Intel® 64 and IA-32
Architectures
Optimization Reference Manual

Order Number: 248966-024
April 2011

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITU-
ATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "un-
defined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer Séstem with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel®™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Intel, Pentium, Intel Atom, Intel Centrino, Intel Centrino Duo, Intel Xeon, Intel NetBurst, Intel Core, Intel
Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel Speed-
Step, MMX, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel lit-
erature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2011 Intel Corporation

CONTENTS

PAGE

CHAPTER 1
INTRODUCTION
1.1 TUNING YOUR APPLICATION. « o vttt ettt e et e e e e e iaanes 1-1
1.2 ABOUT THIS MANUAL . . ottt et et 1-2
1.3 RELATED INFORMATION. . ..ttt ettt et et e e e 1-4
CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 INTEL® MICROARCHITECTURE CODE NAME SANDY BRIDGEovvvvviiiiennnns 2-2
2.1.1 Intel® microarchitecture code name Sandy Bridge Pipeline Overview............... 2-3
2.1.2 The FrONt BN . ..o e 2-5
2.1.2.1 Legacy Decode Pipelineovviiii 2-6
21.2.2 Decoded ICathe. . .o e 2-9
2.1.23 Branch Prediction.oeie i 2-10
21.24 Micro-op Queue and the Loop Stream Detector (LSD)ccovvvvvnnnnn. 2-10
213 The Out-0f-0rder ENGINe vt e e i 2-11
2.1.3.1 RENMAMET .. 2-12
2132 SCREAUIET . 2-13
214 The EXECULION COMe ..ttt 2-13
215 Cache HIerarChy . ..o e e e e 2-15
2.1.5.1 Load and Store Operation OVErVIEWovvvvi i i eaaeaas 2-16
2152 IR 6Tl = 2-17
2153 Ring Interconnectand Last LevelCache.............coi it 2-23
2.1.54 Data Prefetching. ... 2-23
2.1.6 I (= 11 Yo T3 2-25
2.2 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL CORE

MICROARCHITECTURE. . .o\ttt ettt e ees 2-26
2.2.1 Intel® Core™ Microarchitecture Pipeline Overviewc.cooviiiiiiiinininnn. 2-27
2.2.2 FroNt ENG. ..ot e 2-29
2.2.2.1 Branch Prediction Unito 2-30
2.2.2.2 Instruction Fetch Unit. e 2-30
2.2.2.3 Instruction QUEUe (1Q).o e et e 2-31
2224 INSTIUCHION DECOME. . v\ttt e 2-32
2.2.25 Stack Pointer Tracker .. vttt 2-32
2.2.26 MICTO-TUSION Lt e 2-33
2.2.3 EXECULION COME Lttt ettt et 2-33
2.2.31 Issue Ports and Execution UNitso.vvvviiiiiiii i 2-34
224 Intel® Advanced MemOrY ACCESS .. .v vttt et it e ittt eans 2-37
2.24.1 L03dS ANA STOMES ... vttt ettt ettt 2-38
2.24.2 Data Prefetchtoll caches. ..o e 2-39
2243 Data Prefetch LogiC. . ..o vv e 2-39
2244 StOre FOTWArdING . . v e ettt e s 2-40
2245 Memory Disambiguation.vuv i e 2-41
2.2.5 Intel® Advanced SMart Cachevuvr i e 2-42
2.2.5.1 L - o L3 2-43
2.2.5.2 1) 0] =T 2-44
23 INTEL® MICROARCHITECTURE CODE NAME NEHALEMo 2-45

CONTENTS

PAGE
2.3.1 Microarchitecture Pipeling.ot e 2-45
232 Front ENA OVEMVIEW. . .o vttt e e 2-47
233 EXECULION ENGINE ..ttt e e 2-49
2331 Issue Ports and Execution UNitsvvinni e 2-50
234 Cache and Memory SUDSYSTeM. ... v i e 2-51
235 Load and Store Operation Enhancementscooviiiii it 2-52
2.3.5.1 Efficient Handling of Alignment Hazardscooviiiiiiiiiiinnnt 2-52
235.2 Store Forwarding Enhancement ...t e 2-53
236 REP String ENhancement e 2-55
23.7 Enhancements for System Software. ... e 2-56
238 Efficiency Enhancements for Power Consumptioncoovvviviiiiiiiennnn 2-56
239 Hyper-Threading Technology Support in Intel® microarchitecture code name
Y 1=] = =T R 2-57
2.4 INTEL NETBURST® MICROARCHITECTURE ...\t 2-57
24.1 DESIgN G0aIS. . oottt 2-58
24.2 PIDEIINE .t e 2-58
2.4.2.1 FrONt ENG. .o e 2-60
24.2.2 O 1T o) o o (= e = 2-60
24.23 LR 2] T 1= | 2-61
243 Front End Pipeline Detail.........cooiiii i 2-61
2.4.3.1 Prefetching.co v 2-61
2432 =Yoo o= 2-62
2433 Execution Trace Cache ... v v 2-62
2434 Branch Prediction.o 2-62
244 Execution Core Detailvvue i 2-63
2441 Instruction Latency and Throughput ... i 2-64
244.2 Execution Units and ISSUE POrtSoii e 2-64
2443 0 Lo 3 2-66
2444 Data Prefetch ..o 2-67
2445 L0adS aNd STOMES ... v ittt e e 2-69
2446 StOre FOTWArdING . . v v ettt et e 2-70
2.5 INTEL® PENTIUM® M PROCESSOR MICROARCHITECTUREcviviiiiieenns 2-70
2.5.1 Front ENd. oot e 2-71
25.2 Data Prefetching. 2-72
253 O 11y o) O« =T o] =Y 2-73
254 IN-Order RetiremMENT.ot e 2-73
2.6 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS 2-74
2.6.1 FrONt BN, .o 2-74
26.2 Data Prefetching. ... 2-75
2.7 INTEL® HYPER-THREADING TECHNOLOGY ...\ttt 2-75
2.7.1 Processor Resources and HT Technology.o.vvviiiiii i 2-76
2.7.1.1 Replicated RESOUMCES ...\ v i e e 2-77
27.1.2 Partitioned RESOUMCES. . ..t v vttt ettt e 2-77
2713 SNArEA RESOUMCES. . . vttt ettt et eens 2-77
2.7.2 Microarchitecture Pipeline and HT Technology...........coovvviiiiii et 2-78
273 Front ENd Pipeline. . ..o 2-78
274 (=T U o] N o 2-78
275 L= 11 1=T 0 1= 2-79
2.8 MULTICORE PROCESSORS . . vttt et nees 2-79
2.8.1 Microarchitecture Pipeline and MultiCore Processors.covvvvivivinininenanns 2-81
282 Shared Cache in Intel® Core™ DUO ProCesSSOrsvvvvviviiii i ieiiinineieenns 2-81
2.8.2.1 Load and Store Operationsovuvri et 2-82

CONTENTS

PAGE

29 INTEL® 64 ARCHITECTURE. ..\ttt ettt et 2-83
2.10 SIMD TECHNOLOGY . . ettt e et 2-83
2.10.1 Summary of SIMD Technologies e 2-86
2.10.1.1 MMX™ TEChNOIOGY . . v vttt e 2-86
2.10.1.2 Streaming SIMD EXTENSIONS . .. v vttt e 2-86
2.10.1.3 Streaming SIMD EXTENSIONS 2 ... vt 2-87
2.10.14 Streaming SIMD EXTENSIONS 3 ... o'ttt e e 2-87
2.10.1.5 Supplemental Streaming SIMD EXTENSIONS 3o 2-87
2.10.1.6 R S P 2-88
2.10.1.7 R 2-88
2.10.1.8 AESNIaNd PCLMULQDA. . o vttt et e s 2-89
2.10.1.9 Intel® Advanced Vector EXTENSIONSvuve i 2-89
CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES
3.1 PERFORMANCE TOOLS. . .ttt ettt et et ettt et e e 3-1
3.1.1 Intel® C++ and Fortran Compilers. ..o 3-1
3.1.2 General Compiler Recommendations.vii i e 3-2
3.1.3 VTune™ Performance ANalyzer. ... vt 3-2
3.2 PROCESSOR PERSPECTIVES. ..ttt e 3-3
3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy............cvvviiiiinnnn 3-4
3.2.2 Transparent Cache-Parameter Strategyccooviiviiiiii i 3-5
3.23 Threading Strategy and Hardware Multithreading Support.................co.coten. 3-5
33 CODING RULES, SUGGESTIONS AND TUNINGHINTS. ...t 3-5
3.4 OPTIMIZING THE FRONT END ..ottt ittt e 3-6
3.4.1 Branch Prediction Optimization.coviiii 3-6
34.1.1 Eliminating Branches ... 3-7
34.1.2 SpIN-Wait and 1dle LOOPS . . .o v vttt et e 3-9
3413 Static Prediction. . ..ot 39
3414 Inlining, Calls and RetUMNSt e e 3-11
3415 Code AlIGNMIENT L.ttt e 3-12
3.4.16 Branch Type Selection.o e 3-13
34.1.7 LoOp UNrolling. . .o v e 3-15
34.1.8 Compiler Support for Branch Prediction.............cocoiiiiii i, 3-16
3.4.2 Fetch and Decode Optimizationc.vuiiii i 3-17
34.2.1 Optimizing for Micro-fusion ... e 3-17
3422 Optimizing for Macro-fUSION. v vt e 3-18
3.4.23 Length-Changing Prefixes (LCP) ... oo 3-22
34.24 Optimizing the Loop Stream Detector (LSD)........cccvvviviiiiiiiiiieeen 3-24
34.25 Exploit LSD Micro-op Emission Bandwidth in Intel® microarchitecture code name

SaANAY Bridge. ..o 3-25
34.26 Optimization for Decoded ICache ... 3-26
34.2.7 Scheduling Rules for the Pentium M Processor Decoderoovveuen. 3-27
3.4.28 Other Decoding GUIdElNeSov i e 3-28
35 OPTIMIZING THE EXECUTION COREottt et aaaas 3-28
3.5.1 INSTrUCTION SEIECHION. . .\t 3-28
3.5.1.1 Use of the INCand DEC INStructionsovvvviii e 3-29
35.1.2 INteger DiVide 3-30
3513 USING LEA . .o 3-30
3514 ADC and SBB in Intel® microarchitecture code name Sandy Bridge.............. 3-32
3.5.15 Bitwise ROTationo 3-33

CONTENTS

PAGE
3.5.16 Address CalCUIBTIONS v vt 3-34
35.1.7 Clearing Registers and Dependency Breaking Idioms........................0 3-34
3.5.1.8 80110 1= 3-36
3.5.19 USING NOPS . . ottt 3-37
3.5.1.10 MiXiNg SIMD Data Ty PES. . v vttt 3-38
3.5.1.11 SPIll SChedUlNG ..o v e 3-38
35.2 Avoiding Stalls in EXecUtion Coreo.vrii it 3-39
3.5.21 ROBRead Port Stalls. . ..o 3-39
35.2.2 Writeback Bus Conflictsovvvvi i 3-40
35.23 Bypass between Execution DOmains. ..ot 3-41
35.24 Partial Register Stallsovvviir 3-41
35.25 Partial XMM Register Stalls. 3-42
35.26 Partial Flag Register Stalls. ... i 3-44
35.2.7 Floating Point/SIMD Operandsvvvvvtitvtii it i i eeaes 3-45
353 A= Tox (o] 2 1 £ [0 1 3-46
354 Optimization of Partially Vectorizable Code..............coviiiiiiiiiiiiiiiann 3-47
3541 Alternate Packing Techniques e 3-49
354.2 Simplifying Result Passing.coovi i e 3-50
3543 Stack OptimizZation . ..o e 3-51
3544 Tuning ConSIderations. . ..o v vt 3-52
3.6 OPTIMIZING MEMORY ACCESSES ...ttt e 3-53
3.6.1 Load and Store Execution Bandwidth ... 3-54
36.1.1 Make Use of Load Bandwidth in Intel® microarchitecture code name Sandy
BrIdGE. ..ot e 3-54
36.1.2 L1D Cache Latency in Intel® microarchitecture code name Sandy Bridge........ 3-56
36.1.3 Handling L1D Cache Bank Conflict. ..o 3-56
36.2 Minimize Register Spillso 3-58
36.3 Enhance Speculative Execution and Memory Disambiguation..................... 3-59
364 A 0 2 T= 3-60
36.5 StOrE FOMWArdINg . ..o ettt e e 3-62
3.6.5.1 Store-to-Load-Forwarding Restriction on Size and Alignment.................. 3-63
36.5.2 Store-forwarding Restriction on Data Availabilitycooioat 3-68
36.6 Data Layout Optimizationsooviiiiiii i 3-69
36.7 Stack AlGNmMENt ..o s 3-72
3.6.8 Capacity Limits and Aliasing in Caches.ovv i i 3-72
3.6.8.1 Capacity Limits in Set-Associative Cachescocii i 3-73
36.8.2 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo and Intel® Core™
2 DUO PrOCESSOTS . vttt ettt ettt e et 3-74
369 Mixing Code and Dataviit i i e e 3-75
3.6.9.1 Self-modifying Code.o e 3-75
36.9.2 Position Independent Codevvvriiii i 3-76
3.6.10 Write CombININg ..o 3-77
3.6.11 Locality ENhancement.vi i e 3-78
36.12 Minimizing Bus LatenCy. . ..o .ot e 3-79
3.6.13 Non-Temporal Store Bus Traffic ... 3-80
3.7 PREFETCHING ..ttt ettt e e e e 3-81
3.7.1 Hardware Instruction Fetching and Software Prefetching........................ 3-81
3.7.2 Software and Hardware Prefetching in Prior Microarchitectures.................. 3-82
373 Hardware Prefetching for First-Level Data Cache..............ccovoviiiiiiionn, 3-83
374 Hardware Prefetching for Second-LevelCacheccoviiiiiiiiiii it 3-86
3.7.5 Cacheability INSTTUCLIONSo 3-87
376 REP Prefix and Data Movement.o 3-87

Vi

CONTENTS

PAGE

3.8 FLOATING-POINT CONSIDERATIONS . ..ottt aee s 3-90
3.8.1 Guidelines for Optimizing Floating-pointCodecovviiii i 3-90
3.8.2 Floating-point Modes and EXCEPLiONS . ..o vt 3-92
3.8.2.1 Floating-point EXCEPLIONSo\t i 3-92
3822 Dealing with floating-point exceptions in x87 FPUcodeoves 3-92
38.23 Floating-point Exceptions in SSE/SSE2/SSE3 Code.ovvv v 3-93
383 Floating-point MOdES\ v vttt e 3-94
3.8.3.1 RoUNdING MOGE. ...\t 3-94
3.83.2 o 1= 1 o o 3-96
3833 Improving Parallelismand theUse of FXCHccoiiiiiiiiiiiinienns 3-97
384 x87 vs. Scalar SIMD Floating-point Trade-offs. ..o, 3-97
3.8.4.1 Scalar SSE/SSEZ2 Performance on Intel® Core™ Solo and Intel® Core™ Duo

PrOCES SO . ettt e 3-98
3.84.2 x87 Floating-point Operations with Integer Operandscooovvvenen. 3-99
3843 x87 Floating-point Comparison INStructions.ccoviivi i e, 3-99
3.844 Transcendental FUNCLIONS.\ v vttt 3-99
3.9 MAXIMIZING PCIE PERFORMANCEttt 3-100
CHAPTER 4
CODING FOR SIMD ARCHITECTURES
4.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES.covvvvvnnn 4-1
41.1 Checking for MMX Technology SUPPOrt 4-2
41.2 Checking for Streaming SIMD Extensions SUPPOrtc.covivviviiiininnennen. 4-2
41.3 Checking for Streaming SIMD Extensions 2 SUPPOrtcovvviiiivivennnnnns. 4-3
414 Checking for Streaming SIMD Extensions 3 SUPPOrtovvvviriiiivininennnns. 4-3
415 Checking for Supplemental Streaming SIMD Extensions 3 Support.................. 4-4
41.6 Checking for SSE4. T SUPPOItttt e e ettt aeaees 4-4
41.7 Checking Tor SSE4.2 SUPPOMt. ...ttt 4-5
4.1.8 DetectiON of PCLMULQDQ and AESNI INStructions.ovvvviiiiieiniaenns 4-5
41.9 Detection of AVX INSTTUCTIONS. ..\ v vt ettt ans 4-6
4.1.10 Detection of VEX-Encoded AES and VPCLMULQDQcvvviviiiiiiiiiieene 4-8
4.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD PROGRAMMINGvvvnes 4-9
421 Identifying HOt SPOtSot e 4-11
422 Determine If Code Benefits by Conversion to SIMD Execution..................... 4-11
4.3 CODING TECHNIQUES . ..ottt et e e e e 4-12
431 Coding MethodolOgiES vv ittt e e e e 4-13
43.1.1 ASSEMIDIY Lt e 4-14
43.1.2 0 4-15
4313 IS vttt e 4-16
4314 Automatic Vectorizationvu vt e 4-17
44 STACK AND DATA ALIGNMENT ..ottt 4-18
441 Alignment and Contiguity of Data Access Patternscoovvivennnnt. 4-18
4411 Using Padding to AlIgn Data.ovii i 4-19
44.1.2 Using Arrays to Make Data Contiguouscoeviiiiiiniii e, 4-19
442 Stack Alignment For 128-bit SIMD Technologies.............coviiiiiiiinnnnt. 4-20
443 Data Alignment for MMX Technologyovvviiii e 4-21
444 Data Alignment for 128-bitdatac..covviiiiii 4-21
4441 Compiler-Supported AlIgnment.t e e 4-21
45 IMPROVING MEMORY UTILIZATION . ..ot 4-23
4.5.1 Data Structure LayouUt.ttt 4-23
452 ST D-MINING . oo 4-27

vii

CONTENTS

PAGE
453 LOOP BlOCKING. . o vttt e e e 4-28
46 INSTRUCTION SELECTION ...ttt ettt et e s 4-30
4.6.1 SIMD Optimizations and Microarchitectures. ..ot 4-32
4.7 TUNING THE FINAL APPLICATION . . ottt e e aees 4-32
CHAPTER 5
OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.1 GENERALRULES ON SIMD INTEGER CODEv v ve it 5-2
5.2 USING SIMD INTEGER WITH X87 FLOATING-POINT ... e 5-2
5.2.1 Using the EMMS INSTruCtion. vv v 5-3
5.2.2 Guidelines for Using EMMS INSTruction. ..o 5-3
53 DATA ALIGNMENT Lttt e e 5-4
54 DATA MOVEMENT CODING TECHNIQUES 5-6
541 UnSigned UnPackcooui 5-6
54.2 SIgned UnPack . ..o e e 5-7
543 Interleaved Pack with Saturationcoviiiii 5-8
544 Interleaved Pack without Saturation..........ccovvvvviiiii i 5-10
545 Non-Interleaved Unpack.ooviri i i i e 5-10
546 Extract Data Element ... oo e 5-12
547 INnsert Data Element.o e 5-13
548 Non-Unit Stride Data Movementco.vrii i 5-14
549 Move Byte Mask t0 INTeger. .. o.vv i 5-15
5.4.10 Packed Shuffle Word for 64-bit Registersc.ocoviiiiiiiiiiiiii it 5-16
54.11 Packed Shuffle Word for 128-bit Registers.............cocviiiiiiiiiiiiiiiann, 5-17
54.12 SRUTFIE BY TS . . ottt e 5-18
5413 Conditional Data MOVEMENTttt e 5-18
54.14 Unpacking/interleaving 64-bit Data in 128-bit Registers 5-18
5.4.15 Data MOVEMENT. ...ttt 5-19
54.16 ConVersion INSTIUCTIONS ... v vttt e 5-19
55 GENERATING CONST AN T S, ottt ettt ees 5-19
5.6 BUILDING BLOCKS. . . .ottt et et e et e 5-20
5.6.1 Absolute Difference of Unsigned Numbers ...t 5-20
56.2 Absolute Difference of Signed Numbers. ...t 5-21
56.3 ADSOIULE ValUE ..o 5-21
564 Pixel FOrmat ConVErSION ... vttt e 5-22
56.5 ENdian CONVEISION ... e ettt ettt e et 5-24
56.6 Clipping to an Arbitrary Range [High, LOW]. ... 5-25
5.6.6.1 Highly Efficient Clippingovn i 5-26
56.6.2 Clipping to an Arbitrary Unsigned Range [High, Low]..............ccoivinnt 5-27
56.7 Packed Max/Min of Byte, Wordand Dwordcccoiiiiiiiiiiiiiiiiiinnns 5-28
5.6.8 Packed MUItiplY INtEQETS . ..o v e 5-28
5.6.9 Packed Sum of Absolute Differences.vovv vt 5-28
5.6.10 MPSADBW and PHMINPOSUW 5-29
5.6.11 Packed Average (Byte/Word)ovrieiiiiiii i 5-29
56.12 Complex Multiply by @ Constant.ooiiiii i i 5-30
56.13 Packed 64-bit Add/SUbtractovvii 5-30
56.14 128Dt ShITES. . ot 5-31
56.15 PTEST and Conditional Brancht 5-31
56.16 Vectorization of Heterogeneous Computations across Loop Iterations............ 5-32
56.17 Vectorization of Control Flows in Nested LOOPS.covvvviiiiiiiiinnnns, 5-33
57 MEMORY OPTIMIZATIONS ..ottt et aees 5-35

viii

CONTENTS

PAGE

5.7.1 Partial MEMOrY ACCESSES . .ttt ettt ettt aaeiaaas 5-36
57.1.1 Supplemental Techniques for Avoiding Cache Line Splits....................... 5-38
57.2 Increasing Bandwidth of Memory Fills and Video Fillsooat 5-39
5.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction 5-39
5.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM

PagE. i 5-40
5.7.23 Increasing UC and WC Store Bandwidth by Using Aligned Stores 5-40
573 REVETSE MEMOTY COPY .+ vttt vttt ettt et e 5-40
58 CONVERTING FROM 64-BIT TO 128-BIT SIMD INTEGERS. oo 5-43
5.8.1 SIMD Optimizations and Microarchitecturescccoviiiiiiiiiiii i, 5-44
5.8.1.1 Packed SSE2 Integer versus MMX INStructionsooovvvviiiiiiiininnnns, 5-44
58.1.2 Work-around for False Dependency ISSUE.coiii it eeeens 5-45
59 TUNING PARTIALLY VECTORIZABLE CODE\ ov et 5-46
5.10 PARALLEL MODE AES ENCRYPTION AND DECRYPTIONovvviiiiiiiieaanns 5-49
5.10.1 AES Counter Mode of Operation.c.covi it i 5-50
5.10.2 AES Key Expansion AErNative.oov i e 5-59
CHAPTER 6
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.1 GENERAL RULES FOR SIMD FLOATING-POINT CODEovvvviei i eiieineieen 6-1
6.2 PLANNING CONSIDERATIONS. .« vttt ettt et e e 6-1
6.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINTccvvieiiiennn 6-2
6.4 SCALAR FLOATING-POINT CODE. ...ttt v ettt e 6-2
6.5 DATA ALIGNMENT Lottt 6-3
6.5.1 Data AT ARG ML, . o\ttt ettt ettt et e e e e 6-3
6.5.1.1 Vertical versus Horizontal Computation.c..covviiiiiiiiiiiiiininnss 6-3
6.5.1.2 Data SWIZZINg . ..o e 6-6
6.5.1.3 Data DESWIZZIING . v v vttt 6-9
6.5.14 Horizontal ADD USING SSE.o 6-10
6.5.2 Use of CVTTPS2PI/CVTTSS2SI INStructions ... vvvvvvv i i cieieieas 6-13
6.5.3 Flush-to-Zero and Denormals-are-ZeroModescovviiiiiiiiiiniiniannns 6-13
6.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES. 6-14
6.6.1 SIMD Floating-point Programming Using SSE3............oiii i 6-14
6.6.1.1 SSE3 and Complex ArithmeticS. ..ot e 6-15
6.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor................ 6-18
6.6.2 Dot Product and Horizontal SIMD INStructions. ..o iiiienns 6-18
6.6.3 Vector NOormalizationo.vvee e 6-21
6.6.4 Using Horizontal SIMD Instruction Sets and Data Layout..................covvte 6-23
6.6.4.1 SOA and Vector Matrix Multiplicationt 6-26
CHAPTER 7
OPTIMIZING CACHE USAGE
7.1 GENERAL PREFETCH CODING GUIDELINES.o 7-1
7.2 HARDWARE PREFETCHING OF DAT A ottt ettt 7-3
73 PREFETCH AND CACHEABILITY INSTRUCTIONS.ottt 7-4
74 PREFETCH ..ttt e e 7-4
7.4.1 Software Data Prefetch ... 7-4
74.2 Prefetch Instructions - Pentium® 4 Processor Implementation..................... 7-5
743 Prefetch and Load INSTrUCTIONS. v v 7-6
75 CACHEABILITY CONTROL &\ttt ettt et e e 7-7

CONTENTS

PAGE
7.5.1 The Non-temporal Store INStructions. ... i 7-7
7511 = o P 7-7
75.1.2 Streaming Non-temporal Stores 7-7
7513 Memory Type and Non-temporal Stores.ccoovviiiiiiii it 7-8
7514 Write-ComMbDINING . o v vt v et e e 7-8
75.2 Streaming Store Usage Models ... e 7-9
7.5.2.1 CORBreNT REQUESTS .« .\ttt ittt e 7-9
75.2.2 NON-CONErENT TEQUESTS. . o\ttt ettt e 7-9
753 Streaming Store Instruction Descriptions. ...t 7-10
754 The Streaming Load Instruction. ... i 7-10
755 FENCE INSTrUCTIONS. .o\t vttt 7-11
7551 SFENCE INSTrUCHION. . ..ot e 7-11
7552 LFENCE INSTTUCTION. o vttt et e eens 7-11
7553 MFENCE INSTrUCTION . ..o e e e 7-12
756 CLFLUSH INSTrUCHION .o e e e ens 7-12
76 MEMORY OPTIMIZATION USING PREFETCH . ..o v 7-13
7.6.1 Software-Controlled Prefetch ... 7-13
76.2 Hardware Prefetch ... 7-13
76.3 Example of Effective Latency Reduction with Hardware Prefetch................ 7-14
764 Example of Latency Hiding with S/W Prefetch Instruction........................ 7-16
76.5 Software Prefetching Usage Checklist ... 7-17
76.6 Software Prefetch Scheduling Distancecooii it 7-18
76.7 Software Prefetch Concatenation..........coovviiiii i 7-19
76.8 Minimize Number of Software Prefetches.............cooiviiiiiiii i 7-20
769 Mix Software Prefetch with Computation Instructionscooent 7-22
76.10 Software Prefetch and Cache Blocking Techniquescoviviiiiiiiinn, 7-23
7.6.11 Hardware Prefetching and Cache Blocking Techniques...................cooit 7-27
76.12 Single-pass versus Multi-pass EXeCULION.vv i 7-28
7.7 MEMORY OPTIMIZATION USING NON-TEMPORALSTORESccvviviiiieene 7-31
7.7.1 Non-temporal Stores and Software Write-Combining.ool 7-31
7.7.2 Cache ManagemEnt e 7-32
7.7.2.1 VidEO BNCOQET . .ttt e 7-32
7.7.2.2 VideO DECOET . . . vt e e 7-32
7.7.23 Conclusions from Video Encoder and Decoder Implementation................. 7-33
7724 Optimizing Memory Copy ROULINESvvvi i 7-33
7725 TUB PIiMiNG « vttt e e 7-34
7.7.26 Using the 8-byte Streaming Stores and Software Prefetch.................... 7-35
7.7.27 Using 16-byte Streaming Stores and Hardware Prefetch...................... 7-35
7.7.28 Performance Comparisons of Memory Copy Routines......................... 7-37
773 Deterministic Cache Parametersvvrveiiii i 7-38
7.7.31 Cache Sharing Using Deterministic Cache Parameters...............coovvvivnt 7-40
7.73.2 Cache Sharing in Single-Core or Multicore ...ttt 7-40
7733 Determine Prefetch Strideovvviiii e 7-40
CHAPTER 8
MULTICORE AND HYPER-THREADING TECHNOLOGY
8.1 PERFORMANCE AND USAGE MODELS ...\ttt it 8-1
8.1.1 MURIERrEAdINg . .. oo e 8-2
8.1.2 Multitasking ENVIFONMENT ... vt e 8-3
8.2 PROGRAMMING MODELS AND MULTITHREADINGvviv i eiieiieeen 8-4
8.2.1 Parallel Programming Models e e 8-5

CONTENTS

PAGE
8.2.1.1 Domain DECOMPOSITION ...\ttt e 8-5
8.2.2 Functional DecoOMPOSITION. .. v\ttt 8-5
8.2.3 Specialized Programming Modelst 8-6
8.2.3.1 Producer-Consumer ThreadingModels. ...ttt 8-7
824 Tools for Creating Multithreaded Applications.cocvii i, 8-10
8.24.1 Programming with OpenMP Directives.c.ov i i eees 8-10
8.24.2 Automatic Parallelization of Codevvviiii i 8-10
8.24.3 Supporting Development ToolS. e 8-11
8244 Intel® Thread Checker . ..o e 8-11
8.24.5 Intel® Thread Profiler.oveii i e 8-11
8.24.6 Intel® Threading Building Block 8-11
83 OPTIMIZATION GUIDELINES ...ttt 8-11
8.3.1 Key Practices of Thread Synchronizationoiiiiii i 8-12
83.2 Key Practices of System Bus Optimizationoovviiiiiiiiiiiiiiiiianes 8-12
833 Key Practices of Memory Optimization. ... e 8-12
834 Key Practices of Front-end Optimization............oov i 8-13
835 Key Practices of Execution Resource Optimizationcccoiiiviiiiiinn 8-13
8.3.6 Generality and Performance Impactooviiiiiii i i 8-14
84 THREAD SYNCHRONIZATION. .o vttt ettt e 8-14
84.1 Choice of Synchronization Primitives ..o 8-15
84.2 Synchronization for Short Periods. ... 8-16
843 Optimization with Spin-LocKS. ... oo 8-18
844 Synchronization for Longer Periodscoovuiiiiiiiii i 8-18
84.4.1 Avoid Coding Pitfalls in Thread Synchronization............................... 8-19
845 Prevent Sharing of Modified Data and False-Sharing...................... 8-21
84.6 Placement of Shared Synchronization Variable..................cociiiiiiiiint 8-21
85 SYSTEM BUS OPTIMIZATION . .ottt 8-23
8.5.1 Conserve Bus Bandwidtho.oiuiiiii i 8-23
85.2 Understand the Bus and Cache Interactions.cooviiiiiiiiiiiinnnnnns 8-24
853 Avoid Excessive Software Prefetchesccooviii i 8-25
854 Improve Effective Latency of Cache MissSescoov it 8-25
855 Use Full Write Transactions to Achieve Higher DataRate.................covvintn 8-26
8.6 MEMORY OPTIMIZATION . . .ottt ettt et et et 8-26
8.6.1 Cache Blocking TeChNIQUE.o vttt 8-27
8.6.2 Shared-Memory Optimizationoouvuir i i 8-27
8.6.2.1 Minimize Sharing of Data between Physical Processors................cocv..e. 8-27
86.2.2 Batched Producer-Consumer Model. ..o 8-28
8.6.3 Eliminate 64-KByte Aliased Data ACCESSES. ... vv vttt niiaaes 8-29
8.7 FRONT-END OPTIMIZATION . . .ttt e ettt 8-30
8.7.1 Avoid Excessive Loop Unrolling.ooiinii i 8-30
8.8 AFFINITIES AND MANAGING SHARED PLATFORMRESOURCESovvvvvenns 8-30
8.8.1 Topology Enumeration of Shared Resourcesovvviii i, 8-32
8.8.2 NON-UNiform MemMOMY ACCESS ..ottt ettt ettt ettt ettt anaanes 8-32
89 OPTIMIZATION OF OTHER SHARED RESOURCES. ... it 8-35
8.9.1 Expanded Opportunity for HT Optimizationccoiiiiiiii e 8-35
CHAPTER 9
64-BIT MODE CODING GUIDELINES
9.1 INTRODUCTION. .« ettt et ettt et e et et e et et e s 9-1
9.2 CODING RULES AFFECTING 64-BITMODE ot ieie e ee e i 9-1
9.2.1 Use Legacy 32-Bit Instructions When Data Size Is32Bitsccoovinin 9-1

Xi

CONTENTS

PAGE
9.2.2 Use Extra Registers to Reduce Register Pressure.coovvviviiiiiiinnnnnns. 9-2
9.2.3 Effective Use of 64-Bit by 64-Bit Multipliesc.coviiiiiiiiiiiiiiiiinn 9-2
9.24 Replace 128-bit Integer Division with 128-bit Multiplies........................... 9-3
9.25 Sign Extension t0 FUIlB4-BitSot e e 9-6
93 ALTERNATE CODING RULES FORB4-BITMODEvvoeiiiieci e 9-7
9.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers for 64-Bit Arithmetic Result. 9-7
93.2 CVTSIZSS @nd CVUTSIZSD . vttt ettt 9-8
933 Using Software Prefetcho e 9-8
CHAPTER 10 SS€4.2 AND SIMD PROGRAMMING FOR TEXT-
PROCESSING/LEXING/PARSING
10.1 SSE4.2 STRING AND TEXT INSTRUCTIONS. . ..ottt 10-1
10.1.1 1 0 7 10-5
10.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONSo et 10-7
10.2.1 Unaligned Memory Access and Buffer Size Management 10-7
10.2.2 Unaligned Memory Access and String Library ..o, 10-8
103 SSE4.2 APPLICATION CODING GUIDELINE AND EXAMPLES.o vvi v 10-8
10.3.1 Null Character Identification (Strlen equivalent)............ccovii i 10-8
103.2 White-Space-Like Character Identification...............coviiiiii i, 10-12
1033 SUDSTRNG SEarchesoo i 10-16
1034 String Token Extractionand Case Handling............cocoiiiiiiiii e, 10-25
10.3.5 Unicode Processing and PCMPXSTRYvvv i 10-30
1036 Replacement String Library Function Using SSE4.2..............ooovviiiii . 10-37
104 SSE4.2 ENABLED NUMERICAL AND LEXICAL COMPUTATIONovvvveeeiieeaaens 10-39
CHAPTER 11
OPTIMIZATIONS FOR INTEL® ADVANCED VECTOR EXTENSION
11.1 INTEL® AVX INTRINSICS CODING ..o ettt neee e 11-2
11.1.1 Intel® AVX Assembly Codingcovviriiii i 11-6
11.2 NON-DESTRUCTIVE SOURCE (NDS). . ottt veee e ettt e et ieeieneanes 11-8
11.3 MIXING AVX CODE WITH SSE CODE.ttt 11-9
11.3.1 Mixing Intel® AVX and Intel SSEin Function Calls. ...t 11-11
114 128-BIT LANE OPERATION AND AVX ..\ttt 11-12
11.4.1 Programming With the Lane Concept.ovvviivii i 11-12
114.2 Strided Load TeChNIQUE . ..o v vt e e 11-13
1143 The Register Overlap Technique. ... e 11-16
115 DATA GATHER AND SCATTER ..ottt 11-18
11.5.1 Data Gather .o 11-18
11.5.2 Data SCat Ol . ..ot 11-21
116 DATA ALIGNMENT FOR INTEL® AVX . oottt 11-22
11.6.1 AlIgN Data 10 32 BYteS ..ottt 11-23
11.6.2 Consider 16-Byte Memory Access when Memory is Unaligned................... 11-24
1163 Prefer Aligned Stores Over Aligned Loads...........covviiiiiviiiiiiiiiennn, 11-26
11.7 LTD CACHE LINE REPLACEMENTS ...ttt 11-26
11.8 AR AUIASING . ot e 11-27
119 CONDITIONAL SIMD PACKED LOADS AND STORES ... ov i 11-27
11.9.1 CoNdItioNAl LOOPS ..o e ottt e e e 11-29
11170 MIXING INTEGER AND FLOATING-POINT CODEcvvv e eieineieeiens 11-30
11717 HANDUING PORT 5PRESSURE\ttt 11-34
11.111 Replace Shuffles withBlends........ ..o 11-34

Xii

CONTENTS

PAGE
11.11.2 Design Algorithm With Fewer Shuffles.............cooo i 11-37
11.11.3 Perform Basic Shuffleson Load Ports ..o 11-40
11.12 DIVIDE AND SQUARE ROOT OPERATIONS .. .ottt et 11-41
11.12.1 Single-Precision DIVIde.o vt e 11-42
11.12.2 Single-Precision Reciprocal SQUare RoOtovvviii it 11-45
11123 Single-Precision Square ROOt.ot e 11-47
11.13 OPTIMIZATION OF ARRAY SUBSUMEXAMPLEooiiiii i 11-49
CHAPTER 12
POWER OPTIMIZATION FOR MOBILE USAGES
12.1 OV RV EW . .ttt e e 12-1
12.2 MOBILE USAGE SCENARIOS ...ttt 12-2
12.2.1 Intelligent Energy Efficient Software ...t 12-3
123 AP - ST AT ES ottt e e 12-4
12.3.1 Processor-Specific C4 and Deep C4 Statescov v i i aeaas 12-5
12.3.2 Processor-Specific Deep C-States and Intel® Turbo Boost Technology 12-6
1233 Processor-Specific Deep C-States for Intel® microarchitecture code name Sandy
Bridge ..ot 12-7
1234 Intel® Turbo Boost Technology 2.0.o vt e 12-8
124 GUIDELINES FOR EXTENDING BATTERY LIFE o 12-8
12.4.1 Adjust Performance to Meet Quality of Features.covvviiviiiiinninnnn, 12-9
12.4.2 Reducing Amount of Work ..o 12-10
1243 Platform-Level Optimizationscooiiiiiii e 12-10
1244 Handling Sleep State Transitionso e e 12-11
12.4.5 Using Enhanced Intel SpeedStep® Technology..........covvvviiiiiiiiinninnnns 12-11
1246 Enabling Intel® Enhanced DeeperSleepoovviiiiiiiiiiii i 12-13
124.7 Multicore Considerations.o.vrir e e 12-14
124.7.1 Enhanced Intel SpeedStep® Technology.cvvviii it 12-14
124.7.2 Thread Migration Considerationsooviveiiiiii s 12-14
124.7.3 Multicore Considerations for C-Statesovvviiiiiiinii s 12-15
125 TUNING SOFTWARE FOR INTELLIGENT POWER CONSUMPTION.ovvvvnen. 12-16
12.5.1 Reduction of Active CyCles. 12-17
12.5.1.1 Multi-threading to reduce Active Cycles. ...t 12-17
125.1.2 LY=o (o4 1 £ (o] 12-18
125.2 PAUSE and Sleep(0) Loop Optimizationcvviiiiiiiiiiiiiianiness 12-18
12.5.3 SPIN- WAt LOOPS . vttt it 12-20
1254 Using Event Driven Service Instead of PollinginCodecooovvint 12-20
1255 Reducing INtermupt Rate 12-20
12.5.6 Reducing Privileged Time ... e e e e 12-21
12.5.7 Setting Context AwarenessintheCodecoviiiiiiiii i 12-22
1258 Saving Energy by Optimizing for Performancecooiviiii, 12-23
126 PROCESSOR SPECIFIC POWER MANAGEMENT OPTIMIZATION FOR SYSTEM
SOF T W AR . . . 12-24
12.6.1 Power Management Recommendation of Processor-Specific Inactive State
ConfigUIAtioNS ..ot e 12-24
12.6.1.1 Balancing Power Management and Responsiveness of Inactive To Active State
LI 1 0 12-25

xiii

CONTENTS

PAGE

CHAPTER 13
INTEL®* ATOMTM MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
13.1 OV ERVIEW. .« ettt e e e e e e e 13-1
13.2 INTEL® ATOM™ MICROARCHITECTUREttt 13-1
13.2.1 Hyper-Threading Technology Support in Intel® Atom™ Microarchitecture.......... 13-3
133 CODING RECOMMENDATIONS FOR INTEL® ATOM™ MICROARCHITECTURE. 13-4
13.3.1 Optimization for Front End of Intel® Atom™ Microarchitecture..................... 13-4
133.2 Optimizing the EXeCUtion Core.vv it e 13-6
13.3.2.1 Integer Instruction Selection. ... 13-6
133.22 Address GENEMaTION . . .o v vttt ettt e 13-7
133.23 INteger MURIPIY . . .o e 13-8
133.24 Integer Shift INSTrUCtioNS.ot e 13-9
133.25 Partial REgISTEr ACCESS . . v ittt ittt ettt 13-9
13.3.26 FP/SIMD Instruction Selectionovviii i 13-9
1333 OptimIiZING MEMOMY ACCESS .\ vttt ittt ettt ettt it anes 13-12
13.3.3.1 StOre FOMWardiNg ov ottt et e 13-12
13.33.2 First-level Data Cacheo et 13-13
13333 SEOMENT BaS e ..ottt 13-13
13334 SEING MOVES .ottt e 13-14
13335 Parameter Passing. .. ovvvit i 13-15
13336 FUNCHION CallS. . .o e e e 13-15
13337 Optimization of Multiply/Add Dependent Chainscccovvvvnnnnnn... 13-15
13338 Position Independent Codeovvviiiiiii i 13-17
134 INSTRUCTION LATENCY Lttt e 13-18
APPENDIX A
APPLICATION PERFORMANCE
TOOLS
A COMPILERS .ttt e A-2
A1 Recommended Optimization Settings for Intel® 64 and IA-32 Processors........... A-2
Al1.2 Vectorization and Loop Optimization. ...t A-5
A1.2.1 Multithreading with OpenMP* e A-5
Al1.22 Automatic Multithreadingo.vviiiiiii i e A-5
A13 Inline Expansion of Library Functions (/0i, /0i-)ovvvviiii i A-6
A14 Floating-point Arithmetic Precision (/Op, /Op-, /Qprec, /Qprec_div, /Qpc,

JQIONG_dOUDIE) ..ot A-6
A15 Rounding Control Option (/Qrcr, /Qred) . .vvvv e A-6
A.1.6 Interprocedural and Profile-Guided Optimizations...............cccoiviiiiiiinnt, A-6
A.1.6.1 Interprocedural Optimization (IPO)ovvviii i e A-6
A1.6.2 Profile-Guided Optimization (PGO).ovuvrii i A-6
A1.7 Auto-Generation of Vectorized Code........vvvviiiiiii e A-7
A2 INTEL® VTUNE™ PERFORMANCE ANALYZERt A-11
A21 SAMIPIING .« et e A-11
A2.1.1 Time-based Sampling. A-12
A21.2 Event-based SamMPliNg.vv vt A-12
A213 Workload Characterization.ovvviii e A-12
A2.2 Call QAP ot e A-12
A23 CoUNTET MONITOT &\ttt e A-13
A3 INTEL® PERFORMANCE LIBRARIES. . ..\ttt i A-13
A3.1 Benefits SUMMErY . ..o e A-14

Xiv

CONTENTS

PAGE
A3.2 Optimizations with the Intel® Performance Librariesccovvvinnt. A-14
A4 INTEL® THREADING ANALYSIS TOOLS. . oottt A-15
A4 Intel® Thread Checker 3.0o e A-15
A4.2 Intel® Thread Profiler 3.0,o e A-15
A43 Intel® Threading Building Blocks 1.0. ...t i A-16
A5 INTEL® CLUSTER TOOLS. . ..ottt ettt ettt e e e A-17
A5.1 INtel® MPLLIDIary 3.1 ..ot e e A-17
A5.2 Intel® Trace Analyzer and Collector 7.7, ...t e A-17
A53 Intel® MPI Benchmarks 3.1 . ..o A-17
A54 Benefits SUMMArY. ..ot e e A-18
A5.4.1 Multiple usability iIMProVemMENTS.t A-18
A54.2 Improved application performance ... e A-18
A543 Extended interoperability..........cccoiiiiii i A-18
A6 INTEL® XML PRODUCTS ..ottt et ettt et e e eenes A-18
A6.1 Intel® XML Software Suite 1.0,t A-18
A6.1.1 p L] A I ol =] [=T i | (o] A-18
Ab6.1.2 Intel® XPath AcCeleratoro.vveii A-19
A6.1.3 Intel® XML Schema AcCelerator.vvve i A-19
Ab6.14 Intel® XML Parsing ACCeleratorvvvvii i e A-19
A6.2 Intel® SOA Security Toolkit 1.0 Beta for AXiS2.......covviiiviiiiii i, A-19
Ab6.2.1 High Performancec.ovi e et A-20
Ab.2.2 Standards Compliant.ovvri et A-20
Ab6.2.3 BaSY INTEgration. ... v et A-20
A63 Intel® XSLT Accelerator 1.1 for Java* Environments on Linux* and Windows* Operating
S S IS ittt e e A-20
A6.3.1 High Performance Transformationscoovvviiiiiiiiiiiii i, A-20
AbB.3.2 Large XML File Transformations.ccoviiiiii it A-20
Ab6.33 Standards Compliant.ovvri e A-21
Ab634 THrEad-Safe . A-21
A7 INTEL® SOFTWARE COLLEGE ...t v ittt e e A-21
APPENDIX B
USING PERFORMANCE MONITORING EVENTS
B.1 INTEL® XEON® PROCESSOR 5500 SERIES. vii e B-1
B.2 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL® XEON® PROCESSOR 5500 SERIES B-2
B.2.1 Cycle Accounting and Uop FIOW ANalYSiS. . ..o vvi it ieeas B-3
B.2.1.1 Cycle Drill Down and Branch Mispredictionscccovviiiiiiniiiiiiiiannnns B-5
B.2.1.2 Basic BIOCK Drill DOWN ..o B-8
B.2.2 Stall Cycle Decomposition and Core Memory ACCESSES .. vvv vt ie vt eiiieieienenns B-9
B.2.2.1 Measuring Costs of Microarchitectural Conditionsovovviiiininns, B-10
B.2.3 Core PMU Precise EVENTS ... vv it B-11
B.2.3.1 Precise Memory ACCesS EVENTS.t e B-12
B.2.3.2 L0ad LatenCy EVENT ..ottt B-14
B.233 Precise EXeCUtiON EVENTS ...\ ov i B-16
B.234 Last Branch Record (LBR)......ovviiei i e B-18
B.2.3.5 Measuring Core Memory Access LatenCy.vvvvviiiiiiii i e B-21
B.2.3.6 Measuring Per-Core Bandwidth.o B-24
B.2.3.7 Miscellaneous L1 and L2 Events for Cache Misses..........ccoovvviviinnninn, B-25
B.2.3.8 TUB MiSS S . vttt sttt et et e e B-25
B.2.39 LT Data Cache. . v e B-26
B.2.4 Front End Monitoring BVeNtSt e B-27

XV

CONTENTS

PAGE
B.24.1 Branch Mispredictions.ovi i e B-27
B.2.4.2 Front End Code Generation Metricso.vvvi i B-27
B.2.5 Uncore Performance Monitoring EVents..........oooviii i ieaans B-28
B.2.5.1 Global QUEUE OCCUPEMECY .+ vt vvte ettt e et et et e a e aens B-28
B.2.5.2 Global Queue POt EVENTS ... vve et B-31
B.2.5.3 Global Queue SNOOP EVENTS ... vttt B-31
B.254 LIS =T o £ B-32
B.2.6 Intel QuickPath Interconnect Home Logic (QHL).vvvvviiiii i B-32
B.2.7 Measuring Bandwidth FromtheUncore ... B-39
B3 PERFORMANCE TUNING TECHNIQUES FOR INTEL® MICROARCHITECTURE CODE NAME
SANDY BRIDGE. . . . ettt e e B-39
B.3.1 Correlating Performance Bottleneck to Source Location.......................... B-40
B.3.2 Locating Stalls in the Microarchitecture Pipelinecccociiiiiiiiines. B-40
B.3.3 Back ENA Stalls.o B-42
B34 Memory Sub-System Stallst e B-43
B.3.4.1 Accounting for Load LatenCyvvviiiiii i B-43
B.34.2 Cache-line Replacement ANaIYSISvvveiii i B-46
B.34.3 Lock Contention ANalYSiS. . v vv vttt e e e B-47
B3.4.4 Other MEMOrY ACCESS ISSUBS .« .ottt ettt aaaenas B-48
B.3.5 EXECULION STallS. . oo s B-50
B.3.5.1 Longer INStruction LatenCiesvvviriiii it e e B-51
B.3.5.2 ASSISES ottt B-51
B.3.6 Bad SPeCUITioN. . ..o B-52
B.3.6.1 Branch Mispredicts.ot B-52
B.3.7 Front ENd STallS. ..o v e B-53
B.3.7.1 Understanding the Micro-op DeliveryRate ...t B-53
B.3.7.2 Understanding the Sources of the Micro-op Queue.covvvvviivninnnn. B-54
B.3.7.3 The Decoded ICache.o B-56
B3.7.4 Issues in the Legacy Decode Pipeline. ..o, B-57
B.3.7.5 INSTrUCION CaChe . vt e e B-58
B4 USING PERFORMANCE EVENTS OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO
PROCESSORS . ..ttt e e B-58
B.4.1 Understanding the Results in a Performance Counter...............c.covvvvinnn. B-59
B4.2 Ratio Interpretation. e B-59
B4.3 Notes on Selected EVENTS vu it s B-60
B.5 DRILL-DOWN TECHNIQUES FOR PERFORMANCE ANALYSIS B-61
B.5.1 Cycle Composition at IsSSUE Port.t e B-63
B.5.2 Cycle Composition of 000 EXECULION. ... v\ vt vt vttt B-64
B.5.3 Drill-Down on Performance Stallsvv vt B-65
B.6 EVENT RATIOS FOR INTEL CORE MICROARCHITECTUREovvvvivi i B-66
B.6.1 Clocks Per Instructions Retired Ratio (CPI). ... B-67
B6.2 Front-end RAtiOS. v e e B-67
B.6.2.1 C0dE LOCAlITY v ov vttt B-67
B6.2.2 Branchingand Front-end ... B-68
B.6.2.3 Stack Pointer Trackero e B-68
B6.2.4 MaCrO-TUSION Lttt B-68
B.6.2.5 Length Changing Prefix (LCP)Stallscovvviii i B-69
B.6.2.6 Self Modifying Code Detection. ..o B-69
B.6.3 Branch Prediction Ratiosvvvet e B-69
B.6.3.1 Branch Mispredictions.vv i B-69
B.6.3.2 Virtual Tables and Indirect Calls.ovvi e B-70
B.6.3.3 Mispredicted RETUMNS e B-70

XVi

CONTENTS

PAGE
B6.4 EXECUTION RATIOS v vttt ettt e B-70
B.6.4.1 ResoUrce STalls. B-70
B.6.4.2 ROB REAd POrt Stalls ..o v vttt B-71
B.64.3 Partial Register Stalls. ..o B-71
B64.4 Partial FIag Stalls.t B-71
B.6.4.5 Bypass Between Execution DOMaAiNs ...t B-71
B.6.4.6 Floating Point Performance Ratioscovviiiiiiii i B-71
B.6.5 Memory Sub-System - Access Conflicts Ratioscoiiiiiii i B-72
B.6.5.1 Loads Blockedby the L1 DataCache.........ccooviiiiii i e B-72
B.6.5.2 4K Aliasing and Store Forwarding Block Detection........................o.es. B-72
B.6.5.3 Load Block by Preceding Storesvvviiiiiii i B-73
B.654 Memory Disambiguation e B-73
B.6.5.5 Load Operation Address Translation............ovvi it B-73
B.6.6 Memory Sub-System - Cache MisseS Ratiosovvvviiiiiiii i B-73
B.6.6.1 Locating Cache MissesintheCode.ccovviiiiiiii i i ieeas B-73
B.6.6.2 LT Data Cache MiSSeS. . v v vttt B-74
B.6.6.3 L2 G0N MISSES. . vttt ettt e e B-74
B.6.7 Memory Sub-system - Prefetching..............co i B-74
B.6.7.1 LT Data Prefetchingoovnii e e B-74
B.6.7.2 L2 Hardware Prefetching........coovii i B-75
B.6.7.3 Software Prefetching. ... B-75
B.6.8 Memory Sub-system - TLB Miss Ratios.coovii e B-75
B.6.9 Memory Sub-system - Core INteractionovvvviiviiiiiiii e B-76
B.6.9.1 Modified Data Sharingcoviii i B-76
B.6.9.2 Fast Synchronization Penalty ..o B-76
B.6.9.3 Simultaneous Extensive Stores and Load Missescovviviiininnnnn. B-77
B.6.10 Memory Sub-system - Bus Characterization............ccocviiiiiiii e B-77
B.6.10.1 BUS ULIlIZation. . ..o B-77
B.6.10.2 Modified Cache Lines EVIiCtiono e B-78
APPENDIX C
INSTRUCTION LATENCY AND THROUGHPUT
C1 OV RV B W ottt e e e C-1
C2 DEFINITIONS L.ttt e e e C-2
Cc3 LATENCY AND THROUGHPUT ..ottt sttt C-3
C3.1 Latency and Throughput with Register Operands..............cccoiiiiiiiininnnn, Cc3
C3.2 Table FOOTNOTES. ..ttt C-33
C33 Instructions with Memory Operandso.vvriiiiiiiii e C-35
APPENDIX D
STACK ALIGNMENT
D4 STACK FRAMES ..t e D-1
D41 Aligned ESP-Based Stack Frames vvvr vt D-3
D4.2 Aligned EDP-Based Stack Frames.ov ittt D-4
D43 Stack Frame Optimizations.o v i e D-6
D5 INLINED ASSEMBLY AND EBX ..ottt ettt et et es D-7

XVii

CONTENTS

PAGE
APPENDIX €

SUMMARY OF RULES AND SUGGESTIONS

E.1 ASSEMBLY/COMPILER CODING RULES ...\ttt eeeiea E-1
€2 USER/SOURCE CODING RULES .+ ..ottt et ee et e e e e iee e E-8
€3 TUNING SUGGESTIONS ..ot E-11
€4 SSEA.2 CODING RULES ...\ttt ettt et e E-12
ES ASSEMBLY/COMPILER CODING RULES FOR THE INTEL® ATOM™ PROCESSOR............ E-12

XViii

CONTENTS

PAGE

EXAMPLES
Example 3-1. Assembly Code with an Unpredictable Branch....................coooiiiiiint 3-8
Example 3-2. Code Optimization to Eliminate Branchescooiiiiii i 3-8
Example 3-4. Use of PAUSE INStructionottt i i 3-9
Example 3-3. Eliminating Branch with CMOV Instruction ...t 3-9
Example 3-5. Pentium 4 Processor Static Branch Prediction Algorithm....................... 3-10
Example 3-6. Static Taken Predictiono 3-11
Example 3-7. Static Not-Taken Prediction.o 3-11
Example 3-8. Indirect Branch With Two Favored Targetscovviiiiiiiiiiinnnns, 3-14
Example 3-9. A Peeling Technique to Reduce Indirect Branch Misprediction.................. 3-15
Example 3-10. Loop Unrolling.ouriri i i e et i e 3-16
Example 3-11. Macro-fusion, Unsigned Iteration Count.............covviiiiiiiiiiiinienanns, 3-20
Example 3-12. Macro-fusion, If Statement. 3-20
Example 3-13. Macro-fusion, Signed Variable...........cooiiiiiii i e 3-21
Example 3-14. Macro-fusion, Signed COMPaAriSON.vtiir i 3-22
Example 3-15. Additional Macro-fusion Benefit in Intel microarchitecture code name Sandy

Bridge ..ot 3-22
Example 3-16. Avoiding False LCP Delays with 0xF7 Group Instructions 3-24
Example 3-17. Unrolling Loops in LSD to Optimize Emission Bandwidth 3-25
Example 3-18. Independent Two-Operand LEAExamplecoiiiiiiiiiiiiiiii s, 3-30
Example 3-19. Alternative to Three-Operand LEAt 3-31
Example 3-20. Examples of 512-bit Additionsc.ccoviii i 3-32
Example 3-21. Clearing Register to Break Dependency While Negating Array Elements........ 3-35
Example 3-22. Spill Scheduling Code ..ot e e 3-38
Example 3-23. Avoiding Partial Register Stalls in Integer Code.coovviviiiiiiiinnnnss 3-42
Example 3-24. Avoiding Partial Register Stallsin SIMD Code...........covvviviviiiiiiiinnnnns 3-43
Example 3-25. Avoiding Partial Flag Register Stalls ... 3-44
Example 3-26. Partial Flag Register Accesses in Intel microarchitecture code name Sandy

Bridge ..o 3-45
Example 3-27. Reference Code Template for Partially Vectorizable Program.................. 3-48
Example 3-28. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty..... 3-50
Example 3-29. Using Four Registers to Reduce Memory Spills and Simplify Result Passing 3-50
Example 3-30. Stack Optimization Technique to Simplify Parameter Passing.................. 3-51
Example 3-31. Base Line Code Sequence to Estimate Loop Overhead......................... 3-52
Example 3-32. Optimize for Load Port Bandwidth in Intel microarchitecture code name Sandy

BrIdgE ..ot 3-55
Example 3-33. Index versus Pointers in Pointer-ChasingCode...........cccovvviviiiii et 3-56
Example 3-34. Example of Bank Conflicts in L1D CacheandRemedy............c.covvvvvnnnns 3-57
Example 3-35. Using XMM Register in Lieu of Memory for Register Spills 3-59
Example 3-36. Loads Blocked by Stores of Unknown Addresscccovvvviviiinenenanns. 3-60
Example 3-37. Code That Causes Cache Line Split..........oi i i 3-61
Example 3-38. Situations Showing Small Loads After Large Storecocvvivvvnnn.. 3-65
Example 3-39. Non-forwarding Example of Large Load After Small Store 3-65
Example 3-40. A Non-forwarding Situation in Compiler Generated Code....................... 3-66
Example 3-41. Two Ways to Avoid Non-forwarding Situation in Example 3-40 3-66
Example 3-42. Largeand SmallLoad Stallsoovii i 3-66

XixX

CONTENTS

Example 3-43.
Example 3-44.
Example 3-45.
Example 3-46.
Example 3-47.
Example 3-48.
Example 3-49.
Example 3-50.
Example 3-51.
Example 3-52.
Example 3-53.
Example 3-54.
Example 3-55.

Example 4-1.
Example 4-2.
Example 4-3.
Example 4-4.
Example 4-5.
Example 4-6.
Example 4-7.
Example 4-8.
Example 4-9.

Example 4-10.
Example 4-11.
Example 4-12.
Example 4-13.
Example 4-14.
Example 4-15.
Example 4-16.
Example 4-17.
Example 4-18.
Example 4-20.
Example 4-21.
Example 4-19.
Example 4-22.
Example 4-23.
Example 4-24.
Example 4-25.
Example 4-26.

Example 5-1.
Example 5-2.
Example 5-3.
Example 5-5.
Example 5-4.

Example 5-6.
Example 5-7.

XX

PAGE
Loop-carried Dependence Chain.coviiiii i 3-69
Rearranging a Data Structure. e 3-69
DECOMPOSING AN ATTAY vttt et ettt 3-70
Dynamic Stack AlIgNment.o 3-72
Aliasing Between Loads and Stores Across Loop Iterations.................... 3-75
Instruction Pointer Query Techniques.coiviiiiii e 3-76
Using Non-temporal Stores and 64-byte Bus Write Transactions 3-80
On-temporal Stores and Partial Bus Write Transactions 3-81
Using DCU Hardware Prefetch. ... e 3-84
Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines 3-85
Technique For Using L1 Hardware Prefetch ...t 3-86
REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination......... 3-89
Algorithm to Avoid Changing RoundingMode..............c.covoviiiiiinenns. 3-95
Identification of MMX Technology with CPUIDooviiiiiii i 4-2
Identification of SSEWIth CPUIDooiiii i 4-3
Identification of SSE2 with cpuid.cooiiii 4-3
Identification of SSE3 WIth CPUID.vviii s 4-4
Identification of SSSE3 withcpuido 4-4
Identification of SSE4.T withcpuid. ... 4-5
Identification of SSE4.2 withcpuid........ ..o 4-5
Detection of AESNIINSTIUCTIONS.\t v et 4-6
Detection of PCLMULQDQ INStructionovvvviiii i iiiiaas 4-6
Detection of AVX INSTTUCTION ... oo v 4-7
Detection of VEX-Encoded AESNI INSTrUCtiONSo v v v 4-8
Detection of VEX-Encoded AESNI INSTrUCtioNSo v vvi e 4-8
Simple Four-Reration LOOP ... vvvvvt i 4-14
Streaming SIMD Extensions Using Inlined Assembly Encoding.................. 4-15
Simple Four-Iteration Loop Coded with Intrinsics.coovivviiinon.s. 4-16
C++ Code Using the Vector Classesovvviiiii ittt ici e 4-17
Automatic Vectorization fora Simple Loopcoviiiiiiii 4-18
C Algorithm for 64-bit Data Alignmentcoiiiiiiii i 4-21
SOA Data SITUCTUNE oottt e 4-24
A0S and SOA Code SAMPIES. .o\ttt 4-24
A0S Data SITUCTUNE oottt e e e 4-24
Hybrid SOA Data StruCtUMe ..o e 4-26
Pseudo-code Before StripMining ...t 4-27
StAP MINEd COde. ..ottt e 4-28
LOOP BIOCKING. « v vttt e 4-29
Emulation of Conditional MOVES.viii e 4-31
Resetting Register Between __m64 and FP Data TypesCode 5-4
FIR Processing Example inClanguage Codecooviiiiii i, 5-5
SSE2 and SSSE3 Implementation of FIR ProcessingCode....................... 5-5
Signed Unpack Code. . ..o vttt e 5-7
Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions
0o = 5-7
Interleaved Pack with SaturationCode..........cccovviviiiii i 5-9
Interleaved Pack without Saturation Code.ovviiiiii i 5-10

Example 5-8.

Example 5-9.

Example 5-11.
Example 5-10.
Example 5-12.
Example 5-13.
Example 5-14.
Example 5-15.
Example 5-16.
Example 5-17.
Example 5-18.
Example 5-19.
Example 5-20.
Example 5-21.
Example 5-22.
Example 5-23.
Example 5-24.
Example 5-25.
Example 5-26.
Example 5-28.
Example 5-27.
Example 5-29.
Example 5-30.
Example 5-31.
Example 5-32.
Example 5-33.
Example 5-34.
Example 5-36.
Example 5-37.
Example 5-35.
Example 5-38.
Example 5-39.
Example 5-40.
Example 5-41.
Example 5-42.
Example 5-43.
Example 5-44.
Example 5-45.
Example 5-46.
Example 5-47.
Example 5-48.
Example 6-1.

Example 6-2.

Example 6-3.

Example 6-4.

Example 6-5.

Example 6-6.

