

C#Game
Programming: For

Serious Game
Creation

Daniel Schuller

Course Technology PTR
A part of Cengage Learning

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

C# Game Programming:
For Serious Game Creation

Daniel Schuller

Publisher and General Manager,
Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Jordan
Castellani

Senior Acquisitions Editor: Emi
Smith

Project Editor: Jenny Davidson

Technical Reviewer: James E. Perry

Interior Layout Tech: MPS Limited,
A Macmillan Company

Cover Designer: Mike Tanamachi

CD-ROM Producer Brandon Penticuff

Indexer: Broccoli Indexing Services

Proofreader: Sara Gullion

† 2011 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may
be reproduced, transmitted, stored, or used in any form or by any means graphic,
electronic, or mechanical, including but not limited to photocopying, recording,
scanning, digitizing, taping, Web distribution, information networks, or
information storage and retrieval systems, except as permitted under Section 107
or 108 of the 1976 United States Copyright Act, without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Visual Studio 2010 Express Web installer is a registered trademark of
Microsoft Corporation in the United States and other countries.
TortoiseSVN is a trademark of CollabNet, Inc. sfxr was created by
DrPetter. NUnit is a copyright of NUnit.org. Bitmap Font Creator is a
copyright of andreas jönsson.

All other trademarks are the property of their respective owners.

All images † Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2010922097

ISBN-13: 978-1-4354-5556-6

Course Technology, a part of Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 12 11 10

ISBN-10: 1-4354-5556-8

eISBN-10:1-4354-5623-8

This book is dedicated to Garfield Schuller and Stanley Hyde.

Acknowledgments

Many thanks to everyone who has helped with this book and to everyone who
developed the wonderful libraries and tools that it uses. Thanks to Jenny
Davidson, the book’s project editor, for all her help making my writing clearer and
ensuring that everything was finished in time. Thanks to my technical editor, Jim
Perry, who caught my many coding mistakes and provided valuable suggestions
and advice. I would also like to thank my family and coworkers for their support
and helpful input.

iv

About the Author

Daniel Schuller is a British-born computer game developer who has worked
and lived in the United States, Singapore, Japan, and is currently working in
the United Kingdom. He has released games on the PC as well as the Xbox 360
and PlayStation 3. Schuller has developed games for Sony, Ubisoft, Naughty
Dog, RedBull, and Wizards of the Coast, and maintains a game development
website at http://www.godpatterns.com. In addition to developing computer
games, Schuller also studies Japanese and is interested in Artificial Intelligence,
cognition, and the use of games in education.

v

http://www.godpatterns.com

Contents

Introduction .xii

PART I BACKGROUND . 1

Chapter 1 The History of C# . 3
C# Basics . 3

Versions of C# . 5
C# 2.0 . 5

Generics . 5
Anonymous Delegates . 9

C# 3.0 .10
LINQ . 10
Lambda Functions. 12
Object Initializers . 12
Collection Initializers . 12
Local Variable Type Inference and Anonymous Types. 13

C# 4.0 .14
Dynamic Objects . 14
Optional Parameters and Named Arguments 15

Summary . 17

Chapter 2 Introducing OpenGL . 19
Architecture of OpenGL. 21

Vertices—The Building Blocks of 3D Graphics 21

vi

The Pipeline . 22
OpenGL Is Changing. 24

OpenGL ES . 25
WebGL . 25

OpenGL and the Graphics Card. 25
Shaders—Programs on the Graphics Card . 27

The Tao Framework . 28
Summary . 30

Chapter 3 Modern Methods . 31
Pragmatic Programming . 31

Game Programming Traps . 32
KISS . 32
DRY. 32

C++ .36
Source Control. 37

Using Source Control .39
Unit Testing . 40

Test Driven Development .44
Unit Testing in C# .44

Summary . 44

PART II IMPLEMENTATION . 47

Chapter 4 Setup . 49
Introducing Visual Studio Express—A Free IDE for C# 49

A Quick Hello World. 50
Visual Studio Express Tips . 53

Automatic Refactoring and Code Generation53
Renaming. 54
Creating Functions . 56
Separating Chunks of Code . 57

Shortcuts .60
Subversion, an Easy Source Control Solution . 60

Where to Get It . 60
Installation. 60
Creating the Repository . 60
Adding to the Repository . 64
History . 67

Contents vii

Extending Hello World. 68
Tao . 69
NUnit . 71

Using NUnit with a Project . 72
Running Tests . 75
An Example Project. 76

Summary . 80

Chapter 5 The Game Loop and Graphics. 81
How Do Games Work? . 81

A Closer Look at the Game Loop . 82
Implementing a Fast Game Loop in C# . 82

Adding High-Precision Timing . 89
Graphics . 91

Full Screen Mode. 94
Rendering . 96

Clearing the Background. .96
Vertices. .98
Triangles. .99
Coloring and Spinning the Triangle .101

Summary . 103

Chapter 6 Game Structure . 105
The Basic Pattern of a Game Object . 105
Handling Game State . 106
Game State Demo. 112
Setting the Scene with Projections . 114

Form Size and OpenGL Viewport Size . 114
Aspect Ratio. 116
The Projection Matrix. 117
2D Graphics . 117

Sprites. 120
Positioning the Sprite. 124
Managing Textures with DevIl . 125
Textured Sprites . 131
Alpha Blending Sprites. 134
Color Modulating Sprites. 136
A Sprite and Renderer Class. 136
Using the Sprite Class . 143

Contentsviii

Chapter 7 Rendering Text . 145
Font Textures. 145
Font Data . 148

Parsing the Font Data. 149
Using the CharacterData . 151

Rendering Text . 154
Calculating the FPS . 155
V-Sync and Frame-Rate . 158
Profiling . 159

Refining the Text Class . 159
Faster Rendering with glDrawArrays . 165

Modifying the Renderer . 168
Profiling the Batch Draw Method. 169

Summary . 169

Chapter 8 Game Math . 171
Trigonometric Functions . 171

Plotting a Graph . 171
Trigonometric Functions for Special Effects . 176

Vectors . 179
What Is a Vector? . 179
The Length Operation . 181
Vector Equality . 182
Vector Addition, Subtraction, and Multiplication 184
Normal Vectors . 187
The Dot Product Operation . 191
The Cross-Product Operation . 194
Finishing Touches to the Vector Structure. 196

Two-Dimensional Intersection . 197
Circles . 197
Rectangles . 203

Tweens . 206
An Overview of Tweening . 206
The Tween Class . 208
Using Tweens. 211

Matrices . 213
What Is a Matrix? . 214
The Identity Matrix . 215
Matrix-Matrix and Vector-Matrix Multiplication 217

Contents ix

Translating and Scaling . 218
Rotation . 220
Inverse . 221
Matrix Operations on Sprites . 222
Modifying the Sprite to Use Matrices. 225
Optimization . 226

Chapter 9 Making the Game Engine . 229
A New Game Engine Project . 229
Extending the Game Engine . 233

Using the Game Engine in a Project . 233
Multiple Textures . 242

Adding Sound Support . 246
Creating Sound Files. 246
Developing a SoundManager . 247

Improving Input . 259
Wrapping Game Controllers . 259
Adding Better Mouse Support . 276
Adding Keyboard Support. 284

Chapter 10 A Simple Side-Scrolling Shooting Game. 289
A Simple Game . 289
The First Implementation Pass. 290

The Start Menu State . 294
The Inner Game State. 308
The Game Over State . 311

Developing the Inner Game . 314
Moving the Player Character. 315
Faking Movement with a Scrolling Background. 320
Adding Some Simple Enemies. 323
Introducing Simple Weapons . 334
Damage and Explosions . 343
Managing Explosions and Enemies . 353
Level Definitions . 359
Enemy Movement. 363
Enemy Attacks. 375

Continuing Iterations . 380

Contentsx

Chapter 11 Creating Your Own Game. 385
Project Management . 385
Display Methods . 388

2D Games . 388
3D Games . 388

Types of Games . 392
Text Games . 392
Puzzle Games. 394
First-Person Shooter Games. 397
Strategy Games . 399
Role-Playing Games . 401

Roguelike Games .401
Tile-Based Role-Playing Games .402
3D Role-Playing Games .405

Platform Games. 407
Final Words . 410

Appendix A Recommended Reading . 411
The Practice of Programming . 411
The C# Language and Software Architecture . 412
Math and Graphics Programming . 412
OpenGL . 413

Index. 415

Contents xi

Introduction

I want to help you make your game.

Everyone has a great game idea, but the path from initial idea to finished product
is not a clear one. There are an intimidating number of programming languages,
libraries, and production methods. Even experienced game developers often fail
to realize their vision. Without a good solid architecture, game code may become
so complicated that a developer drowns in the complexity. The more complex
the code, the harder the game becomes to change or continue developing.

This book shows how to write simple, clean, reliable code by developing two
basic games. These games are built using the C# programming language and
OpenGL. C# is a modern, high-level programming language, so writing code is
faster, with fewer programming warts to avoid. OpenGL is as close as the game
industry has to a standard way to display graphics. When the book is finished,
you’ll have an excellent code base to develop and grow, pursuing your own ideas.

In the first part of the book you’ll find a broad overview of the methodologies
and libraries used to build great games. The second part introduces how to use
these libraries and how to create your own reusable game library. You’ll also
learn how to develop a simple scrolling shooter game, and then you’ll be pro-
vided with some suggestions and tips for developing your own great game idea.
The included CD has everything that you will need to start developing games.
Every code snippet in the book has the full source code and program included on

xii

the CD. There are also some simple game assets and a collection of links to useful
game development and graphics websites.

CD-ROM Downloads
If you purchased an ebook version of this book, and the book had a companion
CD-ROM, we will mail you a copy of the disc. Please send ptrsupplements@
cengage.com the title of the book, the ISBN, your name, address, and phone
number. Thank you.

CD-ROM Downloads xiii

This page intentionally left blank

part I

Background

1

This page intentionally left blank

chapter 1

The History of C#

C# is a modern object-oriented language developed by a Microsoft team led by
Anders Hejlsberg. The Common Language Runtime, or CLR for short, is the
virtual machine on which C# runs. Many languages run on the CLR and this
means they can all be compiled and used on Windows PCs, the Xbox 360, and
the Zune. The CLR is owned and developed by Microsoft, but there is also an
open-source version of the CLR called Mono. Using Mono, C# programs can be
run on Macs, Linux, or any other system for which Mono can be compiled.

In the game industry, we use Cþþ, but it’s not because we want to. Cþþ is a
sprawling language with lots of areas that can trap an unwary programmer and
many areas that are simply undefined. C# is much friendlier than Cþþ and it’s
far more fun to use for writing games.

C# Basics
C# was first announced in July 2000 at the Microsoft Professional Developers
Conference in Orlando. At the time it was a little like the Microsoft version of
Java, but it rapidly developed into something much different. C#’s most recent
updates are very innovative and exciting.

Modern languages like C# and Java make programs that run on virtual machines.
Older language like Cþþ and C make programs that run directly on the hard-
ware of a specific machine. The hardware that runs the program is called the
central processing unit, or CPU for short. This is the brain of the computer.

3

Modern Macs and PCs generally have an x86 CPU; the XBox 360 has a Xenon
CPU; and the PS3 has a Cell CPU. All of these brains are slightly different but
share the same basic purpose—to run the programs programmers write. Pro-
grams are just lists of instructions. The instructions a particular CPU under-
stands are called machine code. Machine code for one CPU is unlikely to be
understood by a different type of CPU.

Compilers take human-readable source code, written in a language like Cþþ
or C, and compile it into machine code. For example, the PlayStation 3 Cþþ
compiler compiles source code into machine code that can run on the Cell CPU.
To run the same Cþþ code on the Xbox 360 Xenon CPU, it must be compiled
again using the Xbox 360 Cþþ complier. C# doesn’t work like this. C# compiles
down to an assembly language called the common intermediate language or CIL.
CIL is then run on a virtual machine that generates the machine code for the
particular system. In the PlayStation 3 case that would mean to run C# on the
PlayStation, it would need a virtual machine that could take CIL code and out-
put machine code that the Cell CPU understands. This difference between lan-
guages using virtual machines and languages that compile directly to machine
code is shown in Figure 1.1.

C#s virtual machine, the CLR, has many advantages. The biggest advantage is
you only need write the code once and it will run on every CPU that supports the

Figure 1.1
Virtual machines and directly compiled code.

Chapter 1 ■ The History of C#4

CLR. It’s very hard to crash the system using C# because the system is insulated
by this virtual machine. The virtual machine can catch errors before sending
them to the real hardware. Also you don’t need to worry about allocating and
freeing memory as this is done automatically. Programming languages can be
mixed and matched provided they all compile to the CLR; languages such as F#,
IronLisp, IronRuby, IronPython, and IronScheme can all be used in a single
program. As a game programmer you could write your AI in a high-level, AI-
friendly language and your graphics code in a more procedural C-like language.

Versions of C#
C# is regularly updated with new functionality and improvements. Even if you
have programmed in C# before you may not be aware of all the new features
added to the language in recent updates.

C# 2.0

C# version 2.0 added generics and anonymous delegates. It’s easiest to explain
these new features with examples.

Generics
Generics are a way of writing code to use some general object with some general
properties, rather than a specific object. Generics can be used with classes,
methods, interfaces, and structs to define what data type they will use. The data
types used with generic code are specified at compile time, which means the
programmer no longer has to be responsible for writing test code to check that
the correct data type is being used. This in turn makes the code shorter because
test code doesn’t need to be written, and safer because it reduces type mismatch
errors at run time. Generic code also tends to be faster because less casting be-
tween data types has to be performed.

The following code is written without the use of generics.

ArrayList _list¼ new ArrayList();

_list.Add(1.3); // boxing converts value type to a reference type

_list.Add(1.0);

//Unboxing Converts reference type to a value type.

object objectAtPositionZero ¼ _list[0];

double valueOne ¼ (double) objectAtPositionZero;

double valueTwo ¼ (double) _list[1];

C# Basics 5

The code creates a list and adds two decimal numbers. Everything in C# is an
object, including numbers. All objects in C# inherit from the object class.
An ArrayList stores objects. Here, numbers have been added but the
ArrayList does not know they are numbers; to the ArrayList they are just
objects. Objects are the only thing it knows. When the number is passed to
ArrayList.Add it is converted to an object type and added to its collec-
tion of objects.

Every time an object is taken out of the list, it must be cast back from an object
to its original type. All the casts are inefficient and they clutter the code making
it harder to read, which makes non-generic code unpleasant to work with.
Generics fix this problem. To understand how they fix the problem, you need to
understand the difference between reference types and value types.

C# has two broad categories of type, reference types and value types. Value types
are the basic types such as int, float, double, bool, string, etc. Reference
types are the large data structures you define yourself using the class keyword
such as Player, Creature, Spaceship, etc. You can also define custom
value types using the struct keyword.

// An example reference type

public class SpaceShip

{

string _name;

int _thrust;

}

// An example value type

public struct Point

{

int _x;

int _y;

}

Value types store their data directly in memory. Reference types store their data
indirectly in memory. In the memory address of a reference type is another
memory address to where the data is actually stored. This can be confusing at
first, but once you are familiar with the concepts it’s quite simple. The differ-
ences in memory are shown in Figure 1.2.

If the computer’s memory is thought of as a vast library full of bookshelves, then
creating a value type is simply adding some books to the shelf. Creating a

Chapter 1 ■ The History of C#6

reference type is more like adding a note to the shelf that gives directions to a
different part of the library where the books are stored.

Here’s an example of a value type.

int i ¼ 100;

If we looked in memory to see where i was stored, we’d get the number 100. In
our human-readable code we use the variable name i; in assembly code i is a
memory address. This line of code, therefore, says put the value 100 in the next
available memory address and call that memory address i.

int i ¼ 100;

int j ¼ i; // value type so copied into i

Console.WriteLine(i); // 100

Console.WriteLine(j); // 100

i ¼ 30;

Console.WriteLine(i); // 30

Console.WriteLine(j); // 100

In this example, the value type i is assigned to j, which means its data is copied.
Everything stored in memory address j is now the same as whatever was in i.

The next example is similar but it uses reference types. First, a reference type
needs to be created by defining a new class. All this class will do is store a number,
like our own version of the int type. Our type will be called Int using a capital I
to differentiate it from C#’s built-in int type.

class Int()

{

Figure 1.2
Value and reference types in memory.

C# Basics 7

int _value;

public Int(int value)

{

_value¼ value;

}

public void SetValue(int value)

{

_value¼ value;

}

public override string ToString()

{

return _value.ToString();

}

}

Int i ¼ new Int(100);

Int j ¼ i; // reference type so reference copied into i

Console.WriteLine(i); // 100

Console.WriteLine(j); // 100

i.SetValue(30);

Console.WriteLine(i); // 30

Console.WriteLine(j); // 30 <- the shocking difference

Here when i changed so did j. This is because j did not have its own copy of the
data; it just had the same reference to the data that i did. When the underlying
data changes, it doesn’t matter if that data is accessed with i or j, the same result
will always be returned.

To use the library example again, you check the library index system and it re-
turns two shelf locations for the book you want. The first position, i, doesn’t
have a book at all; it just has a small note, and when you check position j you
find a similar note. Both of these notes points to a third location. If you follow
either note, you will find the book you were searching for. There is only one
book, but two references point to it.

Boxing is the process of taking a value type and converting it to a reference type.
Unboxing is the process of converting the new reference type back to the original
value type. In the first version of C#, lists of objects, even if they were all value
types, had to be converted to reference types when they were added to the list. This
all changed with the introduction of generics. Here’s some example code using
generic functionality; compare this with the earlier example using an ArrayList.

Chapter 1 ■ The History of C#8

List<float> _list¼ new List<float>();

_list.Add(1);

_list.Add(5.6f);

float valueOne ¼ _list[0];

float valueTwo ¼ _list[1];

This example code creates a list of floats. Floats are value types. Unlike before,
the floats don’t have to boxed and unboxed by casting; instead it just works.
The generic list knows the type it is storing so it doesn’t need to cast everything to
an object type. This makes the code far more efficient because it’s not always
swapping between types.

Generics are great for building reusable data structures like lists.

Anonymous Delegates
In C# a delegate is a way of passing a function as an argument to another func-
tion. This is really useful when you want to do a repetitive action to many dif-
ferent lists. You have one function that iterates through the list, calling a second
function to operate on each list member. Here is an example.

void DoToList(List<Item> list, SomeDelegate action)

{

foreach(Item item in list)

{

action(item);

}

}

Anonymous delegates allow the function to be written straight into the DoToList
function call. The function doesn’t need to be declared or predefined. Because it’s
not predefined, it has no name, hence anonymous function.

// A quick way to destroy a list of items

DoToList(_itemList, delegate(Item item) { item.Destroy(); });

This example iterates through the list and applies the anonymous function to
each member. The anonymous function in the example calls the Destroy
method on each item. That could be pretty handy, right? But there’s one more
trick to anonymous functions. Have a look at the following code.

int SumArrayOfValues(int[] array)

{

int sum ¼ 0;

C# Basics 9

Array.ForEach(

array,

delegate(int value)

{

sum þ¼ value;

}

);

return sum;

}

This is called a closure. A delegate is created for each loop iteration, and uses the
same variable, sum. The variable sum can even go out of scope, but the anon-
ymous delegates will continue to hold a reference to it. It will become a private
variable only accessible to the functions that have closed it. Closures are used
heavily in functional programming languages.

C# 3.0

The release of C# 3.0 introduced more than just a few incremental changes. The
new features are extremely innovative and massively reduce the amount of boiler
plate code needed. The biggest change was LINQ system.

LINQ
LINQ stands for Language-Integrated Query. It’s a little like SQL (SQL, Struc-
tured Query Language, is the language used to manipulate and retrieve data from
databases) for data structures. The best way to get a feel for it is to look at some
examples.

Monster

{

string _name;

int _currentLevel ¼ 1;

int _currentExperience ¼ 0;

int _nextLevelExperience ¼ 1000;

public Monster(string name, int currentExperience)

{

_name¼ name;

_currentExperience ¼ currentExperience;

}

public string Name()

Chapter 1 ■ The History of C#10

{

return _name;

}

public int CurrentExperience()

{

return _currentExperience;

}

public int NextLevelRequiredExperience()

{

return _nextLevelExperience;

}

public void LevelUp()

{

Console.WriteLine(_name þ ‘‘ has levelled up!‘‘);

_currentLevelþþ;
_currentExperience ¼ 0;

_nextLevelExperience ¼ _currentLevel * 1000;

}

}

List<Monster>_monsterList ¼ new List<Monster>();

_monsterList.Add(new Monster(‘‘Ogre‘‘, 1001));

_monsterList.Add(new Monster(‘‘Skeleton‘‘, 999));

_monsterList.Add(new Monster(‘‘Giant Bat‘‘, 1004));

_monsterList.Add(new Monster(‘‘Slime‘‘, 0));

// Select monsters that are about to level up

IEnumerable<Monster> query ¼ from m in _monsterList

where m.CurrentExperience() >

m.NextLevelRequiredExperience()

orderby m.Name() descending

select m;

foreach (Monster m in query)

{

m.LevelUp();

}

When run, this query retrieves all the monsters that can gain a level, and then
orders that list by name. LINQ isn’t just used with collections; it can be used with

C# Basics 11

XML and databases too. LINQ works with another new addition to C# 3.0:
lambda functions.

Lambda Functions
Remember anonymous delegates? Well, lambda functions are a much more
convenient way to write anonymous delegates. Here’s an example that destroys
all items in a player’s inventory.

_itemList.ForEach(delegate(Item x) { x.Destroy(); });

Using the lambda functions, it can be written more concisely as follows.

_itemList.ForEach(x ¼> x.Destroy());

Less boilerplate code is required making it easier to read.

Object Initializers
Object initializers allow objects to be constructed in a more flexible manner, and
constructors no longer need to be so verbose. Here’s an example without object
initializers.

Spaceship s ¼ new Spaceship();

s.Health ¼ 30;

This can now be written in a more concise way.

Spaceship s ¼ new Spaceship { Health ¼ 30 };

This is used in some LINQ queries. Object initializers can help prevent the need
to write multiple constructors that only set a few fields.

Collection Initializers
Collection initializers let you initialize lists in a pleasing way. As before, the best
way to demonstrate the improvement is to show the old way.

class Orc

{

List<Item> _items¼ new List<Item>();

public Orc()

{

_items.Add(new Item(‘‘axe‘‘));

Chapter 1 ■ The History of C#12

_items.Add(new Item(‘‘pet_hamster‘‘));

_items.Add(new Item(‘‘skull_helm‘‘));

}

}

Initializing lists in this way requires a certain amount of setup code that has to be
put inside the constructor or in a separate initialization method. But by using
collection initializers everything can be written in a much more concise way.

class Orc

{

List<Item> _items¼ new List<Item>

{

new Item(‘‘axe‘‘),

new Item(‘‘pet_hamster‘‘),

new Item(‘‘skull_helm‘‘)

};

}

In this example case, we don’t use the constructor at all anymore; it’s done
automatically when an object is created.

Local Variable Type Inference and Anonymous Types
Using code with generics can get a little messy if there are several generic objects
being initialized at the same time. Type inference can make things a little nicer.

List<List<Orc>> _orcSquads ¼ new List<List<Orc>>();

In this code, there’s a lot of repeated typing, which means more pieces of the
code to edit when changes happen. Local variable type inference can be used to
help out in the following way.

var _orcSquads ¼ new List<List<Orc>>();

The var keyword is used when you would like the compiler to work out the
correct type. This is useful in our example as it reduces the amount of code that
needs to be maintained. The var keyword is also used for anonymous types.
Anonymous types occur when a type is created without a predefined class or
struct. The syntax is similar to the collection initializer syntax.

var fullName ¼ new { FirstName ¼ ‘‘John‘‘, LastName ¼ ‘‘Doe’’ };

C# Basics 13

The fullName object can now be used like a reference type. It has two read-
only fields, FirstName and LastName. This is useful when you have a func-
tion and you really want to return two values. Both values can be combined in an
anonymous type and returned. The more common use for anonymous type is
when storing the data returned from LINQ queries.

C# 4.0

C# 4.0 is the very latest release of C# and the major change is the addition of
dynamic types. C# is a statically typed language. Static typing means that all the
types of the various objects are known at compile time. Classes are defined with
fields and methods; these fields and methods don’t change during the course of
the program. In dynamic typing, objects and classes are more fluid—functions
and fields can be added and taken away. IronPython and IronRuby are both
dynamic languages that run on the CLR.

Dynamic Objects
Dynamic objects get a new keyword: dynamic. Here’s an example of how it’s
used. Imagine we had several unrelated classes that all implemented a method
called GetName.

void PrintName(dynamic obj)

{

System.Console.Writeline(obj.GetName());

}

PrintName(new User(‘‘Bob‘‘)) // Bob

PrintName(new Monster(‘‘Axeface‘‘)) // Axeface

If an object is dynamic when a function is called, that function is looked up at
runtime. This is called duck typing. The look-up is done using reflection, or if the
object implements the interface IDynamicObject, then it calls the method
GetMetaObject and the object is left to deal with it internally. Duck typing is a
little slower because it takes time to determine if the function is present or not. In
traditional C#, a function or field’s presence is determined once at compile time.

The following code will compile under C# 4.0.

public dynamic GetDynamicObject()

{

return new object();

}

Chapter 1 ■ The History of C#14

dynamic testObj ¼ GetDynamicObject();

testObj.ICanCallAnyFunctionILike();

The method ICanCallAnyFunctionILike probably doesn’t exist, so when
the program runs and executes that section of code, it will throw an exception.

Calling any method or accessing any member of a dynamic object requires the
object to do a runtime look-up to see if that member or method exists. That
means if the programmer makes a typo, the error isn’t caught during compiling,
only when the code is run. In C# if a method or field on a dynamic object isn’t
found, the exception that’s thrown is of type RuntimeBinderException .

The dynamic keyword is useful if you intend to do a lot of dynamic scripting in
your game or if you want write a function that takes advantage of duck typing, as
in the PrintName example. PrintName is slower because the GetNames
method must be looked up each time it is called. It may be worth taking the
speed hit in certain situations, but it’s best to be aware of it.

Optional Parameters and Named Arguments
Until version 4.0, C# had no support for optional parameters in methods. This is
a standard feature of Cþþ. Here’s how it works.

class Player

{

// Knock the player backwards

public void KnockBack(int knockBackDamage ¼ 0)

{

// code

}

}

Player p ¼ new Player();

p.KnockBack(); // knocks the player back and by default deals no damage

p.KnockBack(10); // knocks the player back and gives 10 damage

Optional parameters allow the programmer to give default values to the method
arguments. Named arguments allow multiple optional parameters to be used in
an elegant way.

enum HairColor

{

Blonde,

Brunette,

C# Basics 15

Red,

Black

}

enum Sex

{

Male,

Female

}

class Baby

{

public string Name { get; set; }

public Sex Sex { get; set; }

public HairColor HairColor { get; set; }

}

class Player

{

public Baby HaveBaby(string babyName, Sex sex ¼ Sex.Female, HairColor

hairColor ¼ HairColor.Black)

{

return new Baby()

{

Name ¼ babyName,

Sex ¼ sex,

HairColor ¼ hairColor

};

}

}

Player player ¼ new Player();

player.HaveBaby(‘‘Bob‘‘, Sex.Male);

player.HaveBaby(‘‘Alice‘‘);

In this example, the player class has code that allows the player to give birth.
The HaveBaby method takes in a name and some other optional arguments
and then returns a new baby object. The HaveBaby method requires a name to
be given but the sex and hairColor arguments are optional. The next ex-
ample shows how to set the hair color argument but leave the sex as the default
female value.

player.HaveBaby(‘‘Jane‘‘, hairColor: HairColor.Blonde)

Named arguments provide a way to only set the arguments we want to set.

Chapter 1 ■ The History of C#16

Summary
C# is a modern, garbage-collected, objected-orientated language and it’s come a
long way since its debut at the July 2000 Microsoft Professional Developers
Conference in Orlando. C# runs on a virtual machine called the Common Lan-
guage Runtime or CLR for short. The CLR can be used to run many different
languages in the same program.

C# is a living language; as time passes more functionality and features are added.
There have been four major versions of C# and each has brought new and useful
features. These features can often make programs easier to write and more effi-
cient so it’s important to keep up with the changes. C# 4.0, the latest version, was
released in April 2010.

Summary 17

This page intentionally left blank

chapter 2

Introducing
OpenGL

Every computer has special graphics hardware that controls what you see on the
screen. OpenGL tells this hardware what to do. Figure 2.1 shows how OpenGL is
used by a computer game, or any other piece of software, to issue commands to
the graphics hardware using the device drivers supplied by the manufacturer.

The Open Graphics Library is one of the oldest, most popular graphics libraries
game creators have. It was developed in 1992 by Silicon Graphics Inc. (SGI) but
only really got interesting for game players when it was used for GLQuake in
1997. The GameCube, Wii, PlayStation 3, and the iPhone all base their graphics
libraries on OpenGL.

The alternative to OpenGL is Microsoft’s DirectX. DirectX encompasses a larger
number of libraries, including sound and input. It is more accurate to compare
OpenGL to the Direct3D library in DirectX. The latest version of DirectX is
DirectX 11. The Xbox 360 uses a version of DirectX 9.0. DirectX 10 and 11 will
only work on computers with the Windows Vista or Windows 7 operating sys-
tems installed.

The feature sets of Direct3D and OpenGL are pretty much equivalent. Modern
game engines—for example, Unreal—usually build in a layer of abstraction that
allows the user to switch between OpenGL and Direct3D as they desire, as shown
in Figure 2.2. This abstraction is required when producing multiplatform games
that will be released for both the PlayStation 3 and Xbox 360. The Xbox 360 must
use Direct3D calls, whereas the PS3 uses OpenGL calls.

19

DirectX and OpenGL are both excellent graphics libraries. DirectX works on
Microsoft platforms, whereas OpenGL is available on a much wider range of
platforms. DirectX tends to be updated more often, which means it has access to
the very latest graphics features. OpenGL moves slower and the latest graphics
features can only be accessed through a rather unfriendly extension mechanism.
OpenGL’s slow movement can be quite advantageous as the interface rarely
changes and therefore code written years ago will still work with the latest
OpenGL versions. Each new version of DirectX changes the interface, which
breaks compatibility and requires older code to be tweaked and changed to be
updated.

DirectX can be used with C# using the Managed DirectX libraries; unfortunately,
these libraries are no longer officially supported or updated. Managed DirectX
has been superseded by Microsoft’s XNA game creation library. XNA uses
DirectX, but it is a much higher level framework for quickly creating and

Figure 2.1
The typical use of OpenGL.

Figure 2.2
Using an abstraction layer.

Chapter 2 ■ Introducing OpenGL20

prototyping games. SlimDX is an independent C# API for DirectX, which is a
good alternative to Managed DirectX.

Architecture of OpenGL
OpenGL is a C-style graphics library. C style means there are no classes or
objects; instead, OpenGL is a large collection of functions. Internally, OpenGL is
a state machine. Function calls alter the internal state of OpenGL, which then
affects how it behaves and how it renders polygons to the screen. The fact that it
is a state machine can cause some issues; you may experience a bug in some far
flung region of your code by accidentally setting a state in some other area. For
this reason, it is very important to carefully note which states are being changed.

Vertices—The Building Blocks of 3D Graphics
The basic unit in OpenGL is the vertex. A vertex is, at its simplest, a point in
space. Extra information can be attached to these points—how it maps to a
texture, if it has a certain weight or color—but the most important piece of in-
formation is its position.

Games spend a lot of their time sending OpenGL vertices or telling OpenGL to
move vertices in certain ways. The game may first tell OpenGL that all the ver-
tices it’s going to send are to be made into triangles. In this case, for every three
vertices OpenGL receives, it will attach them together with lines to create a
polygon, and it may then fill in the surface with a texture or color.

Modern graphics hardware is very good at processing vast sums of vertices,
making polygons from them and rendering them to the screen. This process of
going from vertex to screen is called the pipeline. The pipeline is responsible for
positioning and lighting the vertices, as well as the projection transformation.
This takes the 3D data and transforms it to 2D data so that it can be displayed on
your screen. A projection transformation may sound a little complicated, but the
world’s painters and artists have been doing these transformations for centuries,
painting and drawing the world around them on to a flat canvas.

Even modern 2D games are made using vertices. The 2D sprites are made up of
two triangles to form a square. This is often referred to as a quad. The quad is
given a texture and it becomes a sprite. Two-dimensional games use a special
projection transformation that ignores all the 3D data in the vertices, as it’s not
required for a 2D game.

Architecture of OpenGL 21

The Pipeline
The pipeline flow is shown in Figure 2.3. This pipeline is known as the fixed
function pipeline. This means once the programmer has given the input to the
pipeline, all the functionality is set and cannot be modified—for instance, adding
a blue tint to the screen could easily be done at the pixel processing stage, but
in the fixed function pipeline the programmer has no direct control over this
stage.

There are six main stages in the fixed function pipeline. Nearly all these stages
can be applied in parallel. Each vertex can pass through a particular stage at the
same time, provided the hardware supports it. This is what makes graphics cards
so much faster than CPU processing.

■ Input stage. This input is given in the form of vertices, and all the vertices’
properties including position, color, and texture data.

■ Transform and lighting. The vertices are translated according to the cur-
rent view. This involves changing the vertex positions from 3D space, also
known as world space, to 2D space, also known as screen space. Some ver-
tices can be discarded at this stage if they are not going to affect the final
view. Lighting calculations may also be performed for each vertex.

Figure 2.3
The basic fixed function pipeline.

Chapter 2 ■ Introducing OpenGL22

■ Primitive setup. This is the process of creating the polygons from the vertex
information. This involves connecting the vertices together according to the
OpenGL states. Games most commonly use triangles or triangle strips as
their primitives.

■ Rasterization. This is the process of converting the polygons to pixels (also
called fragments).

■ Pixel processing. Pixel processing may also be referred to as fragment pro-
cessing. The pixels are tested to determine if they will be drawn to the frame
buffer at this stage.

■ Frame buffer. The frame buffer is a piece of memory that represents what
will be displayed to the screen for this particular frame. Blend settings de-
cide how the pixels will be blended with what has already been drawn.

In the last few years, the pipeline has become programmable. Programs can be
uploaded to the graphics card and replace the default stages of the fixed function
pipeline. You have probably heard of shaders; this is the name for the small
programs that overwrite certain parts of the pipeline.

Figure 2.4 shows the stages of the programmable pipeline. Transform and light-
ing has been removed; instead, there are vertex and geometry shaders. The pixel
processing stage has also become programmable, as a pixel shader. The vertex
shader will be run on every vertex that passes through the pipeline. Vertex sha-
ders cannot add vertices, but the properties such as position, color, and texture
coordinates can be modified.

Geometry shaders were added a little more recently than pixel and vertex shaders.
Geometry shaders take a whole primitive (such as a strip of lines, points, or triangles)
as input and the vertex shader is run on every primitive. Geometry shaders can create
new vertex information, points, lines, and even primitives. Geometry shaders are used
to create point sprites and dynamic tessellation, among other effects. Point sprites are
a way of quickly rendering a lot of sprites; it’s a technique that is often used for particle
systems to create effects like fire and smoke. Dynamic tessellation is a way to add
more polygons to a piece of geometry. This can be used to increase the smoothness of
low polygon game models or add more detail as the camera zooms in on the model.

Pixel shaders are applied to each pixel that is sent to the frame buffer. Pixel
shaders are used to create bump mapping effects, specular highlights, and
per-pixel lighting. Bump map effects is a method to give a surface some extra

Architecture of OpenGL 23

height information. Bump maps usually consist of an image where each pixel
represents a normal vector that describes how the surface is to be perturbed. The
pixel shader can use a bump map to give a model a more interesting texture that
appears to have some depth. Per-pixel lighting is a replacement for OpenGL’s
default lighting equations that work out the light for each vertex and then give
that vertex an appropriate color. Per-pixel uses a more accurate lighting model
in which each pixel is lit independently. Specular highlights are areas on the
model that are very shiny and reflect a lot of light.

OpenGL Is Changing
This is a great time to learn OpenGL. The current version of OpenGL is very
friendly to learners of the library. There are many easy-to-use functions and a lot
of the graphics work can be done for you. Think of it like the current version of
OpenGL is a bike that comes with training wheels that can be used to help you
learn and then be removed when no longer needed. The next version of OpenGL

Figure 2.4
The basic programmable pipeline.

Chapter 2 ■ Introducing OpenGL24

is more like a performance motorbike, everything superfluous has been removed
and all that remains is raw power. This is excellent for an experienced OpenGL
programmer but a little intimidating for the beginner.

The versions of OpenGL available depend on the graphics cards drivers installed
on your system. Nearly every computer supports OpenGL 2.1 and a reasonably
recent graphics card will support OpenGL 3.x.

OpenGL ES
OpenGL ES is a modern version of OpenGL for embedded systems. It is quite
similar to recent versions of OpenGL but with a more restricted set of features.
It is used on high-end mobile phones such as the Android, BlackBerry, and
iPhone. It is also used in military hardware for heads-up displays on things like
warplanes.

OpenGL ES supports the programmable pipeline and has support for shaders.

WebGL
WebGL is currently still in development, but it is a version of OpenGL specifi-
cally made for use over the web. Using it will require a browser that supports the
HTML 5 canvas tag. It’s hard to know at this stage if it is going to be something
that will take off. 3D for the web has been tried before and failed. For instance,
VRML (Virtual Reality Modeling Language) was similar to HTML but allowed
users to create 3D worlds; it had some academic popularity but never gained
traction with general users.

WebGL has some promising backers; a number of big name companies such as
Google, Apple, and Mozilla are in the WebGL working group and there are some
impressive demos. Currently the performance is very reasonable and it is likely to
compete with Flash if it matures.

OpenGL and the Graphics Card
OpenGL is a library that allows the programmer to send instructions to the
graphics card. The graphics card is a piece of specialized hardware to display 3D
data. Graphics cards are made up of a number of standard components includ-
ing the frame buffer, texture memory, and the GPU. The GPU, graphics pro-
cessing unit, controls how the vertices are processed and displayed on screen.

OpenGL and the Graphics Card 25

The CPU sends instructions and data to the GPU, describing how each frame
should appear on the screen. The texture memory is usually a large store of
memory that is used for storing the vast amount of texture data that games re-
quire. The frame buffer is an area of memory that stores the image that will be
displayed on the screen in the next frame. Modern cards may have more than
one GPU, and on each GPU are many shader processing units for doing mas-
sively parallel shader operations. This has been exploited by distributed appli-
cations such as Folding@home, which runs protein folding simulations, and on
hundreds of thousands of computers all over the world.

The first popular 3D graphics card was the 3dfx Voodoo 1. This was one of the
very early graphics cards; it had 2 megabytes of texture memory and 2 megabytes
for the frame buffer, and it used the PCI bus and a clock speed of 135MHz. It
accelerated early games such as Tomb Raider, Descent II, Quake, and the demo of
Quake II, allowing the games to run much smoother and with greater detail. The
Voodoo 1 used a standard PCI bus that allows the CPU to send data to the
graphics card at an upper limit of 533MB/s. Modern cards have moved on from
the PCI bus to the AGP (Accelerated Graphics Port), which achieved a max-
imum of 2GB/s and then on again to the PCI Express. Current generations of the
PCI Express card can send up to 8GB/s.

New graphics cards seem to come out monthly, each faster than the last. At the
time of this writing, the fastest card is probably the ATI Radeon HD 5970. It has
two GPUs and each GPU has 1,600 shader processors. It has a clock speed of
725MHz and a total computing performance of 4.64 teraflops.

Most modern cards have unique specialized hardware for new operations. This
hardware is exposed to OpenGL through the use of extensions. OpenGL is cap-
able of exposing new functionality present in the driver and graphics card when
given a string identifying the new extension. For example, the ATI Radeon
HD 5970 has two GPUs; this is rather unusual, and to make full use of both
GPUs, there are some new extension methods such as AMD_gpu_association.
This extension allows the user to split tasks between the two GPUs. If a number
of vendors implement the same extension, then it has the letters ‘‘EXT’’ some-
where in the extension string. In some cases, it is possible that the architecture
review board that controls the OpenGL specification will elevate an extension to
official status. In that case, the extension gets the letters ‘‘ARB’’ included in the
string and all vendors are required to support it.

Chapter 2 ■ Introducing OpenGL26

Shaders—Programs on the Graphics Card
The term shader is a bit misleading. Initially, shader programs were primarily
used to shade models by operating on the pixels that make up the surface of each
polygon. Over time the abilities of shader programs have expanded; they can
now change vertex properties, create new vertices, or even complete general
operations.

Shaders operate differently from normal programs that run on the CPU. Shader
programs are executed on a large number of elements all at the same time. This
means that shader programs are massively parallel, whereas programs on the
CPU are generally run serially and only one instance at a time. Shader programs
are excellent for doing operations on the mass of pixels and vertices that are the
building blocks of a 3D world.

Until recently there were three kinds of shaders—vertex, geometry, and pixel—
and each could do only certain operations. Vertex shaders operated on vertices;
pixel shaders on pixels; and geometry shaders on primitives. To reduce com-
plexity and allow hardware makers to optimize more efficiently, all these types of
shaders were replaced with one called the unified shader.

Shaders are programmed in special languages that run on the graphics card. At
the moment, these languages are a lot lower level than C++ (never mind C#).
OpenGL has a shading language called GLSL or Open GL Shading Language. It’s
a little like C with lots of special operations for dealing with vectors and matrices.
DirectX also has its own shading language called HLSL or High Level Shading
Language. Both these languages are quite similar. To add to the confusion, there
is a third language called Cg, which was developed by Microsoft and Nvidia; it is
quite similar to HLSL.

Shaders in games are excellent for creating computationally heavy special effects
like lighting of parallax mapping. The current technology makes shader pro-
grams useful for little else. This book will concentrate on game programming;
therefore, the programmable pipeline won’t be covered as it’s a rather large
topic. If you are interested, check the recommended reading section for several
excellent books.

Shaders are on the cusp of becoming used for general parallel programming tasks
rather than just graphics. For instance, the Nvidia PhysX library allows physics
calculations to be done on the GPU rather than the CPU, resulting in much

OpenGL and the Graphics Card 27

better performance. PhysX is written using yet another shader language called
CUDA, but CUDA is a little different. It is a language that is less concerned about
pixels and vertices and more concerned with general purpose parallel program-
ming. If in your game you were simulating a city and came up with a novel
parallel algorithm to update all the residents of the city, then this could be per-
formed much faster on the GPU, and free the CPU for other tasks. CUDA is
often used for scientific research projects as it is a cheap way to harness massive
computing power. Some of the applications using CUDA include quantum
chemistry calculations, simulating heart muscles, and modeling black holes.

The Tao Framework
The Tao Framework is a way for C# to use the OpenGL library. Tao wraps up a
number of C libraries (shown in Table 2.1) and makes them easy to use from C#.
Tao has bindings to Mono, so there’s support for Linux and Macs too.

Tao gives C# access not only to OpenGL but a selection of other useful libraries.

OpenAL is short for Open Audio Library, and is a powerful open source library.
It was the sound library used in BioShock, Quake 4, Doom III, and the recent

Table 2.1 The Libraries in the Tao Framework

Library Use

Tao.OpenAl OpenAL is a powerful sound library.

Tao.OpenGl OpenGL is the graphics library we’ll be using.

Tao.Sdl SDL (Simple DirectMedia Layer), a 2D library built on OpenGL.

Tao.Platform.Windows Support for using OpenGL with Windows.Forms.

Tao.PhysFs A wrapper for I/O, supports archives like .zips for game assets.

Tao.FreeGlut OpenGL Utility Toolkit is a set of wrappers for setting up an OpenGL program as
well as some draw routines.

Tao.Ode Open Dynamics Engine is a real-time physics engine for games.

Tao.Glfw OpenGL Framework is a lightweight multiplatform wrapper class.

Tao.DevIl DevIL is an excellent package for loading various image types into OpenGL (bmp,
tif, gif, png, etc.).

Tao.Cg Cg is a high-level shading language.

Tao.Lua Lua is one of the most common scripting languages used in the game industry.

Tao.FreeType A font package.

Tao.FFmpeg Mainly used for playing video.

Chapter 2 ■ Introducing OpenGL28

Unreal games. It is modeled on OpenGL and has the same state machine style
design and extension methods.

SDL, Simple Direct Media Layer, is a cross-platform library that supports input,
sound, and graphics. It’s quite a popular library for game makers, especially for
independent and open source games. One of the more famous open source
games made with SDL is FreeCiv, a multiplayer Civilization clone. It’s also used
in most Linux game ports.

PhysFs initially might sound like some kind of physics library, but it’s a small IO
library. It allows all the game assets to be packaged in one big binary file or
several small ones. Many commercial games have similar systems; for example,
Doom’s wad system or Quake’s pak system. It allows games to be easily modified
and updated once released.

FreeGLUT is a free version of the OpenGL Utility Toolkit. This is a library that
has functions to get the user up and running with OpenGL right away. It has
methods for receiving input from the keyboard and mouse. It also has methods
for drawing various basic shapes, such as spheres, cubes, and even a teapot (this
teapot is quite famous in computer graphics and was modeled by Martin Newell
while at the University of Utah). The teapot is quite a complicated surface so it’s
useful when testing new graphical techniques. The Toy Story animated movie
features the teapot model and DirectX even has its own teapot creation method;
D3DXCreateTeapot()). It’s often used when teaching OpenGL, but it is quite
restrictive and rarely used for serious projects.

ODE, Open Dynamics Engine, is a multiplatform physics engine that does col-
lision detection and rigid body simulation. It was used in the PC first-person
shooter game, S.T.A.L.K.E.R. Glfw, is the third portable OpenGL wrapper that
Tao provides access to. Glfw stands for OpenGL framework, and it looks to
expand on the functionality provided by GLUT. If you don’t want to use SDL but
do want to use a framework to access OpenGL, this may be worth looking at.

DevIL, Developer’s Image Library, is a library that loads textures from disk into
OpenGL. It’s similar to OpenGL in that it’s a state machine and it has similar
method names. It’s cross-platform and supports a wide range of different image
formats (43!). Cg is one of the shader languages mentioned earlier in the chapter.
Using Tao.Cg, shader programs can be loaded from a text file or string, pro-
cessed, and used in OpenGL.

The Tao Framework 29

Lua is probably the most popular scripting language for game development. It’s a
small, easily embedded language that’s very expressive. Tao.Lua lets functions
and data pass between the script and C# program. Tao.FreeType is a basic font
package that will convert a free type font to a bitmap. It has a very simple, usable
interface.

The final library Tao provides is FFmpeg. The name comes from MPEG, a video
standard, and FF, which means Fast Forward. It provides a way to play video. If
you wanted to have a cutscene in your game, then this would be a good first stop.

Everything in Tao is totally open source. Most libraries are free to use in a
commercial project, but it’s worth checking the license for the specifics. Tao is an
excellent package for the budding game creator to get started with. It’s not in the
scope of this book to investigate all these libraries; instead, we’ll just concentrate
on the most important ones. The OpenGL and Tao.Platform.Windows li-
braries are used from Chapter 5 onwards. DevIL is covered in Chapter 6. Chapter 9
covers playing sound with OpenAL and handling gamepad input with SDL. All
the libraries are useful so it’s worth taking the time to investigate any of the ones
that sound interesting.

Summary
OpenGL and DirectX3D are the two major industrial graphics libraries in use
today. These graphics libraries are a standardized way to talk to the underlying
graphics hardware. Graphics hardware is usually made from several standard
pieces and is extremely efficient at transforming 3D vertex information to a
2D frame on the screen. This transformation from 3D vertices to a 2D frame is
known as the graphics pipeline. There are two types of graphics pipeline; the
fixed pipeline, which cannot be programmed, and the programmable pipeline,
which allows certain stages of the pipeline to be programmed using shaders.

The Tao Framework is a collection of useful libraries including OpenGL. C# can
make use of the Tao Framework to write games using OpenGL. The Tao Fra-
mework also includes several other libraries useful for game development.
OpenAL, DevIL, and SDL will all be used in this book to develop a simple side-
scrolling shooter game.

Chapter 2 ■ Introducing OpenGL30

chapter 3

Modern Methods

Software development has problems—buggy games, blue screens of death, ran-
dom crashes, programs not responding; the problems are numerous. Architects
and civil engineers do not have these problems. The pyramids are doing pretty
well and they are nearly 3,000 years old. Once a building is put up it tends to stay
up, but humans have been putting up buildings for a lot longer than they have
been writing software.

In the last few years, lots of interestingly named new software development
methodologies have started to appear. These methodologies are an attempt to
improve the way software is created and the final quality of the product. In this
section, we’ll look at some of the more useful methodologies that you can put in
your programmer’s toolkit.

Pragmatic Programming
Pragmatic programming is the ability to finish a program satisfactorily within a
desired timeframe. This works by first understanding what is expected of the
final program, then a basic bare bones version of the program is written as
quickly as possible. This barely functional version is changed until it reaches the
original requirements. Changes may be drastic and require rewriting of entire
sections of the program, but that’s okay. The most important thing is that at all
times the program is basically functional.

31

In the world of game development, it’s always a good idea to have something
working, because then if a deadline is moved forward or a demo is required,
something can be ready immediately. If you’re working alone, you have some-
thing to show people to get feedback. Feedback offers a much better idea about
what will work and what won’t.

Game Programming Traps
Many developers start out wanting to make a game but suddenly find that they’re
writing a framework or game engine instead, and it will be useful to make any
sort of game. But the developer never does make his game and falls into the
framework trap, redeveloping his framework over and over, adding the latest
features but never actually getting on to the game creation part.

Pragmatic programming helps you avoid the framework trap. It expressly for-
bids you to start working on a framework; creating a functional game is first and
most important.

Pragmatic programming has two major coding principles: KISS and DRY. These
are two great development tools that will improve your coding ability.

KISS
KISS stands for ‘‘Keep It Simple Stupid.’’ Don’t needlessly complicate your game
programming.

‘‘Hmm . . . my space invaders game will be much more efficient if all the enemies
and bullets are in a quadtree. So I better start building that...’’

This is the wrong way to think if you want to make a game. It’s a great way to think
if you want to learn about quadtrees. You have to decide which is more important
to you and focus only on that. If you want to make a game, get the game functional
as soon as possible, then decide if the extra complexity is needed.

DRY
DRY stands for ‘‘Don’t Repeat Yourself.’’

If you start seeing snippets of code repeated all the over the place, then that code
should be consolidated. The fewer places the code is repeated, the fewer places
that need to be modified when making a change. Let’s take the space invader
example again.

Chapter 3 ■ Modern Methods32

class Invader

{

...

int _health ¼ 10;

bool _dead ¼ false;

void OnShot()

{

_health--;

if (_health <= 0)

{

_dead¼ true;

}

}

...

}

class FlyingSaucer

{

...

int _health ¼ 10;

void OnShot()

{

_health--;

if (_health <= 0)

{

_dead ¼ true;

}

} ...

}

class Player

{

...

int _health ¼ 10;

void OnShot()

{

_health--;

if (_health <= 0)

{

_dead¼ true;

}

}

...

}

Pragmatic Programming 33

In the above example, repeated code is found in all the classes. That means three
different areas that need to be modified in case of change. That is more work for
you, the coder; it’s also more code so it is less clear. The more code, the greater
the chance for bugs to appear.

Now shields need to be added to the space invader creatures.

class Invader

{

...

int _health ¼ 10;

bool _dead¼ false;

int _shieldPower ¼ 2;

void OnShot()

{

if (_shieldPower > 0)

{

_shieldPower--;

return;

}

_health--;

if (_health <= 0)

{

_dead ¼ true;

}

}

...

}

class FlyingSaucer

{

...

int _health ¼ 10;

bool _dead¼ false;

int _shieldPower ¼ 2;

void OnShot()

{

if (_shieldPower > 0)

{

_shieldPower--;

return;

}

_health--;

Chapter 3 ■ Modern Methods34

if (_health <= 0)

{

_dead ¼ true;

}

} ...

}

class Player

{

...

int _health ¼ 10;

bool _dead ¼ false;

int _shieldPower ¼ 2;

void OnShot()

{

if (_shieldPower > 0)

{

_shieldPower--;

return;

}

_health--;

if (_health <= 0)

{

_dead ¼ true;

}

}

...

}

The above code is becoming more difficult to maintain. It could be a lot cleaner
if the repeated code was refactored into a parent class.

class Spacecraft

{

int _health ¼ 10;

bool _dead ¼ false;

int _shieldPower ¼ 2;

void OnShot()

{

if (_shieldPower > 0)

{

_shieldPower--;

return;

}

Pragmatic Programming 35

_health--;

if (_health <= 0)

{

_dead¼ true;

}

}

}

class Invader : Spacecraft

{

}

class FlyingSaucer : Spacecraft

{

}

class Player : Spacecraft

{

}

Now that the code is all in one place, it’s much easier to change in the future.

C++

C++ does not follow the DRY principle from its very foundations. In C# there is
one file that defines classes and methods: the .cs file. In C++, there is a header
defining the class and all the method prototypes. A second file with a .cpp ex-
tension defines the functions again but this time with their bodies. So you have
something like the following.

// Header File Player.h

class Player

{

void TeleportTo(Vector position);

};

// CPP File Player.cpp

void Player::TeleportTo(Vector position)

{

// code

}

If we want to add a return value, to report if the teleport was successful, the code
must be modified in two places. That’s not DRY! In C++, the class im-
plementation is defined in one file and the class interface in another; this code
duplication is shown in the above code snippet. All but the smallest C++

Chapter 3 ■ Modern Methods36

programs use classes, and all classes require implementation duplication.
Therefore, the DRY principle is violated by the very heart of how C++ functions.
Both Java and C# were developed after C++ and both were heavily inspired by
C++ (copying a large amount of the syntax and features), but they both decided
to ditch header files.

You can be better than this; just remember the DRY principle.

If you’d like to know more about pragmatic programming, I recommend The
Pragmatic Programmer by Andrew Hunt and David Thomas. The details are in
Appendix A, ‘‘Recommended Reading.’’

Source Control
Source code is what you type into your editor when you’re programming. When
source code is compiled, machine code is produced. The source code is for you,
the human, and machine code is for the computer. The computer uses the ma-
chine code to execute a program. Source control is a program that keeps track of
all the changes you make to your source code. (See Figure 3.1.)

Knowing how your code has changed and developed is not just really cool; it’s
also useful. Source control gives you an unlimited numbers of ‘‘undos.’’ You can
keep going back to previous versions of the code if you make a mistake. This is
particularly useful when developing a new feature and you somehow manage to
break everything. Without source control, you’d be looking forward to a painful
process of trying to remember what you’d changed. With source control, you
can just compare your current version with the previous version and see im-
mediately what’s changed, as can be seen in Figure 3.2.

You can also revert to the previous working version of the code and lose all the
broken code you added. Reverting is the process of replacing your current code
files with an earlier version of those files. It’s like time travel! In the kitchen you
might decide you want to cut some carrots but accidentally remove your finger.
If humans had source control this would be no problem. You would just revert
to the version of yourself 15 minutes ago and your finger would be back.

Source control is also great for backup. It stores all your code in one place—the
source repository. This might be a local directory on your machine (c:\source_
control) or it could be a server anywhere in the world accessible over the internet.
If your house burns down, your source code is still safe.

Pragmatic Programming 37

Figure 3.1
Changes to a piece of source code.

Figure 3.2
Comparing changes to a piece of source code.

Chapter 3 ■ Modern Methods38

Source control systems also let you create branches. This is a way to split pro-
grams into two separate versions. For instance, your chess game is going pretty
well but you’re pretty sure it would be better if it had a first-person shooter
mode. Adding such a mode will require a lot of code changes, and it might fail.
With source control there’s no need to worry. You can create a branch. All the
new code changes can be made in a new branch repository. Changes here won’t
affect the main repository, called the trunk. If you fail at making ChessFPS then
you can switch back to the main trunk and forget all about your failed branch. If
you succeed then you can merge the branch and the trunk together again.

Source control is extremely useful for the lone developer, but one of its primary
uses is allowing a team of programmers to work on the same codebase at the
same time. Source control lets any programmer edit the code, and any other
programmer can update and see those changes. To make a game with a group of
friends, source control should certainly be used!

Using Source Control

Hopefully, by now I’ve convinced you that source control is great and you need to
use it. The code in this book uses a source control system called Subversion, but it’s
a good idea to know a little about the many different source control systems.

■ CVS—This is used primarily on older projects. It’s best to avoid, as Sub-
version has all its functionality and more.

■ Visual Source Safe—Try not to use this. It is made by Microsoft, but not
even Microsoft uses it internally. It has some stability issues.

■ Subversion—Great free open source control with good Windows integra-
tion. My choice.

■ Perforce—Used by many game companies, very good merge tools, good at
handling large amounts of binary data (like images and models). Not free,
or cheap.

■ Git—Git is quite new and is used as source control for the Linux kernel.
It’s not dependent on a central server, and it’s fast and scalable. Mostly
command line based at the moment, though there are some GUI tools.

■ Mercurial—A bit of a newcomer and mainly command line based, but once
again there are a few GUI tools. Its goals are stated as high performance and

Pragmatic Programming 39

scalability, decentralized, fully distributed collaborative development. Git
and Mercurial have similar aims.

If you really want to be at the cutting edge of revision control, then look into
Git or Mercurial. If you want simple and easy to use, my recommendation is
Subversion.

Unit Testing
When a programmer writes some new functionality, he’ll usually write a snippet
of code to test it. Unit testing is just a clever way of gathering these little snippets
of code together. Then they can be run each time the code is compiled. If sud-
denly a previously working test fails, it is obvious that something is broken. As
the word ‘‘snippets’’ suggests, unit tests should be very small pieces of code that
test one thing and one thing only.

In the unit-testing world, it’s very common to write the tests first and then code.
This might be best illustrated with an example. Let’s say we are creating a game
and a class is needed to represent the player. Players should have a health status,
and when you create a player, he should have greater than zero health. Let’s write
that in code form

class PlayerTests

{

bool TestPlayerIsAliveWhenBorn()

{

Player p ¼ new Player();

if (p.Health > 0)

{

return true; // pass the test

}

return false; // fail the text

}

}

This code won’t compile yet as we haven’t even created a player class. But I think
the test is pretty self-explanatory. If you create a player, he should have greater
than zero health; otherwise, this test fails. Now that the test is written, let’s create
the player.

Chapter 3 ■ Modern Methods40

class Player

{

public int Health { get; set; }

}

Now all the tests can be run using the unit-testing software. The test will fail
because by default, integers are initialized to zero. To pass the test, the code must
be altered.

class Player

{

public int Health { get; set; }

Player()

{

Health ¼ 10;

}

}

Running the unit-testing software again, the test will pass. We now know this
code is working under the tested condition. Let’s add two more tests.

class PlayerTests

{

bool TestPlayerIsHurtWhenHit()

{

Player p ¼ new Player();

int oldHealth ¼ p.Health;

p.OnHit();

if (p.Health < oldHealth)

{

return true;

}

return false;

}

bool TestPlayerIsDeadWhenHasNoHealth()

{

Player p ¼ new Player();

p.Health ¼ 0;

if (p.IsDead())

{

return true;

}

Pragmatic Programming 41

return false;

}

}

Two more tests have been added—each requiring a new player function.

class Player

{

public int Health { get; set; }

public bool IsDead()

{

return false;

}

public void OnHit()

{

}

public Player()

{

Health ¼ 10;

}

}

The general method of unit testing is to write the test, update the code, run the
test, and if it fails, modify the code until it passes the test. If the new tests are run
on the updated code, they will both fail. Let’s fix that.

class Player

{

public int Health { get; set; }

public bool IsDead()

{

return Health == 0;

}

public void OnHit()

{

Health--;

}

public Player()

{

Health ¼ 10;

}

}

Chapter 3 ■ Modern Methods42

Don’t worry if you’ve noticed a bug; it’s there on purpose, I promise! Run the
tests and they should all pass. The code is verified, but the tests don’t exhaustively
cover all the code. For instance, there is a TestPlayerIsDead-
WhenHasNoHealth but not a ‘‘test the player is not dead when health is greater
than 0’’. I’ll leave this one as a reader exercise.

Let’s say we keep on developing in this way and get to the stage where we have a
full working game. Then during testing something strange occurs; sometimes,
when the player should die, he doesn’t, and after that he’s invincible. This isn’t
how the game is supposed to work. All the tests are passing, so that means the
bug isn’t being tested for. Doing some clever debugging, it’s discovered that the
bug occurs when the player has low life, perhaps two or less units of health, and is
then hit a lot of times by a number of enemies.

In unit testing, the first task is to write a test that reproduces the bug. Once this
test is written, the code can be fixed and the test can confirm it. Here’s a test that
covers the bug.

class PlayerTests

{

bool TestPlayerShouldBeDead()

{

Player p ¼ new Player();

p.Health ¼ 2; // give him low health

// Now hit him a lot, to reproduce the bug description

p.OnHit();

p.OnHit();

p.OnHit();

p.OnHit();

p.OnHit();

if (p.IsDead())

{

return true;

}

return false;

}

}

This test is run, and it fails. Now we’ve got a unit test that reproduces the bug.
The code must now be changed to pass this test. The death function seems a
good place to fix the bug.

Pragmatic Programming 43

class Player

{

bool IsDead()

{

return Health <= 0;

}

...

}

If the player has zero health or less, then he is dead. This causes all the unit tests to pass,
and we’re now sure that this bug won’t crop back up without us knowing about it.

Test Driven Development

The method of writing tests, then skeleton code, and then making that code pass
the test is called Test Driven Development. Developing code this way reduces bugs
and you can have faith in what your code actually does. This is very important if
you’re developing a big project. It also encourages classes to be quite modular
and self-contained. This is because unit tests need to be small; therefore, you
want to avoid having to make 50 classes and setting them all up just to run one
simple test. For this reason, lots of needless coupling between classes is avoided.

The other big win on unit testing is refactoring. For instance, if the inventory
system in your game needs to be massively redesigned, then with unit testing you
have all the tests required to confirm you’ve replaced the system correctly.

With unit testing, you can confidently say your code is bulletproof. Un-
fortunately, not everything can be tested; graphics are very hard to test and you
just have to assume the libraries such as OpenGL will work correctly.

Unit Testing in C#

The best unit-testing software for C# is called NUnit (Figure 3.3). It’s free and
easy to use.

In the following chapters, we’ll download NUnit and walk through the setup. All
the code in the book is unit tested, but for the sake of brevity, most unit-test code
is left out of the code examples.

Summary
Writing high quality software can be difficult; it’s hard to write bug-free software
and it’s hard to finish projects on time or even finish them at all. Modern

Chapter 3 ■ Modern Methods44

programming methodologies and practices try to improve the software devel-
opment process.

Pragmatic programming is the ability to finish a program satisfactorily within a
desired timeframe. It is a development method that emphasizes creating a
minimal version of the program as quickly as possible and then iteratively de-
veloping this program until it starts to resemble the original vision. Pragmatic
programming has two main guidelines known as DRY and KISS. DRY stands for
‘‘Don’t Repeat Yourself,’’ and KISS stands for ‘‘Keep It Simple Stupid’’; together
these mean you should avoid duplicating code or functionality and you should
avoid the temptation to over-complicate your programs.

