
Bash Scripting for Hackers 
and Pentesters 

Dolev Farhi and Nick Aleks

Black Hat Bash

®

EEAA
RRLL

YY

AACC
CCEE

SSSS



N O  S T A R C H  P R E S S 
E A R LY  A C C E S S  P R O G R A M : 

F E E D B A C K  W E L C O M E !

The Early Access program lets you read significant portions of an upcoming 
book while it’s still in the editing and production phases, so you may come 
across errors or other issues you want to comment on. But while we sincerely 
appreciate your feedback during a book’s EA phase, please use your best dis-
cretion when deciding what to report.

At the EA stage, we’re most interested in feedback related to content—
general comments to the writer, technical errors, versioning concerns, or 
other high-level issues and observations. As these titles are still in draft 
form, we already know there may be typos, grammatical mistakes, miss-
ing images or captions, layout issues, and instances of placeholder text. No 
need to report these—they will all be corrected later, during the copyedit-
ing, proofreading, and typesetting processes.

If you encounter any errors (“errata”) you’d like to report, please fill 
out this Google form so we can review your comments.

https://docs.google.com/forms/d/e/1FAIpQLSfjCqdOzGOdoe7m1Rgqfo-dqvz85Gqe8758jwUD9mpFYiSjGA/viewform?fbzx=-3092278227089906900


B L A C K  H A T  B A S H
D o l e v  F a r h i  a n d  N i c k  A l e k s

Early Access edition, 08/10/23

Copyright © 2024 by Dolev Farhi and Nick Aleks.

ISBN 13: 978-1-7185-0374-8 (print) 
ISBN 13: 978-1-7185-0375-5 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, 
Inc. Other product and company names mentioned herein may be the trademarks of their 
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the 
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by 
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner 
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every 
precaution has been taken in the preparation of this work, neither the author nor No Starch 
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage 
caused or alleged to be caused directly or indirectly by the information contained in it.



C O N T E N T S

Chapter 1: Bash Basics
Chapter 2: Advanced Bash Concepts
Chapter 3: Setting Up a Hacking Lab
Chapter 4: Reconnaissance
Chapter 5: Vulnerability Scanning and Fuzzing 
Chapter 6: Gaining a Web Shell 
Chapter 7: Reverse Shells
Chapter 8: Local Information Gathering
Chapter 9: Privilege Escalation
Chapter 10: Persistence
Chapter 11: Network Probing and Lateral Movement 
Chapter 12: Defense Evasion
Chapter 13: Exfiltration and Counter-Forensics

The chapters in red are included in this Early Access 
PDF.



` 

1 
B A S H  B A S I C S  

Bash is a shell scripting language used to interact with 

components of the Linux operating system. As penetration 

testers and security practitioners, we frequently write bash 

scripts to automate a wide variety of tasks, making it an 

essential tool for hackers. In this chapter, you’ll set up 

your bash development environment, explore useful Linux 

commands to include in future scripts, and learn the 

fundamentals of the language’s syntax, including 

variables, arrays, streams, arguments, and operators.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Environmental Setup 

Before you begin learning bash, you need both a bash shell 

running in a terminal and a text editor. You can access these on any 

major operating system by following the instructions in this section.  

NO T E  Beginning in Chapter 4, you’ll run bash commands and complete hack-

ing labs using Kali Linux. If you’d like to set up Kali now, consult the 

steps included in Chapter 3.  

Accessing the Bash Shell 

If you’re running Linux or macOS, bash should already be 

available. On Linux, open the Terminal application by entering 

ALT+CTRL+T. On macOS, you can find the terminal by navigating 

to the Launchpad icon on the system dock.  

Kali and macOS use the Z Shell by default, so when you open a 

new terminal window, you’ll have to enter exec bash to switch to 

a bash shell before you run commands. If you want to change your 

default shell to bash so you don’t have to manually switch shells, 

you can use the command chsh -s /bin/bash. 

If you’re running Windows, you can make use of the Windows 

Subsystem for Linux (WSL), which lets you run Linux distributions 

directly on Windows, providing access to a bash environment 

without a virtual machine. The official Microsoft WSL 

documentation page describes how to install it: 

https://learn.microsoft.com/en-us/windows/wsl/install. 

An alternative to WSL is Cygwin, which emulates a Linux 

environment by providing a collection of Linux utilities and system-

call functionalities. To install Cygwin, visit 

https://www.cygwin.com/install.html and download the setup file, 

then follow the installation wizard.  

Cygwin installs itself by default to the C:/cygwin64/ Windows 

path. To execute your bash scripts, save the scripts in the directory 

containing your username at C:/cygwin64/home. For example, if 

your username is david, you should save your scripts under 

C:/cygwin64/home/david. Then, from the Cygwin terminal, you’ll be 

able to change the directory to the home directory to run your scripts. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Installing a Text Editor 

To start writing bash scripts, you’ll need a text editor, preferably 

one with handy features such as syntax highlighting built in. You can 

choose between terminal-based text editors and graphical user 

interface-based text editors. Terminal-based text editors (such as vi 

or nano) are useful, because during a penetration test, they may be 

the only available options when you need to develop a script on the 

spot.  

If you prefer graphical text editors, Sublime Text 

(https://www.sublimetext.com/) is one option you could use. In 

Sublime Text, you can toggle on the syntax highlighting feature for 

bash scripts by clicking Plain Text in the bottom-right corner and 

choosing bash from the drop-down list of languages. If you’re using 

a different text editor, reference its official documentation to learn 

how to turn on syntax highlighting.  

Exploring the Shell 

Now that you have a functional bash environment, it’s time to 

learn some basics. Although you’ll develop scripts in your text 

editor, you’ll also probably find yourself frequently running single 

commands in the terminal. This is because you often need to see how 

a command runs, and what kind of output it produces, before 

including it in a script. Let’s get started by running some bash 

commands. 

Before you begin, the following command will verify that you 

have bash available: 

$ bash –-version 

The version in the output will depend on the operating system 

you are running. 

Checking Environment Variables 

When running in a terminal, bash loads a set of environment 

variables with every new session that gets invoked. Programs can 

use these environment variables for various purposes, such as 

discovering the identity of the user running the script, the location of 

their home directory, their default shell, and more.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
To see the list of environment variables set by bash, run the env 

command directly from the shell: 

$ env 

 

SHELL=/bin/bash 

LANGUAGE=en_CA:en 

DESKTOP_SESSION=ubuntu 

PWD=/home/user 

--snip— 

You can read individual environment variables using the echo 

command. For example, to print the default shell set for the user, use 

the SHELL environment variable preceded by a dollar sign ($) and 

surrounded by curly braces ({}). This will cause bash to expand the 

variable to its assigned value, as shown in Listing 1-1. 

$ echo ${SHELL} 

 

/bin/bash 

Listing 1-1 Printing an environment variable to the terminal 

Table 1-2 shows a short list of some of the default environment 

variables available. 

Table 1-2 Bash Environment Variables 

Variable name  What It Returns 
BASH_VERSION The bash version running 
BASHPID The process ID of the current bash process 
GROUPS A list of groups the running user is a member of 
HOSTNAME The name of the host 
OSTYPE The type of operating system 
PWD The current working directory 
RANDOM A random number between 0 and 32,767 
UID The user ID of the current user 
SHELL The full pathname to the shell 

Try checking the values of these environment variables: 

$ echo ${RANDOM} 

8744 

 

$ echo ${UID} 

1000 

 

$ echo ${OSTYPE} 

linux-gnu 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
The full list of environment variables can be found at 

https://www.gnu.org/software/bash/manual/html_node/Bash-

Variables.html. 

Running Linux Commands 

The bash scripts you’ll write in this book will run common Linux 

tools, so if you’re not yet familiar with command line navigation and 

file-modification utilities such as cd, ls, chmod, mkdir, and 

touch, try exploring them using the man (manual) command. You 

can insert it before any Linux command to open a terminal-based 

guide on how to use it and what options it offers, as shown in Listing 

1-2. 

$ man ls 

 

NAME 

       ls - list directory contents 

 

SYNOPSIS 

       ls [OPTION]... [FILE]... 

 

DESCRIPTION 

       List information about the FILEs (the current directory by default).   

       Sort entries alphabetically if none of -cftuvSUX nor 

       --sort is specified. 

 

       Mandatory arguments to long options are mandatory for short options too. 

       -a, --all 

       do not ignore entries starting with . 

--snip-- 

Listing 1-2 The manual page of the ls command 

Linux commands can accept many types of input on the 

command line. For example, you can enter ls without any 

arguments to see files and directories, or pass it arguments to, for 

instance, display the list of files all on one line.  

Arguments are passed on the command line using either short 

form or long form argument syntax, depending on the command in 

use. Short-form syntax uses a single dash (-) followed by one or 

more characters. The following example uses ls to list files and 

directories using a short-form argument syntax: 

$ ls -l 

Some commands let you supply multiple arguments by 

separating the individual arguments or joining them together:  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
$ ls -la 

$ ls -l -a 

Note that some commands may throw errors if you attempt to 

join two arguments using a single dash, so use the man command to 

learn what syntax is permitted. 

Some command options may allow you to use long-form 

argument syntax, such as the --help command to list the available 

options. Long-form argument syntax is prepended by the double 

dash (--) symbol: 

$ ls --help 

Sometimes, the same command argument supports both short- 

and long-form argument syntax for convenience. For example, ls 

supports the argument -a (all) to display all files including those 

that are hidden (files starting with a dot in their name are considered 

hidden files in Linux), but you could also pass the argument --all, 

and the outcome would be identical. 

$ ls -a 

$ ls --all 

Let’s execute some simple Linux commands so you can see the 

variation of options each offers. First, create a single directory with 

mkdir: 

$ mkdir directory1 

Now let’s create two directories with mkdir: 

$ mkdir directory directory2 

Next, list processes with ps using short-hand argument syntax, 

supplying the arguments separately and then together: 

$ ps -e -f 

$ ps -ef 

Lastly, let’s display the available disk space with df using long-

form argument syntax: 

$ df --human-readable 

Later in this book, you’ll write your own scripts that can take 

various arguments. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Elements of a Bash Script 

In this section, you’ll learn the building blocks of a bash script, 

including how to use comments to document what a script does, how 

to tell Linux to use a specific interpreter to execute the script, and 

how to style your scripts for better readability.  

Bash doesn’t have an official style guide, but we recommend 

adhering to Google’s shell style guide 

(https://google.github.io/styleguide/shellguide.html), which outlines 

best practices to follow when developing bash code. If you work on 

a team of penetration testers and have an exploit code repository, 

using good code styling practices will help your team maintain it.  

The Shebang Line 

Every script should begin with the shebang line, a character 

sequence that starts with the hash and exclamation mark symbols 

(#!), followed by the full path to the script interpreter. Listing 1-3 

shows an example of a shebang line for a typical bash script. 

#!/bin/bash 

 

--snip-- 

Listing 1-3 The shebang line 

The bash interpreter is typically located at /bin/bash. If you 

instead wrote scripts in Python or Ruby, your shebang line would 

include the full path to the Python or Ruby interpreter.  

You’ll sometimes encounter bash scripts that make use of a 

shebang line like the following. 

#!/usr/bin/env bash 

 

--snip— 

Listing 1-4 A portable shebang line 

You may want to use this shebang line because it is more 

portable than the one in Listing 1-3. Some Linux distributions place 

the bash interpreter in different system locations, and this shebang 

line will attempt to find that location. This approach could be 

particularly useful in penetration tests, where you might not know 

the location of the bash interpreter on the target machine. For 

simplicity, however, we’ll use the shebang version from Listing 1-3 

throughout this book. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://google.github.io/styleguide/shellguide.html


` 
The shebang line can also take optional arguments to change 

how the script executes. For example, you could pass the special 

argument -x to your bash shebang, like so: 

#!/bin/bash -x 

This option will print all commands and their arguments as they 

are executed to the terminal. It is useful for debugging scripts as you 

are developing them. 

Another example of an optional argument is -r: 

#!/bin/bash -r 

This optional argument will create a restricted bash shell, which 

restricts certain potentially dangerous commands that could, for 

example, navigate to certain directories, change sensitive 

environment variables, or attempt to turn off the restricted shell from 

within the script. 

Specifying an argument within the shebang line requires 

modifying the script, but you can also pass arguments to the bash 

interpreter using the syntax in Listing 1-5. 

$ bash -r myscript.sh 

Listing 1-5 Passing an argument to bash 

Whether you pass arguments to the bash interpreter on the 

command line or on the shebang line won’t make a difference. The 

command line option is just an easier way to trigger different modes. 

Comments 

Comments are parts of a script that the bash interpreter won’t 

treat as code, and they can improve the readability of a program. 

Imagine that you write a long script and, a few years later, need to 

modify some of its logic. If you didn’t write comments to explain 

what you did, you might find it quite challenging to remember the 

purpose of each section.  

Comments in bash start with a pound sign (#), as shown in 

Listing 1-6. 

#!/bin/bash 

 

# This is my first script. 

Listing 1-6 A comment in a bash script 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Except for the shebang line, every line that starts with a pound 

sign is considered a comment. If you wrote the shebang line twice, 

bash would consider the second one to be a comment. 

To write a multiline comment, precede each individual line with 

the pound sign, as shown in Listing 1-7. 

#!/bin/bash 

 

# This is my first script! 

# Bash scripting is fun... 

Listing 1-7 A multiline comment 

In addition to documenting a script’s logic, comments can 

provide additional metadata, such as who the author is, the script’s 

version, whom to contact for issues, and more. These comments 

usually appear at the top part of the script, below the shebang line.  

Commands 

Scripts can be as short as two lines: the shebang line and a Linux 

command. Let’s write a very simple script that prints Hello World to 

the terminal. Open your text editor and enter the following: 

#!/bin/bash 

 

echo "Hello World!" 

In this example, we use the shebang statement to specify the 

interpreter of choice, bash. Then, we use the echo command to print 

the string Hello World! to the screen. 

Execution 

To run the script, save the file as helloworld.sh, open the 

terminal, and navigate to the directory where the script resides. If 

you saved the file in your home directory, you run the following set 

of commands: 

$ cd ~  

$ chmod u+x helloworld.sh 

$ ./helloworld.sh 

 

Hello World! 

We use the cd command to change directories. The tilde (~) 

represents the home directory of the current running user. Next, we 

set the executable (u+x) permissions using the chmod command for 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
the user who owns the file (in this case, us). Lastly, we run the script 

using dot slash notation (./) followed by the script’s name. The dot 

(.) represents the current directory, so we’re essentially telling bash 

to run helloworld.sh from the current working directory. 

You can also run a bash script with the following syntax: 

$ bash helloworld.sh 

Because we specified the bash command, the script will run 

using the bash interpreter and won’t require a shebang line. Also, if 

you use the bash command, the script doesn’t have to be set with an 

executable permission (+x). In later chapters, you’ll learn about the 

permission model in more depth, and explore its importance in the 

context of finding misconfigurations in penetration tests. 

Debugging 

Errors will inevitably occur when you’re developing bash scripts. 

Luckily, debugging the script is quite intuitive. An easy way to 

check for errors early is by running the script using the -n 

parameter. This parameter will read the commands in the script but 

won’t execute them, so if there are any syntax errors, they will be 

shown on the screen. you can think of it as a dry-run method to test 

validity of syntax: 

bash -n script.sh 

You can also use the -x parameter to turn on verbose mode, 

which lets you see commands being executed and will help you 

debug issues as the script executes in real time. 

bash -x script.sh 

If you want to start debugging at a given point in the script, you 

can do this by including the set command in the script itself. 

#!/bin/bash 

set -x 

 

--snip-- 

 

set +x 

You can think of set as a valve that turns on and off a certain 

option. The first command sets the debugging mode (set -x) while 

the last command (set +x) disables it. Using it, you can avoid 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
generating a massive amount of noise in your terminal in cases when 

your script is large and contains a specific problem area. 

Basic Syntax 

At this point, you’ve written a two-line script that prints the 

message Hello World! to the screen. You’ve also learned how to run 

and debug a script. Now you’ll learn some bash syntax so you can 

write more useful scripts. 

The most basic bash scripts are just lists of Linux commands 

collected in a single file. For example, you could write a script that 

creates resources on a system and then prints information about these 

resources to the screen (Listing 1-8). 

#!/bin/bash 

 

# All this script does is create a directory, create a file 

# within the directory, and then list the content of the directory. 

 

mkdir directory 

touch mydirectory/myfile 

ls -l mydirectory 

Listing 1-8 A basic bash script 

In this example, we use mkdir to create a directory named 

mydirectory. Next, we use the touch command to create a file 

named myfile within the directory. Lastly, we run the ls -l 

command to list the contents of the mydirectory directory. 

The output of the script looks as follows: 

--snip-- 

-rw-r--r-- 1 user user 0 Feb 16 13:37 myfile 

However, this line-by-line strategy could be improved in several 

ways. First, when a command runs, bash waits until it finishes before 

advancing to the next line. This means that if you include a long-

running command (such as a file download or large file copy), 

remaining commands won’t be executed until that command has 

completed. We also have yet to implement any checks to validate 

that all commands have executed correctly. You’ll need to write 

more intelligent programs to reduce errors during runtime.  

Writing sophisticated programs often requires using features like 

variables, conditions, loops, tests, and so on. For example, what if 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
we wanted to change this script so that we first check that we have 

enough space on the disk before attempting to create new files and 

directories? Or what if we checked whether the directory and file 

creation actions actually succeeded? This section and the next 

chapter introduce you to the syntactical elements you’ll need to 

accomplish these tasks. 

Variables 

Every scripting language has variables. Variables are names we 

assign to memory locations that hold some value, and they act like 

placeholders or labels. We can directly assign values to variables or 

execute bash commands and store their output as variable values to 

use for various purposes. 

If you’ve worked with programming languages, you may know 

that variables can be of different types, such as integers, strings, and 

arrays. In bash, variables are untyped; they’re all considered 

character strings. Even so, you’ll see that bash allows you to create 

arrays, access array elements, or perform arithmetic operations so 

long as the variable value consists of only numbers. 

The following rules govern the naming of bash variables: 

• They can include alphanumeric characters. 

• They cannot start with a numerical character. 

• They can contain an underscore (_). 

• They cannot contain whitespace. 

Assigning and Accessing Variables 

Let’s assign a variable. Open a terminal and enter the following 

directly in the command prompt: 

$ book="black hat bash" 

We create a variable named book, and by using the equal sign 

(=), assign the value black hat bash to it. Now we can use this 

variable in some command. For example, here we use the echo 

command to print the variable to the screen: 

$ echo "This book's name is ${book}" 

This book's name is black hat bash 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
In this example, we were able to print the variable by using the 

${book} syntax within an echo command. This will expand the 

book variable to its value. 

You can also assign the output of a command to a variable using 

the command substitution syntax $(), placing the desired command 

between the two parentheses. You’ll use this syntax often in bash 

programming. Try running the following: 

$ root_directory="$(ls -ld /)" 

$ echo "${root_directory}" 

 

drwxr-xr-x 1 user user 0 Feb 13 20:12 / 

We assign the value of the ls -ld / command to a variable 

named root_directory and then use echo to print the output of 

the command. In this output, you can see that we were able to get 

some metadata about the root directory (/), such as its type and 

permission, size, user and group owners, and the timestamp of the 

last modification. 

Note that you shouldn’t leave whitespace around the assignment 

symbol (=) when creating a variable. The following variable 

assignment syntax is considered invalid: 

book = "this is an invalid variable assignment" 

Unassigning Variables 

You can unassign assigned variables using the unset command, 

as shown here: 

$ book="Black Hat Bash" 

$ unset book 

$ echo "${book}" 

Listing 1-9 Unassigning a variable 

If you execute these commands in the terminal, no output will be 

shown after the echo command executes. 

Scoping Variables 

Global variables are those available to the entire program. But 

variables in bash can also be scoped so that they are only accessible 

from within a certain block of code. These variables are called local 

variables and are declared using the local keyword. The following 

script shows how local and global variables work: 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
#!/bin/bash 

 

PUBLISHER="No Starch Press"  

 

print_name(){ 

   local name  

   name="Black Hat Bash"  

   echo "${name} by ${PUBLISHER}"  

} 

 

print_name  

 

echo "The variable ${name} will not be printed because it is a local variable."  

We assign the value No Starch Press to the variable 

publisher, then create a function called print_name(). ( 

You’ll learn more about functions in the next chapter.) Within the 

function, we declare a local variable called name and assign it the 

value "Black Hat Bash". Then we call the print_name() 

function and attempt to access the name variable as part of a 

sentence to be printed using echo.  

The echo command at the end of the script file will result in an 

empty variable, as the name variable is locally scoped to the 

print_name() function, which means that nothing outside of the 

function can access it. So, it will simply return without a value.  

Save this script, remembering to set the executable permission 

using chmod, and run it using the following command: 

$ ./local_scope_variable.sh 

 

Black Hat Bash by No Starch Press 

 

The variable will not be printed because it is a local variable. 

This script is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch01/local_scope_variable.sh. 

Arithmetic Operators  

Arithmetic operators allow you to perform mathematical 

operations on integers. Table 1-3 shows some of the arithmetic 

operators available. The full list of the available arithmetic operators 

can be found at https://tldp.org/LDP/abs/html/ops.html. 

Table 1-3 Arithmetic Operators 

Operator  Description 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch01/local_scope_variable.sh
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch01/local_scope_variable.sh


` 
+ Addition 

- Subtraction 

* Multiplication 

/ Division 

% Modulo 

+= Incrementing by a constant 

-= Decrementing by a constant 

You can perform these arithmetic operations in bash in a few 

ways: using the let command, using the double parentheses syntax 

$((expression)), and using the expr command. Let’s 

consider an example of each method.  

Here we perform a multiplication operation using the let 

command: 

$ let result="4 * 5" 

$ echo $result 

 

20 

This command takes a variable name, then performs an 

arithmetic calculation to resolve its value. Next, we perform another 

multiplication operation using the double parentheses syntax: 

$ result=$((5 * 5)) 

$ echo $result 

 

25 

In this case, we perform the calculation within double 

parentheses. Lastly, we perform an addition operation using the 

expr command: 

$ result=$(expr 5 + 505) 

$ echo $result 

 

510 

The expr command evaluates expressions, which don’t have to 

be arithmetic operations; for example, you might use it to calculate 

the length of some string. Use man expr to learn more about the 

capabilities of expr. 

Arrays 

Bash allows you to create single-dimension arrays. Arrays are a 

collection of elements that are indexed. You can access these 

elements using their index numbers, where the first indexed number 

starts from zero. In bash scripts, you might use arrays whenever you 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
need to iterate over a number of strings and run the same commands 

on each one. 

Here is how to create an array in bash. Save this code to a file 

named array.sh and execute it. 

#!/bin/bash 

 

# Set an array 

IP_ADDRESSES=(192.168.1.1 192.168.1.2 192.168.1.3) 

 

# Print all elements in the array 

echo "${IP_ADDRESSES[*]}" 

 

# Print only the first element in the array 

echo "${IP_ADDRESSES[0]}" 

 

This script uses an array named IP_ADDRESSES that contains 

three IP addresses. The first echo command prints all the elements 

in the array by passing [*] to the variable name IP_ADDRESSES, 

which holds the array values. The * is a representation of every array 

element. Lastly, another echo command prints just the first element 

in the array by specifying index zero.  

Running this script should produce the following output: 

$ chmod u+x arrays.sh 

$ ./arrays.sh 

 

192.168.1.1 192.168.1.2 192.168.1.3 

192.168.1.1 

As you can see, we were able to get bash to print all elements in 

the array, as well as just the first element. 

You can also delete elements from an array. The following will 

delete 192.168.1.2 from the array: 

IP_ADDRESSES=(192.168.1.1 192.168.1.2 192.168.1.3) 

 

unset IP_ADDRESSES[1] 

You can even swap one of the values with another value. The 

following code will replace 192.168.1.1 with 192.168.1.10: 

IP_ADDRESSES[0]="192.168.1.10"   

You’ll find arrays particularly useful when you need to iterate 

over values and perform actions against them, such as a list of IP 

addresses to scan (or a list of emails to send a phishing email to). 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Streams 

Streams are files that act as communication channels between a 

program and its environment. When you interact with a program 

(whether a built-in Linux utility such as ls or mkdir or one that 

you wrote yourself), you’re interacting with one or more streams. In 

bash, there are three standard data streams, as shown in Table 1-4. 

Table 1-4 Streams 

Stream name  Description File descriptor number 
Standard Input (stdin) Data coming into some program 

as input 

 

0 
 

Standard Output (stdout) Data coming out of a program  1 

Standard Error (stderr) Errors coming out of a program 2 

So far, we’ve run a few commands from the terminal and written 

and executed a simple script. The generated output was all sent to the 

standard output stream (stdout), or in other words, your terminal 

screen.  