CONTENTS

PAGE
Unpacking Two Packed-word Sources in Non-interleaved Way Code............ 5-12
PEXTRW INStruction Code. . ..o vvvviie et 5-13
Repeated PINSRW Instruction Codeovviiiiiiiiiiiii i 5-14
PINSRW INStruction Code vvuvi i e 5-14
Non-Unit Stride Load/Store Using SSE4.1 Instructions.....................oe 5-15
Scatter and Gather Operations Using SSE4.1 Instructions...................... 5-15
PMOVMSKB INStruction Code. ..o vvvvvi et eaa 5-16
Broadcast a Word Across XMM, Using 2 SSE2 Instructionsovues 5-17
Swap/Reverse words in an XMM, Using 3 SSE2 Instructions 5-18
Generating ConStaNTS. ... v . et 5-19
Absolute Difference of Two Unsigned Numbers.................coviviiinnts. 5-21
Absolute Difference of Signed Numbers ..o, 5-21
Computing Absolute ValUuecoi i e 5-22
Basic C Implementation of RGBA to BGRA Conversionc.covvvvvvvnnn.. 5-22
Color Pixel Format Conversion UsingSSE2ooviiii it 5-23
Color Pixel Format Conversion Using SSSE3...........oviiiiiii i 5-24
Big-Endian to Little-Endian Conversion.c.v ittt 5-25
Clipping to a Signed Range of Words [High, Low]ccoiiiiiont. 5-26
Clipping to an Arbitrary Signed Range [High, Low]................ccoviviiont. 5-26
Clipping to an Arbitrary Unsigned Range [High, Low]coooivienes. 5-27
Simplified Clipping to an Arbitrary SignedRangecccvvviiviiinnnnn. 5-27
Complex Multiply by @ CONStantovuiiii e 5-30

Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations ...5-31

Using PTEST and Variable BLEND to Vectorize Heterogeneous Loops.......... 5-32
Baseline C Code for Mandelbrot Set Map Evaluation 5-33
Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics............. 5-34
A Large Load after a Series of Small Stores (Penalty)...............cooovvventn. 5-36
A Series of Small Loads AfteralargeStore.cooovviiiiiiiiniiinnnnns, 5-37
Eliminating Delay for a Series of Small Loads after a Large Store............... 5-37
Accessing Data Without Delay.ooiiiii i e 5-37
An Example of Video Processing with Cache Line Splits........................ 5-38
Video Processing Using LDDQU to Avoid Cache Line Splits 5-39
Un-optimized Reverse Memory CopyinC....ovviiiiiiiiiiii i 5-41
Using PSHUFB to Reverse Byte Ordering 16 BytesataTime 5-42
PMOVSX/PMOVZX Work-around to Avoid False Dependency................... 5-45
Table Look-up Operations inCCodeovviiii it 5-46
Shift Techniques on Non-Vectorizable Table Look-up.......................... 5-47
PEXTRD Techniques on Non-Vectorizable Table Look-upoves 5-48
Pseudo-Code Flow of AES Counter Mode Operationcvovvvvvvnnnn, 5-50
AES128-CTR Implementation with Eight Block in Parallel 5-51
AEST28 KeY EXPanSiONttt i 5-60
Pseudocode for Horizontal (xyz, AoS) Computation...........ccovvviiviieniinnns 6-6
Pseudocode for Vertical (xxxx, yyvyy, zzzz, SoA) Computation................... 6-6
Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS.coviiiiiinnnt 6-7
Swizzling Data Using UNPCKXXX INStructionscvvviiiiiiiiinnnnnnnn.s 6-8
Deswizzling Single-Precision SIMDData.c.oooviiiiiii i 6-9
Deswizzling Data Using SIMD Integer Instructionscoovvvviiiiiinennnnn, 6-10

XXi

CONTENTS

Example 6-7.
Example 6-8.
Example 6-9.
Example 6-10
Example 6-11
Example 6-12
Example 6-13

Example 6-14.
Example 6-15.
Example 6-16.
Example 6-17.
Example 6-18.
Example 6-19.
Example 6-20.
Example 6-21.
Example 6-22.
Example 6-23.
Example 6-24.

Example 7-1.
Example 7-2.
Example 7-3.
Example 7-4.
Example 7-5.
Example 7-6.
Example 7-7.
Example 7-8.
Example 7-9.
Example 7-10
Example 7-11
Example 8-1.
Example 8-2.
Example 8-3.
Example 8-4.
Example 8-5.
Example 8-6.
Example 8-7.
Example 8-8.
Example 8-9.
Example 9-1.
Example 9-2.
Example 10-1
Example 10-2
Example 10-3

Example 10-4.

Example 10-5
Example 10-6
Example 10-7

XXii

PAGE

Horizontal Add Using MOVHLPS/MOVLHPS ... 6-12
Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS. 6-12
Multiplication of Two Pair of Single-precision Complex Number................ 6-15

. Division of Two Pair of Single-precision Complex Numbers 6-16
. Double-Precision Complex Multiplication of Two Pairs......................... 6-17
. Double-Precision Complex Multiplication Using Scalar SSE2.................... 6-17
. Dot Product of Vector Length 4 Using SSE/SSE2.covviiiiiiiin..,. 6-19
Dot Product of Vector Length 4 UsingSSE3covviiiiiiiiiiiinenes 6-19
Dot Product of Vector Length 4 Using SSE4.T ...t 6-19
Unrolled Implementation of Four Dot Productscovvviviivininnnn 6-20
Normalization of an Array of Vectorsc.coviiiiiviiii i 6-21
Normalize (x, v, z) Components of an Array of Vectors Using SSE2............. 6-22
Normalize (x, v, z) Components of an Array of Vectors Using SSE4.1........... 6-23
Data Organization in Memory for AOS Vector-Matrix Multiplication 6-24
AOS Vector-Matrix Multiplication with HADDPSo, 6-24
AOS Vector-Matrix Multiplication withDPPS. ..., 6-25
Data Organization in Memory for SOA Vector-Matrix Multiplication 6-26
Vector-Matrix Multiplication with Native SOA Datalayout 6-27
Pseudo-code Using CLFLUSH 7-13
Populating an Array for Circular Pointer Chasing with Constant Stride 7-15
Prefetch Scheduling Distance.covvvvvi i e 7-18
Using Prefetch Concatenationoovveiiiii e 7-20
Concatenation and Unrolling the Last Iteration of Inner Loop.................. 7-20
Data Access of a 3D Geometry Engine without Strip-mining................... 7-26
Data Access of a 3D Geometry Engine with Strip-mining 7-26
Using HW Prefetch to Improve Read-Once Memory Traffic.................... 7-28
Basic Algorithm of a Simple Memory Copycovvvviviii e 7-33

. AMemory Copy Routine Using Software Prefetch............................ 7-34
. Memory Copy Using Hardware Prefetch and Bus Segmentation 7-36
Serial Execution of Producer and Consumer Work Items.covvvvvnnn, 8-6
Basic Structure of Implementing Producer Consumer Threads.................. 8-7
Thread Function for an Interlaced Producer Consumer Model................... 8-9
Spin-wait Loop and PAUSE INSTructionsvvviiiiiiiiiiiiiiiennn, 8-17
Coding Pitfall using SPin Wait LOOp.vvvei e 8-20
Placement of Synchronization and Reqular Variables.......................... 8-22
Declaring Synchronization Variables without Sharing a Cache Line............. 8-22
Batched Implementation of the Producer Consumer Threads.................. 8-29
Parallel Memory Initialization Technique Using OpenMP and NUMA 8-34
Compute 64-bit Quotient and Remainder with 64-bit Divisor 9-4
Quotient and Remainder of 128-bit Dividend with 64-bit Divisor 9-5

. A Hash Function EXamples ... e 10-5
. Hash Function USiNng CRC32ot i 10-6
. Strlen() Using General-Purpose INStructionscoooviiviiviiinninennn. 10-9
Sub-optimal PCMPISTRI Implementation of EOS handling..................... 10-11

. Strlen() Using PCMPISTRI without Loop-Carry Dependency................... 10-12
. WordCnt() Using C and Byte-Scanning Techniquecooviiiiininnn, 10-13
. WordCnt() Using PCMPISTRM ..o 10-15

CONTENTS

PAGE
Example 10-8. KMP Substring Searchin Cot i 10-17
Example 10-9. Brute-Force Substring Search Using PCMPISTRI Intrinsic..................... 10-19
Example 10-10.Substring Search Using PCMPISTRI and KMP Overlap Table 10-22
Example 10-11.1 Equivalent Strtok_s() Using PCMPISTRI IntrinsiC...........coooivniiienne, 10-26
Example 10-12.1 Equivalent Strupr() Using PCMPISTRM INtrinsic.........covvvvvnvnenvnnn... 10-29
Example 10-13.UTF16 VerStrlen() Using C and Table LookupTechnique 10-31
Example 10-14.Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI 10-32
Example 10-15.Intrinsic Listings of UTF16 VerStrlen() Using PCMPISTRIcovvnnts 10-35
Example 10-16.Replacement String Library Stremp UsingSSE4.2oovvvviiiiinenns 10-38
Example 10-17.High-level flow of Character Subset Validation for String Conversion......... 10-40
Example 10-18.Intrinsic Listings of atol() Replacement Using PCMPISTR. 10-41
Example 10-19.Auxiliary Routines and Data Constants Used in sse4i_atol() listing. 10-44
Example 11-1. Cartesian Coordinate Transformation with Intrinsics.coovvnnt. 11-4
Example 11-2. Cartesian Coordinate Transformation with Assembly....................oooue 11-6
Example 11-3. Direct Polynomial Calculation.cooviii i 11-8
Example 11-4. Function Calls and AVX/SSE transitions. ..o 11-11
Example 11-5. AoS to SoA Conversion of Complex NumbersinCCode 11-14
Example 11-6. Aos to SoA Conversion of Complex Numbers Using AVX..................... 11-15
Example 11-7. Register Overlap Method for Median of 3 Numbers.......................... 11-17
Example 11-8. Data Gather - AVX versus Scalar Code.ovvvviiiiiiiiiiiiiiiiiiaennns 11-19
Example 11-9. Scatter Operation Using AVX ...t i 11-21
Example 11-TO.SAXPY using Intel AVX ... e 11-23
Example 11-11.Using 16-Byte Memory Operations for Unaligned 32-Byte Memory Operation 11-25
Example 11-12.SAXPY Implementations for Unaligned Data Addresses...................... 11-25
Example 11-13.Loop with Conditional EXPressioncooivriiviiiiiiiieiiinenennn. 11-29
Example 11-14.Handling Loop Conditional with VMASKMOVcoiiiiiiiiiiinnnnns 11-29
Example 11-15.Three-Tap FIlter iNnCCodevvvvii it 11-31
Example 11-16.Three-Tap Filter with 128-bit Mixed Integerand FPSIMD. 11-31
Example 11-17.256-bit AVX Three-Tap Filter Code with VSHUFPS 11-32
Example 11-18.Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code 11-33
Example 11-19.8x8 Matrix Transpose - Replace Shuffles withBlends 11-35
Example 11-20.8x8 Matrix Transpose Using VINSRTPS. ...t 11-38
Example 11-21.Port 5 versus Load Port Shuffles. ..o 11-41
Example 11-22.Divide Using DIVPS for 24-bit Accuracy.........covviiiiiiiiiiiiiiiinenn, 11-43
Example 11-23.Divide Using RCPPS 11-bit Approximationcooiiiiiiiiiinnnn.s. 11-43
Example 11-24.Divide Using RCPPS and Newton-Raphson Iteration 11-44
Example 11-25.Reciprocal Square Root Using DIVPS+SQRTPS for 24-bit Accuracy 11-45
Example 11-26.Reciprocal Square Root Using RCPPS 11-bit Approximation.................. 11-46
Example 11-27.Reciprocal Square Root Using RCPPS and Newton-Raphson Iteration......... 11-46
Example 11-28.Square Root Using SQRTPS for 24-bit Accuracy........covvvvvvvivinininennn. 11-47
Example 11-29. Square Root Using RCPPS 11-bit Approximation.................cocovvvn.n. 11-48
Example 11-30. Square Root Using RCPPS and One Taylor Series Expansion................. 11-48
Example 11-31. Array Sub Sums Algorithm. ... e 11-51
Example 12-1. Unoptimized SIEeP LOOP . ..o\ttt 12-19
Example 12-2. Power Consumption Friendly Sleep Loop UsingPAUSE 12-19
Example 13-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel® Atom™
[Tl o= o T =Tt (1= 13-5

XXiii

CONTENTS

PAGE
Example 13-2. Alternative to Prevent AGU and Execution Unit Dependency.................. 13-8
Example 13-3. Pipeling Instruction Execution in Integer Computation......................... 13-9
Example 13-4. Memory Copy Of 64-Dyte. .. .ovvviii it s 13-14
Example 13-5. Examples of Dependent Multiply and Add Computation 13-16
Example 13-6. Instruction Pointer Query Techniques.vvviiiiii e 13-17
Example 13-8. Auto-Generated Code of Storing Absolutes............cociviiiiiiiiiiiiiann, A-8
Example 13-9. Changes SignSvv ittt et e e e A-8
Example 13-7. Storing AbsolUte ValUES. oviit it e A-8
EXAmMPle 13-171.D3ta CONVEISION .« .. vttt ettt ettt et ettt e eiaaas A-9
Example 13-10.Auto-Generated Code of Sign CoNVErsionc.ooeiviiiiiiiiiiininennn. A-9
Example 13-13.Un-aligned Data Operationoiiiiriiiiiii ittt enans A-10
Example 13-12.Auto-Generated Code of Data Conversion...........c.covvviiviiiininenanns. A-10
Example 13-14.Auto-Generated Code to Avoid Unaligned Loads..............oovvvviininnnns. A-11
Example D-1. Aligned esp-Based Stack Frame.ooviiiii i e D-3
Example D-2. Aligned ebp-based Stack Frames. ...t i D-5

XXiv

FIGURES

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.

Figure 2-15.
Figure 2-16.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 5-1.
Figure 5-2.
Figure 5-4.
Figure 5-3.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.

CONTENTS

PAGE
Intel microarchitecture code name Sandy Bridge Pipeline Functionality.......... 2-4
Intel Core Microarchitecture Pipeline Functionalityooc. 2-28
Execution Core of Intel Core Microarchitecture............covvviiiiiiiinnnnn, 2-36
Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture..... 2-41
Intel Advanced Smart Cache Architecture..........ovvvviiiiiiinii i 2-42
Intel microarchitecture code name Nehalem Pipeline Functionality 2-46
Front End of Intel microarchitecture code name Nehalem 2-47
Store-Forwarding Scenarios of 16-Byte Store Operations 2-54
Store-Forwarding Enhancement in Intel microarchitecture code name Nehalem.2-55
The Intel NetBurst Microarchitecture. ..o 2-59
Execution Units and Ports in Out-Of-Order Core........oovvviiinviiniienenn, 2-65
The Intel Pentium M Processor Microarchitecturecovviiviivnninnn 2-71
Hyper-Threading Technology onan SMP. ... 2-76
Pentium D Processor, Pentium Processor Extreme Edition, Intel Core Duo Processor,
Intel Core 2 Duo Processor, and Intel Core 2 Quad Processor................... 2-80
Typical SIMD Operations . ..o .v vttt ittt e e 2-84
SIMD Instruction Register Usageoviiiiiiiii it iiiieneans 2-85
Generic Program Flow of Partially Vectorized Code...........cocvvvvivninnnn, 3-47
Cache Line Split in Accessing ElementsiNaAMmaycovvvviviiniiinenannn, 3-62
Size and Alignment Restrictions in Store Forwarding.................c..oovvut 3-64
General Procedural Flow of Application Detection of AVX................ccit 4-7
Converting to Streaming SIMD Extensions Chartccoiviinis, 4-10
Hand-Coded Assembly and High-Level Compiler Performance Trade-offs....... 4-13
Loop Blocking Access Patternovvviii i 4-30
PACKSSDW mm, mm/mm64 INStruction..........cvvvveiiiiiiiiiiieiieienes 5-8
Interleaved Pack with Saturation. ... 5-9
Result of Non-Interleaved Unpack HighinMM1ccoiinntt 5-11
Result of Non-Interleaved Unpack Low inMMO...............cooviviiennnns. 5-11
PEXTRW INSTrUCTION . o\ vttt 5-12
PINSRW INSTrUCTION. . o v et e 5-13
PMOVSMKB INSTrUCHION . . .o e e 5-16
Data Alignment of Loads and Stores in Reverse Memory Copy 5-41
A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using Two
AlGNEd Loads . ..ot 5-43
Homogeneous Operation on Parallel Data Elementscocvvivvinnnn. 6-4
Horizontal Computation Modelcviii e 6-4
Dot Product Operation.ovvutet e e 6-5
Horizontal Add Using MOVHLPS/MOVLHPSot 6-11
Asymmetric Arithmetic Operation of the SSE3 Instruction..................... 6-14
Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD............... 6-15
Effective Latency Reduction as a Function of Access Stride. 7-15
Memory Access Latency and Execution Without Prefetch...................... 7-16
Memory Access Latency and Execution With Prefetch......................... 7-17
Prefetch and Loop UNrolling.ooveienni e 7-21
Memory Access Latency and Execution With Prefetch......................... 7-22

XXV

CONTENTS

Figure 7-6.
Figure 7-7.
Figure 7-8.

Figure 7-9.
Figure 8-1.
Figure 8-2.
Figure 8-3.

Figure 8-4.
Figure 8-5.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 12-10.

Figure 13-1.
Figure A-1.

Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-5.
Figure B-6.
Figure B-8.
Figure B-7.
Figure B-9.
Figure B-10.
Figure B-12.
Figure B-11.
Figure B-13.
Figure D-1.

XXVi

PAGE
Spread Prefetch INSTructions ... i 7-23
Cache Blocking - Temporally Adjacent and Non-adjacent Passes............... 7-24
Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent
PaSSES LOOPS . . vttt e 7-25
Single-Pass V's. Multi-Pass 3D Geometry ENgiNeScovviivviiiinnnnnn. 7-30
Amdahl's Law and MP Speed-Up ..ot 8-2
Single-threaded Execution of Producer-consumer Threading Model. 8-6
Execution of Producer-consumer Threading Model
0N 3 MUIICOME PrOCESSOM « vttt ettt 8-7
Interlaced Variation of the Producer Consumer Model.......................... 8-8
Batched Approach of Producer Consumer Model..................cooovviinnt, 8-28
SSE4.2 String/Text Instruction Immediate Operand Control 10-2
Retrace Inefficiency of Byte-Granular, Brute-Force Search................... 10-17
SSE4.2 Speedup of SubStringSearchescoviii i 10-25
Performance History and State Transitions.ovviviiiiii e 12-2
Active Time Versus Halted Time of a Processorcooovvviiiiininnn 12-4
Application of C-states toldle Time ...t 12-5
Profiles of Coarse Task Scheduling and Power Consumption.................. 12-12
Thread Migration in @ Multicore Processor...........ovvviiiiiiiieinnenennnns 12-15
Progression to Deeper SIEEP ..o vt 12-15
Energy Saving due to Performance Optimization.................covvvvvnn... 12-17
Energy Saving due to Vectorization. ...t 12-18
Energy Saving Comparison of Synchronization Primitives 12-22
Power Saving Comparison of Power-Source-Aware Frame Rate
CoNFIQUIAtIONS . .. ot e 12-23
Intel Atom Microarchitecture Pipeline ..ot 13-2
Intel Thread Profiler Showing Critical Paths
of Threaded Execution TIMeliNeS.o vt e A-16
System Topology Supported by Intel® Xeon® Processor 5500 Series............ B-1
PMU Specific Event Logic Within the Pipeline.....................coooiiiiiit, B-4
LBR Records and BasiC BIOCKSo v vt ee e B-19
Using LBR Records to Rectify Skewed Sample Distribution B-20
RdData Request after LLC Miss to Local Home (Clean Rsp).................... B-35
RdData Request after LLC Miss to Remote Home (CleanRsp) B-35
RdData Request after LLC Miss to Local Home (Hitm Response)............... B-36
RdData Request after LLC Miss to Remote Home (Hitm Response)............ B-36
RdData Request after LLC Miss to Local Home (Hit Response) B-37
RdlinvOwn Request after LLC Miss to Remote Home (CleanRes) B-37
RdinvOwn Request after LLC Miss to Local Home (HitRes) B-38
RdlinvOwn Request after LLC Miss to Remote Home (HitmRes)............... B-38
Performance Events Drill-Down and Software Tuning Feedback Loop.......... B-62
Stack Frames Based on Alignment Type. ... D-2

TABLES
Table 2-1.

Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.
Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.

Table 2-16.
Table 2-17.

Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.
Table 2-22.
Table 2-23.
Table 2-24.
Table 2-25.
Table 2-26.
Table 3-1.

Table 3-2.

Table 5-1.
Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 8-1.
Table 8-2.
Table 8-3.
Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.

CONTENTS

PAGE
Components of the Front End of Intel microarchitecture code name Sandy
5T = 2-5
ICache and ITLB of Intel microarchitecture code name Sandy Bridge............. 2-6
Dispatch Port and Execution Stacksovii i e 2-14
Execution Core Writeback Latency (cycles).covvviviiiini i, 2-15
CaChE ParamieterS . ottt e 2-16
Lookup Order and Load Latency......vvvviriniii it eieaens 2-16
L1 Data Cache CompPOneNtSvv it 2-18
Effect of Addressing Modeson Load Latencycovvviviiivinennnnnns. 2-19
DTLB and STLB Parameters.t 2-20
Store Forwarding Conditions (1 and 2 byte stores)oovvviivinvnnennns 2-20
Store Forwarding Conditions (4-16 byte StOres).ovvviviiiiiiinnnnnnn. 2-21
32-byte Store Forwarding Conditions (0-15 byte alignment)................... 2-21
32-byte Store Forwarding Conditions (16-31 byte alignment) 2-22
Components of the Front ENd........ ..o e 2-29
Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core
i Tol o =Tl 11 (=Tt U = 2-35
Cache Parameters of Processors based on Intel Core Microarchitecture 2-43
Characteristics of Load and Store Operations
in Intel Core Microarchitecture2-44
Bypass Delay Between Producer and Consumer Micro-ops (cycles)............. 2-49
Issue Ports of Intel microarchitecture code name Nehalem 2-50
Cache Parameters of Intel Core i7 ProCeSSOrS. .. v.vvvvir v eniiniiennannnnnns 2-51
Performance Impact of Address Alignments of MOVDQU from L1 2-52
Pentium 4 and Intel Xeon Processor Cache Parameters.....................e. 2-66
Trigger Threshold and CPUID Signatures for Processor Families................ 2-73
Cache Parameters of Pentium M, Intel Core Solo, and Intel Core Duo Processors 2-73
Family And Model Designations of Microarchitectures 2-81
Characteristics of Load and Store Operations in Intel Core Duo Processors. 2-82

Macro-Fusible Instructions in Intel microarchitecture code name Sandy Bridge..3-19
Store Forwarding Restrictions of Processors Based on Intel Core

[Tl o o T =Ton (1= 3-67
PSHUF ENCOAING. . ..o et e e e i e 5-17
SoA Form of Representing VerticesDataccooiviiiiiiiiiinnnnns. 6-5
Software Prefetching Considerations into Strip-mining Code................... 7-27
Relative Performance of Memory Copy Routines...........ooovvviiiinnnnnne, 7-37
Deterministic Cache ParametersLeaf...... ... 7-39
Properties of Synchronization Objects..........coovi i 8-15
Design-Time Resource Management Choices........covv i iiiininnns, 8-31
Microarchitectural Resources Comparisons of HT Implementations............. 8-36
SSE4.2 String/Text Instructions Compare Operation on N-elements............ 10-3
SSE4.2 String/Text Instructions Unary Transformation on IntRes1............. 10-3
SSE4.2 String/Text Instructions Output Selection Imm[6]...................... 10-4
SSE4.2 String/Text Instructions Element-Pair Comparison Definition 10-4
SSE4.2 String/Text Instructions Eflags Behavior ...t 10-5

XXVii

CONTENTS

Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 12-1.

Table 12-2.

Table 12-3.

Table 12-4.

Table 12-5.
Table 12-6.

Table 13-1.
Table 13-2.

Table A-1.
Table A-2.
Table A-3.
Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.

Table B-10.
Table B-11.
Table B-12.
Table B-13.
Table B-14.
Table B-15.

Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table C-7.
Table C-8.
Table C-9.
Table C-10.

XXViii

PAGE
Features between 256-bit AVX, 128-bit AVX and Legacy SSE Extensions 11-2
State Transitions of Mixing AVXandSSECodecovvviiiiiiinnnnnnn, 11-10
Single-Precision Divide and Square Root Alternatives...............coovvvn.n. 11-42
Comparison of Single-Precision Divide Alternativescoovues. 11-45
Comparison of Single-Precision Reciprocal Square Root Operation 11-47
Comparison of Single-Precision Square Root Operation....................... 11-49
ACPI C-State Type Mappings to Processor Specific C-State for Mobile Processors
Based on Intel microarchitecture code name Nehalem......................... 12-6
ACPI C-State Type Mappings to Processor Specific C-State of Intel microarchitecture
codename Sandy Bridgeoiiii i 12-7
C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency)
WITh SIOW VR o 12-24
C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency)
WIth FaSt VR, . 12-25
C-State Core-Only Exit Latency for Client Systems with Slow VR............. 12-25
POWER_CTL MSR in Next Generation Intel Processor (Intel® microarchitecture code
name Sandy Bridge).o e 12-26
Instruction Latency/Throughput Summary of Intel® Atom™ Microarchitecture..13-10
Intel®* Atom™ Microarchitecture Instructions Latency Data.................... 13-19
Recommended IA-32 Processor Optimization Options.............covvvvvuan. A-2
Recommended Processor Optimization Options for 64-bitCode A-4
Vectorization Control Switch Optionscovviiiiiiii e A-5
Cycle Accounting and Micro-ops Flow Recipe........ooviiiiiiiiii i B-3
CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow B-4
Cycle Accounting of Wasted Work Due to Misprediction........................ B-6
Cycle Accounting of Instruction Starvation.coovvviiiiiiiiiiinnnnns B-7
CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow B-8
Approximate Latency of L2 Misses of Intel Xeon Processor 5500............. B-11
Load Latency Event Programmingoovviiiiriiiieii it ianans B-14
Data Source Encoding for Load Latency PEBSRecord......................... B-15
Core PMU Events to Drill Down L2 MiSSES .. .vvvvvvtvi it iiiiaeaen B-21
Core PMU Events for Super Queue Operation.........covvviviiiiiiiinnnnnnes B-22
Core PMU Event to Drill Down OFFCore RESPONSESvvvvvvviiiiinennnnnnns B-22
OFFCORE_RSP_OMSR Programmingovvvvvei et eneneieieannnnnnas B-22
Common Request and Response Types for OFFCORE_RSP_O MSR............... B-23
Uncore PMU Events for Occupancy Cycles........ccovviiiiiiiiii i, B-30
Common QHL Opcode Matching Facility Programming............cocovvvvvnnnn. B-33
SIMD Instruction Extensions Support by Microarchitectures (CPUID Signature) ...C-4
256-bit AVX INSTTUCTIONS . . .o\ttt C-5
AESNI and PCLMULQDQ INStrUCtioNS .« v v v nieieeas C-6
SSEA.2 INSTTUCTIONS .« vttt e e c-7
SSEA.T INSTITUCTIONS .« vttt e C-7
Supplemental Streaming SIMD Extension 3 Instructions......................... C-9
Streaming SIMD Extension 3 SIMD Floating-point Instructions c-10
Streaming SIMD Extension 2 128-bit Integer Instructions C-11
Streaming SIMD Extension 2 Double-precision Floating-point Instructions. C-16
Streaming SIMD Extension Single-precision Floating-point Instructions......... C-20

Table C-11.
Table C-12.
Table C-13.
Table C-14.
Table C-15.

CONTENTS

PAGE
Streaming SIMD Extension 64-bit Integer Instructions......................... C-24
MMX Technology 64-bit INStrUCTIONSovvvve e C-25
MMX Technology 64-bit INStrUCTIONSvvvt e C-26
x87 Floating-point INStruCtions. c-27
General Purpose INSTruCtions. . ..ot e e C-30

XXiX

CONTENTS

PAGE

XXX

CHAPTER 1
INTRODUCTION

The Intel® 64 and IA-32 Architectures Optimization Reference Manual describes how
to optimize software to take advantage of the performance characteristics of IA-32
and Intel 64 architecture processors. Optimizations described in this manual apply to
processors based on the Intel® Core™ microarchitecture, Enhanced Intel® Core™
microarchitecture, Intel® microarchitecture code name Nehalem, Intel® microarchi-
tecture code name Westmere, Intel® microarchitecture code name Sandy Bridge,
Intel NetBurst® microarchitecture, the Intel® Core™ Duo, Intel® Core™ Solo,
Pentium® M processor families.

The target audience for this manual includes software programmers and compiler
writers. This manual assumes that the reader is familiar with the basics of the IA-32
architecture and has access to the Inte/® 64 and IA-32 Architectures Software Devel-
oper’s Manual (five volumes). A detailed understanding of Intel 64 and IA-32 proces-
sors is often required. In many cases, knowledge of the underlying microarchitectures
is required.

The design guidelines that are discussed in this manual for developing high-
performance software generally apply to current as well as to future IA-32 and

Intel 64 processors. The coding rules and code optimization techniques listed target
the Intel Core microarchitecture, the Intel NetBurst microarchitecture and the
Pentium M processor microarchitecture. In most cases, coding rules apply to soft-
ware running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64
architecture, and IA-32 modes (IA-32 modes are supported in IA-32 and Intel 64
architectures). Coding rules specific to 64-bit modes are noted separately.

1.1 TUNING YOUR APPLICATION

Tuning an application for high performance on any Intel 64 or IA-32 processor
requires understanding and basic skills in:

® Intel 64 and IA-32 architecture

® Cand Assembly language

®* hot-spot regions in the application that have impact on performance
® optimization capabilities of the compiler

®* techniques used to evaluate application performance

The Intel® VTune™ Performance Analyzer can help you analyze and locate hot-spot
regions in your applications. On the Intel® Core™ i7, Intel® Core™2 Duo, Intel®
Core™ Duo, Intel® Core™ Solo, Pentium® 4, Intel® Xeon® and Pentium® M proces-
sors, this tool can monitor an application through a selection of performance moni-

INTRODUCTION

toring events and analyze the performance event data that is gathered during code
execution.

This manual also describes information that can be gathered using the performance
counters through Pentium 4 processor’s performance monitoring events.

1.2 ABOUT THIS MANUAL

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture. In this document,
references to the Core 2 Duo processor refer to processors based on the Intel®
Core™ microarchitecture.

The Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400 series, Intel® Core™2
Quad processor Q8000 series, and Intel® Core™2 Extreme processors QX9000
series are based on 45nm Enhanced Intel® Core™microarchitecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series
are based on 45 nm Intel® microarchitecture code name Nehalem. Intel® microar-

chitecture code name Westmere is a 32nm version of Intel® microarchitecture code
name Nehalem. Intel® Xeon® processor 5600 series and various Intel Core i7, i5, i3
processors are based on Intel® microarchitecture code name Westmere.

Intel® Core™ i7 processor 2xxx series are based on Intel® microarchitecture code
name Sandy Bridge.

In this document, references to the Pentium 4 processor refer to processors based on
the Intel NetBurst® microarchitecture. This includes the Intel Pentium 4 processor
and many Intel Xeon processors based on Intel NetBurst microarchitecture. Where
appropriate, differences are noted (for example, some Intel Xeon processors have
third level cache).

The Dual-core Intel® Xeon® processor LV is based on the same architecture as Intel®
Core™ Duo and Intel® Core™ Solo processors.

Intel® Atom™ processor is based on Intel® Atom™ microarchitecture.
The following bullets summarize chapters in this manual.

® Chapter 1: Introduction — Defines the purpose and outlines the contents of
this manual.

* Chapter 2: Intel® 64 and IA-32 Processor Architectures — Describes the
microarchitecture of recent IA-32 and Intel 64 processor families, and other
features relevant to software optimization.

®* Chapter 3: General Optimization Guidelines — Describes general code
development and optimization techniques that apply to all applications designed
to take advantage of the common features of the Intel Core microarchitecture,
Enhanced Intel Core microarchitecture, Intel NetBurst microarchitecture and
Pentium M processor microarchitecture.

INTRODUCTION

Chapter 4: Coding for SIMD Architectures — Describes techniques and
concepts for using the SIMD integer and SIMD floating-point instructions
provided by the MMX™ technology, Streaming SIMD Extensions, Streaming
SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

Chapter 5: Optimizing for SIMD Integer Applications — Provides optimi-
zation suggestions and common building blocks for applications that use the 128-
bit SIMD integer instructions.

Chapter 6: Optimizing for SIMD Floating-point Applications — Provides
optimization suggestions and common building blocks for applications that use
the single-precision and double-precision SIMD floating-point instructions.

Chapter 7: Optimizing Cache Usage — Describes how to use the PREFETCH
instruction, cache control management instructions to optimize cache usage, and
the deterministic cache parameters.

Chapter 8: Multiprocessor and Hyper-Threading Technology — Describes
guidelines and techniques for optimizing multithreaded applications to achieve
optimal performance scaling. Use these when targeting multicore processor,
processors supporting Hyper-Threading Technology, or multiprocessor (MP)
systems.

Chapter 9: 64-Bit Mode Coding Guidelines — This chapter describes a set of
additional coding guidelines for application software written to run in 64-bit
mode.

Chapter 10: SSE4.2 and SIMD Programming for Text-
Processing/Lexing/Parsing— Describes SIMD techniques of using SSE4.2
along with other instruction extensions to improve text/string processing and
lexing/parsing applications.

Chapter 11: Power Optimization for Mobile Usages — This chapter provides
background on power saving techniques in mobile processors and makes recom-
mendations that developers can leverage to provide longer battery life.

Chapter 12: Intel® Atom™ Processor Architecture and Optimization —
Describes the microarchitecture of processor families based on Intel Atom
microarchitecture, and software optimization techniques targeting Intel Atom
microarchitecture.

Appendix A: Application Performance Tools — Introduces tools for analyzing
and enhancing application performance without having to write assembly code.

Appendix B: Intel® Pentium® 4 Processor Performance Metrics —
Provides information that can be gathered using Pentium 4 processor’s
performance monitoring events. These performance metrics can help
programmers determine how effectively an application is using the features of
the Intel NetBurst microarchitecture.

Appendix C: IA-32 Instruction Latency and Throughput — Provides latency
and throughput data for the IA-32 instructions. Instruction timing data specific to
recent processor families are provided.

INTRODUCTION

Appendix D: Stack Alignment — Describes stack alignment conventions and
techniques to optimize performance of accessing stack-based data.

Appendix E: Summary of Rules and Suggestions — Summarizes the rules
and tuning suggestions referenced in the manual.

1.3 RELATED INFORMATION

For more information on the Intel® architecture, techniques, and the processor
architecture terminology, the following are of particular interest:

Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)
Intel® Processor Identification with the CPUID Instruction, AP-485

Developing Multi-threaded Applications: A Platform Consistent Approach

Intel® C++ Compiler documentation and online help

Intel® Fortran Compiler documentation and online help

Intel® VTune™ Performance Analyzer documentation and online help

Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP

More relevant links are:

Software network link:
http://softwarecommunity.intel.com/isn/home/

Developer centers:
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
Processor support general link:
http://www.intel.com/support/processors/

Software products and packages:
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
Intel 64 and IA-32 processor manuals (printed or PDF downloads):
http://developer.intel.com/products/processor/manuals/index.htm
Intel Multi-Core Technology:
http://developer.intel.com/technology/multi-core/index.htm
Hyper-Threading Technology (HT Technology):
http://developer.intel.com/technology/hyperthread/

SSE4.1 Application Note: Motion Estimation with Intel® Streaming SIMD
Extensions 4

http://softwarecommunity.intel.com/articles/eng/1246.htm

SSE4.1 Application Note: Increasing Memory Throughput with Intel® Streaming
SIMD Extensions 4

http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://cache-www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www3.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/design/pentium4/manuals/index_new.htm
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/technology/hyperthread/

INTRODUCTION

http://softwarecommunity.intel.com/articles/eng/1248.htm
Processor Topology and Cache Topology white paper and reference code

http://software.intel.com/en-us/articles/intel-64-architecture-processor-
topology-enumeration

http://developer.intel.com/technology/hyperthread/

INTRODUCTION

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for
current generations of Intel 64 and IA-32 processors (processors based on Intel
microarchitecture code name Sandy Bridge, processors based on the Intel Core
microarchitecture, Enhanced Intel Core microarchitecture, Intel microarchitecture
code name Nehalem, Intel NetBurst microarchitecture; including Intel Core Solo,
Intel Core Duo, and Intel Pentium M processors). These features are:

® Microarchitectures that enable executing instructions with high throughput at
high clock rates, a high speed cache hierarchy and high speed system bus

® Multicore architecture available in Intel Core i7, Intel Core 2 Extreme, Intel Core
2 Quad, Intel Core 2 Duo, Intel Core Duo, Intel Pentium D processors, Pentium
processor Extreme Edition?, and Quad-core Intel Xeon, Dual-core Intel Xeon
processors

®* Hyper-Threading Technology2 (HT Technology) support
* Intel 64 architecture on Intel 64 processors

® SIMD instruction extensions: MMX technology, Streaming SIMD Extensions
(SSE), Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), Supplemental Streaming SIMD Extensions 3 (SSSE3), SSE4.1, and
SSE4.2.

* Intel® Advanced Vector Extensions (Intel® AVX).

The Intel Pentium M processor introduced a power-efficient microarchitecture with
balanced performance. Dual-core Intel Xeon processor LV, Intel Core Solo and Intel
Core Duo processors incorporate enhanced Pentium M processor microarchitecture.
The Intel Core 2, Intel Core 2 Extreme, Intel Core 2 Quad processor family, Intel
Xeon processor 3000, 3200, 5100, 5300, 7300 series are based on the high-perfor-
mance and power-efficient Intel Core microarchitecture. Intel Xeon processor 3100,
3300, 5200, 5400, 7400 series, Intel Core 2 Extreme processor QX9600, QX9700

1. Quad-core platforms require an Intel Xeon processor 3200, 3300, 5300, 5400, 7300 series, an
Intel Core 2 Extreme processor QX6000, QX9000 series, or an Intel Core 2 Quad processor, with
appropriate chipset, BIOS, and operating system. Six-core platform requires an Intel Xeon pro-
cessor 7400 series, with appropriate chipset, BIOS, and operating system. Dual-core platform
requires an Intel Xeon processor 3000, 3100 series, Intel Xeon processor 5100, 5200, 7100
series, Intel Core 2 Duo, Intel Core 2 Extreme processor X6800, Dual-core Intel Xeon processors,
Intel Core Duo, Pentium D processor or Pentium processor Extreme Edition, with appropriate
chipset, BIOS, and operating system. Performance varies depending on the hardware and soft-
ware used.

2. Hyper-Threading Technology requires a computer system with an Intel processor supporting HT
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance
varies depending on the hardware and software used.

2-1

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

series, Intel Core 2 Quad Q9000 series, Q8000 series are based on the enhanced
Intel Core microarchitecture. Intel Core i7 processor is based on Intel microarchitec-
ture code name Nehalem. Intel® Xeon® processor 5600 series and Intel Core i7, i5,
i3 processors are based on Intel microarchitecture code name Westmere.

Intel® Core™ i7 processor 2xxx series are based on Intel® microarchitecture code
name Sandy Bridge.

Intel Core 2 Extreme QX6700 processor, Intel Core 2 Quad processors, Intel Xeon
processors 3200 series, 5300 series are quad-core processors. Intel Pentium 4
processors, Intel Xeon processors, Pentium D processors, and Pentium processor
Extreme Editions are based on Intel NetBurst microarchitecture.

2.1 INTEL® MICROARCHITECTURE CODE NAME SANDY
BRIDGE

Intel® microarchitecture code name Sandy Bridge builds on the successes of Intel®
Core™ microarchitecture and Intel microarchitecture code name Nehalem. It offers
the following innovative features:

®* Intel Advanced Vector Extensions (Intel AVX)

— 256-bit floating-point instruction set extensions to the 128-bit Intel
Streaming SIMD Extensions, providing up to 2X performance benefits relative
to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code,
128-bit AVX code and legacy 128-bit SSE code.

®* Enhanced front-end and execution engine

— New decoded Icache component that improves front-end bandwidth and
reduces branch misprediction penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).
— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass
latency, partial stalls).

— Fast floating-point exception handling.

— XSAVE/XRSTORE performance improvements and XSAVEOPT new
instruction.

® Cache hierarchy improvements for wider data path

2-2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— Doubling of bandwidth enabled by two symmetric ports for memory
operation.

— Simultaneous handling of more in-flight loads and stores enabled by
increased buffers.

— Internal bandwidth of two loads and one store each cycle.
— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.
System-on-a-chip support

— Integrated graphics and media engine in second generation Intel Core
processors.

— Integrated PCIE controller.
— Integrated memory controller.
Next generation Intel Turbo Boost Technology

— Leverage TDP headroom to boost performance of CPU cores and integrated
graphic unit.

2.1.1 Intel® microarchitecture code name Sandy Bridge Pipeline

Overview

Figure 2-1 depicts the pipeline and major components of a processor core that’s
based on Intel microarchitecture code name Sandy Bridge. The pipeline consists of

An in-order issue front end that fetches instructions and decodes them into
micro-ops (micro-operations). The front end feeds the next pipeline stages with
a continuous stream of micro-ops from the most likely path that the program will
execute.

An out-of-order, superscalar execution engine that dispatches up to six micro-ops
to execution, per cycle. The allocate/rename block reorders micro-ops to
"dataflow" order so they can execute as soon as their sources are ready and
execution resources are available.

An in-order retirement unit that ensures that the results of execution of the
micro-ops, including any exceptions they may have encountered, are visible
according to the original program order.

The flow of an instruction in the pipeline can be summarized in the following progres-
sion:

1.

The Branch Prediction Unit chooses the next block of code to execute from the
program. The processor searches for the code in the following resources, in this
order:

a. Decoded ICache

2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

b. Instruction Cache, via activating the legacy decode pipeline

Cc. L2 cache, last level cache (LLC) and memory, as necessary

P> 32K L1 Instruction Cache b»[Pre-decode b{Instr Queue Il_
[Decoders |

| 1.5K uOP Cache |

| Branch Predictor |

load || Store [| Reorder —P
Buffers Buffers [| Buffers 3 Allocate/Rename/Retire

_______________________ In-order _
out-of-order
| Scheduler
[PortO | |Port1 | |Port5 | |Port2 | | Port3 | | Port4
ALU | ALU | ALU | Load Load STD
V-Mul V-Add IMP | StAddr StAddr
V-Shuffld V-Shuffle 256- FP Shuf ¢ ¢
Fdiv 256- FP Add || 256- FP Bool
256- FP MUL 256- FP Blend
| 256- FP Blend | ! Memory Control

32K L1 Data Cache

t 48 bytes/cycle
Line Fill
== 256K L2 Cache (Unified) Buffers

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

2. The micro-ops corresponding to this code are sent to the Rename/retirement
block. They enter into the scheduler in program order, but execute and are de-
allocated from the scheduler according to data-flow order. For simultaneously
ready micro-ops, FIFO ordering is nearly always maintained.

Micro-op execution is executed using execution resources arranged in three

stacks. The execution units in each stack are associated with the data type of
the instruction.

Branch mispredictions are signaled at branch execution. It re-steers the front
end which delivers micro-ops from the correct path. The processor can overlap

work preceding the branch misprediction with work from the following corrected
path.

2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

3. Memory operations are managed and reordered to achieve parallelism and
maximum performance. Misses to the L1 data cache go to the L2 cache. The data
cache is non-blocking and can handle multiple simultaneous misses.

4. Exceptions (Faults, Traps) are signaled at retirement (or attempted retirement)
of the faulting instruction.

Each processor core based on Intel microarchitecture code name Sandy Bridge can
support two logical processor if Intel HyperThreading Technology is enabled.

2.1.2

The Front End

This section describes the key characteristics of the front end. Table 2-1 lists the
components of the front end, their functions, and the problems they address.

Table 2-1. Components of the Front End of Intel microarchitecture code name Sandy

Bridge

Component

Functions

Performance Challenges

Instruction Cache

32-Kbyte backing store of
instruction bytes

Fast access to hot code instruction
bytes

Legacy Decode
Pipeline

Decode instructions to micro-ops,
delivered to the micro-op queue and
the Decoded ICache.

Provides the same decode latency
and bandwidth as prior Intel
processors.

Decoded ICache warm-up

Decoded ICache

Provide stream of micro-ops to the
micro-op queue.

Provides higher micro-op
bandwidth at lower latency and
lower power than the legacy
decode pipeline

MSROM

Complex instruction micro-op flow
store, accessible from both Legacy
Decode Pipeline and Decoded ICache

Branch Prediction
Unit (BPU)

Determine next block of code to be
executed and drive lookup of
Decoded ICache and legacy decode
pipelines.

Improves performance and energy
efficiency through reduced branch
mispredictions.

Micro-op queue

Queues micro-ops from the Decoded
ICache and the legacy decode
pipeline.

Hide front-end bubbles; provide
execution micro-ops at a constant
rate.

2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.2.1

Legacy Decode Pipeline

The Legacy Decode Pipeline comprises the instruction translation lookaside buffer
(ITLB), the instruction cache (ICache), instruction predecode, and instruction decode

units.

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB and into the
instruction cache. The instruction cache can deliver every cycle 16 bytes to the
instruction pre-decoder. Table 2-1 compares the ICache and ITLB with prior genera-

tion.

Table 2-2. ICache and ITLB of Intel microarchitecture code name Sandy Bridge

Component Intel microarchitecture code name | Intel microarchitecture code
Sandy Bridge name Nehalem

ICache Size 32-Kbyte 32-Kbyte

ICache Ways 8 4

ITLB 4K page 128 128

entries

ITLB large page 8 7

(2M or 4M) entries

Upon ITLB miss there is a lookup to the Second level TLB (STLB) that is common to
the DTLB and the ITLB. The penalty of an ITLB miss and a STLB hit is seven cycles.

Instruction PreDecode

The predecode unit accepts the 16 bytes from the instruction cache and determines
the length of the instructions.

The following length changing prefixes (LCPs) imply instruction length that is
different from the default length of instructions. Therefore they cause an additional
penalty of three cycles per LCP during length decoding. Previous processors incur a
six-cycle penalty for each 16-byte chunk that has one or more LCPs in it. Since
usually there is no more than one LCP in a 16-byte chunk, in most cases, Intel
microarchitecture code name Sandy Bridge introduces an improvement over
previous processors.

® Operand Size Override (66H) preceding an instruction with a word/double
immediate data. This prefix might appear when the code uses 16 bit data types,
unicode processing, and image processing.

® Address Size Override (67H) preceding an instruction with a modr/m in real, big
real, 16-bit protected or 32-bit protected modes. This prefix may appear in boot
code sequences.

2-6

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® The REX prefix (4xh) in the Intel® 64 instruction set can change the size of two
classes of instructions: MOV offset and MOV immediate. Despite this capability, it
does not cause an LCP penalty and hence is not considered an LCP.

Instruction Decode

There are four decoding units that decode instruction into micro-ops. The first can
decode all IA-32 and Intel 64 instructions up to four micro-ops in size. The remaining
three decoding units handle single-micro-op instructions. All four decoding units
support the common cases of single micro-op flows including micro-fusion and
macro-fusion.

Micro-ops emitted by the decoders are directed to the micro-op queue and to the
Decoded ICache. Instructions longer than four micro-ops generate their micro-ops
from the MSROM. The MSROM bandwidth is four micro-ops per cycle. Instructions
whose micro-ops come from the MSROM can start from either the legacy decode
pipeline or from the Decoded ICache

MicroFusion

Micro-fusion fuses multiple micro-ops from the same instruction into a single
complex micro-op. The complex micro-op is dispatched in the out-of-order execution
core as many times as it would if it were not micro-fused.

Micro-fusion enables you to use memory-to-register operations, also known as the
complex instruction set computer (CISC) instruction set, to express the actual
program operation without worrying about a loss of decode bandwidth. Micro-fusion
improves instruction bandwidth delivered from decode to retirement and saves
power.

Coding an instruction sequence by using single-uop instructions will increases the
code size, which can decrease fetch bandwidth from the legacy pipeline.

The following are examples of micro-fused micro-ops that can be handled by all
decoders.

®* All stores to memory, including store immediate. Stores execute internally as two
separate functions, store-address and store-data.

® All instructions that combine load and computation operations (load+op), for
example:

* ADDPS XMM9, OWORD PTR [RSP+40]
* FADD DOUBLE PTR [RDI+RSI*8]
* XOR RAX, QWORD PTR [RBP+32]
® Allinstructions of the form "load and jump," for example:
e JMP [RDI+200]
* RET
® CMP and TEST with immediate operand and memory

An instruction with RIP relative addressing is not micro-fused in the following cases:

2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® An additional immediate is needed, for example:
* CMP [RIP+400], 27
* MOV [RIP+3000], 142

®* The instruction is a control flow instruction with an indirect target specified using
RIP-relative addressing, for example:

e JMP [RIP+5000000]

In these cases, an instruction that can not be micro-fused will require decoder 0 to
issue two micro-ops, resulting in a slight loss of decode bandwidth.

In 64-bit code, the usage of RIP Relative addressing is common for global data. Since
there is no micro-fusion in these cases, performance may be reduced when porting
32-bit code to 64-bit code.

Macro-Fusion

Macro-fusion merges two instructions into a single micro-op. In Intel Core microar-
chitecture, this hardware optimization is limited to specific conditions specific to the
first and second of the macro-fusable instruction pair.

®* The first instruction of the macro-fused pair modifies the flags. The following
instructions can be macro-fused:

— In Intel microarchitecture code name Nehalem: CMP, TEST.

— In Intel microarchitecture code name Sandy Bridge: CMP, TEST, ADD, SUB,
AND, INC, DEC

— These instructions can fuse if
* The first source / destination operand is a register.

* The second source operand (if exists) is one of: immediate, register, or
non RIP-relative memory.

®* The second instruction of the macro-fusable pair is a conditional branch. Table
3-1 describes, for each instruction, what branches it can fuse with.

Macro fusion does not happen if the first instruction ends on byte 63 of a cache line,
and the second instruction is a conditional branch that starts at byte 0 of the next
cache line.

Since these pairs are common in many types of applications, macro-fusion improves
performance even on non-recompiled binaries.

Each macro-fused instruction executes with a single dispatch. This reduces latency

and frees execution resources. You also gain increased rename and retire bandwidth,
increased virtual storage, and power savings from representing more work in fewer
bits.

2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.2.2 Decoded ICache

The Decoded ICache is essentially an accelerator of the legacy decode pipeline. By
storing decoded instructions, the Decoded ICache enables the following features:

®* Reduced latency on branch mispredictions
®* Increased micro-op delivery bandwidth to the out-of-order engine
®* Reduced front end power consumption

The Decoded ICache caches the output of the instruction decoder. The next time the
micro-ops are consumed for execution the decoded micro-ops are taken from the
Decoded ICache. This enables skipping the fetch and decode stages for these micro-
ops and reduces power and latency of the Front End. The Decoded ICache provides
average hit rates of above 80% of the micro-ops; furthermore, "hot spots" typically
have hit rates close to 100%.

Typical integer programs average less than four bytes per instruction, and the front
end is able to race ahead of the back end, filling in a large window for the scheduler
to find instruction level parallelism. However, for high performance code with a basic
block consisting of many instructions, for example, Intel SSE media algorithms or
excessively unrolled loops, the 16 instruction bytes per cycle is occasionally a limita-
tion. The 32-byte orientation of the Decoded ICache helps such code to avoid this
limitation.

The Decoded ICache automatically improves performance of programs with temporal
and spatial locality. However, to fully utilize the Decoded ICache potential, you might
need to understand its internal organization.

The Decoded ICache consists of 32 sets. Each set contains eight Ways. Each Way can
hold up to six micro-ops. The Decoded ICache can ideally hold up to 1536 micro-ops.

The following are some of the rules how the Decoded ICache is filled with micro-ops:

* All micro-ops in a Way represent instructions which are statically contiguous in
the code and have their EIPs within the same aligned 32-byte region.

®* Up to three Ways may be dedicated to the same 32-byte aligned chunk, allowing
a total of 18 micro-ops to be cached per 32-byte region of the original IA
program.

®* A multi micro-op instruction cannot be split across Ways.

® Up to two branches are allowed per Way.

®* Aninstruction which turns on the MSROM consumes an entire Way.

®* A non-conditional branch is the last micro-op in a Way.

® Micro-fused micro-ops (load+op and stores) are kept as one micro-op.

® A pair of macro-fused instructions is kept as one micro-op.

® Instructions with 64-bit immediate require two slots to hold the immediate.

When micro-ops cannot be stored in the Decoded ICache due to these restrictions,
they are delivered from the legacy decode pipeline. Once micro-ops are delivered

2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

from the legacy pipeline, fetching micro-ops from the Decoded ICache can resume
only after the next branch micro-op. Frequent switches can incur a penalty.

The Decoded ICache is virtually included in the Instruction cache and ITLB. That is,
any instruction with micro-ops in the Decoded ICache has its original instruction
bytes present in the instruction cache. Instruction cache evictions must also be
evicted from the Decoded ICache, which evicts only the necessary lines.

There are cases where the entire Decoded ICache is flushed. One reason for this can
be an ITLB entry eviction. Other reasons are not usually visible to the application
programmer, as they occur when important controls are changed, for example,
mapping in CR3, or feature and mode enabling in CR0O and CR4. There are also cases
where the Decoded ICache is disabled, for instance, when the CS base address is
NOT set to zero.

2.1.2.3 Branch Prediction

Branch prediction predicts the branch target and enables the processor to begin
executing instructions long before the branch true execution path is known. All
branches utilize the branch prediction unit (BPU) for prediction. This unit predicts the
target address not only based on the EIP of the branch but also based on the execu-
tion path through which execution reached this EIP. The BPU can efficiently predict
the following branch types:

®* Conditional branches

® direct calls and jumps

®* indirect calls and jumps
® returns

2.1.2.4 Micro-op Queue and the Loop Stream Detector (LSD)

The micro-op queue decouples the front end and the out-of order engine. It stays
between the micro-op generation and the renamer as shown in Figure 2-1. This
queue helps to hide bubbles which are introduced between the various sources of
micro-ops in the front end and ensures that four micro-ops are delivered for execu-
tion, each cycle.

The micro-op queue provides post-decode functionality for certain instructions types.
In particular, loads combined with computational operations and all stores, when
used with indexed addressing, are represented as a single micro-op in the decoder or
Decoded ICache. In the micro-op queue they are fragmented into two micro-ops
through a process called un-lamination, one does the load and the other does the
operation. A typical example is the following "load plus operation" instruction:

ADD RAX, [RBP+RSI] ; rax := rax + LD(RBP+RSI)

Similarly, the following store instruction has three register sources and is broken into
"generate store address" and "generate store data" sub-components.

2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

MOV [ESP+ECX*4+12345678], AL

The additional micro-ops generated by unlamination use the rename and retirement
bandwidth. However, it has an overall power benefit. For code that is dominated by

indexed addressing (as often happens with array processing), recoding algorithms to
use base (or base+displacement) addressing can sometimes improve performance

by keeping the load plus operation and store instructions fused.

The Loop Stream Detector (LSD)

The Loop Stream Detector was introduced in Intel® Core microarchitectures. The
LSD detects small loops that fit in the micro-op queue and locks them down. The loop
streams from the micro-op queue, with no more fetching, decoding, or reading
micro-ops from any of the caches, until a branch miss-prediction inevitably ends it.

The loops with the following attributes qualify for LSD/micro-op queue replay:
* Up to eight chunk fetches of 32-instruction-bytes
* Up to 28 micro-ops (~28 instructions)
¢ All micro-ops are also resident in the Decoded ICache

* Can contain no more than eight taken branches and none of them can be
a CALL or RET

* Cannot have mismatched stack operations. For example, more PUSH
than POP instructions.

Many calculation-intensive loops, searches and software string moves match these
characteristics.

Use the loop cache functionality opportunistically. For high performance code, loop
unrolling is generally preferable for performance even when it overflows the LSD
capability.

2.1.3 The Out-of-Order Engine

The Out-of-Order engine provides improved performance over prior generations with
excellent power characteristics. It detects dependency chains and sends them to
execution out-of-order while maintaining the correct data flow. When a dependency
chain is waiting for a resource, such as a second-level data cache line, it sends micro-
ops from another chain to the execution core. This increases the overall rate of
instructions executed per cycle (IPC).

The out-of-order engine consists of two blocks, shown in Figures 2-1: Core Func-
tional Diagram, the Rename/retirement block, and the Scheduler.

The Out-of-Order engine contains the following major components:

Renamer. The Renamer component moves micro-ops from the front end to the
execution core. It eliminates false dependencies among micro-ops, thereby enabling
out-of-order execution of micro-ops.

2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Scheduler. The Scheduler component queues micro-ops until all source operands
are ready. Schedules and dispatches ready micro-ops to the available execution units
in as close to a first in first out (FIFO) order as possible.

Retirement. The Retirement component retires instructions and micro-ops in order
and handles faults and exceptions.

2.1.3.1 Renamer

The Renamer is the bridge between the in-order part in Figures 2-1, and the dataflow
world of the Scheduler. It moves up to four micro-ops every cycle from the micro-op
queue to the out-of-order engine. Although the renamer can send up to 4 micro-ops
(unfused, micro-fused, or macro-fused) per cycle, this is equivalent to the issue port
can dispatch six micro-ops per cycle. In this process, the out-of-order core carries
out the following steps:

® Renames architectural sources and destinations of the micro-ops to micro-archi-
tectural sources and destinations.

* Allocates resources to the micro-ops. For example, load or store buffers.
®* Binds the micro-op to an appropriate dispatch port.

Some micro-ops can execute to completion during rename and are removed from the
pipeline at that point, effectively costing no execution bandwidth. These include:

® Zero idioms (dependency breaking idioms)

* NOP
* VZEROUPPER
* FXCHG

The renamer can allocate two branches each cycle, compared to one branch each
cycle in the previous microarchitecture. This can eliminate some bubbles in execu-
tion.

Micro-fused load and store operations that use an index register are decomposed to
two micro-ops, hence consume two out of the four slots the Renamer can use every
cycle.

Dependency Breaking Idioms

Instruction parallelism can be improved by using common instructions to clear
register contents to zero. The renamer can detect them on the zero evaluation of the
destination register.

Use one of these dependency breaking idioms to clear a register when possible.
®* XOR REG,REG

® SUB REG,REG

® PXOR/VPXOR XMMREG,XMMREG

* PSUBB/W/D/Q XMMREG,XMMREG

2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

* VPSUBB/W/D/Q XMMREG,XMMREG
¢ XORPS/PD XMMREG,XMMREG
®* VXORPS/PD YMMREG, YMMREG

Since zero idioms are detected and removed by the renamer, they have no execution
latency.

There is another dependency breaking idiom - the "ones idiom".
* CMPEQ XMM1, XMM1; "ones idiom" set all elements to all "ones"

In this case, the micro-op must execute, however, since it is known that regardless of
the input data the output data is always "all ones" the micro-op dependency upon its
sources does not exist as with the zero idiom and it can execute as soon as it finds a
free execution port.

2.1.3.2 Scheduler

The scheduler controls the dispatch of micro-ops onto their execution ports. In order
to do this, it must identify which micro-ops are ready and where its sources come
from: a register file entry, or a bypass directly from an execution unit. Depending on
the availability of dispatch ports and writeback buses, and the priority of ready
micro-ops, the scheduler selects which micro-ops are dispatched every cycle.

2.1.4 The Execution Core

The execution core is superscalar and can process instructions out of order. The
execution core optimizes overall performance by handling the most common opera-
tions efficiently, while minimizing potential delays.

The out-of-order execution core improves execution unit organization over prior
generation in the following ways:

® Reduction in read port stalls
® Reduction in writeback conflicts and delays
® Reduction in power

® Reduction of SIMD FP assists dealing with denormal inputs and underflowed
outputs

Some high precision FP algorithms need to operate with FTZ=0 and DAZ=0, i.e.
permitting underflowed intermediate results and denormal inputs to achieve higher
numerical precision at the expense of reduced performance on prior generation
microarchitectures due to SIMD FP assists. The reduction of SIMD FP assists in Intel
microarchitecture code name Sandy Bridge applies to the following SSE instructions
(and AVX variants): ADDPD/ADDPS, MULPD/MULPS, DIVPD/DIVPS, and CVTPD2PS.

The out-of-order core consist of three execution stacks, where each stack encapsu-
lates a certain type of data. The execution core contains the following execution
stacks:

2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® General purpose integer
® SIMD integer and floating point
* X87

The execution core also contains connections to and from the cache hierarchy. The
loaded data is fetched from the caches and written back into one of the stacks.

The scheduler can dispatch up to six micro-ops every cycle, one on each port. The
following table summarizes which operations can be dispatched on which port.

Table 2-3. Dispatch Port and Execution Stacks

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
Integer ALU, Shift ALU, Load_ Ad Load_Ad Store_dat ALU,
FastLEA, dn dr a Shift,
Slow LEA, Store_ad Store_ad Branch,
MUL dr dr Fast LEA
SSE-Int, Mul, Shift, ALU, Store_dat ALU, Shuf,
AVX-Int, STTNI, Int- Shuf, a Shift,
Div, Blend, Blend,
MMX 1986 Moy 128b-Mov 128b-Mov
SSE-FP, Mul, Div, Add, CVT Store_dat Shuf,
AVX- Blend, a Blend,
FP low 256b-Mov 256b-Mov
X87, Mul, Div, Add, CVT Store_dat Shuf,
AVX- Blend, a Blend,
FP_High 256b-Mov 256b-Mov

After execution, the data is written back on a writeback bus corresponding to the
dispatch port and the data type of the result. Micro-ops that are dispatched on the
same port but have different latencies may need the write back bus at the same
cycle. In these cases the execution of one of the micro-ops is delayed until the write-
back bus is available. For example, MULPS (five cycles) and BLENDPS (one cycle)
may collide if both are ready for execution on port O: first the MULPS and four cycles
later the BLENDPS. Intel microarchitecture code name Sandy Bridge eliminates such
collisions as long as the micro-ops write the results to different stacks. For example,
integer ADD (one cycle) can be dispatched four cycles after MULPS (five cycles) since
the integer ADD uses the integer stack while the MULPS uses the FP stack.

When a source of a micro-op executed in one stack comes from a micro-op executed
in another stack, a one- or two-cycle delay can occur. The delay occurs also for tran-
sitions between Intel SSE integer and Intel SSE floating-point operations. In some of

2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

the cases the data transition is done using a micro-op that is added to the instruction
flow. The following table describes how data, written back after execution, can
bypass to micro-op execution in the following cycles

Table 2-4. Execution Core Writeback Latency (cycles)

Integer SSE-Int, AVX-Int, SSE-FP, X87,
MMX AVX-FP_low AVX-FP_High
Integer 0 micro-op (port 0) micro-op (port micro-op (port
0) 0) + 1 cycle
SSE-Int, AVX- micro-op (port5) 0 1 cycle delay 0
Int, MMX or micro-op (port
5) +1 cycle
SSE-FP, micro-op (port 5) 1 cycle delay 0 micro-op (port
AVX-FP low or micro-op (port 5) +1 cycle
- 5) +1 cycle
X87, micro-op (port 5) 0 micro-op (port 0
AVX-FP_High +1 cycle 5) +1 cycle
Load 0 1 cycle delay 1 cycle delay 2 cycle delay
2.1.5 Cache Hierarchy

The cache hierarchy contains a first level instruction cache, a first level data cache
(L1 DCache) and a second level (L2) cache, in each core. The L1D cache may be
shared by two logical processors if the processor support Intel HyperThreading Tech-
nology. The L2 cache is shared by instructions and data. All cores in a physical
processor package connect to a shared last level cache (LLC) via a ring connection.

