The Essential Guide to the Windows DDK
�
�


FAQ:�DDKGUIDE.DOC�Date Created:�5 March, 1999����Last Updated:�4 May, 1999��Copyright © 1999 Microsoft Corporation.


Table of Contents

�toc \o "1-3" �Introduction	�pageref _Toc450441198 \h ��3�
Useful Beginning Documentation	�pageref _Toc450441199 \h ��3�
Which DDK to use?	�pageref _Toc450441200 \h ��4�
Sample code available	�pageref _Toc450441201 \h ��4�
Preparing a system for DDK development	�pageref _Toc450441202 \h ��5�
Which version of VC++ should I use?	�pageref _Toc450441203 \h ��5�
Issues installing and using Windows 95 or Windows 98 DDK	�pageref _Toc450441204 \h ��5�
General	�pageref _Toc450441205 \h ��5�
Compiling and linking	�pageref _Toc450441206 \h ��6�
Debugging	�pageref _Toc450441207 \h ��7�
Windows 95 Debugging	�pageref _Toc450441208 \h ��7�
Windows 98 Debugging	�pageref _Toc450441209 \h ��7�
SoftIce Debugging	�pageref _Toc450441210 \h ��10�
Debug binaries	�pageref _Toc450441211 \h ��10�
Windows 95 System Debug Binaries and Symbol Files	�pageref _Toc450441212 \h ��11�
Where to find them	�pageref _Toc450441213 \h ��11�
Debug binary and symbol file correlation chart	�pageref _Toc450441214 \h ��11�
Windows 98 System Debug Binaries and Symbol Files	�pageref _Toc450441215 \h ��12�
Technology-specific topics	�pageref _Toc450441216 \h ��17�
Local Storage Technology – I/O Subsystem (IOS)	�pageref _Toc450441217 \h ��17�
IOS basics	�pageref _Toc450441218 \h ��17�
Useful reference material	�pageref _Toc450441219 \h ��18�
Where to find sample code	�pageref _Toc450441220 \h ��20�
Setting up and compiling sample code	�pageref _Toc450441221 \h ��20�
Debugging tips	�pageref _Toc450441222 \h ��21�
Windows IOS version history	�pageref _Toc450441223 \h ��21�
Storage technology glossary	�pageref _Toc450441224 \h ��21�
�
�Introduction

This guide was created to supply friendly help to software developers who are new to Windows 95 and Windows 98 device driver and general VxD development.

The main purpose of this document is to help you find the quickest and most efficient self-study path, based on the specific technology you are interested in.

A companion document, The Essential Windows 95/98 DDK Resource Database, is a large database containing pointers to DDK resources supplied by Microsoft and third parties.
Useful Beginning Documentation
In order to get started in the right direction, here is a list of general resources that are useful to any Windows 95/98 DDK developer.  This information was extracted from a companion document, The Essential Windows 95/98 DDK Resource Database, using the keyword “INTRO” to scan the document.

Resource Type�Title�How to Obtain �Comments��Book�Systems Programming for Windows 95�Walter Oney (Microsoft Press). 1-55615-949-8�This is an essential book for Windows 95/98 DDK developers.  See the Web site for book errata and DDK annotations: http://www.oneysoft.com.��Book�Writing Windows Device Drivers�Daniel Norton (Addison Wesley)
 0-201-57795-X�General VxD and driver DLL information.��Book�Writing Windows Virtual Device Drivers�David Thielen and Bryan Woodruff (Addison Wesley) 0-201-62706-X (may be replaced by:)  0-201-48921-X�General VxD and driver DLL information.��Book�Writing Windows VxDs and Device Drivers�Karen Hazzah (R&D Publications) 
0-13-100181-7�General VxD and driver DLL information.��Book�Writing Windows VxDs and Device Drivers, Second Edition�Karen Hazzah (R & D Books) 
0-87930-438-3�(Second edition) General VxD and driver DLL information.��Internet�Hardware Development for IHVs and OEMs�http://www.microsoft.com/hwdev/�Hardware developer site, includes specifications, resources and news.��Internet�Microsoft Device Driver Development Support Resources�http://support.microsoft.com/support/ddk�Microsoft DDK tools, samples, third-party links, etc.��Internet�Vireo Software�http://www.vireo.com/�VTOOLSD home page.��MSDN �The Little Device Driver Writer�MSDN Library: http://msdn.microsoft.com/  (Note 1)�Introduction to writing Windows 95 and Windows NT hardware device drivers, including the I/O models, driver design and debugging strategies.��MSDN �The VxD Writer’s Resource Book, or VxD Writing as a Martial Art�MSDN Library: http://msdn.microsoft.com/  (Note 1)�An overview of virtual device driver (VxD) programming and a comprehensive reading list.��MSDN �What's New in Windows 95 for VxD Writers?�MSDN Library: http://msdn.microsoft.com/  (Note 1)�Explains the changes that VxD writers have to expect when porting their VxDs to Windows 95. ��MSDN�Microsoft Windows 95 Device Driver Kit�(Supplied to MSDN Professional subscribers). Check Microsoft’s Web site http://msdn.microsoft.com/developer�The starting point for Windows 95 device drivers (or device drivers targeting both Windows 95 and Windows 98).  Not useful for WDM-based Windows 98 device drivers.  ��MSDN�Microsoft Windows 98 Device Driver Kit�(Supplied to MSDN Professional subscribers). Check Microsoft’s Web site http://msdn.microsoft.com/developer�The starting point for Windows 98 device drivers.
Includes support for WDM technology. Downloadable for free at http://www.microsoft.com/ddk.��MSDN�Microsoft Windows NT Driver Development Kit�(Supplied to MSDN Professional subscribers). Check Microsoft’s web site http://msdn.microsoft.com/developer�Contains SCSI miniport and WDM information that is relevant to Windows 95/98 development as well as Windows NT/2000. Downloadable for free at http://www.microsoft.com/ddk��

You can find handy printable documentation on the July 1998 and later versions of the Windows 95 DDK CD-ROM, located in the \NEW95DOC path.  Note that this path is NOT automatically copied to your hard disk when you install the DDK; you need to copy the files manually.  