Source control is used to keep your code safe and allow multiple developers to
work on the same project at the same time. Unit testing is the practice of writing
small tests that confirm your code is working as expected. These small tests help
document how the code base should be used and are also used to catch any bugs
that might be introduced when making large changes to the code. These tools
and guidelines help to make software creation easier and help to make the final
product more elegant and robust.

Figure 3.3
Running tests in NUnit.

Summary 45

This page intentionally left blank

part II

Implementation

47

This page intentionally left blank

chapter 4

Setup

This chapter covers getting started with all the necessary tools and libraries to
start making games. All the tools are free, and you’ll quickly get set up with a fully
functional C# IDE, source control to keep your files safe with a record of all your
program changes, and a way to unit test your code. All the tools covered here
have installers in the App directory of the CD.

Introducing Visual Studio Express—A Free IDE for C#
Visual Studio Express is a free IDE for C# from Microsoft. Visual Studio makes
writing C# very easy; with a single button press it compiles and runs the code.
There are other ways of making C# programs; for example, all programming
could be written in Notepad and run through the complier via the command
line. There are also a number of alternative IDEs that can edit C#, but the very
best free tool for editing C# is Visual Studio Express!

Visual Studio Express can be downloaded from the Microsoft site (http://www.
microsoft.com/express/vcsharp/). It’s also available on the CD.

Follow the installation wizard, as shown in Figure 4.1. The wizard will ask if it
should install the Silverlight runtime (Silverlight will not be used in this book, so
you do not need to install it). Once the wizard finishes and after rebooting,
Visual Studio Express will be installed. Now we can start some C# programming!

49

http://www.microsoft.com/express/vcsharp/
http://www.microsoft.com/express/vcsharp/

A Quick Hello World
Creating a quick ‘‘Hello World’’ program will demonstrate the features of Visual
Studio Express. It should now be installed in the start menu so you can launch it
from there.

In Visual Studio Express, there are solutions and projects. Solutions may contain
any number of projects. Each project is a collection of code files and one project
can use the code from another. New projects can be started by opening the File
menu and selecting New Project. A dialog box will pop up like the one pictured
in Figure 4.2.

There are a number of project choices here. Windows Forms Application is a
project that will make use of the forms library. A form is a .NET term for nearly
all Windows GUI programs. Windows Console Application is for text-based
projects. Class Library is code that’s written to be used by other projects, but it
cannot be executed alone.

Figure 4.1
The installation wizard for Visual Studio Express.

Chapter 4 ■ Setup50

Hello World programs are traditionally text based so Windows Console Appli-
cation is most suitable. There’s also a prompt to give the project a name; by
default, this will be ConsoleApplication1. A more descriptive name, such as
HelloWorld makes the purpose of the project clearer. Clicking the OK button
will create the project.

Figure 4.3 shows the new project. The majority of the application is taken up by
Program.cs; this is the only code file in the project. On the left is a subwindow
with the title Solution Explorer. In the solution explorer is a tree of all the
projects in the solution. The top level of the tree shows the HelloWorld solution
we’ve just made. The only child of this tree is a project also called HelloWorld.
Solutions and projects may have the same name.

At the very top of the Visual Studio Express window is a toolbar. In the toolbar is
a small green arrow. Pressing this compiles the project and executes the code.
Press it now!

A console window should pop up and then briefly disappear. This happens
because the program has no code at the moment. The C# program starts its

Figure 4.2
Starting a new project.

Introducing Visual Studio Express—A Free IDE for C# 51

execution by calling the static Main method in the Program class. This is the
place to have the program output Hello World.

namespace HelloWorld

{

class Program

{

static void Main(string[] args)

{

System.Console.WriteLine("Hello World");

System.Console.ReadKey();

}

}

}

Figure 4.3
The start of a brand new project.

Chapter 4 ■ Setup52

The first line is a function call that prints Hello World to the system console.
The second line waits for a keypress on the system console. If the second line
wasn’t there, the program would run, display Hello World, see there’s nothing
else to do, and shut down the program.

Press the green arrow and bask in the Hello World example glory (see
Figure 4.4).

The results demonstrate that everything is working as expected. It is important to
save this code so it can be preserved for the ages. Go to the File menu and choose
Save All. This will pop up a dialog asking you where to save the file. By default,
this will be in the My Documents folder under Visual Studio 2010; this is fine.

Visual Studio Express Tips
If you typed the Hello World program, you may have noticed that Visual Studio
helps you out with autocomplete and drop-down boxes showing the name-
spaces, classes, and appropriate variables. This is some of the more obvious help
Visual Studio will give. There are also some less obvious features that are worth
highlighting.

Automatic Refactoring and Code Generation

Refactoring is a software development term; it means rearranging or rewriting
parts of a current program to make it clearer, smaller, or more efficient, but not
changing its functionality. Code generation allows Visual Studio to write some
code for you. Visual Studio has a number of tools to help you; it splits them into
two headings: Refactor for changing the code and Generate for automatically

Figure 4.4
The Hello World program.

Introducing Visual Studio Express—A Free IDE for C# 53

adding new code. There are a large number of automatic refactorings, but the
following three are the ones I use most commonly.

Renaming
Namespace, class, member, field, and variable names should all be descriptive
and useful. Here’s some example code that has a poor naming style.

class GameThing

{

int _health ¼ 10;

int _var2¼ 1;

public void HealthUpdate(int v)

{

_health ¼ _health - Math.Max(0, v - _var2);

}

}

GameThing is a poor name unless every single thing in your game is going to
have a health value. It would be better to name it GameCreature. Imagine if
you were halfway through development of a large game. The GameThing class is
repeated hundreds of times across many different files. If you wanted to rename
the GameThing class manually, you could either hand edit all those hundreds of
files or carefully use Visual Studio’s Find and Replace tool (this codebase also has
many entirely unrelated classes using similar names such as GameThingMa-
nager, which the Find and Replace tool could accidentally change). Visual
Studio’s refactor function can rename the GameThing class safely with only
two clicks of the mouse.

Right-click GameThing. This will bring up a context menu, as shown in
Figure 4.5. Choose the Refactor menu and click Rename.

A new dialog box will appear, and the new name can be entered, as shown in
Figure 4.6.

This will now rename the class everywhere it appears in code. There are options
to also rename this class in comments and strings. The same process can be done
for the function and variable names, resulting in something like this.

class GameCreature

{

int _health ¼ 10;

Chapter 4 ■ Setup54

Figure 4.5
The Refactor > Rename menu.

Figure 4.6
Entering a new more descriptive name.

Introducing Visual Studio Express—A Free IDE for C# 55

int _armor ¼ 1;

public void TakeDamage(int damage)

{

_health ¼ _health - Math.Max(0, damage - _armor);

}

}

Far more understandable!

Creating Functions
Often when writing a section of code, a function that’s not been written yet is
needed. The generate tools in Visual Studio let you write your code as if the
function did exist, and then automatically create it. As an example, let’s take an
update loop for a player class.

class Player

{

public void Update(float timeSinceLastFrame)

{

}

}

In the update loop, the player animation needs to be updated. It’s best to do
this in a separate function, and that new function would look something
like this.

class Player

{

public void Update(float timeSinceLastFrame)

{

UpdateAnimation(timeSinceLastFrame);

}

}

This function doesn’t exist yet. Instead of writing it all out manually, the generate
functions can do it (see Figure 4.7).

Right-click the function name and choose Generate > Method Stub. The
following code will be created in the Player class.

Chapter 4 ■ Setup56

private void UpdateAnimation(float timeSinceLastFrame)

{

throw new NotImplementedException();

}

All of this was created automatically without any manual typing. The function
has an exception saying no code has been written yet. Calling this function in a
program will cause the exception to be thrown. After writing code for the func-
tion, that exception can simply be deleted.

Separating Chunks of Code
It’s quite common in large programming projects for one area to get bloated. An
update loop for a common object such as the player may become hundreds of

Figure 4.7
Refactor menu for creating a function.

Introducing Visual Studio Express—A Free IDE for C# 57

lines long. If this happens, it’s a good idea to break out some of that code into
separate functions. Let’s consider the game world’s update loop.

class World

{

bool _playerHasWonGame ¼ false;

public void Update()

{

Entity player ¼ FindEntity("Player");

UpdateGameCreatures();

UpdatePlayer(player);

UpdateEnvironment();

UpdateEffects();

Entity goldenEagle ¼ FindEntity("GoldenEagle");

if (player.Inventory.Contains(goldenEagle))

{

_playerHasWonGame ¼ true;

ChangeGameState("PlayerWinState");

}

}

// additional code

}

This loop isn’t that bad, but the last piece of code looks a little untidy; it could be
moved into a separate function. To do this automatically, select the code as if
about to copy and paste it. Start the selection from the line Entity gold-
enEagle... to the closing brace of the if-statement. Now right-click.

The context menu will come up as in Figure 4.8; select Refactor, and then choose
Extract Method. You will be prompted to name the method. I chose Check-
ForGameOver. The selected code will then be removed and placed in a new
function; any variables that it uses will be passed in as arguments to the newly
created function. After the refactor, the code will look like the following:

bool _playerHasWonGame ¼ false;

public void Update()

{

Entity player ¼ FindEntity("Player");

Chapter 4 ■ Setup58

UpdateGameCreatures();

UpdatePlayer(player);

UpdateEnvironment();

UpdateEffects();

CheckForGameOver(player);

}

private void CheckForGameOver(Entity player)

{

Entity goldenEagle ¼ FindEntity("GoldenEagle");

if (player.Inventory.Contains(goldenEagle))

Figure 4.8
Refactor menu for extracting a function.

Introducing Visual Studio Express—A Free IDE for C# 59

{

_playerHasWonGame ¼ true;

ChangeGameState("PlayerWinState");

}

}

The world update function is now shorter and more readable.

It’s worth investigating and becoming familiar with the refactor functions as they
can be excellent time savers.

Shortcuts

Visual Studio and Visual Studio Express have many useful shortcut keys; Table
4.1 shows some of the most useful. A few of the shortcuts are general to most text
editors.

Subversion, an Easy Source Control Solution
Subversion is the source control system we’ll use to keep our source code safe.
Subversion is often abbreviated to SVN. The easiest way to install SVN on
Windows is to use TortoiseSVN. TortoiseSVN integrates itself into the Windows
context menu, making it very simple to manage source control operations.

Where to Get It
The official website for TortoiseSVN is http://tortoisesvn.net/, and the latest
build should be available to download from http://tortoisesvn.net/downloads/.
It’s also available on the CD. There are two versions x86 and x64; these are for
32-bit machines and 64-bit machines, respectively.

Installation
Installation is simple, just double-click the icon and accept all the default
options. This will install the program to your program files directory. After
installation has finished, you will be prompted to restart.

Once your system has restarted, right-click on your desktop. You should have
three extra items in your context menu, as can be seen in Figure 4.9. These menu
items will be used to manage your source code.

Creating the Repository
A source control repository is the place where all the code and data will be stored.
We’ll make our repository on the hard disk. It’s a good idea to choose a location

Chapter 4 ■ Setup60

http://tortoisesvn.net/
http://tortoisesvn.net/downloads/

that will be easy to backup. Somewhere like My Documents is a good place.
Think of the repository like a safe that’s going to look after all the code written
from now on.

Once you’ve decided where you want the repository to be, create a new directory.
All the source control files will go in here. You can name the directory whatever

Table 4.1 Visual Studio Shortcuts

Key Combination Function

Ctrl+A Select all

Ctrl+Space Force the autocomplete box to open.

Shift+Home Select to the start of the line.

Shift+End Select to the end of the line.

Shift+Left Arrow Key Select next left-most character.

Shift+Right Arrow Key Select next right-most character.

Ctrl+Closing Curly Brace If the cursor is next to a curly brace character, this will find the asso-
ciated closing or opening brace.

Ctrl+K then Ctrl+F This will correctly indent all the selected text. Very useful if you’ve
copied some code from an online example and all the formatting is
messed up.

Tab If you have some code selected and then press Tab, all this code will be
tabbed in.

Shift+Tab If you have some code selected and press Shift+Tab, all this code will
be tabbed backwards.

Ctrl+U Any text selected will be changed to lowercase.

Ctrl+Shift+U Any text selected will be changed to uppercase.

Alt+LeftMouseButton and drag This will allow you to select text vertically. Character columns instead
of character rows.

F5 Build and execute the project.

F12 If the cursor is over some method or class name, it will jump the cursor
to the definition.

Ctrl+Shift+B Build the current project.

Ctrl+K, Ctrl+C Comment out the current selection.

Ctrl+K, Ctrl+U Uncomment the current selection.

Ctrl+F Brings up the Find dialog.

Ctrl+Shift+F Brings up the Find dialog, but this time it will search through all the
projects instead of the current code file.

Subversion, an Easy Source Control Solution 61

you want. I named mine, ‘‘MyCode’’. Open the folder and right-click. The
context menu will appear; choose the menu item labeled Tortoise SVN.
This will give some more options, as shown in Figure 4.10; choose Create
Repository here.

Some new files will appear in the directory, as shown in Figure 4.11.

Congratulations! You’ve just made your first source code repository. Let’s have a
look inside! Go up to the parent directory. Now right-click on the directory
containing your repository. This time choose SVN Repo-browser. This brings up
a dialog, but it’s empty. That’s because there is nothing in the repository—not
yet anyway. In time, you’ll fill this up with all your great coding ideas and
projects.

Figure 4.9
SVN context menu.

Chapter 4 ■ Setup62

Figure 4.10
Using the context menu to create a repository.

Figure 4.11
Files in the repository.

Subversion, an Easy Source Control Solution 63

Adding to the Repository
Remember the Hello World project? That’s some pretty important code and
should be put under source control so that it can be kept safe. If you saved the
project to the default directory, it will be in C:\Users\YourUserName\Docu-
ments\Visual Studio 2010\Projects\ on Windows 7 and Vista and C:\Documents
and Settings\YourUserName\My Documents\Visual Studio 2010\Projects
for XP.

Now, go to the directory with your source control repository and explore the
repository as before. Right-click on the right-most window and a context menu
will appear. Choose Create Folder and name it HelloWorld.

In the projects directory, right-click on the HelloWorld folder and choose SVN
Checkout. This will bring up a dialog box with a text box labeled URL of
Repository; this should have your repository path in it. If it doesn’t, click on the
folder icon, browse to your repository folder, and select it. Click OK. The dialog
box will change and show a single directory called HelloWorld. Select that
directory. The check out directory text box should read something like C:\Users
\YourUserName\Documents\Visual Studio 2010\Projects\HelloWorld for Win-
dows 7 and Vista and C:\Documents and Settings\YourUserName\My Docu-
ments\Visual Studio 2010\Projects\HelloWorld for XP.

At the moment, the repository is empty; all it has in it is the empty Hello World
directory that was just created. The next step is checking out this empty directory
into the same place as the Hello World project. In the checkout window, click
OK. This will check out the repository in the same place that the code currently
is. Figure 4.12 shows inside the Hello World directory, and the changes that have
occurred.

All the files now have small question mark icons. These indicate that the files
have not been added to the source control repository but they’re in the checked
out directory. There’s also a hidden folder called .svn. This hidden folder con-
tains the information that SVN uses to manage itself.

The next step is to add all the important code files into the HelloWorld re-
pository. HelloWorld.sln is important; it’s the file that says how the solution is
set up and what projects are included.

Right-click on HelloWorld.sln, click TortoiseSVN > Add (shown in Figure 4.13),
refresh the directory, and a plus sign will appear next to HelloWorld.sln, as

Chapter 4 ■ Setup64

shown in Figure 4.14. HelloWorld.sln has been added to the repository. First,
let’s add the rest of the files. There’s a directory called HelloWorld; this is the
project directory. Right-click on it and choose Add, the same way we did for
HelloWorld.sln.

This will bring up a list of all the files in the directory. Unselect all the files and
type the following.

HelloWorld/

HelloWorld/HelloWorld.csproj

HelloWorld/Program.cs

HelloWorld/Properties

HelloWorld/Properties/AssemblyInfo.cs

These are the files we’ll be editing. The other files are automatically generated so
there’s no need to add them to source control. Once the files are selected, they’re
ready to commit. Committing copies the new files from your local check out and
adds them to the source repository.

Figure 4.12
The checked out HelloWorld project.

Subversion, an Easy Source Control Solution 65

The easiest way to do a check in is to open your projects folder, right-click on the
HelloWorld folder and choose SVN Commit.

This brings up a dialog listing all the files to commit. There is also a comment
box for the commit. It’s good practice to always add a comment about what
changes have been made. In this case, we’re adding a new project, so it’s fine to
list the comment as ‘‘First commit of hello world project.’’ Press commit and the
code is committed.

The code is now safe in the repository. Let’s test it! Delete the HelloWorld folder,
or if you’re a little less trusting, rename it to HelloWorld. Now right-click and
select SVN Checkout. The HelloWorld project should be selected; click OK.
You’ll notice a new directory has appeared titled HelloWorld. Enter the directory
and double-click the brand new HelloWorld.sln icon. This will launch Visual

Figure 4.13
Adding to the repository.

Chapter 4 ■ Setup66

Studio; pressing the green arrow will cause the Hello World program to compile
and run perfectly.

When working with a team, everyone can check out the project and all start
working on it.

History
One of the nice things about source control is that it allows you to look back on
the project and see how it’s evolved. Right-clicking on the Hello World project
directory and selecting SVN Show Log will pop up the history dialog. This shows
all commits with your high-quality descriptive comments (see Figure 4.16).

So far, the history view shows only two commits. The first is the creation of the
project, and then the second when the files were added. Play around with
the history options. The statistics button gives graphs and information about the
commits. It also reports who committed what. This is very useful when working
in a team.

Figure 4.14
Plus sign to indicate files are to be added to source control.

Subversion, an Easy Source Control Solution 67

Extending Hello World
Open up Visual Studio and edit the Hello World program to look like the
following.

public static void Main(string[] args)

{

System.Console.WriteLine("Let’s make some games.’’);

System.Console.ReadKey();

}

The program is developing nicely. We don’t want to lose these changes so we had
better do one more commit. Return to the Hello World project directory and
select SVN Commit again. Program.cs will come up as modified. Add a useful
comment such as ‘‘Changed hello world text’’ and click OK. Now the code and
source control are both up to date.

Figure 4.15
Committing source code.

Chapter 4 ■ Setup68

With that commit, another feature of SVN can be introduced. Open the history
window again by going to SVN Show Log. Click on the most recent commit,
revision number three. In the third dialog window, you’ll see the modified
/HelloWorld/HelloWorld/Program.cs file. Right-click on this and choose Show
Changes, as shown in Figure 4.17.

This will bring up a new program called TortoiseMerge. TortoiseMerge will
display two files at once: the current commit and the previous commit, as is
shown in Figure 4.18. In the previous commit, Hello World is crossed out and
highlighted in red; this means it’s the area of code that’s changed and the text has
been removed. In the current commit, we can see that it has changed to ‘‘Let’s
make some games.’’

This merge tool is very useful for seeing how code has changed.

Tao
Tao allows C# to access OpenGL’s functionality. It’s very simple to install and
add to a game project. The installer is available from sourceforge (http://source-
forge.net/projects/taoframework/), and it is also included on the CD. As new
features are added to OpenGL, Tao is updated to include them.

Figure 4.16
Viewing the history.

Tao 69

http://sourceforge.net/projects/taoframework/
http://sourceforge.net/projects/taoframework/

Figure 4.17
How to compare changes.

Figure 4.18
Using the merge tool to compare.

Chapter 4 ■ Setup70

Once the installer finishes running, nothing else needs to be done. The Tao li-
braries are now accessible to C#.

The Tao framework is a coding project like any other and so it uses source
control. In fact, it also uses SVN. If you want the latest, bleeding-edge version of
the Tao framework, browse the repository, right-click any folder or the desktop,
and choose SVN Repo-browser. Enter https://taoframework.svn.sourceforge.net/
svnroot/taoframework/trunk at the prompt. After a short wait, the latest code
of the Tao framework will appear, as shown in Figure 4.19. To check out the
latest copy, follow the same steps, but select SVN Checkout instead of SVN
Repo-browser.

NUnit
NUnit is one of the most popular unit testing tools available for C#. The installer
is available on the CD, and the latest version is available at http://www.nunit.
com/. Run the installer and choose a typical installation when prompted.

Figure 4.19
Using SVN to browse the Tao framework.

NUnit 71

https://taoframework.svn.sourceforge.net/svnroot/taoframework/trunk
https://taoframework.svn.sourceforge.net/svnroot/taoframework/trunk
http://www.nunit.com/
http://www.nunit.com/

Using NUnit with a Project
NUnit is very simple to use, but before writing tests, a project is needed. In Visual
Studio, start a new project by selecting File > New Project as shown in Figure 4.20.
Once again, choose a Console Application project and call it PlayerTest.

This will create a default project with one file named Program.cs. Right-click on
the project and select Add > Class, as shown in Figure 4.20. This will be the player
class.

This brings up a dialog box with a number of preset class types from which to
choose, shown in Figure 4.21. The one needed here is simply a class, so choose
that and name it Player.cs. A separate class will also be needed for the tests; add
another class the same way, but call it TestPlayer.cs.

Figure 4.20
Adding a class in Visual Studio.

Chapter 4 ■ Setup72

To use NUnit, it needs to be added to the project as a reference. In the Solution
Explorer, right-click on the References node and select Add Reference, as shown
in Figure 4.22.

This will bring up a very large list of references. The reference that needs to be
added is NUnit.Framework. Once the reference has been added, it can be used by
adding a using statement. In TestPlayer at the top of the file, there are a number
of statements starting with ‘‘using . . . ’’. To use NUnit, an extra line must be
added using NUnit.Framework;. Then a simple test can be added.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using NUnit.Framework;

namespace PlayerTest

{

[TestFixture]

public class TestPlayer

Figure 4.21
Naming a class in Visual Studio.

NUnit 73

{

[Test]

public void BasicTest()

{

Assert.That(true);

}

}

}

The first things to notice in this code snippet are the attributes. In C#, an attri-
bute is a bit of metadata—some descriptive information about a class, function,
or variable that can be accessed programmatically. Attributes are surrounded by
square brackets. Here the class has an attribute of type TestFixture. In NUnit
terminology, a test fixture is a group of related unit tests. The TestFixture

Figure 4.22
Adding a reference.

Chapter 4 ■ Setup74

attribute is used to tell NUnit that the class TestPlayer will have a number of
tests in it.

The second attribute is on the function BasicTest. This is a test attribute,
which means the function BasicTest is a test that needs to be run. As
the Player code is written, more of these small test functions will be added to
the TestPlayer class.

Make sure the code compiles by pressing the green arrow or by pressing F5.
A console window will flash briefly, and then quickly disappear again. This
behavior is fine for now.

Running Tests
NUnit has a special GUI program for running tests. NUnit GUI is found in the
Start menu. Once run, it looks like Figure 4.23.

NUnit works on compiled code. Visual Studio compiles the code every time the
green arrow or F5 is pressed. The compiled code is stored in the project directory
(normally, \Projects\PlayerTest\PlayerTest\bin\(Debug/Release)\). The default

Figure 4.23
NUnit GUI on startup.

NUnit 75

location for the projects directory is in the MyDocuments directory under Visual
Studio 2010.

In here, you will find an exe file. This is the compiled version of the code. There is
also an nunit.framework.dll file; this is the NUnit reference that was included
earlier. The exe file won’t be able to run without this dll.

To run the tests, select File > Open Project in the NUnit GUI. Navigate to the
compiled code in the release directory. Click on the PlayerTest.exe file. This will
load the test we wrote earlier in NUnit, as shown in Figure 4.24.

Click the Run button; the project tree should turn green and a tick will appear
next to BasicTest. This means the test ran successfully. If the code is changed
so that the test fails, the little green circles will turn red. Try changing the code to
fail then running the tests again.

An Example Project
The player class in the game must represent the concept that if the player eats a
mushroom, he gets bigger. It’s assumed all players begin life small. That will be
the first test.

namespace PlayerTest

{

[TestFixture]

public class TestPlayer

{

[Test]

Figure 4.24
NUnit GUI loading the project.

Chapter 4 ■ Setup76

public void BasicTest()

{

Assert.That(true);

}

[Test]

public void StartsLifeSmall()

{

Player player ¼ new Player();

Assert.False(player.IsEnlarged());

}

}

}

The Assert class is part of NUnit and is the workhorse of writing the unit tests.
The function IsEnlarged does not exist yet. Using the refactor tools, Visual
Studio can automatically create this function. This will result in the following
code in the Player class.

class Player

{

internal bool IsEnlarged()

{

throw new NotImplementedException();

}

}

Running the unit test in NUnit now will result in a failure with the following
error message

PlayerTest.TestPlayer.StartsLifeSmall:

System.NotImplementedException : The method or operation is not

implemented.

The test fails because one of the methods in the Player class hasn’t been
implemented yet. That can be solved by adding the functionality.

class Player

{

bool _enlarged ¼ false;

internal bool IsEnlarged()

NUnit 77

{

return _enlarged;

}

}

It will now pass the test. Build the project, run NUnit again, and a green circle
will appear next to the project. The next test is for eating a mushroom. Here’s
the test.

namespace PlayerTest

{

[TestFixture]

public class TestPlayer

{

[Test]

public void BasicTest()

{

Assert.That(true);

}

[Test]

public void StartsLifeSmall()

{

Player player ¼ new Player();

Assert.False(player.IsEnlarged());

}

[Test]

public void MushroomEnlargesPlayer()

{

Player player ¼ new Player();

player.Eat("mushroom");

Assert.True(player.IsEnlarged());

}

}

}

This new test has a pleasing symmetry with the previous test. As tests are built up,
they form living documentation for the project. Someone new to the code can
read all the tests associated with a certain function and get a very good idea about
what it’s supposed to do.

Chapter 4 ■ Setup78

Like the previous test, additional functionality has been added. The player does
not yet have an Eat method. Like the previous example, Visual Studio’s refactor
tools can quickly generate the required method.

class Player

{

bool _enlarged ¼ false;

internal bool IsEnlarged()

{

return _enlarged;

}

internal void Eat(string p)

{

throw new NotImplementedException();

}

}

The new test will now fail if NUnit is run. The test can be made to pass with the
following code.

class Player

{

bool _enlarged ¼ false;

internal bool IsEnlarged()

{

return _enlarged;

}

internal void Eat(string thingToEat)

{

if (thingToEat == "mushroom")

{

_enlarged ¼ true;

}

}

}

All the tests pass, proving this code is correct and working as desired. That’s
basically it for unit testing. It’s not a very complicated technique, but it does give
the writer faith in the code and the ability to change it without breaking
functionality.

NUnit 79

Summary
Visual Studio Express is one of the best ways to develop C# programs; it’s free
and has many features. It’s a full IDE with support for writing, compiling, and
debugging C# programs. There are many helpful functions for refactoring
existing code and generating new code. It also has many shortcut keys to make
writing code faster. Source control is a way of recording all the changes to the
code and keeping the source in one place. SVN is a great source control program
with an easy to use Windows wrapper called TortoiseSVN.

Unit tests are small pieces of code that verify a small piece of your program is
working correctly. NUnit is a unit testing program for C# that provides interface
to write tests for your code. Once the tests are written, NUnit has a program that
will visually display and run all the tests, putting a green tick next to passing tests
and a red cross next to failing tests. These three programs are an excellent starting
point for C# development.

Chapter 4 ■ Setup80

chapter 5

The Game Loop and
Graphics

Computer games come in many genres, from abstract puzzle games like Tetris to
turn-based strategy games like Civilization to fast-paced first-person shooters
like Half-Life. All these games, and all computer games, are programmed in a
similar way.

How Do Games Work?
The most important way a game communicates with the player is via the TV
screen or computer monitor. It’s quite common to hear about frame-rate in
games. A good frame-rate is from 30 frames per second to 60 frames per second.
But what does frame-rate actually mean when programming a game?

A single frame is the time between screen updates. The computer program is
responsible for updating the screen with new information at least 30 times a
second. Computers are very fast; it’s no problem for a computer to update the
screen this quickly.

How much time does the computer have to update each frame? If the minimum
requirement is 30 frames per second, that is 33 milliseconds per frame. The
computer has 33 milliseconds to ‘‘think’’ about what should happen in the next
frame. A computer can do a vast amount of calculation in 33 milliseconds; more
than most humans could do in a week.

All game code has a central loop called the game loop. While the game is run-
ning, the central loop is called repeatedly and as often as possible. The game loop

81

has three main stages: it first gets the state of any input (such as gamepad or the
keyboard), updates the state of the game world, and finally updates all the pixels
on the screen.

A Closer Look at the Game Loop
Game code is not just responsible for updating the graphics on the screen; it has
two other very important tasks to do. It must take input from the user such as ‘‘If
the user is pressing button B, then make the character jump,’’ and it must update
the game world, ‘‘If the player has just killed the end boss, then go to the credits.’’

All game loops follow a similar pattern.

while (true)

{

// Find out what state keyboard and joypads are in

UpdateInput();

// Handle input, update the game world, move characters etc

Process();

// Draw the current state of the game to the screen

Render();

}

These are the three main stages of the loop: update the player input, update the
game world, and then tell the graphics card what to render.

Implementing a Fast Game Loop in C#
Open Visual Studio. Visual Studio assumes by default you will be making a
software application that’s event-driven rather than one that’s executing code
continuously, such as a game. Event-driven programs execute code in response
to events coming from the operating system or from user input. It’s easier to
write games with a main loop that can be used to continually update the state of
the game world. The default code needs to change a little to get a fast game loop
implemented. It’s important that the loop runs as often as possible, so this C#
code uses some C functions to ensure it’s the fastest possible game loop.

Create a new Windows Form Application and call the project GameLoop. A
Program.cs file will automatically be generated with the following code:

namespace GameLoop

{

static class Program

Chapter 5 ■ The Game Loop and Graphics82

{

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new Form1());

}

}

}

If this code is run, it will just show a standard Windows form. At the moment,
this is an event-driven application. If it was executing continuously then it might
look like this.

namespace GameLoop

{

static class Program

{

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new Form1());

}

static void GameLoop()

{

// GameCode goes here

// GetInput

// Process

// Render

}

}

}

Implementing a Fast Game Loop in C# 83

The GameLoop function should be called each frame. To do this, a new class
needs to be created. Right-click the GameLoop project in the solution explorer
tab and choose Add > Class. This will prompt you for a class name; name the
class FastLoop. The FastLoop class is going to be used by the Program class.
It will force the function GameLoop to be called each frame. Before GameLoop
is written, let’s consider how it might be used.

static class Program

{

static FastLoop _fastLoop ¼ new FastLoop(GameLoop);

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new Form1());

}

static void GameLoop()

{

// GameCode goes here

// GetInput

// Process

// Render

}

}

The FastLoop class will take only one argument. That argument will be the
function GameLoop. That’s all that will be needed to convert a project so that it
continually executes.

Open FastLoop.cs. In the Program class, the FastLoop constructor call takes
in a reference to the function GameLoop. Therefore the FastLoop class must
define its constructor to have a function passed into it as a parameter.

public class FastLoop

{

public delegate void LoopCallback();

public FastLoop(LoopCallback callback)

Chapter 5 ■ The Game Loop and Graphics84

{

}

}

In C#, functions can be stored as variables by using a delegate that defines the
function signature—what the function returns and what parameters it takes in.
In this case, a delegate is used to define a function type with no return value or
parameters; it’s named LoopCallback. FastLoop has one constructor that
takes in the callback. The callback will be called every frame to allow the game to
update itself.

All C# form programs have a static class called Application. This class re-
presents the program and its settings. It can also be used to modify a program so
that it can be used in real-time.

A program can have a large number of events to handle; the user might be
maximizing the form or Windows may be shutting down. The Application is
the part of the code that handles all these events. When it has no events to handle,
it calls a callback Application.Idle. This means it’s about to enter idle time.
This idle time, when the application is not busy, is when the game logic needs to
be updated. To use the Application code, using System.Windows.
Forms needs to be added near the top of the file.

using System.Windows.Forms;

namespace GameLoop

{

public class FastLoop

{

public delegate void LoopCallback();

LoopCallback _callback;

public FastLoop(LoopCallback callback)

{

_callback ¼ callback;

Application.Idle += new EventHandler(OnApplicationEnterIdle);

}

void OnApplicationEnterIdle(object sender, EventArgs e)

{

}

}

}

Implementing a Fast Game Loop in C# 85

Here the game loop callback has been stored in a member variable, _callback,
for later use. The Application.Idle event has been given a handler,
OnApplicationEnterIdle . This will be called when the application begins
to idle. The next part is a bit trickier. The code needs to know if the application is
still in the idle state, and if it is then it needs to continually call the loop callback.
Read this code to see how the callback will be called.

void OnApplicationEnterIdle(object sender, EventArgs e)

{

while (IsAppStillIdle())

{

_callback();

}

}

private bool IsAppStillIdle()

{

Message msg;

return !PeekMessage(out msg,IntPtr.Zero, 0, 0, 0);

}

The code calls the callback continuously unless IsAppStillIdle returns false.
IsAppStillIdle uses a new PeekMessage function to check if the appli-
cation has any important events that need to be dealt with. If there are important
messages for the application then these need to be handled before returning to
the game loop.

To check if the application is idle, we need to have a look at the Windows mes-
sage queue. Windows has a big queue of events. If a window is moved, an event is
added to the event queue; if it’s minimized, an event is added to the queue; if a
user presses a key on the keyboard, an event is added—many different actions
generate events. All forms need to handle their own events. If our application has
some events in its queue, then it needs to stop idling and deal with them.

The easiest way to check the event queue is by using some Windows C functions.
In C#, this is called InterOp, short for InterOperation. Using some C functions in
a C# program is actually very easy to do. To see what’s in the event queue, we’re
going to use a C function called PeekMessage. We just want to have a peek at
the queue and see if anything’s there. This is the C definition.

BOOL PeekMessage(

LPMSG lpMsg,

Chapter 5 ■ The Game Loop and Graphics86

HWND hWnd,

UINT wMsgFilterMin,

UINT wMsgFilterMax,

UINT wRemoveMsg

);

According to the documentation

■ If a message is available, the return value is nonzero.

■ If no messages are available, the return value is zero.

This is the perfect function to decide if there are events waiting for our particular
application.

It’s not very important to understand all the details of this C function. The im-
portant thing is how the function is called from C#. To call it from C#, the
function arguments need changing from C types to the equivalent C# types.

The first argument, lpMsg is a message type. This type isn’t available in C#; it
needs to be imported. The second type is a Windows handle; this is just a refer-
ence to our form. The last three arguments are all unsigned integers, which are a
standard C# type. Here’s the C message structure, which is the first argument.

typedef struct {

HWND hwnd;

UINT message;

WPARAM wParam;

LPARAM lParam;

DWORD time;

POINT pt;

} MSG, *PMSG;

The structure members aren’t that important; here’s how to import this C type
into C#. First, include the using statement using System.Runtime.In-
teropServices; at the top of the FastLoop.cs with the other using state-
ments. This library has useful functions for importing C types and structures.

using System.Runtime.InteropServices;

using System.Windows.Forms;

namespace GameLoop

{

[StructLayout(LayoutKind.Sequential)]

Implementing a Fast Game Loop in C# 87

public struct Message

{

public IntPtr hWnd;

public Int32 msg;

public IntPtr wParam;

public IntPtr lParam;

public uint time;

public System.Drawing.Point p;

}

Adding this C struct is just a case of correctly matching the C types to the C#
types. The attribute [StructLayout(LayoutKind.Sequential)] tells
C# to lay out the structure in memory exactly the way it’s written. Without
this attribute, C# might try to be clever and make the structure more memory-
efficient by rearranging it. C expects the structure to be laid out in memory the
exact way it’s written.

Now the message type is imported; all that remains is to import the PeekMes-
sage function.

public class FastLoop

{

[System.Security.SuppressUnmanagedCodeSecurity]

[DllImport("User32.dll", CharSet ¼ CharSet.Auto)]

public static extern bool PeekMessage(

out Message msg,

IntPtr hWnd,

uint messageFilterMin,

uint messageFilterMax,

uint flags);

The first attribute, [System.Security.SuppressUnmanagedCodeSe-
curity], just says, ‘‘We are calling C, an unmanaged language, so don’t do any
managed security checks.’’ The second attribute, [DllImport("User32.
dll", CharSet ¼ CharSet.Auto)], references the DLL file that the
C function is to be imported from. User32.dll is one of the major files
for interacting with the Windows operating system using C. The PeekMessage
function fills out the Message structure, so it needs to be able to write
to it. That’s why the out keyword is used on the first argument. The
remaining arguments can all be ignored and no useful information will be passed
into them.

Chapter 5 ■ The Game Loop and Graphics88

With PeekMessage defined, it can now be used to determine if there are any
messages waiting in the application’s event queue.

private bool IsAppStillIdle()

{

Message msg;

return !PeekMessage(out msg,IntPtr.Zero, 0, 0, 0);

}

That’s it. With IsAppStillIdle defined correctly, the program now has an
extremely fast game loop. This FastLoop class can be reused for any game
project you make in the future.

Now to test that the game loop really works, go to Project.cs and add the fol-
lowing line of code.

static void GameLoop()

{

// GameCode goes here

// GetInput

// Process

// Render

System.Console.WriteLine("loop");

}

Every time the game loop is called, it will output the word ‘‘loop’’ to the console.
To see the console, go to Debug > Windows > Output; this will bring up another
window. Run the application and in the output window, the word ‘‘loop’’ will
keep scrolling down the screen.

Adding High-Precision Timing
To animate things smoothly, it’s important to know how much time has elapsed
between frames. This time can then be used to keep animation independent of
the frame-rate. Games should run the same speed on all computers; a game
character shouldn’t suddenly be able to run faster if the computer is faster!

Timing in computer games is very important. The time between frames must
be accurate and of a high resolution or the game will appear to be jerky. To get
the best timing functions, some C code needs to be used. This is less daunting as
we’ve already used InterOp to peek at Windows messages. The time between
frames is often called elapsedTime or the delta time, sometimes dt for short,
and it’s measured in fractions of a second.

Implementing a Fast Game Loop in C# 89

Create a new class called PreciseTimer. It’s not a big class, so here’s the code
all in one go. Have a look through it and try to work out what it’s doing.

using System.Runtime.InteropServices;

namespace GameLoop

{

public class PreciseTimer

{

[System.Security.SuppressUnmanagedCodeSecurity]

[DllImport("kernel32")]

private static extern bool QueryPerformanceFrequency(ref long

PerformanceFrequency);

[System.Security.SuppressUnmanagedCodeSecurity]

[DllImport("kernel32")]

private static extern bool QueryPerformanceCounter(ref long

PerformanceCount);

long _ticksPerSecond ¼ 0;

long _previousElapsedTime ¼ 0;

public PreciseTimer()

{

QueryPerformanceFrequency(ref _ticksPerSecond);

GetElapsedTime(); // Get rid of first rubbish result

}

public double GetElapsedTime()

{

long time ¼ 0;

QueryPerformanceCounter(ref time);

double elapsedTime ¼ (double)(time - _previousElapsedTime) /

(double)_ticksPerSecond;

_previousElapsedTime ¼ time;

return elapsedTime;

}

}

}

The QueryPerformanceFrequency function retrieves the frequency of
the high-resolution performance counter. Most modern hardware has a high-
resolution timer; this function is used to get the frequency at which the timer
increments. The QueryPerformanceCounter function retrieves the current
value of the high-resolution performance counter. These can be used together to
time how long the last frame took.

Chapter 5 ■ The Game Loop and Graphics90

GetElapsedTime should be called once per frame and this will keep track of
the time. The elapsed time is so important that it should be incorporated into the
game loop. Open the Program.cs file and change the game loop so it takes one
argument.

static void GameLoop(double elapsedTime)

{

// GameCode goes here

// GetInput

// Process

// Render

System.Console.WriteLine("loop");

}

FastLoop.cs needs to be changed as well; the delegate must take an elapsed time
value and the PreciseTimer needs to be added as a member.

public class FastLoop

{

PreciseTimer _timer¼ new PreciseTimer();

public delegate void LoopCallback(double elapsedTime);

The timer is then called once per frame and elapsed time is passed on to
FastLoop’s callback.

void OnApplicationEnterIdle(object sender, EventArgs e)

{

while (IsAppStillIdle())

{

_callback(_timer.GetElapsedTime());

}

}

The game loop can now be used to smoothly animate any game! By the end of
this chapter, the game loop will be used to smoothly rotate a 3D triangle—the
‘‘Hello World’’ application of OpenGL programming.

Graphics
Now that the game loop is working, the next step is to get something to display on
screen. You can either continue the current project with FastLoop.cs and Game-
Loop.cs or you can make a new project and modify it so it has a fast game loop.

Graphics 91

To display graphics, the Tao libraries must be included in the project. If you’ve
not installed the Tao framework yet, now is a good time to do it.

In Visual Studio, find the solution explorer window. The solution explorer will
contain only one project. Expand the project and you will see an icon labeled
References. Right-click this icon and choose Add Reference.

This will bring up the reference dialog box. Click the Browse tab and navigate to
the Tao framework install directory. On Windows 7 and Vista this path will be C:
\Program Files (x86)\TaoFramework\bin. For XP it will be C:\Program Files
\TaoFramework\bin. Once you navigate to the correct directory, you will see
something similar to Figure 5.1. Choose Tao.OpenGL.dll and Tao.Platform.
Windows.dll, then click OK. The Tao framework comes with a control, called
SimpleOpenGLControl, that allows OpenGL to render in a Windows form.
To enable the control, double-click the form in the solution explorer. This will
bring up the form designer, as shown in Figure 5.2.

Right-click the toolbar pane and select Choose Items; this will bring up the
dialog box shown in Figure 5.3.

Figure 5.1
A list of references.

Chapter 5 ■ The Game Loop and Graphics92

One of the options in the dialog should be SimpleOpenGLControl. This was
installed by the Tao installer. If the SimpleOpenGLControl isn’t there, then click
the Browse button, navigate to the Tao framework binary directory (the same di-
rectory used for adding the references), and select the Tao.Platform.Windows.dll
file. Check the box shown in Figure 5.3 and click OK. A new control, SimpleO-
penGLControl, has now been added to the Toolbox. Drag this new control from
the Toolbox on to the form in the form designer. Your form will look like Figure 5.4.

The little black window on the form is where all OpenGL rendering will take
place. It’s a little small at the moment. To make it the same size as the form,
right-click the control and click Properties. This will bring up the Properties
window. Find the property called Dock and set it to Fill. This will make the
OpenGLControl fill all the space on the control.

Figure 5.2
The form designer.

Graphics 93

If you press the green play button now an error will appear that says ‘‘No device
or rendering context available.’’ This is because the OpenGL control hasn’t been
initialized yet.

Open the form in code view and add the following line.

public Form1()

{

InitializeComponent();

simpleOpenGlControl1.InitializeContexts();

}

Run the program and a form will be created with a black screen. That’s OpenGL
working with C#—congratulations! The variable _openGLControl reads bet-
ter than simpleOpenGlControl1 ; the refactor tools can be used to rename it.

Full Screen Mode
Most games allow the player to play the game full screen. This is an easy option
to add. Here’s the code.

bool _fullscreen ¼ true;

public Form1()

Figure 5.3
Choose Toolbox Items dialog.

Chapter 5 ■ The Game Loop and Graphics94

{

InitializeComponent();

_openGLControl.InitializeContexts();

if (_fullscreen)

{

FormBorderStyle ¼ FormBorderStyle.None;

WindowState ¼ FormWindowState.Maximized;

}

}

The border style is the bits on the outside of the window, the menu bar, and the
border. With these parts of the form removed, the size of the form will directly

Figure 5.4
Adding SimpleOpenGLControl.

Graphics 95

reflect the size of the OpenGL control. Forms have three possible Window-
States: Normal, Minimized, and Maximized. Maximized gives the
full-screen mode needed. Full-screen mode is good for playing games, but while
developing a game, windowed mode is better. If the program is in a window,
the debugger can be used while the game is running. For that reason, it’s
probably best to set _fullscreen to false.

Rendering
To make games, we need to learn how to get OpenGL to start drawing to the
screen. When learning a new program like OpenGL, it’s important to have fun,
be curious, and play around with the API. Don’t be afraid to experiment or
break things. All OpenGL functions are documented on the OpenGL website
at http://www.opengl.org/sdk/docs/man/. This is a good site to start exploring
the library.

Clearing the Background

Rendering graphics using OpenGL first requires a game loop. Previously, a game
was created in the Program.cs class; this time the game loop will be created in
Form.cs so that it has access to the openGLControl.

using Tao.OpenGl;

namespace StartingGraphics

{

public partial class Form1 : Form

{

FastLoop _fastLoop;

bool _fullscreen ¼ false;

public Form1()

{

_fastLoop ¼ new FastLoop(GameLoop);

InitializeComponent();

_openGLControl.InitializeContexts();

if (_fullscreen)

{

FormBorderStyle ¼ FormBorderStyle.None;

WindowState ¼ FormWindowState.Maximized;

}

}

Chapter 5 ■ The Game Loop and Graphics96

http://www.opengl.org/sdk/docs/man/

void GameLoop(double elapsedTime)

{

_openGLControl.Refresh();

}

}

}

This game loop code is very similar to the code written before. Remember to add the
using Tao.OpenGl; statement or it won’t have access to the OpenGL libraries.

GameLoop is called every frame. At the moment, it just refreshes the OpenGL
control. The refresh call tells the OpenGL control to update its graphics.
Running the program will give a boring black screen, but with the game loop set
up, that screen can now be changed.

void GameLoop(double elapsedTime)

{

Gl.glClearColor(1.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glFinish();

_openGLControl.Refresh();

}

Three new lines have been added to the game loop. The first line tells OpenGL
what color to use to clear the screen. OpenGL represents colors as four values:
red, green, blue, and alpha. Alpha determines the transparency of the color:
1 is fully opaque, and 0 is fully transparent. Each value ranges from 0 to 1. In
this case, red has been set to 1, green and blue to zero, and alpha to 1 as well. This
will result in a bright red color. For the clear color, the alpha value is ignored.
The clear color only needs to be set once, but to keep all the new code together,
it’s currently being set every frame.

The second line issues the clear command. This function uses the clear color we
set in the previous line to clear the screen. The final line, glFinish, tells
OpenGL that we’ve finished for this frame and to make sure all commands are
carried out.

Running the program will now give the window a new bright red background.
It’s important to play with the library and get comfortable with it. Try switching
up the commands or changing the color. For example, review this code and try to
guess what will happen before running it.

Graphics 97

Random r ¼ new Random();

Gl.glClearColor((float)r.NextDouble(), (float)r.NextDouble(), (float)

r.NextDouble(), 1.0f);

Vertices

Vertices are the building blocks that make up virtual worlds. At their most basic
they are position information; x and y for a two-dimensional world; x, y, and z
for a three-dimensional world.

It’s easy to introduce vertices in OpenGL using immediate mode. Immediate
mode is a way of telling the graphics card what to draw. These commands need
to be sent every frame, even if nothing has changed. It’s not the fastest way to do
OpenGL programming, but it is the easiest way to learn.

Let’s begin by drawing a point.

void GameLoop(double elapsedTime)

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glBegin(Gl.GL_POINTS);

{

Gl.glVertex3d(0, 0, 0);

}

Gl.glEnd();

Gl.glFinish();

_openGLControl.Refresh();

}

There are three new OpenGL commands here. glBegin tells the graphics
card that you will be drawing something. glBegin takes one argument;
this describes what you will be drawing. The value passed in is GL_POINTS;
this tells OpenGL to render any vertices as points (as opposed to triangles or
quads).

glBegin must be followed by glEnd. Immediately after glBegin, there is an
opening brace. This isn’t strictly necessary; it just provides indentation so that
it’s clear where the glEnd should go. In between the parentheses is a glVertex
command; the command ends in 3d. The 3 means it will use three dimensions—
an x, y, and z—to make up the position. The d means the positions are expected
to be doubles.

Chapter 5 ■ The Game Loop and Graphics98

You may draw as many vertices as you want between the begin and end calls. The
current vertex is being drawn at 0,0,0, which will be right in the center of the
screen. The scene is currently set up according to OpenGL’s default settings.
Figure 5.5 is a drawing of a cube that describes the default setup of the OpenGL
scene. A point can be rendered anywhere in this cube, but if any of the coordinate
numbers are lower than minus one or greater than one, then the point will
be outside the scene and therefore won’t be visible. The camera viewing this
scene can be considered to be at 0, 0, 1 facing –1 on the Z axis.

The position 0,0,0 is often referred to as the origin of the scene. After the vertex is
drawn, the closing brace is written, followed by the end call. Run the program
and you should see a white pixel in the middle of the screen. This is the point
being drawn. It’s quite small, but the point drawing size is easy to adjust
in OpenGL. Add Gl.glPointSize(5.0f); just before the glBegin state-
ment. The point should be much easier to see now.

Triangles

OpenGL supports a number of primitive types that can be made from vertices.
The majority of games use triangle strips to represent everything. The 3D

Figure 5.5
Default OpenGL scene.

Graphics 99

characters in your favorite FPS or fighting game are just a list of vertices that can
be joined up to make a list of triangles.

Gl.glBegin(Gl.GL_POINTS);

{

Gl.glVertex3d(-0.5, 0, 0);

Gl.glVertex3d(0.5, 0, 0);

Gl.glVertex3d(0, 0.5, 0);

}

Gl.glEnd();

Run the above code snippet. It will draw three vertices as points in a triangle
shape. To actually draw a full triangle, the argument passed into glBegin needs
to change from GL_POINTS to GL_TRIANGLES. Run the program after making
this change and you’ll see a white triangle like in Figure 5.6.

GL_TRIANGLES reads three vertices and then draws a triangle using those ver-
tices. When loading meshes, it’s more common to use GL_TRIANGLE_STRIP.
GL_TRIANGLE requires three vertices to draw a triangle. GL_TRIANGLE_
STRIP is similar; the first triangle requires three vertices, but then each
additional triangle only requires one more vertex. The difference is shown in
Figure 5.7.

Figure 5.6
A rendered triangle.

Chapter 5 ■ The Game Loop and Graphics100

Coloring and Spinning the Triangle

The Hello World program of the 3D programming world is a spinning triangle
with each vertex colored for red, green, and blue. This demonstrates all the basic
graphics functionality is working, and an experienced graphics programmer can
easily build from this.

Vertices can store lots of different information. At the moment, the three vertices
here only have position data. Color data can be added in immediate mode by
setting the color information before each vertex call.

Gl.glBegin(Gl.GL_TRIANGLE_STRIP);

{

Gl.glColor3d(1.0, 0.0, 0.0);

Gl.glVertex3d(-0.5, 0, 0);

Gl.glColor3d(0.0, 1.0, 0.0);

Gl.glVertex3d(0.5, 0, 0);

Figure 5.7
GL_TRIANGLES and GL_TRIANGLE_STRIP.

Graphics 101

Gl.glColor3d(0.0, 0.0, 1.0);

Gl.glVertex3d(0, 0.5, 0);

}

Gl.glEnd();

Running this code will produce a triangle with a red, green, and blue corner.
Along the surface of the triangle, the colors mix and fade into each other.
By default, OpenGL will interpolate colors between vertices. In practice, this
means if you give each vertex of a triangle a different color, then each pixel of
the rendered triangle will be colored according to the distance from each of the
vertices. Basic lighting systems get the lighting information for each vertex and
then use this interpolation to decide how the surface should be shaded.

All that remains now is to spin the triangle. There are two ways to spin the tri-
angle: move all the vertices or move the entire scene. It’s simpler to move the
entire scene as OpenGL has a helpful function for rotation.

Gl.glRotated(10 * elapsedTime, 0, 1, 0);

Gl.glBegin(Gl.GL_TRIANGLE_STRIP);

{

Gl.glColor4d(1.0, 0.0, 0.0, 0.5);

Gl.glVertex3d(-0.5, 0, 0);

Gl.glColor3d(0.0, 1.0, 0.0);

Gl.glVertex3d(0.5, 0, 0);

Gl.glColor3d(0.0, 0.0, 1.0);

Gl.glVertex3d(0, 0.5, 0);

}

Gl.glEnd();

There are a few subtle points to touch on here. glRotate takes four arguments.
The first argument is the angle to rotate in degrees and the last three are the axis
to rotate around. The rotation is cumulative, which means if glRotated
was called twice, those rotations will both be applied—rotating the object twice
as much. In our case, the update call is being called as often as possible so
the degree of rotation continually increases, which appears to make the triangle
rotate. The rotate function automatically wraps at 360 so a rotation of 361 is
equivalent to a rotation to 1.

The next three arguments describe the axis. These three arguments are actually a
normalized vector. Vectors will be described later in the book. For now, just

Chapter 5 ■ The Game Loop and Graphics102

think of a vector as a line that is one unit of length long. The line described here is
1 on the Y axis, so it’s a straight line along the Y axis. Imagine this line pushed
through the center of the triangle, passing from the point at the top through the
middle of its wide base. Rotating the line then rotates the entire triangle. Try to
visualize how the triangle would rotate with the arguments (1, 0, 0) and (0, 0, 1),
then amend the program to check if you were correct.

The first argument, the angle in degrees, is being multiplied by the elapsed time.
This is to ensure time-independent movement and should make the animation
smoother. If the program is playing at 60 frames per second, that means each
elapsed frame time will be around 0.1 seconds. This means to move the triangle
10 degrees will take 1 second. If someone else runs your program on a slower
computer, and it can only go, say, 30 frames per second, then each frame will
take about 0.2 seconds to complete. There are fewer frames per second but the
triangle will take the same amount of time to rotate on both machines. If the
degrees were not multiplied by the elapsed time, then the program would run
twice as fast on the machine that runs at 60 frames per second.

Summary
Most games have a central loop that checks the player input, updates the game
world, and then updates the screen. By default, C# does not have a central loop
so some C functions need to be used to create a fast game loop useful for creating
games. Additional C functions are used to get access to timing information so
each frame can be timed. This time can be used to ensure the game runs
smoothly, even on computers that run at different speeds.

The Tao framework library has a control called SimpleOpenGLControl. This
control allows OpenGL to be used easily within a Windows Form. A spinning
triangle is often used as the ‘‘Hello World’’ program for OpenGL. The triangle is
made up of three vertices and each can be assigned a different color. If the
vertices of a triangle are different colors, the triangle’s pixels will be colored
according to the distance from each vertex. OpenGL has a function called
glRotated, which takes care of the final task of rotating the triangle.

Summary 103

This page intentionally left blank

chapter 6

Game Structure

Now that the basics of the rendering are working, it’s time to revisit game
architecture. Even small games (Pong, for example) usually require a large amount
of code. Pong is a pretty simple game; the player moves a paddle left or right and
attempts to hit a ball past an opponent’s paddle. It was one of the first popular
computer games released in 1987 so there have been numerous reimplementations
since then. SourceForge (www.sourceforge.net) is a website that hosts hundreds of
thousands of open source projects. There are quite a few open source Pong clones,
and even the simplest ones are over 1,000 lines of code. As a game programmer, it’s
important to have strategies to manage that complexity.

Big games are orders of magnitude more complex than Pong. Kelly Brock
revealed that there was a single function over 32,000 lines long in the Sims
computer game. This was posted in a discussion on the Software Development
for Games mailing list (a great list to join for any aspiring game programmer;
you can register to join on this website http://lists.midnightryder.com/listinfo.cgi/
sweng-gamedev-midnightryder.com). Games with strict deadlines and lots of
pressure can cause the code to become large and unmanageable. Being familiar
with some basic architecture techniques can help make code clearer and its
function more separated and defined.

The Basic Pattern of a Game Object
The majority of game objects need at least two functions: an update function
where the object can handle its animation or anything that changes over time,

105

www.sourceforge.net
http://lists.midnightryder.com/listinfo.cgi/sweng-gamedev-midnightryder.com
http://lists.midnightryder.com/listinfo.cgi/sweng-gamedev-midnightryder.com

and a render function where the object can draw itself on screen. This can easily
be described in C# using an interface.

public interface IGameObject

{

void Update(double elapsedTime);

void Render();

}

Now anything you want to create in the game can inherit from this interface. The
I in IGameObject is used to identify the interface as an interface in the code.
When designing the game structure, the code can refer to IGameObjects in
general without having to worry about the specifics of what any game object
actually is. We can start using game objects right away to describe game state.

Handling Game State
Games are usually broken up into lots of different states. At the top level there’s
perhaps a company splash screen followed by a title menu, there are submenus
for options such as sounds, an option to start the game, and perhaps several
others. Here’s a naı̈ve way to program that kind of game state.

enum GameState

{

CompanySplash,

TitleMenu,

PlayingGame,

SettingsMenu,

}

GameState _currentState = GameState.CompanySplash;

public void Update(double elapsedTime)

{

switch (_currentState)

{

case GameState.CompanySplash:

{

// Update the starting splash screen

} break;

Chapter 6 ■ Game Structure106

case GameState.SettingsMenu:

{

// Update the settings menu

} break;

case GameState.PlayingGame:

{

// Update the game

} break;

case GameState.TitleMenu:

{

// Update title menu

} break;

default:

{

// Error invalid state

} break;

}

}

There are a few things to notice here. The code is very long and prone to become
complicated and hard to follow. It also breaks the DRY principle. To add a new
state, let’s say a credits screen, a new entry must be added to the game state enum
and then added to the switch statement. When extending the code, the fewer
places that require change the better.

This big switch statement can be replaced with a much better system using the
IGameObject interface, where every game state is a game object.

It’s probably best to start a new project with a game loop to follow this example.
Once this is done, it’s time to create a new class implementing the
IGameObject interface for each game state.

namespace GameStructure

{

class SplashScreenState : IGameObject

{

}

}

Here a splash screen class has been created that inherits from the IGameObject
interface. The above code is invalid because it doesn’t implement any of the
IGameObject methods. Instead of typing the methods out by hand, one of the

Handling Game State 107

refactoring shortcuts can be used to create them automatically. Right-click the
IGameObject text and a context menu will appear, as shown in Figure 6.1.

There are two options. Implement Interface Explicitly will do the same as Im-
plement Interface but instead of creating the method Render(), it will create
the method IGameObject.Render(); , explicitly describing where the
method comes from. Here is the code once the refactoring tools have im-
plemented the IGameObject interface.

class SplashScreenState : IGameObject

{

#region IGameObject Members

public void Update(double elapsedTime)

{

throw new NotImplementedException();

}

Figure 6.1
Implementing an interface.

Chapter 6 ■ Game Structure108

public void Render()

{

throw new NotImplementedException();

}

#endregion

}

We’re not implementing the splash screen functionality at the moment; there-
fore, the exceptions can be removed to make testing the code easier. Something
like the following will be easier to work with.

public void Update(double elapsedTime)

{

System.Console.WriteLine("Updating Splash");

}

public void Render()

{

System.Console.WriteLine("Rendering Splash");

}

That’s one state—the rest can be created in much the same way. Create a few of
the states for practice.

Once the states are made, the code to handle these states is quite simple. To
follow the rest of the code, you should create the TitleMenuState. It doesn’t
need any functionality. If it just prints out its name in the render and update
functions, then that’s great. If you’re still not sure how to create it then you can
check the code on the CD.

Here’s an example of how the states might be used in the Form.cs file.

StateSystem _system = new StateSystem();

public Form1()

{

// Add all the states that will be used.

_system.AddState("splash", new SplashScreenState(_system));

_system.AddState("title_menu", new TitleMenuState());

// Select the start state

_system.ChangeState("splash");

Handling Game State 109

States are created and added to a state system with a name to identify them.
States can then be selected by calling ChangeState and passing in a state name.
The state system will manage the update and render of the current active state.
Sometimes a state will want to change the active state. For example, a splash
screen usually displays an image or animation and then changes state to the title
screen. For a splash screen state to change state it must have a reference to the
state system.

class SplashScreenState : IGameObject

{

StateSystem _system;

public SplashScreenState(StateSystem system)

{

_system = system;

}

#region IGameObject Members

public void Update(double elapsedTime)

{

// Wait so many seconds then call _system.ChangeState("title_menu")

System.Console.WriteLine("Updating Splash");

}

public void Render()

{

System.Console.WriteLine("Rendering Splash");

}

#endregion

}

Then when creating the state, the StateSystem can be passed into the
constructor.

_system.AddState("splash", new SplashScreenState(_system));

class StateSystem

{

Dictionary<string, IGameObject> _stateStore = new Dictionary<string,

IGameObject>();

IGameObject _currentState = null;

Chapter 6 ■ Game Structure110

public void Update(double elapsedTime)

{

if (_currentState == null)

{

return; // nothing to update

}

_currentState.Update(elapsedTime);

}

public void Render()

{

if (_currentState == null)

{

return; // nothing to render

}

_currentState.Render();

}

public void AddState(string stateId, IGameObject state)

{

System.Diagnostics.Debug.Assert(Exists(stateId) == false);

_stateStore.Add(stateId, state);

}

public void ChangeState(string stateId)

{

System.Diagnostics.Debug.Assert(Exists(stateId));

_currentState = _stateStore[stateId];

}

public bool Exists(string stateId)

{

return _stateStore.ContainsKey(stateId);

}

}

The StateSystem class is a good class for unit testing—try writing some tests
in NUnit. The tests should be short snippets of code that check just one area;
here’s an example:

[TestFixture]

public class Test_StateSystem

Handling Game State 111

{

[Test]

public void TestAddedStateExists()

{

StateSystem stateSystem = new StateSystem();

stateSystem.AddState("splash", new SplashScreenState

(stateSystem));

// Does the added function now exist?

Assert.IsTrue(stateSystem.Exists("splash"));

}

The rest of the tests can be found on the CD at Code\Chapter 6\Chapter6-2\
Test_StateSystem.cs. Try to write your own and then compare them with the
code on the CD.

Game State Demo
Now that the StateSystem has been created, a simple demo can show it in
action. We can start with implementing the splash screen state. As we can only
draw spinning triangles, it’s not going to be that impressive, but it’s good enough
for a demo. Let’s begin by implementing the title splash screen.

class SplashScreenState : IGameObject

{

StateSystem _system;

double _delayInSeconds = 3;

public SplashScreenState(StateSystem system)

{

_system = system;

}

#region IGameObject Members

public void Update(double elapsedTime)

{

_delayInSeconds -= elapsedTime;

if (_delayInSeconds <= 0)

{

_delayInSeconds = 3;

_system.ChangeState("title_menu");

Chapter 6 ■ Game Structure112

}

}

public void Render()

{

Gl.glClearColor(1, 1, 1, 1);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glFinish();

}

#endregion

}

This code has the state wait three seconds and then it changes the state to the title
menu. The splash screen state will render the screen white while it’s active. We’ll
have to cover 2D rendering and sprites before something interesting can be
shown.

class TitleMenuState : IGameObject

{

double _currentRotation = 0;

#region IGameObject Members

public void Update(double elapsedTime)

{

_currentRotation = 10 * elapsedTime;

}

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glPointSize(5.0f);

Gl.glRotated(_currentRotation, 0, 1, 0);

Gl.glBegin(Gl.GL_TRIANGLE_STRIP);

{

Gl.glColor4d(1.0, 0.0, 0.0, 0.5);

Gl.glVertex3d(-0.5, 0, 0);

Gl.glColor3d(0.0, 1.0, 0.0);

Gl.glVertex3d(0.5, 0, 0);

Game State Demo 113

Gl.glColor3d(0.0, 0.0, 1.0);

Gl.glVertex3d(0, 0.5, 0);

}

Gl.glEnd();

Gl.glFinish();

}

#endregion

}

It’s the spinning triangle from before. These states have already been loaded in to
the state system in the earlier examples. The only remaining task is to call the
Update and Render functions in the Form.cs.

private void GameLoop(double elapsedTime)

{

_system.Update(elapsedTime);

_system.Render();

_openGLControl.Refresh();

}

That’s it. Run the code now and a white screen will appear for three seconds,
followed by a spinning triangle. That proves the state system works quite well
and we can now use this to break up the code. Next, it’s time to leave the high-
level concepts of architecture and return to the details of rendering.

