

Introduction to

Computer

Programming Using

Fortran 95

Workbook

Edition 3

January 2010

Introduction to
Computer

Programming
Using

Fortran 95

A Student Guide

January 2010

 2

Acknowledgement

DR. A C MARSHALL from the University of Liverpool (funded by JISC/NTI) first

presented this material. He acknowledged Steve Morgan and Lawrie Schonfelder.

Helen Talbot and Neil Hamilton-Smith took the overheads from that course and

worked on them to produce this text: later Neil Hamilton-Smith revised it.

 3

Contents
1. FUNDAMENTALS OF COMPUTER PROGRAMMING .. 5

Telling a Computer What To Do ... 5
Programming Languages .. 5
Fortran Evolution ... 5
Character Set .. 6
Intrinsic Types ... 6
Numeric Storage ... 6
Literal Constants ... 7
Names.. 7
Significance of Blanks ... 7
Implicit Typing .. 8
Numeric and Logical Type Declarations .. 8
Character Declarations .. 8
Initialisation .. 9
Constants (Parameters) .. 9
Comments .. 9
Continuation lines ... 10
Expressions ... 10
Assignment .. 10
Intrinsic Numeric Operations ... 10
Relational and Intrinsic Logical Operators .. 11
Intrinsic Character Operations ... 11
Operator Precedence .. 11
Mixed Type Numeric Expressions ... 12
Mixed Type Assignment .. 12
Integer Division .. 13
Formatting input and output ... 13
WRITE Statement .. 14
READ Statement .. 16
Prompting for Input .. 16
Reading and writing to a file ... 17
How to Write a Computer Program .. 18
Statement Ordering ... 20
Compiling and Running the Program ... 20
Practical Exercise 1 .. 22

2. LOGICAL OPERATIONS AND CONTROL CONSTRUCTS .. 24
Relational Operators .. 24
Intrinsic Logical Operations ... 24
Operator Precedence .. 25
Control Flow ... 25
IF Statement .. 25
IF ... THEN ... ELSE Construct ... 26
IF ... THEN ELSEIF Construct .. 27
Nested and Named IF Constructs ... 28
Example Using IF constructs .. 29
SELECT CASE Construct ... 30
The DO construct .. 32
Conditional Exit Loop ... 32
Conditional Cycle Loops ... 33
Named and Nested Loops .. 33
Indexed DO Loops .. 34
DO construct index ... 35
Practical Exercise 2 .. 36

3. ARRAYS .. 40
Declarations .. 40
Array Element Ordering ... 41
Array Sections ... 42

 4

Array Conformance .. 43
Array Syntax.. 43
Whole Array Expressions .. 44
WHERE statement and construct .. 44
COUNT function ... 45
SUM function .. 45
MOD function ... 45
MINVAL function .. 47
MAXVAL function ... 47
MINLOC function ... 47
MAXLOC function .. 47
Array I/O ... 48
The TRANSPOSE Intrinsic Function .. 49
Array Constructors ... 49
The RESHAPE Intrinsic Function ... 49
Named Array Constants .. 50
Allocatable Arrays .. 50
Deallocating Arrays .. 51
Vector and Matrix Multiplication ... 51
Practical Exercise 3 .. 52

4. PROCEDURES .. 55
Program Units .. 55
Introduction to Procedures ... 55
Intrinsic Procedures .. 55
Intrinsic statement ... 56
Mathematical Intrinsic Function Summary... 56
Numeric Intrinsic Function Summary ... 57
Character Intrinsic Function Summary .. 58
Main Program Syntax ... 59
Functions .. 59
Subroutine or Function? ... 60
Subroutines ... 60
Argument Association ... 61
Argument Intent .. 61
Local Objects .. 62
SAVE Attribute .. 62
Scoping Rules .. 63
Host Association -- Global Data ... 63
Scope of Names ... 64
Dummy Array Arguments .. 64
Assumed-shape Arrays .. 65
External Functions .. 65
Practical Exercise 4 .. 67

5. MODULES AND DERIVED TYPES .. 69
Plane Geometry Program ... 69
Reusability – Modules ... 70
Restricting Visibility .. 72
The USE Renames Facility ... 73
USE ONLY Statement ... 73
Derived Types ... 73
Functions can return results of an arbitrary defined type .. 75
True Portability ... 75
Practical Exercise 5 .. 77

6. BIBLIOGRAPHY ... 80

 5

1. Fundamentals of Computer Programming

Telling a Computer What To Do

To get a computer to perform a specific task it must be given a sequence of

unambiguous instructions or a program.

An everyday example is instructions on how to assemble a bedside cabinet. The

instructions must be followed precisely and in the correct order:

 insert the spigot into hole `A';

 apply glue along the edge of side panel;

 press together side and top panels;

 attach toggle pin `B' to grommet `C';

 ... and so on.

The cabinet would turn out wonky if the instructions were not followed to the letter!

Programming Languages

Programming languages must be:

 totally unambiguous (unlike natural languages, for example, English);

 simple to use.

All programming languages have a very precise syntax (or grammar). This ensures

that all syntactically correct programs have a single meaning.

High-level programming languages include Fortran 90, Fortran 95, C and Java. On

the other hand assembler code is a Low-Level Language. Generally:

 a program is a series of instructions to the CPU of the computer;

 all programs could be written in assembler code but this is a slow, complex and

error-prone process;

 high-level languages are more expressive, more secure and quicker to use;

 a high-level program is compiled (translated) into assembler code by a compiler.

Fortran Evolution

Fortran stands for FORmula TRANslation. The first compiler appeared in 1957 and

the first official standard in 1972 which was given the name of `Fortran 66'. This was

updated in 1980 to Fortran 77, updated in 1991 to Fortran 90, updated in 1997 to

Fortran 95, and further updated in 2004 to Fortran 2003. At each update some

obsolescent features were removed, some mistakes corrected and a limited number of

new facilities were added. Fortran is now an ISO/IEC and ANSI standard.

 6

Character Set

The following are valid in a Fortran 95 program:

 alphanumeric: a-z, A-Z, 0-9, and _ (the underscore); the lower case letters are

equivalent to the upper case letters

 symbolic:

Symbol Description Symbol Description

 blank = equals sign

+ plus sign - minus sign

* asterisk / slash

(left parenthesis) right parenthesis

, comma . decimal point

' apostophe " quotation mark

: colon ; semicolon

! exclamation mark & ampersand

< less than > greater than

% percent $ currency symbol

? question mark

TAB is not included.

Intrinsic Types

Fortran 95 has two broad classes of object type:

 numeric;

 non-numeric

which give rise to six simple intrinsic types, known as default types. These are

demonstrated by the following code:

INTEGER :: age ! whole number

REAL :: height ! decimal number

COMPLEX :: val ! x + iy

CHARACTER :: sex ! single character

CHARACTER(LEN=12) :: name ! string

LOGICAL :: wed ! truth value

Numeric Storage

In general, there are two types of numbers used in Fortran 95 programs, INTEGERs

(whole numbers) and REALs (floating point numbers).

 INTEGERs are stored exactly, often in the range [-32768, 32767].

 REALs are stored approximately.

Their form is a mantissa and an exponent. For example 6.6356 x 10
23

The exponent can take only a finite range of values, typically [-307, 308].

You can get numeric exceptions if you try to assign a value outside the permitted

range of values to a variable.

In Fortran 95 you can decide what numeric range is to be supported.

CHARACTERs are stored differently.

 7

Literal Constants

A literal constant is an entity with a fixed value. For example:

0 12345 ! INTEGER

-1.0 6.6E-06 ! REAL

(1.0,3.14) (2.7,1.4) ! COMPLEX

"Isn't" 'Isn''t' ! CHARACTER

.TRUE. .FALSE. ! LOGICAL

Note:

 REALs contain a decimal point, INTEGERs do not;

 REALs can have an exponential form;

 there is only a finite range of values that numeric literals can take;

 character literals are delimited by a pair of " or a pair of ';

 two occurrences of the delimiter inside a string produce one occurrence on output;

 there are only two LOGICAL values.

Names

In Fortran 95 English (or any other natural language) names can be assigned to

variables (memory locations) and procedures etc. Each name:

 must be unique within the program;

 must start with a letter;

 may use only letters, digits and the underscore;

 may use the underscore to separate words in long names;

 may not be longer than 31 characters.
REAL :: a1 ! valid name

REAL :: 1a ! not valid name

CHARACTER :: atoz ! valid name

CHARACTER :: a_z ! valid name

CHARACTER :: a-z ! not valid name

CHARACTER(LEN=8) :: user_name ! valid name

CHARACTER(LEN=8) :: username ! different name

Significance of Blanks

In free form source code blanks must not appear:

 within keywords;

 within names.

INTEGER :: wizzy ! is a valid keyword

INT EGER :: wizzy ! is not

REAL :: user_name ! is a valid name

REAL :: user name ! is not

Blanks must appear:

 between two separate keywords;

 between keywords and names not otherwise separated by punctuation or other

special characters.

 8

INTEGER FUNCTION fit(i) ! is valid

INTEGERFUNCTION fit(i) ! is not

INTEGER FUNCTIONfit(i) ! is not

Blanks are optional between some keywords mainly `END < construct >' and a few

others; if in doubt add a blank (it looks better too).

Implicit Typing

Any undeclared variable has an implicit type:

 if the first letter of its name is I, J, K, L, M or N then the type is INTEGER;

 if it is any other letter then the type is REAL.

Implicit typing is potentially very dangerous and should always be turned off by

adding:

IMPLICIT NONE

at the start of the declaration of variables. Consider:

REAL :: body_temp 98.4

...

 bodytemp = 36.9

With implicit typing this declares a REAL variable bodytemp and sets it to 36.9 and

leaves the value in the variable body_temp unaltered.

Numeric and Logical Type Declarations

With IMPLICIT NONE variables must be declared. A simplified syntax follows:

< type > [,< attribute-list >] :: < variable-list >&

[=< value >]

Optional components are shown in [square brackets]

The following are all valid declarations:

INTEGER :: i, j

REAL :: x, y

COMPLEX :: val

LOGICAL :: on, off

Character Declarations

Character variables are declared in a similar way to numeric types. CHARACTER

variables can:

 refer to one character;

 refer to a string of characters which is achieved by adding a length specifier to the

object declaration.

The following are all valid declarations:
CHARACTER :: sex

CHARACTER(LEN=10) :: name

CHARACTER(LEN=10), DIMENSION(10,10) :: Harray

 9

Initialisation

Declaring a variable does not automatically assign a value, say zero, to this variable:

until a value has been assigned to it a variable is known as an unassigned variable.

Variables can be given initial values, which can use initialisation expressions and

literals. Consider these examples:

INTEGER :: i = 5, j = 100

REAL :: x, y = 1.0E5

COMPLEX :: val = (1.0,1.732)

CHARACTER(LEN=5) :: light = 'Amber'

CHARACTER(LEN=9) :: gumboot = 'Wellie'

LOGICAL :: on = .TRUE., off = .FALSE.

gumboot will be padded, to the right, with 3 blanks. In general, intrinsic functions

cannot be used in initialisation expressions. The following can be: RESHAPE,

SELECTED_INT_KIND, SELECTED_REAL_KIND, KIND.

Constants (Parameters)

Symbolic constants, known as parameters in Fortran, can easily be set up in a

declaration statement containing the PARAMETER attribute:

REAL, PARAMETER :: pi = 3.141592

REAL, PARAMETER :: radius = 3.5

REAL :: circum = 2.0 * pi * radius

CHARACTER(LEN=*),PARAMETER :: son = 'bart', dad = "Homer"

Scalar CHARACTER constants can assume their length from the associated literal

(LEN=*) only if the attribute PARAMETER is present. The example above is

equivalent to:

CHARACTER(LEN=4), PARAMETER :: son = 'bart'

CHARACTER(LEN=5), PARAMETER :: dad = "Homer"

Parameters should be used:

 if it is known that a variable will only take one value;

 for legibility where a value such as occurs in a program;

 for maintainability when a constant value could feasibly be changed in the future.

Comments

It is good practice to include many comments, for example:

PROGRAM Saddo

!

! Program to evaluate marriage potential

!

LOGICAL :: TrainSpotter ! Do we spot trains?

LOGICAL :: SmellySocks ! Have we smelly socks?

INTEGER :: i, j ! Loop variables

 everything after each ! is a comment;

 the ! in a character literal constant does not begin a comment, for example:

prospects = "No chance of ever marrying!!!"

 10

Continuation lines

A Fortran statement may use at most 132 positions in a single line: up to 39 additional

continuation lines may be used. For each continuation line the continuation mark, the

ampersand (&), is appended to each line that is followed by a continuation line. For

example:

CHARACTER(LEN=*), PARAMETER :: son = 'bart', dad = &

"Homer"

If a token cannot be completed on a line, then the first non-blank character on the next

non-comment line must be the continuation mark followed immediately by the

completion of the token. For example:

CHARACTER(LEN=*), PARAMETER :: son = 'ba&

&rt', dad = "Homer"

Two continuation marks may be used even when a token is not being split between

two lines.

Expressions

Each of the three broad type classes has its own set of intrinsic (in-built) operators, for

example, +, // and .AND. The following are all valid expressions:

NumBabiesBorn + 1 ! numeric valued: addition

"Ward "//Ward ! character valued: concatenation

NewRIE .AND. Bus38 ! logical: intersection

Expressions can be used in many contexts and can be of any intrinsic type.

Assignment

Assignment is defined between all expressions of the same type.