I personally prefer printed documentation for information that is referenced frequently; you can annotate printed documentation and add sticky notes for quick reference. I recommend that you print out the following “general VxD developer” documents and add them to your reference shelf:

File name within \new95doc folder�Comments��UTILS.DOC�How to use WDEB386 Debugger.  Also useful when developing with SoftIce because it explains how to use debug binaries and the debugger dot commands.��VXDS.DOC�VxD documentation.��INTRO.DOC�Introduction to the Windows 95 DDK.��KERNEL.DOC�Virtual Memory Manager documentation.  A large document, I recommend that you print on both sides of each sheet (duplex printing) if your printer has that capability.��

Which DDK to use?
The Windows 98 DDK is generally preferred because it provides:
More samples, and more useful samples
New samples and support for WDM technology
Greater ease of building samples using the BUILD command documented in the Windows NT 4.0 DDK)
Updated documentation

If you are developing a driver using WDM technology, or a driver that requires features that are unique to Windows 98, then you need to use the Windows 98 DDK.

Sample code available
Samples are available in the Windows 95 or Windows 98 DDK.  Documentation for the samples can be found in the Windows 98 DDK, or in the Windows 95 DDK located at \New95doc\intro.doc.

Also, you can search for the keyword SAMPLE in The Essential Windows 95/98 DDK Resource Database for sample information, including samples available from third parties.
Preparing a system for DDK development
Which version of VC++ should I use?

Depending on the type of device driver you are developing, choose the version of C++ compiler you use based on the following table:

Microsoft Visual C++ Version�Description�Typical usage��1.52�For developing 16-bit applications.
The last version that supports development of 16-bit applications.�System Property Page handlers (NOT control panel property sheets, which are 32-bit DLLs)
16-bit printer driver DLLs.��2.0 or greater�Used to compile 32-bit applications only.�Version 2.0 is not recommended for device driver writing.��4.0�The minimum recommended version for building device drivers with the Windows 95 DDK or the Windows 98 DDK.�General driver and VxD development.��4.1�Cannot be used for building VxDs, as it has a bug.�(Do not use).��4.2�Corrects the problem that made 4.1 unsuitable for building VxDs. NOTE: In order to successfully build the sample drivers found in the book Systems Programming for Windows 95, follow the instructions at the Web site http://www.oneysoft.com. �General driver and VxD development.��5.0�The highest recommended version to compile sample code found in the Windows 98 DDK.�General driver and VxD development. 
��6.0�Do not use. This version has name decoration incompatibility problems in some cases, making it unsuitable for building VxDs.�Do not use with the Windows 95 DDK or with the Windows 98 DDK.��
If you have problems linking, find out which LINK.EXE you are using.  It may be because you are not using the linker (link.exe) that is supplied by the Windows 95 DDK. To confirm the correct linker is used, check your environment path settings from a DOS prompt using the SET command.

Issues installing and using the Windows 95 DDK or the Windows 98 DDK
General

Do not depend on using the Windows 95 DDK’s DDKDEBUG.BAT batch file to copy debug binaries to their proper locations, unless you edit this file.  As it is supplied in the DDK, it does not copy all the debug binaries to their correct target folders.  For more information, see the Debugging section in this document.

Windows 95 DDK does not install?

If your particular version of the Windows 95 DDK cannot install because it cannot find the Win32 SDK, you are probably using an older version that does not recognize the (newer) Platform SDK that replaced the Win32 SDK.  If this is the case, and you do not have the newer Windows 95 DDK, use the following procedure:

Install the Visual C++ kit.  (At least version 2.00) Do not use Visual C++ 4.1.
If using Walter Oney’s sample code (in Systems Programming for Windows 95), and compiling using Visual C++ 4.2, see Walter Oney's Web site at http://www.oneysoft.com for additional instructions.
Since you do not have the (old) Win32 SDK, install the Platform SDK. Edit the Registry so that the Windows 95 DDK setup program believes that the Win32 SDK is installed (if using older versions of Windows 95 DDK). In the registry, use REGEDIT to set up the following registry tree. ��HKEY_USERS\.Default\Software\Microsoft\Win32SDK\Directories  ��Create a new registry key:  Name: Install Dir Value: C:\MSTOOLS.
Install the Windows 95 DDK.  If it does not install, this is likely due to the Registry problem described in Step 3 above.
Copy Masm 6.11C from the DDK CD-ROM to c:\ddk\bin (e.g. copy d:\masm611c\ml.* c:\ddk\bin). Do not use the new-vars.bat file in the masm611 directory because it destroys existing environment settings.
If you get error messages indicating problems with 16-bit segments and the /COFF option, this usually means that you do not have MASM version 6.11C. 
If you do not use the master make instructions as indicated in the DDK’s README file, use the following commands to setup the build environment:��pathtoddk\ddkenv [16|32] [area]�pathtovc4bin\vcvars32 x86 

Compiling and linking

Insufficient environment space

When compiling DDK samples, a common problem is running out of DOS environment space.  This issue is also addressed in UTILS.DOC.  One way to fix this is to add the following line to the CONFIG.SYS file, then reboot the system:

Config.sys: shell=c:\command.com /p /e:4096

Errors during linking

When you compile a VxD you are likely to receive the following sorts of warning messages:

LINK : warning LNK4078: multiple "LCODE_vxdpn" sections found with different attributes
LINK : warning LNK4039: section "16ICODE_vxdpd" specified with /SECTION option does not exist

These warnings can be ignored. If you want to make these warnings disappear more important warnings and messages will continue to appear), add the following command-line options to your link script:

- ignore:4078 – ignore:4039

If you get unusual linker errors see if you are running the wrong linker. Ensure that your environment path settings point to the LINK.EXE located in the Windows 95 or Windows 98 DDK.

Debugging
Windows 95 Debugging
For detailed information about the WDEB386 debugger, please refer to the latest document found in the Windows 95 DDK CD-ROM (July 1998) at \New95doc\utils.doc.

