
Studies in Big Data 57

M. Arif Wani
Farooq Ahmad Bhat
Saduf Afzal
Asif Iqbal Khan

Advances
in Deep
Learning

Studies in Big Data

Volume 57

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

The series “Studies in Big Data” (SBD) publishes new developments and advances
in the various areas of Big Data—quickly and with a high quality. The intent is to
cover the theory, research, development, and applications of Big Data, as embedded
in the fields of engineering, computer science, physics, economics and life sciences.
The books of the series refer to the analysis and understanding of large, complex,
and/or distributed data sets generated from recent digital sources coming from
sensors or other physical instruments as well as simulations, crowd sourcing, social
networks or other internet transactions, such as emails or video click streams and
other. The series contains monographs, lecture notes and edited volumes in Big
Data spanning the areas of computational intelligence including neural networks,
evolutionary computation, soft computing, fuzzy systems, as well as artificial
intelligence, data mining, modern statistics and Operations research, as well as
self-organizing systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

** Indexing: The books of this series are submitted to ISI Web of Science,
DBLP, Ulrichs, MathSciNet, Current Mathematical Publications, Mathematical
Reviews, Zentralblatt Math: MetaPress and Springerlink.

More information about this series at http://www.springer.com/series/11970

http://www.springer.com/series/11970

M. Arif Wani • Farooq Ahmad Bhat •

Saduf Afzal • Asif Iqbal Khan

Advances in Deep Learning

123

M. Arif Wani
Department of Computer Sciences
University of Kashmir
Srinagar, Jammu and Kashmir, India

Farooq Ahmad Bhat
Education Department
Government of Jammu and Kashmir
Kashmir, Jammu and Kashmir, India

Saduf Afzal
Islamic University of Science
and Technology
Kashmir, Jammu and Kashmir, India

Asif Iqbal Khan
Department of Computer Sciences
University of Kashmir
Srinagar, Jammu and Kashmir, India

ISSN 2197-6503 ISSN 2197-6511 (electronic)
Studies in Big Data
ISBN 978-981-13-6793-9 ISBN 978-981-13-6794-6 (eBook)
https://doi.org/10.1007/978-981-13-6794-6

Library of Congress Control Number: 2019932671

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-6794-6

Preface

This book discusses the state-of-the-art deep learning models used by researchers
recently. Various deep architectures and their components are discussed in detail.
Algorithms that are used to train deep architectures with fast convergence rate are
illustrated with applications. Various fine-tuning algorithms are discussed for opti-
mizing the deep models. These deep architectures not only are capable of learning
complex tasks but can even outperform humans in some dedicated applications.

Despite the remarkable advances in this area, training deep architectures with a
huge number of hyper-parameters is an intricate and ill-posed optimization prob-
lem. Various challenges are outlined at the end of each chapter. Another issue with
deep architectures is that learning becomes computationally intensive when large
volumes of data are used for training. The book describes a transfer learning
approach for faster training of deep models. The use of this approach is demon-
strated in fingerprint datasets.

The book is organized into eight chapters:
Chapter 1 starts with an introduction to machine learning followed by funda-

mental limitations of traditional machine learning methods. It introduces deep
networks and then briefly discusses why to use deep learning and how deep
learning works.

Chapter 2 of the book is dedicated to one of the most successful deep learning
techniques known as convolutional neural networks (CNNs). The purpose of this
chapter is to give its readers an in-depth but easy and uncomplicated explanation of
various components of convolutional neural network architectures.

Chapter 3 discusses the training and learning process of deep networks. The aim
of this chapter is to provide a simple and intuitive explanation of the backpropa-
gation algorithm for a deep learning network. The training process has been
explained step by step with easy and straightforward explanations.

Chapter 4 focuses on various deep learning architectures that are based on CNN.
It introduces a reader to block diagrams of these architectures. It discusses how
deep learning architectures have evolved while addressing the limitations of pre-
vious deep learning networks.

v

Chapter 5 presents various unsupervised deep learning architectures. The basics
of architectures and associated algorithms falling under the unsupervised category
are outlined.

Chapter 6 discusses the application of supervised deep learning architecture for
face recognition problem. A comparison of the performance of supervised deep
learning architecture with traditional face recognition methods is provided in this
chapter.

Chapter 7 focuses on the application of convolutional neural networks (CNNs)
for fingerprint recognition. This chapter extensively explains automatic fingerprint
recognition with complete details of the CNN architecture and methods used to
optimize and enhance the performance. In addition, a comparative analysis of deep
learning and non-deep learning methods is presented to show the performance
difference.

Chapter 8 explains how to apply the unsupervised deep networks to handwritten
digit classification problem. It explains how to build a deep learning model in two
steps, where unsupervised training is performed during the first step and supervised
fine-tuning is carried out during the second step.

Srinagar, India M. Arif Wani
Farooq Ahmad Bhat

Saduf Afzal
Asif Iqbal Khan

vi Preface

Contents

1 Introduction to Deep Learning . 1
1.1 Introduction . 1
1.2 Shallow Learning . 2
1.3 Deep Learning . 2
1.4 Why to Use Deep Learning . 6
1.5 How Deep Learning Works . 8
1.6 Deep Learning Challenges . 9
Bibliography . 10

2 Basics of Supervised Deep Learning . 13
2.1 Introduction . 13
2.2 Convolutional Neural Network (ConvNet/CNN) 13
2.3 Evolution of Convolutional Neural Network Models 14
2.4 Convolution Operation . 18
2.5 Architecture of CNN. 19

2.5.1 Convolution Layer . 20
2.5.2 Activation Function (ReLU) . 22
2.5.3 Pooling Layer . 25
2.5.4 Fully Connected Layer . 26
2.5.5 Dropout . 27

2.6 Challenges and Future Research Direction 28
Bibliography . 28

3 Training Supervised Deep Learning Networks 31
3.1 Introduction . 31
3.2 Training Convolution Neural Networks 31
3.3 Loss Functions and Softmax Classifier . 39

3.3.1 Mean Squared Error (L2) Loss . 39
3.3.2 Cross-Entropy Loss . 40
3.3.3 Softmax Classifier . 40

vii

3.4 Gradient Descent-Based Optimization Techniques 41
3.4.1 Gradient Descent Variants . 41
3.4.2 Improving Gradient Descent for Faster Convergence 43

3.5 Challenges in Training Deep Networks 45
3.5.1 Vanishing Gradient . 45
3.5.2 Training Data Size . 47
3.5.3 Overfitting and Underfitting . 47
3.5.4 High-Performance Hardware . 49

3.6 Weight Initialization Techniques . 49
3.6.1 Initialize All Weights to 0 . 50
3.6.2 Random Initialization . 50
3.6.3 Random Weights from Probability Distribution 50
3.6.4 Transfer Learning . 51

3.7 Challenges and Future Research Direction 51
Bibliography . 52

4 Supervised Deep Learning Architectures . 53
4.1 Introduction . 53
4.2 LeNet-5 . 53
4.3 AlexNet . 55
4.4 ZFNet . 58
4.5 VGGNet . 60
4.6 GoogleNet . 63
4.7 ResNet . 66
4.8 Densely Connected Convolutional Network (DenseNet) 67
4.9 Capsule Network . 71
4.10 Challenges and Future Research Direction 75
Bibliography . 75

5 Unsupervised Deep Learning Architectures 77
5.1 Introduction . 77
5.2 Restricted Boltzmann Machine (RBM) . 77

5.2.1 Variants of Restricted Boltzmann Machine 80
5.3 Deep Belief Network . 81

5.3.1 Variants of Deep Belief Network 83
5.4 Autoencoders . 84

5.4.1 Variations of Auto Encoders . 86
5.5 Deep Autoencoders . 88
5.6 Generative Adversarial Networks . 91
5.7 Challenges and Future Research Direction 93
Bibliography . 93

6 Supervised Deep Learning in Face Recognition 95
6.1 Introduction . 95

viii Contents

6.2 Deep Learning Architectures for Face Recognition 95
6.2.1 VGG-Face Architecture . 95
6.2.2 Modified VGG-Face Architecture 96

6.3 Performance Comparison of Deep Learning Models
for Face Recognition . 100
6.3.1 Performance Comparison with Variation in Facial

Expression . 103
6.3.2 Performance Comparison on Images with Variation

in Illumination Conditions . 104
6.3.3 Performance Comparison with Variation in Poses 106

6.4 Challenges and Future Research Direction 109
Bibliography . 110

7 Supervised Deep Learning in Fingerprint Recognition 111
7.1 Introduction . 111
7.2 Fingerprint Features . 111
7.3 Automatic Fingerprint Identification System (AFIS) 114

7.3.1 Feature Extraction Stage . 114
7.3.2 Minutia Matching Stage . 115

7.4 Deep Learning Architectures for Fingerprint Recognition 116
7.4.1 Deep Learning for Fingerprint Segmentation 116
7.4.2 Deep Learning for Fingerprint Classification 123
7.4.3 Model Improvement Using Transfer Learning 127

7.5 Challenges and Future Research Direction 131
Bibliography . 132

8 Unsupervised Deep Learning in Character Recognition 133
8.1 Introduction . 133
8.2 Datasets of Handwritten Digits . 133
8.3 Deep Learning Architectures for Character Recognition 136

8.3.1 Unsupervised Pretraining . 136
8.3.2 Supervised Fine Tuning . 138

8.4 Performance Comparison of Deep Learning Architectures 145
8.5 Challenges and Future Research Direction 149
Bibliography . 149

Contents ix

About the Authors

Prof. M. Arif Wani completed his M.Tech. in Computer Technology at the Indian
Institute of Technology, Delhi and his Ph.D. in Computer Vision at Cardiff
University, UK. Currently, he is a Professor at the University of Kashmir, having
previously served as a Professor at California State University Bakersfield. His
main research interests are in gene expression datasets, face recognition
techniques/algorithms, artificial neural networks and deep architectures. He has
published many papers in reputed journals and conferences in these areas. He was
honored with The International Technology Institute Award in 2002 by the
International Technology Institute, California, USA. He is a member of many
academic and professional bodies, e.g. the Indian Society for Technical Education,
Computer Society of India, IEEE USA and Optical Society of America.

Dr. Farooq Ahmad Bhat completed his M.Phil. and Ph.D. in Computer Science
at the University of Kashmir. His dissertation focused on ‘Efficient and robust
convolutional neural network based models for face recognition’. Currently, his
main interests are in artificial intelligence, machine learning and deep learning,
areas in which he has published many articles.

Dr. Saduf Afzal teaches at the Islamic University of Science and Technology,
Kashmir, India. She completed her BCA, MCA, M.Phil. and Ph.D. at the
Department of Computer Science, University of Kashmir. She has also worked as
an academic counselor for the MCA program at IGNOU University. Her main
research interests are in machine learning, deep learning and neural networks. She
has published many articles in high impact journals and conference proceedings.

Dr. Asif Iqbal Khan currently works as a Lecturer in the Higher Education
Department, Kashmir, India. He completed his MCA, M.Phil. and Ph.D. at the
Department of Computer Science, University of Kashmir. His main research
interests are in machine learning, deep learning, and image processing. He is
actively publishing in these areas.

xi

Abbreviations

AE Autoencoder
AI Artificial intelligence
ANN Artificial neural network
BN Batch normalization
BP Backpropagation
BPAG Dropout-backpropagation with adaptive gain
BPGP Dropout-backpropagation with pattern-based gain
CAE Contractive autoencoder
CD Contrastive divergence
CDBNs Convolutional deep belief networks
CL Convolutional layer
CNN Convolutional neural network
CNN-AFC CNN Architecture for Fingerprint Classification
ConvNet Convolutional neural network
DAE Denoising autoencoder
DBNs Deep belief networks
DCT Discrete cosine transform
DenseNet Dense convolutional network
EBGM Elastic bunch graph matching
FDR False detection rate
GANs Generative adversarial networks
GD Gradient descent
GPUs Graphics processing units
GWT Gabor wavelet transform
ICA Independent component analysis
IIIT-D Indraprastha Institute of Information Technology, Delhi
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
ILSVRV ImageNet Large-Scale Visual Recognition Competition
KL Kullback–Leibler
LDA Linear discriminant analysis

xiii

LRN Local response normalization
M-DBNs Modular deep belief networks
MDR Missed detection rate
MLP Multilayer perceptron
MrDBN Multiresolution deep belief network
MSE Mean squared error
NIST National Institute of Standards and Technology
NIST-DB4 NIST Special Database 4
ORL Olivetti Research Ltd face dataset
PCA Principal component analysis
RBF Radial basis function
RBM Restricted Boltzmann machine
ReLU Rectified Linear Unit
RMS Root mean square
RoBMs Robust restricted Boltzmann machines
RTRBMs Recurrent temporal restricted Boltzmann machines
SGD Stochastic gradient descent
SVM Support vector machine
TRBM Temperature-based restricted Boltzmann machine

xiv Abbreviations

Chapter 1
Introduction to Deep Learning

1.1 Introduction

Machine learning systems, with shallow or deep architectures, have ability to learn
and improve with experience. The process of machine learning begins with the raw
data which is used for extracting useful information that helps in decision-making.
The primary aim is to allow a machine to learn useful information just like humans
do.At abstract level,machine learning can be carried out using following approaches:

Supervised learning adapts a system such that for a given input data it produces
a target output. The learning data is made up of tuples (attributes, label) where
“attributes” represent the input data and “label” represents the target output. The
goal here is to adapt the system so that for a new input the system can predict the
target output. Supervised learning can use both continuous and discrete types of input
data.

Unsupervised learning involves data that comprises of input vectors without any tar-
get output. There are different objectives in unsupervised learning, such as clustering,
density estimation, and visualization. The goal of clustering is to discover groups
of similar data items on the basis of measured or perceived similarities between
the data items. The purpose of density estimation is to determine the distribution of
the data within the input space. In visualization, the data is projected down from a
high-dimensional space to two or three dimensions to view the similar data items.

Semi-supervised learning first uses unlabeled data to learn a feature representation
of the input data and then uses the learned feature representation to solve the super-
vised task. The training dataset can be divided into two parts: the data samples with
corresponding labels and the data samples where the labels are not known. Semi-
supervised learning can involve not providing with an explicit form of error at each
time but only a generalized reinforcement is received giving indication of how the
system should change its behavior, and this is sometimes referred to as reinforcement

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_1&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_1

2 1 Introduction to Deep Learning

learning. Reinforcement learning has been successful in applications as diverse as
autonomous helicopter flight, robot legged locomotion, cell-phone network routing,
marketing strategy selection, factory control and efficient webpage indexing.

1.2 Shallow Learning

Shallow architectures are well understood and perform good on many common
machine learning problems, and they are still used in a vast majority of today’s
machine learning applications. However, there has been an increased interest in deep
architectures recently, in the hope to find means to solve more complex real-world
problems (e.g., image analysis or natural language understanding) for which shallow
architectures are unable to learn models adequately.

1.3 Deep Learning

Deep learning is a new area ofmachine learningwhich has gained popularity in recent
past. Deep learning refers to the architectures which contain multiple hidden layers
(deep networks) to learn different features with multiple levels of abstraction. Deep
learning algorithms seek to exploit the unknown structure in the input distribution
in order to discover good representations, often at multiple levels, with higher level
learned features defined in terms of lower level features.

Conventional machine learning techniques are restricted in the way they process
the natural data in its raw form. For decades, constructing a pattern recognition or
machine learning system required considerable domain expertise and careful hand
engineering to come up with a feature extractor that transformed the raw data (such
as pixel values of an image) into suitable internal representation or feature vector
from which the learning system, such as a classifier, could detect or classify patterns
in the input. Deep learning allows inputting the raw data (pixels in case of image
data) to the learning algorithm without first extracting features or defining a feature
vector. Deep learning algorithms can learn the right set of features, and it does this
in a much better way than extracting these features using hand-coding. Instead of
handcrafting a set of rules and algorithms to extract features from raw data, deep
learning involves learning these features automatically during the training process.

In deep learning, a problem is realized in terms of hierarchy of concepts, with
each concept built on the top of the others. The lower layers of the model encode
some basic representation of the problem, whereas higher level layers build upon
these lower layers to form more complex concepts.

Given an image, the pixel intensity values are fed as inputs to the deep learning
system. A number of hidden layers then extract features from the input image. These
hidden layers are built upon each other in a hierarchal fashion. At first, the lower level
layers of the network detect only edge-like regions. These edge regions are then used

1.3 Deep Learning 3

to define corners (where edges intersect) and contours (outlines of objects). The
layers in the higher level combine corners and contours to lead to more abstract
“object parts” in the next layer. The key aspect of deep learning is that these layers
of features are not handcrafted and designed by human engineers; rather, they are
learnt from data gradually using a general-purpose learning procedure.

Finally, the output layer classifies the image and obtains the output class label—the
output obtained at the output layer is directly influenced by every other node avail-
able in the network. This process can be viewed as hierarchical learning as each layer
in the network uses the output of previous layers as “building blocks” to construct
increasingly more complex concepts at the higher layers. Figure 1.1 compares tra-
ditional machine learning approach based on handcrafted features to deep learning
approach based on hierarchical representation learning.

Specifically, in deep learning meaningful representations from the input data are
learnt by putting emphasis on buiding complicated mapping using a series of sim-

Fig. 1.1 a Conventional machine learning using hand-designed feature extraction algorithms
b deep learning approach using hierarchy of representations that are learnt automatically

4 1 Introduction to Deep Learning

ple mappings. The word “deep” refers to learning successive layers of increasingly
meaningful representations of input data. The number of layers used to model the
data determines the depth of the model. Current deep learning often involves learn-
ing tens or even hundreds of successive layers of representation from the training
data automatically. The conventional approaches to machine learning often focus
on learning only one or two layers of representations of data; such approaches are
often categorized as shallow learning. Deep learning and machine learning are sub-
fields of Artificial Intelligence (AI). Figure 1.2 illustrates the relationship between
AI, machine learning, and deep learning.

In deep learning, the successive layers of representations may be learned via sub-
models, which are structured in the form of layers stacked on the top of each other. As
deep learning network has typicallymore layers and parameters, it has the potential to
representmore complex inputs. Although deep learning has been around since 1980s,
it was relatively unpopular for several years as the computational infrastructure (both
hardware and software) was not adequate and the available datasets were quite small.
With the decline in the popularity of the conventional neural networks, it was only
recently that deep networksmade a big reappearance by achieving spectacular results
in speech recognition and computer vision tasks. Some of the aspects that helped in
the evolution of deep networks are listed below:

Fig. 1.2 Relationship between AI, machine learning, and deep learning

1.3 Deep Learning 5

Fig. 1.3 A deep learning network for digit classification

• Improved computational resources for processing massive amounts of data and
training much larger models.

• Automatic feature extraction.

The term artificial neural networks has a reference to neuroscience but deep learn-
ing networks are not models of the brain; however, deep learning models are formu-
lated by only drawing inspiration from the understanding of biological brain. Not all
the components of deep models are inspired by neuroscience; some of them come
from empirical exploration, theory, and intuition. The neural activity in our brains
is far more complex than might be suggested by simply studying artificial neurons.
The learning mechanisms used by deep learning models are in no way comparable
to the human brain, but can be described as a mathematical framework for learning
representations from data.

Figure 1.3 shows an example of a deep learning architecture that can be used
for character recognition. Figure 1.4 shows representations that are learned by the
deep learning network. The deep network uses several layers to transform the input
image (here a digit) in order to recognize what the digit is. Each layer performs some
transformations on the input that it receives from the previous layers.

The deep network transforms the digit image into representations that tend to cap-
ture a higher level of abstraction. Each hidden layer transforms the input image into
a representation that is increasingly different from the original image and increas-
ingly informative about the final result. The representations learnt help to distinguish

6 1 Introduction to Deep Learning

Fig. 1.4 Representations learnt by a deep network for digit classification during the first pass.
Network structural changes can be incorporated that result in desired representations at various
layers

between different concepts which in turn help to find out similarities between it. Deep
network can be thought of as a multistage distillation information operation, where
layers use multiple filters on the information to obtain an increasingly transformed
form of information (i.e., the information useful with regard to some task).

In summary, a deep learning network constructs features at multiple levels, with
higher features constructed as functions of lower ones. It is a fast-growing field
that circumvents the problem of feature extraction which is used as a prelude by
conventional machine learning approaches. Deep learning is capable of learning the
appropriate features by itself, requiring little steering by the user.

1.4 Why to Use Deep Learning

The choice of features that represent a given dataset has a profound impact on the
success of a machine learning system. Better results cannot be achieved without
identifying which aspects of the problem need to be included for feature extraction
that would bemore useful to themachine learning algorithm. This requires amachine
learning expert to collaborate with the domain expert in order to obtain a useful
feature set. A biological brain can easily determine which aspects of the problem it
needs to focus on with comparatively little guidance. This is not the case with the
artificial agents, thereby making it difficult to create computer learning systems that
can respond to high-dimensional input and perform hard AI tasks.

1.4 Why to Use Deep Learning 7

Machine learning practitioners have spent a huge time to extract informative
features from the data. At the time of Big Bang introduction of deep learning, the
state-of-the-art machine learning algorithms had already took decades of human
effort to accumulate relevant set of features required to classify the input.

Deep learning has surpassed those conventional algorithms in accuracy as the
features are learnt from the data using a general-purpose learning procedure instead
of being designed by human engineers. Deep networks have demonstrated dramatic
improvements in computer vision and have dramatically improved machine transla-
tion, and have taken off as an effective AI technique that has the ability to recognize
spoken words nearly as good as a person can. It has achieved not only the excellent
accuracy in machine learning modeling, but it has also demonstrated outstanding
generalization power that has even attracted scientists from other academic disci-
plines. It is now being used as a guide to make key decisions in fields like medicine,
finance, manufacturing, and beyond.

Deep learning grew to prominence in 2007, with promising results on perceptual
problems such as hearing and seeing problems that humans are very good at, but
have long been subtle for the machines. It has enabled the computer scientists to
harness the vast computational power and use large volumes of data—audio, video,
to teach computers how to do things that seem natural and intuitive for humans, such
as spotting objects in the photos, recognizing words or sentences, and translating a
document into other language. It has made it possible for machines to output the
transcript from an audio clip–speech recognition, to identify whether a mail is spam
or not, likelihood of whether a customer will repay his loan and so on; as long as there
is enough data to train machines, the possibilities are endless. It has achieved state-
of-the-art results on many applications, such as natural language parsing, language
modeling, image and character recognition, playing the challenging game of Go,
pixels-to-controls video game playing, and in other applications.

Today, many tech giant companies—Facebook, Baidu, Amazon, Microsoft, and
Google—have commercially deployed deep learning applications. These compa-
nies have vast amount of data and deep learning works well whenever there are
vast volumes of data and complex problems to solve. Many companies are using
deep learning to develop more helpful and realistic customer service representa-
tives—Chatbots.

In particular, deep learning has made good impact in historically difficult areas
of machine learning:

• Near-human-level image classification;
• Near-human-level speech recognition;
• Near-human-level handwriting transcription;
• Improved self-driving cars;
• Digital assistants such as Google Now,Microsoft Cortana, Apple’s Siri, and Ama-
zon Alexa;

• Improved ad targeting, as used by Google, Baidu, and Bing;
• Improved search results on the web;
• Ability to answer natural language questions; and
• Superhuman Go, Shogi, and Chess playing.

8 1 Introduction to Deep Learning

The exceptional performance of deepmodels can bemainly attributed to their flex-
ibility in representing a rich set of highly nonlinear functions as well as the devised
methods for efficient training of these powerful networks. Furthermore, employing
various regularization techniques ensured that deep models with huge numbers of
free parameters are statistically desirable in the sense that they will generalize well
to unseen data. The automatic and generic approach of feature learning in deep mod-
els enables one to use them across different applications (e.g., image classification,
speech recognition, language modeling, and information retrieval) with relatively
little adjustments. Therefore, deep models seem to be domain-oblivious in the sense
that in order to use it across different applications, only a small amount of domain-
specific customizations is required. Ideally, the domain-obliviousness of deep net-
works is advantageous, as having access to a universal and generic model reduces
the hassles of adapting for new applications.

Deep learning is still in its infancy, but it is likely that deep learning will have
many successes in the near future as it requires little hand engineering and thus can
take advantage of vast amount of data and computation power. Deep learning has
succeeded in previously unsolved problems which were quite difficult to resolve
using machine learning as well as other shallow networks. The dramatic progress of
deep learning has sparked such a burst of activity that venture capitalists who did not
even knowwhat deep learning was all about some years back, today are suspicious of
the startups that do not have it. In near future, deep learning may herald an age where
it may assist humans in software development, science, and many more. Integrating
deep learning with the whole toolbox of other artificial intelligence techniques may
accomplish startling things that will have great impact in the field of technology.

1.5 How Deep Learning Works

Deep networks map input to target via a sequence of layered transformations, and
that these layered transformations are learned by exposure to the training examples.

The transformations that a layer applies to its input are determined by the layer’s
weights, which are basically a bunch of numbers. In other words, transformations
implemented by a layer are parameterized by its weights.

In this context, learning can be defined as the process of finding the values of
the weights of all layers in the network in such a manner that input examples can
be correctly mapped to their associated targets. A deep learning network contains
thousands of parameters, and finding the right values of these parameters is not an
easy task, particularly when the value of one parameter has an impact on the value
of another parameter.

In order to train a deep network one needs to find out how far the calculated
output of the network is from the desired value. This measure is obtained by using
a loss function, also called as objective function. The objective function calculates

1.5 How Deep Learning Works 9

the difference between the predicted output obtained from the network and the true
target value for a specific example. This gives a measure of how well the network
has learnt a specific example. The objective of the training is to find the values for
the weights that minimize the chosen error function.

The difference obtained is then used as a feedback signal to adjust the weights of
the network, in a way that loss score for the current example is lowered. This adjust-
ment is done by the optimizer—backpropagation algorithm, the central algorithm in
deep learning.

Backpropagation algorithm involves assigning random values to the weight vec-
tors initially, so that the network just implements a series of random transformations.
Initially, the output obtained from the network can be far from what it should be,
and accordingly the loss score may be very high. With every example that is fed to
the network, the weights are adjusted in such a direction that makes the loss score
to decrease. This process is repeated a number of times, until the weight values that
minimize the loss function are obtained. A network is said to have learned when the
output values obtained from the network are as close as they can be to the target
values.

1.6 Deep Learning Challenges

Deep learning networks have brought their own set of problems and challengeswhich
outweighed the benefits of deep architectures for several decades. Training these
architectures for general use was impractically slow. With limited computational
power, deep learning networks were already overtaken by other approaches such as
kernel methods. With the significant growth in computational power (particularly in
GPUs and distributed computing) and access to large labeled datasets paved the way
for its return.

However, despite the remarkable advances in this area, training deep models
with a huge number of free parameters is an intricate and ill-posed optimization
problem. Many research works have been dedicated to creating efficient training
methods for deep architectures. The strategies reported in the literature that deal
with the difficulties of training deep networks include developing better optimizers,
usingwell-designed initialization strategies, using activation functions based on local
competition and using skip connections between layers with the aim to improve the
flow of information. However, deep network training still faces problems which are
caused by the stacking of several nonlinear transformations and need to be addressed.

Moreover, deep learning involves using large amounts of data to learn progres-
sively. While large amounts of data are available in many applications, however, in
some areas copious amount of data are rarely available. More flexible models are
required to achieve an enhanced learning ability when only a limited amount of data
is available.

10 1 Introduction to Deep Learning

Deep learning networks are very good at solving one problem; however, using
deep networks to solve a very similar problem requires retraining and reassessment.
Although there are many advancements in this aspect, more work is required in
developing deep learning models which can perform multitasks without the need of
reworking on the whole architecture.

Bibliography

Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Blaauw, M., Bonada, J.: A neural parametric singing synthesizer. arXiv preprint. arXiv:1704.03809
Cruz-Roa, A.A., Ovalle, J.E.A., Madabhushi, A., Osorio, F.A.G.: A deep learning architecture for
image representation, visual interpretability and automated basal-cell carcinoma cancer detection.
In: International Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, Berlin, Heidelberg, pp. 403–410, Sept 2013

Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Signal Process. 7(34),
197–387 (2013)

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning.MIT Press, Cambridge (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., et al.: Deep neural networks for
acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal
Process. Mag. 29(6), 82–97

Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and
editing. ACM Trans. Graph. (TOG) 35(4), 138:1–138:11

Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for
low-dose X-ray CT reconstruction. Med. Phys. 44(10) (2017)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural
networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Shi, Y., Yao, K., Tian, L., Jiang, D.: Deep LSTM based feature mapping for query classification.
In: Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 1501–1511 (2016)

Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos.
In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition.
arXiv preprint. arXiv:1409.1556

Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Deepface: closing the gap to human-level per-
formance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1701–1708 (2014)

Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In:
Proceedings of the IEEEConference onComputerVision andPatternRecognition, pp. 3156–3164
(2015)

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., et al.: Google’s neural
machine translation system: bridging the gap between human and machine translation. arXiv
preprint. arXiv:1609.08144

http://arxiv.org/abs/1704.03809
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1609.08144

Bibliography 11

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., et al.: Show, attend and tell:
neural image caption generation with visual attention. In: International Conference on Machine
Learning, pp. 2048–2057, June 2015

Zhang,R., Isola, P., Efros,A.A.: Colorful image colorization. In: EuropeanConference onComputer
Vision. Springer, Cham, pp. 649–666, Oct 2016

Chapter 2
Basics of Supervised Deep Learning

2.1 Introduction

The use of supervised and unsupervised deep learning models has grown at a fast
rate due to their success with learning of complex problems. High-performance
computing resources, availability of huge amounts of data (labeled and unlabeled)
and state-of-the-art open-source libraries are making deep learning more and more
feasible for various applications. Since themain focus of this chapter is on supervised
deep learning, Convolutional Neural Network (CNN or ConvNets) that is one of the
most commonly used supervised deep learning models is discussed in this chapter.

