

Data Structures and
Algorithms in Java™

Sixth Edition

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

Michael H. Goldwasser
Department of Mathematics and Computer Science

Saint Louis University

Vice President and Executive Publisher Don Fowley

Executive Editor Beth Lang Golub

Assistant Marketing Manager Debbie Martin
Sponsoring Editor Mary O’Sullivan

Project Editor Ellen Keohane

Associate Production Manager Joyce Poh
Cover Designer Kenji Ngieng

This book was set in LATEX by the authors, and printed and bound by RR Donnelley. The
cover was printed by RR Donnelley.

Trademark Acknowledgments: Java is a trademark of Oracle Corporation. Unix® is a

registered trademark in the United States and other countries, licensed through X/Open

Company, Ltd. PowerPoint® is a trademark of Microsoft Corporation. All other product

names mentioned herein are the trademarks of their respective owners.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and

understanding for more than 200 years, helping people around the world meet their needs
and fulfill their aspirations. Our company is built on a foundation of principles that include

responsibility to the communities we serve and where we live and work. In 2008, we
launched a Corporate Citizenship Initiative, a global effort to address the environmental,

social, economic, and ethical challenges we face in our business. Among the issues we

are addressing are carbon impact, paper specifications and procurement, ethical conduct
within our business and among our vendors, and community and charitable support. For

more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2014, 2010 John Wiley & Sons, Inc. All rights reserved. No part of this publi-
cation may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, with-

out either the prior written permission of the Publisher, or authorization through payment

of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for

permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website
http://www.wiley.com/go/ permissions.

Evaluation copies are provided to qualified academics and professionals for review pur-
poses only, for use in their courses during the next academic year. These copies are licensed

and may not be sold or transferred to a third party. Upon completion of the review period,

please return the evaluation copy to Wiley. Return instructions and a free of charge return
mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt

this textbook for use in your course, please accept this book as your complimentary desk

copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-1-118-77133-4 (paperback)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/
http://www.wiley.com/go/returnlabel

To Karen, Paul, Anna, and Jack
– Michael T. Goodrich

To Isabel
– Roberto Tamassia

To Susan, Calista, and Maya
– Michael H. Goldwasser

Preface to the Sixth Edition

Data Structures and Algorithms in Java provides an introduction to data structures

and algorithms, including their design, analysis, and implementation. The major

changes in this sixth edition include the following:

• We redesigned the entire code base to increase clarity of presentation and

consistency in style and convention, including reliance on type inference, as

introduced in Java 7, to reduce clutter when instantiating generic types.

• We added 38 new figures, and redesigned 144 existing figures.

• We revised and expanded exercises, bringing the grand total to 794 exercises!

We continue our approach of dividing them into reinforcement, creativity,

and project exercises. However, we have chosen not to reset the number-

ing scheme with each new category, thereby avoiding possible ambiguity

between exercises such as R-7.5, C-7.5, P-7.5.

• The introductory chapters contain additional examples of classes and inheri-

tance, increased discussion of Java’s generics framework, and expanded cov-

erage of cloning and equivalence testing in the context of data structures.

• A new chapter, dedicated to the topic of recursion, provides comprehensive

coverage of material that was previously divided within Chapters 3, 4, and

9 of the fifth edition, while newly introducing the use of recursion when

processing file systems.

• We provide a new empirical study of the efficiency of Java’s StringBuilder
class relative to the repeated concatenation of strings, and then discuss the

theoretical underpinnings of its amortized performance.

• We provide increased discussion of iterators, contrasting between so-called

lazy iterators and snapshot iterators, with examples of both styles of imple-

mentation for several data structures.

• We have increased the use of abstract base classes to reduce redundancy

when providing multiple implementations of a common interface, and the

use of nested classes to provide greater encapsulation for our data structures.

• We have included complete Java implementations for many data structures

and algorithms that were only described with pseudocode in earlier editions.

These new implementations include both array-based and linked-list-based

queue implementations, a heap-based adaptable priority queue, a bottom-up

heap construction, hash tables with either separate chaining or linear probing,

splay trees, dynamic programming for the least-common subsequence prob-

lem, a union-find data structure with path compression, breadth-first search

of a graph, the Floyd-Warshall algorithm for computing a graph’s transitive

closure, topological sorting of a DAG, and both the Prim-Jarńık and Kruskal

algorithms for computing a minimum spanning tree.

v

vi Preface

Prerequisites

We assume that the reader is at least vaguely familiar with a high-level program-

ming language, such as C, C++, Python, or Java, and that he or she understands the

main constructs from such a high-level language, including:

• Variables and expressions

• Methods (also known as functions or procedures)

• Decision structures (such as if-statements and switch-statements)

• Iteration structures (for-loops and while-loops)

For readers who are familiar with these concepts, but not with how they are ex-

pressed in Java, we provide a primer on the Java language in Chapter 1. Still, this

book is primarily a data structures book, not a Java book; hence, it does not provide

a comprehensive treatment of Java. Nevertheless, we do not assume that the reader

is necessarily familiar with object-oriented design or with linked structures, such

as linked lists, for these topics are covered in the core chapters of this book.

In terms of mathematical background, we assume the reader is somewhat famil-

iar with topics from high-school mathematics. Even so, in Chapter 4, we discuss

the seven most-important functions for algorithm analysis. In fact, sections that use

something other than one of these seven functions are considered optional, and are

indicated with a star (⋆).

Online Resources

This book is accompanied by an extensive set of online resources, which can be

found at the following website:

www.wiley.com/college/goodrich

Included on this website is a collection of educational aids that augment the topics

of this book, for both students and instructors. For all readers, and especially for

students, we include the following resources:

• All Java source code presented in this book

• An appendix of useful mathematical facts

• PDF handouts of PowerPoint slides (four-per-page)

• A study guide with hints to exercises, indexed by problem number

For instructors using this book, we include the following additional teaching aids:

• Solutions to hundreds of the book’s exercises

• Color versions of all figures and illustrations from the book

• Slides in PowerPoint and PDF (one-per-page) format

The slides are fully editable, so as to allow an instructor using this book full free-

dom in customizing his or her presentations.

http://www.wiley.com/college/goodrich

Preface vii

Use as a Textbook

The design and analysis of efficient data structures has long been recognized as a

core subject in computing. We feel that the central role of data structure design and

analysis in the curriculum is fully justified, given the importance of efficient data

structures and algorithms in most software systems, including the Web, operating

systems, databases, compilers, and scientific simulation systems.

This book is designed for use in a beginning-level data structures course, or

in an intermediate-level introduction to algorithms course. The chapters for this

book are organized to provide a pedagogical path that starts with the basics of Java

programming and object-oriented design. We then discuss concrete structures in-

cluding arrays and linked lists, and foundational techniques like algorithm analysis

and recursion. In the main portion of the book we present fundamental data struc-

tures and algorithms, concluding with a discussion of memory management. A

detailed table of contents follows this preface, beginning on page x.

To assist instructors in designing a course in the context of the IEEE/ACM

2013 Computing Curriculum, the following table describes curricular knowledge

units that are covered within this book.

Knowledge Unit Relevant Material

AL/Basic Analysis Chapter 4 and Sections 5.2 & 12.1.4

AL/Algorithmic Strategies
Sections 5.3.3, 12.1.1, 13.2.1, 13.4.2, 13.5,

14.6.2 & 14.7

AL/Fundamental Data Structures
and Algorithms

Sections 3.1.2, 5.1.3, 9.3, 9.4.1, 10.2, 11.1,
13.2, and Chapters 12 & 14

AL/Advanced Data Structures
Sections 7.2.1, 10.4, 11.2–11.6, 12.2.1, 13.3,

14.5.1 & 15.3

AR/Memory System Organization

and Architecture
Chapter 15

DS/Sets, Relations, and Functions Sections 9.2.2 & 10.5

DS/Proof Techniques Sections 4.4, 5.2, 7.2.3, 9.3.4 & 12.3.1

DS/Basics of Counting Sections 2.2.3, 6.2.2, 8.2.2 & 12.1.4.

DS/Graphs and Trees Chapters 8 and 14

DS/Discrete Probability Sections 3.1.3, 10.2, 10.4.2 & 12.2.1

PL/Object-Oriented Programming Chapter 2 and Sections 7.3, 9.5.1 & 11.2.1

SDF/Algorithms and Design Sections 2.1, 4.3 & 12.1.1

SDF/Fundamental Programming

Concepts
Chapters 1 & 5

SDF/Fundamental Data Structures Chapters 3 & 6, and Sections 1.3, 9.1 & 10.1

SDF/Developmental Methods Sections 1.9 & 2.4

SE/Software Design Section 2.1

Mapping the IEEE/ACM 2013 Computing Curriculum knowledge units to coverage

within this book.

viii Preface

About the Authors

Michael Goodrich received his Ph.D. in Computer Science from Purdue University

in 1987. He is currently a Chancellor’s Professor in the Department of Computer

Science at University of California, Irvine. Previously, he was a professor at Johns

Hopkins University. He is a Fulbright Scholar and a Fellow of the American As-

sociation for the Advancement of Science (AAAS), Association for Computing

Machinery (ACM), and Institute of Electrical and Electronics Engineers (IEEE).

He is a recipient of the IEEE Computer Society Technical Achievement Award,

the ACM Recognition of Service Award, and the Pond Award for Excellence in

Undergraduate Teaching.

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering

from the University of Illinois at Urbana–Champaign in 1988. He is the Plastech

Professor of Computer Science and the Chair of the Department of Computer Sci-

ence at Brown University. He is also the Director of Brown’s Center for Geometric

Computing. His research interests include information security, cryptography, anal-

ysis, design, and implementation of algorithms, graph drawing, and computational

geometry. He is a Fellow of the American Association for the Advancement of

Science (AAAS), Association for Computing Machinery (ACM) and Institute for

Electrical and Electronic Engineers (IEEE). He is a recipient of the IEEE Computer

Society Technical Achievement Award.

Michael Goldwasser received his Ph.D. in Computer Science from Stanford

University in 1997. He is currently Professor and Director of the Computer Science

program in the Department of Mathematics and Computer Science at Saint Louis

University. He was previously a faculty member in the Department of Computer

Science at Loyola University Chicago. His research interests focus on the design

and implementation of algorithms, having published work involving approximation

algorithms, online computation, computational biology, and computational geom-

etry. He is also active in the computer science education community.

Additional Books by These Authors

• Di Battista, Eades, Tamassia, and Tollis, Graph Drawing, Prentice Hall

• Goodrich, Tamassia, and Goldwasser, Data Structures and Algorithms in Python,

Wiley

• Goodrich, Tamassia, and Mount, Data Structures and Algorithms in C++, Wiley

• Goodrich and Tamassia, Algorithm Design: Foundations, Analysis, and Internet

Examples, Wiley

• Goodrich and Tamassia, Introduction to Computer Security, Addison-Wesley

• Goldwasser and Letscher, Object-Oriented Programming in Python, Prentice

Hall

Preface ix

Acknowledgments

There are so many individuals who have made contributions to the development of

this book over the past decade, it is difficult to name them all. We wish to reit-

erate our thanks to the many research collaborators and teaching assistants whose

feedback shaped the previous versions of this material. The benefits of those con-

tributions carry forward to this book.

For the sixth edition, we are indebted to the outside reviewers and readers for

their copious comments, emails, and constructive criticisms. We therefore thank the

following people for their comments and suggestions: Sameer O. Abufardeh (North

Dakota State University), Mary Boelk (Marquette University), Frederick Crabbe

(United States Naval Academy), Scot Drysdale (Dartmouth College), David Eisner,

Henry A. Etlinger (Rochester Institute of Technology), Chun-Hsi Huang (Univer-

sity of Connecticut), John Lasseter (Hobart and William Smith Colleges), Yupeng

Lin, Suely Oliveira (University of Iowa), Vincent van Oostrom (Utrecht Univer-

sity), Justus Piater (University of Innsbruck), Victor I. Shtern (Boston University),

Tim Soethout, and a number of additional anonymous reviewers.

There have been a number of friends and colleagues whose comments have led

to improvements in the text. We are particularly thankful to Erin Chambers, Karen

Goodrich, David Letscher, David Mount, and Ioannis Tollis for their insightful

comments. In addition, contributions by David Mount to the coverage of recursion

and to several figures are gratefully acknowledged.

We appreciate the wonderful team at Wiley, including our editor, Beth Lang

Golub, for her enthusiastic support of this project from beginning to end, and the

Product Solutions Group editors, Mary O’Sullivan and Ellen Keohane, for carrying

the project to its completion. The quality of this book is greatly enhanced as a result

of the attention to detail demonstrated by our copyeditor, Julie Kennedy. The final

months of the production process were gracefully managed by Joyce Poh.

Finally, we would like to warmly thank Karen Goodrich, Isabel Cruz, Susan

Goldwasser, Giuseppe Di Battista, Franco Preparata, Ioannis Tollis, and our parents

for providing advice, encouragement, and support at various stages of the prepa-

ration of this book, and Calista and Maya Goldwasser for offering their advice

regarding the artistic merits of many illustrations. More importantly, we thank all

of these people for reminding us that there are things in life beyond writing books.

