
flat assembler
Programming Tutorial

1

Chapter 1

Information encoding

This chapter discusses the elementary knowledge about the information encoding, whose under-
staing is essential for anyone wishing to learn programming. If you already know that all or you
want to quickly get some practice instead of theory only, you can skip to the next chapters, and
you can always come back here, when you don’t understand something.

You will also find here some tables, which can become very handy reference for you at all the
time when reading this tutorial.

1.1 Bits and binary values

Every computer operates on the elementary portions of information, which are called bits. One
bit is piece of information equivalent to answer “Yes” or “No” for a single question. What does
a particular bit mean, depends of course on the question for which that bit is an answer. The
content of that answer we call the value of bit, and in the world of computers it is usually written
as a single digit, 1 for positive answer and 0 for negative. If we have more bits, they can give us
more information - as if we were asking more and more detailed questions about what interest us.
And computers use some common schemmas for interpreting a bunch of bits as a some particular
kind of information – a number, text, image or sound.

The most basic of such schemmas is the binary encoding of numbers. To understand it better,
let’s start with recalling the decimal encoding, which we all are using everyday. To write a
number, we use a pack of digits, each of them can be from 0 to 9, the last of them is the count
of ones, the one before last is the count of tens, the second before last is the count of hundreds,
and so on. Actually it’s good to call the last digit the first one – as the growing powers of ten we
are adding on the left end of the number, and I’ll use this convention here.

Now, what if we wanted to write a number using the binary digits (that is bits)? The first
digit cannot be higher than 1, so the second digit needs to be the count of twos, and – applying
the same scheme as we have with decimal encoding – third digit will be the count of fours, and
each next will be count of amounts twice as large as previous one – namely will be the next power
of two. If we write digits in the way that the corresponding amounts increase from right to left
(exactly as we do it with decimal numbers), the number two becomes written as 10, three is 11
(as it’s the two plus one), four is 100. The bit 1, as it’s the maximal value of digit, plays role
similar to digit 9 in the decimal numbers. When we have a number being the chain of ones, the
number larger by one will be written as the same count of zeros following the single 1. As this

3

4 CHAPTER 1. INFORMATION ENCODING

second number is just the two to the power of zeros’ count, the highest number we can write with
the n bits is 2n − 1.

To distinguish between decimal and binary numbers, we will attach the letter “b” to the
binary ones. So, with this convention, the 7 is the same as 111b and 10 is the same as 1010b.
This is also how we will write such numbers when programming.

1.2 2–adic numbers and binary arithmetics

Now I’ll introduce a bit more abstract scheme of encoding, which is not actually used in computers
(as it is physically impossible, as we can store only finite amount of bits in the computer, and
this scheme is using an abstract, infinite number of binary digits), but it can be helpful in deeper
understanding the arithmetic operations on binary numbers, which computers are performing.

This time we will reverse the order of digits and write the first digit on the left end of number.
Also, as we can add any amount of zeros after the last digit, we will put the infinite amount
of zeros on the right end. For example, 101100000. . . is a decimal number 13 written this way,
the three dots mean that infinite amount of zeros follows. This way we can encode any natural
number with an infinite chain of binary digits.

If we want to add such numbers, we can do it just in the same way as when we add decimal
numbers – begin with adding first digits, so you’ll get the first digit of result and a carry, then
add second digits with a carry, and you’ll get second digit of result and some other carry. You
can continue this scheme endlessly, but – as out numbers consist only of zeros starting from some
place – the result will also have only zeros starting from some (possibly further) place. Look at
this example, we are adding two such binary numbers, the small digit above each column is the
carry:

0 0 0 1 1 1 1 0 0 1 1 0 0

1 0 0 1 1 0 1 0 1 1 0 0 0 0 . . .
+ 0 1 0 1 1 1 0 0 0 1 1 0 0 0 . . .

1 1 0 0 1 0 0 1 1 0 0 1 0 0 . . .

We end up adding only zeros from some place, but what if there were infinitely many ones in the
chain? The scheme will still work, and we’ll get some result, altough such chains are not numbers
in our hitherto interpretation – as we won’t get any finite result when adding infinitely many
powers of two, that each one larger than previous.