The following programs and files are associated with debugging in the Windows 95 DDK:

File name�Comments��\DDK\DEBUG\WDEB386.EXE�The kernel-mode debugger��\DDK\DEBUG\RUNWDEB.BAT�A batch file that launches the debugger.  You must edit this file to indicate which COM port your remote terminal is attached to, etc.��\DDK\DEBUG\RUNWDEB.WRF�(To be created by you) This file contains a list of where symbol files are located. Referenced in RUNWDEB.BAT.  Typical entries in this text file are:

/s:c:\ddk\diskvsd.sym
/s:c:\ddk\configmg.sym
/s:c:\ddk\ios.sym
/s:c:\ddk\esdi_506.sym

where c:\ddk\ is the path where the symbol files are located.��(Your favorite terminal program)�The remote machine (connected to your test machine using a null modem cable) requires a terminal program, such as 
·	HyperTerminal (that is provided with Windows) 
·	Either the RTERM program or the RTERM98 program (found in the Windows 98 DDK, not the Windows 95 DDK).��
Windows 98 Debugging

A new kernel-mode debugger, WDEB98 is available in the Windows 98 DDK.  WDEB98 requires the use of a special terminal program on the remote side, RTERM98, also supplied in the DDK.  WDEB98 is basically an enhanced version of WDEB386 so you can use the WDEB386 documentation for starters.  You may also use the ?  and .? WDEB98 debugger commands to obtain a list of features specific to WDEB98/RTERM98.

The following programs and files are associated with WDEB98 debugging in the Windows 98 DDK:

File name�Comments��\98DDK\BIN\WDEB98.EXE�The kernel-mode debugger��\98DDK\BIN\RUNWDB98.BAT�A batch file that launches the debugger.  You must edit this file to indicate which COM port your remote terminal is attached to, etc.��\98DDK\BIN\RUNWDEB.WRF�(To be created by you) This file contains a list of where symbol files are located. Referenced in RUNWDEB.BAT.  Typical entries in this text file are:

/s:c:\ddk\diskvsd.sym
/s:c:\ddk\configmg.sym
/s:c:\ddk\ios.sym
/s:c:\ddk\esdi_506.sym

where c:\ddk\ is the path where the symbol files are located.��\DDK\BIN\RTERM98.EXE�When using WDEB98, the remote machine (connected to your test machine using a null modem cable) requires the RTERM98 terminal program.��
The additional WDEB98 features include but are not limited to:

Supports RTERM98-side symbols that can be loaded or changed on the fly.
Limited source level debugging support
Debugger is now Win32-aware (no more explorer symbols showing up for every application)
Higher baud rates supported (up to 115.2Kbps)
Changed registers change color while stepping through code
Instruction set upgraded to handle Pentiums (PPro/MMX still to come)
Multiple display drivers can be debugged at once (for multimon systems)


Known bugs:
1. WDeb98 doesn't work on Windows 3.x
2. Symbols can sometimes load twice (once on RTERM98 side, once on WDEB98 side)
3. RTERM98’s client area flashes excessively if you page up while data is streaming in below.

Questions/Answers:

Q. Can I use an old version of RTERM with WDeb98?
A. No. RTERM98 and WDEB98 are now integrated products, you cannot separate WDEB98 from RTERM98 (although RTERM98 should still work with old versions of WDEB386). 

Q. How do I install WDEB98?
A. To manually install WDEB98, just copy down the runwdeb.bat line and change the wdeb386.exe reference to WDEB98.exe. To install as a VxD, use as above or add device=WDEB98.exe to the [386enh] section of system.ini.

Q. Can I run RTERM98 on the 8Mb 386/20 I ran the original RTERM on?
A. Yes, albeit slowly. A large portion of the debugging code has been transferred from WDEB98 to RTERM98. This means that a slow RTERM98 machine now means a slow debugger. It is suggested that all RTERM98 machines should be at least a 486/66 with 8MB. If you want to load symbols on the RTERM98 machine, 16MB is advisable (and even more in a multiple com-port lab machine).

Q. How do I set RTERM98 up so symbols load automatically on the RTERM98 side?
A. As follows:
Go to Settings->Options->Symbol Search Paths. 
Enter the paths you wish RTERM98 to search when trying to load symbols. 
RTERM98 will automatically pick up the build number from WDEB98 when it starts (click on the Environment tab to see).

To test, break in after running a while and type .VMM L. You should see symbols loading automatically for each driver. After you are done with the list, type LM to list all the symbols.

Q. How are symbols resolved now?
A. WDEB98 will first try to resolve any symbols loaded on the WDEB98 side, in the old manner. WDEB98 will then query RTERM98 for symbols.

Note: As WDEB98 resolves local (WDEB98-side) symbols in the same manner as WDEB386, and as local symbols always get first shot, you should try to avoid loading any Win32-application or Display symbols on the WDEB98 side. Why? If you load Explorer.sym locally, all applications will show up as explorer.sym, just like WDeb386. Similarly, if you load a display symbol locally, multiple display cards will all use that one display symbol, just like WDeb386.

Q. I need to put a breakpoint on a symbol that hasn't been loaded yet. How do I do this?
A. Type WA <component> to load the symbol. Note that RTERM98 just takes the .SYM extension and tries to load that file, so to load kernel symbols, you actually want to do WA KRNL386 instead of WA KERNEL. Once the symbol has been loaded, you can place a breakpoint just as you normally do.

Q. How do I get the (crude) source level debugging to work?
A. Go into the code search path and type in a path to your components source code. Break in and you should see your source appear on the right in a pop-up window. If you do not, type in LN and make sure your component's symbol file has line number information.

In order to use source level debugging, you need to build your own debug binaries so they contain line number information.  For example, to get line number information in a WDM driver, make the following modifications to the \98DDK\inc\makefile.def file:


!IF "$(NTDEBUGTYPE)" == "windbg"
LINKER_DBG_TYPE = -debugtype:cv
!ELSEIF "$(NTDEBUGTYPE)" == "ntsd" || "$(NTDEBUGTYPE)" == "coff" || "$(NTDEBUGTYPE)" == ""
LINKER_DBG_TYPE = -debugtype:coff
!ELSEIF "$(NTDEBUGTYPE)" == "both"
LINKER_DBG_TYPE = -debugtype:map,coff    (line 1138) ***********


!IF "$(NTDEBUG)" == "ntsd" || "$(NTDEBUG)" == "ntsdnodbg"
LINKER_DBG_SECTION=-debug:FULL   (line 1276)  ************
!ELSE

Afterwards, be sure to point to source locations in RTERM98 Settings->Options->Code Search Paths so source gets loaded when stepping through debug binary.