The caches use the services of the Instruction Translation Lookaside Buffer (ITLB),
Data Translation Lookaside Buffer (DTLB) and Shared Translation Lookaside Buffer
(STLB) to translate linear addresses to physical address. Data coherency in all cache
levels is maintained using the MESI protocol. For more information, see the Intel®
64 IA-32 Architectures Software Developer's Manual, Volume 3. Cache hierarchy
details can be obtained at run-time using the CPUID instruction. see the Inte/® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A.

2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-5. Cache Parameters

Associativity | Line Size Write Update
Level Capacity (ways) (bytes) Policy Inclusive
L1 Data 32KB 8 64 Writeback -
Instruction 32KB 8 N/A N/A -
L2 (Unified) 256 KB 8 64 Writeback No
Third Level (LLC) | 0.5,1,1.5,0or | Varies with 64 Writeback Yes
2 MB cache size

2.1.5.1 Load and Store Operation Overview
This section provides an overview of the load and store operations.
Loads

When an instruction reads data from a memory location that has write-back (WB)
type, the processor looks for it in the caches and memory. Table 2-6 shows the
access lookup order and best case latency. The actual latency can vary depending on
the cache queue occupancy, LLC ring occupancy, memory components, and their
parameters.

Table 2-6. Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)
L1 Data 4 2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-31 1 x 32 bytes

L2 and L1 DCache in other | 43- clean hit;

cores if applicable 60 - dirty hit
NOTES:

1. Subject to execution core bypass restriction shown in Table 2-4.

The LLC is inclusive of all cache levels above it - data contained in the core caches
must also reside in the LLC. Each cache line in the LLC holds an indication of the
cores that may have this line in their L2 and L1 caches. If there is an indication in the
LLC that other cores may hold the line of interest and its state might have to modify,
there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called
"clean" if it does not require fetching data from the other core caches. The lookup is
called "dirty" if modified data has to be fetched from the other core caches and trans-
ferred to the loading core.

2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The latencies shown above are the best-case scenarios. Sometimes a modified cache
line has to be evicted to make space for a new cache line. The modified cache line is
evicted in parallel to bringing the new data and does not require additional latency.
However, when data is written back to memory, the eviction uses cache bandwidth
and possibly memory bandwidth as well. Therefore, when multiple cache misses
require the eviction of modified lines within a short time, there is an overall degrada-
tion in cache response time. Memory access latencies vary based on occupancy of
the memory controller queues, DRAM configuration, DDR parameters, and DDR
paging behavior (if the requested page is a page-hit, page-miss or page-empty).

Stores

When an instruction writes data to a memory location that has a write back memory
type, the processor first ensures that it has the line containing this memory location
in its L1 DCache, in Exclusive or Modified MESI state. If the cache line is not there, in
the right state, the processor fetches it from the next levels of the memory hierarchy
using a Read for Ownership request. The processor looks for the cache line in the
following locations, in the specified order:

L1 DCache

2. L2

3. Last Level Cache

4. L2 and L1 DCache in other cores, if applicable
5. Memory

Once the cache line is in the L1 DCache, the new data is written to it, and the line is
marked as Modified.

Reading for ownership and storing the data happens after instruction retirement and
follows the order of store instruction retirement. Therefore, the store latency usually
does not affect the store instruction itself. However, several sequential stores that
miss the L1 DCache may have cumulative latency that can affect performance. As
long as the store does not complete, its entry remains occupied in the store buffer.
When the store buffer becomes full, new micro-ops cannot enter the execution pipe
and execution might stall.

2.1.5.2 L1 DCache

The L1 DCache is the first level data cache. It manages all load and store requests
from all types through its internal data structures. The L1 DCache:

®* enables loads and stores to issue speculatively and out of order
®* ensures that retired loads and stores have the correct data upon retirement

®* ensures that loads and stores follow the memory ordering rules of the IA-32 and
Intel 64 instruction set architecture.

2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-7. L1 Data Cache Components

Intel microarchitecture code | Intel microarchitecture code
Component name Sandy Bridge name Nehalem
Data Cache Unit (DCU) 32KB, 8 ways 32KB, 8 ways
Load buffers 64 entries 48 entries
Store buffers 36 entries 32 entries
Line fill buffers (LFB) 10 entries 10 entries

The DCU is organized as 32 KBytes, eight-way set associative. Cache line size is 64-
bytes arranged in eight banks.

Internally, accesses are up to 16 bytes, with 256-bit Intel AVX instructions utilizing
two 16-byte accesses. Two load operations and one store operation can be handled
each cycle.

The L1 DCache maintains requests which cannot be serviced immediately to comple-
tion. Some reasons for requests that are delayed: cache misses, unaligned access
that splits across cache lines, data not ready to be forwarded from a preceding store,
loads experiencing bank collisions, and load block due to cache line replacement.

The L1 DCache can maintain up to 64 load micro-ops from allocation until retirement.
It can maintain up to 36 store operations from allocation until the store value is
committed to the cache, or written to the line fill buffers (LFB) in the case of non-
temporal stores.

The L1 DCache can handle multiple outstanding cache misses and continue to service
incoming stores and loads. Up to 10 requests of missing cache lines can be managed
simultaneously using the LFB.

The L1 DCache is a write-back write-allocate cache. Stores that hit in the DCU do not
update the lower levels of the memory hierarchy. Stores that miss the DCU allocate a
cache line.

Loads

The L1 DCache architecture can service two loads per cycle, each of which can be up
to 16 bytes. Up to 32 loads can be maintained at different stages of progress, from
their allocation in the out of order engine until the loaded value is returned to the
execution core.

Loads can:

®* Read data before preceding stores when the load address and store address
ranges are known not to conflict.

®* Be carried out speculatively, before preceding branches are resolved.
®* Take cache misses out of order and in an overlapped manner.

Loads cannot:

2-18

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® Speculatively take any sort of fault or trap.
® Speculatively access uncacheable memory.

The common load latency is five cycles. When using a simple addressing mode, base
plus offset that is smaller than 2048, the load latency can be four cycles. This tech-
nique is especially useful for pointer-chasing code. However, overall latency varies
depending on the target register data type due to stack bypass. See Section 2.1.4 for
more information.

The following table lists overall load latencies. These latencies assume the common
case of flat segment, that is, segment base address is zero. If segment base is not
zero, load latency increases

Table 2-8. Effect of Addressing Modes on Load Latency

Base + Offset > 2048;
Data Type/Addressing Mode Base + Index [+ Offset] Base + Offset < 2048
Integer 5 4
MMX, SSE, 128-bit AVX 6 5
Xx87 7 6
256-bit AVX 7 7
Stores

Stores to memory are executed in two phases:

®* Execution phase. Fills the store buffers with linear and physical address and data.
Once store address and data are known, the store data can be forwarded to the
following load operations that need it.

®* Completion phase. After the store retires, the L1 DCache moves its data from the
store buffers to the DCU, up to 16 bytes per cycle.

Address Translation

The DTLB can perform three linear to physical address translations every cycle, two
for load addresses and one for a store address. If the address is missing in the DTLB,
the processor looks for it in the STLB, which holds data and instruction address trans-
lations. The penalty of a DTLB miss that hits the STLB is seven cycles. Large page
support include 1G byte pages, in addition to 4K and 2M/4M pages.

The DTLB and STLB are four way set associative. The following table specifies the
number of entries in the DTLB and STLB.

2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-9. DTLB and STLB Parameters

TLB Page Size Entries
DTLB 4KB 64
2MB/4MB 32
1GB 4
STLB 4KB 512

Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the
data can forward directly from the store operation to the load. This process, called
store to load forwarding, saves cycles by enabling the load to obtain the data directly
from the store operation instead of through memory. You can take advantage of store
forwarding to quickly move complex structures without losing the ability to forward
the subfields. The memory control unit can handle store forwarding situations with
less restrictions compared to previous micro-architectures.

The following rules must be met to enable store to load forwarding:
® The store must be the last store to that address, prior to the load.
®* The store must contain all data being loaded.

®* Theload is from a write-back memory type and neither the load nor the store are
non-temporal accesses.

Stores cannot forward to loads in the following cases:

®* Four byte and eight byte loads that cross eight byte boundary, relative to the
preceding 16- or 32-byte store.

®* Any load that crosses a 16-byte boundary of a 32-byte store.

Table 2-10 to Table 2-13 detail the store to load forwarding behavior. For a given
store size, all the loads that may overlap are shown and specified by ‘F’. Forwarding
from 32 byte store is similar to forwarding from each of the 16 byte halves of the
store. Cases that cannot forward are shown as *N’.

Table 2-10. Store Forwarding Conditions (1 and 2 byte stores)

Load Alignment

Store |load |O |1 |2 [3 |4 |5 |6 |7 |8 [9 |10 |11 |12 |13 (14 |15
Size Size

1 1 F
2 1 F
2 F N

2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-11. Store Forwarding Conditions (4-16 byte stores)

Load Alignment

N

N

1

N [N |N [N |N [N [N

N [N [N N N [N |N

N [N [N |N [N N |N [N |N [N

F

F
F

load | O
Size

16

Store
Size

16

Table 2-12. 32-byte Store Forwarding Conditions (0-15 byte alignment)

Load Alignment

15

14

13

12

11

N
N

10

9

N

8

N [N |N

F

1

N [N [N N N [N |N

N [N [N [N |N N [N [N [N |N

N [N [N [N [N N |N [N |N [N

F
F
F

load | O
Size

16
32

Store
Size
32

2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-13. 32-byte Store Forwarding Conditions (16-31 byte alignment)

Load Alignment

Store |Load |16 |17 (18|19|20 |21 (22 |23|24|25|26 |27 |28 |29 |30 |31

Size Size

32 1 F F |F |F |F |F |F |F |F |F |F |F |F |F |F |F
2 F F |F |F |F |F |F |F |F |F |F |F |F |F [F [N
4 F F |F |[F |F [N |N |N |F [F |F |F |F [N [N [N
8 F N [N [N |N [N |N |N [F [N N [N |[N [N (N [N
16 F N [N [N [N [N |N |N [N [N N [N |[N [N (N [N
32 N [N (N [N [N [N |N |N N [N [N |[N |N [N [N [N

Memory Disambiguation

A load operation may depend on a preceding store. Many microarchitectures block
loads until all preceding store addresses are known. The memory disambiguator
predicts which loads will not depend on any previous stores. When the disambiguator
predicts that a load does not have such a dependency, the load takes its data from
the L1 data cache even when the store address is unknown. This hides the load
latency. Eventually, the prediction is verified. If an actual conflict is detected, the load
and all succeeding instructions are re-executed.

The following loads are not disambiguated. The execution of these loads is stalled
until addresses of all previous stores are known.

® Loads that cross the 16-byte boundary
® 32-byte Intel AVX loads that are not 32-byte aligned.

The memory disambiguator always assumes dependency between loads and earlier
stores that have the same address bits 0:11.

Bank Conflict

Since 16-byte loads can cover up to three banks, and two loads can happen every
cycle, it is possible that six of the eight banks may be accessed per cycle, for loads. A
bank conflict happens when two load accesses need the same bank (their address
has the same 2-4 bit value) in different sets, at the same time. When a bank conflict
occurs, one of the load accesses is recycled internally.

In many cases two loads access exactly the same bank in the same cache line, as
may happen when popping operands off the stack, or any sequential accesses. In
these cases, conflict does not occur and the loads are serviced simultaneously.

2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.5.3 Ring Interconnect and Last Level Cache

The system-on-a-chip design provides a high bandwidth bi-directional ring bus to
connect between the IA cores and various sub-systems in the uncore. In the second
generation Intel Core processor 2xxx series, the uncore subsystem include a system
agent, the graphics unit (GT) and the last level cache (LLC).

The LLC consists of multiple cache slices. The number of slices is equal to the number
of IA cores. Each slice has logic portion and data array portion. The logic portion
handles data coherency, memory ordering, access to the data array portion, LLC
misses and writeback to memory, and more. The data array portion stores cache
lines. Each slice contains a full cache port that can supply 32 bytes/cycle.

The physical addresses of data kept in the LLC data arrays are distributed among the
cache slices by a hash function, such that addresses are uniformly distributed. The
data array in a cache block may have 4/8/12/16 ways corresponding to
0.5M/1M/1.5M/2M block size. However, due to the address distribution among the
cache blocks from the software point of view, this does not appear as a normal N-way
cache.

From the processor cores and the GT view, the LLC act as one shared cache with
multiple ports and bandwidth that scales with the number of cores. The LLC hit
latency, ranging between 26-31 cycles, depends on the core location relative to the
LLC block, and how far the request needs to travel on the ring.

The number of cache-slices increases with the number of cores, therefore the ring
and LLC are not likely to be a bandwidth limiter to core operation.

The GT sits on the same ring interconnect, and uses the LLC for its data operations as
well. In this respect it is very similar to an IA core. Therefore, high bandwidth
graphic applications using cache bandwidth and significant cache footprint, can inter-
fere, to some extent, with core operations.

All the traffic that cannot be satisfied by the LLC, such as LLC misses, dirty line write-
back, non-cacheable operations, and MMIO/IO operations, still travels through the
cache-slice logic portion and the ring, to the system agent.

2154 Data Prefetching

Data can be speculatively loaded to the L1 DCache using software prefetching, hard-
ware prefetching, or any combination of the two.

You can use the four Streaming SIMD Extensions (SSE) prefetch instructions to
enable software-controlled prefetching. These instructions are hints to bring a cache
line of data into the desired levels of the cache hierarchy. The software-controlled
prefetch is intended for prefetching data, but not for prefetching code.

The rest of this section describes the various hardware prefetching mechanisms
provided by Intel microarchitecture code name Sandy Bridge and their improvement
over previous processors. The goal of the prefetchers is to automatically predict
which data the program is about to consume. If this data is not close-by to the execu-

2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

tion core or inner cache, the prefetchers bring it from the next levels of cache hier-
archy and memory. Prefetching has the following effects:

* Improves performance if data is arranged sequentially in the order used in the
program.

® May cause slight performance degradation due to bandwidth issues, if access
patterns are sparse instead of local.

®* On rare occasions, if the algorithm's working set is tuned to occupy most of the
cache and unneeded prefetches evict lines required by the program, hardware
prefetcher may cause severe performance degradation due to cache capacity of
L1.

Data Prefetch to L1 Data Cache

Data prefetching is triggered by load operations when the following conditions are
met:

® Load is from writeback memory type.

®* The prefetched data is within the same 4K byte page as the load instruction that
triggered it.

®* No fence is in progress in the pipeline.

®* Not many other load misses are in progress.

® There is not a continuous stream of stores.

Two hardware prefetchers load data to the L1 DCache:

* Data cache unit (DCU) prefetcher. This prefetcher, also known as the
streaming prefetcher, is triggered by an ascending access to very recently loaded
data. The processor assumes that this access is part of a streaming algorithm
and automatically fetches the next line.

¢ Instruction pointer (IP)-based stride prefetcher. This prefetcher keeps
track of individual load instructions. If a load instruction is detected to have a
regular stride, then a prefetch is sent to the next address which is the sum of the
current address and the stride. This prefetcher can prefetch forward or backward
and can detect strides of up to 2K bytes.

Data Prefetch to the L2 and Last Level Cache

The following two hardware prefetchers fetched data from memory to the L2 cache
and last level cache:

Spatial Prefetcher: This prefetcher strives to complete every cache line fetched to
the L2 cache with the pair line that completes it to a 128-byte aligned chunk.

Streamer: This prefetcher monitors read requests from the L1 cache for ascending
and descending sequences of addresses. Monitored read requests include L1 DCache
requests initiated by load and store operations and by the hardware prefetchers, and
L1 ICache requests for code fetch. When a forward or backward stream of requests is
detected, the anticipated cache lines are prefetched. Prefetched cache lines must be
in the same 4K page.

2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The streamer and spatial prefetcher prefetch the data to the last level cache. Typi-
cally data is brought also to the L2 unless the L2 cache is heavily loaded with missing
demand requests.

Enhancement to the streamer includes the following features:

® The streamer may issue two prefetch requests on every L2 lookup. The streamer
can run up to 20 lines ahead of the load request.

® Adjusts dynamically to the number of outstanding requests per core. If there are
not many outstanding requests, the streamer prefetches further ahead. If there
are many outstanding requests it prefetches to the LLC only and less far ahead.

®* When cache lines are far ahead, it prefetches to the last level cache only and not
to the L2. This method avoids replacement of useful cache lines in the L2 cache.

® Detects and maintains up to 32 streams of data accesses. For each 4K byte page,
you can maintain one forward and one backward stream can be maintained.

2.1.6 System Agent

The system agent contains the following components:

®* An arbiter that handles all accesses from the ring domain and from I/O (PCle*
and DMI) and routes the accesses to the right place.

®* PCle controllers connect to external PCle devices. The PCIe controllers have
different configuration possibilities the varies with product segment specifics:
X16+x4, x8+x8+x4, x8+x4+x4+x4.

®* DMI controller connects to the PCH chipset.

* Integrated display engine, Flexible Display Interconnect, and Display Port, for the
internal graphic operations.

®* Memory controller

All main memory traffic is routed from the arbiter to the memory controller. The
memory controller in the second generation Intel Core processor 2xxx series support
two channels of DDR, with data rates of 1066MHz, 1333MHz and 1600MHz, and 8
bytes per cycle, depending on the unit type, system configuration and DRAMs.
Addresses are distributed between memory channels based on a local hash function
that attempts to balance the load between the channels in order to achieve
maximum bandwidth and minimum hotspot collisions.

For best performance, populate both channels with equal amounts of memory, pref-
erably the exact same types of DIMMs. In addition, using more ranks for the same
amount of memory, results in somewhat better memory bandwidth, since more
DRAM pages can be open simultaneously. For best performance, populate the system
with the highest supported speed DRAM (1333MHz or 1600MHz data rates,
depending on the max supported frequency) with the best DRAM timings.

The two channels have separate resources and handle memory requests indepen-
dently. The memory controller contains a high-performance out-of-order scheduler

2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

that attempts to maximize memory bandwidth while minimizing latency. Each
memory channel contains a 32 cache-line write-data-buffer. Writes to the memory
controller are considered completed when they are written to the write-data-buffer.
The write-data-buffer is flushed out to main memory at a later time, not impacting
write latency.

Partial writes are not handled efficiently on the memory controller and may result in
read-modify-write operations on the DDR channel if the partial-writes do not
complete a full cache-line in time. Software should avoid creating partial write trans-
actions whenever possible and consider alternative, such as buffering the partial
writes into full cache line writes.

The memory controller also supports high-priority isochronous requests (such as
USB isochronous, and Display isochronous requests). High bandwidth of memory
requests from the integrated display engine takes up some of the memory bandwidth
and impacts core access latency to some degree

2.2 INTEL® CORE™ MICROARCHITECTURE AND
ENHANCED INTEL CORE MICROARCHITECTURE

Intel Core microarchitecture introduces the following features that enable high
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:

* Intel® Wide Dynamic Execution enables each processor core to fetch,
dispatch, execute with high bandwidths and retire up to four instructions per
cycle. Features include:

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle

— Macro-fusion and micro-fusion to improve front-end throughput
— Peak issue rate of dispatching up to six LLlops per cycle

— Peak retirement bandwidth of up to four pLops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure
entries and exits

* Intel® Advanced Smart Cache delivers higher bandwidth from the second
level cache to the core, optimal performance and flexibility for single-threaded
and multi-threaded applications. Features include:

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data
cache

2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way)

* Intel® Smart Memory Access prefetches data from memory in response to
data access patterns and reduces cache-miss exposure of out-of-order
execution. Features include:

— Hardware prefetchers to reduce effective latency of second-level cache
misses

— Hardware prefetchers to reduce effective latency of first-level data cache
misses

— Memory disambiguation to improve efficiency of speculative execution
execution engine

* Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruc-
tions with single-cycle throughput and floating-point operations. Features
include:

— Single-cycle throughput of most 128-bit SIMD instructions (except 128-bit
shuffle, pack, unpack operations)

— Up to eight floating-point operations per cycle
— Three issue ports available to dispatching SIMD instructions for execution.

The Enhanced Intel Core microarchitecture supports all of the features of Intel Core
microarchitecture and provides a comprehensive set of enhancements.

* Intel® Wide Dynamic Execution includes several enhancements:
— Aradix-16 divider replacing previous radix-4 based divider to speedup long-
latency operations such as divisions and square roots.

— Improved system primitives to speedup long-latency operations such as
RDTSC, STI, CLI, and VM exit transitions.

* Intel® Advanced Smart Cache provides up to 6 MBytes of second-level cache
shared between two processor cores (quad-core processors have up to 12
MBytes of L2); up to 24 way/set associativity.

* Intel® Smart Memory Access supports high-speed system bus up 1600 MHz
and provides more efficient handling of memory operations such as split cache
line load and store-to-load forwarding situations.

* Intel® Advanced Digital Media Boost provides 128-bit shuffler unit to
speedup shuffle, pack, unpack operations; adds support for 47 SSE4.1 instruc-
tions.

In the sub-sections of 2.1.x, most of the descriptions on Intel Core microarchitecture
also applies to Enhanced Intel Core microarchitecture. Differences between them are
note explicitly.

2.2.1 Intel® Core™ Microarchitecture Pipeline Overview

The pipeline of the Intel Core microarchitecture contains:

2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® Anin-order issue front end that fetches instruction streams from memory, with

four instruction decoders to supply decoded instruction (Llops) to the out-of-
order execution core.

* Anout-of-order superscalar execution core that can issue up to six [Llops per cycle
(see Table 2-2) and reorder Llops to execute as soon as sources are ready and

execution resources are available.

®* Anin-order retirement unit that ensures the results of execution of Llops are

processed and architectural states are updated according to the original program

order.

Intel Core 2 Extreme processor X6800, Intel Core 2 Duo processors and Intel Xeon
processor 3000, 5100 series implement two processor cores based on the Intel Core

microarchitecture. Intel Core 2 Extreme quad-core processor, Intel Core 2 Quad
processors and Intel Xeon processor 3200 series, 5300 series implement four

processor cores. Each physical package of these quad-core processors contains two

processor dies, each die containing two processor cores. The functionality of the
subsystems in each core are depicted in Figure 2-1.

| Instruction Fetch and PreDecode l{

v

Instruction Queue

. 2

Micro-
code —>|
ROM

Decode

|

Rename/Alloc

Shared L2 Cache
Up to 10.7 GB/s

FSB
Retirement Unit
(Re-Order Buffer)
| Scheduler |
ALU ALU ALU
Branch FAdd FMul Load Store
MMX/SSE/FP MMX/SSE MMX/SSE
Move l l
L1D Cache and DTLB |

OoM19808

Figure 2-2. Intel Core Microarchitecture Pipeline Functionality

2-28

2.2.2

Front End

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The front ends needs to supply decoded instructions (pLops) and sustain the stream
to a six-issue wide out-of-order engine. The components of the front end, their func-
tions, and the performance challenges to microarchitectural design are described in

Table 2-1.

Table 2-14. Components of the Front End

Component

Functions

Performance Challenges

Branch Prediction
Unit (BPU)

Helps the instruction fetch unit
fetch the most likely instruction
to be executed by predicting
the various branch types:
conditional, indirect, direct, call,
and return. Uses dedicated
hardware for each type.

® Enables speculative
execution.

®* Improves speculative
execution efficiency by
reducing the amount of
code in the “non-architected
path”! to be fetched into
the pipeline.

Instruction Fetch
Unit

Prefetches instructions that are
likely to be executed

Caches frequently-used
instructions

Predecodes and buffers
instructions, maintaining a
constant bandwidth despite
irregularities in the instruction
stream

® \Variable length instruction
format causes unevenness
(bubbles) in decode
bandwidth.

® Taken branches and
misaligned targets causes
disruptions in the overall
bandwidth delivered by the
fetch unit.

Instruction Queue
and Decode Unit

Decodes up to four instructions,
or up to five with macro-fusion
Stack pointer tracker algorithm
for efficient procedure entry
and exit

Implements the Macro-Fusion
feature, providing higher
performance and efficiency

The Instruction Queue is also
used as a loop cache, enabling
some loops to be executed with
both higher bandwidth and
lower power

® Varying amounts of work
per instruction requires
expansion into variable
numbers of [Lops.

® Prefix adds a dimension of
decoding complexity.

® Length Changing Prefix
(LCP) can cause front end
bubbles.

NOTES:

1. Code paths that the processor thought it should execute but then found out it should go in

another path and therefore reverted from its initial intention.

2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.2.1 Branch Prediction Unit

Branch prediction enables the processor to begin executing instructions long before
the branch outcome is decided. All branches utilize the BPU for prediction. The BPU
contains the following features:

® 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET
instructions.

®* Front end queuing of BPU lookups. The BPU makes branch predictions for 32
bytes at a time, twice the width of the fetch engine. This enables taken branches
to be predicted with no penalty.

Even though this BPU mechanism generally eliminates the penalty for taken
branches, software should still regard taken branches as consuming more
resources than do not-taken branches.

The BPU makes the following types of predictions:

®* Direct Calls and Jumps. Targets are read as a target array, without regarding the
taken or not-taken prediction.

* Indirect Calls and Jumps. These may either be predicted as having a monotonic
target or as having targets that vary in accordance with recent program
behavior.

®* Conditional branches. Predicts the branch target and whether or not the branch
will be taken.

For information about optimizing software for the BPU, see Section 3.4, “Optimizing
the Front End”.

2.2.2.2 Instruction Fetch Unit

The instruction fetch unit comprises the instruction translation lookaside buffer
(ITLB), an instruction prefetcher, the instruction cache and the predecode logic of the
instruction queue (IQ).

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction
cache and instruction prefetch buffers. A hit in the instruction cache causes 16 bytes
to be delivered to the instruction predecoder. Typical programs average slightly less
than 4 bytes per instruction, depending on the code being executed. Since most
instructions can be decoded by all decoders, an entire fetch can often be consumed
by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset
into the 16 byte fetch quantity. A taken branch reduces the number of instruction
bytes delivered to the decoders since the bytes after the taken branch are not
decoded. Branches are taken approximately every 10 instructions in typical integer
code, which translates into a “partial” instruction fetch every 3 or 4 cycles.

2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Due to stalls in the rest of the machine, front end starvation does not usually cause
performance degradation. For extremely fast code with larger instructions (such as
SSE2 integer media kernels), it may be beneficial to use targeted alignment to
prevent instruction starvation.

Instruction PreDecode

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch
buffers and carries out the following tasks:

®* Determine the length of the instructions.
®* Decode all prefixes associated with instructions.

® Mark various properties of instructions for the decoders (for example, “is
branch.”).

The predecode unit can write up to six instructions per cycle into the instruction
gueue. If a fetch contains more than six instructions, the predecoder continues to
decode up to six instructions per cycle until all instructions in the fetch are written to
the instruction queue. Subsequent fetches can only enter predecoding after the
current fetch completes.

For a fetch of seven instructions, the predecoder decodes the first six in one cycle,
and then only one in the next cycle. This process would support decoding 3.5 instruc-
tions per cycle. Even if the instruction per cycle (IPC) rate is not fully optimized, it is
higher than the performance seen in most applications. In general, software usually
does not have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These
prefixes can dynamically change the length of instructions and are known as length
changing prefixes (LCPs):

® Operand Size Override (66H) preceding an instruction with a word immediate
data

® Address Size Override (67H) preceding an instruction with a mod R/M in real,
16-bit protected or 32-bit protected modes

When the predecoder encounters an LCP in the fetch line, it must use a slower length
decoding algorithm. With the slower length decoding algorithm, the predecoder
decodes the fetch in 6 cycles, instead of the usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size
of two classes of instruction: MOV offset and MOV immediate. Nevertheless, it does
not cause an LCP penalty and hence is not considered an LCP.

2.2.2.3 Instruction Queue (IQ)

The instruction queue is 18 instructions deep. It sits between the instruction prede-
code unit and the instruction decoders. It sends up to five instructions per cycle, and

2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

supports one macro-fusion per cycle. It also serves as a loop cache for loops smaller
than 18 instructions. The loop cache operates as described below.

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops
which are candidates for streaming from the instruction queue (IQ). When such a
loop is detected, the instruction bytes are locked down and the loop is allowed to
stream from the IQ until a misprediction ends it. When the loop plays back from the
IQ, it provides higher bandwidth at reduced power (since much of the rest of the
front end pipeline is shut off).

The LSD provides the following benefits:

®* No loss of bandwidth due to taken branches

®* No loss of bandwidth due to misaligned instructions

®* No LCP penalties, as the pre-decode stage has already been passed

®* Reduced front end power consumption, because the instruction cache, BPU and
predecode unit can be idle

Software should use the loop cache functionality opportunistically. Loop unrolling
and other code optimizations may make the loop too big to fit into the LSD. For high
performance code, loop unrolling is generally preferable for performance even when
it overflows the loop cache capability.

2.2.2.4 Instruction Decode

The Intel Core microarchitecture contains four instruction decoders. The first,
Decoder 0, can decode Intel 64 and IA-32 instructions up to 4 pops in size. Three
other decoders handles single-pop instructions. The microsequencer can provide up
to 3 pops per cycle, and helps decode instructions larger than 4 pops.

All decoders support the common cases of single pop flows, including: micro-fusion,
stack pointer tracking and macro-fusion. Thus, the three simple decoders are not
limited to decoding single-pop instructions. Packing instructions into a 4-1-1-1
template is not necessary and not recommended.

Macro-fusion merges two instructions into a single pop. Intel Core microarchitecture
is capable of one macro-fusion per cycle in 32-bit operation (including compatibility
sub-mode of the Intel 64 architecture), but not in 64-bit mode because code that
uses longer instructions (length in bytes) more often is less likely to take advantage
of hardware support for macro-fusion.

2.2.2.5 Stack Pointer Tracker

The Intel 64 and IA-32 architectures have several commonly used instructions for
parameter passing and procedure entry and exit: PUSH, POP, CALL, LEAVE and RET.
These instructions implicitly update the stack pointer register (RSP), maintaining a
combined control and parameter stack without software intervention. These instruc-
tions are typically implemented by several pops in previous microarchitectures.

2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in
the decoders themselves. The feature provides the following benefits:

* Improves decode bandwidth, as PUSH, POP and RET are single [lop instructions
in Intel Core microarchitecture.

®* Conserves execution bandwidth as the RSP updates do not compete for execution
resources.

®* Improves parallelism in the out of order execution engine as the implicit serial
dependencies between Lops are removed.

* Improves power efficiency as the RSP updates are carried out on small, dedicated
hardware.

2.2.2.6 Micro-fusion

Micro-fusion fuses multiple pops from the same instruction into a single complex
pop. The complex pop is dispatched in the out-of-order execution core. Micro-fusion
provides the following performance advantages:

®* Improves instruction bandwidth delivered from decode to retirement.

® Reduces power consumption as the complex Llop represents more work in a
smaller format (in terms of bit density), reducing overall “bit-toggling” in the
machine for a given amount of work and virtually increasing the amount of
storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a
memory operand will decodes into a longer flow of pops than the register version.
Micro-fusion enables software to use memory to register operations to express the
actual program behavior without worrying about a loss of decode bandwidth.

2.2.3 Execution Core

The execution core of the Intel Core microarchitecture is superscalar and can process
instructions out of order. When a dependency chain causes the machine to wait for a
resource (such as a second-level data cache line), the execution core executes other
instructions. This increases the overall rate of instructions executed per cycle (IPC).

The execution core contains the following three major components:

* Renamer — Moves lops from the front end to the execution core. Architectural
registers are renamed to a larger set of microarchitectural registers. Renaming
eliminates false dependencies known as read-after-read and write-after-read
hazards.

* Reorder buffer (ROB) — Holds Llops in various stages of completion, buffers
completed Hops, updates the architectural state in order, and manages ordering
of exceptions. The ROB has 96 entries to handle instructions in flight.

2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

®* Reservation station (RS) — Queues pops until all source operands are ready,
schedules and dispatches ready lops to the available execution units. The RS has
32 entries.

The initial stages of the out of order core move the pops from the front end to the
ROB and RS. In this process, the out of order core carries out the following steps:

® Allocates resources to pops (for example: these resources could be load or store
buffers).

® Binds the pop to an appropriate issue port.
®* Renames sources and destinations of pops, enabling out of order execution.

® Provides data to the pop when the data is either an immediate value or a register
value that has already been calculated.

The following list describes various types of common operations and how the core
executes them efficiently:

®* Micro-ops with single-cycle latency — Most Hops with single-cycle latency
can be executed by multiple execution units, enabling multiple streams of
dependent operations to be executed quickly.

®* Frequently-used [lops with longer latency — These ops have pipelined
execution units so that multiple Llops of these types may be executing in different
parts of the pipeline simultaneously.

®* Operations with data-dependent latencies — Some operations, such as
division, have data dependent latencies. Integer division parses the operands to
perform the calculation only on significant portions of the operands, thereby
speeding up common cases of dividing by small numbers.

®* Floating point operations with fixed latency for operands that meet
certain restrictions — Operands that do not fit these restrictions are
considered exceptional cases and are executed with higher latency and reduced
throughput. The lower-throughput cases do not affect latency and throughput for
more common cases.

* Memory operands with variable latency, even in the case of an L1 cache
hit — Loads that are not known to be safe from forwarding may wait until a
store-address is resolved before executing. The memory order buffer (MOB)
accepts and processes all memory operations. See Section 2.1.5 for more
information about the MOB.

2.2.3.1 Issue Ports and Execution Units

The scheduler can dispatch up to six pops per cycle through the issue ports. The
issue ports of Intel Core microarchitecture and Enhanced Intel Core microarchitec-
ture are depicted in Table 2-2, the former is denoted by its CPUID signature of
DisplayFamily_DisplayModel value of 06_0FH, the latter denoted by the corre-
sponding signature value of 06_17H. The table provides latency and throughput data
of common integer and floating-point (FP) operations for each issue port in cycles.

2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-15. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core
Microarchitecture

Executable operations Latency, Throughput Comment’

Signature | Signature

06_OFH 06_17H
Integer ALU 1,1 1,1 Includes 64-bit mode integer MUL,;
Integer SIMD ALU 1,1 1,1 Issue port O; Writeback port O;
FP/SIMD/SSE2 Move and Logic 1,1 1,1
Single-precision (SP) FP MUL 4,1 4,1 Issue port O; Writeback port O
Double-precision FP MUL 51 51
FP MUL (X87) 52 52 Issue port O; Writeback port O
FP Shuffle 1,1 1,1 FP shuffle does not handle QW
DIV/SQRT shuffle.
Integer ALU 1,1 1,1 Excludes 64-bit mode integer MUL;
Integer SIMD ALU 1,1 1,1 Issue port 1; Writeback port 1;
FP/SIMD/SSE2 Move and Logic 1,1 1,1
FP ADD 3,1 3,1 Issue port 1; Writeback port 1;
QW Shuffle 1,12 1,13
Integer loads 3,1 3,1 Issue port 2; Writeback port 2;
FP loads 4,1 4,1
Store address* 3,1 3,1 Issue port 3;
Store data®. Issue Port 4;
Integer ALU 1,1 1,1 Issue port 5; Writeback port 5;
Integer SIMD ALU 1,1 1,1
FP/SIMD/SSE2 Move and Logic 1,1 1,1
QW shuffles 1,12 1,13 Issue port 5; Writeback port 5;
128-bit Shuffle/Pack/Unpack 2-4,2-45 | 1-3,17

NOTES:

1. Mixing operations of different latencies that use the same port can result in writeback bus con-
flicts; this can reduce overall throughput

2. 128-bit instructions executes with longer latency and reduced throughput
3. Uses 128-bit shuffle unit in port 5.
4. Prepares the store forwarding and store retirement logic with the address of the data being

stored.

5. Prepares the store forwarding and store retirement logic with the data being stored

2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

6. Varies with instructions; 128-bit instructions are executed using QW shuffle units

7. Varies with instructions, 128-bit shuffle unit replaces QW shuffle units in Intel Core microarchitec-
ture.

In each cycle, the RS can dispatch up to six pops. Each cycle, up to 4 results may be
written back to the RS and ROB, to be used as early as the next cycle by the RS. This
high execution bandwidth enables execution bursts to keep up with the functional
expansion of the micro-fused pops that are decoded and retired.

The execution core contains the following three execution stacks:
¢ SIMD integer

®* regular integer

* x87/SIMD floating point

The execution core also contains connections to and from the memory cluster. See
Figure 2-2.

|_| EXE
Data Cache >
Unit [
v v \ 4
2 0,1,5 0,1,5 0,1,5
SIMD Integer/ Floating
Integer & SIMD > Integer Point
MUL
dtlb
Memory ordering L L h
store forwarding]
Load 2 |[E—
Store (address) 3 ¢
Store (data) 4
4—

Figure 2-3. Execution Core of Intel Core Microarchitecture

Notice that the two dark squares inside the execution block (in grey color) and
appear in the path connecting the integer and SIMD integer stacks to the floating
point stack. This delay shows up as an extra cycle called a bypass delay. Data from

2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

the L1 cache has one extra cycle of latency to the floating point unit. The dark-
colored squares in Figure 2-2 represent the extra cycle of latency.

2.2.4 Intel® Advanced Memory Access

The Intel Core microarchitecture contains an instruction cache and a first-level data
cache in each core. The two cores share a 2 or 4-MByte L2 cache. All caches are
writeback and non-inclusive. Each core contains:

L1 data cache, known as the data cache unit (DCU) — The DCU can handle
multiple outstanding cache misses and continue to service incoming stores and
loads. It supports maintaining cache coherency. The DCU has the following speci-
fications:

— 32-KBytes size
— 8-way set associative
— 64-bytes line size

Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microar-
chitecture implements two levels of hierarchy. Each level of the DTLB have
multiple entries and can support either 4-KByte pages or large pages. The entries
of the inner level (DTLBO) is used for loads. The entries in the outer level (DTLB1)
support store operations and loads that missed DTLBO. All entries are 4-way
associative. Here is a list of entries in each DTLB:

— DTLB1 for large pages: 32 entries

— DTLB1 for 4-KByte pages: 256 entries
— DTLBO for large pages: 16 entries

— DTLBO for 4-KByte pages: 16 entries

An DTLBO miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays

this penalty if the DTLBO is used in some dispatch cases. The delays associated

with a miss to the DTLB1 and PMH are largely non-blocking due to the design of
Intel Smart Memory Access.

Page miss handler (PMH)

A memory ordering buffer (MOB) — Which:

— enables loads and stores to issue speculatively and out of order

— ensures retired loads and stores have the correct data upon retirement

— ensures loads and stores follow memory ordering rules of the Intel 64 and
IA-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed
up memory operations:

128-bit load and store operations
data prefetching to L1 caches

2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® data prefetch logic for prefetching to the L2 cache
® store forwarding

® memory disambiguation

* 8fill buffer entries

® 20 store buffer entries

® out of order execution of memory operations

® pipelined read-for-ownership operation (RFO)

For information on optimizing software for the memory cluster, see Section 3.6,
“Optimizing Memory Accesses.”

2.2.4.1 Loads and Stores

The Intel Core microarchitecture can execute up to one 128-bit load and up to one
128-bit store per cycle, each to different memory locations. The microarchitecture
enables execution of memory operations out of order with respect to other instruc-
tions and with respect to other memory operations.

Loads can:

®* issue before preceding stores when the load address and store address are
known not to conflict

®* be carried out speculatively, before preceding branches are resolved
® take cache misses out of order and in an overlapped manner

® issue before preceding stores, speculating that the store is not going to be to a
conflicting address

Loads cannot:
® speculatively take any sort of fault or trap
® speculatively access the uncacheable memory type

Faulting or uncacheable loads are detected and wait until retirement, when they
update the programmer visible state. x87 and floating point SIMD loads add 1 addi-
tional clock latency.

Stores to memory are executed in two phases:

®* Execution phase — Prepares the store buffers with address and data for store
forwarding. Consumes dispatch ports, which are ports 3 and 4.

® Completion phase — The store is retired to programmer-visible memory. It
may compete for cache banks with executing loads. Store retirement is
maintained as a background task by the memory order buffer, moving the data
from the store buffers to the L1 cache.

2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.4.2 Data Prefetch to L1 caches

Intel Core microarchitecture provides two hardware prefetchers to speed up data
accessed by a program by prefetching to the L1 data cache:

®* Data cache unit (DCU) prefetcher — This prefetcher, also known as the
streaming prefetcher, is triggered by an ascending access to very recently loaded
data. The processor assumes that this access is part of a streaming algorithm
and automatically fetches the next line.

* Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps
track of individual load instructions. If a load instruction is detected to have a
regular stride, then a prefetch is sent to the next address which is the sum of the
current address and the stride. This prefetcher can prefetch forward or backward
and can detect strides of up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:
® Load is from writeback memory type.

®* Prefetch request is within the page boundary of 4 Kbytes.

®* No fence or lock is in progress in the pipeline.

®* Not many other load misses are in progress.

® The bus is not very busy.

®* Thereis not a continuous stream of stores.

DCU Prefetching has the following effects:

* Improves performance if data in large structures is arranged sequentially in the
order used in the program.

® May cause slight performance degradation due to bandwidth issues if access
patterns are sparse instead of local.

®* On rare occasions, if the algorithm's working set is tuned to occupy most of the
cache and unneeded prefetches evict lines required by the program, hardware
prefetcher may cause severe performance degradation due to cache capacity of
L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic,
software prefetch instructions relies on the programmer to anticipate cache miss
traffic, software prefetch act as hints to bring a cache line of data into the desired
levels of the cache hierarchy. The software-controlled prefetch is intended for
prefetching data, but not for prefetching code.

2.243 Data Prefetch Logic

Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on
past request patterns of the DCU from the L2. The DPL maintains two independent
arrays to store addresses from the DCU: one for upstreams (12 entries) and one for
down streams (4 entries). The DPL tracks accesses to one 4K byte page in each

2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

entry. If an accessed page is not in any of these arrays, then an array entry is allo-
cated.

The DPL monitors DCU reads for incremental sequences of requests, known as
streams. Once the DPL detects the second access of a stream, it prefetches the next
cache line. For example, when the DCU requests the cache lines A and A+1, the DPL
assumes the DCU will need cache line A+2 in the near future. If the DCU then reads
A+2, the DPL prefetches cache line A+3. The DPL works similarly for *downward”
loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture
added the following features to DPL:

®* The DPL can detect more complicated streams, such as when the stream skips
cache lines. DPL may issue 2 prefetch requests on every L2 lookup. The DPL in
the Intel Core microarchitecture can run up to 8 lines ahead from the load
request.

® DPLin the Intel Core microarchitecture adjusts dynamically to bus bandwidth and
the number of requests. DPL prefetches far ahead if the bus is not busy, and less
far ahead if the bus is busy.

®* DPL adjusts to various applications and system configurations.

Entries for the two cores are handled separately.

2244 Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the
Intel Core microarchitecture can forward the data directly from the store to the load.
This process, called store to load forwarding, saves cycles by enabling the load to
obtain the data directly from the store operation instead of through memory.

The following rules must be met for store to load forwarding to occur:

® The store must be the last store to that address prior to the load.

®* The store must be equal or greater in size than the size of data being loaded.
® The load cannot cross a cache line boundary.

®* The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this
rule.

®* The load must be aligned to the start of the store address, except for the
following exceptions:

— An aligned 64-bit store may forward either of its 32-bit halves
— An aligned 128-bit store may forward any of its 32-bit quarters
— An aligned 128-bit store may forward either of its 64-bit halves

Software can use the exceptions to the last rule to move complex structures without
losing the ability to forward the subfields.

2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

In Enhanced Intel Core microarchitecture, the alignment restrictions to permit store
forwarding to proceed have been relaxed. Enhanced Intel Core microarchitecture
permits store-forwarding to proceed in several situations that the succeeding load is
not aligned to the preceding store. Table 2-3 shows six situations (in gradient-filled
background) of store-forwarding that are permitted in Enhanced Intel Core microar-
chitecture but not in Intel Core microarchitecture. The cases with backward slash
background depicts store-forwarding that can proceed in both Intel Core microarchi-
tecture and Enhanced Intel Core microarchitecture.

‘Bﬁeo‘Byte1‘WeQ‘B,/teS‘Byteti‘B)AeS‘Bﬁeti‘Bﬁe?‘

8 byte boundary 8 byte boundary

Store 32bit
Load 32bit
Bxanple: 7 byte mrisadignment Load 16 bit Loed 16 bit

\ load8.| Load8 | Load8 | Load8

Store 64 bit

Exarple: 1 byte misdignment Load 32 bit Load 32 hit
Load 16 bit Load 16 bit Load 16 bit Loed 16 bit
Load8.| Load8 | Load8 | Load8 | Load8 | Load8 | Load8 | Load8

Store 64 bit

Load 32t Load 32 bit Store-forwerding (SF) can nat proceed

Load 16 bit Loed 16t Loed 161kt Loed 16t | SFprocesdinEnhenced i Core micrerdhitect
Load8 | Load8 | Load8 | Load8 | Load8 [Load8 | Load8 [Loads F proceed

Figure 2-4. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture

2.245 Memory Disambiguation

A load instruction pop may depend on a preceding store. Many microarchitectures
block loads until all preceding store address are known.

The memory disambiguator predicts which loads will not depend on any previous
stores. When the disambiguator predicts that a load does not have such a depen-
dency, the load takes its data from the L1 data cache.

Eventually, the prediction is verified. If an actual conflict is detected, the load and all
succeeding instructions are re-executed.

2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.5 Intel® Advanced Smart Cache

The Intel Core microarchitecture optimized a number of features for two processor
cores on a single die. The two cores share a second-level cache and a bus interface
unit, collectively known as Intel Advanced Smart Cache. This section describes the
components of Intel Advanced Smart Cache. Figure 2-4 illustrates the architecture of
the Intel Advanced Smart Cache.

Core 1 Core 0
| Branch .| Branch
¥”| Prediction ”| Prediction
y A 4
i Fetch/ i Fetch/
Retirement [€4— Execution |4 pocode Retirement (4| Execution |[4—| pacode
L1 Data L1 Instr. L1 Data L1 Instr.
Cache Cache Cache Cache
L2 Cache

v

Bus Interface Unit

¢ System Bus

A

v

Figure 2-5. Intel Advanced Smart Cache Architecture

Table 2-3 details the parameters of caches in the Intel Core microarchitecture. For
information on enumerating the cache hierarchy identification using the determin-
istic cache parameter leaf of CPUID instruction, see the Inte/l® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A.

2-42

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-16. Cache Parameters of Processors based on Intel Core Microarchitecture

Access Access
Associativit | LineSize | Latency Throughput | Write Update

Level Capacity |y (ways) (bytes) | (clocks) (clocks) Policy
First Level 32 KB 8 64 3 1 Writeback
Instruction 32KB 8 N/A N/A N/A N/A
Second Level |2,4MB 8or 16 64 142 2 Writeback
(Shared L2)'

Second Level | 3,6MB 12 or 24 64 152 2 Writeback
(Shared L2)3

Third Level* 8,12,16 | 16 64 ~110 12 Writeback

MB
NOTES:

1. Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = OFH).
2. Software-visible latency will vary depending on access patterns and other factors.

3. Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = 06H, DisplayModel = 17H
or 1DH).

4, Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = O6H, DisplayModel =
1DH).

2.2.5.1 Loads

When an instruction reads data from a memory location that has write-back (WB)
type, the processor looks for the cache line that contains this data in the caches and
memory in the following order:

1. DCU of the initiating core
2. DCU of the other core and second-level cache
3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache.

Table 2-4 shows the characteristics of fetching the first four bytes of different locali-
ties from the memory cluster. The latency column provides an estimate of access
latency. However, the actual latency can vary depending on the load of cache,
memory components, and their parameters.

2-43

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-17. Characteristics of Load and Store Operations
in Intel Core Microarchitecture

Load Store

Data Locality Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other 14 + 5.5 bus 14 + 5.5 bus 14 + 5.5 bus

core in modified cycles cycles cycles

state

2nd-level cache 14 3 14 3

Memory 14 + 5.5 bus Depends on bus | 14 + 5.5 bus Depends on bus
cycles + memory | read protocol cycles + memory | write protocol

Sometimes a modified cache line has to be evicted to make space for a new cache
line. The modified cache line is evicted in parallel to bringing the new data and does
not require additional latency. However, when data is written back to memory, the
eviction uses cache bandwidth and possibly bus bandwidth as well. Therefore, when
multiple cache misses require the eviction of modified lines within a short time, there
is an overall degradation in cache response time.

2.2.5.2 Stores

When an instruction writes data to a memory location that has WB memory type, the
processor first ensures that the line is in Exclusive or Modified state in its own DCU.
The processor looks for the cache line in the following locations, in the specified
order:

1. DCU of initiating core
2. DCU of the other core and L2 cache
3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. After reading for ownership is
completed, the data is written to the first-level data cache and the line is marked as
modified.

Reading for ownership and storing the data happens after instruction retirement and
follows the order of retirement. Therefore, the store latency does not effect the store
instruction itself. However, several sequential stores may have cumulative latency
that can affect performance. Table 2-4 presents store latencies depending on the
initial cache line location.

2-44

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3 INTEL® MICROARCHITECTURE CODE NAME NEHALEM

Intel microarchitecture code name Nehalem provides the foundation for many inno-
vative features of Intel Core i7 processors and Intel Xeon processor 3400, 5500, and
7500 series. It builds on the success of 45nm enhanced Intel Core microarchitecture
and provides the following feature enhancements:

* Enhanced processor core
— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce
power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text
processing and data shuffling.

* Hyper-Threading Technology
— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory
bandwidth.

®* Smart Memory Access

— Integrated memory controller provides low-latency access to system
memory and scalable memory bandwidth

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop
traffic

— Two level TLBs and increased TLB size.
— Fast unaligned memory access.
* Dedicated Power management Innovations

— Integrated microcontroller with optimized embedded firmware to manage
power consumption.

— Embedded real-time sensors for temperature, current, and power.
— Integrated power gate to turn off/on per-core power consumption
— Versatility to reduce power consumption of memory, link subsystems.

Intel microarchitecture code name Westmere is a 32nm version of Intel microarchi-
tecture code name Nehalem. All of the features of latter also apply to the former.

2.3.1 Microarchitecture Pipeline

Intel microarchitecture code name Nehalem continues the four-wide microarchitec-
ture pipeline pioneered by the 65nm Intel Core Microarchitecture. Figure 2-6 illus-
trates the basic components of the pipeline of Intel microarchitecture code name

2-45

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Nehalem as implemented in Intel Core i7 processor, only two of the four cores are
sketched in the Figure 2-6 pipeline diagram.

l Instruction Fetch and Instruction Fetch and <
PreDecode PreDecode

Instruction Queue

Instruction Queue

Micro-
code
ROM

Micro-
code
ROM

Rename/Alloc Rename/Alloc
Retirement Unit Retirement Unit
(Re-Order Buffer) (Re-Order Buffer)
A A \ 4
Scheduler | Scheduler
EXE Load Stor EXE EXE Load Stor
Unit Umt Unlt Unit Unit Un|t &
Cluster | | Cluster | [Cluster 1 Cluster | | Cluster | [Cluster
0 1 5 1 l 0 1 5)
— —
L1D Cache and DTLB L1D Cache and DTLB
P> L2 Cache L2 Cache
t t r Other L2
Inclusive L3 Cache by all cores
OM19808p

Intel QPI Link Logic

Figure 2-6. Intel microarchitecture code name Nehalem Pipeline Functionality

The length of the pipeline in Intel microarchitecture code name Nehalem is two cycles
longer than its predecessor in 45nm Intel Core 2 processor family, as measured by

2-46

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

branch misprediction delay. The front end can decode up to 4 instructions in one
cycle and supports two hardware threads by decoding the instruction streams
between two logical processors in alternate cycles. The front end includes enhance-
ment in branch handling, loop detection, MSROM throughput, etc. These are
discussed in subsequent sections.

The scheduler (or reservation station) can dispatch up to six micro-ops in one cycle
through six issue ports (five issue ports are shown in Figure 2-6; store operation
involves separate ports for store address and store data but is depicted as one in the
diagram).

The out-of-order engine has many execution units that are arranged in three execu-
tion clusters shown in Figure 2-6. It can retire four micro-ops in one cycle, same as
its predecessor.

2.3.2 Front End Overview

Figure 2-7 depicts the key components of the front end of the microarchitecture. The
instruction fetch unit (IFU) can fetch up to 16 bytes of aligned instruction bytes each
cycle from the instruction cache to the instruction length decoder (ILD). The instruc-
tion queue (IQ) buffers the ILD-processed instructions and can deliver up to four
instructions in one cycle to the instruction decoder.

MSROM
ICache 4 micro-ops per cycle
4 : IDQ
< 4 micro-ops
\ ILD| Q N ‘ per cycle
> max_ o
| Fetch U > > S
3 >
Cd
A —>
Instr. Instr. Queue LSD

Decoder Instr. Decoder
Br. Predict U Instr. Decoder
Queue

Figure 2-7. Front End of Intel microarchitecture code name Nehalem

The instruction decoder has three decoder units that can decode one simple instruc-
tion per cycle per unit. The other decoder unit can decode one instruction every
cycle, either simple instruction or complex instruction made up of several micro-ops.

2-47

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Instructions made up of more than four micro-ops are delivered from the MSROM. Up
to four micro-ops can be delivered each cycle to the instruction decoder queue (IDQ).

The loop stream detector is located inside the IDQ to improve power consumption
and front end efficiency for loops with a short sequence of instructions.

The instruction decoder supports micro-fusion to improve front end throughput,
increase the effective size of queues in the scheduler and re-order buffer (ROB). The
rules for micro-fusion are similar to those of Intel Core microarchitecture.

The instruction queue also supports macro-fusion to combine adjacent instructions
into one micro-ops where possible. In previous generations of Intel Core microarchi-
tecture, macro-fusion support for CMP/Jcc sequence is limited to the CF and ZF flag,
and macrofusion is not supported in 64-bit mode.

In Intel microarchitecture code name Nehalem , macro-fusion is supported in 64-bit
mode, and the following instruction sequences are supported:

® CMP or TEST can be fused when comparing (unchanged):

REG-REC. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REC. For example: CMP [EAX],ECX; JZ label

® TEST can fused with all conditional jumps (unchanged).
® CMP can be fused with the following conditional jumps. These conditional jumps

check carry flag (CF) or zero flag (ZF). The list of macro-fusion-capable
conditional jumps are (unchanged):

JA or INBE

JAE or JNB or JNC
JEor)z

JNA or JBE
JNAEorJCor B
JNE or JNZ

® CMP can be fused with the following conditional jumps in Intel microarchitecture
code name Nehalem, (this is an enhancement):

JU or JNGE
JGE or JNL
JLE or JNG
JG or JNLE

The hardware improves branch handling in several ways. Branch target buffer has
increased to increase the accuracy of branch predictions. Renaming is supported with
return stack buffer to reduce mispredictions of return instructions in the code.
Furthermore, hardware enhancement improves the handling of branch misprediction
by expediting resource reclamation so that the front end would not be waiting to
decode instructions in an architected code path (the code path in which instructions

2-48

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

will reach retirement) while resources were allocated to executing mispredicted code
path. Instead, new micro-ops stream can start forward progress as soon as the front
end decodes the instructions in the architected code path.

2.3.3 Execution Engine

The IDQ (Figure 2-7) delivers micro-op stream to the allocation/renaming stage
(Figure 2-6) of the pipeline. The out-of-order engine supports up to 128 micro-ops in
flight. Each micro-ops must be allocated with the following resources: an entry in the
re-order buffer (ROB), an entry in the reservation station (RS), and a load/store
buffer if a memory access is required.

The allocator also renames the register file entry of each micro-op in flight. The input
data associated with a micro-op are generally either read from the ROB or from the
retired register file.

The RS is expanded to 36 entry deep (compared to 32 entries in previous genera-
tion). It can dispatch up to six micro-ops in one cycle if the micro-ops are ready to
execute. The RS dispatch a micro-op through an issue port to a specific execution
cluster, each cluster may contain a collection of integer/FP/SIMD execution units.

The result from the execution unit executing a micro-op is written back to the
register file, or forwarded through a bypass network to a micro-op in-flight that
needs the result. Intel microarchitecture code name Nehalem can support write back
throughput of one register file write per cycle per port. The bypass network consists
of three domains of integer/FP/SIMD. Forwarding the result within the same bypass
domain from a producer micro-op to a consumer micro is done efficiently in hardware
without delay. Forwarding the result across different bypass domains may be subject
to additional bypass delays. The bypass delays may be visible to software in addition
to the latency and throughput characteristics of individual execution units. The
bypass delays between a producer micro-op and a consumer micro-op across
different bypass domains are shown in Table 2-18.

Table 2-18. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

FP Integer SIMD
FP 0 2 2
Integer 2 0 1
SIMD 2 1 0

2-49

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3.3.1 Issue Ports and Execution Units

Table 2-19 summarizes the key characteristics of the issue ports and the execution
unit latency/throughputs for common operations in the microarchitecture.

Table 2-19. Issue Ports of Intel microarchitecture code name Nehalem

Port Executable Latenc | Through | Domain Comment
operations put

Port 0 | Integer ALU
Integer Shift

1 Integer

SIMD
Integer SIMD Shuffle

y
1
1
Port 0 | Integer SIMD ALU 1
1
4

Port 0 | Single-precision (SP) FP

FP MUL

Double-precision FP 5 1
MUL

FP MUL (X87) 5 1

FP/SIMD/SSE2 Move | 1 1
and Logic

FP Shuffle 1 1
DIV/SQRT

Port 1 | Integer ALU
Integer LEA
Integer Mul

Integer

Port 1 | Integer SIMD MUL
Integer SIMD Shift
PSAD
StringCompare

SIMD

W —m =W = =
_m A Em A A

Port1 | FP ADD 3 1 FP

Port 2 | Integer loads 4 1 Integer

Port 3 | Store address 5 1 Integer

Port4 | Store data Integer

Port5 | Integer ALU
Integer Shift
Jmp

Integer

Port5 | Integer SIMD ALU
Integer SIMD Shuffle

SIMD

N [N W |
R N [N S

2-50

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-19. Issue Ports of Intel microarchitecture code name Nehalem

Port Executable Latenc | Through | Domain Comment
operations v put

Port5 | FP/SIMD/SSEZ2 Move | 1 1 FP
and Logic

234 Cache and Memory Subsystem

Intel microarchitecture code name Nehalem contains an instruction cache, a first-
level data cache and a second-level unified cache in each core (see Figure 2-6). Each
physical processor may contain several processor cores and a shared collection of
sub-systems that are referred to as “uncore". Specifically in Intel Core i7 processor,
the uncore provides a unified third-level cache shared by all cores in the physical
processor, Intel QuickPath Interconnect links and associated logic. The L1 and L2
caches are writeback and non-inclusive.

The shared L3 cache is writeback and inclusive, such that a cache line that exists in
either L1 data cache, L1 instruction cache, unified L2 cache also exists in L3. The L3
is designed to use the inclusive nature to minimize snoop traffic between processor
cores. Table 2-20 lists characteristics of the cache hierarchy. The latency of L3 access
may vary as a function of the frequency ratio between the processor and the uncore
sub-system.

Table 2-20. Cache Parameters of Intel Core i7 Processors

Access Access
Associativit | Line Size | Latency Throughput | Write Update

Level Capacity |y (ways) (bytes) | (clocks) (clocks) Policy
First Level 32 KB 8 64 4 1 Writeback
Data

Instruction 32 KB 4 N/A N/A N/A N/A
Second Level | 256KB 8 64 10! Varies Writeback
Third Level 8MB 16 64 35-40+2 Varies Writeback
(Shared L3)2

NOTES:

1. Software-visible latency will vary depending on access patterns and other factors.
2. Minimal L3 latency is 35 cycles if the frequency ratio between core and uncore is unity.

The Intel microarchitecture code name Nehalem implements two levels of translation
lookaside buffer (TLB). The first level consists of separate TLBs for data and code.
DTLBO handles address translation for data accesses, it provides 64 entries to
support 4KB pages and 32 entries for large pages. The ITLB provides 64 entries (per
thread) for 4KB pages and 7 entries (per thread) for large pages.

2-51

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The second level TLB (STLB) handles both code and data accesses for 4KB pages. It
support 4KB page translation operation that missed DTLBO or ITLB. All entries are 4-
way associative. Here is a list of entries in each DTLB:

® STLB for 4-KByte pages: 512 entries (services both data and instruction look-
ups)

* DTLBO for large pages: 32 entries

* DTLBO for 4-KByte pages: 64 entries

An DTLBO miss and STLB hit causes a penalty of 7cycles. Software only pays this
penalty if the DTLBO is used in some dispatch cases. The delays associated with a
miss to the STLB and PMH are largely non-blocking.

2.3.5 Load and Store Operation Enhancements

The memory cluster of Intel microarchitecture code name Nehalem provides the
following enhancements to speed up memory operations:
® Peak issue rate of one 128-bit load and one 128-bit store operation per cycle

* Deeper buffers for load and store operations: 48 load buffers, 32 store buffers
and 10 fill buffers

® Fast unaligned memory access and robust handling of memory alignment
hazards

®* Improved store-forwarding for aligned and non-aligned scenarios
® Store forwarding for most address alignments

2.3.5.1 Efficient Handling of Alignment Hazards

The cache and memory subsystems handles a significant percentage of instructions
in every workload. Different address alignment scenarios will produce varying perfor-
mance impact for memory and cache operations. For example, 1-cycle throughput of
L1 (see Table 2-21) generally applies to naturally-aligned loads from L1 cache. But
using unaligned load instructions (e.g. MOVUPS, MOVUPD, MOVDQU, etc.) to access
data from L1 will experience varying amount of delays depending on specific
microarchitectures and alignment scenarios.

Table 2-21. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle) Intel Core i7 45 nm Intel Core 65 nm Intel Core
ghp y Processor Microarchitecture Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_OFH

16B aligned 1 2 2

2-52

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-21. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle) Intel Core i7 45 nm Intel Core 65 nm Intel Core
ghp y Processor Microarchitecture Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_0OFH

Not-16B aligned, not 1 ~2 ~2

cache split

Split cache line boundary ~4.5 ~20 ~20

Table 2-21 lists approximate throughput of issuing MOVDQU instructions with
different address alignment scenarios to load data from the L1 cache. If a 16-byte
load spans across cache line boundary, previous microarchitecture generations will
experience significant software-visible delays.

Intel microarchitecture code name Nehalem provides hardware enhancements to
reduce the delays of handling different address alignment scenarios including cache
line splits.

2.3.5.2 Store Forwarding Enhancement

When a load follows a store and reloads the data that the store writes to memory, the
microarchitecture can forward the data directly from the store to the load in many
cases. This situation, called store to load forwarding, saves several cycles by
enabling the load to obtain the data directly from the store operation instead of
through the memory system.

Several general rules must be met for store to load forwarding to proceed without
delay:

® The store must be the last store to that address prior to the load.

®* The store must be equal or greater in size than the size of data being loaded.
®* The load data must be completely contained in the preceding store.

Specific address alignment and data sizes between the store and load operations will
determine whether a store-forward situation may proceed with data forwarding or
experience a delay via the cache/memory sub-system. The 45 nm Enhanced Intel
Core microarchitecture offers more flexible address alignment and data sizes
requirement than previous microarchitectures. Intel microarchitecture code name
Nehalem offers additional enhancement with allowing more situations to forward
data expeditiously.

