory
 GetMem(Buff,50);

 // suspend the program and get the context
 SuspendThread(PI.hThread);
 GetThreadContext(PI.hThread,Ctx);

 // read the value that [EAX] holds (the good serial)
 ReadProcessMemory(PI.hProcess,Pointer(Ctx.Eax),Buff,50,X);

 // set the result and free the buffer
 Result:=Trim(Buff);
 FreeMem(Buff);
end;

procedure TfrmMain.btnSniffClick(Sender: TObject);
var
 PI: PROCESS_INFORMATION;
 SI: STARTUPINFO;
 Context: _CONTEXT;
 Buffer: PChar;
 ORI array [0..1] of Byte; G:
 S: string;
 W: DWORD;
begin
 // disable button (avoid starting target multiple times)
 btnSniff.Enabled:=False;

 // allocate some memory and initialize vars
 GetMem(Buffer,255);
 FillChar(PI,SizeOf(TProcessInformation),#0);
 FillChar(SI,SizeOf(TStartupInfo),#0);
 SI.cb:=SizeOf(SI);

PAGE 54 ARTEAM EZINE

 ate the process (suspended) // cre
 if not CreateProcess('CrackMe.exe',nil,nil,nil,False,
 CREATE_SUSPENDED,nil,nil,SI,PI) then
 begin
 // enable button
 btnSniff.Enabled:=True;

 // set new log
 lblLog.Caption:='Failed to load process!';
 Exit;
 end;

 // read original bytes
 ReadProcessMemory(PI.hProcess,Pointer($004503EF),@ORIG,2,W);

 // write inifnite-loop
 WriteProcessMemory(PI.hProcess,Pointer($004503EF),@LOOP,2,W);

 // resume the program
 ResumeThread(PI.hThread);
 Context.ContextFlags:=$00010000+15+$10;

 // set new log
 lblLog.Caption:='Process patched!'+#13+
 'Now enter a name and press the "Check" button...';

 while GetThreadContext(PI.hThread,Context) do
 begin
 // did we reach the infinite-loop?
 if Context.Eip=$004503EF then
 begin
 // get the serial and put in into „S”
 S:=SniffSerial(PI,Context);

 // restore original bytes and resume target
 WriteProcessMemory(PI.hProcess,Pointer($004503EF),@ORIG,2,W);
 ResumeThread(PI.hThread);

 // copy serial to clipboard and set new log
 Clipboard.AsText:=S;
 lblLog.Caption:='Your serial has been copied to clipboard!';
 end;

 // wait 10 miliseconds
 Sleep(10);
 Application.ProcessMessages;

 // if user wants to close the sniffer before exiting the target, close the target
too
 if WantToClose then
 begin
 TerminateThread(PI.hThread,0);
 Close;
 end;
 end;

 // free memory allocated @ beginning
 FreeMem(Buffer);

 // enable button
 btnSniff.Enabled:=True;
end;

Compile the source attached with this article if you can’t manage it. Hopefully you will have a nice and
running Serial Sniffer.

6. Final Remarks

Well, this is the end of this story; I hope all the things said here will be useful in broadening your
knowledge. I suggest as usual using this material for learning purposes only, and not for cracking
programs. Thank you for reading this article!

PAGE 55 ARTEAM EZINE

9. Ring 3 debugger detection via INVALID_HANDLE
exception, deroko of ARTeam

1. Introduction

Well I discovered this during my little journey with ExeCryptor, I also made a huge mistake, which showed
as not been as huge as I was expecting it to be.
Story goes… I was playing with ExeCryptor and I patched CreateThread with retn just to avoid new
thread creation, of course, TLS callback was also patched after 1st one gets executed, just to simulate
existence of one thread. Of course, ExeCryptor ran perfectly without a problem, then I moved to
OllyDbg and applied same trick. But after passing exceptions to debuggy, suddenly ExeCryptor process
exited, (I also used hook in ntoskrnl.exe!NtOpenProcess and NtReadVirtualMemory to deny read of olly
process memory), but without retn in CreateThread it worked without a problem. Also my nonintrusive
oepfinder worked without a problem. So, the only thing that was logical is that somehow EAX has a
random value after hook CreateThread is called.
Looking at conditions in my case I had this situation: nonintrusive tracer hooks CreateThread but it works
without a problem, and Olly also hooks CreateThread but it fails. So I used bpx in CreateRemoteThread
(internally called by CreateThread) as 2nd layer API to avoid BPX detection in ExeCryptor. When I break
at CreateRemoteThread I assembled simple patch to return from it. Then run app and soon Exception
invalid handle occurred. I passed exception with shift+f9 and b00m, thread exception handler was
called and resulted in process termination (e.g. it wasn’t supposed to occur at that point).

2. Coding

Then I wrote simple program to see if this is new anti-debug trick:

push 0deadc0deh
callW CloseHandle

Yep, it seems like exception is generated when this is ran trough ring3 debugger (olly, debug loader
etc…) but under normal conditions this would never occur. So I was sure I have discovered a new anti-
debug trick, ultimate (you will see why) anti-debug trick. After giving hint to one person, that person
showed his understanding for this anti-debug trick, mostly lame understanding. I’m glad that protection
developers have same understanding of windows system as that person and they didn’t see real
potential of this trick.

I’ll now show you how stupid software developers are and those whom were using my hints to promote
themselves on every single forum.

There is Native API known as NtRaiseException which is exported in ntdll.dll, its prototype is very simple:

NTSYSAPI NTSTATUS NTAPI NtRaiseException(

IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ThreadContext,
IN BOOLEAN HandleException);

With this native API you may raise exception of any kind and force thread exception handler to be
executed. But here comes a catch, in normal condition CloseHandle will never raise
EXCEPTION_INVALID_HANDLE, never!!! But NtRaiseException can force thread exception handler to be
called when EXCEPTION_INVALID_HANDLE is generated.

If you are debugging with ring3 and EXCEPTION_INVALID_HANDLE occurs due to dummy argument
passed to CloseHandle you should continue execution with DBG_CONTINUE flag passed to
ContinueDebugEvent, or in other words, press F9 in Olly. But when NtRaiseException is used to raise
EXCEPTION_INVALID_HANDLE you should use DBG_EXCEPTION_NOT_HANDLED and force thread
exception handler to be called.

In other words one time you have to use DBG_EXCEPTION_NOT_HANDLED in other case you should use
DBG_CONTINUE (shift+f9 and f9). So if you ignore exception and pass it with
DBG_EXCEPTION_NOT_HANDLED, the one raised by NtRaiseException will work okay, but if you pass

PAGE 56 ARTEAM EZINE

exception to debugy when it is generated by CloseHandle you will call thread exception handler when it
is not supposed to occur, in such way SEH which might be used to decrypt part of code will actually
decrypt wrong part of code, or simply redirect you to ExitProcess.