Michael T. Goodrich

Roberto Tamassia

Michael H. Goldwasser

Contents
1 Java Primer 1

1.1 Getting Started . 2

1.1.1 Base Types . 4

1.2 Classes and Objects . 5

1.2.1 Creating and Using Objects . 6

1.2.2 Defining a Class . 9

1.3 Strings, Wrappers, Arrays, and Enum Types 17

1.4 Expressions . 23

1.4.1 Literals . 23

1.4.2 Operators . 24

1.4.3 Type Conversions . 28

1.5 Control Flow . 30

1.5.1 The If and Switch Statements 30

1.5.2 Loops . 33

1.5.3 Explicit Control-Flow Statements 37

1.6 Simple Input and Output . 38

1.7 An Example Program . 41

1.8 Packages and Imports . 44

1.9 Software Development . 46

1.9.1 Design . 46

1.9.2 Pseudocode . 48

1.9.3 Coding . 49

1.9.4 Documentation and Style . 50

1.9.5 Testing and Debugging . 53

1.10 Exercises . 55

2 Object-Oriented Design 59
2.1 Goals, Principles, and Patterns . 60

2.1.1 Object-Oriented Design Goals 60

2.1.2 Object-Oriented Design Principles 61

2.1.3 Design Patterns . 63

2.2 Inheritance . 64

2.2.1 Extending the CreditCard Class 65

2.2.2 Polymorphism and Dynamic Dispatch 68

2.2.3 Inheritance Hierarchies . 69

2.3 Interfaces and Abstract Classes . 76

2.3.1 Interfaces in Java . 76

2.3.2 Multiple Inheritance for Interfaces 79

2.3.3 Abstract Classes . 80

2.4 Exceptions . 82

2.4.1 Catching Exceptions . 82

2.4.2 Throwing Exceptions . 85

2.4.3 Java’s Exception Hierarchy . 86

2.5 Casting and Generics . 88

x

Contents xi

2.5.1 Casting . 88

2.5.2 Generics . 91

2.6 Nested Classes . 96

2.7 Exercises . 97

3 Fundamental Data Structures 103
3.1 Using Arrays . 104

3.1.1 Storing Game Entries in an Array 104

3.1.2 Sorting an Array . 110

3.1.3 java.util Methods for Arrays and Random Numbers 112

3.1.4 Simple Cryptography with Character Arrays 115

3.1.5 Two-Dimensional Arrays and Positional Games 118

3.2 Singly Linked Lists . 122

3.2.1 Implementing a Singly Linked List Class 126

3.3 Circularly Linked Lists . 128

3.3.1 Round-Robin Scheduling . 128

3.3.2 Designing and Implementing a Circularly Linked List 129

3.4 Doubly Linked Lists . 132

3.4.1 Implementing a Doubly Linked List Class 135

3.5 Equivalence Testing . 138

3.5.1 Equivalence Testing with Arrays 139

3.5.2 Equivalence Testing with Linked Lists 140

3.6 Cloning Data Structures . 141

3.6.1 Cloning Arrays . 142

3.6.2 Cloning Linked Lists . 144

3.7 Exercises . 145

4 Algorithm Analysis 149
4.1 Experimental Studies . 151

4.1.1 Moving Beyond Experimental Analysis 154

4.2 The Seven Functions Used in This Book 156

4.2.1 Comparing Growth Rates . 163

4.3 Asymptotic Analysis . 164

4.3.1 The “Big-Oh” Notation . 164

4.3.2 Comparative Analysis . 168

4.3.3 Examples of Algorithm Analysis 170

4.4 Simple Justification Techniques . 178

4.4.1 By Example . 178

4.4.2 The “Contra” Attack . 178

4.4.3 Induction and Loop Invariants 179

4.5 Exercises . 182

5 Recursion 189
5.1 Illustrative Examples . 191

5.1.1 The Factorial Function . 191

5.1.2 Drawing an English Ruler . 193

5.1.3 Binary Search . 196

xii Contents

5.1.4 File Systems . 198

5.2 Analyzing Recursive Algorithms . 202

5.3 Further Examples of Recursion . 206

5.3.1 Linear Recursion . 206

5.3.2 Binary Recursion . 211

5.3.3 Multiple Recursion . 212

5.4 Designing Recursive Algorithms . 214

5.5 Recursion Run Amok . 215

5.5.1 Maximum Recursive Depth in Java 218

5.6 Eliminating Tail Recursion . 219

5.7 Exercises . 221

6 Stacks, Queues, and Deques 225
6.1 Stacks . 226

6.1.1 The Stack Abstract Data Type 227

6.1.2 A Simple Array-Based Stack Implementation 230

6.1.3 Implementing a Stack with a Singly Linked List 233

6.1.4 Reversing an Array Using a Stack 234

6.1.5 Matching Parentheses and HTML Tags 235

6.2 Queues . 238

6.2.1 The Queue Abstract Data Type 239

6.2.2 Array-Based Queue Implementation 241

6.2.3 Implementing a Queue with a Singly Linked List 245

6.2.4 A Circular Queue . 246

6.3 Double-Ended Queues . 248

6.3.1 The Deque Abstract Data Type 248

6.3.2 Implementing a Deque . 250

6.3.3 Deques in the Java Collections Framework 251

6.4 Exercises . 252

7 List and Iterator ADTs 257
7.1 The List ADT . 258

7.2 Array Lists . 260

7.2.1 Dynamic Arrays . 263

7.2.2 Implementing a Dynamic Array 264

7.2.3 Amortized Analysis of Dynamic Arrays 265

7.2.4 Java’s StringBuilder class . 269

7.3 Positional Lists . 270

7.3.1 Positions . 272

7.3.2 The Positional List Abstract Data Type 272

7.3.3 Doubly Linked List Implementation 276

7.4 Iterators . 282

7.4.1 The Iterable Interface and Java’s For-Each Loop 283

7.4.2 Implementing Iterators . 284

7.5 The Java Collections Framework 288

7.5.1 List Iterators in Java . 289

7.5.2 Comparison to Our Positional List ADT 290

Contents xiii

7.5.3 List-Based Algorithms in the Java Collections Framework 291

7.6 Sorting a Positional List . 293

7.7 Case Study: Maintaining Access Frequencies 294

7.7.1 Using a Sorted List . 294

7.7.2 Using a List with the Move-to-Front Heuristic 297

7.8 Exercises . 300

8 Trees 307
8.1 General Trees . 308

8.1.1 Tree Definitions and Properties 309

8.1.2 The Tree Abstract Data Type 312

8.1.3 Computing Depth and Height 314

8.2 Binary Trees . 317

8.2.1 The Binary Tree Abstract Data Type 319

8.2.2 Properties of Binary Trees . 321

8.3 Implementing Trees . 323

8.3.1 Linked Structure for Binary Trees 323

8.3.2 Array-Based Representation of a Binary Tree 331

8.3.3 Linked Structure for General Trees 333

8.4 Tree Traversal Algorithms . 334

8.4.1 Preorder and Postorder Traversals of General Trees 334

8.4.2 Breadth-First Tree Traversal 336

8.4.3 Inorder Traversal of a Binary Tree 337

8.4.4 Implementing Tree Traversals in Java 339

8.4.5 Applications of Tree Traversals 343

8.4.6 Euler Tours . 348

8.5 Exercises . 350

9 Priority Queues 359
9.1 The Priority Queue Abstract Data Type 360

9.1.1 Priorities . 360

9.1.2 The Priority Queue ADT . 361

9.2 Implementing a Priority Queue . 362

9.2.1 The Entry Composite . 362

9.2.2 Comparing Keys with Total Orders 363

9.2.3 The AbstractPriorityQueue Base Class 364

9.2.4 Implementing a Priority Queue with an Unsorted List 366

9.2.5 Implementing a Priority Queue with a Sorted List 368

9.3 Heaps . 370

9.3.1 The Heap Data Structure . 370

9.3.2 Implementing a Priority Queue with a Heap 372

9.3.3 Analysis of a Heap-Based Priority Queue 379

9.3.4 Bottom-Up Heap Construction ⋆ 380

9.3.5 Using the java.util.PriorityQueue Class 384

9.4 Sorting with a Priority Queue . 385

9.4.1 Selection-Sort and Insertion-Sort 386

9.4.2 Heap-Sort . 388

xiv Contents

9.5 Adaptable Priority Queues . 390

9.5.1 Location-Aware Entries . 391

9.5.2 Implementing an Adaptable Priority Queue 392

9.6 Exercises . 395

10 Maps, Hash Tables, and Skip Lists 401
10.1 Maps . 402

10.1.1 The Map ADT . 403

10.1.2 Application: Counting Word Frequencies 405

10.1.3 An AbstractMap Base Class 406

10.1.4 A Simple Unsorted Map Implementation 408

10.2 Hash Tables . 410

10.2.1 Hash Functions . 411

10.2.2 Collision-Handling Schemes . 417

10.2.3 Load Factors, Rehashing, and Efficiency 420

10.2.4 Java Hash Table Implementation 422

10.3 Sorted Maps . 428

10.3.1 Sorted Search Tables . 429

10.3.2 Two Applications of Sorted Maps 433

10.4 Skip Lists . 436

10.4.1 Search and Update Operations in a Skip List 438

10.4.2 Probabilistic Analysis of Skip Lists ⋆ 442

10.5 Sets, Multisets, and Multimaps . 445

10.5.1 The Set ADT . 445

10.5.2 The Multiset ADT . 447

10.5.3 The Multimap ADT . 448

10.6 Exercises . 451

11 Search Trees 459
11.1 Binary Search Trees . 460

11.1.1 Searching Within a Binary Search Tree 461

11.1.2 Insertions and Deletions . 463

11.1.3 Java Implementation . 466

11.1.4 Performance of a Binary Search Tree 470

11.2 Balanced Search Trees . 472

11.2.1 Java Framework for Balancing Search Trees 475

11.3 AVL Trees . 479

11.3.1 Update Operations . 481

11.3.2 Java Implementation . 486

11.4 Splay Trees . 488

11.4.1 Splaying . 488

11.4.2 When to Splay . 492

11.4.3 Java Implementation . 494

11.4.4 Amortized Analysis of Splaying ⋆ 495

11.5 (2,4) Trees . 500

11.5.1 Multiway Search Trees . 500

11.5.2 (2,4)-Tree Operations . 503

Contents xv

11.6 Red-Black Trees . 510

11.6.1 Red-Black Tree Operations . 512

11.6.2 Java Implementation . 522

11.7 Exercises . 525

12 Sorting and Selection 531

12.1 Merge-Sort . 532

12.1.1 Divide-and-Conquer . 532

12.1.2 Array-Based Implementation of Merge-Sort 537

12.1.3 The Running Time of Merge-Sort 538

12.1.4 Merge-Sort and Recurrence Equations ⋆ 540

12.1.5 Alternative Implementations of Merge-Sort 541

12.2 Quick-Sort . 544

12.2.1 Randomized Quick-Sort . 551

12.2.2 Additional Optimizations for Quick-Sort 553

12.3 Studying Sorting through an Algorithmic Lens 556

12.3.1 Lower Bound for Sorting . 556

12.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort 558

12.4 Comparing Sorting Algorithms . 561

12.5 Selection . 563

12.5.1 Prune-and-Search . 563

12.5.2 Randomized Quick-Select . 564

12.5.3 Analyzing Randomized Quick-Select 565

12.6 Exercises . 566

13 Text Processing 573

13.1 Abundance of Digitized Text . 574

13.1.1 Notations for Character Strings 575

13.2 Pattern-Matching Algorithms . 576

13.2.1 Brute Force . 576

13.2.2 The Boyer-Moore Algorithm 578

13.2.3 The Knuth-Morris-Pratt Algorithm 582

13.3 Tries . 586

13.3.1 Standard Tries . 586

13.3.2 Compressed Tries . 590

13.3.3 Suffix Tries . 592

13.3.4 Search Engine Indexing . 594

13.4 Text Compression and the Greedy Method 595

13.4.1 The Huffman Coding Algorithm 596

13.4.2 The Greedy Method . 597

13.5 Dynamic Programming . 598

13.5.1 Matrix Chain-Product . 598

13.5.2 DNA and Text Sequence Alignment 601

13.6 Exercises . 605

xvi Contents

14 Graph Algorithms 611
14.1 Graphs . 612

14.1.1 The Graph ADT . 618

14.2 Data Structures for Graphs . 619

14.2.1 Edge List Structure . 620

14.2.2 Adjacency List Structure . 622
14.2.3 Adjacency Map Structure . 624

14.2.4 Adjacency Matrix Structure . 625

14.2.5 Java Implementation . 626
14.3 Graph Traversals . 630

14.3.1 Depth-First Search . 631

14.3.2 DFS Implementation and Extensions 636
14.3.3 Breadth-First Search . 640

14.4 Transitive Closure . 643

14.5 Directed Acyclic Graphs . 647

14.5.1 Topological Ordering . 647

14.6 Shortest Paths . 651

14.6.1 Weighted Graphs . 651

14.6.2 Dijkstra’s Algorithm . 653

14.7 Minimum Spanning Trees . 662

14.7.1 Prim-Jarńık Algorithm . 664

14.7.2 Kruskal’s Algorithm . 667

14.7.3 Disjoint Partitions and Union-Find Structures 672
14.8 Exercises . 677

15 Memory Management and B-Trees 687
15.1 Memory Management . 688

15.1.1 Stacks in the Java Virtual Machine 688

15.1.2 Allocating Space in the Memory Heap 691
15.1.3 Garbage Collection . 693

15.2 Memory Hierarchies and Caching 695

15.2.1 Memory Systems . 695
15.2.2 Caching Strategies . 696

15.3 External Searching and B-Trees . 701

15.3.1 (a,b) Trees . 702
15.3.2 B-Trees . 704

15.4 External-Memory Sorting . 705

15.4.1 Multiway Merging . 706

15.5 Exercises . 707

Bibliography 710

Index 714

Useful Mathematical Facts available at www.wiley.com/college/goodrich

http://www.wiley.com/college/goodrich

Chapter

1 Java Primer

Contents

1.1 Getting Started . 2

1.1.1 Base Types . 4

1.2 Classes and Objects . 5

1.2.1 Creating and Using Objects 6

1.2.2 Defining a Class . 9

1.3 Strings, Wrappers, Arrays, and Enum Types 17

1.4 Expressions . 23

1.4.1 Literals . 23

1.4.2 Operators . 24

1.4.3 Type Conversions . 28

1.5 Control Flow . 30

1.5.1 The If and Switch Statements 30

1.5.2 Loops . 33

1.5.3 Explicit Control-Flow Statements 37

1.6 Simple Input and Output 38

1.7 An Example Program . 41

1.8 Packages and Imports . 44

1.9 Software Development . 46

1.9.1 Design . 46

1.9.2 Pseudocode . 48

1.9.3 Coding . 49

1.9.4 Documentation and Style 50

1.9.5 Testing and Debugging 53

1.10 Exercises . 55

2 Chapter 1. Java Primer

1.1 Getting Started

Building data structures and algorithms requires that we communicate detailed in-

structions to a computer. An excellent way to perform such communication is

using a high-level computer language, such as Java. In this chapter, we provide an

overview of the Java programming language, and we continue this discussion in the

next chapter, focusing on object-oriented design principles. We assume that readers

are somewhat familiar with an existing high-level language, although not necessar-

ily Java. This book does not provide a complete description of the Java language

(there are numerous language references for that purpose), but it does introduce all

aspects of the language that are used in code fragments later in this book.

We begin our Java primer with a program that prints “Hello Universe!” on the

screen, which is shown in a dissected form in Figure 1.1.

Figure 1.1: A “Hello Universe!” program.

In Java, executable statements are placed in functions, known as methods, that

belong to class definitions. The Universe class, in our first example, is extremely

simple; its only method is a static one named main, which is the first method to be

executed when running a Java program. Any set of statements between the braces

“{” and “}” define a program block. Notice that the entire Universe class definition

is delimited by such braces, as is the body of the main method.

The name of a class, method, or variable in Java is called an identifier, which

can be any string of characters as long as it begins with a letter and consists of let-

ters, numbers, and underscore characters (where “letter” and “number” can be from

any written language defined in the Unicode character set). We list the exceptions

to this general rule for Java identifiers in Table 1.1.

1.1. Getting Started 3

Reserved Words

abstract default goto package synchronized
assert do if private this
boolean double implements protected throw
break else import public throws
byte enum instanceof return transient
case extends int short true
catch false interface static try
char final long strictfp void
class finally native super volatile
const float new switch while
continue for null

Table 1.1: A listing of the reserved words in Java. These names cannot be used as

class, method, or variable names.

Comments

In addition to executable statements and declarations, Java allows a programmer

to embed comments, which are annotations provided for human readers that are

not processed by the Java compiler. Java allows two kinds of comments: inline

comments and block comments. Java uses a “//” to begin an inline comment,

ignoring everything subsequently on that line. For example:

// This is an inline comment.

We will intentionally color all comments in blue in this book, so that they are not

confused with executable code.

While inline comments are limited to one line, Java allows multiline comments

in the form of block comments. Java uses a “/*” to begin a block comment and a

“*/” to close it. For example:

/*
* This is a block comment.
*/

Block comments that begin with “/**” (note the second asterisk) have a special

purpose, allowing a program, called Javadoc, to read these comments and automat-

ically generate software documentation. We discuss the syntax and interpretation

of Javadoc comments in Section 1.9.4.

4 Chapter 1. Java Primer

1.1.1 Base Types

For the most commonly used data types, Java provides the following base types

(also called primitive types):

boolean a boolean value: true or false
char 16-bit Unicode character

byte 8-bit signed two’s complement integer

short 16-bit signed two’s complement integer

int 32-bit signed two’s complement integer

long 64-bit signed two’s complement integer

float 32-bit floating-point number (IEEE 754-1985)

double 64-bit floating-point number (IEEE 754-1985)

A variable having one of these types simply stores a value of that type. Integer

constants, like 14 or 195, are of type int, unless followed immediately by an ‘L’

or ‘l’, in which case they are of type long. Floating-point constants, like 3.1416

or 6.022e23, are of type double, unless followed immediately by an ‘F’ or ‘f’, in

which case they are of type float. Code Fragment 1.1 demonstrates the declaration,

and initialization in some cases, of various base-type variables.

1 boolean flag = true;
2 boolean verbose, debug; // two variables declared, but not yet initialized
3 char grade = 'A';
4 byte b = 12;
5 short s = 24;
6 int i, j, k = 257; // three variables declared; only k initialized
7 long l = 890L; // note the use of ”L” here
8 float pi = 3.1416F; // note the use of ”F” here
9 double e = 2.71828, a = 6.022e23; // both variables are initialized

Code Fragment 1.1: Declarations and initializations of several base-type variables.