Setting the Scene with Projections
Up until now the OpenGL scene has not been explicitly setup; the default settings
have been used. By setting up the scene manually, much more control is given to
how a game appears.

Form Size and OpenGL Viewport Size
The size of the form is currently rather arbitrary; it’s been left at the default size
that Visual Studio made it. Real games need to specify how large their window is
going to be. With the current settings, try enabling full-screen mode. The result is
shown in Figure 6.2.

The program has successfully gone full-screen, but the triangle is being rendered
in the bottom-left corner. This issue arises from there being two different sizes
with which to be concerned. One is the size of the form. This is what’s changed

Chapter 6 ■ Game Structure114

when in full-screen mode. The second size is the OpenGL viewport; this hasn’t
changed at all, and that’s why it’s still rendering the triangle the same small size.

To fix this we must know when the form changes size and inform OpenGL about
the change. The form’s size can be accessed in a number of ways. Figure 6.3
shows the difference between the form Size and ClientSize values. Size in-
cludes things like the frame and title bar. We’re only interested in the size of the
form where the OpenGL graphics are drawn. This can be obtained by querying
the ClientSize value of the form.

In the form you’ll see an overridable method call, OnClientSizeChanged;
this is the perfect place to update the OpenGL viewport size. In Form.cs, add this
method.

protected override void OnClientSizeChanged(EventArgs e)

{

base.OnClientSizeChanged(e);

Gl.glViewport(0, 0, this.ClientSize.Width, this.ClientSize.Height);

}

Now any time the client size is changed, such as going to full-screen, the OpenGL
viewport will be changed to match it. This also allows the form to be resized at

Figure 6.2
Problems with full-screen mode.

Setting the Scene with Projections 115

runtime without problem. Check full-screen again and the triangle will be full-
sized.

The initial size of the form can be set by setting the ClientSize property.

ClientSize = new Size(800, 600);

This will set the form’s client area to 800 pixels by 600 pixels.

Aspect Ratio
Humans, as you are no doubt aware, have two eyes. The eyes are set in the face
horizontally, and this gives us a wider horizontal viewing range than vertical.
Widescreen TVs and monitors are more natural for us to use than square or
vertically tall ones. The relationship between the width and height of a viewing
area is called the aspect ratio. Certain aspect ratios are more comfortable than
others. It’s easy in code to provide a range of different aspect ratios.

If the ClientSize is set to 800 by 600, its aspect ratio is 1.33—the width is
1.33 times longer than the height. This ratio is also referred to as 4:3. 4:3 is a
minimum; as widescreens become more popular, aspect ratios of 16:9 become
more popular. PlayStation 3 has a default resolution of 1280 by 720; the width is

Size.Width
S

iz
e.

H
ei

g
ht

ClientSize.Width
C

lie
nt

S
iz

e.
H

ei
g

ht

Figure 6.3
Size and ClientSize of the form.

Chapter 6 ■ Game Structure116

1.73 times greater than the height, and this is commonly referred to as a 16:9
aspect ratio.

if (_fullscreen)

{

FormBorderStyle = FormBorderStyle.None;

WindowState = FormWindowState.Maximized;

}

else

{

ClientSize = new Size(1280, 720);

}

Play around with different aspect ratios to decide what you like. Bear in mind
that if you wish to release your game to a large number of people, they may not
be able to support resolutions as high as you can. It may be worth trying to
support a number of different aspects and resolutions.

When playing around with resolutions, you may observe that in certain resolu-
tions the triangle seems a little squashed or distorted. OpenGL’s viewport is now
set correctly, but OpenGL’s default aspect is 1:1, a square. It’s not going to map
to 4:3 or 16:9 very gracefully. OpenGL aspect is 1:1 because that is how the aspect
is set up by default. In order to change it, the projection matrix must be altered.

The Projection Matrix
Computer monitors and televisions display 2D pictures while OpenGL deals
with 3D data. A projection matrix transforms the 3D data to the 2D screen.
There are two types of projection matrix that we’re concerned with, ortho-
graphic and perspective. Simply, orthographic is used for 2D graphics like hud
elements, 2D games, and text. Perspective is used for 3D games like an FPS game.

The orthographic matrix ignores the depth information; it doesn’t matter how
far away an item is from the user, it remains the same size. With a perspective
projection, things that are farther away are smaller. Those are the main
differences.

2D Graphics
Even 3D games need to be able to render 2D graphics.

A new function should be made in Form.cs named Setup2DGraphics.

Setting the Scene with Projections 117

private void Setup2DGraphics(double width, double height)

{

double halfWidth = width / 2;

double halfHeight = height / 2;

Gl.glMatrixMode(Gl.GL_PROJECTION);

Gl.glLoadIdentity();

Gl.glOrtho(-halfWidth, halfWidth, -halfHeight, halfHeight, -100, 100);

Gl.glMatrixMode(Gl.GL_MODELVIEW);

Gl.glLoadIdentity();

}

This code has a lot of new OpenGL functions, but they’re all straightforward.
OpenGL has a number of matrix modes. The value GL_PROJECTION changes
the OpenGL state. Once the state is changed, all OpenGL commands will affect
the projection matrix. This matrix can now be altered to set up an orthographic
projection matrix.

glLoadIdentity clears the current projection information. The next com-
mand glOrtho, sets up an orthographic projection matrix. There are six argu-
ments for this function.

void glOrtho(GLdouble left,

GLdouble right,

GLdouble bottom,

GLdouble top,

GLdouble nearVal,

GLdouble farVal);

The first four arguments describe how big you want the view of the world to be.
Figure 6.4 shows the orthographic projection and how the six arguments affect it.
At the moment, the origin is right in the center of the screen. I’ve decided to keep
that. To make the origin the top-left corner, you could write the following.

Gl.glOrtho(0, width, -height, 0, -100, 100);

The final two values are the near and far planes. If the z position of a vertex is
greater than the far plane, the vertex isn’t rendered. If it’s lower than the near
plane, then it also isn’t rendered. Generally, 2D graphics have the z position all
set to 0 so the near and far planes don’t really matter. They’re much more im-
portant for rendering 3D graphics.

The setup function can be called in the Form.cs constructor.

Chapter 6 ■ Game Structure118

public Form1()

{

// Add all the states that will be used.

_system.AddState("splash", new SplashScreenState(_system));

_system.AddState("title_menu", new TitleMenuState());

// Select the start state

_system.ChangeState("splash");

InitializeComponent();

_openGLControl.InitializeContexts();

if (_fullscreen)

{

FormBorderStyle = FormBorderStyle.None;

WindowState = FormWindowState.Maximized;

}

else

{

ClientSize = new Size(1280, 720);

}

Figure 6.4
Orthographic projections.

Setting the Scene with Projections 119

Setup2DGraphics(ClientSize.Width, ClientSize.Height);

_fastLoop = new FastLoop(GameLoop);

}

The projection matrix will need re-creating anytime the form changes size.
Therefore, a call to Setup2DGraphics should also be added to the On-
ClientSizeChanged callback.

protected override void OnClientSizeChanged(EventArgs e)

{

base.OnClientSizeChanged(e);

Gl.glViewport(0, 0, this.ClientSize.Width, this.ClientSize.Height);

Setup2DGraphics(ClientSize.Width, ClientSize.Height);

}

The title state renders a triangle, but the triangle’s maximum width is only
1 OpenGL unit. The previous projection matrix had a width and height of 2 so the
triangle appeared a good size. The width and height of this new projection matrix
is 1280 and 720 so the triangle barely takes up a pixel and therefore cannot be seen!

An easy way to fix this is to make the triangle bigger. Find the triangle drawing
code and make the width and height 50 instead of 1.

Gl.glColor4d(1.0, 0.0, 0.0, 0.5);

Gl.glVertex3d(-50, 0, 0);

Gl.glColor3d(0.0, 1.0, 0.0);

Gl.glVertex3d(50, 0, 0);

Gl.glColor3d(0.0, 0.0, 1.0);

Gl.glVertex3d(0, 50, 0);

This will make the triangle visible once again. Most 2D graphics use two triangles
to make a quad. This quad then has a texture applied to it and forms the basis of
a 2D game or heads-up display.

Sprites
The first step of creating a sprite is to create a quad. A triangle is made of three
vertices; a quad is made of four. See Figure 6.5. A sprite is a pretty basic game
element, and it’s a good idea to make it into its own class. There will also be a
class responsible for drawing the sprites. This class will be called the Renderer.
Before implementing the Renderer and Sprite classes, it’s useful to first

Chapter 6 ■ Game Structure120

consider how they will be used. Here is some pseudo code of how sprites might
be used.

Renderer renderer = new Renderer();

Sprite spaceship = new Sprite();

spaceship.SetPosition(0, 0);

spaceship.SetTexture(_textureManager.Get("spaceship"));

renderer.DrawSprite(spaceship);

A quad is made from four vertices, but it’s common practice to use six vertices
and draw two triangles to make up the quad. Graphics cards work very well with
triangles, so many engines have all their assets broken up into triangles or tri-
angle strips. The quad is broken up as shown in Figure 6.6.

Coding as you read helps you understand the material. There’s no need to start a
new project; the GameStructure project can be reused. Create a new class that
inherits from IGameObject, called DrawSpriteState.

Figure 6.5
Sprite layout.

Sprites 121

class DrawSpriteState : IGameObject

{

#region IGameObject Members

public void Update(double elapsedTime)

{

}

public void Render()

{

}

#endregion

}

Remember to include the statement using Tao.OpenGl; at the top of the file so
OpenGL commands can be used. This game state will be used to test the sprite
drawing code. It needs to be the state that’s loaded as soon as the program starts;
modify the code in Form.cs as follows.

public Form1()

{

// Add all the states that will be used.

_system.AddState("splash", new SplashScreenState(_system));

_system.AddState("title_menu", new TitleMenuState());

_system.AddState("sprite_test", new DrawSpriteState());

// Select the start state

_system.ChangeState("sprite_test");

Figure 6.6
A quad made from two triangles.

Chapter 6 ■ Game Structure122

This will load the currently empty sprite drawing state. Running the code will
display a blank window. A quad is made from two triangles arranged to form a
square shape. OpenGL draws triangles clockwise.

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glBegin(Gl.GL_TRIANGLES);

{

Gl.glVertex3d(-100, 100, 0); // top left

Gl.glVertex3d(100, 100, 0); // top right

Gl.glVertex3d(-100, -100, 0); // bottom left

}

Gl.glEnd();

}

This code will draw the top half of the quad. Running the code will produce an
image similar to Figure 6.7.

Drawing the second half is easy. In clockwise order, the top-right vertex needs to
be drawn, then the bottom right, and finally the bottom left. The code to do this
should be written just after the first half of the quad.

Figure 6.7
The first part of the quad.

Sprites 123

Gl.glVertex3d(100, 100, 0); // top right

Gl.glVertex3d(100, -100, 0); // bottom right

Gl.glVertex3d(-100, -100, 0); // bottom left

These two triangles make a full square. Not all game sprites will be perfect
squares. Therefore, it’s important to be able to specify the width and height. The
current quad is 200 by 200. OpenGL doesn’t have explicit dimensions; the 200
can be whatever unit you like—feet, meters, etc. The screen has been set up so
that 200 OpenGL units map up to 200 pixels, but that isn’t always guaranteed.
Currently the width, height, and position of the sprite are all hard coded. These
magic numbers need to be replaced with variables.

double height = 200;

double width = 200;

double halfHeight = height / 2;

double halfWidth = width / 2;

Gl.glBegin(Gl.GL_TRIANGLES);

{

Gl.glVertex3d(-halfWidth, halfHeight, 0); // top left

Gl.glVertex3d(halfWidth, halfHeight, 0); // top right

Gl.glVertex3d(-halfWidth, -halfHeight, 0); // bottom left

Gl.glVertex3d(halfWidth, halfHeight, 0); // top right

Gl.glVertex3d(halfWidth, -halfHeight, 0); // bottom right

Gl.glVertex3d(-halfWidth, -halfHeight, 0); // bottom left

}

The values are exactly the same as before, but now the height and width are
stored as variables following the DRY principle. The height and width can now
be altered easily to form any number of interestingly shaped rectangles.

Positioning the Sprite
The sprite’s size is now easy to modify, but there’s no way to modify the position.
Changing the position is what will be added next.

double x = 0;

double y = 0;

double z = 0;

Chapter 6 ■ Game Structure124

Gl.glBegin(Gl.GL_TRIANGLES);

{

Gl.glVertex3d(x - halfWidth, y + halfHeight, z); // top left

Gl.glVertex3d(x + halfWidth, y + halfHeight, z); // top right

Gl.glVertex3d(x - halfWidth, y - halfHeight, z); // bottom left

Gl.glVertex3d(x + halfWidth, y + halfHeight, z); // top right

Gl.glVertex3d(x + halfWidth, y - halfHeight, z); // bottom right

Gl.glVertex3d(x - halfWidth, y - halfHeight, z); // bottom left

}

Gl.glEnd();

This is equivalent to the previous code, but now the x, y, and z positions can be
altered. The position represents the center of the quad. Try changing the x, y, and
z values and move the quad about.

Managing Textures with DevIl
Textures are very easy to apply to the quad we have. The tricky part of textures is
loading them from the hard disk into memory. A texture class needs to be cre-
ated to represent the textures in memory, as well as a TextureManager class to
store the textures. Internally, OpenGL references textures by an integer id; the
texture struct will just store that id and the width and height of the texture.

public struct Texture

{

public int Id { get; set; }

public int Width { get; set; }

public int Height { get; set; }

public Texture(int id, int width, int height) : this()

{

Id = id;

Width = width;

Height = height;

}

}

The texture class is quite straightforward. Its constructor calls the this con-
structor because it’s a struct type and needs to have the members initialized for
the autogenerated assessor methods to use.

Sprites 125

Next, the TextureManager loads the texture data from the disk and associates
it with an id provided by OpenGL. The texture is also associated with a human
readable name so that it’s easy to work with. The code to load the texture re-
quires an additional reference, Tao.DevIl, to be added to the project. Add it
the same way you added Tao.OpenGL. DevIl is short for Developer’s Image
Library. It can load most image formats so that OpenGL can use them.

The DevIL library also requires a number of DLL files to run; these must be in the
same directory as your binary file. This directory will probably be bin\debug.
Find the Tao Framework directory; it will most likely be in your C:\Program
File (x86) (or the C:\Program Files directory on Windows XP). Navigate to
\TaoFramework\lib and copy DevIl.dll, ILU.dll, and ILUT.dll into your bin
\debug directory. When you do a release build, you will need to copy all re-
levant dlls to bin\release, too. Once this is done you can start using DevIl.

The DevIl library has to be initialized and told to work with OpenGL. Form.cs is
a good place to initialize DevIl. Make sure you add the using statement, as
shown below, to the top of the Form.cs file.

using Tao.DevIl;

Then in the form’s constructor, add the following code.

// Init DevIl

Il.ilInit();

Ilu.iluInit();

Ilut.ilutInit();

Ilut.ilutRenderer(Ilut.ILUT_OPENGL);

Create a new class called TextureManger. At the top, add the using state-
ments for DevIl and OpenGL.

Here’s the basic TextureManager code

class TextureManager : IDisposable

{

Dictionary<string, Texture> _textureDatabase = new Dictionary<string,

Texture>();

public Texture Get(string textureId)

{

return _textureDatabase[textureId];

}

Chapter 6 ■ Game Structure126

#region IDisposable Members

public void Dispose()

{

foreach (Texture t in _textureDatabase.Values)

{

Gl.glDeleteTextures(1, new int[] { t.Id });

}

}

#endregion
}

The class implements IDisposable; it ensures that if the class is destroyed, it
will release the textures from memory. The only other function is Get; this takes
a name of a texture and returns the associated texture data. If the data doesn’t
exist, it will throw an exception.

The TextureManager class has one obvious omission: there is no function to
load the texture from the hard disk.

public void LoadTexture(string textureId, string path)

{

int devilId = 0;

Il.ilGenImages(1, out devilId);

Il.ilBindImage(devilId); // set as the active texture.

if (!Il.ilLoadImage(path))

{

System.Diagnostics.Debug.Assert(false,

"Could not open file, [" + path + "].");

}

// The files we'll be using need to be flipped before passing to OpenGL

Ilu.iluFlipImage();

int width = Il.ilGetInteger(Il.IL_IMAGE_WIDTH);

int height = Il.ilGetInteger(Il.IL_IMAGE_HEIGHT);

int openGLId = Ilut.ilutGLBindTexImage();

System.Diagnostics.Debug.Assert(openGLId != 0);

Il.ilDeleteImages(1, ref devilId);

_textureDatabase.Add(textureId, new Texture(openGLId, width,

height));
}

Sprites 127

The DevIL library was written to complement OpenGL so it has a very similar
interface. An image is generated and then bound. Binding an image means all
subsequent operations will affect that image. ilLoadImage is called, which
loads the texture data into memory. iluFlipImage is called on the image, and
this flips it on the Y axis; most of the common image formats need to be flipped
to work correctly with OpenGL. The image is then queried for width and height
information. Finally, the DevIl utility library is used to bind the texture to an
OpenGL id. The id, width, and height are all wrapped in the texture class, which
is then returned. DevIl still has the texture data in memory; this is freed using
ilDeleteImages, as the data has now been moved from DevIl to OpenGL.

Testing the TextureManager requires a texture. A TIF image file, called face.
tif, can be found on the CD in the Asset directory. Copy it into your project
directory. Then in Visual Studio, right-click the project and choose Add > Ex-
isting Item. We’re going to add the TIF file to the project. This brings up a dialog
box. To see the image you will probably have to change the filter from C# Files
to All Files. Select face.tif. The final step is to select the face.tif file in
the solution explorer, right-click, and select Properties, as shown in Figure 6.8.

A number of fields are displayed describing the properties of the image file.
Change the field Copy To Output Directory to Copy If Newer. This will copy the
image file over to the bin directory, and once you run the program, the file will
always be in the correct place. Adding the image file to the project isn’t necessary,
but it’s a simple way to keep track of the assets and to make sure they are put in
the right places.

The TextureManager object can be created in the Form.cs file and then passed
into any state that requires it.

TextureManager _textureManager = new TextureManager();

public Form1()

{

InitializeComponent();

_openGLControl.InitializeContexts();

// Init DevIl

Il.ilInit();

Ilu.iluInit();

Ilut.ilutInit();

Chapter 6 ■ Game Structure128

Ilut.ilutRenderer(Ilut.ILUT_OPENGL);

// Load textures

_textureManager.LoadTexture("face", "face.tif");

// Add all the states that will be used.

_system.AddState("splash", new SplashScreenState(_system));

_system.AddState("title_menu", new TitleMenuState());

_system.AddState("sprite_test", new DrawSpriteState());

// Select the start state

_system.ChangeState("sprite_test");

This setup code in the Form.cs creates the TextureManager, initializes the
DevIL library, and then attempts to load a texture called face.tif. Run the

Figure 6.8
Viewing the properties of a file.

Sprites 129

program. If it works, that’s great; you can now load textures from the disk. If it
fails to run then there are a couple of things that may have gone wrong.

If you get an exception of the form Unable to load DLL 'xx.dll': The
specified module could not be found, then xx.dll is not being found by
your binary file. It should be in the bin\debug directory. Check if it’s there. If it’s
not there then look in the Tao framework and copy it across.

If you get the exception BadImageFormatException , this has nothing to do
with the texture you’re trying to load. Instead, it’s having trouble loading the
DevIl libraries. The most likely reason for this is that you are developing with
Visual Studio 2008 on a 64-bit system, but the libraries have been compiled
for 32 bit. The easiest way to fix this is to go to the solution explorer. Right-click
the project and select Properties. Click the Build tab on the left, as shown in
Figure 6.9.

Figure 6.9
Viewing the project properties.

Chapter 6 ■ Game Structure130

There is a drop-down box next to Platform Target. Choose x86; this will make
the program build for 32-bit systems.

Finally, if you get an Assertion Failed message with the text Could not
open file, [face.tif], then face.tif is not in the binary directory; either
copy the file into the correct location or make sure you added it to the solution
correctly.

Textured Sprites
Once textures are being loaded, it’s time to start using them. Texture maps are
indexed from 0 to 1 on both axes. 0,0 is the top-left corner and 1,1 is the bottom
right. For textures, the axes aren’t called X and Y; instead, they’re called U and V.

Figure 6.10 shows how the 2D U,V coordinates for each vertex are mapped on to
the 3D vertex positions. It will be easier to play with the U,V mapping once
texturing is working with the quad example.

Return to the DrawSpriteState class. A constructor that takes in a Tex-
tureManager needs to be created.

class DrawSpriteState : IGameObject

{

TextureManager _textureManager;

public DrawSpriteState(TextureManager textureManager)

Figure 6.10
U,V mapping.

Sprites 131

{

_textureManager = textureManager;

}

In Form.cs, that TextureManager will now need to be passed in to the Draw-
SpriteState constructor. The textures are easily accessible in the game state.

To use the texture, OpenGL needs to be told to start the texture mode, then
the texture is bound as the active texture. All vertices will use the currently bound
texture for their texture information. Finally, each vertex needs to have some
2D texture positions associated with it. Here it’s just mapping from 0,0 to 1,1 so
the full texture is used.

This code sets the texture information for the first triangle of the quad. The result
can be seen in Figure 6.11.

Figure 6.11
Texture mapping half the quad.

Chapter 6 ■ Game Structure132

Texture texture = _textureManager.Get("face");

Gl.glEnable(Gl.GL_TEXTURE_2D);

Gl.glBindTexture(Gl.GL_TEXTURE_2D, texture.Id);

Gl.glBegin(Gl.GL_TRIANGLES);

{

Gl.glTexCoord2d(0, 0);

Gl.glVertex3d(x - halfWidth, y + halfHeight, z); // top left

Gl.glTexCoord2d(1, 0);

Gl.glVertex3d(x + halfWidth, y + halfHeight, z); // top right

Gl.glTexCoord2d(0, 1);

Gl.glVertex3d(x - halfWidth, y - halfHeight, z); // bottom left

The second triangle’s vertices are set in the same way.

Gl.glTexCoord2d(1, 0);

Gl.glVertex3d(x + halfWidth, y + halfHeight, z); // top right

Gl.glTexCoord2d(1, 1);

Gl.glVertex3d(x + halfWidth, y - halfHeight, z); // bottom right

Gl.glTexCoord2d(0, 1);

Gl.glVertex3d(x - halfWidth, y - halfHeight, z); // bottom left

This will now map the texture to a quad entirely. Try changing the size of the
quad to see what happens.

The texture has been applied using a lot of magic numbers and these should be
moved to variables according to the DRY principle. The U,V mapping for
the quad can be described by two coordinates, the top-left U,V positions and the
bottom-right U,V positions.

float topUV = 0;

float bottomUV = 1;

float leftUV = 0;

float rightUV = 1;

Gl.glBegin(Gl.GL_TRIANGLES);

{

Gl.glTexCoord2d(leftUV, topUV);

Gl.glVertex3d(x - halfWidth, y + halfHeight, z); // top left

Gl.glTexCoord2d(rightUV, topUV);

Gl.glVertex3d(x + halfWidth, y + halfHeight, z); // top right

Gl.glTexCoord2d(leftUV, bottomUV);

Sprites 133

Gl.glVertex3d(x - halfWidth, y - halfHeight, z); // bottom left

Gl.glTexCoord2d(rightUV, topUV);

Gl.glVertex3d(x + halfWidth, y + halfHeight, z); // top right

Gl.glTexCoord2d(rightUV, bottomUV);

Gl.glVertex3d(x + halfWidth, y - halfHeight, z); // bottom right

Gl.glTexCoord2d(leftUV, bottomUV);

Gl.glVertex3d(x - halfWidth, y - halfHeight, z); // bottom left

}

Gl.glEnd();

It is now easy to change around the UV coordinates. Set the top left to 0,0 and the
bottom right to 2,2. Then change the bottom right to �1, �1. Play around with
different position for the top-left and bottom-right coordinates to see what
happens.

Alpha Blending Sprites
It is very common to want to make part of a sprite transparent. There is a second
sprite called face_alpha.tif available on the CD in the Assets folder. This image
file has four channels, red, green, blue, and alpha. The alpha channel removes the
white border around the smiley face. The face_alpha file should be added to the
project in the same way as the previous texture. It then needs to be loaded into
the TextureManager.

// Load textures

_textureManager.LoadTexture("face", "face.tif");

_textureManager.LoadTexture("face_alpha", "face_alpha.tif");

In the Render call of DrawSpriteState, change the line

Texture texture = _textureManager.Get("face");

to

Texture texture = _textureManager.Get("face_alpha");

Running the code now will produce exactly the same image as before. This is
because OpenGL hasn’t been told to deal with transparency yet. Transparency in
OpenGL is achieved by blending. OpenGL blends the pixels that have already
been drawn to the frame buffer with whatever pixels are about to be drawn to the
frame buffer.

Chapter 6 ■ Game Structure134

Gl.glEnable(Gl.GL_TEXTURE_2D);

Gl.glBindTexture(Gl.GL_TEXTURE_2D, texture.Id);

Gl.glEnable(Gl.GL_BLEND);

Gl.glBlendFunc(Gl.GL_SRC_ALPHA, Gl.GL_ONE_MINUS_SRC_ALPHA);

Blending needs to first be enabled. This can be done just underneath where the 2D
texture mode was enabled. Then the blend function must be set. The blend
function takes two arguments. The first argument modifies the value of the pixel
to be drawn onto the frame buffer, and the second argument modifies the value of
the frame buffer pixel that will be drawn over. The incoming pixel to be drawn
onto the frame buffer is known also known as the ‘‘source’’. GL_SRC_ALPHA is an
instruction to use the alpha of the incoming pixel. GL_ONE_MINUS_SRC_ALPHA
is an instruction to take the alpha of the incoming pixel from one. These two
instructions blend the incoming pixel onto the frame buffer using its alpha value.
The glBlendFunc modifies the R,G,B values of the source and frame buffer
pixels, after which the sum of these values is written to the frame buffer.

In all the examples given so far, the initial color of the frame buffer is black. Every
pixel is of the RGBA form 0,0,0,1. The smiley face being rendered has lots of
different types of pixels. The pixels in the corner areas are white but with an
alpha of zero. The RGBA values are generally 1,1,1,0.

When the pixels in the corner areas of the smiley face texture are rendered, they
will have an alpha value of zero. The value of one minus the source alpha is (1 – 0),
so, 1. The new frame buffer colors are calculated by multiplying the incoming
pixels by the source alpha and then multiplying the current frame pixels by one
minus the source alpha and then adding the two results together.

incomingRed * 0 þ frameBufferRed * 1

incomingGreen * 0 þ frameBufferGreen * 1

incomingBlue * 0 þ frameBufferBlue * 1

As you can see, using this blend the incoming pixels are ignored, making the
corners of the face appear transparent. The general equation is

(incomingRGB * incomingAlpha) þ (framebufferRGB * (1 – incomingAlpha))

Try working through this as if the incoming alpha was 1 or 0.5. This is how
OpenGL performs its blending.

Running the program will produce a face with the white backing removed.

Sprites 135

Color Modulating Sprites
The current sprite code is quite comprehensive. It’s easy to set the sprite texture,
U, V mapping, position, width, and height. The final operation that is quite
common with sprites is to alter the color. In many games, text can change color
and images may flash yellow to attract the attention of the user. This is normally
done through color modulation.

The basics of this technique have already been covered when the spinning tri-
angle was created. Each vertex is given a color. It’s easier if the sprite has one
single color and then all vertices share it.

The color only needs to be set once, and then all the vertices will be set that
color.

float red = 1;

float green = 0;

float blue = 0;

float alpha = 1;

Gl.glBegin(Gl.GL_TRIANGLES);

{

Gl.glColor4f(red, green, blue, alpha);

This code will turn the sprite red. Altering the alpha will affect the entire sprite’s
transparency. Using this code, it’s very easy to imagine how to fade something in
by changing the alpha from 0 to 1 over time.

In certain cases it may be desirable to give a sprite a gradient rather than a solid
color. This can be achieved by setting the bottom vertices one color and the top
vertices a second color. The color will be interpolated by OpenGL and will create
a gradient automatically.

A Sprite and Renderer Class
The basics of a sprite have been demonstrated, but it’s all quite untidy at the
moment, and very hard to reuse. All the code needs to be wrapped up into clas-
ses. The color, position, and U,V point data all need to be separated into their
own classes. It would be ideal to use pre-existing C# classes for these data struc-
tures, but it’s better to make our own as they will need to be tailored to work
correctly with OpenGL.

Chapter 6 ■ Game Structure136

The sprite class will contain the sprite data, but a separate renderer class
will be responsible for rendering the sprites. Separating the functionality in this
way allows the rendering code to be optimized later.

Here are the three structures.

[StructLayout(LayoutKind.Sequential)]

public struct Vector

{

public double X { get; set; }

public double Y { get; set; }

public double Z { get; set; }

public Vector(double x, double y, double z) : this()

{

X = x;

Y = y;

Z = z;

}

}

[StructLayout(LayoutKind.Sequential)]

public struct Point

{

public float X { get; set; }

public float Y { get; set; }

public Point(float x, float y)

: this()

{

X = x;

Y = y;

}

}

[StructLayout(LayoutKind.Sequential)]

public struct Color

{

public float Red { get; set; }

public float Green { get; set; }

public float Blue { get; set; }

Sprites 137

public float Alpha { get; set; }

public Color(float r, float g, float b, float a)

: this()

{

Red = r;

Green = g;

Blue = b;

Alpha = a;

}

}

Vectors are a common tool in game programming. Conceptually they are dif-
ferent than positions in 3D space, but they have the same X,Y,Z values. Generally
vectors are used to represent positions as this makes the code simpler. The vector
here doesn’t have any methods; it will be fleshed out when we investigate what
vectors are used for, later on.

The vector structure, and all the other structure, have metadata attached
[StructLayout(LayoutKind.Sequential)] . This requires an addi-
tional using statement.

using System.Runtime.InteropServices;

This metadata informs the complier that it should layout the structures in
memory the same as the C programming language would. This makes it easier to
interact with OpenGL, which is written in C.

The Point structure will be used to describe the U,V coordinates. Double pre-
cision isn’t need for the texture coordinates so a floating number is used instead.
The Color is used to describe the colors of the vertices.

Here is the renderer class.

using Tao.OpenGl;

using System.Runtime.InteropServices;

namespace GameStructure

{

public class Renderer

{

public Renderer()

Chapter 6 ■ Game Structure138

{

Gl.glEnable(Gl.GL_TEXTURE_2D);

Gl.glEnable(Gl.GL_BLEND);

Gl.glBlendFunc(Gl.GL_SRC_ALPHA, Gl.GL_ONE_MINUS_SRC_ALPHA);

}

public void DrawImmediateModeVertex(Vector position, Color color,

Point uvs)

{

Gl.glColor4f(color.Red, color.Green, color.Blue, color.Alpha);

Gl.glTexCoord2f(uvs.X, uvs.Y);

Gl.glVertex3d(position.X, position.Y, position.Z);

}

public void DrawSprite(Sprite sprite)

{

Gl.glBegin(Gl.GL_TRIANGLES);

{

for (int i = 0; i < Sprite.VertexAmount; i++)

{

Gl.glBindTexture(Gl.GL_TEXTURE_2D, sprite.Texture.Id);

DrawImmediateModeVertex(

sprite.VertexPositions[i],

sprite.VertexColors[i],

sprite.VertexUVs[i]);

}

}

Gl.glEnd();

}

}

}

In the constructor, the Renderer sets up the relevant texture and blend modes.
These operations are now done once on start up rather than every frame as be-
fore. The DrawSprite function is responsible for taking a sprite and rendering
it. All the OpenGL calls are the same as before; there is one to set the texture and
then one for the color, texture, U,Vs, and position.

This leaves the sprite class itself. A lot of the functions can be inferred from its use
in the renderer. Games generally have a lot of sprites so it’s important to make
the class as lightweight as possible and only include the most essential members.

Sprites 139

public class Sprite

{

internal const int VertexAmount = 6;

Vector[] _vertexPositions = new Vector[VertexAmount];

Color[] _vertexColors = new Color[VertexAmount];

Point[] _vertexUVs = new Point[VertexAmount];

Texture _texture = new Texture();

public Sprite()

{

InitVertexPositions(new Vector(0,0,0), 1, 1);

SetColor(new Color(1,1,1,1));

SetUVs(new Point(0, 0), new Point(1, 1));

}

public Texture Texture

{

get { return _texture; }

set

{

_texture = value;

// By default the width and height is set

// to that of the texture

InitVertexPositions(GetCenter(), _texture.Width, _texture.

Height);

}

}

public Vector[] VertexPositions

{

get { return _vertexPositions; }

}

public Color[] VertexColors

{

get { return _vertexColors; }

}

public Point[] VertexUVs

{

get { return _vertexUVs; }

}

Chapter 6 ■ Game Structure140

private Vector GetCenter()

{

double halfWidth = GetWidth() / 2;

double halfHeight = GetHeight() / 2;

return new Vector(

_vertexPositions[0].X + halfWidth,

_vertexPositions[0].Y - halfHeight,

_vertexPositions[0].Z);

}

private void InitVertexPositions(Vector position, double width, double

height)

{

double halfWidth = width / 2;

double halfHeight = height / 2;

// Clockwise creation of two triangles to make a quad.

// TopLeft, TopRight, BottomLeft

_vertexPositions[0] = new Vector(position.X - halfWidth, position.Y +

halfHeight, position.Z);

_vertexPositions[1]= new Vector(position.X + halfWidth, position.Y +

halfHeight, position.Z);

_vertexPositions[2]= new Vector(position.X - halfWidth, position.Y -

halfHeight, position.Z);

// TopRight, BottomRight, BottomLeft

_vertexPositions[3]= new Vector(position.X + halfWidth, position.Y +

halfHeight, position.Z);

_vertexPositions[4]= new Vector(position.X + halfWidth, position.Y -

halfHeight, position.Z);

_vertexPositions[5]= new Vector(position.X - halfWidth, position.Y -

halfHeight, position.Z);

}

public double GetWidth()

{

// topright - topleft

return _vertexPositions[1].X - _vertexPositions[0].X;

}

Sprites 141

public double GetHeight()

{

// topleft - bottomleft

return _vertexPositions[0].Y - _vertexPositions[2].Y;

}

public void SetWidth(float width)

{

InitVertexPositions(GetCenter(), width, GetHeight());

}

public void SetHeight(float height)

{

InitVertexPositions(GetCenter(), GetWidth(), height);

}

public void SetPosition(double x, double y)

{

SetPosition(new Vector(x, y, 0));

}

public void SetPosition(Vector position)

{

InitVertexPositions(position, GetWidth(), GetHeight());

}

public void SetColor(Color color)

{

for (int i = 0; i < Sprite.VertexAmount; i++)

{

_vertexColors[i] = color;

}

}

public void SetUVs(Point topLeft, Point bottomRight)

{

// TopLeft, TopRight, BottomLeft

_vertexUVs[0] = topLeft;

_vertexUVs[1]= new Point(bottomRight.X, topLeft.Y);

_vertexUVs[2]= new Point(topLeft.X, bottomRight.Y);

// TopRight, BottomRight, BottomLeft

Chapter 6 ■ Game Structure142

_vertexUVs[3]= new Point(bottomRight.X, topLeft.Y);

_vertexUVs[4]= bottomRight;

_vertexUVs[5]= new Point(topLeft.X, bottomRight.Y);

}

}

The sprite class is quite large, mainly due to accessor functions and some
overloaded functions. The sprite has a default constructor; it creates a sprite of
size 1 by 1 with an empty texture. Once a texture is set, the width and height of
the sprite is automatically set to the texture values. Once the sprite is created, the
position, dimension, textures, and U,Vs can all be changed as needed.

Using the Sprite Class
With sprite code packaged into a class, it’s now time to demonstrate how to use
it. Create a new game state called TestSpriteClassState , load it into the
state system, and make it the default state to run when the program executes.
TestSpriteClassState will need to take the TextureManager in to its
constructor like the DrawSpriteState did.

Renderer _renderer = new Renderer();

TextureManager _textureManager;

Sprite _testSprite = new Sprite();

Sprite _testSprite2 = new Sprite();

public TestSpriteClassState(TextureManager textureManager)

{

_textureManager = textureManager;

_testSprite.Texture = _textureManager.Get("face_alpha");

_testSprite.SetHeight(256*0.5f);

_testSprite2.Texture = _textureManager.Get("face_alpha");

_testSprite2.SetPosition(-256, -256);

_testSprite2.SetColor(new Color(1, 0, 0, 1));

}

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawSprite(_testSprite);

Sprites 143

_renderer.DrawSprite(_testSprite2);

Gl.glFinish();

}

This state renders two different sprites: one is squashed; the other is offset from
the center of the screen and colored red. The code is very straightforward and
easy to use. All the heavy lifting has been done in the Sprite and Renderer
classes. These classes are only written once but used everywhere, so it’s worth
making them as friendly and easy to use as possible.

It’s very easy to animate these sprites by changing the U,Vs or changing the tex-
ture as time passes. The positions can also be easily changed with time. This
should be done in the update loop. Feel free to dive in right now and see what
you can make. If you’re a little unsure where to start, then keep reading and the
concepts will become apparent as you’re guided through the creation of a game.

Chapter 6 ■ Game Structure144

chapter 7

Rendering Text

Most games need text—at the very least to display a score or menu.

Text rendering is also very useful for rendering out variable values as the game
is running. A basic font system can be made very simply; each letter and number
is represented as a sprite. Then a string of text is translated into a list of sprites.
This method is easy to extend to any language, though Asian languages such as
Chinese will need a larger number of textures to account for all the different
glyphs.

Font Textures
Figure 7.1 is a texture with the entire Roman alphabet, numbers, and some
punctuation marks. This is a great base to use to draw text. Such textures are easy
to create if the correct tools are used. An excellent tool for bitmap fonts is
Andreas Jönsson’s Bitmap Font Generator, which is freely available on the
internet and is also included on the CD in Apps folder. It can take a True Type
font and generate a bitmap suitable for efficient rendering in a game. This is how
the texture shown in Figure 7.1 was created. The font texture can be found on the
CD in the Assets folder along with a data file that describes the U,V coordinates
of the glyphs in the texture.

To display this font, I’ve created a new project with a new game state called
TextTestState. I’ve added the font texture to the project as font.tga (you can
find this on the CD in the Assets folder); this has also been loaded into the

145

texture manager using the id font. Create a new sprite, set the new font tex-
ture as the texture, and render the font in the render loop.

class TextTestState : IGameObject

{

Sprite _text= new Sprite();

Renderer _renderer = new Renderer();

public TextTestState(TextureManager textureManager)

{

_text.Texture = textureManager.Get("font");

}

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawSprite(_text);

}

public void Update(double elapsedTime)

{

}

}

Figure 7.1
A font texture.

Chapter 7 ■ Rendering Text146

This displays the entire font in white on black. Change the clear color to confirm
that the transparency is working correctly. Then uncomment the line with
SetColor in it. This will turn the font black. It’s easy to change the font color
using the sprite code.

To render a single character, the sprite must have its UV settings altered. Try
entering the following UV information.

_text.Texture = textureManager.Get("font");

_text.SetUVs(new Point(0.113f, 0), new Point(0.171f, 0.101f));

This will display a giant dollar sign. It will be very large because the sprite size is
still set to 256 by 256. The natural resolution of the dollar sign is 15 by 26 pixels.
Change the height and width and something like Figure 7.2 will appear.

_text.SetUVs(new Point(0.113f, 0), new Point(0.171f, 0.101f));

_text.SetWidth(15);

_text.SetHeight(26);

This UV data forms a small box around the dollar sign and allows it to be clearly
cut out, as shown in Figure 7.3. The information about the location of each
character in the texture map was generated by the Bitmap Font Program when
the texture was generated. This information can be used to get the correct UVs.

Figure 7.2
A single character.

Font Textures 147

Font Data
The font data is a simple text file that is used to identify all the characters in the
texture. It is supplied on the CD and should be added to the font project in the
same way the texture was added. Remember to set its properties to ensure it’s
copied to the build directory. Here are the first few lines of the data file.

info face="Courier New" size=-32 bold=1 italic=0 charset="" unicode=1

stretchH=100 smooth=1 aa=1 padding=0,0,0,0 spacing=1,1 outline=0

common lineHeight=36 base=26 scaleW=256 scaleH=256 pages=1 packed=0

alphaChnl=0 redChnl=0 greenChnl=0 blueChnl=0

page id=0 file="font_0.tga"

chars count=95

char id=32 x=253 y=21 width=1 height=1 xoffset=0 yoffset=26

xadvance=19 page=0 chnl=15

char id=33 x=247 y=21 width=5 height=20 xoffset=7 yoffset=6

xadvance=19 page=0 chnl=15

char id=34 x=136 y=101 width=9 height=9 xoffset=4

The first three lines are header information and can be ignored. They contain
information describing the font—that its size is 32 and its type is Courier New.
This is all information our font system doesn’t need to know.

The fourth line is how many characters are contained in the font file; in this case
there are 95 characters. After this line you see information about every character,
its pixel position in the texture, and its pixel width and height.

xoffset and yoffset are used to align the characters when rendered one
after another in a word. The ‘‘y’’ character has a larger yoffset than an ‘‘l’’

Figure 7.3
The UV information of a single character.

Chapter 7 ■ Rendering Text148

character. The xadvance parameter represents the amount to advance on the
x axis once the current character has been rendered. The page value is an index
to a texture that contains the current character. We’ll only be using fonts that
have a single texture so the page value can be safely ignored. The channel
information can also be ignored; it is sometimes used for a compression tech-
nique where different characters are written into the different color channels.

The characters need to be read into a suitable class.

public class CharacterData

{

public int Id { get; set; }

public int X { get; set; }

public int Y { get; set; }

public int Width { get; set; }

public int Height { get; set; }

public int XOffset { get; set; }

public int YOffset { get; set; }

public int XAdvance { get; set; }

}

This CharacterData class is a simple collection of parameters that
we’re interested in. One of these objects will be made per character in the
data file.

Parsing the Font Data
The CharacterData class will be stored in a dictionary. The key to the dic-
tionary will be the character they represent, as the following code shows.

CharacterData aData = _characterDictionary['a'];

Given a string, it’s easy to iterate through all the characters and get the relevant
character data for each one. To fill this dictionary from the data file, a parser is
needed. Here’s the code for a simple parser; when given a path to a font data file,
it will return a dictionary filled with character data.

public class FontParser

{

static int HeaderSize = 4;

// Gets the value after an equal sign and converts it

Font Data 149

// from a string to an integer

private static int GetValue(string s)

{

string value = s.Substring(s.IndexOf('=') + 1);

return int.Parse(value);

}

public static Dictionary<char, CharacterData> Parse(string filePath)

{

Dictionary<char, CharacterData> charDictionary = new

Dictionary<char, CharacterData>();

string[] lines = File.ReadAllLines(filePath);

for(int i = HeaderSize; i < lines.Length; i+=1)

{

string firstLine = lines[i];

string[] typesAndValues = firstLine.Split(" ".ToCharArray(),

StringSplitOptions.RemoveEmptyEntries);

// All the data comes in a certain order,

// used to make the parser shorter

CharacterData charData = new CharacterData

{

Id = GetValue(typesAndValues[1]),

X = GetValue(typesAndValues[2]),

Y = GetValue(typesAndValues[3]),

Width = GetValue(typesAndValues[4]),

Height = GetValue(typesAndValues[5]),

XOffset = GetValue(typesAndValues[6]),

YOffset = GetValue(typesAndValues[7]),

XAdvance = GetValue(typesAndValues[8])

};

charDictionary.Add((char)charData.Id, charData);

}

return charDictionary;

}

}

This parser is very simple and doesn’t do any error checking or validation. It
requires the using System.IO statement to allow text files to be read from the
disk. Each CharacterData structure is filled up and then its Id is cast to a
character to use as the index. The Id is the ASCII number representing
the character; casting the number to C#’s char type will convert it to the correct
character.

Chapter 7 ■ Rendering Text150

Using the CharacterData
Here is a high-level look at how the text system will work. A new state has been
created that shows the font system in action.

class TextRenderState : IGameObject

{

TextureManager _textureManager;

Font _font;

Text _helloWorld;

Renderer _renderer = new Renderer();

public TextRenderState(TextureManager textureManager)

{

_textureManager = textureManager;

_font= new Font(textureManager.Get("font"),

FontParser.Parse("font.fnt"));

_helloWorld = new Text("Hello", _font);

}

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawText(_helloWorld);

}

public void Update(double elapsedTime)

{

}

}

There are two new classes in use here. First is a Font class, which determines
what font will be used. The Font class contains a reference to the font texture
and the character data. The second class is the Text class that is used to render
text. Several different fonts could be loaded in and it would be very easy to swap
between them.

The Renderer has been given an extra method called DrawText. DrawText
takes a text object and uses it to render text. The text class will just be a collection
of sprites so the renderer can reuse its DrawSprite code.

There is another class that isn’t in the example; it’s a class to represent the in-
dividual characters in the bitmap text string. It’s called the CharacterSprite
class and has only two members: one is the sprite representing the letter and one

Font Data 151

is a CharacterData class that has information about the character and how
the sprite will be used.

public class CharacterSprite

{

public Sprite Sprite {get; set;}

public CharacterData Data { get; set; }

public CharacterSprite(Sprite sprite, CharacterData data)

{

Data = data;

Sprite = sprite;

}

}

The Text class is a list of CharacterSprites. It is also responsible for or-
dering the letters. Given a simple text string, it creates a CharacterSprite for
each character and orders them one after the other. It also handles the correct
offsets. Here is the code.

public class Text

{

Font _font;

List<CharacterSprite> _bitmapText = new List<CharacterSprite>();

string _text;

public List<CharacterSprite> CharacterSprites

{

get { return _bitmapText; }

}

public Text(string text, Font font)

{

_text= text;

_font= font;

CreateText(0, 0);

}

private void CreateText(double x, double y)

{

_bitmapText.Clear();

double currentX = x;

double currentY = y;

foreach (char c in _text)

{

CharacterSprite sprite = _font.CreateSprite(c);

Chapter 7 ■ Rendering Text152

float xOffset = ((float)sprite.Data.XOffset) / 2;

float yOffset = ((float)sprite.Data.YOffset) / 2;

sprite.Sprite.SetPosition(currentX + xOffset, currentY - yOffset);

currentX += sprite.Data.XAdvance;

_bitmapText.Add(sprite);

}

}

}

The class is quite straightforward. The CreateText function is the heart of the
class; it positions the character sprites correctly. For each sprite, the Char-
acterData is checked and the x position is advanced by the amount specified.
Each character sprite also has an offset. All sprites are positioned around their
center, but the offset values are taken from the top left. To convert this offset to a
central position, the offset values are halved. As the offsets are integers, they need
to be converted to floating point numbers before being divided. If the numbers
aren’t cast to floats, then the floating point information is thrown away and the
text letters won’t be aligned correctly.

The final class to consider is the Font class. The Font class holds the dictionary
that translates a character into a CharacterData object. Given a word or
sentence, all the letters can be used to index the dictionary and a set Char-
acterData will be returned, ready to be used to create text sprites.

public class Font

{

Texture _texture;

Dictionary<char, CharacterData> _characterData;

public Font(Texture texture, Dictionary<char, CharacterData>

characterData)

{

_texture = texture;

_characterData = characterData;

}

public CharacterSprite CreateSprite(char c)

{

CharacterData charData = _characterData[c];

Sprite sprite = new Sprite();

sprite.Texture = _texture;

// Setup UVs

Point topLeft = new Point((float)charData.X / (float)_texture.Width,

Font Data 153

(float)charData.Y / (float)_texture.Height);

Point bottomRight = new Point(topLeft.X + ((float)charData.Width /

(float)_texture.Width),

topLeft.Y +((float)charData.Height /

(float)_texture.Height));

sprite.SetUVs(topLeft, bottomRight);

sprite.SetWidth(charData.Width);

sprite.SetHeight(charData.Height);

sprite.SetColor(new Color(1, 1, 1, 1));

return new CharacterSprite(sprite, charData);

}

}

The U,V coordinates are provided in pixels, but OpenGL textures are indexed from
0 to 1. Pixels values are converted to OpenGL coordinates by dividing the x and y
pixel coordinates by the width and height of the texture. The CharacterData
numbers are all stored as integers and need to be cast to floats to get a result with
decimal places when dividing. The height and width of the sprite is set using the
CharacterData information, and the color is set to white as a default. Once
the sprite is created, it is made into a CharacterSprite and returned.

Rendering Text
The font code is now usable. An immediate use for text is an fps, frames per
second, display. The fps will indicate how fast the game code is running. Frames
per second is a measure of how often the game loop is executed per second.
Modern games aim for a frame-rate of 30 or 60 frames per second. The number
of frames per second is not the only factor contributing to smooth graphics; the
consistency of the frame-rate is also important. A game that hovers around
60 fps but sometimes drops to 30 fps will appear more choppy than one that runs
consistently at 30 fps.

Create and add a new game state to the project. I’ve chosen FPSTestState but
the name doesn’t really matter. Make sure it’s added to the StateSystem and
is the first state loaded by default. The state requires the TextureManager to
be passed in to the constructor to create the font object. Here is the code to
render some text:

class FPSTestState : IGameObject

{

Chapter 7 ■ Rendering Text154

TextureManager _textureManager;

Font _font;

Text _fpsText;

Renderer _renderer = new Renderer();

public FPSTestState(TextureManager textureManager)

{

_textureManager = textureManager;

_font= new Font(textureManager.Get("font"),

FontParser.Parse("font.fnt"));

_fpsText = new Text("FPS:", _font);

}

#region IGameObject Members

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawText(_fpsText);

}

public void Update(double elapsedTime)

{

}

#endregion

}

Before the code can be tested, the DrawText call for the Renderer needs to be
written. This will draw the text to the middle of the screen, which is fine for now.
The DrawText method goes through the text and draws each sprite.

public void DrawText(Text text)

{

foreach (CharacterSprite c in text.CharacterSprites)

{

DrawSprite(c.Sprite);

}

}

Once this is added to the renderer, running the code will render the text ‘‘FPS:’’
to the screen, as can be seen in Figure 7.4.

Calculating the FPS
The frames per second is simple to calculate. The number of frames in a second
need to be counted; then this number needs to be displayed to the screen. The

Rendering Text 155

higher the frame count, the faster your game is running. FPS is a useful statistic
to have on screen because as you develop your game it’s easy to notice if, after
adding a feature, the fps has suddenly dropped. Silly mistakes can be caught early
and avoided.

To count the number of frames each time the game loops, a _numberOf-
Frames variable can be increased by one. The elapsedTime in the update
loop tells us how long each frame took; if all these elapsedTime values are
summed, how much time has passed can be measured. Once a second has
passed, then the _numberOfFrames is the number of frames that were
rendered during that second. This can easily be wrapped up in a class, as
shown here.

public class FramesPerSecond

{

int _numberOfFrames = 0;

double _timePassed = 0;

public double CurrentFPS { get; set; }

public void Process(double timeElapsed)

{

_numberOfFrames++;

_timePassed = _timePassed + timeElapsed;

if (_timePassed > 1)

Figure 7.4
The text FPS being rendered.

Chapter 7 ■ Rendering Text156

{

CurrentFPS = (double)_numberOfFrames / _timePassed;

_timePassed = 0;

_numberOfFrames = 0;

}

}

}

This class calculates the frames per second. Its process method must be called
every frame. Add FramesPerSecond to the FPSTestState so we can render
this value to the screen using the Text class.

class FPSTestState : IGameObject

{

TextureManager _textureManager;

Font _font;

Text _fpsText;

Renderer _renderer = new Renderer();

FramesPerSecond _fps= new FramesPerSecond();

// Constructor and Render have been ommitted.

public void Update(double elapsedTime)

{

_fps.Process(elapsedTime);

}

}

When the state is run, the fps is now recorded. Generally, the FramesPerSe-
cond class would not exist in a game state; instead, it probably would be in the
Form class. In this case, it’s easier to test in the FPSTestState.

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_fpsText = new Text("FPS: " + _fps.CurrentFPS.ToString("00.0"), _font);

_renderer.DrawText(_fpsText);

}

The render loop renders the text ‘‘FPS:’’ followed by the fps value converted to a
string. The ToString method is given some formatting information. This
causes the double that represents the fps to only have one decimal place when in
string form and to have two or more digits before the decimal point.

Rendering Text 157

Run the program and see what your frame-rate is. Frame-rates differ wildly from
computer to computer. There’s not very much going on in the program, so the
frame-rate is going be quite high. Figure 7.5 shows the output when running the
program.

Initially the frame-rate displayed on my computer was about 60 frames per
second. This was because I had V-Sync turned on under my display settings.
Turning V-Sync off will give a better indication of the frames per second.

V-Sync and Frame-Rate
V-Sync is short for vertical synchronization. The computer screen refreshes a
certain number of times a second. V-Sync is an option that ensures that the
frame buffer is filled only as fast as the screen can read it. This prevents artifacts
like tearing, where the frame buffer changes as the data is being written to the
screen causing a visual tearing effect.

On some cards, V-Sync is turned on by default. V-Sync is the refresh rate of the
monitor (how often the monitor updates its display). If your monitor refreshes
at 60Hz and V-Sync is on, then your fps counter will never exceed 60fps. This is
fine most of time, but when developing a game and profiling the frame-rate, it’s
important to not have the frame-rate locked. It can usually be turned off through

Figure 7.5
An fps counter.

Chapter 7 ■ Rendering Text158

the video card settings, but the exact method for disabling V-Sync differs from
card to card.

Profiling
The fps counter can be used for some basic profiling. The game is currently
rendering about ten textured quads with color information (the fps text). A 2D
game might use a quad per tile and quads for the player and game enemies. Let’s
be very generous and assume many particle systems, say, 10,000 quads. That’s a
lot of quads to be on screen at one time and should be okay for most games.
A rough test can be done to see if the current sprite can handle this many quads.

renderer.DrawText(_fpsText);

for (int i = 0; i < 1000; i++)

{

_renderer.DrawText(_fpsText);

}

This renders the fps text 1,000 times. That’s about 10,000 quads total. On my
computer, the fps goes from 1,000 plus to just over 30. Thirty is fine for most
2D games. This means most 2D games will probably be fine with the current
efficiency of the sprite code. Computers with older graphics cards may not
fair so well, so some efficiency measures will be covered toward the end of
this chapter.

Refining the Text Class
The text class is quite functional now, but it could do with some more methods
that will make it easier to use. For instance, there is no way to set the position of a
text string. There really needs to be a way to measure the text so it can be aligned.
Also, text often needs to be constrained to columns. This can be achieved by
giving the text a maximum width. If the text overflows this width, it will be
wrapped on the next line. This is a very desirable feature, especially when filling a
text box in a game.

Here’s the helper method to set the Text position.

public void SetPosition(double x, double y)

{

CreateText(x, y);

}

Refining the Text Class 159

To reposition the text, the quads are simply recalculated. This isn’t the most
optimal way, but it’s very simple to code and highly unlikely to ever cause a
bottleneck in game programming.

A function to alter the color of the entire text would also make things more
convenient.

public void SetColor(Color color)

{

_color = color;

foreach (CharacterSprite s in _bitmapText)

{

s.Sprite.SetColor(color);

}

}

In this snippet, the Text has a color member; this stores this current color of the
text. When CreateText is called, all the vertices are remade including the
color component. With the current color stored in the text class, the vertices can
be remade maintaining the Text color. An overloaded SetColor function is
added (doesn’t require a color parameter) for use in the CreateText function.

public void SetColor()

{

foreach (CharacterSprite s in _bitmapText)

{

s.Sprite.SetColor(_color);

}

}

At the end of the CreateText function, an extra line needs to be added

SetColor();

The width and height of the text is very important when trying to align text on
the screen; therefore, a way to measure a text string in pixels would be useful.
A MeasureText method in the Font class will give this functionality.

public Vector MeasureFont(string text)

{

return MeasureFont(text, -1);

}

Chapter 7 ■ Rendering Text160

public Vector MeasureFont(string text, double maxWidth)

{

Vector dimensions = new Vector();

foreach (char c in text)

{

CharacterData data = _characterData[c];

dimensions.X += data.XAdvance;

dimensions.Y = Math.Max(dimensions.Y, data.Height + data.YOffset);

}

return dimensions;

}

There are two MeasureFont methods: the first method is an overload that
doesn’t require a maximum width parameter, and the second is where all the
measurement happens.

A vector is returned containing the width and height as the X and Y values. The
Z component isn’t used. It’s returned as a vector, rather than some other data
structure such as PointF because vectors store doubles and that’s how position
is stored. The width and height is going to be mostly used to alter the position of
other pieces of text or sprites; doubles mean no casting needs to be done. Vectors
are also easy to scale and transform.

The text is measured by iterating through the character data and adding up the
X advance to get the width for the entire string. The height of the string is the
height of the tallest character.

Rather than calculate the width and height every time they are needed, it’s more
convenient to store these dimensions in the Text class.

public class Text

{

Font _font;

List<CharacterSprite> _bitmapText = new List<CharacterSprite>();

string _text;

Vector _dimensions;

public double Width

{

get { return _dimensions.X; }

}

public double Height

{

Refining the Text Class 161

get { return _dimensions.Y; }

}

}

The dimension member needs to be updated every time the text is changed. There is
only one place in the code where the text gets changed: the CreateText method.

private void CreateText(double x, double y)

{

_bitmapText.Clear();

double currentX = x;

double currentY = y;

foreach (char c in _text)

{

CharacterSprite sprite = _font.CreateSprite(c);

float xOffset = ((float)sprite.Data.XOffset) / 2;

float yOffset = ((float)sprite.Data.YOffset) / 2;

sprite.Sprite.SetPosition(currentX + xOffset, currentY - yOffset);

currentX += sprite.Data.XAdvance;

_bitmapText.Add(sprite);

}

_dimensions = _font.MeasureFont(_text);

SetColor();

}

One more line is added at the end to measure the size of the string. To confirm
this works, try centering the fps text, or render the fps text twice in a row, or
twice in a column.

The final functionality to be added to the text class is the ability to set a max
width. This will cause very long sentences to be wrapped onto a new line. This is
very useful when attempting to keep text in a textbox or ensuring text doesn’t go
off the edge of the screen. Try to work through what the algorithm would need to
do to format text with a max width.

■ Split the text into words.

■ Get the next word in the text.

■ Measure the length of the word.

■ If the current length is greater than the max width, start a new line.

Chapter 7 ■ Rendering Text162

The Text class needs to redefine the CreateText method to handle a max-
imum width parameter.

private void CreateText(double x, double y)

{

CreateText(x, y, _maxWidth);

}

private void CreateText(double x, double y, double maxWidth)

{

_bitmapText.Clear();

double currentX = 0;

double currentY = 0;

string[] words = _text.Split(' ');

foreach (string word in words)

{

Vector nextWordLength = _font.MeasureFont(word);

if (maxWidth != -1 &&

(currentX + nextWordLength.X) > maxWidth)

{

currentX = 0;

currentY += nextWordLength.Y;

}

string wordWithSpace = word + " "; // add the space character that was

removed.

foreach (char c in wordWithSpace)

{

CharacterSprite sprite = _font.CreateSprite(c);

float xOffset = ((float)sprite.Data.XOffset) / 2;

float yOffset = (((float)sprite.Data.Height) * 0.5f) +((float)

sprite.Data.YOffset);

sprite.Sprite.SetPosition(x + currentX + xOffset, y - currentY -

yOffset);

currentX += sprite.Data.XAdvance;

_bitmapText.Add(sprite);

}

}

_dimensions = _font.MeasureFont(_text, _maxWidth);

_dimensions.Y = currentY;

SetColor(_color);

}

Refining the Text Class 163

This code relies on a _maxWidth member. If _maxWidth equals –1 then no
wrapping is done. Otherwise, the text is wrapped for the number of pixels spe-
cified in the _maxWidth value. Here’s an extra constructor that will take in a
maximum width.

int _maxWidth = -1;

public Text(string text, Font font) : this(text, font, -1) { }

public Text(string text, Font font, int maxWidth)

{

_text= text;

_font= font;

_maxWidth = maxWidth;

CreateText(0, 0, _maxWidth);

}

Figure 7.6 shows text being wrapped using the new maxWidth parameter. It’s
generated with the following piece of code.

Text longText = new Text("The quick brown fox jumps over the lazy dog",

_font,400);

_renderer.DrawText(longText);

This word wrapping code doesn’t take account of new line characters or tab
characters, but it wouldn’t be hard to extend it.

Figure 7.6
Wrapping text.

Chapter 7 ■ Rendering Text164

All the basic functionality to make the text class very usable has now been added.
Another good feature to add would be a scale; this would scale the text up and
down by a given amount.

longText.SetScale(0.5); // this would halve the text size

The MeasureText method could also be extended to take in a maxWidth
parameter. This way even if text is wrapped the width and height can be correctly
calculated.

Faster Rendering with glDrawArrays
Basic profiling using the frames per second count has shown that for 2D games,
the current code isn’t that bad. But with only small changes, the performance can
be vastly improved.

public void DrawSprite(Sprite sprite)

{

Gl.glBegin(Gl.GL_TRIANGLES);

{

for (int i = 0; i < Sprite.VertexAmount; i++)

{

Gl.glBindTexture(Gl.GL_TEXTURE_2D, sprite.Texture.Id);

DrawImmediateModeVertex(

sprite.VertexPositions[i],

sprite.VertexColors[i],

sprite.VertexUVs[i]);

}

}

Gl.glEnd();

}

This is the current render code. It is executed once for each sprite. The problem
with the above code is that every time glEnd is called, everything is sent to the
graphics card and then the CPU stops; it does nothing until the graphics card
sends back a message saying it received all the vertices. With 10,000 sprites, that
mounts up to a lot of waiting. The more draw calls, the slower the game will run.

The solution to this problem is to draw as much as possible at once. Generally,
this is known as batching. Instead of the CPU talking to the GPU like ‘‘Draw this,
now draw this sprite, now draw this sprite,’’ it instead makes a list of all the
sprites and says to the GPU, ‘‘Draw all these sprites.’’ There is a lot less waiting so

Faster Rendering with glDrawArrays 165

the code is a lot faster. With the way the code is laid out, only a few changes need
to be made to get this performance increase.