The store-forwarding situations for with respect to store operations of 16 bytes are
illustrated in Figure .

2-53

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Btel | Byted | Bre2 | Byted | yted | outes | Byted | Byte? || Bied | yted | oytetn | Byett || Butetz | Btets | Bitetd | Bytets

Store
Existing forwarding
Nehalem forwarding
Not forwarding
|| Notapplicable
Store 123 bt
lnad 124
load B4 hatf4
loag 32 load 32 load 32 lad 32
loa 32 load 32 loal 3
load 32 Inad 32 nad 22
load 32 load 32 load 32
lnad 18 load 16 load 16 load 16 load 16 load 16 load 16
load 18 load 15 load 16 Ioad 16 oad 16 load 16 load 16 load 1
48 48 148) 148 143 ik} 148 Id8 148 148 148 Lk (it 148 [LE:3 148

Figure 2-8. Store-Forwarding Scenarios of 16-Byte Store Operations

Intel microarchitecture code name Nehalem allows store-to-load forwarding to
proceed regardless of store address alignment (The white space in the diagram does
not correspond to an applicable store-to-load scenario). Figure 2-9 illustrates situa-
tions for store operation of 8 bytes or less.

2-54

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

| Byte 0 | Byt 1 | Byte 2 | Byte 3 " Byte 4 | Byte 5 | Byte & | Byte 7 |

3 byte boundar 8 byte boundary

Store 32 bit

Batple ¥ | tocd32 i
) load 16 |
7- bytemisalignment Tiqy | ias | W8 s

Store 64 bit
load 64 bit

Store load 32 bit | load 32 bit
£y A load 32 bit
S::;fﬂ?:;ﬁ | load 32 bit | |
3 | load 32 bit l—
Not rwarding load 16 | toad1s | loadts | load 16
Not applicahle Ioad 16 load 16 load 16

(K] Id#& | Ids Id8 | Idé (iR} | 1d& Idé

Figure 2-9. Store-Forwarding Enhancement in Intel microarchitecture code name
Nehalem

2.3.6 REP String Enhancement

REP prefix in conjunction with MOVS/STOS instruction and a count value in ECX are
frequently used to implement library functions such as memcpy()/memset(). These
are referred to as "REP string" instructions. Each iteration of these instruction can
copy/write constant a value in byte/word/dword/qword granularity The performance
characteristics of using REP string can be attributed to two components: startup
overhead and data transfer throughput.

The two components of performance characteristics of REP String varies further
depending on granularity, alignment, and/or count values. Generally, MOVSB is used
to handle very small chunks of data. Therefore, processor implementation of REP
MOVSB is optimized to handle ECX < 4. Using REP MOVSB with ECX > 3 will achieve
low data throughput due to not only byte-granular data transfer but also additional
startup overhead. The latency for MOVSB, is 9 cycles if ECX < 4; otherwise REP
MOVSB with ECX >9 have a 50-cycle startup cost.

For REP string of larger granularity data transfer, as ECX value increases, the startup
overhead of REP String exhibit step-wise increase:

® Short string (ECX <= 12): the latency of REP MOVSW/MOVSD/MOVSQ is about
20 cycles,

® Fast string (ECX >= 76: excluding REP MOVSB): the processor implementation
provides hardware optimization by moving as many pieces of data in 16 bytes as

2-55

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

possible. The latency of REP string latency will vary if one of the 16-byte data
transfer spans across cache line boundary:

— Split-free: the latency consists of a startup cost of about 40 cycles and each
64 bytes of data adds 4 cycles,

— Cache splits: the latency consists of a startup cost of about 35 cycles and
each 64 bytes of data adds 6cycles.

* Intermediate string lengths: the latency of REP MOVSW/MOVSD/MOVSQ has a
startup cost of about 15 cycles plus one cycle for each iteration of the data
movement in word/dword/qword.

Intel microarchitecture code name Nehalem improves the performance of REP
strings significantly over previous microarchitectures in several ways:

® Startup overhead have been reduced in most cases relative to previous microar-
chitecture,

* Data transfer throughput are improved over previous generation

®* In order for REP string to operate in “fast string™ mode, previous microarchitec-
tures requires address alignment. In Intel microarchitecture code name
Nehalem, REP string can operate in “fast string” mode even if address is not
aligned to 16 bytes.

2.3.7 Enhancements for System Software

In addition to microarchitectural enhancements that can benefit both application-
level and system-level software, Intel microarchitecture code name Nehalem
enhances several operations that primarily benefit system software.

Lock primitives: Synchronization primitives using the Lock prefix (e.g. XCHG,
CMPXCHGS8B) executes with significantly reduced latency than previous microarchi-
tectures.

VMM overhead improvements: VMX transitions between a Virtual Machine (VM) and
its supervisor (the VMM) can take thousands of cycle each time on previous microar-
chitectures. The latency of VMX transitions has been reduced in processors based on
Intel microarchitecture code nhame Nehalem.

2.3.8 Efficiency Enhancements for Power Consumption

Intel microarchitecture code name Nehalem is not only designed for high perfor-
mance and power-efficient performance under wide range of loading situations, it
also features enhancement for low power consumption while the system idles. Intel
microarchitecture code name Nehalem supports processor-specific Cé6 states, which
have the lowest leakage power consumption that OS can manage through ACPI and
OS power management mechanisms.

2-56

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3.9 Hyper-Threading Technology Support in Intel®
microarchitecture code name Nehalem

Intel microarchitecture code name Nehalem supports Hyper-Threading Technology
(HT). Its implementation of HT provides two logical processors sharing most execu-
tion/cache resources in each core. The HT implementation in Intel microarchitecture
code name Nehalem differs from previous generations of HT implementations using
Intel NetBurst microarchitecture in several areas:

® Intel microarchitecture code name Nehalem provides four-wide execution
engine, more functional execution units coupled to three issue ports capable of
issuing computational operations.

®* Intel microarchitecture code name Nehalem supports integrated memory
controller that can provide peak memory bandwidth of up to 25.6 GB/sec in Intel
Core i7 processor.

* Deeper buffering and enhanced resource sharing/partition policies:

— Replicated resource for HT operation: register state, renamed return stack
buffer, large-page ITLB

— Partitioned resources for HT operation: load buffers, store buffers, re-order
buffers, small-page ITLB are statically allocated between two logical
processors.

— Competitively-shared resource during HT operation: the reservation station,
cache hierarchy, fill buffers, both DTLBO and STLB.

— Alternating during HT operation: front-end operation generally alternates
between two logical processors to ensure fairness.

— HT unaware resources: execution units.

2.4 INTEL NETBURST® MICROARCHITECTURE

The Pentium 4 processor, Pentium 4 processor Extreme Edition supporting Hyper-
Threading Technology, Pentium D processor, and Pentium processor Extreme Edition
implement the Intel NetBurst microarchitecture. Intel Xeon processors that imple-
ment Intel NetBurst microarchitecture can be identified using CPUID (family
encoding OFH).

This section describes the features of the Intel NetBurst microarchitecture and its
operation common to the above processors. It provides the technical background
required to understand optimization recommendations and the coding rules
discussed in the rest of this manual. For implementation details, including instruction
latencies, see Appendix C, “Instruction Latency and Throughput.”

Intel NetBurst microarchitecture is designed to achieve high performance for integer
and floating-point computations at high clock rates. It supports the following
features:

2-57

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

®* hyper-pipelined technology that enables high clock rates

®* high-performance, quad-pumped bus interface to the Intel NetBurst microarchi-
tecture system bus

®* rapid execution engine to reduce the latency of basic integer instructions
®* out-of-order speculative execution to enable parallelism

® superscalar issue to enable parallelism

®* hardware register renaming to avoid register name space limitations

® cache line sizes of 64 bytes

®* hardware prefetch

2.4.1 Design Goals

The design goals of Intel NetBurst microarchitecture are:

®* To execute legacy IA-32 applications and applications based on single-
instruction, multiple-data (SIMD) technology at high throughput

®* To operate at high clock rates and to scale to higher performance and clock rates
in the future

Design advances of the Intel NetBurst microarchitecture include:

* A deeply pipelined design that allows for high clock rates (with different parts of
the chip running at different clock rates).

®* A pipeline that optimizes for the common case of frequently executed instruc-
tions; the most frequently-executed instructions in common circumstances (such
as a cache hit) are decoded efficiently and executed with short latencies.

* Employment of techniques to hide stall penalties; Among these are parallel
execution, buffering, and speculation. The microarchitecture executes instruc-
tions dynamically and out-of-order, so the time it takes to execute each
individual instruction is not always deterministic.

Chapter 3, “"General Optimization Guidelines,” lists optimizations to use and situa-
tions to avoid. The chapter also gives a sense of relative priority. Because most opti-
mizations are implementation dependent, the chapter does not quantify expected
benefits and penalties.

The following sections provide more information about key features of the Intel
NetBurst microarchitecture.

2.4.2 Pipeline

The pipeline of the Intel NetBurst microarchitecture contains:
® anin-order issue front end
® an out-of-order superscalar execution core

2-58

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® anin-order retirement unit

The front end supplies instructions in program order to the out-of-order core. It
fetches and decodes instructions. The decoded instructions are translated into pops.
The front end’s primary job is to feed a continuous stream of pops to the execution
core in original program order.

The out-of-order core aggressively reorders pops so that pops whose inputs are
ready (and have execution resources available) can execute as soon as possible. The
core can issue multiple pops per cycle.

The retirement section ensures that the results of execution are processed according
to original program order and that the proper architectural states are updated.

Figure 2-5 illustrates a diagram of the major functional blocks associated with the
Intel NetBurst microarchitecture pipeline. The following subsections provide an over-
view for each.

System Bus
4 T > =)y Frequently used paths
\ 4
————— © Less frequently used paths
Bus Unit

| 3rd Level Cache !
| Optional :
|

2nd Level Cache 1st Level Cache

8-Way 4-way
i {
1
H Front End

_____ Trace Cache Execution ;

Fetch/Decode 2 Microcode ROM Out-Of-Order Core Retirement
i 4
H | |
Branch History Update
BTBs/Branch Prediction <
OM19806

Figure 2-10. The Intel NetBurst Microarchitecture

2-59

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.2.1 Front End

The front end of the Intel NetBurst microarchitecture consists of two parts:
* fetch/decode unit

® execution trace cache

It performs the following functions:

* prefetches instructions that are likely to be executed

* fetches required instructions that have not been prefetched

® decodes instructions into pops

®* generates microcode for complex instructions and special-purpose code
® delivers decoded instructions from the execution trace cache

* predicts branches using advanced algorithms

The front end is designed to address two problems that are sources of delay:
® time required to decode instructions fetched from the target

* wasted decode bandwidth due to branches or a branch target in the middle of a
cache line

Instructions are fetched and decoded by a translation engine. The translation engine
then builds decoded instructions into pop sequences called traces. Next, traces are
then stored in the execution trace cache.

The execution trace cache stores pops in the path of program execution flow, where
the results of branches in the code are integrated into the same cache line. This
increases the instruction flow from the cache and makes better use of the overall
cache storage space since the cache no longer stores instructions that are branched
over and never executed.

The trace cache can deliver up to 3 pops per clock to the core.

The execution trace cache and the translation engine have cooperating branch
prediction hardware. Branch targets are predicted based on their linear address
using branch prediction logic and fetched as soon as possible. Branch targets are
fetched from the execution trace cache if they are cached, otherwise they are fetched
from the memory hierarchy. The translation engine’s branch prediction information is
used to form traces along the most likely paths.

2.4.2.2 Out-of-order Core

The core’s ability to execute instructions out of order is a key factor in enabling paral-
lelism. This feature enables the processor to reorder instructions so that if one pop is
delayed while waiting for data or a contended resource, other pops that appear later
in the program order may proceed. This implies that when one portion of the pipeline
experiences a delay, the delay may be covered by other operations executing in
parallel or by the execution of pops queued up in a buffer.

2-60

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The core is designed to facilitate parallel execution. It can dispatch up to six pops per
cycle through the issue ports (Figure 2-6). Note that six pops per cycle exceeds the
trace cache and retirement pop bandwidth. The higher bandwidth in the core allows
for peak bursts of greater than three pops and to achieve higher issue rates by
allowing greater flexibility in issuing pops to different execution ports.

Most core execution units can start executing a new pop every cycle, so several
instructions can be in flight at one time in each pipeline. A number of arithmetic
logical unit (ALU) instructions can start at two per cycle; many floating-point instruc-
tions start one every two cycles. Finally, pops can begin execution out of program
order, as soon as their data inputs are ready and resources are available.

2.4.2.3 Retirement

The retirement section receives the results of the executed pops from the execution
core and processes the results so that the architectural state is updated according to
the original program order. For semantically correct execution, the results of Intel 64
and IA-32 instructions must be committed in original program order before they are
retired. Exceptions may be raised as instructions are retired. For this reason, excep-
tions cannot occur speculatively.

When a pop completes and writes its result to the destination, it is retired. Up to
three pops may be retired per cycle. The reorder buffer (ROB) is the unit in the
processor which buffers completed pops, updates the architectural state and
manages the ordering of exceptions.

The retirement section also keeps track of branches and sends updated branch target
information to the branch target buffer (BTB). This updates branch history.

Figure 2-10 illustrates the paths that are most frequently executing inside the Intel
NetBurst microarchitecture: an execution loop that interacts with multilevel cache
hierarchy and the system bus.

The following sections describe in more detail the operation of the front end and the
execution core. This information provides the background for using the optimization
techniques and instruction latency data documented in this manual.

243 Front End Pipeline Detail

The following information about the front end operation is be useful for tuning soft-
ware with respect to prefetching, branch prediction, and execution trace cache oper-
ations.

2.4.3.1 Prefetching

The Intel NetBurst microarchitecture supports three prefetching mechanisms:
®* a hardware instruction fetcher that automatically prefetches instructions

2-61

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

®* a hardware mechanism that automatically fetches data and instructions into the
unified second-level cache

®* a mechanism fetches data only and includes two distinct components: (1) a
hardware mechanism to fetch the adjacent cache line within a 128-byte sector
that contains the data needed due to a cache line miss, this is also referred to as
adjacent cache line prefetch (2) a software controlled mechanism that fetches
data into the caches using the prefetch instructions.

The hardware instruction fetcher reads instructions along the path predicted by the
branch target buffer (BTB) into instruction streaming buffers. Data is read in 32-byte
chunks starting at the target address. The second and third mechanisms are
described later.

2.4.3.2 Decoder

The front end of the Intel NetBurst microarchitecture has a single decoder that
decodes instructions at the maximum rate of one instruction per clock. Some
complex instructions must enlist the help of the microcode ROM. The decoder opera-
tion is connected to the execution trace cache.

2.4.3.3 Execution Trace Cache

The execution trace cache (TC) is the primary instruction cache in the Intel NetBurst
microarchitecture. The TC stores decoded instructions (pops).

In the Pentium 4 processor implementation, TC can hold up to 12-Kbyte pops and
can deliver up to three pops per cycle. TC does not hold all of the pops that need to
be executed in the execution core. In some situations, the execution core may need
to execute a microcode flow instead of the pop traces that are stored in the trace
cache.

The Pentium 4 processor is optimized so that most frequently-executed instructions
come from the trace cache while only a few instructions involve the microcode ROM.

2434 Branch Prediction

Branch prediction is important to the performance of a deeply pipelined processor. It
enables the processor to begin executing instructions long before the branch
outcome is certain. Branch delay is the penalty that is incurred in the absence of
correct prediction. For Pentium 4 and Intel Xeon processors, the branch delay for a
correctly predicted instruction can be as few as zero clock cycles. The branch delay
for a mispredicted branch can be many cycles, usually equivalent to the pipeline
depth.

Branch prediction in the Intel NetBurst microarchitecture predicts near branches
(conditional calls, unconditional calls, returns and indirect branches). It does not
predict far transfers (far calls, irets and software interrupts).

2-62

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Mechanisms have been implemented to aid in predicting branches accurately and to
reduce the cost of taken branches. These include:

* ability to dynamically predict the direction and target of branches based on an
instruction’s linear address, using the branch target buffer (BTB)

* if no dynamic prediction is available or if it is invalid, the ability to statically
predict the outcome based on the offset of the target: a backward branch is
predicted to be taken, a forward branch is predicted to be not taken

® ability to predict return addresses using the 16-entry return address stack

® ability to build a trace of instructions across predicted taken branches to avoid
branch penalties

The Static Predictor. Once a branch instruction is decoded, the direction of the
branch (forward or backward) is known. If there was no valid entry in the BTB for the
branch, the static predictor makes a prediction based on the direction of the branch.
The static prediction mechanism predicts backward conditional branches (those with
negative displacement, such as loop-closing branches) as taken. Forward branches
are predicted not taken.

To take advantage of the forward-not-taken and backward-taken static predictions,
code should be arranged so that the likely target of the branch immediately follows
forward branches (see also Section 3.4.1, “"Branch Prediction Optimization”).

Branch Target Buffer. Once branch history is available, the Pentium 4 processor
can predict the branch outcome even before the branch instruction is decoded. The
processor uses a branch history table and a branch target buffer (collectively called
the BTB) to predict the direction and target of branches based on an instruction’s
linear address. Once the branch is retired, the BTB is updated with the target
address.

Return Stack. Returns are always taken; but since a procedure may be invoked
from several call sites, a single predicted target does not suffice. The Pentium 4
processor has a Return Stack that can predict return addresses for a series of proce-
dure calls. This increases the benefit of unrolling loops containing function calls. It
also mitigates the need to put certain procedures inline since the return penalty
portion of the procedure call overhead is reduced.

Even if the direction and target address of the branch are correctly predicted, a taken
branch may reduce available parallelism in a typical processor (since the decode
bandwidth is wasted for instructions which immediately follow the branch and
precede the target, if the branch does not end the line and target does not begin the
line). The branch predictor allows a branch and its target to coexist in a single trace
cache line, maximizing instruction delivery from the front end.

2.4.4 Execution Core Detail

The execution core is designed to optimize overall performance by handling common
cases most efficiently. The hardware is designed to execute frequent operations in a

2-63

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

common context as fast as possible, at the expense of infrequent operations using
rare contexts.

Some parts of the core may speculate that a common condition holds to allow faster
execution. If it does not, the machine may stall. An example of this pertains to store-
to-load forwarding (see “Store Forwarding” in this chapter). If a load is predicted to
be dependent on a store, it gets its data from that store and tentatively proceeds. If
the load turned out not to depend on the store, the load is delayed until the real data
has been loaded from memory, then it proceeds.

2.4.4.1 Instruction Latency and Throughput

The superscalar out-of-order core contains hardware resources that can execute
multiple pops in parallel. The core’s ability to make use of available parallelism of
execution units can enhanced by software’s ability to:

® Select instructions that can be decoded in less than 4 pops and/or have short
latencies

® Order instructions to preserve available parallelism by minimizing long
dependence chains and covering long instruction latencies

®* Order instructions so that their operands are ready and their corresponding issue
ports and execution units are free when they reach the scheduler

This subsection describes port restrictions, result latencies, and issue latencies (also
referred to as throughput). These concepts form the basis to assist software for
ordering instructions to increase parallelism. The order that pops are presented to
the core of the processor is further affected by the machine’s scheduling resources.

It is the execution core that reacts to an ever-changing machine state, reordering
uops for faster execution or delaying them because of dependence and resource
constraints. The ordering of instructions in software is more of a suggestion to the
hardware.

Appendix C, “Instruction Latency and Throughput,” lists some of the more-
commonly-used Intel 64 and IA-32 instructions with their latency, their issue
throughput, and associated execution units (where relevant). Some execution units
are not pipelined (meaning that pops cannot be dispatched in consecutive cycles and
the throughput is less than one per cycle). The number of pops associated with each
instruction provides a basis for selecting instructions to generate. All pops executed
out of the microcode ROM involve extra overhead.

2.4.4.2 Execution Units and Issue Ports

At each cycle, the core may dispatch pops to one or more of four issue ports. At the
microarchitecture level, store operations are further divided into two parts: store
data and store address operations. The four ports through which pops are dispatched
to execution units and to load and store operations are shown in Figure 2-6. Some
ports can dispatch two pops per clock. Those execution units are marked Double
Speed.

2-64

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Port 0. In the first half of the cycle, port 0 can dispatch either one floating-point
move pop (a floating-point stack move, floating-point exchange or floating-point
store data) or one arithmetic logical unit (ALU) pop (arithmetic, logic, branch or store
data). In the second half of the cycle, it can dispatch one similar ALU pop.

Port 1. In the first half of the cycle, port 1 can dispatch either one floating-point
execution (all floating-point operations except moves, all SIMD operations) pop or
one normal-speed integer (multiply, shift and rotate) pop or one ALU (arithmetic)
pop. In the second half of the cycle, it can dispatch one similar ALU pop.

Port 2. This port supports the dispatch of one load operation per cycle.
Port 3. This port supports the dispatch of one store address operation per cycle.

The total issue bandwidth can range from zero to six pops per cycle. Each pipeline
contains several execution units. The pops are dispatched to the pipeline that corre-
sponds to the correct type of operation. For example, an integer arithmetic logic unit
and the floating-point execution units (adder, multiplier, and divider) can share a
pipeline.

D, COEENCDICD

v v v

ALUO FP ALU 1 o'?,teerg& FP Memory | | Memory
%‘:)‘;2'5 Move Qouble Normal Execute Load Store
P Speed
ADD/SUB FP Move ADD/SUB Shift/Rotate FP_ADD All Loads Store
Logic FP Store Data FP_MUL Prefetch Address
Store Data FXCH FP_DIV
Branches FP_MISC
MMX_SHFT
MMX_ALU
MMX_MISC
Note:

FP_ADD refers to x87 FP, and SIMD FP add and subtract operations
FP_MUL refers to x87 FP, and SIMD FP multiply operations

FP_DIV refers to x87 FP, and SIMD FP divide and square root operations
MMX_ALU refers to SIMD integer arithmetic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations
MMX_MISC handles SIMD reciprocal and some integer operations

OM15151

Figure 2-11. Execution Units and Ports in Out-Of-Order Core

2-65

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2443

The Intel NetBurst microarchitecture supports up to three levels of on-chip cache. At
least two levels of on-chip cache are implemented in processors based on the Intel
NetBurst microarchitecture. The Intel Xeon processor MP and selected Pentium and
Intel Xeon processors may also contain a third-level cache.

Caches

The first level cache (nearest to the execution core) contains separate caches for
instructions and data. These include the first-level data cache and the trace cache
(an advanced first-level instruction cache). All other caches are shared between
instructions and data.

Levels in the cache hierarchy are not inclusive. The fact that a line is in level i does
not imply thatitis also in level i+1. All caches use a pseudo-LRU (least recently used)
replacement algorithm.

Table 2-5 provides parameters for all cache levels for Pentium and Intel Xeon Proces-
sors with CPUID model encoding equals 0, 1, 2 or 3.

Table 2-22. Pentium 4 and Intel Xeon Processor Cache Parameters

Access
Latency,
Integer/
Associativity | Line Size floating-point | Write Update
Level (Model) | Capacity (ways) (bytes) (clocks) Policy
First (Model O, | 8KB 4 64 2/9 write through
1.2)
First (Model 3) | 16 KB 64 4/12 write through
TC (All models) | 12K pops 8 N/A N/A N/A
Second (Model | 256 KB or 8 642 717 write back
0,1,2) 512 KB'
Second (Model | 1 MB 8 642 18/18 write back
3,4)
Second (Model | 2 MB 8 642 20/20 write back
3,4,6)
Third (Model | 0,512KB, 8 642 14/14 write back
0,1,2) 1MBor2MB
NOTES:

1. Pentium 4 and Intel Xeon processors with CPUID model encoding value of 2 have a second level
cache of 512 KB.

2. Each read due to a cache miss fetches a sector, consisting of two adjacent cache lines; a write
operation is 64 bytes.

2-66

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

On processors without a third level cache, the second-level cache miss initiates a
transaction across the system bus interface to the memory sub-system. On proces-
sors with a third level cache, the third-level cache miss initiates a transaction across
the system bus. A bus write transaction writes 64 bytes to cacheable memory, or
separate 8-byte chunks if the destination is not cacheable. A bus read transaction
from cacheable memory fetches two cache lines of data.

The system bus interface supports using a scalable bus clock and achieves an effec-
tive speed that quadruples the speed of the scalable bus clock. It takes on the order
of 12 processor cycles to get to the bus and back within the processor, and 6-12 bus
cycles to access memory if there is no bus congestion. Each bus cycle equals several
processor cycles. The ratio of processor clock speed to the scalable bus clock speed
is referred to as bus ratio. For example, one bus cycle for a 100 MHz bus is equal to
15 processor cycles on a 1.50 GHz processor. Since the speed of the bus is imple-
mentation-dependent, consult the specifications of a given system for further details.

2444 Data Prefetch

The Pentium 4 processor and other processors based on the NetBurst microarchitec-
ture have two type of mechanisms for prefetching data: software prefetch instruc-
tions and hardware-based prefetch mechanisms.

Software controlled prefetch is enabled using the four prefetch instructions
(PREFETCHh) introduced with SSE. The software prefetch is not intended for
prefetching code. Using it can incur significant penalties on a multiprocessor system
if code is shared.

Software prefetch can provide benefits in selected situations. These situations
include when:

® the pattern of memory access operations in software allows the programmer to
hide memory latency

® areasonable choice can be made about how many cache lines to fetch ahead of
the line being execute

® achoice can be made about the type of prefetch to use

SSE prefetch instructions have different behaviors, depending on cache levels
updated and the processor implementation. For instance, a processor may imple-
ment the non-temporal prefetch by returning data to the cache level closest to the
processor core. This approach has the following effect:

®* minimizes disturbance of temporal data in other cache levels

® avoids the need to access off-chip caches, which can increase the realized
bandwidth compared to a normal load-miss, which returns data to all cache levels

Situations that are less likely to benefit from software prefetch are:

®* For cases that are already bandwidth bound, prefetching tends to increase
bandwidth demands.

2-67

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

* Prefetching far ahead can cause eviction of cached data from the caches prior to
the data being used in execution.

®* Not prefetching far enough can reduce the ability to overlap memory and
execution latencies.

Software prefetches are treated by the processor as a hint to initiate a request to
fetch data from the memory system, and consume resources in the processor and
the use of too many prefetches can limit their effectiveness. Examples of this include
prefetching data in a loop for a reference outside the loop and prefetching in a basic
block that is frequently executed, but which seldom precedes the reference for which
the prefetch is targeted.

See: Chapter 7, “Optimizing Cache Usage.”

Automatic hardware prefetch is a feature in the Pentium 4 processor. It brings
cache lines into the unified second-level cache based on prior reference patterns.

Software prefetching has the following characteristics:
®* handles irregular access patterns, which do not trigger the hardware prefetcher

®* handles prefetching of short arrays and avoids hardware prefetching start-up
delay before initiating the fetches

®* must be added to new code; so it does not benefit existing applications
Hardware prefetching for Pentium 4 processor has the following characteristics:
* works with existing applications

®* does not require extensive study of prefetch instructions

® requires regular access patterns

® avoids instruction and issue port bandwidth overhead

®* has a start-up penalty before the hardware prefetcher triggers and begins
initiating fetches

The hardware prefetcher can handle multiple streams in either the forward or back-
ward directions. The start-up delay and fetch-ahead has a larger effect for short
arrays when hardware prefetching generates a request for data beyond the end of an
array (not actually utilized). The hardware penalty diminishes if it is amortized over
longer arrays.

Hardware prefetching is triggered after two successive cache misses in the last level
cache and requires these cache misses to satisfy a condition that the linear address
distance between these cache misses is within a threshold value. The threshold value
depends on the processor implementation (see Table 2-6). However, hardware
prefetching will not cross 4-KByte page boundaries. As a result, hardware
prefetching can be very effective when dealing with cache miss patterns that have
small strides and that are significantly less than half the threshold distance to trigger
hardware prefetching. On the other hand, hardware prefetching will not benefit
cache miss patterns that have frequent DTLB misses or have access strides that
cause successive cache misses that are spatially apart by more than the trigger
threshold distance.

2-68

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Software can proactively control data access pattern to favor smaller access strides
(e.g., stride that is less than half of the trigger threshold distance) over larger access
strides (stride that is greater than the trigger threshold distance), this can achieve
additional benefit of improved temporal locality and reducing cache misses in the last
level cache significantly.

Software optimization of a data access pattern should emphasize tuning for hard-
ware prefetch first to favor greater proportions of smaller-stride data accesses in the
workload; before attempting to provide hints to the processor by employing software
prefetch instructions.

2.4.4.5 Loads and Stores

The Pentium 4 processor employs the following techniques to speed up the execution
of memory operations:

® speculative execution of loads

®* reordering of loads with respect to loads and stores
®* multiple outstanding misses

* buffering of writes

* forwarding of data from stores to dependent loads

Performance may be enhanced by not exceeding the memory issue bandwidth and
buffer resources provided by the processor. Up to one load and one store may be
issued for each cycle from a memory port reservation station. In order to be
dispatched to a reservation station, there must be a buffer entry available for each
memory operation. There are 48 load buffers and 24 store buffers3. These buffers
hold the pop and address information until the operation is completed, retired, and
deallocated.

The Pentium 4 processor is designed to enable the execution of memory operations
out of order with respect to other instructions and with respect to each other. Loads
can be carried out speculatively, that is, before all preceding branches are resolved.
However, speculative loads cannot cause page faults.

Reordering loads with respect to each other can prevent a load miss from stalling
later loads. Reordering loads with respect to other loads and stores to different
addresses can enable more parallelism, allowing the machine to execute operations
as soon as their inputs are ready. Writes to memory are always carried out in
program order to maintain program correctness.

A cache miss for a load does not prevent other loads from issuing and completing.
The Pentium 4 processor supports up to four (or eight for Pentium 4 processor with
CPUID signature corresponding to family 15, model 3) outstanding load misses that
can be serviced either by on-chip caches or by memory.

3. Pentium 4 processors with CPUID model encoding equal to 3 have more than 24 store buffers.

2-69

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Store buffers improve performance by allowing the processor to continue executing
instructions without having to wait until a write to memory and/or cache is complete.
Writes are generally not on the critical path for dependence chains, so it is often
beneficial to delay writes for more efficient use of memory-access bus cycles.

2446 Store Forwarding

Loads can be moved before stores that occurred earlier in the program if they are not
predicted to load from the same linear address. If they do read from the same linear
address, they have to wait for the store data to become available. However, with
store forwarding, they do not have to wait for the store to write to the memory hier-
archy and retire. The data from the store can be forwarded directly to the load, as
long as the following conditions are met:

®* Sequence — Data to be forwarded to the load has been generated by a
programmatically-earlier store which has already executed.

® Size — Bytes loaded must be a subset of (including a proper subset, that is, the
same) bytes stored.

* Alignment — The store cannot wrap around a cache line boundary, and the
linear address of the load must be the same as that of the store.

2.5 INTEL® PENTIUM® M PROCESSOR
MICROARCHITECTURE

Like the Intel NetBurst microarchitecture, the pipeline of the Intel Pentium M
processor microarchitecture contains three sections:

® in-order issue front end
® out-of-order superscalar execution core
® in-order retirement unit

Intel Pentium M processor microarchitecture supports a high-speed system bus (up
to 533 MHz) with 64-byte line size. Most coding recommendations that apply to the
Intel NetBurst microarchitecture also apply to the Intel Pentium M processor.

The Intel Pentium M processor microarchitecture is designed for lower power
consumption. There are other specific areas of the Pentium M processor microarchi-
tecture that differ from the Intel NetBurst microarchitecture. They are described
next. A block diagram of the Intel Pentium M processor is shown in Figure 2-7.

2-70

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

System Bus
¢ A d =P Frequently used paths
{ } - Less frequently used
paths
Bus Unit
1st Level Data
i,
2nd Level Cache <= .

-
i Front End t

Lvd
1st Level E i
; | xecution ;
Instruction —-b Fetch/Decode iy s el =y Retirement
Cache -
Branch History Update
BTBs/Branch Prediction <

0OM19807

Figure 2-12. The Intel Pentium M Processor Microarchitecture

2.5.1 Front End

The Intel Pentium M processor uses a pipeline depth that enables high performance
and low power consumption. It's shorter than that of the Intel NetBurst microarchi-
tecture.

The Intel Pentium M processor front end consists of two parts:
* fetch/decode unit
® instruction cache

The fetch and decode unit includes a hardware instruction prefetcher and three
decoders that enable parallelism. It also provides a 32-KByte instruction cache that
stores un-decoded binary instructions.

The instruction prefetcher fetches instructions in a linear fashion from memory if the
target instructions are not already in the instruction cache. The prefetcher is
designed to fetch efficiently from an aligned 16-byte block. If the modulo 16
remainder of a branch target address is 14, only two useful instruction bytes are
fetched in the first cycle. The rest of the instruction bytes are fetched in subsequent
cycles.

The three decoders decode instructions and break them down into pops. In each
clock cycle, the first decoder is capable of decoding an instruction with four or fewer

2-71

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

pops. The remaining two decoders each decode a one pop instruction in each clock
cycle.

The front end can issue multiple pops per cycle, in original program order, to the out-
of-order core.

The Intel Pentium M processor incorporates sophisticated branch prediction hard-
ware to support the out-of-order core. The branch prediction hardware includes
dynamic prediction, and branch target buffers.

The Intel Pentium M processor has enhanced dynamic branch prediction hardware.
Branch target buffers (BTB) predict the direction and target of branches based on an
instruction’s address.

The Pentium M Processor includes two techniques to reduce the execution time of
certain operations:

® ESP folding — This eliminates the ESP manipulation [ops in stack-related
instructions such as PUSH, POP, CALL and RET. It increases decode rename and
retirement throughput. ESP folding also increases execution bandwidth by
eliminating pops which would have required execution resources.

® Micro-ops (Hops) fusion — Some of the most frequent pairs of pops derived
from the same instruction can be fused into a single pops. The following
categories of fused pops have been implemented in the Pentium M processor:

“Store address” and “store data” llops are fused into a single “Store” Llop.
This holds for all types of store operations, including integer, floating-point,
MMX technology, and Streaming SIMD Extensions (SSE and SSE2)
operations.

— A load pop in most cases can be fused with a successive execution Llop.This
holds for integer, floating-point and MMX technology loads and for most kinds
of successive execution operations. Note that SSE Loads can not be fused.

2.5.2 Data Prefetching

The Intel Pentium M processor supports three prefetching mechanisms:

®* The first mechanism is a hardware instruction fetcher and is described in the
previous section.

®* The second mechanism automatically fetches data into the second-level cache.
The implementation of automatic hardware prefetching in Pentium M processor
family is basically similar to those described for NetBurst microarchitecture. The
trigger threshold distance for each relevant processor models is shown in
Table 2-6. The third mechanism is a software mechanism that fetches data into
the caches using the prefetch instructions.

2-72

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-23. Trigger Threshold and CPUID Signatures for Processor Families

Trigger Threshold Distance Extended Extended

(Bytes) Model ID Family ID Family ID Model ID
512 0 0 15 3,4,6
256 0 0 15 01,2
256 0 0 6 9,13,14

Data is fetched 64 bytes at a time; the instruction and data translation lookaside
buffers support 128 entries. See Table 2-7 for processor cache parameters.

Table 2-24. Cache Parameters of Pentium M, Intel Core Solo,

and Intel Core Duo Processors

Access

Associativity | Line Size Latency Write Update
Level Capacity (ways) (bytes) (clocks) Policy
First 32 KByte 8 64 3 Writeback
Instruction 32 KByte 8 N/A N/A N/A
Second 1 MByte 8 64 9 Writeback
(mode 9)
Second 2 MByte 8 64 10 Writeback
(model 13)
Second 2 MByte 8 64 14 Writeback
(model 14)
2.53 Out-of-Order Core

The processor core dynamically executes pops independent of program order. The
core is designed to facilitate parallel execution by employing many buffers, issue
ports, and parallel execution units.

The out-of-order core buffers pops in a Reservation Station (RS) until their operands
are ready and resources are available. Each cycle, the core may dispatch up to five
pops through the issue ports.

2.5.4 In-Order Retirement

The retirement unit in the Pentium M processor buffers completed pops is the reorder
buffer (ROB). The ROB updates the architectural state in order. Up to three pops may
be retired per cycle.

2-73

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND
INTEL® CORE™ DUO PROCESSORS

Intel Core Solo and Intel Core Duo processors incorporate an microarchitecture that
is similar to the Pentium M processor microarchitecture, but provides additional
enhancements for performance and power efficiency. Enhancements include:

® Intel Smart Cache — This second level cache is shared between two cores in an
Intel Core Duo processor to minimize bus traffic between two cores accessing a
single-copy of cached data. It allows an Intel Core Solo processor (or when one
of the two cores in an Intel Core Duo processor is idle) to access its full capacity.

® Stream SIMD Extensions 3 — These extensions are supported in Intel Core
Solo and Intel Core Duo processors.

®* Decoder improvement — Improvement in decoder and [lop fusion allows the
front end to see most instructions as single pop instructions. This increases the
throughput of the three decoders in the front end.

®* Improved execution core — Throughput of SIMD instructions is improved and
the out-of-order engine is more robust in handling sequences of frequently-used
instructions. Enhanced internal buffering and prefetch mechanisms also improve
data bandwidth for execution.

* Power-optimized bus — The system bus is optimized for power efficiency;
increased bus speed supports 667 MHz.

* Data Prefetch — Intel Core Solo and Intel Core Duo processors implement
improved hardware prefetch mechanisms: one mechanism can look ahead and
prefetch data into L1 from L2. These processors also provide enhanced hardware
prefetchers similar to those of the Pentium M processor (see Table 2-6).

2.6.1 Front End

Execution of SIMD instructions on Intel Core Solo and Intel Core Duo processors are
improved over Pentium M processors by the following enhancements:

® Micro-op fusion — Scalar SIMD operations on register and memory have single
Wop flows comparable to X87 flows. Many packed instructions are fused to reduce
its wop flow from four to two Hops.

®* Eliminating decoder restrictions — Intel Core Solo and Intel Core Duo
processors improve decoder throughput with micro-fusion and macro-fusion, so
that many more SSE and SSE2 instructions can be decoded without restriction.
On Pentium M processors, many single op SSE and SSE2 instructions must be
decoded by the main decoder.

* Improved packed SIMD instruction decoding — On Intel Core Solo and Intel
Core Duo processors, decoding of most packed SSE instructions is done by all
three decoders. As a result the front end can process up to three packed SSE
instructions every cycle. There are some exceptions to the above; some
shuffle/unpack/shift operations are not fused and require the main decoder.

2-74

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6.2 Data Prefetching

Intel Core Solo and Intel Core Duo processors provide hardware mechanisms to
prefetch data from memory to the second-level cache. There are two techniques:

1. One mechanism activates after the data access pattern experiences two cache-
reference misses within a trigger-distance threshold (see Table 2-6). This
mechanism is similar to that of the Pentium M processor, but can track 16
forward data streams and 4 backward streams.

2. The second mechanism fetches an adjacent cache line of data after experiencing
a cache miss. This effectively simulates the prefetching capabilities of 128-byte
sectors (similar to the sectoring of two adjacent 64-byte cache lines available in
Pentium 4 processors).

Hardware prefetch requests are queued up in the bus system at lower priority than
normal cache-miss requests. If bus queue is in high demand, hardware prefetch
requests may be ignored or cancelled to service bus traffic required by demand
cache-misses and other bus transactions. Hardware prefetch mechanisms are
enhanced over that of Pentium M processor by:

®* Data stores that are not in the second-level cache generate read for ownership
requests. These requests are treated as loads and can trigger a prefetch stream.

®* Software prefetch instructions are treated as loads, they can also trigger a
prefetch stream.

2.7 INTEL® HYPER-THREADING TECHNOLOGY

Intel® Hyper-Threading Technology (HT Technology) is supported by specific
members of the Intel Pentium 4 and Xeon processor families. The technology enables
software to take advantage of task-level, or thread-level parallelism by providing
multiple logical processors within a physical processor package. In its first implemen-
tation in Intel Xeon processor, Hyper-Threading Technology makes a single physical
processor appear as two logical processors.

The two logical processors each have a complete set of architectural registers while
sharing one single physical processor's resources. By maintaining the architecture
state of two processors, an HT Technology capable processor looks like two proces-
sors to software, including operating system and application code.

By sharing resources needed for peak demands between two logical processors, HT
Technology is well suited for multiprocessor systems to provide an additional perfor-
mance boost in throughput when compared to traditional MP systems.

Figure 2-8 shows a typical bus-based symmetric multiprocessor (SMP) based on
processors supporting HT Technology. Each logical processor can execute a software
thread, allowing a maximum of two software threads to execute simultaneously on
one physical processor. The two software threads execute simultaneously, meaning
that in the same clock cycle an “add” operation from logical processor 0 and another

2-75

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

“add” operation and load from logical processor 1 can be executed simultaneously by
the execution engine.

In the first implementation of HT Technology, the physical execution resources are

shared and the architecture state is duplicated for each logical processor. This mini-
mizes the die area cost of implementing HT Technology while still achieving perfor-
mance gains for multithreaded applications or multitasking workloads.

Architectural Architectural Architectural Architectural
State State State State
Execution Engine Execution Engine
Local APIC Local APIC Local APIC Local APIC
Bus Interface Bus Interface

¢ System Bus ¢
< >

OM15152

Figure 2-13. Hyper-Threading Technology on an SMP

The performance potential due to HT Technology is due to:

®* The fact that operating systems and user programs can schedule processes or
threads to execute simultaneously on the logical processors in each physical
processor

®* The ability to use on-chip execution resources at a higher level than when only a
single thread is consuming the execution resources; higher level of resource
utilization can lead to higher system throughput

2.7.1 Processor Resources and HT Technology

The majority of microarchitecture resources in a physical processor are shared
between the logical processors. Only a few small data structures were replicated for
each logical processor. This section describes how resources are shared, partitioned
or replicated.

2-76

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.1.1 Replicated Resources

The architectural state is replicated for each logical processor. The architecture state
consists of registers that are used by the operating system and application code to
control program behavior and store data for computations. This state includes the
eight general-purpose registers, the control registers, machine state registers,
debug registers, and others. There are a few exceptions, most notably the memory
type range registers (MTRRs) and the performance monitoring resources. For a
complete list of the architecture state and exceptions, see the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 3A & 3B.

Other resources such as instruction pointers and register renaming tables were repli-
cated to simultaneously track execution and state changes of the two logical proces-
sors. The return stack predictor is replicated to improve branch prediction of return
instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers)
were replicated to reduce complexity.

2.7.1.2 Partitioned Resources

Several buffers are shared by limiting the use of each logical processor to half the
entries. These are referred to as partitioned resources. Reasons for this partitioning
include:

® Operational fairness

®* Permitting the ability to allow operations from one logical processor to bypass
operations of the other logical processor that may have stalled

For example: a cache miss, a branch misprediction, or instruction dependencies may
prevent a logical processor from making forward progress for some number of
cycles. The partitioning prevents the stalled logical processor from blocking forward
progress.

In general, the buffers for staging instructions between major pipe stages are parti-
tioned. These buffers include pop queues after the execution trace cache, the queues
after the register rename stage, the reorder buffer which stages instructions for
retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implemen-
tation to maintain memory ordering for each logical processor and detect memory
ordering violations.

2.7.1.3 Shared Resources

Most resources in a physical processor are fully shared to improve the dynamic utili-
zation of the resource, including caches and all the execution units. Some shared
resources which are linearly addressed, like the DTLB, include a logical processor ID
bit to distinguish whether the entry belongs to one logical processor or the other.

2-77

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The first level cache can operate in two modes depending on a context-ID bit:
® Shared mode: The L1 data cache is fully shared by two logical processors.

* Adaptive mode: In adaptive mode, memory accesses using the page directory is
mapped identically across logical processors sharing the L1 data cache.

The other resources are fully shared.

2.7.2 Microarchitecture Pipeline and HT Technology

This section describes the HT Technology microarchitecture and how instructions
from the two logical processors are handled between the front end and the back end
of the pipeline.

Although instructions originating from two programs or two threads execute simulta-
neously and not necessarily in program order in the execution core and memory hier-
archy, the front end and back end contain several selection points to select between
instructions from the two logical processors. All selection points alternate between
the two logical processors unless one logical processor cannot make use of a pipeline
stage. In this case, the other logical processor has full use of every cycle of the pipe-
line stage. Reasons why a logical processor may not use a pipeline stage include
cache misses, branch mispredictions, and instruction dependencies.

2.7.3 Front End Pipeline

The execution trace cache is shared between two logical processors. Execution trace
cache access is arbitrated by the two logical processors every clock. If a cache line is
fetched for one logical processor in one clock cycle, the next clock cycle a line would
be fetched for the other logical processor provided that both logical processors are
requesting access to the trace cache.

If one logical processor is stalled or is unable to use the execution trace cache, the
other logical processor can use the full bandwidth of the trace cache until the initial
logical processor’s instruction fetches return from the L2 cache.

After fetching the instructions and building traces of pops, the pops are placed in a
queue. This queue decouples the execution trace cache from the register rename
pipeline stage. As described earlier, if both logical processors are active, the queue is
partitioned so that both logical processors can make independent forward progress.

2.7.4 Execution Core

The core can dispatch up to six pops per cycle, provided the pops are ready to
execute. Once the pops are placed in the queues waiting for execution, there is no
distinction between instructions from the two logical processors. The execution core
and memory hierarchy is also oblivious to which instructions belong to which logical
processor.

2-78

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

After execution, instructions are placed in the re-order buffer. The re-order buffer
decouples the execution stage from the retirement stage. The re-order buffer is
partitioned such that each uses half the entries.

2.7.5 Retirement

The retirement logic tracks when instructions from the two logical processors are
ready to be retired. It retires the instruction in program order for each logical
processor by alternating between the two logical processors. If one logical processor
is not ready to retire any instructions, then all retirement bandwidth is dedicated to
the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-
one data cache. Selection logic alternates between the two logical processors to
commit store data to the cache.

2.8 MULTICORE PROCESSORS

The Intel Pentium D processor and the Pentium Processor Extreme Edition introduce
multicore features. These processors enhance hardware support for multithreading
by providing two processor cores in each physical processor package. The Dual-core
Intel Xeon and Intel Core Duo processors also provide two processor cores in a phys-
ical package. The multicore topology of Intel Core 2 Duo processors are similar to
those of Intel Core Duo processor.

The Intel Pentium D processor provides two logical processors in a physical package,
each logical processor has a separate execution core and a cache hierarchy. The
Dual-core Intel Xeon processor and the Intel Pentium Processor Extreme Edition
provide four logical processors in a physical package that has two execution cores.
Each core provides two logical processors sharing an execution core and a cache
hierarchy.

The Intel Core Duo processor provides two logical processors in a physical package.
Each logical processor has a separate execution core (including first-level cache) and
a smart second-level cache. The second-level cache is shared between two logical
processors and optimized to reduce bus traffic when the same copy of cached data is
used by two logical processors. The full capacity of the second-level cache can be
used by one logical processor if the other logical processor is inactive.

The functional blocks of the dual-core processors are shown in Figure 2-9. The Quad-
core Intel Xeon processors, Intel Core 2 Quad processor and Intel Core 2 Extreme
quad-core processor consist of two replica of the dual-core modules. The functional
blocks of the quad-core processors are also shown in Figure 2-9.

2-79

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Intel Core Duo Processor
Intel Core 2 Duo Processor

Pentium D Processor

Architectual State

Architectual State

Execution Engine

Execution Engine

Architectual State

Architectual State

Local APIC

Local APIC

Execution Engine

Execution Engine

Second Level Cache

Local APIC

Local APIC

Bus Interface

Bus Interface

Bus Interface

:

System Bus

!

System Bus

Pentium Processor Extreme Edition

State

Architectual

Architectual
State

Architectual
State

Architectual
State

Execution Engine

Execution Engine

Local APIC

Local APIC

Local APIC

Local APIC

Bus Interface

Bus Interface

System Bus

Intel Core 2 Quad Processor
Intel Xeon Processor 3200 Series
Intel Xeon Processor 5300 Series

Architectual State

Architectual State

Architectual State

Architectual State

Execution Engine

Execution Engine

Execution Engine

Execution Engine

Local APIC

Local APIC

Local APIC

Local APIC

Second Level Cache Second Level Cache

Bus Interface Bus Interface

OM19809

System Bus

Figure 2-14. Pentium D Processor, Pentium Processor Extreme Edition,
Intel Core Duo Processor, Intel Core 2 Duo Processor, and Intel Core 2 Quad Processor

2-80

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.8.1 Microarchitecture Pipeline and MultiCore Processors

In general, each core in a multicore processor resembles a single-core processor
implementation of the underlying microarchitecture. The implementation of the
cache hierarchy in a dual-core or multicore processor may be the same or different
from the cache hierarchy implementation in a single-core processor.

CPUID should be used to determine cache-sharing topology information in a
processor implementation and the underlying microarchitecture. The former is
obtained by querying the deterministic cache parameter leaf (see Chapter 7, “Opti-
mizing Cache Usage”); the latter by using the encoded values for extended family,
family, extended model, and model fields. See Table 2-8.

Table 2-25. Family And Model Designations of Microarchitectures

Dual-Core Micro- Extended Extended

Processor architecture | Family Family Model Model
Pentium D NetBurst 0 15 0 3,4,6
processor

Pentium NetBurst 0 15 0 3,4,6
processor

Extreme

Edition

Intel Core Duo | Improved 0 6 0 14
processor Pentium M

Intel Core 2 Intel Core 0 6 0 15
Duo Microarchitec-

processor/ ture

Intel Xeon

processor

5100

Intel Core 2 Enhanced 0 6 1 7

Duo processor | Intel Core

E8000 Series/ | Microarchitect

Intel Xeon ure

processor

5200, 5400

2.8.2 Shared Cache in Intel® Core™ Duo Processors

The Intel Core Duo processor has two symmetric cores that share the second-level
cache and a single bus interface (see Figure 2-9). Two threads executing on two
cores in an Intel Core Duo processor can take advantage of shared second-level
cache, accessing a single-copy of cached data without generating bus traffic.

2-81

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.8.2.1

When an instruction needs to read data from a memory address, the processor looks
for it in caches and memory. When an instruction writes data to a memory location
(write back) the processor first makes sure that the cache line that contains the
memory location is owned by the first-level data cache of the initiating core (that is,
the line is in exclusive or modified state). Then the processor looks for the cache line
in the cache and memory sub-systems. The look-ups for the locality of load or store
operation are in the following order:

1. DCU of the initiating core
2. DCU of the other core and second-level cache

Load and Store Operations

3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. Table 2-9 lists the performance
characteristics of generic load and store operations in an Intel Core Duo processor.
Numeric values of Table 2-9 are in terms of processor core cycles.

Table 2-26. Characteristics of Load and Store Operations
in Intel Core Duo Processors

Load Store
Data Locality Latency Throughput Latency Throughput
DCU 3 1 2 1
DCU of the other core in 14 + bus 14 + bus 14 + bus ~10
“Modified” state transaction transaction transaction
2nd-level cache 14 <6 14 <6
Memory 14 + bus Bus read 14 + bus Bus write
transaction protocol transaction protocol

Throughput is expressed as the number of cycles to wait before the same operation
can start again. The latency of a bus transaction is exposed in some of these opera-
tions, as indicated by entries containing “+ bus transaction”. On Intel Core Duo
processors, a typical bus transaction may take 5.5 bus cycles. For a 667 MHz bus and
a core frequency of 2.167GHz, the total of 14 + 5.5 * 2167 /(667/4) ~ 86 core
cycles.

Sometimes a modified cache line has to be evicted to make room for a new cache
line. The modified cache line is evicted in parallel to bringing in new data and does
not require additional latency. However, when data is written back to memory, the
eviction consumes cache bandwidth and bus bandwidth. For multiple cache misses
that require the eviction of modified lines and are within a short time, there is an
overall degradation in response time of these cache misses.

2-82

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

For store operation, reading for ownership must be completed before the data is
written to the first-level data cache and the line is marked as modified. Reading for
ownership and storing the data happens after instruction retirement and follows the
order of retirement. The bus store latency does not affect the store instruction itself.
However, several sequential stores may have cumulative latency that can effect
performance.

2.9 INTEL® 64 ARCHITECTURE

Intel 64 architecture supports almost all features in the IA-32 Intel architecture and
extends support to run 64-bit OS and 64-bit applications in 64-bit linear address
space. Intel 64 architecture provides a new operating mode, referred to as IA-32e
mode, and increases the linear address space for software to 64 bits and supports
physical address space up to 40 bits.

IA-32e mode consists of two sub-modes: (1) compatibility mode enables a 64-bit
operating system to run most legacy 32-bit software unmodified, (2) 64-bit mode
enables a 64-bit operating system to run applications written to access 64-bit linear
address space.

In the 64-bit mode of Intel 64 architecture, software may access:
® 64-bit flat linear addressing
®* 8 additional general-purpose registers (GPRs)

* 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2 and AESNI)

®* 64-bit-wide GPRs and instruction pointers

®* uniform byte-register addressing

® fast interrupt-prioritization mechanism

®* anew instruction-pointer relative-addressing mode

For optimizing 64-bit applications, the features that impact software optimizations
include:

® using a set of prefixes to access new registers or 64-bit register operand
® pointer size increases from 32 bits to 64 bits
®* instruction-specific usages

2.10 SIMD TECHNOLOGY

SIMD computations (see Figure 2-10) were introduced to the architecture with MMX
technology. MMX technology allows SIMD computations to be performed on packed
byte, word, and doubleword integers. The integers are contained in a set of eight
64-bit registers called MMX registers (see Figure 2-11).

2-83

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Pentium IIl processor extended the SIMD computation model with the introduc-
tion of the Streaming SIMD Extensions (SSE). SSE allows SIMD computations to be
performed on operands that contain four packed single-precision floating-point data
elements. The operands can be in memory or in a set of eight 128-bit XMM registers
(see Figure 2-11). SSE also extended SIMD computational capability by adding addi-
tional 64-bit MMX instructions.

Figure 2-10 shows a typical SIMD computation. Two sets of four packed data
elements (X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are operated on in parallel,
with the same operation being performed on each corresponding pair of data
elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the four
parallel computations are sorted as a set of four packed data elements.

X4 X3 X2 X1
Y4 Y3 Y2 Y1
) 4 vV vV) A
X4 op Y4 X3 o0p Y3 X2o0p Y2 X1op Y1
OM15148

Figure 2-15. Typical SIMD Operations

The Pentium 4 processor further extended the SIMD computation model with the
introduction of Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), and Intel Xeon processor 5100 series introduced Supplemental Streaming
SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology
extends SIMD computations to process packed double-precision floating-point data
elements and 128-bit packed integers. There are 144 instructions in SSE2 that
operate on two packed double-precision floating-point data elements or on 16
packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate
application performance in specific areas. These include video processing, complex
arithmetics, and thread synchronization. SSE3 complements SSE and SSE2 with
instructions that process SIMD data asymmetrically, facilitate horizontal computa-
tion, and help avoid loading cache line splits. See Figure 2-11.

2-84

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

SSSE3 provides additional enhancement for SIMD computation with 32 instructions
on digital video and signal processing.

SSE4.1, SSE4.2 and AESNI are additional SIMD extensions that provide acceleration
for applications in media processing, text/lexical processing, and block encryp-
tion/decryption.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32
architecture, with the following enhancements:

® 128-bit SIMD instructions referencing XMM register can access 16 XMM registers
in 64-bit mode.

* Instructions that reference 32-bit general purpose registers can access 16
general purpose registers in 64-bit mode.

64-bit MMX Registers 128-bit XMM Registers
MM7 XMM7
MM6 XMM6
MM5 XMM5
MM4 XMM4
MM3 XMM3
MM2 XMM2
MM1 XMM1
MMO XMMO
OM15149

Figure 2-16. SIMD Instruction Register Usage

SIMD improves the performance of 3D graphics, speech recognition, image
processing, scientific applications and applications that have the following character-
istics:

®* inherently parallel

® recurring memory access patterns

®* localized recurring operations performed on the data

®* data-independent control flow

2-85

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary
Floating-Point Arithmetic. They are accessible from all IA-32 execution modes:
protected mode, real address mode, and Virtual 8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will
continue to run correctly, without modification on Intel microprocessors that incorpo-
rate these technologies. Existing software will also run correctly in the presence of
applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering
instructions that can improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:

® Chapter 9, “Programming with Intel® MMX™ Technology”

® Chapter 10, “Programming with Streaming SIMD Extensions (SSE)”

® Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2)”
® Chapter 12, “Programming with SSE3 and Supplemental SSE3”

2.10.1 Summary of SIMD Technologies

2.10.1.1 MMX"™ Technology

MMX Technology introduced:

® 64-bit MMX registers

® Support for SIMD operations on packed byte, word, and doubleword integers

MMX instructions are useful for multimedia and communications software.

2.10.1.2 Streaming SIMD Extensions

Streaming SIMD extensions introduced:

® 128-bit XMM registers

® 128-bit data type with four packed single-precision floating-point operands
® data prefetch instructions

® non-temporal store instructions and other cacheability and memory ordering
instructions

® extra 64-bit SIMD integer support

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and
video encoding and decoding.

2-86

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.10.1.3 Streaming SIMD Extensions 2

Streaming SIMD extensions 2 add the following:

128-bit data type with two packed double-precision floating-point operands

128-bit data types for SIMD integer operation on 16-byte, 8-word,
4-doubleword, or 2-quadword integers

support for SIMD arithmetic on 64-bit integer operands
instructions for converting between new and existing data types
extended support for data shuffling

Extended support for cacheability and memory ordering operations

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryp-
tion.

2.10.1.4 Streaming SIMD Extensions 3

Streaming SIMD extensions 3 add the following:

SIMD floating-point instructions for asymmetric and horizontal computation
a special-purpose 128-bit load instruction to avoid cache line splits

an x87 FPU instruction to convert to integer independent of the floating-point
control word (FCW)

instructions to support thread synchronization

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.10.1.5 Supplemental Streaming SIMD Extensions 3

The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to
accelerate eight types of computations on packed integers. These include:

12 instructions that perform horizontal addition or subtraction operations
6 instructions that evaluate the absolute values

2 instructions that perform multiply and add operations and speed up the
evaluation of dot products

2 instructions that accelerate packed-integer multiply operations and produce
integer values with scaling

2 instructions that perform a byte-wise, in-place shuffle according to the second
shuffle control operand

6 instructions that negate packed integers in the destination operand if the signs
of the corresponding element in the source operand is less than zero

2 instructions that align data from the composite of two operands

2-87

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1

0.1.6 SSE4.1

SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applica-

tion

s. SSE4.1 also improves compiler vectorization and significantly increase support

for packed dword computation. These include:

2.1

Two instructions perform packed dword multiplies.

Two instructions perform floating-point dot products with input/output selects.
One instruction provides a streaming hint for WC loads.

Six instructions simplify packed blending.

Eight instructions expand support for packed integer MIN/MAX.

Four instructions support floating-point round with selectable rounding mode and
precision exception override.

Seven instructions improve data insertion and extractions from XMM registers

Twelve instructions improve packed integer format conversions (sign and zero
extensions).

One instruction improves SAD (sum absolute difference) generation for small
block sizes.

One instruction aids horizontal searching operations of word integers.
One instruction improves masked comparisons.

One instruction adds qword packed equality comparisons.

One instruction adds dword packing with unsigned saturation.

0.1.7 SSE4.2

SSE4.2 introduces 7 new instructions. These include:

2-88

A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.

Four string/text processing instructions providing a rich set of primitives, these
primitives can accelerate:

— basic and advanced string library functions from strlen, strcmp, to strcspn,
— delimiter processing, token extraction for lexing of text streams,
— Parser, schema validation including XML processing.

A general-purpose instruction for accelerating cyclic redundancy checksum
signature calculations.

A general-purpose instruction for calculating bit count population of integer
numbers.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.10.1.8 AESNI and PCLMULQDQ

AESNI introduces 7 new instructions, six of them are primitives for accelerating algo-
rithms based on AES encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which
can perform carry-less multiplication for two binary numbers up to 64-bit wide.

Typically, algorithm based on AES standard involve transformation of block data over
multiple iterations via several primitives. The AES standard supports cipher key of
sizes 128, 192, and 256 bits. The respective cipher key sizes correspond to 10, 12,
and 14 rounds of iteration.

AES encryption involves processing 128-bit input data (plaintext) through a finite
number of iterative operation, referred to as “AES round”, into a 128-bit encrypted
block (ciphertext). Decryption follows the reverse direction of iterative operation
using the “equivalent inverse cipher” instead of the “inverse cipher".

The cryptographic processing at each round involves two input data, one is the
“state", the other is the “round key". Each round uses a different “round key". The
round keys are derived from the cipher key using a “key schedule" algorithm. The
“key schedule" algorithm is independent of the data processing of encryp-
tion/decryption, and can be carried out independently from the encryption/decryp-
tion phase.

The AES extensions provide two primitives to accelerate AES rounds on encryption,
two primitives for AES rounds on decryption using the equivalent inverse cipher, and
two instructions to support the AES key expansion procedure.

2.10.1.9 Intel® Advanced Vector Extensions

Intel® Advanced Vector Extensions offers comprehensive architectural enhance-
ments over previous generations of Streaming SIMD Extensions. Intel AVX intro-
duces the following architectural enhancements:

® Support for 256-bit wide vectors and SIMD register set.

® 256-bit floating-point instruction set enhancement with up to 2X performance
gain relative to 128-bit Streaming SIMD extensions.

® Instruction syntax support for generalized three-operand syntax to improve
instruction programming flexibility and efficient encoding of new instruction
extensions.

®* Enhancement of legacy 128-bit SIMD instruction extensions to support three-
operand syntax and to simplify compiler vectorization of high-level language
expressions.

®* Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-
bit code and scalar code.

Intel AVX instruction set and 256-bit register state management detail are described
in IA-32 Intel® Architecture Software Developer’s Manual, Volumes 2A, 2B and 3A.

2-89

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Optimization techniques for Intel AVX is discussed in Chapter 11, “Optimization for
Intel AVX”.

2-90

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the perfor-
mance of applications running on Intel Core i7 processors, processors based on Intel
microarchitecture code name Sandy Bridge, Intel microarchitecture code name
Nehalem, Intel Core microarchitecture, Enhanced Intel Core microarchitecture, Intel
NetBurst microarchitecture, Intel Core Duo, Intel Core Solo, and Pentium M proces-
sors. These techniques take advantage of microarchitectural described in Chapter 2,
“Intel® 64 and IA-32 Processor Architectures.” Optimization guidelines focusing on
Intel multi-core processors, Hyper-Threading Technology and 64-bit mode applica-
tions are discussed in Chapter 8, “Multicore and Hyper-Threading Technology,” and
Chapter 9, “64-bit Mode Coding Guidelines.”

Practices that optimize performance focus on three areas:
® tools and techniques for code generation

® analysis of the performance characteristics of the workload and its interaction
with microarchitectural sub-systems

® tuning code to the target microarchitecture (or families of microarchitecture) to
improve performance

Some hints on using tools are summarized first to simplify the first two tasks. the rest
of the chapter will focus on recommendations of code generation or code tuning to
the target microarchitectures.

This chapter explains optimization techniques for the Intel C++ Compiler, the Intel
Fortran Compiler, and other compilers.