Examples:

a = b - c

i = i + 1 ! variable name used on both sides of =

name = initials//surname

The LHS is an object and the RHS is an expression.

Intrinsic Numeric Operations

The following operators are valid for numeric expressions:

** exponentiation is a dyadic operator, for example, 10**2, (evaluated right to left);

* and / multiply (there is no implied multiplication) and divide are dyadic operators,

for example, 10*7/4;

+ and - plus and minus or add and subtract are monadic and dyadic operators, for

example, -3 and 10+7-4;

They can be applied to literals, constants, scalar and array objects. The only

restriction is that the RHS of ** must be scalar. As an example consider:

a = b - c

f = -3*6/2

 11

Relational and Intrinsic Logical Operators

These are described in the following chapter.

Intrinsic Character Operations

Consider:

CHARACTER(LEN=*), PARAMETER :: str1 = "abcdef"

CHARACTER(LEN=*), PARAMETER :: str2 = "xyz"

CHARACTER(LEN=9) :: str3, str4

Substrings can be taken. As an example consider:

str1 is “abcdef”

str1(1:1) is “a” (not str1(1) which is illegal)

str1(2:4) is “bcd”

The concatenation operator, //, is used to join two strings or substrings:

str3 = str1//str2

str4 = str1(4:5)//str2(1:2)

would produce

abcdefxyz stored in str3

dexy stored in str4

Operator Precedence

Operator Precedence Example

user-defined monadic Highest .INVERSE. A

** . 10 ** 4

* or / . 89 * 55

monadic + or - . - 4

dyadic + or - . 5 + 4

// . str1 // str2

user - defined dyadic Lowest X .DOT. Y

Note:

 in an expression with no parentheses, the highest precedence operator is

combined with its operands first;

 in contexts of equal precedence left to right evaluation is performed except for **.

Consider an example of precedence, using the following expression:

x = a+b/5.0-c**d+1*e

Because ** is highest precedence, / and * are next highest, this is equivalent to:

x = a+(b/5.0)-(c**d)+(1*e)

The remaining operators' precedences are equal, so we evaluate from left to right.

 12

Mixed Type Numeric Expressions

In the CPU, calculations must be performed between objects of the same type: if an

expression mixes type some objects must change type. The default types have an

implied ordering:

1. COMPLEX -- highest

2. REAL

3. INTEGER -- lowest

The result of an expression is always of the higher type, for example:

INTEGER * REAL gives REAL , (3*2.0 is 6.0)

REAL * INTEGER gives REAL , (3.0*2 is 6.0)

COMPLEX * < anytype > gives COMPLEX

The actual operator is unimportant.

The rules for exponentiation, such as a**b are:

Type of a Type of b Value of a used Value of b used Type of result

Integer Integer a b Integer

Integer Real Real(a) b Real

Integer Complex Cmplx(a,0) b Complex

Real Integer a b Real

Real Real a b Real

Real Complex Cmplx(a,0) b Complex

Complex Integer a b Complex

Complex Real a Cmplx(b,0) Complex

Complex Complex a b Complex

Mixed Type Assignment

Problems can occur with mixed-type arithmetic. The rules for type conversion are

given below:

 INTEGER = REAL

The RHS is evaluated, truncated (all the decimal places removed) then assigned to the

LHS.

 REAL = INTEGER

 The RHS is evaluated, promoted to be REAL (approximately) and then assigned to

the LHS.

For example:

REAL :: a = 1.1, b = 0.1

INTEGER :: i, j, k

i = 3.9 ! i will be 3

j = -0.9 ! j will be 0

k = a – b ! k will be 1

Note: although a and b are stored approximately, the value of k is always 1.

 13

Integer Division

Division of two integers produces an integer result by truncation (towards zero).

Consider:

REAL :: a, b, c, d, e

a = 1999/1000 ! LHS a is (about) 1.000

b = -1999/1000 ! LHS b is (about) -1.000

c = (1999+1)/1000 ! LHS c is (about) 2.000

d = 1999.0/1000 ! LHS d is (about) 1.999

e =1999/1000.0 ! LHS e is (about) 1.999

Great care must be taken when using mixed type arithmetic.

Formatting input and output

The coding used internally by the computer to store values is of no concern to us: a

means of converting these coded values into characters which can be read on a screen

or typed in from a keyboard is provided by formatting. A format specification is a list

of one or more edit descriptors enclosed in round brackets. Each edit descriptor gives

the type of data expected (integer, real, character or logical) and the field width

(counted in number of characters, non-blank or otherwise) of this data value and how

the data item is represented within its field. Edit descriptors can be:

 Edit Value type Format-spec. Value

 Descriptor example example

 wX Space 2X

 Iw Integer I5 1 or -5600

 Fw.d Floating point F7.2 1.00 or -273.18

 Ew.d Exponential E9.2 0.10E+01 or
 -0.27E+03

 Lw Logical L1 T

 An Alphanumeric A11 'one billion'

 Gw.d General G11.3 3.14

The field width is given by a number which immediately follows the letter, unless the

letter is X in which case the number precedes the letter.

A blank space is simplest of the edit descriptors to specify, consisting of the letter X.

For example, X means ignore the next character position in the current input line, or

leave a gap 1 character wide in the current output line. Multiple spaces are indicated

by preceding the X by an integer count value, so 2X means skip two positions in the

input line or leave two spaces in the output line.

The edit descriptor for characters is almost as simple, consisting of the letter A

followed by an unsigned integer, for example A9. In this case, if the character value

were „positions‟ there would be no trouble as the length of the character string

equals the width specified. If the value were „characters‟ then only the first 9

symbols would be read in or written out, ie „character‟. If instead the value were

„places‟ then the behaviour at input and output is significantly different. On input

the 6 symbols would be read in and would be followed by 3 blanks: on output the 3

blanks would precede the 6 symbols.

 14

For integer values, the edit descriptor has the form I followed by an unsigned integer.

On output, the integer is adjusted to the right-hand side of its field.

For real values there are two possible forms of edit descriptors.

One form is Fw.d where w is the field width and d is the number of digits appearing

after the decimal point. The decimal point counts as one position in the field. If there

is a decimal point in a number being read in, then only the w and not both w and d

takes effect.

The other form is Ew.d where w and d are similar to those for the F edit descriptor.

For input the two forms are identical. For output, the value is scaled so that its

absolute value is less than 1 and this value will be followed by an exponent in a field

of width 4. After allowing for a sign, the decimal point and the exponent, there can be

at most w – 6 digits in the number which is written out.

Complex numbers need edit descriptors for a pair of real numbers: these descriptors

need not be identical.

Logical values use an edit descriptor of the form Lw. Only if w is at least 7 can the

values appear as .true. or .false. – otherwise they would be output as T or F in

the right-most position of the field.

Any of the edit descriptors in a format specification may be preceded by an integer

which is the repeat count for that descriptor. For example:

 ‘(I5,I5,F9.4,F9.4,F9.4)‟ can be rewritten as ‘(2I5,3F9.4)‟

If there are repeated sequences of edit descriptors then a repeat count can be applied

to a single sequence. For example:

„(2X,A5,F4.1,2X,A5,F4.1)‟ can be rewritten as „(2(2X,A5,F4.1))‟

If a format specification (without components in parentheses) is used with an input or

output list that contains more elements than the total number of edit descriptors,

applying any repeat counts, then a new record will be taken and the format

specification will be repeated. On input new records will be read until the list is

satisfied: this means that for any record which contains more data than is specified by

the format specification the surplus data are ignored. If the format specification does

have components in parentheses and the format is exhausted, then control reverts to

the repeat factor preceding the left parenthesis corresponding to the last but one right

parenthesis or to the left parenthesis if there is no repeat factor preceding it.

WRITE Statement

A simple form of the WRITE statement which allows you to output to the default

output device using a default format, is:

Write(*,*)<list>

This form is handy for diagnostic output when testing a program.

 15

A general form of the WRITE statement which allows you to output to any device

using a specified format, is of the form:

Write(unit=u,fmt=<format_specification>)<list>

The unit number allows you to write to any device such as a file or the screen (6

specifies the screen). The format specification is a character string, starting with (

and ending with), defining how your data is to be laid out. <list> is a comma

separated list of items. Consider this example code:

PROGRAM Owt

IMPLICIT NONE

 CHARACTER(LEN=31) :: &

format_spec=”(a4,f4.1,2(2x,a5,f4.1))”

CHARACTER(LEN=25) :: &

long_name = "Llanfairphwyll...gogogoch"

REAL :: x=1., y=2., z=3., tol=0.001

LOGICAL :: lgcl

lgcl = (abs(y - x) < tol)

WRITE(unit=6,fmt=”(a25)”) long_name

WRITE(unit=6,fmt=”(a30)”) "Spock says ""illogical &

&Captain"" "

WRITE(unit=6,fmt=format_spec) "X = ", x, &

" Y = ", y, " Z = ", z

WRITE(unit=6,fmt=”(a13,l1)”) "Logical val: ", lgcl

END PROGRAM Owt

It produces the following result on the screen:

Llanfairphwyll...gogogoch

Spock says "illogical Captain"

X = 1.0 Y = 2.0 Z = 3.0

Logical val: F

Note:

 each WRITE statement begins output on a new line;

 the WRITE statement can transfer any object of intrinsic type to the standard

output;

 strings may be delimited by the double or single quote symbols, " or ';

 two occurrences of the delimiter inside a string produce one occurrence on output.

If the field width of an edit descriptor is too narrow for the numeric value being

written, then this field will be filled with asterisks. For example this program

fragment:

IMPLICIT NONE

INTEGER :: i = 12345, j=-12345

WRITE(unit=6,fmt=”(2i7)”) i, j

WRITE(unit=6,fmt=”(2i6)”) i, j

WRITE(unit=6,fmt=”(2i5)”) i, j

gives this output:

 16

 12345 -12345

 12345-12345

12345*****

READ Statement

A simple form of the READ statement which allows you to input from the default

input device using a default format, is:

Read(*,*)<list>

For example, if the type declarations are the same as for the WRITE example, the

statements:

READ(*,*) long_name

READ(*,*) x, y, z

READ(*,*) lgcl

would accept the following input:

Llanphairphwyll...gogogoch

0.4 5. 1.0e12

T

Note that each READ statement reads from a new line and the READ statement can

transfer any object of intrinsic type from the standard input. The constants being read

in may be presented in their usual form, but note:

 complex values must be enclosed in parentheses

 character constants may be delimited

 a space must not appear in a constant except in a delimited character constant

or in a complex constant before or after a numeric field.

Constants on a line are separated by one or more contiguous spaces, by a comma or

by a slash. If there is no constant between successive separators or between the start

of the record and the first separator then this represents a null value. A slash separator

marks the end of the input record and null values are given to any remaining items in

the input list.

A general form of the READ statement which allows you to input from any device

using a specified format is of the form:

Read(unit=u,fmt=<format_specification>)<list>

The unit number allows you to read from any device such as a file or the keyboard (5

specifies the keyboard), the format specification is a character string defining how

your data is expected to be laid out, and <list> is a comma separated list of

variables into which values will be read.

Prompting for Input

Suppose a program asks the user for some value, say the temperature in degrees

Fahrenheit. If the relevant output and input statements are of the form:

Write(unit=6,fmt=„(a)‟,advance=„no‟) &

 „Please type in the temp in F: ‟

Read(unit=5,fmt=*) Deg_F

 17

then the screen dialogue could be the single line:

Please type in the temp in F: 32

instead of:

Please type in the temp in F:

32

Reading and writing to a file

In order to read from or write to a file the file concerned has to be specified. To do

this use an OPEN statement such as:

 Open (unit=u, file=<file_name>,iostat=ios)

where u is the unit number in the READ or WRITE statement and <file_name> is

the file name which is to be associated with the unit: any trailing blanks in the file

name are ignored. ios is an integer variable which is set to zero if the statement is

successfully executed: otherwise it is set to a positive value. Consider the following

piece of code:

 Integer :: I=5, ierr

 Real :: x=5.3, y=2.45

 Character(len=24) :: myfile=”result”

Open (unit=10,file=myfile,iostat=ierr)

If (ierr > 0) then

 Write (unit=6,fmt=”(a5,a6,a14)”) “File ”, &

myfile, “ failed to open”

 Stop

 End if

 Write (unit=10,fmt="(i4,f4.1,f5.2)") I,x,y

This will result in the following output being written to the file called result

 5 5.3 2.45

Note in this case the format specification has not been assigned to a character variable

but has been given as a character literal constant. Either way of specifying the format

is acceptable.

In order to disconnect a file from a unit, use a CLOSE statement such as:

 Close (unit=u)

where u is the unit number which was used in the OPEN statement. Consider the

following piece of code:

 Integer :: I=5

 Real :: x=5.3, y=2.45

Open (unit=10,file="result")

 Write (unit=10,fmt="(i4,f4.1,f5.2)") I,x,y

Close (unit=10)

 18

This will result in the file called result being disconnected from unit number 10.

The file existed for the WRITE statement and will exist after the CLOSE statement,

and could be connected again to a unit. Unit number 10 will be free to be connected

to a file. On normal termination of execution all connected units are closed, as if

CLOSE statements were executed.

How to Write a Computer Program

There are 4 main steps:

1. specify the problem;

2. analyse and break down into a series of steps towards solution;

3. write the Fortran 95 code;

4. compile and run (i.e., test the program).

It may be necessary to iterate between steps 3 and 4 in order to remove any mistakes.

The testing step is very important. For example, consider a program to convert a

temperature from Fahrenheit to Celsius scale.