A new class is needed to collect all the vertex information before sending it to the
graphics card. A good name for this class is Batch. The Batch will take the
sprites and pack all the vertex information together in some big arrays. It then
gives OpenGL pointers to these arrays and sends a draw command. This new
class will use the Tao framework so remember to include the proper using
statements.

public class Batch

{

const int MaxVertexNumber = 1000;

Vector[] _vertexPositions = new Vector[MaxVertexNumber];

Color[] _vertexColors = new Color[MaxVertexNumber];

Point[] _vertexUVs = new Point[MaxVertexNumber];

int _batchSize = 0;

public void AddSprite(Sprite sprite)

{

// If the batch is full, draw it, empty and start again.

if (sprite.VertexPositions.Length + _batchSize > MaxVertexNumber)

{

Draw();

}

// Add the current sprite vertices to the batch.

for (int i = 0; i < sprite.VertexPositions.Length; i++)

{

_vertexPositions[_batchSize + i] = sprite.VertexPositions[i];

_vertexColors[_batchSize + i] = sprite.VertexColors[i];

_vertexUVs[_batchSize + i] = sprite.VertexUVs[i];

}

_batchSize += sprite.VertexPositions.Length;

}

}

The max vertex number is how big a batch is allowed to get before it tells
OpenGL to render all the vertices it has. The next members are the arrays that
describe all the vertex information: its position, color, and U,V coordinates. The
_batchSize member tracks how big the batch is becoming. This information
needs to be passed on to OpenGL to draw the arrays. It’s also compared with the
max vertex number to decide when to draw the batch.

Chapter 7 ■ Rendering Text166

The batch collects Sprites and the function it uses to do this is AddSprite.
AddSprite first checks if adding this sprite will make the batch too big. If that’s
the case, it forces the current batch to be drawn and emptied. The sprite vertex
information is then iterated through and added to the batch arrays.

Two more functions handle the drawing of the batch.

const int VertexDimensions = 3;

const int ColorDimensions = 4;

const int UVDimensions = 2;

void SetupPointers()

{

Gl.glEnableClientState(Gl.GL_COLOR_ARRAY);

Gl.glEnableClientState(Gl.GL_VERTEX_ARRAY);

Gl.glEnableClientState(Gl.GL_TEXTURE_COORD_ARRAY);

Gl.glVertexPointer(VertexDimensions, Gl.GL_DOUBLE, 0,

_vertexPositions);

Gl.glColorPointer(ColorDimensions, Gl.GL_FLOAT, 0, _vertexColors);

Gl.glTexCoordPointer(UVDimensions, Gl.GL_FLOAT, 0, _vertexUVs);

}

public void Draw()

{

if (_batchSize == 0)

{

return;

}

SetupPointers();

Gl.glDrawArrays(Gl.GL_TRIANGLES, 0, _batchSize);

_batchSize = 0;

}

The Draw function is the more important of the two here. If the batch is empty, the
Draw function does nothing. Otherwise, it calls the SetupPointers function.
SetupPointers first describes the vertex format using glEnableClient-
State. In this case, the vertex described has color, position, and U,V information.
Once this is done, OpenGL is told where this information exists using the
glPointer calls.

All glPointer calls are of the same general format. The first argument is the
number of elements. The glVertexPointer controls the position and has
three elements; one each for X, Y, and Z. Texture is defined with two elements,

Faster Rendering with glDrawArrays 167

one for U and one for V. Color is defined by four elements: red, green, blue, and
alpha. These pointers will be used by OpenGL to fetch the graphics information
that it’s going to render.

The pointers need to point to the memory address at the start of each of the
arrays. The memory from that point on will be read sequentially. It then uses the
dimension information to decide when to stop reading the memory. This is why
the Vector, Color, and Point structures each have the [StructLayout
(LayoutKind.Sequential)] attribute in their definitions. The order of
their members is very important; swap them around and the rendering won’t
work as expected.

To tell OpenGL to read from these pointers and render the data, the execution is
returned to the Draw method. The glDrawArrays method is called; this takes
in a type, a stride, and the number of vertices to draw. The type is GL_TRIAN-
GLES, as each sprite is made from two triangles and this is how the vertex in-
formation should be interpreted. The stride is zero. The stride is how much
memory to skip after reading each vertex. Sometimes for efficiency reasons dif-
ferent vertex information is all packed together in one continuous stretch of
memory. The stride ensures the irrelevant bits can be skipped over. In the batch,
all the data is relevant so no stride is needed. The final argument is how many
vertices are to be rendered; this information has been recorded in the _batch-
Size member.

The final command in Draw is to reset the _batchSize. The data in the arrays
doesn’t need to be emptied as none of it will be drawn without overwriting it
with new sprite data.

Modifying the Renderer
Batched drawing has a little more setup than using glBegin and glEnd, but it’s
not that much more complicated. The final task is to replace the old glBegin,
glEnd rendering in the Renderer with the new batch method.

class Renderer

{

Batch _batch= new Batch();

public void DrawSprite(Sprite sprite)

{

_batch.AddSprite(sprite);

}

Chapter 7 ■ Rendering Text168

public void Render()

{

_batch.Draw();

}

}

Converting the renderer class is very simple: a Batch object is added as a
member, and sprites are added to this when drawn. There is one additional
method called Render, which has been added; this needs to be called every
frame. If there is anything left in the batch that hasn’t been drawn by the end of
the frame, then Render will ensure it gets drawn.

The Renderer currently doesn’t handle different textures very well. As all the
sprites are drawn in a big batch, all the sprites in that batch must have the same
texture. An easy way to handle this is to do a texture check each addition, and if
the texture is different draw the batch.

Profiling the Batch Draw Method
Text will render just as before, but now it will be faster. If the previous example of
rendering around 10,000 sprites is repeated, the frame-rate on my computer
jumps from around 30 fps to over 80 fps—a significant increase. This will mean
older computers will be much more likely to run smoothly.

Summary
Now you’ve added text drawing capabilities to your code library and improved
the sprite rendering code. It’s nearly time to jump in and create a game, but
before that, we’ll take a closer look at the math used in games.

Summary 169

This page intentionally left blank

chapter 8

Game Math

Games can be written without a lot of advanced math knowledge, but the more
graphically advanced the game, the more math you’ll need to know. There are
many fields of mathematics; some are more commonly used than others when
writing a game. Geometry is important to describe 3D and 2D worlds. Matrices
and vectors are useful for describing worlds and the relationships between enti-
ties in these worlds. Trigonometric functions are great for special effects and
making things act organically. Tween functions are a handy way to express
movement over a constant time. The more math you know, the more tools you
have to solve any problems that come up when programming games.

Trigonometric Functions
The trigonometric functions sine and cosine are often used in game program-
ming. Applying sine and cosine to some number will return a value from �1 to 1.
These returned values make up a wave form, a smoothly oscillating curve. This
curve is of great use when moving something up and down smoothly—creating
an organic pulsing color, smooth oscillating scaling, and many other game-like
effects.

Plotting a Graph
The best way to get a feel for the uses of cosine and sine is to create a sandbox
program where you can play with the values. A good starting point is a program
that plots the sine and cosine waves on a graph. Here’s a game state that will draw

171

some axis and plot a particular graph. You don’t need to create a new project.
You can just add this state to your existing code and then set it as the default
state.

class WaveformGraphState : IGameObject

{

double _xPosition = -100;

double _yPosition = -100;

double _xLength = 200;

double _yLength = 200;

double _sampleSize = 100;

double _frequency = 2;

public delegate double WaveFunction(double value);

public WaveformGraphState()

{

Gl.glLineWidth(3);

Gl.glDisable(Gl.GL_TEXTURE_2D);

}

public void DrawAxis()

{

Gl.glColor3f(1, 1, 1);

Gl.glBegin(Gl.GL_LINES);

{

// X axis

Gl.glVertex2d(_xPosition, _yPosition);

Gl.glVertex2d(_xPosition + _xLength, _yPosition);

// Y axis

Gl.glVertex2d(_xPosition, _yPosition);

Gl.glVertex2d(_xPosition, _yPosition + _yLength);

}

Gl.glEnd();

}

public void DrawGraph(WaveFunction waveFunction, Color color)

{

double xIncrement = _xLength / _sampleSize;

double previousX = _xPosition;

double previousY = _yPosition + (0.5 * _yLength);

Chapter 8 ■ Game Math172

Gl.glColor3f(color.Red, color.Green, color.Blue);

Gl.glBegin(Gl.GL_LINES);

{

for (int i = 0; i < _sampleSize; i ++)

{

// Work out new X and Y positions

double newX = previousX + xIncrement; // Increment one unit on the x

// From 0-1 how far through plotting the graph are we?

double percentDone = (i / _sampleSize);

double percentRadians = percentDone * (Math.PI * _frequency);

// Scale the wave value by the half the length

double newY = _yPosition + waveFunction(percentRadians) *

(_yLength / 2);

// Ignore the first value because the previous X and Y

// haven't been worked out yet.

if (i > 1)

{

Gl.glVertex2d(previousX, previousY);

Gl.glVertex2d(newX, newY);

}

// Store the previous position

previousX = newX;

previousY = newY;

}

}

Gl.glEnd();

} // Empty Update and Render methods omitted

}

The member variables _xPosition, _yPosition, _xLength, and
_yLength are used to position and describe the size of the graph. The
smoothness of the graph is determined by the _sampleSize variable. The
sample size is the number of vertices used to draw the line of the graph. Each
vertex y position is determined by a particular wave function such as sine or
cosine. The _frequency variable is used to determine how often the wave will
oscillate, the higher the frequency the greater the number of oscillations.

Trigonometric Functions 173

The default values describe a graph positioned at x:-100, y:-100 with each
axis being 200 pixels long. This will make the graph big enough to easily read, but
the DrawGraph function treats the graph as if the x and y axes run from 0 to 1.

After the member variables, a delegate is defined.

public delegate double WaveFunction(double value);

Graphs are often defined as x ¼ x0, y ¼ f(x0) where x0 is the next value of x and
plain x is the previous value. The x value is usually increased by a set number and
the y value is calculated from the x. The WaveFunction delegate describes f in
the formula; a function that takes in some double value and returns some double
value. This is the same signature of the cosine and sine functions. By using a
WaveFunction type, the DrawGraph function can take in cosine, sine, or any
other wave function and no extra code needs to be written.

The state’s constructor sets the line width to 3 pixels making the graph lines easy
to see. It also turns off the texture state; if the texture state is turned on, the lines
may appear dull because they are incorrectly being assigned an invalid texture.

The DrawGraph function is the most important function in the game state. It is
responsible for plotting the graph. It uses the sample rate to work out how to
space the vertices so that any line will totally fill the length graph. There are two
common ways to define angles: degrees and radians. Degrees are quite com-
monly known; a full circle is 360�, and a half circle is 180�. Radians are a mea-
surement of degrees using Pi, a full circle is two times Pi, and a half circle is Pi.
The C# Sin and Cos functions expect to be given an angle in radians; for this
reason, the 0-1 value of the X axis is scaled by Pi when the Y axis values are being
calculated.

The inner loop of the DrawGraph function works out a new position from the
old position and then plots a line from the old position to the new position. To
demonstrate the code in action, a Render function needs to be written that calls
DrawGraph for sine and cosine. The graph output can be seen in Figure 8.1.

public void Render()

{

DrawAxis();

DrawGraph(Math.Sin, new Color(1,0,0,1));

DrawGraph(Math.Cos, new Color(0, 0.5f, 0.5f, 1));

}

Chapter 8 ■ Game Math174

The DrawGraph function takes in a function used to plot the graph and a color
that decides what color the graph will be. Sine and cosine are waveforms, and it’s
easy to make interesting new wave forms by adding these waves together. A new
waveform function can be created by using an anonymous method. This code
snippet creates a graph that combines cosine and sine but scales the result down
by a half.

DrawGraph(delegate(double value)

{

return (Math.Sin(value) + Math.Cos(value)) *0.5;

}, new Color(0.5f, 0.5f, 1, 1));

Try the following snippet and observe the graph you get.

DrawGraph(delegate(double value)

{

return (Math.Sin(value) + Math.Sin(value + value))*0.5;

}, new Color(0.5f, 0.5f, 1, 1));

Figure 8.1
A plot of the sine and cosine functions.

Trigonometric Functions 175

These graphs look interesting, but without a game application, they may seem
academic and rather dull. Next, these functions will be used to animate sprites.

Trigonometric Functions for Special Effects
Create a new game state called SpecialEffectsState. This state will de-
monstrate how to use the sine and cosine functions that have just been covered
to create cool special effects with the text class.

class SpecialEffectState : IGameObject

{

Font _font;

Text _text;

Renderer _renderer = new Renderer();

double _totalTime = 0;

public SpecialEffectState(TextureManager manager)

{

_font = new Font(manager.Get("font"), FontParser.Parse("font.fnt"));

_text= new Text("Hello", _font);

}

public void Update(double elapsedTime)

{

}

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawText(_text);

_renderer.Render();

}

}

The basic state just renders out the text ‘‘Hello.’’ It’s very easy to use the sine
value to make this text pulse the opacity from 0–1 and back again. Text is used
here, but it could just as easily be a sprite or model.

public void Update(double elapsedTime)

{

Chapter 8 ■ Game Math176

double frequency = 7;

float _wavyNumber = (float)Math.Sin(_totalTime*frequency);

_wavyNumber = 0.5f + _wavyNumber * 0.5f; // scale to 0-1

_text.SetColor(new Color(1, 0, 0, _wavyNumber));

_totalTime += elapsedTime;

}

The total time keeps track of how long the state has been running. The number
keeps increasing and will eventually become so big that it wraps around to 0. It’s
used to feed the sine function numbers that will produce a wave similar to the
one plotted previously. The sine wave is scaled so that it oscillates between 0 and
1 rather than – 1 and 1. The frequency is increased as well to make the pulse
occur more often. Run the code and check out the effect.

After pulsing in and out of sight, the next step is to have the text travel through a
garish rainbow of all the colors. Each color channel is assigned a different sine or
cosine wave and the strengths of each channel change over time.

public void Update(double elapsedTime)

{

double frequency = 7;

float _wavyNumberR = (float)Math.Sin(_totalTime*frequency);

float _wavyNumberG = (float)Math.Cos(_totalTime*frequency);

float _wavyNumberB = (float)Math.Sin(_totalTime+0.25*frequency);

_wavyNumberR = 0.5f + _wavyNumberR * 0.5f; // scale to 0-1

_wavyNumberG = 0.5f + _wavyNumberG * 0.5f; // scale to 0-1

_wavyNumberB = 0.5f + _wavyNumberB * 0.5f; // scale to 0-1

_text.SetColor(new Color(_wavyNumberR, _wavyNumberG,

_wavyNumberB, 1));

_totalTime += elapsedTime;

}

It’s very easy to play with this code to get a wide variety of different effects. The
color channel isn’t the only thing that can by modified using trigonometric
functions; the next example will alter the position of the text. To change the text
position a SetPosition method must be added to the Text class. To move
the text, every vertex that makes up every character must have its position
changed; the easiest way to do this is just to re-create all these characters at the
new position.

Trigonometric Functions 177

public void SetPosition(double x, double y)

{

CreateText(x, y);

}

With the Text classes SetPosition method defined, it can be used in the
Update loop to create a new text-based special effect.

public void Update(double elapsedTime)

{

double frequency = 7;

double _wavyNumberX = Math.Sin(_totalTime*frequency)*15;

double _wavyNumberY = Math.Cos(_totalTime*frequency)*15;

_text.SetPosition(_wavyNumberX, _wavyNumberY);

_totalTime += elapsedTime;

}

This will move the text in a rough circle. This time the numbers don’t need to be
scaled between 0 and 1; instead, they are increased so the movement of the text is
very obvious. Different functions can be used to alter the position of the text as
needed.

Finally, this last example takes each letter of the text and animates it as if a wave
was passing along the word. To animate each individual character of the text, a
new GetPosition method must be added to the Sprite class. The sprite
position is taken from the center of the sprite.

public Vector GetPosition()

{

return GetCenter();

}

With the above code added to the Sprite class, the new GetPosition
method can be used in the Update loop.

public void Update(double elapsedTime)

{

double frequency = 7;

int xAdvance = 0;

foreach (CharacterSprite cs in _text.CharacterSprites)

Chapter 8 ■ Game Math178

{

Vector position = cs.Sprite.GetPosition();

position.Y = 0 + Math.Sin((_totalTime + xAdvance) * frequency)*25;

cs.Sprite.SetPosition(position);

xAdvance++;

}

_totalTime += elapsedTime;

}

Vectors
Vectors are a very common game programming tool. The easiest way to get a
good feel for vector math is to use it in a game. Very quickly the possible uses will
become second nature. A simple vector class has already been made in the pre-
vious chapters, but until now none of its properties have been defined.

What Is a Vector?
In game programming, vectors are used to manipulate and describe 3D game
worlds. Mathematically, vectors are described as a direction with a magnitude.
The magnitude is just the length of the vector. See Figure 8.2.

The most common vectors in game programming are 2D, 3D, and 4D. Four-
dimension vectors are used when using projection matrices to translate vertices
from 3D to 2D. On paper, vectors and positions are very similar. A position [0, 3, 0]
and a vector [0, 3, 0] have the same internal values, but they represent different
things. The position uses a coordinate system to define an absolute position in
the world. A vector describes a direction (up in this case) and a magnitude or
length (in this case, 3). See Figure 8.3 for a comparison. For example, ‘‘three
miles in the air’’ is not a position; it’s a description of a position using a direction
and a length—a vector.

magnitudeorigin

Figure 8.2
The anatomy of a vector.

Vectors 179

In Figure 8.3, vectors a and e are the same vector because they have the same
direction and magnitude. They are at different origins so they appear different
places on the diagram. Vectors c and d are also the same. Vector b is the same
direction as a and e, but the magnitude is less so it is a different vector.

Vectors, in game programming, are used to answer questions such as:

■ The enemy spaceship is at position [0, 0, 90]; the player spaceship is at
[0, 80, �50]. What direction should the enemy launch a missile? Each
frame, how is that missile’s position updated to send it towards the player?

■ Is the player’s distance from the bomb a meter or less?

■ Which side of the wall is the player?

■ Is the player looking at the NPC?

■ Given a quad that represents the end of a gun, which direction are the bul-
lets going to fire?

■ How should light reflect off this surface?

■ Move the car three meters forward.

■ A player has just hit an enemy; which direction should that enemy move?

■ How do I increase the force of this bullet by 100?

■ Which player is nearest the alien artifact?

To be able to answer these questions, the vector class will need to be expanded to
add the basic vector methods. The examples in this chapter will build upon the
code you have written in previous chapters. Most examples will require you to

Figure 8.3
Comparing vectors and positions.

Chapter 8 ■ Game Math180

create a new game state and make this the activate state to test the code. All the
example code is available on the CD in the Code\Chapter 8 directory. The next
sections will explain the various vector operations and list the code that needs to
be added to complete the vector class. Game engines sometimes have a Vector2d,
Vector3d, and Vector4d, but I think it’s simpler in this case to just have one
vector structure; it can still be used for any 2D operations, and for the contents of
this book, 4D vectors won’t be used.

[StructLayout(LayoutKind.Sequential)]

public struct Vector

{

public double X { get; set; }

public double Y { get; set; }

public double Z { get; set; }

public Vector(double x, double y, double z) : this()

{

X = x;

Y = y;

Z = z;

}

}

The Length Operation
The length operation takes a vector and returns that vector’s magnitude. With
a simple vector of [0, 1, 0], it’s easy to see the length is 1, but with a vector of
[1.6, –0.99, 8], the length is less apparent. Here is the formula to give a vector’s length.

jjv jj ¼
ffi
x2 þ y2 þ z2

p

The two bars around the v are the mathematical notation for the length of a
vector. The equation is the same for any dimension of vector: square the mem-
bers, add them together, and take the square root.

This formula is simple to translate into code. It is broken into two functions: one
function will square and add the members; the other will perform the
square root.

public double Length()

{

return Math.Sqrt(LengthSquared());

}

Vectors 181

public double LengthSquared()

{

return (X * X þ Y * Y þ Z * Z);

}

If you want to compare the length of two vectors the LengthSquared opera-
tion can be compared instead of the Length, saving a square root operation and
making it slightly more efficient.

Vector Equality
Vectors are considered equal if all the members’ values, X,Y, and Z, are equal.
Vectors don’t have a position; they are just a direction from some origin.
Figure 8.3 has a number of vectors; even though some vectors are placed at
different positions, they are still equal because all their members are equal. Three
miles north is still three miles north if it’s three miles north of your house, or
three miles north of the Great Pyramid of Giza.

It is simple to create an Equals function for the vector.

public bool Equals(Vector v)

{

return (X == v.X) && (Y == v.Y) && (Z == v.Z);

}

In code it would be convenient if the == operator was also overloaded. At the
moment, the following cannot be written

// Cannot write this

if (vector1 == vector2)

{

System.Console.WriteLine("They're the same")

}

// Instead must write

if (vector1.Equals(vector2))

{

System.Console.WriteLine("They're the same")

}

To use the == operator, it needs to be overloaded and that requires a few
more functions to be overridden as well, GetHashCode, !=, and Equals
(Object obj).

Chapter 8 ■ Game Math182

public override int GetHashCode()

{

return (int)X ^ (int)Y ^ (int)Z;

}

public static bool operator ==(Vector v1, Vector v2)

{

// If they're the same object or both null, return true.

if (System.Object.ReferenceEquals(v1, v2))

{

return true;

}

// If one is null, but not both, return false.

if (v1 == null || v2 == null)

{

return false;

}

return v1.Equals(v2);

}

public override bool Equals(object obj)

{

if (obj is Vector)

{

return Equals((Vector)obj);

}

return base.Equals(obj);

}

public static bool operator !=(Vector v1, Vector v2)

{

return !v1.Equals(v2);

}

A lot of code just to overload the equality operator! The only curious function is
GetHashCode. A hash is a number that tries, but is not guaranteed, to uniquely
identify an object; it’s used in C# Dictionary structures. It needs to be over-
ridden when overriding equality because if equality is overridden, it makes it
harder for the compiler to know what a good hash would be.

Vectors 183

Vector Addition, Subtraction, and Multiplication
The vector addition operation is very simple; each member of the first vector is
added to the respective member of the second vector. Here is the code to per-
form vector addition.

public Vector Add(Vector r)

{

return new Vector(X + r.X, Y + r.Y, Z + r.Z);

}

public static Vector operator+(Vector v1, Vector v2)

{

return v1.Add(v2);

}

When the binary addition operator + is overloaded, it automatically overloads
+=. The same is true for *= and /=.

Figure 8.4 shows the result of adding two vectors together. Vectors are often
added together when trying to get a certain offset in 3D space. For instance, say
you wanted to put a 3D model of a halo above a player’s head. The player origin
is directly in between the feet of the character. You have a vector that represents
an offset from the player’s feet to the center of the player’s head [0, 1.75, 0].

Figure 8.4
Vectors addition.

Chapter 8 ■ Game Math184

If you add a vector [0, 0.2, 0] that should get you a position that’s perfect for a
hovering halo. This operation is shown in Figure 8.5.

Vector subtraction is used all the time to get the vector between two points in
space. The calculation is very similar to addition, but the members are subtracted
rather than added.

public Vector Subtract(Vector r)

{

return new Vector(X - r.X, Y - r.Y, Z - r.Z);

}

public static Vector operator-(Vector v1, Vector v2)

{

return v1.Subtract(v2);

}

The result of subtracting two vectors is shown in Figure 8.6. In a space battle, one
spaceship might want to shoot another spaceship. Spaceship A can subtract its
position, represented as a vector, from spaceship B’s position; this will give a
vector from A to B (see Figure 8.7). This vector’s direction can be used to aim
missiles or advance one craft towards the other.

Vector multiplication is when a vector is multiplied by a scalar number; a scalar
number is a number like an int or double, just a normal number. If all a vector’s

Figure 8.5
Adding a halo to a player.

Vectors 185

Figure 8.6
Vector subtraction.

Figure 8.7
Getting the vector between two spaceships.

Chapter 8 ■ Game Math186

elements are multiplied against another element, this is known as the dot pro-
duct and is covered here.

public Vector Multiply(double v)

{

return new Vector(X * v, Y * v, Z * v);

}

public static Vector operator * (Vector v, double s)

{

return v.Multiply(s);

}

Figure 8.8 shows what occurs when a vector is multiplied by a scalar. Multiplying
by a vector scales the vector, so multiplying by 2 will double the length of the
vector. Multiplying by –1 will make the vector point in the opposite direction it
currently points. If a player character was shot in a 3D game, the vector the bullet
was traveling can be multiplied by –1, reversing it. This vector will now point
outwards from the body along the line of the bullet’s entry, a perfect vector to use
to play a blood splat effect (see Figure 8.9).

Normal Vectors
A normal vector is a vector that has a length of exactly 1. These vectors are also
known as unit vectors. Unit vectors are an excellent way to represent a direction
without caring about the magnitude. The normalize operation maintains the
vector’s direction but makes its magnitude equal 1. If a unit vector is multiplied

Figure 8.8
Vector, scalar multiplication.

Vectors 187

by a scalar, the resulting vector length will be the same as the scalar value. If you
have a vector of some unknown length and you want it to be length 6, you can
normalize the vector and then multiply by 6.

public Vector Normalize(Vector v)

{

double r = v.Length();

if (r != 0.0) // guard against divide by zero

{

return new Vector(v.X / r, v.Y / r, v.Z / r); // normalize and return

}

else

{

return new Vector(0, 0, 0);

}

}

This code is not technically correct; it should be impossible to normalize a zero
vector, but the code simply does nothing if a zero vector is normalized. Vectors
are normalized by calculating their length and then dividing each element by that
length. The effect of normalizing a vector can be seen in Figure 8.10.

In game programming, direction is often very important and normal vectors are
used to define directions. You may have heard the term normal mapping. This is
a texture where each pixel represents a normal vector, the texture is stretched
over a 3D model, and the lighting calculations take into account the normal
vector on each pixel of the rendered model. Normal mapping gives the surface of
the final model a lot more detail than it would otherwise have.

Figure 8.9
Using vectors for blood spray.

Chapter 8 ■ Game Math188

Imagine a two-dimensional vector with an X and Y element. Up, down, left, and
right vectors can be created with [0, 1], [0, �1], [�1, 0], and [1, 0]. This creates a
cross-like shape. If you now created four more normal vectors between these up,
down, left, and right vectors you would start to approximate a circle. This is the
unit circle; it has a radius of 1. The unit circle can be seen in Figure 8.11. If a
three-element vector [X, Y, Z] is used, then a unit sphere is created. If you had all
vectors of length 2, then you would have a sphere with a radius of 2 and so on.

Figure 8.10
Normalizing a vector.

Figure 8.11
Unit circle.

Vectors 189

It is very easy to do a circle-point or sphere-point intersection test. This is a test
that checks if a point is inside a certain circle or sphere. Let’s take the circle
example. A circle is defined by the circle position and a radius. If a unit circle
exists at [5, 6] and there is a point [5.5, 6.5] the first step is to get the distance
from the circle origin. This is done by vector subtraction of the circle origin from
the point [5, 6] � [5.5, 6.5] ¼ [0.5, 0.5] giving the vector from the point to the
center of the circle. The distance between the point and the circle is then calcu-
lated by performing the length operation on that vector. This gives a length of
0.707 If this length is smaller than the circle radius, then the point is inside
the circle; if it is greater, it is outside. If it is the same, it’s on the very edge of the
circle, as Figure 8.12 shows.

The same method works for sphere-point intersection. This is a quick way to see
if the player is in a certain position or if the mouse has been used to click on a
certain area. If you don’t feel comfortable with it, try sketching out a few

Figure 8.12
Circle-point intersection.

Chapter 8 ■ Game Math190

examples on a piece of paper until you do. Once you’ve got it, try to think how
you might do a circle-circle intersection or a sphere-sphere intersection.

The Dot Product Operation
The dot product is an operation that takes two vectors and returns a number.
The number returned is related to the angle between the two vectors.

A � B ¼ jAjjBjcosðyÞ
The dot product operation used on vector A and B returns the length of A and B
multiplied by the cosine of the angle between the vectors. This is shown graphi-
cally in Figure 8.13. If vectors B and A are normalized, then their length values
are 1 and the equation is simplified to A � B ¼ cos(y). To retrieve the angle, the
arccosine operation can be used. In C#, the arccosine function is Math.acos
and it returns the angle in radians.

The dot product operation is very good for determining if objects in the game are
facing each other. It’s also very useful for testing if an object is on one side of a
plane or the other; this is used in 3D games to ensure the character doesn’t walk
through walls.

The operation itself is very simple: all the elements from the first vector are
multiplied by the second vector, then all these values are added together to

Figure 8.13
The dot product operation.

Vectors 191

produce a scalar. The dot product is a very common operation in 3D graphics, so
common the multiply operator * is often overloaded to represent it.

public double DotProduct(Vector v)

{

return (v.X * X) + (Y * v.Y) + (Z * v.Z);

}

public static double operator *(Vector v1, Vector v2)

{

return v1.DotProduct(v2);

}

Dot products are great for determining if a point is behind or in front of a
plane. A plane is a two-dimensional surface, like a piece of paper. A piece of
paper can be positioned and angled anywhere just like a geometric plane.
The difference is that a piece of paper has an edge. Planes don’t have edges;
they keep going infinitely along their two dimensions—a piece of paper
without end! A plane is defined using a point and a normalized vector. (See
Figure 8.14.) The point positions the plane in space and the normal specifies
the direction it’s pointing.

Figure 8.14
A plane.

Chapter 8 ■ Game Math192

In a game a 3D plane might be positioned somewhere to signify a change; if the
player crosses this plane then he has finished the level, or a boss should spawn, or
he has fallen to drown in the sea. The test to see which side a player is on goes
like this.

■ Create a vector from the plane position to the player position.

■ Dot product the plane normal with the newly created vector.

■ If the result is zero, the player position is exactly on the plane.

■ If the result is above zero, the player is on the normal side of the plane.

■ If the result is below zero, the player is on the other side of the plane.

This test can be seen graphically in Figure 8.15.

Figure 8.15
Player and plane position.

Vectors 193

Dot product tests are used in back face culling. This is a technique to see if some
polygon is facing away from the camera. By default, polygons are not double-
sided; they only have one side indicated by the normal. If the polygons face away
from the camera, they can’t be seen. This means the graphics hardware doesn’t
need to be told about them. The dot product can be used to filter out all the
polygons that are facing away from the camera.

The Cross-Product Operation
The last vector operation to be covered is the cross-product. Unlike the previous
operations, this operation only works on vectors with three or more elements.
This means there is no cross-product operation for a simple X,Y vector. The
calculation is more complicated than previous operations but the results are
quite intuitive. The cross-product takes two vectors and returns a vector per-
pendicular to the passed in vectors. If you have a table with one side from [0, 0, 0]
to [0, 0, 1] and another side from [0, 0, 0] to [1, 0, 0], then the resulting dot
product vector will be a vector that is pointing upwards from the table’s surface
[0, 1, 0]. The operation can be seen in Figure 8.16.

Here is the formula for calculating the cross-product.

A ¼ B � C

A ¼
Ax

Ay

Az

2
4

3
5B ¼

Bx

By

Bz

2
4

3
5C ¼

Cx

Cy

Cz

2
4

3
5

Ax ¼ ByCz � BzCy

Ay ¼ BzCx � BxCz

Az ¼ BxCy � ByCx

The formula looks rather intimidating; fortunately, once it’s converted to code it
can pretty much be ignored. When this formula is used, you won’t be thinking
about the particular mechanics of the code, just that you want a vector that
points outwards from two cross-product vectors.

public Vector CrossProduct(Vector v)

{

double nx = Y * v.Z - Z * v.Y;

Chapter 8 ■ Game Math194

double ny = Z * v.X - X * v.Z;

double nz = X * v.Y - Y * v.X;

return new Vector(nx, ny, nz);

}

The cross-product is very useful for working out the normal of a surface. For
instance, you may have a train that you want to move forward in the 3D world.
The train could be at any angle, so it’s hard to know what forward means. First,
you really need a normal vector that faces the same way as the train. If you found
a polygon on the train facing the way you want, the cross-product of two sides of
this polygon will give you a vector that is facing outward from it along the train,
as shown in Figure 8.17. This vector can be normalized so it is just a direction.
This direction multiplied by some scalar can be added to the train’s position and
it will move forward that scalar amount.

Figure 8.16
The cross-product operation.

Vectors 195

Finishing Touches to the Vector Structure
By now, quite an impressive, fully functional vector structure has been made, but
there are a few final touches that will make it easier to work with. First, the
ToString method can be overridden so it outputs something useful. The To-
String method is automatically called when using the debugger in Visual Stu-
dio. Overriding this method will allow a vector to be understood at a glance,
without needing to dig down into the definition and look at the individual
values.

public override string ToString()

{

return string.Format("X:{0}, Y:{1}, Z:{2}", X, Y, Z);

}

The zero vector is a special type of vector; it has no unit vector. It is a vector that
represents no direction and has no magnitude. It is a little like the null of vec-
tors. For that reason it is useful to have as a constant.

[StructLayout(LayoutKind.Sequential)]

public struct Vector

{

public static Vector Zero = new Vector(0, 0, 0);

Figure 8.17
Calculating the forward normal of a train.

Chapter 8 ■ Game Math196

That is all the vector operations needed. With this simple structure a whole 3D
world can be built and manipulated. Don’t worry if you don’t quite understand
every little bit at the moment; the more you use the bits you do know the more
the rest will fall into place.

Two-Dimensional Intersection
Intersection is a way of determining when two shapes overlap or intersect. This is
essential in all graphical programming including games. Detecting if the mouse
cursor is over a button is an intersection test. In games, detecting if a missile has
hit a ship is also an intersection test. 2D intersection is very simple and a great
place to start.

Circles
Circles are defined with a position and a radius. Intersection is best shown gra-
phically, so let’s create a new game state called CircleIntersectionState
and make it load by default.

class CircleIntersectionState : IGameObject

{

public CircleIntersectionState()

{

Gl.glLineWidth(3);

Gl.glDisable(Gl.GL_TEXTURE_2D);

}

#region IGameObject Members

public void Update(double elapsedTime)

{

}

public void Render()

{

}

#endregion

}

The state currently does nothing apart from getting OpenGL ready to draw lines.
Next, a circle class needs to be created.

Two-Dimensional Intersection 197

public class Circle

{

Vector Position { get; set; }

double Radius { get; set; }

public Circle()

{

Position = Vector.Zero;

Radius = 1;

}

public Circle(Vector position, double radius)

{

Position = position;

Radius = radius;

}

public void Draw()

{

// Determines how round the circle will appear.

int vertexAmount = 10;

double twoPI = 2.0 * Math.PI;

// A line loop connects all the vertices with lines

// The last vertex is connected to the first vertex

// to make a loop.

Gl.glBegin(Gl.GL_LINE_LOOP);

{

for (int i = 0; i <= vertexAmount; i++)

{

double xPos = Position.X + Radius * Math.Cos(i * twoPI /

vertexAmount);

double yPos = Position.Y + Radius * Math.Sin(i * twoPI /

vertexAmount);

Gl.glVertex2d(xPos, yPos);

}

}

Gl.glEnd();

}

}

By default, a circle is defined to be at the origin and to have a radius of 1 unit. The
drawing code is currently missing. The circle will be drawn using OpenGL

Chapter 8 ■ Game Math198

immediate mode—just the outline will be drawn. The sine and cosine functions
are used to determine where to plot each vertex that will make up the circle’s
perimeter.

To test the drawing function in the CircleIntersectionState , add a
_circlemember to the class.

Circle _circle = new Circle(Vector.Zero, 200);

This creates a circle of radius 200 around the origin. To see the circle, the render
method needs to be modified.

public void Render()

{

_circle.Draw();

}

Run the program and you should see something similar to Figure 8.18.

The circle is made from only 10 vertices so it doesn’t appear very smooth. To
increase the smoothness increase the number of vertices used in the Draw
method of the Circle class.

Figure 8.18
Rendering a circle.

Two-Dimensional Intersection 199

For the purposes of demonstrating intersection, it would be nice to able to color
the circles. A white circle could be a non-intersected circle and a red circle could
indicate that it intersects with something. This is an easy addition to make. In the
Circle class, modify the code so it has a color member that is used in the Draw
function.

Color _color = new Color(1, 1, 1, 1);

public Color Color

{

get { return _color; }

set { _color = value; }

}

public void Draw()

{

Gl.glColor3f(_color.Red, _color.Green, _color.Blue);

By default, all circles will be rendered white but the color can be changed at
any time.

Circle-point intersection was covered in the vector section. The distance of the
point from the circle origin is calculated; if that distance is greater than the circle
radius, then it lies outside of the circle. To test this graphically, the mouse pointer
can be used as the point.

Getting the position of the mouse pointer is a little tricky because of the different
coordinate systems involved. The OpenGL origin is in the middle of the form but
the cursor’s position is not in the same coordinate system; its origin is the very
top left of the form. This means OpenGL considers the position 0, 0 to be a point
in the middle of the form while the cursor considers 0,0 to be the very top left of
the form. These different coordinate systems are shown in Figure 8.19. The form
coordinate origin is labeled a, the control coordinate is labeled b, and the
OpenGL coordinate origin is labeled c. To convert the mouse pointer from
the form coordinate system to the OpenGL coordinate system a little more code
needs to be added to the form.

The first thing we need is a simple Input class to record the mouse input.

public class Input

{

public Point MousePosition { get; set; }

}

Chapter 8 ■ Game Math200

The Input class will be initiated and updated in the form. GameStates that
wish to know about the mouse position need to take the Input object into their
constructors. Add an Input object to the form class now.

public partial class Form1 : Form

{

Input _input= new Input();

In the form a new function needs to be created that will update the Input class;
this will be called every frame.

private void UpdateInput()

{

System.Drawing.Point mousePos = Cursor.Position;

mousePos = _openGLControl.PointToClient(mousePos);

// Now use our point definition,

Point adjustedMousePoint = new Point();

adjustedMousePoint.X = (float)mousePos.X - ((float)ClientSize.Width

/ 2);

adjustedMousePoint.Y = ((float)ClientSize.Height / 2)-(float)mouse-

Pos.Y;

_input.MousePosition = adjustedMousePoint;

}

private void GameLoop(double elapsedTime)

{

UpdateInput();

UpdateInput translates the mouse position from the form’s coordinate system
to the control coordinate system by using the PointToClient function. The

Figure 8.19
Coordinate systems of the form.

Two-Dimensional Intersection 201

mouse position is then finally converted to the OpenGL coordinate system based
on the center of the OpenGL control. This is done by taking away half the width
and height of the control from its X and Y position. The final coordinate now
correctly maps the mouse position from the form coordinates to OpenGL co-
ordinates. If the mouse was placed in the center of the OpenGL control, it would
have the Input class report the position (0,0).

There is one last thing that needs to be written before leaving the form code. The
new input object must be added to the constructor of the circle state.

_system.AddState("circle_state", new CircleIntersectionState(_input));

The state’s constructor must also be modified.

Input _input;

public CircleIntersectionState(Input input)

{

_input = input;

Once the input is being passed to the state then the mouse position can be used.
It’s worth confirming that everything is working correctly. The easiest way to do
this is to draw a dot where the cursor is in OpenGL.

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_circle.Draw();

// Draw the mouse cursor as a point

Gl.glPointSize(5);

Gl.glBegin(Gl.GL_POINTS);

{

Gl.glVertex2f(_input.MousePosition.X,

_input.MousePosition.Y);

}

Gl.glEnd();

}

Run the program and a small square will follow the pointer of the cursor. You
may note that I’ve added the glClear commands. Try removing the glClear
commands and see what happens.

Chapter 8 ■ Game Math202

Now that the mouse pointer is working, we can return to the intersection code.
The update loop for the state will do the intersection check.

public void Update(double elapsedTime)

{

if (_circle.Intersects(_input.MousePosition))

{

_circle.Color = new Color(1, 0, 0, 1);

}

else

{

// If the circle's not intersected turn it back to white.

_circle.Color = new Color(1, 1, 1, 1);

}

}

This shows how the intersect function will be used; all that’s left is to write it.
The test requires a number of vector operations; therefore, the point object is
converted to a vector.

public bool Intersects(Point point)

{

// Change point to a vector

Vector vPoint = new Vector(point.X, point.Y, 0);

Vector vFromCircleToPoint = Position - vPoint;

double distance = vFromCircleToPoint.Length();

if (distance > Radius)

{

return false;

}

return true;

}

Run the program and observe what happens when the cursor is moved in and
out of the circle.

Rectangles
The rectangle intersection code doesn’t need to be completed. The only rec-
tangles we need are buttons, and they’ll always be axis aligned. This makes the
code far simpler than dealing with arbitrarily aligned rectangles.

Two-Dimensional Intersection 203

If the point is more right than the leftmost edge of the rectangle, more left
than the rightmost edge, and lower than the top and higher than the bottom,
then the point is in the rectangle. It can be shown visually just like the circle
example.

class RectangleIntersectionState : IGameObject

{

Input _input;

Rectangle _rectangle = new Rectangle(new Vector(0,0,0), new Vector

(200, 200,0));

public RectangleIntersectionState(Input input)

{

_input= input;

}

#region IGameObject Members

public void Update(double elapsedTime)

{

if (_rectangle.Intersects(_input.MousePosition))

{

_rectangle.Color = new Color(1, 0, 0, 1);

}

else

{

// If the circle's not intersected turn it back to white.

_rectangle.Color = new Color(1, 1, 1, 1);

}

}

public void Render()

{

_rectangle.Render();

}

#endregion

}

Here is the state; it’s very similar to the circle example before. Remember to make
it load as the default state. The rectangle itself is made using a line loop like the
circle.

Chapter 8 ■ Game Math204

public class Rectangle

{

Vector BottomLeft { get; set;}

Vector TopRight { get; set; }

Color _color= new Color(1, 1, 1, 1);

public Color Color

{

get { return _color; }

set { _color = value; }

}

public Rectangle(Vector bottomLeft, Vector topRight)

{

BottomLeft = bottomLeft;

TopRight = topRight;

}

public void Render()

{

Gl.glColor3f(_color.Red, _color.Green, _color.Blue);

Gl.glBegin(Gl.GL_LINE_LOOP);

{

Gl.glVertex2d(BottomLeft.X, BottomLeft.Y);

Gl.glVertex2d(BottomLeft.X, TopRight.Y);

Gl.glVertex2d(TopRight.X, TopRight.Y);

Gl.glVertex2d(TopRight.X, BottomLeft.Y);

}

Gl.glEnd();

}

}

The rectangle class can create and draw rectangles. The only function missing
is the all important intersect function.

public bool Intersects(Point point)

{

if (

point.X >= BottomLeft.X &&

point.X <= TopRight.X &&

point.Y <= TopRight.Y &&

point.Y >= BottomLeft.Y)

Two-Dimensional Intersection 205

{

return true;

}

return false;

}

Run the program and move the mouse over the rectangle. Like the circle ex-
ample, it will turn red demonstrating that the intersection code works.

Tweens
A tween is a method of changing one value to another over time. This can be
used for animating, changing position, color, scale, or any other value you can
think of. Tweening is probably most well known for its use in Adobe Flash, which
comes with many tween functions already built in.

An Overview of Tweening
It’s probably easiest to show an example to give a rough idea how it works and
then dive into the details. This state can be used in your existing code base, but if
you want to create a new project then you’ll need to remember to add references
to Tao.DevIL and add the Sprite, Texture, and TextureManager classes.

class TweenTestState: IGameObject

{

Tween _tween= new Tween(0, 256, 5);

Sprite _sprite = new Sprite();

public SpriteTweenState(TextureManager textureManager)

{

_sprite.Texture = textureManager.Get("face");

_sprite.SetHeight(0);

_sprite.SetWidth(0);

}

public void Render()

{

// Rendering code goes here.

}

public void Update(double elapsedTime)

Chapter 8 ■ Game Math206

{

if (_tween.IsFinished() != true)

{

_tween.Update(elapsedTime);

_sprite.SetWidth((float)_tween.Value());

_sprite.SetHeight((float)_tween.Value());

}

}

}

The tween object is used to make a sprite grow from nothing to a size of 256
over a period of 5 seconds. Here, the tween constructor takes three arguments.
The first argument is the start value, the second is the destination value, and the
final argument is the time to go from the start value to the second value.

The Update loop checks if the tween has finished. If it hasn’t, it updates the tween.
The width and height are set to the tween’s value—somewhere from 0 to 256.

With the above example, the tween linearly moves from start to end. This means
after 2.5 seconds the value of the tween will be 128. Tweens don’t have to be
linear; they accelerate or decelerate to their destinations. This power to change
the type of tween comes from representing position as a function over time.

public void function(double time)

{

// Create a position using the time value

return position;

}

The actual tween function is a little more complicated than that. Here is the
function that performs linear interpolation.

public static double Linear(double timePassed, double start, double dis-

tance, double duration)

{

return distance * timePassed / duration þ start;

}

The tween code uses a linear tween by default, but many different tweens can be
added. Figure 8.20 shows a number of these tweens.

There are many Flash tween functions available on the internet, and it’s very easy
to convert these to C# code.

Tweens 207

The Tween Class
The Tween class encapsulates the idea of representing a variable’s value over
time. Here is the full working class.

public class Tween

{

double _original;

double _distance;

double _current;

double _totalTimePassed = 0;

double _totalDuration = 5;

bool _finished = false;

TweenFunction _tweenF = null;

public delegate double TweenFunction(double timePassed, double start,

double distance, double duration);

public double Value()

{

return _current;

}

public bool IsFinished()

{

return _finished;

}

Figure 8.20
Five types of tween functions.

Chapter 8 ■ Game Math208

public static double Linear(double timePassed, double start, double

distance, double duration)

{

return distance * timePassed / duration þ start;

}

public Tween(double start, double end, double time)

{

Construct(start, end, time, Tween.Linear);

}

public Tween(double start, double end, double time, TweenFunction

tweenF)

{

Construct(start, end, time, tweenF);

}

public void Construct(double start, double end, double time, TweenFunc-

tion tweenF)

{

_distance = end - start;

_original = start;

_current = start;

_totalDuration = time;

_tweenF = tweenF;

}

public void Update(double elapsedTime)

{

_totalTimePassed += elapsedTime;

_current = _tweenF(_totalTimePassed, _original, _distance,

_totalDuration);

if (_totalTimePassed > _totalDuration)

{

_current = _original + _distance;

_finished = true;

}

}

}

Tweens 209

There are two constructors and both call the Construct method. The con-
structors allow a user to specify the type of tween function, or alternatively just
use the default linear change over time. A tween function is defined by the
TweenFunction delegate. The only implementation of the TweenFunction
delegate in this class is the Linear function. Its use can be seen in the default
constructor.

Construct(start, end, time, Tween.Linear);

The Construct method records the start value of the tween, the end value, and
the time in which the tween can perform this operation. A tween function can also
be passed in to determine how the value will be changed over time. The Con-
struct method records these values and works out the distance from the start
value to the end value. This distance is passed on to the relevant tween function.

The Tween object is updated every frame and the time elapsed is summed each
Update call. This way the Tween object knows how far through the tween it is.
The tween function delegate modifies the current value of the tween. Finally, the
Update method checks if the tween has finished, and if it has, it sets the finish
flag to true.

With only a linear function, the Tween class isn’t very exciting, so here are some
more functions that can be added. These are shown in Figure 8.20.

public static double EaseOutExpo(double timePassed, double start, double

distance, double duration)

{

if (timePassed == duration)

{

return start + distance;

}

return distance * (-Math.Pow(2, -10 * timePassed / duration) + 1) + start;

}

public static double EaseInExpo(double timePassed, double start, double

distance, double duration)

{

if (timePassed == 0)

{

return start;

}

Chapter 8 ■ Game Math210

else

{

return distance * Math.Pow(2, 10 * (timePassed / duration - 1)) + start;

}

}

public static double EaseOutCirc(double timePassed, double start, double

distance, double duration)

{

return distance * Math.Sqrt(1 - (timePassed = timePassed / duration - 1) *

timePassed) + start;

}

public static double EaseInCirc(double timePassed, double start, double

distance, double duration)

{

return -distance * (Math.Sqrt(1 - (timePassed /= duration) * timePassed)

- 1) + start;

}

Using Tweens
Now that the tween class has been created, it is time to show off some of its
power. As always, this begins with a new game state being created. This one is
named TweenTestState.

This state requires the face texture used earlier in the book to be added to the
project and its ‘‘Copy To Output Directory’’ property set to ‘‘Copy if newer’’. In
the form constructor the face texture should be loaded into the
TextureManager.

_textureManager.LoadTexture("face", "face_alpha.tif");

With the texture loaded it can be now be used to make a sprite in the Tween-
TestState class.

class TweenTestState : IGameObject

{

Sprite _faceSprite = new Sprite();

Renderer _renderer = new Renderer();

Tween _tween= new Tween(0, 256, 5);

public TweenTestState(TextureManager textureManager)

Tweens 211

{

_faceSprite.Texture = textureManager.Get("face");

}

#region IGameObject Members

public void Process(double elapsedTime)

{

if (_tween.IsFinished() != true)

{

_tween.Process(elapsedTime);

_faceSprite.SetWidth((float)_tween.Value());

_faceSprite.SetHeight((float)_tween.Value());

}

}

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawSprite(_faceSprite);

_renderer.Render();

}

#endregion

}

The tween increases the width and height of the sprite from 0 all the way up to
256. Run the code and check out the animation. The sprite will enlarge in a
smooth pleasing way. The next change is only a tiny modification to the code but
results in a big change.

Tween _tween = new Tween(0, 256, 5, Tween.EaseInExpo);

Run the program again and now the sprite will slowly expand. Then the change
will accelerate as it comes to full size. One small change has totally changed the
way the animation plays out. This is a great way to tweak existing animations.
Try the rest of the tween functions and see what they do, play around with the
rest of the arguments, and get a feel for how it all works.

Tween _alphaTween = new Tween(0, 1, 5, Tween.EaseInCirc);

Color _color = new Color(1, 1, 1, 0);

public void Process(double elapsedTime)

Chapter 8 ■ Game Math212

{

if (_tween.IsFinished() != true)

{

_tween.Process(elapsedTime);

_faceSprite.SetWidth((float)_tween.Value());

_faceSprite.SetHeight((float)_tween.Value());

}

if (_alphaTween.IsFinished() != true)

{

_alphaTween.Process(elapsedTime);

_color.Alpha = (float)_alphaTween.Value();

_faceSprite.SetColor(_color);

}

}

Another tween has been added. This tween takes the transparency of the sprite
from zero up to full opacity. This is a great method to use to fade in text.
The position of the sprite can also be altered with a tween. Try tweening the
sprite from off-screen to the center. Another good exercise would be to tween the
sprite opacity from zero to one and then set off a tween that will reverse it; twe-
ening from one to zero. These can then be called one after another, looping the
tween.

Matrices
Matrices are used throughout graphics programming. There are many different
applications of matrices, but this section will concentrate only on those related to
graphics and game programming.

Matrices are mathematical structures that provide a convenient way to describe
and perform a number of operations on a 3D model or sprite made from a quad.
These operations include transforming (moving the models around 3D space),
rotating, scaling, sheering (making the shape lean in a certain direction), and
projecting (the conversion of a point in 3D space to 2D space, for example).
Many of these operations can be done manually; for instance, our sprite class
already performs the translation operation by adding vectors to each vertex
position.

A matrix has several advantages over a vector when performing such operations.
Different matrices can be combined with their operation into a single matrix that

Matrices 213

defines the combination of all those operations. For instance, a matrix that ro-
tates a model 90 degrees, a matrix that scales a model up two times, and a matrix
that moves the model two miles to the left can all be combined into a single
matrix that does all these operations at once. This is done by matrix multi-
plication—multiply the matrices together and the result will be a matrix that is
the combination of all the operations.

Combining operations is not the only advantage to matrices. A matrix can be
inverted; this will perform the opposite operation that the original matrix would
have performed. If a rotation matrix was created to rotate 5 degrees around the
Z axis, and it was then applied to a model, the model’s original position could be
restored by inverting the matrix and applying it again. Matrices are applied to a
model by multiplying each vertex by the matrix.

Matrix math can be quite dense; few game developers would be able to write the
code for matrix multiplication immediately when asked. The actual matrix op-
erations are quite simple, but it can take a while to understand them completely.
Don’t be discouraged, and if you want a more thorough understanding check the
recommended reading section in Appendix A.

What Is a Matrix?
A matrix is a grid of numbers. Like vectors, matrices come in many dimensions.
The vector we have defined has a dimension of three—X, Y, and Z. The most
commonly used matrix in 3D graphics is 4x4, as is shown in Figure 8.21.

Figure 8.21 shows the matrix described as three axis vectors and one position
vector: the origin. XxXyXz describes the x vector, YxYyYz the y vector, ZxZyZz the
z vector, and the origin vector is described as OxOyOz. These three vectors are the
axis of the model and its origin. These can be used to quickly determine an ob-
ject’s position and the direction it faces on the X, Y, and Z axes. If the axes are all
normalized, then the object isn’t scaled; if the axes all have a length of two, then
the object is scaled to be twice as big. This is a visual way of thinking about
matrices that makes them easier to use.

The final column in Figure 8.21 is [0, 0, 0, 1]. The values in this column will
never change; they are only used when computing projections (from 3D to 2D
space). Such projection operations aren’t that common so the matrix we’ll use
will be 4x3. The end column will always be [0, 0, 0, 1].

Chapter 8 ■ Game Math214

Before covering matrix operations, it’s time to make the basic class.

public class Matrix

{

double _m11,_m12,_m13;

double _m21,_m22,_m23;

double _m31,_m32,_m33;

double _m41,_m42,_m43;

}

Here is the Matrix class based on a 4x3 layout. Its member variables are laid out
in a similar way to Figure 8.18 but there is no fourth column (we know the fourth
column will always be [0, 0, 0, 1] so the values don’t need to be stored). The
Vector, Color, and Point components were all structures, but the Matrix is
a larger component so it has been declared as a class.

In the following sections, we’ll flesh out the Matrix class and add some opera-
tions to it.

The Identity Matrix
The identity matrix is the matrix that when multiplied by any other matrix will
not modify it in any way. The number 1 is an example of an identity in real
numbers; any number multiplied by 1 results in the original number unchanged.

Figure 8.21
A visual representation of a matrix.

Matrices 215

All matrix identities are square. Here are the identities for a 3�3 matrix and a
4�4 matrix.

1 0 0
0 1 0
0 0 1

2
4

3
5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

When creating a matrix operation, the identity is the perfect starting place. It
doesn’t do anything to the vertices it’s applied to so only the changes you apply
on top of the identity will be performed. If a matrix of all zeros was applied to any
model, then that model would disappear; all its vertices would be collapsed down
to a singularity like a black hole. The matrix class should by default be initialized
to the identity matrix.

Add these definitions to your matrix class.

public static readonly Matrix Identity =

new Matrix(new Vector(1, 0, 0),

new Vector(0, 1, 0),

new Vector(0, 0, 1),

new Vector(0, 0, 1));

public Matrix() : this (Identity)

{

}

public Matrix(Matrix m)

{

_m11= m._m11;

_m12= m._m12;

_m13= m._m13;

_m21= m._m21;

_m22= m._m22;

_m23= m._m23;

_m31= m._m31;

_m32= m._m32;

_m33= m._m33;

_m41= m._m41;

Chapter 8 ■ Game Math216

_m42= m._m42;

_m43= m._m43;

}

public Matrix(Vector x, Vector y, Vector z, Vector o)

{

_m11= x.X; _m12= x.Y; _m13= x.Z;

_m21= y.X; _m22= y.Y; _m23= y.Z;

_m31= z.X; _m32= z.Y; _m33= z.Z;

_m41= o.X; _m42= o.Y; _m43= o.Z;

}

This code adds a constant identity matrix and a number of constructors.
The default constructor initializes the members to the identity matrix by passing
the identity matrix to a copy constructor. The second constructor is the copy
constructor. A copy constructor is a constructor that is called with one parameter,
which is the same type as the object being constructed. The copy constructor co-
pies all its member data so that the created object is exactly the same. The final
constructor takes in a vector for each axis and one vector for the origin.

Matrix-Matrix and Vector-Matrix Multiplication
The most important methods of the Matrix class are its multiplication meth-
ods; these are used to combine matrices and transform on vertex positions.
Matrix multiplication can only be performed if the width of the first matrix
equals the height of the second. Matrix-matrix and vector-matrix multiplication
is performed using the same algorithm.

Here is the definition.

Ci;k ¼ Ai;jBj;k

C is the result from the multiplication, i is the length of the rows in matrix A,
and k is the length of the columns in matrix B. The j is the number of possible
summations of i and k. In matrix multiplication, different-shaped matrices can
result from the original shapes of the matrices that are multiplied. Again, don’t
worry if the math all seems a little intimidating; knowing how and when to use a
matrix is the most important lesson to take away.

The width of our matrix equals its height if we remember to include the final
column of [0, 0, 0, 1]. Therefore, using the multiplication definition, the code for
the matrix-matrix multiplication is as follows:

Matrices 217

public static Matrix operator *(Matrix mA, Matrix mB)

{

Matrix result = new Matrix();

result._m11 = mA._m11 * mB._m11+ mA._m12 * mB._m21+ mA._m13 * mB._m31;

result._m12 = mA._m11 * mB._m12+ mA._m12 * mB._m22+ mA._m13 * mB._m32;

result._m13 = mA._m11 * mB._m13+ mA._m12 * mB._m23+ mA._m13 * mB._m33;

result._m21 = mA._m21 * mB._m11+ mA._m22 * mB._m21+ mA._m23 * mB._m31;

result._m22 = mA._m21 * mB._m12+ mA._m22 * mB._m22+ mA._m23 * mB._m32;

result._m23 = mA._m21 * mB._m13+ mA._m22 * mB._m23+ mA._m23 * mB._m33;

result._m31 = mA._m31 * mB._m11+ mA._m32 * mB._m21+ mA._m33 * mB._m31;

result._m32 = mA._m31 * mB._m12+ mA._m32 * mB._m22+ mA._m33 * mB._m32;

result._m33 = mA._m31 * mB._m13+ mA._m32 * mB._m23+ mA._m33 * mB._m33;

result._m41 = mA._m41 * mB._m11+ mA._m42 * mB._m21+ mA._m43 * mA._m31+

mB._m41;

result._m42 = mA._m41 * mB._m12+ mA._m42 * mB._m22+ mA._m43 * mB._m32+

mB._m42;

result._m43 = mA._m41 * mB._m13+ mA._m42 * mB._m23+ mA._m43 * mB._m33+

mB._m43;

return result;

}

The vector matrix multiplication is similar.

public static Vector operator *(Vector v, Matrix m)

{

return new Vector(v.X * m._m11+ v.Y * m._m21+ v.Z * m._m31 + m._m41,

v.X * m._m12+ v.Y * m._m22 + v.Z * m._m32+ m._m42,

v.X * m._m13+ v.Y * m._m23 + v.Z * m._m33+ m._m43);

}

Translating and Scaling
Translation is a pretty simple operation. The last row of the vector is the origin of
the object; it is the translation. Creating a matrix to alter the translation is just the
identity matrix with the last row altered. Here is the translation matrix.

Chapter 8 ■ Game Math218

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

2
664

3
775

The code is also simple.

public void SetTranslation(Vector translation)

{

_m41= translation.X;

_m42= translation.Y;

_m43= translation.Z;

}

public Vector GetTranslation()

{

return new Vector(_m41, _m42, _m43);

}

The scaling matrix is also quite easy to understand. Remember, each row re-
presents an axis. The first row of the matrix can be thought of as a vector. This
vector is the X axis of whatever is being scaled; the greater its Xx dimension the
greater it’s scaled in that direction. The second row is the Y axis, the third row is
the Z axis, and they too can be thought of as vectors. If each of the vectors has a
length of 2, then the object is scaled uniformly along each axis.

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

2
664

3
775

public void SetScale(Vector scale)

{

_m11= scale.X;

_m22= scale.Y;

_m33= scale.Z;

}

Matrices 219

public Vector GetScale()

{

Vector result = new Vector();

result.X = (new Vector(_m11,_m12,_m13)).Length();

result.Y = (new Vector(_m21,_m22,_m23)).Length();

result.Z = (new Vector(_m31,_m32,_m33)).Length();

return result;

}

The scale can also be non-uniform. It can be scaled more along one axis than the
others. To find out the scale along a particular axis, just get the row and convert
it to a vector; then apply the vector length operation, and this will give you the
scaling amount.

Rotation
The math for rotating around an arbitrary axis is a lot more complicated than the
previous matrices. It’s not important to know exactly how this works; it’s more
important to know the result. The rotation matrix is made from an axis u which
is defined as a normalized vector and a scalar value (y) that describes the amount
of rotation in radians. If the model you wanted to rotate was a wine cork then the
normalized vector u could be represented by a needle pushed through the cork.
The angle (y) represents the amount the needle is rotated which in turn rotates
the cork.

1þð1�cos�Þðu2x�1Þ ð1�cos�Þuxuy�uz sin� ð1�cos�Þuxuzþuy sin� 0
ð1�cos�Þuxuyþuz sin� 1þð1�cos�Þðu2

y�1Þ ð1�cos�Þuyuz�ux sin� 0

ð1�cos�Þuxuz�uy sin� ð1�cos�Þuyuzþux sin� 1þð1�cos�Þðu2
z�1Þ 0

0 0 0 1

2
664

3
775

public void SetRotate(Vector axis, double angle)

{

double angleSin = Math.Sin(angle);

double angleCos = Math.Cos(angle);

double a = 1.0 - angleCos;

double ax = a * axis.X;

double ay = a * axis.Y;

double az = a * axis.Z;

Chapter 8 ■ Game Math220

_m11= ax * axis.X + angleCos;

_m12= ax * axis.Y + axis.Z * angleSin;

_m13= ax * axis.Z - axis.Y * angleSin;

_m21= ay * axis.X - axis.Z * angleSin;

_m22= ay * axis.Y + angleCos;

_m23= ay * axis.Z + axis.X * angleSin;

_m31= az * axis.X + axis.Y * angleSin;

_m32= az * axis.Y - axis.X * angleSin;

_m33= az * axis.Z + angleCos;

}

Sine and cosine can be expensive operations if they are used many times a frame,
and for that reason, their use in the code is minimized. The axis vector should be
normalized, but there is no check in the SetRotate function.

Inverse
The inverse is very useful for reversing the operations of a given matrix. To cal-
culate the inverse, the determinate of the matrix is required. Every square matrix
has its own determinate. A matrix is invertible only if the determinate doesn’t
equal zero.

public double Determinate()

{

return _m11* (_m22* _m33- _m23* _m32)+

_m12* (_m23* _m31- _m21* _m33)+

_m13* (_m21* _m32- _m22* _m31);

}

The determinate can then be used to calculate the inverse of the top 3�3 of the
matrix—the scale and rotation parts. The translation part of the matrix is cal-
culated manually.

public Matrix Inverse()

{

double determinate = Determinate();

System.Diagnostics.Debug.Assert(Math.Abs(determinate) >

Double.Epsilon,

Matrices 221

"No determinate");

double oneOverDet = 1.0 / determinate;

Matrix result = new Matrix();

result._m11 = (_m22* _m33- _m23* _m32)* oneOverDet;

result._m12 = (_m13* _m32- _m12* _m33)* oneOverDet;

result._m13 = (_m12* _m23- _m13* _m22)* oneOverDet;

result._m21 = (_m23* _m31- _m21* _m33)* oneOverDet;

result._m22 = (_m11* _m33- _m13* _m31)* oneOverDet;

result._m23 = (_m13* _m21- _m11* _m23)* oneOverDet;

result._m31 = (_m21* _m32- _m22* _m31)* oneOverDet;

result._m32 = (_m12* _m31- _m11* _m32)* oneOverDet;

result._m33 = (_m11* _m22- _m12* _m21)* oneOverDet;

result._m41 = -(_m41 * result._m11 + _m42* result._m21 + _m43*

result._m31);

result._m42 = -(_m41 * result._m12 + _m42* result._m22 + _m43*

result._m32);

result._m43 = -(_m41 * result._m13 + _m42* result._m23 + _m43*

result._m33);

return result;

}

With this code, any matrix we will be using can be inverted.

