
The Art of C Programming

Robin Jones Ian Stewart

The Art of
C Programming

With 42 Illustrations

Springer-Verlag
New York Berlin Heidelberg

London Paris Tokyo

Robin Jones
Computer Unit
South Kent College of

Technology
Folkestone CT20 2NA
England

Ian Stewart
Mathematics Institute
University of Warwick
Coventry CV 4 7 AL
England

The illustrations by Sir John Tenniel that decorate all chapters except Appendix 2 are reproduced
from Alice's Adventures in Wonderland and Through the Looking Glass by Lewis Carroll, with the
permission of the publishers, MacMillan & Co. Ltd., London.

Library of Congress Cataloging in Publication Data
Jones, Robin.

The art of C programming.
Includes index.
1. C (Computer program language) I. Stewart,

Ian. II. Title.
QA76.73.CI5J66 1987 005.13'3 86-22014

© 1987 by Springer-Verlag New York Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as understood
by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.

9 8 7 6 543 2 1

ISBN-13: 978-0-387-96392-1 e-ISBN-13: 978-1-4613-8685-8
DOl: 10.1007/978-1-4613-8685-8

"That is my present position," said the Tortoise.
"Then I must ask you to accept c."
"I'll do so," said the Tortoise, "as soon as you've entered it

in that notebook of yours."

Lewis Carroll, What the Tortoise Said to Achilles

Preface

The programming language C occupies an unusual position midway between
conventional high-level and assembly languages, allowing the programmer to
combine the best features of both. This book is an introduction to the language
itself, and to the special style of thinking that goes with it. Anyone wishing to
learn C is likely to have some experience in a high-level language such as
BASIC or Pascal, and it seems sensible to make use of that experience. We
therefore assume some facility with conventional notation for computer arith
metic, and simple notions (such as looping and branching) common to most
high-level languages.

However, that cannot be the whole story. One cannot learn to speak
colloquial French by thinking in English and performing a routine translation.
No more can one learn to program in colloquial C by thinking in BASIC and
performing a routine translation. However, when learning French it is normal
to assume familiarity with English, building on that in the early stages, thereby
creating the confidence necessary to provide that mot juste to which nothing
corresponding exists in English. Our approach to C is similar. In particular
we do not introduce at the very beginning some of the features of C which
eventually lead to more efficient and elegant code-for example, the ability
to do several things, apparently at once. Initially, such constructs can be
confusing. Once the reader has acquired some facility with the language it
then becomes possible to bring these features into play in a natural manner.

The book divides roughly into two parts. Chapters 1-13 develop the main
features of the language itself, accompanied by simple examples, problems
(with answers), and-where appropriate-more extensive projects to test the
reader's understanding. Chapters 14-17 use these features to develop genuine
applications. After all, programs are for doing things, and C is fundamentally
a systems language. (Indeed C was originally designed in order to write an
operating system-namely UNIX-and so is ideally suited for writing general
utilities.) We therefore have chosen problems whose solution requires the
development of a general utility: rational arithmetic, turtle graphics, and
random number generation. Another reason for choosing these topics is that
they illustrate different aspects of the language. The rational arithmetic suite

V111 Preface

makes extensive use of arithmetical bit-manipulation, whereas the random
number generator uses logical bit-manipulation. The turtle graphics system
requires more sophisticated mathematical ideas. It also shows how to incor
porate new facilities into an existing system. An unusual feature of this system
is that (in one version) it requires only integer arithmetic.

There are two appendices. The first discusses the remaining topics in the
language that are not covered earlier in the book. The second is a quick
reference guide. While the book is intended as a tutorial rather than a reference
text, this provides a way in which the reader can jog his memory on points of
detail.

The approach we have adopted means that in the early chapters some of
the code may appear cumbersome. Since we are at that stage deliberately
limiting the tools available, this is inevitable. However, by the end of the book
the reader will have acquired a relatively thorough grounding in C.

Folkestone, Kent
Coventry, Warwickshire

Robin Jones
Ian Stewart

Contents

Preface vii

CHAPTER 1
Compilers and Interpreters

Editors 2
The Compilation Process 2

CHAPTER 2
The Skeleton of a C Program 5

Plus ca Change ... 6
Vive la Difference 7
Simple and Compound Statements 7
Functions That Don't Return Values 8
Returning Values 9
Main 9
Variable Types 10
Variable Scope 11
Global Variables 11
Loose Ends 12
printf 13
Comments 13

CHAPTER 3
Loops and Control Constructs 15

If 15
Conditional Expressions 16
Logical Connectives 17
Loops 17
while 17
Autoincrements 18
The sqr Function 19
do-while 22
for loops 23

x Contents

CHAPTER 4
Arithmetic and Logic 26

Odds and Evens 27
Logical Operators 27
ASCII Code 28
AND 28
OR 29
XOR 30
NOT 31
Shifts 32

CHAPTER 5
Strings, Arrays, and Pointers 35

Strings and Pointers 35
Arrays 37
Declaring Arrays 37
String Functions 38
Left-Hand Bit 39
Right a Bit 40
More about Pointers 40
Left Again 41
Further Right 41
Copycat 42

CHAPTER 6
Floats and Other Types 45

float 45
double 45
Qualifiers for int 46
Signs and Shifts 46
Register Variables 47
Declaring Structures 47
Defining Your Own Types 48
Constants and Initializers 48
Character Constants 49
Handling Control Characters 49
Defining Your Own Constants 50
Variable Constants 51
include 52
Octal and Hexadecimal Constants 52
Initializers 54
Initializing Pointers 54
Declaring Function Types 55

Contents Xl

CHAPTER 7
Input 57

Primitive Input 57
Get a Bufferfull 57
Operator Precedence 59
Strings to Numbers 60
A Feeble Excuse 63
scanf 64

CHAPTER 8
Output 66

More about printf 67
Justification 67
Printing to Memory 67
Primitive Output 68

CHAPTER 9
More About Control Constructs 70

The Conditional Operator 70
Leaping out of Loops 71
Continuing 71
Multiway Switches 72
Do Not Pass Go 73

CHAPTER 10
Recursion 75

Factorials 76
Things with Strings 77
Back-to-Front Sentences 79
In and Out 80
Reversing the Text 81
Postscript 83

CHAPTER 11
Structures 84

Playing with Structures 85
The Storeman's Mate 86
Delete 88
Add 89
Recursive Structures 90

xii

CHAPTER 12
File-handling

1/0 Redirection
Error Messages
Buffered File 1/0
fopen
Creating a File
Once More, with Filing
File Access Errors
Random Access Files
The Square Table
Second Attempt
Reversing the Process

CHAPTER 13
Debugging

Common Errors
Runtime Errors
Testing a Function
Test Lines
Be Thorough
Dormant Bugs

CHAPTER 14
Rational Arithmetic

Fixing the Problem
Overflow
A Practical Organization
Functions
Double or Nothing
Portability Considerations

Contents

Lies, Damned Lies and Computer Programs
Subtraction
Multiplication
Division
The Conversion Routines
And Now the Bad News ...
Postscript

CHAPTER 15
Implementing Turtle Graphics ...

Turning Turtle
But First, The Snags ...
Triggery-Pokery
The Turtle Commands
Turtle Incorporated

93

94
94
95
95
96
97
98
99

100
100
101

106

107
108
109
110
112
113

117

118
119
120
121
122
125
126
126
127
127
127
129
131

132

133
134
134
137
139

Contents xiii

Seeketh after a Sine 140
A Trig Suite in C 143

CHAPTER 16
... and Using Them 145

Rectangles 146
Fan-Dancing 147
Polygons 149
Circle 151
Stars 151
Spirals 151
The Koch Snowflake 152
Afterthoughts ... 155

CHAPTER 17
Random Thoughts 157

Some Basic Ideas 158
Testing "Randomness" 159
The Numerical Connection 160
Linear Feedback Shift Registers 162
A Practical Program 163

APPENDIX 1
Loose Ends 169

APPENDIX 2
Quick Reference Guide 176

Index 183

CHAPTER 1

Compilers and Interpreters

Alice thought she saw a way out of the difficulty, this time. "If you tell
me what language 'fiddle-de-dee' is, I'll tell you the French for it!" she
exclaimed triumphantly.

Through the Looking Glass

Any high-level language program must be converted to the native code (or
machine language) of the processor on which it ultimately is to run. There are
two common approaches to this problem (and a number ofless common ones
which need not concern us here). The first is to store the program, more or
less as it is entered, in the computer's main memory (this is known as source
code). Then, when the program is executed, to take each line in turn, translate
it into machine code and then run the machine code. When the translation of
a line takes place, the resulting machine code overwrites that from the previous
line, so that if a line of source code appears in a loop which is executed 200
times, it also must be translated 200 times. A translator which adopts this
strategy is called an interpreter* and it's the mechanism most familiar to
anyone who has used a Commodore 64, Macintosh, IBM PC, or any of the
other home micros (or personal computers as the upmarket salesmen prefer
to call them).

* In practice, modern interpreters are less simple-minded than this, but the principles
are broadly the same.

2 1. Compilers and Interpreters

It's obvious that the technique is slow and inefficient, because of the re
peated (and therefore unnecessary) translation of lines of code, and because
this translation is occurring while the program is running. It has, however,
one major saving grace. Since, whenever you RUN a program, the interpreter
refers to your source code (i.e., the original BASIC program), it is a relatively
simple matter to edit and rerun a piece of code-you just revise the BASIC
code and type RUN again. (You may be saying to yourself: "What else could
be necessary?" You'll find out very shortly, and I'm afraid it's a messier process
than you're used to.)

The obvious alternative is to translate the entire source code into a single
machine code program, and then run the machine code. This will clearly
execute faster, and there are no translations during execution. A translator
that adopts this approach is called a compiler. As a general rule BASIC is
interpreted, whereas C is compiled. This isn't to say that you can't have BASIC
compilers or C interpreters-both exist-but they are relatively uncommon
ways of handling the two languages. Interpreters make ideal development
tools because it's so easy to make changes, and that's also why they're useful
to beginners; but they aren't good for the professional because of the slow
execution of the interpreted code, among other things. Perhaps the ideal
software environment would provide you with an interpreter and a compiler
for identical dialects of the same language. That way, you could use the
interpreter until all the debugging was finished, and then compile the final,
bug-free program. It goes without saying that Murphy's Law applies, and that
therefore where both an interpreter and a compiler exist for a given language
on a given machine, there are subtle (and sometimes not so subtle) differences
between the dialects of the languages which the two translators deal with.
Thus a program which was running happily under the interpreter can sudden
ly become bug-ridden when it is compiled.

Editors

Somehow you have to create the source program in the first place. A BASIC
interpreter has built into it an editor which allows you to type in lines of code,
stores them in the right order, enables you to modify them later, and so on.
Generally, a compiler has no such utility associated with it, although you may
be able to purGhase an editor with the compiler. In any event, you must have
one before you can get started.

The Compilation Process

The complete ceremony, then, goes something like this:

1. Load the editor.
2. Type in your source program (i.e., the code you want to compile).

The Compilation Process 3

3. Save this to backing store.
4. Load the compiler and tell it where to find the source program (in other

words, give it the source filename). The compiler will then go through the
translation process. There probably will be several passes involved (i.e., the
compiler will scan the source more than once). You may have to invoke
each pass as a separate program, or the system may handle this for you,
depending on how friendly the compiler is. Finally, the compiler will write
back to the backing store a machine code version of your source program.
However, it won't have included the machine code for any library functions
your program uses. So now you must:

5. Load the linker and tell it the name of the machine code file it is to work
on. The linker searches this, looking for functions that aren't defined within
the file. When it finds one, it looks in the library for it, and links it into the
program. Finally it will have created a pure machine code program which it
saves to the backing store.

6. At last you have a machine code program that can be loaded from backing
store and executed. If the backing store in use is disk, the above process is
fairly painless, if somewhat longwinded (I did tell you compilers aren't as
easy to handle as interpreters). If it is cassette tape you would die of old age
before getting anything running. If a compiler designer expects this to be
the case he may well opt to leave the intermediately generated files in main
memory rather than dumping them back to tape, to preserve sanity. The
reason this usually isn't done is that allocating a chunk of memory for these
files means you can't compile very big programs.

If the foregoing is less than crystal clear at the moment, don't worry. It
probably isn't obvious why all these steps are necessary, and it won't be until
you've tried a few things out with your C compiler and made some mistakes
in the process.

As I've already implied, the precise sequence of operations needed will vary
from compiler to compiler. Here's a fairly typical one to compile and run a
program called FRED.C for the BD Software C compiler running under the
CP 1M operating system:

System prompt User response

A> CCl FRED.C

A> CC2FRED

A> CLINK FRED

A> FRED

Effect

A source file called FRED.C on drive A is passed to
the first part of the compiler (CC l). A file called
FRED.CCI is created by CCI.

The second part of the compiler is invoked on the
file FRED.CCI. A file called FRED.CRL is
created.

The linker is called to insert library functions into
FRED.CRL. A file called FRED.COM is created.

The pure machine code program in the file
FRED.COM is loaded and executed.

4 1. Compilers and Interpreters

Actually, in recent versions of this compiler, CCl automatically chains CC2
provided that no errors have been recognised, so that there is one fewer step
necessary. If you're unfamiliar with CP 1M, the "A>" prompt just indicates
that the system is logged on to disk drive A, and it's ready for a further
command. Of course, the above sequence assumes no errors have occurred.
Errors may be picked up at any stage during the compilation, and appropriate
messages will appear on the screen. Whenever one occurs, you must identify
the problem and reload the editor to change the source program before
repeating the whole process. So changing the odd line is not the trivial process
it is in BASIC, and you'll find yourself checking syntax rather more carefully
and generally thinking harder about your code because you know that it may
take several minutes just to replace a comma with a semicolon, or to change
a variable name from I to J.

I'm not trying to dissuade you from using a compiler-the rewards are well
worth the extra effort entailed-but you should be aware that you have to
pay more attention to detail than is necessary in interpreted BASIC.

Note. You'll have noticed that in this chapter we've consistently referred to
ourselves as 'I.' We (I?) have done this because 'we' lacks the informal touch.
Henceforth 'we' means 'I and the reader'. If any readers dislike the use of 'I'
in a two-author book, they should invoke the flexibility of C and

define I we.

(See Chapter 6.)

CHAPTER 2

The Skeleton of a C Program

'J.l1!y,' said the Dodo, 'the best way to explain it is to do it.'

Alice's Adventures in Wonderland

Let's now turn our attention to what a C program looks like. All C programs
consist of a series of functions. A function is somewhat like a BASIC sub
routine. The primary difference is that a C function has a built-in mechanism
for communicating values to the program which called it (and for accepting
values from the calling program).

For example, think about the following BASIC subroutine which evaluates
one side of a right angled triangle given the hypotenuse and the other side
in the variables Hand B:

1000 A = H*H - B*B
1010 If A < 0 THEN PRINT "Invalid triangle": END
1020 X = SQR(A)
1030 RETURN

In order to use this, I have to know that the subroutine needs a pair of values
to work on, and that these must be placed in two variables called Hand B.
Also, I need the information that X holds the result. Then I can write some
thing like

6 2. The Skeleton of a C Program

100 H = 7: B = 3
110 GOSUB 1000
120 PRINT X

for instance. The subroutine is, in fact, being used as a function because it is
being passed values (H and B) and it is returning another (X).

B H x

Subroutine

FIGURE 2.1. Communicating between routines.

In the jargon, a function has a set of arguments (here H and B) and returns
a value. However the important point here is that it is the function itself which
has the returned value, not some variable such as X.

A C function that is equivalent to the subroutine might be

trLside(h, b)
int h, b;
{

}

int a, x;
a = h*h - b*b;
if(a<O){

}

printf("Invalid triangle");
exit(l);

x = sqr(a);
return x;

Plus ca Change ...

As a whole, this won't make much sense yet; but individually, some of the
expressions are pretty BASIC-like. For instance

a = h*h - b*b;

is different only in that it is terminated by a semicolon. Similarly

if(a<O)

isn't a million miles from

Simple and Compound Statements 7

IFa < o THEN

and

printf("lnvalid triangle");

is pretty close to

PRINT "Invalid triangle"

Vive la Difference

Now for some of the differences. First the function is given a name (trLside)
instead of a starting line number (in fact, there are no line numbers in C). The
name may consist of any set ofletters (usually lower case, by convention) and
the underline symbol is regarded as an honorary letter to improve readability.
The number of letters that are significant varies between implementations.
Often, it's six, so that the effective name of my function is "trLsi".

The function name is followed by the argument list in brackets, and the
arguments are separated by commas.

There are then two statements beginning with the keyword "int", which I
want to ignore completely for the time being. There is a "{" symbol between
them, however, whose significant I do want to deal with.

Simple and Compound Statements

You'll have noticed that every line of the code is terminated by a semicolon.
In fact, there may be semicolons within a line as well. For instance you could
initialize a few variables like this:

p = 3;

which is just like the BASIC:

20 P = 3:

r = 7;

R=7:

z = 0;

Z=O.

The difference is that the semicolons act as statement terminators whereas the
colons in BASIC act as statement separators. A statement in BASIC may be
terminated by one other symbol-newline. In C, the newline character has
no significance at all. Thus:

or

or

p = 3;

p=
3;

8 2. The Skeleton of a C Program

p

3

all have the same meaning.
The advantage of this is that groups of statements may run over the end of

a line in a way which most BASICs won't allow. How often have you tried to
write:

2010 IF a> 7 OR b = 3 OR c > 0 THEN (some long sequence of
operations that won't fit on a line)

and had to rewrite it as a subroutine when you've realized there's going to be
a problem?

On the other hand, if newline doesn't mean anything, how does C know
which statements belong in the conditionally executed bit and which don't?
Easy! You can combine simple statements (those terminated by semicolons)
into compound statements. A compound statement is a set of simple statements
with curly brackets round them. The rule is that if you can put a simple
statement somewhere, a compound statement will fit there just as happily.
The whole of a C function is a compound statement, so there are curly brackets
at its beginning and end. You'll notice that I've lined them up vertically, but
that is purely for readability. The compiler doesn't notice spaces, tabs, or
newlines, so you can layout the functions more or less how you like.

You'll see another use ofthe compound statement idea in the "if" statement:

if(a<O){

}

printf("Invalid triangle");
exit(l);

There are two things to do if a is less than zero, so they have to be compounded.
Incidentally, notice that "if" and all other keywords appear in lower case.

Functions That Don't Return Values

At this stage, I don't want to examine the syntax of the printf function (yes, it
is a function!) but I do want to look at the next statement:

exit(l);

This is another function, which will return control to the operating system
(somewhat like END in BASIC). exit passes an argument, usually zero if
everything has gone smoothly and one if it's an error exit, as here. However,
it obviously can't return a value. This is quite legitimate. C functions don't
have to return anything if it's not appropriate.

Main

Returning Values

Where a function does return a value, we can pass it to a variable as in:

x = sqr(a);

9

The value that the function passes back is identified in the return statement:

return x;

Having defined trLside, then, I can reference it from another function by
writing something like:

length = tri_side(hypot, other-side);

This will have the following effects:

1. The contents of hypot are passed to h in trLside.
2. The contents of other-side are passed to b in tri_side.
3. x is evaluated in trLside.
4. The contents of x are transferred to length.

Main

If you compare what we have so far with a typical BASIC program, you'll see
that there's a rather important element missing-the main program! Since
everything in C is a function, it won't surprise you to learn that there must
be, in every C program, a function called main which acts like the main
program in BASIC. This is usually the first function in the program, but it
doesn't have to be.

We could write something like this, then:

mainO
{

}

int length, hypot, other _side;
hypot = 13;
other-side = 5;
length = tri_side(hypot, other-side);
printf("The length is %6d long", length);

tri_side(h, b)
int h, b;
{

int a, x;
a = h*h - b*b;
if(a<O){

printf("lnvalid triangle");
exit(l);

10

}

2. The Skeleton of a C Program

}
x = sqr(a);

return x;

main sets up values for hypot and otheLside and then calls trLside, which
works out the third side and passes it back, where it's assigned to length.
Finally it's printed out (again, don't worry about the printf syntax yet). If a
function executes its statements in order and simply falls off the end of the
world into its closing curly bracket, no return is necessary (provided, of course,
we don't want to return a value), which is why there isn't one at the end of
main. Notice also that main takes no arguments, so its brackets are empty.
They must be present though.

Immediately below main, trLside is defined, just as the equivalent BASIC
subroutine would have been. There are three further functions:

printf
exit
sqr

The first two will be in the library, so the linker will pick them up, but the
chances are that you'd have to write sqr (to evaluate the square root) yourself.
We'll examine that problem later.

Variable Types

There remains one keyword that I've used without comment: int. This specifies
a variable (or set of variables) to be of integer type.

In BASIC, the type of a variable is implied by its name. There are usually
only two possibilities. The variable can have no suffix, in which case it's
assumed to be able to hold a decimal value (strictly, a floating point number),
or it can have a $ suffix in which case it holds a string. Some BASICs allow a
% suffix which specifies an integer.

In C, you must declare the type of a variable before you use it. The name
itself is not important and the compiler gleans no information from it. We'll
come across a number of type specifiers later. For the minute, I'll mention
only two:

int
char

The first, as I've already said, indicates integers. The second, fairly obviously,
defines characters. So:

int value, a, zero, fred;
char c, delim;

declares the variables value, a, zero and fred to be integers, and the variables

Global Variables 11

c and delim to be characters. The actual size of an integer is implementation
dependent, but for most micros it's 16 bits, which means that the range of
values which can be held is - 32768 to 32767. The characters are 1 byte each.
So c contains one character and so does delim. Thus we don't, at the moment,
have a way of representing a character string at all.

Variable Scope

In BASIC, once you have used a name, a particular chunk of memory is
assigned to it, and any subsequent reference to that name is used to relate to
that chunk of memory. This is fine most of the time but it does mean that if
you reuse a name in a subroutine that you've already assigned in the main
program, the new value will overwrite the old one and confuse everybody.

C gets around this problem very simply. A variable defined inside a function
has a meaning only inside that function. We say that the scope of the variable
is limited to the function. For instance, in our example program, a and x are
meaningless outside trLside. Similarly, hypot has a meaning only inside main
because that's where it's defined.

This is why we need a mechanism (the parameter list and the return
statement) for transferring data between functions; as soon as a function is left
the values stored in its variables are lost. It also means that we don't have to
worry about reusing names; a variable y in main would be quite distinct from
a variable y in tri_side.

You'll notice that I've also made a distinction between parameters that are
passed to a function and those that are local to it. In trLside, I've written:

trLside(h, b)
int h, b;
{

int a, x;

when you might have expected:

{
int h, b, a, x;

This is true because C expects to see arguments defined immediately after
they're referenced. Otherwise, it will assume them to be integers. If it then finds
a type specification within the body of the function it will claim that this is a
redeclaration, not unnaturally. So type declarations for function arguments
must appear before the function body, as I've shown.

Global Variables

Of course, there may be circumstances in which we actually want all the
functions in a program to have access to a particular variable. Such a variable
is called global, and it must be defined outside all functions, including main.

12 2. The Skeleton of a C Program

Thus a program might appear as:

int a;
main()
{

int b;

a = a + b;

}
function(b, c)
int b, c;
{

a = a + c;

}

The variable "a" now has exactly the same meaning within main and
junction, so "b" and "c" are being added into the same cell.

Loose Ends

I have (deliberately) been less than precise in this chapter, and I've committed
a number of sins of omission. For instance the scope rules I've just outlined
are very incomplete. My defence is that at this stage, I'm simply trying to give
you an idea of the general appearance of a piece of C code, without getting
too involved in detail. In later chapters I shall return to all of the points so
far touched on.

For example, the statements

could be replaced by

and similarly

x = sqr(a);
return x;

return sqr(a);

length = trLside(hypot, other-side);
printf("The length is %6d long", length);

is the same as

printf("The length is %6d long", trLside(hypot, other-side»;

Whether this kind of code compaction is desirable is a matter of opinion. It
can lead to very obscure code.

Comments 13

printf

I have, up to now, avoided explaining the syntax of the printf (for "print
formatted") function. I'll give a brief introduction to it here, although, again,
there is more to come later. The first argument is a string, enclosed in double
quotes, which is printed out as it stands unless it contains a "%" symbol. So
for instance

printf("This is a message");

will print out

This is a message

However,

printf("The length is %4d cms", 1);

will print:

The length is ----cms

and the characters I've marked with minus signs will contain the value of 1.
Thus the "%4d" says "insert in the next 4 character spaces the value in decimal
(hence the d) of the next argument" (in this case 1). Similarly:

printf("lst value: %3d; 2nd value: %5d", x, y);

would print:

1st value:---; 2nd value: -----

with the value in x occupying the first 3 blanks and the value in y appearing
in the next 5.

Comments

I have not included any comments in the sample functions introduced in this
chapter. C does allow for them (just as BASIC does with REM). They can
appear almost anywhere, between the symbol pairs /* and */.

For example, if I wanted to remind myself that the sqr function does not
yet exist, I could terminate the appropriate line of code like this:

x = sqr(a); /* Not yet written !! */

It is, of course, good practice to comment your code, but you will see very few
lines of commented code in this book. That is true because most of the
functions outlined are the subject of detailed description in the text, so that
to add comments in the listings would be superfluous. To be useful, comments
must illuminate the code. Unhelpful comments appear too often. For instance,
I have seen the following line, written by a professional programmer:

14 2. The Skeleton of a C Program

i = 0; /* set i to zero */

Honest!

PROJECTS

These are simple warm-up exercises to let you flex your C muscles. If you need a
function that is standard in BASIC, such as SQR, you may assume that the correspond
ing C function sqrO exists.

1. Write a C function that returns the area of a triangle whose sides are a, b, c. Use
the formula

A = Js(s - a)(s - b)(s - c)

where s = t(a + b + c). Your program should check that it is possible to form a
triangle with the given sides, and print the message "impossible triangle" if not.

2. What does the following function do?

conv(t)
{

int t, u;
u = 5*(t - 32)/9;
return u;

3. Write a function vnoc that undoes what conv does.

4. Write a program to find the prime factors of an integer.

5. Light travels at 186,000 miles per second. An astronomical unit is 93 million miles.
Write a function delay(d) that returns the time that it takes a radio message to reach
a space probe at a distance of d astronomical units from the transmitter.

CHAPTER 3

Loops and Control Constructs

"Then you keep moving around, I suppose?" said Alice.
"Exactly so," said the Hatter: "as the things get used up."
"But what happens when you come to the beginning again?" Alice

ventured to ask.

Alice's Adventures in Wonderland

All modern computer languages provide a number of control structures
that allow you to execute a piece of code once or repeatedly as long as
some condition is true. In BASIC we have IF .. THEN (and sometimes
IF .. THEN .. ELSE) and FOR .. NEXT.

C has a rather more powerful range of such constructs.

If

Let's deal with "if" first of all, since we've already met it in passing. Its general
form is:

if (condition)
statementl

else
statement2

statementl and statement2 can, of course, be simple or compound statements
and the else clause is optional. The conditional operators are a little unusual.

16 3. Loops and Control Constructs

Where, in BASIC, you might write:

IFa = 7THEN ...

in C you would write:

if(a == 7) ...

The double equals sign is very important. If you don't put it in the effect is
not to generate a syntax error, but to do something unexpected. The results
can be very confusing. The reason for it is that C needs to be able to distinguish
between an assignment and an equality. For instance:

a = 7;

means "put 7 into a", whereas:

a == 7

means "compare a with 7". (Actually that isn't quite true; see the next section.)
BASIC lives with the ambiguity of using the equals symbol to mean two
different things. But C, like most other modern languages, refuses to com
promise here, which makes life easier for the compiler and, as we shall see
later, allows for some more powerful constructs.

Conditional Expressions

Now to clear up a little terminological inexactitude (as Richard Nixon's press
secretary used to say) that I've just perpetrated.

C evaluates a conditional expression (such as x > 3 or a == 7) to 1 or 0
depending on whether it is true or false. Thus the value of x > 3 is 1 if x = 5,
o if x = 3. However, statementl will be executed for any non-zero value of the
conditional expression in the brackets. So you can write

if (x > 0) printf("x is positive");

which is what you'd expect, but also

if (x) printf("x is not zero");

(Notice that there's no need for curly brackets here because only a simple
statement follows the condition.)

You can negate a conditional expression by preceding it with an exclama
tion mark. Thus

if (x == 0) printf("x is zero");

is exactly equivalent to

if (!x) printf("x is zero");

The exclamation mark can also precede a conditional operator to negate its
effect. The complete set of conditional operators is:

while

is equal to
> is greater than
>= is greater than or equal to

!= is not equal to
< is less than
<= is less than or equal to

17

Notice that one of the equals symbols is replaced by the exclamation mark in
"is not equal to", and that the order of the symbols in ">=" and" <=" is
significant. If you write them the other way round, you'll almost certainly
confuse the compiler.

Logical Connectives

Combinations of conditional expressions can be formed using the connectives
&& (and) and II (or). This leads to statements like:

if (a > 10 && a < 20)
printf("a is within range");

The whole expression could be negated:

if (!(a > 10 && a < 20))
printf("a is not within range");

Notice the use of brackets here to make the "not" apply to the whole expres
sion. The precedence of the && and II operators is not always defined the
same way by different compilers so it's sensible to use brackets wherever they
are used together to make your meaning totally clear. For example

if ((x >= 10 && x <= 50) II y == 0)

means

if x lies in the range 10 to 50 or y is zero

whereas

if (x >= 10 && (x <= 50 II y == 0))

requires the value of x to be at least 10 regardless of the value of y.

Loops

There are a number of ways of forming loops in C. All use the conditional
expression concept that we've already seen in the "if" statement.

while

This is the simplest loop format. Its general form is

while (condition)
statement

18 3. Loops and Control Constructs

As long as the condition is true (i.e., non-zero), the statement (which, as usual,
may be simple or compound) will be executed.

Let's take a simple example. We'll write a program to evaluate the cubes of
integers between 1 and 20. It looks like this:

mainO
{

}

int value, cube;
value = 1;
while (value < 21) {

}

cube = value*value*value;
printf("%2d %5d", value, cube);
value = value + 1;

Let's take this statement by statement. First, value and cube are declared to
be variables of type integer. Next value is initialized to 1. Now the loop is
entered, and its contents will be executed, since value is less than 21. (If value
were to be 21 on entry, the loop would never be executed at all. Compare this
with the action of a FOR-NEXT loop which will always execute once regard
less of the initial conditions.) The cube is evaluated, value and cube are printed
out, and value is incremented by 1. Since that's the end of the loop, the test is
made again, and the whole thing will be repeated until value reaches 21. That's
a neat structure isn't it? It gets better. ...