To convert from
o
F (Fahrenheit) to

o
C (Celsius) we can use the following formula:

c = 5 x (f - 32)/9

To convert from
o
C to

o
K (Kelvin) we add 273.

The algorithm consists of:

1. READ a value of temperature on the Fahrenheit scale;

2. calculate the corresponding temperature on the Celsius scale;

3. WRITE the value just found;

4. calculate the corresponding temperature in degrees Kelvin;

5. WRITE this value.

To program this problem one might use the following code in a file called

TempFtoC.f95:

PROGRAM Temp_Conversion

! Convert a temperature value from Fahrenheit to Celsius

IMPLICIT NONE

REAL :: Deg_F, Deg_C, Deg_K ! 3 real type variables

! Obtain a temperature value

WRITE(unit=6,fmt=”(A28)”,advance=”no”) &

"Please type in the temp in F: "

READ*, Deg_F

! Convert from Fahrenheit to Celsius

Deg_C = 5.0*(Deg_F-32.0)/9.0

! Output this new value

WRITE(unit=6,fmt=”(A17,F6.1,A2)”) &

"This is equal to ", Deg_C, " C"

! Convert to Kelvin and output

Deg_K = Deg_C + 273.0

WRITE(unit=6,fmt=”(A4,F6.1,A2)”) "and ", Deg_K, " K"

END PROGRAM Temp_Conversion

 19

The form of the program source is essentially free with:

 up to 132 characters per line;

 significant blanks;

 `!' comment initiator;

 `&' line continuation character;

 `;' statement separator.

Example:

WRITE(unit=6,fmt=”(A39)”) "This line is continued &

&on the next line"; END IF ! end if statement

Now looking more closely at the code. It is delimited by
PROGRAM

END PROGRAM

statements. Between these there are two distinct areas.

 Specification Part

This gives named memory locations (variables) for use, and specifies the type of each

variable.

 IMPLICIT NONE -- this should always be present, meaning all variables must be

declared.

 REAL :: Deg_F, Deg_C, Deg_K -- declares three REAL (numeric) type

variables.

Note that Fortran 95 is not case sensitive: K is the same as k and INTEGER is the

same as integer.

 Execution Part

This is the part of the program that does the actual work. It reads in data, calculates

the temp in
o
C and

o
K and writes out results.

 WRITE(unit=6,fmt=”(A28)”,advance=”no”) &

 "Please type in the temp in F: " -- writes the string to the screen;

 READ*, Deg_F -- reads a value from the keyboard and assigns it to the REAL

variable Deg_F;

 Deg_C = 5.0*(Deg_F-32.0)/9.0 -- the expression on the RHS is

evaluated and assigned to the REAL variable Deg_C.

* is the multiplication operator;

- is the subtraction operator;

/ is the division operator;

= is the assignment operator.

 WRITE(unit=6,fmt=”(A17,F6.1,A2)”) "This is equal to ",&

Deg_C, "C" -- displays a string on the screen followed by the value of a

variable (Deg_C) followed by a second string ("C").

By default, input is from the keyboard and output to the screen.

 20

Statement Ordering

The following table details the prescribed ordering:

PROGRAM, FUNCTION, SUBROUTINE or MODULE statement

USE statements

FORMAT

statements

IMPLICIT NONE

PARAMETER

statements

IMPLICIT statements

PARAMETER

statements

Derived-Type Definitions, Interface blocks,

Type declaration and specification statements

Executable constructs

CONTAINS statement

Internal or module procedures

END statement

Compiling and Running the Program

The file containing the source code of the program can be compiled to produce an

object file. If this is successful the object file is linked with library files to produce an

executable file.

Compile-time Errors

In the previous program, consider what would happen if we accidentally typed:

Dwg_C = 5.0*(Deg_F – 32.0)/9.0

The compiler generates a compile-time or syntax error of the form:

 Dwg_C = 5.0*(Deg_F – 32.0)/9.0

 ^

“TempFtoC.f95”, Line = 10, Column = 4: ERROR: IMPLICIT

NONE is specified in the local scope, therefore an

explicit type must be specified for data object "Dwg_C".

 21

Run-time Errors

It is important to exercise as much of the program as possible with test data used to

ensure it gives the correct answer:

Please type in the temp in F:

32

This is equal to 0.0 C

and 273.0 K

Please type in the temp in F:

212

This is equal to 100.0 C

and 373.0 K

With some compilers an expression such as

Deg_C = 5.0*(Deg_F – 32.0)/0.0

would compile but a run-time error would be generated. This might take the form:

Please type in the temp in F:

122

Arithmetic exception

It is also possible to write a program that runs to completion but gives the wrong

results. Be particularly wary if using a program written by someone else: the original

author may have thoroughly tested those parts of the program exercised by their data

but been less thorough with other parts of the program.

 22

Practical Exercise 1

Question 1: The Hello World Program

Write a Fortran 95 program to write out Hello World on the screen.

Question 2: Real Formatting

Write a program which uses the expression 4.0*atan2(1.0,1.0) to evaluate π

and store it in a variable. Write out this value 9 times using edit descriptors of the

form E12.d, F12.d, G12.d with d taking the values 2, 4 and 6.

Question 3: Some Division One Results

A particular number can be expressed as the sum of several integers, and the sum of

the reciprocals of these integers is, perhaps, surprising. Write a program to calculate

the values of the two following expressions and write a short text and the results:

2 + 6 + 8 + 10 + 12 + 40

40

1

12

1

10

1

8

1

6

1

2

1

Hint: some constants are better as type INTEGER but some must be type REAL.

Now write similar results using the set of numbers {2,3,10,24,40}

Question 4: Area of a Circle

Write a simple program to read in the radius and calculate the area of the

corresponding circle and volume of the sphere. Demonstrate correctness by

calculating the area and volume using radii of 2, 5, 10.

Area of a circle:

Volume of a sphere:

Hint: use the value 3.14159 for .

2rarea

3

4 3r
volume

 23

PROGRAM Area_and_Vol

!...Add specification part

 WRITE(unit=6,fmt=”(A)”) "Type in the radius: "

 READ*, radius

 !...Add code to calculate area and volume

 WRITE(unit=6,fmt=”(A26,F5.1,A4,F6.1)”) &

"Area of circle with radius ",&

radius, " is ", area

 WRITE(unit=6,fmt=”(A28,F5.1,A4,F6.1)”) &

"Volume of sphere with radius ",&

radius, " is ", volume

END PROGRAM Area_and_Vol

Question 5: Filed values

Write a program to open the file named statsa which has been provided: statsa

contains several values, each on a separate line (or record). Read the first value which

is an integer, and is in a field of width 5. Then read the second value which is of type

real, in a field of width 5 with two digits after the decimal point. Write these two

values within a line of explanatory text to the screen.

Now generalize your program by reading the name of the file into a character variable

and using this character variable in the OPEN statement.

 24

2. Logical Operations and Control Constructs

Relational Operators

The following relational operators deliver a LOGICAL result when combined with

numeric operands:

.GT. > greater than

.GE. >= greater than or equal to

.LE. <= less than or equal to

.LT. < less than

.NE. /= not equal to

.EQ. == equal to

For example:

INTEGER :: i = 7, j = 3

LOGICAL :: bool

bool = i > j

If either or both expressions being compared are complex then only the operators ==

and /= are available.

Intrinsic Logical Operations

A LOGICAL expression returns a .TRUE. or .FALSE. result. The following are

valid with LOGICAL operands:

.NOT. -- .TRUE. if operand is .FALSE.;

.AND. -- .TRUE. if both operands are .TRUE.;

.OR. -- .TRUE. if at least one operand is .TRUE.;

.EQV. -- .TRUE. if both operands are the same;

.NEQV. -- .TRUE. if both operands are different.

For example, if T is .TRUE. and F is .FALSE.

 .NOT. T is .FALSE. .NOT. F is .TRUE.

T .AND. F is .FALSE. T .AND. T is .TRUE.

T .OR. F is .TRUE. F .OR. F is .FALSE.

T .EQV. F is .FALSE. F .EQV. F is .TRUE.

T .NEQV. F is .TRUE. F .NEQV. F is .FALSE.

 25

Operator Precedence

Operator Precedence Example

user-defined monadic Highest .INVERSE. A

** . 10 ** 4

* or / . 89 * 55

monadic + or - . - 4

dyadic + or - . 5 + 4

// . str1 // str2

>, <=, etc . A > B

.NOT. . .NOT. Bool

.AND. . A .AND. B

.OR. . A .OR. B

.EQV. or .NEQV. . A .EQV. B

user-defined dyadic Lowest X .DOT. Y

Control Flow

Control constructs allow the normal sequential order of execution to be changed.

Fortran 95 supports:

 conditional execution statements and constructs, (IF ... and IF ... THEN

... ELSE ... END IF);

 multi-way choice construct, (SELECT CASE);

 loops, (DO ... END DO).

IF Statement

 The basic syntax of an IF statement is:

IF(< logical-expression >)< exec-stmt >

If < logical-expression > evaluates to .TRUE. then execute < exec-stmt >

otherwise do not.

For example:
IF (bool) a = 3
IF (x > y) Maxi = x

The second means `if x is greater than y then set Maxi to be equal to the value of x'.

More examples:

IF (a*b+c /= 47) bool = .TRUE.

IF (i /= 0 .AND. j /= 0) k = l/(i*j)

IF ((i /= 0) .AND. (j /= 0)) k = l/(i*j) ! same

IF (i == j .AND. j == k) ... ! is permitted

IF (i== j == k) ... ! is not permitted

 26

The IF Statement can be explained by a flow structure. Consider the IF statement:

IF (I > 17) Write(*,*) "I > 17"

This maps onto the following control flow structure:

When using real-valued expressions (which are approximate) .EQ. and .NE. have

no useful meaning. This example shows a way of treating such a case: Tol has been

set to a suitable small value.

IF (ABS(a-b) < Tol) same = .TRUE.

IF ... THEN ... ELSE Construct

The block-IF is a more flexible version of the single line IF. A simple example:

IF (I > 17) THEN

Write(*,*) "I > 17"

END IF

This maps onto the following control flow structure:

If (I > 17)

I >

17

I > 17

WRITE(*,*) "I > 17"

!Next statement

I <= 17

If (I > 17)

END IF

WRITE(*,*) “I > 17”

I > 17

I <= 17

 27

Consider the IF ... THEN ... ELSE construct:

IF (I > 17) THEN

Write(*,*) "I > 17"

ELSE

Write(*,*) "I <= 17"

END IF

Note how the indentation helps. This maps onto the following control flow structure:

IF ... THEN ELSEIF Construct

The IF construct has the following syntax:

IF(< logical-expression >)THEN

< then-block >

[ELSEIF(< logical-expression >)THEN

< elseif-block >

...]

[ELSE

< else-block >]

END IF

The first branch to have a true < logical-expression > is the one that is

executed. If none is found then the < else-block >, if present, is executed. Each

of ELSEIF and ELSE is optional.

Consider the IF ...THEN ... ELSEIF construct:

IF (I > 17) THEN

Write(*,*) "I > 17"

ELSEIF (I == 17) THEN

Write(*,*) "I == 17"

ELSE

Write(*,*) "I < 17"

END IF

If (I > 17)

END IF

WRITE(*,*) “I > 17”

I > 17
ELSE

WRITE(*,*) “I <= 17”

 28

This maps onto the following control flow structure:

You can also have one or more ELSEIF branches. IF blocks may also be nested.

As an example consider:

IF (x > 3) THEN

A = B+C*D

ELSEIF (x == 3) THEN

A = B*C-D

ELSEIF (x == 2) THEN

A = B*B

ELSE

IF (y /= 0) A=B

ENDIF

Nested and Named IF Constructs

All control constructs may be nested and optionally may be named:

outa: IF (a == 0) THEN

 WRITE(unit=6,fmt=”(A5)”) "a = 0"

 inna: IF (c /= 0) THEN

 WRITE(unit=6,fmt=”(A16)”) "a = 0 AND c /= 0"

 ELSE

 WRITE(unit=6,fmt=”(A15)”) "a = 0 BUT c = 0"

 ENDIF inna

 ELSE IF (a > 0) THEN

 WRITE(unit=6,fmt=”(A5)”) "a > 0"

 ELSE

 WRITE(unit=6,fmt=”(A13)”) "a must be < 0"

 END IF outa

The names may only be used once per program unit.

If (I > 17)

THEN I < = 17

ELSEIF (I= =17) THEN

WRITE(*,*) “I= =17” WRITE(*,*) “I<17”

WRITE(*,*) “I>17”

END IF

I > 17

I = = 17 ELSE

 29

Example Using IF constructs

A program written to calculate the roots of a quadratic equation of the form:

ax bx c2 0
will use some of the constructs just described.