To prove my theory and show how protection developers are stupid I will show you a little proof of
concept code, I even heard that some of them used this trick after it was leaked but only with
CloseHandle(dummy_handle), so lame, so lame, I would never protect my software with such
protection, never:

start: push offset sehhandle1
 push dword ptr fs:[0]
 mov dword ptr fs:[0], esp

 mov ctx.context_ContextFlags, 10007h
 mov ctx.context_esp, esp
 mov ctx.context_eip, offset __debugged
 mov ctx.context_segCs, cs
 mov ctx.context_segDs, ds
 mov ctx.context_segFs, fs
 mov ctx.context_segEs, es
 mov ctx.context_segSs, ss

 push 1
 push offset ctx
 push offset exception
 callW NtRaiseException

__safe0: pop dword ptr fs:[0]
 add esp, 4

 push offset sehhandle2
 push dword ptr fs:[0]
 mov dword ptr fs:[0], esp

 push 0deadc0deh
 callW CloseHandle
 pop dword ptr fs:[0]
 add esp, 4

 push 40h
 push offset stitle
 push offset sabout
 push 0
 callW MessageBoxA

 push 0
 callW ExitProcess

sehhandle1: xor eax, eax
 mov ecx, [esp+0ch]
 mov [ecx.context_eip], offset __safe0
 retn

sehhandle2: xor eax, eax
 mov ecx, [esp+0ch]
 mov [ecx.context_eip], offset __debugged
 retn

__debugged: push 10h
 push offset dabout
 push offset dtitle
 push 0
 callW MessageBoxA
 push 0
 callW ExitProcess

dabout db "debugged", 0
dtitle db "kill your ring3 debugger, and try again",0
stitle db "good", 0
sabout db "your are ok", 0

PAGE 57 ARTEAM EZINE

Oki first we have to fill context struct with needed data, we store there ESP, EIP, segment registers and
exception flags. Note that EIP is set to point to __debugged label, that is because we are telling process
to go there (simulating that exception occurred at that EIP), also we call NtRaiseException passsing to it
pointer of exception code (0c0000008h), pointer to context structure and 1 (bool HandleException, if set
to 1 call thread exception handler), so running this code in OllyDbg with unchecked exceptions will stop
here:

You see, EIP is set to __debugged label, if we press F9 (DBG_CONTINUE) we will end up in bad boy
message and ExitProcess, but if we press shift+f9 to call thread exception handler, what will occur in
normal condition when NtRaiseException is called,
we will call sehhandle1 which is at : 4010A1h, that part of code will redirect execution to __safe0 label in
above source. And we have simulated normal conditions.

But soon we have call to CloseHandle with dummy handle to generate this exception again:

Oki, CloseHandle generated new exception and NOW we should only press F9 (DBG_CONTINUE) and
avoid calling of installed handler which is at : 4010B2h and will redirect EIP to __debugged label.

So to sum this up when the exception is raised via NtRaiseException we have to pass the exception to
debugger with DBG_EXCEPTION_NOT_HANDLED, but when such exception is generated using
CloseHandle we have to pass exception with DBG_CONTINUE. So let me think. You may NOT set OllyDbg
or your debug loader to pass this exception only with DBG_EXCEPTION_NOT_HANDLED or
DBG_CONTINUE, if you do that; you will be caught using this trick. I guess that protection developers and
person whom I gave hint didn’t figure this yet, that shows only their knowledge to exploit some bugs in
Windows system. Maybe this isn’t a bug; maybe this exception is generated purposely for software

PAGE 58 ARTEAM EZINE

developers to check when they have changed something in their source code during debugging. But
luckily MS didn’t think that this can be used to detect ring3 debuggers, and here you go.

3. Final Remarks

Future protection system should use this exception combined with NtRaiseException in more than 10
places of their protection system, just to avoid a simple passing of this exception to debug.

Also this exception can be generated directly using sysenter and INT 2eh to communicate with
ntoskrnl.exe because CloseHandle (NtCloseHandle) and NtRaiseException are both called via sysenter
and INT 2eh on Win2k systems. Only problem is to determine on which system are you running, but you
can simply open ntdll.dll and read both function from it into some buffer and call them directly. Or use
this macro for XP to call directly native APIs (as I did in prc-ko.xp virus – proof of concept):

@sysenter macro syscall, parameters
 local __@@1, __@@2
 push eax
 jmp __@@2
__@@1:
 mov eax, syscall
 mov edx, esp
 dw 340Fh ;sysenter 0F34h
__@@2:
 call __@@1
 add esp, (parameters*4) + 4 ;+ 1 dummy EIP
endm

 Well that’s all..

10. PEB Dll Hooking, a novel method to hook dlls, deroko of
ARTeam

1. Introduction

This will be a very short article, because I’m only showing the idea and how to do it. There is no need for
me to write 20 pages to show you simple trick called PEB Dll hooking.

2. Method

Before you ask why is this a good method to attack protectors you first have to know how they work!
Every normal protector will hide APIs that it will use during unpacking of our target. It is just how they work;
trying to make a static analysis of a protector is a little bit harder. To be able to communicate with the
kernel, protector has to call some APIs. Most of the times those are the APIs exported by kernel32.dll, and
some protectors are also using exports of ndll.dll to detect debuggers or to fool them. They don’t import
APIs, most of the times they only import one or several APIs just to make PE file win2k compatible (win2k
won’t run exe w/o at least one import), instead of using import table, they will use GetProcAddress or
custom implementation of GetProcAddress to find APIs (some using CRC some by names). To get base
of kernel32.dll protectors will use several tricks that are common for locating k32 base:

- GetModuleHandleA/W
- LoadLibraryA/W
- PEB scanning
- K32 address on stack at entry point
- walking trough SEH chain where last record is pointing to k32.dll
- use MZ loop on 1 imported API from k32.dll

Imagine now scenario where each call to GetModuleHandleA(“kernel32.dll”) will return address of your
.dll, when GetProcAddress or custom implementation of GetProcAddress is used it will actually scan your
.dll and locate APIs in it and you may do what ever you want with APIs. To avoid hooking of
GetModuleHandle and LoadLibrary we can go deeper and mess with PEB and actually hijack .dll via PEB
hooking.

PAGE 59 ARTEAM EZINE

Lets take a look what is important for us:

kd> dt nt!_TEB
 +0x000 NtTib : _NT_TIB
 +0x01c EnvironmentPointer : Ptr32 Void
 +0x020 ClientId : _CLIENT_ID
 +0x028 ActiveRpcHandle : Ptr32 Void
 +0x02c ThreadLocalStoragePointer : Ptr32 Void
 +0x030 ProcessEnvironmentBlock : Ptr32 _PEB
 +0x034 LastErrorValue : Uint4B
 +0x038 CountOfOwnedCriticalSections : Uint4B
 +0x03c CsrClientThread : Ptr32 Void

At offset +30h of TEB (Thread Environment Block) is located PEB (Process Environment Block), which will
describe state of process in memory. There is plenty of nice information in PEB, but we are interested in
PEB_LDR_DATA here:

kd> dt nt!_PEB
 +0x000 InheritedAddressSpace : UChar
 +0x001 ReadImageFileExecOptions : UChar
 +0x002 BeingDebugged : UChar
 +0x003 SpareBool : UChar
 +0x004 Mutant : Ptr32 Void
 +0x008 ImageBaseAddress : Ptr32 Void
 +0x00c Ldr : Ptr32 _PEB_LDR_DATA
 +0x010 ProcessParameters : Ptr32 _RTL_USER_PROCESS_PARAMETERS

PEB_LDR_DATA is a simple structure that will describe the state of each loaded module for this process
(.dlls, main proggy itself), also this structure is being accessed via GetModuleHandle, and ntdll!LdrLoadDll
(internally called by LoadLibrary) it looks like this:

kd> dt nt!_PEB_LDR_DATA
 +0x000 Length : Uint4B
 +0x004 Initialized : UChar
 +0x008 SsHandle : Ptr32 Void
 +0x00c InLoadOrderModuleList : _LIST_ENTRY
 +0x014 InMemoryOrderModuleList : _LIST_ENTRY
 +0x01c InInitializationOrderModuleList : _LIST_ENTRY
 +0x024 EntryInProgress : Ptr32 Void