Autoincrements

In most languages, there is a need to increment variables pretty frequently.
We've just seen it in:

value = value + 1;

which is (give or take a semicolon) identical to its BASIC equivalent. But C
recognises the popularity of this kind of structure and provides a special form
for it. This is:

value++;

which you can read as "increment value by I". Now the significance of this
isn't just that it's slightly quicker to write "/ ++;" rather than "/ = / + 1;",
say. It is, rather, that the compiler can now distinguish between an increment
and a common or garden addition, and handle them differently. It can't tell
the difference between "/ = / + 1;" and "a = b + c;". In the latter case it has
to find where b is, find where c is, add them together, find where a is and place
the result there. It will treat "/ = / + 1;" much the same way. But "/ ++" is
a different kettle of fish. The compiler knows it's just an increment and will

The sqr Function 19

implement it as a single machine code increment instruction, which means it
only references f once.

This kind of philosophy makes C compilers relatively efficient (i.e., they
produce machine code which isn't too much more convoluted than might be
written by a human programmer), so the final machine code program can be
fairly small and will execute very fast.

There's more. You can increment a variable whenever you mention it in any
context. So I could rewrite the cubes program like this:

main()
{

}

int value, cube;
value = 0;
while (value++ < 20) {

}

cube = value*value*value;
printf("%2d %5d", value, cube);

Now value is incremented immediately after the test is made. Consequently,
I've initialized it to O. Otherwise, it would be 2 on entering the loop for the
first time. Because the increment occurs after the test, I've also had to change
the boundary value to 20. I could have made the increment occur before the
test by writing:

++value

in which case the boundary changes back to 21.
There is one final simplification which is possible:

main()
{

}

int value;
value = 0;
while (value++ < 20)

printf(,,%2d %5d", value, value*value*value);

Now one of the arguments of printf is the calculation, so there's only a simple
statement in the while loop. Consequently we lose a pair of curly brackets.

Incidentally, decrements can be performed in an equivalent way to incre
ments, for example by using things like x--.

The sqr Function

In Chapter 2, I made use of a square root function (which I called sqr) and
then blithely remarked that it probably wasn't present in your compiler's
library. Never mind; let's write it now.

20 3. Loops and Control Constructs

There's a simple relationship which states that if you're trying to take the
square root of n, and you have an approximation x to it, then a better
approximation is:

(x 2 + n)/(2x).

It doesn't matter how bad your initial approximation is, this formula will
produce a better one. So you can use the better one to generate a better one
still, and so on, until you get as close as you like to the right answer.

Here's a first attempt at the function, using this idea:

sqr(n)
int n;
{

}

int approx;
appro x = 1;
while (n!= approxMpprox)

approx = (approx*approx + n)/(2*approx);
return approx;

This is straightforward enough. The approximation is initialised to 1. While
the current approximation squared isn't equal to n (the value being square
rooted), the formula is evaluated and the result put back into approx. As soon
as they are the same, the loop is exited and the current value of approx is
returned.

However, bear in mind that I've declared everything as integers. My main
reason for doing this is that on some common C compilers, it's the only
numeric data type implemented. If you are mucking about with square roots
for real, you obviously need to be able to handle numbers that include decimal
fractions. C calls this type float (for floating point). For the time being, we're
going to do without it.

It is instructive to examine the precise effect of the function on a couple of
values. First, let's try 16. The initial value of approx is 1, so the next value will
be (hI + 16)/(2*1) = 17/2 = 8. It should be 8.5, of course, but it will actually
be truncated because it is an integer. Then you'll get (8*8 + 16)/(2*8) =
80/16 = 5. The next value is 41/10 = 4, and that will satisfy the while condi
tion, so the loop is exited and 4 is returned, correctly.

However, if you repeat the trick with n = 21, you'll get the sequence 11, 6,
4, 4, 4, ... , going around the loop forever.

In other words, the algorithm converges on 4 (as it should, because this is
the nearest integer below the square root of 21), but the while condition is
never satisfied because 4*4 isn't 21! This problem is certainly emphasised by
my insistence on sticking to integers, but it would still be present if you used
floating point variables. To any given degree of precision, there are infinitely
many numbers whose square roots cannot be represented exactly. So it's
unrealistic to expect the condition n == approX*approx to be met at all!

The sqr Function 21

Obviously, we need to build in a maximum allowable error. One way of
approaching the problem would be to see whether n is contained between the
squares of approx and approx + 1:

while (!(n > aproX*approx && n < (appro x + 1)*(approx + 1))) ...

but that looks a bit messy. Alternatively, we could use the way the sequence
converges, by comparing two successive values of approx. If their difference is
less than our required error limit we exit the loop. This leads to the following
revision:

sqr(n)
int n;
{

}

int appro x, new _approx;
approx = 1; new_approx = 0;
while (appro x - new_approx >= 1) {

}

new_approx = (approx*approx + n) / (2*approx);
approx = new _approx;

return new _approx;

Wait a bit though, that isn't quite right! We keep a temporary reference to the
old approximation O.K., but we destroy it with the last statement in the loop,
so that, second time round, appro x and new _approx are guaranteed to be the
same!

How about this, then?

sqr(n)
int n;

{

}

int appro x, new _approx, forever;
appro x = 1; forever = 1;
while (forever) {

}

new_approx = (approx*approx + n) / (2*approx);
if(approx - new_approx < 1)

return new _appro x;
approx = new _approx;

Now the loop is executed indefinitely so far as the while condition is con
cerned, because forever is set to 1 (i.e., true). I could have written:

while (1)

but the meaning is less clear. Inside the loop, the if statement decides whether
to continue the loop or return from the function.

22 3. Loops and Control Constructs

Problem 1

There is still a bug here. Usually approx is greater than new_approx so we
have, in calculating the square root of 21, for example,

11 - 6 = 5 : not less than 1 so don't return
6 - 4 = 2 : not less than 1 so don't return
4 - 4 = 0: less than 1; return

However, on the first time through the loop approx = 1, so the if condition
gives 1 - 11 = -10 which is less than 1. Oops!

You could get around this by mimicking BASIC's ABS function which
simply strips off any minus sign present:

if (abs(approx - new_approx) < 1)
return new _approx;

Write a Cabs function.

It may seem that it is possible to use a while loop for almost any purpose,
and that other looping structures are unnecessary. At one level, that is true,
but there are times when alternative arrangements are more convenient. C
provides two other structures. The first is ...

do - while

This has the form:

do
statement

while (condition);

It is, fairly obviously, an upside down while loop because the conditional
expression is evaluated after the statement has been executed. So the statement
is obeyed at least once regardless of the truth or falsity of the condition.

This gives us another way to handle the sqr function:

sqr(n)
int n;
{

}

int appro x, new _approx;
newapprox = 1;
do {

approx = new _approx;
new_approx = (approx*approx + n) / (2*approx);

} while (abs(approx - new_approx) >= 1);
return new _approx;

Now, the original problem with while has gone away, because the test is made
before the values in approx and new _approx have been equated. On the other

for loops 23

hand, an unnecessary transfer takes place on the first loop, which requires us
to give new _approx a dummy value (it doesn't matter what-I've chosen 1
at random). Some compilers would be happy if you don't do this, but it's bad
practice not to be sure what's happening in a program.

Problem 2

Rewrite the cubes program using a do-while loop.

for loops

Finally, there's the good old for loop, which doesn't look too unlike its BASIC
forbear. Here's an example:

for (n = 1; n < 50; n++) {

}

The meaning is pretty clear. The first expression (n = 1) identifies the starting
value for n, the second (n < 50) gives the condition for which the loop will
continue to be executed, and the third gives the incremental details. So the
above statement is equivalent to the BASIC:

FOR N = 1 TO 49 STEP 1

except that, as with while, the test occurs at the top of the loop, and of course
the BASIC version doesn't actually need the "STEP 1", whereas the "n++"
is obligatory in C.

What happens, though, if you want an increment other than 1? The third
expression can be a simple statement, so that:

for(n = 1; n <= 50; n = n + 5)

would be equivalent to:

FOR N = 1 TO 50 STEP 5

There is a more convenient form of n = n + 5, however. It is:

n += 5;

This has the same advantage in terms of compilation efficiency as the auto
increment form; n is only referenced once. It can be used with any arithmetic
operator. So:

and

y *= 51 means "multiply y by 51"
a -= 2 means "decrement a by 2"

r /= 3 means "divide r by 3"

24 3. Loops and Control Constructs

The C for loop is much more flexible than its BASIC stablemate. For instance,
there is nothing at all to stop me writing:

for(n = 5; i!= 60; p *= 3)

in which case n is initialised to 5, the loop is executed only as long as i isn't
60, and p is multiplied by 3 after every pass through it.

Problem 3

You'll have noticed that whenever I've wanted to take a power of a number,
I've used successive multiplication. This is so because there is no power
operator in C. The" A" symbol, which BASIC uses for this purpose, exists,
but it has another meaning. Write a function:

power(number, n)

which returns number to the power n, using a for loop.

Answers

Problem 1

One solution is:

abs(value)
int value;
{

}

if (value < 0)
value = - value;

return value;

There are other possibilities, like writing

value *= -1;

instead of

value = - value;

but there is usually a good case to be made for making code as clear as possible.

Problem 2

mainO
{

}

int value;
value = 1;
do

printf("%2d %5d", value, value*value*value);
while (value++ < 20);

for loops 25

There is nothing much to comment on here, except to clarify a point that may
have been worrying you. Since value can be incremented anywhere, why do
so in the while condition rather than inside the printf argument list? This is
possible, but it's very bad form, because the order in which such increments
occur inside a function call is not defined. Consequently the effect will vary
between compilers, whereas your object should be to write portable code.

Problem 3

power(number, n)
int number, n;
{

}

int count, result;
result = 1;
for (count = 1; count <= n; count++)

result *= number;
return result;

This will, of course, only work for positive numbers, but it does handle n = 0
correctly, because the loop is never executed, count being immediately greater
than n, and so 1 is returned.

PROJECTS

1. Write a C program to print-out a complete set of multiplication tables for numbers
from 1 to 12:
(a) Using for loops,
(b) Using while loops,
(c) Using do/while loops.

2. If x is an approximation to the cube root of n, then

(2x3 + n)/3x2

is a better one. Use this fact to write a function cbrt(n) which evaluates the cube
root ofn.

3. In arithmetic modulo n numbers are replaced by their remainder on division by
n. (For example 15 modulo 7 is 1 because 15 = 2*7 + 1.) Write a program to print
out addition and multiplication tables for the numbers 0, 1, ... , n - 1 modulo n,
for n = 1, ... , 10.

CHAPTER 4

Arithmetic and Logic

... and then the different branches of arithmetic-Ambition, Distraction,
Uglification, and Derision

Alice's Adventures in Wonderland

"Contrariwise," continued Tweedledee, "if it ain't so, it might be, and if
it were so, it would be; but as it isn't, it ain't. That's logic."

Through the Looking Glass

; .

It seems a little late to introduce arithmetic now, when we've been using it
with wild abandon for the last two chapters. Up to now, though, all the
symbols I have used have had the same meanings in BASIC, except for the
increment and decrement operators, which I introduced separately. So far
then, we have:

+ add
subtract

* multiply

/ divide
++ increment by 1

decrement by 1

There is one more to deal with: the modulus operator (%). This gives the

Logical Operators 27

remainder of a division. For example:

8 % 3 = 2, the remainder when 8 is divided by 3.

As we shall see in Chapter 15, there is a subtle distinction between this and a
true mathematical mod operation. For the time being, we'll ignore it.

Odds and Evens

An obvious use of this is to determine whether a value is odd or even. Let's
write a function called even which returns 1 if its argument is even and 0 if it's
odd.

even(n)
int n;
{

if(n % 2)
return 0;

else
return 1;

}

That needs a little thought; if n is odd, dividing it by 2 will leave a remainder,
so n % 2 will be true. Hence 0 should be returned. If it's even, n % 2 is false (0)
so we return 1.

Now, in some other function, I can write:

if (even(number))
printf("%4d is even", number);

for example. As you see, this reads pretty nicely, and its function is immediately
apparent. It is a matter of good programming style that this should be so ..

Logical Operators

Anyone who has played around with machine code will be familiar with the
logical operations AND, OR, NOT and XOR. Anyone who hasn't probably
won't be. There's a good reason for that. Most high level languages certainly
don't encourage you to use them and some positively prohibit their use. This
is a pity because, in some circumstances, they provide a set of powerful tools
for problem solving. C gives you direct access to the lot. I'll assume you haven't
met them and deal with each one in detail. If you are familiar with the
techniques you'll be able to skim through this, although, of course, the C
syntax will be new.

I'm going to hang most of the examples which follow on to the general area
of character-handling techniques, so all variables will be declared to be of type

28 4. Arithmetic and Logic

char. I'll assume that a "char" is an eight-bit byte, which is a pretty safe bet,
regardless of your machine or compiler.

ASCII Code

You'll probably be familiar with the numerical coding of characters because
BASIC gives you access to its thinking on the subject via the ASC function.
You probably even remember some of the more common values: "A" = 65,
"1" = 49 for instance. If you think about the ASCII coding system in binary,
though, it's possible to see what information is contributed by each bit:

Not used
in standard
ASCII

76543210

o a-o

I Digit/p-z

o Upper case

I Digit/lower case

o Digit

I Letter

So, for example, if bit 6 is 1 (and therefore the symbol is a letter), bit 5
determines whether it is upper or lower case. I have, for the purpose in hand,
completely ignored special symbols such as * ? ! etc. and control characters.

AND

The AND operation compares two bit patterns and produces a third result
pattern. If corresponding pairs of bits are both' l' the result bit for that position
is set to '1'. Under all other circumstances it is set to '0'.

For instance, suppose there are two bytes p and q with the bit patterns
shown below:

P 01101001
q 10111010

Then:

p & q = 00101000

[i.e., if p AND q contain 1 's in a given column, the result bit is 1]. I've used
the C notation for AND (&). You'll remember the logical connective &&

Logical Operators 29

which also means 'and', but in the context of a conditional expression. The
single ampersand symbol represents a 'bitwise AND'.

Now to use this idea on our ASCII characters. Suppose that we have a
character entered but we don't check on its case on input. For convenience,
we would like to standardize on upper case. So we need a function called
toupper that will leave upper case letters alone, but convert lower case to their
upper case equivalents. Here it is:

toupper(c)
char c;
{

}

char mask;
mask = 223;
return (c & mask);

That's breathtakingly simple. How does it work? Well, think about the binary
value of 223:

11011111

AND this with any pattern

abcdefgh

and what you get is

abOdefgh

So bit 5 is forced to zero, and the other bits are left unchanged; exactly what
we need for an upper case letter, assuming, as I said before, that we are sure
c was a letter in the first place.

Notice that, although I declared mask to be a char, C is quite happy to pass
a number to it (in mask = 223;). The language will allow most (sensible) type
conversions of this kind. The term "mask" is commonly used in this kind of
context. It's very descriptive. Bit 5 is, indeed, hidden or masked out.

In fact I didn't really need the extra variable at all. I could have written

return (c & 223);

Problem 1

Write a function same_start(p, q) which returns 1 if bytes p, q start with the
same bit, and zero if they start with different bits.

OR

Like AND, OR compares two bit patterns and generates a resulting pattern.
If either of the corresponding pairs of bits is a '1' the result bit for that column
is '1'. Only if both bits are zero is the result zero. For instance:

30 4. Arithmetic and Logic

p 01101010
q 00100011

p I q is 01101011

[i.e., if p OR q contains a '1' in a given column the result bit is 1].
The symbol for bitwise OR is a single vertical bar, which is consistent with

the logical connective equivalent.
This operator allows us to write the tolower function, which will form lower

case letters from either upper or lower case arguments:

tolower (c)
char c;
{

}

char mask;
mask = 32;
return (c I mask);

This time the mask pattern is:

00100000

OR this with:

abcdefgh

and the result is:

abldefgh

and you can see that bit 5 is forced to 1, giving a lower case letter. Actually,
more sophisticated versions of toupper and tolower probably will be in your
compiler's library, but the next one may not be.

Problem 2

Write a function same_ends(p) that returns 1 if a byte p starts and ends with
the same bit, and 0 if not.

XOR

This is short for eXclusive OR. It's like OR except that it excludes the
condition that both bits are '1'.

So, to take the same example as for OR:

p 01101010
q 00100011

p A qis 01001001
1 A 1 = O.

The C symbol for XOR is A.

Logical Operators 31

Now we can write the function swapcase, which converts lower to upper
case and vice versa.

swapcase(c)
char c;
{

}

char mask;
mask = 32;
return (c /\ mask);

Consider the effect of this on our general pattern:

abcdefgh
00100000
ab?defgh

'a' will be reproduced in the result pattern whatever it is, because 1 /\ 0 = 1
and 0 /\ 0 = O. Obviously the same goes for b, d, e, f, g and h. Now look at 'c'.

If c = 0 we have 0 /\ 1 = 1
If c = 1 we have 1 /\ 1 = 0

So bit 'c' is switched (or toggled) between 0 and 1, thus swapping the case over.

NOT

There's one remaining logical operator, NOT. This inverts every bit in a field.
For instance:

p 01110001
- P 10001110

You'll see that the NOT operator symbol is a tilde C).
Here's one possible use for it. Imagine that you're writing a traffic simulation

program that involves traffic lights. So you could have the definitions:

char red, green, light;
red = 0; green = 255;

for instance. (255 sets all bits of the byte to 1.) Now you can write statements
like:

if(light == red)

You could also write an extremely simple function to change the light:

change (light)
char light;
{

return night);
}

32 4. Arithmetic and Logic

Problem 3

I began this discussion by remarking that an 8-bit byte was pretty much a
racing certainty. However, there do exist a (relatively) few machines with a
9-bit byte, 6 bits used to be a fairly common standard and who is to say that
machines with 10-bit bytes may not become all the rage?

Clearly, at least some of the code I have been presenting fails to work if
confronted with one of these newfan~ed machines.

The trick is to write code which does not depend for its correct functioning
on such unknowns. Can you rewrite the traffic light code snippet in such a
way that it is implementation independent?

Shifts

If you shift a bit pattern left and fill in to the right with zeros it has the effect
of multiplying by 2. For instance:

p: 00010011 = 19
shift left one bit: 00100110 = 38

i
fill with a zero

This can be done directly in C:

y = x« 1;

will shift x left I bit and put the result in y. Similarly:

p = r« 4;

would shift r 4 bits left, resulting in a multiplication by 16.
These operations are much faster than performing conventional multiplica

tions, particularly on cheap microcomputers that have no hardware multiply.
So they can be very useful in time-critical routines. Here's a "multiply by ten"
using this technique:

times10(n)
int n;
{

}

int m, p;
m = n« 1;
p=m«2;
return (m + p);

First n is shifted left 1 bit, so m = 2n. Then p is evaluated as 4m which is 8n.
So the returned value is 2n + 8n = 10n.

Right shifts are also possible:

a = b» 2;

Logical Operators 33

would shift b 2 bits right and put the result in a. (Incidentally, if you want the
result in b you could write b »= 2, just as you can write b += 2.)

Normally, a right shift is equivalent to a divide by 2, as you'd expect, but
there are exceptions to this rule which we'll come across later.

Problem 4

Write a function agree(p, q) which returns 1 if the top 3 bits of p are the same
as the bottom 3 bits of q, or the top 3 bits of q are the same as the bottom 3
bits of p.

p * * * .. +++
at least one pair agrees.

q +++ .. * * *

OR:

Answers

Problem 1

same_start(p, q)
char p, q;

{

}

char mask;
mask = 128;
return (p & mask == q & mask);

same_start(p, q)
char p, q;

{
return (p & 128 == q & 128);

}

Problem 2

same_ends(p)
char p;

{
return ((p & 129 == 0) I (p & 129 == 129));

}

Explanation: 129 = 10000001. So if p = abcdefgh, then p & 129 = aOOOOOOh.
If a = h this is 00000000 0 R 10000001.

Problem 3

It's deceptively simple; just write:

red = 0; green = - red;

34 4. Arithmetic and Logic

Thus red sets all bits of the byte to zero regardless of its size, and green is set
up to invert all of them.

Problem 4

I'll do this via a second function ag(p, q) which does half the job:

agree(p, q)
char p, q;
{

return (ag(p,q) I ag(q,p));
}
ag(p,q)
char p, q;
{

return (((p & 224) » 5) == (q & 7));
}

Note that 11100000 = 224, 00000111 = 7.

CHAPTER 5

Strings, Arrays, and Pointers

They had a large canvas bag, which tied at the mouth with strings: into
this they slipped the guinea-pig, head first, and then sat upon it.

Alice's Adventures in Wonderland

Thus far in our discussions, there have been two glaring omissions: any
reference to string handling and any reference to arrays. In most BASICs, a
string is held in an array, but the connection is not made explicit. In C, the
relationship between strings and arrays is much more evident, so we can kill
two birds with one stone.

Strings and Pointers

We have already met strings briefly, as arguments in a printf fun~tion

printf("This is a string");

for example. It appears that there is nothing very unusual here-a string is

36 5. Strings, Arrays, and Pointers

enclosed in double quote marks, just like its BASIC equivalent. So I ought to
be able to write

s = "this message";

and then, later

printf(s);

Again, just like BASIC. Indeed I can do these things (although, for reasons
which will become apparent shortly, it's very inadvisable), and this fact is
totally misleading because it masks the method C uses for thinking about
strings. So what's really going on?

When C compiles a statement like

s = "this message";

it sets up a set of consecutive bytes somewhere in memory:

38012 t
38013 h
38014
38015 s
38016
38017 m
38018 e
38019 s
38020 s
38021 a
38022 g
38023 e
38024 0 [ASCII null delimiter]

I've shown a set of possible actual addresses which might be used. There's
nothing special, of course, about 38012, but subsequent bytes follow the
obvious sequence through memory. You'll notice that there's a delimiter
provided by the system, which is a zero byte. That's not ASCII zero (whose
value is 48) but ASCII null (i.e., all bits set to '0').

Now for the unusual bit. The variable s is set to 38012. In other words, it
is not the string but rather a pointer to the string. The idea of a pointer is
central to the C programming philosophy and I shall have a lot more to say
about it later. For the moment it is enough to note that it is pointers to strings,
rather than the strings themselves, that are passed around in a C program.
Even in the "print a message" case

printf("some output");

the argument that is really passed to printf is the pointer to the string "some
output."

Declaring Arrays 37

Arrays

As we shall see, there are significant advantages to be gained from the notion
of using a pointer to a string, rather than the string itself. However, I first want
to focus on an apparent disadvantage.

In BASIC, I could have written

a$ = "this message"

and then later

a$ = a$ + "something else"

In C, an attempt to do this same kind of operation (i.e., to put's' in 38024, '0'

in 38025, 'm' in 38026, etc.) would be almost certainly doomed to disaster. The
trouble is that any storage allocated chronologically after the original string
will also follow it physically, so it's a Cray X-MP to an IBM PC that this
memory is already occupied by useful information. C will be quite happy to
allow you to overwrite it, and will take no responsibility for the result, which
probably will be a baffiing crash.

Declaring Arrays

The solution is fairly obvious: set up an array that can hold any desired string
comfortably. An array can be declared in a type declaration statement. For
example

char s[30];

sets up an array of 30 bytes. Similarly

int n[150];

declares an array of 150 integers. Obviously this is pretty similar to BASIC's
DIM statement, but there are some differences. First, square brackets are used
for array subscripts. Second, the range of subscripts set up for s is 0-29, and
that for n is 0-149. In other words, the value in the brackets identifies the
number of elements in the array, not, as it would in BASIC, the highest
subscript.

We're still left with the problem of getting the characters into the array in
the first place. We'll assume there's a function called strcpy which will do the
job (I'll describe it in detail later). So I can write

strcpy(s, "some stuff");

to transfer the string "some stuff" to the array s. There's an important
implication here. If I were to expand the above statement

p = "some stuff";
strcpy(s,p);

38 5. Strings, Arrays, and Pointers

it becomes evident that p and s are the same sort of animal. They are both
pointers! So: An array name is a pointer to the beginning of the array. However,
there is one difference: an array name is a constant and you can't do arithmetic
with it (although I know of one C compiler that allows this!) whereas a pointer
can be manipulated in any way you like.

String Functions

Let's illustrate these ideas by writing functions that mimic BASIC's LEN,
LEFT$, RIGHT$, and MID$.

So first we want a function that is passed a pointer to the string, and will
return the number of bytes the string contains:

len(s)
char s[];
{

}

int k;
k = 0;
while (s[k++])

return (k - 1);

This needs some explanation. First notice that we need to tell C that s is an
array of type char, but we don't have to tell it how big s is. This is a good
thing, because when the function is written, we don't know the size of s, but
in many languages we would have to declare s to be bigger than anything
that's likely to come along, thus wasting memory. As you see, we leave our
options open simply by not entering a value between the square brackets. C
sorts the problem out by allocating space to s only when it knows how much
the calling functions needs (or at least, that's how the mechanism appears; can
you deduce what really happens?).

Now for the body of the function. The basic algorithm is reasonably
obvious. We look through the array searching for an ASCII null and counting
as we go. The count and array subscript are (virtually) the same thing so I've
used just one variable (k) for both. Initially, k is zero, so we examine s[k]. But
we know that this will need to be incremented so why not write s[k++]? Now
we want to keep executing the loop until we find a zero. I could have written:

while (s[k++] != 0)

but that has exactly the same meaning as "while s[k++] is true" which is

while (s[k++]).

What is it that we need to do inside the loop? Just increment 1; but that's
already done! So the loop is empty and just requires a terminating semicolon.

Finally notice that k - 1 is returned. To confirm that this is correct, think

The Left-Hand Bit 39

about the most trivial possible example-the null string. As soon as s[k] is
tested it is incremented, so it will be 1 on leaving the loop, which is one too
many.

The Left-Hand Bit

For reasons that I'll temporarily defer, it isn't very convenient to produce a
direct equivalent of BASIC's

b$ = LEFT$(a$,6)

or whatever. It's better to make the original string and its substring arguments
of the function, so that the equivalent C function call would be

left (a, b, 6);

where a and b are pointers to strings and b will end up pointing to the leftmost
6 characters pointed to by a.

Here's one solution:

left (string, sub, n)
char string[], sub[];
int n;
{

}

int i;
for (i = 0; i < n; i++)

sub[i] = string[i];
sub[i] = 0;

There's nothing really new here. n bytes are copied from the left-hand end of
string to sub, and finally a terminating ASCII null is added. Notice, though,
that since no value is returned by the function, there is no need for a return
statement. An automatic return is executed on reaching the closing curly
bracket.

Problem 1

This function is not robust. That is, if n exceeds the length of string, garbage
will be transferred to sub. This won't actually do any harm because an ASCII
null is transferred first, so an attempt to print sub results in the whole of the
string appearing. However this is likely to lead to confusion during debugging.
Modify the function so that it returns true if the substring is a valid length
and false otherwise.

You can then write:

if (!left (a, b, 7))
printf("invalid string slice");

which will do the transfer and tell you if it doesn't mean anything.

40 5. Strings, Arrays, and Pointers

Right a Bit

The equivalent function to pick up the rightmost n characters of a string is
clearly going to be pretty similar:

right(string, sub, n)
char string[], sub[];
int n;
{

}

int i;
for (i = len (string) - n; i <= len (string); i++)

sub[i] = string[i];

No problems at all with that. Of course, we need the len function to decide
where to start. After that, every byte, including the terminating null, is copied
over.

Problem 2

Write the function substring that takes an argument string, transferring its
result to sub as before, but has two numeric arguments. The first defines which
character to start from and the second how many to transfer. So:

would give "do".

strcpy(string, "hotdog");
substring(string, sub, 4, 2);
printf(sub);

This is BASIC's good old MlD$ of course, but I've always felt the term
"MID" to be quite misleading in this context, because there's no reason why
MID$ should select the middle of a string. It can just as easily select from
either end. Speaking of which, if we had written substring first, right and left
could have been written more simply in terms of substring!

More About Pointers

Actually, very few C programmers would have written these string handling
functions as I've shown. I've already mentioned the implicit connection be
tween arrays and pointers. But C allows you to make this relationship explicit.
A variable can be declared to be a pointer, by preceding it with an asterisk in
a type declaration statement. Thus

char *p;

declares p to be a pointer to characters. In an assignment statement the
asterisk notation is used to identify the object being pointed at. So

*p = 0;

Further Right 41

means "put a zero in the byte which p points to" (assuming p is a pointer to
characters; if it points to integers, zero would be placed in a word).

Let's revise the len function in the light of this.

len(s)
char *s;
{

}

char *begin;
begin = s;
while (*s++)

return (s - begin - 1);

This is clearly a very close relative of the original len function. We're just
missing a few square brackets, and we have to store the initial pointer value
rather than setting a counter to zero.

Left Again

Let's rewrite left in the same way:

left (string, sub, n)
char *string, *sub;
int n;
{

}

while (n--)
*sub++ = *string++;

*sub = 0;

Isn't that neat? I've changed the control structure to a while loop. It just seems
more natural; n is decremented until it's zero, so the loop is executed n times.
Inside it, characters are passed from where string points to where sub points,
and each pointer gets bumped to look at the next character. Finally the
delimiter is added as before.

Further Right

A similar job on right could give:

right(string, sub, n)
char *string, *sub;
int n;

{
string = string + len (string) - n;
while (*string)

42

}

5. Strings, Arrays, and Pointers

*sub++ = *string++;
*sub = 0;

Again, I've altered the loop construct, and the way in which it's finished. Think
about it!

Copycat

Some time back I mentioned that we would need a function called strcpy to
move strings about, and another one, strcat, to concatenate two strings
together into the array space of the first. Let's write strcpy:

strcpy (target, source)
char *target, *source;
{

}

while (*source)
*target++ = *source++;

*target = 0;

This kind of construction should be becoming very familiar!
Here's a possible strcat:

strcat(string, extra)
char *string, *extra;
{

}

string = string + len (string);
while (*extra)

*string++ = *extra++;
*string = 0;

The pointer into string is adjusted to point to its end, and then a string copy
is performed. So we could rewrite it:

strcat(string, extra)
char *string, *extra;
{

}

string = string + len (string);
strcpy(string, extra);

Of course, it's left to the programmer to ensure that enough space is allocated
to the string to contain the additional characters.

Notice that in all these examples I have done arithmetic with the passed
parameters with gay abandon. This is perfectly safe because, of course, I am
only affecting the local copies of the variables.