Q. How do I close the source window?
A. Go back to the code search paths property sheet, remove the code search paths, and type 'R' at the debugger prompt. The window should disappear.

Q. The machine I am running on constantly drops characters and spews lots of trash on the screen. Can I do something about this?
A. Yes, if you are loading WDEB98 via runwdeb.bat, then add /P (if you use switchboxes) or /PX (if you do not use switchboxes). All text will now be sent in packets, and those packets will be resent until they travel across the COM cable uncorrupted. Note that your effective baud will drop about 75%. You should, however, be able to increase the baud rate to compensate for this.
 
Q. Do you have any good docs on debugging with WDEB98?
A. Note that WDEB98 works just like WDEB386, just with some enhancements.

SoftIce Debugging
A third alternative is the SoftIce kernel-mode debugger.  More information is available at the following Web sites:

http://www.vireo.com or http://www.numega.com.  

Note that SoftIce can also take full advantage of the features offered by Microsoft debug binaries (displaying diagnostic ASSERTs and issuing VxD dot commands). Also, you can install DEBUGCMD.VXD which gives SoftIce the capability of inspecting thread information using the .P debugger dot commands.


Debug binaries

(For more information about this subject see the Word document UTILS.DOC located in the \NEW95DOC folder of the Windows 95 DDK, July 1998)

Once you get the basic debugger working, then you can start adding debug binary files and symbol files.  This section discusses what these files are, as well as how and why they are used.

Debug binaries are Windows 95 or Windows 98 kernel VxDs that are typically compiled with the DEBUG=1 statement contained in the corresponding makefile.

You do not need to use the debug binaries in order to run and use the debugger.  However, debug binaries are extremely helpful when troubleshooting your VxD:

Debug binaries contain additional code that issues messages to the debugger terminal.  These messages contain valuable informational info, warning info, and error info.

Debug binaries frequently contain special debugger “dot command” handling code, not present in the retail drivers (See System Dot Commands in the WDEB386 documentation).  Dot commands are intended to reveal the contents of internal data structures unique to the driver that supports the Dot command.

Debug binaries perform additional verification of data and pointers (using ASSERT functions for example).  For example, if a pointer is found to be null and it should not be, debug binaries may contain an INT1 or INT 3 breakpoint, causing the debugger to automatically halt at that point (see Breaking Into the Debugger in the WDEB386 documentation UTILS.DOC).

If symbol files are provided with the debug binary VxD, use them, to make it easier to navigate through the code.

The preferred debugging platform is Windows 98 if your device is capable of operating under Windows 98, because the Windows 98 DDK includes a folder containing an extensive collection of Windows 98 debug binaries and symbol.  The availability of Windows 95 debug binaries is much smaller.

A frequent problem encountered when using the debugger is incorrect installation of debug binary files, owing to the wrong OS version being used, or the debug binary has been copied to the wrong directory.

If possible, perform a clean install of the operating system and desired applications.  Then install WDEB98 or WDEB386 (install no debug files at this point in time).  In order to set up the debugger so it takes over the system starting in real mode, add the command to launch the debugger in my \autoexec.bat file, after a DOS "pause" command so you can cancel debugging if I want to using the keyboard’s <ctrl c>.

Install only those debug binaries and symbol files that are directly related to your project. The only dependency between debug binaries is between VWIN32.VXD, KERNEL32.DLL, and KRNL386.EXE (you must install all three).

Windows 95 System Debug Binaries and Symbol Files

Where to find them

You need to determine which version of Windows 95 is used in your target PC.  Right-click on My Computer, then click on Properties, to view System Properties in order to see the version information.  The letter appended to the end of the version field determines which version is installed.

For desired target version:�Use the debug binaries located here:��Windows 95 Golden (version A):�In the Windows 95 DDK CD-ROM��Windows 95 Version OSR2 (version B)�http://support.microsoft.com/support/ddk��Windows 95 Version OSR2.1 (version B)  USB Supplement (build 1214). 
If your system contains the file NTKERN.VXD in the %WINDIR%\SYSTEM\VMM32 directory this indicates the USB supplement has been installed.�http://support.microsoft.com/support/ddk��
Debug binary and symbol file correlation chart

Driver file name�W9
5�OSR2�OSR2.1�Required target subfolder within %WINDIR% (the Windows directory)�Comments��bios.vxd�X�X��\system\vmm32�BIOS enumerator.��configmg.vxd�X*�X��\system\vmm32�Configuration Manager – the core of Plug and Play.  Supports debugger dot command .CONFIGMG.��ios.vxd�X*�X��\system\vmm32�Input Output Subsystem Manager.  Supports debugger dot commands; use .I? for help.��vdd.vxd�X*�X��\system\vmm32�Virtual Display Driver.��vdmad.vxd�X*�X��\system\vmm32�Virtual DMA driver.  Virtualizes the Direct Memory Access Controller chip.��vflatd.vxd�X*�X��\system\vmm32�Virtual Flat Frame Buffer Device (Display).��vkd.vxd�X*�X��\system\vmm32�Virtual Keyboard Device.��vmcpd.vxd��X��\system\vmm32�Virtual Math Coprocessor device.��vmm.vxd�X*�X�X�\system\vmm32�Virtual Memory Manager.  Contains all “VMMCall” kernel services used by VxDs. ��vpicd.vxd�X*�X�X�\system\vmm32�Virtual Programmable Interface Controller Driver. Virtualizes the PIC chip.��vxdldr.vxd�X*�X�X�\system\vmm32�VxD Loader Services, including Portable Executable (PE) formatted files.��ntkern.vxd���X�\system\vmm32�WDM driver support, including USB. Debugger dot command available: .NTKERN.��cdtsd.vxd�X�X��\system\iosubsys�Assigns drive letters to CDROM-type storage devices.��cdvsd.vxd�X�X��\system\iosubsys�The CD-ROM “SCSI-izer”. Amends the IOP with SCSI Request Block to accommodate the needs of the port driver.��disktsd.vxd�X�X��\system\iosubsys�Assigns drive letters to disk-type storage devices.��diskvsd.vxd�X�X��\system\iosubsys�The disk device “SCSI-izer”. Amends the IOP with SCSI Request Block to accommodate the needs of the port driver.��scsiport.pdr�X*���\system\iosubsys�Supplies the interface to one or more SCSI Miniport device drivers, implementing the Windows NT SCSI Miniport standard.��eisa.vxd�X�X��\system�EISA bus enumerator.��isapnp.vxd�X�X��\system�ISA bus enumerator.��lptenum.vxd�X�X��\system�Parallel port enumerator.��ndis.vxd�X�X��\system�Network Driver Interface Specification driver.��pccard.vxd�X�X��\system�PC Card (PCMCIA) Plug and Play driver.��pci.vxd�X�X��\system�PCI bus enumerator.��debugcmd.tmp�X���\system�Installed for thread inspection debugger dot commands (see”.P”). In order to use it, rename it to DEBUGCMD.VXD, place it into the \%WINDIR%\SYSTEM folder, and load it by putting DEVICE=DEBUGCMD.VXD in the [386Enh] section of the SYSTEM.INI file.��usbd.sys���X�\system�Universal Serial Bus Device class driver component (WDM).��openhci.sys���X�\system�Open Host Controller Interface driver component (WDM).��uhcd.sys���X�\system�Universal Host Controller Driver (WDM).��usbhub.sys���X�\system�Universal Serial Bus Hub driver (WDM).��* A corresponding symbol file (.SYM) is also supplied for this file.