Note that it is possible to declare (and initialize) multiple variables of the same

type in a single statement, as done on lines 2, 6, and 9 of this example. In this code

fragment, variables verbose, debug, i, and j remain uninitialized. Variables declared

locally within a block of code must be initialized before they are first used.

A nice feature of Java is that when base-type variables are declared as instance

variables of a class (see next section), Java ensures initial default values if not ex-

plicitly initialized. In particular, all numeric types are initialized to zero, a boolean

is initialized to false, and a character is initialized to the null character by default.

1.2. Classes and Objects 5

1.2 Classes and Objects

In more complex Java programs, the primary “actors” are objects. Every object is

an instance of a class, which serves as the type of the object and as a blueprint,

defining the data which the object stores and the methods for accessing and modi-

fying that data. The critical members of a class in Java are the following:

• Instance variables, which are also called fields, represent the data associated

with an object of a class. Instance variables must have a type, which can

either be a base type (such as int, float, or double) or any class type (also

known as a reference type for reasons we soon explain).

• Methods in Java are blocks of code that can be called to perform actions

(similar to functions and procedures in other high-level languages). Methods

can accept parameters as arguments, and their behavior may depend on the

object upon which they are invoked and the values of any parameters that are

passed. A method that returns information to the caller without changing any

instance variables is known as an accessor method, while an update method

is one that may change one or more instance variables when called.

For the purpose of illustration, Code Fragment 1.2 provides a complete def-

inition of a very simple class named Counter, to which we will refer during the

remainder of this section.

1 public class Counter {
2 private int count; // a simple integer instance variable
3 public Counter() { } // default constructor (count is 0)
4 public Counter(int initial) { count = initial; } // an alternate constructor
5 public int getCount() { return count; } // an accessor method
6 public void increment() { count++; } // an update method
7 public void increment(int delta) { count += delta; } // an update method
8 public void reset() { count = 0; } // an update method
9 }

Code Fragment 1.2: A Counter class for a simple counter, which can be queried,

incremented, and reset.

This class includes one instance variable, named count, which is declared at

line 2. As noted on the previous page, the count will have a default value of zero,

unless we otherwise initialize it.

The class includes two special methods known as constructors (lines 3 and

4), one accessor method (line 5), and three update methods (lines 6–8). Unlike

the original Universe class from page 2, our Counter class does not have a main
method, and so it cannot be run as a complete program. Instead, the purpose of the

Counter class is to create instances that might be used as part of a larger program.

6 Chapter 1. Java Primer

1.2.1 Creating and Using Objects

Before we explore the intricacies of the syntax for our Counter class definition, we

prefer to describe how Counter instances can be created and used. To this end,

Code Fragment 1.3 presents a new class named CounterDemo.

1 public class CounterDemo {
2 public static void main(String[] args) {
3 Counter c; // declares a variable; no counter yet constructed
4 c = new Counter(); // constructs a counter; assigns its reference to c
5 c.increment(); // increases its value by one
6 c.increment(3); // increases its value by three more
7 int temp = c.getCount(); // will be 4
8 c.reset(); // value becomes 0
9 Counter d = new Counter(5);// declares and constructs a counter having value 5

10 d.increment(); // value becomes 6
11 Counter e = d; // assigns e to reference the same object as d
12 temp = e.getCount(); // will be 6 (as e and d reference the same counter)
13 e.increment(2); // value of e (also known as d) becomes 8
14 }
15 }

Code Fragment 1.3: A demonstration of the use of Counter instances.

There is an important distinction in Java between the treatment of base-type

variables and class-type variables. At line 3 of our demonstration, a new variable c
is declared with the syntax:

Counter c;

This establishes the identifier, c, as a variable of type Counter, but it does not create

a Counter instance. Classes are known as reference types in Java, and a variable of

that type (such as c in our example) is known as a reference variable. A reference

variable is capable of storing the location (i.e., memory address) of an object from

the declared class. So we might assign it to reference an existing instance or a

newly constructed instance. A reference variable can also store a special value,

null, that represents the lack of an object.

In Java, a new object is created by using the new operator followed by a call to

a constructor for the desired class; a constructor is a method that always shares the

same name as its class. The new operator returns a reference to the newly created

instance; the returned reference is typically assigned to a variable for further use.

In Code Fragment 1.3, a new Counter is constructed at line 4, with its reference

assigned to the variable c. That relies on a form of the constructor, Counter(), that

takes no arguments between the parentheses. (Such a zero-parameter constructor

is known as a default constructor.) At line 9 we construct another counter using a

one-parameter form that allows us to specify a nonzero initial value for the counter.

1.2. Classes and Objects 7

Three events occur as part of the creation of a new instance of a class:

• A new object is dynamically allocated in memory, and all instance variables

are initialized to standard default values. The default values are null for

reference variables and 0 for all base types except boolean variables (which

are false by default).

• The constructor for the new object is called with the parameters specified.

The constructor may assign more meaningful values to any of the instance

variables, and perform any additional computations that must be done due to

the creation of this object.

• After the constructor returns, the new operator returns a reference (that is, a

memory address) to the newly created object. If the expression is in the form

of an assignment statement, then this address is stored in the object variable,

so the object variable refers to this newly created object.

The Dot Operator

One of the primary uses of an object reference variable is to access the members of

the class for this object, an instance of its class. That is, an object reference vari-

able is useful for accessing the methods and instance variables associated with an

object. This access is performed with the dot (“.”) operator. We call a method asso-

ciated with an object by using the reference variable name, following that by the dot

operator and then the method name and its parameters. For example, in Code Frag-

ment 1.3, we call c.increment() at line 5, c.increment(3) at line 6, c.getCount()
at line 7, and c.reset() at line 8. If the dot operator is used on a reference that is

currently null, the Java runtime environment will throw a NullPointerException.

If there are several methods with this same name defined for a class, then the

Java runtime system uses the one that matches the actual number of parameters

sent as arguments, as well as their respective types. For example, our Counter
class supports two methods named increment: a zero-parameter form and a one-

parameter form. Java determines which version to call when evaluating commands

such as c.increment() versus c.increment(3). A method’s name combined with the

number and types of its parameters is called a method’s signature, for it takes all

of these parts to determine the actual method to perform for a certain method call.

Note, however, that the signature of a method in Java does not include the type that

the method returns, so Java does not allow two methods with the same signature to

return different types.

A reference variable v can be viewed as a “pointer” to some object o. It is as if

the variable is a holder for a remote control that can be used to control the newly

created object (the device). That is, the variable has a way of pointing at the object

and asking it to do things or give us access to its data. We illustrate this concept in

Figure 1.2. Using the remote control analogy, a null reference is a remote control

holder that is empty.

8 Chapter 1. Java Primer

Figure 1.2: Illustrating the relationship between objects and object reference vari-

ables. When we assign an object reference (that is, memory address) to a reference

variable, it is as if we are storing that object’s remote control at that variable.

There can, in fact, be many references to the same object, and each reference to

a specific object can be used to call methods on that object. Such a situation would

correspond to our having many remote controls that all work on the same device.

Any of the remotes can be used to make a change to the device (like changing a

channel on a television). Note that if one remote control is used to change the

device, then the (single) object pointed to by all the remotes changes. Likewise, if

one object reference variable is used to change the state of the object, then its state

changes for all the references to it. This behavior comes from the fact that there are

many references, but they all point to the same object.

Returning to our CounterDemo example, the instance constructed at line 9 as

Counter d = new Counter(5);

is a distinct instance from the one identified as c. However, the command at line 11,

Counter e = d;

does not result in the construction of a new Counter instance. This declares a new

reference variable named e, and assigns that variable a reference to the existing

counter instance currently identified as d. At that point, both variables d and e are

aliases for the same object, and so the call to d.getCount() behaves just as would

e.getCount(). Similarly, the call to update method e.increment(2) is affecting the

same object identified by d.

It is worth noting, however, that the aliasing of two reference variables to the

same object is not permanent. At any point in time, we may reassign a reference

variable to a new instance, to a different existing instance, or to null.

1.2. Classes and Objects 9

1.2.2 Defining a Class

Thus far, we have provided definitions for two simple classes: the Universe class

on page 2 and the Counter class on page 5. At its core, a class definition is a block

of code, delimited by braces “{” and “}” , within which is included declarations of

instance variables and methods that are the members of the class. In this section,

we will undertake a deeper examination of class definitions in Java.

Modifiers

Immediately before the definition of a class, instance variable, or method in Java,

keywords known as modifiers can be placed to convey additional stipulations about

that definition.

Access Control Modifiers

The first set of modifiers we discuss are known as access control modifiers, as they

control the level of access (also known as visibility) that the defining class grants

to other classes in the context of a larger Java program. The ability to limit access

among classes supports a key principle of object-orientation known as encapsula-

tion (see Section 2.1). In general, the different access control modifiers and their

meaning are as follows:

• The public class modifier designates that all classes may access the defined

aspect. For example, line 1 of of Code Fragment 1.2 designates

public class Counter {
and therefore all other classes (such as CounterDemo) are allowed to con-

struct new instances of the Counter class, as well as to declare variables and

parameters of type Counter. In Java, each public class must be defined in a

separate file named classname.java, where “classname” is the name of the

class (for example, file Counter.java for the Counter class definition).

The designation of public access for a particular method of a class allows

any other class to make a call to that method. For example, line 5 of Code

Fragment 1.2 designates

public int getCount() { return count; }
which is why the CounterDemo class may call c.getCount().

If an instance variable is declared as public, dot notation can be used to di-

rectly access the variable by code in any other class that possesses a reference

to an instance of this class. For example, were the count variable of Counter
to be declared as public (which it is not), then the CounterDemo would be

allowed to read or modify that variable using a syntax such as c.count.

10 Chapter 1. Java Primer

• The protected class modifier designates that access to the defined aspect is

only granted to the following groups of other classes:

◦ Classes that are designated as subclasses of the given class through

inheritance. (We will discuss inheritance as the focus of Section 2.2.)

◦ Classes that belong to the same package as the given class. (We will

discuss packages within Section 1.8.)

• The private class modifier designates that access to a defined member of a

class be granted only to code within that class. Neither subclasses nor any

other classes have access to such members.

For example, we defined the count instance variable of the Counter class to

have private access level. We were allowed to read or edit its value from

within methods of that class (such as getCount, increment, and reset), but

other classes such as CounterDemo cannot directly access that field. Of

course, we did provide other public methods to grant outside classes with

behaviors that depended on the current count value.

• Finally, we note that if no explicit access control modifier is given, the de-

fined aspect has what is known as package-private access level. This allows

other classes in the same package (see Section 1.8) to have access, but not

any classes or subclasses from other packages.

The static Modifier

The static modifier in Java can be declared for any variable or method of a class

(or for a nested class, as we will introduce in Section 2.6).

When a variable of a class is declared as static, its value is associated with

the class as a whole, rather than with each individual instance of that class. Static

variables are used to store “global” information about a class. (For example, a static

variable could be used to maintain the total number of instances of that class that

have been created.) Static variables exist even if no instance of their class exists.

When a method of a class is declared as static, it too is associated with the

class itself, and not with a particular instance of the class. That means that the

method is not invoked on a particular instance of the class using the traditional dot

notation. Instead, it is typically invoked using the name of the class as a qualifier.

As an example, in the java.lang package, which is part of the standard Java

distribution, there is a Math class that provides many static methods, including one

named sqrt that computes square roots of numbers. To compute a square root, you

do not need to create an instance of the Math class; that method is called using a

syntax such as Math.sqrt(2), with the class name Math as the qualifier before the

dot operator.

Static methods can be useful for providing utility behaviors related to a class

that need not rely on the state of any particular instance of that class.

1.2. Classes and Objects 11

The abstract Modifier

A method of a class may be declared as abstract, in which case its signature is pro-

vided but without an implementation of the method body. Abstract methods are an

advanced feature of object-oriented programming to be combined with inheritance,

and the focus of Section 2.3.3. In short, any subclass of a class with abstract meth-

ods is expected to provide a concrete implementation for each abstract method.

A class with one or more abstract methods must also be formally declared as

abstract, because it is essentially incomplete. (It is also permissible to declare

a class as abstract even if it does not contain any abstract methods.) As a result,

Java will not allow any instances of an abstract class to be constructed, although

reference variables may be declared with an abstract type.

The final Modifier

A variable that is declared with the final modifier can be initialized as part of that

declaration, but can never again be assigned a new value. If it is a base type, then

it is a constant. If a reference variable is final, then it will always refer to the same

object (even if that object changes its internal state). If a member variable of a class

is declared as final, it will typically be declared as static as well, because it would

be unnecessarily wasteful to have every instance store the identical value when that

value can be shared by the entire class.

Designating a method or an entire class as final has a completely different

consequence, only relevant in the context of inheritance. A final method cannot be

overridden by a subclass, and a final class cannot even be subclassed.

Declaring Instance Variables

When defining a class, we can declare any number of instance variables. An impor-

tant principle of object-orientation is that each instance of a class maintains its own

individual set of instance variables (that is, in fact, why they are called instance

variables). So in the case of the Counter class, each instance will store its own

(independent) value of count.
The general syntax for declaring one or more instance variables of a class is as

follows (with optional portions bracketed):

[modifiers] type identifier1[=initialValue1], identifier2[=initialValue2];

In the case of the Counter class, we declared

private int count;

where private is the modifier, int is the type, and count is the identifier. Because

we did not declare an initial value, it automatically receives the default of zero as a

base-type integer.

12 Chapter 1. Java Primer

Declaring Methods

A method definition has two parts: the signature, which defines the name and

parameters for a method, and the body, which defines what the method does. The

method signature specifies how the method is called, and the method body specifies

what the object will do when it is called. The syntax for defining a method is as

follows:

[modifiers] returnType methodName(type1 param1 , . . . , typen paramn) {
// method body . . .

}
Each of the pieces of this declaration has an important purpose. We have al-

ready discussed the significance of modifiers such as public, private, and static.

The returnType designation defines the type of value returned by the method. The

methodName can be any valid Java identifier. The list of parameters and their types

declares the local variables that correspond to the values that are to be passed as

arguments to this method. Each type declaration typei can be any Java type name

and each parami can be any distinct Java identifier. This list of parameters and

their types can be empty, which signifies that there are no values to be passed to

this method when it is invoked. These parameter variables, as well as the instance

variables of the class, can be used inside the body of the method. Likewise, other

methods of this class can be called from inside the body of a method.

When a (nonstatic) method of a class is called, it is invoked on a specific in-

stance of that class and can change the state of that object. For example, the follow-

ing method of the Counter class increases the counter’s value by the given amount.

public void increment(int delta) {
count += delta;
}

Notice that the body of this method uses count, which is an instance variable, and

delta, which is a parameter.

Return Types

A method definition must specify the type of value the method will return. If the

method does not return a value (as with the increment method of the Counter class),

then the keyword void must be used. To return a value in Java, the body of the

method must use the return keyword, followed by a value of the appropriate return

type. Here is an example of a method (from the Counter class) with a nonvoid

return type:

public int getCount() {
return count;
}

1.2. Classes and Objects 13

Java methods can return only one value. To return multiple values in Java, we

should instead combine all the values we want to return in a compound object,

whose instance variables include all the values we want to return, and then return a

reference to that compound object. In addition, we can change the internal state of

an object that is passed to a method as another way of “returning” multiple results.

Parameters

A method’s parameters are defined in a comma-separated list enclosed in parenthe-

ses after the name of the method. A parameter consists of two parts, the parameter

type and the parameter name. If a method has no parameters, then only an empty

pair of parentheses is used.