3.1 PERFORMANCE TOOLS

Intel offers several tools to help optimize application performance, including
compilers, performance analyzer and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers

Intel compilers support multiple operating systems (Windows*, Linux*, Mac OS* and
embedded). The Intel compilers optimize performance and give application devel-
opers access to advanced features:

®* Flexibility to target 32-bit or 64-bit Intel processors for optimization

® Compatibility with many integrated development environments or third-party
compilers.

3-1

GENERAL OPTIMIZATION GUIDELINES

®* Automatic optimization features to take advantage of the target processor’s
architecture.

® Automatic compiler optimization reduces the need to write different code for
different processors.

® Common compiler features that are supported across Windows, Linux and Mac
OS include:

— General optimization settings

— Cache-management features

— Interprocedural optimization (IPO) methods

— Profile-guided optimization (PGO) methods

— Multithreading support

— Floating-point arithmetic precision and consistency support

— Compiler optimization and vectorization reports

3.1.2 General Compiler Recommendations

Generally speaking, a compiler that has been tuned for the target microarchitecture
can be expected to match or outperform hand-coding. However, if performance prob-
lems are noted with the compiled code, some compilers (like Intel C++ and Fortran
Compilers) allow the coder to insert intrinsics or inline assembly in order to exert
control over what code is generated. If inline assembly is used, the user must verify
that the code generated is of good quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be
made to the compiler default if it is beneficial for most programs. If the root cause of
a performance problem is a poor choice on the part of the compiler, using different
switches or compiling the targeted module with a different compiler may be the solu-
tion.

3.1.3 VTune™ Performance Analyzer

VTune uses performance monitoring hardware to collect statistics and coding infor-
mation of your application and its interaction with the microarchitecture. This allows
software engineers to measure performance characteristics of the workload for a
given microarchitecture. VTune supports Intel Core i7 processors, Intel Core microar-
chitecture, Intel NetBurst microarchitecture, Intel Core Duo, Intel Core Solo, and
Pentium M processor families.

The VTune Performance Analyzer provides two kinds of feedback:

®* indication of a performance improvement gained by using a specific coding
recommendation or microarchitectural feature

3-2

GENERAL OPTIMIZATION GUIDELINES

* information on whether a change in the program has improved or degraded
performance with respect to a particular metric

The VTune Performance Analyzer also provides measures for a number of workload
characteristics, including:

* retirement throughput of instruction execution as an indication of the degree of
extractable instruction-level parallelism in the workload

® data traffic locality as an indication of the stress point of the cache and memory
hierarchy

* data traffic parallelism as an indication of the degree of effectiveness of amorti-
zation of data access latency

NOTE

Improving performance in one part of the machine does not
necessarily bring significant gains to overall performance. It is
possible to degrade overall performance by improving performance
for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of
the VTune Performance Analyzer events that provide measurable data on the perfor-
mance gain achieved by following the recommendations. For more on using the
VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES

Many coding recommendations for Intel Core microarchitecture work well across
Intel Core i7, Pentium M, Intel Core Solo, Intel Core Duo processors and processors
based on Intel NetBurst microarchitecture. However, there are situations where a
recommendation may benefit one microarchitecture more than another. Some of
these are:

® Instruction decode throughput is important for processors based on Intel Core i7
processors, Intel Core microarchitecture (Pentium M, Intel Core Solo, and Intel
Core Duo processors). Taking advantage of decoded ICache, Loop Stream
Detector and macrofusion can further improve front end performance.

®* Generating code with a 4-1-1 template (instruction with four pLops followed by
two instructions with one pop each) helps the Pentium M processor.

Intel Core Solo and Intel Core Duo processors have an enhanced front end that
is less sensitive to the 4-1-1 template. Processors based on Intel Core microar-
chitecture have 4 decoders and employ micro-fusion and macro-fusion so that

each of three simple decoders are not restricted to handling simple instructions
consisting of one pop.

3-3

GENERAL OPTIMIZATION GUIDELINES

Taking advantage of micro-fusion will increase decoder throughput across Intel
Core Solo, Intel Core Duo and Intel Core2 Duo processors. Taking advantage of
macro-fusion can improve decoder throughput further on Intel Core 2 Duo
processor family. Taking advantage of macro-fusion can improve decoder
throughput in both 64-bit and 32-bit code for Intel microarchitecture code name
Nehalem.

® On processors based on Intel microarchitecture code name Sandy Bridge, the
code size for optimal front end performance is associated with the decode
ICache.

®* Dependencies for partial register writes incur large penalties when using the
Pentium M processor (this applies to processors with CPUID signature family 6,
model 9). On Pentium 4, Intel Xeon processors, Pentium M processor (with
CPUID signature family 6, model 13), such penalties are relieved by artificial
dependencies between each partial register write. Intel Core Solo, Intel Core Duo
processors and processors based on Intel Core microarchitecture can experience
minor delays due to partial register stalls. To avoid false dependences from
partial register updates, use full register updates and extended moves.

®* Use appropriate instructions that support dependence-breaking (PXOR, SUB,
XOR instructions). Dependence-breaking support for XORPS is available in Intel
Core Solo, Intel Core Duo processors and processors based on Intel Core
microarchitecture.

®* Hardware prefetching can reduce the effective memory latency for data and
instruction accesses in general. But different microarchitectures may require
some custom modifications to adapt to the specific hardware prefetch implemen-
tation of each microarchitecture.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy

When optimum performance on all processor generations is desired, applications can
take advantage of the CPUID instruction to identify the processor generation and
integrate processor-specific instructions into the source code. The Intel C++
Compiler supports the integration of different versions of the code for different target
processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be
generated under the control of the programmer or by the compiler.

For applications that target multiple generations of microarchitectures, and where
minimum binary code size and single code path is important, a compatible code
strategy is the best. Optimizing applications using techniques developed for the Intel
Core microarchitecture and combined with some for Intel NetBurst microarchitecture
are likely to improve code efficiency and scalability when running on processors
based on current and future generations of Intel 64 and IA-32 processors. This
compatible approach to optimization is also likely to deliver high performance on
Pentium M, Intel Core Solo and Intel Core Duo processors.

3-4

GENERAL OPTIMIZATION GUIDELINES

3.2.2 Transparent Cache-Parameter Strategy

If the CPUID instruction supports function leaf 4, also known as deterministic cache
parameter leaf, the leaf reports cache parameters for each level of the cache hier-
archy in a deterministic and forward-compatible manner across Intel 64 and IA-32
processor families.

For coding techniques that rely on specific parameters of a cache level, using the
deterministic cache parameter allows software to implement techniques in a way that
is forward-compatible with future generations of Intel 64 and IA-32 processors, and
cross-compatible with processors equipped with different cache sizes.

3.2.3 Threading Strategy and Hardware Multithreading Support

Intel 64 and IA-32 processor families offer hardware multithreading support in two
forms: dual-core technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and
future generations of Intel 64 and IA-32 processors, software must embrace a
threaded approach in application design. At the same time, to address the widest
range of installed machines, multi-threaded software should be able to run without
failure on a single processor without hardware multithreading support and should
achieve performance on a single logical processor that is comparable to an
unthreaded implementation (if such comparison can be made). This generally
requires architecting a multi-threaded application to minimize the overhead of thread
synchronization. Additional guidelines on multithreading are discussed in Chapter 8,
“Multicore and Hyper-Threading Technology.”

3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS

This section includes rules, suggestions and hints. They are targeted for engineers
who are:

®* modifying source code to enhance performance (user/source rules)
* writing assemblers or compilers (assembly/compiler rules)

®* doing detailed performance tuning (tuning suggestions)

Coding recommendations are ranked in importance using two measures:

®* Local impact (high, medium, or low) refers to a recommendation’s affect on the
performance of a given instance of code.

® Generality (high, medium, or low) measures how often such instances occur
across all application domains. Generality may also be thought of as “frequency”.

These recommendations are approximate. They can vary depending on coding style,
application domain, and other factors.

3-5

GENERAL OPTIMIZATION GUIDELINES

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the
relative level of performance gain one can expect if a recommendation is imple-
mented.

Because it is not possible to predict the frequency of a particular code instance in
applications, priority hints cannot be directly correlated to application-level perfor-
mance gain. In cases in which application-level performance gain has been observed,
we have provided a quantitative characterization of the gain (for information only).
In cases in which the impact has been deemed inapplicable, no priority is assigned.

3.4 OPTIMIZING THE FRONT END

Optimizing the front end covers two aspects:

®* Maintaining steady supply of pops to the execution engine — Mispredicted
branches can disrupt streams of pops, or cause the execution engine to waste
execution resources on executing streams of pops in the non-architected code
path. Much of the tuning in this respect focuses on working with the Branch
Prediction Unit. Common techniques are covered in Section 3.4.1, “Branch
Prediction Optimization.”

® Supplying streams of [Lops to utilize the execution bandwidth and retirement
bandwidth as much as possible — For Intel Core microarchitecture and Intel Core
Duo processor family, this aspect focuses maintaining high decode throughput.
In Intel microarchitecture code name Sandy Bridge, this aspect focuses on
keeping the hod code running from Decoded ICache. Techniques to maximize
decode throughput for Intel Core microarchitecture are covered in Section 3.4.2,
“Fetch and Decode Optimization.”

3.4.1 Branch Prediction Optimization

Branch optimizations have a significant impact on performance. By understanding
the flow of branches and improving their predictability, you can increase the speed of
code significantly.

Optimizations that help branch prediction are:

®* Keep code and data on separate pages. This is very important; see Section 3.6,
“Optimizing Memory Accesses,” for more information.

® Eliminate branches whenever possible.

®* Arrange code to be consistent with the static branch prediction algorithm.
® Use the PAUSE instruction in spin-wait loops.

® Inline functions and pair up calls and returns.

®* Unroll as necessary so that repeatedly-executed loops have sixteen or fewer
iterations (unless this causes an excessive code size increase).

3-6

GENERAL OPTIMIZATION GUIDELINES

® Separate branches so that they occur no more frequently than every three pops
where possible.

34.1.1 Eliminating Branches

Eliminating branches improves performance because:
® It reduces the possibility of mispredictions.

® Itreduces the number of required branch target buffer (BTB) entries. Conditional
branches, which are never taken, do not consume BTB resources.

There are four principal ways of eliminating branches:

®* Arrange code to make basic blocks contiguous.

®* Unroll loops, as discussed in Section 3.4.1.7, “Loop Unrolling.”
® Use the CMOV instruction.

® Use the SETCC instruction.

The following rules apply to branch elimination:

Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code
to make basic blocks contiguous and eliminate unnecessary branches.

For the Pentium M processor, every branch counts. Even correctly predicted branches
have a negative effect on the amount of useful code delivered to the processor. Also,
taken branches consume space in the branch prediction structures and extra
branches create pressure on the capacity of the structures.

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC
and CMOV instructions to eliminate unpredictable conditional branches where
possible. Do not do this for predictable branches. Do not use these instructions to
eliminate all unpredictable conditional branches (because using these instructions
will incur execution overhead due to the requirement for executing both paths of a
conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability
of the out-of-order engine. When tuning, note that all Intel 64 and IA-32 processors
usually have very high branch prediction rates. Consistently mispredicted branches
are generally rare. Use these instructions only if the increase in computation time is
less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the constants:
X =(A<B)?CONST1:CONSTZ;

This code conditionally compares two values, A and B. If the condition is true, X is set
to CONST1; otherwise it is set to CONST2. An assembly code sequence equivalent to
the above C code can contain branches that are not predictable if there are no corre-
lation in the two values.

3-7

GENERAL OPTIMIZATION GUIDELINES

Example 3-1 shows the assembly code with unpredictable branches. The unpredict-
able branches can be removed with the use of the SETCC instruction. Example 3-2
shows optimized code that has no branches.

Example 3-1. Assembly Code with an Unpredictable Branch

cmpa, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch
L30:
mov ebx, const2
L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cnp A B
setge bl ;Whenebx=0or1

; OR the complement condition
sub ebx, 1 ;ebx=11..11 or 00..00

and ebx, CONST3; CONST3 = CONST1-CONST2
add ebx, CONSTZ2; ebx=CONST1 or CONST2

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is
greater than or equal to B, EBX is set to one. Then EBX is decreased and AND’d with
the difference of the constant values. This sets EBX to either zero or the difference of
the values. By adding CONST2 back to EBX, the correct value is written to EBX. When
CONST?2 is equal to zero, the last instruction can be deleted.

Another way to remove branches on Pentium II and subsequent processors is to use
the CMOV and FCMOV instructions. Example 3-3 shows how to change a TEST and
branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and
is representative of an unpredictable branch.

3-8

GENERAL OPTIMIZATION GUIDELINES

Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx
jne TH
mov eax, ebx
1H:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag
test ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move
; ebx to eax- the TH: tag no longer needed

The CMOV and FCMOQV instructions are available on the Pentium II and subsequent
processors, but not on Pentium processors and earlier IA-32 processors. Be sure to
check whether a processor supports these instructions with the CPUID instruction.

34.1.2 Spin-Wait and Idle Loops

The Pentium 4 processor introduces a new PAUSE instruction; the instruction is
architecturally a NOP on Intel 64 and IA-32 processor implementations.

To the Pentium 4 and later processors, this instruction acts as a hint that the code
sequence is a spin-wait loop. Without a PAUSE instruction in such loops, the Pentium
4 processor may suffer a severe penalty when exiting the loop because the processor
may detect a possible memory order violation. Inserting the PAUSE instruction
significantly reduces the likelihood of a memory order violation and as a result
improves performance.

In Example 3-4, the code spins until memory location A matches the value stored in
the register EAX. Such code sequences are common when protecting a critical
section, in producer-consumer sequences, for barriers, or other synchronization.

Example 3-4. Use of PAUSE Instruction

lock: cmpeax, a

jne loop

; Code in critical section:
loop: pause

cmp eax, a

jne loop

jmp lock

3.4.1.3 Static Prediction

Branches that do not have a history in the BTB (see Section 3.4.1, “"Branch Prediction
Optimization”) are predicted using a static prediction algorithm. Pentium 4,

3-9

GENERAL OPTIMIZATION GUIDELINES

Pentium M, Intel Core Solo and Intel Core Duo processors have similar static predic-
tion algorithms that:

® predict unconditional branches to be taken
® predict indirect branches to be NOT taken

In addition, conditional branches in processors based on the Intel NetBurst microar-
chitecture are predicted using the following static prediction algorithm:

* predict backward conditional branches to be taken; rule is suitable for loops
* predict forward conditional branches to be NOT taken

Pentium M, Intel Core Solo and Intel Core Duo processors do not statically predict
conditional branches according to the jump direction. All conditional branches are
dynamically predicted, even at first appearance.

The following rule applies to static elimination.

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to
be consistent with the static branch prediction algorithm: make the fall-through
code following a conditional branch be the likely target for a branch with a forward
target, and make the fall-through code following a conditional branch be the
unlikely target for a branch with a backward target.

Example 3-5 illustrates the static branch prediction algorithm. The body of an IF-
THEN conditional is predicted.

Example 3-5. Pentium 4 Processor Static Branch Prediction Algorithm

//Forward condition branches not taken (fall through)
IF<condition> {....

l
}

IF<condition> {...
2
}

//Backward conditional branches are taken
LOOP{..
T — }<condition>

//Unconditional branches taken
JMP

Examples 3-6 and Example 3-7 provide basic rules for a static prediction algorithm.
In Example 3-6, the backward branch (JC BEGIN) is not in the BTB the first time

3-10

GENERAL OPTIMIZATION GUIDELINES

through; therefore, the BTB does not issue a prediction. The static predictor,
however, will predict the branch to be taken, so a misprediction will not occur.

Example 3-6. Static Taken Prediction

Begin: mov eax, mem32

and eax, ebx
imul eax, edx
shid eax, 7
jc Begin

The first branch instruction (JC BEGIN) in Example 3-7 is a conditional forward
branch. It is not in the BTB the first time through, but the static predictor will predict
the branch to fall through. The static prediction algorithm correctly predicts that the
CALL CONVERT instruction will be taken, even before the branch has any branch
history in the BTB.

Example 3-7. Static Not-Taken Prediction

mov eax, mem32

and eax, ebx

imul eax, edx

shid eax, 7

jc Begin

mov eax, 0
Begin: call Convert

The Intel Core microarchitecture does not use the static prediction heuristic.
However, to maintain consistency across Intel 64 and IA-32 processors, software
should maintain the static prediction heuristic as the default.

34.14 Inlining, Calls and Returns

The return address stack mechanism augments the static and dynamic predictors to
optimize specifically for calls and returns. It holds 16 entries, which is large enough
to cover the call depth of most programs. If there is a chain of more than 16 nested
calls and more than 16 returns in rapid succession, performance may degrade.

The trace cache in Intel NetBurst microarchitecture maintains branch prediction
information for calls and returns. As long as the trace with the call or return remains
in the trace cache and the call and return targets remain unchanged, the depth limit
of the return address stack described above will not impede performance.

To enable the use of the return stack mechanism, calls and returns must be matched
in pairs. If this is done, the likelihood of exceeding the stack depth in a manner that
will impact performance is very low.

3-11

GENERAL OPTIMIZATION GUIDELINES

The following rules apply to inlining, calls, and returns.

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near calls
must be matched with near returns, and far calls must be matched with far returns.
Pushing the return address on the stack and jumping to the routine to be called is
not recommended since it creates a mismatch in calls and returns.

Calls and returns are expensive; use inlining for the following reasons:
® Parameter passing overhead can be eliminated.
®* In a compiler, inlining a function exposes more opportunity for optimization.

® If the inlined routine contains branches, the additional context of the caller may
improve branch prediction within the routine.

®* A mispredicted branch can lead to performance penalties inside a small function
that are larger than those that would occur if that function is inlined.

Assembly/Compiler Coding Rule 5. (MH impact, MH generality) Selectively
inline a function if doing so decreases code size or if the function is small and the
call site is frequently executed.

Assembly/Compiler Coding Rule 6. (H impact, H generality) Do not inline a
function if doing so increases the working set size beyond what will fit in the trace
cache.

Assembly/Compiler Coding Rule 7. (ML impact, ML generality) If there are
more than 16 nested calls and returns in rapid succession; consider transforming
the program with inline to reduce the call depth.

Assembly/Compiler Coding Rule 8. (ML impact, ML generality) Favor inlining
small functions that contain branches with poor prediction rates. If a branch
misprediction results in a RETURN being prematurely predicted as taken, a
performance penalty may be incurred.)

Assembly/Compiler Coding Rule 9. (L impact, L generality) If the last
statement in a function is a call to another function, consider converting the call to
a jump. This will save the call/return overhead as well as an entry in the return
stack buffer.

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put
more than four branches in a 16-byte chunk.

Assembly/Compiler Coding Rule 11. (M impact, L generality) Do not put
more than two end loop branches in a 16-byte chunk.

3.4.1.5 Code Alignment

Careful arrangement of code can enhance cache and memory locality. Likely
sequences of basic blocks should be laid out contiguously in memory. This may
involve removing unlikely code, such as code to handle error conditions, from the
sequence. See Section 3.7, “Prefetching,” on optimizing the instruction prefetcher.

3-12

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 12. (M impact, H generality) All branch
targets should be 16-byte aligned.

Assembly/Compiler Coding Rule 13. (M impact, H generality) If the body of a
conditional is not likely to be executed, it should be placed in another part of the
program. If it is highly unlikely to be executed and code locality is an issue, it
should be placed on a different code page.

3.4.1.6 Branch Type Selection

The default predicted target for indirect branches and calls is the fall-through path.

Fall-through prediction is overridden if and when a hardware prediction is available

for that branch. The predicted branch target from branch prediction hardware for an
indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch
prediction is available, due to poor code locality or pathological branch conflict prob-
lems. For indirect calls, predicting the fall-through path is usually not an issue, since
execution will likely return to the instruction after the associated return.

Placing data immediately following an indirect branch can cause a performance
problem. If the data consists of all zeros, it looks like a long stream of ADDs to
memory destinations and this can cause resource conflicts and slow down branch
recovery. Also, data immediately following indirect branches may appear as branches
to the branch predication hardware, which can branch off to execute other data
pages. This can lead to subsequent self-modifying code problems.

Assembly/Compiler Coding Rule 14. (M impact, L generality) When indirect
branches are present, try to put the most likely target of an indirect branch
immediately following the indirect branch. Alternatively, if indirect branches are
common but they cannot be predicted by branch prediction hardware, then follow
the indirect branch with a UD2 instruction, which will stop the processor from
decoding down the fall-through path.

Indirect branches resulting from code constructs (such as switch statements,
computed GOTOs or calls through pointers) can jump to an arbitrary number of loca-
tions. If the code sequence is such that the target destination of a branch goes to the
same address most of the time, then the BTB will predict accurately most of the time.
Since only one taken (non-fall-through) target can be stored in the BTB, indirect
branches with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing additional
conditional branches. Adding a conditional branch to a target is fruitful if:

®* The branch direction is correlated with the branch history leading up to that
branch; that is, not just the last target, but how it got to this branch.

®* The source/target pair is common enough to warrant using the extra branch
prediction capacity. This may increase the number of overall branch mispredic-
tions, while improving the misprediction of indirect branches. The profitability is
lower if the number of mispredicting branches is very large.

3-13

GENERAL OPTIMIZATION GUIDELINES

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has
two or more common taken targets and at least one of those targets is correlated
with branch history leading up to the branch, then convert the indirect branch to a
tree where one or more indirect branches are preceded by conditional branches to
those targets. Apply this "peeling” procedure to the common target of an indirect
branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions by enhancing
the predictability of branches (even at the expense of adding more branches). The
added branches must be predictable for this to be worthwhile. One reason for such
predictability is a strong correlation with preceding branch history. That is, the direc-
tions taken on preceding branches are a good indicator of the direction of the branch
under consideration.

Example 3-8 shows a simple example of the correlation between a target of a
preceding conditional branch and a target of an indirect branch.

Example 3-8. Indirect Branch With Two Favored Targets

function ()
{
int n = rand(); // random integer O to RAND_MAX
if (1(n&0x01)){ //n will be O half the times
n=0; // updates branch history to predict taken
}

// indirect branches with multiple taken targets
// may have lower prediction rates

switch (n) {
case 0: handle_0(); break; // common target, correlated with
// branch history that is forward taken
case 1: handle_1(); break; // uncommon
case 3: handle_3(); break; // uncommon
default: handle_other(); // common target

}

Correlation can be difficult to determine analytically, for a compiler and for an
assembly language programmer. It may be fruitful to evaluate performance with and
without peeling to get the best performance from a coding effort.

An example of peeling out the most favored target of an indirect branch with corre-
lated branch history is shown in Example 3-9.

3-14

GENERAL OPTIMIZATION GUIDELINES

Example 3-9. A Peeling Technique to Reduce Indirect Branch Misprediction

function ()
{
int n = rand(); // Random integer O to RAND_MAX
if(!(n & 0x01)) THEN
n=0; /1 n will be O half the times
if (In) THEN
handle_0(); // Peel out the most common target

{
switch (n) {
case 1: handle_1(); break; // Uncommon
case 3: handle_3(); break; // Uncommon
default: handle_other(); /1 Make the favored target in
// the fall-through path

}

}

// with correlated branch history

3.4.1.7 Loop Unrolling

Benefits of unrolling loops are:

Unrolling amortizes the branch overhead, since it eliminates branches and some
of the code to manage induction variables.

Unrolling allows one to aggressively schedule (or pipeline) the loop to hide
latencies. This is useful if you have enough free registers to keep variables live as
you stretch out the dependence chain to expose the critical path.

Unrolling exposes the code to various other optimizations, such as removal of
redundant loads, common subexpression elimination, and so on.

The Pentium 4 processor can correctly predict the exit branch for an inner loop
that has 16 or fewer iterations (if that number of iterations is predictable and
there are no conditional branches in the loop). So, if the loop body size is not
excessive and the probable number of iterations is known, unroll inner loops until
they have a maximum of 16 iterations. With the Pentium M processor, do not
unroll loops having more than 64 iterations.

The potential costs of unrolling loops are:

Excessive unrolling or unrolling of very large loops can lead to increased code
size. This can be harmful if the unrolled loop no longer fits in the trace cache (TC).

Unrolling loops whose bodies contain branches increases demand on BTB
capacity. If the number of iterations of the unrolled loop is 16 or fewer, the branch

3-15

GENERAL OPTIMIZATION GUIDELINES

predictor should be able to correctly predict branches in the loop body that
alternate direction.

Assembly/Compiler Coding Rule 15. (H impact, M generality) Unroll small
loops until the overhead of the branch and induction variable accounts (generally)
for less than 10% of the execution time of the loop.

Assembly/Compiler Coding Rule 16. (H impact, M generality) Avoid unrolling
loops excessively; this may thrash the trace cache or instruction cache.

Assembly/Compiler Coding Rule 17. (M impact, M generality) Unroll loops
that are frequently executed and have a predictable number of iterations to reduce
the number of iterations to 16 or fewer. Do this unless it increases code size so that
the working set no longer fits in the trace or instruction cache. If the loop body
contains more than one conditional branch, then unroll so that the number of
iterations is 16/(# conditional branches).

Example 3-10 shows how unrolling enables other optimizations.

Example 3-10. Loop Unrolling

Before unrolling:
doi=1,100
if (imod2==0)thena(i)=x
elsea(i)=y
enddo
After unrolling
doi=1,100,2
a(i)=y
a(i+1)=x
enddo

In this example, the loop that executes 100 times assigns X to every even-numbered
element and Y to every odd-numbered element. By unrolling the loop you can make
assignments more efficiently, removing one branch in the loop body.

3.4.1.8 Compiler Support for Branch Prediction

Compilers generate code that improves the efficiency of branch prediction in the
Pentium 4, Pentium M, Intel Core Duo processors and processors based on Intel Core
microarchitecture. The Intel C++ Compiler accomplishes this by:

®* keeping code and data on separate pages

® using conditional move instructions to eliminate branches

®* generating code consistent with the static branch prediction algorithm
®* inlining where appropriate

® unrolling if the number of iterations is predictable

3-16

GENERAL OPTIMIZATION GUIDELINES

With profile-guided optimization, the compiler can lay out basic blocks to eliminate
branches for the most frequently executed paths of a function or at least improve
their predictability. Branch prediction need not be a concern at the source level. For
more information, see Intel C++ Compiler documentation.

34.2 Fetch and Decode Optimization

Intel Core microarchitecture provides several mechanisms to increase front end
throughput. Techniques to take advantage of some of these features are discussed
below.

34.2.1 Optimizing for Micro-fusion

An Instruction that operates on a register and a memory operand decodes into more
pops than its corresponding register-register version. Replacing the equivalent work
of the former instruction using the register-register version usually require a
sequence of two instructions. The latter sequence is likely to result in reduced fetch
bandwidth.

Assembly/Compiler Coding Rule 18. (ML impact, M generality) For improving
fetch/decode throughput, Give preference to memory flavor of an instruction over
the register-only flavor of the same instruction, if such instruction can benefit from
micro-fusion.

The following examples are some of the types of micro-fusions that can be handled
by all decoders:

* All stores to memory, including store immediate. Stores execute internally as two
separate pops: store-address and store-data.
* All “read-modify” (load+op) instructions between register and memory, for
example:
ADDPS XMMS9, OWORD PTR [RSP+40]
FADD DOUBLE PTR [RDI+RSI*8]
XOR RAX, QWORD PTR [RBP+32]

® All instructions of the form “load and jump,” for example:
JMP [RDI+200]
RET

® CMP and TEST with immediate operand and memory

An Intel 64 instruction with RIP relative addressing is not micro-fused in the following
cases:
®* When an additional immediate is needed, for example:
CMP [RIP+400], 27
MoV [RIP+3000], 142
® When an RIP is needed for control flow purposes, for example:
JMP [RIP+5000000]

3-17

GENERAL OPTIMIZATION GUIDELINES

In these cases, Intel Core Microarchitecture and Intel microarchitecture code name
Sandy Bridge provides a 2 pop flow from decoder 0, resulting in a slight loss of
decode bandwidth since 2 pop flow must be steered to decoder 0 from the decoder
with which it was aligned.

RIP addressing may be common in accessing global data. Since it will not benefit
from micro-fusion, compiler may consider accessing global data with other means of
memory addressing.

34.2.2 Optimizing for Macro-fusion

Macro-fusion merges two instructions to a single pop. Intel Core Microarchitecture
performs this hardware optimization under limited circumstances.

The first instruction of the macro-fused pair must be a CMP or TEST instruction. This
instruction can be REG-REG, REG-IMM, or a micro-fused REG-MEM comparison. The
second instruction (adjacent in the instruction stream) should be a conditional
branch.

Since these pairs are common ingredient in basic iterative programming sequences,
macro-fusion improves performance even on un-recompiled binaries. All of the
decoders can decode one macro-fused pair per cycle, with up to three other instruc-
tions, resulting in a peak decode bandwidth of 5 instructions per cycle.

Each macro-fused instruction executes with a single dispatch. This process reduces
latency, which in this case shows up as a cycle removed from branch mispredict
penalty. Software also gain all other fusion benefits: increased rename and retire
bandwidth, more storage for instructions in-flight, and power savings from repre-
senting more work in fewer bits.

The following list details when you can use macro-fusion:
® CMP or TEST can be fused when comparing:

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REC. For example: CMP [EAX],ECX; JZ label

® TEST can fused with all conditional jumps.
® CMP can be fused with only the following conditional jumps in Intel Core microar-

chitecture. These conditional jumps check carry flag (CF) or zero flag (ZF). jump.
The list of macro-fusion-capable conditional jumps are:

JA or JNBE

JAE or JNB or JNC
JEor)z

JNA or |BE
JNAEorJCor |B
JNE or INZ

3-18

GENERAL OPTIMIZATION GUIDELINES

CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ
label). Macro-fusion is not supported in 64-bit mode for Intel Core microarchitecture.

® Intel microarchitecture code name Nehalem supports the following enhance-
ments in macrofusion:

— CMP can be fused with the following conditional jumps (that was not
supported in Intel Core microarchitecture):

¢ JLor IJNGE
* JGE or JNL
* JLE or ING
¢ JGorJNLE

— Macro-fusion is support in 64-bit mode.

®* Enhanced macrofusion support in Intel microarchitecture code name Sandy
Bridge is summarized in Table 3-1 with additional information in Section 2.1.2.1
and Example 3-15:

Table 3-1. Macro-Fusible Instructions in Intel microarchitecture code name Sandy

Bridge

Instructions TEST AND CMP ADD SuB INC DEC
JO/JNO Y Y N N N N N
JC/)B/JAE/INB Y Y Y Y Y N N
JE/)Z/INE/INZ Y Y Y Y Y Y Y
JNA/|BE/JA/JNBE Y Y Y Y Y N N
JS/INS/JP/IPE/INP/JPO | Y Y N N N N N
JU/INGE/|GE/JNU/JLE/IN | Y Y Y Y Y Y Y
G/JG/JNLE

Assembly/Compiler Coding Rule 19. (M impact, ML generality) Employ
macro-fusion where possible using instruction pairs that support macro-fusion.
Prefer TEST over CMP if possible. Use unsigned variables and unsigned jumps when

3-19

GENERAL OPTIMIZATION GUIDELINES

possible. Try to logically verify that a variable is non-negative at the time of
comparison. Avoid CMP or TEST of MEM-IMM flavor when possible. However, do not
add other instructions to avoid using the MEM-IMM flavor.

Example 3-11. Macro-fusion, Unsigned Iteration Count

Without Macro-fusion With Macro-fusion
C code for (int" i = 0;i < 1000; i++) for (unsigned int® i = 0;i < 1000; i++)
a++; a++;
Disassembly | for (inti=0;i< 1000; i++) for (unsigned inti=0; i < 1000; i++)
mov dwordptr[i], 0 mov dwordptr[i], O
jmp First jmp First
Loop: Loop:
mov eax, dword ptr[i] mov eax, dword ptr[i]
add eax, 1 add eax, 1
mov dword ptr [i], eax mov dword ptr [i], eax
First: First:
cmp dword ptr [i], 3€8H3 cmp eax, 3E8H*
jge End jae End
a++; a++;
mov eax, dwordptr[a] mov eax, dwordptr[a]
addqq eax,1 add eax, 1
mov dword ptr [a], eax mov dword ptr [a], eax
jmp Loop jmp Loop
End: End:

NOTES:

1. Signed iteration count inhibits macro-fusion

2. Unsigned iteration count is compatible with macro-fusion
3. CMP MEM-IMM, |GE inhibit macro-fusion

4, CMP REG-IMM, JAE permits macro-fusion

Example 3-12. Macro-fusion, If Statement

Without Macro-fusion With Macro-fusion
C code int'a=7; unsigned int?a = 7;
if(a<77) if(a<77)
a++; a++:
else else
a-; a--;

3-20

Example 3-12. Macro-fusion, If Statement (Contd.)

GENERAL OPTIMIZATION GUIDELINES

With Macro-fusion

Without Macro-fusion
Disassembly | inta=7;

mov dwordptr[al, 7
if (@<77)
cmp dword ptr[a], 4DH 3
jge Dec

a++"
mov eax, dword ptr[a]
add eax, 1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
mov eax, dword ptr[a]
sub eax, 1
mov dword ptr [a], eax
End::

unsigned inta =7;
mov dwordptr{al 7

if(a<77)
mov eax, dword ptr[a]
cnp eax, 4DH
jae Dec
at+;
add eax, 1

mov dword ptr [a], eax
else

jmp End
a-;

Dec:

sub eax, 1

mov dword ptr [a], eax
End::

NOTES:
1. Signed iteration count inhibits macro-fusion

2. Unsigned iteration count is compatible with macro-fusion

3. CMP MEM-IMM, JGE inhibit macro-fusion

Assembly/Compiler Coding Rule 20. (M impact, ML generality) Software can

enable macro fusion when it can be logically determined that a variable is non-

negative at the time of comparison; use TEST appropriately to enable macro-fusion

when comparing a variable with 0.

Example 3-13. Macro-fusion, Signed Variable

With Macro-fusion

Without Macro-fusion
test ecx, ecx

jle OutSideThelF
cmp ecx, 64H

jge OutSideThelF
<|F BLOCK CODE>
OutSideThelF:

test ecx, ecx

jle OutSideThelF
cmp ecx, 64H

jae OutSideThelF
<|F BLOCK CODE>
OutSideThelF:

For either signed or unsigned variable ‘a’; "CMP a,0” and “"TEST a,a” produce the
same result as far as the flags are concerned. Since TEST can be macro-fused more

3-21

GENERAL OPTIMIZATION GUIDELINES

often, software can use “TEST a,a” to replace “"CMP a,0"” for the purpose of enabling
macro-fusion.

Example 3-14. Macro-fusion, Signed Comparison

C Code Without Macro-fusion With Macro-fusion
if @==0) cmpa, 0 testa, a

jne lbl jne lbl

Ibl: Ibl:
if (a>=0) cmpa, 0 testa, a

jlibl; jl bl

Ibl: Ibl:

Intel microarchitecture code name Sandy Bridge enables more arithmetic and logic
instructions to macro-fuse with conditional branches. In loops where the ALU ports
are already congested, performing one of these macro-fusions can relieve the pres-
sure, as the macro-fused instruction consumes only port 5, instead of an ALU port
plus port 5.

In Example 3-15, the “add/cmp/jnz” loop contains two ALU instructions that can be
dispatched via either port 0, 1, 5. So there is higher probability of port 5 might bind
to either ALU instruction causing JNZ to wait a cycle. The “sub/jnz" loop, the likeli-
hood of ADD/SUB/INZ can be dispatched in the same cycle is increased because only
SUB is free to bind with either port 0, 1, 5.

Example 3-15. Additional Macro-fusion Benefit in Intel microarchitecture code name Sandy
Bridge

Add + cmp + jnz alternative Loop control with sub + jnz
lea rdx, buff lea rdx, buff - 4

xor rcx, rex xor rcx, LEN

xor eax, eax xor eax, eax

loop: loop:

add eax, [rdx + 4 * rcx] add eax, [rdx + 4 * rcx]
add rcx, 1 sub rex, 1

cmp rcx, LEN jnz loop

jnz loop

34.23 Length-Changing Prefixes (LCP)

The length of an instruction can be up to 15 bytes in length. Some prefixes can
dynamically change the length of an instruction that the decoder must recognize.
Typically, the pre-decode unit will estimate the length of an instruction in the byte

3-22

GENERAL OPTIMIZATION GUIDELINES

stream assuming the absence of LCP. When the predecoder encounters an LCP in the
fetch line, it must use a slower length decoding algorithm. With the slower length
decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the
usual 1 cycle. Normal queuing throughout of the machine pipeline generally cannot
hide LCP penalties.

The prefixes that can dynamically change the length of a instruction include:
® operand size prefix (0x66)
® address size prefix (0x67)

The instruction MOV DX, 01234h is subject to LCP stalls in processors based on Intel
Core microarchitecture, and in Intel Core Duo and Intel Core Solo processors.
Instructions that contain imm16 as part of their fixed encoding but do not require LCP
to change the immediate size are not subject to LCP stalls. The REX prefix (4xh) in
64-bit mode can change the size of two classes of instruction, but does not cause an
LCP penalty.

If the LCP stall happens in a tight loop, it can cause significant performance degrada-
tion. When decoding is not a bottleneck, as in floating-point heavy code, isolated LCP
stalls usually do not cause performance degradation.

Assembly/Compiler Coding Rule 21. (MH impact, MH generality) Favor
generating code using imm8 or imm32 values instead of imm16 values.

If imm16 is needed, load equivalent imm32 into a register and use the word value in
the register instead.

Double LCP Stalls

Instructions that are subject to LCP stalls and cross a 16-byte fetch line boundary can
cause the LCP stall to trigger twice. The following alignment situations can cause LCP
stalls to trigger twice:

®* Aninstruction is encoded with a MODR/M and SIB byte, and the fetch line
boundary crossing is between the MODR/M and the SIB bytes.

®* Aninstruction starts at offset 13 of a fetch line references a memory location
using register and immediate byte offset addressing mode.

The first stall is for the 1st fetch line, and the 2nd stall is for the 2nd fetch line. A
double LCP stall causes a decode penalty of 11 cycles.

The following examples cause LCP stall once, regardless of their fetch-line location of
the first byte of the instruction:

ADD DX, 01234H

ADD word ptr [EDX], 01234H

ADD word ptr 012345678H[EDX], 01234H

ADD word ptr [012345678H], 01234H

The following instructions cause a double LCP stall when starting at offset 13 of a
fetch line:

ADD word ptr [EDX+ESI], 01234H

3-23

GENERAL OPTIMIZATION GUIDELINES

ADD word ptr 012H[EDX], 01234H
ADD word ptr 012345678H[EDX+ESI], 01234H

To avoid double LCP stalls, do not use instructions subject to LCP stalls that use SIB
byte encoding or addressing mode with byte displacement.

False LCP Stalls

False LCP stalls have the same characteristics as LCP stalls, but occur on instructions
that do not have any imm16 value.

False LCP stalls occur when (a) instructions with LCP that are encoded using the F7
opcodes, and (b) are located at offset 14 of a fetch line. These instructions are: not,
neg, div, idiv, mul, and imul. False LCP experiences delay because the instruction
length decoder can not determine the length of the instruction before the next fetch
line, which holds the exact opcode of the instruction in its MODR/M byte.

The following techniques can help avoid false LCP stalls:

® Upcast all short operations from the F7 group of instructions to long, using the
full 32 bit version.

®* Ensure that the F7 opcode never starts at offset 14 of a fetch line.

Assembly/Compiler Coding Rule 22. (M impact, ML generality) Ensure
instructions using OxF7 opcode byte does not start at offset 14 of a fetch line; and
avoid using these instruction to operate on 16-bit data, upcast short data to 32 bits.

Example 3-16. Avoiding False LCP Delays with 0xF7 Group Instructions

A Sequence Causing Delay in the Decoder | Alternate Sequence to Avoid Delay

neg word ptr a movsx eax, word ptra
neg eax
mov word ptr a, AX

3.4.24 Optimizing the Loop Stream Detector (LSD)

Loops that fit the following criteria are detected by the LSD and replayed from the
instruction queue to feed the decoder in Intel Core microarchitecture:

® Must be less than or equal to four 16-byte fetches.

® Must be less than or equal to 18 instructions.

® Can contain no more than four taken branches and none of them can be a RET.
® Should usually have more than 64 iterations.

Loop Stream Detector in Intel microarchitecture code name Nehalem is improved by:

® Caching decoded micro-operations in the instruction decoder queue (IDQ, see
Section 2.3.2) to feed the rename/alloc stage.

® The size of the LSD is increased to 28 micro-ops.

3-24

GENERAL OPTIMIZATION GUIDELINES

Many calculation-intensive loops, searches and software string moves match these
characteristics. These loops exceed the BPU prediction capacity and always termi-
nate in a branch misprediction.

Assembly/Compiler Coding Rule 23. (MH impact, MH generality) Break up a
loop long sequence of instructions into loops of shorter instruction blocks of no
more than the size of LSD.

Assembly/Compiler Coding Rule 24. (MH impact, M generality) Avoid
unrolling loops containing LCP stalls, if the unrolled block exceeds the size of LSD.

3.4.25 Exploit LSD Micro-op Emission Bandwidth in Intel®
microarchitecture code name Sandy Bridge

The LSD holds micro-ops that construct small "infinite" loops. Micro-ops from the
LSD are allocated in the out-of-order engine. The loop in the LSD ends with a taken
branch to the beginning of the loop. The taken branch at the end of the loop is always
the last micro-op allocated in the cycle. The instruction at the beginning of the loop is
always allocated at the next cycle. If the code performance is bound by front-end
bandwidth, unused allocation slots result in a bubble in allocation, and can cause
performance degradation.

Allocation bandwidth in Intel microarchitecture code name Sandy Bridge is four
micro-ops per cycle. Performance is best, when the number of micro-ops in the LSD
result in the least number of unused allocation slots. You can use loop unrolling to
control the number of micro-ops that are in the LSD.

In the Example 3-17, the code sums all array elements. The original code adds one
element per iteration. It has three micro-ops per iteration, all allocated in one cycle.
Code throughput is one load per cycle.

When unrolling the loop once there are five micro-ops per iteration, which are allo-
cated in two cycles. Code throughput is still one load per cycle. Therefore there is no
performance gain.

When unrolling the loop twice there are seven micro-ops per iteration, still allocated
in two cycles. Since two loads can be executed in each cycle this code has a potential
throughput of three load operations in two cycles.

Example 3-17. Unrolling Loops in LSD to Optimize Emission Bandwidth

No Unrolling Unroll once Unroll Twice
Ip: add eax, [rsi + 4* rcx] Ip: add eax, [rsi + 4* rcx] Ip: add eax, [rsi + 4* rcx]
dec rcx add eax, [rsi + 4* rcx +4] add eax, [rsi + 4* rcx +4]
inzlp add rcx, -2 add eax, [rsi + 4* rcx + 8]
inzlp add rcx, -3
inzlp

3-25

GENERAL OPTIMIZATION GUIDELINES

3.4.2.6 Optimization for Decoded ICache

The decoded ICache is a new feature in Intel microarchitecture code name Sandy
Bridge. Running the code from the Decoded ICache has two advantages:

®* Higher bandwidth of micro-ops feeding the out-of-order engine.

®* The front end does not need to decode the code that is in the Decoded ICache.
This saves power.

There is overhead in switching between the Decoded ICache and the legacy decode
pipeline. If your code switches frequently between the front end and the Decoded
ICache, the penalty may be higher than running only from the legacy pipeline

To ensure “hot" code is feeding from the decoded ICache,

®* Make sure each hot code block is less than about 500 instructions. Specifically, do
not unroll to more than 500 instructions in a loop. This should enable Decoded
ICache residency even when hyper-threading is enabled.

®* For applications with very large blocks of calculations inside a loop, consider loop-
fission: split the loop into multiple loops that fit in the Decoded ICache, rather
than a single loop that overflows.

* If an application can be sure to run with only one thread per core, it can increase
hot code block size to about 1000 instructions.

Dense Read-Modify-Write Code

The Decoded ICache can hold only up to 18 micro-ops per each 32 byte aligned
memory chunk. Therefore, code with a high concentration of instructions that are
encoded in a small number of bytes, yet have many micro-ops, may overflow the 18
micro-op limitation and not enter the Decoded ICache. Read-modify-write (RMW)
instructions are a good example of such instructions.

RMW instructions accept one memory source operand, one register source operand,
and use the source memory operand as the destination. The same functionality can
be achieved by two or three instructions: the first reads the memory source operand,
the second performs the operation with the second register source operand, and the
last writes the result back to memory. These instructions usually result in the same
number of micro-ops but use more bytes to encode the same functionality.

One case where RMW instructions may be used extensively is when the compiler
optimizes aggressively for code size.

Here are some possible solutions to fit the hot code in the Decoded ICache:

® Replace RMW instructions with two or three instructions that have the same
functionality. For example, “adc [rdi], rcx™ is only three bytes long; the
equivalent sequence “adc rax, [rdi]" + “mov [rdi], rax™ has a footprint of six
bytes.

® Align the code so that the dense part is broken down among two different 32-
byte chunks. This solution is useful when using a tool that aligns code automati-
cally, and is indifferent to code changes.

3-26

GENERAL OPTIMIZATION GUIDELINES

® Spread the code by adding multiple byte NOPs in the loop. Note that this solution
adds micro-ops for execution.

Align Unconditional Branches for Decoded ICache

For code entering the Decoded ICache, each unconditional branch is the last micro-
op occupying a Decoded ICache Way. Therefore, only three unconditional branches
per a 32 byte aligned chunk can enter the Decoded ICache.

Unconditional branches are frequent in jump tables and switch declarations. Below
are examples for these constructs, and methods for writing them so that they fit in
the Decoded ICache.

Compilers create jump tables for C++ virtual class methods or DLL dispatch tables.
Each unconditional branch consumes five bytes; therefore up to seven of them can
be associated with a 32-byte chunk. Thus jump tables may not fit in the Decoded
ICache if the unconditional branches are too dense in each 32Byte-aligned chunk.
This can cause performance degradation for code executing before and after the
branch table.

The solution is to add multi-byte NOP instructions among the branches in the branch
table. This may increases code size and should be used cautiously. However, these
NOPs are not executed and therefore have no penalty in later pipe stages.

Switch-Case constructs represents a similar situation. Each evaluation of a case
condition results in an unconditional branch. The same solution of using multi-byte
NOP can apply for every three consecutive unconditional branches that fits inside an
aligned 32-byte chunk.

Two Branches in a Decoded ICache Way

The Decoded ICache can hold up to two branches in a way. Dense branches in a 32
byte aligned chunk, or their ordering with other instructions may prohibit all the
micro-ops of the instructions in the chunk from entering the Decoded ICache. This
does not happen often. When it does happen, you can space the code with NOP
instructions where appropriate. Make sure that these NOP instructions are not part of
hot code

3.4.2.7 Scheduling Rules for the Pentium M Processor Decoder

The Pentium M processor has three decoders, but the decoding rules to supply pLops
at high bandwidth are less stringent than those of the Pentium Ill processor. This
provides an opportunity to build a front-end tracker in the compiler and try to
schedule instructions correctly. The decoder limitations are:

®* The first decoder is capable of decoding one macroinstruction made up of four or
fewer Hops in each clock cycle. It can handle any number of bytes up to the
maximum of 15. Multiple prefix instructions require additional cycles.

®* The two additional decoders can each decode one macroinstruction per clock
cycle (assuming the instruction is one pop up to seven bytes in length).

® Instructions composed of more than four pops take multiple cycles to decode.

3-27

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 25. (M impact, M generality) Avoid putting
explicit references to ESP in a sequence of stack operations (POP, PUSH, CALL,
RET).

3.4.2.8 Other Decoding Guidelines

Assembly/Compiler Coding Rule 26. (ML impact, L generality) Use simple
instructions that are less than eight bytes in length.

Assembly/Compiler Coding Rule 27. (M impact, MH generality) Avoid using
prefixes to change the size of immediate and displacement.

Long instructions (more than seven bytes) limit the number of decoded instructions
per cycle on the Pentium M processor. Each prefix adds one byte to the length of
instruction, possibly limiting the decoder’s throughput. In addition, multiple prefixes
can only be decoded by the first decoder. These prefixes also incur a delay when
decoded. If multiple prefixes or a prefix that changes the size of an immediate or
displacement cannot be avoided, schedule them behind instructions that stall the
pipe for some other reason.

3.5 OPTIMIZING THE EXECUTION CORE

The superscalar, out-of-order execution core(s) in recent generations of microarchi-
tectures contain multiple execution hardware resources that can execute multiple
uops in parallel. These resources generally ensure that pops execute efficiently and
proceed with fixed latencies. General guidelines to make use of the available paral-
lelism are:

®* Follow the rules (see Section 3.4) to maximize useful decode bandwidth and front
end throughput. These rules include favouring single pop instructions and taking
advantage of micro-fusion, Stack pointer tracker and macro-fusion.

® Maximize rename bandwidth. Guidelines are discussed in this section and include
properly dealing with partial registers, ROB read ports and instructions which
causes side-effects on flags.

® Scheduling recommendations on sequences of instructions so that multiple
dependency chains are alive in the reservation station (RS) simultaneously, thus
ensuring that your code utilizes maximum parallelism.

® Avoid hazards, minimize delays that may occur in the execution core, allowing
the dispatched pops to make progress and be ready for retirement quickly.

3.5.1 Instruction Selection

Some execution units are not pipelined, this means that pops cannot be dispatched
in consecutive cycles and the throughput is less than one per cycle.

3-28

GENERAL OPTIMIZATION GUIDELINES

It is generally a good starting point to select instructions by considering the number
of pops associated with each instruction, favoring in the order of: single-pop instruc-
tions, simple instruction with less then 4 pops, and last instruction requiring microse-
guencer ROM (unops which are executed out of the microsequencer involve extra
overhead).

Assembly/Compiler Coding Rule 28. (M impact, H generality) Favor single-
micro-operation instructions. Also favor instruction with shorter latencies.

A compiler may be already doing a good job on instruction selection. If so, user inter-
vention usually is not necessary.

Assembly/Compiler Coding Rule 29. (M impact, L generality) Avoid prefixes,
especially multiple non-0F-prefixed opcodes.

Assembly/Compiler Coding Rule 30. (M impact, L generality) Do not use
many segment registers.

On the Pentium M processor, there is only one level of renaming of segment regis-
ters.

Assembly/Compiler Coding Rule 31. (ML impact, M generality) Avoid using
complex instructions (for example, enter, leave, or loop) that have more than four
uops and require multiple cycles to decode. Use sequences of simple instructions
instead.

Complex instructions may save architectural registers, but incur a penalty of 4 pops to
set up parameters for the microsequencer ROM in Intel NetBurst microarchitecture.

Theoretically, arranging instructions sequence to match the 4-1-1-1 template applies
to processors based on Intel Core microarchitecture. However, with macro-fusion
and micro-fusion capabilities in the front end, attempts to schedule instruction
sequences using the 4-1-1-1 template will likely provide diminishing returns.

Instead, software should follow these additional decoder guidelines:

* If you need to use multiple pop, non-microsequenced instructions, try to
separate by a few single pop instructions. The following instructions are
examples of multiple-pop instruction not requiring micro-sequencer:

ADC/SBB

CMOVcc

Read-modify-write instructions

* If a series of multiple-pop instructions cannot be separated, try breaking the

series into a different equivalent instruction sequence. For example, a series of
read-modify-write instructions may go faster if sequenced as a series of read-
modify + store instructions. This strategy could improve performance even if the
new code sequence is larger than the original one.

3.5.1.1 Use of the INC and DEC Instructions

The INC and DEC instructions modify only a subset of the bits in the flag register. This
creates a dependence on all previous writes of the flag register. This is especially

3-29

GENERAL OPTIMIZATION GUIDELINES

problematic when these instructions are on the critical path because they are used to
change an address for a load on which many other instructions depend.

Assembly/Compiler Coding Rule 32. (M impact, H generality) INC and DEC
instructions should be replaced with ADD or SUB instructions, because ADD and
SUB overwrite all flags, whereas INC and DEC do not, therefore creating false
dependencies on earlier instructions that set the flags.

3.5.1.2 Integer Divide

Typically, an integer divide is preceded by a CWD or CDQ instruction. Depending on
the operand size, divide instructions use DX:AX or EDX:EAX for the dividend. The
CWD or CDQ instructions sign-extend AX or EAX into DX or EDX, respectively. These
instructions have denser encoding than a shift and move would be, but they generate
the same number of micro-ops. If AX or EAX is known to be positive, replace these
instructions with:

xor dx, dx

or
xor edx, edx

Modern compilers typically can transform high-level language expression involving
integer division where the divisor is a known integer constant at compile time into a
faster sequence using IMUL instruction instead. Thus programmers should minimize
integer division expression with divisor whose value can not be known at compile
time.

Alternately, if certain known divisor value are favored over other unknown ranges,
software may consider isolating the few favored, known divisor value into constant-
divisor expressions.

Section 9.2.4 describes more detail of using MUL/IMUL to replace integer divisions.

3.5.1.3 Using LEA

In Intel microarchitecture code name Sandy Bridge, there are two significant
changes to the performance characteristics of LEA instruction:

® LEA can be dispatched via port 1 and 5 in most cases, doubling the throughput
over prior generations. However this apply only to LEA instructions with one or
two source operands.

Example 3-18. Independent Two-Operand LEA Example

mov edx, N
mov eax, X
mov ecx, Y

3-30

GENERAL OPTIMIZATION GUIDELINES

Example 3-18. Independent Two-Operand LEA Example (Contd.)

loop:
lea ecx, [ecx = ecx *2]
lea eax, [eax = eax *5]
and ecx, Oxff
and eax, Oxff
dec edx
ia loop

® For LEA instructions with three source operands and some specific situations,
instruction latency has increased to 3 cycles, and must dispatch via port 1:

LEA that has all three source operands: base, index, and offset

LEA that uses base and index registers where the base is EBP, RBP, or R13
LEA that uses RIP relative addressing mode

LEA that uses 16-bit addressing mode

Example 3-19. Alternative to Three-Operand LEA

3 operand LEA is slower Two-operand LEA alternative | Alternative 2
#defineK 1 #define K 1 #define K 1
uint32 an = 0; uint32 an = Q; uint32 an = 0;
uint32 N=mi_N; uint32 N= mi_N; uint32 N= mi_N;
mov ecx, N mov ecx, N mov ecx, N
XOr esi, esi; XOor esi, esi; XOor esi, esi;
xor edx, edx; xor edx, edx; mov edx, K;
cmp ecx, 2; cmp ecx, 2; cmp ecx, 2;
jb finished; jb finished; jb finished;
dec ecx; dec ecx; mov eax, 2
loop1: loop1: dec ecx;

mov edi, esi; mov edi, esi; loop1:

lea esi, [K+esi+edx]; lea esi, [K+edx]; mov edi, esi;

and esi, OxFF; lea esi, [esi+edx]; lea esi, [esi+edx];

mov edx, edi; and esi, OxFF; and esi, OxFF;

dec ecx; mov edx, edi; lea edx, [edi +K];

jnz loop1; dec ecx; dec ecx;
finished: jnz loop1; jnz loop1;

mov [an] ,esi; finished: finished:

mov [an] ,esi; mov [an] ,esi;

3-31

GENERAL OPTIMIZATION GUIDELINES

In some cases with processor based on Intel NetBurst microarchitecture, the LEA
instruction or a sequence of LEA, ADD, SUB and SHIFT instructions can replace
constant multiply instructions. The LEA instruction can also be used as a multiple
operand addition instruction, for example:

LEA ECX, [EAX + EBX + 4 + A]

Using LEA in this way may avoid register usage by not tying up registers for operands
of arithmetic instructions. This use may also save code space.

If the LEA instruction uses a shift by a constant amount then the latency of the
sequence of pops is shorter if adds are used instead of a shift, and the LEA instruction
may be replaced with an appropriate sequence of pops. This, however, increases the
total number of pops, leading to a trade-off.

Assembly/Compiler Coding Rule 33. (ML impact, L generality) If an LEA
instruction using the scaled index is on the critical path, a sequence with ADDs may
be better. If code density and bandwidth out of the trace cache are the critical
factor, then use the LEA instruction.

3.5.14 ADC and SBB in Intel® microarchitecture code name Sandy Bridge

The throughput of ADC and SBB in Intel microarchitecture code name Sandy Bridge
is 1 cycle, compared to 1.5-2 cycles in prior generation. These two instructions are
useful in numeric handling of integer data types that are wider than the maximum
width of native hardware.

Example 3-20. Examples of 512-bit Additions

//Add 64-bit to 512 Number // 512-bit Addition
lea rsi, gLongCounter loop1:
lea rdi, gStepValue mov rax, [StepValue]
mov rax, [rdi] add rax, [LongCounter]
xor rcx, rex mov LongCounter, rax
loop_start: mov rax, [StepValue+8]
mov r10, [rsi+rcx] adc rax, [LongCounter+8]
add r10, rax
mov [rsi+rex], r10 mov LongCounter+8, rax
mov rax, [StepValue+16]
mov r10, [rsi+rcx+8] adc rax, [LongCounter+16]
adc r10,0
mov [rsi+rex+8],r10 mov LongCounter+16, rax
mov rax, [StepValue+24]
adc rax, [LongCounter+24]

3-32

GENERAL OPTIMIZATION GUIDELINES

Example 3-20. Examples of 512-bit Additions (Contd.)

mov LongCounter+24, rax

mov r10, [rsi+rcx+16] mov rax, [StepValue+32]
adc r10,0 adc rax, [LongCounter+32]
mov [rsi+rcx+16],r10
mov r10, [rsi+rcx+24] mov LongCounter+32, rax
adc r10,0 mov rax, [StepValue+40]
mov [rsi+rcx+24],r10 adc rax, [LongCounter+40]
mov r10, [rsi+rcx+32] mov LongCounter+40, rax
adc r10,0 mov rax, [StepValue+48]
mov [rsi+rcx+32],r10 adc rax, [LongCounter+48]

mov r10, [rsi+rcx+40] mov LongCounter+48, rax

adcr10,0 mov rax, [StepValue+56]

mov [rsi+rcx+40],r10 adc rax, [LongCounter+56]

mov r10, [rsi+rcx+48] mov LongCounter+56, rax

adcr10,0 dec rcx

mov [rsi+rcx+48],r10 jnz loop1

mov r10, [rsi+rcx+56]

adcr10,0

mov [rsi+rcx+56],r10

add rcx, 64

cmp rex, SIZE

jnz loop_start

3.5.1.5 Bitwise Rotation

Bitwise rotation can choose between rotate with count specified in the CL register, an
immediate constant and by 1 bit. Generally, The rotate by immediate and rotate by
register instructions are slower than rotate by 1 bit. The rotate by 1 instruction has
the same latency as a shift.

Assembly/Compiler Coding Rule 34. (ML impact, L generality) Avoid ROTATE
by register or ROTATE by immediate instructions. If possible, replace with a
ROTATE by 1 instruction.

In Intel microarchitecture code name Sandy Bridge, ROL/ROR by immediate has 1-
cycle throughput, SHLD/SHRD using the same register as source and destination by
an immediate constant has 1-cycle latency with 0.5 cycle throughput.

3-33

GENERAL OPTIMIZATION GUIDELINES

3.5.1.6 Address Calculations

For computing addresses, use the addressing modes rather than general-purpose
computations. Internally, memory reference instructions can have four operands:

® Relocatable load-time constant
®* Immediate constant

® Base register

® Scaled index register

Note that the latency and throughput of LEA with more than two operands are slower
(see Section 3.5.1.3) in Intel microarchitecture code name Sandy Bridge. Addressing
modes that uses both base and index registers will consume more read port resource
in the execution engine and may experience more stalls due to availability of read
port resources. Software should take care by selecting the speedy version of address
calculation.

In the segmented model, a segment register may constitute an additional operand in
the linear address calculation. In many cases, several integer instructions can be
eliminated by fully using the operands of memory references.

3.5.1.7 Clearing Registers and Dependency Breaking Idioms

Code sequences that modifies partial register can experience some delay in its
dependency chain, but can be avoided by using dependency breaking idioms.

In processors based on Intel Core microarchitecture, a number of instructions can
help clear execution dependency when software uses these instruction to clear
register content to zero. The instructions include

XOR REG, REG

SUB REG, REG

XORPS/PD XMMREG, XMMREG

PXOR XMMREG, XMMREG

SUBPS/PD XMMREG, XMMREG

PSUBB/W/D/Q XMMREG, XMMREG

In processors based on Intel microarchitecture code name Sandy Bridge, the instruc-
tion listed above plus equivalent AVX counter parts are also zero idioms that can be
used to break dependency chains. Furthermore, they do not consume an issue port
or an execution unit. So using zero idioms are preferable than moving 0’s into the
register. The AVX equivalent zero idioms are:

VXORPS/PD XMMREG, XMMREG

VXORPS/PD YMMREG, YMMREG

VPXOR XMMREG, XMMREG

VSUBPS/PD XMMREG, XMMREG

VSUBPS/PD YMMREG, YMMREG

VPSUBB/W/D/Q XMMREG, XMMREG

3-34

GENERAL OPTIMIZATION GUIDELINES

In Intel Core Solo and Intel Core Duo processors, the XOR, SUB, XORPS, or PXOR
instructions can be used to clear execution dependencies on the zero evaluation of
the destination register.

The Pentium 4 processor provides special support for XOR, SUB, and PXOR opera-

tions when executed within the same register. This recognizes that clearing a register
does not depend on the old value of the register. The XORPS and XORPD instructions
do not have this special support. They cannot be used to break dependence chains.

Assembly/Compiler Coding Rule 35. (M impact, ML generality) Use
dependency-breaking-idiom instructions to set a register to 0, or to break a false
dependence chain resulting from re-use of registers. In contexts where the
condition codes must be preserved, move 0 into the register instead. This requires
more code space than using XOR and SUB, but avoids setting the condition codes.

Example 3-21 of using pxor to break dependency idiom on a XMM register when

performing negation on the elements of an array.

int a[4096], b[4096], c[4096];
For (inti=0;i<4096;i++)
Ci1 = - (ali] + bfi])

Example 3-21. Clearing Register to Break Dependency While Negating Array Elements

Negation (-x = (x XOR (-1)) - (-1) without
breaking dependency

Negation (-x = 0 -x) using PXOR reg, reg breaks
dependency

Lea eax, a

lea ecx, b

lea edi,

xor edx, edx

movdga xmm?7, allone

Ip:

lea eax, a
lea ecx, b
lea edi,
xor edx, edx

Ip:

movdga xmmO, [eax + edx]
paddd xmmO, [ecx + edx]
pxor xmmO, xmm?7

psubd xmmO, xmm7
movdqa [edi + edx], xmmO
add edx, 16

cmp edx, 4096

ilp

movdga xmmO, [eax + edx]
paddd xmmO, [ecx + edX]
pxor xmm7, xmm?7

psubd xmm?7, xmmO
movdaqa [edi + edx], xmm7
add edx,16

cmp edx, 4096

ilp

Assembly/Compiler Coding Rule 36. (M impact, MH generality) Break
dependences on portions of registers between instructions by operating on 32-bit
registers instead of partial registers. For moves, this can be accomplished with 32-

bit moves or by using MOVZX.