Scripts can also receive commands as input. When a script is 

designed to receive input, it reads it from the standard input stream 

(stdin). Lastly, scripts may display error messages to the screen due 

to a bug or syntax error in the commands sent to it. These messages 

are sent to the standard error stream (stderr).  

To illustrate streams, we’ll use the mkdir command to create a 

few directories and then use ls to list the content of the current 

directory. Open your terminal and execute the following command: 

$ mkdir directory1 directory2 directory1 

mkdir: cannot create directory 'directory1': File exists 

 

$ ls -l 

total 1 

drwxr-xr-x 1 user user   0 Feb 17 09:45 directory1 

drwxr-xr-x 1 user user   0 Feb 17 09:45 directory2 

Notice that the mkdir command generated an error. This is 

because we passed the directory name directory1 twice on the 

command line. So, when mkdir ran, it created directory1, created 

directory2, and then failed on the third argument because, at that 

point, directory1 had already been created. These types of errors are 

sent to the standard error stream. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Next, we executed ls -l, which simply listed the directories. 

The result of the ls command succeeded without any specific 

errors, so it was sent to the standard output stream.  

You’ll practice working with the standard input stream when we 

introduce redirection in “Redirection Operators” on page XX. 

Control Operators 

Control operators in bash are tokens that perform a control 

function. Table 1-5 gives an overview of control operators. 

Table 1-5 Bash Control Operators 

Operator  Description 

& Sends a command to the background. 

&&  Used as a logical AND. The second command in the expression will be 

evaluated only if the first command evaluated to true. 

( and ) Used for command grouping 

;  Used as a list terminator. A command following the terminator will run af-
ter the preceding command has finished, regardless of whether it evalu-
ates to true or not. 

;; Ends a case statement. 

| Redirects the output of a command as input to another command. 

|| Used as a logical OR. The second command will run if the first one evalu-

ates to false. 

Let’s see some of these control operators in action. The & 

operator sends any command to the background. If you have a list of 

commands in a shell script, sending the first command to the 

background will allow bash to continue to the next line even if the 

previous command hasn’t finished its work. Commands that are 

long-running are often sent to the background to prevent scripts from 

hanging. 

#!/bin/bash 

 

# This script will send the sleep command to the background 

echo "Sleeping for 10 seconds..." 

sleep 10 & 

 

# Creates a file 

echo "Creating the file test123" 

touch test123 

 

# Delete a file 

echo "Deleting the file test123" 

rm test123 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
You’ll learn about sending commands to the background in more 

depth when we discuss job control in Chapter 2. 

The && operator allows us to perform an AND operation between 

two commands. In this case, the file test123 will be created only if 

the first command was successful:  

touch test && touch test123 

The () operator allows us to group commands together so they 

act a single unit when we need to redirect them together:  

(ls; ps)  

This is generally useful when you need to redirect results from 

multiple commands to some stream, as shown in “Redirection 

Operations” on page XX. 

The ; operator allows us to run multiple commands irrespective 

of their exit status: 

ls; ps; whoami 

As a result, each command is executed one after the other, as 

soon as the previous one finishes. 

The || operator allows us to chain commands together using an 

OR operator: 

lzl || echo "the lzl command failed" 

In this example, the echo command will be executed only if the 

first command fails. 

Redirection Operators 

The three standard streams we highlighted earlier can be 

redirected from one program to another. Redirection is taking some 

output from one command or script and using it as the input to 

another. Table 1-6 describes the available redirection operators. 

Table 1-6 Redirection Operators 

Operator  Description 
> Redirects stdout to a file 

>> Redirects stdout to a file by appending it to the existing content 

&> or >& Redirects stdout and stderr to a file 

&>> Redirects stdout and stderr to a file by appending it to the existing content 

< Redirects input to a command 

<< Called a here document or heredoc, redirects multiple input lines to a com-
mand 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
| Redirects output of a command as input to another command 

Let’s practice using redirection operators to see how they work 

with standard streams. The > operator redirects the standard output 

stream to a file. Any command that precedes this character will send 

its output to the specified location. Run the following command 

directly in your terminal: 

$ echo "Hello World!" > output.txt 

We redirected the standard output stream to a file named 

output.txt. To see the content of output.txt, simply run the following: 

$ cat output.txt 

 

Hello World! 

Next, we’ll use the >> operator to append some content to the 

end of the same file: 

$ echo "Goodbye!" >> output.txt 

$ cat hello_output.txt 

 

Hello World! 

Goodbye! 

Listing 1-10 Append text to a file 

If we used > instead of >>, the content of output.txt would have 

been overwritten completely with the Goodbye! text. 

You can redirect both the standard output stream and the 

standard error stream to a file using &>. This is useful when you 

don’t want to send any output to the screen and instead save 

everything in a log file (perhaps for later analysis).  

ls -l / &> stdout_and_stderr.txt 

Listing 1-11 Redirecting standard output and standard error streams to a file 

To append both the standard output and standard error streams to 

a file, simply use double chevron (&>>). 

What if we wanted to send the standard output stream to one file, 

and the standard error stream to another? This is also possible using 

the streams’ file descriptor numbers: 

$ ls -l / 1> stdout.txt 2> stderr.txt  

Listing 1-12 Redirecting standard output and standard error to separate files 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
You may sometimes find it useful to redirect the standard error 

stream to a file, as we’ve done here, so you can log any errors that 

occur during runtime. For example, the next example runs a non-

existent command lzl. This should generate bash errors that will be 

written into the error.txt file. 

$ lzl 2> error.txt 

$ cat error.txt 

 

bash: lz: command not found 

Listing 1-13 Redirecting the standard error stream using its file descriptor number 

Notice that you didn’t see the error on the screen because bash 

sent the error to the file instead. 

Next, let’s use the standard input stream. Run the following 

command in the shell to supply the contents of output.txt as input to 

the cat command: 

$ cat < output.txt 

 

Hello World! 

Goodbye! 

Listing 1-14 Redirecting standard input to the cat command 

What if we wanted to redirect multiple lines to a command? Here 

document redirection (<<) can help with this: 

$ cat << EOF 

  Black Hat Bash 

  by No Starch Press 

EOF 

 

Black Hat Bash 

by No Starch Press 

Listing 1-15 A here document 

In this example, we pass multiple lines as input to a command. 

The EOF in this example acts as a delimiter marking the start and 

end points of the input. Here document redirection treats the input as 

if it were a separate file, preserving line breaks and whitespace. 

The pipe operator (|) redirects the output of one command and 

uses it as the input of another. For example, we could run the ls 

command on the root directory and then use another command to 

extract some data from it, as shown here: 

$ ls -l / | grep "bin" 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
 

lrwxrwxrwx   1 root root          7 Mar 10 08:43 bin -> usr/bin 

lrwxrwxrwx   1 root root          8 Mar 10 08:43 sbin -> usr/sbin 

Listing 1-16 Piping a commands output as input to another command  

We used ls to print the content of the root directory into the 

standard output stream, then used pipe (|) to send it as input to the 

grep command, which filtered out any lines containing the word 

bin. 

Positional Arguments 

Bash scripts can take positional arguments (also called 

parameters) passed on the command line. Arguments are especially 

useful, for example, when you want to develop a program that 

modifies its behavior based on some input passed to it by another 

program or user. Arguments can also change features of the script 

such as the output format and how verbose it will be during runtime. 

For example, imagine you develop an exploit and send it to a few 

colleagues, each of whom will use it against a different IP address. 

Instead of writing a script and asking the user to modify it with their 

network information, you can write it to take an IP address argument 

and then act against this input to avoid having to modify the source 

code in each case. 

A bash script can access arguments passed to it on the command 

line using the variables $1, $2, and so on. The number represents 

the order in which the argument was entered. To illustrate this, the 

following script takes in an argument (an IP address or domain 

name) and performs a ping test against it using the ping utility. 

Save this file as ping_with_arguments.sh: 

#!/bin/bash 

 

# This script will ping any address provided as an argument. 

 

SCRIPT_NAME="${0}"  

TARGET="${1}"  

 

echo "Running the script ${SCRIPT_NAME}..." 

echo "Pinging the target: ${TARGET}..." 

ping "${TARGET}"  

Listing 1-17 A pinger command 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
This script assigns the first positional argument to the variable 

TARGET. Notice, also, that the argument ${0} is assigned to the 

SCRIPT_NAME variable. This argument contains the script’s name 

(in this case, ping_with_arguments.sh).  

To run this script, use the following commands: 

$ chmod u+x ping_with_arguments.sh 

$./ping_with_arguments.sh nostarch.com 

 

Running the script ping_with_arguments.sh... 

Pinging the target nostarch.com... 

PING nostarch.com (104.20.120.46) 56(84) bytes of data. 

 

64 bytes from 104.20.120.46 (104.20.120.46): icmp_seq=1 ttl=57 time=6.89 ms 

64 bytes from 104.20.120.46 (104.20.120.46): icmp_seq=2 ttl=57 time=4.16 ms 

--snip-- 

Listing 1-18 Passing arguments to a script 

This script will perform a ping command against the domain 

nostarch.com passed to it on the command line. The value was 

assigned to the $1 variable; if we passed another argument, it would 

get assigned to the second variable, $2. Use CTRL+C to exit this 

script, as ping may run indefinitely on some operating systems. 

This script is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch01/ping_with_arguments.sh. 

What if you wanted to access all arguments? You can do so 

using the variable $@. Also, using $#, you can get the total number 

of arguments passed. The following script demonstrates how this 

works: 

#!/bin/bash 

 

echo "The arguments are: $@" 

echo "The total number of arguments are: $#" 

Save this script to a file named show_args.sh and run it as 

follows: 

$ chmod u+x show_args.sh 

$ ./show_args.sh "hello" "world" 

 

The arguments are: hello world 

The total number of arguments are: 2 

Table 1-7 summarizes the variables related to positional 

arguments. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Table 1-7 Special Variables Related to Positional Arguments 

Variable  Description 
$0 The name of the script file 

$1, $2, $3, […] Positional arguments 

$# The number of passed positional arguments  
$* All positional arguments  
$@ All positional arguments, where each argument is individually quoted  

When a script makes use of "$*" with the quotes included, bash 

will expand arguments into a single word. For instance, the 

following groups the arguments into one word: 

$ script.sh "1" "2" "3" 

1 2 3 

When a script makes use of "$@" (again including the quotes), it 

will expand arguments into separate words: 

$ script.sh "1" "2" "3" 

1 

2 

3  

In most cases, you will want to use "$@" so that every argument 

is treated as an individual word.  

Input Prompting 

Some bash scripts don’t take any arguments during execution. 

However, they may need to ask the user for some information in an 

interactive way and have the response feed into their runtime. In 

these cases, we can use the read command. You often see 

applications use input prompting when attempting to install some 

software, asking the user to enter yes to proceed or no to cancel the 

operation.  

In the following bash script, we ask the user for their first and 

last name, then print these to the standard output stream. 

#!/bin/bash 

 

# Takes input from the user and assigns it to variables. 

echo "What is your first name?" 

read -r firstname 

 

echo "What is your last name?" 

read -r lastname 

 

echo "Your first name is ${firstname} and your last name is ${lastname}" 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Listing 1-19 Accepting user input with bash 

Save and run this script as input_prompting.sh. Notice that you 

get prompted to enter information that then get printed: 

$ chmod u+x input_prompting.sh 

$./input_prompting 

 

What is your first name? 

John  

 

What is your last name? 

Doe 

 

Your first name is John and your last name is Doe 

This script is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch01/input_prompting.sh. 

Exit Status Codes 

Bash commands return status codes, which indicate whether the 

execution of the command succeeded. Status codes fall in the 0–255 

range, where 0 means success, 1 means failure, 126 means that the 

command was found but is not executable, and 127 means the 

command was not found. The meaning of any other number depends 

on the specific command being used and the logic it uses.  

Checking Status Codes 

To see status codes in action, save the following script to a file 

named exit_codes.sh and run it. 

#!/bin/bash 

 

# Experimenting with status codes 

 

ls -l > /dev/null 

echo "The status code of the ls command was: $?" 

 

lzl 2> /dev/null 

echo "The status code of the non-existing lzl command was: $?" 

We use the special variable $?  with the echo command to 

return the status codes of the executed commands ls and lzl. We 

also redirect their standard output and standard error streams to the 

file /dev/null, a special device file that discards any data sent to it. 

When you want to silence commands, you can redirect their output 

to it. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
You should see output like the following: 

$ ./exit_codes.sh  

 

The status code of the ls command was: 0 

The status code of the non-existing lzl command was: 127 

As you can see, we received two distinct status codes, one for 

each command. The first command returned 0 (success), and the 

second returned 127 (command not found).  

NO T E   Use /dev/null with caution. You may miss out on important errors if you 

choose to redirect output to it. When in doubt, redirect standard streams 

such as standard output and standard error to a dedicated log file in-

stead. 

To understand why you might want to use status codes, imagine 

you’re trying to download a 1GB file from the internet using bash. It 

might be wise to first check if the file already exists on the 

filesystem in case someone ran the script already and retrieved it. 

Also, you might want to check that you have enough free space on 

the disk before attempting the download. By running commands and 

looking at their exit status codes, we can decide whether to proceed 

with the file download. 

Setting a Script’s Exit Codes 

You can set the exit code of a script using the exit command, 

as shown below: 

#!/bin/bash 

 

# Sets the exit code of the script to be 223 

 

echo "Exiting with status code: 223" 

exit 223 

Save this script as set_status_code.sh and run it on the command 

line, then use the special variable $? to see the status code it returns: 

$ chmod u+x set_status_code.sh 

$ ./set_status_code.sh 

Exiting with status code: 223 

 

echo $? 

223 

You can use the $? variable to check the exit status of a script, 

but also of individual commands: 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
$ ps -ef 

$ echo $? 

 

0 

Exit codes are important when you have a series of scripts that 

call one another. You may have a workflow where one script 

invokes another depending on a state of a specific condition. 

Exercise 1: Recording Your Name and the Date  

To practice what you’ve learned in this chapter, we encourage 

you to write a script that does the following: 

1. Accepts two arguments on the command line and assigns them to 

variables. The first argument should be your first name and the 

second should be your last name. 

2. Creates a new file named output.txt. 

3. Writes the current date to output.txt using the date command. 

(Bonus points if you can make the date command print the date 

in the DD-MM-YYYY format; use man date to learn how this 

works.) 

4. Writes your full name to output.txt.  

5. Makes a backup copy of output.txt, named backup.txt, using the 
cp command. (Use man cp if you aren’t sure of the command’s 

syntax.) 

6. Prints the content of output.txt file to the standard output stream. 

An example solution can be found at 

https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch01/exercise_solution.sh. 

Summary 

In this chapter, you ran simple Linux commands in the terminal 

and learned about command options using the man command. You 

also learned how to pass arguments to scripts and execute a sequence 

of commands from within scripts. We covered the fundamentals of 

bash, such as how to write basic programs that make use of 

variables, arrays, redirects, exit codes, arguments, and more. We 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
were also able to prompt the user to enter arbitrary information and 

use it as part of a script’s flow. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

 

2 
A D V A N C E D  B A S H  C O N C E P T S  

This chapter covers bash concepts that can make your 

scripts more intelligent. You’ll learn how to test 

conditions, use loops, consolidate code into functions, 

send commands to the background, and more. You’ll also 

learn some ways of customizing your bash environment 

for penetration testing. 

Test Operators 

Bash lets us selectively execute commands when certain conditions of interest 

are met. We can use test operators to craft a wide variety of conditions, such as 

whether one value equals another value, whether a file is of a certain type, or 

whether one value is greater than another. We often rely on such tests to determine 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
whether to continue running a block of code or not, so being able to construct them 

is fundamental to bash programming. 

There are multiple kinds of test operators. File test operators allow us to 

perform tests against files on the filesystem, such as checking if a file is executable 

or if some directory exists. Table 2-1 shows a short list of the available tests. 

Table 2-1 File Test Operators 

Operator Description 
-d FILE Checks whether the file is a directory 
-r FILE Checks whether the file is readable 
-x FILE Checks whether the file is executable 
-w FILE Checks whether the file is writable 
-f FILE Checks whether the file is a regular file  
-s FILE Checks whether the file size is greater than zero 

You can find the full list of file test operators at 

https://ss64.com/bash/test.html. 

String comparison operators allow us to perform tests related to strings, such 

as testing whether one string is equal to another. Table 2-2 shows the string 

comparison operators. 

Table 2-2 String Comparison Operators 

Operator  Description 
=  Checks whether a string is equal to another string 
== Synonym of = when used within [[ ]] constructs 

!=  Checks whether a string is not equal to another string 
<  Checks whether a string comes before another string (in alphabetical 

order) 
>  Checks whether a string comes after another string (in alphabetical 

order) 
-z Checks whether a string is null 
-n Checks whether a string is not null 

Integer comparison operators allow us to perform checks on integers, such as 

if an integer is less than or greater than another. Table 2-3 shows the available 

operators. 

Table 2-3 Integer Comparison Operators 

Operator  Description 
-eq Checks whether a number is equal to another number 
-ne Checks whether a number is not equal to another number 
-ge Checks whether a number is greater than or equal to another number 
-gt Checks whether a number is greater than another number 
-lt Checks whether a number is less than another number 
-le Checks whether a number is less than or equal to another number 

Let’s use these operators in flow-control mechanisms to decide what code to 

run next.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

if Conditions 

In bash, we can use an if condition to execute some code only when a 

condition is met. Its syntax is as follows: 

if [[ condition ]]; then 

  # do something if the condition is met 

else 

  # do something if the condition is not met 

fi 

We start with the if keyword, followed by a test conditions between double 

brackets ([[ ]]). We then use the ; character to separate the if keyword from 

the then keyword, which allows us to introduce a block of code that runs only if 

the condition is true. 

Next, we use the else keyword to introduce a fallback code block that runs if 

the condition is not met. Note that else is optional, and you may not always need 

it. Finally, we close the if condition with the fi keyword (which is if inversed).  

N O T E  In some operating systems, such as those often used in containers, the default shell 

might not necessarily be bash. To account for these cases, you may want to use single 

brackets ([…]) rather than double brackets to enclose your condition. This use of 

single brackets meets the POSIX standard and should work on almost any Unix 

derivative, including Linux. 

Let’s see an if condition in practice. Listing 2-1 uses an if condition to test 

whether a file exists, and if not, creates it. 

#!/bin/bash 

 

FILENAME="flow_control_with_if.txt"  

 

if [[ -f "${FILENAME}" ]]; then  

  echo "${FILENAME} already exists." 

  exit 1  

else  

  touch "${FILENAME}"  

fi 

Listing 2-1 An if condition to test for the existence of a file 

We first create a variable named FILENAME containing the name of the file 

we need. This saves us from having to repeat the filename in the code. We then 

introduce the if statement, which uses a condition that tests for the existence of 

files with the -f file test operator. If this condition is true, we use echo to print to 

the screen a message explaining that the file already exists and then exit the 

program using the status code 1 (failure). Using the else block, which will 

execute only if the file does not exist, we create the file using the touch 

command.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
You can download this script from https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/test_if_file_exists.sh. Save the file and execute it. You 

should see the flow_control_with_if.txt file in your current directory when you run 

ls.  

Listing 2-2 shows a different way of achieving the same outcome; it uses the 

not operator (!) to check whether a directory doesn’t exist, and if so, creates it. 

This example has fewer lines of code and eliminates the need for an else block 

altogether. 

#!/bin/bash 

 

FILENAME="flow_control_with_if.txt"  

 

if [[ ! -f "${FILENAME}" ]]; then  

  touch "${FILENAME}" 

fi 

Listing 2-2 An example of a file test using a negative check  

Save and run this script. It should create a directory named downloads if this 

directory wasn’t already present. 

Let’s explore if conditions that use some of the other kinds of test operators 

we’ve covered. Listing 2-3 shows an example of a string comparison test. It tests 

whether two variables are equal by performing string comparison with the equal-to 

operator (==).  

#!/bin/bash 

 

VARIABLE_ONE="nostarch" 

VARIABLE_TWO="nostarch" 

 

if [[ "${VARIABLE_ONE}" == "${VARIABLE_TWO}" ]]; then 

  echo "They are equal!" 

else 

  echo "They are not equal!" 

fi 

Listing 2-3 A string comparison test comparing two string variables 

The script will compare the two variables, both of which have the value 

nostarch, and print They are equal! by using the echo command. It is 

available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/string_comparison.sh. 

Next is an example of an integer comparison test, which takes two integers 

and checks which one is the larger number.  

#!/bin/bash 

 

VARIABLE_ONE="10" 

VARIABLE_TWO="20" 

 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
if [[ "${VARIABLE_ONE}" -gt "${VARIABLE_TWO}" ]]; then 

  echo "${VARIABLE_ONE} is greater than ${VARIABLE_TWO}" 

else 

  echo "${VARIABLE_ONE} is less than ${VARIABLE_TWO}" 

fi 

We create two variables, VARIABLE_ONE and VARIABLE_TWO, and assign 

them values of 10 and 20, respectively. We then use the -gt operator to compare 

the two values and print the one that is greater. This script is available at 

https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/integer_comparison.sh. 

Linking Conditions 

So far, we’ve used if to check whether a single condition is met. But like 

most programming languages, we can also use the or (||) and and (&&) operators 

to check for multiple conditions at once. 

For example, what if we wanted to check that a file exists and also that its size 

greater than zero? Listing 2-4 does so. 

#!/bin/bash 

 

echo "Hello World!" > file.txt 

 

if [[ -f "file.txt" ]] && [[ -s "file.txt" ]]; then 

  echo "The file exists and its size is greater than zero". 

fi 

Listing 2-4 Chaining two file-test conditions using an and condition 

This code writes some content to a file, then checks whether that file exists 

and whether its size is greater than zero. Both conditions have to be met in order 

for the echo command to be executed. If either returns false, nothing will happen. 

To demonstrate an or condition, Listing 2-5 checks whether a file is either of 

file or directory type: 

#!/bin/bash 

 

DIR_NAME="dir_test" 

 

mkdir "${DIR_NAME}" 

 

if [[ -f "${DIR_NAME}" ]] || [[ -d "${DIR_NAME}" ]]; then 

  echo "${DIR_NAME} is either a file or a directory." 

fi 

Listing 2-5 Chaining two file test conditions using or 

This code first creates a directory, then uses an if condition with the or (||) 

operator to check whether the variable is a file (-f) or directory (-d). The second 

condition should evaluate to true, and the echo command should execute. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Running Code Only If a Command Succeeds 

We can even test the exit code of commands to determine if they were 

successful or not, in this way:  

if command; then 

  # command was successful 

fi 

 

if ! command; then 

  # command was unsuccessful 

fi 

Listing 2-6 Testing the exit code of a command 

You’ll often find yourself using this technique in bash, as commands aren’t 

guaranteed to succeed. Failures could happen for reasons such as these: 

• A lack of the necessary permissions when creating resources 

• An attempt to execute a command that is not available on the operating 

system 

• The disk being full when downloading a file 

• The network being down while executing network utilities 

To see how this technique works, execute the following in your terminal: 

$ if touch test123; then  

    echo "OK: file created"  

  fi 

 

OK: file created 

We attempt to create a file. Because the file creation succeeds, we print a 

message to indicate this. 

Using elif 

If the first if condition fails, you can check for other conditions by using the 

elif keyword (short for else if). To show how this works, let’s write a program 

that checks the arguments passed to it on the command line. The script in Listing 

2-7 will output a message clarifying whether the argument is a file or a directory. 

#!/bin/bash 

 

USER_INPUT="${1}" 

 

1 if [[ -z "${USER_INPUT}" ]]; then  

  echo you must provide an argument! 

  exit 1  

fi 

 

2 if [[ -f "${USER_INPUT}" ]]; then  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
 echo "${USER_INPUT} is a file" 

3 elif [[ -d "${USER_INPUT}" ]]; then  

  echo "${USER_INPUT} is a directory" 

else 

4 echo "${USER_INPUT} is not a file or a directory"  

fi 

Listing 2-7 Using if and elif statements 

We begin with an if statement that checks whether the variable 

USER_INPUT is null 1. This allows us to exit the script early using exit 1 if we 

receive no command line arguments from the user. We then begin a second if 

condition that uses the file test operator to check whether the input is a file 2. 

Below this condition, we use elif to test whether the argument is a directory 3. 

This condition won’t be tested unless the file test fails. If neither of these 

conditions is true, the script responds that the argument is neither a file nor a 

directory 4. 

This script is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/if_elif.sh. 