2.2 Convolutional Neural Network (ConvNet/CNN)

Convolutional Neural Network also known as ConvNet or CNN is a deep learning
technique that consists of multiple numbers of layers. ConvNets are inspired by
the biological visual cortex. The visual cortex has small regions of cells that are
sensitive to specific regions of the visual field. Different neurons in the brain respond
to different features. For example, certain neurons fire only in the presence of lines
of a certain orientation, some neurons fire when exposed to vertical edges and some
when shown horizontal or diagonal edges. This idea of certain neurons having a
specific task is the basis behind ConvNets.

ConvNets have shown excellent performance on several applications such as
image classification, object detection, speech recognition, natural language process-
ing, andmedical image analysis. Convolutional neural networks are powering core of
computer vision that has many applications which include self-driving cars, robotics,
and treatments for the visually impaired. The main concept of ConvNets is to obtain
local features from input (usually an image) at higher layers and combine them into
more complex features at the lower layers. However, due to its multilayered architec-
ture, it is computationally exorbitant and training such networks on a large dataset

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_2&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_2

14 2 Basics of Supervised Deep Learning

takes several days. Therefore, such deep networks are usually trained on GPUs.
Convolutional neural networks are so powerful on visual tasks that they outperform
almost all the conventional methods.

2.3 Evolution of Convolutional Neural Network Models

LeNet: The first practical convolution-based architecture was LeNet which used
backpropagation for training thenetwork.LeNetwasdesigned to classify handwritten
digits (MNIST), and it was adopted to read large numbers of handwritten checks in
the United States. Unfortunately, the approach did not get much success as it did not
scale well to larger problems. The main reasons for this limitation were as follows:

a. Small labeled datasets.
b. Slow computers.
c. Use of wrong nonlinearity (activation) function.

The use of appropriate activation function in a neural network has huge impact
on the final performance. Any deep neural network that uses a nonlinear activation
function like sigmoid or tanh and is trained using backpropagation suffers from
vanishing gradient. Vanishing gradient is a problem found in training the neural
networks with gradient-based training methods. Vanishing gradient makes it hard
to train and tune the parameters of the top layers in a neural network. The problem
worsens as the total number of layers in the network increases.

AlexNet: The first breakthrough came in 2012 when the convolutional model
which was named AlexNet significantly outperformed all other conventional meth-
ods in ImageNet Large-Scale Visual Recognition Competition (ILSVRC) 2012 that
featured the ImageNet dataset. The AlexNet brought down classification error rate
from 26 to 15%, a significant improvement at that time. AlexNet was simple but
much more efficient than LeNet. The improvements to overcome the above men-
tioned problems were due to the following reasons:

a. Large labeled image database (ImageNet), which contained around 15 million
labeled images from a total of over 22,000 categories, was used.

b. The model was trained on high-speed GTX 580 GPUs for 5 to 6 days.
c. ReLU (Rectified Linear Unit) f (x)�max(x, 0) activation functionwas used. This

activation function is several times faster than the conventional activation func-
tions like sigmoid and tanh. The ReLU activation function does not experience
the vanishing gradient problem.

AlexNet consists of five convolutional layers, three pooling layers, three fully
connected layers, and a 1000-way softmax classifier.

ZFNet: In 2013, an improved version of CNN architecture called ZFNet was
introduced. ZFNet reduced the filter size in the first layer from 11 × 11 to 7 × 7 and
used a stride of 2 instead of 4 which resulted in more distinctive features and fewer

2.3 Evolution of Convolutional Neural Network Models 15

Fig. 2.1 Inception module in GoogLeNet

dead features. ZFNet turned out to be the winner of ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) 2013.

VGGNet: VGGNet, introduced in 2014, used increased depth of the network for
improving the results. The depth of the network was made 19 layers by adding more
convolutional layers with 3 × 3 filters, along with 2 × 2 max-pooling layers with
stride and padding of 1 in all layers. Reducing filter size and increasing the depth
of the network resulted in CNN architecture that produced more accurate results.
VGGNet achieved an error rate of 7.32% in ILSVRC 2014 and was the runner-up
model in ILSVRC 2014.

GoogLeNet: Google developed a ConvNet model called GoogLeNet in 2015. The
model has 22 layers and was the winner of ILSVRC 2015 for having the error rate
of 6.7%. The previous ConvNet models had convolution, and pooling layers stacked
on top of each other but the GoogLeNet architecture is a little different. It uses an
inceptionmodule which helps in reducing the number of parameters in the network.
The inception module is actually a concatenated layer of convolutions (3 × 3 and
5 × 5 convolutions) and pooling sub-layers at different scales with their output filter
banks concatenated into a single output vector making the input for the succeeding
stage. These sub-layers are not stacked sequentially but the sub-layers are connected
in parallel as shown in Fig. 2.1. In order to compensate for additional computational
complexity due to extra convolutional operations, 1 × 1 convolution is used that
results in reduced computations before expensive 3 × 3 and 5 × 5 convolutions
are performed. GoogLeNet model has two convolutional layers, four max-pooling
layers, nine inception layers, and a softmax layer. The use of this special inception
architecture makes GoogLeNet to have 12 times lesser parameters than AlexNet.

Increasing the number of layers increases the number of features which enhances
the accuracy of the network. However, there is a practical limitation to that. (1) Van-
ishing gradients: Some neurons in too deep networks may die during training which
can cause loss of useful information and (2)Optimization difficulty: toomany param-

16 2 Basics of Supervised Deep Learning

Fig. 2.2 Residual connection in ResNet

eters can make training the network a difficult task. The network depth should be
increased without any negative effects. The inception model was refined as Inception
V3 in 2016, and as Inception-ResNet in 2017.

ResNet: Microsoft Research Asia proposed a CNN architecture in 2015, which
is, 152 layers deep and is called ResNet. ResNet introduced residual connections
in which the output of a conv-relu-conv series is added to the original input and
then passed through Rectified Linear Unit (ReLU) as shown in Fig. 2.2. In this
way, the information is carried from the previous layer to the next layer and during
backpropagation, the gradient flows easily because of the addition operations, which
distributes the gradient. ResNet proved that a complex architecture like Inception
is not required to achieve the best results but a simple and deep architecture can
be tweaked to get better results. ResNet performed good in classification, detection,
and localization and won ILSVRC 2015 with an incredible error rate of 3.6% which
is better than the human error rate of 5–10%. ResNet is currently deepest network
trained on ImageNet and has lesser parameters than VGGNet which is eight times
lesser in depth.

Inception-ResNet: A hybrid inception model which uses residual connections, as
in ResNet, was proposed in 2017. This hybrid model called Inception-ResNet dra-
matically improved the training speed of inception model and slightly outperformed
the pure ResNet model by a thin margin.

Xception: A convolutional neural network architecture based on depthwise sepa-
rable convolution layers is called Xception. The architecture is actually inspired by
inception model and that is why it is called Xception (Extreme Inception). Xception
architecture is a pile of depthwise separable convolution layers with residual connec-

2.3 Evolution of Convolutional Neural Network Models 17

Table 2.1 Classification accuracy of AlexNet, VGG-16, ResNet-152, Inception and Xception on
ImageNet

Model Top-1 accuracy Top-5 accuracy

AlexNet 0.625 0.86

VGG-16 0.715 0.901

Inception 0.782 0.941

ResNet-152 0.870 0.963

Xception 0.790 0.945

Fig. 2.3 ILSRV top-5 error on ImageNet since 2010

tions. Xception has 36 convolutional layers organized into 14 modules, all having
linear residual connections around them, except for the first and last modules. The
Xception has claimed to perform slightly better than Inception V3 on ImageNet.
Table 2.1 and Fig. 2.3 show classification performance of VGG-16, ResNet-152,
Inception V3 and Xception on ImageNet.

SqueezeNet: As the accuracy of new ConvNets models kept on improving,
researchers started focusing on how to reduce the size and complexity of the existing
ConvNet architectures without compromising on accuracy. The goal was to design a
model that has very few parameters, while maintaining high accuracy. A pretrained
model was used, and those of its parameters with values below a certain thresh-
old were replaced with zeros to form a sparse matrix followed by few iterations of
training on the sparse ConvNet.

Another version of SqueezeNet model used the following three main strategies
to reduce the parameters and computational effort significantly while maintaining
high accuracy. (a) Replace 3 × 3 filters with 1 × 1 filters. (b) Reduce the number of
input channels to 3 × 3 filters. (c) Delay subsampling till late in the network so that
convolution layers have large activation maps. SqueezeNet achieved AlexNet-level
accuracy on ImageNet with 50 times fewer parameters.

18 2 Basics of Supervised Deep Learning

ShuffleNet: Another ConvNet architecture called ShuffleNet was introduced in
2017 for devices with limited computational power, like mobile devices, without
compromising on accuracy. ShuffleNet used two ideas, pointwise group convolution
and channel shuffle, to considerably decrease the computational cost while main-
taining the accuracy.

2.4 Convolution Operation

Convolution is a mathematical operation performed on two functions and is written
as (f * g), where f and g are two functions. The output of the convolution operation
for domain n is defined as

(f ∗ g)(n) �
∑

m

f (m)g(n − m)

For time-domain functions, n is replaced by t. The convolution operation is com-
mutative in nature, so it can also be written as

(f ∗ g)(n) �
∑

m

f (n − m)g(m)

Convolution operation is one of the important operations used in digital signal
processing and is used in many areas which includes statistics, probability, natural
language processing, computer vision, and image processing.

Convolution operation can be applied to higher dimensional functions as well.
It can be applied to a two-dimensional function by sliding one function on top of
another, multiplying and adding. Convolution operation can be applied to images
to perform various transformations; here, images are treated as two-dimensional
functions. An example of a two-dimensional filter, a two-dimensional input, and a
two-dimensional feature map is shown in Fig. 2.4. Let the 2D input (i.e., 2D image)
be denoted by A, the 2D filter of sizem × n be denoted by K , and the 2D feature map
be denoted by F. Here, the image A is convolved with the filter K and produces the
feature map F. This convolution operation is denoted by A*K and is mathematically
given as

F(i, j) � (A ∗ K)(i, j) �
∑

m

∑

n

A(m, n)K (i − m, j − n) (2.1)

The convolution operation is commutative in nature, so we can write Eq. 2.1 as

F(i, j) � (A ∗ K)(i, j) �
∑

m

∑

n

A(i − m, j − n)K (m, n) (2.2)

2.4 Convolution Operation 19

Fig. 2.4 Convolution operation

The kernel K is flipped relative to the input. If the kernel is not flipped, then
convolution operationwill be same as cross-correlation operation that is given below:

F(i, j) � (A ∗ K)(i, j) �
∑

m

∑

n

A(i + m, j + n)K (m, n) (2.3)

Many CNN libraries use cross-correlation function as convolution function
because cross-correlation is more convenient to implement than convolution opera-
tion itself. According to Eq. 2.3, the operation computes the inner product (element-
wise multiplication) of the filter at every location in the image.

2.5 Architecture of CNN

In a traditional neural network, neurons are fully connected between different layers.
Layers that sit between the input layer and output layer are called hidden layers.
Each hidden layer is made up of a number of neurons, where each neuron is fully
connected to all neurons in the preceding layer. The problemwith the fully connected
neural network is that its densely connected network architecture does not scale well
to large images. For large images, themost preferred approach is to use convolutional
neural network.

Convolutional neural network is a deep neural network architecture designed to
process data that has a known, grid-like topology, for example, 1D time-series data,
2D or 3D data such as images and speech signal, and 4D data such as videos. Con-
vNets have three key features: local receptive field, weight sharing, and subsampling
(pooling).

20 2 Basics of Supervised Deep Learning

(i) Local Receptive Field

In a traditional neural network, each neuron or hidden unit is connected to every
neuron in previous layer or every input unit. Convolutional neural networks, however,
have local receptive field architecture, i.e., each hidden unit can only connect to a
small region of the input called local receptive field. This is accomplished by making
the filter/weight matrix smaller than the input. With local receptive field, neurons
can extract elementary visual features like edges, corners, end points, etc.

(ii) Weight Sharing

Weight sharing refers to using the same filter/weights for all receptive fields in a
layer. In ConvNet, since the filters are smaller than the input, each filter is applied at
every position of the input, i.e., same filter is used for all local receptive fields.

ConvNet consists of a sequence of different types of layers to achieve different
tasks. A typical convolutional neural network consists of the following layers:

• Convolutional layer,
• Activation function layer (ReLU),
• Pooling layer,
• Fully connected layer and
• Dropout layer.

These layers are stacked up to make a full ConvNet architecture. Convolutional
and activation function layers are usually stacked together followed by an optional
pooling layer. Fully connected layer makes up the last layer of the network, and the
output of the last fully connected layer produces the class scores of the input image.
In addition to these main layers mentioned above, ConvNet may include optional
layers like batch normalization layer to improve the training time and dropout layer
to address the overfitting issue.

(iii) Subsampling (Pooling)

Subsampling reduces the spatial size of the input, thus reducing the parameters in
the network. There are few subsampling techniques available, and the most common
subsampling technique is max-pooling.

2.5.1 Convolution Layer

Convolution layer is the core building block of a convolutional neural network which
uses convolution operation (represented by *) in place of general matrix multiplica-
tion. Its parameters consist of a set of learnable filters also known as kernels. Themain
task of the convolutional layer is to detect features found within local regions of the
input image that are common throughout the dataset and mapping their appearance
to a feature map. A feature map is obtained for each filter in the layer by repeated
application of the filter across subregions of the complete image, i.e., convolving

2.5 Architecture of CNN 21

Fig. 2.5 Example of convolution operation

the filter with the input image, adding a bias term, and then applying an activation
function. The input area on which a filter is applied is called local receptive field.
The size of the receptive field is same as the size of the filter. Figure 2.5 shows how
a filter (T-shaped) is convolved with the input to get the feature map.

Feature map is obtained after adding a bias term and then applying a nonlinear
function to the output of the convolution operation. The purpose of nonlinearity
function is to introduce nonlinearity in the ConvNet model, and there are a number
of nonlinearity functions available which are briefly explained in the next section.

Filters/Kernels
The weights in each convolutional layer specify the convolution filters and there may
be multiple filters in each convolutional layer. Every filter contains some feature like
edge, corner, etc. and during forward pass, each filter is slid across the width and
height of the input generating feature map of that filter.

Hyperparameters
Convolutional neural network architecture has many hyperparameters that are used
to control the behavior of the model. Some of these hyperparameters control the size

22 2 Basics of Supervised Deep Learning

of the output while some are used to tune the running time and memory cost of the
model. The four important hyperparameters in the convolution layer of the ConvNet
are given below:

a. Filter Size: Filters can be of any size greater than 2 × 2 and less than the size of
the input but the conventional size varies from 11 × 11 to 3 × 3. The size of a
filter is independent of the size of input.

b. Number of Filters: There can be any reasonable number of filters. AlexNet used
96 filters of size 11 × 11 in the first convolution layer. VGGNet used 96 filters
of size 7 × 7, and another variant of VGGNet used 64 filters of size 11 × 11 in
first convolution layer.

c. Stride: It is the number of pixels to move at a time to define the local receptive
field for a filter. Stride of one means to move across and down a single pixel. The
value of stride should not be too small or too large. Too small stride will lead to
heavily overlapping receptive fields and too large value will overlap less and the
resulting output volume will have smaller dimensions spatially.

d. Zero Padding: This hyperparameter describes the number of pixels to pad the
input image with zeros. Zero padding is used to control the spatial size of the
output volume.

Each filter in the convolution layer produces a featuremap of size ([A−K + 2P]/S)
+ 1 where A is the input volume size, K is the size of the filter, P is the number of
padding applied and S is the stride. Suppose the input image has size 128× 128, and
5 filters of size 5 × 5 are applied, with single stride and zero padding, i.e., A � 128,
F � 5, P � 0 and S � 1. The number of feature maps produced will be equal to the
number of filters applied, i.e., 5 and the size of each feature map will be ([128 − 5
+ 0]/1) + 1 � 124. Therefore, the output volume will be 124 × 124 × 5.

2.5.2 Activation Function (ReLU)

The output of each convolutional layer is fed to an activation function layer. The
activation function layer consists of an activation function that takes the feature map
produced by the convolutional layer and generates the activation map as its output.
The activation function is used to transform the activation level of a neuron into an
output signal. It specifies the output of a neuron to a given input. An activation func-
tion usually has a squashing effect which takes an input (a number), performs some
mathematical operation on it and outputs the activation level of a neuron between a
given range, e.g., 0 to 1 or −1 to 1.

A typical activation function should be differentiable and continuous everywhere.
Since ConvNets are trained using gradient-based methods, an activation function
should be differential at any point. However, if a non-gradient-based method is used,
then differentiability is not necessary.

There are many of activation functions in use with Artificial Neural Networks
(ANNs) and some of the commonly used activation functions are as follows:

2.5 Architecture of CNN 23

Fig. 2.6 Graph of sigmoid activation function

• Logistic/Sigmoid Activation Function: The sigmoid function is mathematically
represented as

σ(x) � 1

1 + e−x

It is an S-shaped curve as shown in Fig. 2.6. Sigmoid function squashes the input
into the range [0, 1].

• Tanh Activation Function: The hyperbolic tangent function is similar to sigmoid
function but its output lies in the range [−1, 1]. The advantage of tanh over sigmoid
is that the negative inputs will be mapped strongly negative and the zero inputs
will be mapped near zero in the tanh graph as shown in Fig. 2.7.

• Softmax Function (Exponential Function): It is often used in the output layer
of a neural network for classification. It is mathematically represented as

σ
(
x j

) � ex j

∑n
k�1 e

xk

The softmax function is a more generalized logistic activation function which is
used for multiclass classification.

• ReLU Activation Function: Rectified Linear Unit (ReLU) has gained some
importance in recent years and currently is the most popular activation function
for deep neural networks. Neural networks with ReLU train much faster than other

24 2 Basics of Supervised Deep Learning

Fig. 2.7 Graph of tanh activation function

Fig. 2.8 Rectified Linear Unit (ReLU) activation function

activation functions like sigmoid and tanh. ReLU simply computes the activation
by thresholding the input at zero. In other words, a rectified linear unit has output
0 if the input is less than 0, and raw output otherwise. It is mathematically given
as

f (x) � max(0, x)

Rectified linear unit activation function produces a graph which is zero when x
< 0 and linear with slope 1 when x > 0 as shown in Fig. 2.8.

2.5 Architecture of CNN 25

Fig. 2.9 The Swish activation function

• SWISH Activation Function:

Self-GatedActivation Function (SWISH) is actually a version of sigmoid function
and is given as

f (x) � x ∗ σ(x)

where σ (x) is sigmoid of x given as

σ(x) � 1

1 + e−x

SWISH activation function is a non-monotonic function and is shown in Fig. 2.9.

2.5.3 Pooling Layer

In ConvNets, the sequence of convolution layer and activation function layer is
followed by an optional pooling or down-sampling layer to reduce the spatial size
of the input and thus reducing the number of parameters in the network. A pooling
layer takes each feature map output from the convolutional layer and down-samples
it, i.e., pooling layer summarizes a region of neurons in the convolution layer. There
are few pooling techniques available and the most common pooling technique is
max-pooling. Max-pooling simply outputs the maximum value in the input region.
The input region is a subset of input (usually 2 × 2). For example, if input region is
of size 2 × 2, the max-pooling unit will output the maximum of the four values as
shown in Fig. 2.10. Other options for pooling layers are average pooling and L2-norm
pooling.

Pooling layer operation discards less significant data but preserves the detected
features in a smaller representation. The intuitive reasoning behind pooling operation

26 2 Basics of Supervised Deep Learning

Fig. 2.10 Max-pooling

is that feature detection is more important than feature’s exact location. This strategy
works well for simple and basic problems but it has its own limitations and does not
work well for some problems.

2.5.4 Fully Connected Layer

Convolutional neural networks are composed of two stages: Feature extraction stage
and classification stage. In ConvNets, the stack of convolution and pooling layers
act as feature extraction stage while as the classification stage is composed of one
or more fully connected layers followed by a softmax function layer. The process of
convolution and pooling continues until enough features are detected. Next step is to
make adecisionbasedon these detected features. In case of classificationproblem, the
task uses the detected features in the spatial domain to obtain probabilities that these
features represent each class, that is, obtain the class score. This is done by adding
one or more fully connected layers at the end. In fully connected layer, each neuron
from previous layer (convolution layer or pooling layer or fully connected layer) is
connected to every neuron in the next layer and every value contributes in predicting
how strongly a value matches a particular class. Figure 2.11 shows the connection
between a convolution layer and a fully connected layer. Like convolutional layers,
fully connected layers can be stacked to learn even more sophisticated combinations
of features. The output of last fully connected layer is fed to a classifier which outputs
the class scores. Softmax and Support Vector Machines (SVMs) are the two main
classifiers used in ConvNets. Softmax classifier produces probabilities for each class
with a total probability of 1, and SVM which produces class scores and the class
having highest score is treated as the correct class.

2.5 Architecture of CNN 27

Fig. 2.11 Connection between convolution layer and fully connected layer

2.5.5 Dropout

Deep neural networks consist of multiple hidden layers enabling it to learn more
complicated features. It is followed by fully connected layers for decision-making.
A fully connected layer is connected to all features, and it is prone to overfitting.
Overfitting refers to the problem when a model is trained and it works so well on
training data that it negatively impacts the performance of the model on new data.
In order to overcome the problem of overfitting, a dropout layer can be introduced
in the model in which some neurons along with their connections are randomly
dropped from the network during training (See Fig. 2.12). A reduced network is
left; incoming and outgoing edges to a dropped-out node are also removed. Only the
reduced network is trained on the data in that stage. The removed nodes are then
reinserted into the network with their original weights. Dropout notably reduces
overfitting and improves the generalization of the model.

Fig. 2.12 a A simple neural network, b neural network after dropout

28 2 Basics of Supervised Deep Learning

2.6 Challenges and Future Research Direction

ConvNets have evolved over the years and have achieved very good performance
on various visual tasks like classification and object detection. In fact, deep net-
works have now achieved human-level performance in classifying different objects.
However, deep networks like convolutional neural networks have their limitations.
Altering an image in a way unnoticeable to humans can cause deep networks to
miss-classify the image as something else. Modifying a few pixels selectively can
make deep neural networks to produce incorrect results.

One of the reasons that make ConvNets vulnerable to these attacks is the way
they accomplish pooling operation to achieve reduced feature space at the cost of
losing important information about the precise location of the feature within the
region. As a result, ConvNets can only identify if a certain feature exists in a certain
region, irrespective of its position relative to another feature. The consequence is the
difficulty in accurately recognizing objects that hold spatial relationships between
features.

The vulnerabilities of deep networks put a big question mark on their reliability,
raising questions about the true generalization capabilities of deep neural networks.
A deep neural network architecture called Capsule Networks is used to address some
of the inadequacies of ConvNets. A capsule network consists of capsules, which are
a group of neurons representing the instantiation parameters of a specific object or
part of it. Capsule networks use dynamic routing between capsules instead of max-
pooling to forward information from layer to layer. The study on capsule networks is
still in its early stages, and their performance on different visual tasks is not known
yet.

Bibliography

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

2. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

3. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence
predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2015, pp. 427–436

4. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activation function. arXiv preprint
arXiv: 1710.05941 (2017)

5. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances inNeural
Information Processing Systems 2017, pp. 3859–3869

6. Salakhutdinov, R., Hinton, G.: Deep Boltzmannmachines. In: Artificial Intelligence and Statis-
tics, pp. 448–455 (2009)

7. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117
(2015)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv: 1409.1556 (2014)

Bibliography 29

9. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–9 (2015)

10. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision, pp. 818–833. Springer, Cham (2014)

Chapter 3
Training Supervised Deep Learning
Networks

3.1 Introduction

Training supervised deep learning networks involves obtaining model parameters
using labeled dataset to allow the network to map an input data to a class label. The
labeled dataset consists of training examples, where each example is a pair of an
input data and a desired class label. The deep model parameters allow the network
to correctly determine the class labels for unseen instances. This requires the model
to generalize from the training dataset to unseen instances.

Many supervised deep learning models have been used by researchers. Convolu-
tional neural network is one of the commonly used supervised deep architectures.
This chapter will discuss the training of convolutional neural networks.

3.2 Training Convolution Neural Networks

Training supervised deep neural network is formulated in terms of minimizing a loss
function. In this context, training a supervised deep neural network means searching
a set of values of parameters (or weights) of the network at which the loss function
has minimum value. Gradient descent is an optimization technique which is used
to minimize the error by calculating gradients necessary to update the values of the
parameters of the network.

The most common and successful learning algorithm for deep learning models
is gradient descent-based backpropagation in which error is propagated backward
from last layer to the first layer. In this learning technique, all the weights of a
neural network are either initialized randomly or initialized by using probability
distribution. An input is fed through the network to get the output. The obtained
output and the desired output are then used to calculate the error using some cost
function (error function). To understand the working of backpropagation, consider a
small ConvolutionNeural Network (CNN)model shown in Fig. 3.1. The CNNmodel

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_3&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_3

32 3 Training Supervised Deep Learning Networks

Fig. 3.1 CNN architecture

is similar to LeNet but uses ReLU (which has become a standard in deep networks)
as activation function, max-pooling, instead of average pooling. The CNN model
consists of three convolution layers, two subsampling layers, and one fully connected
layer producing10outputs. Thefirst convolution layer convolves input of size 32×32
with six 5 × 5 filters producing six 28 × 28 feature maps. Next, pooling layer down-
samples these six 28 × 28 feature maps to size 14 × 14. Second convolution layer
convolves the down-sampled feature maps with 5 × 5 filters producing 16 feature
maps of size 10 × 10. Second pooling layer down-samples the input producing 16
feature maps of size 5 × 5. The third convolution layer has the input of size 5 × 5
and the filter of size 5 × 5, so no stride happens. We can say that this third layer
has 120 filters of size 5 × 5 fully connected to each of the 16 feature maps of size 5
× 5. Last layer in the architecture is a fully connected layer containing 10 units for
10 classes. The output of the fully connected layer is fed to cost function (Softmax)
to calculate the error. Let us describe the CNN architecture in detail including its
mathematical operations.

Layer 1 (C1) is a convolution layer which takes input of size 32 × 32
and convolves it with six filters of size 5 × 5 producing six feature maps
of size 28 × 28.

Mathematically, the above operation can be given as

C1ki, j �
(

4∑
m�0

4∑
n�0

wk
m,n ∗ Ii+m, j+n + bk

)
(3.1)

where C1k represent six output feature maps of convolution layer C1, k represents
filter number, (m, n) are the indices of kth filter and (i, j) are the indices of output.

Equation 3.1 is the mathematical form of convolution operation. The output of
convolution operation is fed to an activation function to make the output of linear
operation nonlinear. In deep networks, the most successful activation function is
ReLU given by

σ(x) � max(0, x) (3.2)

Using Eq. 3.1, we get

3.2 Training Convolution Neural Networks 33

C1ki, j � σ

(
4∑

m�0

4∑
m�0

wk
m,n ∗ Ii+m, j+n + bk

)
(3.3)

Equation 3.3 is the output of layer C1.
Layer 2(P2) is a max-pooling layer. The output of the convolution layer C1 is

fed to max-pooling layer. The max-pooling layer takes six feature maps fromC1 and
performs max-pooling operation on each of them.

The max-pooling operation on C1k is given as

P2k � MaxPool
(
C1k

)
For each feature map in C1k , max-pooling performs the following operation:

P2ki, j � max

(
C1k(2i,2 j),C1k(2i+1,2 j)

C1k(2i,2 j+1),C1k(2i+1,2 j+1)

)
(3.4)

where (i, j) are the indices of kth feature map of output, and k is the feature map
index.

Layer 3 (C3) is the second convolution layer which produces 16 feature maps of
size 10 × 10 and is given by

C3ki, j � σ

(
5∑

d�0

4∑
m�0

4∑
n�0

wk,d
m,n ∗ P2di+m, j+n + bk

)

where C3k represents the 16 output feature maps of convolution layer C3, k is the
index of the output feature map, (m, n) are the indices of filter weights, (i, j) are the
indices of output, and d is the index of the number of channels in the input.

Layer 4 (P4) is a max-pooling layer which produces 16 feature maps P4k of size
5 × 5.

The max-pooling operation is given as

P4k � MaxPool
(
C3k

)

P4ki, j � max

(
C3k(2i,2 j),C3k(2i+1,2 j)

C3k(2i,2 j+1),C3k(2i+1,2 j+1)

)

where (i, j) are the indices of kth feature map of output, and k is the feature map
index.

Layer 5 (C5) is third convolution layer that produces 120 output feature maps
and is given by

34 3 Training Supervised Deep Learning Networks

C5ki, j � σ

(
15∑
d�0

4∑
m�0

4∑
n�0

wk,d
m,n ∗ P4di+m, j+n + bk

)

where C5k represents the 120 output feature maps of convolution layer C5 of size
1× 1, k is the index of the output feature map, (m, n) are the indices of filter weights,
d is the index of the number of channels in input and (i, j) are the indices of output,
since output is only 1 × 1, the index (i, j) remains (0, 0) for each filter. This formula
can be simplified as the filter size is equal to the size of input, so no convolution
stride happens

C5k � σ

(
15∑
d�0

4∑
m�0

4∑
n�0

wk,d
m,n ∗ P4dm,n + bk

)

Layer 6 (F6) is a fully connected layer. It consists of 10 neurons for 10 classes
and is mathematically defined as

F6k �
120∑
i�1

wk
i ∗ C5i (3.5)

In last layer, for each neuron, the activation function used is softmax function
given as

Zk � softmax
(
F6k

)
The softmax function is defined as

Zk � softmax
(
F6k

) � eF6
k∑10

i�1 e
F6i

(3.6)

The softmax activation function produces the final output of the neurons in the
range [0, 1] and all outputs add up to 1. Each of the output represents the probability
of the input belonging to a particular class.

Here, Zk is the vector of size 10 containing final output of the network.