On Pentium M processors, the MOVSX and MOVZX instructions both take a single
pop, whether they move from a register or memory. On Pentium 4 processors, the

3-35

GENERAL OPTIMIZATION GUIDELINES

MOVSX takes an additional pop. This is likely to cause less delay than the partial
register update problem mentioned above, but the performance gain may vary. If the
additional pop is a critical problem, MOVSX can sometimes be used as alternative.

Sometimes sign-extended semantics can be maintained by zero-extending oper-
ands. For example, the C code in the following statements does not need sign exten-
sion, nor does it need prefixes for operand size overrides:

static short INT g, b;

IF (@==D){

}
Code for comparing these 16-bit operands might be:

MOVZW EAX, [a]
MOVZW EBX, [b]
CMP EAX, EBX

These circumstances tend to be common. However, the technique will not work if the
compare is for greater than, less than, greater than or equal, and so on, or if the
values in eax or ebx are to be used in another operation where sign extension is
required.

Assembly/Compiler Coding Rule 37. (M impact, M generality) Try to use zero
extension or operate on 32-bit operands instead of using moves with sign
extension.

The trace cache can be packed more tightly when instructions with operands that can
only be represented as 32 bits are not adjacent.

Assembly/Compiler Coding Rule 38. (ML impact, L generality) Avoid placing
instructions that use 32-bit immediates which cannot be encoded as sign-extended
16-bit immediates near each other. Try to schedule uops that have no immediate
immediately before or after uops with 32-bit immediates.

3.5.1.8 Compares

Use TEST when comparing a value in a register with zero. TEST essentially ANDs
operands together without writing to a destination register. TEST is preferred over
AND because AND produces an extra result register. TEST is better than CMP ..., 0
because the instruction size is smaller.

Use TEST when comparing the result of a logical AND with an immediate constant for
equality or inequality if the register is EAX for cases such as:

IF (AVAR & 8) { }

The TEST instruction can also be used to detect rollover of modulo of a power of 2.
For example, the C code:

IF ((AVAR % 16) == 0){}

3-36

GENERAL OPTIMIZATION GUIDELINES

can be implemented using:

TEST EAX, OxOF
INZ Afterlf

Using the TEST instruction between the instruction that may modify part of the flag
register and the instruction that uses the flag register can also help prevent partial
flag register stall.

Assembly/Compiler Coding Rule 39. (ML impact, M generality) Use the TEST
instruction instead of AND when the result of the logical AND is not used. This saves
uops in execution. Use a TEST of a register with itself instead of a CMP of the register
to zero, this saves the need to encode the zero and saves encoding space. Avoid
comparing a constant to a memory operand. It is preferable to load the memory
operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a branch.
Because most Intel architecture instructions set the condition codes as part of their
execution, the compare instruction may be eliminated. Thus the operation can be
tested directly by a JCC instruction. The notable exceptions are MOV and LEA. In
these cases, use TEST.

Assembly/Compiler Coding Rule 40. (ML impact, M generality) Eliminate
unnecessary compare with zero instructions by using the appropriate conditional
Jjump instruction when the flags are already set by a preceding arithmetic
instruction. If necessary, use a TEST instruction instead of a compare. Be certain
that any code transformations made do not introduce problems with overflow.

3.5.1.9 Using NOPs

Code generators generate a no-operation (NOP) to align instructions. Examples of
NOPs of different lengths in 32-bit mode are shown below:
1-byte: XCHG EAX, EAX
2-byte: 66 NOP
3-byte: LEA REG, O (REG) (8-bit displacement)
4-byte: NOP DWORD PTR [EAX + 0] (8-bit displacement)
5-byte: NOP DWORD PTR [EAX + EAX*1 + 0] (8-bit displacement)
6-byte: LEA REG, 0 (REG) (32-bit displacement)
7-byte: NOP DWORD PTR [EAX + 0] (32-bit displacement)
8-byte: NOP DWORD PTR [EAX + EAX*1 + 0] (32-bit displacement)
9-byte: NOP WORD PTR [EAX + EAX*1 + 0] (32-bit displacement)

These are all true NOPs, having no effect on the state of the machine except to
advance the EIP. Because NOPs require hardware resources to decode and execute,
use the fewest number to achieve the desired padding.

The one byte NOP:[XCHG EAX,EAX] has special hardware support. Although it still
consumes a pop and its accompanying resources, the dependence upon the old value
of EAX is removed. This pop can be executed at the earliest possible opportunity,
reducing the number of outstanding instructions and is the lowest cost NOP.

3-37

GENERAL OPTIMIZATION GUIDELINES

The other NOPs have no special hardware support. Their input and output registers
are interpreted by the hardware. Therefore, a code generator should arrange to use
the register containing the oldest value as input, so that the NOP will dispatch and
release RS resources at the earliest possible opportunity.

Try to observe the following NOP generation priority:

® Select the smallest number of NOPs and pseudo-NOPs to provide the desired
padding.

® Select NOPs that are least likely to execute on slower execution unit clusters.
® Select the register arguments of NOPs to reduce dependencies.

3.5.1.10 Mixing SIMD Data Types

Previous microarchitectures (before Intel Core microarchitecture) do not have
explicit restrictions on mixing integer and floating-point (FP) operations on XMM
registers. For Intel Core microarchitecture, mixing integer and floating-point opera-
tions on the content of an XMM register can degrade performance. Software should
avoid mixed-use of integer/FP operation on XMM registers. Specifically,

® Use SIMD integer operations to feed SIMD integer operations. Use PXOR for
idiom.

® Use SIMD floating point operations to feed SIMD floating point operations. Use
XORPS for idiom.

®* When floating point operations are bitwise equivalent, use PS data type instead
of PD data type. MOVAPS and MOVAPD do the same thing, but MOVAPS takes one
less byte to encode the instruction.

3.5.1.11 Spill Scheduling

The spill scheduling algorithm used by a code generator will be impacted by the
memory subsystem. A spill scheduling algorithm is an algorithm that selects what
values to spill to memory when there are too many live values to fit in registers.
Consider the code in Example 3-22, where it is necessary to spill either A, B, or C.

Example 3-22. Spill Scheduling Code

LOOP
C:=..

A+..

B:
A:

For modern microarchitectures, using dependence depth information in spill sched-
uling is even more important than in previous processors. The loop-carried depen-
dence in A makes it especially important that A not be spilled. Not only would a
store/load be placed in the dependence chain, but there would also be a data-not-
ready stall of the load, costing further cycles.

3-38

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 41. (H impact, MH generality) For small
loops, placing loop invariants in memory is better than spilling loop-carried
dependencies.

A possibly counter-intuitive result is that in such a situation it is better to put loop
invariants in memory than in registers, since loop invariants never have a load
blocked by store data that is not ready.

3.5.2 Avoiding Stalls in Execution Core

Although the design of the execution core is optimized to make common cases
executes quickly. A pop may encounter various hazards, delays, or stalls while
making forward progress from the front end to the ROB and RS. The significant cases
are:

®* ROB Read Port Stalls

* Partial Register Reference Stalls

® Partial Updates to XMM Register Stalls
* Partial Flag Register Reference Stalls

3.5.2.1 ROB Read Port Stalls

As a uop is renamed, it determines whether its source operands have executed and
been written to the reorder buffer (ROB), or whether they will be captured “in flight”
in the RS or in the bypass network. Typically, the great majority of source operands
are found to be “in flight” during renaming. Those that have been written back to the
ROB are read through a set of read ports.

Since the Intel Core Microarchitecture is optimized for the common case where the
operands are “in flight”, it does not provide a full set of read ports to enable all
renamed pops to read all sources from the ROB in the same cycle.

When not all sources can be read, a pop can stall in the rename stage until it can get
access to enough ROB read ports to complete renaming the pop. This stall is usually
short-lived. Typically, a pop will complete renaming in the next cycle, but it appears
to the application as a loss of rename bandwidth.

Some of the software-visible situations that can cause ROB read port stalls include:

® Registers that have become cold and require a ROB read port because execution
units are doing other independent calculations.

® Constants inside registers
® Pointer and index registers

In rare cases, ROB read port stalls may lead to more significant performance degra-
dations. There are a couple of heuristics that can help prevent over-subscribing the
ROB read ports:

3-39

GENERAL OPTIMIZATION GUIDELINES

®* Keep common register usage clustered together. Multiple references to the same
written-back register can be “folded” inside the out of order execution core.

* Keep short dependency chains intact. This practice ensures that the registers will
not have been written back when the new micro-ops are written to the RS.

These two scheduling heuristics may conflict with other more common scheduling
heuristics. To reduce demand on the ROB read port, use these two heuristics only if
both the following situations are met:

* short latency operations

®* indications of actual ROB read port stalls can be confirmed by measurements of
the performance event (the relevant event is RAT_STALLS.ROB_READ_PORT, see
Appendix A of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B)

If the code has a long dependency chain, these two heuristics should not be used
because they can cause the RS to fill, causing damage that outweighs the positive
effects of reducing demands on the ROB read port.

In Intel microarchitecture code name Sandy Bridge, there are more read ports avail-
able than in previous microarchitectures. Nonetheless, some read port stalls remain
and can cause the delay of load and store operations with base+index addressing.
When read port stalls occur, it may be due to oversubscription in the integer execu-
tion stack. A few techniques can solve the issue:

® Unrolling loops. This reduces the loop terminating operations and relieves read
port pressure.

® Use instructions with less general purpose register source operands. For
example, changing loads and stores from indexed addressing to
base+displacement addressing or ALU ops using one register + immediate rather
than 2 registers.

3.5.2.2 Writeback Bus Conflicts

The writeback bus inside the execution engine is a common resource needed to facil-
itate out-of-order execution of micro-ops in flight. When the writeback bus is needed
at the same time by two micro-ops executing in the same stack of execution units
(see Table 2-4), the younger micro-op will have to wait for the writeback bus to be
available. This situation typically will be more likely for short-latency instructions
experience a delay when it might have been otherwise ready for dispatching into the
execution engine.

Consider a repeating sequence of independent floating-point ADDs with a single-
cycle MOV bound to the same dispatch port. When the MOV finds the dispatch port
available, the writeback bus can be occupied by the ADD. This delays the MOV oper-
ation.

If this problem is detected, you can sometimes change the instruction selection to
use a different dispatch port and reduce the writeback contention.

3-40

GENERAL OPTIMIZATION GUIDELINES

3.5.23 Bypass between Execution Domains

Floating point (FP) loads have an extra cycle of latency. Moves between FP and SIMD
stacks have another additional cycle of latency.

Example:

ADDPS XMMO, XMM1
PAND XMMO, XMM3
ADDPS XMM2, XMMO

The overall latency for the above calculation is 9 cycles:
® 3 cycles for each ADDPS instruction
® 1 cycle for the PAND instruction

®* 1 cycle to bypass between the ADDPS floating point domain to the PAND integer
domain

®* 1 cycle to move the data from the PAND integer to the second floating point
ADDPS domain

To avoid this penalty, you should organize code to minimize domain changes. Some-
times you cannot avoid bypasses.

Account for bypass cycles when counting the overall latency of your code. If your
calculation is latency-bound, you can execute more instructions in parallel or break
dependency chains to reduce total latency.

Code that has many bypass domains and is completely latency-bound may run
slower on the Intel Core microarchitecture than it did on previous microarchitectures.

3.5.24 Partial Register Stalls

General purpose registers can be accessed in granularities of bytes, words, double-
words; 64-bit mode also supports quadword granularity. Referencing a portion of a
register is referred to as a partial register reference.

A partial register stall happens when an instruction refers to a register, portions of
which were previously modified by other instructions. For example, partial register
stalls occurs with a read to AX while previous instructions stored AL and AH, or a read
to EAX while previous instruction modified AX.

The delay of a partial register stall is small in processors based on Intel Core and
NetBurst microarchitectures, and in Pentium M processor (with CPUID signature
family 6, model 13), Intel Core Solo, and Intel Core Duo processors. Pentium M
processors (CPUID signature with family 6, model 9) and the P6 family incur a large
penalty.

Note that in Intel 64 architecture, an update to the lower 32 bits of a 64 bit integer
register is architecturally defined to zero extend the upper 32 bits. While this action
may be logically viewed as a 32 bit update, it is really a 64 bit update (and therefore
does not cause a partial stall).

3-41

GENERAL OPTIMIZATION GUIDELINES

Referencing partial registers frequently produces code sequences with either false or
real dependencies. Example 3-18 demonstrates a series of false and real dependen-
cies caused by referencing partial registers.

If instructions 4 and 6 (in Example 3-18) are changed to use a movzx instruction
instead of a mov, then the dependences of instruction 4 on 2 (and transitively 1
before it), and instruction 6 on 5 are broken. This creates two independent chains of
computation instead of one serial one.

Example 3-23 illustrates the use of MOVZX to avoid a partial register stall when
packing three byte values into a register.

Example 3-23. Avoiding Partial Register Stalls in Integer Code

A Sequence Causing Partial Alternate Sequence Using
Register Stall MOVZzX to Avoid Delay
mov al, byte ptr a[2] movzx eax, byte ptr a[2]
shl eax,16 shleax, 16
mov ax, word ptr a movzx ecx, word ptr a
movd mmO, eax or eax,ecx
ret movd mmO, eax

ret

In Intel microarchitecture code name Sandy Bridge, partial register access is handled
in hardware by inserting a micro-op that merges the partial register with the full
register in the following cases:

® After a write to one of the registers AH, BH, CH or DH and before a following read
of the 2-, 4- or 8-byte form of the same register. In these cases a merge micro-
op is inserted. The insertion consumes a full allocation cycle in which other micro-
ops cannot be allocated.

® After a micro-op with a destination register of 1 or 2 bytes, which is not a source
of the instruction (or the register's bigger form), and before a following read of a
2-,4- or 8-byte form of the same register. In these cases the merge micro-op is
part of the flow. For example:

MOV AX, [BX]

when you want to load from memory to a partial register, consider using
MOVZX or MOVSX to avoid the additional merge micro-op penalty.

e LEA AX, [BX+CX]

For optimal performance, use of zero idioms, before the use of the register, elimi-
nates the need for partial register merge micro-ops

3.5.25 Partial XMM Register Stalls

Partial register stalls can also apply to XMM registers. The following SSE and SSE2
instructions update only part of the destination register:

3-42

MOVL/HPD XMM, MEMG4
MOVL/HPS XMM, MEM32
MOVSS/SD between registers

GENERAL OPTIMIZATION GUIDELINES

Using these instructions creates a dependency chain between the unmodified part of
the register and the modified part of the register. This dependency chain can cause

performance loss.

Example 3-24 illustrates the use of MOVZX to avoid a partial register stall when
packing three byte values into a register.

Follow these recommendations to avoid stalls from partial updates to XMM registers:
® Avoid using instructions which update only part of the XMM register.
®* If a 64-bit load is needed, use the MOVSD or MOVQ instruction.

* If 2 64-bit loads are required to the same register from non continuous locations,
use MOVSD/MOVHPD instead of MOVLPD/MOVHPD.

®* When copying the XMM register, use the following instructions for full register
copy, even if you only want to copy some of the source register data:

MOVAPS
MOVAPD
MOVDQA

Example 3-24. Avoiding Partial Register Stalls in SIMD Code

Using movlpd for memory transactions
and movsd between register copies
Causing Partial Register Stall

Using movsd for memory and movapd
between register copies Avoid Delay

mov edx, X

mov ecx, count
movlpd xmm3,_1_
movlpd xmm2,_1pt5_
align 16

mov edx, X

mov ecx, count
movsd xmm3,_1_
movsd xmmZ2, _1pt5_
align 16

movlpd xmmO, [edx]
addsd xmmQO, xmm3
movsd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmmO, xmm1
movsd [edx], xmmO
add edx, 8

dec ecx

jnzlp

movsd xmmO, [edx]
addsd xmmO, xmm3
movapd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmmO, xmm1
movsd [edx], xmmO
add edx, 8

dec ecx

jnzlp

3-43

GENERAL OPTIMIZATION GUIDELINES

3.5.2.6 Partial Flag Register Stalls

A “partial flag register stall” occurs when an instruction modifies a part of the flag
register and the following instruction is dependent on the outcome of the flags. This
happens most often with shift instructions (SAR, SAL, SHR, SHL). The flags are not
modified in the case of a zero shift count, but the shift count is usually known only at
execution time. The front end stalls until the instruction is retired.

Other instructions that can modify some part of the flag register include
CMPXCHGS8B, various rotate instructions, STC, and STD. An example of assembly
with a partial flag register stall and alternative code without the stall is shown in
Example 3-25.

In processors based on Intel Core microarchitecture, shift immediate by 1 is handled
by special hardware such that it does not experience partial flag stall.

Example 3-25. Avoiding Partial Flag Register Stalls

Partial Flag Register Stall Avoiding Partial Flag Register Stall
XOr eax, eax or eax, eax

mov ecx, a mov ecx, a

sar ecx, 2 sar ecx, 2

setz al ;SAR can update carry causing a stall | test ecx, ecx ; test always updates all flags
setz al ;No partial reg or flag stall,

In Intel microarchitecture code name Sandy Bridge, the cost of partial flag access is
replaced by the insertion of a micro-op instead of a stall. However, it is still recom-
mended to use less of instructions that write only to some of the flags (such as INC,
DEC, SET CL) before instructions that can write flags conditionally (such as SHIFT
CL).

Example 3-26 compares two techniques to implement the addition of very large inte-
gers (e.g. 1024 bits). The alternative sequence on the right side of Example 3-26 will
be faster than the left side on Intel microarchitecture code name Sandy Bridge, but it
will experience partial flag stalls on prior microarchitectures.

3-44

GENERAL OPTIMIZATION GUIDELINES

Example 3-26. Partial Flag Register Accesses in Intel microarchitecture code name Sandy
Bridge

Save partial flag register to avoid stall Simplified code sequence
lea rsi, [A] lea rsi, [A]
lea rdi, [B] lea rdi, [B]
XOr rax, rax XOr rax, rax
mov rcx, 16; 16*64 =1024 bit mov rcx, 16
Ip_64bit:; Ip_64bit;
add rax, [rsi] add rax, [rsi]
adc rax, [rdi] adc rax, [rdi]
mov [rdi], rax mov [rdi], rax
setc al ;save carry for next iteration lea rsi, [rsi+8]
movzx rax, al lea rdi, [rdi+8]
addrsi, 8 dec rcx
add rdi, 8 jnz Ip_64bit
dec rcx
jnz Ip_64bit

3.5.2.7 Floating Point/SIMD Operands

Moves that write a portion of a register can introduce unwanted dependences. The
MOVSD REG, REG instruction writes only the bottom 64 bits of a register, not all
128 bits. This introduces a dependence on the preceding instruction that produces
the upper 64 bits (even if those bits are not longer wanted). The dependence inhibits
register renaming, and thereby reduces parallelism.

Use MOVAPD as an alternative; it writes all 128 bits. Even though this instruction has
a longer latency, the pops for MOVAPD use a different execution port and this port is
more likely to be free. The change can impact performance. There may be excep-
tional cases where the latency matters more than the dependence or the execution
port.

Assembly/Compiler Coding Rule 42. (M impact, ML generality) Avoid
introducing dependences with partial floating point register writes, e.g. from the
MOVSD XMMREG1, XMMREG?2 instruction. Use the MOVAPD XMMREG1, XMMREG2
instruction instead.

The MOVSD XMMREG, MEM instruction writes all 128 bits and breaks a dependence.

The MOVUPD from memory instruction performs two 64-bit loads, but requires addi-
tional pops to adjust the address and combine the loads into a single register. This
same functionality can be obtained using MOVSD XMMREG1, MEM; MOVSD
XMMREG2, MEM+8; UNPCKLPD XMMREG1, XMMREG2, which uses fewer pops and

3-45

GENERAL OPTIMIZATION GUIDELINES

can be packed into the trace cache more effectively. The latter alternative has been
found to provide a several percent performance improvement in some cases. Its
encoding requires more instruction bytes, but this is seldom an issue for the Pentium
4 processor. The store version of MOVUPD is complex and slow, so much so that the
sequence with two MOVSD and a UNPCKHPD should always be used.

Assembly/Compiler Coding Rule 43. (ML impact, L generality) Instead of
using MOVUPD XMMREG1, MEM for a unaligned 128-bit load, use MOVSD
XMMREG1, MEM; MOVSD XMMREG2, MEM+8; UNPCKLPD XMMREG1, XMMREG2. If
the additional register is not available, then use MOVSD XMMREG1, MEM; MOVHPD
XMMREG1, MEM+8.

Assembly/Compiler Coding Rule 44. (M impact, ML generality) Instead of
using MOVUPD MEM, XMMREG1 for a store, use MOVSD MEM, XMMREG1;
UNPCKHPD XMMREG1, XMMREG1; MOVSD MEM+8, XMMREGL1 instead.

3.5.3 Vectorization

This section provides a brief summary of optimization issues related to vectorization.
There is more detail in the chapters that follow.

Vectorization is a program transformation that allows special hardware to perform
the same operation on multiple data elements at the same time. Successive
processor generations have provided vector support through the MMX technology,
Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), Streaming
SIMD Extensions 3 (SSE3) and Supplemental Streaming SIMD Extensions 3
(SSSE3).

Vectorization is a special case of SIMD, a term defined in Flynn’s architecture
taxonomy to denote a single instruction stream capable of operating on multiple data
elements in parallel. The number of elements which can be operated on in parallel
range from four single-precision floating point data elements in Streaming SIMD
Extensions and two double-precision floating-point data elements in Streaming SIMD
Extensions 2 to sixteen byte operations in a 128-bit register in Streaming SIMD
Extensions 2. Thus, vector length ranges from 2 to 16, depending on the instruction
extensions used and on the data type.

The Intel C++ Compiler supports vectorization in three ways:

®* The compiler may be able to generate SIMD code without intervention from the
user.

®* The can user insert pragmas to help the compiler realize that it can vectorize the
code.

® The user can write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code, avoid global pointers and global
variables. These issues may be less troublesome if all modules are compiled simulta-
neously, and whole-program optimization is used.

3-46

GENERAL OPTIMIZATION GUIDELINES

User/Source Coding Rule 2. (H impact, M generality) Use the smallest
possible floating-point or SIMD data type, to enable more parallelism with the use
of a (longer) SIMD vector. For example, use single precision instead of double
precision where possible..

User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of
loops so that the innermost nesting level is free of inter-iteration dependencies.
Especially avoid the case where the store of data in an earlier iteration happens
lexically after the load of that data in a future iteration, something which is called a
lexically backward dependence..

The integer part of the SIMD instruction set extensions cover 8-bit,16-bit and 32-bit
operands. Not all SIMD operations are supported for 32 bits, meaning that some
source code will not be able to be vectorized at all unless smaller operands are used.

User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of
conditional branches inside loops and consider using SSE instructions to eliminate
branches.

User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop)
variable expressions simple.

3.54 Optimization of Partially Vectorizable Code

Frequently, a program contains a mixture of vectorizable code and some routines
that are non-vectorizable. A common situation of partially vectorizable code involves
a loop structure which include mixtures of vectorized code and unvectorizable code.
This situation is depicted in Figure 3-1.

(1 [[[)

Y Packed SIMD Instruction
(] I | D)

Unpacking ‘%
[

I I |

Unvectorizable Code < > Serial Routine
A\ 4

Packing \M
(1 | 1 | D

? Packed SIMD Instruction
(1 | | D

Figure 3-1. Generic Program Flow of Partially Vectorized Code

3-47

GENERAL OPTIMIZATION GUIDELINES

It generally consists of five stages within the loop:

®* Prolog

®* Unpacking vectorized data structure into individual elements

® (Calling a non-vectorizable routine to process each element serially

®* Packing individual result into vectorized data structure

®* Epilog

This section discusses techniques that can reduce the cost and bottleneck associated
with the packing/unpacking stages in these partially vectorize code.

Example 3-27 shows a reference code template that is representative of partially
vectorizable coding situations that also experience performance issues. The unvec-
torizable portion of code is represented generically by a sequence of calling a serial
function named “foo” multiple times. This generic example is referred to as “shuffle
with store forwarding”, because the problem generally involves an unpacking stage
that shuffles data elements between register and memory, followed by a packing
stage that can experience store forwarding issue.

There are more than one useful techniques that can reduce the store-forwarding
bottleneck between the serialized portion and the packing stage. The following sub-
sections presents alternate techniques to deal with the packing, unpacking, and
parameter passing to serialized function calls.

Example 3-27. Reference Code Template for Partially Vectorizable Program

/1 Prolog /I
push ebp
mov ebp, esp

/1" Unpacking /11T
sub ebp, 32

and ebp, OxfffffffO

movaps [ebp], xmmO

3-48

GENERAL OPTIMIZATION GUIDELINES

Example 3-27. Reference Code Template for Partially Vectorizable Program (Contd.)

// Serial operations on components ///////
sub ebp, 4

mov eax, [ebp+4]
mov [ebp], eax

call foo

mov [ebp+16+4], eax

mov eax, [ebp+8]

mov [ebp], eax

call foo

mov [ebp+16+4+4], eax

mov eax, [ebp+12]

mov [ebp], eax

call foo

mov [ebp+16+8+4], eax

mov eax, [ebp+12+4]
mov [ebp], eax

call foo

mov [ebp+16+12+4], eax

/1 Packing /11111
movaps xmmoO, [ebp+16+4]

11 Epilog /H1HTHITHITTHTTHIHTTHIHTT

pop ebp
ret

3.5.4.1 Alternate Packing Techniques

The packing method implemented in the reference code of Example 3-27 will experi-
ence delay as it assembles 4 doubleword result from memory into an XMM register
due to store-forwarding restrictions.

Three alternate techniques for packing, using different SIMD instruction to assemble
contents in XMM registers are shown in Example 3-28. All three techniques avoid

3-49

GENERAL OPTIMIZATION GUIDELINES

store-forwarding delay by satisfying the restrictions on data sizes between a
preceding store and subsequent load operations.

Example 3-28. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty

Packing Method 1 Packing Method 2 Packing Method 3
movd xmmoO, [ebp+16+4] movd xmmaO, [ebp+16+4] movd xmmoO, [ebp+16+4]
movd xmm 1, [ebp+16+8] movd xmm 1, [ebp+16+8] movd xmm1, [ebp+16+8]
movd xmmZ2, [ebp+16+12] movd xmmZ2, [ebp+16+12] movd xmmZ2, [ebp+16+12]
movd xmm3, [ebp+12+16+4] | movd xmm3, [ebp+12+16+4] movd xmm3, [ebp+12+16+4]
punpckldg xmmO, xmm1 pslig xmm3, 32 movlhps xmm1,xmm3
punpckldg xmm2, xmm3 orps xmme2, xmm3 pslig xmm1, 32
punpckldg xmmO, xmm?2 pslig xmm1, 32 movlhps xmmO, xmm2

orps xmmQO, xmm1movlhps orps xmmQO, xmm1

xmmQO, xmm2

3.54.2 Simplifying Result Passing

In Example 3-27, individual results were passed to the packing stage by storing to
contiguous memory locations. Instead of using memory spills to pass four results,
result passing may be accomplished by using either one or more registers. Using
registers to simplify result passing and reduce memory spills can improve perfor-
mance by varying degrees depending on the register pressure at runtime.

Example 3-29 shows the coding sequence that uses four extra XMM registers to
reduce all memory spills of passing results back to the parent routine. However, soft-
ware must observe the following conditions when using this technique:

®* There is no register shortage.

* If the loop does not have many stores or loads but has many computations, this
technique does not help performance. This technique adds work to the computa-
tional units, while the store and loads ports are idle.

Example 3-29. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+4]
mov [ebp], eax
call foo

movd xmmO, eax

mov eax, [ebp+8]
mov [ebp], eax
call foo

movd xmm1, eax

3-50

GENERAL OPTIMIZATION GUIDELINES

Example 3-29. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+12]
mov [ebp], eax

call foo

movd xmm2, eax

mov eax, [ebp+12+4]
mov [ebp], eax

call foo

movd xmm3, eax

3.543 Stack Optimization

In Example 3-27, an input parameter was copied in turn onto the stack and passed
to the non-vectorizable routine for processing. The parameter passing from consecu-
tive memory locations can be simplified by a technique shown in Example 3-30.

Example 3-30. Stack Optimization Technique to Simplify Parameter Passing

call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo

Stack Optimization can only be used when:

®* The serial operations are function calls. The function “foo” is declared as: INT
FOO(INT A). The parameter is passed on the stack.

® The order of operation on the components is from last to first.

Note the call to FOO and the advance of EDP when passing the vector elements to
FOO one by one from last to first.

3-51

GENERAL OPTIMIZATION GUIDELINES

3.544 Tuning Considerations
Tuning considerations for situations represented by looping of Example 3-27 include
®* Applying one of more of the following combinations:
— choose an alternate packing technique
— consider a technique to simply result-passing
— consider the stack optimization technique to simplify parameter passing
®* Minimizing the average number of cycles to execute one iteration of the loop
® Minimizing the per-iteration cost of the unpacking and packing operations

The speed improvement by using the techniques discussed in this section will vary,
depending on the choice of combinations implemented and characteristics of the
non-vectorizable routine. For example, if the routine “foo” is short (representative of
tight, short loops), the per-iteration cost of unpacking/packing tend to be smaller
than situations where the non-vectorizable code contain longer operation or many
dependencies. This is because many iterations of short, tight loop can be in flight in
the execution core, so the per-iteration cost of packing and unpacking is only
partially exposed and appear to cause very little performance degradation.

Evaluation of the per-iteration cost of packing/unpacking should be carried out in a
methodical manner over a selected number of test cases, where each case may
implement some combination of the techniques discussed in this section. The per-
iteration cost can be estimated by:

* evaluating the average cycles to execute one iteration of the test case

® evaluating the average cycles to execute one iteration of a base line loop
sequence of non-vectorizable code

Example 3-31 shows the base line code sequence that can be used to estimate the
average cost of a loop that executes non-vectorizable routines.

Example 3-31. Base Line Code Sequence to Estimate Loop Overhead

push ebp
mov ebp, esp
sub ebp, 4

mov [ebp], edi
call foo

3-52

GENERAL OPTIMIZATION GUIDELINES

Example 3-31. Base Line Code Sequence to Estimate Loop Overhead (Contd.)

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

add ebp, 4

pop ebp
ret

The average per-iteration cost of packing/unpacking can be derived from measuring
the execution times of a large number of iterations by:

((Cycles to run TestCase) - (Cycles to run equivalent baseline sequence)) / (Iteration count).

For example, using a simple function that returns an input parameter (representative
of tight, short loops), the per-iteration cost of packing/unpacking may range from
slightly more than 7 cycles (the shuffle with store forwarding case, Example 3-27) to
~0.9 cycles (accomplished by several test cases). Across 27 test cases (consisting of
one of the alternate packing methods, no result-simplification/simplification of either
1 or 4 results, no stack optimization or with stack optimization), the average per-iter-
ation cost of packing/unpacking is about 1.7 cycles.

Generally speaking, packing method 2 and 3 (see Example 3-28) tend to be more
robust than packing method 1; the optimal choice of simplifying 1 or 4 results will be
affected by register pressure of the runtime and other relevant microarchitectural
conditions.

Note that the numeric discussion of per-iteration cost of packing/packing is illustra-
tive only. It will vary with test cases using a different base line code sequence and will
generally increase if the non-vectorizable routine requires longer time to execute
because the number of loop iterations that can reside in flight in the execution core
decreases.

3.6 OPTIMIZING MEMORY ACCESSES

This section discusses guidelines for optimizing code and data memory accesses. The
most important recommendations are:

®* Execute load and store operations within available execution bandwidth.
®* Enable forward progress of speculative execution.

3-53

GENERAL OPTIMIZATION GUIDELINES

® Enable store forwarding to proceed.

* Align data, paying attention to data layout and stack alignment.
® Place code and data on separate pages.

®* Enhance data locality.

®* Use prefetching and cacheability control instructions.

®* Enhance code locality and align branch targets.

®* Take advantage of write combining.

Alignment and forwarding problems are among the most common sources of large
delays on processors based on Intel NetBurst microarchitecture.

3.6.1 Load and Store Execution Bandwidth

Typically, loads and stores are the most frequent operations in a workload, up to 40%
of the instructions in a workload carrying load or store intent are not uncommon.
Each generation of microarchitecture provides multiple buffers to support executing
load and store operations while there are instructions in flight.

Software can maximize memory performance by not exceeding the issue or buffering
limitations of the machine. In the Intel Core microarchitecture, only 20 stores and 32
loads may be in flight at once. In Intel microarchitecture code name Nehalem, there
are 32 store buffers and 48 load buffers. Since only one load can issue per cycle,
algorithms which operate on two arrays are constrained to one operation every other
cycle unless you use programming tricks to reduce the amount of memory usage.

Intel Core Duo and Intel Core Solo processors have less buffers. Nevertheless the
general heuristic applies to all of them.

3.6.1.1 Make Use of Load Bandwidth in Intel® microarchitecture code
name Sandy Bridge
While prior microarchitecture has one load port (port 2), Intel microarchitecture code
name Sandy Bridge can load from port 2 and port 3. Thus two load operations can be
performed every cycle and doubling the load throughput of the code. This improves
code that reads a lot of data and does not need to write out results to memory very
often (Port 3 also handles store-address operation). To exploit this bandwidth, the
data has to stay in the L1 data cache or it should be accessed sequentially, enabling
the hardware prefetchers to bring the data to the L1 data cache in time.

Consider the following C code example of adding all the elements of an array:
int buff(BUFF_SIZE];

int sum = 0;

for (i=0;i<BUFF_SIZE;i++){

3-54

sum+=buff[i];

¥

GENERAL OPTIMIZATION GUIDELINES

Alternative 1 is the assembly code generated by the Intel compiler for this C code,
using the optimization flag for Intel microarchitecture code name Nehalem. The
compiler vectorizes execution using Intel SSE instructions. In this code, each ADD
operation uses the result of the previous ADD operation. This limits the throughput to
one load and ADD operation per cycle. Alternative 2 is optimized for Intel microarchi-
tecture code name Sandy Bridge by enabling it to use the additional load bandwidth.
The code removes the dependency among ADD operations, by using two registers to
sum the array values. Two load and two ADD operations can be executed every cycle.

Example 3-32. Optimize for Load Port Bandwidth in Intel microarchitecture code name Sandy

Bridge

Register dependency inhibits PADD
execution

Reduce register dependency allow two load
port to supply PADD execution

xor eax, eax

pxor xmmO, xmmO

lea rsi, buff
loop_start:

paddd xmmoO, [rsi+4*rax]
paddd xmmoO, [rsi+4*rax+16]
paddd xmmO, [rsi+4*rax+32]
paddd xmmO, [rsi+4*rax+48]
paddd xmmoO, [rsi+4*rax+64]
paddd xmmO, [rsi+4*rax+80]
paddd xmmO, [rsi+4*rax+96]
paddd xmmo, [rsi+4*rax+112]
add eax, 32

xor eax, eax
pxor xmmO0, xmmO
pxor xmm1, xmm1
lea rsi, buff

loop_start:
paddd xmmO, [rsi+4*rax]
paddd xmml1, [rsi+4*rax+16]
paddd xmmO, [rsi+4*rax+32]
paddd xmml1, [rsi+4*rax+48]
paddd xmmO, [rsi+4*rax+64]
paddd xmml1, [rsi+4*rax+80]
paddd xmmO, [rsi+4*rax+96]
paddd xmml1, [rsi+4*rax+112]

movdga xmm1, xmmO
psrldg xmm1,8

paddd xmmO, xmm1
movdga xmm2, xmmO
psridg xmm2, 4

paddd xmmO, xmmZ2
movd [sum], xmmO

cmp eax, BUFF_SIZE add eax, 32

jl loop_start cmp eax, BUFF_SIZE
jl loop_start

sum_partials: sum_partials:

paddd xmmO, xmm1
movdga xmm1, xmmO
psridg xmm1, 8

paddd xmmO, xmm1
movdga xmm2, xmmO
psrldg xmm2, 4

paddd xmmO, xmmZ2
movd [sum], xmmO

3-55

GENERAL OPTIMIZATION GUIDELINES

3.6.1.2 L1D Cache Latency in Intel® microarchitecture code name Sandy
Bridge

Load latency from L1D cache may vary (see Table 2-8). The best case if 4 cycles,
which apply to load operations to general purpose registers using

® one register or

® abase register plus an offset that is smaller than 2048.

Consider the pointer-chasing code example in Example 3-33.

Example 3-33. Index versus Pointers in Pointer-Chasing Code

Traversing through indexes Traversing through pointers
// C code example // C code example
index = buffer.m_buff[index].next_index; node = node->pNext;
// ASM example // ASM example
loop: loop:
shirbx, 6 mov rdx, [rdx]
mov rbx, 0x20(rbx+rcx) dec rax
dec rax cmp rax, -1
cmp rax, -1 jne loop
jne loop

The left side implements pointer chasing via traversing an index. Compiler then
generates the code shown below addressing memory using base+index with an
offset. The right side shows compiler generated code from pointer de-referencing
code and uses only a base register.

The code on the right side is faster than the left side across Intel microarchitecture
code name Sandy Bridge and prior microarchitecture. However the code that
traverses index will be slower on Intel microarchitecture code name Sandy Bridge
relative to prior microarchitecture.

3.6.1.3 Handling L1D Cache Bank Conflict

In Intel microarchitecture code name Sandy Bridge, the internal organization of the
L1D cache may manifest a situation when two load micro-ops whose addresses have
a bank conflict. When a bank conflict is present between two load operations, the
more recent one will be delayed until the conflict is resolved. A bank conflict happens
when two simultaneous load operations have the same bit 2-5 of their linear address
but they are not from the same set in the cache (bits 6 - 12).

Bank conflicts should be handled only if the code is bound by load bandwidth. Some
bank conflicts do not cause any performance degradation since they are hidden by

3-56

GENERAL OPTIMIZATION GUIDELINES

other performance limiters. Eliminating such bank conflicts does not improve perfor-
mance.

The following example demonstrates bank conflict and how to modify the code and
avoid them. It uses two source arrays with a size that is a multiple of cache line size.
When loading an element from A and the counterpart element from B the elements
have the same offset in their cache lines and therefore a bank conflict may happen.

Example 3-34. Example of Bank Conflicts in L1D Cache and Remedy

int A[128];
int B[128];
int C[128];
for (i=0;i<128;i+=4){
C[i]=A[i1+BIi]; the loads from A[i] and BJ[i] collide
CLi+1]=A[i+1]+B[i+1];
Cli+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];

}
// Code with Bank Conflicts // Code without Bank Conflicts
XOr rcX, rcx XOr rcX, rcx
lear11, A lear11, A
lear12, B lear12,B
lear13,C lear13,C
loop: loop:
lea esi, [rcx*4] lea esi, [rcx*4]
movsxd rsi, esi movsxd rsi, esi

3-57

GENERAL OPTIMIZATION GUIDELINES

Example 3-34. Example of Bank Conflicts in L1D Cache and Remedy

mov edi, [r11+rsi*4]
add edi, [r12+rsi*4]
mov r8d, [r11+rsi*4+4]
add r8d, [r12+rsi*4+4]

mov r9d, [r11+rsi*4+8]
add r9d, [r12+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r10d, [r12+rsi*4+12]

mov [r13+rsi*4], edi

inc ecx

mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], rad
mov [r13+rsi*4+12],r10d
cmp ecx, LEN

jb loop

mov edi, [r11+rsi*4]
mov r8d, [r11+rsi*4+4]
add edi, [r12+rsi*4]
add r8d, [r12+rsi*4+4]

mov r9d, [r11+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r9d, [r12+rsi*4+8]
add r10d, [r12+rsi*4+12]

inc ecx

mov [r13+rsi*4], edi

mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], rad
mov [r13+rsi*4+12],r10d
cmp ecx, LEN

jb loop

3.6.2 Minimize Register Spills

When a piece of code has more live variables than the processor can keep in general
purpose registers, a common method is to hold some of the variables in memory.
This method is called register spill. The effect of L1D cache latency can negatively
affect the performance of this code. The effect can be more pronounced if the
address of register spills uses the slower addressing modes.

One option is to spill general purpose registers to XMM registers. This method is likely
to improve performance also on previous processor generations. The following
example shows how to spill a register to an XMM register rather than to memory.

3-58

GENERAL OPTIMIZATION GUIDELINES

Example 3-35. Using XMM Register in Lieu of Memory for Register Spills
Register spills into memory Register spills into XMM

loop: movq xmm4, [rsp+0x18]

mov rdx, [rsp+0x18]
movdga xmmO, [rdx]
movdga xmm1, [rsp+0x20]
pcmpeqd xmm1, xmmO
pmovmskb eax, xmm 1

test eax, eax

jne end_loop

movzx rcx, [rbx+0x60]

mov rcx, 0x10
movq Xxmm5, rcx

loop:
movq rdx, xmm4
movdga xmmO, [rdx]
movdga xmm1, [rsp+0x20]
pcmpeqd xmm1, xmmO
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

add qword ptr[rsp+0x18], 0x10
add rdi, Ox4

movzx rdx, di

sub rcx, Ox4

add rsi, 0x1d0

cmp rdx, rex

jle loop

padd xmm4, xmm5
add rdi, Ox4
movzx rdx, di

sub rcx, 0x4

add rsi, 0x1d0
cmp rdx, rex

jle loop

3.6.3 Enhance Speculative Execution and Memory Disambiguation

Prior to Intel Core microarchitecture, when code contains both stores and loads, the
loads cannot be issued before the address of the store is resolved. This rule ensures
correct handling of load dependencies on preceding stores.

The Intel Core microarchitecture contains a mechanism that allows some loads to be
issued early speculatively. The processor later checks if the load address overlaps
with a store. If the addresses do overlap, then the processor re-executes the instruc-
tions.

Example 3-36 illustrates a situation that the compiler cannot be sure that “Ptr-
>Array” does not change during the loop. Therefore, the compiler cannot keep “Ptr-
>Array” in a register as an invariant and must read it again in every iteration.
Although this situation can be fixed in software by a rewriting the code to require the
address of the pointer is invariant, memory disambiguation provides performance
gain without rewriting the code.

3-59

GENERAL OPTIMIZATION GUIDELINES

Example 3-36. Loads Blocked by Stores of Unknown Address

C code Assembly sequence
struct AA{ nullify_loop:
AA ** array; mov dword ptr [eax], O
¥ mov edx, dword ptr [edi]
void nullify_array (AA *Ptr, DWORD Index, sub ecx, 4
AA *ThisPtr) cmp dword ptr [ecx+edx], esi
{ lea eax, [ecx+edx]
while (Ptr->Array[--Index] != ThisPtr) jne nullify_loop

{

Ptr->Array[Index] = NULL ;

b
b

3.64 Alignment

Alignment of data concerns all kinds of variables:
®* Dynamically allocated variables

® Members of a data structure

® Global or local variables

® Parameters passed on the stack

Misaligned data access can incur significant performance penalties. This is particu-
larly true for cache line splits. The size of a cache line is 64 bytes in the Pentium 4 and
other recent Intel processors, including processors based on Intel Core microarchi-
tecture.

An access to data unaligned on 64-byte boundary leads to two memory accesses and
requires several pops to be executed (instead of one). Accesses that span 64-byte
boundaries are likely to incur a large performance penalty, the cost of each stall
generally are greater on machines with longer pipelines.

Double-precision floating-point operands that are eight-byte aligned have better
performance than operands that are not eight-byte aligned, since they are less likely
to incur penalties for cache and MOB splits. Floating-point operation on a memory
operands require that the operand be loaded from memory. This incurs an additional
Hop, which can have a minor negative impact on front end bandwidth. Additionally,
memory operands may cause a data cache miss, causing a penalty.

Assembly/Compiler Coding Rule 45. (H impact, H generality) Align data on
natural operand size address boundaries. If the data will be accessed with vector
instruction loads and stores, align the data on 16-byte boundaries.

For best performance, align data as follows:

3-60

GENERAL OPTIMIZATION GUIDELINES

* Align 8-bit data at any address.

® Align 16-bit data to be contained within an aligned 4-byte word.

* Align 32-bit data so that its base address is a multiple of four.

®* Align 64-bit data so that its base address is a multiple of eight.

® Align 80-bit data so that its base address is a multiple of sixteen.
* Align 128-bit data so that its base address is a multiple of sixteen.

A 64-byte or greater data structure or array should be aligned so that its base
address is a multiple of 64. Sorting data in decreasing size order is one heuristic for
assisting with natural alignment. As long as 16-byte boundaries (and cache lines) are
never crossed, natural alignment is not strictly necessary (though it is an easy way to
enforce this).

Example 3-37 shows the type of code that can cause a cache line split. The code
loads the addresses of two DWORD arrays. 029E70FEH is not a 4-byte-aligned
address, so a 4-byte access at this address will get 2 bytes from the cache line this
address is contained in, and 2 bytes from the cache line that starts at 029E700H. On
processors with 64-byte cache lines, a similar cache line split will occur every 8 iter-
ations.

Example 3-37. Code That Causes Cache Line Split

mov esi, 029e70feh

mov edi, 05be5260h
Blockmove:

mov eax, DWORD PTR [esi]

mov ebx, DWORD PTR [esi+4]

mov DWORD PTR [edi], eax

mov DWORD PTR [edi+4], ebx

add esi, 8
add edi, 8
sub edx, 1
jnz Blockmove

Figure 3-2 illustrates the situation of accessing a data element that span across
cache line boundaries.

3-61

GENERAL OPTIMIZATION GUIDELINES

Address 029e70c1h Address 029e70feh

1 I
Cache Line 029¢70cOh ~~. = ndexo 9
1 I

Cache Line 029e7100h \nde‘xOcont‘d‘ ‘ |nd§x1 ‘ ~ ~ ‘ \nde‘x15 ‘ Index 16 %

‘ ; ; ; ; ; >

Cache Line 029e7140h Index 16 cont'd Index 17 S N Index 31 Index 32 q
- >

\ I I I ! I e e I I ! \

Figure 3-2. Cache Line Split in Accessing Elements in a Array

Alighment of code is less important for processors based on Intel NetBurst microar-
chitecture. Alignment of branch targets to maximize bandwidth of fetching cached
instructions is an issue only when not executing out of the trace cache.

Alignment of code can be an issue for the Pentium M, Intel Core Duo and Intel Core 2
Duo processors. Alignment of branch targets will improve decoder throughput.

3.6.5 Store Forwarding

The processor’s memory system only sends stores to memory (including cache) after
store retirement. However, store data can be forwarded from a store to a subsequent
load from the same address to give a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are
violated, store forwarding cannot occur and the load must get its data from the cache
(so the store must write its data back to the cache first). This incurs a penalty that is
largely related to pipeline depth of the underlying micro-architecture.

The first requirement pertains to the size and alignment of the store-forwarding data.
This restriction is likely to have high impact on overall application performance. Typi-
cally, a performance penalty due to violating this restriction can be prevented. The
store-to-load forwarding restrictions vary from one microarchitecture to another.
Several examples of coding pitfalls that cause store-forwarding stalls and solutions to
these pitfalls are discussed in detail in Section 3.6.5.1, “Store-to-Load-Forwarding
Restriction on Size and Alignment.” The second requirement is the availability of
data, discussed in Section 3.6.5.2, “Store-forwarding Restriction on Data Avail-
ability.” A good practice is to eliminate redundant load operations.

3-62

GENERAL OPTIMIZATION GUIDELINES

It may be possible to keep a temporary scalar variable in a register and never write it
to memory. Generally, such a variable must not be accessible using indirect pointers.
Moving a variable to a register eliminates all loads and stores of that variable and
eliminates potential problems associated with store forwarding. However, it also
increases register pressure.

Load instructions tend to start chains of computation. Since the out-of-order engine
is based on data dependence, load instructions play a significant role in the engine’s
ability to execute at a high rate. Eliminating loads should be given a high priority.

If a variable does not change between the time when it is stored and the time when
it is used again, the register that was stored can be copied or used directly. If register
pressure is too high, or an unseen function is called before the store and the second
load, it may not be possible to eliminate the second load.

Assembly/Compiler Coding Rule 46. (H impact, M generality) Pass
parameters in registers instead of on the stack where possible. Passing arguments
on the stack requires a store followed by a reload. While this sequence is optimized
in hardware by providing the value to the load directly from the memory order
buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating point values incur a significant latency in forwarding. Passing
floating point arguments in (preferably XMM) registers should save this long latency
operation.

Parameter passing conventions may limit the choice of which parameters are passed
in registers which are passed on the stack. However, these limitations may be over-
come if the compiler has control of the compilation of the whole binary (using whole-
program optimization).

3.6.5.1 Store-to-Load-Forwarding Restriction on Size and Alignment

Data size and alignment restrictions for store-forwarding apply to processors based
on Intel NetBurst microarchitecture, Intel Core microarchitecture, Intel Core 2 Duo,
Intel Core Solo and Pentium M processors. The performance penalty for violating
store-forwarding restrictions is less for shorter-pipelined machines than for Intel
NetBurst microarchitecture.

Store-forwarding restrictions vary with each microarchitecture. Intel NetBurst
microarchitecture places more constraints than Intel Core microarchitecture on code
generation to enable store-forwarding to make progress instead of experiencing
stalls. Fixing store-forwarding problems for Intel NetBurst microarchitecture gener-
ally also avoids problems on Pentium M, Intel Core Duo and Intel Core 2 Duo proces-
sors. The size and alignment restrictions for store-forwarding in processors based on
Intel NetBurst microarchitecture are illustrated in Figure 3-3.

3-63

GENERAL OPTIMIZATION GUIDELINES

(a) Small load after
Large Store

Store

Load

Load Aligned with

Store Will Forward
) 4

Non-Forwarding

| ERNNNNN\\\\\\

(b) Size of Load >=
Store

Store

Load

(c) Size of Load >=
Store(s)

Store

Load

(d) 128-bit Forward
Must Be 16-Byte
Aligned

Store

Load

vy
= NN
. . Penalty
; i@ Vs
16-Byte
Boundary
OM15155

Figure 3-3. Size and Alignment Restrictions in Store Forwarding

The following rules help satisfy size and alignment restrictions for store forwarding:

Assembly/Compiler Coding Rule 47. (H impact, M generality) A load that
forwards from a store must have the same address start point and therefore the

same alignment as the store data.

Assembly/Compiler Coding Rule 48. (H impact, M generality) The data of a
load which is forwarded from a store must be completely contained within the store

data.

A load that forwards from a store must wait for the store’s data to be written to the
store buffer before proceeding, but other, unrelated loads need not wait.

3-64

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 49. (H impact, ML generality) If it is
necessary to extract a non-aligned portion of stored data, read out the smallest
aligned portion that completely contains the data and shift/mask the data as
necessary. This is better than incurring the penalties of a failed store-forward.

Assembly/Compiler Coding Rule 50. (MH impact, ML generality) Avoid

several small loads after large stores to the same area of memory by using a single
large read and register copies as needed.

Example 3-38 depicts several store-forwarding situations in which small loads follow
large stores. The first three load operations illustrate the situations described in Rule
50. However, the last load operation gets data from store-forwarding without
problem.

Example 3-38. Situations Showing Small Loads After Large Store

mov [EBP],'abcd’
mov AL, [EBP] ; Not blocked - same alignment
mov BL, [EBP + 1] ; Blocked

mov CL, [EBP + 2] ; Blocked

mov DL, [EBP + 3] ; Blocked

mov AL, [EBP] ; Not blocked - same alignment
; n.b. passes older blocked loads

Example 3-39 illustrates a store-forwarding situation in which a large load follows
several small stores. The data needed by the load operation cannot be forwarded
because all of the data that needs to be forwarded is not contained in the store buffer.
Avoid large loads after small stores to the same area of memory.

Example 3-39. Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘@’

mov [EBP + 1],'b’

mov [EBP + 2], 'C’

mov [EBP + 3], 'd’

mov EAX, [EBP] ; Blocked
; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation.

Example 3-40 illustrates a stalled store-forwarding situation that may appear in
compiler generated code. Sometimes a compiler generates code similar to that

3-65

GENERAL OPTIMIZATION GUIDELINES

shown in Example 3-40 to handle a spilled byte to the stack and convert the byte to
an integer value.

Example 3-40. A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

mov eax, DWORD PTR [esp+10h] ; Stall

and eax, Oxff ; Converting back to byte value

Example 3-41 offers two alternatives to avoid the non-forwarding situation shown in
Example 3-40.

Example 3-41. Two Ways to Avoid Non-forwarding Situation in Example 3-40

; A. Use MOVZ instruction to avoid large load after small
; store, when spills are ignored.

movz eax, bl ; Replaces the last three instructions
; B. Use MOVZ instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; Not blocked

When moving data that is smaller than 64 bits between memory locations, 64-bit or
128-bit SIMD register moves are more efficient (if aligned) and can be used to avoid
unaligned loads. Although floating-point registers allow the movement of 64 bits at a
time, floating point instructions should not be used for this purpose, as data may be
inadvertently modified.

As an additional example, consider the cases in Example 3-42.

Example 3-42. Large and Small Load Stalls

; A. Large load stall

mov mem, eax ; Store dword to address “MEM”

mov mem + 4, ebx ; Store dword to address “MEM + 4"

fld mem ; Load qword at address “MEM”, stalls

; B. Small Load stall

fstp mem ; Store qword to address “MEM”

mov bx, mem+2 ; Load word at address “MEM + 2“, stalls
mov X, mem+4 ; Load word at address "MEM + 4", stalls

In the first case (A), there is a large load after a series of small stores to the same
area of memory (beginning at memory address MEM). The large load will stall.

3-66

GENERAL OPTIMIZATION GUIDELINES

The FLD must wait for the stores to write to memory before it can access all the data
it requires. This stall can also occur with other data types (for example, when bytes
or words are stored and then words or doublewords are read from the same area of
memory).

In the second case (B), there is a series of small loads after a large store to the same
area of memory (beginning at memory address MEM). The small loads will stall.

The word loads must wait for the quadword store to write to memory before they can
access the data they require. This stall can also occur with other data types (for
example, when doublewords or words are stored and then words or bytes are read
from the same area of memory). This can be avoided by moving the store as far from
the loads as possible.

Store forwarding restrictions for processors based on Intel Core microarchitecture is
listed in Table 3-2.

Table 3-2. Store Forwarding Restrictions of Processors
Based on Intel Core Microarchitecture

Width of Store

Store Store Load Alignment Width of Forwarding
Alignment (bits) (byte) Load (bits) Restriction
To Natural size 16 word aligned 8,16 not stalled
To Natural size 16 not word aligned 8 stalled

To Natural size 32 dword aligned 8,32 not stalled
To Natural size 32 not dword aligned 8 stalled

To Natural size 32 word aligned 16 not stalled
To Natural size 32 not word aligned 16 stalled

To Natural size 64 qword aligned 8, 16,64 not stalled
To Natural size 64 not qword aligned 8,16 stalled

To Natural size 64 dword aligned 32 not stalled
To Natural size 64 not dword aligned 32 stalled

To Natural size 128 dqword aligned 8,16,128 not stalled
To Natural size 128 not dqword aligned | 8, 16 stalled

To Natural size 128 dword aligned 32 not stalled
To Natural size 128 not dword aligned 32 stalled

To Natural size 128 qword aligned 64 not stalled
To Natural size 128 not qword aligned 64 stalled
Unaligned, startbyte 1 | 32 byte 0 of store 8, 16,32 not stalled
Unaligned, startbyte 1 | 32 not byte O of store | 8,16 stalled
Unaligned, startbyte 1 | 64 byte O of store 8, 16,32 not stalled

3-67

GENERAL OPTIMIZATION GUIDELINES

Table 3-2. Store Forwarding Restrictions of Processors

Based on Intel Core Microarchitecture (Contd.)

Width of Store

Store Store Load Alignment Width of Forwarding
Alignment (bits) (byte) Load (bits) Restriction
Unaligned, startbyte 1 | 64 not byte O of store | 8, 16, 32 stalled
Unaligned, startbyte 1 | 64 byte O of store 64 stalled
Unaligned, startbyte 7 | 32 byte O of store 8 not stalled
Unaligned, startbyte 7 | 32 not byte O of store | 8 not stalled
Unaligned, startbyte 7 | 32 don't care 16, 32 stalled
Unaligned, startbyte 7 | 64 don't care 16, 32,64 stalled

3.6.5.2

The value to be stored must be available before the load operation can be completed.
If this restriction is violated, the execution of the load will be delayed until the data is
available. This delay causes some execution resources to be used unnecessarily, and
that can lead to sizable but non-deterministic delays. However, the overall impact of
this problem is much smaller than that from violating size and alignment require-
ments.

Store-forwarding Restriction on Data Availability

In processors based on Intel NetBurst microarchitecture, hardware predicts when
loads are dependent on and get their data forwarded from preceding stores. These
predictions can significantly improve performance. However, if a load is scheduled
too soon after the store it depends on or if the generation of the data to be stored is
delayed, there can be a significant penalty.

There are several cases in which data is passed through memory, and the store may
need to be separated from the load:

®* Spills, save and restore registers in a stack frame

¢ Parameter passing

® Global and volatile variables

®* Type conversion between integer and floating point

®* When compilers do not analyze code that is inlined, forcing variables that are
involved in the interface with inlined code to be in memory, creating more
memory variables and preventing the elimination of redundant loads

Assembly/Compiler Coding Rule 51. (H impact, MH generality) Where it is
possible to do so without incurring other penalties, prioritize the allocation of
variables to registers, as in register allocation and for parameter passing, to
minimize the likelihood and impact of store-forwarding problems. Try not to store-
forward data generated from a long latency instruction - for example, MUL or DIV.
Avoid store-forwarding data for variables with the shortest store-load distance.

3-68

GENERAL OPTIMIZATION GUIDELINES

Avoid store-forwarding data for variables with many and/or long dependence
chains, and especially avoid including a store forward on a loop-carried dependence
chain.

shows an example of a loop-carried dependence chain.

Example 3-43. Loop-carried Dependence Chain

for (i=0;i<MAX; i++){
a[i] = b[i] * foo;
foo =a[i]/ 3;
} // foo is a loop-carried dependence.

Assembly/Compiler Coding Rule 52. (M impact, MH generality) Calculate
store addresses as early as possible to avoid having stores block loads.

3.6.6 Data Layout Optimizations

User/Source Coding Rule 6. (H impact, M generality) Pad data structures
defined in the source code so that every data element is aligned to a natural
operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed element size
(64-bit or 128-bit).

Align data by providing padding inside structures and arrays. Programmers can reor-
ganize structures and arrays to minimize the amount of memory wasted by padding.
However, compilers might not have this freedom. The C programming language, for
example, specifies the order in which structure elements are allocated in memory. For
more information, see Section 4.4, “Stack and Data Alignment,” and Appendix D,
“Stack Alignment.”

Example 3-44 shows how a data structure could be rearranged to reduce its size.

Example 3-44. Rearranging a Data Structure

struct unpacked { /* Fits in 20 bytes due to padding */

int a;
char b;
int (o
char d;
int e

3-69

GENERAL OPTIMIZATION GUIDELINES

Example 3-44. Rearranging a Data Structure (Contd.)

struct packed { /* Fitsin 16 bytes */

int 3;
int (o
int e
char b;
char d;

Cache line size of 64 bytes can impact streaming applications (for example, multi-
media). These reference and use data only once before discarding it. Data accesses
which sparsely utilize the data within a cache line can result in less efficient utilization
of system memory bandwidth. For example, arrays of structures can be decomposed
into several arrays to achieve better packing, as shown in Example 3-45.

Example 3-45. Decomposing an Array

struct { /* 1600 bytes */
int ace;
char b, d;
}array_of_struct [100];

struct { /* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct { /* 1200 bytes */
int a,ce
Y hybrid_struct_of_array_ace[100];

struct { /* 200 bytes */
char b, d;
Y hybrid_struct_of_array_bd[100];

The efficiency of such optimizations depends on usage patterns. If the elements of
the structure are all accessed together but the access pattern of the array is random,

then ARRAY_OF_STRUCT avoids unnecessary prefetch even though it wastes
memory.

However, if the access pattern of the array exhibits locality (for example, if the array
index is being swept through) then processors with hardware prefetchers will

3-70

GENERAL OPTIMIZATION GUIDELINES

prefetch data from STRUCT_OF_ARRAY, even if the elements of the structure are
accessed together.

When the elements of the structure are not accessed with equal frequency, such as
when element A is accessed ten times more often than the other entries, then
STRUCT_OF_ARRAY not only saves memory, but it also prevents fetching unneces-
sary data items B, C, D, and E.

Using STRUCT_OF_ARRAY also enables the use of the SIMD data types by the
programmer and the compiler.

Note that STRUCT_OF_ARRAY can have the disadvantage of requiring more indepen-
dent memory stream references. This can require the use of more prefetches and
additional address generation calculations. It can also have an impact on DRAM page
access efficiency. An alternative, HYBRID_STRUCT_OF_ARRAY blends the two
approaches. In this case, only 2 separate address streams are generated and refer-
enced: 1 for HYBRID_STRUCT_OF_ARRAY_ACE and 1 for
HYBRID_STRUCT_OF_ARRAY_BD. The second alterative also prevents fetching
unnecessary data — assuming that (1) the variables A, C and E are always used
together, and (2) the variables B and D are always used together, but not at the same
time as A, Cand E.

The hybrid approach ensures:

®* Simpler/fewer address generations than STRUCT_OF_ARRAY

®* Fewer streams, which reduces DRAM page misses

®* Fewer prefetches due to fewer streams

® Efficient cache line packing of data elements that are used concurrently

Assembly/Compiler Coding Rule 53. (H impact, M generality) Try to arrange
data structures such that they permit sequential access.

If the data is arranged into a set of streams, the automatic hardware prefetcher can
prefetch data that will be needed by the application, reducing the effective memory
latency. If the data is accessed in a non-sequential manner, the automatic hardware
prefetcher cannot prefetch the data. The prefetcher can recognize up to eight
concurrent streams. See Chapter 7, “Optimizing Cache Usage,” for more information
on the hardware prefetcher.

On Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium 4, Intel Xeon and
Pentium M processors, memory coherence is maintained on 64-byte cache lines
(rather than 32-byte cache lines. as in earlier processors). This can increase the
opportunity for false sharing.

User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing
within a cache line (64 bytes) and within a sector of 128 bytes on processors based
on Intel NetBurst microarchitecture.

3-71

GENERAL OPTIMIZATION GUIDELINES

3.6.7 Stack Alignment

The easiest way to avoid stack alignment problems is to keep the stack aligned at all
times. For example, a language that supports 8-bit, 16-bit, 32-bit, and 64-bit data
quantities but never uses 80-bit data quantities can require the stack to always be
aligned on a 64-bit boundary.

Assembly/Compiler Coding Rule 54. (H impact, M generality) If 64-bit data is
ever passed as a parameter or allocated on the stack, make sure that the stack is
aligned to an 8-byte boundary.

Doing this will require using a general purpose register (such as EBP) as a frame
pointer. The trade-off is between causing unaligned 64-bit references (if the stack is
not aligned) and causing extra general purpose register spills (if the stack is aligned).
Note that a performance penalty is caused only when an unaligned access splits a
cache line. This means that one out of eight spatially consecutive unaligned accesses
is always penalized.

A routine that makes frequent use of 64-bit data can avoid stack misalignment by
placing the code described in Example 3-46 in the function prologue and epilogue.