And now I have to tell you that we have spent much of this chapter

Copycat 43

reinventing the wheel. Most of these functions are provided in any C function
library, and are given these names as standard (except for len, which is usually
called stden; I used the BASIC terminology for easy comparison). Never mind!
It's all good practice.

While I am in confessional mood, I should also warn you that the technique
I've used for initialising strings is a bit sloppy. It may not work on some
compilers. It is safer to use strcpy to do the job, but, of course, I didn't have
strcpy when I first wanted to set up a string. For an alternative method, see
Chapter 6.

Here's one solution:

Answers

Problem 1

left (string, sub, n)
char string[J sub[J;
int n;

{

}

int i, valid;
valid = 1;
for (i = 0; i < n; i++) {

sub[iJ = string[iJ;
if (!sub[iJ)

valid = 0;
}
sub[iJ = 0;
return valid;

We begin by assuming that the transfer is valid. If at some time the transfer
of a null byte occurs, the valid flag is reset to zero. I've written this using arrays
rather than pointers, because you're not supposed to know about pointers
yet. Don't cheat!

Problem 2

This time, I'll cheat and use pointers:

substring(string, sub, start, length)
char *string, *sub;
int start, length;
{

}

string = string + start - 1;
while (length--)

*sub++ = *string++;
*sub = 0;

44 5. Strings, Arrays, and Pointers

No real surprises here; string is made to point to the beginning of the required
substring (note the' -1' -a necessary fiddle factor) and then length is used
as a counter to control the number of bytes transferred.

As I mentioned earlier, if substring exists, left and right are made trivial:

and

left(string, sub, n)
char *string, *sub;
int n;
{

substring(string, sub, 1, n);
}

right(string, sub, n)
char *string, *sub;
int n;
{

substring(string, sub, len (string) - n + 1, n);
}

My unnumbered question, "How does C allocate space to arrays passed to
functions?" has a simple answer: it doesn't. All that is passed is the array name
which, of course, points to the array in the calling function. That's why the
called function doesn't need to know how big the array is, and, of course, the
result is exactly the same as if the pointer version of the function had been used.

Incidentally, the -1 "fiddle factor" in Problem 2 is necessary only because
I am modelling the BASIC string-handling functions, which refer to the first
character of a string as datum(1) rather than datum(O) of the corresponding
array. This is odd, because BASIC is perfectly happy to refer to the zeroth
element of any other array! Clearly, you could revise these functions to make
them a little tidier by thinking rather more consistently.

PROJECTS

1. Write a C function dayO which takes a pointer *date pointing to a string giving a
date, in the format "March 18 1937," and returns a pointer *day to a string that
gives the corresponding day of the week.

2. Write a perpetual calendar which, given the month and year, prints out which days
of that month fall on which dates, in the usual calendar format:

August 1986
SUN MON TUE WED THU FRI SAT

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

CHAPTER 6

Floats and Other Types

"She can't do Subtraction," said the White Queen. "Can you do Division?
Divide a loaf by a knife-what's the answer to that?"

Through the Looking Glass

So far, I've limited the variable types discussed to int and char. There are a
number of others, but not all C compilers support all ofthem. Here's the rest of
the full set:

float

This is the numeric form familiar to all BASIC programmers. It allows the
representation of everthing from huge numbers to tiny fractions. The exact
range and precision of the representation is a function of the particular
implementation. Often you'll get about 6 significant figures (decimal) and a
largest representable value in the region of 1038.

double

This is a second form of float, which gives a greater precision.

46 6. Floats and Other Types

Qualifiers for int

There are three subtypes of integer: short, long, and unsigned.
Short and long are fairly obvious; they simply allocate less or more space

to the variable. For example, you might find that a compiler that allocates 16
bits to an int will allocate 8 bits to a short and 32 bits to a long. However,
there is nothing in the language definition which says this has to be the
case. Effectively, the options are there for compiler designers to make the best
use of their target machines, and subsequently to allow the applications
programmer (you and me) the same privilege. So if, on a particular machine,
short doesn't make much sense, it will probably be interpreted as an ordinary
int. (Not to interpret it at all would be dangerous, because it would lead to a
lack of portability; but turning it into an int can't do any harm. If there was
space for a particular variable in a short, it must fit in an int.)

The unsigned form needs a little more explanation. As I've said previously,
a conventional 16 bit int can hold any integer in the range - 32768 to 32767,
which is 65536 different values. If it's assumed that the sign is always positive,
these values could just as well be 0 to 65535. The unsigned form allows you
to tell the compiler that you want to think about the number as always being
positive, and you get a doubled maximum value as an advantage.

In a type declaration, you can miss-out the word int for these subtypes. For
example

unsigned pos-value;
short flag;
long big_one;

Signs and Shifts

I mentioned earlier that a shift operation does not always have the same effect.
For an ordinary int, a division by two is performed regardless of the sign,
which means in practice that the senior bit of the word is propagated right,
so that the sign is preserved. However, if an unsigned int is shifted right, zeros
will fill the vacated bits to the left, regardless of the original value of the high
order bit. This makes perfectly good sense, because the concept of "sign" has
effectively been suspended.

However, what happens if you want to shift right a character? Some systems
see a character as being signed, in which case the same rules apply as for an
int; while others assume it is unsigned. The story gets even more confusing.
When arithmetic is performed on a char, the char is automatically promoted
to an int. Thus, in a system that thinks about chars as signed, the senior bit
of the char will be propagated left throughout the word, potentially leaving
you with a pile of l's that you didn't have to start with! In such systems, the
"unsigned char" type is supported. There are some examples in this book (in

Declaring Structures 47

particular in Chapter 14) where this declaration does matter. I have used only
the "char" type throughout, but if your compiler supports the "unsigned char"
type you will have to use that instead.

Register Variables

There is one final subtype which can be an int or char. For example

register int n;
register char c;

So far as the logic of the program is concerned, n is an ordinary int and c is
an ordinary char; but the compiler is requested to leave nand c in registers in
the m.p.u. whenever possible. Since that saves getting them from main memory
when they're needed, the program will be speeded up somewhat if nand care
very frequently used.

This is another way in which C allows you to make the best possible
used of the hardware, but it doesn't necessarily follow that the hardware
is cooperative. For instance, most microprocessors have very few general
purpose registers (maybe only one) which would mean that values declared
as register would have to be swapped in and out of memory just as much
as ordinary variables. So this subtype may not be implemented or (better)
simply ignored.

Declaring Structures

It's possible to combine the basic types into structures. For example, suppose
that you want to set up a stores catalog of some kind. Each entry will contain
an item number, a description, a price and a number in stock. (In practice,
there would be other factors to consider but this will do for our example.)

You can write:

struct cat-entry {
int item_no;

};

char description [30];
float price;
int stock_level;

This sets up a structure called cat-entry consisting of an int called item_no,
a 30 byte array called description, a floating point number called price, and
another int called stock_level. Notice the semicolon after the closing curly
bracket. A structure definition is one of only two places you'll see this syntax.

Having defined what a cat-entry is, it's easy to tell C what a catalog is:

struct cat-entry catalog [200];

48 6. Floats and Other Types

That is, catalog is an array of 200 elements, each of which has the caLentry
structure.

So caLentry has become just another type, albeit rather a complicated one.
That means there's nothing to stop me declaring a pointer to objects of type
caLentry:

struct caL entry *p;

and I can now use p to point anywhere I like in the catalog as we shall see
later. If you can't wait, see Chapter 11.

Defining Your Own Types

Defining structures comes close to defining completely new types. Well, you
can do that, too, with a typedef statement. For instance, suppose you want to
use a number of dates within a program. Months are simply identified as the
numbers 1 to 12, so they're obviously ints, and you could declare them as such.
But wouldn't it be nice ifthere was a type month which had this characteristic?
It's easily organised.

typedef int month;

declares int and month to be equivalent. So now you can write

month datel, date2;

and datel and date2 are declared to be of type month and so are ints.
Better yet, caLentry could be given a synonym in the same way:

typedef struct caLentry catalog;

and then

catalog unipart[5000], greaLuniversaLstores[2000];

None ofthis provides you with any new programming tools. It isn't intended
to. What it does achieve is a readability unattainable in BASIC. Just think
about the arrays you'd need in BASIC to set up the Unipart and GUS
catalogs. It certainly wouldn't be so clear what was going on, even if you'd
written the program yourself.

Constants and Initializers

I've skated over the setting up of numeric constants so far, largely because,
where we've done it, it's been exactly the same as the BASIC equivalent. So

will set x to 1, as you'd expect, and

int x;
x = 1;

Handling Control Characters 49

float pi;
pi = 3.142;

sets pi to 3.142.
The exponent form for large or small numbers is also allowed.

float very _big_number;
very_big number = l.3e9;

will allocate 1,300,000,000 to the variable.

Character Constants

We've spent some time looking at string constants, and you might imagine
that a C character can be seen simply as a string of length 1. However, this
isn't so, because a string of length 1 occupies 2 bytes, the second containing
the null delimiter. So we need a way of allocating a value to a single byte. It's
done like this:

char c;
c = 'A';

In other words, when you use single quote marks you are setting the value of
a single byte; double quote marks identify a string, as we've seen before.

Handling Control Characters

Control characters are those that have some effect (on a printer, say) but don't
actually print a symbol. And if you can't print it, how can you put it between
quote marks? Of course, you can't.

There are two ways around this. The first is the equivalent of BASIC's
CHR$ function. For example

char bell;
bell = 7;

sets the character variable 'bell' to ASCII 7, which if output to a printer (yes,
I know we don't know how to do that yet; see Chapter 12) will usually make
some kind of noise.

However, there are some control characters that are so commonly needed
that C makes special provision for them. Each is preceded by a backslash (\),
called, in the jargon, an escape. An escape sequence consists of backslash
followed by a single character, or a 3 (or fewer) digit octal number. In any
event, C recognizes the whole sequence as a single char. Here's the complete
set:

\n newline
\t tab

50 6. Floats and Other Types

\b backspace
\r carriage return
\f form feed
\ \ backslash
\' single quote
\ddd octal number
\0 ASCII null

For example you could write:

printf("This is \n on three \n lines");

The resulting display would be:

This is
on three
lines

Any subsequent printf will cause output to follow the word 'lines' because
there's no \n at the end of the string. Similarly

printf("Attend to printer!\ 7\ 7\ 7");

would send the message and ring the bell three times. I stress that the '7' here
is an octal not a decimal number (although 7 octal happens to equal 7 decimal)
and I'll have more to say on that subject shortly.

Note that ASCII null is given an escape sequence. So when you're searching
for the end of a string you can write

while(*p != '\0') {

}

for instance. Because \0 happens to be zero (i.e., false) I've gotten away so far
with the equivalent form

}

which I personally prefer. But you may feel that it is too cryptic and that the
expanded form is more meaningful. Anyway, you are likely to come across both
constructs in other people's code and should therefore be familiar with them.

Define Your Own Constants

C is unusual in having a preprocessor built into its compilation system. That
is to say, the source program is (or can be) mucked about with before the
compiler gets to play with it.

Variable Constants 51

All preprocessor commands are preceded by the' #' symbol. Here I want
to deal with only one of them, and that in its simplest form:

define

This command can be used to tell the preprocessor to replace any set of
symbols in the source listing by any other set of symbols. For example

define NULL '\0'

will replace every occurrence of the word NULL with the escape sequence for
an ASCII null. Now I could write

while(*p != NULL) {

}

which is clearer than either of the previous forms. Notice that it is conventional
(but not obligatory) to write defined symbol sequences in upper case. This is
simply an aid to reading a C program. A # define can appear anywhere inside
a program, although it will usually be at the beginning. Obviously, it will be
effective only on statements that appear after it.

Variable Constants

Very often you'll need to declare an array whose size may vary from time to
time. For example it might be a disk buffer, whose size is determined by the
disk subsystem itself. Even an upgrade from double to quad density storage
would affect it. Ordinarily, that means laboriously going through the program,
looking for all references to 256 (or whatever) then making sure that this
particular 256 really is a reference to the disk buffer size, and changing it to
512 (or whatever).

The wise C programmer doesn't do that and writes

and then, for instance

char disLbuffer[D_B_SIZE];

and

for (p = O;p < D_B_SIZE;p++) {

}

and so on. This way, a change in hardware necessitates only some minor
tinkering with a few # define's at the beginning of the program. Neat isn't
it?

52 6. Floats and Other Types

include

It well may be convenient to hold a file of such definitions and then to combine
it with the source code before compilation. The "# include" preprocessor
command provides a simple way of doing just that. For example, if you have
a file that contains all the necessary constants for your system (number of
columns and rows on the VDU display, memory capacity, buffer sizes and so
on) called config.dat, then you combine this with a program by writing:

include <config.dat)
mainO
{

Some systems use double quotes rather than angle braces:

include "config.dat"

Strictly speaking, the uses of braces and quotes are distinct: they indicate
where the include file is. However, this depends to some extent on the imple
mentation, so check your manual.

As a general rule, all your programs should begin:

include <stdio.h)

because there is, almost invariably, a file by this name that holds a number of
standard definitions such as

define
define
define

NULL '\0'
TRUE 1
FALSE 0

which you can then make use of without redefinition.

Octal and Hexadecimal Constants

There are times when a constant, although numeric, doesn't really represent
a number and isn't a character either. The mask patterns of the logical
operations in Chapter 4 are good examples. In the answers to the problems I
considered it worthwhile pointing out that 129 = 10000001 binary, and
224 = 11100000 binary, for instance. That was because it was the bit patterns
rather than the numbers they represent which were significant. So, in cases
like these, it would be nice to have a format that translates to binary more
easily than decimal does. C allows us to declare constants in either base 8
(octal) or base 16 (hexadecimal). In the former case, each digit can be directly
encoded from a group of 3 bits, and in the latter case, groups of 4 bits are
used, as shown in Table 6.1.

Octal and Hexadecimal Constants

TABLE 6.1. Octal and Hex to Binary Conversions

Octal Binary Hexadecimal

0 000 0
001

2 010 2
3 011 3
4 100 4
5 101 5
6 110 6
7 111 7

8
9
A
B
C
D
E
F

So, for example, the pattern 10000001 can be seen as

or

10

2

000

o
001

1

1000 0001

8 1

octal

hex

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

53

Note that, in both cases, the grouping takes place from the right, although,
since there happen to be 8 bits, this is not obvious in the hexadecimal case.

This is not the place to discuss in detail why these conversion techniques
work, and for the purpose in hand it doesn't matter. However, if you're
unfamiliar with binary, octal, and hexadecimal notations, there is a plethora
of books that handle the subject. Often they're on their way to a discussion
of machine code for a particular machine, so look for a machine code book
for your computer.

C needs a way to distinguish between decimal, octal, and hexadecimal
constants. If there is a leading zero, the constant is taken as octal. If there is
a leading zero followed by an 'x' the constant is hexadecimal. Thus

mask = 129;
mask = 0201;

and

mask = Ox81;

are all equivalent statements. The 'x' may be upper or lower case, as may the

54 6. Floats and Other Types

letters A-F which encode the bit patterns from 1010 to 1111 in hexadecimal
form.

Initializers

It's possible (at least, in full implementations of C) to initialize the value of a
variable when you declare it. For instance

is equivalent to

intt = 7;

int t;
t = 7;

An array can be initialized in a similar way.

is equivalent to

int discount [3] = {0,7, 12};

int discount[3];
discount[O] = 0;
discount[l] = 7;
discount[2] = 12;

It's evident that this is a convenience rather than a strict necessity, and a
number of popular C compilers don't support initialization. I've never lost
any sleep over this lack, but you should remember that if your system does
support initializers, and you want to port a program on to somebody else's
computer, you may have to rewrite a few bits of code. Incidentally, the array
initialization construction is the second (and last) time you'll see a semicolon
after a closing curly bracket.

Initializing Pointers

In our discussion on pointers in Chapter 5, we set up their initial values
implicitly. For example

int a[50], *p;
p = a;

will make p point to the beginning of the array a, because a is itself a pointer
to the beginning of the array.

However, C allows us to determine the actual machine address of a variable,
by preceding it with '&'. For instance

int fred, *p;
p = &fred;

p is now a pointer to fred. If we needed to know exactly where in the machine

Declaring Function Types 55

C had decided to allocate space to fred, we need only print out p. So it's
convenient to pronounce '&' as 'address of'.

Note that it is possible to talk about "the address of the zeroth element of
array a" as '&a[O]'. This is, of course, exactly the same as a, according to our
definition of an array name. So

is exactly equivalent to

int a[50], *p;
p = a;

int a[50], *p;
p = &a[O];

While it's not clear why you would want to use the latter form, it is evident that

p = &a[49];

could be useful, if you want to search the array from top to bottom, as in

int a[50], *p, *q;
p = a;
q = &a[49];
while (*p++ != *q--)

Problem 1

What does the above piece of code do?

Declaring Function Types

Since a function attains the value it returns, it ought to be no surprise that the
type of a function (i.e., the type of the object it returns) should be declared.
The real surprise is that we haven't needed to do this so far. The reason is that
C assumes a function returns an int unless you tell it otherwise.

Most of the time, that's exactly what a function does return, so there's no
problem. Even if it returns a char, nothing unpleasant will happen because a
char is promoted to an int when you do anything with it.

However, let's consider a function find_char, which accepts a pointer to a
string and a character, and returns a pointer to the first occurrence of the
specified character in the string

find_char (s, c)
char *s, c;
{

while(*s++ != c)

return (s - 1);
}

56 6. Floats and Other Types

Nothing remarkable about that. A calling routine might be

mainO
{

char message [30], *find-charO, *p;

strcpy (message, "this is a test");

p = find_char(message, 's');

The important thing to notice is the declaration of find_char. It's identified
as a pointer to characters O.K., but note the brackets following its name. These
indicate that it is a fUnction, not a simple variable.

Answers

Problem 1

On completion of the loop, p will point One higher, and q One lower, than the
first symmetrically positioned pair of values. Thus if the array appears as

683924.
i
p

4 3 9 7 1 8
i
q

p and q will end up pointing one position past the 9's which are 4 cells from
either end of the array.

CHAPTER 7

Input

The last time she saw them they were trying to put the dormouse in the
teapot.

Alice's Adventures in Wonderland

I've said nothing at all yet about how to get things into the machine in C, and
little enough about getting stuff out again. I'll remedy these omissions in the
next two chapters.

Primitive Input

At the simplest level, C provides a function getchar which returns the next
character input from the keyboard. At least it's usually from the keyboard,
but most C systems define standard input and output devices that very easily
can be altered. The default is normally the console (keyboard and monitor)
and that's what I'll assume for the time being.

So we'll build a few input functions using getchar, by way of illustration.

Get a Bufferfull

The most obvious extension to getchar is to allow a set of characters to be
input to a buffer for subsequent processing. We'll write a function getbuf for
this.

58 7. Input

First, we must decide how big the buffer should be, and what character is
to be recognised as a delimiter. The obvious answers are "the width of the
screen" and "ASCII carriage return," but remember that C encourages us not
to take such decisions until the last possible moment, so we can make them
the subject of preprocessor commands

define BUFSIZE 40
define DELIM 13

and ignore the problem altogether within the function.
Here's a first attempt at the function:

getbuf(buffer)
char *buffer;
{

}

char *bptr;
for (bptr = buffer; bptr < buffer+BUFSIZE; bptr++) {

* bptr = getchar();

}

if (*bptr == DELIM)
return;

A pointer to a buffer allocated in the calling function is passed to getbuf, a
local pointer is set up, and as each character is input it is passed to the buffer
via this pointer. When exactly BUFSIZE characters have been transferred,
control passes back to the calling function, unless the DELIM character is
identified first, in which case a return is executed immediately.

Notice that we couldn't then write something like

printf(buffer);

because we haven't tagged a NULL on to the end of the character sequence,
so it isn't a string.

In any event, most C programmers would use a while loop rather than the
for construct, in a rather novel way

getbuf(buffer)
char * buffer;
{

}

int num_chars;
num_chars = 0;
while ((*buffer++ = getchar()) != DELIM && num_chars <

BUFSIZE) num_chars++ ;
*buffer= '\0';

The variable num_chars acts as a counter to determine how many characters
have been transferred so far. The while condition needs some explanation.

Operator Precedence 59

Let's recreate it in stages. First, we're looking for a delimiter every time we get
a character. So you might expect a construction like

while (getchar() != DELIM)

Unfortunately, although the input character is tested against DELIM correctly,
it is then thrown away, because I haven't asked for it to be put anywhere. So
we need to be able to do two things at once: store the character away and test
to see if it terminates the loop.

It should come as no surprise that we can do this; after all, an auto
increment in an assignment also constitutes a double operation in the same
statement. Problem 1 in Chapter 5 illustrates a similar feature because the
'left' process is performed and its validity tested at the same time. What this
boils down to is that any assignment can be used inside an expression. So it
should be possible to write

while (c = getchar() != DELIM)

This is legitimate C, but it won't do what you expect! It will test the input
character against DELIM and then throw it away. It won't assign it to c. This
is true because '!=' has a higher priority than' =', so the test is done first, by
which time it's too late to do the assignment! So you must bracket the
assignment

while ((c = getchar()) != DELIM)

Now we begin to have something that looks like the final construction.
It's only necessary to replace 'c' with '*buffer++' (because the character is
to be transferred to where buffer is pointing and then the pointer is to be
incremented), and to tag on the second condition for the loop to continue
(num_chars < BUFSIZE). In the body of the loop it remains only to
increment num_chars. Before returning, I've added a NULL to the buffer so
that it can be handled as a string. I also could have added

return num_chars;

so that the function gives you the number of buffered characters.

Operator Precedence

This discussion has highlighted a problem that I've so far ignored. What order
do operations occur in? For instance, I've just used the construction

*buffer++

Does this mean "increment buffer and then use it as a pointer" or "use buffer
as a pointer and then increment it"? We've used it to mean the latter and that
is correct. It's not surprising either, because it is, after all, the post-increment
form. If I'd used

*++buffer

60 7. Input

the increment would have occurred first, and we'd get one spurious character
at the beginning of the buffer.

However, suppose you wanted to increment not the pointer, but what the
pointer points to:

would do the job.
Thus, as with BASIC, if you want to force an order of operations you use

brackets to bind the relevant operators and operands more tightly than is
usual. The difference is that C has some unique operators and it's necessary
to remember their precedence. The golden rule is "If in doubt use brackets."

The order of precedence of those operators we've met so far is:

() []
* (pointer) & (address) - (negative)! ++
* (multiply) / %
+ -(minus)
» «
< > <= >=

!=
& (bitwise AND)}
I" On some systems these have equal precedence

&& } II On some systems these have equal precedence

+= *= /= %= »= «= &= ,,= 1=

The highest priority operators are those at ihe top of the list, and those on
the same lines have equal priority. The order of evaluation of equal precedence
operators is defined but it isn't always left to right. My view is that it's less
complicated to use brackets than to remember a fairly obscure set of rules
which you stand a chance of misinterpreting anyway.

Problem 1

Revise getbuf to produce a string whose ASCII codes are each one greater
than those of the input symbols. Thus if you input 'abed' the string 'bede' is
generated. Although it could be argued that there's the germ of a cypher
generating program in this exercise, my reason for suggesting it is that it really
does test your grasp of operator precedence rules.

Strings to Numbers

Let's assume that the string created by getbuf is actually to be treated as a
number. We'll write a function atoi which converts the first sequence of digits
it finds in the string to an integer. This function is almost certainly in your

Strings to Numbers 61

library, but it's an interesting example anyway. We'll allow a fairly free format;
the number may be preceded by any number of spaces followed by an optional
sign symbol, followed by the digits and then any non-digit. So

137d
137

+1317

will all be interpreted as "one hundred thirty seven." In the second case, there
is nothing following the number, but there will at least be the ASCII NULL
terminating the string, so that can be used.

At least, that's our final aim. My opinion is that you should never make
things difficult until you've made them simple, so we'll start with a much easier
problem. We'll assume that the integer is always signed, and that the pointer
passed to the function is pointing at the sign. This function is going to be
called by atoi so I'll give it another name, convert.

convert(p)
char *p;
{

}

int result, sign, forever;
result = 0; sign = forever = 1;
if(*p++ = '-')

sign=-1;
while (forever) {

}

result += (*P++ - '0');
if (!isdigit(*p))

return(result * sign);
result*= 10;

Even this function requires quite a bit of explanation. First, look at the
initialisation

sign = forever = 1;

Of course I could have written

sign = 1; forever = 1;

but the former arrangement is another example of writing an assignment
inside an expression. The variable sign is set to 1 to indicate a positive value.
The first test

if(*p++= '-')
sign=-1;

simply resets this to -1 if the number is, in fact, negative, and at the same
time bumps the pointer so that it's looking at the first digit.

62 7. Input

Next, an endless while loop is entered. To see what happens here, think
about an example, + 31, say. The relevant chunk of memory looks like this:

Characters + 3 1 \ O} or any other
Decimal values 43 51 49 0 non-digit

i
p

So result has 51 - 48 (ASCll 0) = 3 added to it and the pointer is bumped.
The new value pointed to is tested to see ifit is a digit (this assumes the presence
of a function isdigit which returns true if its argument is a digit). It is, so result
is multiplied by 10, giving 30 so far. Now we're at the top of the loop again,
so 49 - 48 = 1 is added to result, giving 31. By this time, p is pointing to the
ASCII null (or whatever terminates the number) so result * sign is calculated
and returned. Since sign is 1, this value is 31, which is correct! Had a minus
sign preceded the number, sign would have been set to -1 and -31 would
have been returned.

This algorithm has two requirements for it to work correctly. First, as I've
already pointed out, there must be a sign preceding the digits, and second,
there must be at least one digit, because the first character in the string is added
into result (less the 48 which turns it into a number) regardless of what it is.
This means that atoi must ensure that these conditions exist before calling
convert. So we'll write a function called setup which takes two arguments that
are pointers to the "raw data" buffer and a character array called num. The
effect of setup will be to create from buffer a string in num that is acceptable
to convert. It also will return 1 or 0 depending on whether it can do this
successfully or not. So atoi itself is trivial.

atoi(buffer)
char * buffer;
{

}

char num[BUFSIZE + 1J;
if (!setup(buffer, num)) {

printf("Not an integer");
exit(O);

}
return convert(num);

But, of course, we've still got setup and isdigit to write.

setup(buffer, num)
char *buffer, *num;
{

while (!isdigit(*buffer))
if (!*buffer++)

return 0;
if (*(buffer - 1) == '-')

}

A Feeble Excuse

strcpy(num, buffer - 1);
else {

}

strcpy(num, "+ ");
strcpy(num, buffer);

return 1;

63

First we bump along, looking for the first digit. If we fail to find one before
the terminating null, there isn't a number to play with so we return O. If the
preceding character was a minus sign, we can simply copy the string from the
sign onwards. Otherwise, we add a '+', and then concatenate the digits on to
it. That's why num is dimensioned to BUFSIZE+ 1; there's a chance that the
buffer contains only digits, which means that we would need one more byte
for the sign. Now for isdigit.

isdigit(c)
char c;
{

}

if (c >= '0' && c <= '9')
return 1;

else
return 0;

That's pretty self-explanatory. Notice that I could have written

if(c >= 48 && c <=57)

but it is then less clear to anyone reading the code (including yourself in a
month's time!) that c is representing a digit. I adopted the same philosophy
in convert when I wrote

while (forever) {
result += (*p++ - '0')

Again, I could have replaced '0' with 48 (or, come to that, Ox30), but it just
gives you one more problem to consider. When you're writing (or reading)
code as concise as that which can be produced in C, the fewer extra headaches
generated the better.

A Feeble Excuse

Now I have to admit that what I have just produced is not a paragon of
professional code. If you doubt me, grub around in your standard library of
functions and you'll almost certainly find a version of atoi which is about 9
lines long and calls no other functions at all! My excuse is that, at least at this
stage, I am not setting out to write immaculate, economical code, but rather

64 7. Input

to get across some ideas that are quite sophisticated enough without the added
encumbrance of ensuring that the resulting functions are pretty.

scanf

Getchar isn't the only way to grab things from the outside world. There's a
function called scanf which does the job in a way that mirrors the operation
ofprintf.

For example, I could write

scanf("%4d %c %2d", &a, &letter, &n);

assuming that a, letter and n have been declared

int a, n;
char letter;

Then if the input string appears as

3162 y

the variable assignments that result are

a = 3162
letter = 'y'
n = 47

47

The most important thing to notice here is that all the arguments to scanf
are pointers. So, for instance, it's the address of n, not n itself, which is
passed to the function. In the example. I've made the field widths match the
corresponding numbers in the control string (i.e., the string argument of the
function). However I could have written

scanf("%d %c %d", &a, &letter, &n);

and C will use the delimiting spaces (any number of them) to determine the
field widths, so that the effect is exactly the same.

However, if there are no spaces in the input line (so that it reads 3162y47),
the first form of the statement will work correctly but the second will not.

It's easy to see that scanf could be built from getchar, getbuf, and atoi, but
it's a fairly complex function, and since it's usually present in the library, I
won't give an implementation here. In any event, what I have presented so far
is incomplete and I shall have more to say later.

scanf

Answers

Problem 1

getbufl (buffer)
char *buffer;
{

}

int num_chars;
num_chars = 0;
while((*buffer++ = getchar()) != DELIM && num_chars <

BUFSIZE) {
num_chars++ ;
(*(buffer - 1))++;

}
* buffer = '\0';

65

Don't forget that, inside the loop, buffer is pointing one element too far along
the string, so we want to point at (buffer - 1). Then it's what that points at
that is to be incremented.

PROJECT

Write a substitution cypher program. On first running, this should request as input
a permutation of the alphabet, for example

"QWERTYUIOPASDFGHJKLZXCVBNM"

Then it should allow you to repeatedly input messages, and print out their encoded
forms, obtained by replacing each letter by the corresponding one in the permuted
alphabet. For example the input "C PROGRAM" should become

EHKGUKQD.

CHAPTER 8

Output

The first thing she heard was a general chorus oj "There goes BillJ" then
the Rabbit's voice alone- "Catch him, you by the hedge! " then silence,
and then another conJusion oj voices-"Hold up his head-Brandy
now-Don't choke him-How was it, old Jellow? What happened to you?
Tell us all about it!"

Alice's Adventures in Wonderland

Printing to Memory 67

We'll now turn out attention to more ways of getting the machine to talk to
us. First

More about printf

There are a number of output format specifiers which can be used in the
control string that I haven't mentioned yet. So far, we only have d (convert
to decimal) and c (print as a single character). Others are

o : convert to octal
x : convert to hexadecimal
u : convert to unsigned decimal
s : print as a string
f: convert to decimal (from floating point)

So you could write

printf("%s%6.3j", p, x);

If p is a pointer to the string "First value is:" and x holds the value 5.813, you'll
get the display

First value is: 5.813

Notice that I've specified the length of the floating point value (6 characters,
3 ofthem decimal places), but left C to make up its own mind about the length
of the string. This clearly presents no problem, because C knows where the
string ends from the terminating null. However, C will convert the floating
point number to a string before printing it, so the same should be true for the
f conversion (and, indeed, all the others). Indeed, this is the case, but, of course,
if you omit a field length specifier the resulting layout is unpredictable.