Functions 

Functions help us reuse blocks of code so we can avoid repeating them. They 

allow us to run multiple commands and other bash code together by simply 

entering the function’s name. To define a new function, enter a name for it, 

followed by parentheses (). Then place the code you would like the function to 

run within curly brackets {}: 

#!/bin/bash 

 

say_name(){ 

  echo "Black Hat Bash" 

} 

Here, we define a function called say_name that executes a single echo 

command. To call a function, simply enter its name: 

say_name 

If the function is not called, the commands within it won’t run. 

Returning Values 

Like commands and their exit statuses, functions can return values using the 

return keyword. If there is no return statement, the function will return the 

code of the last command it ran. For example, the function in Listing 2-8 returns a 

different value based on whether the current user is root or not: 

#!/bin/bash 

 

1 check_if_root(){  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
2 if [[ "${EUID}" -eq "0" ]]; then  

    return 0 

  else 

    return 1 

  fi 

} 

 

3 is_root=$(check_if_root)  

4 if [[ "${is_root}" -eq "0" ]]; then  

  echo "user is root!" 

else 

  echo "user is not root!" 

fi 

Listing 2-8 An if condition to test whether a function returned true or false 

We define the check_if_root function 1. Within this function, we use an 

if condition with an integer comparison test 2, accessing the environment 

variable EUID to get the effective running user’s ID and checking whether it 

equals 0. If so, the user is root, and the function returns 0; if not, it returns 1. Next, 

we call the function and assign the result returned to the variable is_root 3. 

Then we use another integer comparison test to determine this value 4. This code 

is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/check_root_function.sh. 

 Bash scripts that perform privileged actions often check whether the user is 

root before attempting to install software, create users, delete groups, and so on. 

Attempting to perform privileged actions on Linux without the necessary 

privileges will result in errors, so this check helps handle these cases. 

Accepting Arguments 

In the previous chapter, we covered the passing of arguments to commands on 

the command line. Functions can also take arguments using the same syntax. For 

example, the function in Listing 2-9 prints the first three arguments it receives: 

#!/bin/bash 

 

print_args(){ 

  echo "first: ${1}, second: ${2}, third: ${3}" 

} 

 

1 print_args No Starch Press 

Listing 2-9 A function with arguments 

To call a function with arguments, simply enter its name and the arguments 

separated by spaces 1. Save this script as function_with_args.sh and run it: 

$ chmod u+x function_with_args.sh 

$ ./function_with_args.sh 

 

first: No, second: Starch, third: Press 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
You should see similar output. 

Loops and Loop Controls 

Like many programming languages, bash lets you repeat chunks of code using 

loops. Loops can be particularly useful in your penetration testing adventures 

because they can help you accomplish tasks such as the following: 

• Continuously checking whether an IP address is online after a reboot; once the 

IP address is detected, stop checking. 

• Iterating through a list of hostnames, for example to run a specific exploit 

against each of them or determine whether there is a firewall protecting them. 

• Testing for a certain condition and then running a loop when it is met. For 

example, checking whether a host is online, and if so, performing a brute force 

attack against it. 

The following sections introduce you to the three kinds of loops in bash, 

while, until, and for, as well as the break and continue statements for 

working with loops. 

while  

In bash, while loops allow you to run a code block until some test returns a 

successful exit status code.  You might use them in penetration testing to 

continuously perform a port scan on a network and pick up any new hosts that join 

the network, for example. 

Listing 2-10 shows the syntax of a while loop. 

while some_condition; do 

   # run commands while the condition is true 

done 

Listing 2-10 A while loop 

A while loop starts with the keyword while, followed by an expression 

that describes the condition. We then surround the code to be executed with the do 

and done keywords, which define the start and end of the code block. 

You can use while loops to run some chunk of code infinitely by using 

true as the condition; because true always returns a successful exit code, the 

code will always run. Let’s use a while loop to repeatedly print a command to 

the screen. Save this script to a file named basic_while.sh and run it. 

#!/bin/bash 

 

while true; do 

  echo "Looping..." 

  sleep 2 

done 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
You should see the following output: 

$ chmod u+x basic_while.sh 

$ ./basic_while.sh 

 

Looping... 

Looping... 

--snip-- 

Next, let’s write a more sophisticated while loop that runs until it finds a 

specific file on the filesystem (use CTRL+C to stop it from executing at any 

point): 

#!/bin/bash 

 

1 SIGNAL_TO_STOP_FILE="stoploop"  

 

2 while [[ ! -f "${SIGNAL_TO_STOP_FILE}" ]]; do  

  echo "The file ${SIGNAL_TO_STOP_FILE} does not yet exist..." 

  echo "Checking again in 2 seconds..." 

  sleep 2 

done 

 

3 echo "File was found! exiting..."  

At 1, we define a variable representing the name of the file for which the 

while loop 2 checks using a file test operator. The loop won’t exit until the 

condition is satisfied. Once the file is available, the loop will stop, and the script 

will continue to the echo command 3. Save this file as while_loop.sh and run it: 

$ chmod u+x while_loop.sh 

$./while_loop.sh 

 

The file stoploop does not yet exist... 

Checking again in 2 seconds... 

--snip-- 

While the script is running, open a second terminal in the same directory as 

the script and create the stoploop file: 

$ touch stoploop 

Once you’ve done so, you should see the script breaking out of the loop and 

print the following: 

File was found! exiting... 

This script is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/while_loop.sh. 

until 

Although while runs so long as the condition succeeds, until runs so long 

as it fails. Listing 2-11 shows the until loop syntax. 

until some_condition; do 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
   # run some commands until the condition is no longer false 

done 

Listing 2-11 The until loop syntax 

Listing 2-12 uses until to run some commands until a file’s size is greater 

than zero (meaning it is not empty). 

#!/bin/bash 

FILE="output.txt" 

 

touch "${FILE}" 

until [[ -s "${FILE}" ]]; do 

  echo "$FILE is empty..." 

  echo "Checking again in 2 seconds..." 

  sleep 2 

done 

 

echo "${FILE} appears to have some content in it!" 

Listing 2-12 An until loop to check a file’s size 

We first create an empty file, then begin a loop that runs until the file is no 

longer empty. Within the loop, we print some messages to the terminal. Save this 

file as until_loop.sh and run it: 

$ chmod u+x until_loop.sh 

$ ./until_loop.sh 

 

output.txt is empty... 

Checking again in 2 seconds... 

--snip-- 

At this point, the script has created the file output.txt, but it’s an empty file. 

We can check this using the du command: 

$ du -sb output.txt 

output.txt 

Open another terminal and navigate to the location at which your script is 

saved, then append some content to the file so its size is no longer zero: 

$ echo "until_loop_will_now_stop!" > output.txt 

The script should exit the loop, and you should see it print the following: 

output.txt appears to have some content in it! 

This script is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/until_loop.sh. 

for 

The for loop iterates over a sequence, such as a list of filenames, variables, 

or even group of values generated by running some command. Inside the for 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
loop, we define a block of commands that are run against each value in the list, 

and each value in the list is assigned to a variable name we define. 

Listing 2-13 shows the syntax of a for loop. 

for variable_name in LIST; do 

  # run some commands for each item in the sequence 

done 

Listing 2-13 The for loop syntax 

A simple way to use a for loop is to execute the same command a number of 

times. For example, the following code prints the numbers 1 through 10: 

#!/bin/bash 

 

for index in $(seq 1 10); do 

  echo "${index}" 

done 

Save and run this script. You should see the following output: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

A more practical example might use a for loop to run commands against a 

bunch of IP addresses passed on the command line. The script in Listing 2-14 

retrieves all arguments passed to the script, then iterates through them and prints a 

message for each: 

#!/bin/bash 

 

for ip_address in "$@"; do 

  echo "Taking some action on IP address ${ip_address}" 

done 

Listing 2-14 A for loop to iterate through command line arguments 

Save this script as for_loop_arguments.sh and run it as follows:  

$ chmod u+x for_loop_arguments.sh 

./for_loop_arguments.sh 10.0.0.1 10.0.0.2 192.168.1.1 192.168.1.2 

 

Taking some action on IP address 10.0.0.1 

Taking some action on IP address 10.0.0.2 

--snip-- 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
We can even run a for loop on the output of commands such as ls. In 

Listing 2-15, we print the names of all files in the current working directory:  

#!/bin/bash 

 

for file in $(ls .); do  

  echo "File: ${file}" 

done 

Listing 2-15 A for loop to iterate through a list of files in the current directory 

We use a for loop to iterate over the output of the ls . command, which 

lists the files in the current directory. Each file will be assigned to the file 

variable as part of the for loop, so we can then use echo to print its name. This 

technique would be useful if we wanted to, for example, perform a file upload of 

all files in the directory or even rename them in bulk. 

The break and continue statements 

Loops can run forever or until a condition is met. But you can also exit a loop 

at any point using the break keyword. This keyword provides an alternative to 

the exit command, which would cause the entire script, and not just the loop, to 

exit. Using break, we can leave the loop and advance to the next code block: 

#!/bin/bash 

 

while true; do 

  echo "in the loop" 

  break  

done 

 

echo "This code block will be reached" 

In this case, the last echo command will be executed.  

The continue statement is used to jump to the next iteration of a loop. You 

can use it to skip a certain value in a sequence. To illustrate this, let’s create three 

empty files so we can iterate through them: 

$ touch example_file1 example_file2 example_file3 

Next, our for loop will write some content to each file, excluding the first 

one, example_file1, which it will leave empty (Listing 2-16). 

#!/bin/bash 

 

1 for file in example_file*; do 

  if [[ "${file}" == "example_file1" ]]; then  

    echo "Skipping the first file." 

  2 continue  

  fi 

 

  echo "${RANDOM}" > "${file}"  

done 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Listing 2-16 The use of continue in a for loop 

We start a for loop using the example_file* glob, which will expand to 

match the names of all files starting with example_file in the directory where the 

script runs 1. As a result, the loop should iterate over all three files we created 

earlier. Within the loop, we use a file test operator to check whether the filename is 

equal to example_file1 because we want to skip this file and not make any changes 

to it. If the condition is met, we use the continue statement 2 to proceed to the 

next iteration, leaving the file unmodified. Later in the loop, we use the echo 

command with the environment variable ${RANDOM} to generate a random 

number and write it into the file. 

Save this script as for_loop_continue.sh and execute it in the same directory 

as the three files. 

$ chmod u+x for_loop_continue.sh 

$./for_loop_continue.sh 

 

Skipping the first file. 

If you examine the files, you should see that the first file is empty while the 

other two contain a random number as a result of the script echoing the value of 

the ${RANDOM} environment variable into them. 

Case Statements 

In bash, case statements allow you to test multiple conditions in a cleaner 

way by using more readable syntax. Often, they help you avoid many if 

conditions, which can become harder to read as they grow in size. 

Listing 2-17 shows the case statement syntax. 

case EXPRESSION in 

  PATTERN1) 

    # do something if the first condition is met 

  ;; 

  PATTERN2) 

    # do something if the second condition is met 

  ;; 

esac 

Listing 2-17 The case statement syntax 

Case statements start with the keyword case followed by some expression, 

such as a variable you want to match a pattern against. PATTERN1 and 

PATTERN2 in this example represent some pattern case (such as a regular 

expression, a string, or an integer) that you want to compare to the expression. To 

close a case statement, you use the keyword esac (case inverted). 

Let’s take a look at an example case statement that checks whether an IP 

address is present in a specific private network (Listing 2-17). 

#!/bin/bash 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
 

IP_ADDRESS="${1}"  

 

case ${IP_ADDRESS} in 

  192.168.*)  

    echo "Network is 192.168.x.x" 

  ;; 

  10.0.*)  

    echo "Network is 10.0.x.x" 

  ;; 

  *)  

    echo "Could not identify the network." 

  ;; 

esac 

Listing 2-18 A case statement to check an IP address and determine its network 

We define a variable that expects one command line argument to be passed 

(${1}) and saves it to the IP_ADDRESS variable. We then use a pattern to check 

whether the IP_ADDRESS variable starts with 192.168. and a second pattern 

to checks whether it starts with 10.0.. 

We also define a default wildcard pattern using *, which returns a default 

message to the user if nothing else has matched. 

Save this file as case_ip_address_check.sh and run it: 

$ chmod u+x case_ip_address_check.sh 

$./case_ip_address_check.sh 192.168.12.55 

Network is 192.168.x.x 

 

$./case_ip_address_check.sh 212.199.2.2 

Could not identify the network. 

This script is available at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch02/case_ip_address_check.sh. 

Text Processing and Parsing 

One of the most common things you’ll find yourself doing in bash is 

processing text. You can parse text on the command line by running one-off 

commands, or use a script to store parsed data in a variable that you can act on in 

some way. In both cases, the skill is important to many scenarios. 

To test the commands in this section on your own, download the sample log 

file from https://github.com/dolevf/Black-Hat-Bash/blob/master/ch02/log.txt. This 

file is space-separated, and each segment represents a specific data type, such as 

the client’s source IP address, timestamp, HTTP method, HTTP path, HTTP User 

Agent field, HTTP status code, and more. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Filtering with grep 

The grep command is one of the most popular Linux commands out there 

today. We use grep to filter out information of interest from streams. At its most 

basic form, you can use it like so (Listing 2-19). 

$ grep "35.237.4.214" log.txt 

Listing 2-19 Filtering for a specific string from a file 

This grep command will read the file and extract any lines containing the IP 

address 35.237.4.214 from it. 

We can even grep for multiple patterns simultaneously. The following 

backslash pipe (\|) acts as an or condition (Listing 2-20). 

$ grep "35.237.4.214\|13.66.139.0" log.txt 

Listing 2-20 Filtering for two specific strings 

Alternatively, you could use multiple grep patterns with the -e argument to 

accomplish the same thing (Listing 2-21). 

$ grep -e "35.237.4.214" -e "13.66.139.0" log.txt 

Listing 2-21 Filtering for two specific strings with grep -e 

As you learned in Chapter 1, we can use the pipe (|) command to provide one 

command’s output as the input to another. In the following example, we run the 

ps command and use grep to filter out a specific line. The ps command lists the 

processes on the system: 

$ ps | grep TTY 

By default, grep is case sensitive. We can make our search case insensitive 

using the -i flag (Listing 2-22). 

$ ps | grep -i tty 

Listing 2-22 A case-insensitive search with grep 

We can also use grep to exclude lines containing a certain pattern using the 

-v argument, like in Listing 2-23. 

$ grep -v "35.237.4.214" log.txt 

Listing 2-23 Excluding lines containing a string 

To print only the matched pattern, and not the entire line at which the matched 

pattern was found, use -o (Listing 2-24). 

$ grep -o "35.237.4.214" log.txt 

Listing 2-24 Printing only the matching pattern 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
The command also supports regular expressions, anchoring, grouping, and 

much more. Use the man grep command to read more about its capabilities. 

Filtering with awk 

The awk command is a data processing and extraction Swiss-army knife. You 

can use it to identify and return specific fields from a file. To see how it works, 

take another close look at our log file. What if we needed to print just the IP 

addresses from this file? This is easy to do with awk (Listing 2-25). 

$ awk '{print $1}' log.txt 

Listing 2-25 Printing the first field 

The $1 represents the first field of every line in the file, where the IP 

addresses are. By default, awk treats spaces or tabs as separators or delimiters. 

Using the same syntax, we can print additional fields, such as the timestamps. 

Listing 2-26 filters the first three fields of every line in the file. 

$ awk '{print $1,$2,$3}' log.txt 

Listing 2-26 Printing the first three fields 

Using similar syntax, we can print the first and last field simultaneously. In 

this case, NF represents the last field (Listing 2-27). 

$ awk '{print $1,$NF}' log.txt 

Listing 2-27 Printing the first and last field 

We can also change the default delimiter. For example, if we had a CSV file 

separated by commas, rather than spaces or tabs, we could pass awk the -F flag to 

specify the type of delimiter, as in Listing 2-28. 

$ awk -F',' '{print $1}' example_csv.txt 

Listing 2-28 Printing the first field using a comma delimiter 

We can even use awk to print the first 10 lines of some file. This emulates the 

behavior of the head Linux command. NR represents the total number of records 

and is built into awk (Listing 2-29). 

$ awk 'NR < 10' log.txt 

Listing 2-29 Printing the first 10 lines of a file 

You’ll often find it useful to combine grep and awk. For example, you 

might want to first find the lines in a file containing the IP address 42.236.10.117 

and then print the HTTP paths this IP made a request to (Listing 2-30). 

$ grep "42.236.10.117" log.txt | awk '{print $7}' 

Listing 2-30 Filtering an IP address and printing the seventh field, representing HTTP paths 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
The awk command is a super powerful tool, and we encourage you to dig 

deeper into its capabilities by running man awk for more information. 

Editing Streams with sed 

The sed (stream editor) command takes actions on text. For example, it can 

replace the text in a file, modify the text in some command’s output, and even 

delete selected lines from files. 

Let’s use sed to replace any mentions of the word Mozilla with the word 

Godzilla in the log.txt file. We use its s (substitution) command and g (global) 

command to make the substitution across the whole file, rather than to just the first 

occurrence (Listing 2-31). 

$ sed 's/Mozilla/Godzilla/g' log.txt 

Listing 2-31 Replacing a string with another string 

This will output the modified version of the file but won’t change the original 

version. You can redirect the output to a new file to save your changes: 

$ sed 's/Mozilla/Godzilla/g' log.txt > newlog.txt 

We could also use sed to remove any whitespace from the file with the  / 

// syntax, which will replace whitespace with nothing, removing it from the 

output altogether (Listing 2-32). 

$ sed 's/ //g' log.txt 

Listing 2-32 Removing whitespace with sed 

If you need to delete lines of a file, use the d command. In Listing 2-33, 1d 

deletes (d) the first line (1). 

$ sed '1d' log.txt 

Listing 2-33 Deleting the first line with sed 

To delete the last line of a file, use the dollar sign ($), which represents the 

last line, along with d (Listing 2-34). 

$ sed '$d' log.txt 

Listing 2-34 Deleting the last line with sed 

You can also delete multiple lines, such as line 5 and 7 (Listing 2-35). 

$ sed '5,7d' log.txt 

Listing 2-35 Deleting lines 5 and 7 

Lastly, you can print specific line ranges, such as lines 2 through 15 (Listing 

2-36). 

$ sed -n '2,15 p' log.txt 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Listing 2-36 Printing line ranges in a file 

When you pass sed the -i argument, it will make the changes to the file 

itself rather than create a modified copy (Listing 2-37). 

sed -i '1d' log.txt 

Listing 2-37 Making changes to the original file 

This rich utility can do a whole lot more. Use the man sed command to find 

additional ways to use sed. 

Job Control 

As you become proficient in bash, you’ll start to build complex scripts that 

take an hour to complete or must run continuously. Not all scripts need to execute 

in the foreground, blocking execution of other things. Instead, you may want to 

run certain scripts as background jobs, either because they take a while to 

complete or because their runtime output isn’t interesting and you care only about 

the end result. 

Commands that you run in a terminal occupy that terminal until the command 

is finished. These commands are considered foreground jobs. In Chapter 1, we 

used the ampersand character (&) to send a command to the background. This 

command then becomes a background job that allows us to unblock the execution 

of other commands. 

Managing Background and Foreground Jobs 

To practice working with foreground and background jobs, let’s run a 

command directly in the terminal and send it to the background: 

$ sleep 100 & 

Notice that we can continue working on the terminal while this sleep 

command runs for 100 seconds. You can verify the spawned process is running by 

using the ps command: 

$ ps -ef | grep sleep 

 

user    1827    1752 cons0    19:02:29 /usr/bin/sleep   

Now that this job is in the background, we can use the jobs command to see 

what jobs are currently running (Listing 2-38). 

$ jobs 

 

[1]+  Running                 sleep 100 & 

Listing 2-38 Listing jobs 

The output shows that the sleep command is in Running state and that its 

job ID is 1. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
We can migrate the job from the background to the foreground by issuing the 

fg command and the job ID (Listing 2-39). 

$ fg %1 

 

sleep 100  

Listing 2-39 Sending a job to the foreground 

At this point, the sleep command is occupying the terminal, since it’s 

running in the foreground. You can press CTRL+Z to suspend the process, which 

will produce the following output in the jobs table: 

[1]+  Stopped                 sleep 100 

To send this job to the background again in a running state, use the bg 

command with the job ID (Listing 2-40). 

$ bg %1 

 

[1]+ sleep 100 & 

Listing 2-40 Sending a job to the background 

Keeping a Job Running After Logout 

Whether you send a job to the background or are running a job in the 

foreground, the process won’t survive if you close the terminal or log out. If you 

close the terminal, the process will receive a SIGHUP signal and terminate.  

What if we wanted to keep running a script in the background even after 

we’ve logged out of the terminal window or closed it? To do so, we could start a 

script or command with the nohup (no hangup) command prepended (Listing 2-

41). 

$ nohup ./my_script.sh & 

Listing 2-41 Keeping a script running after closing the terminal or logging out 

The nohup command will create a file named nohup.out with standard output 

stream data. So, make sure you delete this file if you don't want to leave any traces 

on the disk.  

There are additional ways to run background scripts, such as by plugging into 

system and service managers like systemd, which provide additional features, such 

as monitoring that the process is running, restarting it if it isn’t, and capturing 

failures. We encourage you to read more about systemd if you have such use-cases 

at https://man7.org/linux/man-pages/man1/init.1.html. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Bash Customizations for Penetration Testers 

As penetration testers, we often follow standard workflows for all ethical 

hacking engagements, whether they be consulting work, bug bounty hunting, or 

red teaming. We can optimize some of this work with a few bash tips and tricks. 

Placing Scripts in Searchable Paths 

Bash searches for programs within directories defined by the PATH 

environment variable. Commands such as ls are always available to you because 

system and user binaries are located in directories that are part of the PATH. 

To see your PATH, run the following command: 

$ echo $PATH 

 

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 

The output might change depending on the operating system you use. 

When you write a bash script, place it in a directory such as /usr/local/bin, 

which, as you can see, is part of the PATH. If you don’t do this, you have a few 

other options available to you: 

• Call the script directly using the full path. 

• Change the directory to the one in which your script lives and execute it from 

there. 

• Use aliases (shown in the next section). 

• Adding additional paths to the PATH environment variable 

The benefit of placing the script in a searchable path is that you can simply 

call it by its name. You don’t have to provide the full path or have the terminal be 

in the same directory. 

Shortening Commands with Aliases 

When you find yourself frequently using a long Linux command, you can 

make use of an alias to map it to a shorter custom name that will save you time 

when you need to run it.  

For example, imagine that you often use Nmap with special parameters to 

scan for all 65,535 ports on a given IP address: 

nmap -vv -T4 -p- -sV --max-retries 5 localhost 

This command is quite hard to remember. With aliases, we can make it more 

accessible on the command line or to our scripts. Here, we assign the command to 

the alias quickmap: 

$ alias quicknmap="nmap -vv -T4 -p- -sV --max-retries 5 localhost" 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Now we can run the aliased command using the name of the alias: 

$ quicknmap 

Starting Nmap 7.80 ( https://nmap.org ) at 2023-02-21 22:32 EST 

--snip-- 

PORT    STATE SERVICE 

631/tcp open  ipp 

You can even assign an alias to your own scripts: 

$ alias helloworld="bash ~/scripts/helloworld.sh" 

Aliases aren’t permanent, but they can be. In the next section, you’ll learn 

how to use bash profiles to make permanent changes to your shell. 

Customizing the Bash Run Commands Profile (bashrc) 

We can use the ~/.bashrc file to load functions, variables, and just about any 

other custom bash code we desire into a new bash session. For example, we can 

create variables containing information we’ll frequently need to access, such as the 

IP address of a vulnerable host we’re testing. 

For example, we could append the following to the end of the ~/.bashrc file. 

These lines define a few custom variables and save our aliased Nmap command:  

VULN_HOST=1.0.0.22 

VULN_ROUTER=10.0.0.254 

 

alias quicknmap="nmap -vv -T4 -p- -sV --max-retries 5 example.local" 

The next time you open a terminal, you’ll be able to access these values. Make 

these new values available immediately by re-importing the ~/.bashrc file using 

the source command: 

$ source ~/.bashrc 

 

$ echo $VULN_HOST  

10.0.0.22 

 

$ echo $VULN_ROUTER 

10.0.0.254 

Now you can use these variables even after you close the terminal and start a 

new session. 

Importing Custom Scripts 

Another way to introduce changes to your bash session is to create a dedicated 

script that contains pentesting-related customizations and have the ~/.bashrc file 

import it using the source command. To achieve this, create a ~/.pentest.sh file 

containing your new logic, and then make a one-time modification to ~/.bashrc to 

import it at the end of the file: 

source ~/.pentest.sh 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Note that you can also source a bash file using the . command, as in Listing 

42. 

. ~/.pentest.sh  

Listing 2-42 An alternative to the source command 

Capturing Terminal Session Activity 

Penetration testing often involves having dozens of terminals open 

simultaneously, all running many tools that can produce a lot of output. When we 

find something of interest, we may need some of that output as evidence for later. 