All parameters in Java are passed by value, that is, any time we pass a parameter

to a method, a copy of that parameter is made for use within the method body. So

if we pass an int variable to a method, then that variable’s integer value is copied.

The method can change the copy but not the original. If we pass an object reference

as a parameter to a method, then the reference is copied as well. Remember that we

can have many different variables that all refer to the same object. Reassigning the

internal reference variable inside a method will not change the reference that was

passed in.

For the sake of demonstration, we will assume that the following two methods

were added to an arbitrary class (such as CounterDemo).

public static void badReset(Counter c) {
c = new Counter(); // reassigns local name c to a new counter
}

public static void goodReset(Counter c) {
c.reset(); // resets the counter sent by the caller
}

Now we will assume that variable strikes refers to an existing Counter instance in

some context, and that it currently has a value of 3.

If we were to call badReset(strikes), this has no effect on the Counter known as

strikes. The body of the badReset method reassigns the (local) parameter variable c
to reference a newly created Counter instance; but this does not change the state of

the existing counter that was sent by the caller (i.e., strikes).

In contrast, if we were to call goodReset(strikes), this does indeed reset the

caller’s counter back to a value of zero. That is because the variables c and strikes
are both reference variables that refer to the same Counter instance. So when

c.reset() is called, that is effectively the same as if strikes.reset() were called.

14 Chapter 1. Java Primer

Defining Constructors

A constructor is a special kind of method that is used to initialize a newly created

instance of the class so that it will be in a consistent and stable initial state. This

is typically achieved by initializing each instance variable of the object (unless

the default value will suffice), although a constructor can perform more complex

computation. The general syntax for declaring a constructor in Java is as follows:

modifiers name(type0 parameter0 , . . . , typen−1 parametern−1) {
// constructor body . . .

}
Constructors are defined in a very similar way as other methods of a class, but there

are a few important distinctions:

1. Constructors cannot be static, abstract, or final, so the only modifiers that

are allowed are those that affect visibility (i.e., public, protected, private,

or the default package-level visibility).

2. The name of the constructor must be identical to the name of the class it

constructs. For example, when defining the Counter class, a constructor must

be named Counter as well.

3. We don’t specify a return type for a constructor (not even void). Nor does

the body of a constructor explicitly return anything. When a user of a class

creates an instance using a syntax such as

Counter d = new Counter(5);

the new operator is responsible for returning a reference to the new instance

to the caller; the responsibility of the constructor method is only to initialize

the state of the new instance.

A class can have many constructors, but each must have a different signature,

that is, each must be distinguished by the type and number of the parameters it

takes. If no constructors are explicitly defined, Java provides an implicit default

constructor for the class, having zero arguments and leaving all instance variables

initialized to their default values. However, if a class defines one or more nondefault

constructors, no default constructor will be provided.

As an example, our Counter class defines the following pair of constructors:

public Counter() { }
public Counter(int initial) { count = initial; }

The first of these has a trivial body, { }, as the goal for this default constructor is to

create a counter with value zero, and that is already the default value of the integer

instance variable, count. However, it is still important that we declared such an

explicit constructor, because otherwise none would have been provided, given the

existence of the nondefault constructor. In that scenario, a user would have been

unable to use the syntax, new Counter().

1.2. Classes and Objects 15

The Keyword this

Within the body of a (nonstatic) method in Java, the keyword this is automatically

defined as a reference to the instance upon which the method was invoked. That

is, if a caller uses a syntax such as thing.foo(a, b, c), then within the body of

method foo for that call, the keyword this refers to the object known as thing in

the caller’s context. There are three common reasons why this reference is needed

from within a method body:

1. To store the reference in a variable, or send it as a parameter to another

method that expects an instance of that type as an argument.

2. To differentiate between an instance variable and a local variable with the

same name. If a local variable is declared in a method having the same

name as an instance variable for the class, that name will refer to the local

variable within that method body. (We say that the local variable masks the

instance variable.) In this case, the instance variable can still be accessed

by explicitly using the dot notation with this as the qualifier. For example,

some programmers prefer to use the following style for a constructor, with a

parameter having the same name as the underlying variable.

public Counter(int count) {
this.count = count; // set the instance variable equal to parameter
}

3. To allow one constructor body to invoke another constructor body. When one

method of a class invokes another method of that same class on the current

instance, that is typically done by using the (unqualified) name of the other

method. But the syntax for calling a constructor is special. Java allows use of

the keyword this to be used as a method within the body of one constructor,

so as to invoke another constructor with a different signature.

This is often useful because all of the initialization steps of one constructor

can be reused with appropriate parameterization. As a trivial demonstra-

tion of the syntax, we could reimplement the zero-argument version of our

Counter constructor to have it invoke the one-argument version sending 0 as

an explicit parameter. This would be written as follows:

public Counter() {
this(0); // invoke one-parameter constructor with value zero
}

We will provide a more meaningful demonstration of this technique in a later

example of a CreditCard class in Section 1.7.

16 Chapter 1. Java Primer

The main Method

Some Java classes, such as our Counter class, are meant to be used by other classes,

but are not intended to serve as a self-standing program. The primary control for an

application in Java must begin in some class with the execution of a special method

named main. This method must be declared as follows:

public static void main(String[] args) {
// main method body...
}

The args parameter is an array of String objects, that is, a collection of indexed

strings, with the first string being args[0], the second being args[1], and so on. (We

say more about strings and arrays in Section 1.3.) Those represent what are known

as command-line arguments that are given by a user when the program is executed.

Java programs can be called from the command line using the java command

(in a Windows, Linux, or Unix shell), followed by the name of the Java class whose

main method we want to run, plus any optional arguments. For example, to exe-

cute the main method of a class named Aquarium, we could issue the following

command:

java Aquarium

In this case, the Java runtime system looks for a compiled version of the Aquarium
class, and then invokes the special main method in that class.

If we had defined the Aquarium program to take an optional argument that

specifies the number of fish in the aquarium, then we might invoke the program by

typing the following in a shell window:

java Aquarium 45

to specify that we want an aquarium with 45 fish in it. In this case, args[0] would

refer to the string "45". It would be up to the body of the main method to interpret

that string as the desired number of fish.

Programmers who use an integrated development environment (IDE), such as

Eclipse, can optionally specify command-line arguments when executing the pro-

gram through the IDE.

Unit Testing

When defining a class, such as Counter, that is meant to be used by other classes

rather than as a self-standing program, there is no need to define a main method.

However, a nice feature of Java’s design is that we could provide such a method

as a way to test the functionality of that class in isolation, knowing that it would

not be run unless we specifically invoke the java command on that isolated class.

However, for more robust testing, frameworks such as JUnit are preferred.

1.3. Strings, Wrappers, Arrays, and Enum Types 17

1.3 Strings, Wrappers, Arrays, and Enum Types

The String Class

Java’s char base type stores a value that represents a single text character. In Java,

the set of all possible characters, known as an alphabet, is the Unicode international

character set, a 16-bit character encoding that covers most used written languages.

(Some programming languages use the smaller ASCII character set, which is a

proper subset of the Unicode alphabet based on a 7-bit encoding.) The form for

expressing a character literal in Java is using single quotes, such as 'G'.

Because it is common to work with sequences of text characters in programs

(e.g., for user interactions or data processing), Java provides support in the form

of a String class. A string instance represents a sequence of zero or more charac-

ters. The class provides extensive support for various text-processing tasks, and in

Chapter 13 we will examine several of the underlying algorithms for text process-

ing. For now, we will only highlight the most central aspects of the String class.

Java uses double quotes to designate string literals. Therefore, we might declare

and initialize a String instance as follows:

String title = "Data Structures & Algorithms in Java"

Character Indexing

Each character c within a string s can be referenced by using an index, which is

equal to the number of characters that come before c in s. By this convention, the

first character is at index 0, and the last is at index n−1, where n is the length of the

string. For example, the string title, defined above, has length 36. The character at

index 2 is 't' (the third character), and the character at index 4 is ' ' (the space

character). Java’s String class supports a method length(), which returns the length

of a string instance, and a method charAt(k), which returns the character at index k.

Concatenation

The primary operation for combining strings is called concatenation, which takes

a string P and a string Q combines them into a new string, denoted P+Q, which

consists of all the characters of P followed by all the characters of Q. In Java, the

“+” operation performs concatenation when acting on two strings, as follows:

String term = "over" + "load";

This statement defines a variable named term that references a string with value

"overload". (We will discuss assignment statements and expressions such as that

above in more detail later in this chapter.)

18 Chapter 1. Java Primer

The StringBuilder Class

An important trait of Java’s String class is that its instances are immutable; once

an instance is created and initialized, the value of that instance cannot be changed.

This is an intentional design, as it allows for great efficiencies and optimizations

within the Java Virtual Machine.

However, because String is a class in Java, it is a reference type. Therefore,

variables of type String can be reassigned to another string instance (even if the

current string instance cannot be changed), as in the following:

String greeting = "Hello";
greeting = "Ciao"; // we changed our mind

It is also quite common in Java to use string concatenation to build a new string that

is subsequently used to replace one of the operands of concatenation, as in:

greeting = greeting + '!'; // now it is ”Ciao!”

However, it is important to remember that this operation does create a new string

instance, copying all the characters of the existing string in the process. For long

string (such as DNA sequences), this can be very time consuming. (In fact, we will

experiment with the efficiency of string concatenation to begin Chapter 4.)

In order to support more efficient editing of character strings, Java provides

a StringBuilder class, which is effectively a mutable version of a string. This

class combines some of the accessor methods of the String class, while supporting

additional methods including the following (and more):

setCharAt(k,c): Change the character at index k to character c.

insert(k,s): Insert a copy of string s starting at index k of the sequence,

shifting existing characters further back to make room.

append(s): Append string s to the end of the sequence.

reverse(): Reverse the current sequence.

toString(): Return a traditional String instance based on the current

character sequence.

An error condition occurs, for both String and StringBuilder classes, if an index k

is out of the bounds of the indices of the character sequence.

The StringBuilder class can be very useful, and it serves as an interesting case

study for data structures and algorithms. We will further explore the empirical ef-

ficiency of the StringBuilder class in Section 4.1 and the theoretical underpinnings

of its implementation in Section 7.2.4.

1.3. Strings, Wrappers, Arrays, and Enum Types 19

Wrapper Types

There are many data structures and algorithms in Java’s libraries that are specif-

ically designed so that they only work with object types (not primitives). To get

around this obstacle, Java defines a wrapper class for each base type. An instance

of each wrapper type stores a single value of the corresponding base type. In Ta-

ble 1.2, we show the base types and their corresponding wrapper class, along with

examples of how objects are created and accessed.

Base Type Class Name Creation Example Access Example

boolean Boolean obj = new Boolean(true); obj.booleanValue()
char Character obj = new Character(’Z’); obj.charValue()
byte Byte obj = new Byte((byte) 34); obj.byteValue()
short Short obj = new Short((short) 100); obj.shortValue()
int Integer obj = new Integer(1045); obj.intValue()
long Long obj = new Long(10849L); obj.longValue()
float Float obj = new Float(3.934F); obj.floatValue()
double Double obj = new Double(3.934); obj.doubleValue()

Table 1.2: Java’s wrapper classes. Each class is given with its corresponding base

type and example expressions for creating and accessing such objects. For each

row, we assume the variable obj is declared with the corresponding class name.

Automatic Boxing and Unboxing

Java provides additional support for implicitly converting between base types and

their wrapper types through a process known as automatic boxing and unboxing.

In any context for which an Integer is expected (for example, as a parameter),

an int value k can be expressed, in which case Java automatically boxes the int,
with an implicit call to new Integer(k). In reverse, in any context for which an

int is expected, an Integer value v can be given in which case Java automatically

unboxes it with an implicit call to v.intValue(). Similar conversions are made with

the other base-type wrappers. Finally, all of the wrapper types provide support for

converting back and forth between string literals. Code Fragment 1.4 demonstrates

many such features.

1 int j = 8;
2 Integer a = new Integer(12);
3 int k = a; // implicit call to a.intValue()
4 int m = j + a; // a is automatically unboxed before the addition
5 a = 3 ∗ m; // result is automatically boxed before assignment
6 Integer b = new Integer("-135"); // constructor accepts a String
7 int n = Integer.parseInt("2013"); // using static method of Integer class

Code Fragment 1.4: A demonstration of the use of the Integer wrapper class.

20 Chapter 1. Java Primer

Arrays

A common programming task is to keep track of an ordered sequence of related

values or objects. For example, we may want a video game to keep track of the top

ten scores for that game. Rather than using ten different variables for this task, we

would prefer to use a single name for the group and use index numbers to refer to

the high scores in that group. Similarly, we may want a medical information system

to keep track of the patients currently assigned to beds in a certain hospital. Again,

we would rather not have to introduce 200 variables in our program just because

the hospital has 200 beds.

In such cases, we can save programming effort by using an array, which is a

sequenced collection of variables all of the same type. Each variable, or cell, in an

array has an index, which uniquely refers to the value stored in that cell. The cells

of an array a are numbered 0, 1, 2, and so on. We illustrate an array of high scores

for a video game in Figure 1.3.

indices

High
scores

Figure 1.3: An illustration of an array of ten (int) high scores for a video game.

Array Elements and Capacities

Each value stored in an array is called an element of that array. Since the length of

an array determines the maximum number of things that can be stored in the array,

we will sometimes refer to the length of an array as its capacity. In Java, the length

of an array named a can be accessed using the syntax a.length. Thus, the cells of

an array a are numbered 0, 1, 2, and so on, up through a.length−1, and the cell

with index k can be accessed with syntax a[k].

Out of Bounds Errors

It is a dangerous mistake to attempt to index into an array a using a number outside

the range from 0 to a.length−1. Such a reference is said to be out of bounds.

Out of bounds references have been exploited numerous times by hackers using a

method called the buffer overflow attack to compromise the security of computer

systems written in languages other than Java. As a safety feature, array indices are

always checked in Java to see if they are ever out of bounds. If an array index is

out of bounds, the runtime Java environment signals an error condition. The name

of this condition is the ArrayIndexOutOfBoundsException. This check helps Java

avoid a number of security problems, such as buffer overflow attacks.

1.3. Strings, Wrappers, Arrays, and Enum Types 21

Declaring and Constructing Arrays

Arrays in Java are somewhat unusual, in that they are not technically a base type

nor are they instances of a particular class. With that said, an instance of an array is

treated as an object by Java, and variables of an array type are reference variables.

To declare a variable (or parameter) to have an array type, we use an empty

pair of square brackets just after the type of element that the array will store. For

example, we might declare:

int[] primes;

Because arrays are a reference type, this declares the variable primes to be a refer-

ence to an array of integer values, but it does not immediately construct any such

array. There are two ways for creating an array.

The first way to create an array is to use an assignment to a literal form when

initially declaring the array, using a syntax as:

elementType[] arrayName = {initialValue0, initialValue1, . . . , initialValueN−1};

The elementType can be any Java base type or class name, and arrayName can be

any valid Java identifier. The initial values must be of the same type as the array.

For example, we could initialize the array of primes to contain the first ten prime

numbers as:

int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
When using an initializer, an array is created having precisely the capacity needed

to store the indicated values.

The second way to create an array is to use the new operator. However, because

an array is not an instance of a class, we do not use a typical constructor syntax.

Instead we use the syntax:

new elementType[length]

where length is a positive integer denoting the length of the new array. The new
operator returns a reference to the new array, and typically this would be assigned to

an array variable. For example, the following statement declares an array variable

named measurements, and immediately assigns it a new array of 1000 cells.

double[] measurements = new double[1000];

When arrays are created using the new operator, all of their elements are au-

tomatically assigned the default value for the element type. That is, if the element

type is numeric, all cells of the array are initialized to zero, if the element type is

boolean, all cells are false, and if the element type is a reference type (such as with

an array of String instances), all cells are initialized to null.