These lists are actually used to locate lists of LDR_MODULE or LDR_DATA_TABLE_ENTRY structures which will
describe the state of each loaded module:

kd> dt nt!_LDR_DATA_TABLE_ENTRY
 +0x000 InLoadOrderLinks : _LIST_ENTRY
 +0x008 InMemoryOrderLinks : _LIST_ENTRY
 +0x010 InInitializationOrderLinks : _LIST_ENTRY
 +0x018 DllBase : Ptr32 Void
 +0x01c EntryPoint : Ptr32 Void
 +0x020 SizeOfImage : Uint4B
 +0x024 FullDllName : _UNICODE_STRING
 +0x02c BaseDllName : _UNICODE_STRING
 +0x034 Flags : Uint4B
 +0x038 LoadCount : Uint2B
 +0x03a TlsIndex : Uint2B
 +0x03c HashLinks : _LIST_ENTRY
 +0x03c SectionPointer : Ptr32 Void
 +0x040 CheckSum : Uint4B
 +0x044 TimeDateStamp : Uint4B
 +0x044 LoadedImports : Ptr32 Void
 +0x048 EntryPointActivationContext : Ptr32 Void
 +0x04c PatchInformation : Ptr32 Void
kd>

Because GetModuleHandle or LoadLibrary will use these lists (as well as some other win apis resposnbile
for modules enumeration) we may fake DllBase, EntryPoint and SizeOfImage and GetModuleHandle will
return base of our hooking .dll. You may already see the weak side of this approach, if we are faking .dll
in PEB, we also have to export same APIs as hooked .dll, if we don’t do so GetProcAddress will fail on our
hooking .dll. To make my work easier instead of typing manually all exports of certain .dll I created simple

PAGE 60 ARTEAM EZINE

proggy called dllcreator.c. It will make .asm/.def/.inc skeleton for my hooking .dll and all that is left to do
is to add .dll entry point which will perform PEB hooking and to choose which APIs I’ll hook.
Hooking .dll is very simple when you know how to walk through PEB_LDR_DATA, I will show you my hook
from DllEntry point (weird how people chose to really name entry point in .dll DllEntry, it doesn’t matter as
long as linker knows where is entry point, I use start ☺)

public C start
start proc

arg imagebase
arg reason
arg reserved

1st we have to check reason, if it is PROCESS_ATTACH we perform hooking, otherwise, we simple exit from
dll entry point callback:

pusha
cmp reason, 1
jne __e_dllinit

Next step is to locate InLoadOrderModuleList (if you chose other, you will have to calucalte negative
offset to struct start and then you may access modules using your predefined struct, or if you like to make
code less readable use indexing and don’t bother with calculating negative offsets ☺)

mov eax, dword ptr fs:[30h]
mov eax, [eax+0ch]
mov esi, [eax+0ch]

Now we have to get base of kernel32.dll so we can walk trough LDR_MODULE and hook our kernel32.dll
(note that I’m using LoadLibraryA, because this is my skeleton, and if I’m hooking some other .dll that is
not loaded I have to use LoadLibraryA before I can hook it):

call LoadLibraryA, offset szkernel32
mov old_dll_base, eax
xchg eax, ebx

Now we simply walk trough LDR_MODULE and we search for our hooking dll, and .dll that we wanna
hook:

__find_dll: cmp [esi.lm_baseaddress], ebx

je __esiedi
lodsd
xchg eax, esi
jmp __find_dll

__esiedi: cmp ebx, imagebase

je __hook
mov edi, esi
mov ebx, imagebase
jmp __find_dll

At this point edi is pointing to LDR_MODULE of target .dll and esi is pointing to LDR_MODULE of our
hooking .dll, all we have to do is exchange data between these 2 structs so our hooking .dll becomes
our target .dll and vice verse.

__hook: mov eax, ebx

xchg eax, [edi.lm_baseaddress]
mov [esi.lm_baseaddress], eax

add ebx, [ebx+3ch]
mov eax, [ebx.pe_addressofentrypoint]
add eax, imagebase
xchg eax, [edi.lm_entrypoint]
mov [esi.lm_entrypoint], eax

mov eax, [ebx.pe_sizeofimage]
xchg eax, [edi.lm_sizeofimage]
mov [esi.lm_sizeofimage], eax

__e_dllinit: popa

mov eax, 1
leave

PAGE 61 ARTEAM EZINE

retn 0ch
endp

Voila, kernel32 is hooked via PEB, here is snippet from LordPE:

Do you see any difference? Yes you do… original kernel32.dll is now named as fake_k32.dll, and
fake_k32.dll is now kernel32.dll ☺

Oki, this attack is good, works great, but we face one big problem here. Our loaded fake k32 won’t be
used to fill import table of our target / It will be used later on when GetModuleHandleA or LoadLibraryA
is used, which is bad because there are some protectors that will use imports to locate base of
kernel32.dll or other used .dll. Before we come to the solution to this problem we will have to know what
is really going on when a new process is created. It is important, very very important to understand.

I will only briefly describe what is going on, when we call CreateProcessA/W, internally there will be
called NtCreateProcess to map file in memory and also to map ntdll.dll. After this gets done, we are
back to ring3 and then new thread is being created. During Thread creation windows will use APC to call
ntdll!LdrInitializeThunk which is responsible for walking trough import descriptor and will load all needed
libraries and fill IAT. New Thread creation is here:

.text:7C819A3C call _BaseInitializeContext@20
...
.text:7C819A9C push eax
.text:7C819A9D call ds:__imp__NtCreateThread@32

And in _BaseInitializeContext@20 it will set EIP to point to:

.text:7C8105AF cmp [ebp+arg_14], 1
.text:7C8105B3 mov [eax+CONTEXT.Eax], ecx
.text:7C8105B9 mov ecx, [ebp+arg_8]
.text:7C8105BC mov [eax+CONTEXT.Ebx], ecx
.text:7C8105C2 push 20h
.text:7C8105C4 pop ecx
.text:7C8105C5 mov [eax+CONTEXT.SegEs], ecx
.text:7C8105CB mov [eax+CONTEXT.SegDs], ecx
.text:7C8105D1 mov [eax+CONTEXT.SegSs], ecx
.text:7C8105D7 mov ecx, [ebp+arg_10]
.text:7C8105DA mov [eax+CONTEXT.SegFs], 38h
.text:7C8105E4 mov [eax+CONTEXT.SegCs], 18h
.text:7C8105EE mov [eax+CONTEXT.EFlags], 3000h
.text:7C8105F8 mov [eax+CONTEXT.Esp], ecx
.text:7C8105FE jnz loc_7C814D67
.text:7C810604 mov [eax+CONTEXT.Eip], offset
_BaseThreadStartThunk@8
.text:7C81060E
.text:7C81060E loc_7C81060E:
.text:7C81060E add ecx, 0FFFFFFFCh
.text:7C810611 mov [eax+CONTEXT.ContextFlags], 10007h
.text:7C810617 mov [eax+CONTEXT.Esp], ecx
.text:7C81061D pop ebp
.text:7C81061E retn 14h
.text:7C81061E _BaseInitializeContext@20 endp

BaseThreadStartThunk will call the entry point of our new thread, but TLS callbacks are executed from
LdrInitilizeThunk called by APC during Thread creation.