The roots are given by the following formula:

x
b b ac

a

 2 4

2

The algorithm consists of:

1. READ values of a, b and c;

2. if a is zero then stop as we do not have a quadratic;

3. calculate the value of discriminant D = b ac2 4

4. if D is zero then there is one root:
 b

a2

5. if D > 0 then there are two real roots:
 b D

a2
 and

 b D

a2

6. if D < 0 there are two complex roots:
 b i D

a2
 and

 b i D

a2

7. WRITE the solution.

The program for this might look like this:

PROGRAM QES

IMPLICIT NONE

INTEGER :: a, b, c, D

REAL :: Real_Part, Imag_Part

WRITE(unit=6,fmt=”(A29)”) "Type in values for a, b and c"

READ*, a, b, c

IF (a /= 0) THEN

! Calculate discriminant

 D = b*b - 4*a*c

 IF (D == 0) THEN ! one root

 WRITE(unit=6,fmt=”(A8,F6.1)”) "Root is ", -b/(2.0*a)

 ELSE IF (D > 0) THEN ! real roots

 WRITE(unit=6,fmt=”(A9,F6.1,1X,A3,F5.1)”) &

 "Roots are",(-b+SQRT(REAL(D)))/(2.0*a),&

 "and", (-b-SQRT(REAL(D)))/(2.0*a)

 ELSE ! complex roots

 Real_Part = -b/(2.0*a)

 ! D < 0 so must take SQRT of -D

 Imag_Part = (SQRT(REAL(-D))/(2.0*a))

 WRITE(unit=6,fmt=”(A9,F6.1,1X,A1,F5.1,A1)”) &

 "1st Root ", Real_Part, "+", Imag_Part, "i"

 WRITE(unit=6,fmt=”(A9,F6.1,1X,A1,F5.1,A1)”) &

 "2nd Root ", Real_Part, "-", Imag_Part, "i"

 END IF

ELSE ! a == 0

 WRITE(unit=6,fmt=”(A24)”) "Not a quadratic equation"

END IF

END PROGRAM QES

 30

The previous program introduces some new ideas:

 IF construct -- different statements are executed depending upon the value of the

logical expression;

 relational operators -- /= (is not equal to), == (is equal to), > (is greater than);

 nested constructs -- one control construct can be located inside another;

 procedure call -- SQRT(X) returns the square root of X;

 type conversion -- in the above call, X must be of type REAL. In the program, D is

INTEGER, REAL(D) converts D to be real valued. To simplify the coding we

calculate the discriminant once and store it in D.

SELECT CASE Construct

A simple example of a select case construct is:

SELECT CASE (i)

CASE (2,3,5,7)

WRITE(6,”(A10)”) "i is prime"

CASE (10:)

WRITE(6,”(A10)”) "i is >= 10"

CASE DEFAULT

WRITE(6,”(A26)”) "i is not prime and is < 10"

END SELECT

An IF .. ENDIF construct could have been used but a SELECT CASE is neater and

more efficient. Here is the same example:

IF(i==2 .OR. i==3 .OR. i==5 .OR. i==7) THEN

WRITE(6,”(A10)”) "I is prime"

ELSE IF(i >= 10).THEN

WRITE(6,”(A10)”) "I is >= 10"

ELSE

WRITE(6,”(A26)”) "I is not prime and is < 10"

END IF

The SELECT CASE construct can be explained by a flow structure. Consider the

SELECT CASE construct:

SELECT CASE (I)

CASE(1); Write(*,*) "I=1"

CASE(2:9); Write(*,*) "I>=2 and I<=9"

CASE(10); Write(*,*) "I=10"

CASE DEFAULT; Write(*,*) "I<1 or I>10"

END SELECT

 31

This maps onto the following control flow structure:

The SELECT CASE construct is useful if one of several paths must be chosen based

on the value of a single expression.

The syntax is as follows:

[< name >:] SELECT CASE (< case-expr >)

[CASE (< case-selector >)[< name >]

< exec-stmts >] ...

[CASE DEFAULT [< name >]

< exec-stmts >]

END SELECT [< name >]

Note:

 the < case-expr > must be scalar and of type INTEGER, LOGICAL or
CHARACTER;

 the < case-selector > is a parenthesised single value or range of the same

type as < case-expr >, for example, (.TRUE.), (1) or (99:101);

 there can only be one CASE DEFAULT branch;

 control cannot jump into a CASE construct.

SELECT CASE (I)

Case default

END SELECT

SELECT

Case (1) Case (2:9) Case (10)

WRITE(*,*)

“I==1”

WRITE(*,*)

“I>=2 and I<=9”

WRITE(*,*)

“I = 10”

WRITE(*,*)

“I<1 or I>10”

 32

The DO construct

There are mathematical problems which require the iteration of a piece of Fortran

code. For example, the fragment of program shown below sums the logarithmic

series for a particular value of x:

INTEGER :: den=2

REAL :: num=-1.0, sum, x=0.8, xx

sum = x

xx = x*x

DO

 sum = sum + num*xx/den

 num = -num

 den = den + 1

 WRITE(unit=6,fmt="(f7.4)") sum

END DO

This will generate a succession of values converging on the sum of an infinite number

of terms: not really a practical program!

Conditional Exit Loop

It is possible to set up a DO loop which is terminated by simply jumping out of it:

INTEGER :: i

i = 0

DO

i = i + 1

IF (i > 100) EXIT

WRITE(unit=6,fmt=”(A4,I4)”) "I is", i

END DO

! if I>100 control jumps here

WRITE(unit=6,fmt=”(A27,I4)”) &

"Loop finished. I now equals", i

This will generate:

I is 1

I is 2

I is 3

....

I is 100

Loop finished. I now equals 101

The EXIT statement tells control to jump out of the current DO loop.

 33

Conditional Cycle Loops

You can also set up a DO loop which, on some iterations, only executes a subset of its

statements. Consider:

INTEGER :: i

i = 0

DO

i = i + 1

IF (i >= 50 .AND. i <= 59) CYCLE

IF (i > 100) EXIT

WRITE(unit=6,fmt=”(A4,I4)”) i

END DO

WRITE(unit=6,fmt=”(A27,I4)”) &

"Loop finished. I now equals", i

This will generate:

I is 1

I is 2

....

I is 49

I is 60

....

I is 100

Loop finished. I now equals 101

CYCLE forces control to the innermost active DO statement and the loop begins a new

iteration.

Named and Nested Loops

Loops can be given names and an EXIT or CYCLE statement can be made to refer to

a particular loop. This is demonstrated by the code:

0-- outa: DO

1-- inna: DO

2-- IF (a > b) EXIT outa ! jump to line 9

4-- IF (a == b) CYCLE outa ! jump to line 0

5-- IF (c > d) EXIT inna ! jump to line 8

6-- IF (c == a) CYCLE ! jump to line 1

7-- END DO inna

8-- END DO outa

9-- ...

The (optional) name following the EXIT or CYCLE determines which loop the

statement refers to. If no name is given the EXIT terminates the innermost loop

containing it and the CYCLE transfers control to the END DO of the corresponding

loop. Note that the name given to a loop cannot be given to any other object in the

program unit.

 34

Indexed DO Loops

Loops can be written which cycle a fixed number of times. For example:

DO i = 1, 100, 1

... ! i takes the values 1,2,3,...,100

... ! 100 iterations

END DO

The formal syntax is as follows:

DO < DO-var > = < expr1 >, < expr2 > [,< expr3 >]

< exec-stmts >

END DO

The < DO-var > must be a named scalar integer variable: it must not be explicitly

modified within the DO construct.

The number of iterations, which is evaluated before execution of the loop begins, is

calculated as:

MAX(INT(< expr2 >-< expr1 >+< expr3 >)/< expr3 >), 0)

If this is zero or negative then the loop is not executed.

If < expr3 > is absent it is assumed to be equal to 1.

Here are four examples of different loops:

Upper bound not exact

DO i = 1, 30, 2

... ! i takes the values 1,3,5,7,...,29

... ! 15 iterations

END DO

Negative stride

DO j = 30, 1, -2

... ! j takes the values 30,28,26,...,2

... ! 15 iterations

END DO

Zero-trip loop

DO k = 30, 1, 2

... ! 0 iterations

... ! loop skipped

END DO

Missing stride -- assumed to be 1

DO l = 1, 30

... ! l takes the values 1,2,3,...,30

... ! 30 iterations

END DO

 35

DO construct index

The value of the index variable is incremented at the end of each loop ready for the

next iteration of the loop: this value is available outside the loop. With a piece of

code like this there are three possible outcomes for the index variable:

DO i = 1, n

 ...

 IF (i == k) EXIT

 ...

END DO

1. If, at execution time, n is less than 1 it is a zero-trip loop so i is given the value 1

and control passes to the statement following END DO.

2. If n is greater than 1 and not less than k then i will have the same value as k

when EXIT transfers control to the statement following END DO.

3. If n is greater than 1 and less than k then the loop will be executed n times with i

taking the values 1,2,...,n. At the end of the n
th

 loop i will be incremented to

n+1 and will have this value when control transfers to the statement following

END DO.

 36

Practical Exercise 2

Question 1: Parity

Write a program to read several numbers, positive or negative, one at a time and for

each to write out a line giving the number just read and a description of it as an odd or

even number. Stop if the number read in is zero.

Question 2: A Triangle Program

Write a program to accept three (INTEGER) lengths and report back on whether these

lengths could define an equilateral, isosceles or scalene triangle (3, 2 or 0 equal length

sides) or whether they cannot form a triangle.

Demonstrate that the program works by classifying the following:

1. (3, 3, 3)

2. (3, 3, 4)

3. (3, 4, 5)

4. (3, 3, 7)

Hint: If three lengths form a triangle then 2 times the longest side must be less than

the sum of all three sides. In Fortran 95 terms, the following must be true:
(2*MAX(side1,side2,side3) < side1+side2+side3)

Question 3: The Ludolphian Number

Write a program which uses 6 variables of type real; a, b, c, d, e, f (or any other

names you choose). Set initial values as follows, remembering to match the type of

constant to the type of variable:

1a ,
2

1
b ,

4

1
c , 1d

Code these 7 lines as Fortran 95 statements (with constants of the correct type) within

a loop which is to be obeyed 4 times:
ae

2

)(ba
a

ebb
2)(eadcc

dd 2

c

ba
f

4

)(2

output f

This algorithm was developed by Tamura and Kanada.

 37

Question 4: Odd Numbers

Write a program which:

1. Asks how many odd numbers you want to use.

2. Reads in the number of odd numbers to use(16 would be sufficient to test your

program).

3. Sums this many odd numbers, starting from 1 (Do not use the formula for the sum

of an arithmetic progression!)

As each number is added in, write out a count of how many odd numbers have

been added in and what the sum is. So the first line will simply be:

 1 1

Question 5: Simple Sequences (symmetric, unitary, descending)

For each of these sequences set an initial value and use a DO-loop.

a) Write a program to evaluate and write out each of the terms in this sequence:

1 x 1

11 x 11

111 x 111

:

11111 x 11111

 Now evaluate and write out the next term in this sequence. Anything strange?

b) Write a program to evaluate and write out each of the terms in this sequence:

0 x 9 + 1

1 x 9 + 2

12 x 9 + 3

123 x 9 + 4

:

12345678 x 9 + 9

c) Write a program to evaluate and write out each of the terms in this sequence:

1 x 8 + 1

12 x 8 + 2

123 x 8 + 3

:

123456789 x 8 + 9

Question 6: Mathematical Magic

If you take a positive integer, halve it if it is even or triple it and add one if it is odd,

and repeat, then the number will eventually become one. This is known as the

Syracuse algorithm.

Set up a loop containing a statement to read in a number (input terminated by zero)

and a loop to write out the sequence obtained from each input. When the number

written out is 1 then execution should terminate with an appropriate message.

 38

Demonstrate that your program works by outputting the sequences generated by the

following sets of numbers:

a) 7

b) 106, 46, 3, 0

Question 7: Rooting

Write a program which uses 2 variables of type real; a, x (or any other names you

choose). Issue prompts and read in initial values as follows:

a is the number whose square root we are finding,

x is an estimate of the root.

Code these 2 lines as Fortran 95 statements within a loop which is to be obeyed

several times, say 6 times:

x = (x + a/x)/2

output x

The algorithm used here is the Newton-Raphson one.

You might be interested to compare your result with that given by the intrinsic

function sqrt(a)

Question 8: Coins

Assume you have coins with face values 50, 20, 10, 5, 2 and 1. Write a program

which reads in the price of some item which is not greater than 100 and finds the

fewest number of coins whose sum equals this price. Write out how many of each

value coin is used: stop if the original price is 0.

Question 9: Vowel, Consonant or Other

Using a SELECT CASE block write a program that reads in any number of

characters, one at a time, and for each character writes out whether it is a vowel, a

consonant or neither: read in the ‘@’ character to terminate the input.

Question 10: Decimal to Roman Numerals Conversion

Using a SELECT CASE block and integer division write a program that reads in a

decimal number between 0 and 999 and writes out the equivalent in Roman Numerals.

Demonstrate that your program works with the numbers:

1. 888

2. 0

3. 222

4. 536

 39

The output should contain no embedded spaces.

0

1 i 1. x 1.. c

2 ii 2. xx 2.. cc

3 iii 3. xxx 3.. ccc

4 iv 4. xl 4.. cd

5 v 5. l 5.. d

6 vi 6. lx 6.. dc

7 vii 7. lxx 7.. dcc

8 viii 8. lxxx 8.. dccc

9 ix 9. xc 9.. cm

Hint: Use a CHARACTER string (or CHARACTER strings) to store the number before

output. The `longest' number is 888, dccclxxxviii (12 characters).

 40

3. Arrays

Arrays (or matrices) hold collections of different values of the same type. Individual

elements are accessed by subscripting the array.