Example 3-46. Dynamic Stack Alignment

prologue:
subl esp, 4 ; Save frame ptr
movl [esp], ebp
movl ebp, esp ; New frame pointer
andl ebp, OXFFFFFFFC ; Aligned to 64 bits
movl [ebp], esp ; Save old stack ptr

subl esp, FRAMESIZE ; Allocate space
; ... Callee saves, etc.

epilogue:
; .. callee restores, etc.
movl esp, [ebp] ; Restore stack ptr
movl ebp, [esp] ; Restore frame ptr
addl esp, 4
ret

If for some reason it is not possible to align the stack for 64-bits, the routine should
access the parameter and save it into a register or known aligned storage, thus incur-
ring the penalty only once.

3.6.8 Capacity Limits and Aliasing in Caches

There are cases in which addresses with a given stride will compete for some
resource in the memory hierarchy.

3-72

GENERAL OPTIMIZATION GUIDELINES

Typically, caches are implemented to have multiple ways of set associativity, with
each way consisting of multiple sets of cache lines (or sectors in some cases).
Multiple memory references that compete for the same set of each way in a cache
can cause a capacity issue. There are aliasing conditions that apply to specific
microarchitectures. Note that first-level cache lines are 64 bytes. Thus, the least
significant 6 bits are not considered in alias comparisons. For processors based on
Intel NetBurst microarchitecture, data is loaded into the second level cache in a
sector of 128 bytes, so the least significant 7 bits are not considered in alias compar-
isons.

3.6.8.1 Capacity Limits in Set-Associative Caches

Capacity limits may be reached if the number of outstanding memory references that
are mapped to the same set in each way of a given cache exceeds the number of
ways of that cache. The conditions that apply to the first-level data cache and second
level cache are listed below:

® L1 Set Conflicts — Multiple references map to the same first-level cache set.
The conflicting condition is a stride determined by the size of the cache in bytes,
divided by the number of ways. These competing memory references can cause
excessive cache misses only if the number of outstanding memory references
exceeds the number of ways in the working set:

— On Pentium 4 and Intel Xeon processors with a CPUID signature of family
encoding 15, model encoding of 0, 1, or 2; there will be an excess of first-
level cache misses for more than 4 simultaneous competing memory
references to addresses with 2-KByte modulus.

— On Pentium 4 and Intel Xeon processors with a CPUID signature of family
encoding 15, model encoding 3; there will be an excess of first-level cache
misses for more than 8 simultaneous competing references to addresses that
are apart by 2-KByte modulus.

— On Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, and Pentium M
processors, there will be an excess of first-level cache misses for more than 8
simultaneous references to addresses that are apart by 4-KByte modulus.

®* L2 Set Conflicts — Multiple references map to the same second-level cache set.
The conflicting condition is also determined by the size of the cache or the
number of ways:

— On Pentium 4 and Intel Xeon processors, there will be an excess of second-
level cache misses for more than 8 simultaneous competing references. The
stride sizes that can cause capacity issues are 32 KBytes, 64 KBytes, or
128 KBytes, depending of the size of the second level cache.

— On Pentium M processors, the stride sizes that can cause capacity issues are
128 KBytes or 256 KBytes, depending of the size of the second level cache.
On Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, stride size of
256 KBytes can cause capacity issue if the number of simultaneous accesses
exceeded the way associativity of the L2 cache.

3-73

GENERAL OPTIMIZATION GUIDELINES

3.6.8.2 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™
Duo and Intel® Core™ 2 Duo Processors

Pentium M, Intel Core Solo, Intel Core Duo and Intel Core 2 Duo processors have the
following aliasing case:

® Store forwarding — If a store to an address is followed by a load from the same
address, the load will not proceed until the store data is available. If a store is
followed by a load and their addresses differ by a multiple of 4 KBytes, the load
stalls until the store operation completes.

Assembly/Compiler Coding Rule 55. (H impact, M generality) Avoid having a
store followed by a non-dependent load with addresses that differ by a multiple of
4 KBytes. Also, lay out data or order computation to avoid having cache lines that
have linear addresses that are a multiple of 64 KBytes apart in the same working

set. Avoid having more than 4 cache lines that are some multiple of 2 KBytes apart
in the same first-level cache working set, and avoid having more than 8 cache lines
that are some multiple of 4 KBytes apart in the same first-level cache working set.

When declaring multiple arrays that are referenced with the same index and are each
a multiple of 64 KBytes (as can happen with STRUCT_OF_ARRAY data layouts), pad
them to avoid declaring them contiguously. Padding can be accomplished by either

intervening declarations of other variables or by artificially increasing the dimension.

User/Source Coding Rule 8. (H impact, ML generality) Consider using a
special memory allocation library with address offset capability to avoid aliasing.

One way to implement a memory allocator to avoid aliasing is to allocate more than
enough space and pad. For example, allocate structures that are 68 KB instead of
64 KBytes to avoid the 64-KByte aliasing, or have the allocator pad and return
random offsets that are a multiple of 128 Bytes (the size of a cache line).

User/Source Coding Rule 9. (M impact, M generality) When padding variable
declarations to avoid aliasing, the greatest benefit comes from avoiding aliasing on
second-level cache lines, suggesting an offset of 128 bytes or more.

4-KByte memory aliasing occurs when the code accesses two different memory loca-
tions with a 4-KByte offset between them. The 4-KByte aliasing situation can mani-
fest in @ memory copy routine where the addresses of the source buffer and
destination buffer maintain a constant offset and the constant offset happens to be a
multiple of the byte increment from one iteration to the next.

Example 3-47 shows a routine that copies 16 bytes of memory in each iteration of a
loop. If the offsets (modular 4096) between source buffer (EAX) and destination
buffer (EDX) differ by 16, 32, 48, 64, 80; loads have to wait until stores have been
retired before they can continue. For example at offset 16, the load of the next itera-
tion is 4-KByte aliased current iteration store, therefore the loop must wait until the
store operation completes, making the entire loop serialized. The amount of time
needed to wait decreases with larger offset until offset of 96 resolves the issue (as
there is no pending stores by the time of the load with same address).

The Intel Core microarchitecture provides a performance monitoring event (see
LOAD_BLOCK.OVERLAP_STORE in Intel® 64 and IA-32 Architectures Software

3-74

GENERAL OPTIMIZATION GUIDELINES

Developer’s Manual, Volume 3B) that allows software tuning effort to detect the
occurrence of aliasing conditions.

Example 3-47. Aliasing Between Loads and Stores Across Loop lterations

LP:

movaps xmmo0, [eax+ecX]
movaps [edx+ecx], xmmO
add ecx, 16

jinzlp

3.6.9 Mixing Code and Data

The aggressive prefetching and pre-decoding of instructions by Intel processors have
two related effects:

®* Self-modifying code works correctly, according to the Intel architecture processor
requirements, but incurs a significant performance penalty. Avoid self-modifying
code if possible.

®* Placing writable data in the code segment might be impossible to distinguish
from self-modifying code. Writable data in the code segment might suffer the
same performance penalty as self-modifying code.

Assembly/Compiler Coding Rule 56. (M impact, L generality) If (hopefully
read-only) data must occur on the same page as code, avoid placing it immediately
after an indirect jump. For example, follow an indirect jump with its mostly likely
target, and place the data after an unconditional branch.

Tuning Suggestion 1. In rare cases, a performance problem may be caused by
executing data on a code page as instructions. This is very likely to happen when
execution is following an indirect branch that is not resident in the trace cache. If
this is clearly causing a performance problem, try moving the data elsewhere, or
inserting an illegal opcode or a PAUSE instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some
circumstances.

Assembly/Compiler Coding Rule 57. (H impact, L generality) Always put
code and data on separate pages. Avoid self-modifying code wherever possible. If
code is to be modified, try to do it all at once and make sure the code that performs
the modifications and the code being modified are on separate 4-KByte pages or on
separate aligned 1-KByte subpages.

3.6.9.1 Self-modifying Code

Self-modifying code (SMC) that ran correctly on Pentium Il processors and prior
implementations will run correctly on subsequent implementations. SMC and cross-

3-75

GENERAL OPTIMIZATION GUIDELINES

modifying code (when multiple processors in a multiprocessor system are writing to
a code page) should be avoided when high performance is desired.

Software should avoid writing to a code page in the same 1-KByte subpage that is
being executed or fetching code in the same 2-KByte subpage of that is being
written. In addition, sharing a page containing directly or speculatively executed
code with another processor as a data page can trigger an SMC condition that causes
the entire pipeline of the machine and the trace cache to be cleared. This is due to the
self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written fills up a data
page before that page is accessed as code. Dynamically-modified code (for example,
from target fix-ups) is likely to suffer from the SMC condition and should be avoided
where possible. Avoid the condition by introducing indirect branches and using data
tables on data pages (nhot code pages) using register-indirect calls.

3.6.9.2 Position Independent Code

Position independent code often needs to obtain the value of the instruction pointer.
Example 3-48a shows one technique to put the value of IP into the ECX register by
issuing a CALL without a matching RET. Example 3-48b shows an alternative tech-

nique to put the value of IP into the ECX register using a matched pair of CALL/RET.

Example 3-48. Instruction Pointer Query Techniques

a) Using call without return to obtain IP does not corrupt the RSB

call _Iabel; return address pushed is the IP of next instruction
_label:

pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _Iblcx;
.., ECX now contains IP of this instruction

_lblex
mov ecx, [esp];
ret

3-76

GENERAL OPTIMIZATION GUIDELINES

3.6.10 Write Combining

Write combining (WC) improves performance in two ways:

®* On a write miss to the first-level cache, it allows multiple stores to the same
cache line to occur before that cache line is read for ownership (RFO) from further
out in the cache/memory hierarchy. Then the rest of line is read, and the bytes
that have not been written are combined with the unmodified bytes in the
returned line.

®* Write combining allows multiple writes to be assembled and written further out in
the cache hierarchy as a unit. This saves port and bus traffic. Saving traffic is
particularly important for avoiding partial writes to uncached memory.

There are six write-combining buffers (on Pentium 4 and Intel Xeon processors with
a CPUID signature of family encoding 15, model encoding 3; there are 8 write-
combining buffers). Two of these buffers may be written out to higher cache levels
and freed up for use on other write misses. Only four write-combining buffers are
guaranteed to be available for simultaneous use. Write combining applies to memory
type WC; it does not apply to memory type UC.

There are six write-combining buffers in each processor core in Intel Core Duo and
Intel Core Solo processors. Processors based on Intel Core microarchitecture have
eight write-combining buffers in each core.

Assembly/Compiler Coding Rule 58. (H impact, L generality) If an inner loop
writes to more than four arrays (four distinct cache lines), apply loop fission to
break up the body of the loop such that only four arrays are being written to in each
iteration of each of the resulting loops.

Write combining buffers are used for stores of all memory types. They are particu-
larly important for writes to uncached memory: writes to different parts of the same
cache line can be grouped into a single, full-cache-line bus transaction instead of
going across the bus (since they are not cached) as several partial writes. Avoiding
partial writes can have a significant impact on bus bandwidth-bound graphics appli-
cations, where graphics buffers are in uncached memory. Separating writes to
uncached memory and writes to writeback memory into separate phases can assure
that the write combining buffers can fill before getting evicted by other write traffic.
Eliminating partial write transactions has been found to have performance impact on
the order of 20% for some applications. Because the cache lines are 64 bytes, a write
to the bus for 63 bytes will result in 8 partial bus transactions.

When coding functions that execute simultaneously on two threads, reducing the
number of writes that are allowed in an inner loop will help take full advantage of
write-combining store buffers. For write-combining buffer recommendations for
Hyper-Threading Technology, see Chapter 8, "Multicore and Hyper-Threading Tech-
nology.”

Store ordering and visibility are also important issues for write combining. When a
write to a write-combining buffer for a previously-unwritten cache line occurs, there
will be a read-for-ownership (RFO). If a subsequent write happens to another write-
combining buffer, a separate RFO may be caused for that cache line. Subsequent

3-77

GENERAL OPTIMIZATION GUIDELINES

writes to the first cache line and write-combining buffer will be delayed until the
second RFO has been serviced to guarantee properly ordered visibility of the writes.
If the memory type for the writes is write-combining, there will be no RFO since the
line is not cached, and there is no such delay. For details on write-combining, see
Chapter 10, “Power Optimization for Mobile Usages,” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

3.6.11 Locality Enhancement

Locality enhancement can reduce data traffic originating from an outer-level sub-
system in the cache/memory hierarchy. This is to address the fact that the access-
cost in terms of cycle-count from an outer level will be more expensive than from an
inner level. Typically, the cycle-cost of accessing a given cache level (or memory
system) varies across different microarchitectures, processor implementations, and
platform components. It may be sufficient to recognize the relative data access cost
trend by locality rather than to follow a large table of numeric values of cycle-costs,
listed per locality, per processor/platform implementations, etc. The general trend is
typically that access cost from an outer sub-system may be approximately 3-10X
more expensive than accessing data from the immediate inner level in the
cache/memory hierarchy, assuming similar degrees of data access parallelism.

Thus locality enhancement should start with characterizing the dominant data traffic
locality. Section A, “Application Performance Tools,” describes some techniques that
can be used to determine the dominant data traffic locality for any workload.

Even if cache miss rates of the last level cache may be low relative to the number of
cache references, processors typically spend a sizable portion of their execution time
waiting for cache misses to be serviced. Reducing cache misses by enhancing a
program’s locality is a key optimization. This can take several forms:

®* Blocking to iterate over a portion of an array that will fit in the cache (with the
purpose that subsequent references to the data-block [or tile] will be cache hit
references)

®* Loop interchange to avoid crossing cache lines or page boundaries
®* Loop skewing to make accesses contiguous

Locality enhancement to the last level cache can be accomplished with sequencing
the data access pattern to take advantage of hardware prefetching. This can also
take several forms:

®* Transformation of a sparsely populated multi-dimensional array into a one-
dimension array such that memory references occur in a sequential, small-stride
pattern that is friendly to the hardware prefetch (see Section 2.4.4.4, “Data
Prefetch”)

® Optimal tile size and shape selection can further improve temporal data locality
by increasing hit rates into the last level cache and reduce memory traffic
resulting from the actions of hardware prefetching (see Section 7.6.11,
“Hardware Prefetching and Cache Blocking Techniques”)

3-78

GENERAL OPTIMIZATION GUIDELINES

It is important to avoid operations that work against locality-enhancing techniques.
Using the lock prefix heavily can incur large delays when accessing memory, regard-
less of whether the data is in the cache or in system memory.

User/Source Coding Rule 10. (H impact, H generality) Optimization
techniques such as blocking, loop interchange, loop skewing, and packing are best
done by the compiler. Optimize data structures either to fit in one-half of the first-
level cache or in the second-level cache; turn on loop optimizations in the compiler
to enhance locality for nested loops.

Optimizing for one-half of the first-level cache will bring the greatest performance
benefit in terms of cycle-cost per data access. If one-half of the first-level cache is
too small to be practical, optimize for the second-level cache. Optimizing for a point
in between (for example, for the entire first-level cache) will likely not bring a
substantial improvement over optimizing for the second-level cache.

3.6.12 Minimizing Bus Latency

Each bus transaction includes the overhead of making requests and arbitrations. The
average latency of bus read and bus write transactions will be longer if reads and
writes alternate. Segmenting reads and writes into phases can reduce the average
latency of bus transactions. This is because the number of incidences of successive
transactions involving a read following a write, or a write following a read, are
reduced.

User/Source Coding Rule 11. (M impact, ML generality) If there is a blend of
reads and writes on the bus, changing the code to separate these bus transactions
into read phases and write phases can help performance.

Note, however, that the order of read and write operations on the bus is not the same
as it appears in the program.

Bus latency for fetching a cache line of data can vary as a function of the access
stride of data references. In general, bus latency will increase in response to
increasing values of the stride of successive cache misses. Independently, bus
latency will also increase as a function of increasing bus queue depths (the humber
of outstanding bus requests of a given transaction type). The combination of these
two trends can be highly non-linear, in that bus latency of large-stride, bandwidth-
sensitive situations are such that effective throughput of the bus system for data-
parallel accesses can be significantly less than the effective throughput of small-
stride, bandwidth-sensitive situations.

To minimize the per-access cost of memory traffic or amortize raw memory latency
effectively, software should control its cache miss pattern to favor higher concentra-
tion of smaller-stride cache misses.

User/Source Coding Rule 12. (H impact, H generality) To achieve effective
amortization of bus latency, software should favor data access patterns that result
in higher concentrations of cache miss patterns, with cache miss strides that are
significantly smaller than half the hardware prefetch trigger threshold.

3-79

GENERAL OPTIMIZATION GUIDELINES

3.6.13 Non-Temporal Store Bus Traffic

Peak system bus bandwidth is shared by several types of bus activities, including
reads (from memory), reads for ownership (of a cache line), and writes. The data
transfer rate for bus write transactions is higher if 64 bytes are written out to the bus
at a time.

Typically, bus writes to Writeback (WB) memory must share the system bus band-
width with read-for-ownership (RFO) traffic. Non-temporal stores do not require RFO
traffic; they do require care in managing the access patterns in order to ensure 64
bytes are evicted at once (rather than evicting several 8-byte chunks).

Although the data bandwidth of full 64-byte bus writes due to non-temporal stores is
twice that of bus writes to WB memory, transferring 8-byte chunks wastes bus
request bandwidth and delivers significantly lower data bandwidth. This difference is
depicted in Examples 3-49 and 3-50.

Example 3-49. Using Non-temporal Stores and 64-byte Bus Write Transactions

#define STRIDESIZE 256

lea ecx, p64byte_Aligned

mov edx, ARRAY_LEN

XOr eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmmO
movntps XMMWORD ptr [ecx + eax+16], xmmO
movntps XMMWORD ptr [ecx + eax+32], xmmO
movntps XMMWORD ptr [ecx + eax+48], xmmO
; 64 bytes is written in one bus transaction

add eax, STRIDESIZE

cmp eax, edx

jl slloop

3-80

GENERAL OPTIMIZATION GUIDELINES

Example 3-50. On-temporal Stores and Partial Bus Write Transactions

#define STRIDESIZE 256

Lea ecx, p64byte_Aligned

Mov edx, ARRAY_LEN

Xor eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmmO
movntps XMMWORD ptr [ecx + eax+16], xmmO
movntps XMMWORD ptr [ecx + eax+32], xmmO
, Storing 48 bytes results in 6 bus partial transactions
add eax, STRIDESIZE

cmp eax, edx

3.7 PREFETCHING

Recent Intel processor families employ several prefetching mechanisms to accelerate
the movement of data or code and improve performance:

®* Hardware instruction prefetcher
®* Software prefetch for data
®* Hardware prefetch for cache lines of data or instructions

3.7.1 Hardware Instruction Fetching and Software Prefetching

In processor based on Intel NetBurst microarchitecture, the hardware instruction
fetcher reads instructions, 32 bytes at a time, into the 64-byte instruction streaming
buffers. Instruction fetching for Intel Core microarchitecture is discussed in

Section 2.2.2.

Software prefetching requires a programmer to use PREFETCH hint instructions and
anticipate some suitable timing and location of cache misses.

In Intel Core microarchitecture, software PREFETCH instructions can prefetch beyond
page boundaries and can perform one-to-four page walks. Software PREFETCH
instructions issued on fill buffer allocations retire after the page walk completes and
the DCU miss is detected. Software PREFETCH instructions can trigger all hardware
prefetchers in the same manner as do regular loads.

Software PREFETCH operations work the same way as do load from memory opera-
tions, with the following exceptions:

® Software PREFETCH instructions retire after virtual to physical address
translation is completed.

3-81

GENERAL OPTIMIZATION GUIDELINES

* If an exception, such as page fault, is required to prefetch the data, then the
software prefetch instruction retires without prefetching data.

3.7.2 Software and Hardware Prefetching in Prior
Microarchitectures

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture intro-
duced hardware prefetching in addition to software prefetching. The hardware
prefetcher operates transparently to fetch data and instruction streams from
memory without requiring programmer intervention. Subsequent microarchitectures
continue to improve and add features to the hardware prefetching mechanisms.
Earlier implementations of hardware prefetching mechanisms focus on prefetching
data and instruction from memory to L2; more recent implementations provide addi-
tional features to prefetch data from L2 to L1.

In Intel NetBurst microarchitecture, the hardware prefetcher can track 8 indepen-
dent streams.

The Pentium M processor also provides a hardware prefetcher for data. It can track
12 separate streams in the forward direction and 4 streams in the backward direc-
tion. The processor’s PREFETCHNTA instruction also fetches 64-bytes into the first-
level data cache without polluting the second-level cache.

Intel Core Solo and Intel Core Duo processors provide more advanced hardware
prefetchers for data than Pentium M processors. Key differences are summarized in
Table 2-23.

Although the hardware prefetcher operates transparently (requiring no intervention
by the programmer), it operates most efficiently if the programmer specifically
tailors data access patterns to suit its characteristics (it favors small-stride cache
miss patterns). Optimizing data access patterns to suit the hardware prefetcher is
highly recommended, and should be a higher-priority consideration than using soft-
ware prefetch instructions.

The hardware prefetcher is best for small-stride data access patterns in either direc-
tion with a cache-miss stride not far from 64 bytes. This is true for data accesses to
addresses that are either known or unknown at the time of issuing the load opera-
tions. Software prefetch can complement the hardware prefetcher if used carefully.

There is a trade-off to make between hardware and software prefetching. This
pertains to application characteristics such as regularity and stride of accesses. Bus
bandwidth, issue bandwidth (the latency of loads on the critical path) and whether
access patterns are suitable for non-temporal prefetch will also have an impact.

For a detailed description of how to use prefetching, see Chapter 7, “Optimizing
Cache Usage.”

Chapter 5, “Optimizing for SIMD Integer Applications,” contains an example that
uses software prefetch to implement a memory copy algorithm.

3-82

GENERAL OPTIMIZATION GUIDELINES

Tuning Suggestion 2. If a load is found to miss frequently, either insert a prefetch
before it or (if issue bandwidth is a concern) move the load up to execute earlier.

3.7.3 Hardware Prefetching for First-Level Data Cache

The hardware prefetching mechanism for L1 in Intel Core microarchitecture is
discussed in Section 2.2.4.2. A similar L1 prefetch mechanism is also available to
processors based on Intel NetBurst microarchitecture with CPUID signature of family
15 and model 6.

Example 3-51 depicts a technique to trigger hardware prefetch. The code demon-
strates traversing a linked list and performing some computational work on 2
members of each element that reside in 2 different cache lines. Each element is of
size 192 bytes. The total size of all elements is larger than can be fitted in the L2
cache.

3-83

GENERAL OPTIMIZATION GUIDELINES

Example 3-51. Using DCU Hardware Prefetch

Original code

Modified sequence benefit from prefetch

mov ebx, DWORD PTR [First]
XOr eax, eax

scan_list:

mov eax, [ebx+4]

mov ecx, 60
do_some_work_1:

add eax, eax

and eax, 6

sub ecx, 1

jnz do_some_work_1

mov ebx, DWORD PTR [First]
XOr eax, eax
scan_list:

mov eax, [ebx+4]
mov eax, [ebx+4]
mov eax, [ebx+4]
mov ecx, 60
do_some_work_1:
add eax, eax

and eax, 6

sub ecx, 1

jnz do_some_work_1

mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax

and eax, 6

sub ecx, 1

jnz do_some_work_2

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax

and eax, 6

sub ecx, 1

jnz do_some_work_2

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

The additional instructions to load data from one member in the modified sequence

can trigger the DCU hardware prefetch mechanisms to prefetch data in the next
cache line, enabling the work on the second member to complete sooner.

Software can gain from the first-level data cache prefetchers in two cases:

* If datais not in the second-level cache, the first-level data cache prefetcher
enables early trigger of the second-level cache prefetcher.

® If dataisin the second-level cache and not in the first-level data cache, then the
first-level data cache prefetcher triggers earlier data bring-up of sequential cache

line to the first-level data cache.

There are situations that software should pay attention to a potential side effect of
triggering unnecessary DCU hardware prefetches. If a large data structure with many

members spanning many cache lines is accessed in ways that only a few of its

members are actually referenced, but there are multiple pair accesses to the same
cache line. The DCU hardware prefetcher can trigger fetching of cache lines that are
not needed. In Example , references to the “Pts” array and “AltPts” will trigger DCU

3-84

GENERAL OPTIMIZATION GUIDELINES

prefetch to fetch additional cache lines that won’t be needed. If significant negative
performance impact is detected due to DCU hardware prefetch on a portion of the
code, software can try to reduce the size of that contemporaneous working set to be
less than half of the L2 cache.

Example 3-52. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines

while (CurrBond != NULL)
{
MyATOM *a1l = CurrBond->At1 ;
MyATOM *a2 = CurrBond->At2 ;

if (a1->CurrStep <= al->LastStep &&
a2->CurrStep <= a2->LastStep
)
{

al1->CurrStep++;
a2->CurrStep++;

double ux = a1->Pts[0].x - a2->Pts[0].x ;
double uy = a1->Pts[0].y - a2->Pts[0].y ;
double uz = al1->Pts[0].z - a2->Pts[0].z;

a1->AuxPts[0].x +=ux ;
al1->AuxPts[0]y +=uy ;
al->AuxPts[0].z +=uz;

a2->AuxPts[0].x +=ux ;
a2->AuxPts[0]y +=uy ;
a2->AuxPts[0].z +=uz;
b

CurrBond = CurrBond->Next ;

).

To fully benefit from these prefetchers, organize and access the data using one of the
following methods:

Method 1:

®* Organize the data so consecutive accesses can usually be found in the same
4-KByte page.

® Access the data in constant strides forward or backward IP Prefetcher.

3-85

GENERAL OPTIMIZATION GUIDELINES

Method 2:
® Organize the data in consecutive lines.
®* Access the data in increasing addresses, in sequential cache lines.

Example demonstrates accesses to sequential cache lines that can benefit from the
first-level cache prefetcher.

Example 3-53. Technique For Using L1 Hardware Prefetch

unsigned int *p1, j, a, b;
for (j = 0;j < num; j += 16)
{
a=pl[l

b=pl1[j+1];

// Use these two values

}

By elevating the load operations from memory to the beginning of each iteration, it is
likely that a significant part of the latency of the pair cache line transfer from memory
to the second-level cache will be in parallel with the transfer of the first cache line.

The IP prefetcher uses only the lower 8 bits of the address to distinguish a specific
address. If the code size of a loop is bigger than 256 bytes, two loads may appear
similar in the lowest 8 bits and the IP prefetcher will be restricted. Therefore, if you
have a loop bigger than 256 bytes, make sure that no two loads have the same
lowest 8 bits in order to use the IP prefetcher.

3.74 Hardware Prefetching for Second-Level Cache

The Intel Core microarchitecture contains two second-level cache prefetchers:

® Streamer — Loads data or instructions from memory to the second-level cache.
To use the streamer, organize the data or instructions in blocks of 128 bytes,
aligned on 128 bytes. The first access to one of the two cache lines in this block
while it is in memory triggers the streamer to prefetch the pair line. To software,
the L2 streamer’s functionality is similar to the adjacent cache line prefetch
mechanism found in processors based on Intel NetBurst microarchitecture.

* Data prefetch logic (DPL) — DPL and L2 Streamer are triggered only by
writeback memory type. They prefetch only inside page boundary (4 KBytes).
Both L2 prefetchers can be triggered by software prefetch instructions and by
prefetch request from DCU prefetchers. DPL can also be triggered by read for
ownership (RFO) operations. The L2 Streamer can also be triggered by DPL
requests for L2 cache misses.

Software can gain from organizing data both according to the instruction pointer and
according to line strides. For example, for matrix calculations, columns can be

3-86

GENERAL OPTIMIZATION GUIDELINES

prefetched by IP-based prefetches, and rows can be prefetched by DPL and the L2
streamer.

3.7.5 Cacheability Instructions

SSE2 provides additional cacheability instructions that extend those provided in SSE.
The new cacheability instructions include:

® new streaming store instructions

®* new cache line flush instruction

®* new memory fencing instructions

For more information, see Chapter 7, "Optimizing Cache Usage.”

3.7.6 REP Prefix and Data Movement

The REP prefix is commonly used with string move instructions for memory related
library functions such as MEMCPY (using REP MOVSD) or MEMSET (using REP STOS).
These STRING/MOQV instructions with the REP prefixes are implemented in MS-ROM
and have several implementation variants with different performance levels.

The specific variant of the implementation is chosen at execution time based on data
layout, alignment and the counter (ECX) value. For example, MOVSB/STOSB with the
REP prefix should be used with counter value less than or equal to three for best
performance.

String MOVE/STORE instructions have multiple data granularities. For efficient data
movement, larger data granularities are preferable. This means better efficiency can
be achieved by decomposing an arbitrary counter value into a number of double-
words plus single byte moves with a count value less than or equal to 3.

Because software can use SIMD data movement instructions to move 16 bytes at a
time, the following paragraphs discuss general guidelines for designing and imple-
menting high-performance library functions such as MEMCPY(), MEMSET(), and
MEMMOVE(). Four factors are to be considered:

®* Throughput per iteration — If two pieces of code have approximately identical
path lengths, efficiency favors choosing the instruction that moves larger pieces
of data per iteration. Also, smaller code size per iteration will in general reduce
overhead and improve throughput. Sometimes, this may involve a comparison of
the relative overhead of an iterative loop structure versus using REP prefix for
iteration.

®* Address alignment — Data movement instructions with highest throughput
usually have alignment restrictions, or they operate more efficiently if the
destination address is aligned to its natural data size. Specifically, 16-byte moves
need to ensure the destination address is aligned to 16-byte boundaries, and
8-bytes moves perform better if the destination address is aligned to 8-byte

3-87

GEN

ERAL OPTIMIZATION GUIDELINES

boundaries. Frequently, moving at doubleword granularity performs better with
addresses that are 8-byte aligned.

REP string move vs. SIMD move — Implementing general-purpose memory
functions using SIMD extensions usually requires adding some prolog code to
ensure the availability of SIMD instructions, preamble code to facilitate aligned
data movement requirements at runtime. Throughput comparison must also take
into consideration the overhead of the prolog when considering a REP string
implementation versus a SIMD approach.

Cache eviction — If the amount of data to be processed by a memory routine
approaches half the size of the last level on-die cache, temporal locality of the
cache may suffer. Using streaming store instructions (for example: MOVNTQ,
MOVNTDQ) can minimize the effect of flushing the cache. The threshold to start
using a streaming store depends on the size of the last level cache. Determine
the size using the deterministic cache parameter leaf of CPUID.

Techniques for using streaming stores for implementing a MEMSET()-type
library must also consider that the application can benefit from this technique
only if it has no immediate need to reference the target addresses. This
assumption is easily upheld when testing a streaming-store implementation on
a micro-benchmark configuration, but violated in a full-scale application
situation.

When applying general heuristics to the design of general-purpose, high-perfor-
mance library routines, the following guidelines can are useful when optimizing an

arbi

trary counter value N and address alignment. Different techniques may be neces-

sary for optimal performance, depending on the magnitude of N:

3-88

When N is less than some small count (where the small count threshold will vary
between microarchitectures -- empirically, 8 may be a good value when
optimizing for Intel NetBurst microarchitecture), each case can be coded directly
without the overhead of a looping structure. For example, 11 bytes can be
processed using two MOVSD instructions explicitly and a MOVSB with REP
counter equaling 3.

When N is not small but still less than some threshold value (which may vary for
different micro-architectures, but can be determined empirically), an SIMD
implementation using run-time CPUID and alignment prolog will likely deliver
less throughput due to the overhead of the prolog. A REP string implementation
should favor using a REP string of doublewords. To improve address alignment, a
small piece of prolog code using MOVSB/STOSB with a count less than 4 can be
used to peel off the non-aligned data moves before starting to use
MOVSD/STOSD.

When N is less than half the size of last level cache, throughput consideration
may favor either:

— An approach using a REP string with the largest data granularity because a
REP string has little overhead for loop iteration, and the branch misprediction
overhead in the prolog/epilogue code to handle address alignment is
amortized over many iterations.

GENERAL OPTIMIZATION GUIDELINES

— An iterative approach using the instruction with largest data granularity,
where the overhead for SIMD feature detection, iteration overhead, and
prolog/epilogue for alignment control can be minimized. The trade-off
between these approaches may depend on the microarchitecture.

An example of MEMSET() implemented using stosd for arbitrary counter value
with the destination address aligned to doubleword boundary in 32-bit mode is

shown in Example 3-54.

®* When N is larger than half the size of the last level cache, using 16-byte
granularity streaming stores with prolog/epilog for address alignment will likely
be more efficient, if the destination addresses will not be referenced immediately

afterwards.

Example 3-54. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination

A ‘C’ example of Memset()

Equivalent Implementation Using REP STOSD

void memset(void *dst,int c,size_t size)
{
char *d = (char *)dst;
size_ti;
for (i=0;i<size;i++)
*d++ = (char)c;

}

push edi

movzx eax, byte ptr [esp+12]

MoV ecx, eax

shlecx, 8

or ecx, eax

MoV ecx, eax

shlecx, 16

or eax, ecx

mov edi, [esp+8] ; 4-byte aligned
mov ecX, [esp+16] ; byte count
shrecx, 2 ; do dword
cmp ecx, 127

jle _main

test edi, 4

jz _main

stosd ;peel off one dword
dec ecx

_main:; ; 8-byte aligned
rep stosd

mov ecx, [esp + 16]

and ecx, 3 ;do count <=3
rep stosb ; optimal with <=3
pop edi

ret

Memory routines in the runtime library generated by Intel compilers are optimized
across a wide range of address alignments, counter values, and microarchitectures.
In most cases, applications should take advantage of the default memory routines

provided by Intel compilers.

3-89

GENERAL OPTIMIZATION GUIDELINES

In some situations, the byte count of the data is known by the context (as opposed
to being known by a parameter passed from a call), and one can take a simpler
approach than those required for a general-purpose library routine. For example, if
the byte count is also small, using REP MOVSB/STOSB with a count less than four can
ensure good address alignment and loop-unrolling to finish the remaining data; using
MOVSD/STOSD can reduce the overhead associated with iteration.

Using a REP prefix with string move instructions can provide high performance in the
situations described above. However, using a REP prefix with string scan instructions
(SCASB, SCASW, SCASD, SCASQ) or compare instructions (CMPSB, CMPSW,
SMPSD, SMPSQ) is not recommended for high performance. Consider using SIMD
instructions instead.

3.8 FLOATING-POINT CONSIDERATIONS

When programming floating-point applications, it is best to start with a high-level
programming language such as C, C++, or Fortran. Many compilers perform floating-
point scheduling and optimization when it is possible. However in order to produce
optimal code, the compiler may need some assistance.

3.8.1 Guidelines for Optimizing Floating-point Code

User/Source Coding Rule 13. (M impact, M generality) Enable the compiler’s
use of SSE, SSE2 or SSE3 instructions with appropriate switches.

Follow this procedure to investigate the performance of your floating-point applica-
tion:

® Understand how the compiler handles floating-point code.

® Look at the assembly dump and see what transforms are already performed on
the program.

® Study the loop nests in the application that dominate the execution time.
* Determine why the compiler is not creating the fastest code.
®* See if there is a dependence that can be resolved.

* Determine the problem area: bus bandwidth, cache locality, trace cache
bandwidth, or instruction latency. Focus on optimizing the problem area. For
example, adding PREFETCH instructions will not help if the bus is already
saturated. If trace cache bandwidth is the problem, added prefetch pops may
degrade performance.

Also, in general, follow the general coding recommendations discussed in this
chapter, including:

®* Blocking the cache
® Using prefetch

3-90

GENERAL OPTIMIZATION GUIDELINES

®* Enabling vectorization
® Unrolling loops

User/Source Coding Rule 14. (H impact, ML generality) Make sure your
application stays in range to avoid denormal values, underflows..

Out-of-range numbers cause very high overhead.

User/Source Coding Rule 15. (M impact, ML generality) Do not use double
precision unless necessary. Set the precision control (PC) field in the x87 FPU
control word to “"Single Precision”. This allows single precision (32-bit) computation
to complete faster on some operations (for example, divides due to early out).
However, be careful of introducing more than a total of two values for the floating
point control word, or there will be a large performance penalty. See Section 3.8.3.

User/Source Coding Rule 16. (H impact, ML generality) Use fast float-to-int
routines, FISTTP, or SSEZ2 instructions. If coding these routines, use the FISTTP
instruction if SSE3 is available, or the CVTTSS2SI and CVTTSD2SI instructions if
coding with Streaming SIMD Extensions 2.

Many libraries generate X87 code that does more work than is necessary. The FISTTP
instruction in SSE3 can convert floating-point values to 16-bit, 32-bit, or 64-bit inte-
gers using truncation without accessing the floating-point control word (FCW). The
instructions CVTTSS2SI and CVTTSD2SI save many pops and some store-forwarding
delays over some compiler implementations. This avoids changing the rounding
mode.

User/Source Coding Rule 17. (M impact, ML generality) Removing data
dependence enables the out-of-order engine to extract more ILP from the code.
When summing up the elements of an array, use partial sums instead of a single
accumulator..

For example, to calculate z = a + b + c + d, instead of:

X=A+B;
Y=X+C;
Z=Y+D;
use:
X=A+B;
Y=C+D;
Z=X+Y;

User/Source Coding Rule 18. (M impact, ML generality) Usually, math
libraries take advantage of the transcendental instructions (for example, FSIN)
when evaluating elementary functions. If there is no critical need to evaluate the
transcendental functions using the extended precision of 80 bits, applications
should consider an alternate, software-based approach, such as a look-up-table-
based algorithm using interpolation techniques. It is possible to improve

3-91

GENERAL OPTIMIZATION GUIDELINES

transcendental performance with these techniques by choosing the desired numeric
precision and the size of the look-up table, and by taking advantage of the
parallelism of the SSE and the SSE2 instructions.

3.8.2 Floating-point Modes and Exceptions

When working with floating-point numbers, high-speed microprocessors frequently
must deal with situations that need special handling in hardware or code.

3.8.2.1 Floating-point Exceptions

The most frequent cause of performance degradation is the use of masked floating-
point exception conditions such as:

* arithmetic overflow
®* arithmetic underflow
® denormalized operand

Refer to Chapter 4 of Inte/l® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for definitions of overflow, underflow and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:
® directly when are used as operands
®* indirectly when are produced as a result of an underflow situation

If a floating-point application never underflows, the denormals can only come from
floating-point constants.

User/Source Coding Rule 19. (H impact, ML generality) Denormalized
floating-point constants should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of x87
instructions or SSE/SSE2/SSE3 instructions. Processors based on Intel NetBurst
microarchitecture handle these exceptions more efficiently when executing
SSE/SSE2/SSE3 instructions and when speed is more important than complying with
the IEEE standard. The following paragraphs give recommendations on how to opti-
mize your code to reduce performance degradations related to floating-point excep-
tions.

3.8.2.2 Dealing with floating-point exceptions in x87 FPU code

Every special situation listed in Section 3.8.2.1, “Floating-point Exceptions,” is costly
in terms of performance. For that reason, x87 FPU code should be written to avoid
these situations.

3-92

GENERAL OPTIMIZATION GUIDELINES

There are basically three ways to reduce the impact of overflow/underflow situations
with x87 FPU code:

®* Choose floating-point data types that are large enough to accommodate results
without generating arithmetic overflow and underflow exceptions.

® Scale the range of operands/results to reduce as much as possible the number of
arithmetic overflow/underflow situations.

®* Keep intermediate results on the x87 FPU register stack until the final results
have been computed and stored in memory. Overflow or underflow is less likely
to happen when intermediate results are kept in the x87 FPU stack (this is
because data on the stack is stored in double extended-precision format and
overflow/underflow conditions are detected accordingly).

®* Denormalized floating-point constants (which are read-only, and hence never
change) should be avoided and replaced, if possible, with zeros of the same sign.

3.8.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code

Most special situations that involve masked floating-point exceptions are handled
efficiently in hardware. When a masked overflow exception occurs while executing
SSE/SSE2/SSE3 code, processor hardware can handles it without performance
penalty.

Underflow exceptions and denormalized source operands are usually treated
according to the IEEE 754 specification, but this can incur significant performance
delay. If a programmer is willing to trade pure IEEE 754 compliance for speed, two
non-IEEE 754 compliant modes are provided to speed situations where underflows
and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a
zero with the correct sign. Although this behavior is not compliant with IEEE 754, it is
provided for use in applications where performance is more important than IEEE 754
compliance. Since denormal results are not produced when the FTZ mode is enabled,
the only denormal floating-point numbers that can be encountered in FTZ mode are
the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands efficiently when
running a SIMD floating-point application. When the DAZ mode is enabled, input
denormals are treated as zeros with the same sign. Enabling the DAZ mode is the
way to deal with denormal floating-point constants when performance is the objec-
tive.

If departing from the IEEE 754 specification is acceptable and performance is critical,
run SSE/SSE2/SSE3 applications with FTZ and DAZ modes enabled.

NOTE

The DAZ mode is available with both the SSE and SSE2 extensions,
although the speed improvement expected from this mode is fully
realized only in SSE code.

3-93

GENERAL OPTIMIZATION GUIDELINES

3.8.3 Floating-point Modes

On the Pentium III processor, the FLDCW instruction is an expensive operation. On
early generations of Pentium 4 processors, FLDCW is improved only for situations
where an application alternates between two constant values of the x87 FPU control
word (FCW), such as when performing conversions to integers. On Pentium M, Intel
Core Solo, Intel Core Duo and Intel Core 2 Duo processors, FLDCW is improved over
previous generations.

Specifically, the optimization for FLDCW in the first two generations of Pentium 4
processors allow programmers to alternate between two constant values efficiently.
For the FLDCW optimization to be effective, the two constant FCW values are only
allowed to differ on the following 5 bits in the FCW:

FCW[8-9] ; Precision control
FCW[10-11] ;Rounding control
FCW[12] ; Infinity control

If programmers need to modify other bits (for example: mask bits) in the FCW, the
FLDCW instruction is still an expensive operation.

In situations where an application cycles between three (or more) constant values,
FLDCW optimization does not apply, and the performance degradation occurs for
each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, take advantage
of the optimization of the FLDCW instruction to alternate between only these two
constant FCW values, and devise some means to accomplish the task that requires
the 3rd FCW value without actually changing the FCW to a third constant value. An
alternative solution is to structure the code so that, for periods of time, the applica-
tion alternates between only two constant FCW values. When the application later
alternates between a pair of different FCW values, the performance degradation
occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate between FTZ and DAZ
mode values. Consequently, the SIMD control word does not have the short latencies
that the floating-point control register does. A read of the MXCSR register has a fairly
long latency, and a write to the register is a serializing instruction.

There is no separate control word for single and double precision; both use the same
modes. Notably, this applies to both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 59. (H impact, M generality) Minimize
changes to bits 8-12 of the floating point control word. Changes for more than two
values (each value being a combination of the following bits: precision, rounding
and infinity control, and the rest of bits in FCW) leads to delays that are on the
order of the pipeline depth.

3.8.3.1 Rounding Mode

Many libraries provide float-to-integer library routines that convert floating-point
values to integer. Many of these libraries conform to ANSI C coding standards which

3-94

GENERAL OPTIMIZATION GUIDELINES

state that the rounding mode should be truncation. With the Pentium 4 processor,
one can use the CVTTSD2SI and CVTTSS2SI instructions to convert operands with
truncation without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using SSE and
SSE2 wherever possible when truncation is involved.

For x87 floating point, the FIST instruction uses the rounding mode represented in
the floating-point control word (FCW). The rounding mode is generally “round to
nearest”, so many compiler writers implement a change in the rounding mode in the
processor in order to conform to the C and FORTRAN standards. This implementation
requires changing the control word on the processor using the FLDCW instruction.
For a change in the rounding, precision, and infinity bits, use the FSTCW instruction
to store the floating-point control word. Then use the FLDCW instruction to change
the rounding mode to truncation.

In a typical code sequence that changes the rounding mode in the FCW, a FSTCW
instruction is usually followed by a load operation. The load operation from memory
should be a 16-bit operand to prevent store-forwarding problem. If the load opera-
tion on the previously-stored FCW word involves either an 8-bit or a 32-bit operand,
this will cause a store-forwarding problem due to mismatch of the size of the data
between the store operation and the load operation.

To avoid store-forwarding problems, make sure that the write and read to the FCW
are both 16-bit operations.

If there is more than one change to the rounding, precision, and infinity bits, and the
rounding mode is not important to the result, use the algorithm in Example 3-55 to
avoid synchronization issues, the overhead of the FLDCW instruction, and having to
change the rounding mode. Note that the example suffers from a store-forwarding
problem which will lead to a performance penalty. However, its performance is still
better than changing the rounding, precision, and infinity bits among more than two
values.

Example 3-55. Algorithm to Avoid Changing Rounding Mode

_fto132proc
lea ecx, [esp-8]
sub esp, 16 ; Allocate frame
and ecx, -8 ; Align pointer on boundary of 8
fld st(0) ; Duplicate FPU stack top

fistp qword ptr[ecx]
fild qword ptr[ecx]

mov edx, [ecx+4] ; High DWORD of integer
mov eax, [ecx] ; Low DWIRD of integer
test eax, eax

je integer_QnaN_or_zero

3-95

GENERAL OPTIMIZATION GUIDELINES

Example 3-55. Algorithm to Avoid Changing Rounding Mode (Contd.)

arg_is_not_integer_QnaN:
fsubp st(1), st ; TOS=d-round(d), { st(1) = st(1)-st & pop ST}
test edx, edx ; What's sign of integer
jns positive ; Number is negative
fstp dword ptr[ecx] ; Result of subtraction
mov ecx, [ecx] ; DWORD of diff(single-precision)
add esp, 16
Xor ecx, 80000000h
add ecx,7ffffffth ; If diff<0 then decrement integer
adc eax,0 ; INC EAX (add CARRY flag)
ret
positive;
positive;
fstp dword ptrlecx] ; 17-18 result of subtraction
mov ecx, [ecx] ; DWORD of diff(single precision)
add esp, 16
add ecx, 7fffffffh ; If diff<0 then decrement integer
sbb eax, 0 ; DEC EAX (subtract CARRY flag)
ret
integer_QnaN_or_zero:
test edx, 7ffffffth
inz arg_is_not_integer_QnaN
add esp, 16
ret

Assembly/Compiler Coding Rule 60. (H impact, L generality) Minimize the
number of changes to the rounding mode. Do not use changes in the rounding
mode to implement the floor and ceiling functions if this involves a total of more
than two values of the set of rounding, precision, and infinity bits.

3.8.3.2 Precision

If single precision is adequate, use it instead of double precision. This is true
because:

® Single precision operations allow the use of longer SIMD vectors, since more
single precision data elements can fit in a register.

* If the precision control (PC) field in the x87 FPU control word is set to single
precision, the floating-point divider can complete a single-precision computation
much faster than either a double-precision computation or an extended double-
precision computation. If the PC field is set to double precision, this will enable
those x87 FPU operations on double-precision data to complete faster than

3-96

GENERAL OPTIMIZATION GUIDELINES

extended double-precision computation. These characteristics affect computa-
tions including floating-point divide and square root.

Assembly/Compiler Coding Rule 61. (H impact, L generality) Minimize the
number of changes to the precision mode.

3.8.3.3 Improving Parallelism and the Use of FXCH

The x87 instruction set relies on the floating point stack for one of its operands. If the
dependence graph is a tree, which means each intermediate result is used only once
and code is scheduled carefully, it is often possible to use only operands that are on
the top of the stack or in memory, and to avoid using operands that are buried under
the top of the stack. When operands need to be pulled from the middle of the stack,
an FXCH instruction can be used to swap the operand on the top of the stack with
another entry in the stack.

The FXCH instruction can also be used to enhance parallelism. Dependent chains can
be overlapped to expose more independent instructions to the hardware scheduler.
An FXCH instruction may be required to effectively increase the register name space
so that more operands can be simultaneously live.

In processors based on Intel NetBurst microarchitecture, however, that FXCH inhibits
issue bandwidth in the trace cache. It does this not only because it consumes a slot,
but also because of issue slot restrictions imposed on FXCH. If the application is not
bound by issue or retirement bandwidth, FXCH will have no impact.

The effective instruction window size in processors based on Intel NetBurst microar-
chitecture is large enough to permit instructions that are as far away as the next iter-
ation to be overlapped. This often obviates the need to use FXCH to enhance
parallelism.

The FXCH instruction should be used only when it’s needed to express an algorithm
or to enhance parallelism. If the size of register name space is a problem, the use of
XMM registers is recommended.

Assembly/Compiler Coding Rule 62. (M impact, M generality) Use FXCH only
where necessary to increase the effective name space.

This in turn allows instructions to be reordered and made available for execution in
parallel. Out-of-order execution precludes the need for using FXCH to move instruc-
tions for very short distances.

3.84 x87 vs. Scalar SIMD Floating-point Trade-offs

There are a number of differences between x87 floating-point code and scalar
floating-point code (using SSE and SSE2). The following differences should drive
decisions about which registers and instructions to use:

®* When an input operand for a SIMD floating-point instruction contains values that
are less than the representable range of the data type, a denormal exception
occurs. This causes a significant performance penalty. An SIMD floating-point

3-97

GENERAL OPTIMIZATION GUIDELINES

operation has a flush-to-zero mode in which the results will not underflow.
Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in the case of 3D applications
with low lighting levels, using flush-to-zero mode can improve performance by as
much as 50% for applications with large numbers of underflows.

® Scalar floating-point SIMD instructions have lower latencies than equivalent x87
instructions. Scalar SIMD floating-point multiply instruction may be pipelined,
while x87 multiply instruction is not.

® Only x87 supports transcendental instructions.

® x87 supports 80-bit precision, double extended floating point. SSE support a
maximum of 32-bit precision. SSE2 supports a maximum of 64-bit precision.

® Scalar floating-point registers may be accessed directly, avoiding FXCH and top-
of-stack restrictions.

®* The cost of converting from floating point to integer with truncation is signifi-
cantly lower with Streaming SIMD Extensions 2 and Streaming SIMD Extensions
in the processors based on Intel NetBurst microarchitecture than with either
changes to the rounding mode or the sequence prescribed in the Example 3-55.

Assembly/Compiler Coding Rule 63. (M impact, M generality) Use Streaming
SIMD Extensions 2 or Streaming SIMD Extensions unless you need an x87 feature.
Most SSE2 arithmetic operations have shorter latency then their X87 counterpart
and they eliminate the overhead associated with the management of the X87
register stack.

3.8.4.1 Scalar SSE/SSEZ2 Performance on Intel® Core™ Solo and Intel® Core™
Duo Processors

On Intel Core Solo and Intel Core Duo processors, the combination of improved
decoding and pop fusion allows instructions which were formerly two, three, and four
Hops to go through all decoders. As a result, scalar SSE/SSE2 code can match the
performance of x87 code executing through two floating-point units. On Pentium M
processors, scalar SSE/SSE2 code can experience approximately 30% performance
degradation relative to x87 code executing through two floating-point units.

In code sequences that have conversions from floating-point to integer, divide single-
precision instructions, or any precision change, x87 code generation from a compiler
typically writes data to memory in single-precision and reads it again in order to
reduce precision. Using SSE/SSE?2 scalar code instead of x87 code can generate a
large performance benefit using Intel NetBurst microarchitecture and a modest
benefit on Intel Core Solo and Intel Core Duo processors.

Recommendation: Use the compiler switch to generate SSE2 scalar floating-point
code rather than x87 code.

When working with scalar SSE/SSE2 code, pay attention to the need for clearing the
content of unused slots in an XMM register and the associated performance impact.

3-98

GENERAL OPTIMIZATION GUIDELINES

For example, loading data from memory with MOVSS or MOVSD causes an extra
micro-op for zeroing the upper part of the XMM register.

On Pentium M, Intel Core Solo, and Intel Core Duo processors, this penalty can be
avoided by using MOVLPD. However, using MOVLPD causes a performance penalty on
Pentium 4 processors.

Another situation occurs when mixing single-precision and double-precision code. On
processors based on Intel NetBurst microarchitecture, using CVTSS2SD has perfor-
mance penalty relative to the alternative sequence:

XORPS XMM1, XMM1
MOVSS XMM1, XMM2
CVTPS2PD XMM1, XMM1

On Intel Core Solo and Intel Core Duo processors, using CVTSS2SD is more desirable
than the alternative sequence.

3.84.2 x87 Floating-point Operations with Integer Operands

For processors based on Intel NetBurst microarchitecture, splitting floating-point
operations (FIADD, FISUB, FIMUL, and FIDIV) that take 16-bit integer operands into
two instructions (FILD and a floating-point operation) is more efficient. However, for
floating-point operations with 32-bit integer operands, using FIADD, FISUB, FIMUL,
and FIDIV is equally efficient compared with using separate instructions.

Assembly/Compiler Coding Rule 64. (M impact, L generality) Try to use
32-bit operands rather than 16-bit operands for FILD. However, do not do so at the
expense of introducing a store-forwarding problem by writing the two halves of the
32-bit memory operand separately.

3.84.3 x87 Floating-point Comparison Instructions

The FCOMI and FCMOV instructions should be used when performing x87 floating-
point comparisons. Using the FCOM, FCOMP, and FCOMPP instructions typically
requires additional instruction like FSTSW. The latter alternative causes more Lops to
be decoded, and should be avoided.

3.8.4.4 Transcendental Functions

If an application needs to emulate math functions in software for performance or
other reasons (see Section 3.8.1, “Guidelines for Optimizing Floating-point Code"), it
may be worthwhile to inline math library calls because the CALL and the
prologue/epilogue involved with such calls can significantly affect the latency of
operations.

Note that transcendental functions are supported only in x87 floating point, not in
Streaming SIMD Extensions or Streaming SIMD Extensions 2.

3-99

GENERAL OPTIMIZATION GUIDELINES

3.9 MAXIMIZING PCie PERFORMANCE

PCle performance can be dramatically impacted by the size and alignment of
upstream reads and writes (read and write transactions issued from a PCle agent to
the host’s memory). As a general rule, the best performance, in terms of both band-
width and latency, is obtained by aligning the start addresses of upstream reads and
writes on 64-byte boundaries and ensuring that the request size is a multiple of 64-
bytes, with modest further increases in bandwidth when larger multiples (128, 192,
256 bytes) are employed. In particular, a partial write will cause a delay for the
following request (read or write).

A second rule is to avoid multiple concurrently outstanding accesses to a single cache
line. This can result in a conflict which in turn can cause serialization of accesses that
would otherwise be pipelined, resulting in higher latency and/or lower bandwidth.
Patterns that violate this rule include sequential accesses (reads or writes) that are
not a multiple of 64-bytes, as well as explicit accesses to the same cache line
address. Overlapping requests—those with different start addresses but with request
lengths that result in overlap of the requests—can have the same effect. For
example, a 96-byte read of address 0x00000200 followed by a 64-byte read of
address 0x00000240 will cause a conflict—and a likely delay— for the second read.

Upstream writes that are a multiple of 64-byte but are non-aligned will have the
performance of a series of partial and full sequential writes. For example, a write of
length 128-byte to address 0x00000070 will perform similarly to 3 sequential writes
of lengths 16, 64, and 48 to addresses 0x00000070, 0x00000080, and 0x00000100,
respectively.

For PCIe cards implementing multi-function devices, such as dual or quad port
network interface cards (NICs) or dual-GPU graphics cards, it is important to note
that non-optimal behavior by one of those devices can impact the bandwidth and/or
latency observed by the other devices on that card. With respect to the behavior
described in this section, all traffic on a given PCle port is treated as if it originated
from a single device and function.

For the best PCIe bandwidth:

1. Align start addresses of upstream reads and writes on 64-byte
boundaries.

2. Use read and write requests that are a multiple of 64-bytes.

3. Eliminate or avoid sequential and random partial line upstream
writes.

4. Eliminate or avoid conflicting upstream reads, including sequential
partial line reads.

Techniques for avoiding performance pitfalls include cache line aligning all descrip-
tors and data buffers, padding descriptors that are written upstream to 64-byte
alignment, buffering incoming data to achieve larger upstream write payloads, allo-
cating data structures intended for sequential reading by the PCle device in such a
way as to enable use of (multiple of) 64-byte reads. The negative impact of unopti-

3-100

GENERAL OPTIMIZATION GUIDELINES

mized reads and writes depends on the specific workload and the microarchitecture
on which the product is based.

3-101

GENERAL OPTIMIZATION GUIDELINES

3-102

CHAPTER 4
CODING FOR SIMD ARCHITECTURES

Processors based on Intel Core microarchitecture supports MMX, SSE, SSE2, SSE3,
and SSSE3. Processors based on Enhanced Intel Core microarchitecture supports
MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1. Processors based on Intel microarchi-
tecture code name Nehalem supports MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 and
SSE4.2. Processors based on Intel microarchitecture code name Westmere supports
MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2 and AESNI. Processors based on
Intel microarchitecture code name Sandy Bridge supports MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AESNI, PCLMULQDQ and Intel AVX.

Intel Pentium 4, Intel Xeon and Pentium M processors include support for SSE2, SSE,
and MMX technology. SSE3 were introduced with the Pentium 4 processor supporting
Hyper-Threading Technology at 90 nm technology. Intel Core Solo and Intel Core Duo
processors support SSE3/SSE2/SSE, and MMX.

Single-instruction, multiple-data (SIMD) technologies enable the development of
advanced multimedia, signal processing, and modeling applications.

Single-instruction, multiple-data techniques can be applied to text/string processing,
lexing and parser applications. This is covered in Chapter 10, "SSE4.2 and SIMD
Programming For Text-Processing/LexING/Parsing”. Techniques for optimizing
AESNI are discussed in Section 5.10.

To take advantage of the performance opportunities presented by these capabilities,
do the following:

® Ensure that the processor supports MMX technology, SSE, SSE2, SSE3, SSSE3
and SSE4.1.

®* Ensure that the operating system supports MMX technology and SSE (OS support
for SSE2, SSE3 and SSSE3 is the same as OS support for SSE).

®* Employ the optimization and scheduling strategies described in this book.

® Use stack and data alignment techniques to keep data properly aligned for
efficient memory use.

® Utilize the cacheability instructions offered by SSE and SSE2, where appropriate.

4.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD
TECHNOLOGIES

This section shows how to check whether a processor supports MMX technology, SSE,
SSE2, SSE3, SSSE3, and SSE4.1.

SIMD technology can be included in your application in three ways:

4-1

CODING FOR SIMD ARCHITECTURES

1. Check for the SIMD technology during installation. If the desired SIMD
technology is available, the appropriate DLLs can be installed.

2. Check for the SIMD technology during program execution and install the proper
DLLs at runtime. This is effective for programs that may be executed on different

machines.

3. Create a “fat” binary that includes multiple versions of routines; versions that use
SIMD technology and versions that do not. Check for SIMD technology during
program execution and run the appropriate versions of the routines. This is
especially effective for programs that may be executed on different machines.

4.1.1 Checking for MMX Technology Support

If MMX technology is available, then CPUID.01H:EDX[BIT 23] = 1. Use the code
segment in Example 4-1 to test for MMX technology.

Example 4-1. Identification of MMX Technology with CPUID

..identify existence of cpuid instruction

; Identify signature is genuine Intel

’

mov eax, 1 ; Request for feature flags

cpuid ; OFH, OAZ2H CPUID instruction

test edx, 00800000h ; Is MMX technology bit (bit 23) in feature flags equal to 1
jnz Found

For more information on CPUID see, Intel® Processor Identification with CPUID
Instruction, order number 241618.

4.1.2 Checking for Streaming SIMD Extensions Support

Checking for processor support of Streaming SIMD Extensions (SSE) on your
processor is similar to checking for MMX technology. However, operating system (OS)
must provide support for SSE states save and restore on context switches to ensure
consistent application behavior when using SSE instructions.

To check whether your system supports SSE, follow these steps:
1. Check that your processor supports the CPUID instruction.
2. Check the feature bits of CPUID for SSE existence.

4-2

CODING FOR SIMD ARCHITECTURES

Example 4-2 shows how to find the SSE feature bit (bit 25) in CPUID feature flags.

Example 4-2. Identification of SSE with CPUID

..ldentify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags

cpuid ; OFH, OAZ2H cpuid instruction
test EDX, 002000000h ; Bit 25 in feature flags equal to 1
jnz Found

4.1.3 Checking for Streaming SIMD Extensions 2 Support

Checking for support of SSE2 is like checking for SSE support. The OS requirements
for SSE2 Support are the same as the OS requirements for SSE.

To check whether your system supports SSE2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSE2 technology existence.

Example 4-3 shows how to find the SSE2 feature bit (bit 26) in the CPUID feature
flags.

Example 4-3. Identification of SSE2 with cpuid

..identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags

cpuid ; OFH, OA2H CPUID instruction
test EDX, 004000000h ; Bit 26 in feature flags equal to 1
jnz Found

4.1.4 Checking for Streaming SIMD Extensions 3 Support

SSE3 includes 13 instructions, 11 of those are suited for SIMD or x87 style program-
ming. Checking for support of SSE3 instructions is similar to checking for SSE
support. The OS requirements for SSE3 Support are the same as the requirements

for SSE.
To check whether your system supports the x87 and SIMD instructions of SSE3,
follow these steps:

1. Check that your processor has the CPUID instruction.
2. Check the ECX feature bit 0 of CPUID for SSE3 technology existence.

4-3

CODING FOR SIMD ARCHITECTURES

Example 4-4 shows how to find the SSE3 feature bit (bit 0 of ECX) in the CPUID
feature flags.

Example 4-4. Identification of SSE3 with CPUID

..identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OA2H CPUID instruction
test ECX, 000000001h ;Bit O in feature flags equal to 1
jnz Found

Software must check for support of MONITOR and MWAIT before attempting to use
MONITOR and MWAIT.Detecting the availability of MONITOR and MWAIT can be done
using a code sequence similar to Example 4-4. The availability of MONITOR and
MWAIT is indicated by bit 3 of the returned value in ECX.

4.1.5 Checking for Supplemental Streaming SIMD Extensions 3
Support

Checking for support of SSSE3 is similar to checking for SSE support. The OS require-
ments for SSSE3 support are the same as the requirements for SSE.

To check whether your system supports SSSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSSE3 technology existence.

Example 4-5 shows how to find the SSSE3 feature bit in the CPUID feature flags.

Example 4-5. Identification of SSSE3 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 000000200h ; ECX bit9

jnz Found

4.1.6 Checking for SSE4.1 Support

Checking for support of SSE4.1 is similar to checking for SSE support. The OS
requirements for SSE4.1 support are the same as the requirements for SSE.

To check whether your system supports SSE4.1, follow these steps:
1. Check that your processor has the CPUID instruction.

4-4

CODING FOR SIMD ARCHITECTURES

2. Check the feature bit of CPUID for SSE4.1.
Example 4-6 shows how to find the SSE4.1 feature bit in the CPUID feature flags.

Example 4-6. Identification of SSE4.1 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OA2H CPUID instruction
test ECX, 000080000h ; ECX bit 19

jnz Found

4.1.7 Checking for SSE4.2 Support

Checking for support of SSE4.2 is similar to checking for SSE support. The OS
requirements for SSE4.2 support are the same as the requirements for SSE.

To check whether your system supports SSE4.2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for SSE4.2.

Example 4-6 shows how to find the SSE4.1 feature bit in the CPUID feature flags.

Example 4-7. Identification of SSE4.2 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 000100000h ; ECX bit 20

jnz Found

4.1.8 DetectiON of PCLMULQDQ and AESNI Instructions

Before an application attempts to use the following AESNI instructions:
AESDEC/AESDECLAST/AESENC/AESENCLAST/AESIMC/AESKEYGENASSIST, it must
check that the processor supports the AESNI extensions. AESNI extensions is
supported if CPUID.01H:ECX.AESNI[bit 25] = 1.