Let’s try adding such “infinite” number to a natural number, and see what happens. We will
take number 1 as a first chain, and add to it chain consisting of infinitely many ones:

1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

The carry is always 1 and the result consists only of zeros. The result is actually the zero number!
So we can interprete that chain consisting of infinitely many ones as the minus one. We could also
find it out the other way, if we tried to use the substracting scheme with borrowing to substract
one from zero. To see how does it work, we will now substract number 13 from zero, and we will
see how does the −13 look like (the small digit below each column is the borrow):

1.2. 2–ADIC NUMBERS AND BINARY ARITHMETICS 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
− 1 0 1 1 0 0 0 0 0 0 0 0 0 0 . . .

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1 1 1 1 1 . . .

We are always forced to borrow, as we’ve got only zeros in the upper chain, and therefore, when
we have only zeros in lower chain left, we end up substracting 0 digit from lower chain and 1
borrow from the two (obtained by taking the next borrow), so we get only ones in the result. We
can see, that in general, representation of any negative number contains only ones starting from
some place, just in the same way as any positive number end with infinitely many zeros.

So we have both positive and negative numbers encoded this way, we know how to add and
substract one from another. What about multiplication? Again we can try adapting the scheme
we know for the decimal numbers. In the following example we multiply number 3 by 5:

1 1 0 0 0 . . .
· 1 0 1 0 0 . . .

1 1 0 0 0 . . .
0 0 0 0 . . .

1 1 0 . . .
0 0 . . .

0 . . .
. . .

1 1 1 1 0 . . .

For each digit in the second chain we take the first chain, multiply it by this digit, and shift to
the right so its first digit will be at the same column as the digit, by which we were multiplying.
Then we add all the rows to obtain the result – each column contains only finitely many digits,
so it can be done. The binary multiplication is even easier compared to decimal one, as we have
to multiply only by one or zero – in first case we just copy the chain, in second case we fill it with
zeros. And this operation can be performed even on chains containing infinitely many ones, too
– you can try multiplying −1 by itself, and see that you get 1 as result.

And what about chains that contain infinitely many ones mixed with infinitely many zeros?
Could they correspond to fractions? For example, let’s try to find a chain, that would give us 1
when multiplied by some natural number. Imagine we are multiplying some natural number by
some chain. To get 1 as a first digit of the result, we need both first digits of our natural number
and that second chain to be 1. So we can try it only with odd numbers. But the next digit we
have to get is zero – we have the first row of our multiplying scheme fixed, and we can manipulate
the second one to have zero or one as the first digit, so we can choose second digit of out chain
such that we’ll get zero as a second digit of result, and also in the same way we can choose all
the next digits. So for any odd number we can find a chain, which is its reciprocal. For example
1
3

is a chain that contains 1 followed by the sequence of 1 and 0 repeated infinitely, here’s the
multiplication scheme that comes with construction of it:

6 CHAPTER 1. INFORMATION ENCODING

1 1 0 0 0 0 0 . . .
· 1 1 0 1 0 1 0 . . .

1 1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .

0 0 0 0 0 . . .
1 1 0 0 . . .

0 0 0 . . .
1 1 . . .

0 . . .
. . .

1 0 0 0 0 0 0 . . .

In fact, we could also get reciprocals of even numbers if we allowed chains that have some finite
amount of digits also to the left from the first digit, these digits would correspond to the negative
powers of two – such construction gives all rational numbers as the chains, which are periodic
starting from some place, and all other chains correspond to irrational numbers. Such infinite
chains are called by mathematicians the 2–adic numbers, but we don’t need any more details
about them here. We will now come back to simple binary numbers that are used in computers,
and see what the just gained knowledge can be used for in that matter.

In computer we have some fixed number of bits for storing each number, so we can only
encode positive numbers not greater than 2n − 1, where n is the number of bits we have. Two
such numbers can be added using the same scheme, as the one we were using for infinite 2–adic
numbers, and the result will fit in the n+1 bits, with the highest bit being equal to the last carry.
Processor stores this additional bit in some special place, when it is one, it means that the result
is too large to fit in out n bits.