Backward Pass

Loss Layer

During training, an input is fed to the network and output is obtained. The obtained
output is compared against the actual output to calculate the error or loss. The calcu-
lated error is then used to update the weights of the network. The process is repeated
until the error is minimized. The function which is used to calculate the error or loss
is called cost/loss function, and there are quite a few loss functions available and for
softmax layer the two commonly used loss functions are Mean Squared Error (MSE)

3.2 Training Convolution Neural Networks 35

and cross-entropy loss function. The Mean Squared Error (MSE) of the CNN model
can be given as

loss � E(Z , target)

The loss function E is defined as

E(Z , target) � 1

10

10∑
k�1

(
Zk − targetk

)2
(3.7)

Zk is the kth output (in this case the network will produce 10 outputs representing
class probabilities) generated by the CNN and targetk is the ground truth of the input.

E(Z , target) is the error/loss which represents how far the prediction of the net-
work is from the actual target.

The purpose of training is to minimize the loss function and to do so the weights
of the network are continuously updated until the minimum value is achieved. After
calculating the error, the gradient of the loss function with respect to each weight of
the neural network is calculated. The weights of the network are then updated with
their respective gradients. This process is continued until the total error is minimized.

To minimize the loss function E, derivative of E is calculated w.r.t weight wi.
Since the loss function E is defined as composition of functions in series as

E � loss(softmax(F6(C5(P4(C3(P2(C1(input)))))))

That is, the loss function composes of the softmax activation function, which is a
function of the fully connected layer F6 which in turn is a function of previous layer
C5 and so on.

The loss function E is differentiable and can be differentiated w.r.t any weight
at any layer using chain rule. In backpropagation, the weights of the last layer are
updated first followed by second last layer and so on. To start with, let us find the
derivative of the cost function w.r.t weight wk

i at last layer F6 using chain rule.

∂E

∂wk
i

� ∂E

∂Zk
∗ ∂Zk

∂F6k
∗ ∂F6k

∂wk
i

(3.8)

• E is the cost function.
• Zk represents the output of softmax function.
• F6k is the output of the last layer.
• k is the output layer neuron index.
• wk

i is the ith weight of kth neuron of last layer.

After finding the derivative ∂E
∂wk

i
, the weight wk

i is then updated as

wk
i � wk

i − μ
∂E

∂wk
i

(3.9)

36 3 Training Supervised Deep Learning Networks

where wk
i is the updated weight and μ is the learning rate.

To solve Eq. 3.8, we first need to find the individual derivatives ∂E
∂Zk ,

∂Zk

∂F6k and
∂F6k

∂wk
i
.

which are given as

(i) ∂E
∂Zk � ∂ 1

10

∑10
k�1(Z

k−targetk)
2

∂Zk � 1
5

(
Zk − targetk

)
(ii) ∂Zk

∂F6k � Zk ∗ (
1 − Zk

)
Here, Zk is the output of softmax function and the derivative of softmax function
f (x) is given as f (x) * (1 − f (x)) as shown in Sect. 3.3.3.

(iii) ∂F6k

∂wk
i

� C5i

From Eq. 3.5

F6k �
120∑
i�1

wk
i ∗ C5i � (

wk
1 ∗ C51 + · · · + wk

i ∗ C5i + · · · + wk
120 ∗ C5120

)

The derivative of above function is given as

∂F6k

∂wk
i

� (
0 + · · · + C5i + · · · + 0

) � C5i

Therefore,

∂E

∂wk
i

� 1

5

(
Zk − targetk

) ∗ Zk ∗ (
1 − Zk

) ∗ C5i

Here, k is the neuron number in the last layer and i is the index of the weights to
that neuron connecting input C5i. For simplification in the backward pass and for
propagation of error to previous layers, we calculate the deltas for this layer which
is represented by

δF6k � 1

5

(
Zk − targetk

) ∗ Zk ∗ (
1 − Zk

)
These delta values enable the calculation of the gradient as well as the process of

propagation of this error value to previous layers. The gradient then becomes as

∂E

∂wk
i

� δF6k ∗ C5i

Here, i is the index of the weight to be updated and k is the neuron/filter number
of layer F6.

The gradient ∂E
∂wk

i
calculated above can now be used to update the weight wk

i using
the formula

3.2 Training Convolution Neural Networks 37

wk
i � wk

i − μ
∂E

∂wk
i

Hidden Layer (C5)

The backward pass will continue to update the weights in hidden layer C5. The
equations during forward pass at the layer are given as

C5k � σ

(
15∑
d�0

4∑
m�0

4∑
n�0

wk,d
m,n ∗ P4dm,n + bk

)

where C5k represents the 120 feature maps of convolution layer C5, (m, n) are the
indices of kth filter and d is the channel number.

In order to update the weight wk,d
m,n , we first have to backpropagate the error

from the layer F6 to layer C5 and then calculate the deltas of layer C5. The error
backpropagated at this layer C5 from layer F6 is given by this

ek �
10∑
l�1

δF6l ∗ wl
k

Here, wl
k is the weight of the F6 layer connecting output of the layer C5 to the

layer F6; k is the index of the 120 neurons in layer C5, and l is the index of delta
vector at layer F6.

The deltas for this layer are given by the formula

δC5k � ek ∗ ReLU
′(
xk

)
ReLU′(xk) � {

0 if xk < 0, 1 if xk otherwise
}

Here, xk is the summation of the inputs to the neuron multiplied with the weights
of this layer; it is the input to the neuron before the activation function during the
forward pass, and k is the index of the number of filter at this layer.

The gradient of any weight in this layer C5 is given by

∂E

∂wk,d
m,n

� δC5k ∗ P4dm,n

Here, d is the channel number and (m, n) are the indices of filter weights; k is the
filter number in this layer C5.

Hidden Layer (C3)

To calculate the gradient of any of the weights in this layer, we have to backpropagate
the error from layer C5 through pooling layer P4 to layer C3.

38 3 Training Supervised Deep Learning Networks

eki, j �
120∑
l�1

δC5l ∗ wl,k
i, j

Here, wl,k
i, j is the weights of the next layer C5, l represents the filter number at

that layer, k is the channel number/filter number connecting the output of layer C3
to C5, and (i, j) are the indices of the filter weights at C5, as well as the indices of
the error matrix at C3 layer. Since we propagate error from C5 to C3 through P4
pooling layer, the error value is calculated for only those features which are selected
during the max-pooling operation in forward pass.

This is used to calculate the delta values for this layer C3. These delta values are
then used to calculate the gradient for any weight in this layer C3

δC3ki, j � eki, j ∗ ReLU′(xki, j)
Here, xki, j is the summation of the summation of the inputs to the neuronmultiplied

with the weights of this layer; it is the result that is input to the activation function
during the forward pass.

The gradient for the weights in this layer is calculated using the formula

∂E

∂wk,d
m,n

�
9∑

i�0

9∑
j�0

δC3ki, j ∗ P2dm+i,n+ j

Here, wk,d
m,n is the weights of this layer, k is the filter number, d is the channel

number, (m, n) are the indices of the weights and (i, j) are the indices of the delta
matrix.

Hidden Layer (C1)

To calculate the gradient of any of the weights in this layer, we have to backpropagate
the error from layer C3 through pooling layer P2 to layer C1. This operation is
implemented by full convolution of the delta matrix with the 180° flipped weight
matrix.

ek �
16∑
l�1

δC3l ∗ wl,k(flipped 180◦)

Here, ek is the error matrix for each of the k filters; k goes from 1 to 6 as there
are six filters in layer C1. The size of this error matrix is equal to the size of output
of this layer, which is 28 × 28. The indices (i, j) for each error value of every matrix
ek go from 0 to 27. This is used to calculate the delta values for this layer C1. These
delta values are then used to calculate the gradient for any weight in this layer C1

δC1ki, j � eki, j ∗ ReLU′(xki, j)

3.2 Training Convolution Neural Networks 39

Here, xki, j is the summation of the inputs to the neuron multiplied with the weights
of this layer; it is the result that is input to the activation function during the forward
pass, and (i, j) is the index of the delta matrix which goes from 0 to 27.

The gradient for the weights in this layer is calculated using the formula

∂E

∂wk
m,n

�
27∑
i�0

27∑
j�0

δC1ki, j ∗ input imagem+i,n+ j

Here, wk
m,n is the weights of this layer, k is the filter number, (m, n) are the indices

of the weights and (i, j) are the indices of the delta matrix.

3.3 Loss Functions and Softmax Classifier

A loss function is used to calculate the error (difference between prediction and
ground truth label) during the training process of a deep network.

Depending upon the application, there are many loss functions that can be used
in deep learning networks. For example, mean squared error (L2) loss, cross-entropy
loss, and hinge loss are commonly used in classification problem. Absolute deviation
error (L1) loss is suitable for regression problem. Some of the commonly used loss
functions are discussed below.

3.3.1 Mean Squared Error (L2) Loss

The most commonly used loss function in machine learning is Mean Squared Error
(MSE) loss function. The MSE function, also known as L2 loss function, calculates
the squared average error E of all the individual errors, and is given by

E � 1

n

n∑
i�1

e2i

where ei represents the individual error of ith output neuron which is given by

ei � target(i)−output(i)

During training process, a loss function is used at the output layer to calculate
the error and its derivative (gradient) is propagated in the backward direction of the
network. Theweights of the network are then updated with their respective gradients.

40 3 Training Supervised Deep Learning Networks

3.3.2 Cross-Entropy Loss

Cross-entropy loss is another loss function mostly used in regression and classifica-
tion problems. Cross-entropy loss is given by

H(y) � −
∑
i

y′
i log(yi)

where y′
i is the target label, and yi is the output of the classifier. Cross-entropy loss

function is used when the output is a probability distribution, and thus it is preferred
loss function for softmax classifier.

3.3.3 Softmax Classifier

Softmax classifier is a mathematical function which takes an input vector and pro-
duces output vector in range (0–1), where the elements of the output vector add up
to 1. That is, the sum of all the outputs of softmax function is 1. Softmax function is
given by

S(yi) � eyi∑
j e

y j

Since softmax function outputs probability distribution, it is useful in the final
layer of deep neural networks for multiclass classification.

During backpropagation, the derivative of this loss function is calculated using
quotient rule

dS(yi)

dyi
�

(
eyi · ∑n

j�1 e
y j

)
− (eyi · eyi)(∑n

j�1 e
y j

)2

dS(yi)

dyi
�

(
eyi · ∑n

i e
y j

)
(∑n

j�1 e
y j

)2 − (eyi · eyi)(∑n
j�1 e

y j
)2

�>
dS(yi)

dyi
� (eyi)∑n

j�1 e
y j

− (eyi · eyi)(∑n
j�1 e

y j
)2

�>
dS(yi)

dyi
� (eyi)∑n

j�1 e
y j

−
⎛
⎝ eyi(∑n

j�1 e
y j

)
⎞
⎠

2

�>
dS(yi)

dyi
� S(yi) − (S(yi))

2

3.3 Loss Functions and Softmax Classifier 41

�>
dS(yi)

dyi
� S(yi) · (1 − (S(yi))

since
(eyi)∑n
j�1 e

y j
� S(yi)

Similarly, derivative of S(yi) w.r.t yk is given as

dS(yi)

dyk
�

(
0 · ∑n

j�1 e
y j

)
− (eyi · eyk)(∑n

j�1 e
y j

)2

since deyi
dyk

� 0 as eyi is constant here.

dS(yi)

dyk
� − (eyi · eyk)(∑n

j�1 e
y j

)2

dS(yi)

dyk
� − eyi∑n

j�1 e
y j

.
eyk∑n
j�1 e

y j

dS(yi)

dyk
� −S(yi) · S(yk)

The derivative of S(yi) is then used in Eq. 3.9 above to update the weights.
The gradient calculations are used to update theweights in such away that the total

error is minimized. The simplest way to minimize the error is to use various gradient-
based optimization techniques which are briefly discussed in the next section.

3.4 Gradient Descent-Based Optimization Techniques

Gradient descent is an optimization technique used to minimize/maximize the cost
function by calculating gradients necessary to update the values of the parameters
of the network. Various variants of this optimizing technique define how to calculate
the parameter updates using these gradients.

3.4.1 Gradient Descent Variants

There are three commonly used Gradient Descent (GD) variants. These variants
differ in how many training examples are used to compute the gradient. The three
variants are explained as follows.

42 3 Training Supervised Deep Learning Networks

3.4.1.1 Batch Gradient Descent (GD)

In traditional Gradient Descent (GD), also known as batch gradient descent, error
gradient with respect to weight parameter w is computed for the entire training set
followed by updating the weight parameter as shown below:

w � w − μ · ∇E(w)

where∇E(w) is the error gradient with respect to weight w andµ is the learning rate
that defines the step size to take along the gradient. The learning rate is a hyperpa-
rameter which cannot be too high or too low. Large value of learning rate can miss
the optimum value, and too low learning rate will result in slow training time.

The training set often contains hundreds and thousands of examples that may
demand huge memory which makes it difficult to fit in the memory. As a result,
computing the error gradient can be very slow.

3.4.1.2 Stochastic Gradient Descent (SGD)

The above problem can be rectified by using Stochastic Gradient Descent (SGD),
also known as incremental gradient descent, where gradient is computed for one
training example at a time followed by updating of parameter values. It is usually
much faster than standard gradient descent as it performs one update at a time.

w � w − μ.∇E(w; x(i); y(i))

where ∇E(w; x(i); y(i)) is the gradient of loss function—E(w) w.r.t parameters w,
for the training example {x(i), y(i)}.

In SGD, the one example based on updation of the parameter values causes the
loss function to fluctuate frequently.

3.4.1.3 Mini-batch Gradient Descent

Mini-batch gradient descent also known as mini-batch SGD is a combination of both
standard gradient descent and SGD techniques. Mini-batch SGD divides the entire
training set into mini-batches of n training examples and performs the updating of
parameter values for each mini-batch. This type of gradient descent technique takes
advantage of both standard gradient descent and SGD techniques, and is commonly
used optimization technique in deep learning.

3.4 Gradient Descent-Based Optimization Techniques 43

w � w − μ · ∇E(w; x(i : i + n); y(i : i + n))

Typical mini-batch size varies from 50 to 256 and should also be chosen sensibly
according to the following factors:

• Large batch sizes provide more accurate gradients but have high memory require-
ments.

• Small batch sizes can offer a regularizing effect but require a small learning rate to
maintain stability owing to the high variance in the estimate of the gradient. This
in turn increases the training time because of the reduced learning rate.

3.4.2 Improving Gradient Descent for Faster Convergence

Themain objective of optimization is to minimize the cost/loss or objective function.
There are many methods available that help an optimization algorithm to converge
faster. Some of the commonly used methods are discussed below.

3.4.2.1 AdaGrad

In SGD, the learning rate is set independently of gradients which may sometimes
cause problems. For example, if the gradient is large, large learning rate would
result in large step size, which means it may not achieve the optimum value as it
may keep oscillating around the optimum value, and if the magnitude of gradient
is small, a small learning rate may result in slow convergence. The problem can be
resolved by using some adaptive approach for setting the learning rate. AdaGrad is
one such adaptive model which uses adaptive learning rate by adding squared norms
of previous gradients and dividing the learning rate by the square root of this sum.

wt+1,i � wt,i − μ√
Gi

· ∇t,i

where ∇t,i is the gradient of loss function with respect to parameter wi and Gi �∑t
τ�1 ∇2

τ and ∇τ is gradient at iteration τ .
In this way, parameters with high gradients will have small effective learning rate

and parameters with small gradients receive increased effective learning rate.
Themain advantage ofAdaGrad is that learning rate is automatically adjusted, and

there is no need to manually tune it. However, the sum in the denominator keeps on
increasing which gradually causes the learning rate to decay. This decaying learning
rate can slow down the learning or stop the learning completely.

44 3 Training Supervised Deep Learning Networks

3.4.2.2 AdaDelta

AdaDelta is a modified version of AdaGrad which overcomes the problem of decay-
ing leaning rate. AdaDelta limits the number of previous gradients to some fixed size
x and then the average of these past gradients is stored for efficiency. The average
value Avg

(∇2
t

)
at time t only depends on previous average and current gradient. The

parameter update is then made as

wt+1 � wt − μ√
Avg

(∇2
t

) · ∇t

Since the denominator is just the Root Mean Square (RMS) of the parameters

wt+1 � wt − μ

RMS(∇t)
· ∇t

3.4.2.3 RMSProp

The vanishing learning rate in AdaGrad can be rectified by using RMSProp. It is a
modified version of AdaGrad which discards history from the distant past by intro-
ducing exponentially weighted moving average. RMSProp uses sign of the gradient
instead of the magnitude of the gradient to update the weights. The working of
RMSProp optimizer is as follows:

(a) Set same magnitude of updates for all weights. Set maximum and minimum
allowable weight updates to �max and �min, respectively.

(b) At each iteration, if signs of current gradient and previous gradient are same,
then increase learning rate by a factor of 1.2, i.e. η � η + 1.2.
Therefore, the update �t+1

i j becomes

�t+1
i j � min

(
η + �t

i j ,�max
)

(c) If signs of current gradient and previous gradient are different, then decrease
the learning rate by a factor of 0.5, i.e., η � η − 0.5

�t+1
i j � max

(
η − �t

i j ,�min
)

3.4.2.4 Adam

Adaptive Moment Estimation (Adam) is an adaptive optimization technique that
takes advantages of AdaGrad and RMSProp. Like AdaDelta and RMSProp, Adam
saves an exponentially decaying average of previous squared gradients vt . In addition
to that, Adam also computes the average of the second moments of the gradients mt .

3.4 Gradient Descent-Based Optimization Techniques 45

mt and vt which are values of the mean and uncentered variance, respectively, are
given as

mt � β1mt−1 + (1 − β1)gt

vt � β2vt−1 + (1 − β2)gt
2

Adam updates exponential moving averages of the gradient and the squared gra-
dient where the hyperparameters β1, β2 ∈ [0, 1] control the decay rates of these
moving averages.

m̂t � mt

1 − β t
1

v̂t � vt

1 − β t
2

The final formula for update is given as

wt+1 � wt − μ√
v̂t

· m̂t

Adam slightly performs better than other adaptive techniques and converges very
fast. It also overcomes the problems faced by other optimization techniques such as
decaying learning rate, high variance in updates, and slow convergence.

Note that a smoothing term ’e’ is usually added in the denominator of the above
fast converging methods to avoid divide by 0.

3.5 Challenges in Training Deep Networks

Training a deep neural network is a challenging task, and some of the prominent
challenges in training deep models are discussed below.

3.5.1 Vanishing Gradient

Any deep neural network with activation function like sigmoid, tanh, etc. and train-
ing through backpropagation suffers from vanishing gradient problem. Vanishing
gradient makes it very hard to train and update the parameters of the initial layers in
the network. This problem worsens as the number of layers in the network increases.
The aim of backpropagation in neural networks is to update the parameters such that
the error of the network is minimized and actual output gets closer to the target out-
put. During backpropagation, the weights are updated using gradient descent (rate

46 3 Training Supervised Deep Learning Networks

Fig. 3.2 Graph of derivative of sigmoid function

of change in total error E with respect to any weight w). In deep networks, these
gradients determine how much each weight should change. The gradients become
smaller as they propagate through many layers. The sigmoid function is given by

f (x) � 1

1 + e−x

The derivative of this sigmoid function is given as

f ′(x) � 1

1 + e−x

(
1 − 1

1 + e−x

)

Thegraph of the above equation is given in Fig. 3.2. It is evident from the graph that
the maximum point of the function is 0.25 implying that the output of the derivative
of the cost function will always lie between 0 and 0.25. In other words, the errors will
be squeezed to the range 0 and 0.25 at each layer. Therefore, the gradients become
smaller and smaller after each layer and finally vanish leaving top layers untrained.

The vanishing gradient is the primary reason that makes sigmoid or tanh activa-
tions unsuitable for deep networks, and this is where Rectified Linear Units (ReLUs)
come to the rescue. ReLU activation function does not suffer from vanishing gradi-
ent because there is no squeezing of inputs as the derivative is always 1 for positive
inputs. A Rectified Linear Unit (ReLU) outputs 0 for input less than 0 and raw output
otherwise. That is, if the input x is less than 0, then the output is 0 and if x is greater
than 0, the output is equal to the input x and its derivative is 1.

That is f (x) = x and f′(x) � 1 for x > 0.

3.5 Challenges in Training Deep Networks 47

3.5.2 Training Data Size

Deep networks use training data for learning and are capable of learning complex
nonlinear relationships between input data and output label. Deep networks require
a large number of parameters to be learnt before it can be utilized to deliver the
desired result. The number of parameters in deep models is large. More complex
models mean more powerful abstraction, and more parameters which require more
data. So, the size of training data is an important factor which can influence the
success of deep models. In fact, all the successful deep models have been trained
on some very large dataset. For example, AlexNet, GoogleNet, VGG, ResNet, etc.
all have been trained on a vast dataset of images called ImageNet. ImageNet is an
image datasetwhich contains around 1.2million labeled images distributed over 1000
classes.However, one can argue that deepmodels for object recognition and detection
require large number of parameters to deal with different variations, different poses,
different variations in color, etc., and thus require vast size dataset for training. On the
other hand, less complex problems (like classification of medical images) where the
variations are very small as compared to variations mentioned above can be solved
using less complex models which do not require huge training datasets. The claim is
true to some extent, but model complexity alone cannot decide the size of the data
required for training. Training data quality also plays an import role in it. Noisy data
means low Signal-to-Noise Ratio (SNR) in the data and lower SNR means more
data is required for convergence. Therefore, the size of dataset really depends on the
complexity of the problem being studied, and the quality of data.

Irrespective of the complexity of the task, large training data size can significantly
improve the performance of deep models. That is, the larger the training data size,
the better the accuracy. But the question “How much data is enough?” still remains
unanswered, and there is no rule of thumb that can define exact number of examples
required to train a particular deep model.

3.5.3 Overfitting and Underfitting

Once a model is trained on a training dataset, it is expected to perform well on
new, previously unseen data which was not present during learning. The ability
of a machine learning model to perform well on new and unseen data is called
generalization. Generalization is one of the objectives of a good deep learning
model. To estimate the generalization ability of a deep learning model, it is tested on
data collected separately from the training set.

Deep learning models can suffer from two problems, viz. overfitting and under-
fitting and both can lead to poor model performance.

Overfitting occurs when a model is trained, and it performs so well on training
data that it is unable to generalize to new data. That is, the model has low training

48 3 Training Supervised Deep Learning Networks

Fig. 3.3 Overfitting: training error (blue), validation error (red) as a function of the number of
iterations

error but is unable to achieve low test error. In this case, the model is memorizing
the data instead of learning. See Fig. 3.3.

Underfitting occurswhen amodel is not able to learn properly and its performance
on the training set is poor.

The most common problem in deep learning is overfitting. Deep models like Con-
volutional Neural Network (ConvNet) have a large number of learnable parameters
that must be learnt before they can be utilized to perform the task of interest. In
order to train these models, extensively large training data with a specific end goal
is required to accomplish the desired performance. If the training data is too small
compared to the number of weights to be learned, then the network suffers from
overfitting.

Overfitting is a common problem in deep networks, however, there are few tech-
niques available that can be used in deep learning models to limit overfitting:

(a) Increase the training dataset.
(b) Reducing network size.
(c) Data augmentation: Modifying the current training data in a random way (Scal-

ing, zooming, translation, etc.) to generate more training data.
(d) Interpolate weight penalties like L1 and L2 regularization and

soft weight sharing.
(e) Dropout: The most popular technique to reduce overfitting isDropout. Dropout

refers to dropping out neurons/units in a neural network during training. Drop-
ping a unit means temporarily detaching it from the network including all its

3.5 Challenges in Training Deep Networks 49

Fig. 3.4 a A simple neural network, b neural network after dropout

inward and outward connections (Fig. 3.4). The dropped-out neurons neither
contribute to the forward pass nor do they contribute in backward pass. By
using dropout, the network is forced to learn more robust features as network
architecture changes with each input.

3.5.4 High-Performance Hardware

Training deep models on huge datasets require machines with sufficient processing
power and memory. In order to get high efficiency and quick training time, it is
highly recommended to use multi-core high-performance Graphics Processing Units
(GPUs). These high-performance machines, GPUs, and memory are very costly and
consume a lot of energy. Therefore, adopting deep learning solutions to real world
becomes expensive and energy-consuming task.

3.6 Weight Initialization Techniques

One of the first tasks after designing a deep model is weight/parameter initialization.
Theweights which are learnt during trainingmust have some initial values to start the
training. Weight initialization is an important step which can have an intense effect
on both the convergence rate and final accuracy of a network. Arbitrary initialization
can lead to slow convergence or can completely freeze the learning process. A flawed
or imperfect initialization of weights can impede the learning of a nonlinear system.
Therefore, it is important to choose a robust technique to initialize the weights of
a deep model. There are quite a few weight initialization techniques available each
with its own weak features. Some initialization techniques are discussed below.

50 3 Training Supervised Deep Learning Networks

3.6.1 Initialize All Weights to 0

A simple way is to start from zero-valued weights and update these weights during
training. This seems a sound idea but it has a problem associated with it. When all
weights are initialized to 0, their derivative with respect to the loss function will be
same for all weights. Thus, all the weights will have same value after successive
iteration. This continues for all the training iterations making the model equivalent
to a linear model.

3.6.2 Random Initialization

Another way is to initialize the weights with some random values (normal distri-
bution) so that all weights are unique and compute distinct updates. This, however,
suffers from two problems:

(a) VanishingGradients: If theweights are too small, their gradients will get smaller
and smaller and finally vanish as they flow through different layers during back-
propagation. This results in slow convergence and in worst case can freeze the
learning process completely.

(b) Exploding Gradients: This is the opposite case of vanishing gradients.When the
weights are too large, their gradients will be large as well causing large updates
in the network weights. This results in unstable network as the weights keep
oscillating around the minima. In worst case, the weights can become so large
that overflow occurs and the output becomes NaN.

3.6.3 Random Weights from Probability Distribution

One good way to initialize weights is to assign the weights from a Gaussian distribu-
tionwith zeromean and finite variance.With finite variance, the problemof vanishing
and exploding gradients can be avoided. This type of technique in which weights are
initialized such that variance remains same is called Xavier initialization.

For weight initialization, pick weights from a Gaussian distribution with zero
mean and a variance of 1/N , where N is the number of input neurons.

Xavier initialization is extensively used in neural networkswith sigmoid activation
function. Xavier initialization does not work well with ReLU activation function as
it faces difficulties to converge. A modified version that uses

var(wi) � 2

N
, instead of var(wi) � 1

N

works well with ReLU activation function.

3.6 Weight Initialization Techniques 51

3.6.4 Transfer Learning

Another idea to initialize weights of a network is to transfer learnt weights from a
trained model into the target model. In this way, no initialization actually takes place
and the model gets previously learnt weights. This process of reusing or transfer-
ring weights learnt for one task into another similar task is called transfer learning.
Transfer learning thus refers to extracting the learnt weights from a trained base
network (pretrained model) and transferring it to another untrained target network
instead of training this target network from scratch. In this way, features learned
in one network are transferred and reused in another network designed to perform
similar task. Transfer learning has gained popularity in deep learning especially on
convolutional neural networks. It effectively reduces training time and also improves
accuracy of models designed for tasks with minimum or inadequate training data.
Transfer learning can be used in the following ways:

(a) Pretrained model as fixed feature extractor: In this scenario, the last fully con-
nected layer (classifier layer) is replaced with a new linear classifier and this last
layer is then trained on new dataset. In this way, the feature extraction layers
remain fixed and only the classifier gets fine-tuned. This strategy is best suited
when the new dataset is insufficient but similar to the original dataset.

(b) Fine-tune wholeModel: Take a pretrainedmodel, replace its last fully connected
layer (classifier layer) with new fully connected layer and retrain the whole
network on new dataset by continuing backpropagation up to the top layers. In
this way, all the weights are fine-tuned for new task.

Transfer learning hasmany advantages and few drawbacks aswell. Transfer learn-
ing is only possible when the two tasks have some amount of similarity. For totally
different tasks, transfer learning may or may not work well. Furthermore, in order
to use transfer learning, the two models should be compatible, i.e., base model and
target model should have similar architecture.

3.7 Challenges and Future Research Direction

Many researchers have used deep networks and achieved good results in a wide
range of applications. Despite this, application of deep networks in a given applica-
tion poses many challenges and one of the challenges is training and optimization.
Training deep models is not an easy task; just throwing raw training data and expect-
ing that deep models will eventually learn by itself is not correct. Given right type
of data and hyperparameters, a moderately simple model may perform well. But in
general, learning an optimal deep model for a given application depends on various
issues that need to be addressed carefully. Activation function, learning rates, weight
initialization, data normalization, regularization, learning model structure, etc. all
play an important role in the training process and to make appropriate selection or to

52 3 Training Supervised Deep Learning Networks

choose an optimal value of a parameter is a challenging task. In addition, optimizing
a cost function in general is still a difficult task. There are a number of challenges
associated with neural network optimization problem and among these vanishing
gradients, exploding gradients, local minima, flat regions, and local versus global
structure are most common. In addition, optimization techniques are said to have
many theoretical limitations as well which also needs to be explored.