22 Chapter 1. Java Primer

Enum Types

In olden times, programmers would often define a series of constant integer values

to be used for representing a finite set of choices. For example, in representing a

day of the week, they might declare variable today as an int and then set it with

value 0 for Monday, 1 for Tuesday, and so on.

A slightly better programming style is to define static constants (with the final
keyword), to make the associations, such as:

static final int MON = 0;
static final int TUE = 1;
static final int WED = 2;
...

because then it becomes possible to make assignments such as today = TUE,

rather than the more obscure today = 1. Unfortunately, the variable today is still

declared as an int using such a programming style, and it may not be clear that you

intend for it to represent a day of the week when storing it as an instance variable

or sending it as a parameter.

Java supports a more elegant approach to representing choices from a finite

set by defining what is known as an enumerated type, or enum for short. These

are types that are only allowed to take on values that come from a specified set of

names. They are declared as follows:

modifier enum name { valueName0 , valueName1 , . . . , valueNamen−1 };

where the modifier can be blank, public, protected, or private. The name of

this enum, name, can be any legal Java identifier. Each of the value identifiers,

valueNamei, is the name of a possible value that variables of this enum type can

take on. Each of these name values can also be any legal Java identifier, but the

Java convention is that these should usually be capitalized words. For example, an

enumerated type definition for days of the weak might appear as:

public enum Day {MON, TUE, WED, THU, FRI, SAT, SUN };

Once defined, Day becomes an official type and we may declare variables or pa-

rameters with type Day. A variable of that type can be declared as:

Day today;

and an assignment of a value to that variable can appear as:

today = Day.TUE;

1.4. Expressions 23

1.4 Expressions

Variables and constants are used in expressions to define new values and to modify

variables. In this section, we discuss how expressions work in Java in more detail.

Expressions involve the use of literals, variables, and operators. Since we have al-

ready discussed variables, let us briefly focus on literals and then discuss operators

in some detail.

1.4.1 Literals

A literal is any “constant” value that can be used in an assignment or other expres-

sion. Java allows the following kinds of literals:

• The null object reference (this is the only object literal, and it is allowed to

be any reference type).

• Boolean: true and false.

• Integer: The default for an integer like 176, or -52 is that it is of type int,
which is a 32-bit integer. A long integer literal must end with an “L” or “l”,

for example, 176L or -52l, and defines a 64-bit integer.

• Floating Point: The default for floating-point numbers, such as 3.1415 and

135.23, is that they are double. To specify that a literal is a float, it must

end with an “F” or “f”. Floating-point literals in exponential notation are also

allowed, such as 3.14E2 or .19e10; the base is assumed to be 10.

• Character: In Java, character constants are assumed to be taken from the

Unicode alphabet. Typically, a character is defined as an individual symbol

enclosed in single quotes. For example, ’a’ and ’?’ are character constants.

In addition, Java defines the following special character constants:

'\n' (newline) '\t' (tab)

'\b' (backspace) '\r' (return)

'\f' (form feed) '\\' (backslash)

'\'' (single quote) '\"' (double quote).

• String Literal: A string literal is a sequence of characters enclosed in double

quotes, for example, the following is a string literal:

"dogs cannot climb trees"

24 Chapter 1. Java Primer

1.4.2 Operators

Java expressions involve composing literals and variables with operators. We will

survey the operators in Java in this section.

Arithmetic Operators

The following are binary arithmetic operators in Java:

+ addition

− subtraction

∗ multiplication

/ division

% the modulo operator

This last operator, modulo, is also known as the “remainder” operator, because

it is the remainder left after an integer division. We often use “ mod ” to denote the

modulo operator, and we define it formally as

n mod m = r,

such that

n = mq+ r,

for an integer q and 0≤ r < m.

Java also provides a unary minus (−), which can be placed in front of an arith-

metic expression to invert its sign. Parentheses can be used in any expression to

define the order of evaluation. Java also uses a fairly intuitive operator precedence

rule to determine the order of evaluation when parentheses are not used. Unlike

C++, Java does not allow operator overloading for class types.

String Concatenation

With strings, the (+) operator performs concatenation, so that the code

String rug = "carpet";
String dog = "spot";
String mess = rug + dog;
String answer = mess + " will cost me " + 5 + " hours!";

would have the effect of making answer refer to the string

"carpetspot will cost me 5 hours!"

This example also shows how Java converts nonstring values (such as 5) into strings,

when they are involved in a string concatenation operation.

1.4. Expressions 25

Increment and Decrement Operators

Like C and C++, Java provides increment and decrement operators. Specifically, it

provides the plus-one increment (++) and decrement (−−) operators. If such an

operator is used in front of a variable reference, then 1 is added to (or subtracted

from) the variable and its value is read into the expression. If it is used after a

variable reference, then the value is first read and then the variable is incremented

or decremented by 1. So, for example, the code fragment

int i = 8;
int j = i++; // j becomes 8 and then i becomes 9
int k = ++i; // i becomes 10 and then k becomes 10
int m = i−−; // m becomes 10 and then i becomes 9
int n = 9 + −−i; // i becomes 8 and then n becomes 17

assigns 8 to j, 10 to k, 10 to m, 17 to n, and returns i to value 8, as noted.

Logical Operators

Java supports the standard comparisons operators between numbers:

< less than

<= less than or equal to

== equal to

!= not equal to

>= greater than or equal to

> greater than

The type of the result of any of these comparison is a boolean. Comparisons may

also be performed on char values, with inequalities determined according to the

underlying character codes.

For reference types, it is important to know that the operators == and != are

defined so that expression a == b is true if a and b both refer to the identical

object (or are both null). Most object types support an equals method, such that

a.equals(b) is true if a and b refer to what are deemed as “equivalent” instances for

that class (even if not the same instance); see Section 3.5 for further discussion.

Operators defined for boolean values are the following:

! not (prefix)

&& conditional and

| | conditional or

The boolean operators && and | | will not evaluate the second operand (to the right)

in their expression if it is not needed to determine the value of the expression. This

“short circuiting” feature is useful for constructing boolean expressions where we

first test that a certain condition holds (such as an array index being valid) and then

test a condition that could have otherwise generated an error condition had the prior

test not succeeded.

26 Chapter 1. Java Primer

Bitwise Operators

Java also provides the following bitwise operators for integers and booleans:

∼ bitwise complement (prefix unary operator)

& bitwise and

| bitwise or

ˆ bitwise exclusive-or

<< shift bits left, filling in with zeros

>> shift bits right, filling in with sign bit

>>> shift bits right, filling in with zeros

The Assignment Operator

The standard assignment operator in Java is “=”. It is used to assign a value to an

instance variable or local variable. Its syntax is as follows:

variable = expression

where variable refers to a variable that is allowed to be referenced by the statement

block containing this expression. The value of an assignment operation is the value

of the expression that was assigned. Thus, if j and k are both declared as type int,
it is correct to have an assignment statement like the following:

j = k = 25; // works because ’=’ operators are evaluated right-to-left

Compound Assignment Operators

Besides the standard assignment operator (=), Java also provides a number of other

assignment operators that combine a binary operation with an assignment. These

other kinds of operators are of the following form:

variable op= expression

where op is any binary operator. The above expression is generally equivalent to

variable = variable op expression

so that x ∗= 2 is equivalent to x = x ∗ 2. However, if variable contains an expres-

sion (for example, an array index), the expression is evaluated only once. Thus, the

code fragment

a[5] = 10;
j = 5;
a[j++] += 2; // not the same as a[j++] = a[j++] + 2

leaves a[5] with value 12 and j with value 6.

1.4. Expressions 27

Operator Precedence

Operators in Java are given preferences, or precedence, that determine the order in

which operations are performed when the absence of parentheses brings up eval-

uation ambiguities. For example, we need a way of deciding if the expression,

“5+2*3,” has value 21 or 11 (Java says it is 11). We show the precedence of the

operators in Java (which, incidentally, is the same as in C and C++) in Table 1.3.

Operator Precedence

Type Symbols

1 array index []
method call ()
dot operator .

2 postfix ops exp++ exp−−
prefix ops ++exp −−exp +exp −exp ˜exp !exp

cast (type) exp

3 mult./div. ∗ / %
4 add./subt. + −
5 shift << >> >>>
6 comparison < <= > >= instanceof
7 equality == !=
8 bitwise-and &
9 bitwise-xor ˆ

10 bitwise-or |
11 and &&
12 or | |
13 conditional booleanExpression ? valueIfTrue : valueIfFalse

14 assignment = += −= ∗= /= %= <<= >>= >>>= &= ˆ= |=

Table 1.3: The Java precedence rules. Operators in Java are evaluated according to

the ordering above if parentheses are not used to determine the order of evaluation.

Operators on the same line are evaluated in left-to-right order (except for assign-

ment and prefix operations, which are evaluated in right-to-left order), subject to

the conditional evaluation rule for boolean && and | | operations. The operations

are listed from highest to lowest precedence (we use exp to denote an atomic or

parenthesized expression). Without parenthesization, higher precedence operators

are performed before lower precedence operators.

We have now discussed almost all of the operators listed in Table 1.3. A notable

exception is the conditional operator, which involves evaluating a boolean expres-

sion and then taking on the appropriate value depending on whether this boolean

expression is true or false. (We discuss the use of the instanceof operator in the

next chapter.)

28 Chapter 1. Java Primer

1.4.3 Type Conversions

Casting is an operation that allows us to change the type of a value. In essence, we

can take a value of one type and cast it into an equivalent value of another type.

There are two forms of casting in Java: explicit casting and implicit casting.

Explicit Casting

Java supports an explicit casting syntax with the following form:

(type) exp

where type is the type that we would like the expression exp to have. This syntax

may only be used to cast from one primitive type to another primitive type, or

from one reference type to another reference type. We will discuss its use between

primitives here, and between reference types in Section 2.5.1.

Casting from an int to a double is known as a widening cast, as the double
type is more broad than the int type, and a conversion can be performed without

losing information. But a cast from a double to an int is a narrowing cast; we may

lose precision, as any fractional portion of the value will be truncated. For example,

consider the following:

double d1 = 3.2;
double d2 = 3.9999;
int i1 = (int) d1; // i1 gets value 3
int i2 = (int) d2; // i2 gets value 3
double d3 = (double) i2; // d3 gets value 3.0

Although explicit casting cannot directly convert a primitive type to a reference

type, or vice versa, there are other means for performing such type conversions.

We already discussed, as part of Section 1.3, conversions between Java’s primi-

tive types and corresponding wrapper classes (such as int and Integer). For con-

venience, those wrapper classes also provide static methods that convert between

their corresponding primitive type and String values.

For example, the Integer.toString method accepts an int parameter and returns

a String representation of that integer, while the Integer.parseInt method accepts a

String as a parameter and returns the corresponding int value that the string rep-

resents. (If that string does not represent an integer, a NumberFormatException
results.) We demonstrate their use as follows:

String s1 = "2014";
int i1 = Integer.parseInt(s1); // i1 gets value 2014
int i2 = −35;
String s2 = Integer.toString(i2); // s2 gets value ”-35”

Similar methods are supported by other wrapper types, such as Double.

1.4. Expressions 29

Implicit Casting

There are cases where Java will perform an implicit cast based upon the context

of an expression. For example, you can perform a widening cast between primitive

types (such as from an int to a double), without explicit use of the casting operator.

However, if attempting to do an implicit narrowing cast, a compiler error results.

For example, the following demonstrates both a legal and an illegal implicit cast

via assignment statements:

int i1 = 42;
double d1 = i1; // d1 gets value 42.0
i1 = d1; // compile error: possible loss of precision

Implicit casting also occurs when performing arithmetic operations involving a

mixture of numeric types. Most notably, when performing an operation with an in-

teger type as one operand and a floating-point type as the other operand, the integer

value is implicitly converted to a floating-point type before the operation is per-

formed. For example, the expression 3 + 5.7 is implicitly converted to 3.0 + 5.7
before computing the resulting double value of 8.7.

It is common to combine an explicit cast and an implicit cast to perform a

floating-point division on two integer operands. The expression (double) 7 / 4
produces the result 1.75, because operator precedence dictates that the cast happens

first, as ((double) 7) / 4, and thus 7.0 / 4, which implicitly becomes 7.0 / 4.0.

Note however that the expression, (double) (7 / 4) produces the result 1.0.

Incidentally, there is one situation in Java when only implicit casting is allowed,

and that is in string concatenation. Any time a string is concatenated with any object

or base type, that object or base type is automatically converted to a string. Explicit

casting of an object or base type to a string is not allowed, however. Thus, the

following assignments are incorrect:

String s = 22; // this is wrong!
String t = (String) 4.5; // this is wrong!
String u = "Value = " + (String) 13; // this is wrong!

To perform a conversion to a string, we must use the appropriate toString method

or perform an implicit cast via the concatenation operation. Thus, the following

statements are correct:

String s = Integer.toString(22); // this is good
String t = "" + 4.5; // correct, but poor style
String u = "Value = " + 13; // this is good

30 Chapter 1. Java Primer

1.5 Control Flow

Control flow in Java is similar to that of other high-level languages. We review the

basic structure and syntax of control flow in Java in this section, including method

returns, if statements, switch statements, loops, and restricted forms of “jumps”

(the break and continue statements).

1.5.1 The If and Switch Statements

In Java, conditionals work similarly to the way they work in other languages. They

provide a way to make a decision and then execute one or more different statement

blocks based on the outcome of that decision.

The If Statement

The syntax of a simple if statement is as follows:

if (booleanExpression)

trueBody

else
falseBody

where booleanExpression is a boolean expression and trueBody and falseBody are

each either a single statement or a block of statements enclosed in braces (“{” and

“}”). Note that, unlike some similar languages, the value tested by an if statement

in Java must be a boolean expression. In particular, it is definitely not an integer

expression. Nevertheless, as in other similar languages, the else part (and its asso-

ciated statement) in a Java if statement is optional. There is also a way to group a

number of boolean tests, as follows:

if (firstBooleanExpression)

firstBody

else if (secondBooleanExpression)

secondBody

else
thirdBody

If the first boolean expression is false, the second boolean expression will be tested,

and so on. An if statement can have an arbitrary number of else if parts. Braces

can be used for any or all statement bodies to define their extent.

1.5. Control Flow 31

As a simple example, a robot controller might have the following logic:

if (door.isClosed())
door.open();

advance();

Notice that the final command, advance(), is not part of the conditional body; it

will be executed unconditionally (although after opening a closed door).

We may nest one control structure within another, relying on explicit braces to

mark the extent of the various bodies if needed. Revisiting our robot example, here

is a more complex control that accounts for unlocking a closed door.

if (door.isClosed()) {
if (door.isLocked())
door.unlock();

door.open();
}
advance();

The logic expressed by this example can be diagrammed as a traditional flowchart,

as portrayed in Figure 1.4.

false

advance()

door.unlock()

door.open()

truefalse

true
door.isClosed()

door.isLocked()

Figure 1.4: A flowchart describing the logic of nested conditional statements.

32 Chapter 1. Java Primer

The following is an example of the nesting of if and else clauses.

if (snowLevel < 2) {
goToClass();
comeHome();
} else if (snowLevel < 5) {
goSledding();
haveSnowballFight();
} else
stayAtHome(); // single-statement body needs no { } braces

Switch Statements

Java provides for multiple-value control flow using the switch statement, which is

especially useful with enum types. The following is an indicative example (based

on a variable d of the Day enum type of Section 1.3).

switch (d) {
case MON:
System.out.println("This is tough.");
break;

case TUE:
System.out.println("This is getting better.");
break;

case WED:
System.out.println("Half way there.");
break;

case THU:
System.out.println("I can see the light.");
break;

case FRI:
System.out.println("Now we are talking.");
break;

default:
System.out.println("Day off!");

}
The switch statement evaluates an integer, string, or enum expression and

causes control flow to jump to the code location labeled with the value of this

expression. If there is no matching label, then control flow jumps to the location la-

beled “default.” This is the only explicit jump performed by the switch statement,

however, so flow of control “falls through” to the next case if the code for a case is

not ended with a break statement (which causes control flow to jump to the end).