Justification

Notice that in the above example, the system provides a leading space before
'5.813' to make up the full six characters. In other words the number is pushed
as far right as possible (i.e., right justified). It is possible to force left justification
by preceding the length specifier with a minus sign like this, for instance,

printf("%s%-6.3j", p, x);

which, for the above example, would produce

First value is:5.813

Printing to Memory

There's a function sprintf that acts like printf except that the data it assembles
isn't output at all, but passed to a string. So, if n contains 7 and hex contains

68 8. Output

3AD2

sprintf(b, "%3d%5x", n, hex);

will place in the character array (b) the string

73AD2

Why should this be useful? Let's clarify things with a simple example. Suppose
that you're doing some monetary calculations. Working in cents, you could
treat all variables as ints, but when a result is output you'd like it to appear
as $38.73 (or whatever) rather than 3873. We could write a function print
money that accepts an int representing a number of cents in this way, and
outputs it conventionally in dollars and cents:

printmoney(cents)
int cents;
{

}

char out [8] = "

*out = '$';

". ,

sprintf(out + 1, "%5d", cents);
*(out + 6) = *(out + 5);
*(out + 5) = *(out + 4);
*(out + 4) = '.';

printf(out);

As you see, the '$' symbol is first of all placed at the beginning of the string.
The number of cents is then converted to a string of digits placed after this
(hence the 'out + l' in the sprintf). Next the junior two digits are shifted right
to allow space for the' . ' to be inserted, and the resulting string is output.

So you can see how a string can be manipulated in a very flexible way,
whereas a straight printf would not have allowed such tinkering.

Primitive Output

Just as it is possible to input a character at a time with getchar, there is an
equivalent function

putchar(c);

which will output the character held in c.
Given that printf and sprintf provide much more sophisticated output

mechanisms, it may not be obvious why you would ever need it, however.
Obviously, it must be in the function library, because whoever compiled the
library needed it to write printf, so it is available to you whether you want it
or not.

As a fairly academic example (at least apparently) we could write a function

Primitive Output 69

called type that makes the computer behave as a typewriter until a delimiter
(referred to as DELIM) is encountered.

type()
{

}

char c;
while((c = getchar()) != DELIM)

putchar(c);

That needs little comment, as no new ideas are introduced. It simply picks up a
character at the keyboard and dumps it to the display until it find a delimiter.
It's usefulness is not really clear, however, unless you remember that I men
tioned earlier that the standard I/O devices can be altered. (I know I haven't
said how yet.) If you could change the standard input to a disc file, for example,
we could use this routine as it stands to copy the file to the screen, a very
useful utility when you've forgotten which file is called what. I shall return to
this problem in Chapter 12.

CHAPTER 9

More About Control Constructs

"At the end of three yards I shall repeat them-for fear of your
forgetting them. At the end of four, I shall say good-bye. And at the end
of five, I shall go!"

Through the Looking Glass

In Chapter 3, I introduced most ofthe control constructs C offers us. But there
are others, and there also are some additional keywords that can modify the
effect of the loops we've already met.

The Conditional Operator

This provides a rather cryptic form of an if ... else construct. It's general form
IS

expression! ? expression2 : expression3

The effect is this. First expression! is evaluated to true or false (non-zero or
zero). If it is true, the result is the value of expression2; if false, expression3 is
evaluated. So it's equivalent to

if (expressionl)
expression2

Continuing 71

else
expression3

You can't do anything new with this, but you can write some more compact
code. Look at the abs function of Chapter 3, Problem 1, for example. Using
the conditional operator we could rewrite it like this:

abs(value)
int value;
{

return (value < 0 ? - value: value);
}

Problem 1

Rewrite the "even" function of Chapter 4 using this construction.

Leaping out of Loops

There are occasions on which we don't want to execute a loop to completion.
For example, suppose that we want to transfer the contents of one character
buffer (pointed at by p) to another (pointed at by q), and that normally there
are 100 characters to transfer.

for (i = 0; i < 100; i++)
*q++ = *p++;

will do the job. However suppose that if an ASCII null is encountered we
don't need to transfer the remaining characters. We can write

for (i = 0; i < 100; i++) {
if (!*p)

break;
*q++ = *p++;

}

The keyword 'break' has the effect of breaking out of the smallest enclosing
loop. It doesn't matter what kind of loop it is; a 'while' or 'do_while' can
equally easily be exited with 'break'.

Continuing

It's also possible to jump to the end of a loop without leaving it. In other
words you can conditionally bypass a chunk of the code in the loop. For
example, suppose that we want to modify the above code so that any zeros
in the source array are not transferred to the target array. This will do the
job:

72 9. More About Control Constructs

for (i = 0; i < 100; i++) {
if (!*p)

}

break;
if(*p++ == '0')

continue;
q++ = *(p-l);

The 'continue' tells the system to skip around the remainder of the loop (in
this case just 'q++ = *(p-l);') but to stay within the loop. That way p is
incremented on every pass through the loop, but q is changed only when a
non-ASCII zero is identified so that there are no gaps in the array q. Note
that the character to be transferred is pointed to by p-l (not p) because p
already has been incremented.

As a rule, 'break' and 'continue' do not provide mechanisms that cannot be
modelled in other ways. Usually, though, the alternatives to their use require
complex conditions in the loop control expressions, and this leads to code
that is difficult to read. In fact, the above two examples each can be handled
quite easily without these two keywords. You might like to consider how! As
elsewhere in C programming, experience gives you a feel for what construct
is most natural in a given circumstance. This is what you should strive for. If
code "feels" right it's probably easy to read, and may even work!

Multiway Switches

There are occasions on which it is useful to take one of several actions on the
basis of a test. The 'if .. else' construct allows only two courses of action
directly, although more can be dealt with by nesting, like this:

if (conditionl)
actionl

else
if (condition2)

action2
else

if (condition3)
action3
etc ...

This is generally a pretty untidy method of dealing with the problem though. C
provides a mechanism for dealing directly with multi way branches, called the
switch statement.

A typical example of its use might be in a menu driven data management
program. The user is to have the following menu displayed.

1. Create file
2. Add entry

Do Not Pass Go 73

3. Delete entry
4. Edit entry
5. Search file
Enter choice (1-5):

There will be five functions that perform each of the listed tasks, and a function
called menu which prints out the above display and returns the value entered
by the user.

Here's how switch could be used to handle the situation.

switch (menu()) {

}

case '1' : create(~
break;

case '2' : addO;
break;

case '3' : deleteO;
break;

case '4' : editO;
break;

case '5' : searchO;
break;

default: error = 1;
printf("Invalid entry\n");
break;

It's fairly self-explanatory. If menu returns 'I', create is called; if '2' is returned,
add is called and so on. But note that the code is executed from wherever the
block is entered onwards, unless a 'break' is encountered. Thus if the breaks
were removed and '3' was entered, delete, edit, and search would be called in
turn, followed by the message "Invalid entry." Notice also the use of the
keyword 'default'. If anything not explicitly referred to has been entered the
default option is selected. This doesn't have to be the final case. In fact, there
is no significance at all in the order in which the cases appear, which is why
I've inserted a redundant 'break' at the end of the default code. Although it's
not strictly necessary, since nothing follows it at the moment, the program
might be edited later to include an extra case. Then it's easy to overlook the
absence of a terminating 'break' and to get confused by the result.

Do Not Pass Go

One control mechanism I've so far avoided is the dreaded 'goto'. In most
BASICs, it's difficult to avoid, but I haven't felt tempted to use it yet, and I
doubt if you've noticed its absence. It is implemented in C. You can write

goto geL another _character

and then, somewhere else

74 9. More About Control Constructs

geLanotheLcharacter: c = getcharO;

or whatever. Thus the label for a goto to latch on to is just like a variable
name, and the labeled line of code is separated from the label by a colon. That
allows for more readable code than the cryptic

GO TO 1495

but it still can lead to knitting if it's used with gay abandon; and mostly you'll
find you really don't need it, so it's probably best avoided. I've been writing
C for about eight years and I don't remember writing a 'go to' once. It's
not that I am a fanatic about go to-less programming (C tends to attract
pragmatists rather than purists), just that, as I've remarked before, you should
cultivate the habit of writing code in a way which feels natural, and as a rule
'go to' feels stilted.

About the only situation I can construct where a 'goto' would make sense
to use would be a series of nested loops at the centre of which is a condition,
which, if true, requires the whole block ofloops to be exited. This sort of thing:

while(..) {

while(..){

while(..){

if(x<O)
go to out;

}
}

}
out:

Using 'break here wouldn't make sense, because it only breaks out of the
smallest enclosing loop, so you would have to repeat

if(x < 0)
break;

in each loop, and obviously that's messy.

Answers

Problem 1

even(n)
intn;
{

return (n%2?0: 1)
}

CHAPTER 10

Recursion

"Well,just then I was inventing a new way of getting over a gate-would
you like to hear it?"

"Very much indeed," said Alice politely.
'TIl tell you how I came to think of it," said the Knight. "You see," I

said to myself, "The only difficulty is with the feet: the head is high
enough already. Now, first I put my head on top of the gate-then the
head's high enough-then I stand on my head-then the feet are high
enough, you see-then I'm over, you see."

Through the Looking Glass

Among the first things for which children are berated when they are learning
their mother tongue is any attempt at a circular definition. "A chair is a chair
with ... " "You can't explain something by using the word you're explaining!"
they're told firmly.

So it is later when they learn mathematics. "To multiply two numbers
together you first multiply ... " "How can we define something in terms of
itself?" they're asked plaintively.

76 10. Recursion

Actually, with certain restrictions, circular definitions are perfectly legit
imate, and they provide a powerful tool for the programmer. An equivalent
of a circular definition is a function which calls itself. Computer scientists call
such functions recursive, being, like the rest of us, unhappy with the term
circular; they had the same propaganda drilled into them as tots.

Like most other languages (even BASIC!), C allows recursive function calls.
I did say there were some restrictions to consider, though. You can't write

recursive_function (a)
inta;
{

recursive_function (a);
}

and expect anything to happen! In fact, if you try that the program goes into
an endless loop in which it calls the function, which calls the function, which
calls the function, and so on. Sooner or later you run out of memory, because
on every call the system has to remember where it must return to, so these
return addresses are stacked up until there's nowhere left to put them.

Clearly then, there must be a condition in the function definition that allows
an exit. Further, it must be possible to meet the condition, otherwise the
function calls itself indefinitely as before.

Factorials

Let's look at a concrete example. The factorial of a number, n (written n!) is
defined as:

n! = 1 x 2 x 3 x ... n

As it happens, it's a simple matter to write a conventional loop to do this.

factorial (n)
int n;
{

}

int result;
result = 1;
while (n--)

result *= n;
return result;

For convenience, I've started at n and worked down rather than working up
from 1.

However, we can see the idea of a factorial in a recursive way:

n! = n(n-l)!

Things with Strings

and

1!=1.

So, for example

4! = 4 x 3!

and

3! = 3 x 2!

and

2! = 2 x 1!

and now 1! = 1, so it follows that 2! = 2, 3! = 6, and finally 4! = 24.
This approach leads to the following code.

factorial(n)
int n;
{

}

if(n==l)
return 1;

return n*factorial(n -1);

77

Clearly, this is a simple case, and there is no particular advantage in the
recursive structure. But even so it's evident that there is a marginal simplifi
cation to be had from thinking about the problem in this apparently cack
handed way. In more complex examples, recursion can really be made to pay
off!

Things with Strings

As a slightly more complex example, let's consider the problem of reversing
the symbols in a string (so that "message" would become "egassem" for
instance). Again, the job can be done conventionally, but it's instructive to try
to think recursively with simple cases to avoid getting embroiled in the detail
of more difficult practical problems. This is, after all, a new way of thinking
about problem solving.

The first job is to consider the simplest case we can (the equivalent of
evaluating 1! in the factorial example). We'll assume that reversing a string of
length one is meaningless, so the shortest string we need consider has two
characters. That's a simple exchange job; but for reasons which will become
apparent later I want to introduce two extra functions called 'head' and 'tail'
which return the first character and the rest of the string respectively. So 'head'
of "message" is 'm' and 'tail' is "essage". (More precisely, 'tail' returns a pointer
to "essage".) So in this trivial case we only need to concatenate the head on
to the tail. Note though, that we won't be able to use strcat for that, because

78 10. Recursion

the head of the string is a single character, not a string. So we'll need a third
subsidiary function, addchar, which will add a character to the end of a string.
That's easy.

addchar(p, c)
char *p, c;
{

}

while (*p++)

*(p-l) = c;
*p = 0;

So the pointer is updated until it finds the terminating null. Since it's a post
increment, it actually goes one byte past this point, which is why the character
is placed at the byte pointed to by p -1. The extra character is placed at the
byte pointed to by p - 1. A new null is added in the next byte and that's all
there is to it.

While we're at it, let's deal with the other subsidiary functions:

head(p)
char *p;
{

return *p;
}

which hardly bears comment, and

tail(p)
char *p;
{

return (p + 1);
}

also not a masterpiece of subtlety and guile.
Armed with these tools we can get around to writing reverse:

reverse(p, q)
char *p, *q, *tail();
{

}

if (strlen(p) == 2) {
strcpy(q, tail (p));
addchar(q, head(p));

p and q are pointers to the source and destination strings respectively. If the
source string is 2 elements long, we copy the tail of p to q (which is fine, because
strcpy expects both its arguments to be pointers to strings) and then we add
the head of p to the result. But if the string is longer:

}

Back-to-Front Sentences

else {

}

reverse(tail(p), q);
addchar(q, head(p»;

79

So now we copy the reverse of the tail of pinto q. If the string is "abed," that
will be "deb," which will then have 'a' tagged on to it by the addchar operation.
That's why I needed the 'tail' function. It had to deal with a gradually decreas
ing string so that sooner or later the strlen(p) == 2 condition would be met
and the recursion would "unwind."

Recursion is not an easy concept to grasp and I wouldn't be surprised if
you were still a little suspicious of the reverse function, even if you've tried it
out and found that it really does work. (You have, haven't you? There's so
little trust in the world these days)

So let's dry-run it with "abed" just to reinforce the idea. To start with, the
length of the string is greater than 2 so the program would like to take the
reverse of "bed" and tag on 'a'. But it can't evaluate the reverse of "bed"
directly, so it calls itself again and tags 'b' onto the reverse of "cd". This is
directly reversible to "de." On the way back, 'b' and 'a' are tagged on, giving
"deba."

Don't imagine, however, that when you're writing recursive functions, this
kind of analysis is particularly useful. They're usually too complicated to think
about at this level of detail. And that's precisely the point about recursion. It
allows one to describe a complex process in a very tight way, which necessarily
makes a dry run horrendously confused.

Back-to-Front Sentences

Let's extend this idea a little further, We'll reverse the words in a piece of
text without reversing the letters in each word. So the first sentence of this
paragraph would become:

"further little a idea this extend Let's"

While this is still a pretty academic example, it's evident that we're moving
towards the kind of function which could be useful in a word processing
package. And, almost as a by-product, we'll have to think about an appropri
ate data structure for the text which isn't immediately obvious but will, as
we'll see, fit very neatly with the ideas I've introduced so far.

The basic problem is that the reversal now takes place in fits and starts.
Whole groups ofletters are swapped about, but within words they're left alone.
So it won't be convenient to see the text as a single string, because that gives
no clue to the grouping involved and we would need to search for spaces to
find out where the words are. Suppose each word is a separate string. The text
can then be an array of pointers to strings, like this:

80

p

10. Recursion

t

hoe

o m x

e

o 0 0

The declaration for p would be something like

char *p[200];

which sets up a 200 element array of pointers to characters. Note the declara
tion carefully. This is the first time we've come across such a "composite." As
we shall see, much more complex ones are possible.

In and Out

To get the feel of this organization, let's write a couple of functions called
in text and outtext. Intext will accept a string and form the internal structure
from it, and outtext will print out such a structure. Here's the code for intext:

intext(s, p, text)
char *s, *p[J, *text;
{

}

int i;
i = 0;
while (*s) {

p[i++] = text;
while ((*text++ = *s++) !=' ')

*text++ = 0;
}
p[i] = 0;

The original string is pointed to by s, and the array of pointers is again referred
to as p. Notice that intext does not need to know how big this array is (hence
the null entry between the square brackets), because it expects to find out from
the calling function. Text points to an area that will hold the string of strings
that intext will generate.

The outer while loop simply looks for the terminating null in the source
string. Until it finds it, the current value of text is passed to an element of p
(and the subscript is incremented), and then letters up to and including the
next space are transferred. Finally a null is added to the copy in text, to turn

Reversing the Text 81

it into a complete string. Before leaving the function, the final element of pis
set to zero so that it can act in a similar way. Notice that a space is the only
word delimiter that the routine identifies, so as things stand there must be one
at the end of the string. It's easy to modify the code to see other possibilities
such as exclamation point, period, and so on, or simply to strcat a space on
to the source string before tinkering with it.

With this arrangement, outtext is trivial.

outtext(p)
char *p[];
{

}

int i;
i = 0;
while (p[i++])

printf(p[i-l]);

So we just print the string pointed to by each pointer in the array in turn,
until we meet a zero pointer. Using a delimiting pointer in this way is a shade
dodgy because there is no invalid pointer value; it is perfectly possible to
point to address zero. Negative values can't be used because a pointer is
(arithmetically) unsigned. However, even if the compiler assigns the variables
in the calling function to low memory addresses (not, in itself, very likely), the
initial value of text can't be zero unless it is the first variable assigned, which
we can easily ensure isn't so.

Reversing the Text

It's probably already dawned on you that with this structure, the problem of
reversing the text becomes that of reversing the pointers. What may not be
so obvious is quite how simple this is. All the functions we already have
are directly usable except that the parameter definitions change: wherever
previously there was a character, it becomes a pointer to characters, and where
there was a pointer to characters it becomes a pointer to pointers to characters.

Thus the head and tail functions are

and

head(p)
char **p;
{

return *p;
}

tail(p)
char **p;
{

return (p + 1);
}

82 10. Recursion

Notice the '**' meaning 'pointer to pointer to'. It's evident that this is what it
ought to mean, but it is worth emphasizing given that this is the first time
we've met such a double indirection.

Similar changes can be made to add char, which I've renamed add word for
obvious reasons.

and reverse becomes

addword (p, c)
char **p, *c;
{

}

while (*p++)

*(p-l) = c;
*p = 0;

reverse(p, q)
char **P, **q, **taiIO;
{

}

if (len(p) == 2) {
ptrcpy(q, tail(p));
addword(q, head(p));

}
else {

}

reverse(tail(p), q);
addword(q, head(p));

Two new functions are needed here, because the library functions strlen and
strcpy must be replaced by the functions len and ptrcpy which do equivalent
jobs, but for arrays of pointers to strings.

Write len and ptrcpy.

len(p)
char **p;
{

int k;
k = 0;

Problem 1

Answers

Problem 1

while (*p++)

}

Postscript

k++;
return k;

ptrcpy(dest, source)
char **dest, **source;
{

}

do
*dest++ = *source++;

while (*source);

83

These functions are very straightforward. As elsewhere, the only changes from
the originals are in the extra asterisks in the parameter definitions.

PROJECT

Look up the description of a binary search in Chapter 12, and rewrite it to use
recursion.

Postscript

This chapter began as an exercise in recursion and has in a sense, been
subverted into an investigation into data structures. It's no less useful for that,
but it is worth summing up what we've learnt in passing.

First, it's become clear that if you can do something with a datum you can
do it with a pointer to that datum. In our example, the datum in question is
either a character or a pointer to characters, but it could just as well have been
an array of pointers to structures consisting of pointers to other structures
consisting of ... well, anything you like.

Second, I built the final program from a set of functions that already had
been tested in a simpler data environment, and then merely changed the
parameter definitions. While this is hardly necessary in this case, certainly for
the experienced programmer, it might well be a useful technique when the
organisation of data becomes difficult to think about.

Third, the data structure itself is interesting. It's evident that we have, in
effect, built a two dimensional array consisting of n rows for a n word sentence.
However, the length of a row is not a fixed value, as it would be in a
conventional array. It changes with the word length. This leads to a very
compact form of data representation. We could take this idea a stage further:
if a 2-D array can be seen as an array of pointers to I-D arrays, a 3-D array
is an array of pointers to 2-D arrays, a 4-D array is an array of pointers
to 3-D arrays, and so on. This is how most languages implement multi
dimensional arrays anyway, but C makes the connection explicit.

CHAPTER 11

Structures

"When I use a word." Humpty-Dumpty said. in a rather scornful tone. "it
means just what I choose it to mean- neither more nor less When I
make a word do a lot of work . .. I always pay it extra."

Through the Looking Glass

... --=-.-
- .. --:': -=-~ --=

Back in Chapter 6, I dropped some heavy hints about the usefulness of
structures, and then annoyingly said no more. I'll rectify that omission here.

Let's return, by way of example, to the store catalog entry structure which
I introduced in Chapter 6:

struct cat-entry {
int item_no;
char description [30];

Playing with Structures

float price;
int stock_level;

};

As I said then, it's easy to tell C that there's an array of such structures:

struct cat-entry catalog [5000];

85

but that leaves questions such as: "How do you move records around?" and
"How do you change a field of a single cat-entry?"

The answer to the first question is: "You don't." You can't see a structure
as a complete entity; it has to be dealt with field-by-field. This isn't such a
serious restriction as it may first appear because, more often than not, you'll
want to refer to a single field; the stock level may change, for example.
However, if you want to move a structure from one place to another, trans
ferring it field-by-field is tedious but unavoidable. Also, you can't pass struc
tures between functions. As with arrays, you can only pass pointers to them.

Playing with Structures

There are two ways to identify a structure member (or field). First, you can
write

structure_name.mem ber

F or example, the price of item 3 in the catalog would be

catalog [3].price

Thus to remove n units from the stock of item 147, I could write

catalog[147].stock_level -= n;

which is not merely neat but very easy to follow.
However, where arrays are being used, the C philosophy is, as we've seen,

to refer to their elements with pointers rather than subscripts. Also, since only
pointers to' structures can be passed between functions, we're likely to be
forced into this way ofthinking about such references. This leads to the second
form of identification

pointer_to_structure_name -> member

For my example, we would have to declare a pointer to structures of type
cat-entry

struct cat-entry *pcat;

Then, if pcat is pointing at catalog [147], the statement

pcat -> stock_level -= n;

is exactly equivalent to the previous "remove n units from stock" statement.

86 11. Structures

Of course, pcat could have been set up with

pcat = &catalog[147];

but it's more likely to have been determined by some search routine.
Notice, incidentally, that the "pointing to" symbol (-» consists of the two

symbols "minus" and "greater than."
It's perfectly legitimate to mix the two forms of structure reference. For

instance, suppose that you want to move a structure pointed at by pcat to a
structure called temp:

struct cat-entry catalog [500], temp, *pcat;

temp.item_no = pcat -> item_no;
temp. description = pcat -> description;
temp.price = pcat -> price;
temp.stock_level = pcat - > stock_level;

Obviously, there would have been little point in setting up a pointer to temp
simply to keep the notation consistent. There are times, however, when such
consistency can be employed as a check on your code. This makes it easy to
check that all the necessary data transfers have been made. Such "good
housekeeping" practices can minimise the chances of trivial "slip of the pen"
errors which can be no less tricky to find than obscure algorithmic bugs.

The Storeman's Mate

Let's pull some of these ideas together into a package that might be useful to
a storeman dealing with the comings and goings of catalog items.

He'll need a menu of options such as:

Add entry to catalog
Delete entry from catalog
Alter stock level
Check price of item

and so on. We've already seen how this might be done using a switch on a
function called menu which displays the menu and returns the user's choice.
We'll use the same technique again:

struct cat-entry {
int item_no;
char description [30];

The Storeman's Mate

float price;
int stock_level;

} catalog[500];
mainO
{

}

int helLfrozen_over = 0;
charmenuO;
while (!heILfrozen_over)

switch(menu()) {
case '1': addO;

break;
case '2' : deleteO;

break;

}

case '3': alter-stockO;
break;

case '4' : check-priceO;
break;

default: exit(O);

87

So far so simple. Notice, though, that I've introduced a small variation in the
definition of caLentry and catalog; they are achieved within the same state
ment. This is legitimate and convenient since it saves me writing separately:

struct caLentry catalog[500];

Also, notice that catalog is a global structure, since it is defined outside main.
We're going to assume that it already contains all the current details for the
purposes of this example, but later you'll see how it could be set up by pulling
the data from some backing store, such as disk.

The menu function is straightforward enough:

menuO
{

}

printf("options are \n");
printf("1)Add Entry to Catalog \n");
printf("2)Delete Entry from Catalog \n");
printf("3)Alter Stock Level \n");
printf("4)Check Price of Item \n");
printf("Hit any other key to exit:");
return (getchar());

It would, of course, be simple to add options by creating extra printfs in menu,
and corresponding extra cases in the switch.

88 11. Structures

Delete

We'll start by writing the delete function, because it will force us to think a
little more deeply about the organization of the catalog array. Specifically,
how is an item to be indicated as being deleted? One simple possibility is to
set the item_no field to zero to indicate an empty record. Thus valid numbers
must be 1 or greater, which is no serious inconvenience, and the addition
function can simply look for a zero item_no value to determine where to place
the added record. This implies that, initially, all item_no fields must be set to
zero; but that's a once-for-all procedure which we won't consider further. Let's
make this hypothetical initialization routine do us one more favor: it will set
the item_no field of the final record (catalog [499]) to - 1. This will give us a
dummy record at the end of the array to act as a delimiter.

deleteO
{

}

struct caL entry *p;
int target;
p = catalog;
printf("Enter item no for deletion:");
scanf("%d", &target);
while (p -> item_no != target) {

if(p -> item_no < 0) {
printf("Not found \n");
return;

}
p++;

}
printf("Confirm deletion of%s(yjn)",p -> description);
if (getcharO == 'y')

p -> item_no = 0;

There are a few points worth commenting on here. First, the definition of p
as a caLentry structure is legitimate because every function has access to the
(global) structure definition. However, p itself is local to delete. Second, re
mem ber that scanf requires addresses as argumen ts (th us '&target' not 'target').
Third, p++ will increment p by the size of the structure (about 38 bytes,
depending on the size of your ints and floats), which is just what we want.
Finally, the function prints the description associated with the item number
(if it's found a match) and asks for confirmation that this item is to be deleted.
Any entry other than 'y' is treated as not confirming the deletion and the
function is left having taken no action. This could confuse a user whose
keyboard happens to be set in upper case!

So the last line of the function might be better as:

Add 89

c = getcharO;
if (c == 'y' II c == 'Y')

p - > item_no = 0;

which would require the definition of the local char variable, c.
Incidentally, don't be tempted to write

if (getcharO == 'y' II getcharO == 'Y'

which would call getchar twice so inputting two characters!
A better alternative is to use the library function tolower which converts its

input character to lower case if necessary:

if (tolower(getchar()) == 'y')
p -> item_no = 0;

Add

The simplest addition routine will merely look for the first zero item number
and shovel the new data into the corresponding record.

addO
{

}

struct cat-entry *p;
p = catalog;
while (p -> item_no) {

}

if (p - > item_no < 0) {
printf("No room\n");
return;

}
p++;

printf("Enter item number:");
scanf("%d", &(p -> item_no));
printf("Enter description:");
scanf("%s", &(p -> description));
printf("Enter price:");
scanf("jJ", &(p - > price));
p - > stock_level = 0;

There are no new ideas or sneaky tricks here. Notice that this function will
automatically set the stock level for a new item to zero, so that alteLstock
must be called to allocate some other number here.

Problem 1

Write alteLstock and check_price.

90 11. Structures

Recursive Structures

Recall the 'sentence reversal' data structure of Chapter 10. This consisted of
a vector of pointers to strings. However, this vector was sliced in two by the
head and tail functions, so we could alternatively have started with two
pointers, one to the head and the other to the tail. The tail would then consist
of a pointer to another head/tail pair, thus:

sentence

It's easy to see that this has a recursive organization because removing the
top level head/tail pair has no effect on the structural appearance of the
diagram. Thus we can say: "Here is a structure that consists of a pair of
pointers, one of which points to a word, and the other points to another
structure of the same kind."

Converting this to a C structure declaration is quite straightforward.

struct list {

};

char *head;
struct list *tail;

Notice, however, that this works only because tail is a pointer to a structure
of type list. It is illegal to include a structure itself within its own definition.

Answers

Problem 1

alter _stock()
{

struct caL entry *p;
int target, change;

}

Recursive Structures

p = catalog;
printf("Enter item number for update:");
scanf("%d", &target);
while (p -> item_no != target) {

if(p -> item_no < 0) {
printf("Not found\n");
return;

}
p++;

}
printf("Enter stock change to %s:", p -> description);
scanf("%d", &change);
p - > stock_level += change;

91

The form of this function is very like that of delete. I haven't bothered to ask
for confirmation that the item selected is correct, however, since the user can
always enter a zero for the stock level change if necessary.

check-priceO
{

}

struct cat-entry *p;
int target;
p = catalog;
printf("Enter item number for price check:");
scanf("%d", &target);
while (p -> item_no != target) {

if(p -> item_no < 0) {
printf("Not found\n");
return;

}
p++;

}
printf("%s price is "IJ\n", p -> description, p -> price);

All these functions begin to look remarkably similar don't they? Whenever
you get this sense of deja vu, it is a fair bet that there was an easier, or at least
prettier, approach. In this example it's now clear that we keep reusing a piece
of code which searches for an item number. We could write this as a function
find_key which takes the target item number as an argument, and returns a
pointer to the appropriate record. If it fails to find a match, it returns zero.

find_key(target)
int target;
{

struct cat-entry *p;

92

}

11. Structures

p = catalog;
while (p -> item_no != target) {

if (p - > item_no < 0)
, return 0;

p++;
}
return p;

check-price could then be rewritten

check_price()
{

}

struct cat-entry *find_key();
int num;
printf("Enter item number for price check:");
scanf("%d", &num);
if (find_key(num))

else

printf(%s price is YJ\n", find_key(num) -> description,
find_key(num) -> price);

printf("Not found \n");

Notice the definition offind_key as a function returning a pointer to structures
of type cat-entry. Look before you leap, though; this involves three calls to
find_key, which is a slow linear search. It would have been quicker to declare
an explicit pointer to cat-entry in check-price (pce, say) and then write:

if(pce == find_key(num))
printf("%s price is YJ\n", pce -> description, pce -> price);

PROJECTS

1. Currently, new entries are inserted in the catalog wherever there is space. Write an
additional menu function sort that will order the entries by ascending item number.