Windows 98 System Debug Binaries and Symbol Files

The Windows 98 DDK ships with a number of debug versions of core Windows 98 system components and drivers.  These binaries are intended to aid in testing and debugging drivers developed with the Windows 98 DDK, and are located in the \DBG_SYM\RETAIL path.

Below is a list of the binaries currently shipped with the Windows 98 DDK, and the directory each binary needs to be copied to for it to be loaded by Windows 98.  The debug symbol files are also included, they have the same base name ending with the following extension:  .SYM.  Please refer to the documentation for the WDEB98 system debugger for information on how to use the specific debugging features of each debug binary.

NOTE: There is a version dependence between VWIN32.VXD, KERNEL32.DLL, and KRNL386.EXE.  You must run with either all retail versions of these binaries or all debug versions.  Mixing retail and debug versions of these binaries will result in Windows 98 hanging or faulting during boot.

Otherwise, you only need to install those debug binaries that are relevant to the technology you are working on.

If you are debugging a problem that mysteriously disappears when using a debug binary, you will need to remove the debug binary and use the original (release-version) code.  To assist in debugging through retail code, you use their corresponding symbol files (*.SYM) located in the \DBG_SYM\RETAIL\ path.

You can sort this table by the contents of one or more columns using Microsoft Word’s Table->Sort options.  For example, sorting by Required target subfolder will sort the drivers by location on the disk drive.

Windows 98 Golden (first retail release) debug binaries and symbol files can be found in the Windows 98 DDK CD-ROM, or on the Microsoft Web site at http://www.microsoft.com/ddk.