A 15-element array can be visualised as:

1 2 3 13 14 15

And a 5 x 3 array as:

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

5,1 5,2 5,3

Every array has a type and each element holds a value of that type. Here are some

examples of declarations used in Fortran:

REAL, DIMENSION(15) :: X

REAL, DIMENSION(1:5,1:3) :: Y, Z ! 5 rows, 3 columns

The above are explicit-shape arrays. Further terminology you might meet includes:

 rank -- number of dimensions: maximum 7. Rank of X is 1; rank of Y and Z is 2.

 bounds -- lower and upper limits of indices: default lower bound is 1. Bounds of

X are 1 and 15; bounds of Y and Z are 1 and 5 and 1 and 3.

 extent -- number of elements in dimension. Extent of X is 15; extents of Y and Z are 5

and 3.

 size -- total number of elements. Size of X, Y and Z is 15.

 shape – ordered sequence of extents. Shape of X is (15); shape of Y and Z is

(5,3).

 conformable -- same shape. Y and Z are conformable.

Declarations

Literals and constants can be used in array declarations:

REAL, DIMENSION(100) :: R

REAL, DIMENSION(1:10,1:10) :: S

REAL, DIMENSION(-10:-1) :: X

INTEGER, PARAMETER :: lda = 5

REAL, DIMENSION(0:lda-1) :: Y

REAL, DIMENSION(1+lda*lda,10) :: Z

But note:

 the default lower bound is 1;

 bounds can begin and end anywhere.

Dimension

2

2

Dimension

1

 41

Now consider how these arrays look diagrammatically:

REAL, DIMENSION(15) :: A

Individual array elements are denoted by subscripting the array name by an INTEGER,

for example, A(7), 7
th

 element of A:

A(1) A(15)

REAL, DIMENSION(-4:0,0:2) :: B

REAL, DIMENSION(5,3) :: C

REAL, DIMENSION(0:4,0:2) :: D

or C(3,2), 3
rd

 row, 2
nd

 column of C:

B(-4,0) B(-4,2)

C(1,1) C(1,3)

D(0,0) D(0,2)

B(0,0) B(0,2)

C(5,1) C(5,3)

D(4,0) D(4,2)

Array Element Ordering

Organisation in memory:

 Fortran 95 does not specify anything about how arrays should be located in

memory. It has no storage association.

 Fortran 95 does define an array element ordering for certain situations, which is of

column major form.

 42

The array is conceptually ordered as:

first element

C(1,1) C(1,3)

C(5,1) C(5,3)

 last element

C(1,1),C(2,1),..,C(5,1),C(1,2),C(2,2),..,C(5,3)

Array Sections

These are specified by subscript-triplets for each dimension of the array. The general

form is:

[< bound1 >]:[< bound2 >][:< stride >]

The section starts at < bound1 > and ends at or before < bound2 >.

< stride > is the increment by which the elements are selected.

< bound1 >, < bound2 > and < stride > must all be scalar integer

expressions. Thus, almost all of these are valid sections of the previously declared

array A:

A(:) ! the whole array

A(3:9) ! A(3) to A(9) in steps of 1

A(3:9:1) ! as above

A(m:n) ! A(m) to A(n)

A(m:n:k) ! A(m) to A(n) in steps of k

A(8:3:-1) ! A(8) to A(3) in steps of –1

A(8:3) ! A(8) to A(3) in steps of 1 => Zero size

A(m:) ! from A(m) to UBOUND(A)

A(:n) ! from LBOUND(A) to A(n)

A(::2) ! from LBOUND(A) to UBOUND(A) in steps of 2

A(m:m) ! 1 element section of rank 1

A(m) ! scalar element - not a section

 43

The following statements illustrate the declaration of an array and some sections of it:

REAL, DIMENSION(1:6,1:8) :: P

P(1:3,1:4) P(1:6:2,1:8:2)

Two sections each of shape 3,4

P(3,2:7) P(3:3,2:7)

P(3,2:7) is a section of rank 1 whereas P(3:3,2:7) is a section of rank 2.

Array Conformance

Two arrays or sub-arrays are said to be conformable if they have the same shape

(identical rank and extents): a scalar is conformable with any array.

Array Syntax

You can reference a particular element of an array by using the array name and a valid

subscript. Using the arrays which were declared previously:

REAL, DIMENSION(15) :: A

REAL, DIMENSION(-4:0,0:2) :: B

REAL, DIMENSION(5,3) :: C

REAL, DIMENSION(0:4,0:2) :: D

A(1) = 0.0 sets one element to zero,

B(0,0) = A(3) + C(5,1) sets an element of B to the sum of an

element of A and an element of C.

 44

Whole Array Expressions

If an unary intrinsic operation is applied to an array this produces an array of the same

shape where each element has a value equal to the operation being performed on the

corresponding element of the operand:

B = SIN(C) ! B(i,j) = SIN(C(i+5,j+1))

Similarly if a binary intrinsic operation is applied to two arrays of the same shape this

produces an array of the same shape where each element has a value equal to the

operation being performed on the corresponding element of the operand:

B = C + D ! B(i,j) = C(i+5,j+1) + D(i+4,j)

The correspondence of elements in these operations is by position in each extent and

not by subscript.

A scalar conforms to an array of any shape with the same value for every element:

C = 1.0 ! C(i,j) = 1.0

Array Section Expressions

The rules which apply to whole array expressions also apply to array section

expressions.

The following program performs an array operation on only certain elements and uses

three functions on arrays. In each case an array section has been used: the statement,

the two transformational and one elemental functions are described before the

program code is given.

The Fortran standard does not prescribe the order in which scalar operations in any

array expression are executed so the compiler is free to optimize such expressions.

WHERE statement and construct

The general form of the statement is:

WHERE (<logical-array-expr>) <array-variable> = <expr>

The logical array expression <logical-array-expr> must have the same shape

as <array-variable>. It is evaluated first and only for those elements which have

the value true are the corresponding elements of <expr> evaluated and assigned to

the corresponding elements of <array-variable>. For all other elements the

corresponding values of <expr> are not evaluated and the corresponding elements of

<array-variable> retain their existing values.

A single logical array expression can be used as a mask controlling several array

assignments if all the arrays are of the same shape:

WHERE (<logical-array-expr>)

<array-assignments>

END WHERE

 45

COUNT function

The general form of the function is:

COUNT (<logical-array-expr>)

This returns the integer value of the number of elements in the logical array

expression <logical-array-expr> which have the value true. For example:

nonnegP = COUNT(P > 0.0)

SUM function

The general form of the function is:

SUM (<array>)

This returns the sum of the elements of an integer, real or complex <array>: it

returns the value zero if the <array> has size zero. For example:

sumP = SUM(P)

MOD function

The general form of the function is:

MOD (A,P)

This returns the remainder A modulo P , that is A-INT(A/P) * P. A and P must both

be of type integer or real, and P must be non-zero.

An old method of multiplying two numbers is to write down the two numbers and

then generate a sequence from each in the following manner. Choose one and halve

it, discarding any remainder, and continue until it becomes 1: double the other number

as many times as the first was halved. Cross out the numbers in the doubling

sequence which correspond to a number in the halving sequence which is even: then

sum the remaining numbers. For example, to multiply 13 by 37:

13 6 3 1

37 74 148 296 481

 46

PROGRAM old_times

! An old method of multiplying two integers,

! described on page 44 of Curious and Interesting Numbers.

! program written by Neil Hamilton-Smith, March 2006

IMPLICIT NONE

INTEGER :: n=2, p1, p2, p3, z

INTEGER, PARAMETER :: rn = 32

INTEGER, DIMENSION(1:rn) :: r1, r2

Write(unit=6,fmt="(a46)",advance="no") &

"Please give the two numbers to be multiplied: "

Read(unit=5,fmt=*) p1, p2

! store the two sequences of values in arrays r1 and r2

r1(1) = p1

r2(1) = p2

DO

 r1(n) = r1(n-1)/2

 r2(n) = r2(n-1)*2

 IF (r1(n) == 1) EXIT

 n = n + 1

 IF (n > rn) THEN

 Write(unit=6,fmt="(a43,i3)") &

 "Arrays r1, r2 need upper bound greater than", rn

 STOP

 END IF

END DO

! cross out value in r2 if value in r1 is even

WHERE (Mod(r1(1:n),2) == 0) r2(1:n) = 0

! count the zeros in r2: equals count of evens in r1.

! For interest, not strict necessity

z = COUNT(r2(1:n) == 0)

Write(unit=6,fmt="(a42,i4)") &

 " Number of even numbers in halved row =", z

! sum the values (including zeros) in r2

p3 = SUM(r2(1:n))

Write(unit=6,fmt="(a10,i5,a4,i5,a3,i8)") "product of", &

 p1, " and", p2, " is", p3

END PROGRAM old_times

Suppose we have an array of numbers as shown below and wish to determine the

minimum and maximum values and their positions within the array:

3 6 17 24 15

10 18 21 12 4

19 25 13 1 7

22 14 5 8 16

11 2 9 20 23

The program to find the four items will use four transformational functions.

 47

MINVAL function

The general form of the function is:

MINVAL (<array>)

This returns the minimum value of an element of an integer or real <array>: it

returns the largest positive value supported by the processor if the <array> has size

zero.

For example:

minP = MINVAL(P)

MAXVAL function

The general form of the function is:

MAXVAL (<array>)

This returns the maximum value of an element of an integer or real <array>: it

returns the largest negative value supported by the processor if the <array> has size

zero.

For example:

maxP = MAXVAL(P)

MINLOC function

The general form of the function is:

MINLOC (<array>)

This returns a rank-one default integer array of size equal to the rank of <array>: its

value is the sequence of subscripts of an element of minimum value, as though all the

lower bounds of <array> were 1. If there is more than one such element then the

first in array element order is taken.

MAXLOC function

The general form of the function is:

MAXLOC (<array>)

This returns a rank-one default integer array of size equal to the rank of <array>: its

value is the sequence of subscripts of an element of maximum value, as though all the

lower bounds of <array> were 1. If there is more than one such element then the

first in array element order is taken.

The program could be:

 48

program seek_extremes

implicit none

! showing use of four intrinsic array functions

integer, dimension(1:5,1:5) :: magi

integer, dimension(1:2) :: posmax, posmin

integer :: m1, m25

! assign values to the rank-two array magi

m1 = minval(magi)

m25 = maxval(magi)

posmin = minloc(magi)

posmax = maxloc(magi)

write(6,"(a,i3,a,i2,a,i2)") "The least value,", m1, &

 ", is in row", posmin(1), " and column", posmin(2)

write(6,"(a,i3,a,i2,a,i2)") "The greatest value,", &

 m25, ", is in row", posmax(1), " and column", posmax(2)

end program seek_extremes

Array I/O

The conceptual ordering of array elements is useful for defining the order in which

array elements are output. If A is a rank 2 array then

WRITE(*,*) A

would produce output in the order:

A(1,1),A(2,1),A(3,1),..,A(1,2),A(2,2),..

and
READ(*,*) A

would assign to the elements in the above order.

Using intrinsic functions such as RESHAPE or TRANSPOSE you could change this

order. As an example consider the matrix A:

1 4 7

2 5 8

3 6 9

The following WRITE statements

...

WRITE(unit=6,fmt=”(A19,I2)”) 'Array element =',a(3,2)

WRITE(unit=6,fmt=”(A19,3I2)”) 'Array section =',a(:,1)

WRITE(unit=6,fmt=”(A19,4I2)”) 'Sub-array =',a(:2,:2)

WRITE(unit=6,fmt=”(A19,9I2)”) 'Whole Array =',a

WRITE(unit=6,fmt=”(A19,9I2)”) 'Array Transp''d =', &

&TRANSPOSE(a)

END PROGRAM WrtArray

 49

produce on the screen:

 Array element = 6

 Array section = 1 2 3

 Sub-array = 1 2 4 5

 Whole Array = 1 2 3 4 5 6 7 8 9

 Array Transp'd = 1 4 7 2 5 8 3 6 9

The TRANSPOSE Intrinsic Function

TRANSPOSE is a general intrinsic function, which takes a rank-two matrix and

returns a rank-two matrix of the same type which is its transpose, ie each element (i,j)

is replaced by element (j,i):

TRANSPOSE(<matrix>)

For example:

1 4 7
TRANSPOSE

1 2 3

2 5 8 4 5 6

3 6 9 7 8 9

Array Constructors

Used to give rank one arrays or sections of arrays specific values. For example:

IMPLICIT NONE

INTEGER :: I

INTEGER, DIMENSION(10) :: ints

REAL, DIMENSION(4) :: heights

heights = (/5.10, 5.6, 4.0, 3.6/)

ints = (/ 100, (i, i=1,8), 100 /)

...

 constructors and array sections must conform.

 must be rank 1.

 for higher rank arrays use RESHAPE intrinsic.

 (i, i=1,8) is an implied DO and is 1,2,..,8: it is possible to specify a stride.

 the values in the constructor are assigned in order to the elements of the array.

The RESHAPE Intrinsic Function

RESHAPE is a general intrinsic function, which delivers an array of a specific shape

given by the rank-one integer array <shape>:

RESHAPE(<source>, <shape>)

 50

For example:

! declare an array A of rank 2

INTEGER, DIMENSION(1:2,1:2) :: A

! assign values to this array A

A = RESHAPE((/1,2,3,4/),(/2,2/))

A is filled in array element order and looks like:

1 3

2 4

Visualisation:

1 2 3 4

 RESHAPE

Named Array Constants

Named array constants may be created:
INTEGER, DIMENSION(3), PARAMETER :: &

Unit_vec = (/1,1,1/)

REAL, DIMENSION(3,3), PARAMETER :: &

Unit_matrix = &

RESHAPE((/1,0,0,0,1,0,0,0,1/),(/3,3/))

Allocatable Arrays

Fortran 95 allows arrays to be created by dynamic memory allocation.