2. Write the menu function list that will display the entire current catalog.

3. Revise find_key so that it will accept an item number or a description to search on.

4. Write the menu function reorder that will display all catalog entries whose stock
level is below 20.

CHAPTER 12

File-handling

Alice could see, as well as if she were looking over their shoulders, that
all the jurors were writing down "stupid things!" on their slates, and she
could even make out that one of them didn't know how to spell "stupid",
and that he had to ask his neighbor to tell him. "A nice muddle their
slates'll be in, before the trial's over" thought Alice.

Alice's Adventures in Wonderland

Very early on in this book I remarked on the satisfyingly consistent nature of
C compilers. Generally, sins are those of omission (float or typedef may not
be implemented for instance) rather than those of juggling with the syntax or
giving library functions nonstandard features.

When it comes to file-handling, however, subtle differences start to appear
between implementations. This is not entirely the compiler writer's fault. The
problem is that the way files are handled in a computer system is more a matter
for the operating system than for any language (which, the operating system
would like to point out, is only running at all because the O.S. says it can ...
so there).

C works best (or, at least, most consistently) in an environment that looks
pretty much like Unix, the operating system for which it was conceived; in
other circumstances it may be necessary to make compromises that lead to

94 12. File-handling

the dreaded nonstandard feature. That is the reason this chapter appears as
late as it does in this book. You will have to refer to your system manuals to
confirm the precise details of your implementation, and you should by now
be able to find your way through them with confidence.

The foregoing is also a veiled disclaimer for my benefit. The code I shall
present has been tested on several "fairly standard" systems; but I cannot
claim, as I can for the majority of code in this book, that it is therefore certain
to run without modification on any other C implementation. Consequently
you should treat the following with a certain amount of caution.

I/O Redirection

Most modern operating systems do not concern themselves directly with
peripheral devices such as keyboards and printers, but rather with notional
entities called channels which are then associated with specific device drivers.
Thus a program communicates with a channel and the channel is linked to a
device. The advantage of this mechanism is that the program need not be
changed if the source of its input data changes, or its output is to be transferred
to a disk file, say, rather than the printer. Only the channel/device assignment
needs to be altered.

All C I/O is handled in this channel orientated way. Thus the getchar
function does not (strictly) transfer a character from the keyboard to main
memory; it transfers it from a channel, which by default is assigned to the
keyboard, to main memory. This channel is referred to as stdin (for standard
input). There is a corresponding channel stdout whose default assignment is
the screen.

For many applications, it is only necessary to know how to reassign stdin
and stdout, because very often we are simply taking a single disk file, pro
cessing it, and creating a new one; which is exactly analogous to accepting
some keyboard input, processing it and displaying the results.

A typical mechanism for informing the operating system of this redirection
of I/O might be

cprogram <a:data.text >b:newdata.text

which would be interpreted: "Run the program called cprogram. Take its
input from a file on drive a called data. text and dump its output to a file on
drive b called newdata.text."

The '<' is being used to indicate input redirection and the '>' is the
corresponding symbol for output redirection.

Error Messages

There is one difficulty with this arrangement: any runtime error messages
would be redirected along with the output data and the results could be
somewhat mystifying. To get over this problem there is a third standard

fopen 95

channel called stderr to which error messages are sent. This defaults to the
screen, and it is usually not possible to redirect it. On some systems it is
possible to read from stderr, in which case the keyboard is read, regardless of
the setting of stdin.

Buffered File I/O

Of course, things would be a bit restricted if we could use only the standard
channels. C provides a number of extra mechanisms for setting up and
handling files from within programs. Generally these will be disk files, but,
with the current vogue for screen windows, it's now common to find them also
handled as separate files by the operating system.

There are a number of standard library functions that conduct the relevant
bargaining with the operating system and do all the necessary internal house
keeping, such as allocating buffer space and keeping pointers to it, without
involving the programmer in the gory details. They are:

fopen
getc
putc

fscanf
fprintf
fclose

open a channel to a file
get a character from a channel
send a character to a channel
like scanf, but access a channel rather than the keyboard
like printf, but access a channel rather than the screen
flush a channel buffer and close a file

In some systems, the functions fgetc and fputc are provided as synonyms for
getc and putc, so that all buffered file I/O functions start with the letter 'f'.
Let's deal with each of these functions in detail.

fopen

This is used in the form:

cid = fopen(fname, mode);

fname is a pointer to a string, which is the name of the file. mode is also a
string, although it will contain only a single letter:

r if the file is opened for reading
w if the file is to be written to (in which case any previous file of the same

name is deleted first)
a if the program output is to be appended to an existing file

fopen returns a channel identifier (which I've shown as cid), and all subsequent
references to the file are made using this value. The programmer need never
know what that value is, because one simply refers to 'cid'.

Actually, that isn't entirely true. Under Unix, cid is a pointer to a structure
which is given the defined type FILE. This mechanism is possible only if the

96 12. File-handling

compiler implements typedef, so here is an obvious case where anomalies can
creep in.

In other systems, it may be a pointer to an int, and is then often referred to
as a file descriptor. Since Unix also uses the term file descriptor to mean
something subtly different from a FILE pointer, I have chosen to use the
term channel identifier (which as far as I know, nobody uses in any context)
to allay some of the potential confusion. What it boils down to is that you
will have to refer to your system manual to find out how to declare the type
of cid and fopen.

Creating a File

Now all subsequent references to a file are made via the channel identifier.
For instance the following code would create a file that contains the integers
1 to 100, together with their squares:

main()
{

}

FILE *cid;
int n;
cid = fopen("squares.dat", "w");
for(n = l;n < 101;n++)

fprintf(cid, "%d %d\n", n, n*n);
fclose(cid);

I've assumed that cid is a pointer to FILE, which, of course, you may need to
change. The call to fopen sets up a file called squares.dat for writing and
returns its channel identifier in cid. Then a sequence of numbers is printed to
the file using fprintf, whose format is identical to that of printf except for an
extra argument (the first) which references the appropriate channel identifier.
What is sent to the file is an exact image of what would have appeared on the
screen for the equivalent printf. For example

1 1
2 4
3 9
4 16
5 25

etc., with exactly one space separatiI1g the pairs of numbers, because that's
what's in the control string. I emphasize this point because the precise data
format may affect the way in which it is convenient to retrieve the file.
Consequently it can be a useful trick to think about the file organization as
though the data were being sent to the screen.

Once More, with Filing 97

Once More, with Filing

Now to get the data back again. Of course, this presents no practical problem
at all, because whatever your operating system, it has a utility to copy files to
the screen or printer. Obviously, it's worth using this to check that the file has
been created correctly, but I'm more concerned here with writing a program
to do the job, as another file handling exercise.

Since we know the precise nature of the file to be read, and the number of
records in it, one way to handle the problem would be to write a near "mirror
image" of the file creation program:

mainO
{

}

FILE *cid;
int n, v, vsq;
cid = fopen("squares.dat", "r");
for(n = l;n < lOl;n++) {

fscanf(cid "%d %d" &v &vsq)' , 0 0 " ,

printf("%d %d", v, vsq);
}
fclose(cid);

There is little to comment on here, except to remind you that fscanf, like scanf,
requires its arguments to be pointers and to say that, although a call to fclose
is not perhaps an absolute necessity on input (because there's no need to flush
a buffer), it is desirable, since it frees the channel identifier for subsequent use.

This solution is hardly pretty, because it can handle only this one file. It
presents no problem at all to be very much more general:

mainO
{

}

FILE *in_cid, *ouLcid;
char source[20], dest[20], c;
printf("File from:");
scanf("%s", source);
printf("File to:");
scanf("%s", dest);
in_cid = fopen(source, "r");
ouLcid = fopen(dest, "w");
while ((c = getc(in_cid) != EO F)

putc(c,oULcid);
fclose(in_cid);
fclose(ouLcid);

98 12. File-handling

This is (almost) a typical operating system filecopy utility. It allows us to
specify where the file is to come from, and where it is to be copied to, and then
picks the data off the input file character by character, looking for an end of
file marker EOF, and copying each byte to the output file until it finds one.

Of course, this way of thinking forces us to name an output file even when
we only want to output data to the screen. That is unlikely to be a problem
(most operating systems see the console as a file anyway, and give it a name
like con: or SCT-) but if you want a specific 'display file on screen' utility, you
need not open an output file at all. Just replace

putc(c,ouLcid);

with

putc(c, stdout);

or, come to that

putchar(c);

File Access Errors

There are several glaring omissions from the above code, all of which have to
do with the problem of errors that may occur during disk reads (or writes).
Sometimes such an error may relate to a hardware problem, such as disk head
alignment, or physical disk damage, but there are much more mundane
possibilities. For example, suppose you try to open a new file and there is no
remaining space in the disk directory. The operating system will simply report
its inability to set up the file. Similarly, if we attempt to open a nonexistent
file for reading, much the same thing will happen. However, as I've written it,
the filecopy program will plough on regardless, at best doing nothing useful
and at worst leaving mayhem in its wake.

This need not happen, because fopen tells us whether it was successful in
opening the file. It does this by returning a channel identifier value of zero if
the file could not be opened for any reason.

Typically, putc and fclose also will report failure. EOF may be returned by
putc, and a non-zero value by fclose.

So a more robust file copy would be:

mainO
{

FILE *in-cid, *ouLcid;
char source [20], dest[20], c;
printf("File from:");
scanf("%s", source);
printf("File to:");
scanf("%s", dest);
if ((in_cid = fopen(source, "r")) == 0) {

}

}

Random Access Files

printf("No file %s", source);
exit(O);

if ((ouLcid = fopen(dest, "w")) == 0) {
printf("Cannot open %s", dest);
exit(O);

}
while ((c = getc(in_cid)) != EOF)

. if (putc(c, ouLcid) == EOF) {
printf("disk error");
exit(O);

}

Random Access Files

99

So far we've treated disc files as though they were handing data to us in a fixed
sequence, as though they were serial files, in fact. There's nothing inherently
wrong with this, but it does mean that we're not making use ofthe disk drive's
ability to skip between tracks at will.

As usual, C provides a library function that does most of the hard work for
you. Effectively, it allows you to think about a file as a character array on
disk, and it provides a mechanism for setting the "array subscript." The
general form of this function is

lseek(cid, skip_bytes, start);

Its effect is to move the subscript around in the following way.

cid is the channel identifier, as before
skip bytes is the number of bytes to be skipped from:
start which is:

o if the skip is to be computed from the beginning of the file
1 if the skip is to be computed from the current position
2 if the skip is to be computed from the end of the file

F or instance

lseek(cid, 200, 0);

will set the system up so that the next getc will read the 200th byte in the file.
A subsequent call

lseek(cid, 50,1);

would arrange for byte 250 to be read next; or, of course, written next, with
putc. Hence the obvious use of

lseek(cid, 0, 2);

100 12. File-handling

which moves the subscript to the end of the file (start-2) and skips 0 bytes,
thus leaving the file in the "append" state.

The type of skip_bytes varies between implementations. Often it is a long
int. Sometimes it is just an int. Clearly it has to be capable of representing a
fairly large number, because it defines the maximum size of a file.

Before we look at uses for the lseek function, I should issue a solemn
warning: Never write to a file (having first used lseek) on a disk with anything
interesting on it until the program has been carefully tested with a scratch
disk. Obviously it's conceivable that calls to lseek can get out of hand, and
data can be unintentionally overwritten.

The Square Table

Let's start with an example which, while both trivial and impractical, will serve
to highlight most of the important points about using random access files. We
already have a file called squares.dat which contains a list of integers and their
squares. Presumably, we could use this to "look up" the square of an integer
by skipping directly to the appropriate entry. The table starts:

1 1
2 4
3 9

so that a single entry consists of 4 bytes (digit, space, square, newline). In fact,
this record length is implementation dependent because some systems expand
the "newline" character into the combination "carriage return" and "linefeed,"
giving a total length of 5 bytes.

Assuming the 4 byte length is correct we can find the right record for the
square of n by using lseek to skip 4*(n - 1) bytes. Except, of course, that this
breaks down on the very next record:

4 16

because the record length changes. While it isn't impossible to handle variable
length records randomly, it's clearly messy and it will probably involve a
significant processing overhead. So rule 1 is "Stick to fixed length records if
at all possible."

Problem 1

Rewrite the squares program so that each record is 10 bytes long, assuming
that each terminating newline occupies a single byte.

Second Attempt

Now that we have revised the squares.dat file to have fixed length records,
things are pretty straightforward.

Reversing the Process

mainO
{

}

FILE *in_cid;
int n, skip, v, vsq;
in_cid = fopen("squares.dat", "r");
printf("No. to be squared"); scanf("%d", &n);
skip = lO*(n - 1);
lseek(in_cid, skip, 0);
fscanf(in_cid, "%d %d", &v, &vsq);
printf("%d squared is %d", v, vsq);

101

So lseek is used to set up the position in the file, and then fscanf is used to
read the whole record. Of course, we need output only the second value
present, but I've chosen to print both so that there is a check that the correct
entry has been chosen.

Reversing the Process

Now it's evident that this example has no practical point since the problem
would never be solved this way. It is worth spelling out precisely why.

First, the connection between the fields of the record is algorithmic; each
field can be obtained from the other by computation. We easily can devise ex
amples where that is not so. Our stock control structure of Chapter 11 is a case
in point. There is no direct arithmetic connection between part number and
price, or between price and stock level. My reason for choosing the "squares"
example was simply that it could be created without a great deal of typing.

"But," you might say, "why not pull the whole file into an array to begin
with, and then access that. At least for multiple interrogations the process will
be faster."

Certainly that's another valid objection. It breaks down only when the file
is too big to be held in main memory.

So far the purpose of simplicity, I'm asking you to suspend disbelief in these
two contexts; the fields of each record are not arithmetically related and the
file is larger than main memory.

Given these conditions, can we use the table backwards-that is, display
the square root of a given number? Obviously, we could simply examine each
record in turn until the second field of a record matches the target value. That's
a linear search; we would be using the file sequentially and, consequently,
slowly. A better approach would be to use a binary search. If you're unfamiliar
with this algorithm, it can be stated easily like this:

Examine the middle entry in the file. If this is the target record, the job is done. If its
key field is greater than the target key, the target record must lie in the bottom half of
the file. Otherwise it must lie in the top half of the file. In either case half the file has
been eliminated from the search, and the process is repeated, at each stage eliminating
half the remaining entries.

102 12. File-handling

It's easy to show that a million or so entries can be searched exhaustively with
a maximum of 24 tests using this technique. Here's an implementation of the
algorithm for the "square rooting" problem.

mainO
{

}

FILE *in_cid;
int top_rec, bottom_rec, mid_rec, key, square, skip, sqrt;
top_rec = 100; bottom_rec = 1; key = 0;
mid_rec = 50;
in_cid = fopen("squares.dat", "r");
printf("Enter no. to be square rooted"); scanf("%d", &square);
while (square != key) {

}

skip = lO*(mid_rec - 1);
lseek(ill-cid, skip, 0);
fscanf(in_cid, "%d %d", &sqrt, &key);
if (key> square)

top_rec = mid_rec - 1;
else

bottom_rec = mid_rec + 1;
mid_rec = (top_rec + bottom_rec)/2;

printf("Square root is %d\n", sqrt);

This is a pretty transparent implementation of the algorithm. The variables
top_rec and bottom_rec delimit the current search space, and mid_rec is set
to the record half way between them. The record associated with mid_rec is
read and the "square" field, called key, is compared with the square value
which was originally entered. If key is the greater of the two, the top half of
the table is eliminated by setting top_rec to mid_rec - 1. Otherwise the
bottom half is ignored by making a corresponding change in bottom_rec.
When key and square are equal, the while loop is left, and the first field of the
current record is printed.

So as not to obscure the basic procedure, I've omitted the usual tests on
fopen and fscanf. Interestingly, when I first tested the routine, it hung up. I
assumed it was in an endless loop and put in extra printf's to try to identify
the problem. It still hung without printing anything. It was only then I realised
that the file "squares.dat" was not on the logged on disk! Had I included a
test for a successful fopen, the problem would have been clear immediately.
There's a moral there somewhere.

Problem 2

There is a condition which will lead to the while loop executing indefinitely.
What is it and how can it be avoided?

Reversing the Process 103

Problem 3

As it stands this procedure is hardly a useful utility. However, a few quite
simple modifications will turn it into one. Write the function search_file which
accepts the arguments file name, number of records in the file, the record
length, the position of the first byte of the key, the length in bytes of the key,
and the target key. The function sets the file subscript to the target record
using lseek, and returns the record number. Thus

n = searcLfile("data", 2000, 25, 7, 3, test);

will look for the integer 'test' in bytes 7, 8, and 9 of a 2000 record file called
"data," each of whose records is 25 bytes long.

Answers

Problem 1

It's necessary only to change the fprintf control string

fprintf(cid, "%3d %5d\n", n, n * n);

Thus n will occupy 3 bytes, then there's a space, then n2 in 5 bytes followed
by the newline character; ten bytes in all.

Problem 2

The condition is, of course, that the value read into 'square' does not appear
in any key field. To put it another way, there is no integer square root.
Obviously, if top_rec and bottom_rec reach the same place without finding
a match between square and key, this has happened. So the while loop
becomes:

while (square != key) {

}

skip = 10*(mid_rec - 1);
lseek(in_cid, skip, 0);
fscanf(in_cid, "%d %d", &sqrt, &key);
if (bottom_rec == top_rec && square != key) {

printf("Not found");
exit(O);

}
if (key> square)

top_rec = mid_rec - 1;
else

bottom_rec = mid_rec + 1;
mid_rec = (top_rec + bottom_rec)/2;

Incidentally, notice that this is a case where the do-while construct is arguably

104 12. File-handling

superior to the while loop; it would save the initialisation of mid_rec and key.
My reticence to use it is purely a personal phobia (although I know other C
programmers who share it). I simply can't find a way of writing a do-while
that looks nice.

I don't regard this as a weakness. You're less likely to make mistakes if
you're consistent, and you're more likely to be consistent if you're comfortable
with your coding style. So develop a style you like and stick to it!

Problem 3

search_file(filename, filesize, recsize, start byte, numbytes, target)
char *filename;
int filesize, recsize, startbyte, numbytes, target;
{

}

FILE *in_cid;
int top_rec, bottom_rec, mid_rec, skip
top_rec = filesize; bottom_rec = 1; key = 0;
mid_rec = (top_rec + bottom_rec)/2;
if ((in_cid = fopen(filename, "r"» == 0) {

printf("No file %s", filename);
return 0;

}
while (target != key) {

}

skip = recsize*(mid_rec - 1);
lseek(in_cid, skip, 0);
fscanf(in_cid, "%s", record);
substring(record, sub, startbyte, numbytes);
key = atoi(sub);
if (bottom_rec == top_rec && target != key) {

printf("Not found");
return 0;

}
if (key> target)

top_rec = mid_rec - 1;
else

bottom_rec = mid_rec + 1;
mid_rec = (top_rec + bottom_rec)/2;

return mid_rec;

The form of this function bears a remarkable resemblance to its more limited
square root calculating cousin, with just a few variables replacing constants.
The only significant difference is in extracting the numeric key from the current
record. For simplicity, there is an assumed global character array called record
into which the current record is read. A second global character array called

Reversing the Process 105

sub also is set up, and the substring function of Chapter 6 is used to move the
key field of the record into it, before it is converted to an integer for the
comparisons to be made.

PROJECTS

1. The binary search algorithm only works if, of course, the records are sorted into
key order. With the squares file this was guaranteed, but now that we have a more
general function who knows what the initial state of the file might be? Write a
function that will sort the file into ascending order of any desired numeric keyfield.

2. Write the functions geLrec and puLrec which input from, or output to, disk the
stock file structures of Chapter 13. The functions already outlined there can be
modified to refer to a file rather than to an array and, together with the search and
sort functions, would form the basis of a quite usable stock control system.

3. Handling files in the totally random manner I've outlined can be very time
consuming, particularly if record sizes are large. A compromise is to hold all the
record key fields in main memory in record number order. Then we need search a
linear array only for the target key, and the pointer to it will tell us which record
number to pull from disk. Such an array is called an index. Write a function to
create an index for a file, and write it to disk as another file, so that it need not be
recreated as long as the file is not altered. If you want to be really flash, allow records
to have multiple keys so that a file has several index files associated with it, each
referring to a different key field.

CHAPTER 13

Debugging

"That is not said right," said the Caterpillar.
"Not quite right, I'm afraid," said Alice timidly: 'some of the words

have got altered.'
"It is wrong from beginning to end," said the Caterpillar decidedly.

Alice's Adventures in Wonderland

Whenever you write computer programs, there are two Golden Rules to bear
in mind:

Golden Rule 1. Anything that can go wrong, will.

Golden Rule 2. Anything that can't go wrong, probably will too. In other
words, cats miaow, dogs bark, politicians tell imaginative versions of the truth,
and programmers make mistakes.

Debugging a program can be a soul-destroying chore if it's not tackled
systematically. This is especially true of compiled programs, because they have
to be recompiled after each change. Fortunately many implementations of C
have their own debugging tools included. I'm not going to discuss such tools
here, because they vary with the implementation. Instead, I'll concentrate on
a few simple guidelines, together with some "bare hands" methods that may
be useful in the absence of fancier tools.

Common Errors 107

Common Errors

There are a number of errors that virtually everyone stating to program in C
tends to make.

1. Use of = instead of ==. The symbol = is to assign a value to a variable.
The symbol == is used to test for equality. So to set the variable x to the
value 3 you write

x=3

but to test this value you write

if (x == 3)
... whatever

BASIC uses = for both of these, so BASIC programmers have to lose this
habit. Pascal programmers have to change habits completely!

Usually if you make mistakes like these you'd expect then to show up as
syntax errors (with a message from the compiler to point them out). But the
flexible syntax of C leads to different consequences. For example, if you write

if (x = 3)
... whatever

the computer will assign the value 3 to x, then notice that x = 3 is true, and
go on to do whatever you specified. Similarly the code

x == 3

will be evaluated as an expression (to 0 or 1) but this has no effect on the value
of the variable x (or indeed on anything else).

2. Missing;. Every statement must end with a semicolon. If the semicolon is
omitted the compiler will assume that the statement continues into the next
section of code, with interesting results. For example, suppose you intend to
write

and instead write

p = p + x;
q = q + y;

p=p+x
q = q + y;

then the compiler will see this code as

p = p + xq = q + y;

and interpret xq as a variable name. Since this is rather unlikely as a variable
name you will get the error message "undeclared variable." (If it so happens
that there is a variable xq, worse things will happen.)

This leads to another important observation; what the compiler sees as an
error may not be the error you actually made.

108 13. Debugging

3. Missing }. This is similar, but on the level of functions rather than state
ments. It will usually be detected by the compiler because the number of}'s
doesn't match the number of {'so However, if you've also missed out a { or
added a superfluous} elsewhere, the compiler won't notice the mistake. Your
program will be unlikely to produce the results you anticipated, though.

4. Missing" ". Every string must be enclosed in quotes. If you miss them out
the string will be interpreted as the name of a variable.

5. Missing */. Comments start with /* and terminate with */. If you miss out
the final */ everything that follows the initial /* will be seen as a comment
including most of your program.

6. Undeclared Variables. All variables must be correctly declared. Failure to
do so constitutes a syntax error and will be picked up by the compiler.

However, as remarked above, not everything seen by the compiler as an
undeclared variable need correspond to a genuine undeclared variable. Other
errors can lead the compiler to assume that a variable has not been declared.

Runtime Errors

The errors above are really syntax errors-breaches of the grammatical rules
of the language-with the extra twist that in some cases the resulting syntax
is correct: it just isn't what you intended! This leads us to a more serious source
of error, the runtime error, which only shows up when the program is run.
With runtime errors we've opened Pandora's box-which you'll recall was
full of bugs-because a program with perfect syntax can still go totally
haywire.

It's impossible to avoid runtime errors altogether: but you can make it
easier to find them if you write structured programs that confine the problem
to a clearly defined segment of code.

If a C program is well-structured, it will consist of a number of short
functions, each standing alone as a kind of mini-program (but perhaps calling
other functions). And main will just put them all together in a clear way. So
there's a sort of tree-like hierarchy of functions, maybe a bit like this.

main

tinker tailor soldier spy

/\ /\ /\/\
pot pan needle thread A '- do""

barrel magazine

I
bullet

Testing a Function 109

That is, main calls functions tinker, tailor, soldier, and spy; then soldier calls
gun and dagger; gun calls barrel and magazine; and so on.

If you try to debug main straight away, you've got terrible problems. The
bug could have burrowed its way deep into the tree; maybe way down in
magazine, say. A sort of electronic Dutch Elm Disease. The effect of an error
in magazine could be totally baffiing by the time it propagates up to main.

So, of course, we should check out magazine first, to avoid any mistakes. In
other words, we should work our way up the tree, from the twigs at the
extremities (pot, pan, needle, thread, barrel, bullet, cloak, dagger) towards the
root (main).

To summarize: Each (twig) function should be tested separately, and then
the functions using tried-and-tested functions should themselves be tested, and
so on. It's a matter of building on firm foundations (iftwigs can be considered
foundations ...).

Testing a Function

The moral is: write the functions one at a time, and test each one (in a specially
written test program) before using it elsewhere.

For example, here's a function that works out the volume of a box of sides
a, b, c.

vol (a, b, c)
int a, b, c;
{

}

We could test this with

mainO
{

int x, y, z;
x = 2; y = 3; z = 5;
printf("volume is %3d units", vol(x,y,z));

}

If you compile this and run, it will yield

volume is 30 units

and 2.3.5 is indeed 30. If skeptical, you could test again with different numbers;
or use library functions to input lots of x, y, z values (See Chapter 8.)

If, by mistake, you'd written

vol (a, b, c)
int a, b, c;
{

}

110 13. Debugging

you'd have gotten

volume is 11 units

which would immediately show up the error. Of course this is an easy example,
but it illustrates the principle.

Test Lines

Often the output demanded by the end result of a program doesn't give us
enough clues about what's going on. The solution is to add temporary test
lines to the program, to print out intermediate values, or whatever, to see
what's happening.

Here's a (bugged) program to evaluate the ylh power of an integer x.

power(x,y)
int x, y;
{

}

while (y > 0)
x *= y--;

return x;

For a start, we need a test program to call it; say

main()
{

int x, y;
x = 7; y = 4;
printf("power is %6d", power(x, y));

}

If you compile and run, you get

power is 168

which is a far cry from 74 = 2401. Clearly there's something rotten in the State
of Denmark, not a thousand miles away from x *= y--. The idea of this is
to simultaneously decrement y for the while loop, while building up xY by
repeating multiplication. But something is amiss.

We can keep track of what's happening inside the loop by printing out the
x and y values.

power(x,y)
int x, y;
{

while (y > 0) {
printf("x = 3%d y = %3d", x, y);
x *= y--;

Test Lines

}
return x;

}

This gives us an output

x = 7 Y = 4 x = 28 y = 3 x = 84 y = 2 x = 168 y = 1
power is 168

The y-- keeps changing the y-value; so we're working out

7.4.3.2.1 = 168

by mistake.
So we replace the first two lines by

power(x,y)
int x, y;
{

yO = y;
while ...

x *= yO; y--;

and discover it won't even compile! We get something like

"this variable was not in parameter list."

We forgot to declare the new variable yO.What we should have done was

power (x,y)
int x, y;
{

}

int yO;
yO = y;
while (y > 0) {

printf("x = %3d y = %3d", x, y);
x *= yO; y--;

}
return x;

which give us an output

x = 7 y = 4 x = 28 y = 3 x = 112 y = 2 x = 448 y = 1
power is 1792

111

At this point we realize that we're repeatedly multiplying x by 4, not by 7.
We've calculated

7.4.4.4 ...

instead of

7.7.7.7 ...

112 13. Debugging

The way to get around this is to change

yO = y;

to

yO = x;

(though of course xO might be a better name). Now the output is

x = 7 y = 4 x = 49 y = 3 x = 343 y = 2 x = 2401 y = 1
power is 16807

We're multiplying by 7, all right; but we've done it once too often. 16807 is
75, not 74 ; and 74 is 2401. Any BASIC hacker will recognize the culprit
immediately: we've gone around the loop once too often. So we replace

while (y > 0)

by

while (y > 1)

and this time we get

x = 7 y = 4 x = 49 y = 3 x = 343 y = 2 power is 2401

and all's well ... or is it?

Be Thorough

There's a hoary old tale of a tramp sitting beside a heap of twigs striking
matches. Any that failed to work he threw away. Any that lit, he blew out and
carefully replaced in the matchbox. When a passer-by asked why, he replied
"I'm testing them to see which ones light O.K."

Programs are rather like matches. Just because they work once, that doesn't
prove they'll do so on another occasion.

Test the power program with other values. Get it to work out 35, 103,21°,
6\ 11 0. What do you get?

35 = 243
103 = 1000
210 = 1024

61 = 6
11° = 11

correct
correct
correct
correct
wrong (should be 1)

Oops. It gets the zeroth power wrong. This is because we tell it to

return x;

at the end of the while loop. Even if it doesn't loop, x still gets returned. So
we need to add a few instructions to deal separately with y = O.

Dormant Bugs 113

Problem 1

Modify power so that power (x,O) is always 1, as it should be.

Problem 2

An efficient way to deal with test lines is to write a function called debug which
prints out the current value of a given variable, along with a message to
identify which one it is. It should have two arguments, message and value. For
example, if the variable x has the value 99 then the statement

debug("x = ", x};

should produce the output

» x = 99

(where the » is to distinguish the debugging message from anything else
that the program prints out).

Write such a function.

Problem 3

Improve the function from Problem 2 as follows. Set up a global array called
-count (the initial underline is there to make sure it's not one of the arrays
already in the program) which, for each variable, counts how many times that
variable is called by debug. Modify debug to take three arguments: message,
value, and refno. The new variable refno gives the relevant element of the array.
The output should look something like this.