That’s it for the Matrix class; it’s now useful for both 2D and 3D applications.
Next, we will apply it.

Matrix Operations on Sprites
Create a new game state called MatrixTestState. This state will draw a sprite
and apply various matrices to that sprite. Here is the code to just draw the sprite,
which should be quite familiar to you by now.

class MatrixTestState : IGameObject

{

Sprite _faceSprite = new Sprite();

Chapter 8 ■ Game Math222

Renderer _renderer = new Renderer();

public MatrixTestState(TextureManager textureManager)

{

_faceSprite.Texture = textureManager.Get("face");

Gl.glEnable(Gl.GL_TEXTURE_2D);

}

public void Render()

{

Gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawSprite(_faceSprite);

_renderer.Render();

}

public void Update(double elapsedTime)

{

}

}

This code uses the face sprite from the earlier chapters. The matrices will be
applied to the sprite in the MatrixTestState constructor.

Matrix m = new Matrix();

m.SetRotate(new Vector(0, 0, 1), Math.PI/5);

for (int i = 0; i < _faceSprite.VertexPositions.Length; i++)

{

_faceSprite.VertexPositions[i] *= m;

}

Run the code and you will notice that the face has been rotated. The rotation is
done along the Z axis (0, 0, 1); this is the axis that comes out of the screen.
Imagine the face sprite is a piece of paper on the screen. To rotate it, you stick a
pin through it, attaching it to the screen and damaging your monitor! The pin
represents the Z axis. Spinning the paper sprite now will spin it around that axis.
For 2D objects in an orthographic projection, the Y axis and Z axis aren’t very
useful for rotations, but they would be useful in a 3D game. Any normalized axis
can be used to rotate an object, not just the major X, Y, and Z axes.

In the code example, the rotation amount is given in radians Math.PI/5, which
is equivalent to 36 degrees. The rotation matrix is applied to each vertex that
makes up the sprite. We’ve now used one matrix that slightly rotates the sprite;

Matrices 223

let’s add another matrix that will scale it. The scale matrix will be combined with
the rotation matrix by multiplying them. Modify the existing code in the con-
structor so it looks like the code here:

Matrix m = new Matrix();

m.SetRotate(new Vector(0, 0, 1),Math.PI/5);

Matrix mScale = new Matrix();

mScale.SetScale(new Vector(2.0, 2.0, 0.0));

m *= mScale;

for (int i = 0; i < _faceSprite.VertexPositions.Length; i++)

{

_faceSprite.VertexPositions[i] *= m;

}

This code creates a scale matrix that scales the X and Y axis by 2. This is com-
bined with the rotation matrix by multiplying them together and assigning the
result to the matrix m. This new combined m matrix is then applied to the face
sprite, scaling and rotating it. The order of matrix multiplication is important;
multiplying matrix a by matrix b is not guaranteed to have the same result as
matrix b by matrix a. Play around with different matrices to get a good idea of
how they work together.

The final code snippet will demonstrate the inverse matrix. The inverse matrix
reverses a matrix operation. If rotate-scale matrix was multiplied by its inverse
matrix, then the result would be the identity matrix. The identity matrix will not
have any effect on the sprite when it is applied to it.

Matrix m = new Matrix();

m.SetRotate(new Vector(0, 0, 1),Math.PI/5);

Matrix mScale = new Matrix();

mScale.SetScale(new Vector(2.0, 2.0, 2.0));

m *= mScale;

Vector scale = m.GetScale();

m *= m.Inverse();

for (int i = 0; i < _faceSprite.VertexPositions.Length; i++)

Chapter 8 ■ Game Math224

{

_faceSprite.VertexPositions[i] *= m;

}

Experiment with the translation matrix as well, and try combining the matrices
in different orders.

Modifying the Sprite to Use Matrices
The sprite currently has a translation method SetPosition, but it doesn’t
have similar SetScale or SetRotation methods. These would be very useful
functions to add and would be great to use with the tween functions. Modifying
the sprite class is quite simple but some additional members and methods need
to be added.

double _scaleX = 1;

double _scaleY = 1;

double _rotation = 0;

double _positionX = 0;

double _positionY = 0;

public void ApplyMatrix(Matrix m)

{

for (int i = 0; i < VertexPositions.Length; i++)

{

VertexPositions[i] *= m;

}

}

public void SetPosition(Vector position)

{

Matrix m = new Matrix();

m.SetTranslation(new Vector(_positionX, _positionY, 0));

ApplyMatrix(m.Inverse());

m.SetTranslation(position);

ApplyMatrix(m);

_positionX = position.X;

_positionY = position.Y;

}

Matrices 225

public void SetScale(double x, double y)

{

double oldX = _positionX;

double oldY = _positionY;

SetPosition(0, 0);

Matrix mScale = new Matrix();

mScale.SetScale(new Vector(_scaleX, _scaleY, 1));

mScale = mScale.Inverse();

ApplyMatrix(mScale);

mScale = new Matrix();

mScale.SetScale(new Vector(x, y, 1));

ApplyMatrix(mScale);

SetPosition(oldX, oldY);

_scaleX = x;

_scaleY = y;

}

public void SetRotation(double rotation)

{

double oldX = _positionX;

double oldY = _positionY;

SetPosition(0, 0);

Matrix mRot = new Matrix();

mRot.SetRotate(new Vector(0, 0, 1), _rotation);

ApplyMatrix(mRot.Inverse());

mRot = new Matrix();

mRot.SetRotate(new Vector(0, 0, 1), rotation);

ApplyMatrix(mRot);

SetPosition(oldX, oldY);

_rotation = rotation;

}

These extra functions allow the sprite to be rotated and scaled as needed. They
are a little more expensive, but it’s very easy to transfer these functions to a 3D
model. These functions can be trimmed down quite a bit to gain a performance
boost.

Optimization
It’s important to focus on games and only optimize when it’s needed. For most
games, the matrix class is already as fast as it needs to be, but programmers, as a

Chapter 8 ■ Game Math226

rule, like to optimize, so here are some pointers. Matrices involve a lot of ar-
ithmetic so reducing the use of matrices is generally a good thing. The most
optimized code is the code that never runs.

At the moment, each sprite is made of two triangles, making a total of six ver-
tices, but really, a sprite could be made with a mere four vertices. A good starting
point to address this would be investigating the index buffer functions in the
OpenGL documentation.

Modern CPUs have specialized hardware, SIMD (which stands for Single In-
struction, Multiple Data), to do matrix and vector operations. The SIMD in-
structions dramatically increase the speed of matrix calculations. Unfortunately,
at the time of writing, SIMD operations are only supported under the Mono
implementation of C#.

Most of your test programs will be built in debug mode. Release mode is much
faster. There is also an option to turn on optimization if you right-click the
project in the solution explorer and choose Properties.

Garbage collection is one thing that can make C# slower than a language like
C++. The best way to avoid slow down from the garbage collection is to reduce
the amount of objects created in the main loop. You are creating an object any
time you use the keyword new. Objects are best created once in the constructor
or defined as a member of the object and not in the process or render loops.

Some of the matrix operations create matrices. It makes them convenient to use
and a lot of the object creation will be optimized away, but they can be made
more efficient. When debugging, if you right-click the window, there’s an option
called ‘‘Go to Disassembly.’’ This shows the IL (intermediate language) gener-
ated by each line of the C# code. The fewer IL instructions, the faster the code will
run, provided the release build optimization doesn’t already remove these IL
instructions for you. Unfortunately, any optimizations the compiler performs
will generally not be shown in the disassembly.

Matrices 227

This page intentionally left blank

chapter 9

Making the Game
Engine

The previous chapters have developed an excellent reusable body of code. Rather
than copy this code from project to a project, it should be collected together in its
own awesome engine library. It can then be shared by several game projects so
that all changes and improvements happen in one place.

A New Game Engine Project
The game engine project will be unlike any of the projects we’ve created so far.
The game engine doesn’t run by itself; instead, it is used by a separate game
project. This means the game engine is more correctly referred to as a library
rather than a program. As you learn more techniques, you can add more code to
this library and tune it to your needs. Figure 9.1 shows how the library can be
used by several projects at once.

Close any projects in Visual Studio and start a new project by going to File > New
Project. This will bring up a dialog box, as shown in Figure 9.2. Choose the Class
Library option. The game engine will be a library used by other projects. Next to
the name, I’ve chosen simply ‘‘Engine,’’ but this is your game engine so name it
whatever you like.

If you are using Visual Studio 2008 it’s important to remember to change the
build type to �86. This is because the DevIL libraries are currently only available
for 32-bit projects. Right-click the project, choose Properties, and click the Build
tab. On the Configuration drop-down box, choose All Configurations, then on

229

the Platform Target drop-down box chose �86. The settings can be seen in
Figure 9.3. If your result doesn’t look like Figure 9.3, you’re already set up for 32
bit. In Visual Studio 2010, these settings should be handled automatically. If you

Figure 9.1
Using the game engine library.

Figure 9.2
Create a class library project.

Chapter 9 ■ Making the Game Engine230

do need to edit the build targets in 2010, then right-click the solution in the
solution explorer and open the Properties window. In the Properties dialog, click
on Configuration and then click Configuration Manager. In the Configuration
Manager, you can add the �86 platform and then select it for the engine project.

The next step is to add all the classes, tests, and references that make up the engine
and then add the new project to source control. You can add the Tao references
by clicking the browse tab of the Add References dialog and manually browsing to
the dll files, which should be in the Tao framework install directory (with Vista
and Windows 7 it will probably be C:\Program Files (�86)\TaoFramework\bin
and for Windows XP it should be C:\Program Files\TaoFramework\bin).
Alternatively, you may find the libraries already exist under the Recent tab in Add
References dialog.

Figure 9.3
Settings for a 32-bit project.

A New Game Engine Project 231

The references required are

■ Tao framework OpenGL binding for .NET

■ Tao framework Tao.DevIL binding for .NET

■ Tao framework Windows Platform API binding for .NET

■ nuint.framework

■ System.Drawing

■ System.Windows.Forms

The core engine components are

■ Batch

■ CharacterData

■ CharacterSprite

■ Color

■ FastLoop

■ Font

■ FontParser

■ IGameObject

■ Input

■ Matrix

■ Point

■ PreciseTimer

■ Renderer

■ Sprite

■ StateSystem

Chapter 9 ■ Making the Game Engine232

■ Text

■ Texture

■ TextureManager

■ Tween

■ Vector

These core engine classes should all be set to public. If they are private,
protected, or internal then any game using the engine library will not be
able to access them. There may also be private, protected, or internal
functions that now need to be made public so that they may be accessed from
the library; change these to public as you encounter them.

As you develop games, you can extend the engine with useful code you create.
The engine should never have any gameplay code for a specific game; the engine
should be general enough to form the basis of many different games.

Extending the Game Engine
The classes we’ve created so far cover a good deal of what is desirable in a game
engine. There are a few omissions: the input library could be better developed,
there is no support for handling multiple textures, and there is no support for
sound. These are all simple changes that will round out the engine.

You may notice that if you try to run the game engine project, you’ll receive this
error: ‘‘A project with an Output Type of Class Library cannot be started di-
rectly.’’ Class libraries have no main function; they do not directly run code.
Instead, other projects make use of the code they contain. That means if you
want to test part of the engine you’ll need to make a new project that uses the
engine.

Using the Game Engine in a Project
A new project needs to be created that will make use of the new engine class. This
project will be used to run the engine code and test the various improvements
we’ll be making.

Close the engine project in Visual Studio and start a new project by selecting
File > New > Project. This time choose a Windows Form Application instead of a

Extending the Game Engine 233

Class Library. This project is going to be used to test the engine library so call it
‘‘EngineTest.’’ Click OK and a new project will be generated.

This project now needs to load the engine library. Visual Studio uses two terms:
Solution and Project. Each time we’ve started a new project, Visual Studio has
created a solution to contain that project. The solution usually shares the same
name as the main project; in this case, there is a solution called EngineTest that
contains a project with the same name. This can be seen in the solution explorer
shown in Figure 9.4.

A solution can contain several different projects. Our EngineTest solution needs
to contain the engine project so that it can use the engine code. It’s very simple to
add new projects. Right-click the EngineTest solution in the solution explorer;

Figure 9.4
A solution with one project.

Chapter 9 ■ Making the Game Engine234

this will display a context menu as can be seen in Figure 9.5. Choose
Add > Existing Project and the Add Existing Project dialog box will appear.

The dialog will provide a view of the project directory on your machine (see
Figure 9.6). One of these subdirectories will contain your engine library. Visual
Studio displays the solution and its projects using a directory structure. Open the
Engine folder (if you named your game engine some other name, then find
the corresponding folder). Inside this folder is another folder called Engine. (The
first Engine folder is the solution and the second engine folder is the project.)
Open the second Engine folder. Inside this folder is a file called Engine.csproj;
this is the file that represents the C# program. Open this file.

The solution explorer will now have two projects: Engine, the class library, and
EngineTest, the project that will use the engine library. The engine library project

Figure 9.5
Adding a project to a solution.

Extending the Game Engine 235

hasn’t been copied across to the EngineTest solution; it’s just a reference. All its
code stays in the same place. This makes it easier to work with several projects
using the engine library but without duplicating the code. The Engine code can
be edited from any solution and all the changes will be shared with all projects
using the library.

You may notice that the font for the EngineTest project is in bold. This is because
when you run the solution, the EngineTest project will be executed. A solution
might contain several projects that could generate executables, and the Solution
Explorer needs to know which project you want to run and debug. You can make
the Engine project the start-up project by right-clicking its name in the Solution
Explorer and choosing Set as Start Up Project. The Engine project’s name will
now turn bold, and the EngineTest project name will turn non-bold. Running
the project will produce an error stating class libraries are not executable. Right-
click the TestEngine project and set that as the start-up project again so you can
once again run the solution. This functionality is useful if you also wanted to
develop a level editor or other tool for your game. It could be added to the
solution as an additional project that makes use of the engine and game project.

Engine and TestEngine exist in the same solution, but at the moment they do not
have access to each other. TestEngine needs to access the code in Engine, but
Engine should never need to know about the TestEngine project. In the Solution

Figure 9.6
List of Solution folders.

Chapter 9 ■ Making the Game Engine236

Explorer, expand the EngineTest project; beneath the project is a References
folder, as shown in Figure 9.7.

Right-click the Folder icon and choose Add Reference from the context menu.
This will bring up the dialog box that we’ve used before to add references to NUnit
and the Tao libraries. The Add Reference dialog box has a number of tabs along its
top; by default, the .NET tab is selected. The .NET tab lists all the references to
.NET libraries that are installed on the computer. This time we want to include a
reference to the Engine project. Click the Projects tab, as shown in Figure 9.8.

There is only one project; select it and press OK. Now the EngineTest project
has a reference to the Engine project. It also needs the following .NET
references added; System.Drawing, Tao.OpenGL, Tao.DevIL, and

Figure 9.7
The References folder.

Extending the Game Engine 237

Tao.Platforms.Window . This is so the SimpleOpenGL control can be
added to the form and OpenGL can be set up. Some of this could be moved into
the engine library using a default set up class. The dll files for DevIL, ILU, and
ILUT need to be copied to the bin/debug/ and bin/release/ directories
of the EngineTest project.

Drop a SimpleOpenGL control on to the EngineTest form and set its dock
property to fill, the same way that you have done for earlier projects. Now
view the form.cs code.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace EngineTest

{

public partial class Form1 : Form

Figure 9.8
Adding a project as a reference.

Chapter 9 ■ Making the Game Engine238

{

public Form1()

{

InitializeComponent();

}

}

}

This is default code created by Visual Studio for a Windows Form project. The
using statements at the top refer to the different libraries the form is using.
Now that we have an Engine project, a new using statement can be added.

using Engine;

This will provide access to all the classes in the engine library. The normal setup
code also needs to be written. Here is the default setup code for a new game
project.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using Tao.OpenGl;

using Tao.DevIl;

using Engine;

namespace EngineTest

{

public partial class Form1 : Form

{

bool _fullscreen = false;

FastLoop _fastLoop;

StateSystem _system = new StateSystem();

Input _input = new Input();

TextureManager _textureManager = new TextureManager();

public Form1()

Extending the Game Engine 239

{

InitializeComponent();

simpleOpenGlControl1.InitializeContexts();

InitializeDisplay();

InitializeTextures();

InitializeGameState();

_fastLoop = new FastLoop(GameLoop);

}

private void InitializeGameState()

{

// Load the game states here

}

private void InitializeTextures()

{

// Init DevIl

Il.ilInit();

Ilu.iluInit();

Ilut.ilutInit();

Ilut.ilutRenderer(Ilut.ILUT_OPENGL);

// Load textures here using the texture manager.

}

private void UpdateInput()

{

System.Drawing.Point mousePos = Cursor.Position;

mousePos = simpleOpenGlControl1.PointToClient(mousePos);

// Now use our point definition,

Engine.Point adjustedMousePoint = new Engine.Point();

adjustedMousePoint.X = (float)mousePos.X - ((float)ClientSize.

Width / 2);

adjustedMousePoint.Y = ((float)ClientSize.Height / 2) - (float)

mousePos.Y;

_input.MousePosition = adjustedMousePoint;

}

private void GameLoop(double elapsedTime)

Chapter 9 ■ Making the Game Engine240

{

UpdateInput();

_system.Update(elapsedTime);

_system.Render();

simpleOpenGlControl1.Refresh();

}

private void InitializeDisplay()

{

if (_fullscreen)

{

FormBorderStyle = FormBorderStyle.None;

WindowState = FormWindowState.Maximized;

}

else

{

ClientSize = new Size(1280, 720);

}

Setup2DGraphics(ClientSize.Width, ClientSize.Height);

}

protected override void OnClientSizeChanged(EventArgs e)

{

base.OnClientSizeChanged(e);

Gl.glViewport(0, 0, this.ClientSize.Width, this.ClientSize.

Height);

Setup2DGraphics(ClientSize.Width, ClientSize.Height);

}

private void Setup2DGraphics(double width, double height)

{

double halfWidth = width / 2;

double halfHeight = height / 2;

Gl.glMatrixMode(Gl.GL_PROJECTION);

Gl.glLoadIdentity();

Gl.glOrtho(-halfWidth, halfWidth, -halfHeight, halfHeight,

-100, 100);

Gl.glMatrixMode(Gl.GL_MODELVIEW);

Gl.glLoadIdentity();

}

}

}

Extending the Game Engine 241

This same type of setup code can be used to start any number of projects, so it’s
worth keeping it as a file somewhere or refactoring it into the engine. The Up-
dateInput code has had to change from our earlier examples. There are two
classes with the same name—Point. One Point is from System.Drawing
and the other is from our Engine library. To let the compiler know which point
we mean, the fully qualified name is used; for example:

// Using the fully qualified name removes potential confusion.

System.Drawing.Point point = new System.Drawing.Point();

Engine.Point point = new Engine.Point();

Running this test program will produce a blank screen, which means that ev-
erything is working as expected. This project can now be used to run any engine
tests required. Extra game states can be added as required. The engine currently
doesn’t support multiple textures very well so that will be the next change.

Multiple Textures
The engine library currently handles sprites with differing textures poorly. To
demonstrate how it handles different textures, create a new game state called
MultipleTexturesState . As with earlier states, this should implement
IGameObject and be loaded using the StateSystem. This state will be test-
ing the texture system; therefore, it will also need to take a TextureManager
object in its constructor. The loading code can be placed in the In-
itializeGameState method in form.cs.

private void InitializeGameState()

{

// Load the game states here

_system.AddState("texture_test", new MultipleTexturesState

(_textureManager));

_system.ChangeState("texture_test");

}

This new state will need to create sprites with different textures. Two new tex-
tures are provided on the CD in the Assets directory: spaceship.tga and space-
ship2.tga. These are large low detail sprites of two different spaceships. Add these
.tga files to the solution and set the properties so that they will be copied into the
build directory.

Chapter 9 ■ Making the Game Engine242

The new textures need to be loaded into the TextureManager; this is done in
the IntializeTextures method.

// Load textures here using the texture manager.

_textureManager.LoadTexture("spaceship", "spaceship.tga");

_textureManager.LoadTexture("spaceship2", "spaceship2.tga");

Now that the textures are loaded, they can be used in the MultipleTextures
State.

class MultipleTexturesState : IGameObject

{

Sprite _spaceship1 = new Sprite();

Sprite _spaceship2 = new Sprite();

Renderer _renderer = new Renderer();

public MultipleTexturesState(TextureManager textureManager)

{

_spaceship1.Texture = textureManager.Get("spaceship");

_spaceship2.Texture = textureManager.Get("spaceship2");

// Move the first spaceship, so they're not overlapping.

_spaceship1.SetPosition(-300, 0);

}

public void Update(double elapsedTime) {}

public void Render()

{

_renderer.DrawSprite(_spaceship1);

_renderer.DrawSprite(_spaceship2);

_renderer.Render();

}

}

The state creates two sprites, one for each of the spaceship textures. The first
spaceship is moved back 300 pixels on the X axis. This prevents the spaceships
from overlapping. Run this state and you will see something similar to Figure 9.9.

In Figure 9.9, the second spaceship is drawn correctly, but the first one has the
wrong texture. The first spaceship’s sprite is the correct dimensions for its

Extending the Game Engine 243

texture so it seems squashed compared to the second spaceship sprite, which has
both correct dimensions and the correct texture.

The problem here is that the OpenGL is never being told when the texture chan-
ges. If it doesn’t know, it uses whatever texture was set last. In the game loop a lot
of texture changing per frame can slow things down, but a moderate amount of
texture changing is nothing to worry about and indeed is essential for most games.

The class that needs to be modified is the Renderer class. The Renderer class
batches up all the sprites so that they can be sent to the graphics card all at once.
At the moment the Renderer class doesn’t check which texture a sprite uses. It
needs to check to see if it’s drawing something with a new texture. If it is, then it
can tell OpenGL to draw whatever has been batched so far with the old texture
and then start a new batch using this new texture.

Here’s the current Renderer.DrawSprite code.

public void DrawSprite(Sprite sprite)

{

_batch.AddSprite(sprite);

}

Figure 9.9
Incorrect texturing.

Chapter 9 ■ Making the Game Engine244

The extra logic transforms it to this code.

int _currentTextureId = -1;

public void DrawSprite(Sprite sprite)

{

if (sprite.Texture.Id == _currentTextureId)

{

_batch.AddSprite(sprite);

}

else

{

_batch.Draw(); // Draw all with current texture

// Update texture info

_currentTextureId = sprite.Texture.Id;

Gl.glBindTexture(Gl.GL_TEXTURE_2D, _currentTextureId);

_batch.AddSprite(sprite);

}

}

Rerun the project and you should see something similar to Figure 9.10.

Figure 9.10
Correct texturing.

Extending the Game Engine 245

The code isn’t quite as simple as before, but it now allows the engine to support
sprites with different textures. You might be thinking about the worst case
situation for this code; every single sprite that’s drawn may force a texture
change. The way to avoid this is to sort out the things being drawn and ensure
that the maximum numbers of vertices that are using the same texture are sent
together. There is another way to minimize the number of texture changes. In-
stead of using lots of separate small textures, textures are grouped together and
combined into a bigger texture; this is often referred to as a texture atlas. Sprites
can then reference this big texture but change the U,V coordinates of their ver-
tices so they only use a small part of it (this is how the font rendering works).
Generally, if it’s not a problem, then don’t try to fix it!

Adding Sound Support
Sound is very easy to ignore, but it can change the feeling of how a game plays.
Sound is also very easy to add using the excellent OpenAL library. Before wor-
rying about the details, think about how a very simple sound library interface
might work using a code sketch.

SoundManager soundManager = new SoundManager();

soundManager.Add("zap", "zap.wav");

Sound zapSound = soundManager.Play("zap")

if (soundManager.IsSoundPlaying("zap"))

{

soundManager.StopPlaying(zapSound);

}

This code indicates that a sound library should manage sounds in a similar way
to the texture manager. When a sound is played, a reference will be returned.
The reference can be used to control the sound; check if it’s playing with the
IsSoundPlaying method or stop it playing with the StopPlaying method.
It would also be nice to have looping sounds and a volume control.

Creating Sound Files
To test the new sound code, some sounds will be needed. Broadly speaking,
games have two categories of sound: sound effects like a gun shooting and
background music or ambient sound.

Chapter 9 ■ Making the Game Engine246

A great way to generate sound effects is to use the hard to pronounce sfxr pro-
gram created by Tomas Pettersson. It’s available on the CD and be can seen in
Figure 9.11.

Sfxr is a program that randomly generates sound effects for games. The sound
effects sound a little like those that might have been generated by NES consoles.
Keep clicking the Randomize button and new sounds will be generated. Once
you’ve found a sound you like, it can be exported as a wave file. I’ve included two
generated sound effects called soundeffect1.wav and soundeffect2.wav in the
Assets directory on the CD. These should be added to the TestEngine project in
the same way the textures were added. Sfxr sounds are great for retro-style games
or placeholder sounds.

Developing a SoundManager
OpenAL is a professional-level library used by many modern games, so it has a
wide range of support for more advanced sound effects, such as playing sounds
from a 3D position. It also has functions to generate the Doppler Effect.

Figure 9.11
Creating sound effects with sfxr.

Adding Sound Support 247

A common example of the Doppler Effect is a police car or ambulance driving
past—as the vehicle passes, the frequency of the siren changes. Because the game
we’ll be making will be 2D, we won’t use this functionality, but it can be very
useful. Dig around the documentation and experiment with the library to get the
full benefit from it.

To start using OpenAL the reference needs to be added to the engine library
project. It’s called ‘‘Tao Framework Tao.OpenAl Binding for .NET.’’ If it is not
listed under the .NET tab of the Add Reference dialog then choose the Browse
tab and navigate to the Tao framework install directory \TaoFramework\bin
and choose it from there. OpenAL also requires alut.dll, ILU.dll, and OpenAL32.dll
to be copied to the bin/debug and bin/release directories. These dll files
can be found in your Tao Framework install directory, \TaoFramework\lib.
A skeleton class can then be created based on the simple idealized API and how
the TextureManager works. First, a sound class needs to be made. This class
will represent a sound being played.

public class Sound

{

}

This sound class can then be used to build up the sound manager skeleton class.
Remember these classes should be added to the engine project because this code
can be used by many games.

public class SoundManager

{

public SoundManager()

{

}

public void LoadSound(string soundId, string path)

{

}

public Sound PlaySound(string soundId)

{

return null;

}

public bool IsSoundPlaying(Sound sound)

Chapter 9 ■ Making the Game Engine248

{

return false;

}

public void StopSound(Sound sound)

{

}

}

Sound hardware can only play a limited number of sounds at the same time. The
number of sounds that can be played is known as the number of channels.
Modern sound hardware can often play up to 256 sounds at the same time. The
OpenAL way to discover how many sound channels are available is to keep re-
questing channels and when the hardware can’t give any more, then you have the
maximum number.

readonly int MaxSoundChannels = 256;

List <int> _soundChannels = new List<int>();

public SoundManager()

{

Alut.alutInit();

DicoverSoundChannels();

}

private void DicoverSoundChannels()

{

while (_soundChannels.Count < MaxSoundChannels)

{

int src;

Al.alGenSources(1, out src);

if (Al.alGetError()== Al.AL_NO_ERROR)

{

_soundChannels.Add(src);

}

else

{

break; // there's been an error - we've filled all the channels.

}

}

}

Adding Sound Support 249

Each sound channel is represented by a number so the available sound channels
can simply be stored as a list of integers. The SoundManager constructor
initializes OpenAL and then discovers all the sound channels up to a maximum
of 256. The OpenAL function alGenSources generates a sound source that
reserves one of the channels. The code then checks for errors; if an error is
detected that means that OpenAL is unable to generate anymore sound sources
so it’s time to break out of the loop.

Now that sound sources are being discovered, it’s time to start adding this to the
EngineTest project. The sound manager should exist in the form.cs class and
then be passed through to any state that wants to use it.

public partial class Form1 : Form

{

bool _fullscreen = false;

FastLoop _fastLoop;

StateSystem _system = new StateSystem();

Input _input = new Input();

TextureManager _textureManager = new TextureManager();

SoundManager _soundManager = new SoundManager();

The last line creates the sound manager object and it will discover the number of
sound channels available. The next step is to load files from the hard disk into
memory. A new structure needs to be created to hold the data for the sound files
loaded from the disk.

public class SoundManager

{

struct SoundSource

{

public SoundSource(int bufferId, string filePath)

{

_bufferId = bufferId;

_filePath = filePath;

}

public int _bufferId;

string _filePath;

}

Dictionary<string, SoundSource> _soundIdentifier = new

Dictionary<string, SoundSource>();

Chapter 9 ■ Making the Game Engine250

The SoundSource structure stores information about the loaded sounds. It
will only ever be used internally by the sound manager so the structure exists
inside the SoundManager class. When sound data is loaded in OpenAL an in-
teger will be returned; this is used to keep a reference of the sound for when it
needs to be played. The sound identifier maps a sound’s name onto the sound
data in memory. The dictionary will be a big table of all the sounds available to
the game with an easy English language string to identify each one.

To load a sound file the using System.IO; statement needs to added to the
top of the file. The LoadSound function will fill up the _soundIdentifier
dictionary with game sounds.

public void LoadSound(string soundId, string path)

{

// Generate a buffer.

int buffer = -1;

Al.alGenBuffers(1, out buffer);

int errorCode = Al.alGetError();

System.Diagnostics.Debug.Assert(errorCode == Al.AL_NO_ERROR);

int format;

float frequency;

int size;

System.Diagnostics.Debug.Assert(File.Exists(path));

IntPtr data = Alut.alutLoadMemoryFromFile(path, out format, out size,

out frequency);

System.Diagnostics.Debug.Assert(data != IntPtr.Zero);

// Load wav data into the generated buffer.

Al.alBufferData(buffer, format, data, size, (int)frequency);

// Everything seems ok, add it to the library.

_soundIdentifier.Add(soundId, new SoundSource(buffer, path));

}

The LoadSound method first generates a buffer. This buffer is an area in
memory where the sound data from the disk will be stored. The OpenAL utility
function alutLoadMemoryFromFile is used to read the data for a .wav into
memory. The memory containing the file data is then put into the buffer along
with the format, size, and frequency data that was also read in. This buffer is then
put into our dictionary using the soundId to identify it later.

Adding Sound Support 251

The sounds added to the project can now be loaded up using the sound manager.

public Form1()

{

InitializeComponent();

simpleOpenGlControl1.InitializeContexts();

InitializeDisplay();

InitializeSounds(); // Added

InitializeTextures();

InitializeGameState();

The InitializeSound method will be responsible for loading in all the sound
files.

private void InitializeSounds()

{

_soundManager.LoadSound("effect", "soundEffect1.wav");

_soundManager.LoadSound("effect2", "soundEffect2.wav");

}

To test the sound manager, we really need some code that will let these sounds be
played. When OpenAL plays a sound, it returns an integer that is used to re-
ference the sound being played. For our sound manager we are going to wrap
that integer up in the Sound class; this gives it more context in the code. Instead
of just being a random integer, it’s now a typed sound object. If there is an error
playing the sound, then minus one will be returned. Here’s the Sound class that
will wrap up OpenAL’s reference integer.

public class Sound

{

public int Channel { get; set; }

public bool FailedToPlay

{

get

{

// minus is an error state.

return (Channel == -1);

}

}

Chapter 9 ■ Making the Game Engine252

public Sound(int channel)

{

Channel = channel;

}

}

Now that the sound wrapper class is properly defined a PlaySound method can
be added. A sound has to be played on a channel. There are only a limited
number of channels so it is possible that all the channels are full. In this case the
sound won’t be played. This is a very simple heuristic, but for games with hun-
dreds of sounds going off at once, it may be better to give each sound a priority
and then the sounds of high priority can take over the channels of those sounds
with a lower priority. The priority value would probably be linked to the sound’s
volume and distance from the player.

A method needs to be written that will determine if a given channel is free or not.
An easy way to determine if a channel is free is to ask OpenAL if it is currently
playing anything on that channel. If nothing is being played on the channel then
it is free. This new IsChannelPlaying method should be added to the
SoundManager class.

private bool IsChannelPlaying(int channel)

{

int value = 0;

Al.alGetSourcei(channel, Al.AL_SOURCE_STATE, out value);

return (value == Al.AL_PLAYING);

}

The OpenAL function alGetSourcei queries a particular channel about some
property. The property is determined by the second argument; in this case we’re
asking what the current state of the source is. The size and speed of the sound on
the channel can also be queried in this way. The IsChannelPlaying function
checks to see if the channel’s current state is set to playing; if so it returns true,
otherwise false.

With the IsChannelPlaying function defined we can now use it to build up
another function that will return a free channel. This new function will be called
GetNextFreeChannel and will iterate through the list of channels that the
function DicoverSoundChannels made in the constructor. If it can’t find a
sound channel free it will return minus one as an error flag.

Adding Sound Support 253

private int FindNextFreeChannel()

{

foreach (int slot in _soundChannels)

{

if (!IsChannelPlaying(slot))

{

return slot;

}

}

return -1;

}

This function finds a free channel for our sounds to be played on. This makes it
easy to write a robust PlaySound method that will be able to deal with a limited
number of sound channels.

public Sound PlaySound(string soundId)

{

// Default play sound doesn't loop.

return PlaySound(soundId, false);

}

public Sound PlaySound(string soundId, bool loop)

{

int channel = FindNextFreeChannel();

if (channel != -1)

{

Al.alSourceStop(channel);

Al.alSourcei(channel, Al.AL_BUFFER, _soundIdentifier[soundId].

_bufferId);

Al.alSourcef(channel, Al.AL_PITCH, 1.0f);

Al.alSourcef(channel, Al.AL_GAIN, 1.0f);

if (loop)

{

Al.alSourcei(channel, Al.AL_LOOPING, 1);

}

else

{

Al.alSourcei(channel, Al.AL_LOOPING, 0);

}

Al.alSourcePlay(channel);

Chapter 9 ■ Making the Game Engine254

return new Sound(channel);

}

else

{

// Error sound

return new Sound(-1);

}

}

There are two PlaySound methods implemented here; one takes a flag to in-
dicate if the sound should be looped, the other takes one less parameter and
assumes the sound should only be played once by default. The PlaySound
method finds a free channel and loads the buffered data from the SoundSource
on to the channel. It then resets the default properties on the sound channel,
including the pitch and gain and the looping flag is set. This determines if the
sound will finish after being played once or if it just repeats. Finally it’s told to
play the sound and a Sound object is returned.

The sound system is now working well enough to test. It can load files from the
disk and play them as needed. Here is a new test state that will demonstrate the
functionality.

class SoundTestState : IGameObject

{

SoundManager _soundManager;

double _count = 3;

public SoundTestState(SoundManager soundManager)

{

_soundManager = soundManager;

}

public void Render()

{

// The sound test doesn't need to render anything.

}

public void Update(double elapsedTime)

{

_count-= elapsedTime;

Adding Sound Support 255

if (_count < 0)

{

_count= 3;

_soundManager.PlaySound("effect");

}

}

}

Load it in the normal way and make sure it’s the default state being run. Every
3 seconds it will play the first sound effect. Feel free to change the numbers
around or play both effects at once.

This code snippet plays both sounds at the same time, demonstrating that the
SoundManager uses hardware channels correctly.

public void Update(double elapsedTime)

{

_count -= elapsedTime;

if (_count < 0)

{

_count= 3;

_soundManager.PlaySound("effect");

_soundManager.PlaySound("effect2");

}

}

The SoundManager class needs a few final functions to make it more complete.
It needs to be able test if a sound is playing and also to stop a sound. Volume
control would also be useful.

public bool IsSoundPlaying(Sound sound)

{

return IsChannelPlaying(sound.Channel);

}

public void StopSound(Sound sound)

{

if (sound.Channel == -1)

{

return;

}

Al.alSourceStop(sound.Channel);

}

Chapter 9 ■ Making the Game Engine256

The check to see if a sound is playing reuses the code that checks if a sound is
playing on a particular channel. The stop sound function uses an OpenAL
method to stop the sound on a certain channel. These new functions can be
tested in the sound state again.

public void Update(double elapsedTime)

{

_count-= elapsedTime;

if (_count < 0)

{

_count= 3;

Sound soundOne = _soundManager.PlaySound("effect");

Sound soundTwo = _soundManager.PlaySound("effect2");

if (_soundManager.IsSoundPlaying(soundOne))

{

_soundManager.StopSound(soundOne);

}

}

}

Here the first sound is told to play, then immediately after there’s a check to see if
it is playing. This returns true and another call stops the sound. The first is never
heard as it’s always stopped by the end of the game loop.

float _masterVolume = 1.0f;

public void MasterVolume(float value)

{

_masterVolume = value;

foreach (int channel in _soundChannels)

{

Al.alSourcef(channel, Al.AL_GAIN,value);

}

}

In OpenAL the volume can be altered by specifying the gain on a channel. The
gain goes from 0 to 1. Here the master volume is set for every channel. The
volume is also stored in a class variable. When a new sound is played it will
overwrite the current gain setting for the channel so it needs to be reapplied. This
can be done at the bottom of the PlaySound method.

Adding Sound Support 257

{

Al.alSourcef(channel, Al.AL_GAIN, _masterVolume);

Al.alSourcePlay(channel);

return new Sound(channel);

}

This now gives a master volume control for all the sound channels. The volume
can also be set per channel; this is useful when fading out music or making one
sound effect more or less noticeable.

public void ChangeVolume(Sound sound, float value)

{

Al.alSourcef(sound.Channel, Al.AL_GAIN, _masterVolume * value);

}

Here the volume of a particular sound is scaled by the master volume; this en-
sures that if the player sets his master volume to low setting then a new sound
isn’t going to suddenly be very loud. The value should be between 0 and 1. Here’s
some more test code that shows these volume changes.

public SoundTestState(SoundManager soundManager)

{

_soundManager = soundManager;

_soundManager.MasterVolume(0.1f);

}

This will set the volume to be one tenth its previous value. If you run the test state
again the difference should be immediately noticeable. The final task for the
sound manager is to make sure it closes down correctly. It creates a lot of refer-
ences to sound files and data and it needs to free these when it is destroyed. The
best way to do this is to implement the IDisposable interface.

public class SoundManager : IDisposable

public void Dispose()

{

foreach (SoundSource soundSource in _soundIdentifier.Values)

{

SoundSource temp = soundSource;

Al.alDeleteBuffers(1, ref temp._bufferId);

}

_soundIdentifier.Clear();

foreach (int slot in _soundChannels)

Chapter 9 ■ Making the Game Engine258

{

int target = _soundChannels[slot];

Al.alDeleteSources(1, ref target);

}

Alut.alutExit();

}

This function goes through all the sound buffers and frees them and then
through all the sound card channels and frees those too.

Improving Input
The engine has very limited input support at the moment. The input class can be
queried to find the mouse cursor position, but there is no other support. The
ideal input for arcade-style games is a gamepad—a purpose-built piece of hard-
ware to play games. First-person shooter games, strategy, and simulation games
tend to work best with a mouse and keyboard combination. For this reason the
mouse should be more fully supported by the engine and the state of keyboard
should also be queryable.

Wrapping Game Controllers
For arcade games there’s no better controller than a gamepad. PCs have always
been behind the curve when compared to console controllers, but recent console
controllers have begun to use USB connections. This makes it very easy to add
support for console controllers on the PC. These controllers also tend to be the
most popular for users as they’re high quality, widely supported, and very easy
to find.

Controller support in the TaoFramework is good but not excellent. There is
support for control sticks and analog buttons but no support for haptic effects
like rumble or more exotic controllers like the Wiimote. External C# libraries for
these newer controls do exist if they tickle your interest but they will require
some research to use.

The controller support in this engine will be limited to the more standard con-
trollers. For PC gamers the most popular controller is likely to be the Xbox 360
controller because it’s immediately recognized by Windows and has a large
selection of buttons and control sticks. The gamepad code will be flexible enough
that any standard joypad could be used, but for testing purposes, it’s the
Xbox 360 pad that will be targeted. It can be seen in Figure 9.12.

Improving Input 259

The Xbox 360 controller has a few different types of controls. It has two control
sticks on the front. We’ll want to be able to get a value from –1 to 1 on the
X and Y axis to determine where the player moves the control stick. The D-pad
supports basic left, right, up, and down commands. The rest of the controls on
the face of the controller are made from simple buttons: Back, Start, A, B, X, and
Y. These are quite simple with only two states, pressed and not pressed, which
can be represented by a boolean variable. On the top of the controller are four
shoulder buttons, the buttons nearest the face of the controller are simple but-
tons, but the back two buttons are triggers. The triggers are special because they
are not digital on/off buttons; they have a range of values from 0 to 1, depending
on how hard they are pressed. All these controls together make quite a compli-
cated gamepad, and a number of classes will be needed to describe the different
functionality of each type of control.

To begin, a new game test state needs to be made. Call this state
InputTestState and make it the default loaded state in the normal way. The
gamepad wrappings exist in the SDL section of the Tao Framework; this means
another reference needs to be added—Tao framework SDL Binding for .NET (if
you don’t have this reference then select the Browse tab, navigate to the

Figure 9.12
Xbox 360 controller.

Chapter 9 ■ Making the Game Engine260

TaoFramework\lib directory, and choose Tao.Sdl.dll). Another dll also needs
to be copied to the bin directories—sdl.dll. We’ll go through the various
controls one by one and then finally build up a fully supported controller. If you’re
not using an Xbox 360 controller, you should still be able to follow this section
with any other controller. Just substitute the controls used where necessary.

The controller is the main way that the player interacts with the game. For that
reason we always want to know the current state of the controller. Every frame
will include code that asks the controller the state of all its controls, and we’ll
update our representation in memory. The constant querying of a device is
sometimes known as polling.

The SDL library requires its joypad subsystem to be initiated before it can be
used. For now this code can be placed in the InputTestState, but it will
eventually need to be moved to the input class.

bool _useJoystick = false;

public InputTestState()

{

Sdl.SDL_InitSubSystem(Sdl.SDL_INIT_JOYSTICK);

if (Sdl.SDL_NumJoysticks() > 0)

{

// Start using the joystick code

_useJoystick = true;

}

}

The setup code is quite readable. The joystick subsystem of SDL is initiated, and
if it works, then we can use joysticks. Next in the engine library project, a class
needs to be made to represent the controller. Because a very specific controller is
going to be represented, I’m going to call this class XboxController.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Tao.Sdl;

namespace Engine

{

public class XboxController : IDisposable

Improving Input 261

{

IntPtr _joystick;

public XboxController(int player)

{

_joystick = Sdl.SDL_JoystickOpen(player);

}

#region IDisposable Members

public void Dispose()

{

Sdl.SDL_JoystickClose(_joystick);

}

#endregion

}

}

This code creates the joystick using a player index. You might want to create a
game that supports two or more players; in this case, you’d need to create a
controller for each player. The joystick is also disposable so it will release its
reference to the controller once it’s destroyed.

The controller can now be created in the test state.

XboxController _controller;

public InputTestState()

{

Sdl.SDL_InitSubSystem(Sdl.SDL_INIT_JOYSTICK);

if (Sdl.SDL_NumJoysticks() > 0)

{

// Start using the joystick code

_useJoystick = true;

_controller = new XboxController(0);

}

}

The first type of control we’re going to wrap is the control stick. Control sticks
are great for moving the character and positioning the camera. Control sticks
aren’t made perfectly. They will often report that they’re being pushed even when
they are centered and the controller is resting on the desk. The solution to this
problem is to ignore all output from the control stick unless it’s pushed over a

Chapter 9 ■ Making the Game Engine262

certain threshold. The part that is ignored is known as the dead zone and can
vary from controller to controller (for this reason it’s best to be a little generous
when specifying your dead zone).

The control stick is treated as two axes—an X axis from left to right and a Y axis
from top to bottom. SDL returns the axis information as short number value
but a more convenient representation would be a float from �1 to 1. The �1
value is the control stick pushed far to the left (or down) and 1 would be fully
pushed in the opposite direction.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Tao.Sdl;

namespace Engine

{

public class ControlStick

{

IntPtr _joystick;

int _axisIdX = 0;

int _axisIdY = 0;

float _deadZone = 0.2f;

public float X { get; private set; }

public float Y { get; private set; }

public ControlStick(IntPtr joystick, int axisIdX, int axisIdY)

{

_joystick = joystick;

_axisIdX = axisIdX;

_axisIdY = axisIdY;

}

public void Update()

{

X = MapMinusOneToOne(Sdl.SDL_JoystickGetAxis(_joystick,

_axisIdX));

Y = MapMinusOneToOne(Sdl.SDL_JoystickGetAxis(_joystick,

_axisIdY));

}

Improving Input 263

private float MapMinusOneToOne(short value)

{

float output = ((float)value / short.MaxValue);

// Be careful of rounding error

output = Math.Min(output, 1.0f);

output = Math.Max(output, -1.0f);

if (Math.Abs(output) < _deadZone)

{

output = 0;

}

return output;

}

}

}

SDL represents analog controls using axes that can be polled with SDL_
JoystickGetAxis. The control sticks are made from two axes. A controller
might have a number of different axes, so in the constructor, two indices are pas-
sed in to identify which axis we want this control stick to represent. These identi-
fying numbers will change for each type of controller. The numbers that represent
the different controls on the gamepad aren’t guaranteed to be the same for every
type of gamepad. One gamepad’s left control stick might have the index one, but
another type of gamepad might index the left control stick with the index five. For
this reason, it’s often a good idea to allow the player to remap his controls.

The Update method is called once per frame, and it updates the X and Y values
with values from –1 to 1, depending on the position of the stick. There’s also a
little buffer for the dead zone that ignores small movements of the control stick.

The Xbox controller has two control sticks so the controller class can now be
updated to represent this.

public ControlStick LeftControlStick { get; private set; }

public ControlStick RightControlStick { get; private set; }

public XboxController(int player)

{

_joystick = Sdl.SDL_JoystickOpen(player);

Chapter 9 ■ Making the Game Engine264

LeftControlStick = new ControlStick(_joystick, 0, 1);

RightControlStick = new ControlStick(_joystick, 4, 3);

}

public void Update()

{

LeftControlStick.Update();

RightControlStick.Update();

}

Now that there are some controls on the controller, it can be used in the test state
to move things around. The Update function of InputTestState updates
the SDL joystick system and then updates the controller, updating all of its
control values.

public void Update(double elapsedTime)

{

if (_useJoystick == false)

{

return;

}

Sdl.SDL_JoystickUpdate();

_controller.Update();

}

public void Render()

{

if (_useJoystick == false)

{

return;

}

Gl.glDisable(Gl.GL_TEXTURE_2D);

Gl.glClearColor(1, 1, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glPointSize(10.0f);

Gl.glBegin(Gl.GL_POINTS);

{

Gl.glColor3f(1, 0, 0);

Gl.glVertex2f(

_controller.LeftControlStick.X * 300,

Improving Input 265

_controller.LeftControlStick.Y * -300);

Gl.glColor3f(0, 1, 0);

Gl.glVertex2f(

_controller.RightControlStick.X * 300,

_controller.RightControlStick.Y * -300);

}

Gl.glEnd();

}

The Render function draws a white background and a green and red dot re-
presenting each of the control sticks. The point size is increased and texture
mode is disabled to make the dots more visible. Run the program and move the
dots around the screen. The control stick’s values only go from –1 to 1, which
isn’t a large enough number to visually move the dots around the screen; there-
fore, the value is multiplied by 300. The Y axis is multiplied by –300 to invert it;
try removing the minus sign and see which control scheme you prefer.

The next control to wrap is the button. There are actually ten buttons on the
Xbox 360 controller. The X, Y, A, B buttons, start and back, the two shoulder
buttons, and pushing in the two control sticks. As before, add the following
control class to the engine library project.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Tao.Sdl;

namespace Engine

{

public class ControllerButton

{

IntPtr _joystick;

int _buttonId;

public bool Held { get; private set; }

public ControllerButton(IntPtr joystick, int buttonId)

{

_joystick = joystick;

_buttonId = buttonId;

}

Chapter 9 ■ Making the Game Engine266

public void Update()

{

byte buttonState = Sdl.SDL_JoystickGetButton(_joystick,

_buttonId);

Held = (buttonState == 1);

}

}

}

The Update function of the button updates the Held variable. The controller
class can now have its buttons added.

public ControllerButton ButtonA { get; private set; }

public ControllerButton ButtonB { get; private set; }

public ControllerButton ButtonX { get; private set; }

public ControllerButton ButtonY { get; private set; }

// Front shoulder buttons

public ControllerButton ButtonLB { get; private set; }

public ControllerButton ButtonRB { get; private set; }

public ControllerButton ButtonBack { get; private set; }

public ControllerButton ButtonStart { get; private set; }

// If you press the control stick in

public ControllerButton ButtonL3 { get; private set; }

public ControllerButton ButtonR3 { get; private set; }

public XboxController(int player)

{

_joystick = Sdl.SDL_JoystickOpen(player);

LeftControlStick = new ControlStick(_joystick, 0, 1);

RightControlStick = new ControlStick(_joystick, 4, 3);

ButtonA = new ControllerButton(_joystick, 0);

ButtonB = new ControllerButton(_joystick, 1);

ButtonX = new ControllerButton(_joystick, 2);

ButtonY = new ControllerButton(_joystick, 3);

ButtonLB = new ControllerButton(_joystick, 4);

ButtonRB = new ControllerButton(_joystick, 5);

ButtonBack = new ControllerButton(_joystick, 6);

ButtonStart = new ControllerButton(_joystick, 7);

ButtonL3 = new ControllerButton(_joystick, 8);

Improving Input 267

ButtonR3 = new ControllerButton(_joystick, 9);

}

The buttons all need to update their state.

public void Update()

{

LeftControlStick.Update();

RightControlStick.Update();

ButtonA.Update();

ButtonB.Update();

ButtonX.Update();

ButtonY.Update();

ButtonLB.Update();

ButtonRB.Update();

ButtonBack.Update();

ButtonStart.Update();

ButtonL3.Update();

ButtonR3.Update();

}

To represent these buttons on screen we need a new function in the test state.

private void DrawButtonPoint(bool held, int yPos)

{

if (held)

{

Gl.glColor3f(0, 1, 0);

}

else

{

Gl.glColor3f(0, 0, 0);

}

Gl.glVertex2f(-400, yPos);

}

This function makes it easy for all the buttons to be rendered, the color changing
as they’re pressed. The function calls can go in the test state Render function
just under where the control stick axes are rendered but still before the
Gl.glEnd(); statement.

DrawButtonPoint(_controller.ButtonA.Held, 300);

DrawButtonPoint(_controller.ButtonB.Held, 280);

Chapter 9 ■ Making the Game Engine268

DrawButtonPoint(_controller.ButtonX.Held, 260);

DrawButtonPoint(_controller.ButtonY.Held, 240);

DrawButtonPoint(_controller.ButtonLB.Held, 220);

DrawButtonPoint(_controller.ButtonRB.Held, 200);

DrawButtonPoint(_controller.ButtonBack.Held, 180);

DrawButtonPoint(_controller.ButtonStart.Held, 160);

DrawButtonPoint(_controller.ButtonL3.Held, 140);

DrawButtonPoint(_controller.ButtonR3.Held, 120);

Run the test state and the now the buttons and axes are both displayed on the
screen. Each button pressed will be represented visually on screen.

There are only two types of controls left that need to be handled—the
trigger buttons and the D-pad. The triggers are actually represented by a single
axis—the left trigger represents 0 to 1 on the axis and the right trigger represents
0 to –1. This means the code to wrap the trigger can be quite similar to the
control pad.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Tao.Sdl;

namespace Engine

{

public class ControlTrigger

{

IntPtr _joystick;

int _index;

bool _top= false; // The triggers are treated as axes and need split-

ting up

float _deadZone = 0.24f;

public float Value { get; private set; }

public ControlTrigger(IntPtr joystick, int index, bool top)

{

_joystick = joystick;

_index= index;

_top= top;

}

Improving Input 269

public void Update()

{

Value = MapZeroToOne(Sdl.SDL_JoystickGetAxis(_joystick, _index));

}

private float MapZeroToOne(short value)

{

float output = ((float)value / short.MaxValue);

if (_top == false)

{

if (output > 0)

{

output = 0;

}

output = Math.Abs(output);

}

// Be careful of rounding error

output = Math.Min(output, 1.0f);

output = Math.Max(output, 0.0f);

if (Math.Abs(output) < _deadZone)

{

output = 0;

}

return output;

}

}

}

The ControlTrigger class operates on an axis but only takes half the value of
it. There are only two triggers so it’s not much to add to the controller class. In
the constructor, the two triggers are set up using the same axis.

Finally, both the triggers must be added to the Update function of the
controller.

public ControlTrigger RightTrigger { get; private set; }

Chapter 9 ■ Making the Game Engine270

public ControlTrigger LeftTrigger { get; private set; }

// in the constructor

RightTrigger = new ControlTrigger(_joystick, 2, false);

LeftTrigger = new ControlTrigger(_joystick, 2, true);

// in the update function

RightTrigger.Update();

LeftTrigger.Update();

These triggers can be visualized very simply; two more points are rendered, each
representing one of the triggers. The more the trigger is pressed, the further the
point moves. The colors are slightly different so that they can be distinguished
from the control sticks. This code should be added to the test state near the
button and control stick visualizations but between the glBegin and glEnd
statements.

Gl.glColor3f(0.5f, 0, 0);

Gl.glVertex2f(50, _controller.LeftTrigger.Value * 300);

Gl.glColor3f(0, 0.5f, 0);

Gl.glVertex2f(-50, _controller.RightTrigger.Value * 300);

The final control to be added is the D-pad. The D-pad will be treated as four
buttons: up, down, left, and right.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Tao.Sdl;

namespace Engine

{

public class DPad

{

IntPtr _joystick;

int _index;

public bool LeftHeld { get; private set; }

public bool RightHeld { get; private set; }

public bool UpHeld { get; private set; }

public bool DownHeld { get; private set; }

public DPad(IntPtr joystick, int index)

Improving Input 271

{

_joystick = joystick;

_index= index;

}

public void Update()

{

byte b = Sdl.SDL_JoystickGetHat(_joystick, _index);

UpHeld = (b == Sdl.SDL_HAT_UP);

DownHeld = (b == Sdl.SDL_HAT_DOWN);

LeftHeld = (b == Sdl.SDL_HAT_LEFT);

RightHeld = (b == Sdl.SDL_HAT_RIGHT);

}

}

}

The controller only has one D-pad, but it still needs to be added.

public DPad Dpad { get; private set; }

public XboxController(int player)

{

_joystick = Sdl.SDL_JoystickOpen(player);

Dpad = new DPad(_joystick, 0);

// ... later in the code

public void Update()

{

Dpad.Update();

The D-pad also needs to be added to the update loop, and that completes all the
controls on the controller. Finally, it can be visualized by reusing the button
display code.

DrawButtonPoint(_controller.Dpad.UpHeld, 80);

DrawButtonPoint(_controller.Dpad.DownHeld, 60);

DrawButtonPoint(_controller.Dpad.LeftHeld, 40);

DrawButtonPoint(_controller.Dpad.RightHeld, 20);

All the controls of the Xbox 360 controller are now supported and it’s relatively
easy to construct any other type of controller from these control pieces. The con-
troller is quite easy to use, but the buttons could do with a little more work. At the
moment, the button reports if it is held down or not; in games it’s often more

Chapter 9 ■ Making the Game Engine272

useful to know if the button was just pressed. Pressing the button once for instance
can be used for selecting a menu option or firing a gun. It’s a simple piece of code
to add. This code should be added to the ControllerButton class.

bool _wasHeld = false;

public bool Pressed { get; private set; }

public void Update()

{

// reset the pressed value

Pressed = false;

byte buttonState = Sdl.SDL_JoystickGetButton(_joystick, _buttonId);

Held = (buttonState == 1);

if (Held)

{

if(_wasHeld == false)

{

Pressed = true;

}

_wasHeld = true;

}

else

{

_wasHeld = false;

}

}

The Pressed value is only true for one frame when the button is pressed, the
Held value is true for as long as the button is pressed. The controller class and
the various controls it uses have resulted in quite a lot of code. This code is all
related and could be better organized by separating it into its own namespace,
Engine.Input. Reorganizing your code is an important part of building up a
reusable library. All the controller classes are involved with input so a separate
input sub-library can be created.

Right-click the engine project and choose New Folder on the context menu, as
shown in Figure 9.13.

Call the new folder Input and drag and drop all the control classes into the folder.
The input class should also be added to this folder so you end with something

Improving Input 273

similar to Figure 9.14. Anytime you create a new class in the Input folder it will
automatically use the namespace Engine.Input. The classes we’ve just added
however need their namespaces changed manually. For each of the classes,
change the line namespace Engine to namespace Engine.Input.

Try running the code. There will probably be a few errors complaining that the
input classes cannot be found. To resolve these errors, add the statement using
Engine.Input; to the top of the file.

Finally, the controller should be added to the Input class. In this case the
Xbox 360 controller is used and the assumption is that if any user wants to use
a different controller, it will have equivalent functionality to an Xbox 360
controller.

Figure 9.13
Creating a new project subfolder.

Chapter 9 ■ Making the Game Engine274

public class Input

{

public Point MousePosition { get; set; }

bool _usingController = false;

XboxController Controller { get; set; }

public Input()

{

Sdl.SDL_InitSubSystem(Sdl.SDL_INIT_JOYSTICK);

if (Sdl.SDL_NumJoysticks() > 0)

{

Controller = new XboxController(0);

_usingController = true;

}

}

Figure 9.14
Separating out the input classes.

Improving Input 275

public void Update(double elapsedTime)

{

if (_usingController)

{

Sdl.SDL_JoystickUpdate();

Controller.Update();

}

}

}

The Input class only supports one controller here, but it would be simple to
extend to several controllers if you wanted to support that.

Adding Better Mouse Support
The mouse support at the moment is quite minor. The position of the cursor
relative to the form is calculated in the form.cs and then this updates the input
class mouse position. The mouse input is bound to the form and so to some
extent the input class must be aware of the form. Make a new class called Mouse
in the Engine.Input namespace; this class will store information about the
current state of the mouse.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace Engine.Input

{

public class Mouse

{

Form _parentForm;

Control _openGLControl;

public Point Position { get; set; }

public Mouse(Form form, Control openGLControl)

{

_parentForm = form;

_openGLControl = openGLControl;

}

Chapter 9 ■ Making the Game Engine276

public void Update(double elapsedTime)

{

UpdateMousePosition();

}

private void UpdateMousePosition()

{

System.Drawing.Point mousePos = Cursor.Position;

mousePos = _openGLControl.PointToClient(mousePos);

// Now use our point definition,

Engine.Point adjustedMousePoint = new Engine.Point();

adjustedMousePoint.X = (float)mousePos.X - ((float)_parentForm.

ClientSize.Width / 2);

adjustedMousePoint.Y = ((float)_parentForm.ClientSize.Height / 2)

- (float)mousePos.Y;

Position = adjustedMousePoint;

}

}

}

The Mouse class updates its own position using the form and OpenGL control
that are passed into the constructor. This new Mouse class needs to be added to
the Input class.

public class Input

{

public Mouse Mouse { get; set; }

It replaces the previous code to get the mouse position. The new Mouse class
also needs to have its Update function called from the Input class.

public void Update(double elapsedTime)

{

if (_usingController)

{

Sdl.SDL_JoystickUpdate();

Controller.Update();

}

Mouse.Update(elapsedTime);

}

Improving Input 277

The Mouse class isn’t constructed in the Input class because the Input class
shouldn’t have to know about the form or simple OpenGL control; instead, the
mouse object is constructed in the form.cs constructor.

public Form1()

{

InitializeComponent();

simpleOpenGlControl1.InitializeContexts();

_input.Mouse = new Mouse(this, simpleOpenGlControl1);

Now that the Mouse class exists, the UpdateInput function in the form class
can be simplified.

private void GameLoop(double elapsedTime)

{

UpdateInput(elapsedTime);

_system.Update(elapsedTime);

_system.Render();

simpleOpenGlControl1.Refresh();

}

private void UpdateInput(double elapsedTime)

{

// Previous mouse code removed.

_input.Update(elapsedTime);

}

The elapsedTime is passed from the main GameLoop method into the Up-
dateInput method.

The elapsedTime has been passed to both the UpdateInput and Update
functions in case we ever want the mouse to support a hover event. For instance,
in a real-time strategy game, you might hover the mouse over a unit for a second
or two, and on detecting that hover behavior, the game might pop up a tool tip
displaying the unit’s name and stats.

The mouse buttons can be treated in the same way as the controller buttons. The
button will have Held and Pressed members. For the mouse, the state of the
Pressed member corresponds to a Windows Forms click event. The gamepad
works by polling, which means every frame the program queries the gamepad to
find out what buttons are pressed and where the control sticks are. The mouse

Chapter 9 ■ Making the Game Engine278

works a little differently than the gamepad, and it’s not as straightforward to poll.
Windows Form controls are associated with mouse events. An event is a way to
call code when something happens; for instance, when the mouse moves, a but-
ton is clicked or double-clicked. These events can be hooked up to functions.
We’ll use the click event to determine when the mouse buttons are pressed and
the up and down events to determine when the mouse button is held.

bool _leftClickDetect = false;

bool _rightClickDetect = false;

bool _middleClickDetect = false;

public bool MiddlePressed { get; private set; }

public bool LeftPressed { get; private set; }

public bool RightPressed { get; private set; }

public bool MiddleHeld { get; private set; }

public bool LeftHeld { get; private set; }

public bool RightHeld { get; set; }

public Mouse(Form form, Control openGLControl)

{

_parentForm = form;

_openGLControl = openGLControl;

_openGLControl.MouseClick += delegate(object obj, MouseEventArgs e)

{

if (e.Button == MouseButtons.Left)

{

_leftClickDetect = true;

}

else if (e.Button == MouseButtons.Right)

{

_rightClickDetect = true;

}

else if (e.Button == MouseButtons.Middle)

{

_middleClickDetect = true;

}

};

_openGLControl.MouseDown += delegate(object obj, MouseEventArgs e)

{

Improving Input 279

if (e.Button == MouseButtons.Left)

{

LeftHeld = true;

}

else if (e.Button == MouseButtons.Right)

{

RightHeld = true;

}

else if (e.Button == MouseButtons.Middle)

{

MiddleHeld = true;

}

};

_openGLControl.MouseUp += delegate(object obj, MouseEventArgs e)

{

if (e.Button == MouseButtons.Left)

{

LeftHeld = false;

}

else if (e.Button == MouseButtons.Right)

{

RightHeld = false;

}

else if (e.Button == MouseButtons.Middle)

{

MiddleHeld = false;

}

};

_openGLControl.MouseLeave += delegate(object obj, EventArgs e)

{

// If you move the mouse out the window then release all held buttons

LeftHeld = false;

RightHeld = false;

MiddleHeld = false;

};

}

public void Update(double elapsedTime)

{

UpdateMousePosition();

Chapter 9 ■ Making the Game Engine280

UpdateMouseButtons();

}

private void UpdateMouseButtons()

{

// Reset buttons

MiddlePressed = false;

LeftPressed = false;

RightPressed = false;

if (_leftClickDetect)

{

LeftPressed = true;

_leftClickDetect = false;

}

if (_rightClickDetect)

{

RightPressed = true;

_rightClickDetect = false;

}

if (_middleClickDetect)

{

MiddlePressed = true;

_middleClickDetect = false;

}

}

In the constructor of the mouse, four OpenGL control events have an anon-
ymous delegate attached to them. The mouse click event detects if the left, right,
or middle mouse buttons have been pressed, and this sets a boolean to report if
the event occurred. In the UpdateMouseButtons function, the detect boo-
leans are used to set the public MiddlePressed, LeftPressed, and
RightPressed variables. Presses should only occur for one frame, so at the
start of the function all the button press flags are set to false. After the reset,
the detect variables are checked, and if a press is detected, they are set back to
true. The double-click event could be supported in a similar way.