.text:7C80B4D4 push 10h
.text:7C80B4D6 push offset dword_7C80B518
.text:7C80B4DB call __SEH_prolog
.text:7C80B4E0 and dword ptr [ebp-4], 0
.text:7C80B4E4 mov eax, large fs:18h
.text:7C80B4EA mov [ebp-20h], eax

PAGE 62 ARTEAM EZINE

.text:7C80B4ED cmp dword ptr [eax+10h], 1E00h

.text:7C80B4F4 jnz short loc_7C80B505

.text:7C80B4F6 cmp _BaseRunningInServerProcess, 0

.text:7C80B4FD jnz short loc_7C80B505

.text:7C80B4FF call ds:__imp__CsrNewThread@0

.text:7C80B505 push dword ptr [ebp+0Ch]

.text:7C80B508 call dword ptr [ebp+8] <-- call entrypoint

.text:7C80B50B push eax

.text:7C80B50C call _ExitThread@4

Now to force NT loader to load fake_k32.dll instead of real kernel32.dll we will use a little magic here in
LdrInitializeProcess (called by LdrInitializeThunk which is executed using APC):

.text:7C9222F4 mov word ptr [ebp+var_100], 18h
.text:7C9222FD mov word ptr [ebp+var_100+2], 1Ah
.text:7C922306 mov [ebp+var_FC], offset aKernel32_dll
.text:7C922310 call _LdrpLoadDll@24
…
.text:7C922538 aKernel32_dll:
.text:7C922538 unicode 0, <kernel32.dll>,0
.text:7C922552 align 4

When the thread is suspended APC is not ran yet, at this point we may mess with LdrInitilaizeThunk as
much as we want, APC will be executed once new thread is resumed. At this point we may hardcode
the value of kernel32.dll in our loader and use it to overwrite Unicode string “kernel32.dll” with our
fake_k32.dll and force LdrInitilizeThunk to fill imports of kernel32.dll with our exports from fake_k32.dll. I
personally couldn’t find any good way to scan for this value because there are several occurrences of
Unicode string “kernel32.dll” in ntdll.dll and I don’t know if order of “good” strings is changed in older or
newer versions of ntdll.dll. So you will have to find this value by yourself and hardcode it in a loader.

Here is how it looks like in one upx packed executable when loader –b is used (hooking also in
LdrInitilizeThunk):

001B:00413F77 CALL [ESI+000140A8]
001B:00413F7D OR EAX,EAX
001B:00413F7F JZ _00413F88
001B:00413F81 MOV [EBX],EAX
001B:00413F83 ADD EBX,04
001B:00413F86 JMP _00413F69
001B:00413F88 CALL [ESI+000140AC]
001B:00413F8E POPAD
...
001B:003A1CD2 JMP [KERNEL32!GetProcAddress] <-- hooked import
001B:003A1CD8 RET
...
KERNEL32!GetProcAddress
001B:7C80AC28 MOV EDI,EDI
001B:7C80AC2A PUSH EBP
001B:7C80AC2B MOV EBP,ESP
001B:7C80AC2D PUSH ECX
001B:7C80AC2E PUSH ECX
001B:7C80AC2F PUSH EBX
001B:7C80AC30 PUSH EDI

Bingo, imports are hooked with my fake_k32.dll and now I can log action of protector w/o a problem.

Well that’s it, no more to talk about PEB dll hooking, I hope you got the idea? If not, check the sources,
they will help you ☺

If you want to get maximum stealth, erase hooked .dll from list entries, it is not hard, just requires walking
trough all 3 list entries and unlinking the ones that are pointing to original .dll, in such way you will have
only kernel32 or other .dll loaded while fake_xxx.dll will be gone from modules list.

PAGE 63 ARTEAM EZINE

11. TheMida: no more Ring0?, deroko of ARTeam

1. Introduction

Well old news, TheMida isn’t using ring0 anymore to hook IDT or SDT so we may use SoftICE to play with
the new TheMida. Oki, we take some target protected by new TheMida (APIMonitor, SilhouetteFX,
ExactSpent …) and we start it without SoftICE and it works, we check IDT in WARK24 and everything is
normal, we check also SDT, yep everything is normal there too.

2. Debugging a target

So we start our SoftICE and run application. Amazing, debugger detected. Heh, funny, TheMida is
running without a problem in OllyDbg but it can’t run while SoftICE is active. So what is going on?

Well themida developers have abandoned offensive ring0 driver and they are using now nice, SoftICE
friendly driver, but still SoftICE is detected. There are a few tricks to detect SoftICE from ring3:

- UnhandledExceptionFilter
- INT 1h
- INT 41h
- INT 3h
- CreateFile
- NtQuerySystemInformation

I saw INT 1h used and also NtQuerySystemInformation while I was debugging TheMida, INT 1h is used to
simple avoid single stepping. I patched INT 1h/INT 41h to DPL of 0 to avoid SoftICE detection and also
hooked NtCreateFile to avoid SoftICE detection via CreateFile.

NtQuerySystemInformation is used in TheMida to get base/range of ntoskrnl.exe, hal.dll and win32k.sys
drivers (main windows OS components ☺), didn’t see for what it is using them but it was obvious that it
isn’t using ring3 to detect SoftICE. So the only solution is that TheMida is using its own drivers to detect the
presence of SoftICE. There are a few tricks to detect the presence of SoftICE using a driver.
SafeCast, for example, uses distance between INT 1/INT 3 and DR7 to detect the presence of SoftICE, but
the story with TheMida is much more interesting!

Oki, first we have to see how message looks like (not very descriptive):

If you break in MessageBoxA you will only see that a retn is taking the program to ExitProcess: hunting the
debugger detection will not be an easy task!

Now let’s see what IOCTL codes is TheMida using before it detects our debugger:

24 WARK, http://www.zero-g.it/RE/exetools/Wark13.rar

http://www.zero-g.it/RE/exetools/Wark13.rar

PAGE 64 ARTEAM EZINE

And so? Lets break into the driver when IOCTL 0x1A00 is used, if you try to break at DeviceIoControl it
simply won’t work, the reason for this is again simple, if you have read my tutorial about TheMida with
oreans.sys25 you could see that TheMida rebases some dlls and makes breaking in APIs a little bit harder.
So we are going to break at ntoskrnl!NtDeviceIoControlFile and see what is really going on when IOCTL
code 0x1A00 is used:

Here we go, 2nd break at IopXxxControlFile (internaly called by NtDeviceIoControlFile):

0008:80578BF5 CALL _IopXxxControlFile
0008:80578BFA POP EBP

And on the stack:

0010:F2C15D08 000000EC 00000000 00000000 00000000
0010:F2C15D18 0013FF2C 00001A00 00AA5172 00000010

Now you see IOCTL = 0x1A00 so we enter into driver:

0008:F86F72A0 PUSH EBP
0008:F86F72A1 MOV EBP,ESP
0008:F86F72A3 ADD ESP,-04
0008:F86F72A6 PUSH ESI
0008:F86F72A7 PUSH EDI
0008:F86F72A8 PUSH EBX
0008:F86F72A9 MOV EDI,[EBP+0C] <--- PIRP
0008:F86F72AC XOR EAX,EAX

And we continue our quest till we find where it is playing with IOCTL = 0x1A00h:

0008:F86F74C0 CMP DWORD PTR [ESI+0C],00001800
0008:F86F74C7 JZ _F86F74D3
0008:F86F74C9 CMP DWORD PTR [ESI+0C],00
0008:F86F74CD JNZ _F86FAB4E

Nope, continue:

0008:F86FAB4E CMP DWORD PTR [ESI+0C],00001801
0008:F86FAB55 JNZ _F86FAE80

Nope, continue:

0008:F86FAE80 CMP DWORD PTR [ESI+0C],00001802
0008:F86FAE87 JNZ _F86FAED1

Nope, continue:

0008:F86FAED1 CMP DWORD PTR [ESI+0C],00001D00
0008:F86FAED8 JNZ _F86FB938

C’mon…

0008:F86FB938 CMP DWORD PTR [ESI+0C],00001A00
0008:F86FB93F JNZ _F86FC07A
0008:F86FB945 MOV ESI,[EDI+0C] <--- IRP.SystemBuffer

Oh, finaly, as you may see ESI point to irp.irp_systembuffer and then, *BOOM*:

0008:F86FBE66 CALL [ESI]

It is redirecting execution to code pointed by SystemBuffer, well look where it goes:

0008:00AD12E1 PUSH EBP
0008:00AD12E2 CALL _00AD12E7
0008:00AD12E7 POP EBP
0008:00AD12E8 SUB EBP,06823EE8
0008:00AD12EE JMP _00AD1304