Driver file name�Category�Required target subfolder within %WINDIR% (the Windows directory)�Comments��
CMBATT.SYS�APM�\system���IRCOMM.VXD�Comm�\system���IRENUM.VXD�Comm�\system���IRLAMP.VXD�Comm�\system���IRLAPFRM.VXD�Comm�\system���LPTENUM.VXD�Comm�\system�Parallel port enumerator.��SERENUM.VXD�Comm�\system�Serial Port Enumerator device.��TAPI.DLL�Comm�\system�Telephony Application Program Interface.��UNIMODEM.VXD�Comm�\system���VCD.VXD�Comm�\system\vmm32���VCOMM.VXD�Comm�\system\vmm32���VPD.VXD�Comm�\system\vmm32���VDD.VXD�Display�\system\vmm32�Virtual Display Driver.��VFLATD.VXD�Display�\system\vmm32�Virtual Flat Frame Buffer Device (Display).��DIBENG.DLL�Display, Printing�\system���HID.DLL�HID�\system���HIDCLASS.SYS�HID�\system32\drivers���HIDPARSE.SYS�HID�\system32\drivers���HIDUSB.SYS�HID�\system32\drivers���JOYHID.VXD�HID�\system���KBDHID.VXD�HID�\system���MMHID.DLL�HID�\system���MOUHID.VXD�HID�\system���VJOYD.VXD�HID�\system���VKD.VXD�HID�\system\vmm32�Virtual Keyboard Device.��VMOUSE.VXD�HID�\system\vmm32�Virtual Mouse Driver.��MIDIMAP.DRV�Multimedia�\system���MMCI.DLL�Multimedia�\system���MMDEVLDR.VXD�Multimedia�\system���MMSOUND.DRV�Multimedia�\system���MMSYSTEM.DLL�Multimedia�\system���MSACM.DLL�Multimedia�\system���MSACM32.DLL�Multimedia�\system���SYSAUDIO.SYS�Multimedia�\system32\drivers�System Audio device.��USBAUDIO.SYS�Multimedia�\system32\drivers���WDMAUD.DRV�Multimedia�\system�(Symbol file is named wdmdrv.sym).��WDMAUD.SYS�Multimedia�\system32\drivers���WINMM.DLL�Multimedia�\system���NDIS.VXD�Networking�\system�Network Driver Interface Specification driver.��NDISWAN.VXD�Networking�\system���NETDI.DLL�Networking�\system���PPPMAC.VXD�Networking�\system���VDHCP.386�Networking�\system���VIP.386�Networking�\system���VNBT.386�Networking�\system���VTCP.386�Networking�\system���VTDI.386�Networking�\system���VUDP.386�Networking�\system�Virtual UDP Device Services.��WAN.TSP�Networking�\system���ACPI.SYS�OnNow/ACPI�\system�Advanced Configuration and Power Interface driver.��BATTC. SYS�OnNow/ACPI�\system�Battery Class driver.��COMPBATT.SYS�OnNow/ACPI�\system�Composite Battery device.��EC.SYS�OnNow/ACPI�\system���CBSS.VXD�PCMCIA/CardBus�\system���PCCARD.VXD�PCMCIA/CardBus�\system�PC Card (PCMCIA) Plug and Play driver.��PKPD.DLL�Pen�\system���PKPD32.DLL�Pen�\system���BIOS.VXD�PLUGPLAY�\system�BIOS enumerator.��CONFIGMG.VXD�PLUGPLAY�\system\vmm32�Configuration Manager – the core of Plug and Play. Supports debugger dot command .CONFIGMG.��EISA.VXD�PLUGPLAY�\system�EISA bus enumerator.��ISAPNP.VXD�PLUGPLAY�\system�ISA bus enumerator.��PCI.VXD�PLUGPLAY�\system�PCI bus enumerator.��SPOOLSS.DLL�Printing�\system���UNIDRV.DLL�Printing�\system���SOCKETSV.VXD�Socket Services�\system�Generic Socket Services wrapper.��CDFS.VXD�Storage�\system\iosubsys�CD-ROM File System Driver.��CDTSD.VXD�Storage�\system\iosubsys�Assigns drive letters to CDROM-type storage devices.��CDVSD.VXD�Storage�\system\iosubsys�The CD-ROM “SCSI-izer”. Amends the IOP with SCSI Request Block to accommodate the needs of the port driver.��DISKTSD.VXD�Storage�\system\iosubsys�Assigns drive letters to disk-type storage devices.��DISKVSD.VXD�Storage�\system\iosubsys�The disk device “SCSI-izer”. Amends the IOP with SCSI Request Block to accommodate the needs of the port driver.��IFSMGR.VXD�Storage�\system\vmm32�Installable File System Manager.��IOS.VXD�Storage�\system\vmm32�Input Output Subsystem Manager. Supports debugger dot commands; use .I? for help.��RMM.PDR�Storage�\system\iosubsys�Used to direct I/O to real-mode drivers, for when there is no functioning 32-bit protected mode device driver for the device (or if 32-bit mode is turned off, a.k.a. Compatibility Mode).��SCSIPORT.PDR�Storage�\system\iosubsys�Supplies the interface to one or more SCSI Miniport device drivers, implementing the Windows NT SCSI Miniport standard.��UDF.VXD�Storage�\system\iosubsys�Universal Data Format File System Driver. Accommodates DVD devices.��VFAT.VXD�Storage�\system\vmm32�Disk device File System Driver (all devices using disk drive FAT structures).��VOLTRACK.VXD�Storage�\system\iosubsys�Volume Tracker is used to accommodate removable media devices including SCSI.��GDI.EXE�System DLL�\system�16-bit DLL.��GDI32.DLL�System DLL�\system���KERNEL32.DLL�System DLL�\system�Core component of Windows 98.��KRNL386.EXE�System DLL�\system�Core component of Windows 98.��MAPI32.DLL�System DLL�\system���SETUPX.DLL�System DLL�\system�Device Class installer (setup services).  Serves as default installer for display adapters and mouse.��USER.EXE�System DLL�\system�Core Windows 98 component (16-bit DLL).��USER32.DLL�System DLL�\system�Core Windows 98 component.��DEBUGCMD.VXD�System VXD�\system�For .P thread inspection dot commands. In order to use it, place it into \%WINDIR%\SYSTEM folder, and load it by putting DEVICE=DEBUGCMD.VXD in the [386Enh] section of the SYSTEM.INI file.��VDMAD.VXD�System VXD�\system\vmm32�Virtual DMA driver.  Virtualizes the Direct Memory Access Controller chip.��VMM.VXD�System VXD�\system\vmm32�Virtual Memory Manager.  Contains all “VMMCall” services used by VxDs.��VPICD.VXD�System VXD�\system\vmm32�Virtual Programmable Interface Controller Driver. Virtualizes the PIC chip.��VWIN32.VXD�System VXD�\system\vmm32�Win32 apps can open this VxD via CreateFile() in order to access MSDOS and other services.��VXDLDR.VXD�System VXD�\system\vmm32�VxD Loader Services, including Portable Executable (PE) formatted files.��MSVFW32.DLL�Video capture�\system���MSVIDEO.DLL�Video capture�\system���VFWWDM.DRV�Video capture�\system�Video For Windows device.��VFWWDM32.SYS�Video capture�\system32\drivers�Video For Windows device.��NTKERN.VXD�WDM�\system\vmm32�WDM driver support, including USB. Debugger dot command available: .NTKERN.��WMIDRV.SYS�WDM�\system32\drivers���1394BUS.SYS�WDM 1394�\system32\drivers�1394 bus enumerator.��AHA899X.SYS�WDM 1394�\system32\drivers���OHCI1394.SYS�WDM 1394�\system32\drivers���TILYNX.SYS�WDM 1394�\system32\drivers�1394 TI PCILynx Port Driver.��USBSCAN.SYS�WDM Still Image�\system32\drivers���KS.SYS�WDM STREAMING�\system32\drivers���KSCLOCKF.AX�WDM STREAMING�\system���KSDATA.AX�WDM STREAMING�\system���KSINTERF.AX�WDM STREAMING�\system���KSPROXY.AX�WDM STREAMING�\system���KSUSER.DLL�WDM STREAMING�\system���KSYPINTF.AX�WDM STREAMING�\system���MSKSSRV.SYS�WDM STREAMING�\system32\drivers���STREAM.SYS�WDM STREAMING�\system32\drivers���OPENHCI.SYS�WDM USB�\system32\drivers�Open Host Controller Interface driver component (WDM).��UHCD.SYS�WDM USB�\system32\drivers�Universal Host Controller Driver (WDM).��USBD.SYS�WDM USB�\system32\drivers�Universal Serial Bus Device class driver component (WDM).��USBDIAG.SYS�WDM USB�\system32\drivers���USBHUB.SYS�WDM USB�\system32\drivers�Universal Serial Bus Hub driver (WDM).��

For more information on this subject, see the HTML Help files in the Windows 98 DDK, or for a Word document that prints well, see UTILS.DOC located on the Windows 95 DDK  (Jan 98 or later) under the \NEW95DOC folder.

�Technology-specific topics

The following sections target specific technology areas.  Further information specific to a desired technology area can be found by conducting keyword search in the companion document, The Essential Windows 95/98 DDK Resource Database.