Also substraction of two such numbers is performed using the same scheme as we were using
above, and the last borrow is also stored in some special place by processor – if it’s one, it means
that we have substracted the larger positive number from the smaller one. But in such case the
result is a negative number, and we get the first n + 1 bits of the chain, which – as we remember
– is filled with ones after that initial bits. And therefore there is a second interpretation of such
numbers – we look at the highest bit, and if it’s 0, we treat that number as followed by zeros (so
it is a positive number), and if the highest bit is 1, we treat such number as followed by ones (so
it is a negative number). The highest bit is in this case called a sign bit, as it indicates whether
number is positive or negative (zero is treated as positive in this interpretation) and the largest
positive number we can encode this way is 2n−1 − 1, as we have one less bit for it (the sign bit
must be zero), the smaller positive number is −2n−1 (it has the sign bit set to 1, and all lower
bits set to 0), and they are just cut initial parts of their corresponding 2–adic chains (and the
sign bit is the first of the repeated zeros or ones ending that chain).

When when use the first interpretation (without sign bit, only positive numbers), it called
that we interpret the bit chain as unsigned value, otherwise we interpret it a signed value. A
good point is that the addition and substraction can be performed the same way in both cases
(but we must pay attention to the carry/borrow bit).

When we multiply two n–bit numbers with the same scheme as we used for the p-adic chains,
in the last row we have the n–th bit of the first number shifted right by n columns, so it’s obvious
that the result will need at least 2n bits to fit in. For that reason processor usually gives us two
n–bit numbers as the result of multiplication, one containing first n bits of the result (we will call
them lower bits), and one containing the next n bits (we will call them higher bits). Also, as all

1.3. LOGICAL OPERATIONS 7

rows but last need to be extended with bits higher than n during the multiplication, processor
needs to have specified whether the numbers should be interpreted as unsigned (and so always
extended with zeros) or as signed (and extended with the repeated sign bit). Howewer, because
those extension bits occur only in the columns after the n-th one, lower n bits of result are not a
affected, so the lower half of result will be the same with both unsigned and singed multiplication
schemes.

Processor is also capable of dividing binary numbers, but as it’s usually much slower than
multiplying, we will later utilize the schemma for getting 2-adic reciprocals for the tricks of
division by known in advance number done with multiplication.

1.3 Logical operations

Operations that are performed on individual bits are called the logical ones, it is related to fact,
that we can interprete one bits as a logical value of truth or false. The simplest such operation
is the negation – it just switches the value of a bit to the opposite one, if it was 0, it becomes 1,
and if it was 1, it becomes 0. If we perform negation on the value consisting of more bits, each of
them is changed to its opposite1, for example negation of the value 10110001b is 01001110b.

Other logical operations are performed on two bit values, giving the one bit as a result. The
conjuction of two bits (which we will call the AND operation) has the value of 1 only if both
bits have the value 1, otherwise it is 0. The alternative of two bits (which we will call the
OR operation) has the value of 0 only when both bits have the value 0, otherwise it is 1. The
disjunction of two bits (also known as the “exclusive or”, we will call it the XOR operation) is 1
only when the bits have different values. The table 1.1 shows the results of those operations for
the four possible pairs of bits.

AND OR XOR

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 1.1: Logical operations.

If we perform such operation on some n-bit value with a second n-bit value, each bit of the
result will come from the corresponding bits of both values, for example result of conjunction of
11010101b with 00011111b is 00010101b.

1.4 Hexadecimal numbers

Binary numbers have one disadvantage when written as text – they are very long compared to
decimal numbers. Not only they take more place, but are also harder to read. For example,
number 128 written in binary is 10000000b – it is easy to make a mistake when quickly counting

1We can also do a logical negation arithmetically, by substracting the number from −1, as in such substraction
scheme borrow is always zero, and each bit is changed to its opposite.

8 CHAPTER 1. INFORMATION ENCODING

zeros. In decimal, to make such numbers more readable, whe usually split them into groups of
three digits. As with bits we are already used to the powers of two, in case of binary numbers
we’ll make groups of four digits, so our number 128 will consist of two such packs2. But instead of
just separating those groups with a comma or space, we’ll do a better trick – replace each group
with a single character.