»Reference Number 2: x = 99: count = 5

Dormant Bugs

How do we prove conclusively that a program does precisely what it was
written to do? I don't want to get involved in too complicated a philosophical
discussion (because that's where we are headed) but, broadly it's a bit like
asking an astronomer whether the sun will rise tomorrow. If he is very
pedantic he might answer that the earth has been going around the sun for a
long time now and we have a body of physical laws which suggest that it will
continue to do so in a regular way, and that the smart money would be on
this continuing to be the case tomorrow; but he would add that he has no way
of knowing whether our physical laws are right and that what we have
observed for thousands of years might in fact be a manifestation of a much
more complex law whose effect, tomorrow, might be to reverse the direction
of the earth's rotation or to take it out of orbit completely.

By analogy, because a program behaves correctly for the first thousand sets
of data input to it, there's no absolute guarantee that it will work for the
thousand and first. In fact, bugs often don't become apparent until months or

114 13. Debugging

even years after a program has been apparently successfully completed and
has been run without problems dozens or even hundreds of times. This isn't
really surprising; after all, it's the conditions that occur least often that the
programmer is most likely to overlook.

Here's an example. We are writing a suite of programs for the Nether
Hopping Electricity Board to handle its customer accounts. They explain to
us that there are two tariffs, A and B. On the A tariff the consumer pays a
quarterly standing charge of $15 and then pays for units used at a rate of 4¢
per unit. On the B tariff the consumer pays no standing charge and pays 7¢
per unit. So we write a function:

bill (uni ts, tariff)
int units;
char tariff;
{

}

if (tariff == 'A')
return (15 + 4*units/100);

else
return (7*units/100);

and a main program rather like

mainO
{

}

int units;
char tariff;
units = 1035
tariff = 'B';
printf("Fred Bloggs % 6d", bill (units, tariff));

O.K. I know that in practice we'd input the 1035 and the "B," along with the
customer's name (Fred Bloggs) and no doubt the address, account number,
credit rating, and shirt size. But you get the idea.

So we test this piece of code and it works fine and we go away muttering
that it is a waste of our remarkable talents to be given Noddy programs like
this to write.

And it does work fine for years, and then one day it prints a bill for $0.00.
Of course, nobody notices because it's one of thousands of bills and anyway
it's probably enveloped automatically. The recipient is puzzled and probably
amused by the bill because it shows how stupid computers are but there seems
no point in taking any action so he throws the bill away. Unfortunately, we
wrote another program in the same suite which stores the date when each bill
was dispatched and if it does not receive confirmation that the bill has been
paid within 28 days, it prints a final demand notice. This time the recipient is
more irritated than amused but just consigns it to the waste paper basket, as

Dormant Bugs 115

before. At this point things start to go seriously wrong. The routine that checks
the delay between presentation of the account and payment issues an order
to the maintenance department to cut off any consumer who still hasn't paid
after 60 days.

What's happened? Easy! The consumer is an old-age pensioner who has
taken advantage of one of the long winter break packages that the travel
companies offer to senior citizens. He was out of the country for just over three
months and used no electricity in a full account period. He is also an unusually
frugal user of electricity so he's on tariff B. That's why the system printed out
a request for zero payment, and of course it won't happen very often because
very few people will be away from home for that long, and tariff B users are
likely to be thin on the ground, too. For the problem to occur, the consumer
has to fit both conditions.

Once seen, the bug is easily squashed, just add to main a line:

if (bill (units, tariff) == 0)
printf("send no bill");

so that the system is warned against the offending action.
This problem is supposed to have occurred in an early computer system,

although whether it's a folk tale I wouldn't like to say. In any event, I think
it illustrates neatly how a bug can lie dormant almost indefinitely.

The moral is: when you invent data to test a program, don't do so at
random. Choose values at and close to branch values in the program. If a
statement says:

if(u < 30) {
do something or other

}

then run a test with u at 29.9999; and 30; and another at 30.0001. You may
have meant:

if(u<=30){
do something or other

}

If you test only at u = 15 and u = 160 you won't notice the error.
Make sure test data have been chosen so that every section of the program

is executed at some time. And of course make sure you know exactly what the
answer should be for each set of test data.

Answers

Problem 1

power(x,y)
int x, y;

116

{

}

13. Debugging

if(y==O)
return 1;

else {

}

int yO;
yO = x;
while (y > 1) {

x *= yO; y--;
}
return x;

Problem 2

debug(message, value)
{

}

char *message;
int value;
printf("»%s %d", message, value);

Problem 3

int _count[];
debug(message, value, refno)

{

}

char *message;
int value, refno;
printf("Reference number %d:%s%d", refno, message, value);

Note: In Problems 1 and 2 we have, for simplicity, assumed that the variables
under consideration are of type int. See Project 2 below.

PROJECTS

1. It would be useful, in connection with the "debug" function, to be able to remove the
test lines automatically once the program has been fully debugged. Write a function
dedebug that reads the program from a file, removes all debug statements, and writes
it back to the file.

2. Modify the answers to Problems 2 and 3, so that no assumptions are made about
the type of the variable whose value is printed out.

CHAPTER 14

Rational Arithmetic

"What day of the month is it?" he said, turning to Alice: he had taken
his watch out of his pocket, and was looking at it uneasily, shaking it
every now and then, and holding it to his ear.

Alice considered a little, and then said, "the fourth".
"Two days wrong!" sighed the Hatter. "] told you butter wouldn't suit

the works!" he added, looking angrily at the March Hare.
"It was the best butter," the March Hare meekly replied.

Alice's Adventures in Wonderland

Most modern high-level languages offer you a choice of integers or floating
point arithmetic. Generally, so far as the programmer is concerned, that choice
is dictated by the kinds of numbers he or she wants to play with; if you want
fractional values, you've got to use float.

However, there are other factors to consider. On the assumption that your
computer doesn't deal with floating point calculations in hardware (and unless
you're very rich it won't-math coprocessors for current 16-bit machines add
at least $500 to the cost of the machine, and you can't get them at all for vanilla
flavored 8-bit systems) it is going to do such sums in a fairly leisurely manner.
This is so because floating point arithmetic algorithms are quite complex
animals. I don't want to get involved in the gory details, but just to get the
flavor of the problem, think about the following sum

5.83 + 642.1

In a decimal floating point system, these numbers could be seen as

118

1
3

583000
642100

14. Rational Arithmetic

that is the '1' and '3' indicate the positions ofthe
decimal points from the left hand ends of the
numbers

To perform the addition, the points must be aligned effectively. This is equiva
lent to bumping the '1' by two and shifting right its corresponding number
twice.

3 005830

3 642100

Now we can add the two numbers, leaving the '3' alone.

3 647930

That's equivalent to 647.93, which is correct.
So a simple addition has turned into a loop of shifts and increments followed

by an addition. If the number was represented in 24 bits we could need to
perform the loop (shift-increment-test) 24 times before doing the addition. In
practice, there are several technical problems that make the algorithm still
more complicated.

Fixing the Problem

So it appears that you can't have high-speed arithmetic and fractions. But
floating point provides not only a representation for fractions, but a colossal
range of representable number. On any home micro you can happily work
with numbers as large as:

100,000,000,000,000,000,000,000,000,000,000,000,000

But, be honest, how many times have you actually needed anything remotely
like that number?

Perhaps, then, there's a compromise; a representation that will allow frac
tions and execute arithmetic relatively fast, but won't let you talk about the
distances between star systems.

Well, there are several. You can, for example, simply fix a point at an
arbitrary position in a word and then perform all calculations on the basis
that all numbers are represented in this form. This "fixed point" representation
was common on early computers but is pretty much extinct now.

A more promising alternative was proposed by Berthold Horn (see "Soft
ware Practice and Experience," Volume 8, Number 2). His scheme goes like
this: See a number as a pair of integers whose value is one of them divided by
the other. Thus 3.2 appears as 32/10 or possibly 16/5. In general, let's talk
about a number A as the pair (a, a') whose value is a/a'. It's obvious where
the term "rational arithmetic" comes from; each number is a ratio of integers.

We can look at some of the implications of adopting this strategy by

Overflow 119

examining the general algebraic results for the four basic operations on two
numbers, A and B:

i) Addition

A + B =aja' + bjb'

= (ab' + a'b)j(a'b')

This result is another ratio, so that if R = A + B, r = ab' + a'b and
r' = ab'. That's pretty convenient, but there is a fly in the ointment. Clearly
the multiples (ab' etc.) require double length words. But rand r' must be
returned to single words. So there are going to be problems concerned
with avoiding overflow. We could minimise these difficulties by using
a lowest common multiple algorithm, but that would be rather time
consuming and, in view of our general aim here, self-defeating.

ii) Subtraction

A - B = aja' - bjb'

= aja' + (- b)jb'

It's only necessary to form the two's complement of b and then call the
addition function. No new problems here.

iii) Multiplication

AB = aja' x bjb'

= (a x b)j(a' x b')

Again, the rational result has a convenient form (r = a x b, r' = a' x b')
and, also as before, we're going to get overflow problems.

iv) Division
AjB = (aja')j(bjb')

= (a x b')j(a' x b)

No problem with this. On the contrary, a pleasant surprise. Division
algorithms are usually complex, slow, or both and, in any event, a real
pain. This one is trivial.

On the whole, this is looking pretty quick. Multiplication and division each
require only two integer multiply operations, and addition and subtraction
need three followed by an addition.

Overflow

We had better confront the overflow problem before getting too complacent.
To get a grasp of the difficulties we'll examine what would happen in a system
in which we chose two 6-bit fields to form our numbers. Thus 3.1 and 1.8 could
appear as:

120

3.1

1.8

14. Rational Arithmetic

31
011111

18
010010

10
001010

10
001010

Adding these two numbers using the raw algorithm gives:

31 x 10 + 18 x 10 : 000111101010
10 x 10 : 000001100100

While the result remains in 12-bit fields, it is, of course, exactly right (490/100).
However, we have the problem of crunching the data back into 6 bits. A fairly
obvious technique is to shift both words left until one of them has two different
senior digits (i.e., all leading non-significant digits have been lost). Then extract
the senior 6 bits from each, thus:

011110 = 30
000110 = 6

This gives the result 5. At one level, it isn't too surprising that we're getting
errors in the first decimal place, because we can't get 100 into the 6-bit
denominator and we clearly need it for 2 decimal places.

However, if we consider the result a little more carefully there are two
distinct oddities. First, since the denominators happened to be the same, there
was no need to use the general algorithm at all-we could simply have added
the two numerators. This would have given an exact answer and saved time
into the bargain. So it would seem to be worthwhile testing for this condition.
Second we could have "cancelled" the second number from 18/10 to 9/5. If
you repeat the sum having done so, you get

000011110101
00000011 00 1 0

(= 245)
(= 50)

Selecting the 6 most significant bits gives exactly the same result as before! A
little thought indicates that the bit patterns are (and must be) unchanged
except for a shift right in each case.

But won't the ab' + a' b expression exceed 12 bits if its terms are large
enough? Actually, no. In 6 bits the maximum value is 011111, or IF hex. So
the expression can only reach 2 x IF x IF = 782 = 011110000010, comfort
ably below the 12-bit limit. There would be a problem at the other end of the
scale if all the terms were negative, but they can't be, because a' and b' are
always positive divisions, sign being indicated by a and b.

It's easy to show algebraically that overflow is impossible for any word size.
If you're still suspicious, I leave it to you as an exercise.

A Practical Organization

Having convinced ourselves that this scheme ought to work in principle, let's
turn our attention to a specific implementation. We could choose to represent
each part of the rational number (i.e., the divisor and the dividend) in an int,

and declare a new type, rat:

Functions

typedef struct {
int top;
int bottom;

} rat;

121

(i.e., a 'rat' has the form top/bottom). Now we'll be able to declare rational
numbers, and pointers to them, as for instance

rat n, *p;
p = &n;

which is just like an ordinary variable definition.
The range of numbers that are representable in this form clearly depends

on the size of an int. If it is 16 bits then this range is - 32768 to 32767, just as
it would be for integers, because to achieve these extremes we clearly need the
smallest possible denominator (1). Equally clearly, we can represent nothing
closer to zero than 0.00003052 (1/32767). We should be able to expect a
precision of 4 significant figures. This is perfectly adequate for many purposes
(lots of us got along with 4 figure logs for years) but with a modern 32 bit
micro a range of ± 2 billion is achievable, with a precision of around 9
significant figures. That's better accuracy than some floating point systems
and, while it lacks their range, it's hardly restrictive. We shall find, however,
that things are not quite as rosy as they might at first sight appear.

Functions

What functions will go to make up the package? Obviously the four arith
metic operations already discussed; but we also need mechanisms for getting
numbers from the outside world into rational format and vice versa. The
simplest technique here is going to be to write functions that convert between
strings and rational format, much as atoi converts between a string and an
integer.

Because a rat is a structure, we can only pass pointers as arguments, and
that means that a pointer to the result must appear in the argument list. This
leaves the possibility of returning something else. The sign of the result seems
like a sensible contender for this honor. So we'll standardise on the following:

If p, q and r are pointers to rats

add (p, q, r) gives *r = *p + *q

sub (p, q, r) gives *r = *p - *q

mpy (p,q,r) gIves *r = *p x *q

div (p, q, r) gIves *r = *p/*q

In each of the above cases, if the value pointed to by r is negative, -1
is returned, if zero, zero is returned, and if positive + 1 is returned. The

122 14. Rational Arithmetic

conversion functions are:

ator(p, r)

and

rtoa(r,p)

which converts a string pointed to by p to a rat
pointed to by r.

which converts a rat pointed to by r to a string
pointed to by p.

Double or Nothing

Before leaping into action and writing some code, there's one remaining
potential fly in the ointment to consider. It concerns the intermediate double
length results that are generated by terms like ab'.

These are easy to deal with if, and only if, your compiler implements the
long int type and it is a double length integer. It would be nice to make the
package more generally applicable than that; that is, to make it more portable.

Let's set our signts rather lower than total portability for a moment and
think about a specific and rather common case: that in which ints are 16 bits,
chars are 8 bits and longs are either not implemented or are also 16 bits. If we
simply multiply two ints together, the result is actually the low order 16 bits
of the true answer; useless for our purpose. However, suppose we see the
numbers in their constituent bytes:

A ahigh alow
B bhigh blow

and treat the sum as a long multiplication, base 256. If the result appears in
4 bytes cO, ct, c2, c3 then the values can be seen like this:

ahigh*alow ahigh*blow +
alow*bhigh

The carry problem is now very easily handled. Simply use integers to hold the
intermediate results and, having extracted the low order 8 bits with a mask,
shift right 8 bits to look at the carry.

We could write a function on this basis called long_mpy, which takes two
ints a and b, multiplies them together and leaves the result in a char array
pointed to by c.

long_mpy(a, b, c)
int a, b;
char *c;
{

char tempI [4], temp2[4];

}

Double or Nothing

int temp, alow, ahigh, blow, bhigh, sign = 1;
if(a<O){

sign *= -1;
a *= -1;

}
if(b < O){

}

sign *= -1;
b *= -1;

alow = a; blow = b;
ahigh = a » 8; bhigh = b » 8;
temp = alow * blow;
tempI [0] = temp;
tempI[!] = temp» 8;
tempI [2] = tempI [3] = 0;
temp = ahigh * blow;
temp2[0] = temp2[3] = 0;
temp2[I] = temp;
temp2[2] = temp » 8;
10ng_add(tempI, temp2, c);
temp = alow * bhigh;
tempI [0] = tempI [3] = 0;
tempI [1] = temp;
tempI [2] = temp » 8;
10ng_add(tempI, c, c);
temp = ahigh * bhigh;
tempI [0] = tempI [1] = 0;
tempI [2] = temp;
tempI [3J = temp » 8;
10ng_add(tempI, c, c)
if (sign < 0)

negate(c);

123

This function assumes that a and b are positive. If not we just make them
positive and keep a record of the sign. After that, it's just a question of forming
the terms of the result in 4-byte arrays and adding them together. I'm using
a new routine called long_add for this, because we're going to need it anyway
when dealing with additions. Finally, we need to recreate the correct sign, by
calling a routine called negate if necessary.

Negate just flips the bits of the 4 bytes passed to it and then uses long_add
to add I to the result:

negate(n)
char n[];
{

124

}

14. Rational Arithmetic

int i;
char one [4];
oneCO] = 1; one[1] = one[2] = one[3] = 0;
for (i = 0; i < 4; i++)

n[i] = -n[i];
long_add(n, one, n);

long_add uses to new techniques:

long_add(a, b, c)
char a[], be], c[];
{

}

unsigned temp = 0;
int i;
for (i = 0; i < 4; i++) {

temp »= 8;

}

temp = temp + a[i] + b[i];
c[i] = temp;

There's one further function that tinkers with these 4-byte arrays, the one
that takes the double length numerators and denominators and recreates
a standard rat structure from them. Assuming that n is a pointer to the
numerator array, d is a pointer to the denominator array, and r is a pointer
to the target rat structure, we get:

dtor(n, d, r)
char *n, *d;
rat *r;
{

}

while (highbit(n + 3) /\ nextbit(n + 3) = = 0

}

&& highbit(d + 3) /\ nextbit(d + 3) = = 0) {
left (n);
left (d);

r -> top = *(n + 3) « 8 + *(n + 2);
r -> bottom = *(d + 3) « 8 + *(d + 2);

This is straightforward enough. We compare the two senior bits of the
numerator and perform the same function for the denominator. While they
are the same in each case we shift both of them left one bit. As soon as either
has different bits in the two senior positions, there are no more insignificant
leading digits, so we transfer the high order 16 bits of the numerator and
denominator to the top and bottom respectively of the fraction.

That leaves highbit, nextbit and left to write

Portability Considerations

highbit(c)
char *c;
{

return (*c & Ox80 ? 1 : 0);
}

125

Thus highbit returns 1 or 0 depending on whether the senior bit of the array
was 1 or O.

Similarly nextbit returns 1 or 0 depending on whether the next most senior
bit is 1 or 0:

Now for left:

nextbit(c)
char *c;
{

return(*c & Ox40 ? 1 : 0);
}

left (c)
char *c;
{

}

int i;
c += 3;
for (i = 0; i < 4; i++) {

*c «= 1;

}

if (i == 3)
break;

*c += highbit(c - 1);
c--;

Obviously, the basic technique is to shift the high order byte (i.e., that pointed
to by c + 3) left, thus leaving room for a possible carryon the right. Then use
high bit on the next byte to add in the carry. This process is repeated 4 times,
except that on the last repetition we don't want a carry drawn in from next
byte. Hence the "if(i == 3) break;".

Portability Considerations

The reason I have separated these functions out and examined them before
the main rational suite is that they are clearly nonportable. It wouldn't be
difficult to make them handle N-byte arrays, with each byte containing B bits
and then allow Nand B to be the subject of # define statements, but it is
questionable whether this is worthwhile. After all, it may not be sensible to
employ such a structure at all if, for instance, long ints are implemented as

126 14. Rational Arithmetic

double length ints. In any case, generalization will probably be at the expense
of speed and we should bear in mind that it is fast execution that provides
the raison d'etre for this whole exercise. So it's more sensible to require
the implementor to provide equivalents to these functions for the target
configuration, and give him or her the rest of the source code. Speaking of
which ...

add(p,q,r)
rat *p, *q, *r;
{

,
} ,

char ml[4], m2[4], m3[4], m4[4];
long_mpy(p -> top,q -> bottom,ml);
long_mpy(p - > bottom, q - > top, m2);
long_mpy(p -> bottom,q -> bottom,m3);
long_add(ml, m2, m4);
dtor(m4, m3, r);
return (r -> top?r -> top/abs(r -> top): 0);

This is a fairly unremarkable implementation of the original algorithm,
except for the mechanism which returns the sign of the result (as -1,0 or 1
for negative, zero or positive, you'll recall). The idea is that the numerator is
tested for non-zero. If it isn't then zero is returned, but if it is, the numerator
is divided by the positive version of itself. Of course, that will produce either
1 er - 1, depending on its original sign. The denominator does not affect
things since it's always positive.

Lies, Damned Lies and Computer Programs

Or is it? I claimed it was at the beginning of this chapter because we can ensure
that ator keeps it that way, and add forms the new denominator only from
the old ones. So does sub and mpy. But div puts a spanner in the works. It
forms the new denominator from a numerator times a denominator, and the
numerator could be negative. All is not lost, though. We simply need to modify
dtor to test for a negative denominator, and change the sign of both top and
bottom if it finds one.

Problem 1

Make the necessary changes to dtor.

This one's a doddle:

Subtraction

sub(p, q, r)
rat *p, *q, *r;

{

}

The Conversion Routines

rat copy;
copy. top = -(q -> top);
copy. bottom = q -> bottom;
return add(p, ©, r);

127

The numerator of the subtrahend is just negated and add is called. However,
note that we have to make a local copy of this value, otherwise the data given
to the function will be altered. This problem only arises, of course, when
pointers, rather than actual data are passed.

Also note that we want to return what add returns.

Multiplication

This is perfectly straightforward:

mpy(p,q,r)
rat *p, *q, *r;
{

}

char *mI, *1n2;.
long_mpy(p -> top,q -> top,mI);
long_mpy(p -> bottom,q -> bottom,m2);
dtor(m 1, m2, r);
return (r -> top: r -> top/abs(r -> top)?O);

Division

No problems here either:

div(p, q, r)
rat p, q, r;
{

}

char *m 1, *m2;
long_mpy(p -> top,q -> bottom,mI);
long_mpy(p - > bottom, q - > top, m2);
dtor(m 1, m2, r);
return (r -> top: r -> top/abs(r -> top) ? 0);

The Conversion Routines

That just leaves us with the problem of communicating with the outside world.
Here's a possible ator:

128 14. Rational Arithmetic

ator(p, r)
char *p;
rat *r;
{

}

char copy [10], *pc, *s;
strcpy(copy, p);
r -> bottom = 1;
pc = copy;
s = pc + strlen(pc) - 1;
while(*s!= '.') {

}

r -> bottom *= 10;
s--;

*s = '\0';
strcat(copy,s+ 1);
r -> top = atoi(copy);

It works like this. A local copy of the string is made so that it can be messed
about with impunity. The denominator is set to 1, and a pointer (s) to the end
of the string. Then we move back through the string, looking for the point,
and multiplying the denominator repeatedly by 10 until we find it. Finally,
we concatenate the string after the point on to the string before the point to
create an integer which can be passed to atoi and thus used to generate the
numerator.

Obviously, the string must contain a point for this to work, and the number
of digits in the string must not exceed 5 (in fact, it mustn't be bigger than
32767).

The rtoa routine does little more than a glorified long division:

rtoa(r, p)
rat *r;
char *p;
{

rat copy;
int dp;
*p =' ';
copy. top = r -> top;
copy.bottom = r -> bottom;
if (copy.top < 0) {

copy.top = -copy.top;
*p = '-';

}
sprintf(p + 1, "%5d.", copy.top/copy.bottom);
copy. top %= copy. bottom;
p = p + strlen(p);

}

And Now the Bad News

for (dp = 1; dp < 5; dp++) {
while (copy. top > 3276) {

copy.top »= 1;
copy.bottom »= 1;

}

}
copy. top *= 10;
sprintf(p, "%ld", copy.top/copy.bottom);
p++;
copy. top %= copy. bottom;

129

First, a copy of the rat is made and is forced to positive. A space or minus
sign is placed at the beginning of the output string as appropriate. The integer
digits follow this by performing an integer divide into the string using sprintf.
A point is located in the string in the same operation. Then, taking the
remainder, we simply repeat the divide operation after first multiplying the
top by 10 to get the next decimal place. Unfortunately, top*10 can overflow;
the rather mysterious little while loop ensures that doesn't happen by re
peatedly dividing top and bottom by 2 until the top is less than 32767/10.

And Now the Bad News

Try the package out. You'll find that it behaves much as predicted most
of the time. However there are odd occasions on which it suddenly starts
producing wildly inaccurate answers.

Problem 2

See if you can run down the nature of the bug. (Hint: it isn't exactly bug.)
Perhaps you can think of ways of fixing it.

Answers

Problem 1

This is pretty run-of-the-mill. First test the sign of d with a call to highbit.
Then, if it's ngeative, call negate on both nand d. This can be done anywhere
before the data are transferred to the rat pointed to by r, but if it's done at the
beginning of the routine the while condition can be simplified, because we
then know that the highbit of d may not be 1:

dtor(n, d, r)
char *n, *d;
rat *r;
{

130

}

if (highbit(d + 3)) {
negate(d);
negate (n);

}

14. Rational Arithmetic

while (highbit(n + 3) 1\ nextbit(n + 3) == 0 && !(highbit(d + 3))) {
left (n);
left (d)

}
r -> top = *(n+3) « 8 + *(n + 2);
r -> bottom = *(d+3)« 8 + *(d+2);

Problem 2

The way to tackle this is to look at the intermediate results in rational form,
and also at the 4 byte arrays. You can just include a few printfs such as:

printf("top of r: %x bottom of r: %x\n", r -> top, r -> bottom); It's
convenient to keep the output in hex because that makes it easy to see how
the binary patterns are shifting around. What you will find is that the 32-bit
results are behaving exactly as they should and that the rationals are being
formed correctly from them. You also should notice that the major inaccu
racies are occuring only when the denominator is small. Once you've seen this
the reason is fairly obvious. If there are, say, 10 significant bits in the denom
inator, the integer held is of the order of 1000, so the accuracy is about 0.1 %.
On the other hand, with five significant bits, the value is around 30 and the
accuracy has worsened catastrophically to around 3%.

PROJECTS

What can be done about this? Here are a few suggestions:

1. Double the size of the representations. This is going to be fairly easy if you have a
proces~or (such as a Motorola 68000) which has 32-bit registers and can therefore
perform the necessary arithmetic directly. Otherwise, the extra coding is going to
slow things down rather a lot.

2. Allow the elements of a rat to maintain accuracy not by truncating them below 16
significant bits, but rather by keeping a record of the effective point position in each
case, and tidying up the result as late as possible. This is getting uncomfortably
close to a conventional floating point format, though.

3. Instead of performing a dtor conversion at the end of each operation, convert
directly to alpha (i.e., write dtoa). This will preserve accuracy quite nicely but it
leaves the problem of doing base 256 long divisions. That's likely to be messy and
slow.

4. Try to devise a "normalization" process by which the rationals themselves are kept
close to unity, the area where errors will be at a minimum. Again, you'll need an
extra field to hold multipying factors.

Postscript 131

Postscript

I have tried to present the material in this chapter much as I conceived it,
warts and all. Thus where I originally made an error at the design stage (for
instance, in assuming the denominator would always be positive) I've left it
in, until the point where I discovered the error of my ways.

By doing so, I hope to have shown up the power of a modular approach
to software design. Because I already had the functions highbit and negate,
and because the problem could be localized to dtor, the solution to this
particular incorrect problem specification was trivial. It would not have been
so easy if the code had been written inline.

Of course, if analysts and programmers didn't make mistakes it wouldn't
matter much. But they do; experience may make them better, but never perfect.
So it's important to look at the ways in which errors can occur and consider
damage limitation techniques. In my view, textbook writers often are too
ready to present their final, immaculate algorithms and code, and to sweep
under the carpet the false starts and rewrites that go into the body of the
iceberg (if I may mix my metaphors).

CHAPTER 15

Implementing Turtle Graphics ...

"Once," said the Mock Turtle at last, with a deep sigh," I was a real
Turtle."

Alice's Adventures in Wonderland

Turtle Graphics were invented by Seymour Papert in the 1960's and form the
best known part of his introductory programming language, Logo. The idea
is that lines can be drawn on the screen by an (imaginary) turtle which happens
to be carrying a pen around with it. It can be commanded to head off in any
given direction, travel a specific distance, lower the pen so that it leaves a track
as it goes, or raise it so that no trace is left. In some implementations the turtle
is a robot, and the name is more appropriate, but the side effects on carpets
can be undesirable.

The turtle uses no conventional Cartesian or Polar coordinate system

Turning Turtle 133

explicitly, but rather an implicit mixture of both. This makes it especially
useful for young children; but it has deservedly gained widespread popularity
elsewhere.

Here, I'm going to examine in detail a turtle graphics package which uses
only integer arithmetic, on the grounds that several popular C compilers
support high resolution graphics but not float. Later we'll look briefly at how
it could be revised to give somewhat improved accuracy using float.

Turning Turtle

We're going to implement the following primitive operations:

penup
pendown
turn

turnto

position

move

Lift the pen, so that the turtle can move without leaving a trace.
Lower the pen again.
Turn the turtle through a specified number of degrees anti
clockwise.
Set the turtle heading to an absolute angle measured anticlock
wise from a reference line at 3 o'clock.
Set the turtle down at a specified position, expressed in Cartesian
coordinate terms.
Move the turtle a specified distance on its current heading.

So the sequence of commands:

position(50, 20);
pendownO;
turnto(30);
move(25);
turn(60);
move(20);

will have the effects shown in Figure 15.l. Incidentally, the function names

20

turn (60)
[making 90° in all]

30°
20------ \-

/i turn to (30)
position (50, 20) I

I
I
I

50

FIGURE 15.1. Effect ofa sequence of turtle graphics commands.

134 15. Implementing Turtle Graphics ...

I've chosen are not those of "standard" Logo. This is easily justified, firstly
because there is no standard, and secondly because I want to minimize the
number of primitives. Most Logos have the primitives LEFT and RIGHT
which have exactly the same significance as our 'turn'. Thus the form LEFT
30 is the same as turn(30) and RIGHT 60 is equivalent to turn (- 60).

Anyway, you can see that, if we can implement these functions, we will have
a powerful graphics tool.

But First, The Snags

A typical medium resolution display on a microcomputer is about 250 x 200
pixels, maybe a bit better, maybe less. On the other hand, as I said in Chapter
6, a C integer variable is often held in a 16-bit word, giving a range of - 32768
to 32767. The screen coordinates just about fit into an 8-bit field, so we've got
about double the precision available that we need. The trick is to make this
work for us.

Suppose we store the turtle coordinates 256 times larger than their true
values. If the centre of the display is seen as (0,0) and coordinates range from
- 125 to + 125, we'll be storing values in the range - 32000 to + 32000,
comfortably inside the integer range. Only when a point is plotted do we need
to deal with the true values, and those are simply the stored values shifted
right eight bits.

In effect, we have better than two decimal places of accuracy. This will help
to control round-off errors.

As we shall see, all references to sine and cosine will also be multiplied by
256, so that we can obtain integer approximations to these functions that also
will give us an effective 2 decimal places. So here's the basic idea:

1. Store all point coordinates 256 times too big.
2. Hold distances in their true form (i.e., not times 256).
3. Evaluate (integer part of 256 * sin A) rather than sin A (and similarly for

cos A).

Triggery-Pokery

That leaves the most pressing problem of how to deal with item 3. The simplest
(though rather inelegant) solution is to hold an array of all the necessary sine
values for all integer angles from 0° to 90°. We'll examine this first, and worry
about neater solutions later. Table 15.1 shows the values we need.