The next three events determine if any of the mouse buttons are being held
down. The down event detects when the mouse button is pressed down, and the

Improving Input 281

up event detects when it’s released again. These events are pretty straightforward,
and they toggle the held flags for each button. The third event detects when the
mouse leaves the control. This is important because once the mouse button
leaves, no more events will be reported. This means the user could click down
inside the control, leave the control, and release the mouse button. The release
event would never be passed on and the held flags would get out of sync with the
actual state of the mouse. For this reason, if the mouse leaves the control’s area,
then all the held flags are set to false.

The mouse input can be tested by creating a new game state—MouseTest-
State—and loading it as the default game state in the EngineTest project.

class MouseTestState : IGameObject

{

Input _input;

bool _leftToggle = false;

bool _rightToggle = false;

bool _middleToggle = false;

public MouseTestState(Input input)

{

_input= input;

}

private void DrawButtonPoint(bool held, int yPos)

{

if (held)

{

Gl.glColor3f(0, 1, 0);

}

else

{

Gl.glColor3f(0, 0, 0);

}

Gl.glVertex2f(-400, yPos);

}

public void Render()

{

Chapter 9 ■ Making the Game Engine282

Gl.glDisable(Gl.GL_TEXTURE_2D);

Gl.glClearColor(1, 1, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glPointSize(10.0f);

Gl.glBegin(Gl.GL_POINTS);

{

Gl.glColor3f(1, 0, 0);

Gl.glVertex2f(_input.Mouse.Position.X, _input.Mouse.Position.Y);

if (_input.Mouse.LeftPressed)

{

_leftToggle = !_leftToggle;

}

if (_input.Mouse.RightPressed)

{

_rightToggle = !_rightToggle;

}

if (_input.Mouse.MiddlePressed)

{

_middleToggle = !_middleToggle;

}

DrawButtonPoint(_leftToggle, 0);

DrawButtonPoint(_rightToggle, -20);

DrawButtonPoint(_middleToggle, -40);

DrawButtonPoint(_input.Mouse.LeftHeld, 40);

DrawButtonPoint(_input.Mouse.RightHeld, 60);

DrawButtonPoint(_input.Mouse.MiddleHeld, 80);

}

Gl.glEnd();

}

public void Update(double elapsedTime)

{

}

}

This test state reuses the DrawButtonPoint function from the earlier In-
putTestState that was used to test the gamepad. This test state renders a dot

Improving Input 283

beneath the mouse cursor and six other dots represent the button states. The top
three dots represent the held state of each button. Hold down a button and its
dot will light up; release the button and it will go black. The bottom three but-
tons represent the press state of the buttons. Each time a button is clicked, the
dot that represents it will toggle its color.

This is all that’s required for basic mouse support. There is still more work that
can be done; for instance, detecting double-clicks of the mouse and having a way
to poll the scroll wheel, but for most games what has been covered so far will be
fine. The only remaining control method left to add is the keyboard.

Adding Keyboard Support
The keyboard is unlike the gamepad and the mouse because the method of in-
teracting with it depends on the situation. If you have a screen that asks the user
to enter his name, then you want a callback function that will tell you each
character pressed by the user. But if you are in the middle of a fighting game,
then you just want to be able to ask if a certain key has just been pressed; you
don’t care about the rest of the keys. These are two different modes of interaction
and both are important and need to be supported.

The keyboard has an event-based system like the mouse. The form has OnKey-
Down and OnKeyUp events that can have delegates attached. Unfortunately,
these events ignore the arrow keys, and the arrow keys are very important in
games because they are often used to control movement. The Alt key is also
ignored as are a few other keys known collectively as the control keys. These keys
generally have some meaning in the form and are therefore hidden from general
use. Games need to use these keys so an alternative method of polling these keys
needs to be implemented.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Runtime.InteropServices;

using System.Windows.Forms;

namespace Engine.Input

{

public class Keyboard

Chapter 9 ■ Making the Game Engine284

{

[DllImport("User32.dll")]

public static extern short GetAsyncKeyState(int vKey);

Control _openGLControl;

public KeyPressEventHandler KeyPressEvent;

class KeyState

{

bool _keyPressDetected = false;

public bool Held { get; set; }

public bool Pressed { get; set; }

public KeyState()

{

Held = false;

Pressed = false;

}

internal void OnDown()

{

if (Held == false)

{

_keyPressDetected = true;

}

Held = true;

}

internal void OnUp()

{

Held = false;

}

internal void Process()

{

Pressed = false;

if (_keyPressDetected)

{

Pressed = true;

_keyPressDetected = false;

}

}

}

Improving Input 285

Dictionary<Keys, KeyState> _keyStates = new Dictionary<Keys,

KeyState>();

public Keyboard(Control openGLControl)

{

_openGLControl = openGLControl;

_openGLControl.KeyDown += new KeyEventHandler(OnKeyDown);

_openGLControl.KeyUp += new KeyEventHandler(OnKeyUp);

_openGLControl.KeyPress += new KeyPressEventHandler(OnKeyPress);

}

void OnKeyPress(object sender, KeyPressEventArgs e)

{

if (KeyPressEvent != null)

{

KeyPressEvent(sender, e);

}

}

void OnKeyUp(object sender, KeyEventArgs e)

{

EnsureKeyStateExists(e.KeyCode);

_keyStates[e.KeyCode].OnUp();

}

void OnKeyDown(object sender, KeyEventArgs e)

{

EnsureKeyStateExists(e.KeyCode);

_keyStates[e.KeyCode].OnDown();

}

private void EnsureKeyStateExists(Keys key)

{

if (!_keyStates.Keys.Contains(key))

{

_keyStates.Add(key, new KeyState());

}

}

public bool IsKeyPressed(Keys key)

{

EnsureKeyStateExists(key);

Chapter 9 ■ Making the Game Engine286

return _keyStates[key].Pressed;

}

public bool IsKeyHeld(Keys key)

{

EnsureKeyStateExists(key);

return _keyStates[key].Held;

}

public void Process()

{

ProcessControlKeys();

foreach (KeyState state in _keyStates.Values)

{

// Reset state.

state.Pressed = false;

state.Process();

}

}

private bool PollKeyPress(Keys key)

{

return (GetAsyncKeyState((int)key) != 0);

}

private void ProcessControlKeys()

{

UpdateControlKey(Keys.Left);

UpdateControlKey(Keys.Right);

UpdateControlKey(Keys.Up);

UpdateControlKey(Keys.Down);

UpdateControlKey(Keys.LMenu); // this is the left alt key

}

private void UpdateControlKey(Keys keys)

{

if (PollKeyPress(keys))

{

OnKeyDown(this, new KeyEventArgs(keys));

}

Improving Input 287

else

{

OnKeyUp(this, new KeyEventArgs(keys));

}

}

}

}

The keyboard state treats each key as a button with a Pressed and Held
member. A subclass called KeyState contains the state of each key on the
keyboard. The Keyboard constructor takes in a reference to the OpenGL con-
trol and adds delegates to its KeyUp and KeyDown events. These events are then
used to update the state of the entire keyboard. The KeyPress event is also
given a delegate, and this in turn fires another event called KeyPressEvent,
passing on the data. KeyPressEvent is used when the user is typing the player
name or entering data. When using the keyboard as a gaming device, the keys can
be treated as buttons and queried with the functions IsKeyPressed and
IsKeyHeld.

The slightly complicated part of the keyboard class is the polling of keys. This
requires a C function to be imported from User32.dll and the using Sys-
tem.Runtime.InteropServices; needs to be added to the top of the file.
The KeyUp and KeyDown events aren’t fired for the arrow keys so the state of
these keys is determined by GetAsyncKeyState. The PollKeyPress func-
tion uses GetAsyncKeyState to return true if the key is pressed and false if it
isn’t. Each frame the arrow keys and the Alt key are polled and the state is
updated.

Create a new test state to confirm that the keyboard works. There’s no code
listing for this test state as it’s very similar to the mouse state. Test out some of
the keys and the arrow keys to confirm everything is working nicely. Once you
are satisfied—that ends the modifications to the engine. The next step now is to
create a game!

Chapter 9 ■ Making the Game Engine288

chapter 10

A Simple
Side-Scrolling
Shooting Game

This chapter will describe a simple game, develop a basic plan, and then cover its
implementation. The implementation will be done in a pragmatic iterative style.
A high-level first pass will get the game structure working. This will then be
refined until it approaches the original description of the game.

A Simple Game
A simple game will demonstrate all the techniques that have been covered so far.
We’ll build a 2D scrolling shooter game. This type of game is quite simple to
make and then easy to expand by adding more features. The pragmatic way to
develop this game is to create a working game as quickly as possible, but it’s still
important to plan up front what these first stages will be. Figure 10.1 shows a
high-level overview of the game flow.

The idea for this game is to create a simple yet complete game. Therefore, there
will be a start screen, then an inner game, and finally a game over screen. The
inner game will have a spaceship the player can move. The player should
be able to press a button to fire a bullet that comes out of the front of the ship.
There only needs to be one level, but more would be nice. The level will begin
when the player goes from the start state to the inner game. After a set amount of
time, the level ends. If the player is still alive at the end of the level, then that
counts as a win; otherwise, the player loses the game. The level needs a number of
enemies that advance towards the player and are able to shoot bullets. Enemies

289

can be given a health value and take multiple shots to be destroyed. When de-
stroyed they should explode.

By reading this quick description of the game, it’s easy to start building up a list
of classes and interactions. A good way to start the technical plan is to draw some
boxes for the main classes and some arrows for the major interactions. We’ll
need three main game states, and the inner game state will be the most compli-
cated. By looking at the game description, you can see that some of the
important classes needed include Player, Level, Enemy, and Bullet. The
level needs to contain and update the players, enemies, and bullets. Bullets
should collide with enemies and players.

The inner game is where the player will fly the spaceship and blow up the
oncoming enemies. The player ship will not actually move through space;
instead, the movement will be faked. The player can move the player anywhere
on the screen but the ‘‘camera’’ will stay fixed dead center. To give the
impression of speeding through space, the background will be scrolled in
the opposite direction the player is traveling. This greatly simplifies any player
tracking or camera code.

This is a small game so we can start coding with this rather informal description.
All game code goes in the game project and any code we generate that might be
useful for multiple projects can go in the engine library. A more ambitious game
plan might require a few small test programs—game states are very good for
sketching out such code ideas.

The First Implementation Pass
The high-level view has broken the game down into three states. This first coding
pass will create these three states and make them functional.

Figure 10.1
High-level game flow.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game290

Create a new Windows Forms Application project. I’ve called the project
Shooter, but feel free to choose whatever name you want. You are probably
familiar with how to set up a project, but here is a quick overview. The solution
will be set up in a very similar way to the EngineTest project in the previous
chapters. The Shooter project uses the following references: Tao.DevIL, Tao.
OpenGL, Tao.Platform.Windows, and System.Drawing. It will also need a
reference to the Engine project. To do this, the Engine project should be added to
the solution (right-click the Solution folder, choose Add > Existing Project,
find the Engine project, and select it). Once the Engine project exists in the
solution then the Shooter project can add it as a reference. To add the Engine
project as a reference right-click the Shooter project references folder and choose
Add Reference, navigate to the Projects tab, and choose the Engine project.

The Shooter project will use OpenGL, so in the Form editor, drag and drop a
SimpleOpenGLControl onto the form and set its Dock property to ‘‘Fill.’’
Right-click the Form1.cs and choose View Code. This file needs a game loop and
initialization code added, which is supplied below.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using Engine;

using Engine.Input;

using Tao.OpenGl;

using Tao.DevIl;

namespace Shooter

{

public partial class Form1 : Form

{

bool _fullscreen ¼ false;

FastLoop _fastLoop;

StateSystem _system ¼ new StateSystem();

Input _input ¼ new Input();

TextureManager _textureManager ¼ new TextureManager();

SoundManager _soundManager ¼ new SoundManager();

The First Implementation Pass 291

public Form1()

{

InitializeComponent();

simpleOpenGlControl1.InitializeContexts();

_input.Mouse ¼ new Mouse(this, simpleOpenGlControl1);

_input.Keyboard ¼ new Keyboard(simpleOpenGlControl1);

InitializeDisplay();

InitializeSounds();

InitializeTextures();

InitializeFonts();

InitializeGameState();

_fastLoop ¼ new FastLoop(GameLoop);

}

private void InitializeFonts()

{

// Fonts are loaded here.

}

private void InitializeSounds()

{

// Sounds are loaded here.

}

private void InitializeGameState()

{

// Game states are loaded here

}

private void InitializeTextures()

{

// Init DevIl

Il.ilInit();

Ilu.iluInit();

Ilut.ilutInit();

Ilut.ilutRenderer(Ilut.ILUT_OPENGL);

// Textures are loaded here.

}

Chapter 10 ■ A Simple Side-Scrolling Shooting Game292

private void UpdateInput(double elapsedTime)

{

_input.Update(elapsedTime);

}

private void GameLoop(double elapsedTime)

{

UpdateInput(elapsedTime);

_system.Update(elapsedTime);

_system.Render();

simpleOpenGlControl1.Refresh();

}

private void InitializeDisplay()

{

if (_fullscreen)

{

FormBorderStyle ¼ FormBorderStyle.None;

WindowState ¼ FormWindowState.Maximized;

}

else

{

ClientSize ¼ new Size(1280, 720);

}

Setup2DGraphics(ClientSize.Width, ClientSize.Height);

}

protected override void OnClientSizeChanged(EventArgs e)

{

base.OnClientSizeChanged(e);

Gl.glViewport(0, 0, this.ClientSize.Width, this.ClientSize.

Height);

Setup2DGraphics(ClientSize.Width, ClientSize.Height);

}

private void Setup2DGraphics(double width, double height)

{

double halfWidth ¼ width / 2;

double halfHeight ¼ height / 2;

Gl.glMatrixMode(Gl.GL_PROJECTION);

Gl.glLoadIdentity();

Gl.glOrtho(-halfWidth, halfWidth, -halfHeight, halfHeight,

-100, 100);

The First Implementation Pass 293

Gl.glMatrixMode(Gl.GL_MODELVIEW);

Gl.glLoadIdentity();

}

}

}

In this Form.cs code, a Keyboard object is created and assigned to the Input
object. For the code to work a Keyboard member must be added to the Input
class as below.

public class Input

{

public Mouse Mouse { get; set; }

public Keyboard Keyboard { get; set; }

public XboxController Controller { get; set; }

The following DLL files will need to be added to the bin\Debug and bin\Release
folders: alut.dll, DevIL.dll, ILU.dll, ILUT.dll, OpenAL32.dll, and SDL.dll. The
project is now ready to use for developing a game.

This is the first game we’ve created, and it would be nice if the form title bar said
something other than ‘‘Form1’’ when the game was running. It’s easy to change
this text in Visual Studio. In the solution explorer double-click the file Form1.cs;
this will open the form designer. Click the form and go to the properties window.
(If you can’t find the properties window then go to the menu bar and choose
View > Properties Window.) This will list all the properties associated with the
form. Find the property labeled Text, and change the value to Shooter, as shown
in Figure 10.2.

The Start Menu State
The first state to create is the start menu. For a first pass, the menu only needs
two options: Start Game and Exit. These options are a kind of button; this state
therefore needs two buttons and some title text. A mock-up for this screen is
shown in Figure 10.3.

The title will be created using the Font and Text classes defined earlier in the
book. There’s a font on the CD called ‘‘title font’’; it’s a 48pt font with a suitably
video game look. Add the .fnt and .tga files to the project and set the properties of
each so that they are copied to the bin directory when the project is built.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game294

Figure 10.2
Changing the form title.

Figure 10.3
Title Screen mock-up.

The First Implementation Pass 295

The font file needs to be loaded in the Form.cs. If we were dealing with many
fonts, it might be worth creating a FontManager class, but because we’re only
using one or two they can just be stored as member variables. Here is the code to
load the font files.

private void InitializeTextures()

{

// Init DevIl

Il.ilInit();

Ilu.iluInit();

Ilut.ilutInit();

Ilut.ilutRenderer(Ilut.ILUT_OPENGL);

// Textures are loaded here.

_textureManager.LoadTexture("title_font", "title_font.tga");

}

Engine.Font _titleFont;

private void InitializeFonts()

{

_titleFont ¼ new Engine.Font(_textureManager.Get("title_font"),

FontParser.Parse("title_font.fnt"));

}

The font texture is loaded in the IntializeTextures function and this is
used when the font object is created in the IntializeFonts method.

The title font can then be passed into the StartMenuState constructor. Add
the following new StartMenuState to the Shooter project.

class StartMenuState : IGameObject

{

Renderer _renderer ¼ new Renderer();

Text _title;

public StartMenuState(Engine.Font titleFont)

{

_title¼ new Text("Shooter", titleFont);

_title.SetColor(new Color(0, 0, 0, 1));

// Center on the x and place somewhere near the top

_title.SetPosition(-_title.Width/2,300);

}

Chapter 10 ■ A Simple Side-Scrolling Shooting Game296

public void Update(double elapsedTime) { }

public void Render()

{

Gl.glClearColor(1, 1, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawText(_title);

_renderer.Render();

}

}

The StartMenuState uses the font passed into the constructor to make the
title text. The text is colored black, and then it’s centered horizontally. The ren-
der loop clears the screen to white and draws the text. To run the state it needs to
be added to the state system and set as the default state.

private void InitializeGameState()

{

// Game states are loaded here

_system.AddState("start_menu", new StartMenuState(_titleFont));

_system.ChangeState("start_menu");

}

Run the program and you should see something similar to Figure 10.4.

This stage is just a first pass. The title page can be refined and made prettier later.
At the moment, functionality is the most important thing. To finish the title
screen, the start and exit options are needed. These will be buttons, which means
a button class will need to be made.

The buttons will be presented in a vertical list. At all times one of the buttons will
be the selected button. If the user presses Enter on the keyboard or the A button
on the gamepad, then the currently selected button will be pressed.

A button needs to know when it’s selected; this is also known as having focus.
Buttons also need to know what to do when they’ve been pressed; this is a great
place to use a delegate. A button can be passed a delegate in the constructor and
call that when it’s pressed, executing any code we want. The button will also need
methods to set its position. These requirements for the button describe some-
thing like the following class. The Button class is reusable so it can be added to
the Engine project so it may be used in future projects.

The First Implementation Pass 297

public class Button

{

EventHandler _onPressEvent;

Text _label;

Vector _position ¼ new Vector();

public Vector Position

{

get { return _position; }

set

{

_position ¼ value;

UpdatePosition();

}

}

public Button(EventHandler onPressEvent, Text label)

{

_onPressEvent ¼ onPressEvent;

Figure 10.4
Rendering in the title.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game298

_label¼ label;

_label.SetColor(new Color(0, 0, 0, 1));

UpdatePosition();

}

public void UpdatePosition()

{

// Center label text on position.

_label.SetPosition(_position.X - (_label.Width / 2),

_position.Y þ (_label.Height / 2));

}

public void OnGainFocus()

{

_label.SetColor(new Color(1, 0, 0, 1));

}

public void OnLoseFocus()

{

_label.SetColor(new Color(0, 0, 0, 1));

}

public void OnPress()

{

_onPressEvent(this, EventArgs.Empty);

}

public void Render(Renderer renderer)

{

renderer.DrawText(_label);

}

}

The button class doesn’t directly handle the user input; instead, it relies on
whichever piece of code uses it to pass on relevant input events. The OnGain-
Focus and OnLoseFocus methods will be used to change the appearance of
the button depending on the focus. This will let the user know which button he
currently has selected. When the button position is changed, the label text posi-
tion is also updated and centered. EventHandler is used to hold the function
that will be called when the button is pressed. EventHandler describes a
delegate that takes an object and event argument’s enum.

The First Implementation Pass 299

Player input is detected by a class called Menu; it informs the buttons if they
are selected or pressed. The Menu class contains a list of buttons, and only one
button may have focus at any one time. The user can navigate the menu with
the control pad or keyboard. The OnGainFocus and OnLoseFocus will
change the button label text; this will let us know which button currently has the
focus.

The color will be red when focused; otherwise, it will be black. Alternatively, the
text could be enlarged, a background image could change, or some other values
could be tweened in or out, but not now as this is the very first pass.

The menu will list the buttons vertically in a column, so a good name might be
VerticalMenu. VerticalMenu is another reusable class so it can be added
to the Engine project. The menu will need methods for adding buttons and a
Render method.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine.Input; // Input needs to be added for gamepad input.

using System.Windows.Forms; // Used for keyboard input

namespace Engine

{

public class VerticalMenu

{

Vector _position ¼ new Vector();

Input.Input _input;

List<Button> _buttons¼ new List<Button>();

public double Spacing { get; set; }

public VerticalMenu(double x, double y, Input.Input input)

{

_input¼ input;

_position ¼ new Vector(x, y, 0);

Spacing ¼ 50;

}

public void AddButton(Button button)

Chapter 10 ■ A Simple Side-Scrolling Shooting Game300

{

double _currentY ¼ _position.Y;

if (_buttons.Count != 0)

{

_currentY ¼ _buttons.Last().Position.Y;

_currentY -= Spacing;

}

else

{

// It's the first button added it should have

// focus

button.OnGainFocus();

}

button.Position ¼ new Vector(_position.X, _currentY, 0);

_buttons.Add(button);

}

public void Render(Renderer renderer)

{

_buttons.ForEach(x => x.Render(renderer));

}

}

}

The position of the buttons is handled automatically. Each time a button is
added, it is put below the other buttons on the Y axis. The Spacing member
determines how far apart the buttons are spaced, and this defaults to 50 pixels.
The menu itself also has a position that allows the buttons to be moved around as
a group. The position is only set in the constructor. The VerticalMenu
doesn’t allow its position to be changed after it is constructed because this would
require an extra method to rearrange all the buttons for the new position. This
would be nice functionality to have, but it’s not necessary. The Render method
uses C#’s new lamba operator to render all the buttons.

The menu class doesn’t handle user input yet, but before adding that, let’s hook
the menu up to StartMenuState so we can see if everything is working. The
label on buttons will use a different font than the one used for the title. Find
general_font.fnt and general_font.tga on the CD and add them to the project.
Then this new font needs to be set up in the Form.cs file.

The First Implementation Pass 301

// In form.cs

private void InitializeTextures()

{

// Init DevIl

Il.ilInit();

Ilu.iluInit();

Ilut.ilutInit();

Ilut.ilutRenderer(Ilut.ILUT_OPENGL);

// Textures are loaded here.

_textureManager.LoadTexture("title_font", "title_font.tga");

_textureManager.LoadTexture("general_font", "general_font.tga");

}

Engine.Font _generalFont;

Engine.Font _titleFont;

private void InitializeFonts()

{

// Fonts are loaded here.

_titleFont ¼ new Engine.Font(_textureManager.Get("title_font"),

FontParser.Parse("title_font.fnt"));

_generalFont ¼ new Engine.Font(_textureManager.Get("general_font"),

FontParser.Parse("general_font.fnt"));

}

This new general font can now be passed through to the StartMenuState in
the constructor and will be used to construct the vertical menu. The Input class
is also passed along at this point and therefore the using Engine.Input
statement must be added to the other using statements at the top of the Start-
MenuState.cs file.

Engine.Font _generalFont;

Input _input;

VerticalMenu _menu;

public StartMenuState(Engine.Font titleFont, Engine.Font generalFont,

Input input)

{

_input ¼ input;

_generalFont ¼ generalFont;

InitializeMenu();

Chapter 10 ■ A Simple Side-Scrolling Shooting Game302

The actual menu creation is done in the InitializeMenu function because
this stops it from cluttering up the StartMenuState constructor. The
StartMenuState creates a vertical menu centered on the X axis and 150 pixels
up on the Y axis. This positions the menu neatly below the title text.

private void InitializeMenu()

{

_menu¼ new VerticalMenu(0, 150, _input);

Button startGame ¼ new Button(

delegate(object o, EventArgs e)

{

// Do start game functionality.

},

new Text("Start", _generalFont));

Button exitGame ¼ new Button(

delegate(object o, EventArgs e)

{

// Quit

System.Windows.Forms.Application.Exit();

},

new Text("Exit", _generalFont));

_menu.AddButton(startGame);

_menu.AddButton(exitGame);

}

Two buttons are created: one for exit and one for start. It’s easy to see how
additional buttons could be added (e.g., load saved game, credits, settings,
or website would all be fairly trivial to add using this system). The exit button
delegate is fully implemented, and when called, it will exit the program. The start
menu button functionality is empty for the time being; it will be filled in when we
make the inner game state.

The vertical menu is now being successfully created, but it won’t be visible until
it’s added to the render loop.

public void Render()

{

Gl.glClearColor(1, 1, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.DrawText(_title);

The First Implementation Pass 303

_menu.Render(_renderer);

_renderer.Render();

}

Run the program and the menu will be rendered under the title.

Only the input handling remains to be implemented. The gamepad will navigate
the menu with the left control stick or the keyboard. This requires some extra
logic to decide when a control stick has been flicked up or down. This logic is
shown below in the HandleInput function, which belongs to the Verti-
calMenu class. You may have to make a change to the Input class to make the
Controller member public so it’s accessible from outside the Engine project.

bool _inDown ¼ false;

bool _inUp¼ false;

int _currentFocus ¼ 0;

public void HandleInput()

{

bool controlPadDown ¼ false;

bool controlPadUp ¼ false;

float invertY ¼ _input.Controller.LeftControlStick.Y * -1;

if (invertY < -0.2)

{

// The control stick is pulled down

if (_inDown == false)

{

controlPadDown ¼ true;

_inDown ¼ true;

}

}

else

{

_inDown ¼ false;

}

if (invertY > 0.2)

{

if (_inUp== false)

{

controlPadUp ¼ true;

Chapter 10 ■ A Simple Side-Scrolling Shooting Game304

_inUp¼ true;

}

}

else

{

_inUp¼ false;

}

if (_input.Keyboard.IsKeyPressed(Keys.Down)

|| controlPadDown)

{

OnDown();

}

else if(_input.Keyboard.IsKeyPressed(Keys.Up)

|| controlPadUp)

{

OnUp();

}

}

The HandleInput function needs to be called in the StartMenuState.
Update method. If you don’t add this call then none of the input will be
detected. HandleInput detects the particular input that the vertical menu is
interested in and then calls other functions to deal with it. At the moment there
are only two functions, OnUp and OnDown; these will change the currently
focused menu item.

private void OnUp()

{

int oldFocus ¼ _currentFocus;

_currentFocus++;

if (_currentFocus == _buttons.Count)

{

_currentFocus ¼ 0;

}

ChangeFocus(oldFocus, _currentFocus);

}

private void OnDown()

{

int oldFocus ¼ _currentFocus;

The First Implementation Pass 305

_currentFocus–;

if (_currentFocus == -1)

{

_currentFocus ¼ (_buttons.Count - 1);

}

ChangeFocus(oldFocus, _currentFocus);

}

private void ChangeFocus(int from, int to)

{

if (from != to)

{

_buttons[from].OnLoseFocus();

_buttons[to].OnGainFocus();

}

}

By pressing up or down on the keyboard, the focus is moved up and down the
buttons on the vertical menu. The focus also wraps around. If you are at the top
of the menu and press up, then the focus will wrap around and go to the bottom
of the menu. The ChangeFocus method reduces repeated code; it tells one
button it’s lost focus and another button that it’s gained focus.

Buttons can now be selected, but there is no code to handle buttons being
pressed. The VerticalMenu class needs to be modified to detect when the A
button on the gamepad or the Enter key on the keyboard is pressed. Once this is
detected, the currently selected button delegate is called.

// Inside the HandleInput function

else if(_input.Keyboard.IsKeyPressed(Keys.Up)

|| controlPadUp)

{

OnUp();

}

else if (_input.Keyboard.IsKeyPressed(Keys.Enter)

|| _input.Controller.ButtonA.Pressed)

{

OnButtonPress();

}

}

Chapter 10 ■ A Simple Side-Scrolling Shooting Game306

private void OnButtonPress()

{

_buttons[_currentFocus].OnPress();

}

Run the code and use the keyboard or gamepad to navigate the menu. Pressing
the exit button will exit the game, but pressing the start button will currently do
nothing. The start button needs to change the state to the inner game state. This
means that StartMenuState needs access to the state system.

private void InitializeGameState()

{

_system.AddState("start_menu", new StartMenuState(_titleFont,

_generalFont, _input, _system));

The StartMenuState constructor will also need to be modified, and it will
keep a reference to the state system.

StateSystem _system;

public StartMenuState(Engine.Font titleFont, Engine.Font generalFont,

Input input, StateSystem system)

{

_system ¼ system;

This can be used by the start button to change states when it is pressed. The start
button is set up in the InitializeMenu method and needs to be modified
like so.

Button startGame ¼ new Button(

delegate(object o, EventArgs e)

{

_system.ChangeState("inner_game");

},

new Text("Start", _generalFont));

The inner_game state doesn’t exist yet but that’s what we’ll develop next. For a
first pass, the start menu is now complete. Running the program will produce
something similar to Figure 10.5.

Subsequent passes can change this menu as needed, adding more animation,
demo modes, or whatever you like!

The First Implementation Pass 307

The Inner Game State
For the first pass, the inner game is going to be as simple as possible. It will wait
a few seconds and then change to the game over state. It needs to pass some
information over to the game over state to report if the player won or lost
the game.

A PersistantGameData class will be used to store information about the
player, including if he had just lost or won a game. Eventually the inner game will
allow the player to play a shooting game, but not in this first pass.

The inner game level will last for a fixed period of time; if the player is alive
when the time is up the player wins. The time a level takes is described by a
LevelDescription class. For now, the only thing this class contains is how
long the level will last.

class LevelDescription

{

// Time a level lasts in seconds.

public double Time { get; set; }

}

Figure 10.5
First pass of the start game menu.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game308

The PersistentGameData class will have a description of the current level
and information about whether the player has just won that level.

class PersistantGameData

{

public bool JustWon { get; set; }

public LevelDescription CurrentLevel { get; set; }

public PersistantGameData()

{

JustWon ¼ false;

}

}

The JustWon member is set to false in the constructor because the player
cannot have won a game before the game data is created. The persistent game
data class needs to be created in the Form.cs file. Add a new function to be called
from the constructor called InitializeGameData; it should be called just
after InitializeTextures and just before the game fonts are created.

PersistantGameData _persistantGameData ¼ new PersistantGameData();

private void InitializeGameData()

{

LevelDescription level ¼ new LevelDescription();

level.Time ¼ 1; // level only lasts for a second

_persistantGameData.CurrentLevel ¼ level;

}

With this class set up it’s now easy to design the InnerGameState.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

using Engine.Input;

using Tao.OpenGl;

namespace Shooter

{

class InnerGameState : IGameObject

{

Renderer _renderer ¼ new Renderer();

The First Implementation Pass 309

Input _input;

StateSystem _system;

PersistantGameData _gameData;

Font _generalFont;

double _gameTime;

public InnerGameState(StateSystem system, Input input, Persis-

tantGameData gameData, Font generalFont)

{

_input¼ input;

_system ¼ system;

_gameData ¼ gameData;

_generalFont ¼ generalFont;

OnGameStart();

}

public void OnGameStart()

{

_gameTime ¼ _gameData.CurrentLevel.Time;

}

#region IGameObject Members

public void Update(double elapsedTime)

{

_gameTime -= elapsedTime;

if (_gameTime <= 0)

{

OnGameStart();

_gameData.JustWon ¼ true;

_system.ChangeState("game_over");

}

}

public void Render()

{

Gl.glClearColor(1, 0, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_renderer.Render();

}

Chapter 10 ■ A Simple Side-Scrolling Shooting Game310

#endregion

}

}

The constructor takes in the state system and persistent game data. Using these
classes the InnerGameState can determine when the game is over and change
the game state. The constructor also takes in the input and general font as these
will be of use when adding the second pass of functionality. The constructor calls
OnGameStart, which sets the gameTime that will determine how long the
level lasts. There will be no level content at this time so the level time is set to
1 second.

The Update function counts down the level time. When the time is up it and the
state changes to game_over. The gameTime is reset by calling OnGameState
and because the player is still alive then, the JustWon flag is set in the persistent
data object. The inner game state Render function clears the screen to a pink
color so it’s obvious when the state change occurs.

The InnerGameState class should be used to add another state to the state
system in the Form.cs file.

_system.AddState("inner_game", new InnerGameState(_system, _input,

_persistantGameData, _generalFont));

That’s it for the first pass of the inner game.

The Game Over State
The gameover state is a simple state that tells the player that the game has
ended and if he won or lost. The state determines if the player won or lost
the game by using the PersistentGameData class. The state will display
its information for a short time and then return the player to the start menu.
The player can return to the start menu earlier by pressing a button and forcing
the GameOverState to finish.

%using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

using Engine.Input;

The First Implementation Pass 311

using Tao.OpenGl;

namespace Shooter

{

class GameOverState : IGameObject

{

const double _timeOut ¼ 4;

double _countDown ¼ _timeOut;

StateSystem _system;

Input _input;

Font _generalFont;

Font _titleFont;

PersistantGameData _gameData;

Renderer _renderer ¼ new Renderer();

Text _titleWin;

Text _blurbWin;

Text _titleLose;

Text _blurbLose;

public GameOverState(PersistantGameData data, StateSystem system,

Input input, Font generalFont, Font titleFont)

{

_gameData ¼ data;

_system ¼ system;

_input¼ input;

_generalFont ¼ generalFont;

_titleFont ¼ titleFont;

_titleWin ¼ new Text("Complete!", _titleFont);

_blurbWin ¼ new Text("Congratulations, you won!", _generalFont);

_titleLose ¼ new Text("Game Over!", _titleFont);

_blurbLose ¼ new Text("Please try again...", _generalFont);

FormatText(_titleWin, 300);

FormatText(_blurbWin, 200);

FormatText(_titleLose, 300);

FormatText(_blurbLose, 200);

}

Chapter 10 ■ A Simple Side-Scrolling Shooting Game312

private void FormatText(Text _text,int yPosition)

{

_text.SetPosition(-_text.Width / 2, yPosition);

_text.SetColor(new Color(0, 0, 0, 1));

}

#region IGameObject Members

public void Update(double elapsedTime)

{

_countDown -= elapsedTime;

if (_countDown <= 0 ||

_input.Controller.ButtonA.Pressed ||

_input.Keyboard.IsKeyPressed(System.Windows.Forms.Keys.

Enter))

{

Finish();

}

}

private void Finish()

{

_gameData.JustWon ¼ false;

_system.ChangeState("start_menu");

_countDown ¼ _timeOut;

}

public void Render()

{

Gl.glClearColor(1, 1, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

if (_gameData.JustWon)

{

_renderer.DrawText(_titleWin);

_renderer.DrawText(_blurbWin);

}

else

{

_renderer.DrawText(_titleLose);

_renderer.DrawText(_blurbLose);

}

The First Implementation Pass 313

_renderer.Render();

}

#endregion

}

}

This class needs to be loaded like the rest in the form.cs class.

private void InitializeGameState()

{

// Game states are loaded here

_system.AddState("start_menu", new StartMenuState(_titleFont,

_generalFont, _input, _system));

_system.AddState("inner_game", new InnerGameState(_system, _input,

_persistantGameData, _generalFont));

_system.AddState("game_over", new GameOverState(_persistantGameData,

_system, _input, _generalFont, _titleFont));

_system.ChangeState("start_menu");

}

The GameOverState creates a title and message for winning and losing the
game. It then uses the persistent data JustWon member to decide which mes-
sage to display. It also has a counter, and the state eventually times out returning
the user to the start menu.

The creation of these three states completes the first pass of the game. The game,
while currently not very fun, is already in a complete state. The next section will
add more detail to the inner game and refine the overall structure to make it look
better.

Developing the Inner Game
The inner game currently doesn’t allow any interaction and times out after a few
seconds. To make the inner game state more game-like, a PlayerCharacter
needs to be introduced and the player needs to be able to move the character
around. This will be the first goal. It’s important to create a game in a series of
small achievable goals that are well defined; it makes it much easier to write the
code. In this case, the PlayerCharacter will be some type of spaceship.

Once the first goal is reached then the player needs to feel as though he is
advancing through a level. This will be done by scrolling the background texture.
The next small goal is to let the player shoot bullets. Bullets need something to

Chapter 10 ■ A Simple Side-Scrolling Shooting Game314

hit, so the enemies will also be needed. Each goal is a small step that leads
logically on to the next. It’s very quick to build up a game in this manner.

Moving the Player Character
The player will be represented as a spaceship created using a sprite and a texture.
The spaceship will be controlled by the arrow keys or the left control stick on the
gamepad.

The code for controlling the PlayerCharacter won’t go directly into the
InnerGameState class. The InnerGameState class is meant to be a light,
easy to understand class. The bulk of the level code will be stored in a class
called Level. Each time the player plays a level, a new level object is made
and the old one is replaced. Creating a new level object each time ensures
that there’s no strange error caused by leftover data from a previous play
through.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

using Engine.Input;

using System.Windows.Forms;

using System.Drawing;

namespace Shooter

{

class Level

{

Input _input;

PersistantGameData _gameData;

PlayerCharacter _playerCharacter;

TextureManager _textureManager;

public Level(Input input, TextureManager textureManager,

PersistantGameData gameData)

{

_input¼ input;

_gameData ¼ gameData;

_textureManager ¼ textureManager;

Developing the Inner Game 315

_playerCharacter ¼ new PlayerCharacter(_textureManager);

}

public void Update(double elapsedTime)

{

// Get controls and apply to player character

}

public void Render(Renderer renderer)

{

_playerCharacter.Render(renderer);

}

}

}

This code describes a level. It takes the input and persistent game data in the
constructor. The input object is used to move the PlayerCharacter. The
persistent game data can be used to keep track of such things as the score or any
other data that should be recorded over a number of levels. The texture manager
is used to create the player, enemies, and background sprites.

The PlayerCharacter class will contain a sprite that represents the player
spaceship. The CD contains a sprite called spaceship.tga in the Assets directory.
This needs to be added to the project and its properties changed so that it
is copied into the build directory. Load this texture in the form.cs
InitializeTextures method.

private void InitializeTextures()

{

// Init DevIl

Il.ilInit();

Ilu.iluInit();

Ilut.ilutInit();

Ilut.ilutRenderer(Ilut.ILUT_OPENGL);

_textureManager.LoadTexture("player_ship", "spaceship.tga");

Now that the player sprite is loaded into the TextureManager, the
PlayerCharacter class can be written.

public class PlayerCharacter

{

Chapter 10 ■ A Simple Side-Scrolling Shooting Game316

Sprite _spaceship ¼ new Sprite();

public PlayerCharacter(TextureManager textureManager)

{

_spaceship.Texture ¼ textureManager.Get("player_ship");

_spaceship.SetScale(0.5, 0.5); // spaceship is quite big, scale

it down.

}

public void Render(Renderer renderer)

{

renderer.DrawSprite(_spaceship);

}

}

The PlayerCharacter class at this stage only renders out the spaceship.
To see this is in action a Level object needs to be created in the
InnerGameState and hooked up to the Update and Render methods. The
structure of the level class has its own Render and Update methods so it’s very
easy to plug into the InnerGame State. The Level class makes use of the
TextureManager class and this means the InnerGameState must change
its constructor so that it takes in a TextureManager object. In the form.cs file
the textureManager object needs to be passed into the InnerGameState
constructor.

class InnerGameState : IGameObject

{

Level _level;

TextureManager _textureManager;

// Code omitted

public InnerGameState(StateSystem system, Input input, TextureManager

textureManager,

PersistantGameData gameData, Font generalFont)

{

_ textureManager ¼ textureManager;

// Code omitted

public void OnGameStart()

{

_level¼ new Level(_input, _textureManager, _gameData);

Developing the Inner Game 317

_gameTime ¼ _gameData.CurrentLevel.Time;

}

// Code omitted

public void Update(double elapsedTime)

{

_level.Update(elapsedTime);

// Code omitted

public void Render()

{

Gl.glClearColor(1, 0, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

_level.Render(_renderer);

Run the code and start the game. The spaceship will flash, giving a brief glance
of this new player sprite and then suddenly the game will end. To test the
InnerGameState thoroughly, the level length must be increased. The level
length is set in the form.cs file in the InitializeGameData function. Find
the code and make the length longer; 30 seconds is probably fine.

The spaceship movement is going to be very simple, with no acceleration or
physics modeling. The control stick and arrow keys map directly to the move-
ment of the ship. The PlayerCharacter class needs a new method
called Move.

double _speed¼ 512; // pixels per second

public void Move(Vector amount)

{

amount *= _speed;

_spaceship.SetPosition(_spaceship.GetPosition() þ amount);

}

The Move method takes in a vector that gives the direction and amount to move
the spaceship. The vector is then multiplied by the speed value to increase
the movement length. The new vector is then added to the current position
of the ship to create a new position in space, and the sprite is moved there. This is
how all basic movement is done in arcade-style games. The movement can be
given a different feel by modeling more physical systems such as acceleration and
friction, but we will stick with the basic movement code.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game318

The spaceship is moved around by the values in the Input class, which is
handled in the Level Update loop.

public void Update(double elapsedTime)

{

// Get controls and apply to player character

double _x¼ _input.Controller.LeftControlStick.X;

double _y¼ _input.Controller.LeftControlStick.Y * - 1;

Vector controlInput ¼ new Vector(_x,_y,0);

if (Math.Abs(controlInput.Length()) < 0.0001)

{

// If the input is very small, then the player may not be using

// a controller; he might be using the keyboard.

if (_input.Keyboard.IsKeyHeld(Keys.Left))

{

controlInput.X ¼ -1;

}

if (_input.Keyboard.IsKeyHeld(Keys.Right))

{

controlInput.X ¼ 1;

}

if (_input.Keyboard.IsKeyHeld(Keys.Up))

{

controlInput.Y ¼ 1;

}

if (_input.Keyboard.IsKeyHeld(Keys.Down))

{

controlInput.Y ¼ -1;

}

}

_playerCharacter.Move(controlInput * elapsedTime);

}

The controls are quite simple for the gamepad. A vector is created that describes
how the control stick is pushed (The Y axis is reversed by multiplying the value

Developing the Inner Game 319

by minus 1 so that the ship will go up when you push up rather than down). This
vector is then multiplied by the elapsed time so that the movement will be
constant no matter the frame rate. The scaled vector is then used to move
the ship. There is also support for the keyboard. The values of the control stick
are checked, and if the control stick doesn’t seem to have moved, then the
keyboard keys are checked. It’s assumed if you’re not moving the control stick,
then you might be playing on the keyboard. The keyboard is less granular than
the control stick; it can only give up, down, left, and right as absolute, 0 or 1,
values. The keyboard input is used to make a vector so that it can be treated
in the same way as the control stick input. IsKeyHeld is used instead of
IsKeyPressed because we assume that if the user is holding down the left key,
he wants to continue to move left rather than move left once and stop.

Run the program and you will be able to move the ship around the screen. The
movement goal is complete!

Faking Movement with a Scrolling Background
Adding a background is going to be fairly easy. There are two basic starfield tex-
tures on the CD in the Assets directory called background.tga and background_p.
tga. Add these files to the solution and alter the properties so they’re copied to the
build directory as you’ve done for all the other textures. Then load them into the
texture manager in the form.cs InitializeTextures function.

_textureManager.LoadTexture("background", "background.tga");

_textureManager.LoadTexture("background_layer_1",

"background_p.tga");

Two backgrounds have been chosen so that they can be layered on top of each
other to make a more interesting effect than would be achievable with only one
texture.

This background is going to be animated by using UV scrolling. This can all be
done by making a new class called ScrollingBackground . This scrolling
background class could also be reused to make the start and game over menu
more interesting, but the priority at the moment is the inner game.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Chapter 10 ■ A Simple Side-Scrolling Shooting Game320

using Engine;

namespace Shooter

{

class ScrollingBackground

{

Sprite _background ¼ new Sprite();

public float Speed { get; set; }

public Vector Direction { get; set; }

Point _topLeft ¼ new Point(0, 0);

Point _bottomRight ¼ new Point(1, 1);

public void SetScale(double x, double y)

{

_background.SetScale(x, y);

}

public ScrollingBackground(Texture background)

{

_background.Texture ¼ background;

Speed ¼ 0.15f;

Direction ¼ new Vector(1, 0, 0);

}

public void Update(float elapsedTime)

{

_background.SetUVs(_topLeft, _bottomRight);

_topLeft.X += (float)(0.15f * Direction.X * elapsedTime);

_bottomRight.X += (float)(0.15f * Direction.X * elapsedTime);

_topLeft.Y += (float)(0.15f * Direction.Y * elapsedTime);

_bottomRight.Y += (float)(0.15f * Direction.Y * elapsedTime);

}

public void Render(Renderer renderer)

{

renderer.DrawSprite(_background);

}

}

}

An interesting thing to note about the scrolling background class is that it has
a direction vector (called Direction). This vector can be used to alter the
direction of the scrolling. In a normal shooting game, a background usually scrolls

Developing the Inner Game 321

right to left. Altering the scrolling direction can cause the background to scroll in
any direction desired. This would be useful in a space exploration game where the
background could move in the opposite direction to the player’s movement.

The scrolling class also has a Speed member; this isn’t strictly necessary as the
speed of the scrolling could be encoded as the magnitude of the vector, but
separating the speed makes it simpler to alter. The direction and speed are used
to move the U,V data of the vertices in the Update method.

This background can now be added into the Level class.

ScrollingBackground _background;

ScrollingBackground _backgroundLayer;

public Level(Input input, TextureManager textureManager, PersistantGa-

meData gameData)

{

_input ¼ input;

_gameData ¼ gameData;

_textureManager ¼ textureManager;

_background ¼ new ScrollingBackground(textureManager.Get

("background"));

_background.SetScale(2, 2);

_background.Speed ¼ 0.15f;

_backgroundLayer ¼ new ScrollingBackground(textureManager.Get

("background_layer_1"));

_backgroundLayer.Speed ¼ 0.1f;

_backgroundLayer.SetScale(2.0, 2.0);

These two background objects are created in the constructor and each is scaled
by two. The backgrounds are scaled up because the texture is about half the size
of the screen area. The texture is scaled to make the texture large enough to
entirely cover the playing area without leaving gaps at the edges.

The two backgrounds scroll at different speeds. This produces what is known as a
parallax effect. The human brain understands the 3D world through a number of
different cues known as depth cues. For instance, each eye sees a slightly different
angle of the world, and the differences between these views can be used to
determine the third dimension. This is known as the binocular cue.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game322

Parallax is another one of these cues; simply put, objects further from the viewer
appear to move slower than those closer to the view. Think of driving in a car
with a large mountain in the distance. The mountain appears to move very
slowly, but trees next to the road fly past. This is a depth cue, and the brain
knows that the mountain is far away.

Parallax is easy to fake. A fast scrolling star field appears to have stars close to the
spaceship; another background moving more slowly appears to have stars far
away. The background classes merely need to move at different speeds, and this
gives the background a feeling of depth.

The background objects need to be rendered and updated. This requires more
code changes.

public void Update(double elapsedTime)

{

_background.Update((float)elapsedTime);

_backgroundLayer.Update((float)elapsedTime);

// A little later in the code

public void Render(Renderer renderer)

{

_background.Render(renderer);

_backgroundLayer.Render(renderer);

Run the code and check out the parallax effect. It’s quite subtle with the given
star fields, so feel free to modify the images or add several more layers.

The ship now appears to be zooming along in space, and everything suddenly
feels a lot more game-like. The next task is to add an enemy.

Adding Some Simple Enemies
The enemies will be represented by a sprite and therefore they will use the
Sprite class. The enemy sprite should be different from the player sprite so add
a new sprite texture called spaceship2.tga from the CD Assets directory. Change
its properties so that it will be copied to the \bin directories when the program is
built.

This snippet of code loads the texture into the texture manager.

Developing the Inner Game 323

_textureManager.LoadTexture("enemy_ship", "spaceship2.tga");

Once this has been added, a class can be constructed to simply represent the
enemy.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

namespace Shooter

{

class Enemy

{

Sprite _spaceship ¼ new Sprite();

double _scale ¼ 0.3;

public Enemy(TextureManager textureManager)

{

_spaceship.Texture ¼ textureManager.Get("enemy_ship");

Figure 10.6
Scrolling backgrounds.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game324

_spaceship.SetScale(_scale, _scale);

_spaceship.SetRotation(Math.PI); // make it face the player

_spaceship.SetPosition(200, 0); // put it somewhere easy to see

}

public void Update(double elapsedTime)

{

}

public void Render(Renderer renderer)

{

renderer.DrawSprite(_spaceship);

}

}

}

The enemies will be rendered and controlled by the Level class. It’s very likely
we’ll have more than one enemy at a time, so it’s best to make a list of enemies.

class Level

{

List<Enemy> _enemyList ¼ new List<Enemy>();

// A little later in the code

public Level(Input input, TextureManager textureManager, Persis-

tantGameData gameData)

{

_input¼ input;

_gameData ¼ gameData;

_textureManager ¼ textureManager;

_enemyList.Add(new Enemy(_textureManager));

// A little later in the code

public void Update(double elapsedTime)

{

_background.Update((float)elapsedTime);

_backgroundLayer.Update((float)elapsedTime);

_enemyList.ForEach(x => x.Update(elapsedTime));

Developing the Inner Game 325

// A little later in the code

public void Render(Renderer renderer)

{

_background.Render(renderer);

_backgroundLayer.Render(renderer);

_enemyList.ForEach(x => x.Render(renderer));

This code is all pretty standard. A list of enemies is created, and an enemy is
added to it. The list is then updated and rendered using the lambda syntax. Run
the program now and you should see two spaceships: the player spaceship and an
enemy facing it. With the current code, the player can fly through the enemy ship
with no reaction. If the player crashes into the enemy ship then the player should
take some damage or the state should change to the game over state. Before any
of that can happen, the collision needs to be detected.

The collision detection will be the simple rectangle-rectangle collision explored
earlier in the book. Before coding the collision it may be useful to visualize the
bounding box around the enemy. This is quite simple to code using OpenGL’s
immediate mode and GL_LINE_LOOP. Add the following code to the Enemy
class.

public RectangleF GetBoundingBox()

{

float width ¼ (float)(_spaceship.Texture.Width * _scale);

float height ¼ (float)(_spaceship.Texture.Height * _scale);

return new RectangleF((float)_spaceship.GetPosition().X - width / 2,

(float)_spaceship.GetPosition().Y - height / 2,

width, height);

}

// Render a bounding box

public void Render_Debug()

{

Gl.glDisable(Gl.GL_TEXTURE_2D);

RectangleF bounds ¼ GetBoundingBox();

Gl.glBegin(Gl.GL_LINE_LOOP);

{

Gl.glColor3f(1, 0, 0);

Gl.glVertex2f(bounds.Left, bounds.Top);

Gl.glVertex2f(bounds.Right, bounds.Top);

Chapter 10 ■ A Simple Side-Scrolling Shooting Game326

Gl.glVertex2f(bounds.Right, bounds.Bottom);

Gl.glVertex2f(bounds.Left, bounds.Bottom);

}

Gl.glEnd();

Gl.glEnable(Gl.GL_TEXTURE_2D);

}

C#’s RectangleF class is used; therefore, the System.Drawing library needs
to be added to the using statements at the top of Enemy.cs. The function
GetBoundingBox uses the sprite to calculate a bounding box around it. The
width and height are scaled according to the sprite, so even if the sprite is scaled,
the bounding box will be correct. The RectangleF constructor takes in the
x and y position of the top-left corner, and then the width and height of the
rectangle. The position of the sprite is its center, so to get the top-left corner, half
the width and height must be subtracted from the position.

The Render_Debug method draws a red box around the sprite. The
Render_Debug method should be called from the Enemy.Render method.
This debug function can be removed at any time.

public void Render(Renderer renderer)

{

renderer.DrawSprite(_spaceship);

Render_Debug();

}

Run the code and a red box will be drawn around the enemy, as can be seen in
Figure 10.7. Visual debug routines are a great way to understand what your code
is really doing.

The GetBoundingBox function can be used to determine if the enemy is
colliding with anything else. At the moment, the player ship doesn’t have a
GetBoundingBox function, and the principle of DRY (Don’t Repeat Yourself)
means you shouldn’t just copy this code! Instead, a new parent class should be
created that centralizes this functionality; then the Enemy and PlayerChar-
acter can both inherit from this.

Before the Enemy and the PlayerCharacter classes are generalized, this
Sprite class needs to be modified. To make the bounding box drawing func-
tions simpler, the sprite should have some methods to report the current scale.

Developing the Inner Game 327

public class Sprite

{

double _scaleX ¼ 1;

double _scaleY ¼ 1; public double ScaleX

{

get

{

return _scaleX;

}

}

public double ScaleY

{

get

{

return _scaleY;

}

}

Figure 10.7
An enemy bounding box.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game328

Changing the Sprite class is a change to the Engine library, which is a change
that shouldn’t be taken lightly. In this case, it is a good change that will be ben-
eficial to any future project using the Engine library. With the Sprite method
updated, the Entity class can be created back in the Shooter project.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

using Tao.OpenGl;

using System.Drawing;

namespace Shooter

{

public class Entity

{

protected Sprite _sprite¼ new Sprite();

public RectangleF GetBoundingBox()

{

float width ¼ (float)(_sprite.Texture.Width * _sprite.ScaleX);

float height ¼ (float)(_sprite.Texture.Height * _sprite.ScaleY);

return new RectangleF((float)_sprite.GetPosition().X - width / 2,

(float)_sprite.GetPosition().Y - height / 2,

width, height);

}

// Render a bounding box

protected void Render_Debug()

{

Gl.glDisable(Gl.GL_TEXTURE_2D);

RectangleF bounds ¼ GetBoundingBox();

Gl.glBegin(Gl.GL_LINE_LOOP);

{

Gl.glColor3f(1, 0, 0);

Gl.glVertex2f(bounds.Left, bounds.Top);

Gl.glVertex2f(bounds.Right, bounds.Top);

Gl.glVertex2f(bounds.Right, bounds.Bottom);

Gl.glVertex2f(bounds.Left, bounds.Bottom);

}

Developing the Inner Game 329

Gl.glEnd();

Gl.glEnable(Gl.GL_TEXTURE_2D);

}

}

}

The Entity class contains a sprite and some code to render that sprite’s
bounding box.

With this entity definition, the Enemy class can be greatly simplified.

public class Enemy : Entity

{

double _scale ¼ 0.3;

public Enemy(TextureManager textureManager)

{

_sprite.Texture ¼ textureManager.Get("enemy_ship");

_sprite.SetScale(_scale , _scale);

_sprite.SetRotation(Math.PI); // make it face the player

_sprite.SetPosition(200, 0); // put it somewhere easy to see

}

public void Update(double elapsedTime)

{

}

public void Render(Renderer renderer)

{

renderer.DrawSprite(_sprite);

Render_Debug();

}

public void SetPosition(Vector position)

{

_ sprite.SetPosition(position);

}

}

The Enemy is now a type of Entity and no longer needs its own reference
to a sprite. This same refactoring can be applied to the PlayerCharacter
class.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game330

public class PlayerCharacter : Entity

{

double _speed ¼ 512; // pixels per second

public void Move(Vector amount)

{

amount *= _speed;

_sprite.SetPosition(_sprite.GetPosition() þ amount);

}

public PlayerCharacter(TextureManager textureManager)

{

_sprite.Texture ¼ textureManager.Get("player_ship");

_sprite.SetScale(0.5, 0.5); // spaceship is quite big, scale it down.

}

public void Render(Renderer renderer)

{

Render_Debug();

renderer.DrawSprite(_sprite);

}

}

Run the code again, and now both the enemy and player will have appropriate
bounding boxes.

For now, the rule will be that if the PlayerCharacter hits an enemy, the
game ends. This can be refined later by giving the player some health. To get a
game working as fast as possible, it will for now be instant death.

The first change is in the InnerGameState; it needs to recognize when the
player has died and therefore failed to complete the current level.

public void Update(double elapsedTime)

{

_level.Update(elapsedTime);

_gameTime -= elapsedTime;

if (_gameTime <= 0)

{

OnGameStart();

_gameData.JustWon ¼ true;

Developing the Inner Game 331

_system.ChangeState("game_over");

}

if (_level.HasPlayerDied())

{

OnGameStart();

_gameData.JustWon ¼ false;

_system.ChangeState("game_over");

}

}

Here the Level class has been given an extra function, HasPlayerDied, that
reports if the player has died. In this case, the player’s death is checked after the
gameTime. This means that if the time runs out, but the player died in the last
possible second, he still won’t win the level.

In the level class, the HasPlayerDied method needs to be implemented. It’s
just a simple wrapper around the current PlayerCharacter’s state.

public bool HasPlayerDied()

{

return _playerCharacter.IsDead;

}

The death flag is contained in the PlayerCharacter class.

bool _dead¼ false;

public bool IsDead

{

get

{

return _dead;

}

}

When the player collides with an enemy, this death flag can be set and the game
will end with the player losing the level. The level needs some code to process the
collisions that happen between the enemy craft and the player. This collision
processing is done in the level class, which has access to the PlayerChar-
acter and the list of enemies.

private void UpdateCollisions

()

Chapter 10 ■ A Simple Side-Scrolling Shooting Game332

{

foreach (Enemy enemy in _enemyList)

{

if (enemy.GetBoundingBox().IntersectsWith(_playerCharacter.

GetBoundingBox()))

{

enemy.OnCollision(_playerCharacter);

_playerCharacter.OnCollision(enemy);

}

}

}

public void Update(double elapsedTime)

{

UpdateCollisions();

The collision processing code is called each frame by the level’s Update method.
The collisions are determined by iterating through the list of enemies and
checking if their bounding box intersects with the player. The intersection is
worked out using C#’s RectangleF IntersectsWith method. If the
bounding box of the player and enemy do intersect, then OnCollision is
called for the player and the enemy. The Player.OnCollision method
is passed the enemy object. It collides with it and the Enemy.OnCollision is
passed the player object. There is no test for enemies colliding with other
enemies; it’s assumed this is no problem if it happens in the game.

The OnCollision class needs to be implemented for both the Enemy and
PlayerCharacter classes. Here is the skeleton method that needs to be added
to the Enemy class.

internal void OnCollision(PlayerCharacter player)

{

// Handle collision with player.

}

Unlike Enemy, the PlayerCharacter class actually has some functionality.
Its implementation is as follows.

internal void OnCollision(Enemy enemy)

{

_dead¼ true;

}

Developing the Inner Game 333

When the player collides with the enemy, its dead flag is set to true, which will
cause the game to end. The game is now partially playable with an outcome for
losing or winning. From this point on, the refinements to the game will start to
make it more fun to play.

Introducing Simple Weapons
Weapons in the game mainly take the form of different types of bullets. A good
goal to aim for is to have the player shoot a bullet each time the A button or
spacebar is pressed. Eventually the enemies will also be firing bullets, which is
important to bear in mind when creating the bullet system.

To experiment with bullets, another texture is needed. Find bullet.tga on the CD
in Assets directory and add it to the project, remembering to set the properties as
before. Then this texture needs to be loaded into the texture manager.

_textureManager.LoadTexture("bullet", "bullet.tga");

Once the texture is loaded, the next logical class to create is the Bullet class.
This will have a bounding box and a sprite so it too can inherit from Entity.
The class should be created in the Shooter project.

public class Bullet : Entity

{

public bool Dead { get; set; }

public Vector Direction { get; set; }

public double Speed { get; set; }

public double X

{

get { return _sprite.GetPosition().X; }

}

public double Y

{

get { return _sprite.GetPosition().Y; }

}

public void SetPosition(Vector position)

{

_sprite.SetPosition(position);

Chapter 10 ■ A Simple Side-Scrolling Shooting Game334

}

public void SetColor(Color color)

{

_sprite.SetColor(color);

}

public Bullet(Texture bulletTexture)

{

_sprite.Texture ¼ bulletTexture;

// Some default values

Dead ¼ false;

Direction ¼ new Vector(1, 0, 0);

Speed ¼ 512;// pixels per second

}

public void Render(Renderer renderer)

{

if (Dead)

{

return;

}

renderer.DrawSprite(_sprite);

}

public void Update(double elapsedTime)

{

if (Dead)

{

return;

}

Vector position ¼ _sprite.GetPosition();

position += Direction * Speed * elapsedTime;

_sprite.SetPosition(position);

}

}

The bullet has three members: the direction the bullet will travel, the speed it will
travel, and a flag to tell if the bullet is dead or not. There are also position setters
and getters for the bullet sprite. There is also a setter for the color; it makes sense
to allow the bullets to be colored. The player bullets will only hurt the enemies

Developing the Inner Game 335

and the enemy bullets will only hurt the player. To let the player know which
bullets are which, they are given different colors.

You may see the position getter and setter and color setter and wonder if it would
be better just to make the sprite class public. Then if we wanted to change the
position or color, we could just alter the bullet sprite directly. Every situation
is different but as a general rule, it’s better to keep more data private and provide
an interface to the data that needs to be changed. Also bullet.SetColor() is
more straightforward to read than bullet.Sprite.SetColor() .

The constructor takes in a texture for the bullet and sets some default values for
the color, direction, and speed. The speed is measured in pixels per second. The
final two methods are Render and Update. The Update loop updates
the position of the bullet using the direction and speed. The position increase
is scaled by the amount of time since the last frame, so the movement will
be consistent on any speed of computer. The render is quite straightforward; it
just draws the bullet sprite. Both the render and update loops do nothing if the
bullet has its dead flag set to true.

A lot of bullets are going to be flying about and there needs to be a certain
amount of logic to deal with that. Bullets that leave the screen need to be turned
off. A BulletManager class is a fine place to put all this logic. There are two
ways to write a BulletManager class: the simple straightforward way and the
memory-efficient way. The BulletManager introduced here is the straight-
forward type; when an enemy is destroyed on screen its reference is removed
from the BulletManager and the object is destroyed in code; freeing any
memory it was using. Every time the player fires, a new bullet is created. This is
basic, but creating and deleting lots of objects in the game loop is a bad thing; it
will make your code slow if you do it too much. Creation and deletion of objects
tends to slow operations.