How is it supposed to work? Four bits in a group can be interpreted as a number from 0
to 15, and each such pack is corresponding to this value multiplied by some power of 24, that is
by some power of 16. So if we look at each such group as at the single digit, the whole number
can be seen as written with encoding of base 16 (in the same way as binary has base of 2 and
decimal has base of 10), such encoding is called hexadecimal. As we need 16 different digits, we
will use letters A–F in addition to ten taken from the decimal system. The table 1.2 shows the
correspondence between hexadecimal digits and the binary 4–bit values.

Hex Bin Hex Bin Hex Bin Hex Bin
0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

Table 1.2: Hexadecimal digits.

We will usually add letter “h” at the end of hexadecimal number to distinguish it from others.
For example, number 137, which in binary is 10001001b, in hexadecimal is 89h – you can check
it by splitting the binary representation into two groups of four bits and looking up in the table
the corresponding hexadecimal digits.

Hexadecimal encoding, while being as handy as decimal, allows us to keep the track of the
bits – therefore this encoding we’ll be using the most often when programming.

1.5 Bytes and ASCII encoding

The fundamental unit of information larger than bit is a byte. One byte consists of 8 bits, and it
is the most elementary unit for all the operations in computer, every kind of information is stored
as a bytes – even when some larger units are used, they are simply some multiplies of bytes.

As byte contains 8 bits, any value of it can be written with two digits in hexadecimal system,
and it can be any unsigned number from 0 to 255 (because 28 is equal to 256). This is not
much, but is enough for the purpose of ASCII encoding, for which individual bytes are the most
commonly used. ASCII stands for the American Standard Code for Information Interchange, and
it encodes a text as a chain of bytes. Each byte encodes one letter (or some other character),
in table 1.3 you can see the correspondence between numerical values of bytes (given in both
decimal and hexadecimal system) and the various characters. As you can see, table only lists the
numbers smaller than 80h – that’s because characters encoded by larger numbers (they are called
the extended ASCII set) are not standarized, and can be different for the encoding of various
human languages. Also numbers smaller than 20h have some special meanings assigned instead
of characters, more details about them be introduced later.

2Such pack of four bits is often called a nibble

1.6. LARGER INFORMATION UNITS 9

And for a simple example: the word “byte”, as it consists of four letters, needs four bytes to
be encoded, and after looking up appropriate values in the table, we get that these bytes should
be 62h, 79h, 74h and 65h. And this is how such text is seen by computer.

1.6 Larger information units

Because one byte is able to keep only small numbers, for the calculations usually some larger units
are used. If we use the unit of two bytes, that is of 16 bits, we can encode unsigned numbers up
to 65535 (as the 216 is 65536), with the four hexadecimal digits. We can still think of it as of the
two separate bytes, one being the lower part of number, and one being the higher. For example
16–bit value 1B73h have lower byte 73h and higher byte 1Bh. As bits in higher part correspond
to the powers of two from the eight to fifteen, the value of 16–bit number is the value, which we
obtain when we multiply the value of higher byte by 256 and then add the value of lower byte to
it. We will also use 32–bit or even 64–bit units for calculations. They also can be easily splitted
into smaller units.

If we want to convert some small number into number encoded with the larger amount of
bits, we have to extend it with the additional high bits. And what should be values of those bits,
it depends whether we interprete that number as a signed or unsigned one. When the number
unsigned, we simply have to fill all additional bits with zero, and this is called the zero–extension.
When it is signed, we have to fill the additional bits with the same value, as the sign bit has (so
in particular the new sign bit will have the same value), this is called the sign-extension.

There are also some much larger units used to measure big amounts of information. One
kilobyte is equal to 1024 bytes (as this is 210, and we are using powers of two everywhere, as they
are the “round” numbers for computer), one megabyte is 1024 kilobytes, one gigabyte is 1024
megabytes and one terabyte is 1024 gigabytes.