It's clear that all functions will need access to this information, so we need a
global array. While we're thinking about global variables it's also evident that
several functions will need to know where the turtle is, which way it's headed,
and whether it's writing at the moment. So we have

int s[91J, x_turtle, y_turtle, heading, writing;

Triggery-Pokery 135

TABLE 15.1. 256 x sin A (rounded to the nearest integer)

angle A sin(A).256 angle A sin(A).256 angle A sin(A).256

0 0 30 128 60 222
1 4 31 132 61 224
2 9 32 136 62 226
3 13 33 139 63 228
4 18 34 143 64 230
5 22 35 147 65 232
6 27 36 150 66 234
7 31 37 154 67 236
8 36 38 158 68 237
9 40 39 161 69 239

10 44 40 165 70 241
11 49 41 168 71 242
12 53 42 171 72 243
13 58 43 175 73 245
14 62 44 178 74 246
15 66 45 181 75 247
16 71 46 184 76 248
17 75 47 187 77 249
18 79 48 190 78 250
19 83 49 193 79 251
20 88 50 196 80 252
21 92 51 199 81 253
22 96 52 202 82 254
23 100 53 204 83 254
24 104 54 207 84 255
25 108 55 210 85 255
26 112 56 212 86 255
27 116 57 215 87 256
28 120 58 217 88 256
29 124 59 219 89 256

s is our sine array, x_turtle and y_turtle give the turtle's current Cartesian
coordinates, heading gives its current angle to the reference line and writing
is a flag which is set to 1 if the pen is down and 0 if it is up.

We'll need a function, initialize, which sets the turtle to the centre of the
screen, a heading ofOD and the pendown state. It also can set up s. Obviously,
s could be initialized by writing a laborious sequence of statements such as:

s[O] = 0;

s[91] = 256;

91 times, or, if your compiler supports initializers:

int s[91] = {O,
... ,256};

136 15. Implementing Turtle Graphics ...

Perhaps we can do better. No doubt you have a BASIC interpreter on your
machine. Use it to set up a file of the values we want like this, say:

10 CREATE # 10, "isin.dat"
20 FOR angle = 0 to 90
30 PRINT # 10, INT (256 * SIN (angle * 3.142/180) + 0.5)
40 NEXT angle
50 CLOSE*10

(Note the 0.5 in line 30 to provide the correct round-off.)
Now we can read this back into s inside initialize:

initializeO
{

}

FILE *cid;
int angle;
heading = 0;
pendownO;
position(XCENTRE, YCENTRE);
cid = fopen("isin.dat", "r");
for (angle = 0; angle < 91; angle++)

fscanf(cid, "%d", &s [angle J);
fclose(cid);

First, the heading is set to zero and the pen placed down. The turtle is
positioned in the centre of the screen. Where exactly this is depends on your
system, of course, so I've left it open. XC ENTRE and YCENTRE can be the
subject of suitable # define statements. Finally, the file of values created by
BASIC is read back into s.

Next the trig functions:

isin(a)
int a;
{

}

if(a <= 90)
return s[aJ;

if (a <= 180)
return s[180 - aJ;

if (a <= 270)
return -sea - 180J;

if (a > 270)
return -s[360 - aJ;

icos(a)
int a;
{

a = 90 - a;

}

The Turtle Commands

if(a<O)
a += 360;

return isin(a);

137

Here the 'i' prefix is just to remind us that we're doing integer trig (and
getting numbers 256 times as large as the usual sin and cos). I've assumed a
lies in the range 0° to 360° in both functions, so the 'turn' function will have
to ensure this is the case.

The Turtle Commands

That's dealt with the housekeeping; now we can turn our attention to the
turtle commands proper.

turn (a)
int a;
{

}

heading += a;
heading %= 360;
if (heading < 0)

heading += 360;

First, heading is incremented by the angle a and the result evaluated modulo
360. It might seem that this is as far as we need to go, but in fact there's an
extra problem.

Let's examine a couple of examples to see the difficulty. Suppose that
heading initially evaluates to 370. The mod operation will generate 10, which
is correct. However, if heading were - 370 to start with, the % operation gives
-10, which is not inside the required range. In mathematical terms, the result
of a mod operation here should be 350, which is, of course, equivalent to -10
and fulfills our conditions.

The problem is that the % operator is not strictly a modulus operator. It
evaluates the remainder of the division, which is clearly not necessarily posi
tive. So we need to add 360 to any negative result to stay within range.

Having spotted this trick, turnto is trivial.

turnto(a)
int a;

{

}

heading = a % 360;
if (heading < 0)

heading += 360;

The pen movement commands simply alter the state of writing

138 15. Implementing Turtle Graphics ...

pendownO
{

writing = 1;
}
penupO
{

writing = 0;
}

The move function is a little more complicated.

move(dist)
int dist;
{

}

int x, y;
x = x_turtle + dist*icos(heading);
y = y_turtle + dishisin(heading);
if (writing)

line(x_turtle > > 8, y_turtle > > 8, x > > 8, y > > 8);
x_turtle = x;
y_turtle = y;

Think about the basic relationships here (ignoring our 256 fiddle factor):

(X,y)

y_turtle - - - -r"'--'---------'

We have

x - x_turtle = dist * cos (heading)

and

y - y_turtle = dist * sin (heading)

If we insert our icos and isin values, the right hand sides of these equations
are multiplied by 256. To compensate, x, y, x_turtle and y_turtle are also
multiplied by 256, but, of course, nothing needs to happen to dist.

Thus the new values of x and yare evaluated and, if the turtle should be
writing at the moment, a line is drawn. The precise form of this function call
obviously depends on your graphics library. I'm assuming that there is a
function

Turtle Incorporated 139

line(a, b, c, d);

that will draw a line from (a, b) to (c, d). Notice that the arguments are all right
shifted 8 bits to divide out the 256. Finally, the turtle is repositioned at (x, y).

That just leaves position:

position(x, y)
int x, y;
{

}

x_turtle = x « 8;
y-turtle = y « 8;
if (writing)

point(x, y);

That's simple enough; the new x_turtle and y_turtle values become 256 times
x and y respectively and a point is plotted at (x, y) if the pen is down.

Incidentally, you'll have noticed that throughout I have shifted 8 bits left
or right rather than multiply or divide by 256. Obviously this speeds things
up, but there is a possible problem, which we'll encounter again in Chapter
16. It's this: when a right shift occurs on an int the sign bit should be propagated
left wards so that the sign of the result is unchanged. Normally this does
happen, and there's no problem; but on some C compilers a right shift is
implemented as a logical shift (so that zero's are used to fill on the left
regardless of sign) whatever the type of the variable being shifted. It's easy to
get round this problem if it exists; simply see the graph space as first quadrant
only, so that all x, y values are positive. This may well be the way your library
graphics functions work anyway in which case it's easiest to keep to this
convention. For consistency, positional variables should then be unsigned (x,
y, x_turtle and y_turtle) but angle and distance variables remain as ints
because they can go negative.

Turtle Incorporated

So far we have a pile of turtle functions that could be simply written into any
program that uses them. That would be laborious and inconvenient; certainly
not in keeping with the C philosophy! Most C compilers provide no fewer
than three ways to do the job more elegantly:

1. Use the # include preprocessor command. Create a file containing all the
turtle functions called, say, 'turtle.c'. Now precede any turtle graphics
program with:

#include <turtle.c>

and, of course, all the functions are included prior to compilation.
There is one disadvantage to this. Since all the functions are included,

they will all be compiled, even though they may not all be called. As a result

140 15. Implementing Turtle Graphics ...

the object code may be bigger than necessary, although in this example,
with only a few small functions, it's unlikely to matter much.

2. Modify the standard library. You could append the new functions to the
source code of the standard library and recompile it. That way the turtle
graphics commands become part of the language. Of course, you should be
sure the code is bug-free before doing this; having suspect library functions
is not to be recommended.

Some compilers have librarian utilities that allow compiled functions to
be added to the compiled version of the library. That saves a fairly long
winded recompilation, but the effect is the same.

3. Use the linker. Finally you could make more use of the linker than we have
so far. I've simply said that it will link compiled functions from the standard
library, but it's usually more sophisticated than that. It will link functions
from any compiled file provided that file is specified as an argument at link
time. The linker may even tell you, if it has been unsuccessful in finding a
function, what the function is, and give you the option of specifying another
file to search for it. The precise details are implementation dependent.

Finally in this chapter, I'll show how our turtle's course can be made less
erratic, or anyway more accurate, by employing float.

Seeketh after a Sine

The usual way to compute special functions, such as SIN, COS, etc., is to
approximate them by something easier, for example a polynomial, or a quo
tient p/q of two polynomials (known as a rational function). An entire branch
of mathematics, known as approximation theory, is devoted to just this task.

Probably the first idea that springs to mind is to approximate SIN(x) by
the front end of its Taylor series:

x - x 3/6 + x 5/120 - x7/5040 + ...
Like most things that first spring to mind, this is not necessarily the best idea.
Other approximations can provide more accuracy for less work. But it does
have some advantages, which make it worth looking into.

Let's take the series up to the x 5 term only, and rearrange it in the form:

(This process is called nesting.) Here's a simple C routine to implement it:

sintayl(x)
float x;
{

float y;
y = x*x;
return «(O.05*y - 1) * O.166667*y + 1) * x);

}

Seeketh after a Sine 141

TABLE 15.2. Comparison of the
sine function with its Taylor series

to order 5, and its Pade

approximation, f(x)

Taylor: Pade
x sin (x) sintayl(x) f(x)

0 .0000 .0000 .0000
.1 .0998 .0998 .0998
.2 .1987 .1987 .1987
.3 .2955 .2955 .2955
.4 .3894 .3894 .3894
.5 .4794 .4794 .4794
.6 .5646 .5646 .5646
.7 .6442 .6442 .6442
.8 .7174 .7174 .7173
.9 .7833 .7833 .7832

1.0 .8414 .8416 .8413
1.1 .8912 .8916 .8908
1.2 .9320 .9327 .9313
1.3 .9635 .9648 .9624
1.4 .9854 .9874 .9834
1.5 .9975 1.0007 .9944
1.6 .9996 1.0007 .9948

Table 15.2 shows how sin and sintayl compare, for 0 < x < 1.6 (the usual
range [0,1]). The range -1.6 < x < 0 is the same, but both SIN and sintayl
have minus signs. (You can verify this with a BASIC program on your own
machine.)

So to 4 decimal places, sintayl is an excellent approximation in the range
[0,1], hence also [-1,1]; and to 3 decimal places it's fine over the whole
range [- n/2, n/2].

You can easily see that the Taylor series is a much better approximation
for x near 0 than it is for x large. The result is that by the time the series is
accurate for x near 1 (say), it's unnecessarily accurate for x near O. So a lot of
the work of computation is wasted. However, the formula (*) above is very
simple anyway.

Another approximation is the rational function:

(60x - 7x3)/(60 + 3x2) = f(x), say,

which is also a close approximation to sin (x) for -n/2 < x < n/2 (again see
Table 15.2). Here x is measured in radians. It has often pleasant properties as
well: it satisfies

f(-x) = -f(x)
f(O) = 0

just as sin does. And the denominator 60 + 3x2 is never zero. The function

142 15. Implementing Turtle Graphics ...

f(x) arises by a technique called Pade approximation, in case you're interested;
and there's a vast theory about that.

This leaves us with two minor problems, other than actually writing the
code:

(a) Convert from degrees to radians.
(b) Deal with angles outside the range, where either function above rapidly

becomes a very bad approximation to sin (x).

For the first, note that:

x degrees = x/180 radians,
rc is very close to 355/113.

In fact 355/113 = 3.141593 = to 6 decimal places. So x degrees ~

355x/(113*180) = 71x/(113*36) radians. Thinking of this as:

x/36*71/113

we retain accuracy as long as possible. For instance, suppose x = 45°, a typical
size. Then

x/36 ~ 1.25
- x /36 * 71 ~ 89

x /36 * 71/113 ~ 0.78.

The second is dealt with by a technique called (rather pretentiously) range
reduction, which we used in writing is in and icos above. Thinking in degrees
(an advantage here since 360 is an integer but 2rc isn't!), we have two useful
facts:

(1) sin(x + 360k) = sin(x)
(2) sin(180 - x) = sin (x)

See Figure 15.2.

y

-----+--~~~4-~~----~----+---------x

sin(x)

FIGURE 15.2. Range-reduction for sin (x).

A Trig Suite in C 143

Using (1) we can bring x into the range [0, 360], or better, [-90,270]. Then
using (2) we can bring x into the range [- 90,90] for which f(x) is a good
approximation.

A Trig Suite in C

We can now write a sine routine in C. First we assume x in the range [-90,90]:

sintayl(x)
float x;
{

}

float y;
x = x/36*71/113;
y = x*x;
return (((0.5*y - 1) * .166667*y + 1) * x);

Now suppose x is (possibly) not in thic range. Then we can either add (or
subtract) multiples of 360 to get it into the range [- 90, 270]; and then use the
results above to reduce to [- 90,90]. Here's what you get:

sin(x)
float x;
{

}

while (x < - 90)
x += 360;

while (x > 270)
x -= 360;

return sintayl(x);

What about the cosine? Well, we could start with a Pade approximation to
cos(x), and follow the same lines. But there's an easier way, because (as we've
seen in the integer case)

cos (x) = sin(90 - x)

for x in degrees. So all we need is

cos (x)
float x;
{

return sin (90 - x);
}

PROJECT

Write C functions to compute (approximately!) the trigonometric functions:

144 15. Implementing Turtle Graphics ...

tan x (= sin x/cos x)
cot x (= cos x/sin x)
sec x (= 1/cos x)
cosecx(= 1/sinx)

Make these return very large values when the denominator vanishes (rather than try
to divide by zero!) and set a suitable overflow flag as a warning that this has occurred.

CHAPTER 16

and Using Them

"Would you like to see a little of it?" said the Mock Turtle.
"Very much indeed," said Alice.
"Come, let's try the first figure!" said the Mock Turtle to the Gryphon.

"We can do it without lobsters, you know. Which shall sing?"

Alice's Adventures in Wonderland

Now comes the fun: mobilizing our faithful turtle in pursuit of art, science,
and technological know-how. I've written this Chapter assuming the unso
phisticated Integer Turtle Graphics is in use; but apart from changes to the
type of variables and the standard initialization, the same programs will work
with higher-precision Turtle Graphics.

I'll also assume that you will "# include" our existing Turtle package, so
that the existing global definitions are always available.

As each new Turtle Graphics function is written, you can add it to this file.
So we'll build up an ever-more flexible range of commands.

146 16 and Using Them

Topics covered include rectangles, ordinary or tilted polygons, circles, stars,
spirals (and squirals), and as the piece de resistance, the Koch snowflake curve.

But the real advantage of Turtle Graphics is that you can easily produce
your own creative designs, without having to think about the mechanism
whereby the computer produces them on the screen.

Rectangles

First, let's write four standard commands:

left (dist)
int dist;
{

turnto(180);
move(dist);

}
right(dist)
int dist;
{

}

turnto(O);
move(dist);

up(dist)
int dist;
{

}

turnto(90);
move(dist);

down(dist)
int dist;
{

}

turnto(270);
move(dist);

These are pretty much self-explanatory!
Next, a function to draw a rectangle of given height and width, whose lower

left corner is at the current turtle position:

rectangle(height, width)
int height, width;
{

turnto(O);
right(width);
up (height);
left (width);

Fan-Dancing 147

down(height);
}

I'd like you to generalize this a shade.

Problem 1

Write a function tiltrec(height, width, angle) which produces a tilted rectangle
as in Figure 16.1.

Try this problem now, because I'm going to use the answer. (Look it up
if-heaven forbid-you have trouble.)

I
Current turtle position

FIGURE 16.1. Data for tiltrec.

Fan-Dancing

We can assemble tilted rectangles to make windmills, fans, propellers, and
their ilk. See Figure 16.2.

A single multi-variable routine will do it.

fan (sang, iang, num, height, width)

Here it is.

I
I

I I ,--I width of blade
'-. ----- height of blade

number of blades
angle between blades

L-___________ start angle

fan (sang, iang, num, height, width)
int sang, iang, num, height, width;
{

int n, a;
a = sang;
for (n = 0; n < num; n++) {

tiltrec(height, width, a);

148 16 and Using Them

a += iang;
}

}

You may prefer a variant.

like this.

fan2(sang, iang, fang, height, width)
IL ------- finish angle

fan2(sang, iang, fang, height, width)
int sang, iang, fang, height, width;
{

}

int a;
for (a = sang; a <= fang; a += iang)

tiltrec(height, width, a);

To get the pictures in Figure 16.2 you must write main programs that call

(a) fan(45,90,4,20,40)
(b) fan(45, 10, 10, 5,40)
(c) fan(0,45,8,20,30)

respectively.

FIGURE 16.2. Tilting at windmills.

Problem 2

Do this. For something fancier, try

mainO
{

int k;
initialize ();
for (k = 0; k < 8; k++) {

turnto(O);
move(lO);

Polygons 149

pendown();
fan(30, 5,24,60,4);
penup();

}
}

Polygons

It's very easy to draw an n-sided regular polygon whose side has length d:

polygon(n, d)
int n, d;
{

}

int t = 0;
while (t++ <= n) {

move(d);
turn(360 / n);

}

Note that since t is incremented before the test we need < = rather than <.
It's then possible to produce some quite attractive results, for example

main()
{

}

int d;
initializeO;
for(d = 10;d < 100;d += 10)

polygon(5, d);

However, with polygons it's often more useful to know what the centre and
radius is. This is by no means obvious in the above format (see Fig. 16.3).

We can work out how to define d in terms of r, and how to produce the correct

d

FIGURE 16.3. Free-form and centred polygons.

150 16 and Using Them

d/2

FIGURE 16.4. Calculations for a centred polygon.

offset for the centre, by using a bit of trigonometry on Figure 16.4, which
represents two consecutive sides of a rectangular n-gon. (If trig isn't your bag,
ignore the next few paragraphs of theory and go straight to the program.)

We have:

Here:

So:

Similarly:

sin(A/2) = (d/2)/r,
cos(A/2) = h/r

A = 360/n so A/2 = l80/n.

d = 2rsin(A/2)
= r * 256 sin (A / 2) /128
= r*s[180/n]/128

h = r * s[90 - l80/n] /256

since cos(x) = sin(90 - x). Therefore the required code is:

centpoly(n, r)
int n, r;
{

}

in d;
d = r*s[180/n]/128;
penupO;
turnto(- 90);
move(r * s[90 - 180/n] /256);
turn(-90);
move(d/2);
turn(180);
pendownO;
polygon(n, d);

Spirals

FIGURE 16.5. A star.

So, for some concentric heptagons, you could write

mainO
{

}

int k;
ini tialize 0;
for (k = 0; k < 10; k += 5) {

centpoly(7, 10 * k);
position(O, 0);

}

Circle

151

You can get a pretty good approximation to a circle by using (say) a 30-gon.
So

polygon(30, r)

is a 'circle' radius r. If r is big, you may need to increase the 30.

Stars

If you take the vertices of an n-sided polygon and join those that are m edges
apart, you get a star as in Figure 16.5.

Problem 3

Write a function star (n, m) to implement this idea. Hint: the angle to be turned
through is now m * 360/ n, otherwise it's just as for a polygon.

Spirals

If we perform a long series of moves and turns, and slowly increase the distance,
or tinker with the angle, then typically we get a polygonal spiral. Here's a

152 16 and Using Them

FIGURE 16.6. SpyraJ (40, 10, 1,90) gives a squiral.

general function along these lines:

For example:

spyral(num, sd, inc, angle)
int num, sd, inc, angle;
{

}

while (num-- >= 0) {
move(sd);
turn(angle);
sd += inc;

}

spyral(40, 10, 1,90);

produces a square spiral (squiral) as in Figure 16.6.
Change the angle to something close to 90°, but not quite (say 88° or 92°)

and the corners will themselves appear to spiral.

Problem 4

Can you write a recursive function to produce squirals?

The Koch Snowflake

Finally, something more advanced. Around the turn of the century, Helge von
Koch invented a curve called the snowflake to show that an infinitely long
curve can enclose a finite area. It starts with an equilateral triangle and
repeatedly modifies it by adding triangular peaks in the middle of each side.

There are various ways of drawing the snowflake. I'm going to use one that
develops a string holding a long sequence of left and right turn symbols "I"
or "r". The first generation is:

"Ill"

(three consecutive lefts-a triangle) followed by:

" lrlrlrlrlrlr"

The Koch Snowflake 153

FIGURE 16.7. Adding a bump to the side ofthe snowflake: each "I" becomes "lrlr", and
each "r" becomes "rrlr".

(a Star of David). Successive generations are obtained by replacing each "I"
with a sequence "Irlr", and each "r" by "rrlr". See Figure 16.7.

One minor point to settle before we start. The string of l's and r's will be
called snow; and we'll need a temporary area temp to manipulate it. How long
should these strings be?

Well, snow quadruples in length each generation. So we have

generation 1 : length 3
2: 12
3: 48
4: 192
5: 768

So two arrays of 800 bytes each will be more than adequate.
Here's the actual program:

char snow[800], temp[800];
mainO
{

int gen, d;
ini tializeO;
printf("Enter side length");
scanf("%d", &d);
strcpy(snow, "Ill");
for (gen = 0; gen < 5; gen++) {

position(50, 50);
turnto(-120);
if (gen > 0)

154

}
}

16 and Using Them

iterateO;
display(d);
pause(DELA V);

Here pause, iterate, and display are three new functions. pause is just a
time-delay. For instance:

pause (t)
int t;
{

while(t--)

}

DELAY can be set up in a # define statement to give a suitable interval
between displays.

The string-handling is done by iterate:

iterate()
{

}

int k = 0;
strcpy(temp, "");
while (snow [kJ)

if (snow[k ++ J == 'l')
strcat(temp, "lrlr");

else
strcat(temp, "rrlr");

strcpy(snow, temp);

Finally the display routine:

display(d)
int d;
{

}

int k = 0;
clearscreen();
while (snow[kJ) {

}

if (snow[k ++ J == 'l')
turn(120);

else
turn(-60);

move (d);

Here clearscreenO is whatever you need to do to get the screen clear-possibly
printf some control character. Or a suitable function may be in the library.

Afterthoughts ... 155

Afterthoughts ...

This is only the beginning. If you've got this far you'll have no trouble
expanding the range of abilities of your home-bred Turtle Graphics. And you
can tailor your Turtle to your personal prerequisities, thanks to the enormous
flexibility of C.

And all this is just one example of how, by writing a suite of C functions,
you can enhance the native abilities of your computer. It's not hard to think
of others-a geometry kit for the mathematically minded, with functions

ruler (one-point, another-point)
protractor(angle)

and the like; or a musical suite with functions ranging from

allegretto()

to

brandenburg~concerto()

A veritable Symphony in C!

Answers

Problem 1

tiltrec(height, width, angle)
int height, width, angle;
{

}

int t;
turnto(angle);
for (t = 0; t < 2; t ++) {

move(width);

}

turn (90);
move(height);
turn (90);

Note that the turtle ends facing in the direction angle.

Problem 2

(a)
main()
{

initialize();
fan(45,90,4,20,40);

156 16 and Using Them

(b, c) replace the parameters in fan with the correct values: leave the rest
unchanged.

Problem 3

star(n, m, d)
int n, m, d;
{

}

int t = 0;
while (t++ <= n) {

move(d);
turn(360 * m / n);

}

I won't bore you with the 'centred' version, but here's another hint if you want
to write one yourself: Centre the surrounding n-gon and then turn a suitable
angle before calling star.

Problem 4

squiral(num, sd, inc)
int num, sd, inc;
{

}

move(sd);
turn (90);
sd += inc;
if (num--)

squiral(num, sd, inc);

PROJECT

If you tried polygon using a number of sides that do not divide 3600 exactly, you
probably found that it does not quite join up correctly. Clearly this is because the
integer division loses a remainder and such errors build up quite noticeably for a large
number of sides.

Can you improve the situation by checking remainders on all divisions (including
the shift right operations) and performing appropriate round-ups?

CHAPTER 17

Random Thoughts

The confusion got worse every moment.

Through the Looking Glass

As any programmer knows, random numbers can be extremely useful animals,
particularly in simulations and games programs. And, of course, it's a simple
matter to get hold of them; simply use a function called RND or rand or
random which produces them between zero and one, or between limits you
define, like rabbits out of a hat. Your C library almost certainly has at least
one function that does the job for you.

But have you ever stopped to wonder, when using them with gay abandon,
just how random they are? Or what the question "How good is a random
number generator?" actually means? No? Well, now's your chance.

158 17. Random Thoughts

Some Basic Ideas

In fact, no digital computer produces sequences of random numbers. At least,
that statement is true if we chose to define such a sequence as a set of numbers
ro, rt , rz, r3 ... such that if we know rp ' there is no possible way of predicting
the next number, rp +t ' All conventional random number generators perform
a sequence of (surprisingly simple) arithmetic operations on rp to produce rp+t,

so if you know the formula, the prediction is trivial. Generally such generators
are said to produce pseudo-random numbers for this reason.

A commonly used technique is the linear congruential generator, which
adopts the following deceptively simple relationship

rp+t = (arp + c) mod m

a and c are constants and the mod operation has the effect of generating the
remainder after the contents of the bracket have been divided by m. So if a, c
and m are global variables, or the subject of # define statements, a C random
number function might appear as

maybe_randomO
{

}

r=(a*r + c)%m;
return r;

Of course, r would have to be a global variable, because its previous value has
to be retained between calls. Alternatively, it could be a local static, if your
compiler allows this.

It's clear that arbitrarily chosen values of a, c and m are unlikely to give a
random sequence. For example, if a = 4, c = 2 and m = 6, then starting with
r = 1 gives the sequence:

r

1 (4*1+2)%6=0 ° (4*0+2)%6 = 2
2 (4*2+2)%6=4
4 (4*4+2)%6 = °

From then on, the sequence 0, 2, 4 repeats indefinitely so that the numbers 3
and 5 can never be generated. We have a model of a rather heavily weighted
die! Of course, even if this had generated a sequence like 1, 0, 2, 3, 5, 4 it must
then repeat and we would have the odd concept of a die which, on any six
throws, behaves apparently normally (except that two successive throws of
the same value never happen) but which can then remember and repeat its
previous six throws unerringly. This problem is easily dealt with. Simply
choose a very large value of m so that the nonrepeating sequence is extremely
long, and then partition that into the 6 groups representing the die throws.

Testing "Randomness" 159

Now members of a group may occur repeatedly without the whole sequence
cycling.

However, ifm is going to be large (a few million, say) it's going to get tricky
to keep an eye on how the sequence is behaving. Let's keep m small for the
minute while we're examining some of the problems.

O.K. a = 4, c = 2 didn't work; let's try a = 1, c = 1. We'll get:

r
1 (hl+l)%6=2
2 (h2+ 1)%6 = 3
3 (h3+1)%6=4
4 (1*4+ 1)%6 = 5
5 (h5+ 1)%6 = 0
o (hO+ 1)%6 = 1

That generates the whole sequence all right, but it's hardly random!
So we've identified two major problems. First, how do we ensure that

the sequence generated contains every value (we say such a sequence has
maximum length, and call it an m-sequence, for short)? Second, how do we
know there aren't some hidden connections between the numbers in the
sequence, even if not as blatant as the one above?

In a book entitled Semi-numerical Algorithms which is Volume II of The
Art of Computer Programming (published by Addison-Wesley), Donald
Knuth gives some relationships between a, c and m that are guaranteed to
provide m-sequences. I shall not reproduce them here, but rather encourage
you to delve into this volume for yourself, since it is a source of instruction,
amusement, and facination. Knuth devotes more than one hundred pages to
this topic alone.

Testing "Randomness"

He also investigates a number of techniques for testing how "random" a
particular sequence is (and remarks in passing that more time easily can be
spent on such tests than in devising generators in the first place).

With this in mind, I shall restrict myself to just one type of test, which strikes
me as particularly satisfying. The idea is this: we are aiming for a situation in
which, in general, there is no connection between rp and rp+1 . So let's assume
that they are related. For example we could treat them as a coordinate pair
(x, y) and then represent all such pairs on a graph. For our suspect sequence
1,2,3,4,5,0 this would give:

160 17. Random Thoughts

y

5 •

4 •

3 •

2 •

040--J-~2L--3L--4L-~---X

and the pattern is immediately obvious, indicating the lack of randomness.
However, if a particular sequence passed this test by showing no particular
pattern we cannot leave it at that, because there should be no discernible
relationship between rp and rp+2 , so we should repeat the process taking
alternate values as the x, y pairs. Similarly, every third value should be
extracted, then every fourth, and so on. In a sequence of a million numbers
we're going to end up with a lot of graphs!

The Numerical Connection

Even if we do draw (or, more sensibly, get the computer to draw) all these
scatter diagrams, how can we be sure that our subjective view is true, and that
there is no discernible pattern in any of them? Clearly we need some good
solid measure of the degree of correlation between any two sets of values.

Let's analyze the problem slightly differently. Suppose the sequence of
numbers being generated represents the random noise that's always present
in a hi-fi amplifier or (more noticeably) radio, even when there's no signal
present. The average value of this noise is zero; in other words, its value is
equally likely to go positive or negative. That's easily modelled-simply
subtract the average value of the sequence from each number so that 4, 3, 0,
2, 1, 5 becomes 1.5, 0.5, - 2.5, - 0.5, -1.5, 2.5 for instance.

N ow look at two copies of this sequence:

I

I
I

I

I I

The Numerical Connection 161

Suppose we multiply together the two values at each time interval, and add
the results:

1.5 x 1.5 = 2.25
0.5 x 0.5 = 0.25

-2.5 x -2.5 = 6.25
-0.5 x -0.5 = 0.25
-1.5 x -1.5 = 2.25

2.5 x 2.5 = 6.25

17.5

Obviously we get a positive result because we've been squaring numbers, so
that their signs have no significance. If the sequence had been very long, this
result would get very large quite quickly. However, if we delay the second
signal by one time interval (and treat the sequence cyclically, since we know
that's the way it is in practice) this happens:

1.5 x 2.5 = 3.75
0.5 x 1.5 = 0.75

-2.5 x 0.5 = -1.25
-0.5 x -2.5 = 1.25
-1.5 x -0.5 = 0.75

2.5 x -1.5 = -3.75

1.5

Now, of course, some negative results are possible, and if the sequence really
is random, they're just as likely as positive results, so the whole thing should
cancel out to zero, or as near as makes no difference. This "delay" is equivalent
to our previous analysis of comparing successive values in the sequence.
Choose a delay of two time intervals and that's equivalent to comparing
alternative values, and so on. Expressing this mathematically we're evaluating:

A(d) = L r(t).r(t + d)
t

where r(t) is the random number generated at time t and r(t+d) is that
generated d time intervals later. The idea is that this sum ought to be close to
zero for all values of d except zero. So if we were to graph the function for all
values of d we would get something like:

162 17. Random Thoughts

The second peak will occur when d is equal to the cycle length, at which point
we're back to square one.