To avoid losing track of an important piece of information, we can make use of 

some clever bash. 

The script command allows us to capture terminal session activity. One 

way to use it is to load a small bash script that uses script to save every session 

to a file for later inspection. The script might look like this: 

#!/bin/bash 

 

FILENAME="$(date +%m-%d-%y)_${RANDOM}.log" 

 

if [[ ! -d ~/sessions ]]; then 

  mkdir ~/sessions 

fi 

 

# Starting a script session  

script -f -a "~/sessions/${FILENAME}" 

Having ~/.bashrc load this script, as showed earlier, will result in the creation 

of the ~/sessions directory containing each terminal session capture in a separate 

file. The recording stops once you enter exit in the terminal or close the entire 

terminal window. 

Exercise 2: Pinging a Domain 

In this exercise, we’ll write a bash script that accepts two arguments: a name 

(for example, mysite) and a target domain (for example, nostarch.com).  The script 

should also be able to do the following: 

1. Throw an error if the arguments are missing and exit using the right status 

code.  

2. Ping the domain and return an indication of whether the ping was 

successful or not. 

3. Write the results to a CSV file containing the following information: 

a. The name provided to the script 

b. The target domain provided to the script 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
c. The ping result (either success or failure) 

d. The current date and time 

Like most tasks in Bash, there are multiple ways to achieve this goal. At 

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch02/exercise_solution.sh, 

you can find an example solution to this exercise. 

Summary 

In this chapter, you learned how to perform flow control using conditions, 

loops, and functions, how to control scripts using jobs, and how to search and 

parse text. We also highlighted tips and tricks for building more effective and 

penetration testing workflows using bash features.  

 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



3 
S E T T I N G U P A H A C K I N G L A B

In this chapter, you’ll set up a lab environment containing 

hacking tools and an intentionally vulnerable target. 

You’ll use this lab in chapter exercises, but you can also 

turn to it whenever you need to write, stage, and test a 

bash script before running it against real targets. 

The locally deployed target and its assets mimic the production environment 

of a mock IT hosting company called ACME Infinity Servers, which has its own 

fake employees, customers, and data. This fabricated internet hosting company and 

its customers will provide you with a diverse range of intentionally vulnerable 

applications, user accounts, and infrastructure that you can practice attacking in 

future chapters. 

The lab will be fully contained in a Kali virtual machine. This virtual machine 

will require the following minimum specifications: at least 4GB of RAM, at least 

40GB of storage, and an internet connection. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 

Security Lab Precautions 

Follow these guidelines to reduce the risks associated with building and 

operating a hacking lab: 

Avoid connecting the lab directly to the internet. Hacking lab environments 

typically run vulnerable code or outdated software. While these vulnerabilities 

are great for hands-on learning, they could pose risks to your network, 

computer, and data if they become accessible from the internet. Instead, we 

recommend working through the book when connected to local networks that 

you trust or while operating offline. 

Deploy the lab in a virtual environment using a hypervisor. Separating the lab 

environment from your primary operating system is generally a good idea, as 

it prevents conflicts that could potentially break other software on your 

computer. We recommend using a virtualization tool to ensure this separation. 

In the next section, you’ll install the lab in a Kali virtual machine. 

Take frequent snapshots of your virtual machine. Snapshots are backups of 

your virtual machine that allow you to restore it to a previous state. Lab 

environments often won’t stay stable after we attack them, so take snapshots 

whenever your lab is in a stable state. 

With these best practices in mind, let’s get our hands dirty, and our lab up and 

running! 

Installing Kali 

Kali is a Linux distribution created for penetration testing. Based on Debian, it 

was designed by OffSec. We’ll use Kali as our lab’s operating system because it 

comes bundled with some of the libraries, dependencies, and tools we’ll need. 

Your Kali machine will play two roles in the lab environment: First, it will act 

as the host responsible for running the target networks and machines against which 

we’ll run our scripts, and secondly, it will serve as the hacking machine from 

which you’ll perform your attacks.  

You can find an x64 version of the Kali virtual machine images for the 

VMware Workstation and Oracle VirtualBox hypervisors at 

https://www.kali.org/get-kali. Pick the hypervisor of your choice and follow the 

official installation instructions at https://www.kali.org/docs/installation to install 

it. 

After completing the installation process, you should see the Kali login screen 

shown in Figure 3-1. Kali ships with a default user account named kali whose 

password is kali. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://www.kali.org/get-kali
https://www.kali.org/docs/installation


 

 

Figure 3-1 The Kali login screen 

After logging in to Kali, you need to make sure it’s up to date. To access the 

terminal, open the Applications menu, and in the search bar, enter terminal 

emulator. Click the corresponding application. 

Let’s use a few commands to update your software repositories and upgrade 

your installed packages. In the terminal window, enter the following commands: 

$ sudo apt update -y 

$ sudo apt upgrade -y 

$ sudo apt dist-upgrade -y 

When you use sudo, Kali will ask for your password. This is the same 

password you used to log in to the virtual machine, kali. 

Newer Kali releases use the Z Shell (zsh) by default, so let’s ensure that bash 

is the default shell for the kali user with this command: 

$ sudo usermod --shell /bin/bash kali 

Next, let's enable our new default shell by running the following command: 

$ su - kali 

Moving forward, we’ll use this Kali machine for all tasks we cover in the book. 

We recommend keeping the terminal window open, as you’ll need it for additional 

installations very soon. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 

Setting Up the Target Environment 

Now it’s time to install the machines and networks that will make up our 

simulated corporate target. You can perform this installation in two ways: 

manually or using an automated script. 

We encourage you to set up your lab manually at least once by following the 

instructions in this section. This will allow you to familiarize yourself with the 

lab’s core components and practice running commands on the command line. 

However, if you ever need to redeploy the lab from scratch in a fresh installation 

of Kali, you can do so by executing the init.sh script at 

https://github.com/dolevf/Black-Hat-Bash/blob/master/lab/init.sh: 

$ cd ~/Black-Hat-Bash/lab 

$ chmod u+x init.sh 

$ ./init.sh 

This script should install all of the lab’s dependencies, containers, and hacking 

utilities, enabling you to skip the instructions in this section and in “Installing 

Additional Hacking Tools” on page XX. You must execute the script in a Kali 

virtual machine that meets the system requirements described in the introduction to 

this chapter. 

Installing Docker and Docker Compose 

We’ll build the lab environment using Docker, a tool for deploying and 

managing containers. Containers package code and its dependencies so an 

application can run reliably in various environments. We’ll also make use of 

Docker Compose, a special Docker utility used to orchestrate the building and 

management of multiple Docker containers using a single YAML file, known as a 

Compose file.  

Let’s first configure our sources to use Debian’s current stable version of 

Docker’s community edition, docker-ce, using the following commands. We use 

printf to add Docker’s Advanced Package Tool (APT) repository to the APT 

package-source database file. The tee command reads from standard input stream 

and writes to a file: 

$ printf '%s\n' "deb https://download.docker.com/linux/debian bullseye stable" | 

sudo tee /etc/apt/sources.list.d/docker-ce.list 

Next, download and import Docker’s keyring to ensure that the repository is 

validated and all packages installed from that repository are cryptographically 

verified. We use curl to download the key and pipe it to the gpg command, 

which will then store it in the required folder: 

$ curl -fsSL https://download.docker.com/linux/debian/gpg | sudo gpg --dearmor -o 

/etc/apt/trusted.gpg.d/docker-ce-archive-keyring.gpg 

Finally, run another update to refresh the repository database and install the 

Docker components: 

$ sudo apt update -y 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://download.docker.com/linux/debian


 
$ sudo apt install docker-ce docker-ce-cli containerd.io -y 

To verify that you have Docker Compose running correctly, use the following: 

$ docker compose --help 

Next, make sure the Docker process will automatically start upon system 

reboot by running this command: 

$ sudo systemctl enable docker –-now 

Docker requires the use of sudo, which can get a little inconvenient. If you 

want to avoid having to enter sudo before executing Docker-related commands, 

add the kali user to the docker Linux group: 

$ sudo usermod -aG docker $USER 

Once you’ve done this, you shouldn’t need sudo to run Docker commands. 

Cloning the Book’s Repository 

You can find the lab’s files in the open source Black Hat Bash repository at 

https://github.com/dolevf/Black-Hat-Bash. This repository contains the Docker 

configurations needed to build the lab, as well as all of the bash scripts mentioned 

in the future chapters of this book.  

Kali comes preloaded with git, which you can use to clone and download the 

Black Hat Bash repository. To do so, run the following: 

$ git clone https://github.com/dolevf/Black-Hat-Bash.git 

Next, move into the repository’s root directory and take a quick look at its 

contents: 

$ cd Black-Hat-Bash && ls -l 

 

--snip-- 

drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch01 

drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch02 

drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch03 

drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch04 

drwxr-xr-x 2 kali kali 4096 Jul 22 23:07 ch05 

--snip-- 

As you can see in the output, the repository’s contents are organized into 

directories for each of the book’s chapters. The repository also includes a lab 

directory, which is what we’ll use to set up the lab in the next section. 

Deploying Docker Containers 

The contents of the lab directory in the Black Hat Bash repository control all 

networking infrastructure, machines, and applications used within the lab. This 

directory includes a run.sh script file. By running this script without any 

arguments, you can see that it is used to deploy, tear down, rebuild, clean, and 

check the status of our environment: 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://github.com/dolevf/Black-Hat-Bash


 
$ cd lab 

$ ./run.sh 

 

Usage: ./run.sh deploy | teardown | rebuild | cleanup | status 

 

deploy   | build images and start containers 

teardown | stop containers 

rebuild  | rebuilds the lab from scratch 

cleanup  | stop containers and delete containers and images 

status   | check the status of the lab 

Let’s start by creating the lab by using the deploy argument. Note that when 

you execute the deployment, you’ll be prompted for your kali user password: 

$ ./run.sh deploy 

The initial deployment of the lab environment will take a few minutes to 

complete. To monitor the progress of the installation, you’ll need to open a new 

terminal session and tail the log file located within the repository’s lab directory, 

as so: 

$ tail -f ~/Black-Hat-Bash/lab/log.txt 

When the tail -f (follow) command is used against a file, it provides a 

live view of any new lines added to the end of the file. This is useful for keeping 

an eye on log files, which frequently have new information written to them. 

N O T E   Because the lab setup downloads software such as operating system images and 

other applications, this deployment could take some time, depending on the network 

connection you have and the compute resources allocated to the host running the lab. 

Testing and Verifying the Containers 

Once the log file indicates the process is complete, it should tell you whether 

the lab was set up correctly. We can also run a few commands to verify this. First, 

let’s execute a status check using the run.sh script, this time with the status 

argument. If all the checks pass, you should get the following output: 

$ ./run.sh status 

Lab is up. 

We can also list all our lab’s running Docker containers using the docker 

list command: 

$ docker ps -–format "{{.Names}}" 

p-web-01 

p-web-02 

p-ftp-01 

c-jumpbox-01 

c-db-01 

c-db-02 

c-syslog-01 

c-backup-01 

c-redis-01 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 
You should get a similar output, though the containers won’t necessarily be in 

the same order. 

The Network Architecture 

The lab consists of nine machines running in Docker containers, as well as 

two networks. Most of the machines are assigned to one of the two networks, and 

we’ll use them to facilitate various hacking scenarios in future chapters. 

The networks within the lab are connected to Kali using Docker’s bridged 

networking mode. Figure 3-2 shows the details of this network architecture.  

 

Figure 3-2 The lab’s network architecture 

You can also find this diagram in the book’s repository at 

https://github.com/dolevf/Black-Hat-Bash/blob/master/lab/lab-network-

diagram.png. 

The Public Network 

The network on the left side of Figure 3-2 is the public network, where our 

fake internet hosting company, ACME Infinity Servers, hosts its customer’s 

websites and resources. The two company websites you’ll find in this network 

belong to ACME Impact Alliance and ACME Hyper Branding. 

The public network has an IP address CIDR range of 172.16.10.0/24 and 

contains four machines (whose names are prefixed with p-). It is also public 

facing, meaning we’ll likely test the machines with access to this network before 

any other, as they constitute possible entry points into the network.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 

The Corporate Network 

The second network is the corporate network. ACME Infinity Servers uses 

this private network to hosts its supporting infrastructure on the back-end. As you 

can see, the corporate network has an IP address CIDR range of 10.1.0.0/24 and 

contains five machines (whose names are prefixed with c-). This network is not 

public facing, meaning the machines in this network don’t have internet 

connectivity, and we won’t test them until we’re able to take over one or more of 

the machines on the public network, which will serve as our launchpad to the 

corporate network. 

Kali Network Interfaces 

Kali has two network interfaces used to facilitate connections to both lab 

networks. We can use the br_public network interface to access the public network 

and the br_corporate network interface to access the corporate network. You can 

validate that both interfaces are online and configured to use the correct network 

address by running the following command: 

$ ip addr | grep "br_" 
 

--snip-- 

4: br_public: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default  

    link/ether 02:42:ea:5f:96:9b brd ff:ff:ff:ff:ff:ff 

    inet 1 172.16.10.1/24 brd 172.16.10.255 scope global br_public 

       valid_lft forever preferred_lft forever 

5: br_corporate: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default  

    link/ether 02:42:67:90:5a:95 brd ff:ff:ff:ff:ff:ff 

    inet 2 10.1.0.1/24 brd 10.1.0.255 scope global br_corporate 

       valid_lft forever preferred_lft forever 

Verify that the IP addresses match those shown at 1 and 2 before moving on. 

The Machines 

The nine machines that make up the lab environment follow a simple naming 

convention. The first character of the name determines what network the machine 

belongs to. For example, if the machine name starts with a p, it belongs to the 

public network; likewise, if it starts with a c, it belongs to the corporate network. 

The next word describes the machines’ functions or main technology stack, such 

as web, ftp, jumpbox, or redis. Finally, a number is used to distinguish similar 

machines, such as p-web-01 and p-web-02.   

Each machines provides us with unique applications, services, and user 

accounts that we can learn about and break into. Later chapters will describe these 

machines in more detail, but Table 3-1 provides some high-level information about 

them. 

Table 3-1 Lab Machine Details 

Name Public IP Corporate IP Hostname 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 
Kali host 172.16.10.1 10.1.0.1  

p-web-01 172.16.10.10 - p-web-01.acme-infinity-servers.com 

p-ftp-01 172.16.10.11 - p-ftp-01.acme-infinity-servers.com 

p-web-02 172.16.10.12 10.1.0.11 p-web-02.acme-infinity-servers.com 

c-jumpbox-01 172.16.10.13 10.1.0.12 c-jumpbox-01.acme-infinity-servers.com 

c-backup-01 - 10.1.0.13 c-backup-01.acme-infinity-servers.com 

c-redis-01 - 10.1.0.14 c-redis-01.acme-infinity-servers.com 

c-db-01 - 10.1.0.15 c-db-01.acme-infinity-servers.com 

c-db-02 - 10.1.0.16 c-db-02.acme-infinity-servers.com 

c-syslog-01 - 10.1.0.17 c-syslog-01.acme-infinity-servers.com 

When you perform penetration tests from Kali, keep in mind that you may 

sometimes see Kali’s own IP addresses, 172.16.10.1 and 10.1.0.1, pop up in 

certain tool results. We won’t be testing those.  

Managing the Lab 

Now that you’ve set up your lab and taken a close look at its components, 

you’ll learn how to tear it down, start it, and rebuild it if needed. 

Shutting Down  

When you’re not using the lab environment, it’s a good practice to turn it off. 

To shut down all the containers running in the lab, run the following: 

$ ./run.sh teardown 

You should receive a list of all stopped containers, as well as the removed 

networks and volumes, as shown here: 

==== Shutdown Started ==== 

Stopping p-web-02     ... done 

Stopping c-jumpbox-01 ... done 

--snip-- 

Removing volume lab_p_web_02_vol 

OK: lab has shut down. 

To restart your containers, simple re-run the deploy command mentioned in 

“Deploying Docker Containers” on page XX. 

Removal 

To completely remove the lab environment from your Kali machine, you can 

run the cleanup command. This will destroy all containers and their images: 

$ ./run.sh cleanup 

 

==== Cleanup Started ==== 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 
Cleaning up the Black Hat Bash environment, this may take a few moments... 

OK: lab environment has been destroyed. 

Listing 3-1 Lab cleanup command output 

After running the command, you should receive a confirmation that the lab 

environment has been destroyed. 

Rebuilding 

When we execute a rebuild, the lab will first shut down all running containers, 

delete volumes, and remove all container images before running a new 

deployment. To execute the rebuild, run the following command: 

$ ./run.sh rebuild 

If you rebuild the lab, you’ll lose any data you saved inside of your containers. 

Rebuilding is useful when something goes wrong during installation. Maybe, half-

way through it, you lost your network connection, and it reported a failed state. 

The rebuild command allows you to wipe and install it from scratch. 

Accessing Individual Lab Machines 

As you progress through the book, you’ll compromise the machines in the lab 

environment. However, it often takes multiple attempts to obtain full access to a 

machine. Sometimes, you may need to troubleshoot an issue or reproduce a post-

compromise activity, and you won’t want to repeat the steps you performed to 

obtain access. 

To gain shell access to any individual lab machine, you can run the following 

Docker command: 

$ docker exec -it MACHINE-NAME bash 

MACHINE-NAME represents the name of a lab machine, such as p-web-01 or 

p-jumpstation-01 (or any other machine from Table 3-1 that starts with p- or c-). 

The Docker command will drop you into a bash shell, at which point you can 

execute any command you like. To exit, simply enter exit in the prompt or close 

the terminal session’s window.  

We highly recommend you compromise the machines as intended before 

taking these convenient shortcuts, however. 

Installing Additional Hacking Tools 

Most of the tools we’ll use in this book will come pre-installed in Kali, and 

we’ll introduce them upon first use. However, we’ll need several tools that aren’t 

installed by default, so let’s install them here. First, create a new directory in 

which to place your tools: 

$ cd ~ 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 
$ mkdir tools 

Wappalyzer 

Wappalyzer is a website reconnaissance tool used to identify the technology 

stack of any website or web application. It can detect the frameworks. platforms, 

and libraries used by our targets, which will come in handy for us in future 

chapters when we attempt to discover vulnerabilities in old versions of web 

application components. 

Before you can install Wappalyzer, you need to download its dependencies, 

Node.js, the Node Package Manager (NPM), and Yarn. Let’s start with Nodejs 

and NPM: 

$ curl -sL https://deb.nodesource.com/setup_14.x | sudo -E bash - 

$ sudo apt update 

$ sudo apt install nodejs npm -y 

To verify that Node.js and NPM are properly installed, run the following two 

commands to get their versions: 

$ node -v 

$ npm -v 

Next, let's install Yarn and verify that it is installed properly by checking its 

version: 

$ sudo npm install --global yarn 

$ yarn -v 

The --global flag makes the package available for other applications on 

the computer to import and use. 

Finally, install Wappalyzer from its GitHub repository: 

$ cd ~/tools 

$ git clone https://github.com/wappalyzer/wappalyzer.git 

$ cd wappalyzer 

$ yarn install 

$ yarn run link 

To verify that it properly installed, try the help command: 

$ node src/drivers/npm/cli.js -h 

You’ll notice that this command is not very intuitive to run, as no part of it 

indicates that it is related to Wappalyzer. In “Assigning Aliases to Hacking Tools” 

on page XX, we’ll set an alias so we can run the tool by using the command 

wappalyzer. 

RustScan 

RustScan is a lightning-fast port scanner written in the Rust programming 

language by Autumn (Bee) Skerritt (@bee_sec_san). Some claim that RustScan 

can scan all 65,000 ports on a target in seconds! 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://deb.nodesource.com/setup_14.x
https://github.com/wappalyzer/wappalyzer.git


 
To install it, you must first install cargo, the Rust package manager: 

$ sudo apt install cargo -y 

Next, clone the RustScan repository to your tools directory: 

$ cd ~/tools 

$ git clone https://github.com/RustScan/RustScan.git 

Then move into the RustScan directory and build the tool using cargo: 

$ cd RustScan 

$ cargo build --release 

Once RustScan has been built, run a quick test to ensure that it’s working 

properly. The RustScan binary is located in the target/release directory. Try 

executing a simple help command: 

$ cd ~/tools/RustScan/target/release 

$ ./rustscan --help 

 

Fast Port Scanner built in Rust. WARNING Do not use this program against 

sensitive infrastructure since the specified 

server may not be able to handle this many socket connections at once. - Discord  

<http://discord.skerritt.blog> - 

GitHub https://github.com/RustScan/RustScan 

--snip-- 

Nuclei 

Nuclei is a vulnerability scanner written in the Go programming language by 

ProjectDiscovery, a company that builds open source hacking tools (some of 

which are extremely popular these days). Nuclei works by sending requests to 

targets defined by a YAML template file. The hacking community has published 

thousands of Nuclei templates supporting several protocols, including TCP, DNS, 

HTTP, Raw Sockets, File, Headless and more. You can find these templates at 

https://github.com/projectdiscovery/nuclei-templates 

Install Nuclei by running the following installation command: 

$ sudo apt install nuclei -y 

To verify that Nuclei is correctly installed, run a help command: 

$ nuclei -h 

 

Nuclei is a fast, template based vulnerability scanner focusing 

on extensive configurability, massive extensibility and ease of use. 

 

Usage: 

  nuclei [flags] 

 

Flags: 

TARGET: 

   -u, -target string[]       target URLs/hosts to scan 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://github.com/RustScan/RustScan


 
The first time you run Nuclei, it will automatically create a nuclei-templates 

directory in the user’s home folder and download all of the publicly available 

nuclei templates. 

Dirsearch 

Dirsearch is a multi-threaded web directory path-enumeration tool used to 

find common paths on web servers. Dirsearch is available in Kali’s software 

repositories, so to install it, you can simply run the following command: 

$ sudo apt install dirsearch -y 

To verify that Dirsearch is correctly installed, run a help command: 

$ dirsearch --help 

Linux_Exploit_Suggester 2 

The Linux Exploit Suggester 2 is a next-generation tool based on the original 

Linux Exploit Suggester. Written in Perl and developed by Jonathan Donas, it 

includes several exploits you can use to potentially compromise a local Linux 

kernel. 

To install it, first clone the repository to your tools directory: 

$ cd ~/tools 

$ git clone https://github.com/jondonas/linux-exploit-suggester-2.git 

To verify Linux Exploit Suggester 2 is installed correctly, run a help 

command: 

$ cd linux-exploit-suggester-2 

$ perl linux-exploit-suggester-2.pl -h 

Gitjacker 

Gitjacker is a data-extraction tool that targets web applications whose .git 

directory has been mistakenly uploaded. Before you can install Gitjacker, you’ll 

first need to install jq, a command line JSON processor: 

$ sudo apt install jq -y 

Next, get the Gitjacker install script and run it: 

PROD: PLEASE BREAK AT A NATURAL PLACE 
$ curl -s 

"https://raw.githubusercontent.com/liamg/gitjacker/master/scripts/install.sh" | 

bash 

Finally, verify that Gitjacker is working properly by running the following 

help command: 

$ ~/bin/gitjacker -h 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 

LinEnum 

LinEnum is a bash script written by Owen Shearing for enumerating local 

information on a Linux host. We can grab the script from its GitHub repository 

using wget: 

$ cd ~/tools 

$ wget https://raw.githubusercontent.com/rebootuser/LinEnum/master/LinEnum.sh 

To verify that the script is working correctly, make it executable and run the 

following help command: 

$ chmod u+x LinEnum.sh 

$ ./LinEnum.sh -h 

 

######################################################### 

# Local Linux Enumeration & Privilege Escalation Script # 

######################################################### 

# www.rebootuser.com | @rebootuser  

 

# Example: ./LinEnum.sh -k keyword -r report -e /tmp/ -t  

 

OPTIONS: 

-k      Enter keyword 

-e      Enter export location 

-s      Supply user password for sudo checks (INSECURE) 

-t      Include thorough (lengthy) tests 

-r      Enter report name 

-h      Displays this help text 

 

 

Running with no options = limited scans/no output file 

######################################################### 

unix-privesc-check 

The unix-privesc-check shell script, written by pentestmonkey, collects 

information from a host in an attempt to find misconfigurations and ways to 

escalate privileges. The script is written to support many flavors of Linux and 

UNIX systems and does not require any dependencies, which makes it convenient 

to both install and run.  