10 CHAPTER 1. INFORMATION ENCODING

Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII
0 00 Null 32 20 Space 64 40 & 96 60 ‘
1 01 Start of heading 33 21 ! 65 41 A 97 61 a
2 02 Start of text 34 22 " 66 42 B 98 62 b
3 03 End of text 35 23 # 67 43 C 99 63 c
4 04 End of transmission 36 24 $ 68 44 D 100 64 d
5 05 Enquiry 37 25 % 69 45 E 101 65 e
6 06 Acknowledge 38 26 & 70 46 F 102 66 f
7 07 Bell 39 27 ’ 71 47 G 103 67 g
8 08 Backspace 40 28 (72 48 H 104 68 h
9 09 Horizontal tab 41 29) 73 49 I 105 69 i
10 0A Line feed 42 2A * 74 4A J 106 6A j
11 0B Vertical tab 43 2B + 75 4B K 107 6B k
12 0C Form feed 44 2C , 76 4C L 108 6C l
13 0D Carriage return 45 2D - 77 4D M 109 6D m
14 0E Shift out 46 2E . 78 4E N 110 6E n
15 0F Shift in 47 2F / 79 4F O 111 6F o
16 10 Data link escape 48 30 0 80 50 P 112 70 p
17 11 Device control 1 49 31 1 81 51 Q 113 71 q
18 12 Device control 2 50 32 2 82 52 R 114 72 r
19 13 Device control 3 51 33 3 83 53 S 115 73 s
20 14 Device control 4 52 34 4 84 54 T 116 74 t
21 15 Negative acknowledge 53 35 5 85 55 U 117 75 u
22 16 Synchronous idle 54 36 6 86 56 V 118 76 v
23 17 End of block 55 37 7 87 57 W 119 77 w
24 18 Cancel 56 38 8 88 58 X 120 78 x
25 19 End of medium 57 39 9 89 59 Y 121 79 y
26 1A Substitute 58 3A : 90 5A Z 122 7A z
27 1B Escape 59 3B ; 91 5B [123 7B {
28 1C File separator 60 3C < 92 5C \ 124 7C |
29 1D Group separator 61 3D = 93 5D] 125 7D }
30 1E Record separator 62 3E > 94 5E ^ 126 7E ~
31 1F Unit separator 63 3F ? 95 5F _ 127 7F Delete

Table 1.3: ASCII codes.

Chapter 2

DOS Programming

The Disk Operating System is the oldest of systems, for which we will learn programming here, so
we’ll start with it. You don’t have to worry, if you have only Windows system on your computer,
as every Windows system contains a subsystem compatible with DOS. We will begin with learning
some basics of this system usage, so if you are already familiar with DOS, and know how to use
its commands, you can skip it and proceed to the section 2.2.

2.1 Basic DOS commands

This section has not been written yet...

2.2 Introduction to assembly

The flat assembler executable (fasm.exe) can be executed from command line, and requires two
parameters – first should be the name of existing file, which will be taken as source file, second
should be the name of file to which assembler will write its output.

The source file contains commands which tell assembler what data should it put into the
output file (we will call these command the directives). Let’s see it on example. Use the text
editor to create the file example.asm and put the following text inside:

db 97

Now assemble it with command fasm example.asm example.txt. DB tells assembler to put
data of byte size into the output file, the value following it is the value of byte, which should
be put into output. So file example.txt should now contain a byte of value 97, that is the “a”
letter. You can open this file in the text editor and see that it’s true. DB allows you to put more
than one byte at a time, and values of bytes can be given in many different ways. Open the file
example.asm and modify it to get the following:

db 97,62h,’c’

This will put three bytes into output file – they are separated with commas. First byte is the same
as in previous example, second byte has value given in hexadecimal – it’s the code of letter “b”
(98 in decimal), the third byte is given literally – in this case it should be enclosed in quotation
marks. After assembling it you should have the text “abc” in the output file – check it. When

11

12 CHAPTER 2. DOS PROGRAMMING

quoting bytes literally, you can also put them more that one of them inside the quotation marks
and all that bytes will be put into output, the same result as above can be obtained from the
much simpler source:

db ’abc’

You also put more such instructions into the source file, but each one must reside in separate line,
for example:

db 97

db 98

db 99

All right, this way we can create file with any data in it, but what is the main purpose of
an assembler is writing programs. Program is a special kind of file that contains instructions for
processor. These instructions are encoded as a chains of bytes, this encoding is called the machine
code. The simplest kind of program is file with the com extension – such file is simply loaded in
some place in memory and then executed. Let’s make some simple example to see how does the
machine code look like. Edit the file example.asm to contain the following source:

db 0CDh,20h

Now assemble it with command fasm example.asm example.com, you’ll get the example.com

file, which can be executed. You can try it, but nothing special will happen. This is because
the two bytes we have put into that file form one instruction in the machine code, which in DOS
causes the program to be terminated. If there was not such instruction, processor would keep
going and execute everything what was in memory even after the loaded content of file, and that
would be a bit dangerous.