1.5. Control Flow 33

1.5.2 Loops

Another important control flow mechanism in a programming language is looping.

Java provides for three types of loops.

While Loops

The simplest kind of loop in Java is a while loop. Such a loop tests that a certain

condition is satisfied and will perform the body of the loop each time this condition

is evaluated to be true. The syntax for such a conditional test before a loop body

is executed is as follows:

while (booleanExpression)

loopBody

As with an if statement, booleanExpression, can be an arbitrary boolean expres-

sion, and the body of the loop can be an arbitrary block of code (including nested

control structures). The execution of a while loop begins with a test of the boolean

condition. If that condition evaluates to true, the body of the loop is performed.

After each execution of the body, the loop condition is retested and if it evaluates

to true, another iteration of the body is performed. If the condition evaluates to

false when tested (assuming it ever does), the loop is exited and the flow of control

continues just beyond the body of the loop.

As an example, here is a loop that advances an index through an array named

data until finding an entry with value target or reaching the end of the array.

int j = 0;
while ((j < data.length) && (data[j] != target))
j++;

When this loop terminates, variable j’s value will be the index of the leftmost occur-

rence of target, if found, or otherwise the length of the array (which is recognizable

as an invalid index to indicate failure of the search). The correctness of the loop

relies on the short-circuiting behavior of the logical && operator, as described on

page 25. We intentionally test j < data.length to ensure that j is a valid index,

prior to accessing element data[j]. Had we written that compound condition with

the opposite order, the evaluation of data[j] would eventually throw an ArrayIndex-
OutOfBoundsException if the target is not found. (See Section 2.4 for discussion

of exceptions.)

We note that a while loop will execute its body zero times in the case that the

initial condition fails. For example, our above loop will not increment the value of j
if data[0] matches the target (or if the array has length 0).

34 Chapter 1. Java Primer

Do-While Loops

Java has another form of the while loop that allows the boolean condition to be

checked at the end of each pass of the loop rather than before each pass. This form

is known as a do-while loop, and has syntax shown below:

do
loopBody

while (booleanExpression)

A consequence of the do-while loop is that its body always executes at least

once. (In contrast, a while loop will execute zero times if the initial condition fails.)

This form is most useful for a situation in which the condition is ill-defined until

after at least one pass. Consider, for example, that we want to prompt the user for

input and then do something useful with that input. (We discuss Java input and

output in more detail in Section 1.6.) A possible condition, in this case, for exiting

the loop is when the user enters an empty string. However, even in this case, we

may want to handle that input and inform the user that he or she has quit. The

following example illustrates this case:

String input;
do {
input = getInputString();
handleInput(input);
} while (input.length() > 0);

For Loops

Another kind of loop is the for loop. Java supports two different styles of for loop.

The first, which we will refer to as the “traditional” style, is patterned after a similar

syntax as for loops in the C and C++ languages. The second style, which is known

as the “for-each” loop, was introduced into Java in 2004 as part of the SE 5 release.

This style provides a more succinct syntax for iterating through elements of an

array or an appropriate container type.

The traditional for-loop syntax consists of four sections—an initialization, a

boolean condition, an increment statement, and the body—although any of those

can be empty. The structure is as follows:

for (initialization; booleanCondition; increment)

loopBody

For example, the most common use of a for loop provides repetition based on an

integer index, such as the following:

for (int j=0; j < n; j++)
// do something

1.5. Control Flow 35

The behavior of a for loop is very similar to the following while loop equivalent:

{
initialization;

while (booleanCondition) {
loopBody;

increment;

}
}

The initialization section will be executed once, before any other portion of the loop

begins. Traditionally, it is used to either initialize existing variables, or to declare

and initialize new variables. Note that any variables declared in the initialization

section only exist in scope for the duration of the for loop.

The booleanCondition will be evaluated immediately before each potential it-

eration of the loop. It should be expressed similar to a while-loop condition, in

that if it is true, the loop body is executed, and if false, the loop is exited and the

program continues to the next statement beyond the for-loop body.

The increment section is executed immediately after each iteration of the formal

loop body, and is traditionally used to update the value of the primary loop vari-

able. However, the incrementing statement can be any legal statement, allowing

significant flexibility in coding.

As a concrete example, here is a method that computes the sum of an array of

double values using a for loop:

public static double sum(double[] data) {
double total = 0;
for (int j=0; j < data.length; j++) // note the use of length
total += data[j];

return total;
}

As one further example, the following method computes the maximum value

within a (nonempty) array.

public static double max(double[] data) {
double currentMax = data[0]; // assume first is biggest (for now)
for (int j=1; j < data.length; j++) // consider all other entries
if (data[j] > currentMax) // if data[j] is biggest thus far...
currentMax = data[j]; // record it as the current max

return currentMax;
}

Notice that a conditional statement is nested within the body of the loop, and that no

explicit “{” and “}” braces are needed for the loop body, as the entire conditional

construct serves as a single statement.

36 Chapter 1. Java Primer

For-Each Loop

Since looping through elements of a collection is such a common construct, Java

provides a shorthand notation for such loops, called the for-each loop. The syntax

for such a loop is as follows:

for (elementType name : container)

loopBody

where container is an array of the given elementType (or a collection that imple-

ments the Iterable interface, as we will later discuss in Section 7.4.1).

Revisiting a previous example, the traditional loop for computing the sum of

elements in an array of double values can be written as:

public static double sum(double[] data) {
double total = 0;
for (double val : data) // Java’s for-each loop style
total += val;

return total;
}

When using a for-each loop, there is no explicit use of array indices. The loop

variable represents one particular element of the array. However, within the body

of the loop, there is no designation as to which element it is.

It is also worth emphasizing that making an assignment to the loop variable has

no effect on the underlying array. Therefore, the following method is an invalid

attempt to scale all values of a numeric array.

public static void scaleBad(double[] data, double factor) {
for (double val : data)
val ∗= factor; // changes local variable only

}

In order to overwrite the values in the cells of an array, we must make use of

indices. Therefore, this task is best solved with a traditional for loop, such as the

following:

public static void scaleGood(double[] data, double factor) {
for (int j=0; j < data.length; j++)
data[j] ∗= factor; // overwrites cell of the array

}

1.5. Control Flow 37

1.5.3 Explicit Control-Flow Statements

Java also provides statements that cause explicit change in the flow of control of a

program.

Returning from a Method

If a Java method is declared with a return type of void, then flow of control returns

when it reaches the last line of code in the method or when it encounters a return
statement (with no argument). If a method is declared with a return type, however,

the method must exit by returning an appropriate value as an argument to a return
statement. It follows that the return statement must be the last statement executed

in a method, as the rest of the code will never be reached.

Note that there is a significant difference between a statement being the last line

of code that is executed in a method and the last line of code in the method itself.

The following (correct) example illustrates returning from a method:

public double abs(double value) {
if (value < 0) // value is negative,
return −value; // so return its negation

return value; // return the original nonnegative value
}
In the example above, the line return −value; is clearly not the last line of

code that is written in the method, but it may be the last line that is executed (if the

original value is negative). Such a statement explicitly interrupts the flow of control

in the method. There are two other such explicit control-flow statements, which are

used in conjunction with loops and switch statements.

The break Statement

We first introduced use of the break command, in Section 1.5.1, to exit from the

body of a switch statement. More generally, it can be used to “break” out of the

innermost switch, for, while, or do-while statement body. When it is executed, a

break statement causes the flow of control to jump to the next line after the loop or

switch to the body containing the break.

The continue Statement

A continue statement can be used within a loop. It causes the execution to skip

over the remaining steps of the current iteration of the loop body, but then, unlike

the break statement, the flow of control returns to the top of the loop, assuming its

condition remains satisfied.

38 Chapter 1. Java Primer

1.6 Simple Input and Output

Java provides a rich set of classes and methods for performing input and output

within a program. There are classes in Java for doing graphical user interface de-

sign, complete with pop-up windows and pull-down menus, as well as methods for

the display and input of text and numbers. Java also provides methods for deal-

ing with graphical objects, images, sounds, Web pages, and mouse events (such

as clicks, mouse overs, and dragging). Moreover, many of these input and output

methods can be used in either stand-alone programs or in applets.

Unfortunately, going into the details on how all of the methods work for con-

structing sophisticated graphical user interfaces is beyond the scope of this book.

Still, for the sake of completeness, we describe how simple input and output can be

done in Java in this section.

Simple input and output in Java occurs within the Java console window. De-

pending on the Java environment we are using, this window is either a special

pop-up window that can be used for displaying and inputting text, or a window

used to issue commands to the operating system (such windows are referred to as

shell windows, command windows, or terminal windows).

Simple Output Methods

Java provides a built-in static object, called System.out, that performs output to

the “standard output” device. Most operating system shells allow users to redirect

standard output to files or even as input to other programs, but the default out-

put is to the Java console window. The System.out object is an instance of the

java.io.PrintStream class. This class defines methods for a buffered output stream,

meaning that characters are put in a temporary location, called a buffer, which is

then emptied when the console window is ready to print characters.

Specifically, the java.io.PrintStream class provides the following methods for

performing simple output (we use baseType here to refer to any of the possible base

types):

print(String s): Print the string s.

print(Object o): Print the object o using its toString method.

print(baseType b): Print the base type value b.

println(String s): Print the string s, followed by the newline character.

println(Object o): Similar to print(o), followed by the newline character.

println(baseType b): Similar to print(b), followed by the newline character.

1.6. Simple Input and Output 39

An Output Example

Consider, for example, the following code fragment:

System.out.print("Java values: ");
System.out.print(3.1416);
System.out.print(',');
System.out.print(15);
System.out.println(" (double,char,int).");

When executed, this fragment will output the following in the Java console window:

Java values: 3.1416,15 (double,char,int).

Simple Input Using the java.util.Scanner Class

Just as there is a special object for performing output to the Java console window,

there is also a special object, called System.in, for performing input from the Java

console window. Technically, the input is actually coming from the “standard in-

put” device, which by default is the computer keyboard echoing its characters in

the Java console. The System.in object is an object associated with the standard

input device. A simple way of reading input with this object is to use it to create a

Scanner object, using the expression

new Scanner(System.in)

The Scanner class has a number of convenient methods that read from the given

input stream, one of which is demonstrated in the following program:

import java.util.Scanner; // loads Scanner definition for our use

public class InputExample {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("Enter your age in years: ");
double age = input.nextDouble();
System.out.print("Enter your maximum heart rate: ");
double rate = input.nextDouble();
double fb = (rate − age) ∗ 0.65;
System.out.println("Your ideal fat-burning heart rate is " + fb);
}
}

When executed, this program could produce the following on the Java console:

Enter your age in years: 21

Enter your maximum heart rate: 220

Your ideal fat-burning heart rate is 129.35

40 Chapter 1. Java Primer

java.util.Scanner Methods

The Scanner class reads the input stream and divides it into tokens, which are

strings of characters separated by delimiters. A delimiter is a special separating

string, and the default delimiter is whitespace. That is, tokens are separated by

strings of spaces, tabs, and newlines, by default. Tokens can either be read immedi-

ately as strings or a Scanner object can convert a token to a base type, if the token

has the right form. Specifically, the Scanner class includes the following methods

for dealing with tokens:

hasNext(): Return true if there is another token in the input stream.

next(): Return the next token string in the input stream; generate

an error if there are no more tokens left.

hasNextType(): Return true if there is another token in the input stream

and it can be interpreted as the corresponding base type,

Type, where Type can be Boolean, Byte, Double, Float,
Int, Long, or Short.

nextType(): Return the next token in the input stream, returned as

the base type corresponding to Type; generate an error if

there are no more tokens left or if the next token cannot

be interpreted as a base type corresponding to Type.

Additionally, Scanner objects can process input line by line, ignoring delim-

iters, and even look for patterns within lines while doing so. The methods for

processing input in this way include the following:

hasNextLine(): Returns true if the input stream has another line of text.

nextLine(): Advances the input past the current line ending and re-

turns the input that was skipped.

findInLine(String s): Attempts to find a string matching the (regular expres-

sion) pattern s in the current line. If the pattern is found,

it is returned and the scanner advances to the first char-

acter after this match. If the pattern is not found, the

scanner returns null and doesn’t advance.

These methods can be used with those above, as in the following:

Scanner input = new Scanner(System.in);
System.out.print("Please enter an integer: ");
while (!input.hasNextInt()) {
input.nextLine();
System.out.print("Invalid integer; please enter an integer: ");
}
int i = input.nextInt();

1.7. An Example Program 41

1.7 An Example Program

In this section, we present another example of a Java class, which illustrates many

of the constructs defined thus far in this chapter. This CreditCard class defines

credit card objects that model a simplified version of traditional credit cards. They

store information about the customer, issuing bank, account identifier, credit limit,

and current balance. They do not charge interest or late payments, but they do

restrict charges that would cause a card’s balance to go over its credit limit. We

also provide a static main method as part of this class to demonstrate its use.

The primary definition of the CreditCard class is given in Code Fragment 1.5.

We defer until Code Fragment 1.6 the presentation of the main method, and in Code

Fragment 1.7 we show the output produced by the main method. Highlights of

this class, and underlying techniques that are demonstrated, include:

• The class defines five instance variables (lines 3–7), four of which are de-

clared as private and one that is protected. (We will take advantage of the

protected balance member when introducing inheritance in the next chap-

ter.)

• The class defines two different constructor forms. The first version (begin-

ning at line 9) requires five parameters, including an explicit initial balance

for the account. The second constructor (beginning at line 16) accepts only

four parameters; it relies on use of the special this keyword to invoke the

five-parameter version, with an explicit initial balance of zero (a reasonable

default for most new accounts).

• The class defines five basic accessor methods (lines 20–24), and two update

methods (charge and makePayment). The charge method relies on condi-

tional logic to ensure that a charge is rejected if it would have resulted in the

balance exceeding the credit limit on the card.

• We provide a static utility method, named printSummary, in lines 37–43.

• The main method includes an array, named wallet, storing CreditCard in-

stances. The main method also demonstrates a while loop, a traditional

for loop, and a for-each loop over the contents of the wallet.

• The main method demonstrates the syntax for calling traditional (nonstatic)

methods—charge, getBalance, and makePayment—as well as the syntax for

invoking the static printSummary method.

42 Chapter 1. Java Primer

1 public class CreditCard {
2 // Instance variables:
3 private String customer; // name of the customer (e.g., ”John Bowman”)
4 private String bank; // name of the bank (e.g., ”California Savings”)
5 private String account; // account identifier (e.g., ”5391 0375 9387 5309”)
6 private int limit; // credit limit (measured in dollars)
7 protected double balance; // current balance (measured in dollars)
8 // Constructors:
9 public CreditCard(String cust, String bk, String acnt, int lim, double initialBal) {

10 customer = cust;
11 bank = bk;
12 account = acnt;
13 limit = lim;
14 balance = initialBal;
15 }
16 public CreditCard(String cust, String bk, String acnt, int lim) {
17 this(cust, bk, acnt, lim, 0.0); // use a balance of zero as default
18 }
19 // Accessor methods:
20 public String getCustomer() { return customer; }
21 public String getBank() { return bank; }
22 public String getAccount() { return account; }
23 public int getLimit() { return limit; }
24 public double getBalance() { return balance; }
25 // Update methods:
26 public boolean charge(double price) { // make a charge
27 if (price + balance > limit) // if charge would surpass limit
28 return false; // refuse the charge
29 // at this point, the charge is successful
30 balance += price; // update the balance
31 return true; // announce the good news
32 }
33 public void makePayment(double amount) { // make a payment
34 balance −= amount;
35 }
36 // Utility method to print a card's information
37 public static void printSummary(CreditCard card) {
38 System.out.println("Customer = " + card.customer);
39 System.out.println("Bank = " + card.bank);
40 System.out.println("Account = " + card.account);
41 System.out.println("Balance = " + card.balance); // implicit cast
42 System.out.println("Limit = " + card.limit); // implicit cast
43 }
44 // main method shown on next page...
45 }

Code Fragment 1.5: The CreditCard class.