By default, the script comes bundled with Kali, and you should find it in 

/usr/bin/unix-privesc-check: 

# which unix-privesc-check 

 

/usr/bin/unix-privesc-check 

Optionally, you can create a copy of it in the tools directory for easier access, 

should you need to copy it later to any of the lab's machines: 

$ cp /usr/bin/unix-privesc-check ~/tools 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



 
If it's not available in your Kali machine, you can also download it directly 

from APT: 

$ apt-get install unix-privesc-check -y 

Verify that you can run it successfully with the following command: 

$ unix-privesc-check -h 

 

unix-privesc-check ( http://pentestmonkey.net/tools/unix-privesc-check ) 

 

Usage: unix-privesc-check { standard | detailed } 

 

"standard" mode: Speed-optimised check of lots of security settings. 

--snip-- 

Assigning Aliases to Hacking Tools 

Tools that are installed through third-party repositories such as GitHub 

sometimes won’t have setup files that make running them easier. We can assign 

these tools bash aliases as shorthand references so that we won’t need to enter the 

full directory path every time we run them. 

We can assign custom aliases using the following commands. These 

commands will be written to our ~/.bashrc file, which will execute when we open 

a new terminal session: 

$ echo "alias wappalyzer='node /home/kali/tools/wappalyzer/src/drivers/npm/cli.js'" >> ~/.bashrc 

$ echo "alias rustscan='/home/kali/tools/RustScan/target/release/rustscan'" >> ~/.bashrc 

$ echo "alias gitjacker='/home/kali/bin/gitjacker'" >> ~/.bashrc 

Wappalyzer, RustScan, and Gitjacker now have aliases. 

N O T E  At this point, you should have a fully functioning bash hacking lab. Now would be a 

good time to take a snapshot of your Kali virtual machine so you can restore it to this 

clean state. It is a good idea to take snapshots regularly, especially whenever you 

make significant configuration changes or deploy new tools to your virtual lab. 

Summary 

In this chapter, you built your hacking lab, which consists of a dedicated Kali 

virtual machine running several intentionally vulnerable Docker containers and 

hacking utilities. We also discussed managing your lab environment by tearing it 

down, cleaning it up, and rebuilding it. 

We’ll use this lab in all hands-on exercises moving forward. If you encounter 

problems, we encourage you to keep an eye on the book’s GitHub repository 

(https://github.com/dolevf/Black-Hat-Bash), where we maintain the source code 

responsible for keeping your lab up to date. In the next chapter, you’ll make use of 

these tools to perform reconnaissance and gather information about remote targets. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

4 
R E C O N N A I S S A N C E  

Every hacking engagement starts with some form of 

information gathering. In this chapter, we’ll perform 

reconnaissance on targets by writing bash scripts to run 

various hacking tools. You’ll learn how to use bash to 

automate tasks and chain multiple tools into a single 

workflow.  

In the process, you’ll develop an important bash-scripting skill: 

parsing the output of various tools to extract only the information we 

need. Your scripts will interact with tools that figure out what hosts 

are online, what ports are open on those hosts, and what services 

they are running, then deliver this information to you in the format 

you require. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Perform all hacking activities in your Kali environment against 

the vulnerable network you set up in Chapter 3.  

Creating Reusable Target Lists 

The scope is the list of systems or resources you’re allowed to 

target. In penetration testing or bug-hunting engagements, the target 

company might provide you with various types of scopes: 

• Individual IP addresses, such as 172.16.10.1 and 172.16.10.2 

• Networks, such as 172.16.10.0/24 and 172.16.10.1-

172.16.10.254 

• Individual domain names, such as lab.example.com 

• A parent domain name and all of its subdomains, such as *.exam-

ple.com 

When working with tools such as port and vulnerability scanners, 

you’ll often need to run the same type of scan against all hosts in 

your scope. This can be hard to do efficiently, however, as each tool 

uses its own syntax. For instance, one tool might allow you to 

specify an input file containing a list of targets, while other tools 

may require you to run the tool against individual addresses.  

When working with tools that don’t let you provide a wide range 

of targets, you can use bash to automate this process. In this section, 

we’ll use bash to create IP- and DNS-based target lists that you 

could feed to scanners. 

Generating a List of Consecutive IP Addresses 

Imagine that you need to create a file containing a list of IP 

addresses from 172.16.10.1 to 172.16.10.254. While you could write 

all 254 addresses by hand, this would be time-consuming. Let’s use 

bash to automate the job! We’ll consider three strategies: using the 

seq command in a for loop, using brace expansion with echo, 

and using brace expansion with printf. 

The seq and for Loop Approach 

In the for loop shown in Listing 4-1, we use the seq command 

to iterate through numbers ranging from 1 to 254 and assign each 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
number to the ip variable. After each iteration, we use echo to 

write the IP address to a dedicated file on disk, 172-16-10-hosts.txt.  

#!/bin/bash 

 

# generate IP addresses from a given range 

for ip in $(seq 1 254); do  

  echo "172.16.10.${ip}" >> 172-16-10-hosts.txt 

done 

Listing 4-1 Using a for loop to create a list of IP addresses with the seq command 

You can run this code directly from the command line or save it 

in a script and then run it. The generated file should look like the 

following: 

$ cat 172-16-10-hosts.txt 

 

172.16.10.1 

172.16.10.2 

172.16.10.3 

172.16.10.4 

172.16.10.5 

--snip— 

Before moving on, let’s consider two other ways to accomplish 

the same task. 

The echo and Brace Expansion Approach 

As in most cases, you can achieve the same task in bash using 

multiple programming approaches. We can generate the IP address 

list using a simple echo command, without running any loops. In 

Listing 4-2, we use echo with brace expansion to generate the 

strings. 

$ echo 10.1.0.{1..254}  

 

10.1.0.1 10.1.0.2 10.1.0.3 10.1.0.4 --snip-- 

Listing 4-2 Performing brace expansion with echo 

You’ll notice that this command outputs a list of IP addresses on 

a single line, separated by spaces. This isn’t ideal, as what we really 

want is each IP address on a separate line. In Listing 4-3, we use 

sed to replace spaces with new line characters (\n). 

$ echo 10.1.0.{1..254} | sed 's/ /\n/g' 

 

10.1.0.1 

10.1.0.2 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
10.1.0.3 

--snip-- 

Listing 4-3 Generating a list of IP addresses with echo and sed 

 

The printf and Brace Expansion Approach 

Alternatively, you can use the printf command to generate the 

same list. Using printf won’t require piping to sed, producing a 

cleaner output (Listing 4-4). 

$ printf "10.1.0.%d\n" {1..254} 

Listing 4-4 Generating a list of IP addresses with printf 

The %d is an integer placeholder, and it will be swapped with the 

numbers defined in the brace expansion to produce a list of IP 

addresses from 10.1.0.1 to 10.1.0.254. Now using this list is just a 

matter of redirecting the output to a new file and using it as an input 

file. 

Compiling a List of Possible Subdomains 

Say you’re performing a penetration test against a company with 

the parent domain example.com. In this engagement, you’re not 

restricted to any specific IP address or domain name, which means 

that any asset you find on this parent domain during the information-

gathering stage is considered in scope. 

Companies tend to host their services and application on 

dedicated subdomains. These subdomains can be anything, but more 

often than not, companies use names that make sense to humans and 

are easy to enter into a web browser. For example, you might find 

the helpdesk portal at helpdesk.example.com, a monitoring system at 

monitoring.example.com, the continuous integration system at 

jenkins.example.com, the email server at mail.example.com, and the 

file transfer server at ftp.example.com. 

How can we generate a list of possible subdomains for our 

target? Bash makes this very easy. First, we’ll need a list of common 

subdomains. You can find such a list built into Kali at 

/usr/share/wordlists/amass/subdomains-top1mil-110000.txt or 

/usr/share/wordlists/amass/bitquark_subdomains_top100K.txt. To 

look for wordlists on the internet, you could use the following 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Google search query to search for files on GitHub provided by 

community members: subdomain wordlist 

site:gist.github.com. This will search GitHub for code 

snippets (also called gists) containing the word subdomain wordlist.  

For the purposes of this example, we’ll use the subdomain list at 

https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch04/subdomains-1000.txt. Download it and save 

it in your home directory. The file contains one subdomain per line 

without an associated parent domain. You’ll have to join each 

subdomain with the target’s parent domain to form a fully qualified 

domain name (FQDN). As in the previous section, we’ll show two 

strategies for accomplishing this task: using a while loop and using 

sed.  

The while Loop Approach 

The script in Listing 4-5 accepts a parent domain and a word list 

from the user, then prints a list of fully qualified subdomains using 

the word list we downloaded earlier.  

#!/bin/bash 

 

DOMAIN="${1}" 

FILE="${2}" 

 

# Read the file from standard input and echo the full domain 

while read -r subdomain; do 

  echo "${subdomain}.${DOMAIN}" 

done < "${FILE}" 

Listing 4-5 Generating a list of subdomains using a while loop 

The script uses a while loop to read the file and assign each 

line to the subdomain variable in turn. The echo command then 

concatenates these two strings together to form a full domain name. 

Save this script as generate_subdomains.sh and provide it with two 

arguments:  

$ ./generate_subdomains.sh example.com subdomains-1000.txt 

 

www.example.com 

mail.example.com 

ftp.example.com 

localhost.example.com 

webmail.example.com 

--snip-- 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
The first argument is the parent domain and the second is the 

path to the file containing all possible subdomains. 

The sed Approach 

We can use sed to write content to the end of each line in a file. 

In Listing 4-6, the command uses the $ sign to find the end of a line, 

then replace it with the target domain prefixed with a dot 

(.example.com) to complete the domain name. 

$ sed 's/$/.example.com/g' subdomains-1000.txt  

 

relay.example.com 

files.example.com 

newsletter.example.com 

Listing 4-6 Generating a list of subdomains using sed 

The s at the beginning of the argument to sed stands for 

substitute, and g means that sed will replace all matches in the file, 

not just the first match. So, in simple words, we substitute the end of 

each line in the file with .example.com. If you save this code to a 

script, the output should look the same as in the previous example. 

Host Discovery 

When testing a range of addresses, one of the first things you’ll 

likely want to do is find out information about them. Do they have 

any open ports? What services are behind those ports, and are they 

vulnerable to any security flaws? It’s possible to answer these 

questions manually, but this can be challenging if you need to do it 

for against hundreds or thousands of hosts. Let’s use bash to 

automate network enumeration tasks. 

One way to identify live hosts is by attempting to send them 

network packets and wait for them to return responses. In this 

section, we’ll use bash and additional network utilities to perform 

host discovery. 

ping 

At its most basic form, the ping command takes one argument: 

a target IP address or domain name. Run the following command to 

see its output: 

$ ping 172.16.10.10  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
 

PING 172.16.10.10 (172.16.10.10) 56(84) bytes of data. 

64 bytes from 172.16.10.10: icmp_seq=1 ttl=64 time=0.024 ms 

64 bytes from 172.16.10.10: icmp_seq=2 ttl=64 time=0.029 ms 

64 bytes from 172.16.10.10: icmp_seq=3 ttl=64 time=0.029 ms 

The ping command will run forever, so press CTRL+C to stop 

its execution.  

If you read ping’s manual page (by running man ping), 

you’ll notice that there is no way to run it against multiple hosts at 

once. But using bash, we can do this quite easily. The script in 

Listing 4-7 pings all hosts on the network 172.16.10.0/24.  

#!/bin/bash 

FILE="${1}" 

 

1 while read -r host; do  

2   if ping -c 1 -W 1 -w 1 "${host}" &> /dev/null; then 

    echo "${host} is up." 

  fi 

3 done < "${FILE}" 

Listing 4-7 Pinging multiple hosts using a while loop 

At 1, we run a while loop that reads from the file passed to the 

script on the command line. This file is assigned to the variable 

FILE. We read each line from the file and assign it to the host 

variable. We then run the ping command using the -c argument 

with a value of 1 at 2, which tells the ping command to send a 

ping request only once and exit. By default on Linux, the ping 

command sends ping requests indefinitely until you stop it manually 

by sending a SIGHUP signal (CTRL+C).  

We also use the arguments -W 1 (to set a timeout in seconds) 

and -w 1 (to set a deadline in seconds) to limit how long ping will 

wait to receive a response. This is important because we don’t want 

ping to get stuck on an unresponsive IP address; we want it to 

continue reading from the file until all 254 hosts are tested. 

Lastly, we use the standard input stream to read the file and 

“feed” the while loop with its content 3. 

Save this code to a file named multi_host_ping.sh and run it 

while passing the hosts file. You should see that it picks up a few 

live hosts: 

$ ./multi_host_ping.sh 172-16-10-hosts.txt 

 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
172.16.10.1 is up. 

172.16.10.10 is up. 

172.16.10.11 is up. 

172.16.10.12 is up. 

172.16.10.13 is up. 

The caveat to this host-discovery approach is that certain hosts, 

especially hardened ones, might not reply to ping commands at all. 

So, if we solely rely on this method for discovery, we might miss out 

on live hosts on the network. 

Also note that commands that run forever by default, such as 

ping, could pose a challenge when integrated into a bash script. In 

this example, we’ve explicitly set a few special flags to ensure that 

our bash script won’t hang when it executes ping. This is why it’s 

important to first test commands in the terminal before integrating 

them into your scripts. More often than not, tools have special 

options to ensure they don't execute forever, such as timeout options.  

For tools that don't provide a timeout option, the timeout 

command allows you to run commands and exit after a certain 

amount of time has passed. You can prepend the timeout 

command to any Linux utility, passing it some interval (in the 

seconds, minutes, hours format). After the time has elapsed, the 

entire command exits. For example: timeout 5s ping 

8.8.8.8.  

Nmap 

Nmap has a special option called -sn that performs a ping 

sweep (and disables port scanning). A ping sweep is a simple 

technique for finding live hosts on a network by sending them a 

ping command and waiting for a positive response (ping response). 

Since many operating systems will respond to ping by default, this 

technique has proved valuable. The ping sweep in Nmap will 

essentially make Nmap send Internet Control Message Protocol 

(ICMP) packets over the network to discover running hosts: 

$ nmap -sn 172.16.10.0/24 

 

Nmap scan report for 172.16.10.1 

Host is up (0.00093s latency). 

Nmap scan report for 172.16.10.10 

Host is up (0.00020s latency). 

Nmap scan report for 172.16.10.11 

Host is up (0.00076s latency). 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
--snip-- 

There is a lot of text in this output. With a bit of bash magic, we 

can get a cleaner output by extracting only the IP addresses that were 

identified as being alive by using the grep and awk commands 

(Listing 4-8). 

$ nmap -sn 172.16.10.0/24 | grep "Nmap scan" | awk -F'report for ' '{print $2}' 
 

172.16.10.1 

172.16.10.10 

--snip-- 

Listing 4-8 Parsing Nmap’s ping scan output with grep and awk 

Using Nmap’s built-in ping sweep scan may be more useful than 

manually wrapping the ping utility with bash because you don't 

have to worry about checking for conditions such as whether the 

command was successful. Moreover, in penetration tests, you may 

drop an Nmap binary on more than one type of operating system, 

and the same syntax will work consistently whether the ping utility 

exists or not. 

arp-scan 

We can perform penetration testing remotely, from a different 

network, or from within the same network as the target. In this 

section, we’ll highlight the use of arp-scan as a way to find hosts 

on a network when the test is done locally.  

The arp-scan utility sends Address Resolution Protocol 

(ARP) packets to hosts on a network and displays any responses it 

gets back. The ARP communication protocol maps Media Access 

Control (MAC) addresses, which are unique 12-digit hexadecimal 

addresses assigned to network devices, to the IP addresses on a 

network. ARP is a Layer 2 protocol in the Open Systems 

Interconnection (OSI) model, meaning it is useful only when you’re 

on a local network and can’t be used to perform a remote scan over 

the internet.  

Note that arp-scan requires root privileges to run; this is 

because it uses functions to read and write packets that require 

elevated privileges. At its most basic form, you can run it by 

executing the arp-scan command and passing a single IP address 

as an argument:  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
$ sudo arp-scan 172.16.10.10 -I br_public 

We also need to tell arp-scan which network interface to send 

packets on, as there are a few network interfaces in Kali. To achieve 

this, we use the -I argument. The br_public interface 

corresponds to the 172.16.10.0/24 network in the lab. 

To scan entire networks, you can pass arp-scan a CIDR 

range, such as /24. For example, the following command scans all IP 

addresses between 172.16.10.1 and 172.16.10.254: 

$ sudo arp-scan 172.16.10.0/24 -I br_public 

Lastly, you can make use of the hosts file you created in 

“Generating a List of Consecutive IP addresses” on page XX as 

input to arp-scan: 

$ sudo arp-scan -f 172-16-10-hosts.txt -I br_public 

The output generated by arp-scan should look like the 

following: 

172.16.10.10  02:42:ac:10:0a:0a     (Unknown: locally administered) 

172.16.10.11  02:42:ac:10:0a:0b     (Unknown: locally administered) 

172.16.10.12  02:42:ac:10:0a:0c     (Unknown: locally administered) 

172.16.10.13  02:42:ac:10:0a:0d     (Unknown: locally administered) 

It consists of three fields: the IP address, the MAC address, and 

vendor details, identified by the first three octets of the MAC 

address. In this scan, the tool identified four hosts on the network 

that responded to ARP packets. 

Exercise 3: Receiving Notifications When New Hosts Are Detected 

Imagine that you want to be notified whenever a new host 

appears on the network. For example, maybe you want to know 

when new laptops or IT assets have connected. This could be useful 

if you’re testing a target in a different time zone, where device users 

might not be online when you are.  

We can use bash to send ourselves an email whenever our script 

discovers new assets. Listing 4-9 runs a continuous scan to identify 

new online hosts, adds these to the 172-16-10-hosts.txt file we 

created in “Generating a List of Consecutive IP Addresses” on page 

XX, and notifies us of the discovery. We’ll walk through this code, 

then discuss ways in which you can improve it. 

#!/bin/bash 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
 

# sends a notification upon new host discovery 

KNOWN_HOSTS="172-16-10-hosts.txt" 

NETWORK="172.16.10.0/24" 

INTERFACE="br_public" 

FROM_ADDR="kali@blackhatbash.com" 

TO_ADDR="security@blackhatbash.com" 

 

1 while true; do  

  echo "Performing an ARP scan against ${NETWORK}..." 

   

2 sudo arp-scan -x -I ${INTERFACE} ${NETWORK} | while read -r line; do  

  3 host="$(echo "${line}" | awk '{print $1}')"  

  4 if ! grep -q "${host}" "${KNOWN_HOSTS}"; then  

      echo "Found a new host: ${host}!" 

    5 echo "${host}" >> "${KNOWN_HOSTS}"  

    6 sendemail -f "${FROM_ADDR}" \  

        -t "${TO_ADDR}" \ 

        -u "ARP Scan Notification" \ 

        -m "A new host was found: ${host}" 

    fi 

  done  

   

  sleep 10 

done 

Listing 4-9 Receiving notifications about new arp-scan discoveries using sendmail 

A lot is going on here! First, we set a few variables. We assign 

the file containing the hosts to look for, 172-16-10-hosts.txt, to the 

KNOWN_HOSTS variable, and the target network 172.16.10.0/24 to 

the NETWORK variable. We also set the FROM_ADDR and TO_ADDR 

variables, which we’ll use to send the notification email.  

We then run an infinite loop using while 1. This loop won’t end 

unless we intentionally break out of it. Within the loop, we run 

arp-scan using the options -x to display a plain output (so it’s 

easier to parse) and -I to define the network interface br_public 

2. In the same line, we use a while read loop to iterate through 

the output of arp-scan. We use awk to parse each IP address in 

the output and assign it to the host variable 3. 

At 4, we use an if condition to check whether the host 

variable (which represents a host discovered by arp-scan) exists 

in our hosts file. If it does, we don’t do anything, but if it doesn’t, we 

write it to the file 5 and send an email notification 6 using the 

sendemail command. Notice that each line in the sendemail 

command ends with a backslash (\). When lines are long, bash 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
allows us to separate them in this way while still treating them as a 

single command. Line breaks of long code lines make it easier to 

read. At the end of this process, we use sleep 10 to wait 10 

seconds before running this discovery again.  

If you run this script, you should receive an email whenever a 

new host is discovered. To properly send emails, you’ll need to 

configure a mail transfer agent (MTA) such as Postfix on the system. 

Refer to the documentation at https://postfix.org/documentation.html 

for more information.  

You can download the script at https://github.com/dolevf/Black-

Hat-Bash/blob/master/ch04/host_monitor_notification.sh. 

Note that the continuous network probing performed by this 

script isn’t very stealthy. To achieve this in a more covert way, try 

modifying the script in one of the following ways: 

• Slow down the probing so it triggers every few hours or arbitrary 

number of minutes. You can even randomize this interval to 

make it less predictable. 

• Instead of sending notifications over the network, try writing the 

results to memory if you’re running the script from within a com-

promised network. 

• Upload the results to an innocent-looking third-party website. 

The Living off Trust Sites (LOTS Project) at https://lots-pro-

ject.com maintains an inventory of legitimate websites that cor-

porate networks often allow. Attackers commonly use these to 

carry out activities such as data exfiltration so that their traffic 

blends with other legitimate traffic, making it harder for analysts 

to spot.  

Now that we know what hosts are available on the 

172.16.10.0/24 network, we recommend removing any unresponsive 

IP addresses from the 172-16-10-hosts.txt file to make your future 

scans faster.  

To go further, we encourage you to experiment with other 

notification delivery methods, such as sending notifications over 

Slack, Discord, Microsoft Teams, or any other messaging system 

you use on daily basis. Platforms such as Slack, for example, use the 

concept of a webhook, where a script can make a POST request to a 

special URL to deliver a custom message to some channel of choice.   

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Port Scanning  

Once you’ve discovered hosts on the network, you can run a port 

scanner to find their open ports and the services they’re running. 

Let’s explore two port scanning tools: Nmap and RustScan. 

Scanning Targets with Nmap 

Nmap allow us to perform port scanning against single targets or 

multiple targets at once. In the following example, we use Nmap to 

perform a port scan of the domain scanme.nmap.org. 

$ nmap scanme.nmap.org 

Nmap also accepts IP addresses, like so: 

$ nmap 172.16.10.1 

When there are no special options provided on the command line 

to Nmap, it will use the following default settings: 

Performs a SYN Scan.  

Nmap will use a SYN scan to discover open ports on a target. Also 

called a half-open scan, a SYN scan involves sending a SYN packet 

and waiting for a response. Nmap won’t complete the full TCP hand-

shake (meaning ACK won’t be sent back), which is why we call this 

scan half open. 

Scans the Top 1000 Ports.  

Nmap will scan only popular ports known to be frequently in use, 

such as TCP ports 21, 22, 80 and 443. It won’t scan the entire port 

range of 0-65,534, to conserve resources. 

Scans TCP Ports.  

Nmap will scan only TCP ports, not UDP ports. 

Nmap allows you to scan multiple targets by passing them on the 

command line. In the following example, we scan both localhost and 

scanme.nmap.org (Listing 4-10). 

$ nmap localhost scanme.nmap.org 

Listing 4-10 Passing multiple addresses to Nmap 

Nmap can also read targets from a given file using its -iL 

option. The targets must be separated by new lines. Let’s use our 

172-16-10-hosts.txt file with Nmap to scan multiple targets.  

$ nmap -sV -iL 172-16-10-hosts.txt 

 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
--snip-- 

Nmap scan report for 172.16.10.1 

Host is up (0.00028s latency). 

PORT   STATE SERVICE VERSION 

22/tcp open  ssh     OpenSSH 9.0p1 Debian 1+b2 (protocol 2.0) 

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel 

--snip-- 

 

Nmap scan report for 172.16.10.10 

Host is up (0.00029s latency). 

PORT     STATE SERVICE          VERSION 

8081/tcp open  blackice-icecap? 

--snip-- 

This scan may take some time to complete due to the use of the -

sV option, which detects the version of services on each port. As you 

can see, Nmap returns a few IP addresses and their open ports, 

including their services and even information related to the operating 

system running on the host. If we wanted to filter, say, only the open 

ports, we could do by using grep: 

$ nmap -sV -iL 172-16-10-host.txt | grep open 

 

22/tcp open  ssh 

8081/tcp open  blackice-icecap 

21/tcp open  ftp 

80/tcp open  http 

80/tcp open  http 

22/tcp open  ssh 

--snip-- 

Nmap was able to identify services on several open TCP ports, 

such as the File Transfer Protocol (FTP) on port 21, Secure Shell 

(SSH) on port 22, and HyperText Transfer Protocol (HTTP) on port 

80. Later in this chapter, we’ll take a closer look at each of these 

services. 

Nmap also allows you to pass the --open flag on the command 

line to will show only the ports that were found open: 

$ nmap -sV -iL 172-16-10-host.txt --open 

N O T E   Kali’s own interface IP (172.16.10.1) will be captured in this port scan, 

since it is part of the hosts file. You can use Nmap’s --exclude op-

tion to exclude this specific IP when performing a network-wide scan: 

--exclude 172.16.10.1. You can also remove it manually from 

the file for convenience. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Use man nmap to find out more about Nmap’s scanning and 

filtering capabilities. 