Bibliography

Cho, J., Lee, K., Shin, E., Choy, G., Do, S.: How much data is needed to train a medical image deep
learning system to achieve necessary high accuracy? arXiv preprint arXiv:1511.06348. 19 Nov
2015

Dauphin,Y.N., Pascanu,R.,Gulcehre, C., Cho,K.,Ganguli, S., Bengio,Y.: Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization. In: Advances in Neural
Information Processing Systems, pp. 2933–2941 (2014)

Erickson, B.J., Korfiatis, P., Kline, T.L., Akkus, Z., Philbrick, K., Weston, A.D.: Deep learning in
radiology: does one size fit all? J. Am. Coll. Radiol. 15(3), 521–526 (2018)

Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Book in preparation for MIT Press. URL
http://www.deeplearningbook.org (2016)

He,K., Zhang,X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance
on imagenet classification. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1026–1034 (2015)

Kingma, D.P., Adam, J.B.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
22 Dec 2014

Kumar, S.K.: On weight initialization in deep neural networks. arXiv preprint arXiv:1704.08863.
28 Apr 2017

Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing. Neural Comput.
4(4), 473–493 (1992)

Sussillo, D., Abbott, L.F.: Random walk initialization for training very deep feedforward networks.
arXiv preprint arXiv:1412.6558. 19 Dec 2014

Wilson,D.R.,Martinez,T.R.:Thegeneral inefficiencyof batch training for gradient descent learning.
Neural Netw. 16(10), 1429–1451 (2003)

http://arxiv.org/abs/1511.06348
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1704.08863
http://arxiv.org/abs/1412.6558

Chapter 4
Supervised Deep Learning Architectures

4.1 Introduction

Many supervised deep learning architectures have evolved over the last few years,
achieving top scores on many tasks. Deep learning architectures can achieve high
accuracy; sometimes, it can exceed human-level performance. Supervised training of
convolutional neural networks,which containmany layers, is done byusing a large set
of labeled data. Some of the supervised CNN architectures proposed by researchers
include LeNet-5, AlexNet, ZFNet, VGGNet, GoogleNet, ResNet, DenseNet, and
CapsNet. These architectures are briefly discussed in this chapter.

4.2 LeNet-5

LeNet-5 is composed of seven layers which are fed by an input layer. The size of
the input image used in LeNet-5 is 32 × 32 pixels. The values of the input pixels
are normalized; as a result of this, the mean of the input tends to zero and variance
roughly one, which accelerates the learning process. The architecture diagram of
LeNet-5 is given in Fig. 4.1, and details of various layers are given in Table 4.1.

The first layer of LeNet-5 is the convolutional layer that produces six featuremaps
of size 28 × 28. There are 156 trainable parameters and 122,304 connections in the
first convolutional layer.

The layer 2 performs down-sampling. There are 12 trainable parameters and 5880
connections in this layer. The third layer is a convolutional layer which produces 16
feature maps of size 10× 10. The layer 4 is a subsampling layer that has 32 trainable
parameters and 2000 connections.

The fifth layer is also a convolutional layer that produces 120 feature maps of size
1× 1, and there are 48,120 connections in this layer. The layer 6 is a Fully Connected
Layer (FCL) and has 84 outputs and 10,164 trainable parameters. The output layer

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_4&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_4

54 4 Supervised Deep Learning Architectures

Conv (120)

Input

Conv (5x5)

Tanh

subsampling

Conv (5x5)

Tanh

subsampling

Tanh

FC (84)

Softmax

Fig. 4.1 Architecture diagram of LeNet-5

Table 4.1 Details of various layers of LeNet-5

Layer name Input
size

Filter
size

Window
size

#
Filters

Stride Padding Output
size

#
Feature
maps

Conv 1 32 × 32 5 × 5 – 6 1 0 28 × 28 6

Subsampling-
1

28 × 28 – 2 × 2 – 2 0 14 × 14 6

Conv 2 14 × 14 5 × 5 – 16 1 0 10 × 10 16

Subsampling-
2

10 × 10 2 × 2 16 2 0 5 × 5 16

Conv 3 5 × 5 5 × 5 – 120 1 0 1 × 1 120

Fully
connected

120 – – – – – 1 × 1 84

Softmax 84 – – – – – 1 × 1 10

has radial basis function (Euclidean), one for each of the 10 output classes, and each
output class is connected with 84 inputs.

The convolutional layers and the subsampling layers perform the task of feature
extraction from the given image and the fully connected layers perform the task of
classification. Figure 4.2 shows the handwritten digit “7” as input image. The target
probability is 1 for the digit “7” and 0 for all the remaining nine digits. Therefore,
the value of the target vector for digit “7” is given as [0, 0, 0, 0, 0, 0, 1, 0, 0].
Backpropagation is used to calculate the gradient of the loss function relating to all
the weights in all layers of the CNN network.

4.2 LeNet-5 55

Fig. 4.2 Feature maps at various layers of LeNet-5

Training of LeNet-5:

Step 1: Random values are used for initialization of all filter parameters and weights.
Step 2: During this step, the input image goes through various layers, i.e., convo-
lutional layers, subsampling layers, and fully connected layers. This step performs
forward propagation which finds the output probabilities for all the classes in the
network.
Step 3: The total error between output probabilities and target probabilities is calcu-
lated at the output layer of the network during this step.
Step 4: During this step, the error gradients with respect to weights in the network
are calculated and gradient descent algorithm is used to update all weights and filter
parameters to minimize the output error. The weights are adjusted proportionately
depending on their contribution to the total error. Only the values of the connection
weights and filter matrix are updated. The hyper-parameters like filter sizes and
number of filters of the network are fixed and do not change during the training
process.
Step 5: Steps 2–4 are repeated with all images present in the training set.

As shown in Table 4.1, the input image of size 32 × 32 is convolved with a filter
of size 5 × 5 to generate six feature maps of size 28 × 28. Similarly, pooling is
applied at layer 2 which down-samples the feature map of the first layer to 14 × 14.
These feature maps of size 14 × 14 are again convolved with 16 filters of size 5 ×
5 resulting in 16 feature maps of size 10 × 10. The result is again down-sampled
to feature maps of size 5 × 5, and these feature maps are passed to a convolutional
layer having a filter of size 5 × 5, which generates 120 feature maps of size 1 × 1.
The output is then passed to a fully connected layer having 84 output neurons. The
final classification layer in the network has ten neurons for ten classes.

4.3 AlexNet

One of the problems associated with training a deep neural network is vanishing gra-
dient problem. This problem can be addressed if an activation function like Rectified
Linear Unit (ReLU) is used. AlexNet is the first network which has used Rectified
Linear Unit (ReLU) activation function.

56 4 Supervised Deep Learning Architectures

FC (4096)

ReLu

Input

Conv (11x11)

ReLu

Max-Pool

Normalization

Conv (5x5)

ReLu

Normalization

Max-Pool

Conv (3x3)

ReLu

Conv (3x3)

ReLu

FC (4096)

ReLu

FC (1000)Conv (3x3)

ReLu

Max-Pool

Softmax

Fig. 4.3 Architecture diagram of AlexNet

The performance of AlexNet has been evaluated on ImageNet database. This
database contains around 15 million high-resolution-labeled images of 22,000 sub-
jects. AlexNet was trained on a subset of ImageNet database of around 1.2 million
images of 1000 classes and tested on 150,000 images belonging to 1000 classes. The
network was trained on GTX 580 GPU with 3 GB memory.

AlexNet is composed of many layers of convolutional, max-pooling, and fully
connected layers. The first layer is convolutional layer, and the output of this layer is
96 images of size 55 × 55. The second layer is a max-pooling layer with output of
size 27 × 27 × 96 produced by using a window of size 3 × 3 with a stride of 2. The
third layer is a convolutional layer with 256 filters of size 5 × 5 used with a stride
of 1 and padding of 2. Layer 4 is a down-sampling layer also called max-pooling
which produces an output of size 13 × 13 × 256 by using a window of size 3 × 3
with a stride of 2. The layer 5 of this network is a convolutional layer that outputs

4.3 AlexNet 57

Table 4.2 Details of various layers of AlexNet

Layer
name

Input size Filter
size

Window
size

#
Filters

Stride Padding Output
size

#
Feature
maps

Conv 1 224 × 224 11 × 11 – 96 4 1 55 × 55 96

Max-
pooling
1

55 × 55 – 3 × 3 – 2 0 27 × 27 96

Conv 2 27 × 27 5 × 5 – 256 1 2 27 × 27 256

Max-
pooling
2

27 × 27 – 3 × 3 – 2 0 13 × 13 256

Conv 3 13 × 13 3 × 3 – 384 1 1 13 × 13 384

Conv 4 13 × 13 3 × 3 – 384 1 1 13 × 13 384

Conv 5 13 × 13 3 × 3 – 256 1 1 13 × 13 256

Max-
pooling
3

13 × 13 – 3 × 3 – 2 0 6 × 6 256

Fully
con-
nected
1

4096 neurons

Fully
con-
nected
2

4096 neurons

Fully
con-
nected
3

1000 neurons

Softmax 1000 Classes

the feature maps of size 13 × 13 × 384 by using 384 filters of size 3 × 3 with a
stride of 1 and a padding of 1. The sixth layer of this network is a convolutional layer
that uses 384 filters of size 3 × 3 with a stride of 1 and padding of 1. Layer 7 is a
convolutional layer that uses 256 filters of size 3 × 3, with a stride of 1, and padding
of 1. The eighth layer is a down-sampling/max-pooling layer that uses a window of
size 3 × 3 with a stride of 2. Layer 9 is the first fully connected layer with 4096
neurons. Layer 10 is a second fully connected layer with 4096 neurons. The eleventh
layer of this network is a third fully connected layer with 1000 neurons. Final layer
is a softmax layer. Figure 4.3 shows the architecture diagram of AlexNet, and the
details of various layers of the AlexNet are given in Table 4.2.

AlexNet takes the input image of size 224 × 224, and the same is passed through
five convolving layers, three fully connected layers, and then finally through softmax

58 4 Supervised Deep Learning Architectures

layer for classification.Usingpurely supervised learning,AlexNet showed that a large
deep convolutional neural network can achieve good results on highly challenging
datasets. No unsupervised pretraining was used in AlexNet.

4.4 ZFNet

ZFNet has the same architecture as that of AlexNet, but with smaller convolutional
kernels of size 7 × 7 instead of size 11 × 11 used in AlexNet. The smaller con-
volutional kernels helped in obtaining better hyperparameters than that obtained by
AlexNet and that too with less computational efforts.

FC (4096)

ReLu

Input

Conv (7x7)

ReLu

Max-Pool

Conv (5x5)

ReLu

Max-Pool

Conv (3x3)

ReLu

Conv (3x3)

ReLu

FC (4096)

ReLu

FC (1000)Conv (3x3)

ReLu

Max-Pool

Softmax

Fig. 4.4 Architecture diagram of ZFNet

4.4 ZFNet 59

Table 4.3 Details of various layers of ZFNet

Layer
name

Input size Filter
size

Window
size

#
Filters

Stride Padding Output size #
Feature
maps

Conv 1 224 × 224 7 × 7 – 96 2 0 110 × 110 96

Max-
pooling
1

110 × 110 – 3 × 3 – 2 0 55 × 55 96

Conv 2 55 × 55 5 × 5 – 256 2 0 26 × 26 256

Max-
pooling
2

26 × 26 – 3 × 3 – 2 0 13 × 13 256

Conv 3 13 × 13 3 × 3 – 384 1 1 13 × 13 384

Conv 4 13 × 13 3 × 3 – 384 1 1 13 × 13 384

Conv 5 13 × 13 3 × 3 – 256 1 1 13 × 13 256

Max-
pooling
3

13 × 13 – 3 × 3 – 2 0 6 × 6 256

Fully
con-
nected
1

4096 neurons

Fully
con-
nected
2

4096 neurons

Fully
con-
nected
3

1000 neurons

Softmax 1000 Classes

ZFNet introduced an innovative visualization method called deconvolution.
Deconvolution is a process that uses filtering and pooling in the reverse order of
the forward pass so that input pixel space can be reconstructed from the intermediate
feature maps.

The visualization technique was used to analyze the feature maps of the first
and the second layers of the AlexNet architecture; the issues identified there were
improved in ZFNet. The first layer filters produced appreciable low- and high-
frequency information but negligible middle frequencies information. The visualiza-
tion of the second layer feature maps indicated aliasing artifacts, which was caused
by the large stride of 4 used in the first convolutional layer. To address these issues,
the filter size in the first layer of ZFNet was reduced from 11 × 11 to 7 × 7 and the
stride of the convolution was decreased from 4 to 2. This helped the architecture to
retain more information in the feature maps of the first layer and the second layer,
which improved the classification performance.

60 4 Supervised Deep Learning Architectures

ZFNet usedReLUactivation function, cross-entropy loss error function, and batch
stochastic gradient descent for training. It was trained onGTX580 graphical process-
ing unit (GPU). Figure 4.4 shows architecture diagram used in ZFNet and Table 4.3
shows details of various layers of ZFNet.

The ZFNet has a total of five convolutional layers, three down-sampling layers,
three fully connected layers, and a softmax layer as shown in Fig. 4.4.

Table 4.3 shows an input image of size 224× 224 is passed through various layers
indicating filter size, stride, and padding values for the classification task.

4.5 VGGNet

VGGNet has more layers than ZFNet and it was made feasible by using very small
convolutional filters of size 3×3 in all layers. This improved the accuracy ofVGGNet
significantly as compared to ZFNet architecture.

AlexNet used a large receptive field of 11 × 11 with a stride of 4 in the first
convolutional layer. This receptive field was reduced in ZFNet to 7 × 7 with a stride
of 2 in thefirst convolutional layer.VGGNet proposed theuseof a very small receptive
field of 3 × 3 with stride of 1 throughout the whole network. Two convolution layers
with receptive field of 3 × 3 without a spatial pooling in between have an effective
receptive field of 5 × 5, and three such layers have an effective receptive field of 7 ×
7. The use of three 3 × 3 convolutional layers is better than one 7 × 7 convolutional
layer because of the two reasons: (i) The three 3× 3 convolutional layers make use of
three ReLU functions instead of one ReLU function used in one 7 × 7 convolutional
layer. This makes decision function to be more discriminative. (ii) The number of
parameters is decreased assuming that the number of channels used in the three
convolutional layers is same.

The number of filters in case of VGGNet doubles after each max-pooling layer; it
strengthens the objective of reduction in spatial dimensions but increases the depth.
No Local Response Normalization (LRN) is used in this network. Other important
characteristic of VGGNet is that it uses scale jittering during training which is one of
the data augmentation techniques. The size of the input image to the VGG network
is 224 × 224 RGB image and this size is fixed. The preprocessing in this network
involves subtracting the mean RGB value, calculated using the training set, from
each pixel. The value of padding is set to 1 for all 3 × 3 convolutional layers. Five
max-pooling layers are used for spatial down-sampling. Max-pooling is performed
using a 2 × 2 window with a stride of 2. The number of convolutional layers used in
various VGG variants is different. The VGG-16 variant has 13 convolutional layers,
5 subsampling layers, and 3 fully connected layers. The first two fully connected
layers have 4096 neurons each, and the last fully connected layer has 1000 neurons
for 1000 classes. All the convolutional layers of VGGNet use the ReLU activation
function. Figure 4.5 shows the architecture diagram of VGGNet-16, and Table 4.4
shows details of various layers of VGGNet-16.

4.5 VGGNet 61

Table 4.4 Details of various layers of VGGNet-16

Layer
name

Input size Filter
size

Window
size

#
Filters

Stride Padding Output
size

#
Feature
maps

Conv 1 224 × 224 3 × 3 – 64 1 1 224 × 224 64

Conv 2 224 × 224 3 × 3 – 64 1 1 224 × 224 64

Max-
pooling
1

224 × 224 – 2 × 2 – 2 0 112 × 112 64

Conv 3 112 × 112 3 × 3 – 128 1 1 112 × 112 128

Conv 4 112 × 112 3 × 3 – 128 1 1 112 × 112 128

Max-
pooling
2

112 × 112 – 2 × 2 – 2 0 56 × 56 128

Conv 5 56 × 56 3 × 3 – 256 1 1 56 × 56 256

Conv 6 56 × 56 3 × 3 – 256 1 1 56 × 56 256

Conv 7 56 × 56 3 × 3 – 256 1 1 56 × 56 256

Max-
pooling
3

56 × 56 – 2 × 2 – 2 0 28 × 28 256

Conv 8 28 × 28 3 × 3 – 512 1 1 28 × 28 512

Conv 9 28 × 28 3 × 3 – 512 1 1 28 × 28 512

Conv
10

28 × 28 3 × 3 – 512 1 1 28 × 28 512

Max-
pooling
4

28 × 28 – 2 × 2 – 2 0 14 × 14 512

Conv
11

14 × 14 3 × 3 – 512 1 1 14 × 14 512

Conv
12

14 × 14 3 × 3 – 512 1 1 14 × 14 512

Conv
13

14 × 14 3 × 3 – 512 1 1 14 × 14 512

Max-
pooling
5

14 × 14 – 2 × 2 – 2 0 7 × 7 512

Fully
con-
nected
1

4096 neurons

(continued)

62 4 Supervised Deep Learning Architectures

Table 4.4 (continued)

Layer
name

Input size Filter
size

Window
size

#
Filters

Stride Padding Output
size

#
Feature
maps

Fully
con-
nected
2

4096 neurons

Fully
con-
nected
3

1000 neurons

Softmax 1000 Classes

This network performed well on localization as well as image classification tasks.
The architecture was trained on four NVIDIA Titan Black Graphical Processing
Units (GPUs).

Table 4.4 shows that an input image of size 224 × 224 is passed through various
layers indicating filter size, stride, and padding values for the classification task.

The VGGNet has many variants like VGGNet-16, VGGNet-19, etc.

Conv (3x3)

ReLu

Conv (3x3)

Conv (3x3)

Conv (3x3)

FC (4096)

ReLu

FC (4096)

ReLu

FC (1000)

SoftmaxReLu

Conv (3x3)

ReLu ReLu

Conv (3x3)

ReLu

ReLu

Conv (3x3)

ReLu

Max-Pool

Max-Pool Max-Pool

Conv (3x3)

Max-Pool

Max-Pool

Conv (3x3)

Conv (3x3) Conv (3x3)

ReLu

ReLu

ReLu

ReLu

Conv (3x3)

ReLu

Input

Conv (3x3)

ReLu

Fig. 4.5 Architecture diagram of VGGNet-16

4.6 GoogleNet 63

4.6 GoogleNet

GoogleNet was introduced to address the following two issues:

(i) Increasing the depth of deep network implies increasing the number of parame-
ters which makes the network more prone to overfitting. This is especially true
if there are a limited number of labeled examples in the training dataset.

(ii) Increasing the network size uniformly increases the computational resources
dramatically.

GoogleNet used an inception module as the basic building block of the network to
address the above two issues. The inception module applies multiple convolutions,
with different filter sizes, as well as pooling to the same input. It then concatenates
the multiple-scale features produced by filters of different sizes.

GoogleNet uses 12 times fewer parameters than AlexNet. In this architecture, the
use of average pooling at the end reduces the volume 7 × 7 × 1024 to a volume 1 ×
1 × 1024 as a result of which it saves a huge number of parameters.

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Filter concatenation

Previous Layer

1x1 convolutions

3x3 convolutions

1x1 convolutions

5x5 convolutions

1x1 convolutions

1x1 convolutions

3x3 max pooling

Filter concatenation

Previous layer

(b)

(a)

Fig. 4.6 Inception module of GoogleNet (a) naïve version, (b) with 1 × 1 convolution before
computational expensive 5 × 5 and 3 × 3 convolutions

64 4 Supervised Deep Learning Architectures

Inception 3a

Inception 3b

Inception 4a

Inception 4b

Inception 4c

Inception 4d

Inception 4e

FC

Inception 5a

Inception 5b

Softmax

Input

Conv (7x7)

LocalRespNorm

MaxPool

Conv (1x1)

Conv (3x3)

LocalRespNorm

MaxPool

MaxPool

MaxPool

MaxPool

Fig. 4.7 Architecture diagram of GoogleNet

In order to evade patch alignment problems, the inception architecture is limited
to filter sizes 5 × 5, 3 × 3 and 1 × 1. Each inception module of the network involves
grouping of filter outputs which are concatenated into a single output vector which
produces the input for the next module. As pooling operations are important for
success of CNN networks, a substitute parallel pooling path has been added to each
module. Figure 4.6a shows the inception module used in GoogleNet.

One problem with the inception modules is that even a 5 × 5 convolution can be
computationally costly. This problem becomes worse when pooling units are added
to the mix. The merging of the result of the pooling layer with the convolutional
layers increases the number of outputs.

To address this problem, the GoogleNet architecture proposed second modifi-
cation of applying dimension reductions wherever the computational requirements
increased. This is achieved by using 1 × 1 convolution before making use of the
computationally expensive 3 × 3 and 5 × 5 convolutions. The updated inception
module based on this modification is shown in Fig. 4.6b.

A total of nine inception modules were used in GoogleNet, and each inception
module had two layers. Thenetworkhad a total of 27 layers (22 layerswith parameters
and 5 pooling layers). The 27 layers weremade up of about 100 independent building
blocks. The architecture diagram of GoogleNet is shown in Fig. 4.7, and details of
various layers of GoogleNet are shown in Table 4.5.

4.6 GoogleNet 65

Ta
bl
e
4.
5

D
et
ai
ls
of

va
ri
ou
s
la
ye
rs
of

G
oo
gl
eN

et

L
ay
er

na
m
e

In
pu
ts
iz
e

Fi
lte

r
si
ze

W
in
do
w
si
ze

#
Fi
lte

rs
St
ri
de

Pa
dd
in
g

O
ut
pu
ts
iz
e

#
Fe
at
ur
e
m
ap
s

C
on
vo
lu
tio

n
22
4

×
22
4

7
×

7
–

64
2

2
11
2

×
11
2

64

M
ax

po
ol

11
2

×
11
2

–
3

×
3

–
2

0
56

×
56

64

C
on
vo
lu
tio

n
56

×
56

3
×

3
–

19
2

1
1

56
×

56
19
2

M
ax

po
ol

56
×

56
–

3
×

3
19
2

2
0

28
×

28
19
2

In
ce
pt
io
n
(3
a)

28
×

28
–

–
–

–
–

28
×

28
25
6

In
ce
pt
io
n
(3
b)

28
×

28
–

–
–

–
–

28
×

28
48
0

M
ax

po
ol

28
×

28
–

3
×

3
48
0

2
0

14
×

14
48
0

In
ce
pt
io
n
(4
a)

14
×

14
–

–
–

–
–

14
×

14
51
2

In
ce
pt
io
n
(4
b)

14
×

14
–

–
–

–
–

14
×

14
51
2

In
ce
pt
io
n
(4
c)

14
×

14
–

–
–

–
–

14
×

14
51
2

In
ce
pt
io
n
(4
d)

14
×

14
–

–
–

–
–

14
×

14
52
8

In
ce
pt
io
n
(4
e)

14
×

14
–

–
–

–
–

14
×

14
83
2

M
ax

po
ol

14
×

14
–

3
×

3
–

2
0

7
×

7
83
2

In
ce
pt
io
n
(5
a)

7
×

7
–

–
–

–
–

7
×

7
83
2

In
ce
pt
io
n
(5
b)

7
×

7
–

–
–

–
–

7
×

7
10
24

A
vg
-p
oo
l

7
×

7
–

7
×

7
–

–
0

1
×

1
10
24

D
ro
po
ut

(4
0%

)
–

–
–

10
24

–
–

1
×

1
10
24

L
in
ea
r

–
–

–
10
00

–
–

1
×

1
10
00

So
ft
m
ax

–
–

–
10
00

–
–

1
×

1
10
00

66 4 Supervised Deep Learning Architectures

4.7 ResNet

As the number of layers of deep networks increases, its accuracy improves and the
accuracy saturates once the network has converged. However, if the depth is further
increased, then the performance starts getting degraded rapidly. This degradation is
caused by adding more layers to an already converged deep model which results
in higher training error. Thus, there is a need for a strategy that obtains an optimal
deep network for a given application. ResNet was proposed with a residual learning
framework that lets new layers to fit a residual mapping. It is easier to push the
residual to zero when a model has converged than to fit the mapping by a stack of
nonlinear layers.

Given an underlying mappingH(x) to be fit by a few stacked layers, where x is the
input to these layers, the residual learning uses the residual function F(x) � H(x) −
x. It is easier to optimize the residual mapping than to optimize the original, and it can
be realized by a feedforward neural network with shortcut connection as shown in
Fig. 4.8. The shortcut link simply accomplishes identity mapping, and the output of

Convolution Layer-

Convolution Layer-

() +
Identity

Residual Learning

()

Fig. 4.8 ResNet residual learning building block

Fig. 4.9 a ResNet building block, b “Bottleneck” ResNet building block

4.7 ResNet 67

the shortcut link is added to the outcomes of the stacked layers as shown in Fig. 4.8.
The identity shortcut link does not add calculation complexity or parameters.

The residual functionF uses a stack of 2 or 3 layers (more layers are also possible)
as shown in Fig. 4.9. The building block is defined by Eq. (4.1) as

y � F(x, {Wi }) + x (4.1)

where x and y represent the input and output vectors of layers considered. The
function F(x, {Wi }) represents the residual mapping which is to be learnt. The linear
projectionWs is performed by a shortcut link to match the dimensions as in Eq. (4.2):

y � F(x, {Wi }) +Wsx (4.2)

The architecture diagram of ResNet-34 is shown in Fig. 4.10, and Table 4.6 gives
details of various layers of ResNet-34.

4.8 Densely Connected Convolutional Network (DenseNet)

The information present in the input data passes through many layers in a deep
network. This information can vanish and wash out by the time it reaches the end. To
address this problem, Densely Connected Convolutional Network (DenseNet) has
been proposed that concatenates features from previous layers instead of combining
the features from the previous layers.

The ResNet used residual connection where input to the ith layer was obtained
by summation of outputs from the previous layers. In contrast, the DenseNet con-
catenates outputs from the previous layers. The DenseNet is a type of network in
which each layer is connected to every other layer in a feedforward fashion. In this
network, features are never combined bymeans of summation before they are passed
into a layer, rather features are combined by the process of concatenation. Thus, the
nth layer in the network has n number of inputs, comprising the feature maps of all
the previous convolutional layers. Its own feature maps are passed on to all (N −
n) layers that follow it. This results in N (N+1)

2 connections in an N-layered network,
instead of just N . As the network employs dense connections, it is referred as Dense
Convolutional Network (DenseNet).

An image represented by x0 is passed through a convolutional network comprising
N layers; each of the layers implements a nonlinear transformation represented by
Hn(.), where n indexes the layer of the network. Hn(.) can be a function representing
multiple operations, for example, it can be a function of three operations: batch
normalization, rectified linear units, and convolution (BN, ReLU, Conv(3 × 3)) as
shown in Fig. 4.11. The output of the nth layer is denoted by xn . Direct connections
from any layer to all subsequent layers were introduced in the DenseNet. Thus, the

68 4 Supervised Deep Learning Architectures

Table 4.6 Details of various layers of ResNet-34

Layer name Input size Filter
size

Window
size for
pooling

Filters Stride Padding Output size
Feature
maps

Conv 1 224 × 224 7 × 7 – 64 2 2 112 × 112 64

Conv 2_x 112 × 112 – 3 × 3 – 2 0 56 × 56 64

56 × 56 3 × 3 – 64 1 1 56 × 56 64

56 × 56 3 × 3 – 64 1 1 56 × 56 64

56 × 56 3 × 3 – 64 1 1 56 × 56 64

56 × 56 3 × 3 – 64 1 1 56 × 56 64

56 × 56 3 × 3 – 64 1 1 56 × 56 64

56 × 56 3 × 3 – 64 1 1 56 × 56 64

Conv 3_x 56 × 56 3 × 3 3 × 3 128 2 1 28 × 28 128

28 × 28 3 × 3 – 128 1 1 28 × 28 128

28 × 28 3 × 3 – 128 1 1 28 × 28 128

28 × 28 3 × 3 – 128 1 1 28 × 28 128

28 × 28 3 × 3 – 128 1 1 28 × 28 128

28 × 28 3 × 3 – 128 1 1 28 × 28 128

28 × 28 3 × 3 – 128 1 1 28 × 28 128

28 × 28 3 × 3 – 128 1 1 28 × 28 128

Conv 4_x 28 × 28 3 × 3 3 × 3 256 2 0 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

14 × 14 3 × 3 – 256 1 1 14 × 14 256

Conv 5_x 14 × 14 3 × 3 3 × 3 512 2 0 7 × 7 512

7 × 7 3 × 3 – 512 1 1 7 × 7 512

7 × 7 3 × 3 – 512 1 1 7 × 7 512

7 × 7 3 × 3 – 512 1 1 7 × 7 512

7 × 7 3 × 3 – 512 1 1 7 × 7 512

7 × 7 3 × 3 – 512 1 1 7 × 7 512

Avg-
pooling
layer

7 × 7 – 7 × 7 – – – 1 × 1 1000

Fully
connected
layer

1000 Classes

4.8 Densely Connected Convolutional Network (DenseNet) 69

Input

Conv (7x7), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU/P

Conv (3x3), ReLU Conv (7x7), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU/P

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU/P

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Conv (3x3), ReLU

Max-Pool

Avg-Pool

FC (1000)

Softmax

Fig. 4.10 Architecture diagram of ResNet-34 layers

nth layer receives input feature maps x0, . . . , xn−1 of all the proceeding layers to
produce output xn as shown in Eq. (4.3):

xn � Hn
([
x0, x1, . . . , xn−1

])
(4.3)

where
[
x0, x1, . . . , xn−1

]
represents the concatenation of feature maps formed in

layers 0, . . . , n − 1.
Figure 4.11 shows the dense block diagram along with a transition layer. The

Hn(.) function in each dense block represents three operations: batch normalization,
rectified linear units, and convolution (BN, ReLU, Conv(3 × 3)). Each layer of
DenseNet has typically many inputs but the layer produces only k output feature

70 4 Supervised Deep Learning Architectures

maps. The network uses 1 × 1 convolution as a bottleneck layer before each 3
× 3 convolution to reduce the number of input feature maps which improves the
computational efficiency. The bottleneck version of Hn(.) function represents the
following operations: (BN, ReLU, Conv(1 × 1), BN, ReLU, Conv(3 × 3)). The
transition layer between two dense blocks uses 1 × 1 convolution and 2 × 2 average
pooling to further reduce the number of feature maps.

Architecture diagram of DenseNet is shown in Fig. 4.12. Details of various layers
of DenseNet are given in Table 4.7.

Input

Batch Norm

ReLU

Conv

Batch Norm

ReLU

Conv

Batch Norm

ReLU

1(.)

2(.)

3(.)