 Declaration:

INTEGER, DIMENSION(:), ALLOCATABLE :: ages ! rank 1

REAL, DIMENSION(:,:), ALLOCATABLE :: speed ! rank 2

Note the ALLOCATABLE attribute and fixed rank. These are known as deferred-

shape arrays because the actual shape is deferred until allocation.

 Allocation:

READ(*,*) upbnd

ALLOCATE(ages(1:upbnd), STAT=ierr)

IF (ierr /= 0) THEN

WRITE(6,”(A)”) "ages : Allocation failed"

STOP

END IF

 the optional STAT= field reports on the success of the storage request. If the

INTEGER variable ierr is zero the request was successful otherwise it failed.

1 3

2 4

2

4

 51

Deallocating Arrays

Storage can be reclaimed by using the DEALLOCATE statement:

DEALLOCATE(ages,STAT=ierr)

 it is an error to deallocate an array which does not have the ALLOCATE attribute

or one that has not previously been allocated space;

 the STAT= field is optional but its use is recommended;

 there is an intrinsic inquiry function, ALLOCATED, which returns a scalar

LOGICAL value reporting on the status of an array;

IF (ALLOCATED(ages)) DEALLOCATE(ages,STAT=ierr)

 if a procedure containing an allocatable array which does not have the SAVE

attribute (see page 62) is exited without the array being DEALLOCATEd then this

storage becomes inaccessible.

Vector and Matrix Multiplication

There are two intrinsic functions which perform vector and matrix multiplications.

Each function has two arguments which are both of numeric type (integer, real or

complex) or both of logical type: the result is of the same type as the multiply or

logical and operation between two such scalars.

The function for vectors is:

dot_product(vector_a, vector_b)

which requires two arguments of rank-one and the same size.

 If vector_a is of type integer or real then the result is
sum(vector_a * vector_b)

 If vector_a is of type complex then the result is
sum(conjg(vector_a) * vector_b)

 If vector_a is of type logical then the result is .true. if any element of

vector_a .and. vector_b is .true..

If at least one argument is a rank-two matrix then the function is:

matmul(matrix_a, matrix_b)

where there are three possibilities depending on the shape of the arguments.

 If matrix_a has shape (n,m) and matrix_b has shape (m,k) then the

result has shape (n,k) and element (i,j) has the value
sum(matrix_a(i,:) * matrix_b(:,j))

 If matrix_a has shape (m) and matrix_b has shape (m,k) then the result

has shape (k) and element (j) has the value
sum(matrix_a * matrix_b(:,j))

 If matrix_a has shape (n,m) and matrix_b has shape (m) then the result

has shape (n) and element (i) has the value
sum(matrix_a(i,:) * matrix_b)

 If the arguments are of logical type the shapes are as for numeric arguments

and the values are determined by replacing sum and * by any and .and..

 52

Practical Exercise 3

Question 1: Rank, Bounds etc.

Give the rank, bounds, shape and size of the arrays defined as follows:

REAL, DIMENSION(1:10) :: ONE

REAL, DIMENSION(2,0:2) :: TWO

INTEGER, DIMENSION(1:1,3,2) :: THREE

REAL, DIMENSION(0:1,3) :: FOUR

Write down the array element order of each array.

Which two of the arrays are conformable?

Question 2: Array Sections

Declare an array which would be suitable for representing a chess board. Write a

program to set all the white squares to zero and the black squares to one. (A chess

board is 8 8 with alternate black and white squares.) Use formatted output to

display your chess board on the screen.

Question 3: Array Constructor

Euler noted that a sequence of 40 prime numbers p starting at 41 can be found from

the formula:

p = 41 + x + x
2
, for 0 x 39

Write a program using an array constructor to store this sequence of 40 primes in an

array, putting the first prime in element 0 or 1. Use formatted write to output the

sequence on your screen, with at most 5 primes on each row.

Question 4: Fibonacci Numbers

The Fibonacci numbers are defined as follows:

u0 = 0; u1 =1; un=un-2 + un-1 for n ≥ 2

Write a program to generate and store in an array the Fibonacci numbers up to and

including u24.

The sum of the first n numbers is un+2 – 1. Use the intrinsic function SUM on an

array section to find the sum of the numbers u0 to u22. Compare this result with the

value of u24 – 1.

The sum of the first n numbers with odd indices is:

u1 + u3 + u5 + …+ u2n-1 = u2n.

Use the intrinsic function SUM on an array section to find the sum of the numbers with

odd indices up to u23. Compare this result with the value of u24.

 53

The sum of the first n numbers with even indices is:

u2 + u4 + u6 + …+ u2n = u2n+1 - 1.

Use the intrinsic function SUM on an array section to find the sum of the numbers with

even indices up to u22. Compare this result with the value of u23 - 1.

Question 5: Magic Squares

A magic square is a set of numbers arranged in a square array so that the sum of the

numbers in each row, the sum of the numbers in each column and the sum of the

numbers along each diagonal are all equal. This sum is known as the magic number

of this particular magic square.

Write a program to create two 3 x 3 arrays holding these magic squares:

4 9 2 9 2 7

3 5 7 4 6 8

8 1 6 5 10 3

 For each magic square write a line of text as a heading and then the magic square.

 Add the two magic squares together and save the result in a third array: write a

heading and then this magic square.

 Check that this is a new magic square by comparing the sums across the first row,

down the last column and along the leading diagonal.

Question 6: Symmetry

Write a program to work with the first magic square of Question 5.

 Write the square’s magic number (the row, column or diagonal sum). You can

check your answer because for an n x n magic square consisting of any

arrangement of the integers 1 to n
2
 the formula is (n

3
 + n)/2

 Use the intrinsic function TRANSPOSE to save the transpose of the magic square

in a new 3 x 3 array.

 Add the magic square to its transpose and save the result in a new array: this

should be a symmetric matrix. Check that the bottom left and top right elements

are equal: write out the symmetric matrix.

Question 7: More Magic

Modify the Mathematical Magic program which you wrote for Exercise 2, Question 6

to save the sequences generated in an array. Write out each sequence and find the

largest value in each of these sequences and the position in the sequence at which it

occurs.

Question 8: MATMUL Intrinsic

For the declarations
REAL, DIMENSION(8,8) :: A, B, C

what is the difference between C=MATMUL(A,B) and C=A*B?

 54

Question 9: More Filed values

Modify the Filed values program which you wrote for Exercise 2, Question 7 to

declare an allocatable rank one array of type real. Use the integer value which is read

in from the file statsa as the upper bound for the array when it is allocated (and

make the lower bound 1). Then fill the array with real values read from the file. (All

values are in fields of width 5 with two digits after the decimal point.) Write out these

real values, with 5 on each line. Deallocate the array.

 55

4. Procedures

Program Units

Fortran 95 has two main program units:

 main PROGRAM is the place where execution begins and where control should

eventually return before the program terminates. It may contain procedures.

 MODULE is a program unit, which can contain procedures and declarations. It is

intended to be used by another program unit where the entities defined within it

become accessible.

There are two types of procedures:

 FUNCTION is a parameterised named sequence of code which returns a result in

the function name (of any specified type and kind).

 SUBROUTINE is a parameterised named sequence of code which performs one

or more specific tasks and can be invoked from within other program units.

Introduction to Procedures

The first question should be: "Do we really need to write a procedure?" Functionality

often exists. For instance look first at:

 intrinsics, Fortran 95 has 121;

 libraries, for example, NAG fl90 Numerical Library has 300+, BLAS, IMSL,

LaPACK. Library routines are usually very fast, sometimes faster than Intrinsics.

 modules, number growing, many free! See WWW.

Intrinsic Procedures

Fortran 95 has 121 in-built or intrinsic procedures to perform common tasks

efficiently. They belong to a number of classes:

 elemental such as:

mathematical, for example, SIN or LOG;

numeric, for example, MAX or CEILING;

character, for example, INDEX or ADJUSTL;

 bit, for example, IAND or IOR;

 inquiry, for example, ALLOCATED or SIZE;

 transformational, for example, RESHAPE or SUM;

 miscellaneous (non-elemental SUBROUTINEs), for example, SYSTEM_CLOCK

and DATE_AND_TIME.

Note, all intrinsics which take REAL valued arguments also accept all KIND of

REAL arguments.

 56

Intrinsic statement

The names of any intrinsic procedures used in any scoping unit may be specified in an

intrinsic statement, which has the form:
INTRINSIC :: < intrinsic-name-list >

A name must not appear more than once in an intrinsic statement, and must not

appear in an external statement. It is good programming practice to include a

statement in every program unit that contains references to intrinsic procedures in

order to help the reader. Also, if any intrinsic procedures which are not defined by the

standard are referenced and the program is ported to a system which does not support

these additional intrinsic procedures then a diagnostic message should be produced.

Mathematical Intrinsic Function Summary

ACOS(x) arccosine

ASIN(x) arcsine

ATAN(x) arctangent

ATAN2(y,x) arctangent of complex number (x, y)

COS(x) cosine where x is in radians

COSH(x) hyperbolic cosine where x is in radians

EXP(x) e raised to the power x

LOG(x) natural logarithm of x

LOG10(x) logarithm base 10 of x

SIN(x) sine where x is in radians

SINH(x) hyperbolic sine where x is in radians

SQRT(x) the square root of x

TAN(x) tangent where x is in radians

TANH(x) hyperbolic tangent where x is in radians

As an example consider the following:

PROGRAM Intrins_Maths

! Uses intrinsic mathematical functions in an assignment and in an expression
IMPLICIT NONE

 INTRINSIC :: cos, sin, tan
REAL :: tan_theta, theta = 0.7854

tan_theta = tan(theta) ! assignment

WRITE(unit=6,fmt=”(A12,F6.3)”) &

“tan(theta) =”, tan_theta

WRITE(unit=6,fmt=”(A,F6.3)”) “ss + cc =”, &

sin(theta)**2 + cos(theta)**2 ! expression

END PROGRAM Intrins_Maths

will produce the output:

tan(theta) = 1.000

ss + cc = 1.000

 57

Numeric Intrinsic Function Summary

ABS(a) absolute value

AIMAG(z) imaginary part of complex value z

AINT(a) truncates a to whole REAL number

ANINT(a) nearest whole REAL number

CEILING(a) smallest INTEGER greater than or equal to REAL number

CMPLX(x,y) convert to COMPLEX

CONJG(z) conjugate of complex value z

DIM(x,y) positive difference

FLOOR(a) biggest INTEGER less than or equal to REAL number

INT(a) truncates a into an INTEGER

MAX(a1,a2,a3,...) the maximum value of the arguments

MIN(a1,a2,a3,...) the minimum value of the arguments

MOD(a,p) remainder function

MODULO(a,p) modulo function

NINT(x) nearest INTEGER to a REAL number

REAL(a) converts to the equivalent REAL value

SIGN(a,b) absolute value of a times the sign of b

As an example consider the following:

PROGRAM Intrins_Numeric

! Uses intrinsic numeric functions in an assignment and in an expression
IMPLICIT NONE

INTRINSIC :: aimag, int, nint, real

INTEGER :: ihi, ilo, j = 3

REAL :: r = 3.69, s, x, y

COMPLEX :: val = (1.0,1.732)

x = real(val) ! real part of val

y = aimag(val) ! imaginary part of val

s = real(j) ! type conversion

ilo = int(r) ! truncation

ihi = nint(r) ! nearest integer

WRITE(unit=6,fmt=”(A23,F5.2,A4,I2,A4,I2)”) &

“integers either side of”, r, “ are”, &

ilo, “ and”, ihi

END PROGRAM Intrins_Numeric

will produce the output:

integers either side of 3.69 are 3 and 4

 58

Character Intrinsic Function Summary

ACHAR(i) i
th

 character in ASCII collating sequence

ADJUSTL(str) adjust left

ADJUSTR(str) adjust right

CHAR(i) i
th

 character in processor collating sequence

IACHAR(ch) position of character in ASCII collating sequence

ICHAR(ch) position of character in processor collating sequence

INDEX(str,substr) starting position of substring

LEN(str) length of string

LEN_TRIM(str) length of string without trailing blanks

LGE(str1,str2) lexically .GE.

LGT(str1,str2) lexically .GT.

LLE(str1,str2) lexically .LE.

LLT(str1,str2) lexically .LT.

REPEAT(str,i) repeat string i times

SCAN(str,set) scan a string for characters in a set

TRIM(str) remove trailing blanks

VERIFY(str,set) verify the set of characters in a string

As an example consider the following:

PROGRAM Intrins_Character

! Uses intrinsic character functions in an expression

IMPLICIT NONE

INTRINSIC :: len, len_trim

CHARACTER(LEN=9) :: gumboot = „Wellie‟

WRITE(unit=6,fmt=”(A18,I2)”) &

 "gumboot has length", len(gumboot)

WRITE(unit=6,fmt=”(A9,A11,I2)”) &

 trim(gumboot), " has length", len_trim(gumboot)

END PROGRAM Intrins_Character

will produce the output:

gumboot has length 9

 Wellie has length 6

 59

Main Program Syntax

If there is no intrinsic function nor library procedure which meets your need then you

will have to write your own. The formal structure of the code will have this structure:

PROGRAM Main

! ...

CONTAINS ! Internal Procs

 SUBROUTINE Sub1(..)

 ! Executable stmts

 END SUBROUTINE Sub1

 ! etc.

 FUNCTION Funkyn(...)