Performing Rapid Scans with RustScan 

RustScan is becoming more popular in the bug bounty and 

penetration testing spaces because of its speed and extendibility. The 

following command runs a port scan using the rustscan 

command. The -a (address) argument accepts a single address or an 

address range: 

$ rustscan -a 172.16.10.0/24 

 

Open 172.16.10.11:21 

Open 172.16.10.1:22 

Open 172.16.10.13:22 

--snip-- 

RustScan’s output is fairly easy to parse with bash. Lines starting 

with Open indicate that an open port was found on a specific IP 

address. These are followed by the IP address and port separated by 

a colon. 

When you run RustScan, you may notice that the initial output 

contains banners, author credits, and additional information not 

directly related to the scan results. Use the -g (greppable) option to 

show only the scanning information. The following command uses 

the greppable output mode to scan 172.16.10.0/24 on the first 1024 

ports (also called privileged ports) with the -r (range) option: 

$ rustscan -g -a 172.16.10.0/24 -r 0-1024 

 

172.16.10.11 -> [80] 

172.16.10.12 -> [80] 

Now the output is more grep friendly. If we wanted to parse it, 

all we’d need to do is pass the delimiter ->, which separates the IP 

address and port, with awk: 

$ rustscan -g -a 172.16.10.0/24 -r 0-1024 | awk -F'->' '{print $1,$2}' 

This command outputs two fields, the IP address and the port. If 

we wanted to get rid of the [] surrounding the port number, we can 

do this with the tr command and the -d (delete) argument followed 

by the characters to delete: 

$ rustscan -g -a 172.16.10.0/24 -r 0-1024 | awk -F'->' '{print $1,$2}' | tr -d '[]' 

This should return a cleaner output. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
N O T E   Remember that running port scanners in aggressive modes increases the 

chances of getting caught, especially if the target implements an Intru-

sion Detection System (IDS) or Endpoint Detection and Response 

(EDR) system. Also, if you scan at a rapid pace, some devices could 

crash as a result of the network flood. 

Exercise 4: Organizing Scan Results by Port Number 

It’s often useful to sort your scan results into categories of 

interest. For example, you could dump results for each IP address in 

a dedicated file or organize the results based on the versions of 

software found. In this exercise, we’ll organize our scan results 

based on port numbers. Let’s write a script that does the following: 

1. Runs Nmap against hosts in a file. 

2. Uses bash to create individual files whose filenames are open 

ports. 

3. In each file, writes the IP address on which the corresponding 

port was open. 

At the end of this exercise, we’ll have a bunch of files, such as 

port-22.txt, port-80.txt, and port-8080.txt, and in each file, we’ll see 

one or more IP addresses at which that port was found to be open. 

This can be useful when you have a large number of target hosts and 

want to attack them in “clusters” by targeting specific protocols 

associated with given ports. Listing 4-11 shows the script’s code. 

#!/bin/bash 

HOSTS_FILE="172-16-10-hosts.txt" 

1 NMAP_RESULT=$(nmap -iL ${HOSTS_FILE} --open | grep "Nmap scan report\|tcp open")  

 

# read the nmap output line by line 

while read -r line; do 

2 if echo "${line}" | grep -q "report for"; then  

    ip=$(echo "${line}" | awk -F'for ' '{print $2}') 

  else 

  3 port=$(echo "${line}" | grep open | awk -F'/' '{print $1}')  

  4 file="port-${port}.txt"  

  5 echo "${ip}" >> "${file}"  

  fi   

done <<< "${NMAP_RESULT}" 

Listing 4-11 Organizing scan results by port using bash 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
We assign the output of the nmap command to the variable 

NMAP_RESULTS 1. In this command, we also filter for specific 

lines containing the words Nmap scan report or tcp open. 

These lines are part of Nmap’s standard port scan output and they 

indicate that open ports were found on an IP address.  

We use a while loop to read NMAP_RESULT line by line, 

checking whether each line contains the string report for 2. This 

line will hold the IP address where ports were found open. If such a 

line exists, we assign it to the ip variable. Then we parse the line to 

extract the port that was found open 3. At 4, we create the file 

variable to hold the file we’ll create on disk with the naming scheme 

port-NUMBER.txt. Lastly, we append the IP address to the file 5. 

You can download the script at https://github.com/dolevf/Black-

Hat-Bash/blob/master/ch04/nmap_to_portfiles.sh. Save it to a file 

named nmap_to_portfiles.sh and run it. Next, run ls -l to see what 

files were created, and use cat to view their contents: 

$ ls -l 

 

total 24 

-rw-r--r-- 1 kali kali 3448 Mar  6 22:18 172-16-10-hosts.txt 

-rw-r--r-- 1 kali kali   13 Mar  8 22:34 port-21.txt 

-rw-r--r-- 1 kali kali   25 Mar  8 22:34 port-22.txt 

--snip-- 

 

$ cat port-21.txt 

 

172.16.10.11 

As you’ve seen, Nmap’s standard output format is a little 

challenging to parse, but not impossible. It’s useful to know that 

Nmap provides additional output format options we can use to parse 

it more easily, especially for scripting purposes. One of these options 

is the -oG flag, or the greppable output format. This option is grep 

and awk friendly, as you can see in Listing 4-12. 

$ nmap -iL 172-16-10-hosts.txt --open -oG -  

 

Host: 172.16.10.1 ()    Status: Up 

Host: 172.16.10.1 ()    Ports: 22/open/tcp//ssh///    Ignored State: closed (999) 

Host: 172.16.10.10 ()   Status: Up 

Host: 172.16.10.10 ()   Ports: 8081/open/tcp//blackice-icecap///     Ignored 

State: closed (999) 

--snip-- 

Listing 4-12 Nmap's greppable output 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
The output now prints the IP address and its open ports on the 

same line. Nmap has additional format output options such as the -

oX (XML) output, try to put together a one liner bash script that 

extracts open ports from an XML output. Open ports in an XML 

output of Nmap look like the following: 

$ nmap -iL 172-160-10-hosts.txt --open -oX -  

 

--snip-- 

<port protocol="tcp" portid="22"><state state="open" reason="syn-ack" reason_ttl="0"/><service  

name="ssh" method="table" conf="3"/></port> 

--snip-- 

Exercise 5: Detecting a New Open Port on a Given Host 

What if we wanted to monitor a host until it opened a certain 

port? You may find this useful if you’re testing an environment in 

which hosts come up and down frequently. We can do this quite 

easily with a while loop. In Listing 4-13, we continuously check 

whether a port is open, waiting five seconds between each execution. 

Once we find an open port, we pass this information to Nmap to 

perform a service discovery and write the output to a file. 

#!/bin/bash  

RUST_SCAN_BIN="/home/kali/tools/RustScan/target/release/rustscan" 

LOG_FILE="watchdog.log" 

IP_ADDRESS="$1" 

WATCHED_PORT="$2" 

 

service_discovery(){ 

  local host 

  local port 

  host="${1}" 

  port="${2}" 

 

  nmap -sV -p "${port}" "${host}" >> "${LOG_FILE}" 1 

} 

 

2 while true; do  

3 port_scan=$("${RUST_SCAN_BIN}" -a "${IP_ADDRESS}" -g -p "${WATCHED_PORT}")  

4 if [[ -n "${port_scan}" ]]; then  

    echo "${IP_ADDRESS} has started responding on port ${WATCHED_PORT}!"  

    echo "Performing a service discovery..." 

  5 if service_discovery "${IP_ADDRESS}" "${WATCHED_PORT}"; then  

      echo "Wrote port scan data to ${LOG_FILE}" 

      break  

    fi 

  else 

    echo "Port not yet open or was closed, sleeping for 5 seconds..." 

  6 sleep 5  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
  fi 

done 

Listing 4-13 A watchdog script for newly open ports 

At 2 we start an infinite while loop. The loop runs the RustScan 

binary (which is assigned to the variable RUST_SCAN_BIN), 

passing it the -a (address) argument containing an IP address we 

receive on the command line 3. We also pass RustScan the -g 

(greppable) option to produce a format that is grep friendly, and the 

port option (-p) to scan a particular port, which we also receive on 

the command line.  

We check the result of the scan 4. If the result is not empty, we 

pass the IP address and port to the service_discovery function 

5, which does an Nmap service-version discovery scan (-sV) and 

writes the result to the log file watchdog.log 1. If the port scan fails, 

which means the port is closed, we sleep for five seconds 6. As a 

result, the process will repeat every five seconds until the port is 

found open.  

You can download this script at https://github.com/dolevf/Black-

Hat-Bash/blob/master/ch04/port_watchdog.sh. Save and run it using 

the following arguments: 

$ ./port_watchdog.sh 127.0.0.1 3337 

Since nothing should be running on this port of your localhost, 

the script should run forever. We can simulate a port-opening event 

by using Python’s built-in http.server module, which starts a simple 

HTTP server: 

$ python3 -m http.server 3337 

Now the port_watchdog.sh script should show the following: 

Port is not yet open, sleeping for 5 seconds... 

127.0.0.1 has started responding on port 3337! 

Performing a service discovery... 

Wrote port scan data to watchdog.log 

You can view the results of the scan by opening the 

watchdog.log file: 

$ cat watchdog.log  

Starting Nmap ( https://nmap.org )  

Nmap scan report for 172.16.10.10 

Host is up (0.000099s latency). 

 

PORT     STATE SERVICE          VERSION 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
3337/tcp open  SimpleHTTPServer 

--snip-- 

Using this script, you should be able to identify four IP addresses 

on the network with open ports: 172.16.10.10 (p-web-01) running 

8081/TCP, 172.16.10.11 (p-ftp-01) running both 21/TCP and 

80/TCP, 172.16.10.12 (p-web-02) running 80/TCP, and 172.16.10.13 

(p-jumpbox-01) running 22/TCP. 

Banner Grabbing 

Learning about the software running on a remote server is a 

crucial step in a penetration test. In the remainder of this chapter, 

we’ll take a look at how to identify what’s behind a port and a 

service. For example, what web server is running on port 8081, and 

what technologies does it use to serve content to clients?  

Banner grabbing is the process of extracting the information 

published by remote network services when a connection is 

established between two parties. Services often transmit these 

banners to “greet” clients, which can use the information they 

provide in various ways, such as to ensure they’re connecting to the 

right target. Banners could also include a system admin message of 

the day (MOTD) or the service’s specific running version.  

Passive banner grabbing involves looking up banner information 

using third-party websites. For example, websites such as Shodan 

(https://shodan.io), ZoomEye (https://zoomeye.org), and Censys 

(https://censys.io) perform internet-wide scans to map the internet, 

grabbing banners, versions, website pages, and ports, then create an 

inventory using this data. We can use such websites to look up 

banner information without ever interacting with the target server 

ourselves.  

Active banner grabbing is the opposite; it involves establishing a 

connection to a server and interacting with it directly to receive its 

banner information. The following network services tend to advertise 

themselves using banners: web servers, SSH servers, FTP servers, 

telnet servers, network printers, Internet of Things (IoT) devices, and 

message queues. 

Keep in mind that banners are generally free-form text fields, and 

they can be changed to mislead clients. For example, an Apache web 

server could present itself as another type of web server, such as 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Nginx. Some organizations even create honeypot servers to lure 

threat actors (or penetration testers). Honeypots make use of 

deception technologies to masquerade as vulnerable servers, but their 

real purpose is to detect and analyze attacker activity. More often 

than not, however, banners transmit default settings that system 

administrators haven’t bothered to change.  

Performing Active Banner Grabbing with Netcat 

To demonstrate what active banner grabbing looks like, we’ll use 

the following Netcat command to connect to port 21 (FTP) running 

on the IP address 172.16.10.11 (p-ftp-01): 

$ nc 172.16.10.11 -v 21 

 

172.16.10.11: inverse host lookup failed: Unknown host 

(UNKNOWN) [172.16.10.11] 21 (ftp) open 

220 (vsFTPd 3.0.5) 

As you can see, 172.16.10.11 is running the FTP server vsFTPd 

version 3.0.5. This information may change if the vsFTPd version 

gets upgraded or downgraded, or if the system administrator decides 

to disable banner advertisement completely in the FTP server’s 

configuration.  

Netcat is a good example of a tool that doesn’t natively support 

probing multiple IP addresses. So, knowing a bit of bash scripting 

can really help us out. Listing 4-14 will use Netcat to grab banners 

on port 21 from multiple hosts saved in a file. 

#!/bin/bash 

FILE="${1}" 

PORT="${2}" 

 

1 if [[ "$#" -ne 2 ]]; then  

  echo "Usage: ${0} <file> <port>" 

  exit 1 

fi 

 

2 if [[ ! -f "${FILE}" ]]; then  

  echo "File: ${FILE} was not found." 

  exit 1 

fi 

 

3 if [[ ! "${PORT}" =~ ^[0-9]+$ ]]; then  

  echo "${PORT} must be a number." 

  exit 1 

fi 

 

4 while read -r ip; do  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
  echo "Running netcat on ${ip}:${PORT}" 

  result=$(echo -e "\n" | nc -v "${ip}" -w 1 "${PORT}" 2> /dev/null) 

5 if [[ -n "${result}" ]]; then  

    echo "===================" 

    echo "+ IP Address: ${ip}" 

    echo "+ Banner: ${result}" 

    echo "===================" 

  fi 

done < "${FILE}" 

Listing 4-14 Banner grabbing using Netcat 

This script accepts two parameters on the command line: FILE 

and PORT. We use an if condition to check whether two arguments 

were indeed passed on the command line 1; if not, we exit with a 

status code of 1 (fail) and print a usage message indicating how to 

run the script. We then use another if condition to check whether 

the file provided by the user actually exists on disk using the -f test 

2.  

At 3, we check that the port provided by the user is a number. 

Anything other than a number will fail. Then we read the host file 

line by line and run the nc (netcat) command on the given port for 

each 4. Another if condition to check whether the command result 

is not empty 5, meaning a port was found open, and prints the IP 

address and data that returned from the server. 

You can download the script at https://github.com/dolevf/Black-

Hat-Bash/blob/master/ch04/netcat_banner_grab.sh. 

Detecting HTTP Responses with cURL 

You’ll often find the popular cURL HTTP client on production 

systems. When we need to perform banner grabbing on HTTP 

responses, we could use cURL to send an HTTP request using the 

HEAD method. The HEAD method allows us to read response 

headers without fetching the entire response payload from the web 

server. 

Web servers often advertise themselves by setting the Server 

HTTP response header to their name. Sometimes, you may also 

encounter the running version advertised there. The following 

command sends an HTTP HEAD request using cURL to the IP 

address 172.16.10.10:8081 (p-web-01): 

$ curl –head 172.16.10.10:8081 

 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
HTTP/1.1 200 OK 

Server: Werkzeug/2.2.3 Python/3.11.1 

--snip– 

Content-Length: 7176 

Connection: close 

As you can see, the server returns a bunch of headers in the 

response, one of which is the Server header. This header reveals 

that the remote server is running a Python-based web framework 

named Werkzeug version 2.2.3, powered by Python version 3.11.1. 

Listing 4-15 incorporates this cURL command into a larger script 

that prompts the user for information with the bash read command, 

then presents the user with a banner. 

#!/bin/bash 

DEFAULT_PORT="80" 

 

read -r -p "Type a target IP address: " ip_address 1 

read -r -p "Type a target port (default: 80): " port 2 

 

if [[ -z "${ip_address}" ]]; then 3 

  echo "You must provide an IP address." 

  exit 1 

fi 

 

if [[ -z "${port}" ]]; then 4 

  echo "You did not provide a specific port, defaulting to ${DEFAULT_PORT}" 

  port="${DEFAULT_PORT}" 5 

fi 

 

echo "Attempting to grab the Server header of ${ip_address}"..." 

 

result=$(curl -s --head "${ip_address}:${port}" | grep Server | awk -F':' '{print $2}') 6 

 

echo "Server header for ${ip_address} on port ${port} is: ${result}" 

Listing 4-15 Extracting the server response header from web servers 

This interactive script asks the user to provide details about the 

target on the command line. First, we use the read command to 

prompt the user to enter an IP address and assign this value to the 

ip_address variable 1. We then ask the user for the desired port 

number and save that to the port variable 2.  

At, 3 we check whether the ip_address variable length is zero 

using the -z test and exit if this condition is true. Next, we do the 

same check on the port variable 4. This time, if the user didn’t 

provide a port, we use the default HTTP port, 80 5. At 6, we store the 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
output to the result variable. We use grep and awk to parse the 

result of curl and extract the Server header. 

You can download the script at https://github.com/dolevf/Black-

Hat-Bash/blob/master/ch04/curl_banner_grab.sh. Run it, and when 

prompted, provide the IP address 172.16.10.10 (p-web-01) and port 

8081: 

$ ./curl_banner_grab 

 

Type a target IP address: 172.16.10.10 

Type a target port (default: 80): 8081 

Attempting to grab the Server header of 172.16.10.10... 

Server header for 172.16.10.10 on port 8081 is: Werkzeug/2.2.3 Python/3.11.1 

As you can see, the script returned the correct information from 

the target IP address and port. If we didn’t specify a port in the 

terminal, it would have defaulted to port 80. Note that we could have 

used Netcat to send HTTP HEAD requests, too, but it’s useful to 

know more than one method to achieve a given task. 

Using Nmap Scripts 

Nmap is more than just a port scanner; we can transform it into a 

full-fledged vulnerability assessment tool. The Nmap Scripting 

Engine (NSE) allows penetration testers to write scripts in the Lua 

language to extend Nmap’s capabilities. Nmap comes pre-installed 

with some Lua scripts, as you can see here: 

$ ls -l /usr/share/nmap/scripts 

 

-rw-r--r-- 1 root root  3901 Oct  6 10:43 acarsd-info.nse 

-rw-r--r-- 1 root root  8749 Oct  6 10:43 address-info.nse 

-rw-r--r-- 1 root root  3345 Oct  6 10:43 afp-brute.nse 

-rw-r--r-- 1 root root  6463 Oct  6 10:43 afp-ls.nse 

-rw-r--r-- 1 root root  3345 Oct  6 10:43 afp-brute.nse 

-rw-r--r-- 1 root root  6463 Oct  6 10:43 afp-ls.nse 

--snip-- 

The banner.nse script in the /usr/share/nmap/scripts folder 

allows you to grab the banners from many hosts simultaneously. The 

following bash command performs a banner grab and service 

discovery (-sV) using this script:  

$ nmap -sV --script=banner.nse -iL 172-16-10-hosts.txt 

 

Nmap scan report for 172.16.10.12 

--snip-- 

PORT   STATE SERVICE VERSION 

80/tcp open  http    Apache httpd 2.4.54 ((Debian)) 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://git/


` 
|_http-server-header: Apache/2.4.54 (Debian) 

--snip-- 

When the banner-grabbing script finds a banner, the output line 

containing that banner will begin with a special character sequence 

(|_). We can filter for this sequence to extract banner information, 

like so: 

$ nmap -sV --script=banner.nse -iL 172-16-10-hosts.txt | grep "|_banner\||http-server-header" 

You may have noticed that, in the case of 172.16.10.10 (p-web-

01) port 8081, Nmap responded with the following: 

PORT     STATE SERVICE          VERSION 

8081/tcp open  blackice-icecap? 

| fingerprint-strings:  

--snip-- 

The blackice-icecap? value indicates that Nmap was 

unable to discover the identity of the service definitively. But if you 

look closely at the fingerprint-strings dump, you’ll see 

some HTTP-related information that reveals the same response 

headers we found when banner grabbing manually using cURL. 

Specifically, note the Werkzeug web server banner. With a bit of 

Googling, you’ll find that this server runs on Flask, a Python-based 

web framework. 

Detecting Operating Systems  

Nmap can also guess the target server’s running operating system 

by using a technique called TCP/IP fingerprinting, which is part of 

its operating system detection scan. This technique identifies the 

implementation of the operating system’s TCP/IP stack by crafting 

packets in various ways and analyzing the returned responses. Each 

operating system, such as Linux, Windows, and macOS, implements 

the TCP/IP stack slightly differently, and Nmap analyzes these 

subtle differences to identify the running system. In some cases, 

Nmap may also be able to identify the running kernel version. 

To run an operating system detection scan, use the -O flag in 

Nmap. Note that this scan requires sudo privileges: 

$ sudo nmap -O -iL 172-16-10-hosts.txt 

 

--snip-- 

21/tcp open  ftp 

80/tcp open  http 

MAC Address: 02:42:AC:10:0A:0B (Unknown) 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Device type: general purpose 

Running: Linux 4.X|5.X 

OS CPE: cpe:/o:linux:linux_kernel:4 cpe:/o:linux:linux_kernel:5 

OS details: Linux 4.15 - 5.6 

Network Distance: 1 hop 

Let’s create a bash script that can parse this output and sort it by 

IP address and operating system (Listing 4-16). 

#!/bin/bash  

HOSTS="$*" 

 

1 if [[ "${EUID}" -ne 0 ]]; then  

  echo "The Nmap OS detection scan type (-O) requires root privileges." 

  exit 1 

fi 

 

2 if [[ "$#" -eq 0 ]]; then  

  echo "You must pass an IP or an IP range" 

  exit 1 

fi 

 

echo "Running an OS Detection Scan against ${HOSTS}..." 

 

3 nmap_scan=$(sudo nmap -O ${HOSTS} -oG -) 

4 while read -r line; do  

  ip=$(echo "${line}" | awk '{print $2}')  

  os=$(echo "${line}" | grep OS | awk -F'OS: ' '{print $2}' | sed 's/Seq.*//g')  

 

5 if [[ -n "${ip}" ]] && [[ -n "${os}" ]]; then  

    echo "IP: ${ip} OS: ${os}" 

  fi 

done <<< "${nmap_scan}"  

Listing 4-16 Parsing an operating system detection scan 

Because this scan requires root privileges, we check for the 

effective user’s ID 1. If the user ID isn’t equal to zero, we exit 

because there is no point in continuing if the user isn’t using root 

privileges. We then check whether the user passed target hosts as 

arguments on the command line 2. At 3, we run the Nmap operating 

system detection scan against these targets, which we’ve assigned to 

the HOSTS variable.  

We use a while loop to iterate through the scan results, parsing 

each line and assigning the IP address in the output to the ip 

variable. We then parse the line a second time to extract the 

operating system information from Nmap. We clean the output using 

sed so it shows only the operating system, removing everything 

after the word Seq. Next, we check whether both the ip and os 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
variables are set 5. If they are, this means we’ve parsed the output 

correctly and can finish the script by printing the IP address and the 

operating system type. 

To understand why we parse the output the way we do using 

grep, awk and sed, run the following command in a separate 

terminal: 

$ sudo nmap -O 172.16.10.0/24 -oG - 

 

--snip-- 

Host: 172.16.10.10 ()   Ports: 8081/open/tcp//blackice-icecap///   Ignored State: closed (999)   OS:  

Linux 4.15 - 5.6   Seq Index: 258   IP ID Seq: All zeros 

--snip-- 

As you can see, the output is separated by whitespaces. The IP 

address is found immediately after the first space, and the operating 

system type comes after the word OS: but before the word Seq, 

which is why we needed to extract the text between these two. You 

can do this parsing in other ways, too, such as with regular 

expressions; this is just one of way of achieving the task. 

You can download the script at https://github.com/dolevf/Black-

Hat-Bash/blob/master/ch04/os_detection.sh. Save and run it using 

the following command (Listing 4-17). 

$ ./os_detection.sh 172.16.10.0/24 

 

Running an OS Detection Scan against 172.16.10.0/24... 

IP: 172.16.10.10 OS: Linux 4.15 - 5.6  

IP: 172.16.10.11 OS: Linux 4.15 - 5.6  

IP: 172.16.10.12 OS: Linux 4.15 - 5.6  

IP: 172.16.10.13 OS: Linux 4.15 - 5.6  

IP: 172.16.10.1 OS: Linux 2.6.32 

Listing 4-17 An operating system detection script that shows only the IP addresses and the operating system 

At this point, we’ve identified a couple of HTTP servers, an FTP 

server, and an SSH server. Let’s take a closer look at the HTTP 

servers. 

Analyzing Websites with Wappalyzer 

Wappalyzer is a technology-detection tool tailored to web 

applications. It has a rich database of signatures for detecting the 

software running on the remote target, including web frameworks, 

web servers, databases, operating systems, content management 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
systems, fonts, programming languages, and user interface 

frameworks. 