1.7. An Example Program 43

1 public static void main(String[] args) {
2 CreditCard[] wallet = new CreditCard[3];
3 wallet[0] = new CreditCard("John Bowman", "California Savings",
4 "5391 0375 9387 5309", 5000);
5 wallet[1] = new CreditCard("John Bowman", "California Federal",
6 "3485 0399 3395 1954", 3500);
7 wallet[2] = new CreditCard("John Bowman", "California Finance",
8 "5391 0375 9387 5309", 2500, 300);
9

10 for (int val = 1; val <= 16; val++) {
11 wallet[0].charge(3∗val);
12 wallet[1].charge(2∗val);
13 wallet[2].charge(val);
14 }
15

16 for (CreditCard card : wallet) {
17 CreditCard.printSummary(card); // calling static method
18 while (card.getBalance() > 200.0) {
19 card.makePayment(200);
20 System.out.println("New balance = " + card.getBalance());
21 }
22 }
23 }

Code Fragment 1.6: The main method of the CreditCard class.

Customer = John Bowman
Bank = California Savings
Account = 5391 0375 9387 5309
Balance = 408.0
Limit = 5000
New balance = 208.0
New balance = 8.0
Customer = John Bowman
Bank = California Federal
Account = 3485 0399 3395 1954
Balance = 272.0
Limit = 3500
New balance = 72.0
Customer = John Bowman
Bank = California Finance
Account = 5391 0375 9387 5309
Balance = 436.0
Limit = 2500
New balance = 236.0
New balance = 36.0

Code Fragment 1.7: Output from the Test class.

44 Chapter 1. Java Primer

1.8 Packages and Imports

The Java language takes a general and useful approach to the organization of classes

into programs. Every stand-alone public class defined in Java must be given in a

separate file. The file name is the name of the class with a .java extension. So

a class declared as public class Window is defined in a file Window.java. That

file may contain definitions for other stand-alone classes, but none of them may be

declared with public visibility.

To aid in the organization of large code repository, Java allows a group of re-

lated type definitions (such as classes and enums) to be grouped into what is known

as a package. For types to belong to a package named packageName, their source

code must all be located in a directory named packageName and each file must

begin with the line:

package packageName;

By convention, most package names are lowercased. For example, we might define

an architecture package that defines classes such as Window, Door, and Room.

Public definitions within a file that does not have an explicit package declaration

are placed into what is known as the default package.

To refer to a type within a named package, we may use a fully qualified name

based on dot notation, with that type treated as an attribute of the package. For

example, we might declare a variable with architecture.Window as its type.

Packages can be further organized hierarchically into subpackages. Code for

classes in a subpackage must be located within a subdirectory of the package’s

directory, and qualified names for subpackages rely on further use of dot notation.

For example, there is a java.util.zip subpackage (with support for working with

ZIP compression) within the java.util package, and the Deflater class within that

subpackage is fully qualified as java.util.zip.Deflater.
There are many advantages to organizing classes into packages, most notably:

• Packages help us avoid the pitfalls of name conflicts. If all type defini-

tions were in a single package, there could be only one public class named

Window. But with packages, we can have an architecture.Window class that

is independent from a gui.Window class for graphical user interfaces.

• It is much easier to distribute a comprehensive set of classes for other pro-

grammers to use when those classes are packaged.

• When type definitions have a related purpose, it is often easier for other pro-

grammers to find them in a large library and to better understand their coor-

dinated use when they are grouped as a package.

• Classes within the same package have access to any of each others’ members

having public, protected, or default visibility (i.e., anything but private).

1.8. Packages and Imports 45

Import Statements

As noted on the previous page, we may refer to a type within a package using its

fully qualified name. For example, the Scanner class, introduced in Section 1.6,

is defined in the java.util package, and so we may refer to it as java.util.Scanner.
We could declare and construct a new instance of that class in a project using the

following statement:

java.util.Scanner input = new java.util.Scanner(System.in);

However, all the extra typing needed to refer to a class outside of the current pack-

age can get tiring. In Java, we can use the import keyword to include external

classes or entire packages in the current file. To import an individual class from a

specific package, we type the following at the beginning of the file:

import packageName.className;

For example, in Section 1.6 we imported the Scanner class from the java.util
package with the command:

import java.util.Scanner;

and then we were allowed to use the less burdensome syntax:

Scanner input = new Scanner(System.in);

Note that it is illegal to import a class with the above syntax if a similarly

named class is defined elsewhere in the current file, or has already been imported

from another package. For example, we could not simultaneously import both

architecture.Window and gui.Window to use with the unqualified name Window.

Importing a Whole Package

If we know we will be using many definitions from the same package, we can

import all of them using an asterisk character (∗) to denote a wildcard, as in the

following syntax:

import packageName.∗;

If a locally defined name conflicts with one in a package being imported in this

way, the locally defined one retains the unqualified name. If there is a name conflict

between definitions in two different packages being imported this way, neither of

the conflicting names can be used without qualification. For example, if we import

the following hypothetical packages:

import architecture.∗; // which we assume includes a Window class
import gui.∗; // which we assume includes a Window class

we must still use the qualified names architecture.Window and gui.Window in the

rest of our program.

46 Chapter 1. Java Primer

1.9 Software Development

Traditional software development involves several phases. Three major steps are:

1. Design

2. Coding

3. Testing and Debugging

In this section, we briefly discuss the role of these phases, and we introduce several

good practices for programming in Java, including coding style, naming conven-

tions, formal documentation, and testing.

1.9.1 Design

For object-oriented programming, the design step is perhaps the most important

phase in the process of developing software. It is in the design step that we decide

how to divide the workings of our program into classes, when we decide how these

classes will interact, what data each will store, and what actions each will perform.

Indeed, one of the main challenges that beginning programmers face is deciding

what classes to define to do the work of their program. While general prescrip-

tions are hard to come by, there are some rules of thumb that we can apply when

determining how to define our classes:

• Responsibilities: Divide the work into different actors, each with a different

responsibility. Try to describe responsibilities using action verbs. These

actors will form the classes for the program.

• Independence: Define the work for each class to be as independent from

other classes as possible. Subdivide responsibilities between classes so that

each class has autonomy over some aspect of the program. Give data (as in-

stance variables) to the class that has jurisdiction over the actions that require

access to this data.

• Behaviors: Define the behaviors for each class carefully and precisely, so

that the consequences of each action performed by a class will be well un-

derstood by other classes that interact with it. These behaviors will define

the methods that this class performs, and the set of behaviors for a class form

the protocol by which other pieces of code will interact with objects from the

class.

Defining the classes, together with their instance variables and methods, are key

to the design of an object-oriented program. A good programmer will naturally

develop greater skill in performing these tasks over time, as experience teaches

him or her to notice patterns in the requirements of a program that match patterns

that he or she has seen before.

1.9. Software Development 47

A common tool for developing an initial high-level design for a project is the

use of CRC cards. Class-Responsibility-Collaborator (CRC) cards are simple in-

dex cards that subdivide the work required of a program. The main idea behind this

tool is to have each card represent a component, which will ultimately become a

class in the program. We write the name of each component on the top of an index

card. On the left-hand side of the card, we begin writing the responsibilities for

this component. On the right-hand side, we list the collaborators for this compo-

nent, that is, the other components that this component will have to interact with to

perform its duties.

The design process iterates through an action/actor cycle, where we first iden-

tify an action (that is, a responsibility), and we then determine an actor (that is, a

component) that is best suited to perform that action. The design is complete when

we have assigned all actions to actors. In using index cards for this process (rather

than larger pieces of paper), we are relying on the fact that each component should

have a small set of responsibilities and collaborators. Enforcing this rule helps keep

the individual classes manageable.

As the design takes form, a standard approach to explain and document the

design is the use of UML (Unified Modeling Language) diagrams to express the

organization of a program. UML diagrams are a standard visual notation to express

object-oriented software designs. Several computer-aided tools are available to

build UML diagrams. One type of UML figure is known as a class diagram.

An example of a class diagram is given in Figure 1.5, corresponding to our

CreditCard class from Section 1.7. The diagram has three portions, with the first

designating the name of the class, the second designating the recommended in-

stance variables, and the third designating the recommended methods of the class.

The type declarations of variables, parameters, and return values are specified in

the appropriate place following a colon, and the visibility of each member is des-

ignated on its left, with the “+” symbol for public visibility, the “#” symbol for

protected visibility, and the “−” symbol for private visibility.

fields:

methods:

class:

− limit : int
balance : double

+ getBalance() : double
+ getLimit() : int
+ getAccount() : String

− customer : String

− account : String
− bank : String

+ getCustomer() : String
+ getBank() : String
+ charge(price : double) : boolean
+ makePayment(amount : double)

CreditCard

Figure 1.5: A UML Class diagram for the CreditCard class from Section 1.7.

48 Chapter 1. Java Primer

1.9.2 Pseudocode

As an intermediate step before the implementation of a design, programmers are

often asked to describe algorithms in a way that is intended for human eyes only.

Such descriptions are called pseudocode. Pseudocode is not a computer program,

but is more structured than usual prose. It is a mixture of natural language and

high-level programming constructs that describe the main ideas behind a generic

implementation of a data structure or algorithm. Because pseudocode is designed

for a human reader, not a computer, we can communicate high-level ideas without

being burdened by low-level implementation details. At the same time, we should

not gloss over important steps. Like many forms of human communication, finding

the right balance is an important skill that is refined through practice.

There really is no precise definition of the pseudocode language. At the same

time, to help achieve clarity, pseudocode mixes natural language with standard

programming language constructs. The programming language constructs that we

choose are those consistent with modern high-level languages such as C, C++, and

Java. These constructs include the following:

• Expressions: We use standard mathematical symbols to express numeric and

boolean expressions. To be consistent with Java, we use the equal sign “=”

as the assignment operator in assignment statements, and the “==” relation

to test equivalence in boolean expressions.

• Method declarations: Algorithm name(param1, param2, . . .) declares new

method “name” and its parameters.

• Decision structures: if condition then true-actions [else false-actions]. We

use indentation to indicate what actions should be included in the true-actions

and false-actions.

• While-loops: while condition do actions. We use indentation to indicate

what actions should be included in the loop actions.

• Repeat-loops: repeat actions until condition. We use indentation to indicate

what actions should be included in the loop actions.

• For-loops: for variable-increment-definition do actions. We use indentation

to indicate what actions should be included among the loop actions.

• Array indexing: A[i] represents the i th cell in the array A. The cells of an

n-celled array A are indexed from A[0] to A[n−1] (consistent with Java).

• Method calls: object.method(args); object is optional if it is understood.

• Method returns: return value. This operation returns the value specified to

the method that called this one.

• Comments: { Comment goes here. }. We enclose comments in braces.

1.9. Software Development 49

1.9.3 Coding

One of the key steps in implementing an object-oriented program is coding the

descriptions of classes and their respective data and methods. In order to accelerate

the development of this skill, we will discuss various design patterns for designing

object-oriented programs (see Section 2.1.3) at various points throughout this text.

These patterns provide templates for defining classes and the interactions between

these classes.

Once we have settled on a design for the classes or our program and their re-

sponsibilities, and perhaps drafted pseudocode for their behaviors, we are ready to

begin the actual coding on a computer. We type the Java source code for the classes

of our program by using either an independent text editor (such as emacs, WordPad,

or vi), or the editor embedded in an integrated development environment (IDE),

such as Eclipse.

Once we have completed coding for a class (or package), we compile this file

into working code by invoking a compiler. If we are not using an IDE, then we

compile our program by calling a program, such as javac, on our file. If we are

using an IDE, then we compile our program by clicking the appropriate compila-

tion button. If we are fortunate, and our program has no syntax errors, then this

compilation process will create files with a “.class” extension.

If our program contains syntax errors, then these will be identified, and we will

have to go back into our editor to fix the offending lines of code. Once we have

eliminated all syntax errors, and created the appropriate compiled code, we can run

our program by either invoking a command, such as “java” (outside an IDE), or

by clicking on the appropriate “run” button (within an IDE). When a Java program

is run in this way, the runtime environment locates the directories containing the

named class and any other classes that are referenced from this class according to

a special operating system environment variable named “CLASSPATH.” This vari-

able defines an order of directories in which to search, given as a list of directories,

which are separated by colons in Unix/Linux or semicolons in DOS/Windows. An

example CLASSPATH assignment in the DOS/Windows operating system could

be the following:

SET CLASSPATH=.;C:\java;C:\Program Files\Java\

Whereas an example CLASSPATH assignment in the Unix/Linux operating system

could be the following:

setenv CLASSPATH ".:/usr/local/java/lib:/usr/netscape/classes"

In both cases, the dot (“.”) refers to the current directory in which the runtime

environment is invoked.

50 Chapter 1. Java Primer

1.9.4 Documentation and Style

Javadoc

In order to encourage good use of block comments and the automatic production of

documentation, the Java programming environment comes with a documentation

production program called javadoc. This program takes a collection of Java source

files that have been commented using certain keywords, called tags, and it produces

a series of HTML documents that describe the classes, methods, variables, and

constants contained in these files. As an example, Figure 1.6 shows a portion of the

documentation generated for our CreditCard class.

Each javadoc comment is a block comment that starts with “/**” and ends with

“*/”, and each line between these two can begin with a single asterisk, “*”, which

is ignored. The block comment is assumed to start with a descriptive sentence,

which is followed by special lines that begin with javadoc tags. A block comment

that comes just before a class definition, instance variable declaration, or method

definition is processed by javadoc into a comment about that class, variable, or

method. The primary javadoc tags that we use are the following:

• @author text: Identifies each author (one per line) for a class.

• @throws exceptionName description: Identifies an error condition that is

signaled by this method (see Section 2.4).

• @param parameterName description: Identifies a parameter accepted by this

method.

• @return description: Describes the return type and its range of values for a

method.

There are other tags as well; the interested reader is referred to online documen-

tation for javadoc for further information. For space reasons, we cannot always

include javadoc-style comments in all the example programs included in this book,

but we include such a sample in Code Fragment 1.8, and within the online code at

the website that accompanies this book.

Figure 1.6: Documentation rendered by javadoc for the CreditCard.charge method.

1.9. Software Development 51

1 /∗∗
2 ∗ A simple model for a consumer credit card.
3 ∗

4 ∗ @author Michael T. Goodrich
5 ∗ @author Roberto Tamassia
6 ∗ @author Michael H. Goldwasser
7 ∗/
8 public class CreditCard {
9 /∗∗

10 ∗ Constructs a new credit card instance.
11 ∗ @param cust the name of the customer (e.g., ”John Bowman”)
12 ∗ @param bk the name of the bank (e.g., ”California Savings”)
13 ∗ @param acnt the account identifier (e.g., ”5391 0375 9387 5309”)
14 ∗ @param lim the credit limit (measured in dollars)
15 ∗ @param initialBal the initial balance (measured in dollars)
16 ∗/
17 public CreditCard(String cust, String bk, String acnt, int lim, double initialBal) {
18 customer = cust;
19 bank = bk;
20 account = acnt;
21 limit = lim;
22 balance = initialBal;
23 }
24

25 /∗∗
26 ∗ Charges the given price to the card, assuming sufficient credit limit.
27 ∗ @param price the amount to be charged
28 ∗ @return true if charge was accepted; false if charge was denied
29 ∗/
30 public boolean charge(double price) { // make a charge
31 if (price + balance > limit) // if charge would surpass limit
32 return false; // refuse the charge
33 // at this point, the charge is successful
34 balance += price; // update the balance
35 return true; // announce the good news
36 }
37
38 /∗∗
39 ∗ Processes customer payment that reduces balance.
40 ∗ @param amount the amount of payment made
41 ∗/
42 public void makePayment(double amount) { // make a payment
43 balance −= amount;
44 }
45 // remainder of class omitted...