25 Deroko, TheMida Defeating Ring0, http://tutorials.accessroot.com

http://tutorials.accessroot.com/

PAGE 65 ARTEAM EZINE

0008:00AD12F3 MOV EDI,37CE5484
0008:00AD12F8 JGE _00AD1309
0008:00AD12FA INC EBX

Ohoho, 0x1A00 is only gateway for ring3 code to become ring0 code ☺ Luckily this is used only 2 times in
TheMida so lets trace this code because it seems like this is going to perform some debugger checks
(what else would be the reason for new TheMida to use Ring0). After a little bit of tracing we find very
interesting stuff here:

0008:00AD150E CMP BYTE PTR [ECX],68
0008:00AD1511 JNZ _00AD162D

Well ECX is pointing to address of INT 41h and then TheMida checks for push instruction. When SoftICE is
not loaded int 41h will point to HalpDispatchInterrupt, but when SoftICE is loaded we will have this hook
code:

0008:F3645662 PUSH _HalpDispatchInterrupt
0008:F3645667 JMP _F358BACB
0008:F364566C SUB EAX,8003F400
0008:F3645671 PUSH F4868B5C
0008:F3645676 JMP _F35FE601

And HalpDispatchInterupt looks like:

hal!HalpDispatchInterrupt:
806e79cc 54 push esp
806e79cd 55 push ebp
806e79ce 53 push ebx
806e79cf 56 push esi
806e79d0 57 push edi
806e79d1 83ec54 sub esp,0x54
806e79d4 8bec mov ebp,esp
806e79d6 89442444 mov [esp+0x44],eax

TheMida is scanning for SoftICE hook in INT 41h if there is push (68h) debugger detected, otherwise,
everything is just fine. So let’s go and write simple hook to make our SoftICE invisible for this scan, shall
we?

Use ExAllocatePool and allocate small piece of memory because we only need 7 bytes to make our
patch (or we can find some unused place in ntoskrnl.exe and assemble our patch there), here is patch
anyway:

:idt 41
0041 IntG32 0008:81C1E040 DPL=0 P

:u 81c1e040
0008:81C1E040 NOP
0008:81C1E041 PUSH F3645662
0008:81C1E046 RET
0008:81C1E047 ADD [EAX],AL

:u f3645662
0008:F3645662 PUSH _HalpDispatchInterrupt
0008:F3645667 JMP _F358BACB

Run TheMida protected application (the one with oreans32.sys) and it will start w/o a problem.

3. Final Remarks

If you don’t want to write your own hooking “engine”, you can use the loader supplied with this
document, but IMHO, people that are using SoftICE already know driver programming so… I feel lame
for providing a loader with this document..

Well I wish to thank to ARTeam, ma mates ☺, Snow Panther for cool DS 3.2 patches, 29a for the best
eZine (apart from this one!) and, of course, you for reading this small contribution.

PAGE 66 ARTEAM EZINE

Note that into the supplements folder relative to this paper you can also find a plugin for xADT which
implements this anti-debugger trick (int_hooks.dll), follow xADT distribution documentation to install it..

12. WTM Register Maker v2.0 case study, tHE mUTABLE

1. Abstract

In this journey we are going to analyze WTM Register Maker v2.0: http://www.webtoolmaster.com, which
manages your serials for your shareware, protects your exe files against cracking with crypto technology.
And had a lot of nice features like: serial is needed for extract protected exe file, small loader, fast, there
is no way to sniffing right serial / only brutal force, protect your software against cracking/hacking.

So, the objective of this work is trying to demystify and annihilate how WTM Register Maker works. To do
this, we will step through many levels of protection elimination starting with unpacking, cracking, inline
patching, aesthetical modifications, where another tools like HzorInline and aPE failed to accomplish
their task (in their automated configurations).

In this work I managed to think of the most optimized solution (nothing new) especially when it comes to
inline patching (you’ll see later why) to defeat the nag screen from the loaders. Having said that,
another approach will be explained also just for completeness by trying to explain its advantages and
disadvantages. Why this and why not that.

The methods used to perform this task, that is, analytical, numerical, and experimental.

2. The Anatomy of Destruction

How WTM Register maker works, it does depends on the loader static linking! No metamorphism at all
(the same implementation for every time) only the General program serial key differs. Browse the folder
where you installed it and you will notice that there are two files (load.dat and load2.dat) which
responsible for adding the layer of protection to the protected file (the only limitation in this shareware
version is the nag screen added to the loaders, when it’s defeated the program is full). These two files are
real executable so don’t got confused with .dat extension, try to rename it to load.exe and load2.exe
and they’ll run normally as any other executable file, and by the way they are both packed with
PECompact too.

2.1. Why and When load.dat or load2.dat

If you noticed both are the same sizes (92.0 KB), but if you do a hex comparison using WinHex v13.0 SR-12
a total of 9,049 differences found (of course after unpacking). So, definitely they are not the same.

You can check this by yourself following renaming trial method inside Olly through a process of
protecting a demo program. The conclusion:

Under the File tab there is a check box option [Encrypt only the first 100kb of your protected file], the
activity of this option and the size of the file to be protected determine whether to link load.dat or
load2.dat.

� If this option is Checked and the file to be protected is less than 100kb RTool Engine will stick to

load2.dat for registration scheme loader, otherwise (Unchecked) load.dat will be used.

� If this option is Unchecked and the file to be protected is greater than 100kb RTool Engine will stick to

load.dat loader, otherwise (Checked) load2.dat will be used. Check Image 12.1.

� For further investigation check this area (Delphi compiler. Map file applied from DeDe)

004C47F6 |> \8D55 E0 LEA EDX,[LOCAL.8]
004C47F9 |. 33C0 XOR EAX,EAX
004C47FB >|. E8 D0E0F3FF CALL RToolD.004028D0
 ; system.ParamStr(Integer):String
004C4800 |. 8B45 E0 MOV EAX,[LOCAL.8]
004C4803 |. 8D55 E4 LEA EDX,[LOCAL.7]

http://www.webtoolmaster.com/

PAGE 67 ARTEAM EZINE

004C4806 >|. E8 413FF4FF CALL RToolD.0040874C
 ; sysutils.ExtractFilePath(AnsiString):AnsiString
004C480B |. 8D45 E4 LEA EAX,[LOCAL.7]
004C480E |. BA 344B4C00 MOV EDX,RToolD.004C4B34 ; ASCII "load.dat"
004C4813 >|. E8 44F5F3FF CALL RToolD.00403D5C ; system.@LStrCat
004C4818 |. 8B45 E4 MOV EAX,[LOCAL.7]
004C481B >|. E8 843EF4FF CALL RToolD.004086A4
 ; sysutils.FileExists(AnsiString):Boolean
004C4820 |. 84C0 TEST AL,AL
004C4822 |. 75 0F JNZ SHORT RToolD.004C4833
004C4824 |. B8 484B4C00 MOV EAX,RToolD.004C4B48 ; ASCII "Loader not found."
004C4829 >|. E8 76F1F9FF CALL RToolD.004639A4
 ; dialogs.ShowMessage(AnsiString)
004C482E |. E9 3B020000 JMP RToolD.004C4A6E
004C4833 |> 8D55 DC LEA EDX,[LOCAL.9]
004C4836 |. 8B83 38030000 MOV EAX,DWORD PTR DS:[EBX+338]
004C483C >|. E8 0720FDFF CALL RToolD.00496848
 ; mask.TCustomMaskEdit.GetText(TCustomMaskEdit):AnsiString
004C4841 |. 8B45 DC MOV EAX,[LOCAL.9]
004C4844 >|. E8 CF3CF4FF CALL RToolD.00408518
 ; sysutils.StrToInt(AnsiString):Integer;
 ; Hex the General Serial Number
004C4849 |. 8BF0 MOV ESI,EAX
004C484B |. 8D55 D8 LEA EDX,[LOCAL.10]
004C484E |. 8B83 44030000 MOV EAX,DWORD PTR DS:[EBX+344]
004C4854 >|. E8 EF1FFDFF CALL RToolD.00496848
 ; mask.TCustomMaskEdit.GetText(TCustomMaskEdit):AnsiString
004C4859 |. 8D45 D8 LEA EAX,[LOCAL.10]
004C485C |. BA 644B4C00 MOV EDX,RToolD.004C4B64 ; ASCII ".ver"
004C4861 >|. E8 F6F4F3FF CALL RToolD.00403D5C ; system.@LStrCat;
004C4866 |. 8B45 D8 MOV EAX,[LOCAL.10] ; .ver version of the
 ; original file
004C4869 |. 50 PUSH EAX ; .ver created
004C486A |. 8D55 D4 LEA EDX,[LOCAL.11]
004C486D |. 8B83 44030000 MOV EAX,DWORD PTR DS:[EBX+344]

. . .
. . .