So, different byte values encode different instructions, but you won’t have to remember all
such number to programm in assembly. That’s because assembler allows you to use the so–called
mnemonics, directives that encode the instructions for us. Using this feature, the above program
can be rewritten like below:

int 20h

After assembling it, our program will contain the same two bytes as previously. So it contains the
instruction called INT with parameter 20h. This instruction tells the processor to execute some
special procedure, which is called an interrupt. There are 256 different interrupts, numbered from
0 to 0FFh, so we have to specify which one we want to have executed. In this case we execute
the interrupt of number 20h, which is handled by DOS and causes the program to be terminated.
Now we will learn one more useful interrupt function, and a few other things by the way, here’s
the more complex example of program:

mov ah,2

mov dl,97

int 21h

int 20h

2.2. INTRODUCTION TO ASSEMBLY 13

Now we are executing few more instructions before the interrupt terminating the program – there
is one more interrupt, with number 21h. It does its job and returns the control to our program,
but what job is done, depends on some additional parameters. The parameters for interrupts
have to be provided in registers - places in processor which can hold some values. For example,
there is a register called AH which can hold a byte value, and interrupt 21h needs it contain a
number identifying the job which it have to do.

We put the value 2 into AH register with the instruction, which has the mnemonic MOV. This
instruction puts some value into the chosen place, it needs two parameters - first tells where we
want to put some value (in this case this is the AH register), second contains the value we want
to put there. The value 2 in AH register tells the interrupt 21h to display some character on the
screen. The character, which will be displayed, is taken from the DL register. This may look a
bit complicated, but you don’t have to remember that everything - when you want to use some
interrupt, you can look into appendix A and find the necessary information (you’ll soon learn
everything what is needed to understand all the details provided there).

We put the code of “a” letter into DL register and then execute the interrupt 21h. After it
does what it has to do, it returns control to our program and we execute the interrupt 20h -
program ends. You can check it, this program will display the letter “a” on the screen – it is first
our program which actually does something.

In the above program we have used two registers - there are more of them, some hold 8 bits
(one byte) of data, and some 16 bits (two bytes, we will call it a word). Each of the byte size
registers is actually the lower or higher part of larger register. There are four 16–bit registers
about which we should learn for the beginning, they are called AX, BX, CX and DX1. Each of
them consists of two 8–bit registers, name of lower part begins with the same letter as the whole
register and ends with the L letter, name of higher part ends with the H letter. So AX registers
consists of AL and AH registers, BX contains BL and BH, CX contains CL and CH, and DX
contains DL and DH.

Let’s see on example how we can utilize the fact that 8–bit registers are contained withing
16–bit ones. There is a function of interrupt 21h which allows to terminate program and return
some value to DOS - this function has number 4Ch, so this value has to be stored in AH register.
Also, it needs the exit code to be provided in AL register. Usually zero is used as exit code
to signalize that program has done its job succesfully, other value means that some error has
occured. Let’s say that we want to return zero. Then we have to put 4Ch into AH and 0 into
AL, so we would do it with following instructions:

mov ah,4Ch

mov al,0

int 21h

But we know that those two registers are actually the higher and lower part of the AX register.
So we can put the values into them both with just one instruction:

mov ax,4C00h

int 21h

1Altough those names seem to come just from consecutive letters of alphabet, they are also acronyms for the
functions of registers: AX is often called accumulator, BX – base index, CX – counter, DX – data register. You’ll
see later what do they come from.