A more memory-efficient method of managing the bullets is to have a big list of,
say, 1,000 bullets. Most of the bullets are dead; every time the user fires the list is
searched and a dead bullet is brought to life. No new objects need to be created. If
all 1,000 bullets are alive, then either the player can’t fire or a heuristic (such as
bullet that’s been alive longest) is used to kill one of the current bullets and let the
player use that one. Recycling bullets in this way is a better way to write
the BulletManager. Once you’ve seen the simple manager in action, you can
always have a go at converting it to the more memory-efficient one yourself.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game336

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

namespace Shooter

{

public class Bullet : Entity

{

public bool Dead { get; set; }

public Vector Direction { get; set; }

public double Speed { get; set; }

public double X

{

get { return _sprite.GetPosition().X; }

}

public double Y

{

get { return _sprite.GetPosition().Y; }

}

public void SetPosition(Vector position)

{

_sprite.SetPosition(position);

}

public void SetColor(Color color)

{

_sprite.SetColor(color);

}

public Bullet(Texture bulletTexture)

{

_sprite.Texture ¼ bulletTexture;

// Some default values

Dead ¼ false;

Direction ¼ new Vector(1, 0, 0);

Speed ¼ 512;// pixels per second

Developing the Inner Game 337

}

public void Render(Renderer renderer)

{

if (Dead)

{

return;

}

renderer.DrawSprite(_sprite);

}

public void Update(double elapsedTime)

{

if (Dead)

{

return;

}

Vector position ¼ _sprite.GetPosition();

position += Direction * Speed * elapsedTime;

_sprite.SetPosition(position);

}

}

}

The BulletManager only has two member variables: a list of bullets it’s
managing and a rectangle representing the screen bounds. Remember to include
the using System.Drawing statement at the top of the file so that the
RectangleF class can be used. The screen bounds are used to determine if a
bullet has left the screen and can be destroyed.

The constructor takes in a rectangle, playArea, describing the playing area and
assigns it to the _boundsmember. The Shoot method is used to add a bullet to
the BulletManager. Once a bullet is added, the BulletManager tracks it
until it leaves the play area or hits a ship. The Update method updates all the
bullets being tracked and then checks if any are out of bounds; finally, it deletes
any bullets that have the Dead flag set to true.

The CheckOutOfBounds function uses the rectangle intersection test
between the bullet and playing area to determine if it’s off-screen. The
RemoveDeadBullets performs an interesting trick; it iterates through the list
of bullets backwards and removes any bullets that are dead. Foreach can’t be

Chapter 10 ■ A Simple Side-Scrolling Shooting Game338

used here and neither can forward iteration; if you were doing forward iteration
and removed a bullet, then the list would become shorter by one element, and
when the loop got to the end of the list, it would have an out of bounds error.
Reversing the iteration of the loop fixes this problem. The length of the list
doesn’t matter; it will always head to 0.

The Render method is quite standard; it just renders out all of the bullets.

This BulletManager is best placed in the Level class. If you don’t have a
using System.Drawing statement at the top of the Level.cs file then you will
need to add one before you can use the RectangleF class.

class Level

{

BulletManager _bulletManager ¼ new BulletManager(new RectangleF(-1300

/ 2, -750 / 2, 1300, 750));

The BulletManager is given a playing area. This is a little bigger than the
actual window size. This provides a buffer so that the bullets are totally off-screen
before they are destroyed. The BulletManager then needs to be added to the
Update and Render methods in the Level class.

public void Update(double elapsedTime)

{

UpdateCollisions();

_bulletManager.Update(elapsedTime);

// A little later in the code

public void Render(Renderer renderer)

{

_background.Render(renderer);

_backgroundLayer.Render(renderer);

_enemyList.ForEach(x => x.Render(renderer));

_playerCharacter.Render(renderer);

_bulletManager.Render(renderer);

}

The BulletManager is rendered last so that bullets will be rendered on top of
everything. At this point, the BulletManager is fully integrated, but there’s no
way to test it without giving the player a way to fire bullets. For this to happen,

Developing the Inner Game 339

the PlayerCharacter class needs access to the manager. In the Level
constructor, pass the BulletManager into the PlayerCharacter
constructor.

_playerCharacter ¼ new PlayerCharacter(_textureManager,

_bulletManager);

The PlayerCharacter class code then needs to be altered to accept and store
a reference to the BulletManager.

BulletManager _bulletManager;

Texture _bulletTexture;

public PlayerCharacter(TextureManager textureManager, BulletManager

bulletManager)

{

_bulletManager ¼ bulletManager;

_bulletTexture ¼ textureManager.Get("bullet");

The PlayerCharacter constructor also stores the bulletTexture that will
be used when firing bullets. To fire a bullet, a bullet object needs to be created
and positioned so that it starts near the player and then passes into the
BulletManager. A new Fire method in the PlayerCharacter class will
be responsible for this.

Vector _gunOffset ¼ new Vector(55, 0, 0);

public void Fire()

{

Bullet bullet ¼ new Bullet(_bulletTexture);

bullet.SetColor(new Color(0, 1, 0, 1));

bullet.SetPosition(_sprite.GetPosition() þ _gunOffset);

_bulletManager.Shoot(bullet);

}

The bullet is created using the bulletTexture that was set up in the con-
structor. It’s then colored green, but you can choose any color you want. The
position of the bullet is set so that it is the same position as the player’s ship, but
with an offset so that the bullet appears to come from the front of the ship. If
there was no offset, the bullet would appear right in the middle of the ship
sprite and this would look a little weird. The bullet direction isn’t altered because
forward on the X axis is the default value. The default speed is also fine. Finally,
the bullet is given to the BulletManager and is officially fired using the
Shoot method.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game340

The player can now fire bullets, but there is no code to detect input and call the
Fire method. All the input for the player is handled in the Level class in
the Update method. It’s a bit messy to have the input code in the root of the
Update method, so I’ve extracted a new function called UpdateInput; this
helps keep things a bit tidier.

public void Update(double elapsedTime)

{

UpdateCollisions();

_bulletManager.Update(elapsedTime);

_background.Update((float)elapsedTime);

_backgroundLayer.Update((float)elapsedTime);

_enemyList.ForEach(x => x.Update(elapsedTime));

// Input code has been moved into this method

UpdateInput(elapsedTime);

}

private void UpdateInput(double elapsedTime)

{

if (_input.Keyboard.IsKeyPressed(Keys.Space) || _input.Controller.

ButtonA.Pressed)

{

_playerCharacter.Fire();

}

// Pre-existing input code omitted.

Take all the input code out of the Update loop and put it at the end of the new
UpdateInput method. This UpdateInput method is then called from the
Update method. Some new code has also been added to handle the player firing.
If the space bar on the keyboard or the A button on the gamepad is pressed, then
the player fires a bullet. Run the program and try the spaceship’s new firing
abilities.

The new bullets can be seen in Figure 10.8. The bullets are created every time the
player hits the fire button. For gameplay reasons, it’s probably best to slow this
down a little and give the spaceship a small recovery time between shots. Modify
the PlayerCharacter class as follows.

Developing the Inner Game 341

Vector _gunOffset ¼ new Vector(55, 0, 0);

static readonly double FireRecovery ¼ 0.25;

double _fireRecoveryTime ¼ FireRecovery;

public void Update(double elapsedTime)

{

_fireRecoveryTime ¼ Math.Max(0, (_fireRecoveryTime - elapsedTime));

}

public void Fire()

{

if (_fireRecoveryTime > 0)

{

return;

}

else

{

_fireRecoveryTime ¼ FireRecovery;

}

Bullet bullet ¼ new Bullet(_bulletTexture);

Figure 10.8
Firing bullets.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game342

bullet.SetColor(new Color(0, 1, 0, 1));

bullet.SetPosition(_sprite.GetPosition() þ _gunOffset);

_bulletManager.Shoot(bullet);

}

To count down the recovery time, the PlayerCharacter class needs an Up-
date method to be added. The Update method will count down the recovery
time, but it never goes below 0. This is done by using the Math.Max function.
With the recovery time set, the Fire command returns immediately if the
spaceship is still recovering from the last shot. If the recovery time is 0, then the
ship can fire and the recovery time is reset so it can start counting down again.

The Level also needs a minor change; it needs to call the PlayerChar-
acter’s Update method.

public void Update(double elapsedTime)

{

_playerCharacter.Update(elapsedTime);

_background.Update((float)elapsedTime);

_backgroundLayer.Update((float)elapsedTime);

UpdateCollisions();

_enemyList.ForEach(x => x.Update(elapsedTime));

_bulletManager.Update(elapsedTime);

UpdateInput(elapsedTime);

}

Run the program again and you won’t be able to fire as fast. This is your game, so
tweak the recovery rate to whatever feels right to you!

Damage and Explosions
The bullets have been added, but they sail right through the enemy inflicting no
damage; it’s time to change that. The enemy should know when it’s been hit and
respond appropriately. We’ll start by handling the collisions and then create an
animated explosion.

The collision code is handled in the Level class, in the UpdateCollisions
function. This function needs to be extended to also handle collisions between
bullets and enemies.

Developing the Inner Game 343

private void UpdateCollisions()

{

foreach (Enemy enemy in _enemyList)

{

if (enemy.GetBoundingBox().IntersectsWith(_playerCharacter.

GetBoundingBox()))

{

enemy.OnCollision(_playerCharacter);

_playerCharacter.OnCollision(enemy);

}

_bulletManager.UpdateEnemyCollisions(enemy);

}

}

One extra line has been added to the end of the for loop. The BulletManager
is asked to check any collisions between the bullets and the current enemy.
UpdateEnemyCollisions is a new function for the BulletManager, so it
needs to be implemented.

internal void UpdateEnemyCollisions(Enemy enemy)

{

foreach (Bullet bullet in _bullets)

{

if(bullet.GetBoundingBox().IntersectsWith(enemy.GetBounding-

Box()))

{

bullet.Dead ¼ true;

enemy.OnCollision(bullet);

}

}

}

The collision between the bullet and enemy is determined by checking the
intersection between the bounding boxes. If the bullet has hit the enemy, then
the bullet is destroyed and the enemy is notified about the collision.

If a bullet hits an enemy, there are a number of different ways to react. The
enemy could be immediately destroyed and explode, or the enemy could take
damage, requiring a few more shots to be destroyed. Assigning health levels to
the enemy is probably something we’d like in the future, so we may as well do it

Chapter 10 ■ A Simple Side-Scrolling Shooting Game344

now. Let’s add a Health member variable to the enemy and then we can
implement the OnCollision function for bullets.

public int Health { get; set; }

public Enemy(TextureManager textureManager)

{

Health ¼ 50; // default health value.

//Remaining constructor code omitted

The Enemy class already has one OnCollision method, but that is for collid-
ing with the PlayerCharacter. We will create a new overloaded OnColli-
sion method that is only concerned about colliding with bullets. When a bullet
hits the enemy, it will take some damage and lower its health value. If the health
of the enemy drops below 0, then it will be destroyed. If the player shoots
the enemy and causes some damage, there needs to be some visual feedback to
indicate the enemy has taken a hit. A good way to present this feedback is to flash
the enemy yellow for a fraction of a second.

static readonly double HitFlashTime ¼ 0.25;

double _hitFlashCountDown ¼ 0;

internal void OnCollision(Bullet bullet)

{

// If the ship is already dead then ignore any more bullets.

if (Health == 0)

{

return;

}

Health ¼ Math.Max(0, Health - 25);

_hitFlashCountDown ¼ HitFlashTime; // half

_sprite.SetColor(new Engine.Color(1, 1, 0, 1));

if (Health == 0)

{

OnDestroyed();

}

}

private void OnDestroyed()

{

// Kill the enemy here.

}

Developing the Inner Game 345

The OnDestroyed function is a placeholder for now; we’ll worry about how
the enemy is destroyed a little later. In the OnCollision function, the first if
statement checks if the ship is already at 0 health. In this case, any additional
damage is ignored; the player has already killed the enemy and the game doesn’t
need to acknowledge any more shots. Next the Health is reduced by 25, an
arbitrary damage number, to represent the damage of a single bullet hit. Math.
Max is used to ensure that the health never falls below 0. The ship should flash
yellow when hit. The countdown is set to represent how long the flash should
take. The ship sprite is set to a yellow color, which in RGBA is 1,1,0,1. Finally, the
health is checked, and if it equals 0, then the placeholder OnDestroyed method
is called. This is the function where the explosion will be triggered.

To cause the ship to flash, the Update loop will also need to be modified. It
needs to count down the flash and change the color from yellow to white.

public void Update(double elapsedTime)

{

if (_hitFlashCountDown != 0)

{

_hitFlashCountDown ¼ Math.Max(0, _hitFlashCountDown - elapsedTime);

double scaledTime ¼ 1 - (_hitFlashCountDown / HitFlashTime);

_sprite.SetColor(new Engine.Color(1, 1, (float)scaledTime, 1));

}

}

The Update loop modifies the flash color of the enemy spaceship. If the flash
countdown has already dropped to 0, then the flash has finished and doesn’t
need to be updated. If the _hitFlashCountDown doesn’t equal 0, then it is
reduced by the amount of time that has passed since the last frame. Math.Max is
used again to ensure the count doesn’t fall below 0. The countdown is then scaled
to get a value from 0 to 1, indicating how far through the flash we currently are; 0
indicates the flash has just started and 1 indicates it’s finished. This number is
inversed by subtracting it from 1 so that 1 indicates that the flash has just started
and 0 indicates that it’s just finished. This scaled number is then used to move
the blue channel of the color from 0 to 1. This will flash the ship from yellow to
white.

Run the program and shoot the enemy ship a few times; it will flash yellow a few
times and then stop responding because it’s been destroyed. Enemy ships
shouldn’t just stop responding; they should explode!

Chapter 10 ■ A Simple Side-Scrolling Shooting Game346

The easiest way to produce a good explosion is to use an animated sprite. Figure
10.9 shows a keyframe texture map of an explosion. This texture was created
using a procedural explosion generator available for free from Positech games
(http://www.positech.co.uk/content/explosion/explosiongenerator.html).

Figure 10.9 has 16 frames in total; four frames in height and four frames in
length. An animated sprite can be created by reading in this texture and changing
the U,V coordinates so that it moves from the first frame to the last frame as time
passes. An animated sprite is really just a different type of sprite, so to create it,
we can extend the existing Sprite class. An animated sprite is something
that can be used by many different games, so it should be created in the Engine
project rather than the game project.

public class AnimatedSprite : Sprite

{

int _framesX;

int _framesY;

int _currentFrame ¼ 0;

double _currentFrameTime ¼ 0.03;

public double Speed { get; set; } // seconds per frame

Figure 10.9
Animated explosion texture map.

Developing the Inner Game 347

http://www.positech.co.uk/content/explosion/explosiongenerator.html

public bool Looping { get; set; }

public bool Finished { get; set; }

public AnimatedSprite()

{

Looping ¼ false;

Finished ¼ false;

Speed ¼ 0.03; // 30 fps-ish

_currentFrameTime ¼ Speed;

}

public System.Drawing.Point GetIndexFromFrame(int frame)

{

System.Drawing.Point point ¼ new System.Drawing.Point();

point.Y ¼ frame / _framesX;

point.X ¼ frame - (point.Y * _framesY);

return point;

}

private void UpdateUVs()

{

System.Drawing.Point index ¼ GetIndexFromFrame(_currentFrame);

float frameWidth ¼ 1.0f / (float)_framesX;

float frameHeight ¼ 1.0f / (float)_framesY;

SetUVs(new Point(index.X * frameWidth, index.Y * frameHeight),

new Point((index.X þ 1) * frameWidth, (index.Y þ 1) * frameHeight));

}

public void SetAnimation(int framesX, int framesY)

{

_framesX ¼ framesX;

_framesY ¼ framesY;

UpdateUVs();

}

private int GetFrameCount()

{

return _framesX * _framesY;

}

public void AdvanceFrame()

{

Chapter 10 ■ A Simple Side-Scrolling Shooting Game348

int numberOfFrames ¼ GetFrameCount();

_currentFrame ¼ (_currentFrame þ 1) % numberOfFrames;

}

public int GetCurrentFrame()

{

return _currentFrame;

}

public void Update(double elapsedTime)

{

if (_currentFrame == GetFrameCount() - 1 && Looping == false)

{

Finished ¼ true;

return;

}

_currentFrameTime -= elapsedTime;

if (_currentFrameTime < 0)

{

AdvanceFrame();

_currentFrameTime ¼ Speed;

UpdateUVs();

}

}

}

This AnimatedSprite class works exactly the same as the Sprite class,
except for the AnimatedSprite class can be told how many frames the texture
has in X and Y dimensions. When the Update loop is called, the frame is
changed over time.

This class has quite a few members, but they are mostly used for describing
the animation and tracking its progress. The number of frames in X and Y di-
mension are described by the _framesX and _framesY member variables.
For the Figure 10.9 example, both these variables would be set to four. The
_currentFrame variable is the frame that the sprite U,Vs are currently set to.
The _currentFrameTime is the amount of time that will be spent on the
current frame before the animation advances to the next frame. Speed is a
measure of how much time is spent on each frame in seconds. Looping
determines if the animation should loop, and Finished is a flag that is set to
true once the animation has ended.

Developing the Inner Game 349

The constructor of the AnimatedSprite sets some default values. A freshly
created sprite doesn’t loop, and has its Finished flag set to false, its frame
speed set to about 30 frames per second, and the _currentFrameTime is set to
0.03 seconds, which will make the animation run at 30 frames per second.

The GetIndexFromFrame method takes an index as shown in Figure 10.10
and returns an X,Y coordinate of the index position. For example, index 0 would
return 0,0 and index 15 would return 3,3. The index number is broken into an
X and Y coordinate by dividing the index by the row length; this gives the
number of rows and therefore the Y coordinate of the index. The X coordinate is
then whatever is left of the index when the Y rows are removed. This function is
very useful when translating, calculating the U,Vs for a certain frame.

UpdateUVs uses the current frame index to change the U,Vs so the sprite
correctly represents that frame. It first gets the X,Y coordinates of the current
frame using GetIndexFromFrame. Then it calculates the width and height of

Figure 10.10
Animated explosion texture map with frame index.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game350

an individual frame. As texture coordinates range from 0 to 1, the width and
height of a single frame is calculated by dividing the number of frames along
the X and the Y by 1. Once the dimensions of a single frame are calculated, the
positions of the U,Vs can be worked out by multiplying the frame width and
height by the X,Y coordinates of the current frame; this gets the top-left point of
the frame on the texture map. The SetUVs method requires a TopLeft
and BottomRight point. The BottomRight position is calculated from the
TopLeft position by adding an extra frame width and height.

SetAnimation is the method used to set the number of frames along the X and
Y of the texture map. It makes a call to UpdateUVs so that the sprite is updated
to display the correct frame. GetFrameCount gets the total number of frames
in the animation. The AdvanceFrame method moves the animation to the next
frame if it comes to the end of the frames; then the frame index wraps around to
0 again. The wrap around is done using modulus—the % operator. The modulus
operator computes the remainder that results from performing integer division.
The best way to understand the use of the modulus operator is to provide
an example you are probably already familiar with: time. A clock face has
12 numbers, and it works in modulo 12: 13:00 hours in modulo 12 is 1 o’clock.
In our case, the modulo is equal to the total number of frames in the animation.

The Update method is responsible for updating the current frame and making
the explosion appear to animate. If Looping is set to false and the current
frame is the last frame, then the Update method returns immediately and the
Finished flag is set to true. If the animation hasn’t finished or is looping, then
the frame countdown, _currentFrameTime, is updated, and if it goes below
0, the frame needs to be changed. The frame is updated by making a call to
AdvanceFrame, resetting the _currentFrameTime, and finally updating the
U,Vs.

With the AnimatedSprite class added to the Engine project, the explosion
animation can be tested. Find the explode.tga file on the CD in the Assets folder
and add it to the project, setting the properties as usual. It can then be loaded in
the form.cs file with the other textures.

_textureManager.LoadTexture("explosion", "explode.tga");

A quick way to test the animation is to load it directly into the Level as an
animated sprite.

Developing the Inner Game 351

AnimatedSprite _testSprite ¼ new AnimatedSprite();public Level(Input

input, TextureManager textureManager, PersistantGameData gameData)

{

_testSprite.Texture ¼ textureManager.Get("explosion");

_testSprite.SetAnimation(4, 4);

// a little later in the code
public void Update(double elapsedTime)
{
_testSprite.Update(elapsedTime);

// a little later in the code

public void Render(Renderer renderer)
{
// Background and other sprite code omitted.
renderer.DrawSprite(_testSprite);
renderer.Render();

}

Running the program and entering a level will now play the explosion animation
once. This confirms everything is working fine (see Figure 10.11).

Figure 10.11
The explosion in the game.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game352

Managing Explosions and Enemies
In the last section, we got an example explosion working, but it really needs to be
set off only when enemies are destroyed. To this end, two new systems need
to be created: one to handle the explosions and general game effects, and one to
handle the oncoming enemies.

The explosions should be handled in a similar way to the bullets—creating a
dedicated manager that handles the creation and destruction of the explosions.
In the future of your project, it’s possible you’ll want more effects—smokes,
sparks, or even power ups—than explosions. The EffectsManager class
should be created in the Shooter project.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

namespace Shooter

{

public class EffectsManager

{

List<AnimatedSprite> _effects¼ new List<AnimatedSprite>();

TextureManager _textureManager;

public EffectsManager(TextureManager textureManager)

{

_textureManager ¼ textureManager;

}

public void AddExplosion(Vector position)

{

AnimatedSprite explosion ¼ new AnimatedSprite();

explosion.Texture ¼ _textureManager.Get("explosion");

explosion.SetAnimation(4, 4);

explosion.SetPosition(position);

_effects.Add(explosion);

}

public void Update(double elapsedTime)

{

Developing the Inner Game 353

_effects.ForEach(x => x.Update(elapsedTime));

RemoveDeadExplosions();

}

public void Render(Renderer renderer)

{

_effects.ForEach(x => renderer.DrawSprite(x));

}

private void RemoveDeadExplosions()

{

for (int i ¼ _effects.Count - 1; i >= 0; i–)

{

if (_effects[i].Finished)

{

_effects.RemoveAt(i);

}

}

}

}

}

This EffectManager allows an explosion to be set off, runs the explosion ani-
mation until it ends, and then removes the explosion effect. You may notice it’s
very similar to the BulletManager class. These separate managers could all be
combined in one generalized manager, but by keeping them separate,
the interactions between the game objects can be specific and more efficient.
Explosions don’t care about collision detection with enemies or players but bullets
do. In separate managers, it’s easy to separate out the particular requirements of
each object; explosions only need to run an animation, whereas bullets need to
check for intersection with all of the enemies. Separate managers work great when
only a limited number of objects are in the game, but if there are going to be many
different entities, then a more generalized entity manager is a better choice.

The EffectsManager needs to be initialized in the Level class and hooked
up to the render and update loops.

EffectsManager _effectsManager;

public Level(Input input, TextureManager textureManager, PersistantGa-

meData gameData)

Chapter 10 ■ A Simple Side-Scrolling Shooting Game354

{

_input¼ input;

_gameData ¼ gameData;

_textureManager ¼ textureManager;

_effectsManager ¼ new EffectsManager(_textureManager);

// code omitted

public void Update(double elapsedTime)

{

_effectsManager.Update(elapsedTime);

// code omitted

public void Render(Renderer renderer)

{

// Background, sprites and bullet code omitted

_effectsManager.Render(renderer);

renderer.Render();

}

The ExplosionManager is now hooked up and can be used to launch several
explosions at once. For the enemies to launch explosions when they die, they
need access to the manager, which can be passed into the constructor.

EffectsManager _effectsManager;

public Enemy(TextureManager textureManager, EffectsManager

effectsManager)

{

_effectsManager ¼ effectsManager;

The enemy can now set off an explosion when it dies.

private void OnDestroyed()

{

// Kill the enemy here.

_effectsManager.AddExplosion(_sprite.GetPosition());

}

In the Level.cs file, the EffectsManager needs to be passed into the Enemy
constructor. Once this is done, shooting the enemy a couple of times in the game
will cause an explosion when the enemy is destroyed.

Developing the Inner Game 355

Next, the enemies will get their own manager; this will be the final manager
needed to create a full, working game.

public class EnemyManager

{

List<Enemy> _enemies ¼ new List<Enemy>();

TextureManager _textureManager;

EffectsManager _effectsManager;

int _leftBound;

public List<Enemy> EnemyList

{

get

{

return _enemies;

}

}

public EnemyManager(TextureManager textureManager, EffectsManager

effectsManager, int leftBound)

{

_textureManager ¼ textureManager;

_effectsManager ¼ effectsManager;

_leftBound ¼ leftBound;

// Add a test enemy.

Enemy enemy ¼ new Enemy(_textureManager, _effectsManager);

_enemies.Add(enemy);

}

public void Update(double elapsedTime)

{

_enemies.ForEach(x => x.Update(elapsedTime));

CheckForOutOfBounds();

RemoveDeadEnemies();

}

private void CheckForOutOfBounds()

{

foreach (Enemy enemy in _enemies)

{

if (enemy.GetBoundingBox().Right < _leftBound)

Chapter 10 ■ A Simple Side-Scrolling Shooting Game356

{

enemy.Health ¼ 0; // kill the enemy off

}

}

}

public void Render(Renderer renderer)

{

_enemies.ForEach(x => x.Render(renderer));

}

private void RemoveDeadEnemies()

{

for (int i ¼ _enemies.Count - 1; i >= 0; i–)

{

if (_enemies[i].IsDead)

{

_enemies.RemoveAt(i);

}

}

}

}

An extra function needs to be added to the Enemy class to check if the enemy has
been destroyed.

class Enemy : Entity

{

public bool IsDead

{

get { return Health == 0; }

}

The IsDead method of the Enemy class returns true if the enemy’s health
is equal to 0; otherwise, it returns false. The EnemyManager, like the
BulletManager, has an out of bounds check, but it’s a little different. Enemies
in a scrolling shooter game tend to start off on the far right of the screen and then
move past the player exiting to the left. The out of bounds check compares the
right-most point of the enemy bounding box against the left-most part of the
screen. This removes enemies that the player fails to destroy and that escape off
the left of the screen.

Developing the Inner Game 357

The Level class now needs to be modified to introduce this new manager and
get rid of the old list.

// List<Enemy> _enemyList ¼ new List<Enemy>(); <- Removed

EnemyManager _enemyManager;

public Level(Input input, TextureManager textureManager, PersistantGa-

meData gameData)

{

_input ¼ input;

_gameData ¼ gameData;

_textureManager ¼ textureManager;

_background ¼ new ScrollingBackground(textureManager.Get

("background"));

_background.SetScale(2, 2);

_background.Speed ¼ 0.15f;

_backgroundLayer ¼ new ScrollingBackground(textureManager.Get

("background_layer_1"));

_backgroundLayer.Speed ¼ 0.1f;

_backgroundLayer.SetScale(2.0, 2.0);

_playerCharacter ¼ new PlayerCharacter(_textureManager,

_bulletManager);

_effectsManager ¼ new EffectsManager(_textureManager);

// _enemyList.Add(new Enemy(_textureManager, _effectsManager));

<- Removed

_enemyManager ¼ new EnemyManager(_textureManager, _effectsMana-

ger, -1300);

}

The collision processing needs to change a little as well; it will now use the list of
enemies in the EnemyManager when checking for enemy collisions.

private void UpdateCollisions()

{

foreach (Enemy enemy in _enemyManager.EnemyList)

To be able to see the enemies, the Update and Render loops need to be
modified.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game358

public void Update(double elapsedTime)

{

// _enemyList.ForEach(x => x.Update(elapsedTime)); <- Remove this line

_enemyManager.Update(elapsedTime);

// Code omitted

public void Render(Renderer renderer)

{

_background.Render(renderer);

_backgroundLayer.Render(renderer);

//_enemyList.ForEach(x => x.Render(renderer)); <- remove this line

_enemyManager.Render(renderer);

Run the program now. Shooting the enemy a couple of times will make it
explode and disappear. This has started to become much more game-like. The
most obvious failings at the moment are that there is only one enemy and it
doesn’t move.

Level Definitions
The current level lasts for 30 seconds and has one enemy at the start—this isn’t a
very interesting level. If there was some system for defining levels, then it would
be easier to add a bit more excitement to this level. The level definition is a list of
enemies to spawn at certain times. A level definition will therefore need
some way to define enemies; the following code is a good starting point. The
EnemyDef class should be added to the Engine project.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Engine;

namespace Shooter

{

class EnemyDef

{

public string EnemyType { get; set; }

public Vector StartPosition { get; set; }

public double LaunchTime { get; set; }

Developing the Inner Game 359

public EnemyDef()

{

EnemyType ¼ "cannon_fodder";

StartPosition ¼ new Vector(300, 0, 0);

LaunchTime ¼ 0;

}

public EnemyDef(string enemyType, Vector startPosition, double

launchTime)

{

EnemyType ¼ enemyType;

StartPosition ¼ startPosition;

LaunchTime ¼ launchTime;

}

}

}

There is a string that describes the enemy type. In the code, we might provide
several different types of enemies: small fast ones, big slow ones, etc. The default
enemy type is cannon fodder, and that’s what we’ve got now. The start position is
off the right of the screen. The launch time is the time at which the enemy will
appear in the level. The level time counts down from some large number to 0. If
the gameTime goes lower than the launch time, then an enemy object will be
created and it will be launched into the level.

The EnemyManager is the class that will handle the enemy spawning. This
means the constructor needs to be modified, and a list of upcoming enemies
needs to be added.

List<EnemyDef> _upComingEnemies ¼ new List<EnemyDef>();

public EnemyManager(TextureManager textureManager, EffectsManager

effectsManager, int leftBound)

{

_textureManager ¼ textureManager;

_effectsManager ¼ effectsManager;

_leftBound ¼ leftBound;

_upComingEnemies.Add(new EnemyDef("cannon_fodder", new Vector(300,

300, 0), 25));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", new Vector(300,

-300, 0), 30));

Chapter 10 ■ A Simple Side-Scrolling Shooting Game360

_upComingEnemies.Add(new EnemyDef("cannon_fodder", new Vector(300, 0,

0), 29));

// Sort enemies so the greater launch time appears first.

_upComingEnemies.Sort(delegate(EnemyDef firstEnemy, EnemyDef

secondEnemy)

{

return firstEnemy.LaunchTime.CompareTo(secondEnemy.LaunchTime);

});

}

The _upcomingEnemies list is a list of enemy definitions sorted by launch
time. The greater the launch time, the higher in the list the definition appears.
Each frame the top item of the list is checked to see if it’s ready to launch. Only
the top enemy definition needs to be checked because the list is sorted. If the list
wasn’t sorted, then every item in the list would need to be checked to decide
which of the enemy definitions had a launch time greater than the current
gameTime, and therefore needed to be launched next.

This enemy launching is done in the Update loop of the EnemyManager,
which calls the new method UpdateEnemySpawns.

private void UpdateEnemySpawns(double gameTime)

{

// If no upcoming enemies then there's nothing to spawn.

if (_upComingEnemies.Count == 0)

{

return;

}

EnemyDef lastElement ¼ _upComingEnemies[_upComingEnemies.Count - 1];

if (gameTime < lastElement.LaunchTime)

{

_upComingEnemies.RemoveAt(_upComingEnemies.Count - 1);

_enemies.Add(CreateEnemyFromDef(lastElement));

}

}

private Enemy CreateEnemyFromDef(EnemyDef definition)

{

Enemy enemy ¼ new Enemy(_textureManager, _effectsManager);

enemy.SetPosition(definition.StartPosition);

Developing the Inner Game 361

if (definition.EnemyType == "cannon_fodder")

{

// The enemy type could be used to alter the health or texture

// but we're using the default texture and health for the cannon

fodder type

}

else

{

System.Diagnostics.Debug.Assert(false, "Unknown enemy type.");

}

return enemy;

}

public void Update(double elapsedTime, double gameTime)

{

UpdateEnemySpawns(gameTime);

The Update methods in the EnemyManager and Level class have been
modified to take in a gameTime parameter. The gameTime is a number that
counts down to zero, at which point the level will end. This value is used to
determine when to create new enemies. The InnerGameState has to pass this
gameTime value into the Update method of the Level object, and the Level
passes it on to the EnemyManager.

// In Level.cs

public void Update(double elapsedTime, double gameTime)

{

_enemyManager.Update(elapsedTime, gameTime);

// In InnerGameState.cs

public void Update(double elapsedTime)

{

_level.Update(elapsedTime, _gameTime);

The gameTime is passed all the way from the inner game state down to the
UpdateEnemySpawns function in the EnemyManager. UpdateEnemy-
Spawns first checks if there are any upcoming enemies in the _upcomin-
gEnemies list; if there aren’t, then the method does nothing. If there are some
upcoming enemies, the code checks the top of the list to see if it’s ready to be
launched. If the enemy definition is ready to be launched, then it’s removed from
the _upcomingEnemies list and the definition is used to make a new enemy

Chapter 10 ■ A Simple Side-Scrolling Shooting Game362

object. The newly created enemy is then added to the _enemies list, spawning it
in the game world.

CreateEnemyFromDef does pretty much what it says; it takes an EnemyDef
object and returns an Enemy object. There’s only one type of enemy at the
moment so it’s quite a simple function, but there’s a lot of scope for adding new
enemy types.

Run the program now and as the level time ticks down, three enemies will spawn
in the level.

Enemy Movement
Enemies in a scrolling shooter should sweep in from the right of the screen and
attempt to exit to the right without getting blown up. The enemy advance is
shown in Figure 10.12. The player bullets already have movement code so the
enemies could reuse that code. This would work, but the enemy movement
would be pretty boring; they’d move from right to left in a straight line. Enemy
movement should be far more interesting, and the easiest way to do this is to give

Enemy Advance

Figure 10.12
The enemy advance.

Developing the Inner Game 363

each enemy a predefined path with a number of way points. The enemy will hit
all the way points and then exit to the left.

A path can be described easily as a series of points that lead from the right of the
screen to the left of the screen. Figure 10.13 shows a path made up of points that
could describe an enemy’s path through the playing area.

This path can be joined together to produce something like Figure 10.14. This
shows the path the enemy would use, but the corners are very jagged. It would be
nice if we could get something smoother. Splines are a nice way of creating
smooth paths. Figure 10.15 shows a Catmull-Rom spline; this type of spline is
guaranteed to pass through all the control points. Edwin Catmull who worked
at Pixar and helped create Toy Story co-invented this type of spline with
Raphael Rom.

The spline is obviously smoother, but it does require another class to be created.
Splines are a mathematical description of a curve.

Catmull-Rom splines are simply a way to get a position, t, between any two of the
points that make up the spline. In Catmull-Rom splines, the two points on either

Figure 10.13
A path of points.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game364

Figure 10.14
Linear interpolation of a path.

Figure 10.15
Spline path.

Developing the Inner Game 365

side of t are used in the calculation, as are their two neighbors, as shown in
Figure 10.16.

Once some position can be obtained for a value of t (0-1) between any two
neighboring points, then this can be extended so that t (0-1) can be mapped on
to the entire line, not just one section. The calculation to get a position from t
and four points is as follows.

f ðtÞ ¼ 0:5 �½t3 t2 t 1� �
�1 3 �3 �1

2 �5 �4 �1
�1 0 1 0

0 2 0 0

2
664

3
775 �

P0
P1
P2
P3

2
664

3
775

This looks a little intimidating; three matrices are multiplied by a scalar that
weighs all four points and decides how the t value is transformed into a position.
It’s not important to understand exactly how this works (though you are
encouraged to investigate!); it’s good enough to know what results will occur
when you apply it.

Here is the C# implementation of a Catmull-Rom spline. This class should be
added to the Engine project as it will be useful for more than this project. The
spline code works in 3D so it can also be useful for tasks such as manipulating
cameras or moving 3D entities along a path. The interface for this spline class

Figure 10.16
Catmull-Rom splines.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game366

is based on Radu Gruian’s C++ Overhauser code (http://www.codeproject.com/
KB/recipes/Overhauser.aspx —the Code Project website may require you to
register before it allows you to view the article. Registration is free.).

public class Spline

{

List<Vector> _points¼ new List<Vector>();

double _segmentSize ¼ 0;

public void AddPoint(Vector point)

{

_points.Add(point);

_segmentSize ¼ 1 / (double)_points.Count;

}

private int LimitPoints(int point)

{

if(point < 0)

{

return 0;

}

else if (point > _points.Count - 1)

{

return _points.Count - 1;

}

else

{

return point;

}

}

// t ranges from 0 - 1

public Vector GetPositionOnLine(double t)

{

if (_points.Count <= 1)

{

return new Vector(0,0,0);

}

// Get the segment of the line we're dealing with.

int interval ¼ (int)(t / _segmentSize);

// Get the points around the segment

int p0 ¼ LimitPoints(interval - 1);

Developing the Inner Game 367

http://www.codeproject.com/KB/recipes/Overhauser.aspx
http://www.codeproject.com/KB/recipes/Overhauser.aspx

int p1 ¼ LimitPoints(interval);

int p2 ¼ LimitPoints(interval þ 1);

int p3 ¼ LimitPoints(interval þ 2);

// Scale t to the current segment

double scaledT ¼ (t - _segmentSize * (double)interval) / _segmentSize;

return CalculateCatmullRom(scaledT, _points[p0], _points[p1],

_points[p2], _points[p3]);

}

private Vector CalculateCatmullRom(double t, Vector p1, Vector p2,

Vector p3, Vector p4)

{

double t2 ¼ t * t;

double t3 ¼ t2 * t;

double b1 ¼ 0.5 * (-t3 þ 2 * t2 - t);

double b2 ¼ 0.5 * (3 * t3 - 5 * t2 þ 2);

double b3 ¼ 0.5 * (-3 * t3 þ 4 * t2 þ t);

double b4 ¼ 0.5 * (t3 - t2);

return (p1 * b1 þ p2 * b2 þ p3 * b3 þ p4 * b4);

}

}

This spline class is very simple to use. Any number of points can be added
and the spline will join them together. The line is indexed from 0 to 1; a
position on the line of 0.5 will return whatever point in space the middle of the
line crosses. This makes the spline very easy to use with the earlier tween
class. The spline requires all control points to be evenly spaced to give uniform
values of t.

Each enemy is given a new Path class that will guide it across the level. This
Path class is specific to the shooting game and should be created in the Shooter
project.

public class Path

{

Spline _spline ¼ new Spline();

Tween _tween;

public Path(List<Vector> points, double travelTime)

{

Chapter 10 ■ A Simple Side-Scrolling Shooting Game368

foreach (Vector v in points)

{

_spline.AddPoint(v);

}

_tween¼ new Tween(0, 1, travelTime);

}

public void UpdatePosition(double elapsedTime, Enemy enemy)

{

_tween.Update(elapsedTime);

Vector position ¼ _spline.GetPositionOnLine(_tween.Value());

enemy.SetPosition(position);

}

}

The class constructor takes in a time and a list of points; from this it creates a
spline and a tween object. The travelTime determines how long the
enemy will take to travel the path defined by the spline. The UpdatePosition
method updates the tween and gets a new position from the spline, which is used
to reposition the enemy. The following code modifies the Enemy to use the
Path class.

public Path Path { get; set; }

public void Update(double elapsedTime)

{

if (Path != null)

{

Path.UpdatePosition(elapsedTime, this);

}

if (_hitFlashCountDown != 0)

{

_hitFlashCountDown ¼ Math.Max(0, _hitFlashCountDown - elapsedTime);

double scaledTime ¼ 1 - (_hitFlashCountDown / HitFlashTime);

_sprite.SetColor(new Engine.Color(1, 1, (float)scaledTime, 1));

}

}

Now that all enemies have paths, the StartPosition variable from the
EnemyDef can be removed, as the path will define where the enemy starts.
Enemies can move through the level, but to do this they need to be given a path.

Developing the Inner Game 369

In the EnemyManager, when an enemy is created, it needs to be given a path. In
the following the cannon_fodder enemy type is given a path that goes from
right to left, veering upwards as it reaches the middle. The time for the enemy to
follow the full path takes ten seconds.

private Enemy CreateEnemyFromDef(EnemyDef definition)

{

Enemy enemy ¼ new Enemy(_textureManager, _effectsManager);

//enemy.SetPosition(definition.StartPosition); <- this line can be

removed

if (definition.EnemyType == "cannon_fodder")

{

List<Vector> _pathPoints ¼ new List<Vector>();

_pathPoints.Add(new Vector(1400, 0, 0));

_pathPoints.Add(new Vector(0, 250, 0));

_pathPoints.Add(new Vector(-1400, 0, 0));

enemy.Path ¼ new Path(_pathPoints, 10);

}

else

{

System.Diagnostics.Debug.Assert(false, "Unknown enemy type.");

}

return enemy;

}

Now a more interesting level can be defined by editing the EnemyManager
constructor.

public EnemyManager(TextureManager textureManager, EffectsManager

effectsManager, int leftBound)

{

_textureManager ¼ textureManager;

_effectsManager ¼ effectsManager;

_leftBound ¼ leftBound;

_textureManager ¼ textureManager;

_effectsManager ¼ effectsManager;

_leftBound ¼ leftBound;

Chapter 10 ■ A Simple Side-Scrolling Shooting Game370

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 30));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 29.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 29));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 28.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 25));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 24.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 24));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 23.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 20));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 19.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 19));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 18.5));

// Sort enemies so the greater launch time appears first.

_upComingEnemies.Sort(delegate(EnemyDef firstEnemy, EnemyDef

secondEnemy)

{

return firstEnemy.LaunchTime.CompareTo(secondEnemy.LaunchTime);

});

}

The enemies now use paths to describe how they move through the level so a
start position for each enemy definition is no longer required. This means the
EnemyDef class needs to be rewritten.

public class EnemyDef

{

public string EnemyType { get; set; }

public double LaunchTime { get; set; }

public EnemyDef()

{

EnemyType ¼ "cannon_fodder";

LaunchTime ¼ 0;

}

public EnemyDef(string enemyType, double launchTime)

{

Developing the Inner Game 371

EnemyType ¼ enemyType;

LaunchTime ¼ launchTime;

}

}

Run the code again, and you will see a stream of enemies arcing through the top
half of the screen, as shown in Figure 10.17.

At this point, it might be nice to add a few more enemy types to spice up the
level.

private Enemy CreateEnemyFromDef(EnemyDef definition)

{

Enemy enemy ¼ new Enemy(_textureManager, _effectsManager);

if (definition.EnemyType == "cannon_fodder")

{

List<Vector> _pathPoints ¼ new List<Vector>();

_pathPoints.Add(new Vector(1400, 0, 0));

_pathPoints.Add(new Vector(0, 250, 0));

_pathPoints.Add(new Vector(-1400, 0, 0));

Figure 10.17
More interesting levels.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game372

enemy.Path ¼ new Path(_pathPoints, 10);

}

else if (definition.EnemyType == "cannon_fodder_low")

{

List<Vector> _pathPoints ¼ new List<Vector>();

_pathPoints.Add(new Vector(1400, 0, 0));

_pathPoints.Add(new Vector(0, -250, 0));

_pathPoints.Add(new Vector(-1400, 0, 0));

enemy.Path ¼ new Path(_pathPoints, 10);

}

else if (definition.EnemyType == "cannon_fodder_straight")

{

List<Vector> _pathPoints ¼ new List<Vector>();

_pathPoints.Add(new Vector(1400, 0, 0));

_pathPoints.Add(new Vector(-1400, 0, 0));

enemy.Path ¼ new Path(_pathPoints, 14);

}

else if (definition.EnemyType == "up_l")

{

List<Vector> _pathPoints ¼ new List<Vector>();

_pathPoints.Add(new Vector(500, -375, 0));

_pathPoints.Add(new Vector(500, 0, 0));

_pathPoints.Add(new Vector(500, 0, 0));

_pathPoints.Add(new Vector(-1400, 200, 0));

enemy.Path ¼ new Path(_pathPoints, 10);

}

else if (definition.EnemyType == "down_l")

{

List<Vector> _pathPoints ¼ new List<Vector>();

_pathPoints.Add(new Vector(500, 375, 0));

_pathPoints.Add(new Vector(500, 0, 0));

_pathPoints.Add(new Vector(500, 0, 0));

_pathPoints.Add(new Vector(-1400, -200, 0));

enemy.Path ¼ new Path(_pathPoints, 10);

}

else

{

System.Diagnostics.Debug.Assert(false, "Unknown enemy type.");

Developing the Inner Game 373

}

return enemy;

}

Each of these enemies has an interesting path and can be put together to form
a more interesting level. Here is some new Level set up code for the
EnemyManager constructor.

public EnemyManager(TextureManager textureManager, EffectsManager

effectsManager, int leftBound)

{

_textureManager ¼ textureManager;

_effectsManager ¼ effectsManager;

_leftBound ¼ leftBound;

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 30));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 29.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 29));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 28.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 30));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 29.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 29));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 28.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 25));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 24.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 24));

_upComingEnemies.Add(new EnemyDef("cannon_fodder", 23.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 20));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 19.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 19));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_low", 18.5));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_straight", 16));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_straight", 15.8));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_straight", 15.6));

_upComingEnemies.Add(new EnemyDef("cannon_fodder_straight", 15.4));

_upComingEnemies.Add(new EnemyDef("up_l",10));

_upComingEnemies.Add(new EnemyDef("down_l",9));

Chapter 10 ■ A Simple Side-Scrolling Shooting Game374

_upComingEnemies.Add(new EnemyDef("up_l", 8));

_upComingEnemies.Add(new EnemyDef("down_l", 7));

_upComingEnemies.Add(new EnemyDef("up_l", 6));

// Sort enemies so the greater launch time appears first.

_upComingEnemies.Sort(delegate(EnemyDef firstEnemy, EnemyDef

secondEnemy)

{

return firstEnemy.LaunchTime.CompareTo(secondEnemy.LaunchTime);

});

}

Try out the level; you may find it a little challenging so this is a great time to play
around with the code and balance the game a little. Try increasing the player
firing rate or the spaceship speed.

Enemy Attacks
Enemies move in interesting ways across the level, but they’re still quite passive.
The player can blast away at them and they do nothing! The enemies should have
some kind of recourse, so in this section we’ll look at turning the tables a little.

There’s already a BulletManager, and this currently handles only the player
bullets. The enemy bullets will only affect the player, and the player bullets will
only affect the enemies. For this reason, it’s easiest to have separate lists of
bullets. This means a few of the functions need to be generalized to accept a list of
bullets.

public class BulletManager

{

List<Bullet> _bullets¼ new List<Bullet>();

List<Bullet> _enemyBullets ¼ new List<Bullet>();

// Code omitted

public void Update(double elapsedTime)

{

UpdateBulletList(_bullets, elapsedTime);

UpdateBulletList(_enemyBullets, elapsedTime);

}

Developing the Inner Game 375

public void UpdateBulletList(List<Bullet> bulletList, double

elapsedTime)

{

bulletList.ForEach(x => x.Update(elapsedTime));

CheckOutOfBounds(_bullets);

RemoveDeadBullets(bulletList);

}

private void CheckOutOfBounds(List<Bullet> bulletList)

{

foreach (Bullet bullet in bulletList)

{

if (!bullet.GetBoundingBox().IntersectsWith(_bounds))

{

bullet.Dead ¼ true;

}

}

}

private void RemoveDeadBullets(List<Bullet> bulletList)

{

for (int i ¼ bulletList.Count - 1; i >= 0; i–)

{

if (bulletList[i].Dead)

{

bulletList.RemoveAt(i);

}

}

}

internal void Render(Renderer renderer)

{

_bullets.ForEach(x => x.Render(renderer));

_enemyBullets.ForEach(x => x.Render(renderer));

}

The above code introduces a second list for enemy bullets; it now requires a
function that will let the enemy shoot bullets and a function to check if any of
them hit the player.

public void EnemyShoot(Bullet bullet)

{

Chapter 10 ■ A Simple Side-Scrolling Shooting Game376

_enemyBullets.Add(bullet);

}

public void UpdatePlayerCollision(PlayerCharacter playerCharacter)

{

foreach (Bullet bullet in _enemyBullets)

{

if(bullet.GetBoundingBox().IntersectsWith(playerCharacter.

GetBoundingBox()))

{

bullet.Dead ¼ true;

playerCharacter.OnCollision(bullet);

}

}

}

The UpdatePlayerCollision is quite similar to the existing UpdateEne-
myCollision method and eventually they should be combined, but for
this iteration of the game development, it’s easier if they stay separate. The
PlayerCharacter class needs a new OnCollision method that takes in a
bullet object.

internal void OnCollision(Bullet bullet)

{

_dead¼ true;

}

The PlayerCharacter now has two collision methods: one for bullets and
one for enemies. The PlayerCharacter dies if he touches an enemy or a
bullet so these methods are redundant. The reason they have been written this
way is to make extending the game easier. It’s important to know what the player
is colliding with. If the player is given a health value, then colliding with an
enemy may cause more damage than a bullet. If missiles, mines, or various types
of power-up are added, they too can have an extra collision method to deal with
that case.

Shooter is a very strict game. If the player hits an enemy, he immediately loses.
The same is true if he hits a bullet. The BulletManager now needs an extra call
in the Update loop of the Level class to test if an enemy bullet has hit the
player.

Developing the Inner Game 377

private void UpdateCollisions()

{

_bulletManager.UpdatePlayerCollision(_playerCharacter);

For the enemies to use their newfound shooting powers, they need access to the
BulletManager class. This can be passed into the EnemyManager and into
each individual enemy from there. Here it’s passed into the EnemyManager
from the Level class constructor.

public Level(Input input, TextureManager textureManager, Persistant

GameData gameData)

{

_input ¼ input;

_gameData ¼ gameData;

_textureManager ¼ textureManager;

_effectsManager ¼ new EffectsManager(_textureManager);

_enemyManager ¼ new EnemyManager(_textureManager, _effectsManager,

_bulletManager, -1300);

In the following code, the EnemyManager stores a reference to the Bullet-
Manager and uses it when constructing enemies.

BulletManager _bulletManager;

public EnemyManager(TextureManager textureManager, EffectsManager

effectsManager, BulletManager bulletManger, int leftBound)

{

_bulletManager ¼ bulletManger;

// Code omitted

private Enemy CreateEnemyFromDef(EnemyDef definition)

{

Enemy enemy ¼ new Enemy(_textureManager, _effectsManager,

_bulletManager);

The enemies now have the BulletManager and with it the power to start
shooting bullets. The question now is when should the enemies shoot? They
can’t shoot every frame or the game would be far too hard. The enemies
shouldn’t all fire at the same time or it will be far too difficult. The trick is to set
the firing times randomly for each enemy.

public double MaxTimeToShoot { get; set; }

Chapter 10 ■ A Simple Side-Scrolling Shooting Game378

public double MinTimeToShoot { get; set; }

Random _random ¼ new Random();

double _shootCountDown;

public void RestartShootCountDown()

{

_shootCountDown ¼ MinTimeToShoot þ (_random.NextDouble() *

MaxTimeToShoot);

}

BulletManager _bulletManager;

Texture _bulletTexture;

public Enemy(TextureManager textureManager, EffectsManager

effectsManager, BulletManager bulletManager)

{

_bulletManager ¼ bulletManager;

_bulletTexture ¼ textureManager.Get("bullet");

MaxTimeToShoot ¼ 12;

MinTimeToShoot ¼ 1;

RestartShootCountDown();

// Code omitted

public void Update(double elapsedTime)

{

_shootCountDown ¼ _shootCountDown - elapsedTime;

if (_shootCountDown <= 0)

{

Bullet bullet ¼ new Bullet(_bulletTexture);

bullet.Speed ¼ 350;

bullet.Direction ¼ new Vector(-1, 0, 0);

bullet.SetPosition(_sprite.GetPosition());

bullet.SetColor(new Engine.Color(1, 0, 0, 1));

_bulletManager.EnemyShoot(bullet);

RestartShootCountDown();

}

When the enemy is created, it sets a timer for the next time it will shoot. The
timer is set using C#’s Random class and a minimum and maximum time.
The timer will be set somewhere in between these minimum and maximum
values. All ships will shoot at different times. The RestartShootCountDown
method sets the random time when the enemy will shoot. Math.NextDouble

Developing the Inner Game 379

returns a random number from 0 to 1, which is scaled between the MinTime-
ToShoot and MaxTimeToShoot member variables.

The Update loop ticks down the _shootCountDown, and once it is equal to
or below 0 the enemy fires a bullet. The bullet is made to be slower than the
player bullets and it’s shot in the opposite direction. The enemy bullets are also
colored red so it’s obvious they’re different from the players. Once the enemy
shoots, the _shootCountDown timer is reset.

The enemies shoot towards the left of the screen. You may want to make it a
little harder and have the enemies aim at the player. To do this, the enemies
must have a reference to the PlayerCharacter. Then it’s a simple matter of
working out the direction of the player in reference to the enemy ship. If you
decide to add aiming to the enemies, here’s a little snippet of code that
might help.

Vector currentPosition ¼ _sprite.GetPosition();

Vector bulletDir ¼ _playerCharacter.GetPosition() - currentPosition;

bulletDir ¼ bulletDir.Normalize(bulletDir);

bullet.Direction ¼ bulletDir;

This concludes this second refinement of the game. The enemies can fire on the
player and move about in interesting ways. The enemies can be destroyed and
will explode in a satisfying ball of flame.

Continuing Iterations
After two basic iterations of development, we have a wonderful but basic side-
scrolling shooter. There is massive scope for developing this project into some-
thing totally individual. The project is yours now and you can develop it as you
want. If you feel a little lost, here are some suggestions.

■ A very simple first step is to introduce a new enemy type; just add an extra
else if and perhaps modify a path or the health. Once you’ve done that,
consider making a new enemy texture and changing the new enemy to use
this texture. This will suddenly make the game a lot more interesting.

■ A score is important in scrolling shooters. The score can be displayed using
the Text class. The score should increase every time the player destroys an
enemy.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game380

■ Sound is also very simple to add. A sound manager needs to be created as it
was earlier in the book, and a number of suitable sounds could be generated
for shooting, exploding, and taking damage. Then you just need to find the
places where explode, damage, and shoot events occur and make a call to the
sound manager to play the correct sound. The main bulk of the work is
passing the sound manager through all the objects so that it can be used
where it’s needed.

■ Regarding the code, there is a large number of managers and a few scattered
functions with similar code. The code could be made tighter and easier
to extend if these managers were generalized and any repeated code was
removed. A good starting point is to see what similar methods each of the
managers use and then consider extending the Entity class so one general
EntityManager could be created.

■ The game’s single level is defined in the EnemyManager constructor. This
isn’t very extendable. A good starting project might be to define the level
definitions in a text file. On load-up the program can read the text and load
the level definition. The level definition could be very simple, such as

cannon_fodder, 30

cannon_fodder, 29.5

cannon_fodder, 29

cannon_fodder, 28.5

■ Each line has an enemy type and a launch time separated by a comma. This
is very easy to parse and read into a Level definition class. The level data
should probably be stored in a PersistantGameData class.

■ Once you have one level loaded, it’s easy to make a new level file, and then
suddenly you have the potential for a multi-level game. When one level is
successfully finished, instead of returning the StartGameState, the state
could return to the InnerGameState but using the next level. If the game
has multiple levels, then it would good if the game was able to save the
player’s progress through these levels. A very simple way to save the game
data would be to write out the score and current level to a text file.

■ Instead of having a linear level progression (1,2,3,4), the user could be
presented with an overworld map to select which levels he’d like to complete

Continuing Iterations 381

next. An overworld map generally indicates all the levels as nodes linked
by paths. Such a system has been used in some of the Super Mario games. An
overworld map makes it very easy to introduce secret paths and levels that
are discovered by doing particularly well in the previous level.

■ If the player is hit by an enemy spaceship or bullet, the PlayerCharacter
dies and it’s game over. It would be preferable to give the player some
margin for error, perhaps by giving the spaceship some health—allowing it
to take damage like the enemies. The health could be represented by a health
bar on screen that goes down each time the ship takes a hit. You may also
want to introduce the concept of lives—the player starts with several lives,
each allowing one more go at the level before the game is lost.

■ As levels progress, they tend to get more difficult. To help the player, you
could give him better weapons and items to repair any damage to his ship.
In scrolling shooting games, power-ups and other items tend to be dropped
by enemies. A new item class needs to be created, and it can be added to the
scene (possibly via the EffectsManager) to be picked up by the player.
A health pack can repair some amount of the damage the player has
received. New weapons can deal more damage or perhaps there can be two
bullets every time the player shoots instead of one.

■ You could also add alternate weapons that are triggered by different
buttons. Bombs or lasers, for instance, could be secondary weapons that
have a limited number of shots.

■ RPG elements are a very popular way to add a greater degree of depth.
Enemies could drop money (or scrap that could later be sold for money).
After each level the player could buy new weapons, upgrade existing ones, or
even buy a new type of ship. You may even want to allow players to place
weapons at different locations on the ship by altering the PlayerChar-
acter’s _gunOffsetmember.

■ The RPG elements could be taken even further by adding a layer of narrative
to the game. This could be done during the level with text boxes and scrip-
ted movements of enemies and the player. Story elements could also be
added to an overworld map or after each level.

Chapter 10 ■ A Simple Side-Scrolling Shooting Game382

■ Large boss enemies at the end of the level are also a staple of the side-scrol-
ling shooter. You could make the boss enemy an aggregate of several dif-
ferent types of enemies. Then parts of the boss can be destroyed, but the
PlayerCharacter only wins when all the boss parts are destroyed.

■ The scrolling space backgrounds are quite dull and could be made more
lively with animated space debris, far away supernova, and planets. The
scrolling background can be altered at any time, so with a little work it
would be easy to give the impression the spaceship was traveling toward the
surface of a planet.

■ As a final suggestion, you could add a local multiplayer mode. This is pretty
easy to do. A second game controller or the keyboard would need its input
to be redirected to a second PlayerCharacter. Some logic would also
need to be changed so that if one player died the other could keep on
playing.

Continuing Iterations 383

This page intentionally left blank

chapter 11

Creating Your
Own Game

It’s very likely you are reading this book because you have some great ideas for
games and want to learn how to turn those ideas into programs. This chapter
offers general advice on game creation and covers some challenges that particular
game genres experience and how to approach them.

This is a very broad whirlwind tour of game creation, touching on some of the
more interesting problems you’ll encounter as you start programming. There are
some suggested steps for writing games, code snippets for algorithms, and on the
CD, you’ll find a list of resources and further reading for all the game types
listed here.

Project Management
Writing games is fun and rewarding, but finishing a game project is much
harder. This section will cover the approach to take when developing a project.
It’s important to know when to abandon a game project and when to soldier on
and finish it.

A game can’t start without an idea, so consider carrying a small notebook around
with you and jotting down any sudden bolt of inspiration that strikes you during
the day. A second tip for generating game ideas is to take a critical look at the
games you enjoy playing; try to break down the games into systems and note any
gameplay features that you like. If you see a nice GUI, special effect, puzzle, or

385

game interaction, try to re-create it. Re-creating parts of existing games is an
excellent way to improve your skills.

When you get your great game idea, then it’s time to move on to the next stage:
the feasibility test. Do you have the resources to create this game? If it requires
hours of full-motion video, hundreds of hours of gameplay, and thousands of
fully animated monsters, then unless you are surrounded by some extremely
talented friends or are very well-funded, you may have to tone down your am-
bition. The ideal game will be something that pushes your abilities but is still
achievable. If you are very new to game development, start with small projects
that can be achieved in a few days (such as Pong or Space Invaders) and slowly
work your way up to more demanding projects.

Once you’ve decided on a game idea that’s passed your feasibility test, it’s time to
break it down into manageable chunks. This is the fun, high-level design bit. You
have a vague idea of this great game, but now you need to solidify the idea and
work out how it’s going to fit together. A good idea is to sketch out the classes
and systems of the game on paper with boxes and then indicate relationships and
interactions with arrows. This rough high-level plan is a great thing to pin to a
wall or keep in your development area. It’s a map that will help guide you as you
starting digging into the details of the project. If you still don’t feel you’re quite at
the boxes and arrows stage, then try playing your vision of the game in your head
using your imagination. What happens when you first start the game? When you
begin the first level? What actions can you perform? How does the world respond
to those actions?

Let’s say you want to create a game in which you must sing different songs to
make characters on the screen perform actions and interact with the environ-
ment. When breaking down this design, the first big system that jumps out is the
player input; being able to detect if the player is singing and then determine
which song the player is singing is an area that will require research. The singing
section needs a small project all to itself. At the very least, one system will have to
get the voice input from the player via the microphone, and another system will
have to be able to identify the different songs the player is singing. Each creature
will have to be checked to see if the current song being sung is important to
them. The actions the creatures can perform need to be defined. The win/lose
state of the game needs to be defined. How the world is represented needs to be
defined. These are some of the questions this one line game design brings up. By

Chapter 11 ■ Creating Your Own Game386

the time you’re done thinking through your game on paper, you should have
many questions that need to be answered and a list of items to research.

The next phase is prioritizing the questions and tasks that this early design phase
has uncovered. Not every game will have features that require researching, but if
there are any research tasks that the game relies on then they need to be done
first; this might be as simple as a quick Google search or it may require asking
people who are better informed or reading books and articles on the subject.
Small toy programs are a great place to try out different research ideas, which if
successful can be cleaned up and incorporated into the final project.

Once you think you have finished all the research, ask yourself ‘‘What is the very
least I can do to get a basic working game?’’ Then do that and if possible try to do
it in one sitting. Once you have a first iteration of your game, it’s much easier to
come back to it and slowly refine it. A half finished game is harder to pick up if
you’ve had a few days break from development.

Game programming requires time; usually a period of four or so hours is
required for a minimum session, especially if you want to get into that state of
flow when you stop noticing the passage of time and become entirely focused on
the task at hand. To-do lists are a good way to direct your development efforts.
A good tip is to write the to-do item and then just below it, write the smallest step
you need to do to start this to-do item, for example.

1. Set up the development environment and get a basic window and game
loop up

– Open Visual Studio, create a new project and call it ‘‘Project Minstrel’’

2. Build Simple Song Classifier skeleton class

– Add SongClassifier.cs file and add System.Speech library

The little sentence after the to-do point is something you can do right now; it’s
almost easier to take that first step than not, and once you’ve taken the first step,
you’re obliged to finished the full to-do point. Don’t collect a backlog of un-
finished to-do items each time you begin developing your project, then throw
away the last to-do list and start again. Anything that’s super-important you can
copy across.

Don’t be afraid to stop working on a project if it doesn’t seem to be going any-
where. Every project, even those that don’t get completed, imparts some kind of

Project Management 387

lesson (even if that lesson is of the ‘‘Well, I won’t do that again’’ variety, it’s still
useful!). You will get a lot more done on a project you want to work on than a
project you feel obligated to work on just because you’ve invested a lot of time
in it.

If you are looking for feedback or help, there are lots of game programming
communities on the Internet that will be happy to try out your game and
offer suggestions and advice (such as The Independent Game Source http://
forums.tigsource.com/index.php . For other communities please see
the accompanying CD). Online communities also host regular game program-
ming competitions and usually have services if you wish to find another
programmer or artist to team up with.

Display Methods
Games, for the most part, fall neatly into two categories: 2D games like Super
Mario, Tetris, and Pokémon and 3D games like Quake, Fallout 3, and Grand Theft
Auto. 2D games tend to be easier to program.

2D Games
2D games have been covered quite extensively in this book so you should already
have a good head start if your game idea is 2D based. 2D games often suggest
pixel art style graphics, but this doesn’t have to be the case; there is still a lot of
room for innovation in presenting a 2D game. The graphics could appear like
cut-out pieces of paper, crayon drawings, vector graphics (using OpenGL’s
GL_LINE drawing mode), abstract, or silhouette graphics. (Silhouette graphics
have the great advantage that they are much easier to draw.) The math involved
with 2D games tends to be simpler than a 3D game, but it really depends on the
specific game. Most programmers experiment with 2D games before learning
about 3D game programming, and a lot of game development knowledge is in-
dependent of whether the game is developed in 3D or 2D.