004C4A6E |> \33C0 XOR EAX,EAX
004C4A70 |. 5A POP EDX
004C4A71 |. 59 POP ECX
004C4A72 |. 59 POP ECX
004C4A73 |. 64:8910 MOV DWORD PTR FS:[EAX],EDX
004C4A76 |. 68 9D4A4C00 PUSH RToolD.004C4A9D
004C4A7B |> 8D45 94 LEA EAX,[LOCAL.27]
004C4A7E |. BA 0E000000 MOV EDX,0E
004C4A83 >|. E8 70F0F3FF CALL RToolD.00403AF8 ; system.@LStrArrayClr
004C4A88 |. 8D45 D4 LEA EAX,[LOCAL.11]
004C4A8B |. BA 0B000000 MOV EDX,0B
004C4A90 >|. E8 63F0F3FF CALL RToolD.00403AF8 ; system.@LStrArrayClr
004C4A95 \. C3 RETN

Note: I’ll assign Checked and Unchecked as a representation for whether this option: “Encrypt only the
first 100 kb of your protected file” is active or not. And PF (Protected File).

PAGE 68 ARTEAM EZINE

 Start

Option Size of
the PF.

Load2.dat + File =
Encrypted

Fi
le

C
he

ck
ed

< 100 kbUnchecked

Load.dat + File =
Encrypted > 100 kb

Finished

Image 12.1 - load.dat and load2.dat mechanism

3. Unpacking

Load it (RTool.exe) in RDG Packer Detector v0.6.4 BETA and voila PECompact v2.5x – v2.7x. In fact
nothing new in this case study than adopting the ESP method for unpacking.

3.1. Unpacking.ESP Method

Our next step is to load it in Olly and then pressing F8 (Step Over) twice so that the ESP stack pointer is
changed to (ESP 0012FFC4). In the Register Window: Right-click on the ESP register → Follow in Dump.
(ESP register contains the address to the top of the stack).

In the Dump Window: Highlight the first four bytes (C8 32 4F 00) and Right-click → Breakpoint →
Hardware, on access → Dword. Now OllyDbg will stop when the first four bytes are accessed.
Now Press F9 (Run) Four times wait for the program to be unpacked and we will be break at a JMP. The
code looks like the following:

004F338A - FFE0 JMP EAX ; RTool.004C5D94
004F338C 94 XCHG EAX,ESP
004F338D 5D POP EBP ; kernel32.77E814C7
004F338E 4C DEC ESP
004F338F 00C0 ADD AL,AL
004F3391 334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F3394 D033 SAL BYTE PTR DS:[EBX],1
004F3396 4F DEC EDI

Now press Step into F7 (Enter the JMP EAX address 004F338A). This will bring us to the OEP
(RTool.004C5D94). The code looks like the following:

004C5D94 55 PUSH EBP
004C5D95 8BEC MOV EBP,ESP
004C5D97 83C4 F4 ADD ESP,-0C
004C5D9A B8 AC5B4C00 MOV EAX,RTool.004C5BAC
004C5D9F E8 C007F4FF CALL RTool.00406564
004C5DA4 A1 907E4C00 MOV EAX,DWORD PTR DS:[4C7E90]

PAGE 69 ARTEAM EZINE

004C5DA9 8B00 MOV EAX,DWORD PTR DS:[EAX]
004C5DAB E8 7C40F8FF CALL RTool.00449E2C
004C5DB0 8B0D 947F4C00 MOV ECX,DWORD PTR DS:[4C7F94] ; RTool.004CA9FC
004C5DB6 A1 907E4C00 MOV EAX,DWORD PTR DS:[4C7E90]
004C5DBB 8B00 MOV EAX,DWORD PTR DS:[EAX]
004C5DBD 8B15 E43A4C00 MOV EDX,DWORD PTR DS:[4C3AE4] ; RTool.004C3B30
004C5DC3 E8 7C40F8FF CALL RTool.00449E44
004C5DC8 A1 907E4C00 MOV EAX,DWORD PTR DS:[4C7E90]
004C5DCD 8B00 MOV EAX,DWORD PTR DS:[EAX]
004C5DCF E8 F040F8FF CALL RTool.00449EC4
004C5DD4 E8 C3DBF3FF CALL RTool.0040399C
004C5DD9 8D40 00 LEA EAX,DWORD PTR DS:[EAX]

Now dump it using OllyDump Plug-in with Rebuild Import check box checked.

Fine, our program is out of prison now.

And do the same steps as above for load.dat and load2.dat

Note: Don’t worry for the extension .dat these are real executable files.

4. Cracking (RTool.exe + load.dat + load2.dat) = Full (0x1)

There are many methods to defeat Shareware text string from RTool.exe, Nag screen from load.dat &
load2.dat.. But in our case we’ll adopt the minimum modification so that the inline patching technique
will just work fine. You may ask why not just apply the patches on the unpacked loaders and the nag
screen is gone, No the protection loader won’t work with the unpacked one even if you enter the
correct serial1 and serial2. (try it and you’ll see what I mean).

4.1. Aesthetical modification

The first target is RTool.exe caption “Shareware” and the About tab Shareware…

 WTM Register Maker V2.0 Shareware This word needs to be removed.
Image 12.2 - RTool caption

 WTM Register Maker is shareware. Please register: www.webtoolmaster.com

This string needs to be removed.
Image 12. 3 – RTool About tab string

You wonder why all of this, it’s only a string I can search for it using any hex-editor and then delete it. But
if you want to apply the patches using inline patching it won’t work because there are only a few bytes
available to be used in the inline patching method. And that’s why we seek the minor modification to
get our patched version works perfectly without adding any section to the executable file.

Inside Olly Search for all referenced text string then right click → Search for text → and write “Shareware”
in the text box with Entire scope option checked and press ok. That’s it our first hit → double click and
you are in:

004DFC3B . 43 61 70 74 69 6F 6E ASCII "Caption" : Crystal Clear
004DFC42 06 DB 06
004DFC43 . 21 DB 21 ; CHAR '!'
004DFC44 . 57 54 4D 20 52 65 67 69>ASCII "WTM Register Mak"
004DFC54 . 65 72 20 56 32 2E 30 20>ASCII "er V2.0 Sharewar"
004DFC64 . 65 ASCII "e"

PAGE 70 ARTEAM EZINE

By changing only one byte “Shareware” word will be gone and our mission is accomplished. So, right
click on the 004DFC54 . 65 72 20 56 32 2E 30 20>ASCII "er V2.0 Sharewar" → Follow
in Dump.