 ! Executable stmts

 END FUNCTION Funkyn

END PROGRAM Main

[PROGRAM [main program name]]

 declaration of local objects
. . .

 executable statements
. . .

[CONTAINS

 internal procedure definitions]

END [PROGRAM [main program name]]

Functions

Consider the following example:

PROGRAM Thingy

IMPLICIT NONE

REAL :: a, b, c

.....

WRITE(unit=6,fmt="(F7.3)") theta(a,b,c)

.....

CONTAINS

REAL FUNCTION theta(x,y,z)

! return the angle between sides x and y

INTRINSIC :: acos, max

REAL :: x, y, z

! check that sides do make a triangle

IF (2*MAX(x,y,z) < (x+y+z)) THEN

theta = ACOS((x**2+y**2-z**2)/(2.0*x*y))

ELSE ! sides do not make a triangle

theta = 0.0

END IF

END FUNCTION theta

END PROGRAM Thingy

Internal functions lie between the CONTAINS and END PROGRAM statements.

 60

Functions have the following syntax:

[prefix] FUNCTION procname ([dummyargs])

 declaration of dummy args

 declaration of local objects
. . .

 executable stmts, assignment of result

END [FUNCTION [procname]]

A function returns its result through its name, and is usually used in an expression.

The function type could be declared in the declarations area instead of in the header:

the example of function theta given above could have been started thus:
FUNCTION theta(x,y,z)

! return the angle between sides x and y

INTRINSIC :: acos, max

REAL :: theta, x, y, z

It is possible to define a function that has an empty argument list (although this may

not be particularly useful). In this case the parentheses are required in both the

function statement and in every invocation of this function.

Subroutine or Function?

It is permissible to write a function which does more than calculate its result but if it

also performs action such as altering the values of arguments, input or output

operations these side-effects adversely affect optimization particularly on parallel

processors. Some side-effects in procedures to be aware of include:

 if a function, it does not alter the value of any dummy argument: effectively

each dummy argument could have intent IN: the name of the function behaves

like a dummy argument which is initially undefined and has intent OUT;

 it does not alter any variable accessed by host or use association;

 it does not contain any local variable with the attribute SAVE;

 it does not perform any operation on an external file;

 it does not contain a STOP statement.

If it is necessary for a procedure to include any side-effect then a subroutine should be

written instead of a function.

Subroutines

Consider the following example:

PROGRAM Thingy

IMPLICIT NONE

REAL.DIMENSION(1:5) :: NumberSet = (/1,2,3,4,5/)
.....

CALL OutputFigures(NumberSet)
.....

CONTAINS

SUBROUTINE OutputFigures(Numbers)

REAL, DIMENSION(:) :: Numbers

WRITE(6,”(A,(/5F12.4))”) "Here are the figures", Numbers

END SUBROUTINE OutputFigures

END PROGRAM Thingy

 61

Internal subroutines also lie between the CONTAINS and END PROGRAM statements

and have the following syntax:

SUBROUTINE procname [(dummy args)]

 declaration of dummy args

 declaration of local objects
. . .

 executable stmts

END [SUBROUTINE [procname]]

Note that, in the example, the IMPLICIT NONE statement applies to the whole

program including the SUBROUTINE.

Argument Association

Recall, with the SUBROUTINE we had an invocation:

CALL OutputFigures(NumberSet)

and a declaration:

SUBROUTINE OutputFigures(Numbers)

where NumberSet is an actual argument and is argument associated with the

dummy argument Numbers. The actual argument must agree in type with the

dummy argument.

For the above call, in OutputFigures, the name Numbers is an alias for

NumberSet. Likewise, consider the two statements:

WRITE(unit=6,fmt="(F7.3)") theta(a,b,c)

REAL FUNCTION theta(x,y,z)

The actual arguments a, b and c are associated with the dummy arguments x, y and

z. If the value of a dummy argument changes and the actual argument is a variable

then so does the value of this variable.

Argument Intent

Information to the compiler can be given as to whether a dummy argument will:

 only be referenced -- INTENT(IN);

 be assigned to before use -- INTENT(OUT);

 be referenced and assigned to -- INTENT(INOUT).

SUBROUTINE example(a,b,c)

INTRINSIC :: mod, nint

REAL, INTENT(IN) :: a

INTEGER, INTENT(OUT) :: b

INTEGER, INTENT(INOUT) :: c

b = NINT(a) ! return nearest integer to a

c = MOD(c,2) ! replace c by its remainder

END SUBROUTINE example

 62

The use of INTENT attributes is optional but recommended as it allows good

compilers to check for coding errors, and facilitates efficient compilation and

optimisation.

Note: if an actual argument is ever a literal, then the corresponding dummy argument

must have the attribute INTENT(IN).

If the intent of a dummy argument is OUT or INOUT then the corresponding actual

argument must be a variable.

If a procedure changes the value of an argument then it is better for this procedure to

be a subroutine rather than a function.

Local Objects

In the following procedure

SUBROUTINE Madras(i,j)

INTEGER, INTENT(IN) :: i, j

REAL :: a

REAL, DIMENSION(i,j):: x

a and x are known as local objects. They:

 are created each time the procedure is invoked;

 are destroyed when the procedure completes;

 do not retain their values between calls;

 do not exist in the program’s memory between calls.

x could have a different size and shape on each call.

SAVE Attribute

The SAVE attribute can be applied to a specified local variable in a procedure so that

it and its value are not lost on return from the procedure. In the following example

NumInvocations is initialised on first call and retains its new value between calls:

SUBROUTINE Barmy(arg1,arg2)

REAL, INTENT(IN) :: arg1

REAL, INTENT(OUT) :: arg2

INTEGER, SAVE :: NumInvocations = 0

NumInvocations = NumInvocations + 1

Variables with the SAVE attribute are static objects. Clearly, SAVE has no meaning

in the main program.

Strictly the SAVE attribute in this example is not necessary because all variables with

initial values acquire the SAVE attribute automatically.

 63

Scoping Rules

Fortran 95 is not a traditional block-structured language:

 the scope of an entity is the range of program unit where it is visible and

accessible;

 internal procedures can inherit entities by host association;

 objects declared in modules can be made visible by use association (the USE

statement, explained in the next chapter): useful for global data.

Host Association -- Global Data

Consider:

PROGRAM CalculatePay

IMPLICIT NONE

REAL :: GrossPay, TaxRate, Delta

INTEGER :: NumberCalcsDone = 0

GrossPay = ...; TaxRate = ... ; Delta = ...

CALL PrintPay(GrossPay,TaxRate)

TaxRate = NewTax(TaxRate,Delta)

WRITE(unit=6,fmt="(a29,i2)") &

"Number of calculations done =", NumberCalcsDone

CONTAINS

SUBROUTINE PrintPay(Pay,Tax)

REAL, INTENT(IN) :: Pay, Tax

REAL :: TaxPaid

TaxPaid = Pay * Tax

WRITE(unit=6,fmt="(F8.3)") Pay - TaxPaid

NumberCalcsDone = NumberCalcsDone + 1

END SUBROUTINE PrintPay

REAL FUNCTION NewTax(Tax,Delta)

REAL, INTENT(IN) :: Tax, Delta

NewTax = Tax + Delta*Tax

NumberCalcsDone = NumberCalcsDone + 1

END FUNCTION NewTax

END PROGRAM CalculatePay

NumberCalcsDone is a global variable and available in all procedures in this

program by host association.

 64

Scope of Names

Consider the following example:

PROGRAM Proggie

IMPLICIT NONE

REAL :: A=1.0, B, C

CALL sub(A)

CONTAINS

SUBROUTINE Sub(D)

REAL :: D ! D is dummy (alias for A)

REAL :: C ! local C (diff from Proggie's C)

C = A**3 ! A cannot be changed

D = D**3 + C ! D can be changed

B = C ! B from Proggie gets new value

END SUBROUTINE Sub

END PROGRAM Proggie

In Sub, as A is argument associated it may not have its value changed but it may be

referenced.

C in Sub is totally separate from C in Proggie, changing its value in Sub does not

change the value of C in Proggie.

Dummy Array Arguments

There are two main types of dummy array argument:

 explicit-shape -- all bounds specified;
REAL, DIMENSION(8,8), INTENT(IN) :: give_shape

The actual argument that becomes associated with an explicit-shape dummy must

conform in type, size and shape.

 assumed-shape -- no bounds specified, all inherited from the actual argument;
REAL, DIMENSION(:,:), INTENT(IN) :: adopt_shape

The actual argument that becomes associated with an assumed-shape dummy must

conform in type and rank. For each procedure the compiler will need to know its

interface, that is whether the procedure is a function or a subroutine, the names

and properties of the dummy arguments and the properties of the result if it is a

function. This interface is explicit for an internal procedure or a procedure in a

module (see next chapter): otherwise an interface block must be provided.

 dummy arguments cannot be (unallocated) ALLOCATABLE arrays.

 65

Assumed-shape Arrays

Dummy arrays may be declared as assumed-shape arrays:

PROGRAM Main

IMPLICIT NONE

REAL, DIMENSION(40) :: X

REAL, DIMENSION(40,40) :: Y, Z

...

CALL gimlet(X,Y)

CALL gimlet(X(1:39:2),Y(2:4,4:4))

CALL gimlet(Y(1:39:2,1),Z(2:40:2,2:40:2))

CONTAINS

SUBROUTINE gimlet(a,b)

REAL, INTENT(IN) :: a(:), b(:,:)

...

END SUBROUTINE gimlet

END PROGRAM

Note:

 the actual argument cannot be a vector subscripted array; for example it cannot

be X(/ (i=1:39:2) /)

 in the procedure, bounds begin at 1.

External Functions

In an earlier example we had a program with an internal function:

PROGRAM Main

IMPLICIT NONE

REAL :: x

READ(*,*) x

WRITE(unit=6,fmt=”(F12.4)”) Negative(x)

 ...

CONTAINS

REAL FUNCTION Negative(a)

REAL, INTENT(IN) :: a

Negative = -a

END FUNCTION Negative

END PROGRAM Main

Sometimes a function is defined outside the body of the program unit which uses it, ie

it is external to that unit. For example:

PROGRAM Main

IMPLICIT NONE

REAL :: x

READ(*,*) x

WRITE(unit=6,fmt=”(F12.4)”) Negative(x)

 ...

END PROGRAM Main

 66

REAL FUNCTION Negative(a)

REAL, INTENT(IN) :: a

Negative = -a

END FUNCTION Negative

So that the compiler may know about this object it is necessary to give both its type

and the fact that it is external in the specification part of the program. There are two

ways of doing this:

PROGRAM Main

 IMPLICIT NONE

 REAL :: x, Negative ! specify type REAL

 EXTERNAL :: Negative ! use EXTERNAL statement

 READ(*,*) x

 ...

Or alternatively:

PROGRAM Main

 IMPLICIT NONE

 REAL :: x

 REAL, EXTERNAL :: Negative ! specify type REAL and use

 ! EXTERNAL attribute

 READ(*,*) x

 ...

 67

Practical Exercise 4

Question 1: Point on a circle

Write a program to read in a vector defined by a length, r, and an angle, , in degrees

which writes out the corresponding (x, y) co-ordinates. Recall that arguments to

trigonometric functions are in radians.

Demonstrate correctness by finding the (x, y) co-ordinates for the following vectors:

1. r = 2, = 60

2. r = 3, = 120

3. r = 5, = 240

4. r = 8, = 300

5. r = 13, = 450

Hint: remember that
r

y
sin and

r

x
cos and 180 degrees = π radians

Question 2: Simple example of a Subroutine

Write a main program and an internal subroutine that returns, as its first argument, the

sum of two real numbers.

Question 3: Simple example of a Function

Write a main program and an internal function that returns the sum of two real

numbers supplied as arguments.

Question 4: Switch or Stick

Write a main program and an internal subroutine with two arguments that returns, as

its first argument, the smaller of two real numbers and as its second argument, the

other number.

Question 5: Standard Deviation

Write a program which contains an internal function that returns the standard

deviation from the mean of an array of real values. Note that if the mean of a

sequence of values (xi , i = 1, n) is denoted by m then the standard deviation, s, is

defined as:

r

(x,y)

 68

[Hint: In Fortran 95 SUM(X) is the sum of the elements of X.]

To demonstrate correctness write out the standard deviation of the following numbers

(10 of them):

5.0 3.0 17.0 -7.56 78.1 99.99 0.8 11.7 33.8 29.6

and also the following 14:

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

The files statsa and statsb contain these two sets of real values preceded by the

relevant count (see Exercise 3, Question 9).

Question 6: Save Attribute

Write a skeleton procedure that records how many times it has been called.

)1(

1

2

)(

n

m
s

n

i ix

 69

5. Modules and Derived Types

Plane Geometry Program

The following program defines a simple 3 sided shape and contains two internal

functions:

PROGRAM Triangle

IMPLICIT NONE

REAL :: a, b, c

REAL, PARAMETER :: pi = 3.14159

WRITE(unit=6,fmt="(a)") 'Welcome, please enter the &

&lengths of the 3 sides.'

READ(5,*) a, b, c

WRITE(unit=6,fmt="(a16,f5.1)") &

'Triangle''s area:', Area(a,b,c)

CONTAINS

FUNCTION theta(x,y,z)

! return the angle between sides x and y

REAL :: theta ! function type

REAL, INTENT(IN) :: x, y, z

INTRINSIC :: acos, max

! check that sides do make a triangle

IF (2*MAX(x,y,z) < (x+y+z)) THEN

theta = ACOS((x**2+y**2-z**2)/(2.0*x*y))

ELSE ! sides do not make a triangle

theta = 0.0

END IF

END FUNCTION theta

FUNCTION Area(x,y,z)

REAL :: Area ! function type

REAL, INTENT(IN) :: x, y, z

REAL :: height

INTRINSIC :: sin

height = x*SIN(theta(x,y,z))

Area = 0.5*y*height

END FUNCTION Area

END PROGRAM Triangle

The main program has access to Area which uses 3 REAL values.