Batch Norm

ReLU

Conv

Transition Layer

Fig. 4.11 A five-layer dense block, each layer takes all preceding feature maps as input

4.9 Capsule Network 71

Table 4.7 Details of various layers of DenseNet-121

Layers Input size Filter size Window
size for
pool-
ing

Stride Padding Output
size

Convolution 224 × 224 7 × 7 – 2 2 112 × 112

Max-pooling 112 × 112 – 3 × 3 2 0 56 × 56

Dense block (1) 56 × 56 1 × 1
3 × 3

×6 – – 0 56 × 56

Transition
layer (1)

Convolution 56 × 56 1 × 1 – 0 56 × 56

Average
pooling

56 × 56 – 2 × 2 2 0 28 × 28

Dense block (2) 28 × 28 1 × 1
3 × 3

×12 – 0 28 × 28

Transition
layer (2)

Convolution 28 × 28 1 × 1 – 0 28 × 28

Average
pooling

28 × 28 – 2 × 2 2 0 14 × 14

Dense block (3) 14 × 14 1 × 1
3 × 3

×24 – 0 14 × 14

Transition
layer (3)

Convolution 14 × 14 1 × 1 – 0 14 × 14

Average
pooling

14 × 14 – 2 × 2 2 0 7 × 7

Dense block (4) 7 × 7 1 × 1
3 × 3

×16 – – 0 7 × 7

Average pooling 7 × 7 – 7 × 7 – 0 1 × 1

Fully connected layer 1000 Neurons

Softmax N Classes (N � 100, 1000)

4.9 Capsule Network

The human brain has a mechanism to route image data to parts of the brain where it
is perceived. Convolutional neural networks use layers of filters to extract high-level
features from image data but the routing mechanism is absent in it.

Capsule Network (CapsNet) has been proposed that provides a routing mecha-
nism. A CapsNet can have many capsule layers, where each layer is comprised of a
number of capsules. A capsule is a group of neurons that can perform computations
on their inputs and then compute an output in the form of a vector. The computa-
tions of the neurons within a capsule can represent various properties like pose, size,
position, deformation, orientation, etc. of an entity (object or a part of an object)
that is present in a given image. CapsNet uses the length of the output vector to
represent the existence of an entity. The length of the output vector of a capsule is
not allowed to exceed 1 by applying a nonlinearity that leaves the orientation of the
vector unchanged but scales down its magnitude. A CapsNet proposed incorporating

72 4 Supervised Deep Learning Architectures

Fig. 4.12 Architecture diagram of DenseNet

a routing mechanism between two capsule layers. The routing mechanism makes a
capsule in one layer to communicate to some or all capsules in the next layer.

Architecture diagram of a simple capsule network is shown in Fig. 4.13 and
Table 4.8 gives details of various layers of the capsule network.

The first layer of this simple CapsNet is a convolutional layer that uses 256 filters
of size of 9× 9with a stride of 1. It uses ReLUactivation function. This layer converts
pixel intensities into features which are used as inputs to the primary capsules.

The second layer of theCapsNet is the first capsule layer. This layer has 32 primary
capsules. Each primary capsule has eight convolutional filters of size 9× 9 used with
a stride of two. Each primary capsule receives all 256 feature maps of size 20 × 20
produced by the first layer.

The primary capsules’ layer produces 32 feature maps of size 6 × 6. Each feature
map has a depth of 8, i.e., each feature map is an 8D vector.

The next layer is the second capsule layer which has one 16D capsule for each
digit class. Each capsule in this layer receives input from all the capsules in the first
capsule layer.

4.9 Capsule Network 73

Ta
bl
e
4.
8

D
et
ai
ls
of

va
ri
ou

s
la
ye
rs
of

a
si
m
pl
e
ca
ps
ul
e
ne
tw
or
k

L
ay
er

na
m
e

In
pu
ts
iz
e

Fi
lte

r
si
ze

Po
ol
in
g
si
ze

fo
r

w
in
do
w

#
Fi
lte

rs
C
ap
su
le
s

St
ri
de

Pa
dd
in
g

O
ut
pu
t

si
ze

#
Fe
at
ur
e
m
ap
s

C
on
v
1

28
×

28
9

×
9

–
25
6

–
1

0
20

×
20

25
6

C
ap
su
le
la
ye
r
1

20
×

20
9

×
9

–
8

32
2

0
6

×
6

32
(e
ac
h
w
ith

a
de
pt
h
8)

C
ap
su
le
la
ye
r
2

6
×

6
10
-d
ig
it
ca
ps
ul
es
,o
ne

fo
r
ea
ch

di
gi
t

Fu
lly

co
nn
ec
te
d-
1

51
2
N
eu
ro
ns

Fu
lly

co
nn
ec
te
d-
2

10
24

N
eu
ro
ns

Fu
lly

co
nn
ec
te
d-
3

78
4
(w

hi
ch

af
te
r
re
sh
ap
in
g
gi
ve
s
ba
ck

a
28

×
28

de
co
de
d
im

ag
e)

So
ft
m
ax

10
C
la
ss
es

74 4 Supervised Deep Learning Architectures

Input

Conv (9x9)

ReLU

FC (512)

ReLU

FC (1024)

ReLU

FC (784)

Softmax

Sigmoid

Caps-Layer-2
(Digit-Caps)

Caps-Layer-1
(Primary-Caps)

Fig. 4.13 Architecture diagram of a simple capsule network

The simple CapsNet has a routing mechanism between the two capsule layers
only. Initially, a capsule output from the first capsule layer is sent to all capsules
in the second capsule layer with equal probability. A dynamic routing mechanism
is used to ensure that the output of a capsule is sent to the appropriate capsules
in the next capsule layer and is determined by coupling coefficients. The coupling
coefficients between a capsule in the first layer and all the capsules in the next layer
sum to 1 and are determined by a routing softmax. The coupling coefficients can be
learnt discriminatively at the same time as all other weights.

4.10 Challenges and Future Research Direction 75

4.10 Challenges and Future Research Direction

Although Convolutional Neural Network (CNN)-based architectures have achieved
a great success, there are still a number of areas that need to be investigated further.
First, as the CNN-based architectures are composed of stack of layers or stack of
modules, the challenge is to determine the optimal number of layers or optimal
number ofmodules required for a given application. Determining the optimal internal
structure of a module also needs further study.

Another challenge is to improve execution time. Pretraining of a module that
is independent of other modules can result in parallel pretraining of various mod-
ules. A multicore high-performing Graphics Processing Units (GPUs) with parallel
processing algorithms can be explored to speed up the execution time.

Datasets that are labeled manually involve vast expanses of human efforts. Unsu-
pervised learning of convolutional neural networks can prove helpful here.

Choosing appropriate hyperparameters for a given application is a challenge.
These hyperparameters have inner dependencies which make it expensive for fine-
tuning. There is a scope to advance current optimization procedures for determining
the optimal hyperparameters. This includes defining optimized modules and sub-
modules that can be executed in parallel.

Bibliography

LeCun, Y.: LeNet-5, convolutional neural networks, p. 20. URL: http://yann.lecun.com/exdb/lenet
(2015)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural
networks. Adv. Neural Inf. Process. Syst. (2012)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 (2014)

Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Con-
ference on Computer Vision. Springer, Cham (2014)

Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2015)

He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEEConference
on Computer Vision and Pattern Recognition (2016)

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional net-
works. In: CVPR, vol. 1, no. 2, p. 3 (2017, July)

Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn.77, 354–377 (2018)
Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural
Information Processing Systems, pp. 3857–3867 (2017)

http://yann.lecun.com/exdb/lenet
http://arxiv.org/abs/1409.1556

Chapter 5
Unsupervised Deep Learning
Architectures

5.1 Introduction

The cascade of multiple layers of a deep learning architecture can be learnt in an
unsupervised manner for the tasks like pattern analysis. A deep learning architecture
can be trained one layer at a time, treating each layer in turn as an unsupervised
restricted Boltzmannmachine. Unsupervised deep learning algorithms are important
because unlabeled data is more abundant than the labeled data. For applications with
large volumes of unlabeled data, a two-step procedure is used: in the first step, a
deep neural network is pretrained in an unsupervised manner; in the second step, a
small portion of the unlabeled data is manually labeled, and then used for supervised
fine-tuning of the deep neural network.

In this chapter, the following unsupervised deep learning networks are discussed:
restricted Boltzmann machine, deep belief networks, autoencoders, and generative
adversarial networks.

5.2 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM) is a generative model that can learn a proba-
bility distribution over its set of inputs. The word “restricted” means that connections
between nodes of the same layer are prohibited. RBMs are used for training various
layers in large networks one by one.

The training procedure of RBM involves adjusting the weights in such a manner
so as to maximize the probability of generating the training data. RBM consists of
two layers of neurons: visible layer for input vector v and hidden layer for the vector
h. All the neurons in the visible layer are connected to the neurons in the hidden
layer, with no intralayer connections. Figure 5.1 depicts the architecture of RBM,
with m visible units and n hidden units. The matrix W models the weights between

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_5&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_5

78 5 Unsupervised Deep Learning Architectures

Fig. 5.1 Restricted
Boltzmann machine

visible and hidden neurons; wi j represents the weights between ith visible neuron
and jth hidden neuron.

The probability distributions over couples (v, h) of visible units and hidden units
in RBM are computed as follows:

p(v, h) � e−E(v,h)

∑
v,h e

−E(v,h)
(5.1)

where the denominator is a normalization constant (partition function) that stands
for the sum of e−E(v,h) overall possible configurations involving hidden and visible
units. E(v, h) is the energy of a configuration (v, h) and is defined as

E(v, h) � −∑

i
aivi − ∑

j
b j h j − ∑

i

∑

j
viwi j h j

or in matrix notation
E(v, h;W, a, b) � −aT v − bT h − vTWh

(5.2)

W represents weights; b is the bias for hidden units and a is the bias for visible
units. The states of the visible vector v are associated to the input data and the hidden
vector h presents the states of the hidden neurons, i.e., the hidden features. Given a
data vector v, the conditional probability that the units of the hidden layer will be
activated is given as

p
(
h j � 1|v) � σ

(

b j +
m∑

i�1

wi jvi

)

(5.3)

where σ � 1
1+e−x is the sigmoid activation.

The hidden states can then be used for the reconstruction of the data by activating
the units in visible layer with conditional probability:

p(vi � 1|h) � σ

⎛

⎝ai +
n∑

j�1

wi j h j

⎞

⎠ (5.4)

5.2 Restricted Boltzmann Machine (RBM) 79

In order to reconstruct the input vector using Eq. (5.4), the hidden states are forced
to be binary.

Contrastive divergence
RBMs are trained to improve the reconstruction ability, and thus tomaximize the log-
likelihood of training data over the training parameters for a given training example.
Given a visible input vector, its probability overall the possible hidden vectors is
computed as follows:

p(v) �
∑

h e
−E(v,h)

∑
v,h e

−E(v,h)
(5.5)

The probability of a training vector can be increased by adjusting the network
parameters (weights and biases) in order to lower the energy of that particular vector
and raising the energy of all others that are hallucinated or sampled by the model. In
order to adjust the weights and biases, we need to compute the derivative of the log
probability with respect to network parameters θ ∈ {

ai , b j ,wi j
}
which is given by

∂ log p(v)

∂θ
� −

∑

h

p(h|v)∂ E(v, h)

∂θ
+

∑

v,h

p(v, h)∂
E(v, h)

∂θ

Positive phase Negative phase (5.6)

We need a strategy to sample p(h|v) and another to sample p(v, h). In the positive
phase, the visible layer is clamped on the input data and h is sampled from vwhile as
in the negative phase, both v and h are to be sampled from the model. Computation
of the first term is straightforward as the hidden nodes are independent of the visible
nodes. Unfortunately, the second term is hard to compute. One possible strategy is
to use a Markov chain Monte Carlo (MCMC) such as Alternating Gibbs Sampling
(AGS). Each iteration of AGS consists of updating all the hidden units in parallel
using Eq. (5.3) followed by updating all the visible units in parallel using Eq. (5.4),
and then updating the hidden units once again using Eq. (5.3).

Using this procedure, Eq. (5.6) can be rewritten as

∂ log p(v)

∂θ
�

〈

∂
E(v, h)

∂θ

〉

0

+

〈

∂
E(v, h)

∂θ

〉

∞
(5.7)

where 〈.〉0 (p0 � p(h|v) � p(h|x)) and 〈.〉∞ (p∞(v, h) � p(v, h)) correspond to
the expectations under the distributions defined by data and model. However, this
procedure is very time consuming, as the convergence obtained from this learning
procedure is typically very slow. To solve this problem, a faster methodology––the
Contrastive Divergence (CD) has been introduced, whereby 〈.〉∞ is replaced by 〈.〉k
for small values of k. Basically, the idea is to initialize the visible units with a
training sample, the hidden states can be inferred from Eq. (5.3) and in a similar
manner, visible states can be inferred from hidden states using Eq. (5.4). This is
equivalent to running Gibbs sampling using k � 1. This is illustrated in Fig. 5.2.

80 5 Unsupervised Deep Learning Architectures

Fig. 5.2 Data and
reconstruction in contrastive
divergence training

The convergence of CD algorithm can be guaranteed if in every step of parameter
updating the relationship, which the step number of Gibbs sampling and the learning
rate must maintain is satisfied.

Accordingly changing Eq. (5.7), the update rules can be given as

�wi j � α
(〈vi h j 〉0 − 〈vi h j 〉1

)
(5.8)

�b j � α
(〈h j 〉0 − 〈h j 〉1

)
(5.9)

�ai � α(〈vi 〉0 − 〈vi 〉1) (5.10)

where α stands for the learning rate.
The adjustments are based on the difference between the first value in the chain

〈vi h j 〉0 and the last values 〈vi h j 〉1. The adjustment of weight wi j depends only on
the activations of units vi and h j . A simplified version of the same learning rule that
uses the states of individual units instead of pairwise products is used for the biases.

Algorithm 5.1 The basic steps of CD algorithm are:

(i) Take a training sample x, v(0) ← x.
(ii) Compute the binary states of the hidden units h(0) using Eq. (5.3).
(iii) Compute the reconstructed states of visible units v(1) using Eq. (5.4).
(iv) Compute the binary states of hidden units using the reconstructed states of

visible units obtained in step (iii) using Eq. (5.3).
(v) Update the weights, hidden and visible biases using Eqs. (5.8)–(5.10).

5.2.1 Variants of Restricted Boltzmann Machine

RBMshave been successfully applied in various applications such as character recog-
nition, classification, face recognition, topic modeling, voice conversion, dimen-
sionality reduction, musical genre categorization, natural language understanding,
modeling of motion capture data, collaborative filtering, feature learning, and video
sequences.

5.2 Restricted Boltzmann Machine (RBM) 81

A number of variants of the RBMs have been proposed by researchers. These vari-
ants focus on different aspects of the model such as adding connection information
between hidden and visible units. Some variants of RBM have lateral connections
between the visible units—semi-restrictedBoltzmannmachines,while as others have
directed connections between the visible units and between hidden units passing con-
text information from the previous states to the current states—Temporal-Restricted
Boltzmann Machines (TRBM). TRBM can be used to model complex time series
sequence, wherein the decision made at each step requires some context information
from the past.

One of the extensions of TRBM is recurrent Temporal-Restricted Boltzmann
Machines (RTRBM), where each RBM uses a contextual hidden state received from
the previous RBM to modulate its hidden unit bias. This type of RBM not only
improves the prediction performance but it also identifies important dependency
patterns in the data. Furthermore, a class of RTRBMreferred to as structuredRTRBM
(SRTRBM), models the dependency structure using a graph. Conditional-restricted
Boltzmann machine has been used to determine increments to the visible and hidden
layer biases by adding a conditioning vector.

Fuzzy mathematics is used to expand the relation of hidden and visible units
from constant to variable in a fuzzy-restricted Boltzmann machine. This replaces
the model parameters by fuzzy numbers and conventional RBM energy function by
fuzzy energy function. Conventional RBMs use binary visible and hidden units, and
various extensions have been used to change the value type such as to use continuous
units, units within the exponential family of softmax activated units, Poisson units,
Student’s t-distributed units, binomial units, Gaussian units with stochastic Gaussian
noise, and rectified linear units.

Different variants of RBM’s such as the mean-covariance RBMs, gated RBMs,
spike-slab RBMs, factored three-way, and higher order models have also been used.
In order to eliminate the influence of noise in the data, a Robust-Restricted Boltz-
mann Machine (RoBM) has been used that can achieve a better generalization by
eliminating the influence of corrupted pixels. Compared to traditional algorithms,
the RoBMs have shown impressive performance in the domain of visual recognition
by accurately dealing with occlusions and noise. The effect of temperature param-
eter has also been considered on RBM—Temperature-based Restricted Boltzmann
Machine (TRBM). In TRBMs, the temperature parameter can be used to control
the firing neurons activity distribution by setting the slope parameter of the sigmoid
function.

5.3 Deep Belief Network

Deep Belief Networks (DBN) are probabilistic graphical models made up of a hierar-
chy of stochastic latent variables using RBM as the basic building block. DBNs have
also been shown to be universal approximators. It has been applied to various prob-

82 5 Unsupervised Deep Learning Architectures

lems such as handwritten digit recognition, video and motion sequence recognition,
dimension reduction, and data indexing.

DBN is a type of deep neural network composed of multiple layers, each layer
consisting of visible neurons representing the layer input, and hidden neurons repre-
senting the layer output. The visible neurons are owned by the preceding layer, for
which these neurons are hidden. The visible neurons are fully interconnected with
the hidden ones. The distinctive feature of a DBN is that there are no connections
between the visible neurons, and no connections between the hidden neurons. The
connections are symmetric, and are exclusively between the visible neurons and the
hidden ones. Figure 5.3 shows an example of DBN.

Just like RBMs, DBNs learn to reproduce the probability distribution of their
inputs, without supervision. However, they are much better at it, for the same reason
that deep neural networks are more powerful than shallow ones: real-world data is
often organized in hierarchical patterns, andDBNs take advantage of that. Their lower
layers learn low-level features in the input data, while higher layers learn high-level
features. Just like RBMs, DBNs are fundamentally trained in unsupervised manner.

The training of DBNs involves two phases—unsupervised pretraining phase,
which is performed in a bottom-up manner and a supervised fine-tuning phase. The
unsupervised pretraining phase provides better initialization values to the weights
than can be achieved by using the random initialization. The supervised fine-tuning is
used to adjust the whole network. DBNs avoid the overfitting and underfitting prob-
lems, this is due to the fact that most of the network is trained in an unsupervised
fashion which is data driven rather than label driven.

For unsupervised pretraining, the parameters for every consecutive pair of rep-
resentational layers (Fig. 5.3) are learnt as an RBM. First, the bottom-most RBM
is trained using raw training data as its visible layer. Once this RBM is trained, its
latent activations are used as inputs to next RBM to obtain an encoded representa-
tion of the training data. Essentially, the hidden units of the current RBM are used as
inputs to the next RBM. This procedure is repeated until a desired number of RBMs
are obtained. Each RBM defines a layer of DBN. The stacking of RBMs results in

Fig. 5.3 A deep belief network

5.3 Deep Belief Network 83

incremental feature discovery, where each RBM captures higher level correlations of
the layers below it. When the topmost RBM is trained, a fine-tuning step is usually
followed. This can either be done in an unsupervised manner using gradient descent
on an estimate of the DBNs log-likelihood, or in a supervised manner if the DBN is
used for classification or regression.

5.3.1 Variants of Deep Belief Network

Deep belief networks have achieved state-of-the-art results in different domains and
are quite popular due to its ability to learn from large unlabeled datasets as a conse-
quence of which many variants of DBN have been put forward. A sparse variant of
deep belief network that uses sparse RBMs has been used for modeling higher order
features. Another version of sparse deep belief network that trains the first level of the
deep network with differentiable sparse coding, and then use sparse codes as input
to train higher layers with the standard binary RBM has been used. A variant of deep
belief network that uses a different type of top-level model has been introduced and
its performance has been evaluated on a 3D object recognition task. The top-level
model is a third-order Boltzmann machine that is trained using a hybrid algorithm
that combines both generative and discriminative gradients. To improve the robust-
ness of DBN to variations such as occlusion and random noise, sparsification and
denoising algorithm has been put forward to make it more robust. To avoid catas-
trophic forgetting when the input distribution changes temporarily, M-DBN is used
as an unsupervised modular DBN that prevents the forgetting of learned features in
continual learning scenario. M-DBNs are composed of number of modules, and only
those modules that best reconstruct a sample are trained. Additionally, M-DBN uses
batch-wise learning scheme that adjusts each module’s learning rate in proportion
to the fraction of best reconstructed samples. M-DBN retains its effectiveness even
when the input distribution changes, this is contrary to monolithic DBNs, that grad-
ually forget the representations learnt before. Combinatorial deep belief networks
have been used where one deep belief network is used for extracting features from
the motion, while as the other network is used to extract features from the images.
The output obtained from both the networks is then used as input to convolutional
neural network, which then classifies the output into one of the actions.

To learn features frommultiscale representation of images Multi-resolution Deep
Belief Network (MrDBN) have been used. MrDBN involves constructing the Lapla-
cian Pyramid for each image first, and then training DBN separately at each level
of pyramid. A top-level RBM is then used to combine these DBNs into a single
network, which is referred to as MrDBN.

DBN has also been used in classifying images by employing flexible Convolu-
tional Deep Belief Network (CDBN). CDBN is a generative model that has shown
good performance in many visual recognition tasks.

84 5 Unsupervised Deep Learning Architectures

5.4 Autoencoders

Autoencoders (AEs) also called as autoassociators are capable of learning efficient
representations of the input data called codings, without any supervision (i.e., the
training set is unlabeled). These codings typically have a much lower dimensionality
than the input data, making autoencoders useful for dimensionality reduction. More
importantly, autoencoders act as powerful feature detectors, and can be used for
unsupervised pretraining of deep neural networks. Autoencoders are also capable of
generating new data that looks very similar to the training data and can serve as a
generative model. For example, one can train an autoencoder on pictures of faces,
and it can then be used to generate new faces. A Multilayer Perceptron (MLP) in
auto-association mode can achieve dimensionality reduction and data compression.
One of the main tasks of the autoencoder is to find out a representation that can
be used to reconstruct the input data with high accuracy. The general process of
autoencoder is shown in Fig. 5.4. The goal of the training process is to transform the
input vector into a low-dimensional coded vector and to reconstruct the input data
from the corresponding codewithminimum reconstruction error. The coding process
basically involves learning features from the input data. For each input vector, AE
extracts useful features and filters the unwanted information.

The difference between MLP and AE is that an MLP is trained to predict a target
value Y given input X, while as AE is used to reconstruct the input. The AE converts
the input X into a code h during the encoding process with the help of weight matrix
W . It reconstructs X̃ during the decoding process from h by using weight matrix W ′
(the decoder weight matrix is the transpose of encoder weight matrixW). During the
process of training AEs, parameter optimization is followed so as to minimize the
error between the input vector X and the reconstruction X̃ .

Generally, if the dimension of the internal layer is less than that of the input layer,
autoencoder performs dimensionality reduction task. On the contrary, if the hidden
layer size is greater, then we enter the realm of feature detection.

Considering an unlabelled training set {x1, x2, . . .}, where xi ∈ R
n , the AE can

be considered as an unsupervised learning algorithm, where the target vector h(W,b)

is set equal to the input vector x (i.e., h(W,b)(xi) � xi). As the input vector is taken
as the target vector, an AE obtains a reconstruction of the input vector. The basic
structure of an autoencoder is shown in Fig. 5.5. The first part of the AE that converts
the input vector to an internal representation is called encoder (or the recognition
network):

Fig. 5.4 The general process of an autoencoder

5.4 Autoencoders 85

Fig. 5.5 Basic structure of
an autoencoder

a(2) � f
(
W (1)x + b(1)

)
(5.11)

where f (.) is the activation function of the encoder. The second part of the AE
that converts the internal representation into the output vector is called decoder (or
generative network):

h(W,b)(x) � g
(
W (2)a(2) + b(2)

)
(5.12)

where g(.) is the activation function of the decoder. The learning process is simply
minimizing a loss function

L(x, g(f (x))) (5.13)

where L is a loss function such as the mean squared error, penalizing g(f (x)) for
being dissimilar from x .

An autoencoder typically has the same architecture as a multilayer perceptron
except that the number of neurons in the output layer must be equal to the number of
inputs. The example shown below has just one hidden layer composed of three neu-

86 5 Unsupervised Deep Learning Architectures

rons (the encoder) and one output layer composed of five neurons (the decoder). The
outputs are also called as reconstructions since the autoencoder tries to reconstruct
the inputs, and the cost function contains a reconstruction loss that penalizes the
model when the reconstructions are different from the inputs. The most commonly
used activation functions for encoder and decoder are sigmoid, identity (linear) func-
tion (g(x) � x) or the hyperbolic tangent function. A nonlinear activation function
for the encoder and a linear activation function for the decoder is the obvious choice
when the input values are not constrained to lie in the range of [0, 1] or [−1, 1]. This
autoencoder with linear decoder can produce unbounded output with values greater
than 1 or less than 0.

The backpropagation algorithm is the commonly used algorithm employed in
training of autoencoders in order to find the appropriate value of model parameters
{W (1), b(1),W (2), b(2)} for reconstruction of the original input vector. Autoencoders
can be forced to learn useful representations of the data by imposing some constraints
on it. Such constraints can includemaking the hidden layer to have a small number of
hidden nodes, in which case the network learns a compressed representation of input
data. For example, if 30-by-30 image is used as an input, where xi ∈ R

900 and the
hidden layer is confined to have only 50 units, the network learns a compressed repre-
sentation of the input data. Alternative ways of constraining the autoencoder involve
using greater number of hidden units than the input dimensions, such autoencoders
are also known as regularized autoencoders.

5.4.1 Variations of Auto Encoders

There are various variants of autoencoders proposed by researchers. Table 5.1 lists
some well-known flavors of autoencoders and it briefly summarizes their advantages
and characteristics.

5.4.1.1 Denoising Autoencoders

The denoising autoencoder is a basic autoencoder with only one major difference.
In denoising autoencoder, the input is first partially corrupted and then fed to the
network. The network is trained such that the original input is reconstructed from
the partially corrupted data. The main rationale behind using this criterion is that it
forces the autoencoder to learn the main underlying structure in the input data which
may be sufficient to appropriately reconstruct the original input vector.

Traditionally, autoencoders minimize loss function L that penalizes g(f (x)) for
being dissimilar from x

L(x, g(f (x))) (5.14)

5.4 Autoencoders 87

Table 5.1 Variants of autoencoders

Autoencoder Characteristics Advantages

Sparse autoencoders The representation is forced
to be sparse by adding a
sparsity penalty

The network makes the
categories more separable
and meaningful, which
improves the performance of
the network

Denoising autoencoders The network can reconstruct
the correct input from the
corrupted data

The network is robust to
noise

Contractive autoencoder The reconstruction error
function is augmented with
an analytic contractive
penalty

Good at capturing the local
directions of variation
determined by the data

Convolutional autoencoder All locations in the input
share weights

Allows to use 2D image
structure

Zero bias autoencoder Autoencoder is trained by
using an appropriate
shrinkage function without
additional regularization

Achieves better results on
data with high intrinsic
dimensionality

Fig. 5.6 Denoising autoencoder

A denoising autoencoder (DAE) instead minimizes:

L
(
x, g

(
f
(
x̂
)))

, (5.15)

where x̂ is a copy of x that has been corrupted by some form of noise. Denoising
autoencoders must, therefore, undo this corruption rather than simply copying their
input. The process of a DAE is shown in Fig. 5.6.

A DAE can extract the noise-free version of the input data. The statistical depen-
dencies inherent in the input data can be exploited to minimize the adverse effects
of the noisy input data corrupted in a stochastic manner. If the type and level of the
corrupting noise can be determined, then the implementation of the DAE is easier.

88 5 Unsupervised Deep Learning Architectures

5.4.1.2 Contractive Autoencoders

Contractive Autoencoder (CAE), followed after the DAE, shares the motivation of
learning robust representations. A DAE injects noise in the training data to make
the mapping robust, a CAE adds an analytic contractive penalty to the standard cost
function in the reconstruction stage to achieve robustness. The penalty term is added
to correct the sensitivity of the features with respect to the inputs.

It has been found that the addition of penalty term results in more robust features
that are insensitive to small input changes. Besides, the penalty can be used to address
the trade-off between the reconstruction accuracy and robustness. CAEs produce
results that are identical to or even better than those obtained by other regularized
AEs such as DAEs. A DAE with small corruption noise can be considered as a type
of CAE where the contractive penalty is on both the encoder as well as the decoder
rather than just on the encoder as is the case with CAEs. CAEs are generally used in
feature engineering as only the encoder portion is used for feature extraction.

5.5 Deep Autoencoders

Deep Autoencoders are auto-associative networks with more than one hidden layer.
Generally, AE’s with single layer are not able to extract features that are discrimina-
tive and representative of raw data. Therefore, the concept of deep autoencoders or
stacked autoencoders has been put forward. Adding more layers helps the autoen-
coder learn more complex codings. However, one must be careful not to make the
autoencoder too specialized. An encoder specializes if it just learns tomap each input
to a single arbitrary number (and the decoder learns the reverse mapping). Obviously,
such an autoencoder will reconstruct the training data perfectly, but it will not have
learned any useful generic data representations in the process and it is unlikely to
generalize well to new instances.

The architecture of the stacked autoencoder is typically symmetrical with regards
to the central hidden layer (the coding layer). To put it simply, it looks like a sandwich.
For example, an autoencoder forMNIST (handwritten digit recognition dataset) may
have 784 inputs, followed by a hidden layer with 300 neurons, then a central hidden
layer of 150 neurons, then another hidden layer with 300 neurons and an output layer
with 784 neurons. This stacked autoencoder is represented in Fig. 5.7.

The deep stacked autoencoder can be implemented much like a regular deepMLP
except that there are no labels. The deep autoencoder network is formed by a series
of autoencoder networks, stacked one above another in a feature hierarchy. Each
autoencoder aims to minimize the reconstruction error of the previous layer.