004DFC54 65 72 20 56 32 2E 30 20 53 68 61 72 65 77 61 72 er V2.0 Sharewar
004DFC64 65 0C 43 6C 69 65 6E 74 48 65 69 67 68 74 03 5A e.ClientHeight�Z

The first letter of the “Shareware” word starts at address 004DFC5C. Click on 53 (in dump window) and
press CTRL+E to edit data at this address and write 00. Now save the executable and yes the
“Shareware” is completely removed by changing only one byte.

And now apply the same approach for the Image 12.3.

004E24E9 . 47 57 54 4D 20 52 ASCII "GWTM R"
004E24EF . 65 67 69 73 74 65 72 20>ASCII "egister Maker is"
004E24FF . 20 73 68 61 72 65 77 61>ASCII " shareware. Plea"
004E250F . 73 65 20 72 65 67 69 73>ASCII "se register: www"
004E251F . 2E 77 65 62 74 6F 6F 6C>ASCII ".webtoolmaster.c"
004E252F . 6F 6D 00 ASCII "om",0

004E24DF 6C 07 43 61 70 74 69 6F 6E 06 47 57 54 4D 20 52 l�Caption�GWTM R
004E24EF 65 67 69 73 74 65 72 20 4D 61 6B 65 72 20 69 73 egister Maker is
004E24FF 20 73 68 61 72 65 77 61 72 65 2E 20 50 6C 65 61 shareware. Plea
004E250F 73 65 20 72 65 67 69 73 74 65 72 3A 20 77 77 77 se register: www
004E251F 2E 77 65 62 74 6F 6F 6C 6D 61 73 74 65 72 2E 63 .webtoolmaster.c
004E252F 6F 6D 00 00 0F 54 62 73 53 6B 69 6E 53 74 64 4C om..�TbsSkinStdL

The first letter of the “is shareware. Please register: www.webtoolmaster.com” string starts at
address 004E24FD. Click on 69 (in dump window) and press CTRL+E to edit data at this address and
write 00. Now save the executable and yes the “is shareware. Please register:
www.webtoolmaster.com” is completely removed by changing only one byte.

4.2. Nag screen load.dat

Change the extension to exe and this loader works fine but a nag screen always appear to register as in
the following figure.

Image 12.4 – load(2).dat nag screen

Shareware

Please register WTM Register Maker: www.webtoolmaster.com

It’s an easy task to remove this nag screen load the unpacked version in OllyDbg and do a search for all
referenced text string or set a BP on MessageBoxA API. And we land here:

0042F19E |. 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
0042F1A0 |. 68 5CF24200 PUSH load.0042F25C ; |Title = "Shareware"
0042F1A5 |. 68 68F24200 PUSH load.0042F268 ; |Text = "Please register WTM
Register Maker: www.webtoolmaster.com"
0042F1AA |. 6A 00 PUSH 0 ; |hOwner = NULL
0042F1AC |. E8 8767FDFF CALL <JMP.&user32.MessageBoxA> ; \MessageBoxA

There is no conditional jump to bypass this nag screen, another approach would be to nop the call to
the message box and the nag screen no longer appear at the start. (Remember what I mentioned
before you cannot use the unpacked loaders to protect any software, it won’t work anymore so you
have to restrict your modification to minimum. Taking into consideration the available bytes for inline
patching later on).

Having said that nopping the call to the message box won’t serve our task. So, another approach is to
change HWND hWnd, // handle of owner window value (Identifies the owner window of the message
box to be created. If this parameter is NULL, the message box has no owner window.).

PAGE 71 ARTEAM EZINE

In this case hOwner parameter is NULL, the trick is to change its value to nonzero and the nag screen is
defeated, because in this case the message box has an owner which does not exist). I used 0xFF:

0042F1AA |. 6A FF PUSH -1 ; |hOwner = FFFFFFFF

4.3. Nag screen load2.dat

Apply same technique as before.

0042F1B6 |. 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
0042F1B8 |. 68 5CF24200 PUSH load2.0042F274 ; |Title = "Shareware"
0042F1BD |. 68 68F24200 PUSH load2.0042F280 ; |Text = "Please register WTM
Register Maker: www.webtoolmaster.com"
0042F1C2 |. 6A 00 PUSH 0 ; |hOwner = NULL
0042F1C4 |. E8 8767FDFF CALL <JMP.&user32.MessageBoxA> ; \MessageBoxA

After Modification:

0042F1C2 |. 6A FF PUSH -1 ; |hOwner = FFFFFFFF

5. INILINE Patching

5.1. RTool.exe Case

Load the original (Packed) RTool.exe in Olly and follow the same step as explained in the Unpacking
section till here (but don’t step into this jmp):

004F338A - FFE0 JMP EAX ; RTool.004C5D94: OEP

004F338C 94 XCHG EAX,ESP
004F338D 5D POP EBP
004F338E 4C DEC ESP
004F338F 00C0 ADD AL,AL
004F3391 334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F3394 D033 SAL BYTE PTR DS:[EBX],1
004F3396 4F DEC EDI
004F3397 00A8 334F00AC ADD BYTE PTR DS:[EAX+AC004F33],CH
004F339D 334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F33A0 0000 ADD BYTE PTR DS:[EAX],AL
004F33A2 0000 ADD BYTE PTR DS:[EAX],AL
004F33A4 0000 ADD BYTE PTR DS:[EAX],AL
004F33A6 0000 ADD BYTE PTR DS:[EAX],AL
004F33A8 0000 ADD BYTE PTR DS:[EAX],AL
004F33AA 0000 ADD BYTE PTR DS:[EAX],AL
004F33AC 0000 ADD BYTE PTR DS:[EAX],AL
004F33AE 0000 ADD BYTE PTR DS:[EAX],AL
004F33B0 0000 ADD BYTE PTR DS:[EAX],AL
004F33B2 0000 ADD BYTE PTR DS:[EAX],AL
004F33B4 0000 ADD BYTE PTR DS:[EAX],AL
004F33B6 0000 ADD BYTE PTR DS:[EAX],AL
004F33B8 0000 ADD BYTE PTR DS:[EAX],AL
004F33BA 0000 ADD BYTE PTR DS:[EAX],AL
004F33BC 0000 ADD BYTE PTR DS:[EAX],AL
004F33BE 0000 ADD BYTE PTR DS:[EAX],AL

We need to find a padded area of zero’s to inject our patched byte. I know there are a plenty down this
address but they are not accessible to be used in our inline patching (try and you’ll got this error “Unable
to locate data in executable file”), more than that, even after this 004F338A the area that follow this
address is very critical to fit our changes (I tried before and it doesn’t work). This phenomenon refer to the
fact that the Virtual Size is larger than the Raw Size (as in figure 5) so you can’t save your changes
because it doesn’t exist in the executable it’s only Virtual, you may overcome this problem by adding a
new section which is a tedious task to do for three programs, or you can make the Virtual Size equal the
Raw Size by adding the missing bytes using any hex editor.
In our case, we won’t adopt any of these methods, we’ll stick to the normal method with some careful
and optimization. And it’s done.

PAGE 72 ARTEAM EZINE

No | | | VOffset | | ROffset | Charact. | Name VSize RSize
01 | CODE | 000F0000 | 00001000 | 0004F800 | 00000400 | E0000020 |
02 | .rsrc | 00003000 | 000F1000 | 00002400 | 0004FC00 | E0000020 |

Figure 5 – Virtual and Raw Size

5.1.1 Owned it

So we’ll locate address 004F33AC as a starting point to inject the modified bytes; it’s better to save the
registers and flags contents before you inject your own code and after that restore them so that not to
interfere with the flow of the original executable registers and flags contents.

⇒ Redirection to our cave

Another constraint on our patching mode is that we need to redirect the jump from OEP to our cave
using a short jump so that not to overwrite many instructions. And here it is finalized.