Local Storage Technology – I/O Subsystem (IOS)

This section addresses the following hardware technologies:

IDE fixed and removable storage devices (disk drives, CDROM, DVD etc.)
SCSI fixed and removable storage devices (disk drives, CDROM, DVD etc.)
Legacy 1.44MB floppy disk technology
Storage devices using other hardware interfaces such as a parallel port
SCSI Pass through (tape drives, printers and other devices connected to SCSI bus)

This section does NOT address remote storage devices (devices accessed through the network using VREDIR.VXD, VSERVER.VXD, and so on.).
IOS basics
The following block diagram describes the overall structure of layered VxDs and device drivers that are used to implement local storage devices.

�


Port drivers are located at the bottom of the IOS hierarchy.  Most storage technology device driver developers use the SCSI miniport driver model to interface with their hardware (items 30 or 31 in the diagram above).  A FAQ that addresses the many issues regarding SCSI miniport drivers can be found by looking up Knowledge Base article: Q192605, “FILE: MiniPort.exe - Writing SCSI Miniport Drivers for Win95/98.”

The DDK documentation addressing storage can be found in the Windows 98 DDK by searching on “Storage technology”.  For a convenient hardcopy, there is a Word version of this documentation located in the July 1998 edition of the Windows 95 DDK CD-ROM, at \New95doc\Storage.doc.

Useful reference material

The following books are particularly useful regarding storage technology.

Title�Author�Comments��Systems Programming for Windows 95�Walter Oney (Microsoft Press). 1-55615-949-8�See Walter Oney's Web site for book errata and DDK annotations: http://www.oneysoft.com��Inside the Windows 95 File System�Stan Mitchell (O'Reilly & Associates)
 1-56592-200-X�See http://www.sourcequest.com/win95ifs. This Web site includes a great tool for observing all sorts of internals (including IFS hook), called MultiMon. Also includes IFS sample code.��The SCSI Bus and IDE Interface�Friedhelm Schmidt (Addison-Wesley)
0-201-42284-0�SCSI and IDE hardware.��PC Intern�Michael Tischer, Bruno Jennrich (Abacus)
1-55755-304-1�The Encyclopedia of System Programming (heavy focus on hardware).��The Book of SCSI�Peter M. Ridge (No Starch Press) 
1-886411-02-6�SCSI hardware, software, ASPI.��The Indispensable PC Hardware Book�Hans-Peter Messmer (Addison-Wesley)
0-201-62424-9�Detailed hardware information including hardware register I/O.��

The following Knowledge Base articles reference documents located in Microsoft’s Software Library.  These documents contain various storage technology Frequently Asked Questions.

Title�Comments��Q192602, “FILE: IOSFAQ.exe - IOS Port Driver Frequently Asked Questions”�IOSFAQ.exe is a file that contains IOS_Port_DriverFAQ.doc. This document addresses common questions that arise when you are developing an IOS port driver, located in the Windows 95/98 I/O Subsystem (IOS).��Q192603, “FILE: DskDrive.exe – Removing/Adding Disk Drives Under Win95/98”�DskDrive.exe is a file that contains Disk_Drives.doc. The Windows 95 I/O Subsystem (IOS) contains internal mechanisms for managing the removal and addition of disk drive letters and entire physical devices. ��Q192604, “FILE: HotSwap.exe - Hot Swapping IDE or ATAPI CDROM Devices”�HotSwap.exe is a file that contains Hot_Swapping.doc. This document discusses the options available to device driver developers who wish to configure an IDE hard disk drive or ATAPI CD-ROM drive to be inserted and removed ("hot swapped") after Windows 95 has started up.��Q192605, “FILE: MiniPort.exe - Writing SCSI Miniport Drivers for Win95/98”�MiniPort.exe is a file that contains SCSI_Miniport_Drivers.doc. This document supplements the SCSI Miniport documentation in the Windows 95 DDK (STORAGE.DOC).��Q192606, “FILE: MBtFAQ.exe - Windows 95 or Windows 98 Master Boot Record”�MBtFAQ.exe is a file that contains Mstr_Boot_Rec_FAQ.doc. This document discusses how to develop device drivers that access Windows 95 or Windows 98 disk drives at the Master Boot Record, disk partition and head/cylinder/sector levels. Developers of disk encryption products and disk partitioning products will find this information useful.��

Where to find sample code
The following storage samples are available in the Windows 95 DDK and/or the Windows 98 DDK.
Sample type�Sample name�Comments��SCSI Miniport Driver�PC2X�This is the miniport driver for the Iomega PC2x 8-bit SCSI adapter card.  Instead of using this sample, the ATAPI miniport sample is the recommended sample.��SCSI Miniport Driver�ATAPI�(Located in the Windows NT 4.0 DDK, not the Windows 95 or Windows 98 DDK) A SCSI miniport driver that when compiled, can be binary compatible between Windows 95/98 and Windows NT/2000 (but is not binary compatible if Windows system calls using VMMCall are compiled in).��IOS Port Driver�PORT�This is an IOS Port device driver sample, serving only as a template for developing a new Port driver.  It is written in assembly language.  Port drivers reside at the bottom of the IOS layered hierarchy, and typically communicate with storage device hardware.  This sample demonstrates how to use ILB_enqueue_IOP and ILB_dequeue_IOP in order to accommodate reentrant IOPs being sent to the driver.��IOS Vendor Supplied Driver�VSD�This is an IOS Vendor Supplied Driver device driver sample, serving only as a template for developing a new VSD.  This type of driver is sometimes called a helper VSD. VSD drivers reside in the middle of the IOS layered hierarchy, between port drivers and File System Drivers.  They can be used to monitor and filter communications between FSDs and port drivers.  They can be used to interface ring 3 applications to ring 0 IOS components. The sample is written in assembly language. ��IOS Vendor Supplied Driver�PASSTHRU�(Located on our support Web site at http://support.microsoft.com/support/ddk) A sample VSD based on the HELPVSD sample, which demonstrates how to issue a command to a SCSI device using the SCSI Passthrough technique.��Win 32 Application�WNASPI�A sample ASPI for WIN32 application program linking the WNASPI32.DLL export functions. This application demonstrates how an application can issue pass-through commands to SCSI devices and ATAPI CD-ROMs. For example, tape backup utility programs use this mechanism.  Note that Windows 95 also comes with WINASPI.DLL, which is used to support ASPI communications from a 16-bit Windows application.��

Setting up and compiling sample code

The above samples will compile successfully using NMAKE when the Windows 95 DDK is used, or BUILD when the Windows 98 DDK is used.  Refer to the corresponding DDK for details.