Let’s use Wappalyzer to see what’s running on the web 

applications in the 172.16.10.0/24 network: 

$ wappalyzer http://172.16.10.10:8081  

 

"urls":{"http://172.16.10.10:8081/":{"status":200}},"technologies":[{"slug":"python", 

"name":"Python","description":"Python is an interpreted and general-purpose programming language.", 

"confidence":100,"version":"3.11.1","icon":"Python.png" 

--snip-- 

Wappalyzer’s output is in the JavaScript Object Notation (JSON) 

format, which is composed of keys and values. To parse it, it’s 

helpful to use a tool like jq to traverse the JSON structure and 

extract the information we need. First, take a look at the prettified 

version of the output using the following command: 

$ wappalyzer http://172.16.10.10:8081 | jq 

Next, you’ll notice a few fields of interest, specifically the name, 

the version and the confidence. The name identifies the technology, 

such as Debian for an operating system. The version identifies the 

version of that technology, such as Debian 11.6. Confidence is a 

percentage between 0 and 100. The higher the confidence, the less 

likely it is to be a false positive. 

Let’s extract these three pieces of information with jq: 

$ wappalyzer http://172.16.10.10:8081 | jq '.technologies[] | {name, version, confidence}'  

 

{ 

  "name": "Python", 

  "version": "3.11.1", 

  "confidence": 100 

} 

{ 

  "name": "Tailwind CSS", 

  "version": "2.2.19", 

  "confidence": 100 

} 

{ 

  "name": "Flask", 

  "version": "2.2.3", 

  "confidence": 100 

} 

--snip-- 

The jq syntax might seem a little odd at first, so let’s dissect it. 

We place the pattern to extract between two single quotes ('). Here, 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
we select the technologies array ([]) key, which contains a 

bunch of items, each of which is a technology. Then, for each item, 

we select the name, version, and confidence key names using 

the {key_name} syntax. 

Go ahead and run Wappalyzer against every web server we’ve 

identified to see what technologies they run. Despite Wappalyzer’s 

confidence level indication, avoid taking the findings at face value. 

You should always triple-check that what tools report is true.  

Summary 

In this chapter, we put bash to use in many different ways. We 

created dynamic target hosts lists; performed host discovery, port 

scanning, and banner grabbing using multiple tools; created an 

automated script to notify us of newly discovered hosts; and parsed 

various tool results. In the next chapter, we’ll run vulnerability 

scanners and fuzzers against these targets. 

 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

5 
V U L N E R A B I L I T Y  S C A N N I N G  A N D  

F U Z Z I N G  

In Chapter 4, we identified hosts on a network and a 

couple of running services, like HTTP, FTP, and SSH. 

Each of these protocols has its own set of tests we could 

perform. In this chapter, we’ll use specialized tools on the 

discovered services to find out as much as we can about 

them.  

In the process, you’ll use bash to run security testing tools, parse 

their output, and write custom scripts to scale security testing across 

many URLs. You’ll fuzz with tools such as ffuf and wfuzz, write 

custom security checks using the Nuclei templating system, extract 

personally identifiable information from the output of tools, and 

write your own quick and dirty vulnerability scanners. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Scanning Websites Using Nikto 

Nikto is a web scanning tool available on Kali. It performs 

banner grabbing and runs a few basic HTTP security-header checks 

to determine if the web server uses those security headers, which 

mitigate known web vulnerabilities such as cross-site scripting 

(XSS), a client-side injection vulnerability targeting web browsers, 

and UI redressing (also known as clickjacking), a vulnerability that 

lets attackers hijack user clicks by using decoy layers in a web page. 

These headers indicate to browsers what to do and not do when 

loading certain resources and opening URLs to protect the user from 

falling victim to an attack.  

After performing these security checks, Nikto also sends requests 

to possible endpoints on the server using its built-in wordlist of 

common paths to discover interesting endpoints that could be useful 

for penetration testers. Let’s use it to perform a basic web 

assessment of the three web servers we’ve identified on the IP 

addresses 172.16.10.10 (p-web-01), 172.16.10.11 (p-ftp-01), and 

172.16.10.12 (p-web-02). 

We’ll run a Nikto scan against the web ports we found to be open 

on the three target IP addresses. Open a terminal and run the 

following commands one at a time, so you can dissect the output of 

each IP address: 

$ nikto -host 172.16.10.10 -port 8081 

$ nikto -host 172.16.10.11 -port 80 

$ nikto -host 172.16.10.12 -port 80 

The output for 172.16.10.10 on port 8081 shouldn’t yield much 

interesting information about discovered endpoints, but it should 

indicate that the server doesn’t seem to be hardened, as it doesn’t use 

security headers: 

+ Server: Werkzeug/2.2.3 Python/3.11.1 

+ The anti-clickjacking X-Frame-Options header is not present. 

+ The X-XSS-Protection header is not defined. This header can hint to the user agent to protect against some forms of XSS 

+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in a different fashion to the MIME type 

--snip-- 

+ Allowed HTTP Methods: OPTIONS, GET, HEAD  

+ 7891 requests: 0 error(s) and 4 item(s) reported on remote host 

As you can see, Nikto was able to perform a banner grab of the 

server, as indicated by the line that starts with the word Server. It 

then listed a few missing security headers. These are useful pieces of 

information, but not enough to take over a server just yet.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
The IP address 172.16.10.11 on port 80 should give you a similar 

result, though it also discovered a nice new endpoint, /backup, and 

that directory indexing mode is enabled: 

+ Server: Apache/2.4.55 (Ubuntu) 

--snip-- 

+ OSVDB-3268: /backup/: Directory indexing found. 

+ OSVDB-3092: /backup/: This might be interesting... 

Directory indexing is a server-side setting that lists files located 

at certain web paths when an index file exists (such as index.html or 

index.php). Directory indexing is interesting to find because it could 

highlight sensitive files in an application, such as configuration files 

with connection strings, local database files (such as SQLite files) 

and other environmental files. Open the browser in Kali to 

http://172.16.10.11/backup to see the content of this endpoint 

(Figure 5-1). 

 

Figure 5-1 Directory indexing found on 172.16.10.11/backup 

Directory indexing lets you browse files in the browser. You can 

click directories to open them, click files to download them, and so 

on. On the web page, you should identify two folders: acme-hyper-

branding and acme-impact-alliance. The acme-hyper-branding 

folder appears to contain a file named app.py. Download it to Kali so 

it’s available for later inspection by clicking on it.  

Building a Directory Indexing Scanner  

What if we wanted to run a scan against a list of URLs to check 

whether directory indexing is enabled on any of them, as well as 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
download all files that they serve? Let’s use bash to carry such a 

task:  

#!/bin/bash 

FILE="${1}" 

OUTPUT_FOLDER="${2}" 

 

if [[ ! -s "${FILE}" ]]; then 1 

  echo "You must provide a non-empty hosts file as an argument." 

  exit 1 

fi 

 

if [[ -z "${OUTPUT_FOLDER}" ]]; then  

  OUTPUT_FOLDER="data" 5 

fi 

 

while read -r line; do 

  url=$(echo "${line}" | xargs) 2 

  if [[ -n "${url}" ]]; then  

    echo "Testing ${url} for Directory indexing..." 

    if curl -L -s "${url}" | grep -q -e "Index of /" -e "[PARENTDIR]"; then 3 

      echo -e "\t -!- Found Directory Indexing page at ${url}" 

      echo -e "\t -!- Beginning a recursive download to the \"${OUTPUT_FOLDER}\" folder..." 

      mkdir -p "${OUTPUT_FOLDER}" 

      wget -q -r -np -R "index.html*" "${url}" -P "${OUTPUT_FOLDER}" 4 

    fi 

  fi 

done < <(cat "${FILE}") 

You can download this script from 

https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch05/directory_indexing_scanner.sh. 

In this script, we define the FILE and OUTPUT_FOLDER 

variables. Their assigned values are taken from the arguments the 

user passes on the command line ($1 and $2). We then fail and exit 

the script (exit 1) if the FILE variable is not of the file type and 

not of length zero (-s) 1. If the file has a length of non-zero, it 

means that the file isn’t empty (and some data was written into it). 

We then use a while loop to read the file at the path assigned to 

the FILE variable. At 2, we ensure that each whitespace character in 

each line from the file is removed by piping it to the xargs 

command. At 3, we use curl to make an HTTP GET request and 

follow any HTTP redirects (using -L). We silence cURL’s verbose 

output (using -s) with and pipe it to grep to find any instances of 

the strings Index of / and [PARENTDIR]. These two strings 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
exist in directory indexing pages. You can verify this by viewing the 

source HTML page at http://172.16.10.11/backup.  

If we find either string, we call the wget command 4 with the 

quiet option (-q) to silence verbose output, the recursive option (-r) 

to download files recursively from folders, the no-parent option (-

np) to ensure we download only files at the same level of hierarchy 

or below (subfolders), and the reject option (-R) to exclude files 

starting with the word index.html. We then use the target folder 

option (-P) to download the content to the path specified by the user 

calling the script (OUTPUT_FOLDER variable). If the user did not 

provide a destination folder, the script will default to use the data 

folder set at 5. 

The acme-impact-alliance folder appears to be empty. But is it 

really? When dealing with web servers, you may run into what seem 

to be dead ends only to find out that there is something hiding there, 

just not in a very obvious place. Take note of the empty folder for 

now; we’ll resume this exploration in a little bit. 

Identifying Suspicious robots.txt Entries 

Continue to the third IP address and explore the results from 

Nikto: 

+ Server: Apache/2.4.54 (Debian)

+ Retrieved x-powered-by header: PHP/8.0.28

--snip-- 

+ Uncommon header 'link' found, with contents: <http://172.16.10.12/wp-json/>; rel="https://api.w.org/"

--snip-- 

+ Entry '/wp-admin/' in robots.txt returned a non-forbidden or redirect HTTP code (302)

+ Entry '/donate.php' in robots.txt returned a non-forbidden or redirect HTTP code (200)

+ "robots.txt" contains 17 entries which should be manually viewed.

+ /wp-login.php: Wordpress login found

--snip-- 

Nikto was able to find a lot more information this time! Other 

than the missing security headers (which is extremely common to 

see in the wild, unfortunately) it also found that the server is running 

on Apache (Debian), and that it is powered by PHP, a backend 

programming language commonly used in web applications. 

The tool also found an uncommon link that points to 

http://172.16.10.12/wp-json and two suspicious entries in the 

robots.txt file, namely /wp-admin/ and /donate.php. The robots.txt 

file is a special file used to indicate to web crawlers (such as 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



B L A C K  H A T  B A S H
D o l e v  F a r h i  a n d  N i c k  A l e k s

Early Access edition, 08/02/23

Copyright © 2024 by Dolev Farhi and Nick Aleks.

ISBN 13: 978-1-7185-0374-8 (print) 
ISBN 13: 978-1-7185-0375-5 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, 
Inc. Other product and company names mentioned herein may be the trademarks of their 
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the 
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by 
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner 
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every 
precaution has been taken in the preparation of this work, neither the author nor No Starch 
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage 
caused or alleged to be caused directly or indirectly by the information contained in it.

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



B L A C K  H A T  B A S H
D o l e v  F a r h i  a n d  N i c k  A l e k s

Early Access edition, 08/02/23

Copyright © 2024 by Dolev Farhi and Nick Aleks.

ISBN 13: 978-1-7185-0374-8 (print) 
ISBN 13: 978-1-7185-0375-5 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, 
Inc. Other product and company names mentioned herein may be the trademarks of their 
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the 
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by 
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner 
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every 
precaution has been taken in the preparation of this work, neither the author nor No Starch 
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage 
caused or alleged to be caused directly or indirectly by the information contained in it.

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



C O N T E N T S

Chapter 1: Bash Basics
Chapter 2: Advanced Bash Concepts
Chapter 3: Setting Up a Hacking Lab
Chapter 4: Reconnaissance
Chapter 5: Vulnerability Scanning and Fuzzing
Chapter 6: Gaining a Web Shell 
Chapter 7: Reverse Shells
Chapter 8: Local Information Gathering
Chapter 9: Privilege Escalation
Chapter 10: Persistence
Chapter 11: Network Probing and Lateral Movement
Chapter 12: Defense Evasion
Chapter 13: Exfiltration and Counter-Forensics

The chapters in red are included in this Early Access PDF.

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



C O N T E N T S

Chapter 1: Bash Basics
Chapter 2: Advanced Bash Concepts
Chapter 3: Setting Up a Hacking Lab
Chapter 4: Reconnaissance
Chapter 5: Vulnerability Scanning and Fuzzing
Chapter 6: Gaining a Web Shell 
Chapter 7: Reverse Shells
Chapter 8: Local Information Gathering
Chapter 9: Privilege Escalation
Chapter 10: Persistence
Chapter 11: Network Probing and Lateral Movement
Chapter 12: Defense Evasion
Chapter 13: Exfiltration and Counter-Forensics

The chapters in red are included in this Early Access PDF.

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Google’s search engine) which endpoints to index and which to 

ignore. it hinted that the robots.txt file may have more entries than 

just these two, and advised us to inspect it manually. 

Lastly, it also identified another endpoint at /wp-login.php, which 

is a login page for WordPress, a known blog platform. Navigate to 

the main page at http://172.16.10.12/ to confirm you’ve identified a 

blog. 

Exercise 6: Automatically Exploring Non-Indexed Endpoints 

Nikto advised us to manually explore the robots.txt file at 

http://172.16.10.12/robots.txt to identify non-indexed endpoints. 

Finding these endpoints is useful during a penetration test because 

we can add them to our list of possible targets to test. If you open 

this file, you should notice a list of paths: 

User-agent:  * 

 

Disallow: /cgi-bin/ 

Disallow: /z/j/ 

Disallow: /z/c/ 

Disallow: /stats/ 

--snip-- 

Disallow: /manual 

Disallow: /manual/* 

Disallow: /phpmanual/ 

Disallow: /category/ 

Disallow: /donate.php 

Disallow: /amount_to_donate.txt 

We identified some of these endpoints earlier (such as 

/donate.php and /wp-admin), but others we didn’t see when scanning 

with Nikto. 

Now that we’ve found these endpoints, we can use bash to see 

whether they really exist on the server. Let’s put together a script 

that will perform the following activities: make an HTTP request to 

robots.txt, return the response and iterate over each line, parse the 

output to extract only the paths, make an additional HTTP request to 

each path separately, and check what status code each path returns to 

find out if it exists.  

Listing 5-1 is an example script that can help do this work. It 

relies on a useful cURL feature you’ll find handy in your bash 

scripts: built-in variables you can use when you need to make HTTP 

requests, such as the size of the request sent 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
(%{size_request}), the size of the headers returned in bytes 

(%{size_header}), and more. 

#!/bin/bash  

TARGET_URL="http://172.16.10.12" 

ROBOTS_FILE="robots.txt" 

 

1 while read -r line; do  

2 path=$(echo "${line}" | awk -F'Disallow: ' '{print $2}') 

3 if [[ -n "${path}" ]]; then 

    url="${TARGET_URL}${path}"  

    status_code=$(curl -s -o /dev/null -w "%{http_code}" "${url}")  

    echo "URL: ${url} returned a status code of: ${status_code}" 

  fi 

 

4 done < <(curl -s "${TARGET_URL}/${ROBOTS_FILE}")  

Listing 5-1 A bash script that reads robots.txt and checks individual paths 

At 1 we read the output from the curl command at 4 line by 

line. This command makes an HTTP GET request to 

http://172.16.10.12/robots.txt. We then parse each line and grab the 

second field (which is separated from the others by a space) to 

extract the path and assign it to the path variable 2. We check that 

the path variable length is greater than zero to ensure we were able 

to properly parse it at 3. Then we create a url variable, which is a 

string concatenated from the TARGET_URL variable plus each path 

from robots.txt file, and make an HTTP request to the URL. We then 

use the -w (write-out) variable %{http_code} to extract only the 

status code from the response returned by the web server.  

Try using other cURL variables in your own scripts. The full list 

of variables can be found here at https://curl.se/docs/manpage.html 

or by running the man curl command. You can download the 

script shown in this section at https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch05/curl_fetch_robots_txt.sh. 

Brute-Forcing Directories with dirsearch 

Dirsearch is a fast directory brute-forcing tool used to find 

hidden paths and files on web servers. Written in Python by Mauro 

Soria, dirsearch provides features such as built-in web directory 

wordlists, bring-your-own-dictionary options, advanced response 

filtering, and more. We’ll use it to try to identify additional attack 

vectors and verify that Nikto hasn’t missed anything obvious. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks

https://curl.se/docs/manpage.html
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch05/curl_fetch_robots_txt.sh
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch05/curl_fetch_robots_txt.sh


` 
First, let’s rescan 172.16.10.10:8081, which yielded no 

discovered endpoints when scanned by Nikto. The following 

dirsearch command uses the -u (URL) option to specify a base URL 

from which to start crawling. 

$ dirsearch -u http://172.16.10.10:8081/ 

 

--snip-- 

 

Target: http://172.16.10.10:8081/ 

 

[00:14:55] Starting:  

[00:15:32] 200 -  371B  - /upload 

[00:15:35] 200 –  44B   - /uploads 

Great! This tool was able to pick up two previously unknown 

endpoints named /upload and /uploads. This is why it’s important to 

double and triple-check your results using more than one tool, and 

also to manually verify the findings, because tools sometimes 

produce false positives. If you navigate to the /upload page, you 

should see a file-upload form. Take note of this endpoint because 

we’ll test it later in the book. 

Let’s also use dirsearch to look for attack vectors in what looked 

like an empty folder at http://172.16.10.11/backup/acme-impact-

alliance: 

$ dirsearch -u http://172.16.10.11/backup/acme-impact-alliance/ 

 

--snip-- 

Extensions: php, aspx, jsp, html, js | HTTP method: GET | Threads: 30 | Wordlist size: 10927 

Target: http://172.16.10.11/backup/acme-impact-alliance/ 

--snip-- 

[22:49:53] Starting:  

[22:49:53] 301 -  337B  - /backup/acme-impact-alliance/js  ->  http://172.16.10.11/backup/acme-impact-alliance/js/ 

[22:49:53] 301 -  339B  - /backup/acme-impact-alliance/.git  ->  http://172.16.10.11/backup/acme-impact-alliance/.git/ 

--snip-- 

[22:49:53] 200 -   92B  - /backup/acme-impact-alliance/.git/config 

--snip-- 

Dirsearch inspects responses returned from the webserver to 

identify interesting behaviors that could indicate an existence of an 

asset. For example, it might note whether a certain URL redirects to 

a new location (specified by an HTTP status code 301) and the 

response size in bytes. Sometimes, you can infer information and 

observe behaviors solely by inspecting this information.  

This time, we’ve identified a subfolder within the acme-impact-

alliance folder named .git. A folder with this name usually indicates 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
that there is a git repository on the server. Git is a source code 

management tool, and in this case, it likely manages some source 

code locally on the remote server.  

Use dirsearch to perform another directory brute-force against 

the second directory, namely /backup/acme-hyper-branding. Save 

the result into its own folder, then check them. You should find a git 

repository there, too. 

Exploring git Repositories 

When you find a git repository, it’s often useful to run a 

specialized git cloner that pulls the repository and all of its 

associated metadata so you can inspect it locally. For this task, we’ll 

use Gitjacker. 

Cloning the Repository with Gitjacker 

Gitjacker’s command is pretty simple. The first argument is a 

URL, and the -o (output) argument takes a folder name into which 

the data will be saved if Gitjacker succeeds at pulling the repository: 

$ gitjacker http://172.16.10.11/backup/acme-impact-alliance/ -o acme-impact-alliance-git 

 

--snip-- 

Target:     http://172.16.10.11/backup/acme-impact-alliance/ 

Output Dir: acme-impact-alliance-git 

Operation complete. 

 

Status:            Success 

Retrieved Objects: 3242 

--snip-- 

As you can see, the tool returned a successful status and a few 

thousand objects. At this point, you should have a folder named 

acme-impact-alliance-git: 

$ ls -la ./acme-impact-alliance-git 

 

--snip-- 

128 -rw-r--r--  1 kali kali 127309 Mar 17 23:15 comment.php 

 96 -rw-r--r--  1 kali kali  96284 Mar 17 23:15 comment-template.php 

 16 -rw-r--r--  1 kali kali  15006 Mar 17 23:15 compat.php 

  4 drwxr-xr-x  2 kali kali   4096 Mar 17 23:15 customize 

--snip-- 

 12 -rw-r--r--  1 kali kali  10707 Mar 17 23:15 customize.php 

  4 -rw-r--r--  1 kali kali    705 Mar 17 23:15 donate.php 

  4 -rw-r--r--  1 kali kali    355 Mar 17 23:15 robots.txt 

--snip-- 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Notice some familiar filenames in this list? We saw donate.php 

and robots.txt earlier, when we scanned the 172.16.10.12 (p-web-02) 

host. 

Viewing the Commits with Git Log 

When you run into a git repository, you should attempt a git 

log command to see the history of git code commits made to the 

repository, as they may include interesting data we could use as 

attackers. In source code management, a commit is a snapshot of the 

code’s state that is taken before the code is pushed to the main 

repository and made permanent. Commit information could include 

details about who made the commit and a description of the change 

(such as whether it was a code addition or deletion): 

$ cd acme-impact-alliance-git 

$ git log 

 

commit 3822fd7a063f3890e78051e56bd280f00cc4180c (HEAD -> master) 

Author: Kevin Peterson <kpeterson@acme-impact-alliance.com> 

--snip-- 

 

    commit code 

As you can see, we’ve identified a person who has committed 

code to the git repository: Kevin Peterson, at kpeterson@acme-

impact-alliance.com. Take note of this information because this 

account could exist in other places found during the penetration test. 

Try running gitjacker again to hijack the git repository that lives 

on the second folder, at /backup/acme-hyper-branding. Then execute 

another git log command to see who committed code to this 

repository, as we did before. The log should reveal the identity of a 

second person: Melissa Rogers, at mrogers@acme-hyper-

branding.com. 

You may sometimes run into git repositories with many 

contributors and many commits. We can use git’s built in --

pretty=format option to extract all this metadata very easily, 

like so: 

$ git log --pretty=format:"%an %ae" 

The %ae (author name) and %ae (email) fields are built-in 

placeholders in git that allow you to specify values of interest to 

include in the output. To see the list of all available variables, 

reference https://git-scm.com/docs/pretty-formats#_pretty_formats. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Filtering Git Log Information with Bash 

Even without the pretty formatting, bash can filter git log output 

with a single line: 

$ git log | grep Author | grep -oP '(?<=Author: ).*' | sort -u | tr -d '<>' 

This bash code runs git log, searches for any lines that start 

with the word Author using grep, then pipes it to another grep 

command, which uses regular expressions (-oP) to filter anything 

after the word Author: and prints only the words that matched. 

This filtering leaves us with the git commit author’s name and email.  

Because the same author could have made multiple commits, we 

use sort to sort the list and to remove any duplicated lines using 

the -u option, leaving us with list free of duplicated entries. Lastly, 

since the email is surrounded by the characters <> by default, we 

trim these characters using tr -d '<>'. 

Inspecting Repository Files 

The repository contains a file called app.py. Let’s quickly inspect 

its contents by viewing it using a text editor. If you take a look at the 

code in Listing 5-2, you’ll see that the file contains web server code 

written with Python’s Flask library.  

import os, subprocess 

 

from flask import ( 

    Flask,  

    send_from_directory,  

    send_file,  

    render_template,  

    request 

) 

 

 

@app.route('/') 

 

--snip-- 

 

@app.route('/files/<path:path>') 

 

--snip-- 

 

@app.route('/upload', methods = ['GET', 'POST']) 

 

--snip-- 

 

@app.route('/uploads', methods=['GET']) 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
 

--snip-- 

 

@app.route('/uploads/<path:file_name>', methods=['GET']) 

 

--snip-- 

Listing 5-2 Flask web server source code 

The interesting parts here are the endpoints that are exposed 

using @app.route(). You can see that the application exposes 

endpoints such as /, /files, /upload, and /uploads. 

Remember that when we scanned our target IP address range 

using dirsearch and Nikto, we saw two endpoint named /upload and 

/uploads on 172.16.10.10:8081. Because this Python file also has 

these endpoints, it's very likely that the source code belongs to the 

application that is running on the server! 

You may be asking yourself why we didn’t find the /files 

endpoint in our scans. Well, web scanners often rely on response 

status codes returned by web servers to determine if certain 

endpoints exist or not. If you run the following cURL command 

using the -I (HEAD request) option, you’ll see that the /files 

endpoint returns an HTTP error of 404 Not Found:  

$ curl -I http://172.16.10.10:8081/files 

 

HTTP/1.1 404 NOT FOUND 

--snip-- 

Web scanners will interpret these 404 errors as indicating that an 

endpoint doesn’t exist. The reason we get 404 errors here is that on 

its own, /files doesn’t serve any requests when called directly. 