004F338A /EB 20 JMP SHORT RTool.004F33AC ; JMP to our cave
004F338C |94 XCHG EAX,ESP
004F338D |5D POP EBP
004F338E |4C DEC ESP
004F338F |00C0 ADD AL,AL
004F3391 |334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F3394 |D033 SAL BYTE PTR DS:[EBX],1
004F3396 |4F DEC EDI
004F3397 |00A8 334F00AC ADD BYTE PTR DS:[EAX+AC004F33],CH
004F339D |334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F33A0 |0000 ADD BYTE PTR DS:[EAX],AL
004F33A2 |0000 ADD BYTE PTR DS:[EAX],AL
004F33A4 |0000 ADD BYTE PTR DS:[EAX],AL
004F33A6 |0000 ADD BYTE PTR DS:[EAX],AL
004F33A8 |0000 ADD BYTE PTR DS:[EAX],AL
004F33AA |0000 ADD BYTE PTR DS:[EAX],AL
004F33AC \60 PUSHAD ; Save the contents of the registers
004F33AD C605 5CFC4D00 00 MOV BYTE PTR DS:[4DFC5C],0 ; our modified byte
004F33B4 C605 FC244E00 00 MOV BYTE PTR DS:[4E24FC],0 ; our modified byte
004F33BB 61 POPAD ; Restore registers contents
004F33BC FFE0 JMP EAX ; JMP to OEP EAX = 004C5D94

If you have enough space (another program scenario) had better to do it like this:

xxxxxxxx \00 PUSHAD ; Save the contents of the registers by
 pushing them on the stack (32 bit)

xxxxxxxx \00 PUSHFD ; Save the contents of the EFLAGS by
 pushing them onto the stack (32 bit)

xxxxxxxx 0000 00000000 00 MOV x PTR DS:[xxxxxxxx],0 ; our modified byte
xxxxxxxx 0000 00000000 00 MOV x PTR DS:[xxxxxxxx],0 ; our modified byte

xxxxxxxx 00 POPFD ; Restore EFLAGS contents by popping the
 top of the stack into 32-bit EFLAGS
 register

xxxxxxxx 00 POPAD ; Restore registers contents by popping
 the top of the stack into 32-bit
 registers

xxxxxxxx 0000 JMP xxxxxxxx ; JMP to OEP xxxxxxxx

5.2. load.dat Case

0043F9D2 . /EB 13 JMP SHORT load.0043F9E7
0043F9D4 |F8F34200 DD load.0042F3F8 ; ASCII "U‹ìƒÄô¸ óB"
0043F9D8 |08FA4300 DD load.0043FA08
0043F9DC |10FA4300 DD load.0043FA10
0043F9E0 |F0F94300 DD load.0043F9F0
0043F9E4 |F4 DB F4
0043F9E5 . |F9 STC

PAGE 73 ARTEAM EZINE

0043F9E6 . |43 INC EBX
0043F9E7 > \C605 ABF14200 FF MOV BYTE PTR DS:[42F1AB],0FF
0043F9EE . FFE0 JMP EAX ; JMP to OEP EAX = 0042F3F8

Note: 0FF “0” must be written before values that begins with a letter.

5.3. load2.dat Case

0043F9D2 . /EB 13 JMP SHORT load2.0043F9E7
0043F9D4 . |10F4 ADC AH,DH
0043F9D6 . |42 INC EDX
0043F9D7 . |0008 ADD BYTE PTR DS:[EAX],CL
0043F9D9 . |FA CLI
0043F9DA . |43 INC EBX
0043F9DB . |0010 ADD BYTE PTR DS:[EAX],DL
0043F9DD . |FA CLI
0043F9DE . |43 INC EBX
0043F9DF . |00F0 ADD AL,DH
0043F9E1 . |F9 STC
0043F9E2 . |43 INC EBX
0043F9E3 . |00F4 ADD AH,DH
0043F9E5 . |F9 STC
0043F9E6 . |43 INC EBX
0043F9E7 > \C605 C3F14200 FF MOV BYTE PTR DS:[42F1C3],0FF
0043F9EE . FFE0 JMP EAX ; JMP to OEP EAX = 0042F410

6. Final Remarks

The most important thing to look at in this paper is know how to find your path around the axe of interest
so that to understand the interrelations between each object and to defeat the obstacles till you got
satisfied.

Finding multi-solution with a degree of optimization for the same problem gives you a better solid
understanding in code infrastructure analysis.

Always try to give yourself a space and time when you start doing something new for the first time like
I’ve done in this short journey.

7. References

[1] “RCE Emphasizing on Breaking Software Protection”, tHE mUTABLE , http://tutorials.accessroot.com
[2] “Working with IMPORT TABLES part 3” , Ricardo Narvaja, English version, Translated by Innocent

http://tutorials.accessroot.com/

PAGE 74 ARTEAM EZINE

13. ARTeam eZine #3 Call for Papers

ARTeam members are asking for your article submissions on subjects related to Reverse-Engineering.

We wanted to provide the community with somewhere to distribute interesting, sometimes random,
reversing information. Not everyone likes to write tutorials, and not everyone feels that the information
they have is enough to constitute a publication of any sort. I’m sure all of us have hit upon something
interesting while coding/reversing and have wanted to share it but didn’t know exactly how. Or if you
have cracked some interesting protection but didn’t feel like writing a whole step by step tutorial, you
can share the basic steps and theory here. If you have an idea for an article, or just something
fascinating you want to share, let us know.
Examples of articles are a new way to detect a debugger, or a new way to defeat debugger detection,
or how to defeat an interesting crackme.
The eZine is more about sharing knowledge, as opposed to teaching. So the articles can be more
generic in nature. You don’t have to walk a user through step by step. Instead you can share information
from simple theory all the way to “sources included”

What we are looking for in an article submission:

1. Clear thought out article. We are asking you to take pride in what you submit.
2. It doesn’t have to be very long. A few paragraphs is fine, but it needs to make sense.
3. Any format is fine, but to save our time possibly send them in WinWord Office or text format.
4. If you include pictures please center them in the article. If possible please add a number and

label below each image.
5. If you use references please add them as footnotes where used.
6. If you include code snippets inside a document other than .txt please use a monospace font to

allow for better formatting and possibly use a syntax colorizer
7. Anonymous articles are fine. But you must have written it. No plagiarism!
8. Any other questions you may have feel free to ask

We are accepting articles from anyone wanting to contribute. That means you.

We want to make the eZine more of a community project than a team release. If your article is not used,
it’s not because we don’t like it. It may just need some work. We will work with you to help develop your
article if it needs it.

Questions or Comments please visit http://forum.accessroot.com

http://forum.accessroot.com/

	1. The Cone of Experience, Shub-Nigurrath of ARTeam
	Verification
	1. Adding New Functionality to Old Software, Gabri3l of ARTeam
	2. Patching by using resource, ThunderPwr of ARTeam
	3. Patching Event Driven Nags, Shub-Nigurrath of ARTeam
	4. Writing OllyDbg Scripts, Buzifer of Team RESURRECTiON
	5. Utilizing Code Injection on an ACprotected application, condzero of ARTeam
	6. Code Obfuscation, zyzygy
	7. Testing for OllyDbg Using NtYieldExecution, Gabri3l of ARTeam
	8. Coding a Serial Sniffer (Oraculum), anorganix of ARTeam
	9. Ring 3 debugger detection via INVALID_HANDLE exception, deroko of ARTeam
	10. PEB Dll Hooking, a novel method to hook dlls, deroko of ARTeam
	11. TheMida: no more Ring0?, deroko of ARTeam
	12. WTM Register Maker v2.0 case study, tHE mUTABLE
	13. ARTeam eZine #3 Call for Papers