Deep stacked autoencoders are generally trained using greedy layer-wise unsu-
pervised learning followed by supervised fine-tuning. The main idea of the unsu-
pervised pretraining is to provide a good initialization value of the weights of the
network before a supervised learning algorithm is applied for fine-tuning. Besides,
unsupervised pretraining also results in better models as it relies mainly on unla-

5.5 Deep Autoencoders 89

Fig. 5.7 Deep stacked autoencoder

Fig. 5.8 Training first hidden layer of autoencoder

90 5 Unsupervised Deep Learning Architectures

Fig. 5.9 Training second hidden layer on the features obtained from the first autoencoder

Fig. 5.10 Fine-tuning of the network after adding an output layer to the stack of pretrained hidden
layers

5.5 Deep Autoencoders 91

belled data. The subsequent supervised fine-tuning involves globally adjusting the
weights learned using unsupervised pretraining. The autoencoder shown in Fig. 5.5
are first trained using backpropagation algorithm (using gradient descent optimiza-
tion) without using labels as discussed in the previous section. After this, the last
layer of this network (the decoder) is dropped, while as the hidden layer with its
parameters {W (1), b(1)} (the encoder) is retained as shown in Fig. 5.8.

The second autoencoder is trainedwith the features obtained from the first autoen-
coder as shown inFig. 5.9. The parameters of the first autoencoder are kept unchanged
while training the second autoencoder. This way, the network is trained one layer at
a time, i.e., each layer is trained greedily and the weights so obtained are used as
initial weights for the final fine-tuning process.

Thus, the first autoencoder is trained on the input data xi using the backpropaga-
tion algorithm to obtain the features at the first level h(1)(i). The features obtained
at the first level are used as inputs for training the next autoencoder. The second
autoencoder is trained in a manner similar to the first autoencoder to obtain the sec-
ond layer of representations h(2)(i). In this manner, each autoencoder is trained by
using the representations learnt by the previous autoencoder. Only the parameters of
the autoencoder that is currently being trained are updated, while as the parameters
of previous autoencoders are kept fixed. Finally, an output layer is added to this stack
of trained autoencoders and the whole network is trained by a supervised learning
algorithm (using labeled data). In Fig. 5.10, two autoencoders are pretrained and an
output layer is then added to it to form the final network.

5.6 Generative Adversarial Networks

Generative Adversarial Networks (GANs), are the models that learn any distribution
of the data and primarily focusses on generating samples from the learnt distribution.
They enable generation of the reasonably realistic worlds that are indistinguishable
to our own in any domain: audio, images, speech. A GAN is made of two main
components: Generator and Discriminative, which are in constant battle with each
other throughout the training process.

• Generator network—A generator G(z) takes as input a random noise and tries
to generate a sample of data. Figure 5.11 shows generator G(z) takes an input z
from the probability distribution p(z) and generates data that is then fed into a
discriminator network D(x).

• Discriminator network (or adversary)—the discriminator networkD(x) takes input
either from the real data or from the network generated data and tries to predict
whether the input is real or generated. It takes an input x from the real data dis-
tribution pdata(x) and then solves a binary classification problem giving output in
the range from 0 to 1. Figure 5.11 gives the basic architecture of GAN.

Basically, the task of the generator is to generate natural-looking images and
the task of the discriminator is to decide whether the image is generated or real.

92 5 Unsupervised Deep Learning Architectures

Fig. 5.11 Architecture of GAN

This can be thought of as a minimax two-player game where the performance of
both the networks improves over time. In this game, the generator tries to fool the
discriminator by generating real images as far as possible and the generator tries to
not get fooled by the discriminator by improving its discriminative capability.

The generator network is trained to generate new data instances that look indis-
tinguishable from the real ones as the training goes on, to the degree that it becomes
difficult for a discriminator network to predict which is authentic and which is fake.
The discriminator network is trained to gradually improve its capabilities of identi-
fying fake data by fixing a higher level of realism for the generated data.

The objective function of GAN is defined as

min
G

max
D

V (D,G) � Ex∼pdata(x)
[
log D(x)

]
+ Ex∼pz(z)

[
log(1 − D(G(z)))

]
(5.16)

At the equilibrium point, which is the optimal point in the minimax game, the first
network will model the real data and the second network will output a probability
of 0.5 as the output of the first network real data. Sometimes, the two networks
eventually reach equilibrium, but this is not always guaranteed and the two networks
can continue learning for a long time.

GAN is a network where optimization process is not seeking to minimize a fixed
training criteria but it seeks to establish an equilibrium between two forces. It is
a dynamic process as the two forces change during every step of the optimization
process. For this reason, GANs are known to be difficult to train, requiring a careful
tuning of training parameters and model architecture.

The fact that the amount of available unlabeled data is much larger than the
amount of labeled data, it has made GANs popular because of their ability to tackle
the important challenge of unsupervised learning. Another reason for their popularity
is that GANs are able to generate the most realistic images among the generative
models.

5.7 Challenges and Future Research Direction 93

5.7 Challenges and Future Research Direction

Although unsupervised learning algorithms had a catalytic effect in reviving the
interest in deep learning, but much research needs to be done to improve the unsu-
pervised deep learning algorithms. In particular, unsupervised learning algorithms
are not good at disentangling the underlying factors that account for how the learn-
ing data is spread in the hyperspace. By making unsupervised learning algorithms
better at disentangling the underlying factors that account for data variations in the
hyperspace, the information can be used for efficient classification and for efficient
transfer learning.

Advancing unsupervised learning by exploiting new sources of unlabeled data
and mapping relationships from input to output and vice versa needs to be explored.
Exploiting the relationship from output to input is closely connected to building
conditional generative models. To this end, generative adversarial networks are a
promising direction where the long-standing concept of analysis by synthesis in
pattern recognition and machine learning is likely to return to the spotlight in the
near future in solving different tasks.

Bibliography

Afzal, S., Wani, M.A.: Improving performance of deep networks on handwritten digit classifica-
tion. In: 2017 4th International Conference on Computing for Sustainable Global Development
(INDIACOM), pp. 4238–4241. IEEE (2017)

Afzal, S., Wani, M.A.: Deep neural network architectures: a review. In: 2018 5th International
Conference on Computing for Sustainable Global Development (INDIACOM), pp. 3024–3030.
IEEE (2018)

Afzal, S., Wani, M.A.: Training and model structure of deep architectures. Artif. Intell. Syst. Mach.
Learn. 10(2), 38–46 (2018)

Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE
Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks.
In Advances in neural information processing systems, pp. 153–160 (2007)

Erhan,D.,Bengio,Y., Courville,A.,Manzagol, P.A.,Vincent, P., Bengio, S.:Whydoes unsupervised
pre-training help deep learning?. J. Mach. Learn. Res. 11(Feb), 625–660 (2010)

Goroshin, R., LeCun, Y.: Saturating auto-encoders. arXiv preprint arXiv:1301.3577 (2013)
Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput.
14(8), 1771–1800 (2002)

Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Sci-
ence 313(5786), 504–507 (2006)

Hinton,G.E., Osindero, S., Teh,Y.W.:A fast learning algorithm for deep belief nets. Neural Comput.
18(7), 1527–1554 (2006)

Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural
networks. J. Mach. Learn. Res. 10(Jan), 1–40 (2009)

Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area V2. In: Advances
in Neural Information Processing Systems, pp. 873–880 (2008)

http://arxiv.org/abs/1301.3577

94 5 Unsupervised Deep Learning Architectures

Poultney, C., Chopra, S., Cun,Y.L.: Efficient learning of sparse representationswith an energy-based
model. In: Advances in Neural Information Processing Systems, pp. 1137–1144 (2007)

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y.: Contractive auto-encoders: explicit
invariance during feature extraction. In: Proceedings of the 28th International Conference on
International Conference on Machine Learning, pp. 833–840. Omnipress (2011)

Tieleman, T., Hinton, G.: Using fast weights to improve persistent contrastive divergence. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp. 1033–1040.
ACM (2009)

Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P. A. Extracting and composing robust features
with denoising autoencoders. In: Proceedings of the 25th international conference on Machine
learning, pp. 1096–1103. ACM (2008)

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders:
Learning useful representations in a deep networkwith a local denoising criterion. J.Mach. Learn.
Res. 11(Dec), 3371–3408 (2010)

Wani, M.A., Afzal, S.: Gain parameter and dropout-based fine tuning of deep networks. Int. J. Intell.
Inf. Database Syst. 11(4), 236–254 (2018a)

Wani, M.A., Afzal, S.: Optimization of deep network models through fine tuning. Int. J. Intell.
Comput. Cybern. 11(3), 386–403 (2018b)

Chapter 6
Supervised Deep Learning in Face
Recognition

6.1 Introduction

The threemain challenging problems in face recognition, i.e., recognizing a facewith
different expressions, recognizing a face under different lighting conditions, and rec-
ognizing a face in different poses are considered here. In recent years, Convolutional
Neural Network (CNN) has beenwidely applied to face recognition problem because
of its good performance. The application of CNN architectures for the above three
challenging problems is discussed in this chapter.

6.2 Deep Learning Architectures for Face Recognition

The power of a Convolutional Neural Network (CNN) lies in extracting a set of
discriminating feature maps at several levels of abstraction. The success of a CNN
architecture is ascribed to its ability to learn rich image features. Two deep learning
architectures based on a Convolutional Neural Networks are discussed in this chapter
for face recognition: VGG-face architecture and modified VGG-face architecture.

6.2.1 VGG-Face Architecture

The VGG-face architecture used here for face recognition consisted of 13 convolu-
tional layers, 5 pooling layers, and 3 fully connected layers. The architecture diagram
of VGG-face architecture is given below in Fig. 6.1.

Table 6.1 shows the details of 13 convolutional layers, 5 pooling layers, 3 fully
connected layers, and the softmax layer of the VGG-face architecture. The network
uses filters of size 3 × 3 in all 13 convolutional layers. All the convolution layers are
followed by the Rectified Linear Unit (ReLU) activation function. The network uses

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_6&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_6

96 6 Supervised Deep Learning in Face Recognition

Input

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

Conv (3x3)

FC (4096)

FC (4096)

FC (N classes)

Softmax

Max-Pool Max-Pool

Max-Pool Max-Pool Max-Pool

Dropout

Dropout

Fig. 6.1 VGG-face architecture for face recognition

max-pooling in all the five pooling layers with a stride of two. The last three layers
are Fully Connected (FC).

6.2.2 Modified VGG-Face Architecture

The modified VGG-face architecture used for face recognition consisted of five
convolutional layers, three pooling layers, and three fully connected layers. Figure 6.2
shows the architecture of modified VGG-face architecture for face recognition.

Table 6.2 shows the details of five convolutional layers, three pooling layers, three
fully connected layers, and the Softmax layer of themodifiedVGG-face architecture.
The first convolutional layer of the network uses filter of size 11× 11 with a stride of
four. The second convolutional layer uses filter of size 5× 5 with a stride of one, and
the last three convolutional layers use filters of size 3 × 3 with a stride of one. All
the convolution layers are followed by the Rectified Linear Unit (ReLU) activation
function. Normalization is performed after the first two activation functions. The
network uses max-pooling in all the three pooling layers with a stride of two. The
last three layers are Fully Connected (FC).

Face images are convolved with a filter of size 11 × 11. A large filter size is used
when more pixels are necessary for the network to recognize an object. This layer
uses 64 filters with a stride of 4 to reduce the size of the output feature maps to 54
× 54. The 64 feature maps are then normalized. In order to reduce the size of the
normalized feature maps, max-pooling with stride of 2 is performed, which reduces
feature maps to size 27 × 27.

6.2 Deep Learning Architectures for Face Recognition 97

Ta
bl
e
6.
1

D
et
ai
ls
of

V
G
G
-f
ac
e
ar
ch
ite

ct
ur
e
fo
r
fa
ce

re
co
gn

iti
on

L
ay
er

na
m
e

In
pu
ts
iz
e

Fi
lte
r
si
ze

#
Fi
lte
rs

W
in
do
w
si
ze

fo
r
po
ol
in
g

St
ri
de

Pa
dd
in
g

O
ut
pu
ts
iz
e

#
Fe
at
ur
e
m
ap
s

C
on
v1

22
4

×
22
4

3
×

3
64

–
1

1
22
4

×
22
4

64

C
on
v2

22
4

×
22
4

3
×

3
64

–
1

1
22
4

×
22
4

64

Po
ol
1

22
4

×
22
4

–
–

2
×

2
2

0
11
2

×
11
2

C
on
v3

11
2

×
11
2

3
×

3
12
8

–
1

1
11
2

×
11
2

12
8

C
on
v4

11
2

×
11
2

3
×

3
12
8

–
1

1
11
2

×
11
2

12
8

Po
ol
2

11
2

×
11
2

–
–

2
×

2
2

0
56

×
56

C
on
v5

56
×

56
3

×
3

25
6

–
1

1
56

×
56

25
6

C
on
v6

56
×

56
3

×
3

25
6

–
1

1
56

×
56

25
6

C
on
v7

56
×

56
3

×
3

25
6

–
1

1
56

×
56

25
6

Po
ol
3

56
×

56
–

–
2

×
2

2
0

28
×

28

C
on
v8

28
×

28
3

×
3

51
2

–
1

1
28

×
28

51
2

C
on
v9

28
×

28
3

×
3

51
2

–
1

1
28

×
28

51
2

C
on
v1
0

28
×

28
3

×
3

51
2

–
1

1
28

×
28

51
2

Po
ol
4

–
–

–
2

×
2

2
0

14
×

14

C
on
v1
1

14
×

14
3

×
3

51
2

–
1

1
14

×
14

51
2

C
on
v1
2

14
×

14
3

×
3

51
2

–
1

1
14

×
14

51
2

C
on
v1
3

14
×

14
3

×
3

51
2

–
1

1
14

×
14

51
2

Po
ol
5

–
–

–
2

×
2

2
0

7
×

7

Fu
lly

co
nn
ec
te
d
1

40
96
-n
eu
ro
ns

D
ro
po
ut

�
0.
5

Fu
lly

co
nn
ec
te
d
2

40
96
-n
eu
ro
ns

D
ro
po
ut

�
0.
5

Fu
lly

co
nn
ec
te
d
3

26
22

cl
as
se
s

So
ft
m
ax

26
22

cl
as
se
s

98 6 Supervised Deep Learning in Face Recognition

FC (4096)

Dropout

Dropout

Input

Conv (11x11)

Max-Pool

Normalization

Conv (5x5)

Normalization

Max-Pool

Conv (3x3)

Conv (3x3)

FC (4096)

FC (N classes)

Conv (3x3)

Max-Pool

Softmax

Fig. 6.2 Modified VGG-face architecture for face recognition

The output from the first pooling layer is convolved with a filter of size 5 × 5
with a stride of one and padding of two. A total of 256 filters are used to produce
256 feature maps of size 27 × 27. The feature maps are normalized and the results
are subjected to max-pooling with stride of 2 which produces 256 feature maps of
size 13 × 13. The feature maps are subjected to three convolutions with filter size
of 3 × 3 and padding of 1. This is followed by third max-pooling with a stride of 2
which reduces the size of the 256 feature maps to 6 × 6.

Fully connected layers connect every neuron in one layer to every neuron in
another layer. The result from the third pooling layer are passed to the first fully
connected layer of size 4096, and then to the second fully connected layer of size
4096. Dropout technique is used after the first and second fully connected layers. It
consists of setting the output of a hidden neuron to zero with a probability of 0.5.
The third fully connected layer has size N (number of classes).

The results from the third fully connected layer are passed to Softmax layer for
classification. The total number of class labels for the ORL, Faces94, extended-Yale,
Yale, CVL, and FERET datasets are 40, 152, 38, 15, 114, and 20, respectively. With
the outputs from the last fully connected layer represented as z1, z2, . . . , zk , the
probability scores at Softmax layer are calculated using Eq. 6.1 as follows:

6.2 Deep Learning Architectures for Face Recognition 99

Table 6.2 Details of modified VGG-face architecture for face recognition

Layer
name

Input size Filter
size

#
Filters

Window
size for
pooling

Stride Padding Output
size

#
Feature
maps

Conv1 224 × 224 11 × 11 64 – 4 0 54 × 54 64

Pooling1 54 × 54 – – 3 × 3 2 0 27 × 27 64

Conv2 27 × 27 5 × 5 256 – 1 2 27 × 27 256

Pooling2 27 × 27 – – 3 × 3 2 0 13 × 13 256

Conv3 13 × 13 3 × 3 256 – 1 1 13 × 13 256

Conv4 13 × 13 3 × 3 256 – 1 1 13 × 13 256

Conv5 13 × 13 3 × 3 256 – 1 1 13 × 13 256

Pooling3 13 × 13 – – 3 × 3 2 0 6 × 6 256

Fully
con-
nected
1

4096-neurons

Dropout � 0.5

Fully
con-
nected
2

4096-neurons

Dropout � 0.5

Fully
con-
nected
3

N classes

Softmax (where N � 40 for ORL, 152 for faces-94 and 38 for extended-Yale, 15
for Yale, 114 for CVL, and 20 for FERET face datasets)

σ
(
z j

) � ez j
∑N

k�1 e
zk

for j � 1, 2, . . . , N (6.1)

where σ
(
z j

)
represents scores.

For theORLfacedataset, there are a total of 40 classes. Theprobability distribution
output of the 40 clasess is calculated as follows:

σ
(
z j

) � ez j
∑40

k�1 e
zk

for j � 1, 2, . . . , 40.

The Softmax probabilities determine the target class for the given input. The target
class is the one corresponding to which the highest probability is obtained. The main
advantage of using Softmax is that output probabilities range from 0 to 1, and the
sum of all the probabilities is equal to one.

100 6 Supervised Deep Learning in Face Recognition

6.3 Performance Comparison of Deep Learning Models
for Face Recognition

The performance comparison of the two deep learning models, obtained as a result
of training the two architectures described above, is provided in this section using
face image databases. There are a number of face image databases that are available
publicly. The databases that are used here for performance comparison are described
below.

Olivetti Research Ltd., Face Database (ORL)
The Olivetti Research Ltd., Face Database (ORL) contains 400 face images of 40
different persons, with 10 different images of each person. These face images have
been taken mainly with different facial expression (open eyes, closed eyes, smiling
and not smiling faces). The face images are in PGM format of size 92 × 112 pixels
with 256 gray levels. Figure 6.3 shows some sample images of one person from the
ORL face database.

Yale Face Database
The Yale face database contains 165 (11 × 15 � 165) images of 15 persons. Each
person in the database has 11 different images taken mainly under varying lighting
conditions (dark lighting conditions, bright lighting conditions, medium lighting
conditions, varying lighting conditions using spectacles). Figure 6.4 shows some
sample images of one person from the Yale face database.

Fig. 6.3 Five images of a person in ORL face database showing different facial expressions

Fig. 6.4 Five face images of one person from the Yale face database showing variation in lighting
condition

6.3 Performance Comparison of Deep Learning Models for Face Recognition 101

Fig. 6.5 Five face images of one person from theYale-B face database showing variation in lighting
condition

Fig. 6.6 Five face images of one person from the Faces94 face database showing variation in
expression

Extended Yale-B Cropped Face Database
The extended Yale-B cropped face database contains 2470 (65× 38� 2470) images
of 38 persons. Each person in the database has 11 different images taken mainly
under varying lighting conditions (dark lighting conditions, bright lighting condi-
tions, medium lighting conditions). Figure 6.5 shows some sample images of one
person from the cropped Yale-B face database.

Faces94 Database
The Faces94 database contains images of 152 persons. The resolution of each image
is (180 × 200 pixels), and this face database contains three directories: female (20),
male (112), and male staff (20). Figure 6.6 shows some sample images of one person
from the Faces94 face database.

FERET Face Database
The FERET database contains a total of 11,338 face images. The images of this
face database were collected by taking images of 994 persons at various angles. The
images are of size 512× 768 pixels and the files are in PPM format. Figure 6.7 shows
some images of a person in the FERET database that were taken at various angles.

CVL Face Database
The CVL face database contains face images with varying poses. The total number
of images in this database is 798 which belong to 114 persons. The size of the images
is 640 × 480 and the format of the images is JPG. These images belong to 108 male
persons and 6 female persons. Figure 6.8 shows 5 sample images from CVL face
database.

102 6 Supervised Deep Learning in Face Recognition

Fig. 6.7 Five face images of one person in FERET face database showing variation in poses

Fig. 6.8 Shows the face images of one person from the CVL face database showing variation in
poses

The performance comparison of deep learning models and other traditional meth-
ods is carried out. The traditional methods used for comparison purposes are: Prin-
cipal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Discrete
Cosine Transform (DCT), Independent Component Analysis (ICA), Gabor Wavelet
Transform (GWT), and Elastic Bunch Graph Matching (EBGM). The performance
is evaluated by means of recognition accuracy results. In PCA, a vector that has the
largest variance associated with the dataset is computed. On the other hand, LDA
computes a vector in the underlying space that best discriminates among classes.
However, if the training images in LDA are less; then, the scatter matrix is very
difficult to evaluate. ICA shows good results than PCA when cosines were used as
the similarity measure, however, the performance remains almost the same when
Euclidean distance was used as a similarity measure. Although ICA shows better
results than PCA in some databases, it is computationally more expensive than PCA.
In DCT, energy of the original data may be concentrated in only a few low-frequency
components of DCT depending on the correlation in the data. Also, low-frequency
components normally contain themost informationof the image; hence, if the value of
the AC coefficients is higher, then it implies finer image information. Gabor wavelets
are useful for image analysis because of their biological relevance and computational
properties. In EBGM, features are represented by Gabor jets, where jets are extracted
with manually selected landmark locations; and the model jets are then collected in
a data structure which is called a bunch graph.

6.3 Performance Comparison of Deep Learning Models for Face Recognition 103

The performance of the deep learning models and the traditional methods, i.e.,
PCA, LDA, DCT, ICA, GWT, and EBGM algorithms for the face recognition task
is compared by using the publicly available face image databases discussed above.

6.3.1 Performance Comparison with Variation in Facial
Expression

The performance comparison of the deep learning models and six major traditional
methods for face recognition on images with variation in facial expressions was done
using the ORL and the Faces94 face databases. The ORL face database was divided
into two sets: a training set and a testing set. The training set contained 200 images
of 40 individuals with 5 different images of each person (i.e., 40 × 5 � 200) and the
test set also contained 200 images of 40 individuals images with 5 different images
of each person (i.e., 40 × 5 � 200). Similarly, the Faces94 dataset was divided into
a training set and a testing set. The training set contained 760 face images of 152
different subjects and the testing set contained different 760 face images of these 152
subjects. The results obtained after performing the tests on ORL and Faces94 face
databases are given in Tables 6.3 and 6.4. The VGG-face model and the modified
VGG-face model results are better for images varying in expression than the results
obtained by the traditional methods. Figure 6.9 shows the graphical representation
of the performance comparison of results of the deep learning models and six major
traditional methods for face images varying in expression.

Table 6.3 Performance comparison of the deep learning models and six major traditional methods
on ORL database having face images with variation in facial expression

Strategy Results

Method Recognition rate in %

Using first five images of each person
for training and remaining five images
of that person for testing

PCA 85.50

LDA 88.50

DCT 91.50

ICA 87.50

GWT 69.50

EBGM 91.50

VGG-face model 99.00

Modified VGG-face
model

98.00

104 6 Supervised Deep Learning in Face Recognition

Table 6.4 Performance comparison of the deep learning models and six major traditional methods
on Faces94 database having face images with variation in facial expression

Strategy Results

Method Recognition rate in %

Using first five images of each person
for training and remaining five images
of that person for testing

PCA 96.40

LDA 97.00

DCT 98.50

ICA 80.00

GWT 46.80

EBGM 91.00

VGG-face model 98.80

Modified VGG-face
model

99.21

Fig. 6.9 Shows the performance of deep learning models and six major traditional methods for
face recognition on facial images varying in expression

6.3.2 Performance Comparison on Images with Variation
in Illumination Conditions

The performance comparison of the deep learning models and six major traditional
methods for face recognition on images with variation in illumination conditions
was done using Yale and extended Yale-B face databases. The Yale database was

6.3 Performance Comparison of Deep Learning Models for Face Recognition 105

Table 6.5 Performance comparison of deep learning models and six major traditional methods for
face recognition on Yale face database with images varying in illumination

Strategy Results

Method Recognition rate %

Using first five images of each person for
training and remaining six images of that
person for testing

PCA 82.22

LDA 86.66

DCT 76.66

ICA 71.11

GWT 88.80

EBGM 91.11

VGG-face model 98.67

Modified VGG-face
model

97.33

Table 6.6 Performance comparison of the deep learning models and six major traditional methods
for face recognition on extended Yale-B face database with images varying in illumination

Strategy Results

Method Recognition rate %

Using first five images of each person for
training and remaining five images of that
person for testing

PCA 86.84

LDA 87.89

DCT 70.00

ICA 70.00

GWT 78.07

EBGM 65.78

VGG-face model 85.30

Modified VGG-face
model

89.47

divided into two sets: training set and the testing set. The training set had 75 images
(5 × 15) of 15 persons with 5 different images of each individual, and the testing set
had 90 images (6 × 15 � 90) of same 15 persons with 6 different images of each
individual. The Yale-B dataset was divided into 2 sets where training set contained
190 face images of 38 different persons with 5 face images of each person and the
testing set contained different 190 face images of the same 38 persons with 5 face
images of each person. The results of recognizing face images of Yale database and
Yale-B database using deep learning models and six major traditional methods are
shown in Tables 6.5 and 6.6. The VGG-face model and modified VGG-face model
produced similar results on Yale database, however, for the Yale-B face database,
the modified VGG-face model shows better results as compared to VGG-face and
the six traditional methods. Figure 6.10 shows the graphical representation of the
performance comparison of recognizing Yale and Yale-B face images with varying

106 6 Supervised Deep Learning in Face Recognition

Fig. 6.10 Shows the performance comparison of deep learning models and six major traditional
methods for face recognition on facial images varying in illumination

illumination by the modified VGG-face model, VGG-face model and by the six
traditional methods.

6.3.3 Performance Comparison with Variation in Poses

The performance comparison of the deep learning models and six major traditional
methods for face recognition on images with variation in poses was done using the
FERET and CVL databases. Two-hundred images of 20 individuals from the FERET
face images with varying poses were divided into 2 sets: a training set and a test set.
One-hundred images (20 × 5 � 100) with 5 different images of each individual
were used for training and 100 images with 5 different images of each individual
were used for testing (20 × 5 � 100). Similarly, the CVL database was divided into
two sets: training set and testing set. The training set contained 456 face images of
114 individuals with 4 face images of each person and the testing set contained 342
face images of the same 114 individuals with 3 different images of each person. The
results of recognizing face images of the FERET database with deep learning models
and sixmajor traditionalmethods are given in Tables 6.7 and 6.8. ThemodifiedVGG-
face model has shown better results than the VGG-face model and the six traditional

6.3 Performance Comparison of Deep Learning Models for Face Recognition 107

Table 6.7 Performance comparison of deep learning models and six major traditional methods for
face recognition on FERET face database with images varying in poses

Strategy Results

Method Recognition rate %

Using five images of each person for
training and five images for testing

PCA 68.00

LDA 60.00

DCT 67.00

ICA 60.00

GWT 44.00

EBGM 77.00

VGG-face 76.00

Modified VGG-face
model

90.00

Table 6.8 Performance comparison of the deep learning models and six major traditional methods
for face recognition on CVL face database with images varying in poses

Strategy Results

Method Recognition rate %

Using four images of each person for
training and three images for testing

PCA 64.00

LDA 65.60

DCT 65.00

ICA 46.66

GWT 40.94

EBGM 64.28

VGG-face 60.52

Modified VGG-face
model

94.44

Table 6.9 Performance comparison of the modified VGG-face model and the VGG-face model
for recognition of face images varying in expression, illumination and poses

Strategy Results

Method Recognition rate in %

Using five images of each person for
training and five images for testing

VGG-face 79.20

Modified VGG-face
model

96.67

108 6 Supervised Deep Learning in Face Recognition

Fig. 6.11 Shows the performance comparison of deep learning models and six major traditional
methods for face recognition on facial images varying in poses

methods for face recognition. Figure 6.11 shows the graphical representation of the
performance comparison of the deep learning models and the six traditional methods
on images of varying poses.

Finally, the overall comparison of the deep learningmodels (VGG-facemodel and
the modified VGG-face model) on the combined datasets (all six datasets, i.e., ORL,
Faces94, Yale, Yale-B, FERET, and CVL) is given in Table 6.9. The 6 datasets were
divided into 379 classes. Therewere 1895 images in the training set anddifferent 1800
images of the same subjects in the testing data. The results obtained after performing
the experiments on the whole dataset of 379 classes containing face images varying
in expression, illumination, and poses are given in Table 6.9. ThemodifiedVGG-face
model for face recognition showed better results than other methods for recognition
of face images varying in expression, illumination, and poses. Figure 6.12 shows the
graphical representation of the comparison (Fig. 6.13).

6.4 Challenges and Future Research Direction 109

Fig. 6.12 Shows the performance comparison of the modified VGG-face model and the VGG-face
model for recognizing facial images varying in expression, illumination, and poses

6.4 Challenges and Future Research Direction

A number of deep learning architectures have been used for face recognition. A deep
learning model can run faster if the size of the filters and the network is reduced.
A comparison of the results of the two models, i.e., VGG-face and modified VGG-
face models used here indicate that the use of small-sized filters do not necessarily
produce good results for the face recognition task. The challenge lies in defining the
optimal deep learning architecture and hyper-parameters that is fast and accurate for
face recognition task.

The performance of a deep learningmodel can be improved if image enhancement
is performed before the convolution operation to make the appearance of blurred or
low-resolution images better. Missing data is a challenge for deep learning networks
and the performance of the network deteriorates appreciably when large contiguous
areas of images are missing. This observation recommends that research into deep
convolutional neural networks capable of recognizing objects frompartially observed
data is required and can be a focus of future research efforts.