3D Games
One of most important skills for a game programmer is the ability to
independently research and learn about new programming and development
techniques. Sometimes a game idea demands a new unfamiliar technology (for
instance you may wish to have a rope in your game in which case you need to
research a way for this to be simulated); other times you may learn a new

Chapter 11 ■ Creating Your Own Game388

http://forums.tigsource.com/index.php
http://forums.tigsource.com/index.php

technology just for the fun or the challenge and in so doing, you discover a new
idea for a game. The vast majority of big budget modern games are 3D and this
alone makes learning 3D game development appealing.

3D graphics programming is a vast, intimidating heap of mathematics, techni-
ques, and terminology, and it’s important to approach it in a measured, achiev-
able manner. To aim to compete with the latest FPS shooter with your first
project is only setting yourself up for disappointment. A better goal is something
that can be achieved quite quickly and is a stepping stone to more ambitious
projects. For 3D graphics, getting a box to display on the screen is an achievable
first step–even better if the box rotates. A later intermediate step might be to re-
create the side-scrolling shooter game covered in the last chapter, but use
3D models instead of sprites.

The code examples in this book have often made use of a function called
Setup2DGraphics in the Form.cs file. It’s quite trivial to write an equivalent
Setup3DGraphics.

private void Setup3DGraphics(double width, double height)

{

double halfWidth = width / 2;

double halfHeight = height / 2;

Gl.glMatrixMode(Gl.GL_PROJECTION);

Gl.glLoadIdentity();

Glu.gluPerspective(90, 4 / 3, 1, 1000);

Gl.glMatrixMode(Gl.GL_MODELVIEW);

Gl.glLoadIdentity();

}

This code is nearly identical to the Setup2DGraphics call, but it uses the
function gluPerspective instead of glOrtho. The gluPerspective
function takes in a field of view as the first argument, the aspect ratio as the
second, and the near and far planes as the last two arguments. This describes
something similar to the lens of a camera for viewing the 3D scene.

If Setup3DGraphics is called instead of Setup2DGraphics then that’s
nearly all that’s needed to start 3D game programming. Here’s a game state that
renders a pyramid in 3D using OpenGLs immediate mode producing an image
similar to Figure 11.1. Make sure that you have replaced all Setup2DGraphics
calls with Setup3DGraphics calls before running this state.

Display Methods 389

class Test3DState : IGameObject

{

public Test3DState(){}

public void Update(double elapsedTime){ }

public void Render()

{

Gl.glDisable(Gl.GL_TEXTURE_2D);

Gl.glClearColor(1, 1, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

// This is a simple way of using a camera

Gl.glMatrixMode(Gl.GL_MODELVIEW);

Gl.glLoadIdentity();

Vector cameraPosition = new Vector(-75, 125, -500); // half a meter back

on the Z axis

Vector cameraLookAt = new Vector(0, 0, 0); // make the camera look at the

world origin.

Vector cameraUpVector = new Vector(0, 1, 0);

Figure 11.1
A 3D pyramid.

Chapter 11 ■ Creating Your Own Game390

Glu.gluLookAt(cameraPosition.X, cameraPosition.Y,

cameraPosition.Z,

cameraLookAt.X, cameraLookAt.Y,

cameraLookAt.Z,

cameraUpVector.X, cameraUpVector.Y,

cameraUpVector.Z);

Gl.glBegin(Gl.GL_TRIANGLE_FAN);

{

Gl.glColor3d(1, 0, 0);

Gl.glVertex3d(0.0f, 100, 0.0f);

Gl.glColor3d(0, 1, 0);

Gl.glVertex3d(-100, -100, 100);

Gl.glColor3d(0, 0, 1);

Gl.glVertex3d(100, -100, 100);

Gl.glColor3d(0, 1, 0);

Gl.glVertex3d(100, -100, -100);

Gl.glColor3d(0, 0, 1);

Gl.glVertex3d(-100, -100, -100);

Gl.glColor3d(0, 1, 0);

Gl.glVertex3d(-100, -100, 100);

}

Gl.glEnd();

}

}

The function call to Glu.gluLookAt is new and it sets up the positioning of a
3D camera to view the scene through. The position of the camera is made of
three vectors: the first is the position of the camera in the world, the second is the
position of what the camera should point at, and the final vector points upwards.
If the up vector were reversed by setting the Y component to –1 then the scene
shown in Figure 11.1 would appear upside down.

If you wish to learn more about using 3D graphics in games, then I suggest the
following steps.

Display Methods 391

■ Set up a 3D scene and draw a cube using OpenGL’s immediate mode and
GL_QUADS.

■ Write out the vertices of the box to a file and then load them in. This is your
first simple file format.

■ Update the code so that it uses vertex buffers and not immediate mode.

■ Research index buffers and update the code and your file format to use these
index buffers.

■ Research the .obj file format. It’s a plain text format. Write a simple pro-
gram to load .obj files into a set of index and vertex buffers. Ignore the
materials and parametric surface information. (Tip: Remember that
OpenGL expects surfaces to come in clockwise order.)

Those steps are enough to get started with 3D game programming. Once you can
load simple .obj files then you can move and transform them using the existing
matrix class.

When you are ready to move on to animating 3D models, start with the
.MD2 file format. This is the file format used by Quake II to store its enemies
and characters. There are hundreds of free test files available to download from
the internet that can be used to test your loader. Once you get to this stage, you
will probably have a much better idea of what part of 3D graphics programming
you want to learn next.

Types of Games
Games come in many different shapes and sizes, which can be roughly categor-
ized into genres. Games in the same genre will generally need to be programmed
in a similar way.

Text Games
Text games are some of the simplest games to get started with as no graphics
are required. The programmer can focus entirely on the story. There are a
large variety of different text games but the most common are interactive
fiction games. Here is a sample of an interaction with a simple interactive
fiction game.

Chapter 11 ■ Creating Your Own Game392

You are in a dark room, you can see nothing.

>Search

You search around in the dark, your fingers brush against something

metallic.

>Examine metallic thing

It's hard to make out in the dark but it seems to be a flashlight.

>Turn on flashlight.

The flashlight flickers to life.

An interactive fiction game has two main parts: a data structure holding the
description of the world and a parser that interprets the users input. The data
structure describing the world can be quite simple.

class Room

{

public string Description {get; set;}

public List<Room> Exits{get; set;}

public Room(string description, List<Room> exits)

{

Exits = exits;

Description = description;

}

}

The Room class is a single place in the game world; it has a string of text that
describes it and a list of exits to different rooms. The player can be given a de-
scription of each room and use the exits to travel around the map. Exits can be
added and removed as puzzles are solved.

The parser is a piece of code that matches patterns. The user might type ‘‘Look’’
into the console and then press enter to look around a room; in code this would
be handled like so:

if (_input == "look")

{

// The look function writes the description to the console.

_currentRoom.Look();

}

A more complicated statement would require more parsing; for example, ‘‘use
hammer on doorstep.’’ The following code is a little idealized but gives an idea of
how the user commands could be broken down.

Types of Games 393

if(_input.StartsWith("use"))

{

_input = _input.RemoveSubstring("use")

int result = _input.Find("on")

if(result == -1) break; // pattern not recognized

string firstParameter = input.SubString(0, result)

string secondParameter = input.SubString(result + "on".Length(),

input.Length());

// the use function will use these strings to look up objects

Use(firstParameter, secondParemeter);

}

This code snippet assumes that all the input text is lowercase; if the player
capitalizes any letter then the function won’t work! A fix for this is to process the
input string like this:

_input = _input.ToLower()

To begin a Visual Studio project for a text-adventure game, choose Console
Application rather than Windows Form Application, as is shown in Figure 11.2.

Once the console project is started, input can be read from the console
using Windows.Console.ReadLine() and output to the console using
Windows.Console.WriteLine().

A good resource for creating interactive fiction is the Inform Programming lan-
guage http://inform7.com/. It allows the user to type in almost natural
English to describe an interactive fiction world.

Puzzle Games
Puzzle games are a good choice for a first game; they tend to need only a few
resources and they are usually relatively simple to understand. Popular puzzle
games include games such as a jigsaw, Sudoku, Boggle, Tetris, and Bejeweled.
A lot of very popular games are based around collections of puzzle games such as
the PC game 7th Guest, the Professor Layton games on the DS, and even Brain
Training. All these games are simple to understand and play but are still chal-
lenging and fun to create.

Chapter 11 ■ Creating Your Own Game394

http://inform7.com/

Tetris is a good first game to program; at first glance it appears simple, but when
you start to break it down you will find some interesting challenges. In case you
are not familiar with Tetris the aim is to create a horizontal line of blocks without
gaps. Once such a line is created, the line disappears and the blocks above drop
down to replace the line. Different colored and shaped blocks fall from the top of
the game area and the player must rotate and move the blocks to maximize the
number of lines completed. As the game progresses, the speed of the falling
blocks increases.

A first goal for creating a Tetris is to make small 1x1 blocks fall from the top of
the playing area to the bottom and then stop. Additional blocks should stack up
on top of the ones that have fallen before them. This starting goal can be seen in
Figure 11.3. Once you’ve got this code working, then you’ve really broken the
back of writing a Tetris game.

The next stage in developing the game is to detect when the game is lost. This is
when the number of blocks stacks so high it reaches the top of the playing area.
Basic player input should be implemented next allowing the blocks to be moved

Figure 11.2
Creating a console application.

Types of Games 395

a unit left or right. The player shouldn’t be able to move the block once it’s
finished falling and neither should they be able to move the block outside of the
playing area. Tetris has no end game, it’s one of those classic era games where you
can never win but only hope to delay your inevitable failure. There is no explicit
win state to model but one of the major goals in Tetris is to get a complete row of
bricks. Your program should detect completed rows and remove the row. Any
blocks above the row should drop down a level. This is also a good point to
introduce a scoring system and display the player’s score on screen.

The next step is to make the Tetris pieces, which are called tetrominoes; I would
suggest designing them so they are a collection of the smaller 1x1 blocks that
have been used in the earlier stage. The user must be able to rotate these te-
trominoes but rather than try to rotate all the sprites 90� around the center of the

1x1 block continually fall

Figure 11.3
A first step towards a Tetris game.

Chapter 11 ■ Creating Your Own Game396

tetrominoe, I would just cheat and store four versions of each tetrominoe for
each direction it can be rotated. When the player presses the rotate button, the
current tetrominoe can be replaced with another new tetrominoe piece that is its
next rotation. Instead of 1�1 blocks continually falling from the top of the play
area to the bottom, random tetrominoes should be created.

The final challenge regarding Tetris is the chain reaction rule. This rule is shown
in Figure 11.4. Sometimes completing a row in Tetris leaves some blocks im-
mediately above the row hanging in space. These blocks need to fall down. When
these blocks do fall down they, in turn, may trigger the completion of another
row and this may cause a chain reaction.

The chain rule can be quite tricky; after a row is completed, the Tetris board
needs to be searched for any free pieces that can move down. All free pieces are
then moved down, and before the game resumes, all the rows need to be checked
to see if any have been completed. If you follow this rough road map, you should
have a reasonable Tetris without too much hair pulling.

First-Person Shooter Games
First-person shooter games may seem a little intimidating as they require famil-
iarity with a lot of complex mathematics. A lot of the complexity of 3D games

Figure 11.4
A first step towards a Tetris game.

Types of Games 397

comes from the algorithms that work out what the player can currently see. If the
program knows what the player can see, then it doesn’t need to render any ob-
jects that are hidden. This can produce massive speed improvements. These al-
gorithms are usually a type of space partitioning, but you only need to learn
about them if you’ve already got to the stage where you can write a basic FPS.

Here is a list of steps to start you on your way to FPS game creation.

■ Create a simple 3D scene with a camera class (use Glu.gluLookAt) that
can change its position.

■ Draw a large quad under the camera so that it appears like a floor. Option-
ally, texture this quad.

■ Make it so the arrows keys move the position and look-at position of the
camera.

If you successfully follow these steps, you will have something that feels like an
FPS game, but you can’t move the camera around with the mouse, and there is
no real level. To develop the game further than this requires quite a lot more
mathematics; here are some of the major formulas to research.

Ray-Triangle, Ray-Plane, Ray-Sphere, and Ray-Quad collision checks need to be
researched and implemented. Each of these checks should return one or more
positions where the intersection occurred. (A Ray is a position and a direction.
It’s useful for representing lasers and determining if the character’s feet are cur-
rently touching the floor.)

Line-segment-Triangle, Line-segment-Plane, Line-segment-Sphere, and Line-
segment-Quad intersection checks can be created from the Ray checks. Line
segments are used to check if the player or player’s bullet has passed through a
wall or enemy. A line segment is made by drawing a line from the player’s posi-
tion in the last frame to the player’s position in the current frame. If the line
segment crosses a wall, that means the player is trying to walk through the wall.
Walking through walls is a bad thing, so the player’s position needs to be pushed
back along the line segment until the player is no longer passing through the wall.

For the camera movement, you may wish to research polar coordinates because
they are usually used to translate the movement of the mouse to the movement
of the camera in the game world. You may also wish to investigate BSP (Binary
Space Partitioning) trees as these render the 3D levels more efficiently. The best

Chapter 11 ■ Creating Your Own Game398

way to research this type of game is to take each element on its own and create a
simple test program to make sure that everything is working as you expect. Once
you have all of the technology down, you can bring all the elements together to
make a more complicated game.

Strategy Games
Strategy games come in two general types: turn-based games that have a close
relationship with traditional tabletop war games, and real-time games, which
have a far more distant relationship to tabletop games. Turn-based games are
easier to program. The player has a number of possible actions he can carry out
each turn, and once no more actions can be done, the turn can end. Real-time
games allow the player to perform as many actions as fast as he can, but each
action takes a certain amount of time before it completes. Turn-based games
tend to favor 2D representational graphics, sticking close to their board game
roots, whereas real-time games usually use 3D graphics.

Strategy games tend to favor a top-down view, allowing the player to view as
much of the game world as possible. If the graphics are 2D, then tiles and sprites
are often used to represent the different types of land, unit, and characters. 3D
games usually use a 3D height map. In the Engine class, a sprite was a 2D quad;
imagine if that quad was subdivided many times so its surface was more like a
grid. An example height map can be seen in Figure 11.5. Each of the vertices can
be moved up or down on the Y axis to give the impression of terrain, as can
be seen in Figure 11.5. Height maps are often specified by grayscale images.
Each pixel of the image corresponds to each vertex in the grid-mesh, the
height depending on the intensity of the pixel. A gray pixel value halfway be-
tween black and white might represent no movement of the vertex; a black pixel
would move the vertex negative one, and a white pixel would move the vertex
positive one.

The advantage of using a bitmap to represent the height is that it allows the
height map to be painted in a paint package. Height maps get a lot of use in
computer games, and after reading this description, they will probably be very
easy to spot! Real-time strategy games often use height maps for the terrain and
3D models for each of the units in the game.

The difficulty with strategy games, especially strategy games that are war-based,
is the artificial intelligence. There are two different AI systems: the first is the AI

Types of Games 399

of your own units; if you tell a tank to go from one location to another, it should
take the shortest route and avoid running over civilians. This type of problem is
generally known as path finding, and the easiest solution is to research the A-Star
algorithm and implement a suitable variant of it. Not all games use A-Star for
path finding, but it is a very popular method that is quite easy to understand.

The second type of AI in real-time strategy games is the AI that controls the
computer component. This AI must provide a challenge to the player, but it
shouldn’t appear to cheat, and it should be beatable. There are all sorts of novel
solutions to this problem using exotic sounding things like neural networks, but
the usual solution is the slightly more mundane state machine and a few rules.
A strategy game AI might have a number of states such as build-up-units,
attack, and defend. Each state has some associated rules; for instance, the
build-up-units state might have a rule ‘‘if the numbers of units are greater
than ten, then move to the attack state.’’ The attack state might have rules
such as ‘‘if the offensive unit isn’t near enemy base, then move to enemy base.’’ It
may also have rules about what should be attacked first and what priorities cer-
tain targets should be given. These rules can usually be defined in a data file, and
then they are refined with a lot of tweaking and play testing.

Figure 11.5
A grid of vertices.

Chapter 11 ■ Creating Your Own Game400

Role-Playing Games
Role-playing games are very popular with game developers, but they are also very
challenging. Role-playing games have many items, locations, enemies, and
characters; these all require text and art. There are also several systems that need
to be developed to create a full game: the conversation system, world explora-
tion, inventory management, a leveling system, and combat.

Roguelike Games

Roguelike games get their name from their similarity to an early dungeon
crawling game called Rogue. Roguelikes nearly always use the ASCII characters
instead of graphics. Like text games, this means more of the programmer’s time
can be focused on the game instead of developing graphics. Some of the more
popular Roguelikes are ADoM (http://www.adom.de/), Nethack (http://www
.nethack.org/), and Crawl (http://crawl.develz.org/wordpress/). ASCII is also
used for Dwarf Fortress (http://www.bay12games.com/dwarves/), a large-scale
generic fantasy world creator and simulator that allows the user to control a
number of dwarves as they build an underground lair. ASCII games do not have
to be simple; Dwarf Fortress includes a detailed weather simulator, fluid physics,
psychological models, and much more.

Creating an ASCII game in C# is similar to creating a text-based game. A console
application should be created. Unlike the text game, ASCII games need a game
loop. Each update, the world is output as text to the console. After the world is
printed, the console cursor needs to be moved back to the start of the console
window. The console cursor is a position that dictates where text will be printed
when the program writes to the console. The next world update is printed over
the earlier one, updating it. Here is some code that renders a small ASCII map
with an @ character representing the player.

static void Main(string[] args)

{

int _mapWidth = 10;

int _mapHeight = 10;

int _playerX = 0;

int _playerY = 0;

bool _playerIsAlive = true;

while (_playerIsAlive)

{

for (int i = 0; i < _mapHeight; i++)

Types of Games 401

http://www.adom.de/
http://www.nethack.org/
http://www.nethack.org/
http://crawl.develz.org/wordpress/
http://www.bay12games.com/dwarves/

{

for (int j = 0; j < _mapWidth; j++)

{

if (j == _playerX && i == _playerY)

{

Console.Write('@');

}

else

{

Console.Write('.');

}

}

Console.WriteLine();

}

Console.WriteLine();

}

Console.SetCursorPosition(0, 0);

}

}

Even though this code snippet is quite short, it demonstrates the basics of a
Roguelike. The next step is to read the input from the arrow keys and move the
character around the small world.

Tile-Based Role-Playing Games

Tile-based games build a 2D world from small sprites called tiles. Tiles are used in
all sorts of different games, not just role-playing, but they were a very popular
technique with the early Japanese-style RPGS such as the Final Fantasy games
(prior to the seventh), Chrono Trigger, the early Zelda games, and many other
titles. Tiled graphics are still very common on handheld devices such as the DS and
PlayStation portable. An example of a tile-based game can be seen in Figure 11.6.
All the tiles describing the world are packed together in one or more textures called
a tilemap. The tilemap used to build Figure 11.7 can be seen in Figure 11.8.

A good starting point for a tile-based game is to create a text file that represents
the world. For example:

############

#

#

#S E#

############

Chapter 11 ■ Creating Your Own Game402

Figure 11.7
A tile-based game.

Figure 11.6
A grid with vertices displaced making a height map.

Types of Games 403

Here each pound sign represents a wall that blocks the character. The S character
represents the start of the level, and the E represents the end. Here is some rough
code to demonstrate how a level could be built up.

double startX = 0;

double startY = 0;

double tileWidthHeight = 32;

Dictionary<char, TileData> tileLookUp = LoadTileDefinitions();

string levelDef =

"############\n" +

"# #\n" +

"# #\n" +

"#S E#\n" +

"############\n";

Figure 11.8
A tile map.

Chapter 11 ■ Creating Your Own Game404

TileMap tileMap = new TileMap();

double currentX = startX;

double currentY = startY;

int xPosition = 0;

int yPosition = 0;

foreach (char c in levelDef)

{

if (c == '\n')

{

xPosition = 0;

yPosition = yPosition + 1;

currentX = startX;

currentY -= tileWidthHeight;

continue;

}

Tile t = tileLookUp[c].CreateTile();

t.SetPosition(currentX, currentY);

tileMap.AddTile(xPosition, yPosition, t);

xPosition++;

currentX += tileWidthHeight;

}

The text-based tile definition is iterated through, and each character is trans-
formed into a tile. Each tile is a type of sprite and is carefully positioned so it is
flush with its neighboring tile. ASCII characters are used to index a dictionary
that contains a set of tile definitions containing tile data. This tile data will
probably contain a texture; it will also have some flags that determine if the
player can walk on the tile, and it may have some special properties such as
ending the game when the player steps on it. The tile definition is used to create a
tile, which uses a sprite to draw itself. Once the tile is created, it’s positioned and
added to the tilemap. In the game loop, the tilemap is used to render all the tiles.
The player is rendered after the tiles and is free to walk around.

A common feature for tile-based games is to layer the tiles. Several tilemaps are
created and laid on top of each other. This can be used to provide a parallax
effect, where the background moves slowly compared to the progress of the
player. It also allows the player to pass behind certain elements on the map.

3D Role-Playing Games

There is a wide variety of ways to make a 3D role-playing games, Fallout 3,
Oblivion, and Bioshock use an FPS approach. Other 3D games emulate the more

Types of Games 405

traditional tile-based approach by using an overhead camera that looks down on
the players and game world. Diablo 3 and Twilight are two good examples of this
style. The third option is the third-person camera that one might see in Zelda
since the N64 era, or the Mass Effect games.

The FPS-based approach puts you inside the eyes of the character, encouraging
immersion in the game world. To start this kind of game, you would first need to
be able to make a simple FPS game. FPS games tend to take place in tight
buildings separated into missions or levels; RPGs tend to have big open areas and
a large game world. Open worlds that allow a character to seamlessly walk from
one city to another are very hard to program; data must be loaded and unloaded
dynamically as the character walks around the world. This is very hard in an FPS
game because if the player manages to climb somewhere quite high, then he
expects to be able to look out onto the world and see where he has come from.
This means a low-detail version of the world needs to be present in memory
most of the time, and areas need to become more detailed as the player ap-
proaches. If this kind of algorithm interests you, then I suggest searching for
papers on ROAM (Real-time Optimally Adapting Meshes). As with other games,
it’s a good idea to start small and simple and take small steps to something more
complicated.

An easier approach to the open-world problem is to confine the player to small
areas that can be loaded in memory all at once. Games such as System Shock and
Bioshock use this limitation to drive the story. In System Shock, you are confined
to a space station, and you can only move to different levels using a central ele-
vator. While the elevator is moving, the old level is unloaded and the new level is
loaded in. Bioshock works in a very similar way, but it’s an underwater base.

Third-person games are very similar to FPS games, but the camera is pulled back
allowing the player character to be seen on screen at all times. There are still the
same problems with representing a vast dynamic world on only a limited
amount of memory and computer resources. The Mass Effect games split up the
world by scattering the levels over different planets. While the player is dis-
embarking from his ship to the planet surface, the level is loaded. Zelda games
have either an explicit loading screen as one area is loaded and another unloaded,
or sometimes a dog leg is used. A dog leg is a stretch of level where nothing can be
seen apart from the narrow corridor the player is walking down. The shape of
the corridor is roughly like a dog’s leg, or a very relaxed L shape. The corridor is

Chapter 11 ■ Creating Your Own Game406

long enough that it gives just enough time for the new level to be loaded before
the player emerges from it. Dog legs don’t have to be corridors; they can also be
mountain passes or a narrow alleyway between tall buildings.

A top-down camera doesn’t suffer as much from the vast world problems as an
FPS or third-person camera view, because the camera only looks at a small chunk
of the world. A player with an FPS camera can look to the horizon and see vast
trails of the land; this is not the case with the top-down camera. There is always
quite a small fixed area around the player. This makes loading and unloading
chunks of a level easier. Top-down views also do quite well with a tile-based
approach, but instead of each tile being a sprite, each tile is a 3D mesh that
matches its surrounding 3D tiles. This makes it much faster to make levels; a few
chunks can be modeled and then attached together to form a level fairly quickly.

Platform Games
Platform games are very popular for amateur and independent game developers.
There is a little math involved, but it tends to be quite simple, and there are a lot
of different gameplay ideas that can be explored in the 2D platformer world.
Most platformer games use a tile approach quite similar to the approach dis-
cussed in the role-playing section.

Platform games usually require a small degree of physics modeling; gravity nearly
always needs modeling. The physics can be written using the basic equations for
velocity and acceleration, or by using a third-party physics library, such as a
Box2d (there is a C# port called Box2dx). If you decide to code everything by
hand, then you can get something up and running quite quickly with the sprite
classes and simple rectangle-rectangle collision tests.

Here is a very simple game state that moves a red square around with the arrow
keys, and it can be made to jump with the up arrow key.

class PlatfomerTestState : IGameObject

{

class PlatformEntity

{

const float _width = 16;

const float _height = 16;

RectangleF bounds = new RectangleF(-_width, -_height, _width,

_height);

Types of Games 407

public void Render()

{

Gl.glBegin(Gl.GL_LINE_LOOP);

{

Gl.glColor3f(1, 0, 0);

Gl.glVertex2f(bounds.Left, bounds.Top);

Gl.glVertex2f(bounds.Right, bounds.Top);

Gl.glVertex2f(bounds.Right, bounds.Bottom);

Gl.glVertex2f(bounds.Left, bounds.Bottom);

}

Gl.glEnd();

Gl.glEnable(Gl.GL_TEXTURE_2D);

}

public Vector GetPosition()

{

return new Vector(bounds.Location.X + _width,bounds.Location.

Y + 16, 0);

}

public void SetPosition(Vector value)

{

bounds = new RectangleF((float)value.X - _width, (float)value.

Y - _height, _width,_height);

}

}

PlatformEntity _pc= new PlatformEntity();

Input _input;

double _speed = 1600;

Vector _velocity = new Vector(0, 0, 0);

bool _jumping = false;

double _gravity = 0.75;

double _friction = 0.1;

public PlatfomerTestState(Input input)

{

_input= input;

}

#region IGameObject Members

Chapter 11 ■ Creating Your Own Game408

public void Update(double elapsedTime)

{

if (_input.Keyboard.IsKeyHeld(Keys.Left))

{

_velocity.X -= _speed;

}

else if (_input.Keyboard.IsKeyHeld(Keys.Right))

{

_velocity.X += _speed;

}

if (_input.Keyboard.IsKeyPressed(Keys.Up) && !_jumping)

{

_velocity.Y += 500;

_jumping = true;

}

_velocity.Y -= _gravity;

_velocity.X = _velocity.X * _friction;

Vector newPosition = _pc.GetPosition();

newPosition += _velocity * elapsedTime;

if (newPosition.Y < 0)

{

newPosition.Y = 0;

_velocity.Y = 0;

_jumping = false;

}

_pc.SetPosition(newPosition);

}

public void Render()

{

Gl.glDisable(Gl.GL_TEXTURE_2D);

Gl.glClearColor(1, 1, 1, 0);

Gl.glClear(Gl.GL_COLOR_BUFFER_BIT);

Gl.glEnable(Gl.GL_LINE_SMOOTH);

Gl.glLineWidth(2.0f);

Types of Games 409

Gl.glPointSize(10.0f);

Gl.glColor3d(0, 0, 0);

_pc.Render();

}

#endregion

}

There is a small class here called PlatformEntity, and this draws a simple red
line box and provides methods to move it about. There is some very simple
cartoon-like physics modeling in the Process loop. The new position for the
entity is calculated and then it’s checked to see if the entity has fallen below zero
on the Y axis; if so, it’s pushed back up. This is a good starting point to play
around with different control methods, and sprites can be added to give the
scene much more character. Additional collision code needs to be added to
handle free hanging platforms

Final Words
By now, you should not only have some great game ideas, but also know how to
realize these ideas. Remember to start small, create a rough working version as
early as possible, and then refine it. If you follow these steps, you will soon have a
fun game that you are proud of and eager to release into the world! Good luck
and happy coding!

Chapter 11 ■ Creating Your Own Game410

appendix A

Recommended
Reading

This appendix suggests excellent books that are useful when creating a game
project or improving your skills and knowledge. This section only covers books,
but the CD has an HTML file with links to useful websites and papers online.

The Practice of Programming
The practice of programming is about the journey—an initial spark of an idea to
finished project. These books give some guidelines for how development should
be done and what steps need to be taken to painlessly create a great finished
program. They are not game specific as the lessons apply to all software devel-
opment projects, but they’re still very much worth reading.

The Pragmatic Programmer: From Journeyman to Master (ISBN 0-201-
61622-X) by Andrew Hunt and David Thomas

The Pragmatic Programmer is a relatively short book that describes how to
complete software projects. It’s not about any language in particular; instead, it is
about the process of software development. Despite being very short, it is packed
with useful information and I highly recommended it if you want to improve
your craft.

Code Complete Second Edition: A Practical Handbook of Software
Construction (ISBN-13: 978-0735619678) by Steve McConnell

Code Complete is another book that encourages a pragmatic programming style,
but unlike The Pragmatic Programmer, this book goes into much greater detail.

411

It covers how to write tight, clean code that is easy to extend and debug. There is
a slight C++/C focus, but the vast majority of the book is applicable to C# or any
other programming language.

The C# Language and Software Architecture
Readers of these books are assumed to be familiar with C# or a similar language;
therefore, their suggested aim is to provide a deeper understanding. Software
Architecture is a term used to describe the design and structure of computer pro-
grams; how the code is broken up into parts and how those parts communicate.

CLR via C#, 3rd Edition (ISBN-13: 978-0735627048) by Jeffrey Richter

The focus of this book isn’t C#; rather, it’s the virtual machine that C# runs on.
Understanding this virtual machine will help greatly when you desire to improve
the speed and efficiency of your C# programs.

Head First Design Patterns (ISBN-13: 978-0596007126) by Eric T Freeman,
Elisabeth Robson, Bert Bates, and Kathy Sierra

The usual recommended book for design patterns is Design Patterns : Elements of
Reusable Object-Oriented Software, but it is a very dry book. Head First Design
Patterns is much more readable and entertaining. Design patterns are small
descriptions of how to write code to solve some common challenges in software
development. It’s worth understanding these patterns to see how other people
are approaching design problems and also to be able to understand what is being
referenced when people are criticizing the overuse of the Singleton pattern or
suggesting the use of a Decorator pattern. The book uses Java to explain the
patterns, but it is quite simple to convert the examples to C#.

Math and Graphics Programming
If you want to expand your knowledge of mathematics and graphics program-
ming, these two books are a good starting point.

3D Math Primer for Graphics and Game Development (ISBN-13:
978-1556229114) by Fletcher Dunn and Ian Parberry

I’ve worked with and visited quite a number of different game development
studios, and it’s quite common to see this book lying on top of somebody’s desk.
The book covers all the mathematics needed to understand how the funda-
mentals of 3D games work. It is more approachable than nearly any other

Appendix A ■ Recommended Reading412

equivalent book, but it is still a high-level math text and requires a lot of work by
the reader to understand everything. It’s also a good reference book with lots of
C++ code, which isn’t hard to convert to C# code. There are plenty of exercises
for the reader as well.

Computer Graphics: Principles and Practice in C (2nd Edition) (ISBN-13: 978-
0201848403) by James D. Foley, Andries van Dam, Steven K. Feiner, and John
F. Hughes

If you wanted to write your own version of OpenGL, this would be the book to
follow. It’s an excellent reference book with a very broad scope, and code
examples are provided in C. It covers principles such as the different ways to
represent color, how monitors work, line drawing algorithms, how to write a
rasterizer, and so on. The principles of computer graphics are unchanging, but
the book is starting to show its age. It has little to say on shaders and modern
graphics hardware, but quite a lot to say on systems that are no longer heavily
used such as PHIGS (an API that OpenGL overtook).

OpenGL
There are two major books that cover OpenGL, and they’re known as the Red
Book and the Orange Book. The red book covers the standard OpenGL library,
and the orange book covers shaders using the OpenGL shading language GLSL.

OpenGL Programming Guide: The Official Guide to Learning OpenGL (ISBN-
13: 978-0321552624) by Dave Shreiner

This is the red book, and it covers all the OpenGL basics, noting which parts of
OpenGL have changed in the latest versions. The examples are in C++, but
nearly all the OpenGL calls are the same in C# and therefore can be copied over.

OpenGL Shading Language 3rd Edition by Randi J. Rost, Bill Licea-Kane, Dan
Ginsburg, John M. Kessenich, Barthold Lichtenbelt, Hugh Malan, and Mike
Weiblen

This is the orange book, and it covers the more modern shader-driven approach
to OpenGL. The book uses GLSL, but once you understand one shading
language, it’s very easy to move to another as they are all quite similar.

OpenGL 413

This page intentionally left blank

INDEX

2D games
display methods, 388
graphics projection, 117--120
intersection

circles, 197--203
rectangles, 203--206

sprites, 21
vectors, 179

3D games
aspect ratio, 21
display methods, 388--392
planes, 193
role-playing games, 405--407
vectors, 179

3D Math Primer for Graphics and Game
Development, 412--413

3dfx Voodoo 1 graphics card, 26
4:3 aspect ratio, 116
4D vectors, 179
16:9 aspect ratio, 116--117

A
abstraction layer, 19--20
Accelerated Graphics Port (AGP), 26
Add Existing Project dialog box, 235
Add Reference dialog box, 92, 231, 237
addition, vector, 184--185
AddSprite function, 167
ADoM, 401
AdvanceFrame method, 351
AGP (Accelerated Graphics Port), 26
AI (artificial intelligence), 399--400
alGenSources function, OpenAL, 250
alGetSourcei function, OpenAL, 253
aligning text, 160--161
alpha blending sprites, 134--135
alutLoadMemoryFromFile utility function,

OpenAL, 251
AMD_gpu_association extension method, 26

animated sprites, 347
AnimatedSprite class, 349
anonymous delegates, 9--10
anonymous type inferences, 13--14
Application static class, 85
Application.Idle event, 86
arccosine function, 191
ArrayList, function of, 6
artificial intelligence (AI), 399--400
ASCII games, 401
aspect ratio, 116--117
Assert class, NUnit, 77
Assertion Failed message, 131
ATI Radeon HD 5970 graphics card, 26
attributes, defined, 74--75
automatic refactoring, 53--54

B
back face culling, 194
background, clearing, 96--98
BadImageFormatException exception, 130
Batch class, 166--168
Batch Draw Method, 169
batching, 165--169
_batchSize member, 166, 168
binary addition operator, 184
binocular cue, 322
Bitmap Font Generator, 145
blend function, 135
books, 411--413

C# language and software architecture, 412
math and graphics programming, 412--413
OpenGL, 413
practice of programming, 411--412

boxing, defined, 8
branches, 39
Browse tab, Add Reference dialog box, 92
Bullet class, 334--335
BulletManager class, 336--339

415

bump maps, 24
button class, 297, 299

C
C# language

2.0
anonymous delegates, 9--10
generics, 5--9

3.0, 10--14
anonymous types, 13--14
collection initializers, 12--13
lambda functions, 12
LINQ, 10--12
local variable type inference, 13--14
object initializers, 12

4.0, 14--16
dynamic objects, 14--15
named arguments, 15--16
optional parameters, 15--16

books about, 412
C++

compared to C#, 3
DRY principle, 36--37

Catmull, Edwin, 364
Catmull-Rom spline, 364--366
central loop, 81
central processing units (CPUs), defined, 3--4
Cg language, 27
chain reaction rule, 397
ChangeFocus method, 306
ChangeState class, 110
CharacterData class, 149--154
CharacterSprite class, 151--152
CheckOutOfBounds function, 338
CIL (common intermediate language), 4
CircleIntersectionState class, 197
circle-point intersection test, 190
circles, 197--203
Civilization game, 81
class keyword, 6
Class Library, 50
clearing background, 96--98
ClientSize value

aspect ratio, 116--117
full-screen mode, 115--116

closures, defined, 10
CLR. See Common Language Runtime (CLR)
CLR via C#, 3rd Edition, 412
Code Complete Second Edition: A Practical

Handbook of Software Construction,
411--412

collection initializers, 12--13
collision processing code, 333

color modulating sprites, 136
coloring triangles, 101--103
common intermediate language (CIL), 4
Common Language Runtime (CLR)

advantages of, 4--5
defined, 3

compilers, 4
Computer Graphics: Principles and Practice in C

(2nd Edition), 413
console applications, 394--395
console cursor, 401
Construct method, 210
control sticks, 262--264, 320
controllers, wrapping, 259--276
copy constructor, 217
cosine function

2D intersection, 199
angles, 174--175

.cpp files, 36
CPUs (central processing units), defined, 3--4
Crawl, 401
CreateText function, 153, 160, 162--163
cross-product operation, 194--196
.cs files, 36
C-style graphics library, 21
CUDA language, 28
_currentFrame variable, AnimatedSprite

class, 349
_currentFrameTime variable, AnimatedSprite

class, 349
CVS source control system, 39

D
damage, side-scrolling shooting game, 343--352
death flag, PlayerCharacter class, 332
debug mode, 227
default constructor, 217
default OpenGL scene, 99
degrees, angle, 174
delegates

C# functions, 85
defined, 9

delta time (dt), 89
determinate, matrix, 221
DevIL library (DevIl), 125--131
DicoverSoundChannels function, 253
Direct3D, 19
direction vector, 321
DirectX, 19--20, 27
display methods

2D games, 388
3D games, 388--392

dog legs, 406--407

Index416

Don’t Repeat Yourself (DRY) principle,
32--37, 327

Doppler Effect, 247--248
dot product operation, 191--194
D-pad, 269, 271--272
Draw function, 167
DrawGraph function, 174
DrawSprite function, 139
DrawSpriteState class, 121--122
DrawText method, 151, 155
DRY (Don’t Repeat Yourself) principle,

32--37, 327
dt (delta time), 89
duck typing, defined, 14--15
Dwarf Fortress, 401
dynamic keyword, 14--15
dynamic objects, 14--15
dynamic tessellation, 23

E
Ease In Circular tween function, 208
Ease In Exponential tween function, 208
Ease Out Circular tween function, 208
Ease Out Exponential tween function, 208
EffectsManager class, 353--354
elapsedTime value, 156
enemies, side-scrolling shooting game

adding, 323--334
attacks by, 375--380
managing, 353--359
movement of, 363--375

enemy bounding box, 328
Enemy class, 330, 333
EnemyDef class, Engine project, 359
EnemyManager class, 357--361
Enemy.OnCollision method, 333
Enemy.Render method, 327
engine, game, 229--288

extending, 233
input, 259--288

keyboard support, 284--288
mouse support, 276--284
wrapping game controllers, 259--276

multiple textures, 242--246
project, 229--233
sound support, 246--259

creating sound files, 246--247
developing SoundManager, 247--259

using in project, 233--242
Engine project, 291, 347
EngineTest project, 236
Entity class, 329--330
Equals function, 182

EventHandler method, 299
Exit option

start menu, 294
vertical menu, 303

explosions, side-scrolling shooting game
adding, 343--352
managing, 353--359

extending game engine, 233

F
fast game loop, 82--91
FastLoop class, 84
feasibility tests, 386
Find and Replace tool, Visual Studio, 54
Finished flag, AnimatedSprite class, 349--350
Fire method, PlayerCharacter class, 340
first-person shooter games, 397--399
fixed function pipeline, 22
Flash tween functions, 207
floats, defined, 9
Font class, 151, 153, 160, 294
fonts

data, 148--154
CharacterData class, 151--154
parsing font data, 149--150

textures, 145--148, 296
form size, 114--116
Form.cs code, 294
4:3 aspect ratio, 116
4D vectors, 179
fps (frames per second), 81, 154--159
fps counter, 154--165
FPSTestState project, 154--165
frame buffer stage, fixed function pipeline, 23
frames per second (fps), 81, 154--159
FramesPerSecond class, 157
_framesX member variable, AnimatedSprite

class, 349
_framesY member variable, AnimatedSprite

class, 349
_frequency variable, 173
full screen mode, 94--96
full-screen mode, 114--116

G
game creation, 385--410

display methods, 388--392
2D games, 388
3D games, 388--392

framework trap, 32
project management, 385--388
types of games, 392--410

Index 417

first-person shooter games, 397--399
platform games, 407--410
puzzle games, 394--397
role-playing games, 401--407
strategy games, 399--400
text games, 392--394

game engine, 229--288
extending, 233
input, 259--288

keyboard support, 284--288
mouse support, 276--284
wrapping game controllers, 259--276

multiple textures, 242--246
project, 229--233
sound support, 246--259

creating sound files, 246--247
developing SoundManager, 247--259

using in project, 233--242
game loop, 81--103

fast game loop
adding high-precision timing, 89--91
overview, 82--89

graphics
full screen mode, 94--96
overview, 91--94
rendering, 96--103

overview, 81--82
game over state, 308, 311--314
game states

demo, 112--114
overview, 106--112
side-scrolling shooting game

game over state, 311--314
inner game state, 308--311
start menu state, 294--308

game structure, 105--144
game objects, 105--106
projections, 114--120

2D graphics, 117--120
aspect ratio, 116--117
form size and OpenGL viewport size,

114--116
projection matrix, 117

sprites, 120--144
alpha blending, 134--135
color modulating, 136
managing textures with DevIl, 125--131
positioning, 124--125
renderer class, 136--143
Sprite class, 143--144
textured, 131--134

GameLoop function, 84, 97
gamepads, 259
gameTime parameter, 362

garbage collection, 227
generate tools, Visual Studio, 56
generics, 5--9
geometry shader, 23, 27
GetAsyncKeyState function, 288
GetBoundingBox function, 327
GetElapsedTime function, 91
GetFrameCount method, 351
GetHashCode function, 183
GetIndexFromFrame method, 350
GetNextFreeChannel function, 253
GetPosition method, 178
Git source control system, 39
GL_LINE_LOOP argument, 326
GL_ONE_MINUS_SRC_ALPHA argument, 135
GL_PROJECTION value, 118
GL_SRC_ALPHA argument, 135
GL_TRIANGLE_STRIP argument, 100--101
GL_TRIANGLES argument, 100--101, 168
glBegin command, 98
glBlendFunc command, 135
glClear command, 202
glDrawArrays method, 165--169

modifying renderer, 168--169
profiling batch draw method, 169

glEnd command, 98
glLoadIdentity function, 118
glOrtho function, 118
glRotated function, 102
GLSL (Open GL Shading Language), 27
Glu.gluLookAt call, 391
gluPerspective function, 389
glVertex command, 98
glVertexPointer function, 167--168
GPUs (graphics processing units), 25
graphics

full screen mode, 94--96
overview, 91--94
rendering, 96--103

clearing background, 96--98
triangles, 99--103
vertices, 98--99

graphics cards
overview, 25--26
shaders, 27--28

graphics processing units (GPUs), 25
graphics programming, books about, 412--413
graphs, plotting, 171--176
GUI program, NUnit, 75

H
Half-Life game, 81
HandleInput function, 304--305

Index418

hashes, defined, 183
HasPlayerDied function, Level class, 332
Head First Design Patterns, 412
height maps, 399
Hejlsberg, Anders, 3
High Level Shading Language (HLSL), 27
high-level game flow, 290
high-level plans, 386
high-precision timing, 89--91
HLSL (High Level Shading Language), 27

I
identity matrix, 215--217
idle time, 85
IGameObject interface, 106--107
IL (intermediate language), 227
ilDeleteImages, 128
ilLoadImage, 128
iluFlipImage, 128
immediate mode, 98
Implement Interface Explicitly option,

IGameObject interface, 108
Independent Game Source, 388
Inform Programming language, 394
InitializeGameData function, 309, 318
InitializeMenu function, 303, 307
InitializeSound method, 252
inner game, side-scrolling shooting game,

314--380
damage, 343--352
enemies

adding, 323--334
attacks by, 375--380
managing, 353--359
movement of, 363--375

explosions, 343--359
faking movement with ScrollingBackground,

320--323
inner game state, 308--311
level definitions, 359--363
moving PlayerCharacter, 315--320
weapons, adding, 334--343

InnerGameState class, 315
input, game engine, 259--288

keyboard support, 284--288
mouse support, 276--284
wrapping game controllers, 259--276

Input class, 201--202
input stage, fixed function pipeline, 22
installation wizard, Visual Studio Express, 50
installing SVN, 60
interactive fiction games, 392--394
intermediate language (IL), 227

internal function, 233
InterOperation (InterOp), 86
intersect function, 203
IntersectsWith method, 333
IntializeFonts method, 296
IntializeTextures function, 296
inverse matrices, 221--222
IsChannelPlaying function, 253
IsDead method, Enemy class, 357
IsKeyHeld function, 288, 320
IsKeyPressed function, 288
IsSoundPlaying method, 246

J
joystick subsystem, SDL, 261

K
Keep It Simple Stupid (KISS) principle, 32
Keyboard constructor, 288
keyboard controls, side-scrolling shooting

game, 320
keyboard shortcuts, Visual Studio, 61
keyboard support, 284--288
KeyDown events, 288
KeyPressEvent function, 288
KeyState subclass, 288
KeyUp events, 288
KISS (Keep It Simple Stupid) principle, 32

L
lambda functions, 12
Language-Integrated Query (LINQ), 10--12
LeftPressed variable, 281
length operation, 181--182
LengthSquared operation, 182
Level class, 315, 317, 322
level definitions, side-scrolling shooting game,

359--363
LevelDescription class, 308
line segments, 398
Linear tween function, 208
LINQ (Language-Integrated Query), 10--12
LoadSound function, 251
local multiplayer mode, 383
local variable type inference, 13--14
LoopCallback delegate, 85
Looping flag, AnimatedSprite class, 349

M
machine code, defined, 4
magnitude, vector, 179

Index 419

Managed DirectX libraries, 20
master volume control, 258
mathematic programming, 171--228

2D intersection, 197--206
circles, 197--203
rectangles, 203--206

books about, 412--413
matrices, 213

defined, 214--215
identity, 215--217
inverse, 221--222
matrix operations on sprites, 222--225
matrix-matrix multiplication, 217--218
modifying sprites to use, 225--226
optimization, 226--227
rotation, 220--221
translating and scaling, 218--220
vector-matrix multiplication, 217--218

trigonometric functions, 171--179
plotting graphs, 171--176
special effects, 176--179

tweens
overview, 206--208
Tween class, 208--211
using, 211--213

vectors, 179--197
addition, 184--185
cross-product operation, 194--196
defined, 179
dot product operation, 191--194
equality, 182--183
length operation, 181--182
multiplication, 185--187
normal, 187--191
structure, 196--197
subtraction, 185--186

Math.Max function, PlayerCharacter class, 343
Math.NextDouble method, 379--380
matrices, 213--228

defined, 214--215
identity, 215--217
inverse, 221--222
matrix operations on sprites, 222--225
matrix-matrix multiplication, 217--218
modifying sprites to use, 225--226
optimization, 226--227
projections, 117
rotation, 220--221
translating and scaling, 218--220
vector-matrix multiplication, 217--218

matrix-matrix multiplication, 217--218
MatrixTestState, 222
Maximized window state, 96
_maxWidth value, 164

.MD2 files, 392
MeasureFont method, 161
MeasureText method, 160
measuring text, 161--162
memory addresses, 6--7
Menu class, 300
Mercurial source control system, 39--40
Microsoft Professional Developers Conference, 3
MiddlePressed variable, 281
Minimized window state, 96
modern methods, 31--45

DRY principle, 32--37
game programming traps, 32
KISS principle, 32
source control, 37--40
unit testing, 40--44

Mono, 3
Mouse class, 276--278
mouse support, 276--284
Move method, 318
multiple textures, 242--246
multiply operator, 192

N
named arguments, 15--16
.NET tab, Add Reference dialog box, 237
Nethack, 401
normal mapping, 188
normal vectors (unit vectors), 187--191
Normal window state, forms, 96
_numberOfFrames variable, 156
NUnit, 71--79

Assert class, 77
example project, 76--79
GUI program, 75
Player class, 77
running tests, 44--45, 75--76
using with projects, 72--75

Nvidia PhysX library, 27--28

O
object class, 6
object initializers, 12
objects, game, 105--106
OnApplicationEnterIdle handler, 86
OnClientSizeChanged method, 115
OnCollision class, 333
OnCollision method, Enemy class, 345
OnDestroyed function, Enemy class, 346
OnDown function, 305
OnGainFocus method, 299--300
OnKeyDown events, 284
OnKeyUp events, 284

Index420

online communities, 388
OnLoseFocus method, 299--300
OnUp function, 305
Open Audio Library (OpenAL), 28

alGenSources function, 250
alGetSourcei function, 253
altering volume, 257
alutLoadMemoryFromFile utility function, 251
developing SoundManager, 247

Open GL Shading Language (GLSL), 27
Open Graphics Library (OpenGL), 19--30

architecture, 21--24
pipeline, 22--24
vertices, 21

books about, 413
graphics cards

overview, 25--26
shaders, 27--28

OpenGL ES, 25
Tao Framework, 28--30
viewport size, 114--116
WebGL, 25

OpenAL. See Open Audio Library (OpenAL)
OpenGL ES, 25
OpenGL Programming Guide: The Official Guide

to Learning OpenGL, 413
OpenGL Shading Language 3rd Edition, 413
optimization matrices, 226--227
optional parameters, 15--16
orthographic projection matrix

defined, 117
setting up, 118--120

oscillating curves, 171
out of bounds check, EnemyManager, 357

P
page value, 149
parallax cue, 323
path, enemy movement, 364--365
Path class, 368
PCI Express card, 26
PeekMessage function, 86, 88--89
Perforce source control system, 39
PersistantGameData class, 308, 381
PersistentGameData class, 309, 311
perspective projection, 117
Pettersson, Tomas, 247
pipeline, 21--24
pixel processing stage, 23
pixel shader, 23--24, 27
planes, defined, 192
platform games, 407--410
Player class, NUnit, 77

PlayerCharacter class, 315--320, 332, 340
Player.OnCollision method, 333
PlaySound method, 253--255
point sprites, 23
PollKeyPress function, 288
Pong, 105
position getters, 335--336
position setters, 335--336
positions, 179--180
practice of programming, books about, 411--412
Pragmatic Programmer, The: From Journeyman

to Master, 411
pragmatic programming, 31--44

DRY principle, 32--37
game programming traps, 32
KISS principle, 32
source control, 37--40
unit testing, 40--44

PreciseTimer class, 90--91
primitive setup stage, 23
prioritizing phase, 387
private function, 233
profiling

batch draw method, 169
rendering text, 159

programmable pipeline, 24
project management, 385--388
projection transformation, 21
projections, 114--120

2D graphics, 117--120
aspect ratio, 116--117
form size and OpenGL viewport size, 114--116
matrix, 117

protected function, core engine classes, 233
puzzle games, 394--397

Q
quads, 21, 120--124, 132--134
QueryPerformanceCounter function, 90
QueryPerformanceFrequency function, 90

R
radians, angle, 174
Random class, 379
rasterization stage, fixed function pipeline, 23
Rays, 398
real-time games, 399
RectangleF class, 327, 333
rectangles, 203--206
Refactor menu, Visual Studio, 57
refactoring

automatic, 53--54
unit testing, 44

Index 421

reference types
defined, 6
memory, 6--8

References folder, Solution Explorer, 237
release mode, 227
RemoveDeadBullets function, 338
renaming objects, 54--56
Render() method, IGameObject interface, 108
Render function, 174, 266, 268, 301, 311, 336, 339
render functions, defined, 106
render loop, 297
Renderer class, 120, 136--143, 244--245
rendering graphics, 96--103

clearing background, 96--98
triangles

coloring and spinning, 101--103
overview, 99--101

vertices, 98--99
rendering text, 145--169

calculating fps, 155--158
font data, 148--154

CharacterData class, 151--154
parsing font data, 149--150

font textures, 145--148
glDrawArrays, 165--169

modifying renderer, 168--169
profiling batch draw method, 169

profiling, 159
refining text class, 159--165
V-Sync and fps, 158--159

repository, SVN
adding to, 64--67
creating, 60--63

RestartShootCountDown method, 379
reverting, source control, 37
RightPressed variable, 281
Roguelike games, 401--402
role-playing games, 401--407

3D, 405--407
Roguelike, 401--402
tile-based, 402--405

Rom, Raphael, 364
rotation matrices, 220--221
RPG elements, 382

S
_sampleSize variable, 173
scaling matrices, 218--220
score, displaying with Text class, 380
ScrollingBackground class, 320--323
SetAnimation method, 351
SetColor function, 160
SetPosition method, Text class, 177--178

setup, 49--80
NUnit, 71--79

example project, 76--79
running tests, 75--76
using with projects, 72--75

SVN, 60--69
adding to repository, 64--67
availability, 60
creating repository, 60--63
extending Hello World, 68
history, 67--68
installation, 60

Tao framework, 69--71
Visual Studio Express, 49--60

automatic refactoring, 53--54
code generation, 53--54
creating functions, 56--57
Hello World, 50--53
renaming, 54--56
separating chunks of code, 57--60
shortcuts, 60

Setup2DGraphics function, 117--118, 389
Setup3DGraphics function, 389
SetupPointers function, 167
shaders, 23, 27--28
Shoot method, 338
_shootCountDown timer, 380
shortcuts, Visual Studio Express, 60
side-scrolling shooting game, 289--383

first implementation pass, 290--314
game over state, 311--314
inner game state, 308--311
start menu state, 294--308

inner game, 314--380
damage, 343--352
enemies, 323--334, 353--359, 363--380
explosions, 343--359
faking movement with

ScrollingBackground, 320--323
level definitions, 359--363
moving PlayerCharacter, 315--320
weapons, adding, 334--343

overview, 289--290
suggestions for, 380--383

SIMD (Single Instruction, Multiple Data), 227
SimpleOpenGLControl control, 92, 95, 238
sine function

2D intersection, 199
angles, 174--175

Single Instruction, Multiple Data (SIMD), 227
16:9 aspect ratio, 116--117
Size value, full-screen mode, 115--116
skeleton method, 333
SlimDX, 21

Index422

software architecture, books about, 412
Software Development for Games mailing

list, 105
Solution Explorer, 51
Solution Explorer window, Visual Studio, 92
sound support, 246--259

creating sound files, 246--247
developing SoundManager, 247--259
side-scrolling shooting game, 381

SoundManager class, 247--259
SoundSource structure, 251
source control, 37--40
source repository, 37
Spacing member, 301
special effects, trigonometric functions for,

176--179
Speed flag, AnimatedSprite class, 349
Speed member, scrolling class, 322
sphere-point intersection test, 190--191
spinning triangles, 101--103
splash screens, 107, 109--110, 112--114
spline class, 368
splines, 364--365
Sprite class

adding enemies in side-scrolling shooting game,
323--326

Engine library, 329
sprites, 120--144

alpha blending, 134--135
altering position with tweens, 213
color modulating, 136
layout, 121
managing textures with DevIl, 125--131
matrix operations, 222--225
modifying to use matrices, 225--226
positioning, 124--125
renderer class and, 136--143
Sprite class, 143--144
textured, 131--134

starfield textures, 320
Start Game option

start menu, 294
vertical menu, 303

start menu state, side-scrolling shooting game,
294--308

states, game
demo, 112--114
overview, 106--112
side-scrolling shooting game

game over state, 311--314
inner game state, 308--311
start menu state, 294--308

StateSystem class, 110--111
static typing, defined, 14

StopPlaying method, 246
strategy games, 399--400
struct keyword, 6
[StructLayout(LayoutKind.Sequential)]

attribute, 88
Subversion (SVN), 60--69

adding to repository, 64--67
availability, 60
creating repository, 60--63
extending Hello World, 68
history, 67--68
installation, 60

Subversion source control system, 39
SVN context menu, 62
SVN Show Log, 67
System Shock, 406
System.Drawing library, 327
[System.Security.

SuppressUnmanagedCodeSecurity]
attribute, 88

T
Tao framework, 28--30, 69--71, 259
Tao.Cg library, 28--29
Tao.DevIl library, 28--29, 126
Tao.FFmpeg library, 28, 30
Tao.FreeGlut library, 28--29
Tao.FreeType library, 28, 30
Tao.Glfw library, 28--29
Tao.Lua library, 28, 30
Tao.Ode library, 28--29
Tao.OpenAl library, 28--29
Tao.OpenGl library, 28--29, 122
Tao.PhysFs library, 28--29
Tao.Platform.Windows library, 28--29
Tao.Sdl library, 28--29
tearing, 158
test driven development, 44
TestEngine project, 236
TestSpriteClassState class, 143--144
Tetris, 81, 395--397
text

aligning, 160--161
changing position, 177
measuring, 161--162
rendering, 145--169

calculating fps, 155--158
font data, 148--154
font textures, 145--148
glDrawArrays, 165--169
profiling, 159
refining text class, 159--165
V-Sync and fps, 158--159

wrapping, 164

Index 423

Text class, 151--152, 157, 159--165, 294, 380
text games, 392--394
TextTestState project, 145--154
textured sprites, 131--134
TextureManger class, 126--129, 131--132, 317
textures

game engine, 242--246
managing with DevIl, 125--131

3D games
display methods, 388--392
planes, 193
role-playing games, 405--407
vectors, 179
vertices, 21

3D Math Primer for Graphics and Game
Development, 412--413

3dfx Voodoo 1 graphics card, 26
TIF files, 128--129
tile-based role-playing games, 402--405
Title Screen mock-up, 295
TitleMenuState, 109
to-do lists, 387
Toolbox Items dialog, 94
TortoiseMerge program, 69
TortoiseSVN, 60
ToString method, 157, 196
transform and lighting stage, 22
translating matrices, 218--220
triangles

coloring and spinning, 101--103
creating quads with, 120--124
overview, 99--101

triggers, 269--271
trigonometric functions, 171--179

plotting graphs, 171--176
special effects, 176--179

turn-based games, 399
TweenFunction delegate, 210
tweens, 206--213

overview, 206--208
Tween class, 208--211
using, 211--213

2D games
display methods, 388
graphics projection, 117--120
intersection

circles, 197--203
rectangles, 203--206

sprites, 21
vectors, 179

U
Unable to load DLL ‘xxx.dll’: The specified

module could not be found exception, 130

unboxing, defined, 8
unified shader, 27
unit circle, 189
unit testing, 40--44
unit vectors (normal vectors), 187--191
_upcomingEnemies list, 361--362
update functions, 105, 311
update loop, 57--58, 207, 346, 361
Update method

Animated Sprite class, 351
collision processing code, 333
Level class, 341
PlayerCharacter class, 343
SDL joystick system, 264
Sprite class, 336
tweens, 210

UpdateCollisions function, Level class, 343
UpdateEnemySpawns method, EnemyManager

class, 361
UpdateInput function, 242, 278, 341
UpdateMouseButtons function, 281
UpdatePlayerCollision method, 377
UpdateUVs method, 350--351
using statement, 87
using Tao.OpenGl; statement, 97
U,V coordinates, 131--134
UV scrolling, 320
UV settings, 147--148

V
value types, 6--8
var keyword, 13
vectors, 103, 179--197

addition, 184--185
cross-product operation, 194--196
defined, 179
dot product operation, 191--194
equality, 182--183
function of, 138
length operation, 181--182
multiplication, 185--187
normal, 187--191
structure, 196--197
subtraction, 185--186

vertex shader, 23, 27
vertical synchronization (V-Sync), 158--159
VerticalMenu class, 300--301, 306
vertices, 21, 98--99
viewing

file properties, 128--129
project properties, 130

Virtual Reality Modeling Language (VRML), 25
Visual Source Safe source control system, 39

Index424

Visual Studio
adding classes, 72
Find and Replace tool, 54
generate tools, 56
keyboard shortcuts, 61
naming classes, 73
Refactor menu, 57
solution explorer window, 92

Visual Studio Express, 49--60
automatic refactoring, 53--54
code generation, 53--54
creating functions, 56--57
Hello World, 50--53
renaming, 54--56
separating chunks of code, 57--60
shortcuts, 60

volume, altering in OpenAL, 257
VRML (Virtual Reality Modeling Language), 25
V-Sync (vertical synchronization), 158--159

W
wave form, 171
WaveFunction delegate, 174
weapons, side-scrolling shooting game, 334--343

WebGL, 25
Windows Forms Application, 50--51
WindowStates, 96
wrapping

game controllers, 259--276
text, 164

X
xadvance parameter, 149
Xbox360 controller, 260--261
_xLength variable, 173
XNA game creation library, 20
xoffset parameter, 148
_xPosition variable, 173

Y
_yLength variable, 173
yoffset parameter, 148
_yPosition variable, 173

Z
zero vector, 196

Index 425

This page intentionally left blank

www.courseptr.com

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and
conditions. If, upon reading the following license agreement and notice of limited warranty,
you cannot agree to the terms and conditions set forth, return the unused book with
unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user and
to a backup disc. You may not reproduce, make copies, or distribute copies or rent or lease
the software in whole or in part, except with written permission of the copyright holder(s).
You may transfer the enclosed disc only together with this license, and only if you destroy all
other copies of the software and the transferee agrees to the terms of the license. You may not
decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course Technology to be free of physical defects in mate-
rials and workmanship for a period of sixty (60) days from end user’s purchase of the book/
disc combination. During the sixty-day term of the limited warranty, Course Technology will
provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL
COURSE TECHNOLOGY OR THE AUTHOR BE LIABLE FOR ANY OTHER
DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE
FUNCTIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM,
DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPE-
CIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF
COURSE TECHNOLOGY AND/OR THE AUTHOR HAS PREVIOUSLY BEEN
NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
COURSE TECHNOLOGY AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND
ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR
PURPOSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR
EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY
TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Course Technology regarding use of the software.

	Contents
	Introduction
	PART I: BACKGROUND
	Chapter 1 The History of C#
	C# Basics
	Summary

	Chapter 2 Introducing OpenGL
	Architecture of OpenGL
	OpenGL Is Changing
	OpenGL and the Graphics Card
	The Tao Framework
	Summary

	Chapter 3 Modern Methods
	Pragmatic Programming
	Summary

	PART II: IMPLEMENTATION
	Chapter 4 Setup
	Introducing Visual Studio Express—A Free IDE for C#
	Subversion, an Easy Source Control Solution
	Tao
	NUnit
	Summary

	Chapter 5 The Game Loop and Graphics
	How Do Games Work?
	Implementing a Fast Game Loop in C#
	Graphics
	Summary

	Chapter 6 Game Structure
	The Basic Pattern of a Game Object
	Handling Game State
	Game State Demo
	Setting the Scene with Projections
	Sprites

	Chapter 7 Rendering Text
	Font Textures
	Font Data
	Rendering Text
	Refining the Text Class
	Faster Rendering with glDrawArrays
	Summary

	Chapter 8 Game Math
	Trigonometric Functions
	Vectors
	Two-Dimensional Intersection
	Tweens
	Matrices

	Chapter 9 Making the Game Engine
	A New Game Engine Project
	Extending the Game Engine
	Adding Sound Support
	Improving Input

	Chapter 10 A Simple Side-Scrolling Shooting Game
	A Simple Game
	The First Implementation Pass
	Developing the Inner Game
	Continuing Iterations

	Chapter 11 Creating Your Own Game
	Project Management
	Display Methods
	Types of Games
	Final Words

	Appendix A: Recommended Reading
	The Practice of Programming
	The C# Language and Software Architecture
	Math and Graphics Programming
	OpenGL

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