 70

Reusability – Modules

To allow the constant pi and the functions Theta and Area to be used elsewhere they

should be contained in a MODULE. This is called encapsulation.

The general form of a module is:

MODULE Nodule

 ! TYPE Definitions

 ! Global data

 ! etc ..

CONTAINS

 SUBROUTINE Sub(..)

 ! Executable stmts

 CONTAINS

 SUBROUTINE Int1(..)

 ! Executable stmts

 END SUBROUTINE Int1

 ! etc.

 SUBROUTINE Intn(..)

 ! Executable stmts

 END SUBROUTINE Intn

 END SUBROUTINE Sub

 ! etc.

 FUNCTION Funky(..)

 ! Executable stmts

 CONTAINS

 ! etc

 END FUNCTION Funky

END MODULE Nodule

MODULE module name

 declarations and specifications statements

[CONTAINS

 definitions of module procedures]

END [MODULE [module name]]

 71

The MODULE program unit provides the following facilities:

 global object declaration;

 procedure declaration (including operator definition);

 semantic extension;

 ability to control accessibility of above to different programs and program units;

 ability to package together whole sets of facilities.

Here is some of the code taken from the previous program example and encapsulated

in a module:

MODULE Triangle_Operations

IMPLICIT NONE

REAL, PARAMETER :: pi = 3.14159

CONTAINS

FUNCTION theta(x,y,z)

! return the angle between sides x and y

REAL :: theta ! function type

REAL, INTENT(IN) :: x, y, z

INTRINSIC :: acos, max

! check that sides do make a triangle

IF (2*MAX(x,y,z) < (x+y+z)) THEN

theta = ACOS((x**2+y**2-z**2)/(2.0*x*y))

ELSE ! sides do not make a triangle

theta = 0.0

END IF

END FUNCTION theta

FUNCTION Area(x,y,z)

REAL :: Area ! function type

REAL, INTENT(IN) :: x, y, z

REAL :: height

INTRINSIC :: sin

height = x*SIN(theta(x,y,z))

Area = 0.5*y*height

END FUNCTION Area

END MODULE Triangle_Operations

Other programs can now access Triangle_Operations. The USE statement

attaches it to a program, and must precede any specification statements:

 72

PROGRAM TriangUser

USE Triangle_Operations

IMPLICIT NONE

REAL :: a, b, c, angle_rad, angle_deg

WRITE(unit=6,fmt="(a)") 'Welcome, please enter the &

&lengths of the 3 sides.'

READ(5,*) a, b, c

WRITE(unit=6,fmt="(a16,f5.1)") &

'Triangle''s area:', Area(a,b,c)

angle_rad = theta(a,b,c)

angle_deg = angle_rad*180.0/pi

WRITE(unit=6,fmt=”(a,f6.2,a,f6.2,a)”) “Angle is”, &

angle_rad, “ radians or”, angle_deg, “ degrees”

END PROGRAM TriangUser

It is as if the code had been included in TriangUser.

Points raised:

 within a module, functions and subroutines are called module procedures;

 module procedures may contain internal procedures (like PROGRAMs);

 module objects which need to retain their values should be given the SAVE

attribute;

 modules can also be USEd by procedures and other modules;

 modules can be compiled separately. They must be compiled before the program

unit that uses them.

Restricting Visibility

If a main program uses a module it has access to all the entities in that module: it is as

though each entity has the attribute public. You can restrict the visibility of entities

by setting the attribute private:

PRIVATE :: theta ! restricted visibility

This allows theta to be used within the module and for there to be a distinct object

named theta defined outside this module which could be used in the program. You

could use statements or attributes:

PUBLIC ! confirm default visibility

PRIVATE :: theta ! restrict visibility

REAL, PRIVATE :: height ! restrict visibility

or alternatively

PRIVATE ! set restricted visibility

REAL, PUBLIC :: pi, Area ! unrestricted visibility

so, in the main PROGRAM:

abc = Area(3,4,5) ! OK

height = 2.9 ! Forbidden

 73

The USE Renames Facility

The USE statement names a module whose public definitions are to be made

accessible. The syntax is:

USE module-name &

[, new-name => use-name ...]

Module entities can be renamed, possibly to avoid ambiguity between a local object

and an object from a module or between objects from more than one module:

USE Triangle_Operations, Space => Area

The module object Area is renamed to Space when used locally.

USE ONLY Statement

Another way to avoid name clashes is to use only those objects which are necessary.

It has the following form:

USE module-name [, ONLY: only-list ...]

The only-list can also contain renames (=>). For example:

USE Triangle_Operations, ONLY : pi, Space => Area

Only pi and Area are made accessible: Area is renamed to Space.

The ONLY option limits the entities made available to only those specifically named.

Derived Types

It is often advantageous to express some objects in terms of aggregate structures, for

example: coordinates, (x, y, z). Fortran 95 allows compound entities or derived types

to be defined:

TYPE COORDS_3D

REAL :: x, y, z

END TYPE COORDS_3D

TYPE(COORDS_3D) :: pt1, pt2

Derived types definitions should be placed in a MODULE.

Previously defined types can be used as components of other derived types. These are

sometimes known as supertypes:

TYPE SPHERE

TYPE (COORDS_3D) :: centre

REAL :: radius

END TYPE SPHERE

 74

Objects of type SPHERE can be declared:

TYPE (SPHERE) :: bubble, ball

Values can be assigned to derived types either component by component or as an

object.

An individual component may be selected by using the % operator:

pt1%x = 1.0

bubble%radius = 3.0

bubble%centre%x = 1.0

The whole object may be selected and assigned to by using a constructor:

pt1 = COORDS_3D(1.,2.,3.)

bubble%centre = COORDS_3D(1.,2.,3.)

bubble = SPHERE(bubble%centre,10.)

bubble = SPHERE(COORDS_3D(1.,2.,3.),10.)

The derived type component of SPHERE must also be assigned to by using a

constructor. Note however, that assignment between two objects of the same derived

type is intrinsically defined:

ball = bubble

Derived type objects, which do not contain pointers (or private) components, may be

input or output using normal methods:

WRITE(unit=6,fmt="(4F8.3)") bubble

is exactly equivalent to:

WRITE(unit=6,fmt="(4F8.3)") bubble%centre%x, &

bubble%centre%y, bubble%centre%z, &

bubble%radius

Derived types are handled on a component by component basis. Their definitions

should be packaged in a MODULE.

MODULE VecDef

TYPE vec

REAL :: r

REAL :: theta

END TYPE vec

END MODULE VecDef

To make the type definitions visible, the module must be used:

 75

PROGRAM Up

USE VecDef

IMPLICIT NONE

TYPE(vec) :: north

CALL subby(north)

...

CONTAINS

SUBROUTINE subby(arg)

TYPE(vec), INTENT(IN) :: arg

...

END SUBROUTINE subby

END PROGRAM Up

Type definitions can only become accessible by host or use association.

Functions can return results of an arbitrary defined type
FUNCTION Poo(kanga, roo)

USE VecDef

TYPE (vec) :: Poo

TYPE (vec), INTENT(IN) :: kanga, roo

Poo =...

END FUNCTION Poo

Recall that the definitions of VecDef must be made available by use or host

association.

True Portability

The range and precision of the values of numeric intrinsic types are not defined in the

language but are dependent upon the system used for the program. There are intrinsic

integer functions for investigating these:

INTEGER :: I, PR, RI, RR

REAL :: X

RI = RANGE(I)

RR = RANGE(X); PR = PRECISION(X)

If RI has the value 9 this means that any integer n

in the range -999999999 ≤ n ≤ 999999999 can be handled by the program.

If RR has the value 37 and PR has the value 6 this means that any real value in the

range 10-37 to 1037 can be handled in the program with a precision of 6 decimal

digits. As values of type complex consist of ordered pairs of values of type real,

similar values would be returned by the inquiry functions if their arguments were of

type complex instead of type real.

Intrinsic types can be parameterised by the KIND value to select the accuracy and

range of the representation.

For type integer the function SELECTED_INT_KIND with a single argument of type

integer giving the desired range will return the appropriate KIND value.

 76

INTEGER, PARAMETER :: ik9 = SELECTED_INT_KIND(9)

INTEGER(KIND=ik9) :: I

If the given range can be supported, then the KIND value will be non-negative: a

value of -1 indicates that the range is not supported.

For type real the function SELECTED_REAL_KIND with two arguments of type

integer giving the desired precision and range will return the appropriate KIND value.

INTEGER, PARAMETER :: rk637 = SELECTED_REAL_KIND(6,37)

REAL(KIND=rk637) :: X

If the given precision and range can be supported, then the KIND value will be non-

negative. A value of -1 indicates that insufficient precision is available, a value of

-2 indicates that insufficient exponent range is available, and -3 indicates that

neither is attainable.

Constants should have their KIND value attached:

INTEGER(KIND=ik9) :: I=1_ik9

REAL(KIND=rk637) :: X=2.0_rk637

COMPLEX(KIND=rk637) :: C=(3.0_rk637,4.0_rk637)

I = I + 5_ik9

X = X + 6.0_rk637

C = C + (7.0_rk637,8.0_rk637)

You should make KIND value constants global by defining them in a module.

 77

Practical Exercise 5

Question 1: Encapsulation

Define a module called Simple_Stats which contains encapsulated functions for

calculating the mean and standard deviation of an arbitrary length REAL vector. The

functions should have the following interfaces:

REAL FUNCTION mean(vec)

REAL, INTENT(IN), DIMENSION(:) :: vec

END FUNCTION mean

REAL FUNCTION Std_Dev(vec)

REAL, INTENT(IN), DIMENSION(:) :: vec

END FUNCTION Std_Dev

[Hint: In Fortran 95, SIZE(X) gives the number of elements in the array X.]

You may like to utilise your earlier code as a basis for this exercise.

Add some more code in the module, which records how many times each statistical

function is called during the lifetime of a program. Record these numbers in the

variables: mean_use and std_dev_use.

Demonstrate the use of this module in a test program; in one execution of the program

give the mean and standard deviation of the following sequences of 10 numbers:

5.0 3.0 17.0 -7.56 78.1 99.99 0.8 11.7 33.8 29.6

and then the following 14:

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

Write out the values of mean_use and std_dev_use for this run of the program.

Question 2: Binary Cut

Write a module containing a function which returns the position of a particular

number in an array of sorted integers. The function should employ the socalled

``binary cut'' method. This method proceeds by determining in which half the number

is and then concentrating on that half. It is easily implemented by using two indices

to point at the low and high positions of the current area of interest. It is assumed that

if there is more than one occurrence of the number then the one with the higher index

will be chosen. This method is very efficient for very large arrays.

 78

Algorithm:

 Let i and j be the indices (subscripts) to (array) x of the low and high

 marks.

 Initially set i = 1 and j = n (the number in the list)

 Assume k is the number we are trying to find

 DO

 IF(i j)EXIT

 determine the half way point
2

ji
ihalf

 IF k is above x(ihalf) put i = ihalf + 1

 Otherwise put j = ihalf

 END DO

 j will now point at the number k

Question 3: Spheres Apart

Write a program to look at the relationship between all pairs of an arbitrary number of

spheres defined in 3-dimensional space. Read in the number of spheres being used

and read the coordinates of the centres and the lengths of the radii of these spheres

into an allocatable array of a defined type variable. For spheres sm and sn the

separation of their centres is given by the formula:

 zzyyxx nmnmnm
222

If the centre of one sphere lies within the other then output a line stating this fact.

Otherwise are the surfaces of the two spheres touching, intersecting or separate? You

could try your program on spheres with these centres and radii:

(3.0,4.0,5.0), 3.0 (10.0,4.0,5.0), 4.0 (3.0,-3.0,5.0), 5.0 (3.0,4.0.8.0), 6.0

Question 4: Real Portability

Take a copy of the program you wrote in Question 3 of Exercise 2 to find the

Ludolphian number. Replace the statement of the form:

REAL :: a, b, c, d, e, f

by the statements of the form:

INTEGER, PARAMETER :: k = SELECTED_REAL_KIND(P=15,R=31)

REAL(KIND=k) :: a, b, c, d, e, f

Add a statement to check that k > 0, and change the kind of the constants to k, for

example 1.0_k Output the results with 12 decimal digits.

Run this program and compare the results with those you got earlier.

 79

Question 5: Integer Portability

Take a copy of the program you wrote in Question 5(a) of Exercise 2 to find the first 5

terms of a sequence. Extend the range of those integers necessary to find the 6
th

 term

of this sequence.

 80

6. Bibliography

Fortran95/2003 explained

Michael Metcalf, John Reid, Malcolm Cohen.

Oxford University Press

ISBN 0 19 852693 8

A formal definition of the language.

Fortran 90 Programming

T.M.R.Ellis, Ivor R.Philips, Thomas M.Lahey

Addison-Wesley

ISBN 0-201-54446-6

A full explanation of the language.

Fortran 90/95 for Scientists and Engineers

Stephen J.Chapman

McGraw Hill

ISBN 007-123233-8

Contains good examples.

	3570_ front
	Fort_Jan_10