110 6 Supervised Deep Learning in Face Recognition

Fig. 6.13 Shows performance comparison of the modified VGG-face model, the VGG-face, and
the six traditional methods. The modified VGG-face model performs better than all other models

Bibliography

Bhat, F.A., Wani, M.A.: Performance comparison of major classical face recognition techniques.
In: 2014 13th International Conference on Machine Learning and Applications (ICMLA), IEEE
(2014)

Bhat, F.A., Wani, M.A.: Face recognition using convolutional neural network. In: 2017 4th
International Conference on Computing for Sustainable Global Development (INDIACom),
pp. 460–464, IEEE (2017)

Bhat, F.A., Wani, M.A.: A robust face recognition model based on convolutional neural networks.
J. Artif. Intell. Res. Adv. 5(1), 1–11 (2018)

Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. BMVC 1(3) (2015)
Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014a)

Sun, Y., et al.: Deep learning face representation by joint identification-verification. In: Advances
in Neural Information Processing Systems (2014b)

Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

Chapter 7
Supervised Deep Learning in Fingerprint
Recognition

7.1 Introduction

Fingerprint recognition refers to the process of identifying or confirming the identity
of an individual by comparing two fingerprints. Fingerprint recognition is one of the
most researched and reliable biometric techniques for identification and authenti-
cation. Any system which uses image processing techniques to automatically per-
form the process of obtaining, storing, analyzing, and matching of a fingerprint with
another fingerprint and generating the match is calledAutomatic Fingerprint Iden-
tification System (AFIS). It is a system which takes a fingerprint and picks the most
likely matches from millions of fingerprint images stored in the database. With the
growth in technology, many algorithms and methods have been proposed so far to
automatically match the fingerprints without any human interference or assistance.

7.2 Fingerprint Features

A fingerprint consists of a number of ridges and valleys. Ridges are the upper skin
layer segments (crest) of the finger and valleys are the lower segments and these
ridges run in parallel (Fig. 7.1), but there exist one or more regions where they
assume distinctive shapes and these regions are called singularities or singular
regions/points. Fingerprint features are divided into three levels: level 1 (patterns
like singular points), level 2 (minutiae points like bifurcation and ridge endings), and
level 3 (pores and contours) features.

Level 1 (pattern) features are the global features which include the general ridge
flow and patterns like core and delta location. Singular points are the most important
global characteristics of a fingerprint and there are mainly five types of singularities
in fingerprints as shown in Fig. 7.2.:

• Arch: Ridges form an arc shape which rises at center (Fig. 7.2a).
• Left Loop: Ridges form a curve at center forming a loop toward left (Fig. 7.2b).

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_7

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_7&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_7

112 7 Supervised Deep Learning in Fingerprint Recognition

Fig. 7.1 Example of a fingerprint image

Fig. 7.2 Fingerprint classes a arch, b left loop, c right loop, d tented arch, e whorl

7.2 Fingerprint Features 113

Fig. 7.3 a bifurcation point (level 2 feature), b ridge ending (level 2 feature) and c pores, ridge
contours (level 3 features) of a fingerprint

• Right Loop: Ridges form a curve at center forming a loop toward the right
(Fig. 7.2c).

• Tented Arch: Ridges form an arc, have an angle, an upthrust shape which rises at
center (Fig. 7.2d).

• Whorl: Ridges form circularly around a central point (Fig. 7.2e).

Level 2 (minutiae points): In addition to different patterns, fingerprint ridges
contain various minute information called minutia points which are very useful in
matching fingerprints and are most commonly used in automatic fingerprint match-
ing.Minutia actually meansminute details and in the context of fingerprints, it means
numerous ways a ridge can be disjointed and irregular. There are around 150 types
of minutia, out of which ridge ending and ridge bifurcation are most widely used
because all other types are the combination of these two.

• Ridge Ending: A point where a ridge terminates or suddenly ends (Fig. 7.3a).
• Ridge bifurcation: A point where a ridge divides into two ridges (Fig. 7.3b).

Minutiae points are very important in fingerprints recognition because these points
remain unchanged during person’s lifetime.

Level 3 (pores and ridge contours) features include all dimensional properties
of a ridge, such as sweat pores, ridge edges, width, incipient ridges, etc. Extraction

114 7 Supervised Deep Learning in Fingerprint Recognition

of level 3 features from a fingerprint image requires high-resolution images (image
resolution of 1000 ppi or more) as compared to the current standard of 500 ppi.

7.3 Automatic Fingerprint Identification System (AFIS)

Minutia-based fingerprint matching is the most popular and widely used approach
for both human expert and automatic recognition systems.Minutia-based approaches
have many advantages which make them suitable for automatic matching. These
approaches require less space because fingerprints are not represented as an image
but as a set of points (minutia points) in two-dimensional plane. Minutia points are
extracted from twofingerprints and stored as a set of pointswhich take very less space
as compared to images. Also, matching two sets of points is much faster as com-
pared tomatching two images pixel by pixel. Aminutia-based fingerprint recognition
system usually consists of two main stages: (i) Feature Extraction Stage, (ii) Fin-
gerprint Matching Stage. Feature extraction stage itself consists of many substages
which include image segmentation, minutiae, and singular point extraction and clas-
sification, etc. Figure 7.4 below shows the block map of minutia-based fingerprint
recognition system.

7.3.1 Feature Extraction Stage

In feature extraction stage, different useful features such as singular points andminu-
tia points are extracted from the fingerprint image. Ridge bifurcation and ridge ending
are the two important minutiae points and almost all the minutiae-based fingerprint
recognition systems use at least these twominutia types. The accuracy of a fingerprint
recognition system depends on the accuracy of feature extraction stage.

Fig. 7.4 Block map of automatic fingerprint recognition system

7.3 Automatic Fingerprint Identification System (AFIS) 115

Feature extraction stage consists of many steps which include:

• Image Enhancement:
The first important thing in fingerprint recognition system is the quality of fin-
gerprint image. The performance of an automatic fingerprint recognition system
depends a lot upon the image quality and the preprocessing steps used. Fingerprint
images extracted from various sources usually lack sufficient clarity and contrast.
Hence, image enhancement is necessary and amajor step in AFIS. Image enhance-
ment is used to remove the noise from fingerprint image with the help of various
techniques like Histogram, Gaussian smoothing filter, etc.

• Segmentation:
Fingerprint segmentation is the process of extracting Region of Interest (ROI)
from a fingerprint image. It is carried out by removing the background from a
fingerprint image.

• Minutiae Extraction:
After an obtaining enhanced segmented image, minutiae extraction is done using
the following two main techniques:

(1) Grayscale-Based Extraction:
Grayscale-based extraction uses ridge tracing in which, starting at a point,
ridges are traced by sailing along the ridges in a grayscale image and all the
occurrences where a ridge ends or bifurcates are recorded.

(2) Binarization Based Extraction:
In binarization based extraction, the fingerprint image is first transformed into
1-bit image with 0-value for ridges and 1-value for furrows or valleys. Binary
image consists of only two values 0 for black color and 1 for white color. The
grayscale image is transformed to black and white by comparing each pixel
value to a threshold value. If the pixel value is lower than the threshold value,
the pixel value is assigned black otherwise it is assigned white. The binarized
image is then thinned to obtain an image with all the ridges just 1 pixel wide
followed by minutia points extraction by comparing each pixel along with its
neighboring pixels of the image with predefined specified templates.

• False Minutiae Removal:
Any falseminutia points introduceddue to inadequate ink, ridge cross-connections,
over inking and due to limitations of minutiae extraction techniques should be
deleted for better reliability of the system. Some of these false minutia points are
deleted by removing all those points that are too close to each other.

7.3.2 Minutia Matching Stage

After the extraction of features from fingerprints, matching is done to obtain the
matching score. Fingerprint matching is a challenging task due to variations in the
minutia details of different impressions of the same finger. The variations are due

116 7 Supervised Deep Learning in Fingerprint Recognition

to displacement, rotation, nonlinear distortion, pressure, skin condition, etc., and as
well as due to any errors that may be associated with feature extraction. There are
various techniques available for fingerprint matching, some are based on using global
features, some use local features, and some use both.

7.4 Deep Learning Architectures for Fingerprint
Recognition

Deep learning, especially Convolutional Neural Network (CNN) has made tremen-
dous success in the field of computer vision and pattern recognition as it does not
require handcrafted feature extraction. Deep learning automatically learns features
and structures under a sufficient number of training data. These advantages of CNNs
make it suitable for various tasks in automatic fingerprint recognition/identification
system: including segmentation, classification, feature extraction (minutiae points
and singular points), ridge orientation estimation, etc. In next subsections, the appli-
cation of deep learning in fingerprints recognition will be discussed.

7.4.1 Deep Learning for Fingerprint Segmentation

Fingerprint segmentation is the process of decomposing a fingerprint image into two
regions: foreground region also known as Region of Interest (ROI) consisting of
fingerprint area and background region, which consists of other irrelevant content
like noise, etc. Fingerprint segmentation involves demarcation of all the foreground
regions accurately in a fingerprint image while discarding all irrelevant contents.
Accurate fingerprint segmentation is an important and critical step in automatic fin-
gerprint recognition systems as it affects the reliable feature extraction and eventually,
the overall performance of the system. Although significant progress has been made
on automatic segmentation of plain/rolled fingerprints, latent fingerprint segmenta-
tion remains one of the most difficult tasks in automatic latent fingerprint recognition
due to poor quality of images and complex background. Latent fingerprints can be
present on any surface like glass, cup, newspaper, table, etc., and very often these
surfaces are not clear or regular, thus making it difficult to extract fingerprint from
these surfaces. Their ridge structure is not clean and contains stains, spikes, lines,
text, etc., thus making the segmenting of foreground regions very difficult. For poor
quality images and noisy background, patch-based segmentation approach is the
preferred over other techniques. Patch-based segmentation techniques are computa-
tionally expensive and slow but very useful in situations where the input image is
distorted and background is noisy.

In patch-based segmentation method, segmentation problem is posed as a classi-
fication problem. The input image is divided into fixed size patches, and then these

7.4 Deep Learning Architectures for Fingerprint Recognition 117

patches are fed to a classifier and only positive patches are assembled to form the
segmented image.

Segmentation is done by dividing the fingerprint image into blocks, followed
by block classification based on gradient and variance information. The patch-based
segmentation technique for fingerprint images using Convolutional Neural Networks
consists of the following four modules:

• Splitter (S)
• Classifier (C)
• False Patch Normalizer (F)
• Patch Assembler (A)

The Splitter (S) module divides an input image into equal size blocks called
patches. The Classifier (C) module uses CNN model which classifies each of these
patches into fingerprint and non-fingerprint patches. The False Patch Normalizer
(F) module corrects the misclassified and isolated patches. The Patch Assembler
(A) module reassembles these patches and generates a segmented image. The
block diagram of the patch-based segmentation method is shown in Fig. 7.5. The
convolution model used for patch classification is trained on both plain and latent
fingerprints, thus the technique is suitable for both plain and latent fingerprints.

7.4.1.1 Convolutional Neural Network (CNN) as Patch Classifier

(i) CNN Patch Classifier Architecture
Convolutional Neural Network (CNN or ConvNet) based patch classifier is
used to classify each patch into fingerprint and non-fingerprint patch. The patch
classifier consists of three convolutional layers, one subsampling layer, two fully
connected layers, and one dropout layer as shown in Fig. 7.6. The output of the
last fully connected layer is fed to a 2-way Softmax classifier, which classifies
a patch into one of the two types. The first convolutional layer convolves the 16
× 16 input image block with 64 filters of size 5 × 5 with a stride of 1 pixel and
padding 2 producing 64 feature maps of size 16× 16. Each convolution layer is
followed by a Rectified Linear Units (ReLU) layer. Max-pooling is performed
after the first convolution operation which produces 16 feature maps of size 8
× 8. The pooled output of 16 feature maps of size 8 × 8 is fed to the second
convolutional layer which has 64 filters of size 5 × 5. The second convolution
layer produces 16 feature maps of size 8 × 8. The 16 feature maps of size 8 ×
8 are fed to the third convolutional layer which convolves it with 256 filters of
size 5 × 5. The output is passed to a fully connected layer with 256 neurons
followed by dropout layer. Finally, the network has fully connected layer with
Softmax classifier producing binary classification. Figures 7.7 and 7.8 shows the
operation of the first convolution layer and fully connected layer, respectively.

(ii) CNN Patch Classifier Training
The CNN patch classifier was trained on around 10,000 fingerprint and non-
fingerprint patches prepared from IIIT-D latent fingerprint database. Since the

118 7 Supervised Deep Learning in Fingerprint Recognition

F
ig
.7
.5

B
lo
ck

di
ag
ra
m

of
pa
tc
h-
ba
se
d
fin

ge
rp
ri
nt

se
gm

en
ta
tio

n
te
ch
ni
qu
e

7.4 Deep Learning Architectures for Fingerprint Recognition 119

F
ig
.7
.6

A
rc
hi
te
ct
ur
e
of

C
N
N
pa
tc
h
cl
as
si
fie

r

120 7 Supervised Deep Learning in Fingerprint Recognition

Fig. 7.7 First convolutional layer

Fig. 7.8 Fully connected
Layer

training dataset is not sufficient to train CNN model from scratch, the weights
were initialized usingVGG-16model. TheCNNmodelwas thenfine-tunedwith
10,000 image patches using Stochastic Gradient Descent (SGD) with learning
rate of 0.0001, batch size of 50. and weight decay of 1.

7.4.1.2 False Patch Normalizer

A low score associated with classifying a patch indicates that there is a possibility
that the patch may have been misclassified. A misclassified patch is also referred to
as a false patch. To reduce the number of false patches, a technique called “majority
of neighbors” is used to decide the final label of the patch. Since all the patches of a

7.4 Deep Learning Architectures for Fingerprint Recognition 121

Fig. 7.9 Segmentation result a before and b after applying false patch removal technique

specific class are likely to be in the same neighborhood, the probability that a patch
belongs to the class ofmajority of its neighbors is high. For each suspicious patch (i.e.,
whose score is less than a defined threshold), the class label of its four neighboring
patches is checked. If at least three neighboring patches are of the same class as the
patch under test, then it is accepted as true patch label, otherwise, it is treated as a
false patch and its class label is changed from fingerprint to non-fingerprint or vice
versa depending upon the actual class.

For example, if pi is ith patch and n1, n2, n3, and n4 are its four neighbors, then

label(pi) � majority(label(n1), label(n2), label(n3), label(n4))

The method “Majority of neighbors” performed well on low-quality latent finger-
print images and reduced the false patches by around 20%. The effect of the method
is shown in Fig. 7.9, which shows segmentation result before and after removing
false patches.

7.4.1.3 Patch Assembler

The Patch Assembler takes the classified patches as input, discards negative patches
and assembles the positive patches (classified as fingerprint patches) to produce the
segmented image. Figure 7.10 shows the final result of the segmentation technique
on latent fingerprints. The left column contains input images and right column their
corresponding segmented image.

7.4.1.4 Performance Evaluation

The patch-based segmentation technique results are discussed below on IIIT-D latent
fingerprint images. To measure the accuracy and precision, the following metrics are
used:

122 7 Supervised Deep Learning in Fingerprint Recognition

Fig. 7.10 Result of patch-based segmentation technique on latent fingerprints from IIIT-D latent
database. The left column contains input images and right column their corresponding segmented
image

• True Positive (TP): Number of patches correctly classified as belonging to true
class.

• True Negative (TN): Number of patches correctly classified as not belonging to
true class. It is equivalent to correct rejection.

• False positive (FP): It is type-1 error and equivalent to false alarm.
• False Negative (FN): It is type-1 error and equivalent to miss.

7.4 Deep Learning Architectures for Fingerprint Recognition 123

Table 7.1 Confusion matrix of patch classifier

Total number of images 2346 True positives (TP)
1022

True negatives(TN)
1065

False negatives(FN)
196

False positives(FP)
63

Table 7.1 gives the above metrics in the form of confusion matrix.
The above metrics are used for calculating accuracy, precision, and recall are

shown below:
Accuracy: It is simply the ratio of correctly predicted observation of the total

observations. The mathematical formula is given as

Accuracy =
TP + TN

TP + FN + FP + TN
� 2087

2346
� 88.95

Therefore, Accuracy � 88.95%

Precision: It is the fraction of relevant instances among the retrieved instances.
The formula is given as

Precision � TP

TP + FP
� 1022

1085
� 94.19

Precision � 94.19%

Recall: It is the fraction of relevant instances that have been retrieved over total
relevant instances in the image. It is based on an understanding and measure of
relevance.

Recall � TP

TP + FN
� 1022

1218
� 83.90

Recall � 83.90%

Performance comparison of different segmentation techniques is given in
Table 7.2. The table shows False Detection rate (FDR) and Missed Detection Rate
(MDR) of different segmentation techniques. The CNN-based technique has been
tested on IIIT-D latent database only, with FDR of 5.2% and MDR of 13.8%. The
second best method tested on the same database has achieved FDR and MDR of
18.7% and 9.22%, respectively (Fig. 7.11).

7.4.2 Deep Learning for Fingerprint Classification

Fingerprint classification plays an important role in the Automatic Fingerprint Iden-
tification System (AFIS) as it effectively reduces the database size as well as match-

124 7 Supervised Deep Learning in Fingerprint Recognition

Table 7.2 Performance comparison of segmentation methods

Approach Database FDR % MDR % Avg.

Ridge orientation and
frequency computation

NIST SD27 47.99 14.78 31.38

Adaptive total variation NIST SD27 26.13 14.10 20.12

K-means clustering NIST SD27 26.06 4.77 15.42

Fractal Dim and WELM NIST SD27
IIIT-D
(Good Quality)

18.7
10.07

9.22
6.38

13.96
8.23

CNN method IIIT-D
IIIT-D
(Good Quality)

5.2
4.7

13.8
10.5

9.2
7.6

0

10

20

30

40

50

60

Ridge
Orientation

and frequency
computation

Adaptive Total
Variation

K-means
Clustering

Fractal Dim &
WELM

CNN Method

FDR MDR Average

Fig. 7.11 Performance Comparison of various Latent Fingerprint segmentation techniques

ing time. Fingerprints can be broadly divided into five different classes: (a) Arch,
(b) Left Loop, (c) Right Loop, (d) Whorl, and (e) Tented Arch. Figure 7.2 shows the
images of five different fingerprint classes from the National Institute of Standards
and Technology (NIST) database. Fingerprint classification is one of the important
steps in automatic fingerprint recognition systems as it can substantially bring down
the number of comparisons at the time of matching.

The CNN-based technique, which is called CNN-AFC classifies a fingerprint into
five different classes, and then extracts the singular point from the fingerprint image.
It uses a 22-layer CNN model trained on NIST-DB4 dataset for classification of
fingerprints.

7.4.2.1 CNN Architecture for Fingerprint Classification

The CNN architecture (CNN-AFC) for classification of fingerprints consists of 22
layers including 5 convolutional layers, three pooling layers, three fully connected

7.4 Deep Learning Architectures for Fingerprint Recognition 125

layers, and one dropout layer. The output of the last fully connected layer is fed
to a 5-way softmax classifier which classifies the input into one of the five labels.
The block diagram and architecture of the CNN model are shown in Figs. 7.12a, b
respectively.

The first convolutional layer convolves the 224× 224× 3 input image block with
64 filters of size 11 × 11 × 3 with a stride of 4 pixels and 0 padding producing 64
feature maps. A Rectified Linear Units (ReLU) layer follows each convolution layer.
Max-pooling layer follows the first, second, and fifth convolutional layers. The sec-
ond convolutional layer takes as input the normalized and pooled output of the first
convolutional layer and convolves it with 256 filters of size 5× 5. The third convolu-
tional layer takes input from the normalized output of the second convolutional layer
and convolves it with 256 filters of size 3 × 3. Third and fourth convolutional layers
are connected without any pooling or normalization layer and both these layers have
256 filters of size 3 × 3. In addition to the abovementioned layers, the ConvNet also
contains dropout and batch normalization layers to overcome the problem of over-
fitting. Dropout refers to dropping out units in a neural network. Dropping a unit
means temporarily disconnecting it from the network including all its incoming and
outgoing connections. The dropped out units neither contribute to the forward pass
nor do they contribute in backpropagation. By using dropout, the network is forced
to learn more robust features as network architecture changes with each input.

Batch Normalization
Normalization is the process of scaling down the data to some reasonable limit to
standardize the range of features. Batch Normalization (BN) is applied after the first
two convolutional layers to remove covariate shift and reduce training time. Also, it
has been observed that BN reduces the effects of exploding and vanishing gradients
because everything becomes roughly normally distributed.

Batch Normalization is mathematically given as

x∗
i � xi ∗ M(x)√

V (x)

where x*i is the new normalized value of xi, M(x) is mean within a batch and V (x)
is its variance within a batch. In Convolutional Neural Network, every layer/filter is
normalized, i.e., every generated value is treated as a value for normalizing. If the
batch size isN and the output (feature map) generated by the convolution has a width
ofW and height ofH, then themean (M) is calculated overN *W *H values (same for
the variance). Batch normalization layer follows the first and second convolutional
layers. The dropout layer is used after the first fully connected layer of the CNN
model.

126 7 Supervised Deep Learning in Fingerprint Recognition

F
ig
.7
.1
2

a
B
lo
ck

di
ag
ra
m

of
C
on
vN

et
m
od
el
in

C
N
N
-A

FC
.b

A
rc
hi
te
ct
ur
e
of

C
on
vN

et
m
od
el
in

C
N
N
-A

FC

7.4 Deep Learning Architectures for Fingerprint Recognition 127

Table 7.3 Classification
result of CNN-AFC Model on
IIIT-D Latent fingerprint
database

Actual class Predicted class Accuracy
78.2% (%)A L R T W

A 97 5 2 22 0 76.98

L 13 107 3 5 9 78.1

R 11 1 103 5 13 77.4

T 24 3 5 90 0 73.7

W 0 11 8 0 109 85.1

Table 7.4 Classification
result of CNN-AFC Model on
NIST-DB4 fingerprint
database

Actual
class

Predicted class Accuracy
92.2% (%)A L R T W

A 361 5 2 32 0 90.25

L 2 376 2 15 5 94.0

R 8 0 369 18 5 92.25

T 34 9 5 352 0 88.0

W 0 8 6 0 386 96.5

7.4.2.2 Performance Evaluation

TheCNNmodel (CNN-AFC) has been trained on theNIST-DB4fingerprint database
and IIIT-D latent fingerprint database. NIST-DB4 consists of 4000 8-bit greyscale
fingerprint image of size 512 × 512 pixels, classified into five classes, Arch (A),
Left Loop (L), Right Loop (R), Tented Arch (T), and Whorl (W). IIIT-D Latent
Fingerprint database published by Image Analysis and Biometrics lab Indraprastha
Institute of Information Technology, Delhi contains 1045 latent fingerprint images
from 15 subjects lifted using brush and black powder. The performance of CNN-
AFC CNN model in classifying fingerprint and latent fingerprint images is shown
in Tables 7.3 and 7.4, respectively. On IIIT-D latent database, CNN-AFC achieved
a classification accuracy of 78.2% while as on NIST-DB4 fingerprint database, the
classification accuracy mounted up to 92.2%.

7.4.3 Model Improvement Using Transfer Learning

Deep models like Convolutional Neural Network (ConvNet) have large number of
parameters that must be learnt before they can be utilized to perform the task of
interest. In order to train these models, we require extensively large training dataset
with a specific end goal to achieve the desired performance. However, it is relatively
subtle to have a dataset of adequate size and due to this reason, it is better not to

128 7 Supervised Deep Learning in Fingerprint Recognition

train the whole deep network from scratch. Rather, it is normal to pretrain a ConvNet
on a vast dataset (e.g., ImageNet, which contains around 1.2 million labeled images
with 1000 classifications), and after that, use the ConvNet either by fine-tuning the
trained model according to the specific task or reuse the learnt weights/parameters
in another model for the task of interest. Pretrained deep models designed for one
task can be fine-tuned to achieve better accuracy in other similar tasks. This process
of reusing or transferring models learnt for one task into another similar task is
called transfer learning. Transfer learning thus refers to extracting the learnt weights
from a trained base network (pretrained model) and transferring them to another
untrained target network instead of training this target network from scratch. In
this way, features learnt in one network are transferred and reused in other network
designed to perform a similar task. Transfer learning can be used in the following
ways:

(a) ConvNet as fixed feature extractor: Here, the last fully connected layer (clas-
sifier layer) is replaced with a new classifier and this last layer is then trained
on new dataset. In this way, the feature extraction layers remain fixed and only
the classifier gets fine-tuned. This strategy is best suited when the new dataset
is insufficient but similar to the original dataset.

(b) Fine-tune whole Model: Here a pretrained model is used with its last fully
connected layer (classifier layer) replaced with a new fully connected layer. The
whole network is fine-tuned with a new dataset by continuing backpropagation
up to the top layers. In this way, all the weights are fine-tuned for the new task.

Results of transfer learning are reported here using three models: two pretrained
models AlexNet and VGG-VD and one model CNN-AFC trained on two data sets.
Alexnet and VGG-VDwere fine-tuned for the task of fingerprint classification. Their
last 1000-way softmax layer was replaced by 5-way softmax layer (to make the mod-
els output five probabilities for five fingerprint classes), and then the fully connected
layerswere retrained onfingerprint images.CNN-AFCwasfirst trained onCIFAR-10
dataset and followed by fine-tuning on NIST-DB4. Out of the three models, VGG-
VDproduced good results. VGG-VDwhich pretrained on the large dataset ImageNet
(which contains around 1.2 million images with 1000 categories) outperformed the
conventional approaches for classification of fingerprints. The classification result
of all three models on NIST-DB4 fingerprint database and IIIT-D latent fingerprint
database is shown in Table 7.5. Fingerprint classification accuracy of CNN-AFC
improved by around 2% from 92.2 to 94.1% with Transfer Learning. The class-wise
accuracy of each model is summarized in Tables 7.6, 7.7, and 7.8. Out of the three
models, VGG-VD produced best results with 95.1% accuracy followed by CNN-
AFC-P with an accuracy of 94.11%. AlexNet produced results with an accuracy of
93.10%.

The performance improvement after using Transfer Learning is presented in
Tables 7.9 and 7.10. Fingerprint classification accuracy of CNN-AFC improved by
around 2% from 92.2 to 94.1% (see Table 7.10) after Transfer Learning (Fig. 7.13).

7.4 Deep Learning Architectures for Fingerprint Recognition 129

Table 7.5 Classification result of the CNN models on NIST-DB4 and IIIT-D latent fingerprint
databases

Model Accuracy (NIST-DB4) (%) Accuracy (IIIT-D)(%)

VGG-VD 95.01 81.30

CNN-AFC 94.11 79.75

AlexNet 93.10 78.43

Table 7.6 Classification result of VGG-VD on NIST-DB4 fingerprint database

Actual
class

Predicted class Accuracy 95%
(%)A L R T W

A 370 3 2 25 0 92.5

L 0 381 0 13 6 95.3

R 3 0 382 11 4 95.5

T 19 5 2 374 0 93.5

W 0 5 2 0 393 98.25

Table 7.7 Classification result of AlexNet on NIST-DB4 fingerprint database

Actual
class

Predicted class Accuracy 93.1%
(%)A L R T W

A 369 1 0 30 0 92.25

L 0 379 0 17 4 94.75

R 4 0 367 25 4 91.75

T 24 11 3 362 0 90.5

W 0 7 8 0 385 96.25

Table 7.8 Classification result of CNN-AFC on NIST-DB4 fingerprint database

Actual
class

Predicted class Accuracy 94.1% (%)

A L R T W

A 371 3 2 24 0 92.75

L 2 383 1 11 3 95.75

R 7 0 374 14 5 93.50

T 23 8 4 365 0 91.25

W 1 6 4 0 389 97.25

Table 7.9 Overall accuracy of CNN-AFC before and after transfer learning

Model Accuracy (NIST-DB4) (%) Accuracy (IIIT-D) (%)

CNN-AFC (before
TL)

92.23 78.2

CNN-AFC-P (after
TL)

94.11 79.75

130 7 Supervised Deep Learning in Fingerprint Recognition

Table 7.10 Class-wise accuracy of CNN-AFC before and after Transfer Learning

Actual
class

Predicted class Accuracy before
TL 92.2% (%)

Accuracy after TL 94.1%
(%)A L R T W

A 361 5 2 32 0 90.25 92.75

L 2 376 2 15 5 94.0 95.75

R 8 0 369 18 5 92.25 93.50

T 34 9 5 352 0 88.0 91.25

W 0 8 6 0 386 96.5 97.25

Fig. 7.13 Performance of
VGG-VD, AlexNet and
CNN-AFC on NIST-DB4
and IIIT-D latent database

40

50

60

70

80

90

100

VGG-VD CNN-AFC AlexNet CNN-AFC (w/o TL)
NIST-D
IIIT-D

Convolutional neural networks tend to learn first-layer features that either resem-
bles Gabor filter or color blobs. This phenomenon is independent of the network
architecture and arises not only for different datasets, but also with very different
training objectives. Therefore, these top-level features, which are general for all
networks and datasets, are called general features. On the other hand, the features
learned by the last layer of a trained network must be specific to the chosen dataset
and task. These features are specific to a particular task and dataset. Thus, these last
layer (bottom level) features are called specific features. The features from middle
layers (layers between top layer and last layer) show the transition from general to
specific. For example, if a deep network has n layers with 1 being top layer and n
being last layer, then layer 1 will have maximum generality and minimum or zero
specificity and layer n will have minimum or zero generality but maximum speci-
ficity. Figure 7.14 below shows first-layer features learned by CNN-AFC before and
after Transfer Learning. Filters learned by CNN-AFC before transfer learning looks
noisy and incomplete while as features learned after TL look refined.