A(d) is a close relative of an animal called the autocorrelation function,
should you wish to know.

Notice, incidentally, that I'm not saying that A(d) should be exactly zero
for all non-zero values of d. As Knuth remarks, that would be suspiciously
too neat; the unpredictability would have become predictable! That leaves us
with the question "Just how close to zero is close enough?" There's no simple
answer to that, except to say that it should be small compared with the peak
value at d = O.

Problem 1

Write a C program to evaluate A(d} for the first 200 numbers in the library
random number function (i.e., assume that the whole sequence is only 200
numbers long-if you evaluate the complete sequence, you'll be at it forever).

Linear Feedback Shift Registers

There are two major problems with the linear congruential generation tech
nique. First, the production of each number involves a multiplication, an
addition and a division (to get the remainder). That makes it slow, which is
bad news in this context because almost any program using random numbers
is going to repeat its operations many times to get a clear idea of what is
happening on average. After all, if you toss a coin six times and it comes down
heads on each occasion you don't immediately jump to the conclusion that
this will always happen; you repeat the experiment. The second problem has
just been highlighted: if you've got a sequence that is sufficiently long to be
useful, it's going to take far too long to test it exhaustively for randomness.

Here's a second approach that can be made to deal with both those
problems. Imagine we have a register from which bits can be extracted and
combined using logical operations. Suppose further that the register is then
shifted right one bit, and the bit output from the sequence oflogical operations
is used to fill the senior bit of the register, like this:

Some logical
function

Clearly, we could produce a sequence of numbers this way. But would it be
random? The answer is yes, under certain conditions. First, all the operations

A Practical Program 163

have to be XOR. Second, zero must never be generated (why?). The third
problem is to ensure that an m-sequence is generated. Only certain positions
for the XOR operations will do this, and there is a body of mathematical
theory, which is too complex to go into here, which allows you to determine
ideal positions for them. More importantly from our point of view, the
mathematics proves that, provided we manage to choose a configuration
which does generate an m-sequence, it is guaranteed to have a near ideal
autocorrelation function.

Let's look at a simple example:

o 0 1

(\= XOR

Here there's only one XOR operation performed on the senior and junior bits
of a 3-bit word. With the seed as shown the first feedback digit is 0 1\ 1 = 1
so we get 100. The complete sequence becomes:

001 feedback digit = 1
100 1
110 1
111 0
011 1
101 0
010 0
001

and then it starts repeating. Since zero can't occur, that is an m-sequence. I
leave it to you to check the autocorrelation function.

It's now clear why this is an interesting organization in terms of C pro
gramming, because it uses the machine level operations XOR, SHIFT and (by
implication) AND for masking. Of course, all those operations are directly
available to the C programmer. So the result should be pretty quick.

A Practical Program

Since I haven't explained the mathematical background, we shall have to
investigate possible configurations by trial and error. (Even if I had done so,
it's still necessary to do a fair bit of tinkering.)

We'll start by assuming that we're restricted to a 16-bit word, and that we
can enter the positions of the bits to be sampled. For instance, to model this
register:

164 17. Random Thoughts

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

c1ylillyoflill
L..----10. 0-0. I

we enter 0, 4, 7, 13. These data will be used to set up an array of appropriate
masks. The array will be global, for simplicity. Then the random number
generator will be called 65536 times. Every result will be compared with the
seed. If the first recurrence of the seed is the 65536th value we have an
m-sequence. If the seed has not recurred at all by this time, the sequence must
be looping on some other value or group of values, so it's no good to us.
Simple isn't it?

int masks [10];
unsigned reg = 1;
main 0
{

}

char in_string [40];
unsigned n;
printf("Enter bit positions, separated by colons");
scanf("%s", in_string);
set-masks (in_string);
for (n = 1; n < 65535; n++) {

rngO;
if (reg == 1) {

}
}
rngO;

printf("Sequence length is %d", n);
exit (0);

if (reg == 1)
printf("m-sequence! !");

So main calls two functions; set-masks that will set up the masks array, and
rng which evaluates the next number in the sequence from the current value
in the global variable reg and replaces it. Notice thal reg is unsigned. I'll
explain why later.

set-masks(p)
char *p;
{

inti = 0;
strcat(p, ": ");
while (*p) {

}

}

A Practical Program

masks [i++] = 1 « atoi(p);
while(*p++ != ':')

masks[i] = 0;

165

The string passed to seLmasks consists, remember, of a set of numbers
separated by colons, like this, for instance:

0: 7: 12: 13

which indicates that there are feedback contributions from bits 0, 7, 12, and
13. You'll notice that the first thing I do is to concatenate an extra colon on
to the string. This means that every number can be treated the same way,
which leads to neater code. The outer while loop simply looks for the end of
the string. As long as it hasn't been reached an element of masks is set to 1
shifted left a number of bits. For my example data, this number is zero to start
with, because p initially points to 0, and atoi uses any non-digit (in this case
the first colon) as a delimiter. The inner while moves the pointer to one
character past the next colon, which will either be the next number to turn
into a mask or a null, in which case the loop is exited, and the next element
of masks is zeroed to signal the end of the feedback contributions.

All of which just leaves us with rng itself:

rngO
{

}

inti = 0, fuit = 0;
while (masks[i++])

fbit A= select(masks[i - 1]);
reg »= 1;
fuit «= 15;
reg 1= fuit;

There's nothing very remarkable here. The feedback bit (fbit) is evaluated by
successively XORing with a value returned by a new function select which will
select a bit from reg generated by the current mask and return zero or one
depending on whether the result is zero or nonzero. reg is then shifted right
to make way for the feedback bit. At this point I can explain why reg had to
be declared as an unsigned. The problem is that a right shift on an int may,
not unreasonably, be seen as a "divide by 2" operation. If this is so (and it isn't
true for all C compilers) a bit pattern with a one in the senior bit position will
be treated as negative, and so this bit must be filled with a one after the shift
to preserve the sign. As far as we are concerned, it will be simpler if this bit is
always zero, which is guaranteed to be the case if reg is unsigned.

Finally, reg is ORed with fbit (having first shifted fuit so that its value is in
the most significant bit) so that the feedback is taken care of.

166 17. Random Thoughts

We haven't quite finished. There remains select.

select (mask)
int mask;
{

}

if(reg & mask)
return 1;

return 0;

Problem 2

Use the above program (perhaps with modifications) to investigate the nature
of number sequences generated by feedback shift registers. See if you can find
a configuration which leads to an m-sequence.

Answers

Problem 1

define MEANVAL 16284
int rn [200J;
mainO
{

}

int n, d;
float autocO;
for (n = O;n < 200;n++)

rn[nJ = randO - MEANVAL;
for (d = l;d < 200;d++)

printf("d = %d a = ~J\n", d, autoc(d));

autoc(d)
intd;
{

}

float a = 0;
intp;
for (p = O;p < 200;p++)

a += rn[pJ*rn[(p + d)%200J;
return a;

There are several assumptions implicit in this piece of code. First I'm guessing
that the library random number function (which is assumed to be called rand)
generates integers in the range 0-32767. Hence the definition of MEANVAL
to be half this maximum, to make the value held in the array rn swing about
zero when this is subtracted. Obviously you can alter this appropriately.
Second I'm assuming you've got the float type available, because you're going

A Practical Program 167

to get some very large numbers when you do the multiplications. For the same
reason I haven't bothered to evaluate the function at d = 0, because that's
guaranteed to be massive, although with an appropriately generous float you
might get away with it.

Problem 2

Several things should become apparent fairly quickly. First, bit 0 has to
contribute to the feedback path. Otherwise the sequence must degenerate to
zero immediately, since the only bit that is set drops ofT the right-hand end of
the word and the feedback bit is zero. Second, there are other combinations
that can lead to zero being generated, so it's worthwhile building in an
appropriate test. Thirdly, you get longer sequences with an even number of
bits contributing to the feedback path than with an odd number. Fourth, a
small number of contributing bits is invariably bad news. This is no surprise;
after all, it is then likely that there will be a large number of successive values
that will just be the previous value divided by two as the shift right (and
nothing else!) occurs. Thus you can't get a good autocorrelation function, and
by implication, neither can you get an m-sequence.

I've found two configurations that give 16-bit m-sequences. The first requires
contributions from bits

0:2:4:6:10:12:14:15

and the second uses bits

0: 6 : 10: 12: 14: 15

Obviously, the latter executes faster.

PROJECTS

1. Write random number generators using the above configurations. Obviously these
can be optimized for speed now, since the masks no longer need to be variables. If
your compiler implements bit fields (see Appendix 1) you don't even need masks,
although it doesn't follow that the resulting code will be any faster.

Compare the results with your library random number function. Are they
quicker? Do they produce similar results in random number tests?

2. For simplicity, my code has assumed that the target machine has a 16-bit word.
Strictly, this is bad practice. Ideally one should write C programs that are trans
portable between different machine architectures with only limited changes to
define statements which describe the changes in word length and so on. Rewrite
the random number test routines to allow for any word length.

3. Revise the test routines to handle double length words (assuming you don't have
the long type-we can't make things too easy, can we?).

"Would you tell me, please, which way I alight to go from
here?"

"That depends a good deal on where you want to go,"
said the Cal.

"/ dOll't much care where- " said Alice_
"Then it doeslI'c matter which way you go," said the

Cat.
"- so long as I gel somewhere," Alice added as an

explanation.
"Oh. you're sure to do lilac," said che Cat, "if you only

walk 10llg enou{}h."

Alice's Adventures in Wonderland

ApPENDIX 1

Loose Ends

"You should have said." the Queen went on in a tone of grave reproof.
'''It's extremely kind of you to tell me all this.'"

Through the Looking Glass

Throughout thIS book it has been our first priority to keep things simple.
Inevitably, this has meant that some topics have been ignored, or only touched
upon, in the interest of clarity. We partially redress this balance here by
describing briefly some of the more glaring omissions of the main text.

(a) Bit Fields

These provide an alternative mechanism to the conventional "mask and shift"
approach to the isolation of groups of bits within a word. An int can be broken
up into fields of bits using the structure notation. For instance

170 Appendix 1. Loose Ends

struct { unsigned parity : 1;
unsigned zone : 3;
unsigned numeric: 4;

} byte;

defines an int called byte consisting of 1 bit called parity, a 3-bit field called
zone, and a 4-bit field called numeric. Individual fields can now be referenced
in the conventional way for structure members. For example

if (!byte.parity) { .. }

or

if (byte.numeric < 10) { .. }

(b) Cast Operator

Generally, the programmer need not concern himself with implicit type con
versions. For example

float f;
int i = 3;
f= i;

causes an automatic integer to floating point conversion. However, there are
occasions on which it is necessary to force a type change on a variable. This
is called a cast. For example, f = i, above, could be written

f = (float) i;

In general the form

(type) expression

forces expression to be converted to type.

(c) Comma Operator

A comma expression consists of two expressions separated by a comma

a,b

a and b are both evaluated and then a is discarded. For instance:

for (i = 0; i < 100; xCi] = 0, i++)

will initialize the array x to zeros independent of the body of the loop.

(d) Command-Line Arguments

Most operating system interfaces provide mechanisms by which arguments
can be passed to a C program when it is invoked. If such arguments are
expected, main must have two arguments called, by convention, argc and argv:

Appendix 1. Loose Ends

main(argc,argv)
int argc;
char *argv [];
{ :

}

171

argc is the argument count (i.e., the number of arguments in the list). argv is a
vector of pointers to strings. Each string is an argument.

For example, suppose that each function of a program contains a statement
such as

if(trace)printf("Inside function x\n");

so that, if the flag trace is '1', an output such as

Inside function a
Inside function c
Inside function a
Inside function x

etc., is produced.
It would be convenient to turn the flag on or off from the command line,

so that instead of writing

exec test (or whatever, to run the program test)

we write

exec test trace on

or

exec test traceoff.

The necessary code would be

int trace;
main(argc, argv)
int argc;
char *argv[];
{

if (argc ! = 1) {

}

printf("Invalid argument list\n");
exit (0);

if (!strcmp(argv[1], "traceon"))
trace = 1;

else
if (!strcmp(argv[l], "trace off"))

172 Appendix 1. Loose Ends

trace = 0;
else {

}

printf("Invalid argument\n");
exit(O);

This checks that there is exactly one argument, and prints an error message
otherwise. It then takes the obvious action if the argument is "traceon" or
"trace off" and complains if it is neither of these.

Clearly, if there are several arguments, argc can be used to determine the
limit of a for loop searching through them in argv.

Usually argv[O] contains the program name, although in some systems it
is undefined.

(e) extern

We have observed that a C program may consist of several separate source
files that are separately compiled and combined at link time. Suppose that
one file contains a global variable definition. Clearly, no other file may contain
a definition for the same variable, since that would lead to a duplicate storage
allocation. On the other hand, if there is no reference to it in a source file that
uses it but does not contain its definition, the compiler will report an error.

Thus a mechanism is required which will inform the compiler that the
definition of a variable occurs in another file. For example, if n is an int that
is defined elsewhere, but referenced in the current file, we write

extern int n;

The extern keyword indicates to the compiler that the definition of n is
elsewhere. Its type is declared here however, so that any problems associated
with pointer increments or casts can be resolved.

(f) Function Pointers

Just as an array name is a pointer to the array, so a function name is a pointer
to the function. Consequently it is possible to pass such pointers to a function
which will then call other functions, depending on its parameter list.

A typical use for this might be in a search routine where the key may be
numeric or a string. The search routine itself would start:

search (key _comp, pkey)
int (*key_comp) 0;
char *pkey;
{ :

if ((*key_comp)(pkey) == 0) { ... }

Appendix 1. Loose Ends 173

Thus key _comp is defined as a pointer to a function which returns an int. A
pointer to the target key is also passed (the target key itself can't be, because
its type is unknown at this stage). Defining it as a pointer to characters will
handle both possibilities, although it is a little dangerous. See section (j) for
a better technique.

Now two functions called strcmp and numcmp can be used (which return,
say, zero on a match, + 1 on key too low and -ion key too high). numcmp
would have to be written, but strcmp is a standard library function (see
Appendix 2). Then search is called with

search (numcmp, &n);

or

search(strcmp, "Fred Bloggs");

for example.
Note that, in the calling routine, the declaration:

int numcmp(), strcmp();

is necessary, even though both functions return ints. Otherwise the compiler
will complain they are undefined when it encounters them in the parameter
list.

(g) Preprocessor Commands

(i) Macros with arguments. The #define preprocessor command may have
arguments in the replacement text. Thus

define half(x) (x)/2

will replace half(a - 3) with (a - 3)/2. (Note the use of brackets here to
ensure that, whatever x is, it is treated as an entity.)

(ii) # undef. This can be used to force the preprocessor to forget a definition.
For example

undef BUFSIZE

(iii) # ifdef. This allows conditional compilation. For example suppose that
BUFSIZE may have been defined as 100 (perhaps in a # include file) and
should be set to 256.

We could write:

ifdef BUFSIZE
undef BUFSIZE
def BUFSIZE 256

else
def BUFSIZE 256

#endif

174 Appendix 1. Loose Ends

Note the forms # else and # endif, whose meanings are self-evident. There
is also the form

ifndef ident

Meaning "if ident is not defined", and

if constant-expression

which will cause execution of what follows if constant-expression is
non-zero.

(h) Scope Rules

The scope rules as indicated so far are slightly incomplete. In particular, it is
possible to define a variable at the head of any block. If this is done, the
variable's scope is restricted to that block and any prior definition of the same
variable name is suspended until the end of the block. Thus

{

}

intj = 1, x;
for (x = 0; x < 99; x ++) {

intj=O;
j++;

will leave the for loop withj = 1.

(i) sizeof

The sizeof operator gives the size (in bytes) of its operand. For example

int n;
n = sizeof(n);

would give n = 2 for a machine with an 8-bit byte and 16-bit int. (Although
there is no formal connection, the de facto standard is that a byte is the size
of a char.)

Clearly, the most obvious use of sizeof is in allocating space for complex
structures.

(j) Unions

A union is a variable whose type is ambiguous; that is it may hold data of
different types at different times. For example, the type of pkey in section (f)
of this appendix may be a pointer to an int or a pointer to characters. The
technique employed there of defining pkey as a pointer to characters in either
case is adequate (although unsatisfying) for referencing the data since, if an int
is pointed to, the system will just pick up the appropriate number of bytes,
but it can be very dangerous. For instance 'pkey++' causes a one byte
increment which is unlikely to be correct if pkey points to an int.

Appendix 1. Loose Ends

The syntax is based on that for structures

union key_type {
int * pi;
char * pc;

} pkey;

175

This declares pkey to be a pointer to an int or a pointer to characters. To
distinguish between them, the dot notation is borrowed from the structure
syntax. So

pkey.pi

and

pkey.pc

are used to refer to the individual members of the union.

ApPENDIX 2

Quick Reference Guide

While the Beaver confessed, with affectionate looks
More eloquent even than tears,

It had learned in ten minutes far more than all books
Would have taught it in seventy years.

The Hunting of the Snark

(1) Operators 177

(1) Operators

(a) Unary

Operator Meaning Examples Description

* defines a pointer a =*p; a gets the object pointed to by
p.

& address of p=&a; p gets the address of a.
negate b=-a; b gets minus a.
not if(b!=3) .. if b not equal to 3 ..

a = !r; if r = 0, a = 1 else a = o.
l's complement a =-b; flip bits of b and transfer to a.

++ increment b++; add one to b.
if (s[i++] = ") compare sCi] with 'space' and

then update i.
if (s [++i] = ") update i and then compare sCi]

with space.
decrement b--; subtract one from b.

(b) Binary

Operator Meaning Examples Description

* multiply r = a* b; multiply a by b and place
result in r.

I divide r = alb; divide a by b and place result
in r.

% remainder r = a% b; divide a by b and place
remainder in r.

+ add r = a + b; add a to b and place result in
r.

subtract r = a - b; subtract b from a and place
result in r.

« shift left r = a« 3; shift a left 3 bits and place
result in r.

» shift right r = a» 2; shift a right 2 bits and place
result in r.

& AND (bitwise) r = a& b; the bit patterns of a and bare
ANDed and the result
placed in r.

XOR r = a A b; the bit patterns of a and bare
XORed and the result
placed in r.

OR (bitwise) r = a I b; the bit patterns of a and bare
ORed and the result placed
in r.

&& AND (logical) if (a != 0 && a < 5) if a isn't 0 and is less than 5 ..

II OR (logical) if (a < 3 II a > 6) if a is less than 3 or greater
than 6 ..

178 Appendix 2. Quick Reference Guide

Operator Meaning Examples Description

< less than
<= less than or

equal to
> greater than

see above
if(a <= 120)

see above

if a is less than or equal to
120 ..

>= greater than or see above
equal to

is equal to
?: conditional

if(q==r)
r = a?b: c;

if q is equal to r ..
if a is non-zero r = b, else

r = c.
comma operator r = i++,j; evaluates left to right and then

discards left operand. Thus
i is incremented and r = j.

points to a member of a

structure (year) if p is a
pointer to the structure.

isolates a member (year) of a

-> pointer to p -> year
structure

member of date.year
structure structure (date).

(c) Assignments

'= ' is used to mean 'gets'.
It may be preceded by any binary operator.
For example, a += 5; is equivalent to a = a + 5;

a «= 3; is equivalent to a = a « 3;

(2) Data Types

Type

char
int
unsigned

float
double
struct
union

Examples:
char cval, letter;
int i,j, k;

unsigned posval;

int la[lO], ra[5] [7];

char *cp;
int *ip[50];

Comments

Usually (but not necessarily) 8 bits.
Arithmetic is 2's complement. Qualifiers are short and long.
Arithmetic is mod 2" where n is the word length. Qualifiers are

short and long.
Single precision floating point.
Double precision floating point.
User defined pseudo-type.
Allows a variable to be multi-typed.

sets up 2 bytes labelled cval and letter.
sets up 3 words labelled i,j and k. Arithmetic will be 2's

complement.
sets up a word labelled posval. Arithmetic will take no account

of sign.
sets up a 10 element linear array la (0-9) and a 5 x 7 2-D array

ra.
cp is a pointer to characters.
ip is an array of pointers to integers.

(4) Statements 179

Type Comments

char **cip[20];
struct date {

into day;

cip is an array of pointers to pointers to characters.
sets up a structure containing 3 integers and a character array.

int month;
int year;
char mname[3];

};
struct date birthdate;
struct date holidays[25];

defines birthdate as a structure of type date.
defines holidays as a 25 element array of structures of type date.

(3) Storage Classes

Class

auto
static

extern
register

Comment

variable is local to the function in which it is defined.
variable may be local to the function in which it is defined, or to the source file at

whose head it appears. In either event it is not destroyed between function
invocations.

variable is globaL
variable is assigned to a register if possible.

(4) Statements

Simple statements are always terminated by ;
Compound statements are sequences of simple statements enclosed between

{} and may appear anywhere simple statements may appear.
In the following 'exN' and 'sN' denote 'expression' and 'statement' respectively

and N is an arbitrary digit which may be null.

General Form

if (ex)s

if (ex)
sl

else
s2

while (ex)s

Example

if (val > 3) {
r++;
flag = 1;

}
if(b == 0)

p = r;
else

p+= 2;
while (a[i]) {

i++;
j--;

Comments

s is executed if ex is true (non-zero).

if ex is true sl is executed; otherwise s2 is
obeyed.

s is executed until ex becomes false. The test
occurs first.

180

General Form

do s
while (ex)
for (exl; ex2; ex3)s

switch (ex)s

break;

continue;

return ex;

goto label;

Appendix 2. Quick Reference Guide

Example

do n += 2;
while (a[n])
for(i = l;i < 8;i++)

p[i] = 0;
switch(c) {

case -1: v = 4;
break;

case 0: v = -2;
break;

default: n++

break;

continue;

return flag;

goto out;

Comments

s is executed until ex becomes false. The test
occurs last.

exl sets the initial condition; sand ex3 are
executed until ex2 is false.

The value of ex determines the case at which
s is entered. The rest of s is then obeyed
until a break or return is encountered.
default is optional.

causes termination of the smallest enclosing
while, do, for or switch.

causes a branch to the end of the smallest
enclosing while, do or for, inside the loop.

control is passed back to the calling
function. ex is optional, but if it is
present, the called function has its value.

transfers control to the statement labeled
label.

(5) Preprocessor Directives

Directive

include <filename>
define ident reptext

#ifcexp

ifdef ident
#else
#endif
undef indent

(6) Constants

(a) Integers

Comment

the file 'filename' is included with the source.
all subsequent references in the source file to 'ident' are replaced by

'reptext'.
allows conditional compilation if the constant expression cexp is

true.
allows conditional compilation if ident is currently defined.
else clause for # if and # ifdef.
closes # if or # ifdef.
undefines ident.

decimal-sequence of digits, no leading zero, e.g. 5729
octal -sequence of digits with leading zero, e.g., 0571
hex -sequence of digits with leading Ox, e.g., Ox5fa3

(7) Common Library Functions 181

(b) Floats

nonexponent form-e.g., 321.85
exponent form -e:g.,3.2185e2

(c) Characters

single characters are enclosed in single quotes: for example, ch = 'b';
sets the byte ch to ASCII b.
strings are enclosed in double quotes: e.g., "a message"
Certain characters have standard escape sequences:
new line: \n formfeed: \J tab:\t backslash: \ \
backspace: \b quote: \' return: \r
bit pattern: \ddd (where ddd is an octal number)

(7) Common Library Functions

Function

Standard I/O
getcharO
putchar(c)

File I/O
fopen(name, mode)

fclose(cid)
getc(cid)
putc(c, cid)
ffiush(cid)
unlink(filename)
Iseek(cid, offset, start)

Formatted I/O
printf(str, argl, arg2, ...)
fprintf(cid, str, argl, arg2, ...)

scanf(str, argl, arg2, ...)

fscanf(cid, str, argl, arg2, ...)
Format Conversion

atoi(str)

sprintf(buf, str, argl, arg2, ...)

sscanf(buf, str, argl, arg2, ...)

Comment

returns a character from stdin
writes the character c to stdout

opens file 'name' for reading if 'mode' is r, for writing if it is
W, and for appending if mode is a. 'name' and 'mode'
are both pointers to strings. A channel identifier is
returned, or 0 on failure.

the channel cid is closed, after its buffer has been flushed.
returns a character from channel cid or EO F at end of file.
the character c is output to channel cid.
the buffer associated with cid is flushed.
deletes the file pointed to by 'filename'.
positions the file pointer on channel cid to offset bytes

from the start of the file if start = 0, from its current
value if start = 1 and from the end of the file if
start = 2.

prints argl, arg2 etc., to stdout in format specified by str.
prints argl, arg2 etc., to channel cid in format specified by

str.
reads data from stdin to locations whose addresses are

specified by argl, arg2 etc., in format specified by str.
as scanf, but data is taken from channel cid.

returns the integer equivalent to the string pointed at by
str.

as printf, but data is transferred to a buffer pointed to by
buf.

as scanf, but data is found in a buffer pointed to by buf.

182

Function

String Handling
strcat(dest, source)

strcmp(strl, str2)

strcpy(dest, source)
strlen(str)

Character Classification
isalpha(c)
isdigit(c)
islower(c)
isupper(c)
isspace(c)

Character Conversion
tolower(c)

toupper(c)
Miscellaneous

abs(n)
calloc(count, size)

cfree(p)

exit (state)

Appendix 2. Quick Reference Guide

Comment

concatenates the string pointed to by source on to that
pointed to by dest.

returns a negative integer, 0 or a positive integer
depending on whether strl is less than, equal to or
greater than str2.

copies the string pointed to by source to dest.
returns the length of the string pointed to by str.

returns true if c is an alphabetic character.
returns true if c is a digit.
returns true if c is lower case.
returns true if c is upper case.
returns true if c is space, tab, or newline.

if c is upper case, returns lower case equivalent, else
returns c.

opposite of tolower.

returns absolute value of integer n.
allocates and zeros count*size bytes of memory. Returns a

pointer to this block, or 0 if there is inadequate space.
frees a block of memory allocated using calloc pointed to

by p.
return control to the operating system. state is normally

0, but may be set to 1 to flag an error return.

A
abs 22, 24, 71
add 126
addchar 78
address operator 54
addword 82
AND 28
approximation theory 140
argc 171
argument 6
argv 171
arithmetic operators 26
array 37
ASCII code 28
atoi 62, 63
ator 122, 128
autocorrelation function 162
autodecrement 19
auto increment 18

Index

B
BASIC 2
BDS C compiler 3
binary search 101, 105
bit field 169
break 71
buffered file va 95

C
cast 170
channel 94
channel identifier 95
char 10
character 10
circle 151
command line argument 170
comma operator 170
comment 13

184

compiler 2
conditional expression 16
conditional operator 15, 70
constant, character 49
constant, exponent form 49
continue 71
control 49
convergence 21
cos 143

D
debugging 106
default 73
#define 51
#define with arguments 173
div 121, 127
dormant bug 113
double 45
do/while 22

E
editor 2
else 15
#else 173
empty loop 38
#endif 173
EOF 97
error, common 107
error message 94
escape sequence 49
even 27,71,74
exclusive OR 30, 163
exit 8
extern 172

F
factorial 76
fclose 95
fgetc 95
file 93
FILE 95
file access error 98
fi1ecopy 98
file creation 96
file descriptor 96
find char 55

Index

float 20, 45
floating point arithmetic 20
fopen 95
for 117
fprintf 95
fputc 95
fscanf 95
function 5
function argument 6
function name 7
function pointer 172
function type 55

G
getbuf 57
getc 95
getchar 57
global variable 11, 134
goto 73

H
head 78,81
hexadecimal constant 52
highbit 125

I
icos 136
if 15
#ifdef 173
#ifndef 174
#include 52, 139
incremental operator 18
indirection 82
initialize 136
initializer 54
int 10
integer 10
interpreter 1
intext 80
I/O redirection 94
isdigit 63
isin 135

J
justification 67

K
keyword 8
Koch snowflake 152

L
left 39, 41, 43, 146
line 139
linear congruential sequence 158
linear feedback shift register 162
linker 3, 140
local parameter 11
logical connective 17
logical operator 27
Logo 132
long 46
lseek 99

M
macros with arguments 173
main 9
mask 29
menu 73,86
modular design 131
modulus operator 26
move 133, 138
mpy 121, 127
m-sequence 159, 163, 167

N
nesting 140
nextbit 125
NOT 31

o
octal constant 52
operator precedence 59
OR 29
outtext 80
overflow 119

p

Pade approximation 142
passed parameter 11
pause 154

Index

pendown 133, 138
penup 133, 138
pointer 36, 40
polygon 149
portability 32, 54, 125
position 133, 139
power 24,25
pre-increment 19
preprocessor 50, 51, 173
printf 13, 67
printmoney 68
pseudo-random number 158
putc 95
putchar 68

R
radian 142
random access file 99
random number 157
range reduction 142
rat 121
rational arithmetic 117
rational function 141
recursion 75
recursive structure 90
register variable 47
remainder operator 27
return 9
reverse 77, 81
right 40,41,44
rng 165
rtoa 122, 128
runtime error 108

S
scanf 64
scope rules 174
select 166
set masks 164
shift 32
short 46
sin 143
sine 140
sintayl 143
sizeof 174
snowflake 152
source code 1

185

186

sprintf 67
sqr 19, 21
standard 110 57
statement, compound 7
statement, simple 7
statement separator 7
statement terminator 7
stderr 95
stdin 94
stdout 94
strcat 42
strcpy 37, 42
string 35
string delimiter 36
strlen 43
structure 47, 84
structure member 85
structure pointer 85
sub 121, 126
subroutine 5
subscript 37
substring 39, 43
swapcase 31
switch 72
syntax error 108

T
tail 78, 81
Taylor series 140

Index

tilde 31
timeslO 32
toggle 31
tolower 30
top-down design 108
toupper 29
tum 133, 137
tumto 133, 137
turtle graphics 132, 145
typedef 48

U
#undef 173
union 174
unsigned 46

V
variable scope 11

W
while 17

X
XOR 30, 163

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