Debugging tips

As with any technology area, install only those debug binaries that interact with your device driver, and only those debug binaries that offer dot commands (see below), so that you are not confused by useless messages sent to the debug console.  See the section titled Debug Binaries for details. 

The following debugger dot commands were excerpted from the WDEB386 documentation (utils.doc).  These commands work when using WDEB386, WDEB98 or SoftIce kernel-mode debuggers. You must install the debug binary version of IOS.VXD in order to use these commands.

Command�Parameter(s)�Debug binaries that must be installed�Comments��.I?��IOS.VXD�Help menu for IOS commands.��.IDCB�<addr>�IOS.VXD�Dumps I/O Subsystem Device Control Block structure.  ��.IIOP �<addr>�IOS.VXD�Dumps I/O Subsystem I/O Packet structure.  ��.IMED��IOS.VXD�Dumps I/O Subsystem Memory Element Descriptor structures. Use this command to get addresses of active IOPs.��.IDV��DISKVSD.VXD and IOS.VXD�Display disk calldown/callup statistics.��
Windows IOS version history
The following table lists storage technology feature differences, organized by operating system version.

Windows Version�Distinguishing characteristics��Windows 95 Gold (original release) (Version A)���OSR2 (version B)�·	SMART hard disk technology support added (SMARTVSD.VXD).
·	ESDI_506.PDR enhanced to accommodate SMARTVSD.VXD via IDE Passthrough (see Knowledge Base articles Q196550 and Q208048)
·	IOS.VXD is corrected to allow preload VSDs to work correctly (see the Master Boot Record FAQ referenced in Knowledge Base article Q192606)��Windows 98 (original release)�·	Power management added to ESDI_506.PDR port driver (timed automatic disk spin down).  ��Windows 98 Second Edition�·	CDVSD is corrected to accommodate third-party DVD SCSI miniport interfaces (see Knowledge Base article Q208048)��

Storage technology glossary

The following table lists common acronyms used in IOS.  The “Page number” column references Walter Oney’s book, “Systems Programming for Windows 95”.

Acronym�Expanded�Page number�Description��AEP�Asynchronous Event Packet�546�This is the parent of a family of structures, used to pass data from the IOS to asynchronous callback procedures within VxDs.��BCB�BlockDev Command Block�509�Win 3.1 Block Device Clients – structure describing the command issued to the Win 3.1 driver (Win 95 IOS is being called by an IOS client).��BDD�BlockDev Device Descriptor�509�Win 3.1 Block Device Clients – structure describing the Win 3.1 driver (Win 95 IOS is being called by an IOS client). Appended to the DCB structure.��CDB�Command Descriptor Block�530�A field used to control SCSI (II) devices.  Typically 6 or 10 bytes long.��DCB�Device Control Block�527�Major structure for a physical or logical block device. Major types are physical or (logical+physical), with optional INT13 and CDROM structure extensions.��DDB*�Device Data Block�522-25, 533, 555�Physical info about hardware.  Describes an adapter that has one or more attached devices, each of which has a physical DCB.��DDB*�Device Description Block�42,115, 116, 118-119�The one and only symbol exported from the executable file that contains a VxD.��DRP�Driver Registration Packet �528�Used when initially loading (registering) a .VxD that is specifically used as an IOS driver.��DVT�Driver Vector Table�516�To manage the device drivers, the IOS creates a chain of DVT structures that contain information about the device driver, such as its filename and the address of its asynchronous event routine. The IOS initially adds a DVT structure to the chain for itself. Thereafter, the IOS adds a new DVT structure whenever a new driver or client first registers with the IOS. The IOS places the address of the DVT structure for a driver in the ILB structure, however, drivers should avoid modifying the DVT. ��FSD�File System Driver�508, 512�Located above the IOS, below the IFS Manager.  Example is VFAT.��ILB�IOS Linkage Block �519, 522�Contains pointers to entry points within IOS, used by port drivers and value-added drivers to gain access to IOS services.
Is used when initially loading a .VxD that is specifically used as an IOS driver.  DRP points to the ILB.  Contains pointers your driver can use to call selected IOS exports.��IOP�IO Request Packet�535�Created and destroyed by IOS clients (internal and/or external); used as a parameter passing mechanism to/from IOS.��IOR�IO Request Descriptor�535�Embedded in IOP. Created by an IOS client for use as an IOS parameter passing mechanism.��IOS�Input Output Subsystem (or Supervisor)�505 
(Ch. 15)�The static VxD that contains all IOS services.��IRS�IOS Requestor Service�516�A group of services the IOS provides its clients.��ISP�IOS Service Packet�522�Used by an IOS driver as a parameter passing mechanism to the IOS’s services.��SGD�Scatter/gather Descriptor�530�There are two different structures associated with this acronym; physical SGDs and linear (virtual) SGDs.  See the latest STORAGE.DOC documentation.��SRB�SCSI Request Block�530�A structure used to issue commands to SCSI (II) devices.  Used to communicate with SCSI miniport drivers.��TSD�Type-Specific Driver�512-513, 529, 601�A driver with overall responsibility for a specific class of device, such as disk drives (DISKTSD.VXD) and CD-ROM drives (CDTSD.VXD).  Used to assign drive letters to disk partitions.��VRP�Volume Request  Parameters Block�543�Describes the volume mounted on a particular device.��VSD�Vendor-Supplied Driver�567�Drivers in the calldown stack, generally used for SCSI.  Sees the AEP_CONFIG_DCB event for every DCB in the system (a port driver only sees the event for devices it created).��
* The acronym DDB has two definitions, Device Data Block, and Device Description Block.
Microsoft Technical Support	Frequently Asked Questions


Page �page �1�



Microsoft Windows 9x

Device Driver Developer Support Team
(OEM/IHV)

We Develop Developers