14 CHAPTER 2. DOS PROGRAMMING

There are many operations we can perform with registers. Let’s start with instructions doing
addition and substraction, they have mnemonics ADD and SUB. Remember that always when
you perform some operation, the first parameter following the mnemonic (those parameters are
called operands) specifies what value you want to modify (it is called destination operand), and
the second specifies the value with which the operation will be performed. So if you want to add
2 to the value in register DL, you should do it this way:

add dl,2

Similarly, you can substract some value from register:

sub dl,2

There are also instructions that increment and decrement the register by 1, those mnemonics
are INC a DEC. First just adds 1 to the destination operand, second substracts 1 from it. In
this case no second parameter is needed, because the mnemonic itself defines by what value the
modification will be done, so you have to specify only the destination operand, like:

inc dl

We already know how to display the value of DL register as a character, so we can check the
result of performing some operation on register. Here’s a small sample:

mov dl,’0’

add dl,3

mov ah,2

int 21h

mov ax,4C00h

int 21h

First it loads the value of character “0” into DL and then adds 3 to it, so the value of character
“3” is obtained. Then it displays that character on the screen and exits.

So far we were performing all operation with destination operand being a register, and source
operand being some number (it is often called an immediate operand, as its value is obtained
immediatelly from the instruction), but that’s not all we can do. The source operand operand can
also be a register, you can see the example in the following program, which is the modification of
previous:

mov dl,’0’

mov ah,2

add dl,ah

int 21h

mov ax,4C00h

int 21h

We are adding the value of AH register to the DL register, so we obtain the value of “2” character.
Instead of registers, we can also use the memory operands – they give us access to computer’s

memory, which contains a large amount of bytes. Each byte in memory has its address – a
number, which tells where the byte is placed. First byte has address 0, second has address 1,
and so on. To access memory of given address, we need just to write that address in the square

2.2. INTRODUCTION TO ASSEMBLY 15

brackets, for example mov al,[0] will copy value of byte placed at address 0 into AL register.
It’s also possible to access larger units of information in memory, mov ax,[0] will copy 16–bit
word from address 0 into AX register, that is it will copy the first byte of it (which has address
0) into AL, and the second byte (which has address 1) into AH register.

In the same way we can use memory as a destination of operation, but we cannot use more
than one operand at one time. Therefore to copy a value from one place in memory to another,
we need to first copy it to some register, and then from that register to the destination in memory.

But before we can start playing with the memory, we need some more information. We already
know, that program is loaded into memory to be executed. Simple binary programs, like those
few we have already written, are always loaded starting from address 100h, and from that place
the instructions are executed. But let’s say we have placed some bytes later in our program, after
other instructions. How do we know what exactly address they have? To help us in such cases,
assembler allows us to define labels anywhere in our program. We can use any word for a label2,
and it should be followed by the colon. This way we assign to that word the value of address for
the place of program, where we put this label. If we then place that word in some instruction, it
will be the same, as if we put there the address, that is assigned to it.

It should become more clear, when we see it on example, but there’s one more detail we need
to know about before we use labels – our program is loaded by DOS at address 100h, but the
assembler by default assumes, that the instructions it generates will be placed at address 0. So we
need to tell the assembler, that the address of program is 100h, otherwise it will assign the wrong
values to our labels. We can do it with the ORG directive, which forces the assembler to assume,
that the bytes of the following instructions will be placed at address given by its parameter. And
here is our example program:

org 100h

mov ah,2

mov dl,[exclamation]

int 21h

mov ax,4C00h

int 21h

exclamation:

db ’!’

It defines the label for byte containing the code of exclamation character, and uses that label to
display it on the screen.

Now we are prepared to use another function of interrupt 21h, which allows to display more
characters at one time. It has the number 9, and needs an address to be provided in DX register.
It displays the characters from memory starting from that address, until it reaches the character
of code 24h (the dollar sign) – it doesn’t display such character, and stops on it. So we can use
this function to display some message:

org 100h

2Except for the words like instruction mnemonics or register names. If we try to define label of such name,
assembler will give us an error message “reserved word used as symbol”.

16 CHAPTER 2. DOS PROGRAMMING

mov ah,9

mov dx,message

int 21h

mov ax,4C00h

int 21h

message:

db ’Hello!’,24h

This time we don’t use any instruction accessing the memory, we just load the address of our
message as an immediate value into DX register, and the interrupt function displays it.

Note that it’s not neccesary to start a new line after a label, like we have to do it after every
instruction, last two lines of the above program can be combined into one line, we can also put
more than one label at the beginning of a line.