7.5 Challenges and Future Research Direction 131

Fig. 7.14 First layer filters learned by CNN-AFC a before and, b after transfer learning

7.5 Challenges and Future Research Direction

Convolutional Neural Networks can be used at different stages of the fingerprint
recognition system. The stages include segmentation, classification, and minutiae
extraction. Patch-based segmentation technique using Convolutional Neural Net-
works has shown promising results on latent fingerprints. However, the patch-based
method is computationally expensive as the input image is divided into a number
of small patches, and then each patch is fed to a CNN model. An input image with
100 patches will require 100 CNN passes for 100 patches thus making the approach
both computationally expensive as well as slow. One way to overcome this issue is
to use some region-based technique to divide the input image into regions (regions
likely to contain fingerprint) instead of dividing the entire images into equal sized
patches. This will confine fingerprint image processing to those areas that are highly
likely to contain useful fingerprints. This can reduce the number of CNN passes to
a great extent. Another challenge in automatic fingerprint recognition is the extrac-
tion of minutiae points from latent fingerprints. A robust CNN-based approach to
extract minutiae points from a latent fingerprint image can be of great help to forensic
experts.

132 7 Supervised Deep Learning in Fingerprint Recognition

Bibliography

1. Arshad, I., Raja, G., Khan, A.: Latent fingerprints segmentation: feasibility of using clustering-
based automated approach. Arab. J. Sci. Eng. (Springer Science & Business Media BV) 39(11)
(2014)

2. Cao,K., Jain,A.K.: Latent orientation field estimation via convolutional neural network. In: 2015
International Conference on Biometrics (ICB), pp. 349–356. IEEE (2015)

3. Cappelli, R., Maio, D.: The state of the art in fingerprint classification. Autom. Fingerpr. Recog-
nit. Syst., 183–205 (2004)

4. Ezeobiejesi, J., Bhanu, B.: Latent fingerprint image segmentation using fractal dimension fea-
tures andweighted extreme learningmachine ensemble. In: Proceedings of the IEEEConference
on Computer Vision and Pattern Recognition Workshops, pp. 146–154 (2016)

5. Guo,W., Tang, Y.: Latent fingerprint recognition: challenges and advances. In: Biometric Recog-
nition, pp. 208–215. Springer, Cham (2013)

6. Jain,A.K.,Hong,L., Pankanti, S.,Bolle,R.:An identity-authentication systemusingfingerprints.
Proc. IEEE 85(9), 1365–1388 (1997)

7. Khan, A.I., Wani, M.A.: Patch-based segmentation of latent fingerprint images using convolu-
tional neural network. Appl. Artif. Intell. 8, 1–5 (2018)

8. Maltoni, D.,Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer
Science & Business Media (2009)

9. Mehtre, B.M., Murthy, N.N., Kapoor, S., Chatterjee, B.: Segmentation of fingerprint images
using the directional image. Pattern Recognit. 20(4), 429–435 (1987)

Chapter 8
Unsupervised Deep Learning
in Character Recognition

8.1 Introduction

The recognition of handwritten digits is a well-researched problem and has many
applications in real life. The important applications include automatic reading of
addresses on postal envelopes, automated form processing, automated processing of
handwritten bank cheques, and filled-in forms like questionnaires or money orders.
Digit recognition serves as an evaluation task because the problem is well defined
and benchmark datasets are easily available.

The first step of this process is to separate the digits by providing strict boundaries
that contain these digits. Thus, themain problem that needs to be tackled is to identify
the isolated handwritten digits.

8.2 Datasets of Handwritten Digits

A commonly used dataset of handwritten digits is MNIST dataset which is a collec-
tion of 70,000 digits. Half of the handwritten digits in the dataset were written by
the Census Bureau employees and the rest of the characters were written by high
school students. The digits written by Census Bureau employees are much cleaner
and easier to recognize than the digits written by students. These digits were stored
as 28 × 28 grayscale images, and were divided into two sets training set of size
60,000 and test set of size 10,000 images. Figure 8.1 shows some of the digits in the
training dataset. In this dataset, each digit image is 28 pixels in height and 28 pixels
in width, giving a total of 784 pixels for each image. The pixel values, xi , range from
0 for a completely black pixel to 255 for a completely white pixel. The image can be
flattened and represented as a vector x � (x1, x2, . . . , xd)T (in this case d � 784).

The distribution of pixel values, xi , have similar patterns for the same numeral.
Figure 8.2 shows some images from the training dataset of the handwritten number
“6”. There are a lower loop and a curve in the top part of the image. For the images

© Springer Nature Singapore Pte Ltd. 2020
M. A. Wani et al., Advances in Deep Learning, Studies in Big Data 57,
https://doi.org/10.1007/978-981-13-6794-6_8

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6794-6_8&domain=pdf
https://doi.org/10.1007/978-981-13-6794-6_8

134 8 Unsupervised Deep Learning in Character Recognition

Fig. 8.1 MNIST dataset: First 100 digits in the training dataset

Fig. 8.2 Images of numeral “6” from the training dataset

belonging to the same class, high pixel values are located in similar locations in the
vector. The mean image for each numeral is computed as shown in Fig. 8.3 that
shows high pixel values locations of various digits.

The number of images of each class present in the training dataset and the testing
dataset is shown in Fig. 8.4.

The task is to recognize a numeral from the image and the process includes the
following steps: First, n × n pixel image of a handwritten digit is read. Each pixel
of the image is converted into a number between 0 and 1, with 0 as black and 1 as
white. It is then saved in a vector denoted as x � (x1, x2, . . . , xn). The label of each
image is denoted as y � y0, y1, . . . , y9. For example, (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
represents a label of 5. Then different classifier models can be obtained using the
training dataset.

The other handwritten digit datasets include USPS and Gisette. The USPS data
set consists of 9298 labeled handwritten digit images, each representing a 16 × 16

8.2 Datasets of Handwritten Digits 135

Fig. 8.3 Average of images of each numeral from the training dataset

Fig. 8.4 Number of images of each digit in the training and testing datasets

pixel image of one of the 10 digits (0–9). Some training samples from USPS dataset
are shown in Fig. 8.5.

The Gisette dataset consists of 6000 labeled handwritten digit images of “4” and
“9”. The dataset is divided into 4000 training images and 2000 testing images. The
digits are scaled to a uniform size and centered in a 28 by 28 pixel image.

The application of deep learning techniques over the last decade has proven suc-
cessful in building systems, which are competitive to human performance and which
perform better than many traditional AI systems. This chapter will discuss deep
learning architectures for handwritten characters.

136 8 Unsupervised Deep Learning in Character Recognition

Fig. 8.5 Some training
samples from USPS dataset

8.3 Deep Learning Architectures for Character
Recognition

The deep learning architecture that is used for recognition of handwritten digits
is trained in two phases: During the first phase, the deep network is trained layer
by layer in an unsupervised manner. Each layer takes as input the representation
produced by the layer before it, with the ultimate goal of discovering more abstract
representations as we move up the network. During the second phase, fine-tuning is
performed which involves adjusting the parameters of the deep network according
to some ultimate task of interest.

8.3.1 Unsupervised Pretraining

Unsupervised pretraining makes its contribution by initializing the parameters of
deep networks to sensible values so that they represent the structure of input data in
a more meaningful way than the random initialization, thereby yielding significant
improvement in the generalization performance. The subsequent fine-tuning phase
improves the discrimination ability by slightly modifying the model parameters to
adjust the boundaries between classes. Figure 8.6 illustrates a general overview of
pretraining and fine-tuning.

For unsupervised pretraining, a stack of RBMs is used which is trained from
bottom-up with the representations from each layer used as input to the next RBM.
This process is repeated until a desired number of RBM’s are trained to create a
multilayermodel. Finally, the parameters ofRBMsoobtained are used to initialize the
parameters of deep network. A final output layer is added to the deep neural network
and the entire network is then fine-tuned using supervised learning algorithm. The
weights of the output layer are randomly initialized and fine-tuning updates the
weights of all layers by backpropagating the error gradients. The weight update

8.3 Deep Learning Architectures for Character Recognition 137

Fig. 8.6 a Unsupervised pretraining of n layers of deep neural network with restricted Boltzmann
machine, b supervised fine-tuning of deep neural network

function in Fig. 8.6 represents the weight correction term that is used to update the
corresponding weights.

Deep Neural Network (DNN) is constructed in the following manner: The first
RBM is trained on the input data by CD algorithm so that the probability distribution
represented by it corresponds to the distribution of the training data. After the first
RBM learns its weights, the binary states of its hidden units create a second-level
representation of data which is used as a visible layer for the next RBM. This process
is repeated until a desired number of RBM’s are trained to create a multilayer model.
Units in the hidden layers learn the complex features from the data that allow the
output layer to produce accurate decision boundaries. This stack of trained RBMs is
referred to as DBN.

A decision layer is then added to it in order to implement the desired task with
training data, creating aDBN-DNN. The structure ofDBN-DNN is shown in Fig. 8.7.

138 8 Unsupervised Deep Learning in Character Recognition

Fig. 8.7 Construction of DBN-DNN

Theparameters (weights andbiases) ofDBN-DNNare thenfine-tuned in a supervised
manner for better discrimination.

8.3.2 Supervised Fine Tuning

(a) Fine-Tuning Using BP Algorithm

A common method that is used for the fine-tuning of a pretrained deep model is the
Backpropagation (BP) algorithm. After a deep network has been pretrained through
unsupervised learning, the BP algorithm updates the parameters of themodel through
gradient descent optimization technique. Figure 8.8 shows the fine-tuning done using
the standard BP algorithm.

Consider a fully connected feed forward neural network with nL layers. Let n ∈
{1, . . . , nL} be the layers of the network, where nL is the output layer, s(n) be the
input vector into layer n, y(n) be the output vector from layer n, W (n) be the matrix
of weights and b(n) vector of bias terms at layer n. The forward flow of activation in
the standard BP algorithm (for unit j) can be given as

s(n+1)
j � w(n+1)

j y(n) + b(n+1)
j (8.1)

Y (n+1)
j � f

(
s(n+1)
j

)
(8.2)

where f is sigmoid activation function defined by Eq. (8.3):
Similarly, for the output layer nodes the forward flow of activation can be given

as

8.3 Deep Learning Architectures for Character Recognition 139

Fig. 8.8 Left: Fine-tuning of DBN-DNN using BP,Right: basic operation of fine-tuning using BP

f
(
s(n+1)
j

)
� 1/1 + exp

(
−s(n+1)

j

)
(8.3)

s(nL)
j � w

(nL)
j y(nL−1) + b(nL)

j (8.4)

Y (nL)
j � f

(
snL
j

)
(8.5)

Once the output from the network is obtained, the error term for the output layer
nodes δ

(nL)
j and the error term for the hidden layer nodes δ

(n)
j can be calculated.

The steps of fine-tuning using BP algorithm are given below.

(i) For a given training example, the activations for layers L2, L3 … LnL are
computed.

(ii) For each output unit j in layer nL , compute the error term as

δ
(nL)
j � (t j − Y (nL)

j) f ′
(
s(nL)
j

)
(8.6)

(iii) For n � nL − 1, nL − 2, nL − 3, . . . 2

For each node j in layer n, compute the error term as

δ
(n)
j �

(∑
i�1

w
(n)
i j δ

(n+1)
i

)
f ′

(
s(n)
j

)
(8.7)

140 8 Unsupervised Deep Learning in Character Recognition

(iv) Compute the weight change and bias change as

�w
(n)
j i � Y (n)

i δ
(n+1)
j (8.8)

�b(n)
j � δ

(n+1)
j (8.9)

(b) Fine-Tuning Using Dropout-BPAG

Dropout-BPAG involves integrating adaptive gain backpropagation (BPAG) algo-
rithm with the dropout technique. This algorithm is used in fine-tuning of the con-
structed DBN-DNN. BPAG algorithm involves adjusting the gain parameter (slope)
of the sigmoid function during training, in a manner very similar to that used for
adjusting the weights. Varying gain parameter improves the learning efficiency of
the trained model and thereby improving the generalization performance. Further-
more, BPAG algorithm overcomes the learning slowdown problem associated with
usage of sigmoid units, which gets further aggravated in case of deep networks
(Fig. 8.9).

Dropout is a regularization technique that randomly omits some fraction of units
in the network to boost neural network accuracy. It prevents coadaptation of neurons,
such that each neuron behaves as a reasonablemodelwithout relying on other neurons
being there. This makes each neuron to be more robust, independently useful and

Fig. 8.9 a Fine-tuning using BP, b fine-tuning using dropout-BPAG, crossed units represent the
nodes that have been dropped

8.3 Deep Learning Architectures for Character Recognition 141

pushes it toward creatingmoremeaningful representation insteadof relyingonothers.
Neurons are droppedwith a probabilityq � 1−p and dropping a neuron is equivalent
to dropping all its weighted connections. Basically, using dropout involves sampling
a subnetwork from the entire network. If a neural network consists of n units, we can
have 2n possible subnetworks.

In the Dropout-BPAG algorithm, for each training case, we sample a subnetwork
by dropping out units. We take into consideration the gain parameter of only the
neurons that are retained and in a similar manner adapt the gain parameter of only
these neurons, as forward and backpropagation for that training case are done only
on the subnetwork rather than the entire network. This improves the generalization
performance of the model. Figure 8.9 shows fine-tuning done using Dropout-BPAG.

The forward flow of activation in the algorithm (for hidden unit j) of Fig. 8.10
can be given as

m(n) ∼ Bernoulli(p) (8.10)

ỹ(n) � m(n) ∗ y(n) (8.11)

s(n+1)
j � w

(n+1)
j ỹ(n) + b(n+1)

j (8.12)

where f is sigmoid activation function defined by

Y (n+1)
j � f

(
s(n+1)
j c(n+1)

j

)
(8.13)

Fig. 8.10 Basic operation of dropout-BPAG

142 8 Unsupervised Deep Learning in Character Recognition

c(n+1)
j is the gain parameter associated with node j of hidden layer n + 1 and

m(n) is a vector of independent Bernoulli random variables associated with layer n,

each of which has the probability p of being 1. The outputs of layer n, y(n) are then
multiplied element wise with the vector m(n), to produce thinned outputs ỹ(n). The
thinned outputs are then passed to a sigmoid function with slope parameter and the
outputs so obtained are used as the input to the next layer. This process is repeated
at each layer.

In a similar manner, the forward flow of activation (for unit j) for the output layer
nodes can be given as

ỹ(nL−1) � m(nL−1) ∗ y(nL−1) (8.14)

s(nL)
j � w

(nL)
j ỹ(nL−1) + b(nL)

j (8.15)

Y (nL)
j � f

(
s(nL)
j c(nL)

j

)
(8.16)

After the computation of the output from the network, we compute the error
term that measures how much a node was responsible for any errors in the output.
However, in this algorithm, while calculating the error term, we need to take into
consideration the gain parameter of each node at each layer of the subnetwork.

The steps of fine-tuning using Dropout-BPAG are given below.

(i) For a given training example, compute the activations for layers L2, L3 … LnL

(ii) For each output unit j in layer nL , compute the error term as

δ
(nL)
j �

(
t j − Y (nL)

j

)
f ′

(
s(nL)
j

)
) (8.17)

(iii) For n � nL − 1, nL − 2, nL − 3, . . . 2

For each retained node j in layer n, compute the error term as

δ
(n)
j �

(∑
w

(n)
i j δ

(n+1)
i

)
f ′

(
s(n)
j

)
c(n+1)
i (8.18)

(iv) Compute the weight, bias, and gain parameter change as

�w
(n)
j i � Y (n)

i δ
(n+1)
j c(n+1)

j (8.19)

�b(n)
j � δ

(n+1)
j (8.20)

c(n)
j � δ

(n+1)
j s(n+1)

j (8.21)

8.3 Deep Learning Architectures for Character Recognition 143

(c) Fine-Tuning Using Dropout-BPGP

Dropout-BPGP involves integrating the backpropagation with pattern-based gain
parameter (BPGP) with the dropout technique. For each training case, a subnetwork
is sampled by dropping out units. Only neurons that are retained are considered for
performing training on the subnetwork rather than the entire network. This improves
the generalization performance of the model. For each training case, a different
subnetwork is sampled, with each neuron learning features on its ownwithout relying
on the presence of other neurons being there.

The forward flow of activation in the Dropout-BPGP (for hidden unit j) can be
given as

m(n) ∼ Bernoulli(p) (8.22)

ỹ(n) � m(n) ∗ y(n) (8.23)

s(n+1)
j � w

(n+1)
j ỹ(n) + b(n+1)

j (8.24)

Y (n+1)
j � f

(
s(n+1)
j c(n+1)

j

)
(8.25)

where f is sigmoid activation function defined by

f
(
s(n+1)
j

)
� 1/1 + exp

(
−s(n+1)

j c(n+1)
j

)
(8.26)

c(n+1)
j is the gain parameter associated with node j of hidden layer n + 1, m(n) is

a vector of independent Bernoulli random variables associated with layer n, each
of which has the probability p of being 1. The outputs of layer n, y(n) are then
multiplied element wise with the vector m(n), to produce thinned outputs ỹ(n). The
thinned outputs are then passed to a sigmoid function and the outputs so obtained
are used as the input to the next layer. This process is repeated at each layer. In a
similar manner, the forward flow of activation (for unit j) for the output layer nodes
can be given as

ỹ(nL−1) � m(nL−1) ∗ y(nL−1) (8.27)

s(nL)
j � w

(nL)
j ỹ(nL−1) + b(nL)

j (8.28)

Y (nL)
j � f

(
s(nL)
j c(nL)

j

)
(8.29)

After the computation of the output from the network, the degree of approximation
to the desired output of the output layer is calculated and is used to adjust the value of
gain parameter of the nodes in the last hidden layer, while keeping the gain parameter
of nodes in the lower hidden layers fixed.

144 8 Unsupervised Deep Learning in Character Recognition

The gain parameter of the nodes in the last hidden layer is then adjusted as

cnL−1
j �

{
1/Ap � H/ep if Ap > 1

0 else
(8.30)

where Ap represents the approximationdegree of output layer defined as Ap � ep/H ,
H represents the average value of the difference between teacher signals and ep is

computed as ep � maxk

(∣∣∣
(
tkp − Y (nL)

kp

)∣∣∣
)
, where tkp andYkp represent target output

and network output for training pattern p; p ∈ {1, . . . , P} and output node k; k
∈ {1, . . . , K }.

The deep network models are evaluated on the MNIST, USPS, and Gisette hand-
written digit datasets. The evaluation is carried out on the basis of classification
accuracy, error rate on the test dataset, and root mean squared error.

For MNIST dataset, the deep network consists of four layers, inclusive of the
input and output layers, as shown in Fig. 8.11. Fully connected weights are used
to link the consecutive layers. The input layer takes input from a 28 × 28 image
through a 784-dimensional vector. The successive layers have 1200 hidden variables.
The last hidden layer is associated with an output layer consisting of 10 output
variables that correspond to 10 class labels, representing a digit. In order to evaluate
the effectiveness of the deep architecture, the performance is tested on varying size
of MNIST dataset. The MNIST dataset is used to construct four datasets MNIST-
20, MNIST-50, MNIST-70, and MNIST-100. These training sets are constructed by
randomly choosing training samples of size 20, 50, 70, and 100% from the original
dataset.

For USPS dataset, a 256-200-100-10 DBN-DNN is trained as shown in Fig. 8.12.
For Gisette dataset, a four-layer DBN-DNN (5000-200-100-2) is trained as shown

in Fig. 8.13.

Fig. 8.11 Deep network for MNIST

8.4 Performance Comparison of Deep Learning Architectures 145

Fig. 8.12 Deep network for USPS dataset

Fig. 8.13 Deep network for Gisette dataset

8.4 Performance Comparison of Deep Learning
Architectures

For experimental results, the deep architectures have been trained in two phases, first
phase involves the construction of DBN-DNN using unsupervised pretraining and
the second phase involves fine-tuning by using BP, Dropout, Dropout-BPAG, and
Dropout-BPGP.

The values of hyper-parameters that are used in the pretraining are: the learning
rate in both layers is set to 0.1, initial momentum is set to 0.5 and momentum after
the fifth epoch is set to 0.9. The weight penalty l2 in the pretraining phase is 2×10−5.

The learning rate for the fine-tuning phase is set to 0.1. For the pretraining and
fine-tuning phase, the size of the mini batches is set to 100. For dropout, nodes are
dropped out at both the input layer as well as at the hidden layer. At the input layer,
the input components are retained with the probability of 0.8. While at the hidden
layer, the units are retained with probability of 0.5. Each model is trained with 1000
epochs.

The performance is evaluated using the three metrics: testRMSE (root mean
squared error), classification accuracy, and the error rate on the test dataset, which
are computed as follows:

error rate � Ninc/N , (8.31)

146 8 Unsupervised Deep Learning in Character Recognition

testRMSE �
√√√√1/N

N∑
i�1

||ti − F(xi)||2 (8.32)

where Ninc is the number of missclassified samples, N is the total number of test
samples, xi is the i th test vector, F(xi) represents the actual output and ti represents
the target output.

(a) Results on MNIST dataset

The testRMSE, accuracy, and error rate of the various architectures on different
size of MNIST dataset are summarized in Tables 8.1, 8.2, 8.3, and 8.4, respectively
(Fig. 8.14).

Table 8.1 Performance of deep architectures on MNIST-20

Deep learning model Fine-tuning algorithm testRMSE Error rate Accuracy (%)

DBN-DNN None 0.0941 0.045 95.5

DBN-DNN BP 0.0677 0.0255 97.45

DBN-DNN Dropout 0.0599 0.0216 97.84

DBN-DNN Dropout-BPGP 0.0602 0.021 97.9

DBN_DNN Dropout-BPAG 0.0602 0.021 97.9

Table 8.2 Performance of deep architectures on MNIST-50

Deep learning model Fine-tuning algorithm testRMSE Error rate Accuracy (%)

DBN-DNN None 0.1055 0.0575 94.25

DBN-DNN BP 0.0628 0.0207 97.93

DBN-DNN Dropout 0.0496 0.0146 98.54

DBN-DNN Dropout-BPGP 0.0485 0.0138 98.62

DBN_DNN Dropout-BPAG 0.0496 0.0146 98.54

Table 8.3 Performance of deep architectures on MNIST-70

Deep learning model Fine-tuning algorithm testRMSE Error rate Accuracy (%)

DBN-DNN None 0.1142 0.069 93.1

DBN-DNN BP 0.0550 0.017 98.3

DBN-DNN Dropout 0.0446 0.012 98.8

DBN-DNN Dropout-BPGP 0.0471 0.0127 98.73

DBN_DNN Dropout-BPAG 0.0412 0.01 99

8.4 Performance Comparison of Deep Learning Architectures 147

Table 8.4 Performance of deep architectures on MNIST-100

Deep learning model Fine-tuning algorithm test RMSE Error rate Accuracy (%)

DBN-DNN None 0.1261 0.0834 91.66

DBN-DNN BP 0.0531 0.0149 98.51

DBN-DNN Dropout 0.0420 0.0107 98.93

DBN-DNN Dropout-BPGP 0.0422 0.0108 98.92

DBN_DNN Dropout-BPAG 0.0410 0.0096 99.04

Fig. 8.14 Error rate of deep architectures on MNIST

(b) Results on USPS dataset

The testRMSE, accuracy, and error rate of deep architectures on USPS dataset is
summarized in Table 8.5.

Table 8.5 Performance of deep architectures on USPS

Deep learning model Fine-tuning algorithm testRMSE Error rate Accuracy (%)

DBN-DNN None 0.1222 0.0871 91.29

DBN-DNN BP 0.0952 0.0538 94.62

DBN-DNN Dropout 0.0951 0.0523 94.77

DBN-DNN Dropout-BPGP 0.0950 0.0508 94.92

DBN_DNN Dropout-BPAG 0.0927 0.0503 94.97

148 8 Unsupervised Deep Learning in Character Recognition

(c) Results on Gisette

The testRMSE, accuracy, and error rate of deep architectures on Gisette dataset is
summarized in the Table 8.6 (Fig. 8.15).

Table 8.6 Performance of deep architectures on Gisette

Deep learning model Fine-tuning algorithm testRMSE Error rate Accuracy (%)

DBN-DNN None 0.1655 0.0355 96.45

DBN-DNN BP 0.1329 0.02 98

DBN-DNN Dropout 0.1346 0.0195 98.05

DBN-DNN Dropout-BPGP 0.1253 0.0175 98.25

DBN_DNN Dropout-BPAG 0.1277 0.0169 98.31

Fig. 8.15 Error rate of deep architectures on USPS and Gisette

8.5 Challenges and Future Research Direction 149

8.5 Challenges and Future Research Direction

Unsupervised pretraining followed by supervised fine-tuning presents promising
results in handwritten digit recognition. There are a number of areas that are char-
acterized by large volumes of unlabeled data where unsupervised deep architectures
can be employed. However, one of the challenges is to determine if the higher layers
have significantly adequate information about the original data that is presented at
the bottom layers. Another challenge is to determine robust designs of deep learning
architectures and changes required in the existing architectures that allow maximum
information about the original data to be propagated through to higher layers.

For applications where both labeled and unlabeled data is available, hybrid archi-
tecture that makes simultaneous use of supervised and unsupervised deep learning
architectures can be explored.

Bibliography

LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Neural networks: tricks of
the trade, pp. 9–50. Springer, Berlin, Heidelberg (1998)

Nawi, N.M., Hamid, N.A., Ransing, R.S., Ghazali, R., Salleh,M.N.M.: Enhancing back propagation
neural network algorithm with adaptive gain on classification problems. Int. J. Database Theory
Appl. 4(2) (2011)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way
to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

Wang, S., Manning, C.: Fast dropout training. In: International Conference on Machine Learning,
pp. 118–126 (2013, Feb)

Wang, X., Tang, Z., Tamura, H., Ishii, M., Sun, W.D.: An improved backpropagation algorithm to
avoid the local minima problem. Neurocomputing 56, 455–460 (2004)

Wani, M.A., Afzal, S.: Optimization of deep network models through fine tuning. Int. J. Intell.
Comput. Cybern. 11(3), 386–403 (2018a)

Wani, M.A., Afzal, S.: Gain parameter and dropout-based fine tuning of deep networks. Int. J. Intell.
Inf. Database Syst. 11(4), 236–254 (2018b)

	Preface
	Contents
	About the Authors
	Abbreviations
	1 Introduction to Deep Learning
	1.1 Introduction
	1.2 Shallow Learning
	1.3 Deep Learning
	1.4 Why to Use Deep Learning
	1.5 How Deep Learning Works
	1.6 Deep Learning Challenges
	Bibliography

	2 Basics of Supervised Deep Learning
	2.1 Introduction
	2.2 Convolutional Neural Network (ConvNet/CNN)
	2.3 Evolution of Convolutional Neural Network Models
	2.4 Convolution Operation
	2.5 Architecture of CNN
	2.5.1 Convolution Layer
	2.5.2 Activation Function (ReLU)
	2.5.3 Pooling Layer
	2.5.4 Fully Connected Layer
	2.5.5 Dropout

	2.6 Challenges and Future Research Direction
	Bibliography

	3 Training Supervised Deep Learning Networks
	3.1 Introduction
	3.2 Training Convolution Neural Networks
	3.3 Loss Functions and Softmax Classifier
	3.3.1 Mean Squared Error (L2) Loss
	3.3.2 Cross-Entropy Loss
	3.3.3 Softmax Classifier

	3.4 Gradient Descent-Based Optimization Techniques
	3.4.1 Gradient Descent Variants
	3.4.2 Improving Gradient Descent for Faster Convergence

	3.5 Challenges in Training Deep Networks
	3.5.1 Vanishing Gradient
	3.5.2 Training Data Size
	3.5.3 Overfitting and Underfitting
	3.5.4 High-Performance Hardware

	3.6 Weight Initialization Techniques
	3.6.1 Initialize All Weights to 0
	3.6.2 Random Initialization
	3.6.3 Random Weights from Probability Distribution
	3.6.4 Transfer Learning

	3.7 Challenges and Future Research Direction
	Bibliography

	4 Supervised Deep Learning Architectures
	4.1 Introduction
	4.2 LeNet-5
	4.3 AlexNet
	4.4 ZFNet
	4.5 VGGNet
	4.6 GoogleNet
	4.7 ResNet
	4.8 Densely Connected Convolutional Network (DenseNet)
	4.9 Capsule Network
	4.10 Challenges and Future Research Direction
	Bibliography

	5 Unsupervised Deep Learning Architectures
	5.1 Introduction
	5.2 Restricted Boltzmann Machine (RBM)
	5.2.1 Variants of Restricted Boltzmann Machine

	5.3 Deep Belief Network
	5.3.1 Variants of Deep Belief Network

	5.4 Autoencoders
	5.4.1 Variations of Auto Encoders

	5.5 Deep Autoencoders
	5.6 Generative Adversarial Networks
	5.7 Challenges and Future Research Direction
	Bibliography

	6 Supervised Deep Learning in Face Recognition
	6.1 Introduction
	6.2 Deep Learning Architectures for Face Recognition
	6.2.1 VGG-Face Architecture
	6.2.2 Modified VGG-Face Architecture

	6.3 Performance Comparison of Deep Learning Models for Face Recognition
	6.3.1 Performance Comparison with Variation in Facial Expression
	6.3.2 Performance Comparison on Images with Variation in Illumination Conditions
	6.3.3 Performance Comparison with Variation in Poses

	6.4 Challenges and Future Research Direction
	Bibliography

	7 Supervised Deep Learning in Fingerprint Recognition
	7.1 Introduction
	7.2 Fingerprint Features
	7.3 Automatic Fingerprint Identification System (AFIS)
	7.3.1 Feature Extraction Stage
	7.3.2 Minutia Matching Stage

	7.4 Deep Learning Architectures for Fingerprint Recognition
	7.4.1 Deep Learning for Fingerprint Segmentation
	7.4.2 Deep Learning for Fingerprint Classification
	7.4.3 Model Improvement Using Transfer Learning

	7.5 Challenges and Future Research Direction
	Bibliography

	8 Unsupervised Deep Learning in Character Recognition
	8.1 Introduction
	8.2 Datasets of Handwritten Digits
	8.3 Deep Learning Architectures for Character Recognition
	8.3.1 Unsupervised Pretraining
	8.3.2 Supervised Fine Tuning

	8.4 Performance Comparison of Deep Learning Architectures
	8.5 Challenges and Future Research Direction
	Bibliography