Instead, it will serve requests for any web paths appended to /files, 

such as /files/abc.jpg or /files/salary.docx. 

Using Nuclei 

Nuclei is one of the most impressive open source vulnerability 

scanners released in recent years. Its advantage over other tools 

stems from its community-powered templating system, which 

reduces false positives by matching known patterns against 

responses it receives from network services and files. You can also 

easily extend it to do custom security checks.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Nuclei is a vulnerability scanner, so it can naturally support 

common network services, such as HTTP, DNS, and network 

sockets, as well as local file scanning. You can use it to send HTTP 

requests, DNS queries, and raw bytes over the network, and even 

scan files to find credentials (for example, when you identify an 

open git repository and want pull it locally to find secrets).  

As of this writing, Nuclei has more than 6,000 templates in its 

database. In this section, we’ll introduce Nuclei and how to use it. 

Understanding Templates 

Nuclei templates are based on YAML files that define the 

following high level template structure: 

ID 

A unique identifier for the template 

Metadata  

Information about the template, such as description, an author, a 

severity, and tags (arbitrary labels that can group multiple templates, 

such as injection or denial-of-service) 

Protocol  

The mechanism that the template uses to make its requests; for 

example, http is a protocol type that uses HTTP for web requests 

Operators  

Used for matching patterns against responses received by a template 

execution (matchers) and extracting data (extractors), similar to the 

filtering performed by tools like grep  

Listing 5-12 is a simple example of a Nuclei template that uses 

the HTTP protocol to find the default Apache HTML welcome page. 

Navigate to http://172.16.10.11/ to see what this page looks like.  

id: detect-apache-welcome-page 

 

1 info:  

  name: Apache2 Ubuntu Default Page 

  author: Dolev Farhi and Nick Aleks 

  severity: info 

  tags: apache 

 

http:  

  - method: GET  

    path:  

    2 - '{{BaseURL}}'  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
  3 matchers:  

      - type: word 

        words:  

          - "Apache2 Ubuntu Default Page: It works"  

        part: body  

Listing 5-3 An example Nuclei template 

We define the template metadata, such as the template’s name, 

author, severity, and so on 1. We then define the http (HTTP) 

protocol, which will instruct Nuclei to use an HTTP client when 

executing this template 2. We also declare that the template should 

use the GET method. Next, we define a variable that will be swapped 

with the target URL we’ll provide to Nuclei on the command line at 

scan time. Then we define a single matcher of type word 3 and a 

search pattern to match against the HTTP response body coming 

back from the server, defined by the word part: body. 

As a result, when Nuclei performs a scan against an IP address 

that runs some form of a web server, this template will make a GET 

request to its base URL (/) and look for the string Apache2 

ubuntu Default Page: It works in the response. If it 

finds this string in the response’s body, the check will be considered 

successful because the pattern matched. 

We encourage you to explore Nuclei’s templating system at 

https://nuclei.projectdiscovery.io/templating-guide, as you can easily 

use Nuclei with Bash to perform continuous assessments. 

Writing a Custom Template 

Let’s write a simple template that finds the git repositories we 

discovered earlier on 172.16.10.11. In Listing 5-4, we define 

multiple BaseURL paths to represent the two paths we’ve identified, 

and using Nuclei's matchers, we define a string ref: 

refs/heads/master to match against the response body 

returned by the scanned server. 

id: detect-git-repository 

 

info: 

  name: Git Repository Finder 

  author: Dolev Farhi and Nick Aleks 

  severity: info 

  tags: git 

 

http: 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
  - method: GET 

    path:  

      - '{{BaseURL}}/backup/acme-hyper-branding/.git/HEAD' 

      - '{{BaseURL}}/backup/acme-impact-alliance/.git/HEAD' 

    matchers: 

      - type: word 

        words: 

          - "ref: refs/heads/master"  

        part: body 

Listing 5-4 Writing a git finder template with Nuclei 

This template works just like the one in the previous example, 

except this time, we provide two paths to check against: 

/backup/acme-hyper-branding/.git/HEAD and /backup/acme-impact-

alliance/.git/HEAD . The matcher is the string we expect to see in 

the HEAD file. You can confirm that this is the case by making a 

cURL request to the git repository at 172.16.10.11: 

$ curl http://172.16.10.11/backup/acme-hyper-branding/.git/HEAD 

 

ref: refs/heads/master 

Download this custom Nuclei template from 

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch05/git-

finder.yaml. 

Applying the Template 

Let’s run Nuclei against 172.16.10.11 with the custom template 

we just wrote. Nuclei stores its built in templates in the folder 

~/.local/nuclei-templates. First, run the following command to 

update Nuclei’s template database: 

$ nuclei -ut 

Next, save the custom template into the folder ~/.local/nuclei-

templates/custom and give it a name such as git-finder.yaml.  

In the following command, the -u (URL) option specifies the 

address, and -t (template) specifies the path to the template: 

$ nuclei -u 172.16.10.11 -t ~/.local/nuclei-templates/custom/git-finder.yaml 

 

--snip-- 

[INF] Targets loaded for scan: 1 

[INF] Running httpx on input host 

[INF] Found 1 URL from httpx 

[detect-git-repository] [http] [info] http://172.16.10.11/backup/acme-hyper-branding/.git/HEAD 

[detect-git-repository] [http] [info] http://172.16.10.11/backup/acme-impact-alliance/.git/HEAD 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
As you can see, we were able to identify the two git repositories 

with the custom template.  

Running a Full Scan 

When not provided with a specific template, Nuclei will use its 

built-in templates during the scan. Running Nuclei is noisy, so we 

recommend tailoring the execution to a specific target. For instance, 

if you know a server is running the Apache web server, you could 

select just the Apache-related templates by specifying the -tags 

option: 

$ nuclei -tags apache,git -u 172.16.10.11 

Run nuclei -tl to get a list of all available templates. 

Let’s run a full Nuclei scan against all three IP addresses in the 

172.16.10.0/24 network using all of its built-in templates: 

$ nuclei -u 172.16.10.10:8081 

$ nuclei -u 172.16.10.11 

$ nuclei -u 172.16.10.12 

 

--snip-- 

[tech-detect:google-font-api] [http] [info] http://172.16.10.10:8081 

[tech-detect:python] [http] [info] http://172.16.10.10:8081 

[http-missing-security-headers:access-control-allow-origin] [http] [info] http://172.16.10.10:8081 

[http-missing-security-headers:content-security-policy] [http] [info] http://172.16.10.10:8081 

--snip-- 

Nuclei tries to optimize the number of total requests made by 

using the concept of clustering. When multiple templates call the 

same web path (such as /backup), Nuclei consolidates these into a 

single request to reduce network overhead. but it could still send 

thousands of requests during a single scan. You can control how 

many requests Nuclei sends by specifying the rate limit option (-rl) 

followed by an integer to specify the number of allowed requests per 

second. 

The full scan results in a lot of findings, so append the output to 

some file (>>) so you can examine them one by one. As you can see, 

Nuclei can find vulnerabilities, but it can also fingerprint the target 

server and the technologies that are running on it. It should have 

highlighted findings we’ve already seen previously as well as a few 

new findings. We want to draw your attention to a few specific 

issues it detected:  

• An FTP server with anonymous access enabled on 172.16.10.11 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
port 21 

• A WordPress login page at 172.16.10.12/wp-login.php 

• A WordPress user-enumeration vulnerability (CVE-2017-5487) 

at 172.16.10.12/wp-json/wp/v2/users 

Let’s confirm these three findings manually to ensure there are 

no false positives. Connect to the identified FTP server at 

172.16.10.11 by issuing the following ftp command. This 

command will connect to the server using the anonymous user and 

an empty password (note that there is nothing specified after the 

colon (:): 

$ ftp ftp://anonymous:@172.16.10.11 

 

Connected to 172.16.10.11. 

220 (vsFTPd 3.0.5) 

331 Please specify the password. 

230 Login successful. 

Remote system type is UNIX. 

Using binary mode to transfer files. 

200 Switching to Binary mode. 

We were able to connect! Let's issue an ls command to verify 

that we can list files and directories on the server: 

ftp> ls 
229 Entering Extended Passive Mode (|||33817|) 

150 Here comes the directory listing. 

drwxr-xr-x    1 0        0            4096 Mar 11 05:23 backup 

-rw-r--r--    1 0        0           10671 Mar 11 05:22 index.html 

226 Directory send OK. 

We see an index.html file and a backup folder. This is the same 

folder that stores the two git repositories we saw earlier, except now 

we have access to the FTP server where these files actually live. 

Next, open a browser to http://172.16.10.12/wp-login.php from 

your Kali machine. You should see the page in Figure 5-2. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

 

Figure 5-2 The WordPress login page 

Lastly, verify the third finding: the WordPress user-enumeration 

vulnerability, which allows you to gather information about 

WordPress accounts. By default, every WordPress instance exposes 

an API endpoint that lists WordPress system users at /wp-

json/wp/v2/users. This endpoint usually doesn’t require 

authentication or authorization, so a simple GET request should 

return the list of users. 

We’ll use cURL to send this request and pipe the response to jq 

to prettify the JSON output that comes back. The result should be an 

array of user data: 

$ curl -s http://172.16.10.12/wp-json/wp/v2/users/ | jq 

 

[ 

  { 

    "id": 1, 

    "name": "jtorres", 

    "url": "http://172.16.10.12", 

    "description": "", 

    "link": "http://172.16.10.12/author/jtorres/", 

    "slug": "jtorres", 

  }, 

--snip-- 

] 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
As you can see, there is a single user, jtorres, on this blog. This 

can be a good target to brute-force later on. If this curl command 

returned many users, you could parse only the usernames with the 

following jq command: 

$ curl -s http://172.16.10.12/wp-json/wp/v2/users/ | jq .[].name 

All three findings were true positives, which is great news for us. 

Let's recap the identities we've identified so far.  

Table 5-1 Identity information gathered from git repositories 

Source  Name  Email 

acme-impact-alliance git repository Kevin Peterson kpeterson@acme-impact-
alliance.com 

acme-hyper-branding git repository Melissa Rogers mrogers@acme-hyper-branding.com 

WordPress Account J. Torres  jtorres@acme-impact-alliance.com 

Note that in the case of the WordPress account we've identified, 

we only discovered an account by the name of jtorres. Since this was 

found on the ACME Impact Alliance website, and we already know 

the email scheme they use (first letter of first name and the last 

name) it is pretty safe to assume jtorres email is jtorres@acme-

impact-alliance.com. We do not yet know their first name, though. 

Exercise 7: Parsing Nuclei’s Findings 

Nuclei’s scan output is a little noisy, and it can be difficult to 

parse with bash, but not impossible. Nuclei allows you to pass a -

silent parameter to show only the findings in the output. Before 

we write a script to parse the output, let’s consider Nuclei’s output 

format:  

[template] [protocol] [severity] url 

[extractor] 

Each field is enclosed between brackets [] and separated by 

spaces. The template field is a template name (taken from the 

name of the template file), the protocol shows the protocol, such 

as HTTP, and the severity shows the severity of the finding 

(informational, low, medium, high, or critical). The fourth field is the 

URL or IP address, and the fifth field is metadata extracted by the 

template’s logic using extractors. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Now we should be able to parse this information with bash. 

Listing 5-5 shows a script to run Nuclei, filter for a specific severity 

of interest, parse the interesting parts, and email us the results. 

#!/bin/bash  

EMAIL_TO="security@blackhatbash.com" 

EMAIL_FROM="nuclei-automation@blackhatbash.com" 

 

for ip_address in "$@"; do  

  echo "Testing ${ip_address} with Nuclei..." 

1 result=$(nuclei -u "${ip_address}" -silent -severity medium,high,critical)  

  if [[ -n "${result}" ]]; then  

  2 while read -r line; do  

      template=$(echo "${line}" | awk '{print $1}' | tr -d '[]') 

      url=$(echo "${line}" | awk '{print $4}')  

      echo "Sending an email with the findings ${template} ${url}" 

      sendemail -f "${EMAIL_FROM}" \ 

              3 -t "${EMAIL_TO}" \ 

                -u "[Nuclei] Vulnerability Found!" \ 

                -m "${template} - ${url}"   

                 

  4 done <<< "${result}"  

  fi 

done 

Listing 5-5 Scanning with Nuclei and sending ourselves the results 

Let’s dissect the code to better understand what it’s doing. We 

use a for loop to iterate through values in the $@ variable, which is 

a special value you learned about in Chapter 2 that contains the 

arguments passed to the script on the command line. We assign each 

argument to the ip_address variable.  

Next, we run a Nuclei scan, passing it the -severity 

argument to scan for vulnerabilities categorized as either medium, 

high, or critical, and save the output to the result variable 1. At 2, 

we read the output passed to the while loop at 4 line by line. From 

each line, we extract the first field, using the tr -d '[]' 

command to remove the [] characters for a cleaner output. We also 

extract the fourth field from each line, which is where Nuclei stores 

the vulnerable URL. At 3 we send an email containing all the 

relevant information.  

To run this script, save it to a file and pass the IP addresses to 

scan on the command line: 

$ nuclei-notifier.sh 172.16.10.10:8081 172.16.10.11 172.16.10.12 172.16.10.13 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Note that Nuclei can format the output in JSON format if you use 

the -j option. You can then pipe this output to jq, as we did earlier. 

You can download this script at https://github.com/dolevf/Black-

Hat-Bash/blob/master/ch05/nuclei-notifier.sh. 

Fuzzing for Hidden Files 

Now that we’ve identified potential location of files, let’s use 

fuzzing tools to try to find hidden files on 

http://172.16.10.10:8081/files. Fuzzers generate semi-random data to 

use as part of some payload. When sent to an application, these 

payloads can trigger anomalous behavior or reveal covert 

information. You can use fuzzers against web servers to find hidden 

paths or against local binaries to find vulnerabilities such as buffer 

overflows or denials of service. 

Creating a Tailored Wordlist of Possible Filenames 

Fuzzing tools in the context of web application enumeration 

work best when fed custom wordlists tailored to your target. These 

lists could contain the name of the company, the individuals you’ve 

identified, relevant locations, and so on. These tailored wordlists can 

help you identify user accounts to attack, network and application 

services, valid domain names, covert files, email addresses, and web 

paths, for example. 

Let’s use bash to write a custom wordlist containing potential 

filenames of interest: 

$ echo -e acme-hyper-branding-{0..100}.{txt,csv,pdf,jpg}"\n" | sed 's/ //g' > files_wordlist.txt 

Listing 5-6 Using brace expansion to create multiple files with various extensions 

This command creates files with probable file extensions tailored 

to our target’s name, ACME Hyper Branding. It uses echo with 

brace expansion {0..100} to create arbitrary strings from 0 to 

100, then appends these to the company name. We also use brace 

expansion to create multiple file extension types, such as txt, csv, 

pdf, and jpg. The -e option for echo enables us to interpret 

backslash (\) escapes. This means that \n will be interpreted as a 

new line. We then pipe this output to the sed command to remove 

all whitespaces from the output for a cleaner list. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Use head to view the created files: 

$ head files_wordlist.txt 
 

acme-hyper-branding-0.txt 

acme-hyper-branding-0.csv 

acme-hyper-branding-0.pdf 

acme-hyper-branding-0.jpg 

acme-hyper-branding-1.txt 

acme-hyper-branding-1.csv 

acme-hyper-branding-1.pdf 

acme-hyper-branding-1.jpg 

acme-hyper-branding-2.txt 

acme-hyper-branding-2.csv 

As you can see, this command’s output follows the format acme-

hyper-branding-{some_number}.{some_extension}. 

Fuzzing with Ffuf 

Ffuf (an acronym for Fuzz Faster U Fool) is a versatile and 

blazing-fast web fuzzing tool. We’ll use fuff to discover potential 

files under the /files endpoint that could contain interesting data. 

This ffuf command uses the -c (color) option to highlight the 

results in the terminal, -w (wordlist) to specify a custom word list, -

u (URL) option to specify a path, and the full URL to the endpoint to 

fuzz. Let's run ffuf against 172.16.10.10 (p-web-01) using the 

command shown below: 

$ ffuf -c -w files_wordlist.txt -u http://172.16.10.10:8081/files/FUZZ 

 

:: Method           : GET 

:: URL              : http://172.16.10.10:8081/files/FUZZ 

:: Wordlist         : FUZZ: files_wordlist.txt 

:: Follow redirects : false 

:: Calibration      : false 

:: Timeout          : 10 

:: Threads          : 40 

:: Matcher          : Response status: 200,204,301,302,307,401,403,405,500 

________________________________________________ 

 

acme-hyper-branding-5.csv [Status: 200, Size: 432, Words: 31, Lines: 9, Duration: 32ms] 

:: Progress: [405/405] :: Job [1/1] :: 0 req/sec :: Duration: [0:00:00] :: Errors: 0 :: 

Listing 5-7 Fuzzing with ffuf 

Note that the word FUZZ at the end of the URL is a placeholder 

that tells the tool where to inject the words from the wordlist. In 

essence, it will swap the word FUZZ with each line from our file. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
The output indicates that ffuf has identified that the path 

http://172.16.10.10:8081/files/acme-hyper-branding-5.csv returned a 

status code of HTTP 200 OK. If you look closely at the output, you 

should see that the fuzzer sent 405 requests in less than a second, 

which is pretty impressive. 

Fuzzing with Wfuzz 

Wfuzz is another web fuzzing tool that can do similar things to 

ffuf. In fact, ffuf is based on Wfuzz. Let’s use Wfuzz to perform the 

same type of word list-based scan (-w), then use its filtering 

capabilities to show only files that receive a response status code of 

200 OK (--sc 200): 

$ wfuzz --sc 200 -w files_wordlist.txt http://172.16.10.10:8081/files/FUZZ  

 

--snip-- 

 

Target: http://172.16.10.10:8081/files/FUZZ 

Total requests: 405 

 

===================================================================== 

ID         Response   Lines    Word       Chars       Payload        

===================================================================== 

 

000000022: 200        8 L      37 W       432 Ch      "acme-hyper-branding-5.csv" 

 

Total time: 0 

Processed Requests: 405 

Filtered Requests: 404 

Requests/sec.: 0 

Next, let’s use the wget command to download this file. 

$ wget http://172.16.10.10:8081/files/acme-hyper-branding-5.csv 
 

$ cat acme-hyper-branding-5.csv 

 

no, first_name, last_name, designation, email 

1, Jacob, Taylor, Founder, jtayoler@acme-hyper-branding.com 

2, Sarah, Lewis, Executive Assistance, slewis@acme-hyper-branding.com 

3, Nicholas, Young, Influencer, nyoung@acme-hyper-branding.com 

4, Lauren, Scott, Influencer, lscott@acme-hyper-branding.com 

5, Aaron,Peres, Marketing Lead, aperes@acme-hyper-branding.com 

6, Melissa, Rogers, Marketing Lead, mrogers@acme-hyper-branding.com 

We’ve identified a table of personally identifiable information 

(PII), including first and last names, titles, and email addresses. Take 

notes of every detail we’ve managed to extract in this chapter; you 

never know when it will come in handy. 

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 
Note that fuzzers can cause unintentional denial of service 

conditions, especially if they are optimized for speed. You may run 

into applications running on low-powered servers that will crash as a 

result of running a highly-capable fuzzer against them, so make sure 

you have explicit permission from the company you’re working with 

to perform such activities.  

Assessing SSH Servers with Nmap's Scripting Engine 

Nmap contains many NSE scripts that can also help test for 

vulnerabilities and misconfigurations. All Nmap scripts live in the 

/usr/share/nmap/scripts path. When you run Nmap with the -A flag, 

it will blast all NSE scripts at the target, as well as enable operating 

system detection, version detection, script scanning, and traceroute. 

This is probably the noisiest scan you can do with Nmap, so never 

use it when you need to be covert. 

In the previous chapter, we identified a server running OpenSSH 

on 172.16.10.13 (p-jumpbox-01). Let’s use an NSE script tailored to 

SSH servers to see what we can discover about the supported 

authentication methods: 

$ nmap --script=ssh-auth-methods 172.16.10.13 

 

Starting Nmap 7.93 ( https://nmap.org ) at 2023-03-19 01:53 EDT 

--snip-- 

PORT   STATE SERVICE 

22/tcp open  ssh 

| ssh-auth-methods:  

|   Supported authentication methods:  

|     publickey 

|_    password 

 

Nmap done: 1 IP address (1 host up) scanned in 0.26 seconds 

The ssh-auth-methods NSE script enumerates the supported 

authentication methods offered by the SSH server. If password is 

one of them, this means that the server accepts passwords as an 

authentication mechanism. SSH servers that allow password 

authentication are prone to brute-force attacks. Later in this chapter, 

we will perform a brute force against SSH servers.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Exercise 8: Combining Multiple Tools to Achieve Your Objective 

The goal of this exercise is to write a script that calls several 

security tools, parses their output, and passes the output to other 

tools to act on it. Orchestrating multiple tools in this way is a very 

common task in penetration testing, so we encourage you get 

comfortable with building such workflows. 

Your script should do the following: 

1. Accept one or more IP addresses on the command line. 

2. Run a port scanner against the IP addresses; which port scanner 

you use is completely up to you. 

3. Identify open ports. If any of them are FTP ports (21/TCP) the 

script should pass the address to a vulnerability scanner in Step 

4. 

4. Scan the addresses and ports using Nuclei. You can use 

templates dedicated to finding issues in FTP servers. Search in 

the Nuclei templates folder /home/kali/.local/nuclei-templates for 

FTP-related templates or use the -tags ftp Nuclei flag. 

5. Scan the address using Nmap. Use NSE scripts that find 

vulnerabilities in FTP servers, which you can find under the 

/usr/share/nmap/scripts folder. For example, try ftp-anon.nse.  

6. Parse and write the results to a file with a format of your choice. 

One example could be an HTML file. The file should include a 

description of the vulnerability, the relevant IP address and port, 

the timestamp at which it was found, and the name of the tool 

that detected the issue. There is no hard requirement about how 

the data should be presented; one option is to use an HTML 

table. If you need an example table, you can find one at 

https://github.com/dolevf/Black-Hat-

Bash/blob/master/ch05/vulnerability_table.html (open this file in 

a web browser to view the table). Alternatively, you could write 

the results to a CSV file. 

As you know, there is more than one way to write such script. 

Only the end result matters, so write it as you see fit!  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks



` 

Summary 

In this chapter, we wrapped up our reconnaissance activities by 

performing vulnerability scanning and fuzzing. We also verified the 

vulnerabilities we discovered, weeding out potential false positives.  

Along the way, we used bash scripting to perform several tasks. 

We scanned for vulnerabilities, wrote custom scripts that can 

perform recursive downloads from misconfigured webservers, 

extracted sensitive information from git repositories, and more. We 

also created custom wordlists using clever bash scripting and 

orchestrated the execution of multiple security tools to generate a 

report. 

Let’s recap what we’ve identified so far, from a reconnaissance 

perspective: 

1. Hosts running multiple services (HTTP, FTP, SSH) and their 

versions 

2. A web server running WordPress with a login page enabled 

and a few vulnerabilities, such as user enumeration and an 

absence of HTTP security headers 

3. A web server with a revealing robots.txt file containing paths 

to custom upload forms and a donation page. 

4. An anonymous login-enabled FTP server 

5. Multiple open git repositories  

6. OpenSSH servers that allows password-based logins 

In the next chapter, we will use the vulnerabilities identified in 

this chapter to establish an initial foothold by exploiting 

vulnerabilities and taking over servers.  

Black Hat Bash (Early Access) © 2023 by Dolev Farhi and Nick Aleks


	05_EA_Frontmatter.pdf
	503007f01
	503007c01
	503007c02
	503007c03
	503007c04
	503007c05
	503007c06
	503007c07
	503007c08
	503007c09
	503007c10
	503007c11
	503007c12
	503007c13
	503007c14
	503007c15
	503007c16
	503007c17
	503007c18
	503007b01
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	Black Hat Bash.pdf
	05_EA_Frontmatter.pdf
	503007f01
	503007c01
	503007c02
	503007c03
	503007c04
	503007c05
	503007c06
	503007c07
	503007c08
	503007c09
	503007c10
	503007c11
	503007c12
	503007c13
	503007c14
	503007c15
	503007c16
	503007c17
	503007c18
	503007b01
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	Blank Page
	Blank Page
	Blank Page
	Blank Page

	Black Hat Bash.pdf
	05_EA_Frontmatter.pdf
	503007f01
	503007c01
	503007c02
	503007c03
	503007c04
	503007c05
	503007c06
	503007c07
	503007c08
	503007c09
	503007c10
	503007c11
	503007c12
	503007c13
	503007c14
	503007c15
	503007c16
	503007c17
	503007c18
	503007b01
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	Blank Page
	Blank Page
	Blank Page
	Blank Page