When we try to make some operation on memory with an immediate value, the another
problem emerges – we need to specify on how large unit of information we want the operation to
be performed. The assembler won’t accept instruction like mov [100h],0, because it’s ambiguous.
Instead, we shall write mov byte [100h],0 to copy a byte (8 bits), or mov word [100h],0 to copy
two bytes (16 bits). The words BYTE and WORD in those instructions are called size operators,
we will introduce more of them later. Every operand can be preceded by such operator, but we
didn’t need to use them with register operands, as all registers have predetermined sizes. If one
of the operands has determined size, there is no need specify a size for the second one – that’s
why we didn’t have to place size operators before immediate operands. And, of course, we cannot
specify operands of different sizes for one operation.

But we can also make a memory operand to have the predetermined size as the registers have,
and therefore avoid being forced to use size operator. We can achieve it by associating a label to
the data of some size, it’s done by putting the label just before the directive that defines data
and omitting the colon character. This is how should it look like:

message db ’Hello!’,24h

With such definition mov [message],0 is a valid instruction, and operates on the 8–bit data,
but instruction mov ax,[message] is no longer valid, because the sizes don’t match. Any-
way, such label can still be used to perform 16–bit operations, by writing the instructions like
mov word [message],0 or mov ax,word [message] – such use of a size operator is called the
size override.

Any immediate value, including the addresses inside the square brackets, can be represented
by some expression, whose value is calculated at the assembly time. For example, we can write
mov al,[message+1] to access the second byte of data following our label, as we are using the
address larger by one.

In the next following sample program we will play a bit with instructions accessing memory
and modify this way the message that will be displayed. The instructions that call the interrupt
functions are the same as in out previous program, also the text of the message is the same, but it
is not really the text that will be displayed when running this program – that’s because of those
three new instructions at the beginning of program:

org 100h

2.2. INTRODUCTION TO ASSEMBLY 17

mov [message+1],’i’

mov ax,word [message+5]

mov word [message+2],ax

mov ah,9

mov dx,message

int 21h

mov ax,4C00h

int 21h

message db ’Hello!’,24h

First of those inserted instructions modifies the second byte of our message to be the code of
letter “i” – we don’t have to use the size operator, because the label for our message declares the
operation on data of byte size. Next instruction copies two bytes – the sixth and seventh byte of
our message into AX register, and the following one copies those two bytes from the AX back to
the memory – but this time into third and fourth byte of our message, this time we need to use
the size override. This way we obtain the short message “Hi!”, as later bytes won’t get displayed
– because the mark of the message’s end has been placed at fourth byte of our data.

The other thing we can use the label for is the jump instruction. This one forces the pro-
cessor to change the place from which it takes the instructions to execute. Our programs are
always loaded at address 100h and from that point processor starts executing the instructions
consecutively until it reaches the instruction that causes the program termination. But we can
change this order with the jump instruction, which has the JMP mnemonic. For example jmp 0

instruction would force the processor the begin executing the instructions from address 0. As we
don’t know what bytes reside at that address, it is better not to try it3. Instead we will define
some label and jump to it. Look on this modification of the previous program:

org 100h

jmp display_message

mov [message+1],’i’

mov ax,word [message+5]

mov word [message+2],ax

display_message:

mov ah,9

mov dx,message

int 21h

mov ax,4C00h

int 21h

message db ’Hello!’,24h

This time program begins with jump instruction, and it moves the execution of program to the
display_message label. So the next instruction executed after the jump is mov ah,9 – the

3Altough in this case it wouldn’t be harmful at all, as it just causes the program termination – we will later
see why.

18 CHAPTER 2. DOS PROGRAMMING

instructions that modify the message bytes are skipped and therefore the original message is
displayed.

The JMP instruction we’ve been using above is often called an unconditional jump, because it
performs the jump always, no matter where and when it’s used. And there are also instructions,
that perform jump only in some certain condition and do nothing otherwise – they are called
conditional jumps. The conditions that can affect the behavior of such jumps are determined by
the contents of some special register, containing separate bits, each having some special meaning.
These bits are called flags and their values are set depending on the results of various operations
performed by processor. For example, there’s a bit called CF (carry flag), which is set to the value
of last carry after the addition operation, or to the value of last borrow after the substraction.

Appendix A

Selected DOS interrupt functions

19