Prior to using PCLMULQDQ instruction, application must check if
CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1.

4-5

CODING FOR SIMD ARCHITECTURES

Operating systems that support handling SSE state will also support applications that
use AESNI extensions and PCLMULQDQ instruction. This is the same requirement for
SSE2, SSE3, SSSE3, and SSE4.

Example 4-8. Detection of AESNI Instructions

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 002000000h ; ECX bit 25

jnz Found

Example 4-9. Detection of PCLMULQDQ Instruction

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OA2H CPUID instruction
test ECX, 000000002h ; ECX bit 1

jnz Found

4.1.9 Detection of AVX Instructions

Intel AVX operates on the 256-bit YMM register state. Application detection of new
instruction extensions operating on the YMM state follows the general procedural flow
in Figure 4-1.

Prior to using AVX, the application must identify that the operating system supports
the XGETBV instruction, the YMM register state, in addition to processor’s support for
YMM state management using XSAVE/XRSTOR and AVX instructions. The following
simplified sequence accomplishes both and is strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application usel)

2) Issue XGETBV and verify that XFEATURE_ENABLED_MASK[2:1] = ‘11b’ (XMM
state and YMM state are enabled by OS).

3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2)

1. If CPUID.0O1H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE,
XRSTOR, XGETBY, processor extended state bit vector XFEATURE ENALBED MASK register.
Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSXSAVE.
XSETBYV is a privileged instruction.

46

CODING FOR SIMD ARCHITECTURES

Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management
Yes Implied HW support for
XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

Check enabled state in > Check feature flag
XFEM via XGETBV State for Instruction set ok to use
enabled Instructions

Figure 4-1. General Procedural Flow of Application Detection of AVX

The following pseudocode illustrates this recommended application AVX detection
process:

Example 4-10. Detection of AVX Instruction

INT supports_AVX()
{ mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

4-7

CODING FOR SIMD ARCHITECTURES

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28]
or at all on CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not
operating system support. If YMM state management is not enabled by an operating
systems, AVX instructions will #UD regardless of CPUID.1:ECX.AVX[bit 28].
“CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses the
XSAVE process for state management.

41.10 Detection of VEX-Encoded AES and VPCLMULQDQ

VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST
instructions operate on YMM states. The detection sequence must combine checking
for CPUID.1:ECX.AES[bit 25] = 1 and the sequence for detection application support
for AVX.

Example 4-11. Detection of VEX-Encoded AESNI Instructions

INT supports_VAESNI()

{ mov eax, 1
cpuid
and ecx, 01A000000H
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

Similarly, the detection sequence for VPCLMULQDQ must combine checking for
CPUID.1:ECX.PCLMULQDQ[bit 1] = 1 and the sequence for detection application
support for AVX.

This is shown in the pseudocode:

Example 4-12. Detection of VEX-Encoded AESNI Instructions

INT supports_VPCLMULQDQ)
{ mov eax, 1
cpuid

48

CODING FOR SIMD ARCHITECTURES

Example 4-12. Detection of VEX-Encoded AESNI Instructions

and ecx, 018000002H

cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDAQ feature flags

jne not_supported

; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by 0S
mov ecx, 0; specify 0 for XSFEATURE_ENABLED_MASK register

XGETBV ; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

4.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD
PROGRAMMING

The VTune Performance Enhancement Environment CD provides tools to aid in the
evaluation and tuning. Before implementing them, you need answers to the following
questions:

1. Will the current code benefit by using MMX technology, Streaming SIMD
Extensions, Streaming SIMD Extensions 2, Streaming SIMD Extensions 3, or
Supplemental Streaming SIMD Extensions 37

Is this code integer or floating-point?

What integer word size or floating-point precision is needed?
What coding techniques should I use?

What guidelines do I need to follow?

o s wN

How should I arrange and align the datatypes?

Figure 4-1 provides a flowchart for the process of converting code to MMX tech-
nology, SSE, SSE2, SSE3, or SSSE3.

4-9

CODING FOR SIMD ARCHITECTURES

Identify Hot Spots in Code

Range or
Precision

Can convert
to Integer?

No

Can convert to
Single-precision?,

No

Floating Point

Code benefits
from SIMD

Integer or

floating-point?

Integer

Performance

If possible, re-arrange data

Change to use
SIMD Integer

Change to use
Single Precision

for SIMD efficiency

»(STOP)<

v

Align data structures

v

Convert to code to use
SIMD Technologies

v

Follow general coding
guidelines and SIMD
coding guidelines

v

Use memory optimizations
and prefetch if appropriate

v

Schedule instructions to
optimize performance

N/

OM15156

Figure 4-2. Converting to Streaming SIMD Extensions Chart

4-10

CODING FOR SIMD ARCHITECTURES

To use any of the SIMD technologies optimally, you must evaluate the following situ-
ations in your code:

®* Fragments that are computationally intensive

®* Fragments that are executed often enough to have an impact on performance
®* Fragments that with little data-dependent control flow

®* Fragments that require floating-point computations

®* Fragments that can benefit from moving data 16 bytes at a time

®* Fragments of computation that can coded using fewer instructions

®* Fragments that require help in using the cache hierarchy efficiently

4.2.1 Identifying Hot Spots

To optimize performance, use the VTune Performance Analyzer to find sections of
code that occupy most of the computation time. Such sections are called the
hotspots. See Appendix A, “Application Performance Tools.”

The VTune analyzer provides a hotspots view of a specific module to help you identify
sections in your code that take the most CPU time and that have potential perfor-
mance problems. The hotspots view helps you identify sections in your code that take
the most CPU time and that have potential performance problems.

The VTune analyzer enables you to change the view to show hotspots by memory
location, functions, classes, or source files. You can double-click on a hotspot and
open the source or assembly view for the hotspot and see more detailed information
about the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your
source code and can also provide advice at the assembly language level. The code
coach analyzes and identifies opportunities for better performance of C/C++, Fortran
and Java* programs, and suggests specific optimizations. Where appropriate, the
coach displays pseudo-code to suggest the use of highly optimized intrinsics and
functions in the Intel® Performance Library Suite. Because VTune analyzer is
designed specifically for Intel architecture (IA)-based processors, including the
Pentium 4 processor, it can offer detailed approaches to working with IA. See
Appendix A.1.1, "Recommended Optimization Settings for Intel 64 and IA-32 Proces-
sors,” for details.

4.2.2 Determine If Code Benefits by Conversion to SIMD Execution

Identifying code that benefits by using SIMD technologies can be time-consuming
and difficult. Likely candidates for conversion are applications that are highly compu-
tation intensive, such as the following:

® Speech compression algorithms and filters
® Speech recognition algorithms

CODING FOR SIMD ARCHITECTURES

* Video display and capture routines

® Rendering routines

* 3D graphics (geometry)

®* Image and video processing algorithms
® Spatial (3D) audio

® Physical modeling (graphics, CAD)

®* Workstation applications

® Encryption algorithms

® Complex arithmetics

Generally, good candidate code is code that contains small-sized repetitive loops that
operate on sequential arrays of integers of 8, 16 or 32 bits, single-precision 32-bit

floating-point data, double precision 64-bit floating-point data (integer and floating-
point data items should be sequential in memory). The repetitiveness of these loops
incurs costly application processing time. However, these routines have potential for
increased performance when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate
what should be done to determine whether the current algorithm or a modified one
will ensure the best performance.

4.3 CODING TECHNIQUES

The SIMD features of SSE3, SSE2, SSE, and MMX technology require new methods of
coding algorithms. One of them is vectorization. Vectorization is the process of trans-
forming sequentially-executing, or scalar, code into code that can execute in parallel,
taking advantage of the SIMD architecture parallelism. This section discusses the

coding techniques available for an application to make use of the SIMD architecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the
following:

®* Determine if the memory accesses have dependencies that would prevent
parallel execution.

®* “Strip-mine” the inner loop to reduce the iteration count by the length of the
SIMD operations (for example, four for single-precision floating-point SIMD,
eight for 16-bit integer SIMD on the XMM registers).

® Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of this chapter.
These sections also discuss enabling automatic vectorization using the Intel C++
Compiler.

4-12

CODING FOR SIMD ARCHITECTURES

4.3.1 Coding Methodologies

Software developers need to compare the performance improvement that can be
obtained from assembly code versus the cost of those improvements. Programming
directly in assembly language for a target platform may produce the required perfor-
mance gain, however, assembly code is not portable between processor architec-
tures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD tech-
nologies using high-level languages as well as assembly. The new C/C++ language
extensions designed specifically for SSSE3, SSE3, SSE2, SSE, and MMX technology
help make this possible.

Figure 4-2 illustrates the trade-offs involved in the performance of hand-coded
assembly versus the ease of programming and portability.

S
T 4 A\
Assembly Instrinsics

g . J Automatic
5 N Vectorization
‘€
[
o C/C++[Fortran

-~

~—

Ease of Programming/Portability

\ 4

Figure 4-3. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs

The examples that follow illustrate the use of coding adjustments to enable the algo-
rithm to benefit from the SSE. The same techniques may be used for single-precision
floating-point, double-precision floating-point, and integer data under SSSE3, SSE3,
SSE2, SSE, and MMX technology.

CODING FOR SIMD ARCHITECTURES

As a basis for the usage model discussed in this section, consider a simple loop
shown in Example 4-7.

Example 4-13. Simple Four-lteration Loop

void add(float *a, float *b, float *c)
{
inti;
for(i=0;i<4i++){
c[i] = a[i] + bril;
}
}

Note that the loop runs for only four iterations. This allows a simple replacement of
the code with Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data alignment on
the 16-byte boundary, all examples in this chapter assume that the arrays passed to
the routine, A, B, C, are aligned to 16-byte boundaries by a calling routine. For the
methods to ensure this alignment, please refer to the application notes for the
Pentium 4 processor.

The sections that follow provide details on the coding methodologies: inlined
assembly, intrinsics, C++ vector classes, and automatic vectorization.

4.3.1.1 Assembly

Key loops can be coded directly in assembly language using an assembler or by using
inlined assembly (C-asm) in C/C++ code. The Intel compiler or assembler recognize
the new instructions and registers, then directly generate the corresponding code.
This model offers the opportunity for attaining greatest performance, but this perfor-
mance is not portable across the different processor architectures.

4-14

CODING FOR SIMD ARCHITECTURES

Example 4-8 shows the Streaming SIMD Extensions inlined assembly encoding.

Example 4-14. Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)

{
_asm{
mov eax, a
mov edx, b
mov ecx, C

movaps xmmO, XMMWORD PTR [eax]
addps xmmO, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmmO

43.1.2 Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding
instead of assembly language. Intel has defined three sets of intrinsic functions that
are implemented in the Intel C++ Compiler to support the MMX technology,
Streaming SIMD Extensions and Streaming SIMD Extensions 2. Four new C data
types, representing 64-bit and 128-bit objects are used as the operands of these
intrinsic functions. ___M64 is used for MMX integer SIMD, _ M128 is used for single-
precision floating-point SIMD, _M128I is used for Streaming SIMD Extensions 2
integer SIMD, and __M128D is used for double precision floating-point SIMD. These
types enable the programmer to choose the implementation of an algorithm directly,
while allowing the compiler to perform register allocation and instruction scheduling
where possible. The intrinsics are portable among all Intel architecture-based
processors supported by a compiler.

The use of intrinsics allows you to obtain performance close to the levels achievable
with assembly. The cost of writing and maintaining programs with intrinsics is consid-
erably less. For a detailed description of the intrinsics and their use, refer to the
Intel C++ Compiler documentation.

4-15

CODING FOR SIMD ARCHITECTURES

Example 4-9 shows the loop from Example 4-7 using intrinsics.

Example 4-15. Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>
void add(float *a, float *b, float *c)
{
__m12810, t1;
10 = _mm_load_ps(a);
t1 = _mm_load_ps(b);
10 = _mm_add_ps(t0, t1);
_mm_store_ps(c, t0);

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly
code. The XMMINTRIN.H header file in which the prototypes for the intrinsics are
defined is part of the Intel C++ Compiler included with the VTune Performance
Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the
___m64 data type to represent the contents of an mm register. You can specify values
in bytes, short integers, 32-bit values, or as a 64-bit object.

The intrinsic data types, however, are not a basic ANSI C data type, and therefore
you must observe the following usage restrictions:

® Use intrinsic data types only on the left-hand side of an assignment as a return
value or as a parameter. You cannot use it with other arithmetic expressions (for
example, "+, “>>").

® Use intrinsic data type objects in aggregates, such as unions to access the byte
elements and structures; the address of an ___M64 object may be also used.

®* Use intrinsic data type data only with the MMX technology intrinsics described in
this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX
Technology Programmer’s Reference Manual. For a description of data types, see the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

4.3.1.3 Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide
both a higher-level abstraction and more flexibility for programming with MMX tech-
nology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These
classes provide an easy-to-use and flexible interface to the intrinsic functions,
allowing developers to write more natural C++ code without worrying about which
intrinsic or assembly language instruction to use for a given operation. Since the
intrinsic functions underlie the implementation of these C++ classes, the perfor-

4-16

CODING FOR SIMD ARCHITECTURES

mance of applications using this methodology can approach that of one using the
intrinsics. Further details on the use of these classes can be found in the Inte/ C++
Class Libraries for SIMD Operations User’s Guide, order number 693500.

Example 4-10 shows the C++ code using a vector class library. The example
assumes the arrays passed to the routine are already aligned to 16-byte boundaries.

Example 4-16. C++ Code Using the Vector Classes

#include <fvech>
void add(float *a, float *b, float *c)
{ F32vec4 *av=(F32vec4 *) g;
F32vec4 *bv=(F32vec4 *) b;
F32vec4 *cv=(F32vec4 *) c;
*cv=*av + *by;
}

Here, fvec.h is the class definition file and F32vec4 is the class representing an array
of four floats. The “+” and “=" operators are overloaded so that the actual Streaming
SIMD Extensions implementation in the previous example is abstracted out, or
hidden, from the developer. Note how much more this resembles the original code,
allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already
aligned to 16-byte boundary.

43.1.4 Automatic Vectorization

The Intel C++ Compiler provides an optimization mechanism by which loops, such as
in Example 4-7 can be automatically vectorized, or converted into Streaming SIMD
Extensions code. The compiler uses similar techniques to those used by a
programmer to identify whether a loop is suitable for conversion to SIMD. This
involves determining whether the following might prevent vectorization:

®* The layout of the loop and the data structures used
* Dependencies amongst the data accesses in each iteration and across iterations

Once the compiler has made such a determination, it can generate vectorized code
for the loop, allowing the application to use the SIMD instructions.

The caveat to this is that only certain types of loops can be automatically vectorized,
and in most cases user interaction with the compiler is needed to fully enable this.

4-17

CODING FOR SIMD ARCHITECTURES

Example 4-11 shows the code for automatic vectorization for the simple four-itera-
tion loop (from Example 4-7).

Example 4-17. Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)

{
inti;
for(i=0;i<4;i++){
cfi] = a[i] + bli];
}
}

Compile this code using the -QAX and -QRESTRICT switches of the Intel C++
Compiler, version 4.0 or later.

The RESTRICT qualifier in the argument list is necessary to let the compiler know that
there are no other aliases to the memory to which the pointers point. In other words,
the pointer for which it is used, provides the only means of accessing the memory in
question in the scope in which the pointers live. Without the restrict qualifier, the
compiler will still vectorize this loop using runtime data dependence testing, where
the generated code dynamically selects between sequential or vector execution of
the loop, based on overlap of the parameters (See documentation for the Intel C++
Compiler). The restrict keyword avoids the associated overhead altogether.

See Intel C++ Compiler documentation for details.

4.4 STACK AND DATA ALIGNMENT

To get the most performance out of code written for SIMD technologies data should
be formatted in memory according to the guidelines described in this section.
Assembly code with an unaligned accesses is a lot slower than an aligned access.

4.4.1 Alignment and Contiguity of Data Access Patterns

The 64-bit packed data types defined by MMX technology, and the 128-bit packed
data types for Streaming SIMD Extensions and Streaming SIMD Extensions 2 create
more potential for misaligned data accesses. The data access patterns of many algo-
rithms are inherently misaligned when using MMX technology and Streaming SIMD
Extensions. Several techniques for improving data access, such as padding, orga-
nizing data elements into arrays, etc. are described below. SSE3 provides a special-

4-18

CODING FOR SIMD ARCHITECTURES

purpose instruction LDDQU that can avoid cache line splits is discussed in
Section 5.7.1.1, “Supplemental Techniques for Avoiding Cache Line Splits.”

4.4.1.1 Using Padding to Align Data

However, when accessing SIMD data using SIMD operations, access to data can be
improved simply by a change in the declaration. For example, consider a declaration
of a structure, which represents a point in space plus an attribute.

typedef struct {short x,y,z; char a} Point;
Point pt[N];

Assume we will be performing a humber of computations on X, Y, Z in three of the
four elements of a SIMD word; see Section 4.5.1, “"Data Structure Layout,” for an
example. Even if the first element in array PT is aligned, the second element will start
7 bytes later and not be aligned (3 shorts at two bytes each plus a single byte = 7
bytes).

By adding the padding variable PAD, the structure is now 8 bytes, and if the first
element is aligned to 8 bytes (64 bits), all following elements will also be aligned. The
sample declaration follows:

typedef struct {short x,y,z; char a; char pad;} Point;

Point pt[N];

44.1.2 Using Arrays to Make Data Contiguous

In the following code,

for (i=0; i<N; i++) pt[ily *= scale;
the second dimension Y needs to be multiplied by a scaling value. Here, the FOR loop
accesses each Y dimension in the array PT thus disallowing the access to contiguous
data. This can degrade the performance of the application by increasing cache

misses, by poor utilization of each cache line that is fetched, and by increasing the
chance for accesses which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation and further
improve the alignment of the data access patterns:

short ptx[N], pty[N], ptz[N];

for (i=0; i<N; i++) pty[i] *= scale;
With the SIMD technology, choice of data organization becomes more important and
should be made carefully based on the operations that will be performed on the data.

In some applications, traditional data arrangements may not lead to the maximum
performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector dot product
in the length of the number of coefficient taps.

Consider the following code:
(data [j] *coeff [0] + data [j+1]*coeff [1]+..+data [j+num of taps-1]*coeff [num of taps-1]),

4-19

CODING FOR SIMD ARCHITECTURES

If in the code above the filter operation of data element I is the vector dot product
that begins at data element J, then the filter operation of data element I+1 begins at
data element J+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients
vector, the filter operation on the first data element will be fully aligned. For the
second data element, however, access to the data vector will be misaligned. For an
example of how to avoid the misalignment problem in the FIR filter, refer to Intel
application notes on Streaming SIMD Extensions and filters.

Duplication and padding of data structures can be used to avoid the problem of data
accesses in algorithms which are inherently misaligned. Section 4.5.1, “Data Struc-
ture Layout,” discusses trade-offs for organizing data structures.

NOTE

The duplication and padding technique overcomes the misalignment
problem, thus avoiding the expensive penalty for misaligned data
access, at the cost of increasing the data size. When developing your
code, you should consider this tradeoff and use the option which
gives the best performance.

4.4.2 Stack Alignment For 128-bit SIMD Technologies

For best performance, the Streaming SIMD Extensions and Streaming SIMD Exten-
sions 2 require their memory operands to be aligned to 16-byte boundaries.
Unaligned data can cause significant performance penalties compared to aligned
data. However, the existing software conventions for IA-32 (STDCALL, CDECL, FAST-
CALL) as implemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte aligned. There-
fore, Intel has defined a new set of IA-32 software conventions for alignment to
support the new ___M128* datatypes (_ _M128, _ M128D, and _ M218I). These
meet the following conditions:

®* Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2
data need to provide a 16-byte aligned stack frame.

® _ M128* parameters need to be aligned to 16-byte boundaries, possibly creating
“holes” (due to padding) in the argument block.

The new conventions presented in this section as implemented by the Intel C++
Compiler can be used as a guideline for an assembly language code as well. In many
cases, this section assumes the use of the __M128* data types, as defined by the Intel
C++ Compiler, which represents an array of four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions and SSE2,
see Appendix D, “Stack Alignment.”

4-20

CODING FOR SIMD ARCHITECTURES

443 Data Alignment for MMX Technology

Many compilers enable alignment of variables using controls. This aligns variable bit
lengths to the appropriate boundaries. If some of the variables are not appropriately
aligned as specified, you can align them using the C algorithm in Example 4-12.

Example 4-18. C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array of NUM_ELEMENTS 64-bit elements. */
double *p, *newp;

p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));

newp = (p+7) & (~0x7);

The algorithm in Example 4-12 aligns an array of 64-bit elements on a 64-bit
boundary. The constant of 7 is derived from one less than the number of bytes in a
64-bit element, or 8-1. Aligning data in this manner avoids the significant perfor-
mance penalties that can occur when an access crosses a cache line boundary.

Another way to improve data alignment is to copy the data into locations that are
aligned on 64-bit boundaries. When the data is accessed frequently, this can provide
a significant performance improvement.

444 Data Alignment for 128-bit data

Data must be 16-byte aligned when loading to and storing from the 128-bit XMM
registers used by SSE/SSE2/SSE3/SSSE3. This must be done to avoid severe perfor-
mance penalties and, at worst, execution faults.

There are MOVE instructions (and intrinsics) that allow unaligned data to be copied to
and out of XMM registers when not using aligned data, but such operations are much
slower than aligned accesses. If data is not 16-byte-aligned and the programmer or
the compiler does not detect this and uses the aligned instructions, a fault occurs. So
keep data 16-byte-aligned. Such alignment also works for MMX technology code,
even though MMX technology only requires 8-byte alignment.

The following describes alignment techniques for Pentium 4 processor as imple-
mented with the Intel C++ Compiler.

4.4.4.1 Compiler-Supported Alignment

The Intel C++ Compiler provides the following methods to ensure that the data is
aligned.

Alignment by F32vec4 or __m128 Data Types

When the compiler detects F32VEC4 or __M128 data declarations or parameters, it
forces alignment of the object to a 16-byte boundary for both global and local data,
as well as parameters. If the declaration is within a function, the compiler also aligns

4-21

CODING FOR SIMD ARCHITECTURES

the function's stack frame to ensure that local data and parameters are 16-byte-
aligned. For details on the stack frame layout that the compiler generates for both
debug and optimized (“release”-mode) compilations, refer to Intel’s compiler docu-
mentation.

__declspec(align(16)) specifications

These can be placed before data declarations to force 16-byte alignment. This is
useful for local or global data declarations that are assigned to 128-bit data types.
The syntax for it is

__declspec(align(integer-constant))
where the INTEGER-CONSTANT is an integral power of two but no greater than 32.
For example, the following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];
The variable BUFFER could then be used as if it contained 100 objects of type __M128

or F32VEC4. In the code below, the construction of the F32VEC4 object, X, will occur
with aligned data.

void foo() {
F32vec4 x = *(__m128 *) buffer;

}
Without the declaration of _ DECLSPEC(ALIGN(16)), a fault may occur.

Alignment by Using a UNION Structure

When feasible, a UNION can be used with 128-bit data types to allow the compiler to
align the data structure by default. This is preferred to forcing alignment with

_ DECLSPEC(ALIGN(16)) because it exposes the true program intent to the compiler
in that ___M128 data is being used. For example:

union {
float f[400];
__m128 m[100];
} buffer;

Now, 16-byte alignment is used by default due to the _ _M128 type in the UNION; it
is not necessary to use _ DECLSPEC(ALIGN(16)) to force the result.

In C++ (but not in C) it is also possible to force the alignment of a
CLASS/STRUCT/UNION type, as in the code that follows:

struct __declspec(align(16)) my_m128
{

J3

float f[4];

4-22

CODING FOR SIMD ARCHITECTURES

If the data in such a CLASS is going to be used with the Streaming SIMD Extensions
or Streaming SIMD Extensions 2, it is preferable to use a UNION to make this explicit.
In C++, an anonymous UNION can be used to make this more convenient:

class my_m128{
union {
__m128m;
float f[4];

¥

Because the UNION is anonymous, the names, M and F, can be used as immediate
member names of MY___M128. Note that _ DECLSPEC(ALIGN) has no effect when
applied to a CLASS, STRUCT, or UNION member in either C or C++.

Alignment by Using __m64 or DOUBLE Data

In some cases, the compiler aligns routines with __M64 or DOUBLE data to 16-bytes
by default. The command-line switch, -QSFALIGN16, limits the compiler so that it
only performs this alignment on routines that contain 128-bit data. The default
behavior is to use -QSFALIGNS. This switch instructs the complier to align routines
with 8- or 16-byte data types to 16 bytes.

For more, see the Intel C++ Compiler documentation.

4.5 IMPROVING MEMORY UTILIZATION

Memory performance can be improved by rearranging data and algorithms for SSE,
SSE2, and MMX technology intrinsics. Methods for improving memory performance
involve working with the following:

®* Data structure layout
® Strip-mining for vectorization and memory utilization
®* Loop-blocking

Using the cacheability instructions, prefetch and streaming store, also greatly
enhance memory utilization. See also: Chapter 7, "Optimizing Cache Usage.”

4.5.1 Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are two basic ways
to arrange vertex data. The traditional method is the array of structures (AoS)
arrangement, with a structure for each vertex (Example 4-13). However this method
does not take full advantage of SIMD technology capabilities.

4-23

CODING FOR SIMD ARCHITECTURES

Example 4-19. AoS Data Structure

typedef struct{
float x,v.z;
intab,c;
} Vertex;
Vertex Vertices[NumOfVertices];

The best processing method for code using SIMD technology is to arrange the data in
an array for each coordinate (Example 4-14). This data arrangement is called struc-
ture of arrays (SoA).

Example 4-20. SoA Data Structure

typedef struct{
float x[NumOfVertices];
float y[NumOfVertices];
float zZ[NumOfVertices];
int a[NumOfVertices];
int b[NumOfVertices];
int c[NumOfVertices];

} VerticesList;
VerticesList Vertices;

There are two options for computing data in AoS format: perform operation on the
data as it stands in AoS format, or re-arrange it (swizzle it) into SoA format dynami-
cally. See Example 4-15 for code samples of each option based on a dot-product
computation.

Example 4-21. AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a fixed vector (Fixed) is a

; common operation in 3D lighting operations, where Array = (x0,y0,20),(x1,y1,21),...
; and Fixed = (xF,yF,zF)

; A dot product is defined as the scalar quantity dO = x0*xF + yO*yF + z0*zF.

; AoS code
; All values marked DC are “don’t-care.”

4-24

CODING FOR SIMD ARCHITECTURES

Example 4-21. AoS and SoA Code Samples (Contd.)

; In the AOS model, the vertices are stored in the xyz format

movaps xmmO, Array ; xmmO = DC, x0, y0, z0

movaps xmm1, Fixed ; xmm1 = DC, xF, yF, zF

mulps xmmO0, xmm1 ; xmmO = DC, xO*xF, yO*yF, z0*zF
movhlps xmm, xmmQO ; xmm = DC, DC, DC, xO*xF

addps xmm1, xmmO ; xmmO = DC, DC, DC,

; XO*XF+z0*zFmovaps xmmZ2, xmm1
shufps xmm2, xmm2,55h ; xmm2 = DC,DC, DC, yO*yF

addps xmm2, xmm1 ;xmm1 =DC, DC, DC,
; XO*XF+y0*yF+z0*zF
; SOA code
; X =x0,x1,x2,x3
;Y =y0yly2y3
;Z2=20,21,22,23
; A = xF xF,xF xF
; B =yF,yF,yF,yF
; C=zF,zF,zF,zF
movaps xmmO, X ; xmmO = x0,x1,x2,x3
movaps xmm1, Y ;xmmO0 =y0,y1,y2,y3
movaps xmm2, Z ; xmmO = 20,21,22,23
mulps xmmO, A ; xmmO = x0*xF, X1*XF, X2*xF, x3*xF
mulps xmm1, B ;xmm1 = yO*yF, y1*yF, y2*yF, y3*xF
mulps xmm¢2, C ; xmm2 = z0*zF, z1*zF, z2*zF, z23*zF
addps xmmO, xmm 1
addps xmmO, xmm2 ; xmmO = (XO*XF+y0*yF+z0*zF), ...

Performing SIMD operations on the original AoS format can require more calculations
and some operations do not take advantage of all SIMD elements available. There-
fore, this option is generally less efficient.

The recommended way for computing data in AoS format is to swizzle each set of
elements to SoA format before processing it using SIMD technologies. Swizzling can
either be done dynamically during program execution or statically when the data
structures are generated. See Chapter 5 and Chapter 6 for examples. Performing the
swizzle dynamically is usually better than using AoS, but can be somewhat inefficient
because there are extra instructions during computation. Performing the swizzle
statically, when data structures are being laid out, is best as there is no runtime over-
head.

As mentioned earlier, the SoA arrangement allows more efficient use of the paral-
lelism of SIMD technologies because the data is ready for computation in a more
optimal vertical manner: multiplying components X0,X1,X2,X3 by XF,XF,XF,XF using

4-25

CODING FOR SIMD ARCHITECTURES

4 SIMD execution slots to produce 4 unique results. In contrast, computing directly
on AoS data can lead to horizontal operations that consume SIMD execution slots but
produce only a single scalar result (as shown by the many “don‘t-care” (DC) slots in
Example 4-15).

Use of the SoA format for data structures can lead to more efficient use of caches and
bandwidth. When the elements of the structure are not accessed with equal
frequency, such as when element x, y, z are accessed ten times more often than the
other entries, then SoA saves memory and prevents fetching unnecessary data items
a, b, andc.

Example 4-22. Hybrid SOA Data Structure

NumOfGroups = NumOfVertices/SIMDwidth
typedef struct{

float x[SIMDwidth];

float y[SIMDwidth];

float z[SIMDwidth];

} VerticesCoordList;
typedef struct{
int a[SIMDwidth];
int b[SIMDwidth];
int c[SIMDwidth];

} VerticesColorList;
VerticesCoordList VerticesCoord[NumOfGroups];
VerticesColorList VerticesColor[NumOfGroups];

Note that SoA can have the disadvantage of requiring more independent memory
stream references. A computation that uses arrays X, Y, and Z (see Example 4-14)
would require three separate data streams. This can require the use of more
prefetches, additional address generation calculations, as well as having a greater
impact on DRAM page access efficiency.

There is an alternative: a hybrid SoA approach blends the two alternatives (see
Example 4-16). In this case, only 2 separate address streams are generated and
referenced: one contains XXXX, YYYY,ZZZZ, ZZZZ,... and the other AAAA, BBBB,
CCCC, AAAA, DDDD,... . The approach prevents fetching unnecessary data,
assuming the variables X, Y, Z are always used together; whereas the variables A, B,
C would also be used together, but not at the same time as X, Y, Z.

The hybrid SoA approach ensures:

* Data is organized to enable more efficient vertical SIMD computation
®* Simpler/less address generation than AoS

®* Fewer streams, which reduces DRAM page misses

4-26

CODING FOR SIMD ARCHITECTURES

® Use of fewer prefetches, due to fewer streams
®* Efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technologies, the choice of data organization becomes
more important and should be carefully based on the operations to be performed on
the data. This will become increasingly important in the Pentium 4 processor and
future processors. In some applications, traditional data arrangements may not lead
to the maximum performance. Application developers are encouraged to explore
different data arrangements and data segmentation policies for efficient computa-
tion. This may mean using a combination of AoS, SoA, and Hybrid SoA in a given
application.

4.5.2 Strip-Mining

Strip-mining, also known as loop sectioning, is a loop transformation technique for
enabling SIMD-encodings of loops, as well as providing a means of improving
memory performance. First introduced for vectorizers, this technique consists of the
generation of code when each vector operation is done for a size less than or equal to
the maximum vector length on a given vector machine. By fragmenting a large loop
into smaller segments or strips, this technique transforms the loop structure by:

®* Increasing the temporal and spatial locality in the data cache if the data are
reusable in different passes of an algorithm.

®* Reducing the number of iterations of the loop by a factor of the length of each
“vector,” or number of operations being performed per SIMD operation. In the
case of Streaming SIMD Extensions, this vector or strip-length is reduced by 4
times: four floating-point data items per single Streaming SIMD Extensions
single-precision floating-point SIMD operation are processed. Consider
Example 4-17.

Example 4-23. Pseudo-code Before Strip Mining

typedef struct _VERTEX {
float x,y, z, nx, ny, nz, u, v;
} Vertex_rec;

main()

{

Vertex_rec v[Num];

for (i=0; i<Num; i++) {
Transform(v[i]);

}

4-27

CODING FOR SIMD ARCHITECTURES

Example 4-23. Pseudo-code Before Strip Mining (Contd.)

for (i=0; i<Num; i++) {
Lighting(v[i]);
}

}

The main loop consists of two functions: transformation and lighting. For each object,
the main loop calls a transformation routine to update some data, then calls the
lighting routine to further work on the data. If the size of array V[NUM] is larger than
the cache, then the coordinates for V[I] that were cached during TRANSFORM(V[I])
will be evicted from the cache by the time we do LIGHTING(V[I]). This means that
V[I] will have to be fetched from main memory a second time, reducing performance.

In Example 4-18, the computation has been strip-mined to a size STRIP_SIZE. The
value STRIP_SIZE is chosen such that STRIP_SIZE elements of array V[NUM] fit into
the cache hierarchy. By doing this, a given element V[I] brought into the cache by
TRANSFORM(VI[I]) will still be in the cache when we perform LIGHTING(V[I]), and
thus improve performance over the non-strip-mined code.

Example 4-24. Strip Mined Code

MAIN()
{

Vertex_rec v[Num];

for (i=0; i < Num; i+=strip_size) {
FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {
TRANSFORM(V[J]);
}
FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {
LIGHTING(V[I]);
¥
}
b

4.5.3 Loop Blocking

Loop blocking is another useful technique for memory performance optimization. The
main purpose of loop blocking is also to eliminate as many cache misses as possible.
This technique transforms the memory domain of a given problem into smaller
chunks rather than sequentially traversing through the entire memory domain. Each
chunk should be small enough to fit all the data for a given computation into the
cache, thereby maximizing data reuse. In fact, one can treat loop blocking as strip
mining in two or more dimensions. Consider the code in Example 4-17 and access

4-28

CODING FOR SIMD ARCHITECTURES

pattern in Figure 4-3. The two-dimensional array A is referenced in the J (column)
direction and then referenced in the I (row) direction (column-major order); whereas
array B is referenced in the opposite manner (row-major order). Assume the
memory layout is in column-major order; therefore, the access strides of array A and
B for the code in Example 4-19 would be 1 and MAX, respectively.

Example 4-25. Loop Blocking

A. Original Loop
float AIMAX, MAX], BIMAX, MAX]
for (i=0; i< MAX; i++) {
for (j=0; j< MAX; j++) {
Alij] = ALij] + BL. i;
}
}

B. Transformed Loop after Blocking
float AIMAX, MAX], BIMAX, MAX];
for (i=0; i< MAX; i+=block_size) {
for (j=0; j< MAX; j+=block_size) {
for (ii=i; ii<i+block_size; ii++) {
for (jj=j; ji<j+block_size; jj++) {
Aliijj] = Alii,ji] + Bij, ii;
}

For the first iteration of the inner loop, each access to array B will generate a cache
miss. If the size of one row of array A, thatis, A[2, 0:MAX-1], is large enough, by the
time the second iteration starts, each access to array B will always generate a cache
miss. For instance, on the first iteration, the cache line containing B[0, 0:7] will be
brought in when B[0,0] is referenced because the float type variable is four bytes and
each cache line is 32 bytes. Due to the limitation of cache capacity, this line will be
evicted due to conflict misses before the inner loop reaches the end. For the next
iteration of the outer loop, another cache miss will be generated while referencing
B[O, 1]. In this manner, a cache miss occurs when each element of array B is refer-
enced, that is, there is no data reuse in the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In
Figure 4-3, a BLOCK_SIZE is selected as the loop blocking factor. Suppose that
BLOCK_SIZE is 8, then the blocked chunk of each array will be eight cache lines
(32 bytes each). In the first iteration of the inner loop, A[0, 0:7] and B[0, 0:7] will be
brought into the cache. B[0, 0:7] will be completely consumed by the first iteration of
the outer loop. Consequently, B[O, 0:7] will only experience one cache miss after
applying loop blocking optimization in lieu of eight misses for the original algorithm.
As illustrated in Figure 4-3, arrays A and B are blocked into smaller rectangular

4-29

CODING FOR SIMD ARCHITECTURES

chunks so that the total size of two blocked A and B chunks is smaller than the cache

size. This allows maximum data reuse.

A(i, j) access pattern

A (i, j) access pattern‘ j after blocking

Blocking

I YVVVVVVVVVVVVYYVYY

< cache size O
N A A N /[A A A A [[

VVYVVVVVVYVVYVVVVYVYVYY

B(i, j) access pattern
after blocking

OM15158

Figure 4-4. Loop Blocking Access Pattern

As one can see, all the redundant cache misses can be eliminated by applying this
loop blocking technique. If MAX is huge, loop blocking can also help reduce the
penalty from DTLB (data translation look-aside buffer) misses. In addition to

improving the cache/memory performance, this optimization technique also saves

external bus bandwidth.

4.6 INSTRUCTION SELECTION

The following section gives some guidelines for choosing instructions to complete a
task.

One barrier to SIMD computation can be the existence of data-dependent branches.
Conditional moves can be used to eliminate data-dependent branches. Conditional

4-30

CODING FOR SIMD ARCHITECTURES

moves can be emulated in SIMD computation by using masked compares and logi-
cals, as shown in Example 4-20. SSE4.1 provides packed blend instruction that can
vectorize data-dependent branches in a loop.

Example 4-26. Emulation of Conditional Moves

High-level code:
__declspec(align(16)) short AIMAX_ELEMENT], B[IMAX_ELEMENT], CIMAX_ELEMENT],
D[MAX_ELEMENT], E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++) {
if (A[l1 > Bl {
C[i] = DOl
Jelse {
C[il = EfiT:
}

}

MMX assembly code processes 4 short values per iteration:
Xor eax, eax

top_of_loop:
movqg mmoO, [A + eax]
pcmpgtwxmmoO, [B + eax]; Create compare mask
movqg mm1, [D + eax]
pand mm1, mmO; Drop elements where A<B
pandn mmO, [E + eax]; Drop elements where A>B

por mmO, mm1; Crete single word
movg [C+ eax], mmO

add eax, 8

cmp eax, MAX_ELEMENT*2

jle top_of_loop

SSE4.1 assembly processes 8 short values per iteration:
xor eax, eax

top_of_loop:
movdgg xmmO, [A + eax]
pcmpgtwxmmoO, [B + eax]; Create compare mask
movdga xmm1, [E + eax]
pblendv xmm1, [D + eax], xmmoO;
movdga [C + eax], xmm1;

add eax, 16
cmp eax, MAX_ELEMENT*2
jle top_of_loop

4-31

CODING FOR SIMD ARCHITECTURES

If there are multiple consumers of an instance of a register, group the consumers
together as closely as possible. However, the consumers should not be scheduled
near the producer.

4.6.1 SIMD Optimizations and Microarchitectures

Pentium M, Intel Core Solo and Intel Core Duo processors have a different microar-
chitecture than Intel NetBurst microarchitecture. The following sub-section discusses
optimizing SIMD code targeting Intel Core Solo and Intel Core Duo processors.

The register-register variant of the following instructions has improved performance
on Intel Core Solo and Intel Core Duo processor relative to Pentium M processors.
This is because the instructions consist of two micro-ops instead of three. Relevant
instructions are: unpcklps, unpckhps, packsswb, packuswb, packssdw, pshufd,
shuffps and shuffpd.

Recommendation: When targeting code generation for Intel Core Solo and Intel
Core Duo processors, favor instructions consisting of two pops over those with more
than two pops.

Intel Core microarchitecture generally executes SIMD instructions more efficiently
than previous microarchitectures in terms of latency and throughput, most 128-bit
SIMD operations have 1 cycle throughput (except shuffle, pack, unpack operations).
Many of the restrictions specific to Intel Core Duo, Intel Core Solo processors (such
as 128-bit SIMD operations having 2 cycle throughput at a minimum) do not apply to
Intel Core microarchitecture. The same is true of Intel Core microarchitecture rela-
tive to Intel NetBurst microarchitectures.

Enhanced Intel Core microarchitecture provides dedicated 128-bit shuffler and radix-
16 divider hardware. These capabilities and SSE4.1 instructions will make vectoriza-
tion using 128-bit SIMD instructions even more efficient and effective.

Recommendation: With the proliferation of 128-bit SIMD hardware in Intel Core
microarchitecture and Enhanced Intel Core microarchitecture, integer SIMD code
written using MMX instructions should consider more efficient implementations using
128-bit SIMD instructions.

4.7 TUNING THE FINAL APPLICATION

The best way to tune your application once it is functioning correctly is to use a
profiler that measures the application while it is running on a system. VTune analyzer
can help you determine where to make changes in your application to improve
performance. Using the VTune analyzer can help you with various phases required for
optimized performance. See Appendix A.2, “Intel® VTune™ Performance Analyzer,”
for details. After every effort to optimize, you should check the performance gains to
see where you are making your major optimization gains.

4-32

CHAPTER 5
OPTIMIZING FOR SIMD INTEGER APPLICATIONS

SIMD integer instructions provide performance improvements in applications that
are integer-intensive and can take advantage of SIMD architecture.

Guidelines in this chapter for using SIMD integer instructions (in addition to those
described in Chapter 3) may be used to develop fast and efficient code that scales
across processor generations.

The collection of 64-bit and 128-bit SIMD integer instructions supported by MMX
technology, SSE, SSE2, SSE3, SSSE3, SSE4.1, and PCMPEQQ in SSE4.2 are referred
to as SIMD integer instructions.

Code sequences in this chapter demonstrates the use of basic 64-bit SIMD integer
instructions and more efficient 128-bit SIMD integer instructions.

Processors based on Intel Core microarchitecture support MMX, SSE, SSE2, SSE3,
and SSSE3. Processors based on Enhanced Intel Core microarchitecture support
SSE4.1 and all previous generations of SIMD integer instructions. Processors based
on Intel microarchitecture code name Nehalem supports MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1 and SSE4.2.

Single-instruction, multiple-data techniques can be applied to text/string processing,
lexing and parser applications. SIMD programming in string/text processing and
lexing applications often require sophisticated techniques beyond those commonly
used in SIMD integer programming. This is covered in Chapter 10, "SSE4.2 and SIMD
Programming For Text-Processing/LexING/Parsing”

Execution of 128-bit SIMD integer instructions in Intel Core microarchitecture and
Enhanced Intel Core microarchitecture are substantially more efficient than on
previous microarchitectures. Thus newer SIMD capabilities introduced in SSE4.1
operate on 128-bit operands and do not introduce equivalent 64-bit SIMD capabili-
ties. Conversion from 64-bit SIMD integer code to 128-bit SIMD integer code is
highly recommended.

This chapter contains examples that will help you to get started with coding your
application. The goal is to provide simple, low-level operations that are frequently
used. The examples use a minimum number of instructions necessary to achieve
best performance on the current generation of Intel 64 and IA-32 processors.

Each example includes a short description, sample code, and notes if necessary.
These examples do not address scheduling as it is assumed the examples will be
incorporated in longer code sequences.

For planning considerations of using the SIMD integer instructions, refer to Section
4.1.3.

5-1

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.1 GENERAL RULES ON SIMD INTEGER CODE

General rules and suggestions are:

e Do not intermix 64-bit SIMD integer instructions with x87 floating-point instruc-
tions. See Section 5.2, “"Using SIMD Integer with x87 Floating-point.” Note that
all SIMD integer instructions can be intermixed without penalty.

e Favor 128-bit SIMD integer code over 64-bit SIMD integer code. On microarchi-
tectures prior to Intel Core microarchitecture, most 128-bit SIMD instructions
have two-cycle throughput restrictions due to the underlying 64-bit data path in
the execution engine. Intel Core microarchitecture executes most SIMD instruc-
tions (except shuffle, pack, unpack operations) with one-cycle throughput and
provides three ports to execute multiple SIMD instructions in parallel. Enhanced
Intel Core microarchitecture speeds up 128-bit shuffle, pack, unpack operations
with 1 cycle throughput.

e When writing SIMD code that works for both integer and floating-point data, use
the subset of SIMD convert instructions or load/store instructions to ensure that
the input operands in XMM registers contain data types that are properly defined
to match the instruction.

Code sequences containing cross-typed usage produce the same result across
different implementations but incur a significant performance penalty. Using
SSE/SSE2/SSE3/SSSE3/SSE44.1 instructions to operate on type-mismatched
SIMD data in the XMM register is strongly discouraged.

e Use the optimization rules and guidelines described in Chapter 3 and Chapter 4.

o Take advantage of hardware prefetcher where possible. Use the PREFETCH
instruction only when data access patterns are irregular and prefetch distance
can be pre-determined. See Chapter 7, “"Optimizing Cache Usage.”

e Emulate conditional moves by using blend, masked compares and logicals
instead of using conditional branches.

5.2 USING SIMD INTEGER WITH X87 FLOATING-POINT

All 64-bit SIMD integer instructions use MMX registers, which share register state
with the x87 floating-point stack. Because of this sharing, certain rules and consider-
ations apply. Instructions using MMX registers cannot be freely intermixed with x87
floating-point registers. Take care when switching between 64-bit SIMD integer
instructions and x87 floating-point instructions to ensure functional correctness. See
Section 5.2.1.

Both Section 5.2.1 and Section 5.2.2 apply only to software that employs MMX
instructions. As noted before, 128-bit SIMD integer instructions should be favored to
replace MMX code and achieve higher performance. That also obviates the need to
use EMMS, and the performance penalty of using EMMS when intermixing MMX and
X87 instructions.

5-2

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

For performance considerations, there is no penalty of intermixing SIMD floating-
point operations and 128-bit SIMD integer operations and x87 floating-point opera-
tions.

5.2.1 Using the EMMS Instruction

When generating 64-bit SIMD integer code, keep in mind that the eight MMX regis-
ters are aliased to x87 floating-point registers. Switching from MMX instructions to
x87 floating-point instructions incurs a finite delay, so it is the best to minimize
switching between these instruction types. But when switching, the EMMS instruction
provides an efficient means to clear the x87 stack so that subsequent x87 code can
operate properly.

As soon as an instruction makes reference to an MMX register, all valid bits in the x87
floating-point tag word are set, which implies that all x87 registers contain valid
values. In order for software to operate correctly, the x87 floating-point stack should
be emptied when starting a series of x87 floating-point calculations after operating
on the MMX registers.

Using EMMS clears all valid bits, effectively emptying the x87 floating-point stack and
making it ready for new x87 floating-point operations. The EMMS instruction ensures
a clean transition between using operations on the MMX registers and using opera-
tions on the x87 floating-point stack. On the Pentium 4 processor, there is a finite
overhead for using the EMMS instruction.

Failure to use the EMMS instruction (or the _MM_EMPTY() intrinsic) between opera-
tions on the MMX registers and x87 floating-point registers may lead to unexpected
results.

NOTE

Failure to reset the tag word for FP instructions after using an MMX
instruction can result in faulty execution or poor performance.

5.2.2 Guidelines for Using EMMS Instruction

When developing code with both x87 floating-point and 64-bit SIMD integer instruc-
tions, follow these steps:

1. Always call the EMMS instruction at the end of 64-bit SIMD integer code when the
code transitions to x87 floating-point code.

2. Insert the EMMS instruction at the end of all 64-bit SIMD integer code segments
to avoid an x87 floating-point stack overflow exception when an x87 floating-
point instruction is executed.

When writing an application that uses both floating-point and 64-bit SIMD integer
instructions, use the following guidelines to help you determine when to use EMMS:

5-3

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

e If next instruction is x87 FP — Use _MM_EMPTY() after a 64-bit SIMD integer
instruction if the next instruction is an X87 FP instruction; for example, before
doing calculations on floats, doubles or long doubles.

e Don’t empty when already empty — If the next instruction uses an MMX
register, _MM_EMPTY() incurs a cost with no benefit.

e Group Instructions — Try to partition regions that use X87 FP instructions from
those that use 64-bit SIMD integer instructions. This eliminates the need for an
EMMS instruction within the body of a critical loop.

e Runtime initialization — Use _MM_EMPTY() during runtime initialization of
__M64 and X87 FP data types. This ensures resetting the register between data
type transitions. See Example 5-1 for coding usage.

Example 5-1. Resetting Register Between __m64 and FP Data Types Code

Incorrect Usage Correct Usage
__m64 x = _m_paddd(y, z); __m64 x = _m_paddd(y, z);
float f = init(); float f = (_mm_empty(), init());

You must be aware that your code generates an MMX instruction, which uses MMX
registers with the Intel C++ Compiler, in the following situations:

e when using a 64-bit SIMD integer intrinsic from MMX technology,
SSE/SSE2/SSSE3

¢ when using a 64-bit SIMD integer instruction from MMX technology,
SSE/SSE2/SSSE3 through inline assembly

e when referencing the ___M64 data type variable

Additional information on the x87 floating-point programming model can be found in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. For
more on EMMS, visit http://developer.intel.com.

53 DATA ALIGNMENT

Make sure that 64-bit SIMD integer data is 8-byte aligned and that 128-bit SIMD
integer data is 16-byte aligned. Referencing unaligned 64-bit SIMD integer data can
incur a performance penalty due to accesses that span 2 cache lines. Referencing
unaligned 128-bit SIMD integer data results in an exception unless the MOVDQU
(move double-quadword unaligned) instruction is used. Using the MOVDQU instruc-
tion on unaligned data can result in lower performance than using 16-byte aligned
references. Refer to Section 4.4, “"Stack and Data Alignment,” for more information.

Loading 16 bytes of SIMD data efficiently requires data alignment on 16-byte bound-
aries. SSSE3 provides the PALIGNR instruction. It reduces overhead in situations that
requires software to processing data elements from non-aligned address. The

54

http://developer.intel.com

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

PALIGNR instruction is most valuable when loading or storing unaligned data with the
address shifts by a few bytes. You can replace a set of unaligned loads with aligned
loads followed by using PALIGNR instructions and simple register to register copies.

Using PALIGNRSs to replace unaligned loads improves performance by eliminating
cache line splits and other penalties. In routines like MEMCPY(), PALIGNR can boost
the performance of misaligned cases. Example 5-2 shows a situation that benefits by
using PALIGNR.

Example 5-2. FIR Processing Example in C language Code

void FIR(float *in, float *out, float *coeff, int count)
{intij;
for (i=0; i<count - TAP; i++)
{ floatsum=0;
for (j=0; j<TAP; j++)
{ sum +=in[j]*coeff[j]; }
*out++ = sum;
in++;

Example 5-3 compares an optimal SSE2 sequence of the FIR loop and an equivalent
SSSE3 implementation. Both implementations unroll 4 iteration of the FIR inner loop
to enable SIMD coding techniques. The SSE2 code can not avoid experiencing cache
line split once every four iterations. PALGNR allows the SSSE3 code to avoid the
delays associated with cache line splits.

Example 5-3. SSE2 and SSSE3 Implementation of FIR Processing Code

Optimized for SSE2 Optimized for SSSE3

pxor xmmO, xmmO pxor xmmO, xmmO

xor ecx, ecx xor ecx, ecx

mov eax, dword ptrinput] mov eax, dword ptrlinput]

mov ebx, dword ptr[coeff4] mov ebx, dword ptr[coeff4]

inner_loop: inner_loop:

movaps xmm1, xmmword ptrleax+ecx] movaps xmm1, xmmword ptr[eax+ecx]

mulps xmm1, xmmword ptr[ebx+4*ecx] movaps xmm3, xmm1

addps xmmO, xmm1 mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmmOQ, xmm1

movups xmm1, xmmword ptrleax+ecx+4] movaps xmm2, xmmword ptr[eax+ecx+16]

mulps xmm1, xmmword movaps xmm1, xmmZ2

ptrlebx+4*ecx+16] palignr xmm2, xmm3, 4

addps xmmO, xmm1 mulps xmm2, xmmword ptr[ebx+4*ecx+16]

addps xmmO, xmmZ2

5-5

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-3. SSE2 and SSSE3 Implementation of FIR Processing Code (Contd.)

Optimized for SSE2 Optimized for SSSE3

movups xmm71, xmmword ptrleax+ecx+8] movaps xmm2, xmm 1

mulps xmm1, xmmword palignr xmmZ2, xmm3, 8

ptrlebx+4*ecx+32] mulps xmm2, xmmword ptriebx+4*ecx+32]
addps xmmO, xmm1 addps xmmO, xmm2

movups xmm1, xmmword ptrleax+ecx+12] movaps XmmZ2, xmm1

mulps xmm1, xmmword palignr xmmZ2, xmm3, 12
ptrlebx+4*ecx+48] mulps xmm2, xmmword ptr[ebx+4*ecx+48]
addps xmmO, xmm1 addps xmmO, xmm2

add ecx, 16 add ecx, 16

cnp ecx, 4*TAP cnp ecx, 4*TAP

il inner_loop il inner_loop

mov eax, dword ptrloutput] mov eax, dword ptr{output]

movaps xmmword ptr[eax], xmmQO movaps xmmword ptr[eax], xmmO

54 DATA MOVEMENT CODING TECHNIQUES

In general, better performance can be achieved if data is pre-arranged for SIMD
computation (see Section 4.5, “"Improving Memory Utilization”). This may not always
be possible.

This section covers techniques for gathering and arranging data for more efficient
SIMD computation.

5.4.1 Unsigned Unpack

MMX technology provides several instructions that are used to pack and unpack data
in the MMX registers. SSE2 extends these instructions so that they operate on
128-bit source and destinations.

The unpack instructions can be used to zero-extend an unsigned number.
Example 5-4 assumes the source is a packed-word (16-bit) data type.

5-6

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instruc-
tions Code

; Input:
; XMMO 8 16-bit values in source
; XMM7 0 a local variable can be used
; instead of the register XMM7 if
; desired.
; Output:
; XMMO four zero-extended 32-bit
; doublewords from four low-end
; words
; XMM1 four zero-extended 32-bit
; doublewords from four high-end
; words
movdqga xmm71, xmmO ; copy source
punpcklwd xmmO, xmm?7 ; unpack the 4 low-end words
; into 4 32-bit doubleword
punpckhwd xmm1, xmm?7 ; unpack the 4 high-end words
; into 4 32-bit doublewords

54.2 Signed Unpack

Signed numbers should be sign-extended when unpacking values. This is similar to
the zero-extend shown above, except that the PSRAD instruction (packed shift right
arithmetic) is used to sign extend the values.

Example 5-5 assumes the source is a packed-word (16-bit) data type.

Example 5-5. Signed Unpack Code

Input:
; XMMO source value
; Output:
; XMMO four sign-extended 32-bit doublewords
; from four low-end words
XMM1 four sign-extended 32-bit doublewords
from four high-end words

5-7

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-5. Signed Unpack Code (Contd.)

movdga xmm71, xmmO ; copy source

punpcklwd xmmO, xmmO ; unpack four low end words of the source
; into the upper 16 bits of each doubleword
; in the destination

punpckhwd xmm1, xmm1 ; unpack 4 high-end words of the source
, into the upper 16 bits of each doubleword
; in the destination

psrad xmm0, 16 ; sign-extend the 4 low-end words of the source
, into four 32-bit signed doublewords
psrad xmm1,16 ; sign-extend the 4 high-end words of the

; source into four 32-bit signed doublewords

54.3 Interleaved Pack with Saturation

Pack instructions pack two values into a destination register in a predetermined
order. PACKSSDW saturates two signed doublewords from a source operand and two
signed doublewords from a destination operand into four signed words; and it packs
the four signed words into a destination register. See Figure 5-1.

SSE2 extends PACKSSDW so that it saturates four signed doublewords from a source
operand and four signed doublewords from a destination operand into eight signed
words; the eight signed words are packed into the destination.

mm/m64 mm

OM15159

Figure 5-1. PACKSSDW mm, mm/mm64 Instruction

Figure 5-2 illustrates where two pairs of values are interleaved in a destination
register; Example 5-6 shows MMX code that accomplishes the operation.

5-8

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Two signed doublewords are used as source operands and the result is interleaved
signed words. The sequence in Example 5-6 can be extended in SSE2 to interleave
eight signed words using XMM registers.

MM/M64 mm

OM15160

Figure 5-2. Interleaved Pack with Saturation

Example 5-6. Interleaved Pack with Saturation Code

; Input:

MMO
; MM1
; Output:

MMO

’
7
,

’

signed source1 value
signed source?2 value

the first and third words contain the
signed-saturated doublewords from MMO,
the second and fourth words contain
signed-saturated doublewords from MM1

packssdw mmO, mmO ; pack and sign saturate
packssdw mm1, mm1 ; pack and sign saturate
punpcklwd mmO, mm1 ;interleave the low-end 16-bit

; values of the operands

Pack instructions always assume that source operands are signed numbers. The
result in the destination register is always defined by the pack instruction that
performs the operation. For example, PACKSSDW packs each of two signed 32-bit
values of two sources into four saturated 16-bit signed values in a destination
register. PACKUSWB, on the other hand, packs the four signed 16-bit values of two
sources into eight saturated eight-bit unsigned values in the destination.

5-9

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

544 Interleaved Pack without Saturation

Example 5-7 is similar to Example 5-6 except that the resulting words are not satu-
rated. In addition, in order to protect against overflow, only the low order 16 bits of
each doubleword are used. Again, Example 5-7 can be extended in SSE2 to accom-
plish interleaving eight words without saturation.

Example 5-7. Interleaved Pack without Saturation Code

; Input:

; MMO signed source value

; MM1 signed source value

; Output:

; MMO the first and third words contain the

; low 16-bits of the doublewords in MMO,
; the second and fourth words contain the
; low 16-bits of the doublewords in MM1

psild mm1,16 ; shift the 16 LSB from each of the
; doubleword values to the 16 MSB
; position

pand mmo, {O,ffff,0,ffff}
, mask to zero the 16 MSB
, of each doubleword value

por mmO, mm1 ; merge the two operands

545 Non-Interleaved Unpack

Unpack instructions perform an interleave merge of the data elements of the desti-
nation and source operands into the destination register.

The following example merges the two operands into destination registers without
interleaving. For example, take two adjacent elements of a packed-word data type in
SOURCEL1 and place this value in the low 32 bits of the results. Then take two adja-
cent elements of a packed-word data type in SOURCE2 and place this value in the
high 32 bits of the results. One of the destination registers will have the combination
illustrated in Figure 5-3.

5-10

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

OM15161

Figure 5-3. Result of Non-Interleaved Unpack Low in MMO

The other destination register will contain the opposite combination illustrated in
Figure 5-4.

mm/m64 mm

2

2

2 1

OM15162

Figure 5-4. Result of Non-Interleaved Unpack High in MM1

Code in the Example 5-8 unpacks two packed-word sources in a non-interleaved
way. The goal is to use the instruction which unpacks doublewords to a quadword,
instead of using the instruction which unpacks words to doublewords.

5-11

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code

; Input:

; MMO packed-word source value

; MM1 packed-word source value

; Output:

; MMO contains the two low-end words of the

; original sources, non-interleaved

; MM2 contains the two high end words of the
original sources, non-interleaved.

movq mmZ2, mm0 ; copy sourcel

punpckldg mmO, mm1 ; replace the two high-end words of MMO with
; two low-end words of MM1;
; leave the two low-end words of MMO in place
punpckhdqg mm2, mm1 ; move two high-end words of MM2 to the two low-end
; words of MMZ2; place the two high-end words of
; MM1 in two high-end words of MM2

5.4.6 Extract Data Element

The PEXTRW instruction in SSE takes the word in the designated MMX register
selected by the two least significant bits of the immediate value and moves it to the
lower half of a 32-bit integer register. See Figure 5-5 and Example 5-9.

With SSE2, PEXTRW can extract a word from an XMM register to the lower 16 bits of
an integer register. SSE4.1 provides extraction of a byte, word, dword and qword
from an XMM register into either a memory location or integer register.

MM
63 31 0
X4 X3 X2 X1
R32
31 v O
0.0 X1
OM15163

Figure 5-5. PEXTRW Instruction

5-12

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-9. PEXTRW Instruction Code

; Input:
; eax source value
; immediate value: "“0"

; Output:

; edx 32-bit integer register containing the extracted word in the
; low-order bits & the high-order bits zero-extended

movqg mmO, [eax]
pextrw edx, mmQ, O

5.4.7 Insert Data Element

The PINSRW instruction in SSE loads a word from the lower half of a 32-bit integer
register or from memory and inserts it in an MMX technology destination register at
a position defined by the two least significant bits of the immediate constant. Inser-
tion is done in such a way that three other words from the destination register are left
untouched. See Figure 5-6 and Example 5-10.

With SSE2, PINSRW can insert a word from the lower 16 bits of an integer register or
memory into an XMM register. SSE4.1 provides insertion of a byte, dword and qword
from either a memory location or integer register into an XMM register.

MM
63 31 0
X4 X3 Y1 X1
R32
31 0
Y2 Y1
OM15164

Figure 5-6. PINSRW Instruction

5-13

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-10. PINSRW Instruction Code

; Input:
; edx pointer to source value
; Output:
; mmO register with new 16-bit value inserted
mov eax, [edx]

pinsrw mmo, eax, 1

If all of the operands in a register are being replaced by a series of PINSRW instruc-
tions, it can be useful to clear the content and break the dependence chain by either
using the PXOR instruction or loading the register. See Example 5-11 and Section
3.5.1.7, “Clearing Registers and Dependency Breaking Idioms.”

Example 5-11. Repeated PINSRW Instruction Code

; Input:

; edx pointer to structure containing source

; values at offsets: of +0, +10, +13, and +24
; immediate value: “1"

; Output:

; MMX register with new 16-bit value inserted
pxor mmO, mmO ; Breaks dependency on previous value of mmO
mov eax, [edx]

pinsrw mmO, eax, 0

mov eax, [edx+10]

pinsrw mmO, eax, 1

mov eax, [edx+13]

pinsrw mmO, eax, 2

mov eax, [edx+24]

pinsrw mmO, eax, 3

5.4.8 Non-Unit Stride Data Movement

SSE4.1 provides instructions to insert a data element from memory into an XMM
register, and to extract .a data element from an XMM register into memory directly.
Separate instructions are provided to handle floating-point data and integer byte,
word, or dword. These instructions are suited for vectorizing code that loads/stores
non-unit stride data from memory, see Example 5-12.

5-14

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-12. Non-Unit Stride Load/Store Using SSE4.1 Instructions

movd xmmoO, [addr]

pinsrd xmmoO, [addr + stride], 1
pinsrd xmmO, [addr + 2*stride], 2
pinsrd xmmoO, [addr + 3*stride], 3

/* Goal: Non-Unit Stride Load Dwords*/

/* Goal: Non-Unit Stride Store Dwords*/

movd [addr], xmmO

pextrd [addr + stride], xmmoO, 1
pextrd [addr + 2*stride], xmmO, 2
pextrd [addr + 3*stride], xmmO, 3

Example 5-13 provides two examples: using INSERTPS and PEXTRD to perform

gather operations on floating-point data; using EXTRACTPS and PEXTRD to perform

scatter operations on floating-point data.

Example 5-13. Scatter and Gather Operations Using SSE4.1 Instructions

/* G