Code Fragment 1.8: A portion of the CreditCard class definition, originally from

Code Fragment 1.5, with javadoc-style comments included.

52 Chapter 1. Java Primer

Readability and Programming Conventions

Programs should be made easy to read and understand. Good programmers should

therefore be mindful of their coding style, and develop a style that communicates

the important aspects of a program’s design for both humans and computers. Much

has been written about good coding style, with some of the main principles being

the following:

• Use meaningful names for identifiers. Try to choose names that can be read

aloud, and choose names that reflect the action, responsibility, or data each

identifier is naming. The tradition in most Java circles is to capitalize the first

letter of each word in an identifier, except for the first word for a variable

or method name. By this convention, “Date,” “Vector,” “DeviceManager”
would identify classes, and “isFull(),” “insertItem(),” “studentName,” and

“studentHeight” would respectively identify methods and variables.

• Use named constants or enum types instead of literals. Readability, robust-

ness, and modifiability are enhanced if we include a series of definitions of

named constant values in a class definition. These can then be used within

this class and others to refer to special values for this class. The tradition in

Java is to fully capitalize such constants, as shown below:

public class Student {
public static final int MIN CREDITS = 12; // min credits per term
public static final int MAX CREDITS = 24; // max credits per term
public enum Year {FRESHMAN, SOPHOMORE, JUNIOR, SENIOR};

// Instance variables, constructors, and method definitions go here...
}

• Indent statement blocks. Typically programmers indent each statement block

by 4 spaces; in this book we typically use 2 spaces, however, to avoid having

our code overrun the book’s margins.

• Organize each class in the following order:

1. Constants

2. Instance variables

3. Constructors

4. Methods

We note that some Java programmers prefer to put instance variable defini-

tions last. We put them earlier so that we can read each class sequentially

and understand the data each method is working with.

• Use comments that add meaning to a program and explain ambiguous or

confusing constructs. In-line comments are good for quick explanations and

do not need to be sentences. Block comments are good for explaining the

purpose of a method and complex code sections.

1.9. Software Development 53

1.9.5 Testing and Debugging

Testing is the process of experimentally checking the correctness of a program,

while debugging is the process of tracking the execution of a program and discov-

ering the errors in it. Testing and debugging are often the most time-consuming

activity in the development of a program.

Testing

A careful testing plan is an essential part of writing a program. While verifying the

correctness of a program over all possible inputs is usually infeasible, we should

aim at executing the program on a representative subset of inputs. At the very

minimum, we should make sure that every method of a program is tested at least

once (method coverage). Even better, each code statement in the program should

be executed at least once (statement coverage).

Programs often tend to fail on special cases of the input. Such cases need to be

carefully identified and tested. For example, when testing a method that sorts (that

is, puts in order) an array of integers, we should consider the following inputs:

• The array has zero length (no elements).

• The array has one element.

• All the elements of the array are the same.

• The array is already sorted.

• The array is reverse sorted.

In addition to special inputs to the program, we should also consider special

conditions for the structures used by the program. For example, if we use an array to

store data, we should make sure that boundary cases, such as inserting or removing

at the beginning or end of the subarray holding data, are properly handled.

While it is essential to use handcrafted test suites, it is also advantageous to run

the program on a large collection of randomly generated inputs. The Random class

in the java.util package provides several means for generating pseudorandom

numbers.

There is a hierarchy among the classes and methods of a program induced by

the caller-callee relationship. Namely, a method A is above a method B in the

hierarchy if A calls B. There are two main testing strategies, top-down testing and

bottom-up testing, which differ in the order in which methods are tested.

Top-down testing proceeds from the top to the bottom of the program hierar-

chy. It is typically used in conjunction with stubbing, a boot-strapping technique

that replaces a lower-level method with a stub, a replacement for the method that

simulates the functionality of the original. For example, if method A calls method

B to get the first line of a file, when testing A we can replace B with a stub that

returns a fixed string.

54 Chapter 1. Java Primer

Bottom-up testing proceeds from lower-level methods to higher-level methods.

For example, bottom-level methods, which do not invoke other methods, are tested

first, followed by methods that call only bottom-level methods, and so on. Similarly

a class that does not depend upon any other classes can be tested before another

class that depends on the former. This form of testing is usually described as unit

testing, as the functionality of a specific component is tested in isolation of the

larger software project. If used properly, this strategy better isolates the cause of

errors to the component being tested, as lower-level components upon which it

relies should have already been thoroughly tested.

Java provides several forms of support for automated testing. We have already

discussed how a class’s static main method can be repurposed to perform tests of

the functionality of that class (as was done in Code 1.6 for the CreditCard class).

Such a test can be executed by invoking the Java virtual machine directly on this

secondary class, rather than on the primary class for the entire application. When

Java is started on the primary class, any code within such secondary main methods

will be ignored.

More robust support for automation of unit testing is provided by the JUnit

framework, which is not part of the standard Java toolkit but freely available at

www.junit.org. This framework allows the grouping of individual test cases into

larger test suites, and provides support for executing those suites, and reporting or

analyzing the results of those tests. As software is maintained, regression testing

should be performed, whereby automation is used to re-execute all previous tests to

ensure that changes to the software do not introduce new bugs in previously tested

components.

Debugging

The simplest debugging technique consists of using print statements to track the

values of variables during the execution of the program. A problem with this ap-

proach is that eventually the print statements need to be removed or commented

out, so they are not executed when the software is finally released.

A better approach is to run the program within a debugger, which is a special-

ized environment for controlling and monitoring the execution of a program. The

basic functionality provided by a debugger is the insertion of breakpoints within

the code. When the program is executed within the debugger, it stops at each

breakpoint. While the program is stopped, the current value of variables can be

inspected. In addition to fixed breakpoints, advanced debuggers allow specifica-

tion of conditional breakpoints, which are triggered only if a given expression is

satisfied.

The standard Java toolkit includes a basic debugger named jdb, which has

a command-line interface. Most IDEs for Java programming provide advanced

debugging environments with graphical user interfaces.

http://www.junit.org

1.10. Exercises 55

1.10 Exercises

Reinforcement

R-1.1 Write a short Java method, inputAllBaseTypes, that inputs a different value of

each base type from the standard input device and prints it back to the standard

output device.

R-1.2 Suppose that we create an array A of GameEntry objects, which has an integer

scores field, and we clone A and store the result in an array B. If we then im-
mediately set A[4].score equal to 550, what is the score value of the GameEntry
object referenced by B[4]?

R-1.3 Write a short Java method, isMultiple, that takes two long values, n and m, and

returns true if and only if n is a multiple of m, that is, n = mi for some integer i.

R-1.4 Write a short Java method, isEven, that takes an int i and returns true if and only

if i is even. Your method cannot use the multiplication, modulus, or division
operators, however.

R-1.5 Write a short Java method that takes an integer n and returns the sum of all

positive integers less than or equal to n.

R-1.6 Write a short Java method that takes an integer n and returns the sum of all the

odd positive integers less than or equal to n.

R-1.7 Write a short Java method that takes an integer n and returns the sum of the

squares of all positive integers less than or equal to n.

R-1.8 Write a short Java method that counts the number of vowels in a given character

string.

R-1.9 Write a short Java method that uses a StringBuilder instance to remove all the

punctuation from a string s storing a sentence, for example, transforming the
string "Let’s try, Mike!" to "Lets try Mike".

R-1.10 Write a Java class, Flower, that has three instance variables of type String, int,
and float, which respectively represent the name of the flower, its number of

petals, and price. Your class must include a constructor method that initializes
each variable to an appropriate value, and your class should include methods for

setting the value of each type, and getting the value of each type.

R-1.11 Modify the CreditCard class from Code Fragment 1.5 to include a method that

updates the credit limit.

R-1.12 Modify the CreditCard class from Code Fragment 1.5 so that it ignores any re-

quest to process a negative payment amount.

R-1.13 Modify the declaration of the first for loop in the main method in Code Frag-

ment 1.6 so that its charges will cause exactly one of the three credit cards to
attempt to go over its credit limit. Which credit card is it?

56 Chapter 1. Java Primer

Creativity

C-1.14 Write a pseudocode description of a method that reverses an array of n integers,

so that the numbers are listed in the opposite order than they were before, and

compare this method to an equivalent Java method for doing the same thing.

C-1.15 Write a pseudocode description of a method for finding the smallest and largest

numbers in an array of integers and compare that to a Java method that would do
the same thing.

C-1.16 Write a short program that takes as input three integers, a, b, and c, from the Java

console and determines if they can be used in a correct arithmetic formula (in the

given order), like “a+b = c,” “a = b− c,” or “a∗b = c.”

C-1.17 Write a short Java method that takes an array of int values and determines if there

is a pair of distinct elements of the array whose product is even.

C-1.18 The p-norm of a vector v = (v1,v2, . . . ,vn) in n-dimensional space is defined as

‖v‖= p
√

v
p
1 + v

p
2 + · · ·+ v

p
n .

For the special case of p = 2, this results in the traditional Euclidean norm,

which represents the length of the vector. For example, the Euclidean norm

of a two-dimensional vector with coordinates (4,3) has a Euclidean norm of√
42 +32 =

√
16+9 =

√
25 = 5. Give an implementation of a method named

norm such that norm(v, p) returns the p-norm value of v and norm(v) returns the

Euclidean norm of v, where v is represented as an array of coordinates.

C-1.19 Write a Java program that can take a positive integer greater than 2 as input and
write out the number of times one must repeatedly divide this number by 2 before

getting a value less than 2.

C-1.20 Write a Java method that takes an array of float values and determines if all the

numbers are different from each other (that is, they are distinct).

C-1.21 Write a Java method that takes an array containing the set of all integers in the

range 1 to 52 and shuffles it into random order. Your method should output each
possible order with equal probability.

C-1.22 Write a short Java program that outputs all possible strings formed by using the
characters 'c', 'a', 't', 'd', 'o', and 'g' exactly once.

C-1.23 Write a short Java program that takes two arrays a and b of length n storing int
values, and returns the dot product of a and b. That is, it returns an array c of

length n such that c[i] = a[i] ·b[i], for i = 0, . . . ,n−1.

C-1.24 Modify the CreditCard class from Code Fragment 1.5 so that printSummary be-
comes a nonstatic method, and modify the main method from Code Fragment 1.6

accordingly.

C-1.25 Modify the CreditCard class to add a toString() method that returns a String
representation of the card (rather than printing it to the console, as done by

printSummary). Modify the main method from Code Fragment 1.6 accordingly
to use the standard println command.

Chapter Notes 57

Projects

P-1.26 Write a short Java program that takes all the lines input to standard input and

writes them to standard output in reverse order. That is, each line is output in the

correct order, but the ordering of the lines is reversed.

P-1.27 Write a Java program that can simulate a simple calculator, using the Java console

as the exclusive input and output device. That is, each input to the calculator, be
it a number, like 12.34 or 1034, or an operator, like + or =, can be done on a

separate line. After each such input, you should output to the Java console what

would be displayed on your calculator.

P-1.28 A common punishment for school children is to write out a sentence multiple

times. Write a Java stand-alone program that will write out the following sen-
tence one hundred times: “I will never spam my friends again.” Your program

should number each of the sentences and it should make eight different random-

looking typos.

P-1.29 The birthday paradox says that the probability that two people in a room will

have the same birthday is more than half, provided n, the number of people in the
room, is more than 23. This property is not really a paradox, but many people

find it surprising. Design a Java program that can test this paradox by a series

of experiments on randomly generated birthdays, which test this paradox for n =
5,10,15,20, . . . ,100.

P-1.30 (For those who know Java graphical user interface methods:) Define a Graphi-
calTest class that tests the functionality of the CreditCard class from Code Frag-

ment 1.5 using text fields and buttons.

Chapter Notes

For more detailed information about the Java programming language, we refer the reader
to the Java website (http://www.java.com), as well as some of the fine books about Java,

including the books by Arnold, Gosling and Holmes [8], Flanagan [33], and Horstmann
and Cornell [47, 48].

http://www.java.com

Chapter

2 Object-Oriented Design

Contents

2.1 Goals, Principles, and Patterns 60

2.1.1 Object-Oriented Design Goals 60

2.1.2 Object-Oriented Design Principles 61

2.1.3 Design Patterns . 63

2.2 Inheritance . 64

2.2.1 Extending the CreditCard Class 65

2.2.2 Polymorphism and Dynamic Dispatch 68

2.2.3 Inheritance Hierarchies 69

2.3 Interfaces and Abstract Classes 76

2.3.1 Interfaces in Java . 76

2.3.2 Multiple Inheritance for Interfaces 79

2.3.3 Abstract Classes . 80

2.4 Exceptions . 82

2.4.1 Catching Exceptions . 82

2.4.2 Throwing Exceptions . 85

2.4.3 Java’s Exception Hierarchy 86

2.5 Casting and Generics . 88

2.5.1 Casting . 88

2.5.2 Generics . 91

2.6 Nested Classes . 96

2.7 Exercises . 97

60 Chapter 2. Object-Oriented Design

2.1 Goals, Principles, and Patterns

As the name implies, the main “actors” in the object-oriented paradigm are called

objects. Each object is an instance of a class. Each class presents to the outside

world a concise and consistent view of the objects that are instances of this class,

without going into too much unnecessary detail or giving others access to the inner

workings of the objects. The class definition typically specifies the data fields,

also known as instance variables, that an object contains, as well as the methods

(operations) that an object can execute. This view of computing fulfill several goals

and incorporates design principles, which we will discuss in this chapter.

2.1.1 Object-Oriented Design Goals

Software implementations should achieve robustness, adaptability, and reusabil-

ity. (See Figure 2.1.)

Figure 2.1: Goals of object-oriented design.

Robustness

Every good programmer wants to develop software that is correct, which means that

a program produces the right output for all the anticipated inputs in the program’s

application. In addition, we want software to be robust, that is, capable of handling

unexpected inputs that are not explicitly defined for its application. For example,

if a program is expecting a positive integer (perhaps representing the price of an

item) and instead is given a negative integer, then the program should be able to

recover gracefully from this error. More importantly, in life-critical applications,

where a software error can lead to injury or loss of life, software that is not robust

could be deadly. This point was driven home in the late 1980s in accidents involv-

ing Therac-25, a radiation-therapy machine, which severely overdosed six patients

between 1985 and 1987, some of whom died from complications resulting from

their radiation overdose. All six accidents were traced to software errors.

2.1. Goals, Principles, and Patterns 61

Adaptability

Modern software applications, such as Web browsers and Internet search engines,

typically involve large programs that are used for many years. Software, there-

fore, needs to be able to evolve over time in response to changing conditions in its

environment. Thus, another important goal of quality software is that it achieves

adaptability (also called evolvability). Related to this concept is portability, which

is the ability of software to run with minimal change on different hardware and

operating system platforms. An advantage of writing software in Java is the porta-

bility provided by the language itself.

Reusability

Going hand in hand with adaptability is the desire that software be reusable, that

is, the same code should be usable as a component of different systems in various

applications. Developing quality software can be an expensive enterprise, and its

cost can be offset somewhat if the software is designed in a way that makes it easily

reusable in future applications. Such reuse should be done with care, however, for

one of the major sources of software errors in the Therac-25 came from inappropri-

ate reuse of Therac-20 software (which was not object-oriented and not designed

for the hardware platform used with the Therac-25).

2.1.2 Object-Oriented Design Principles

Chief among the principles of the object-oriented approach, which are intended to

facilitate the goals outlined above, are the following (see Figure 2.2):

• Abstraction

• Encapsulation

• Modularity

Abstraction Encapsulation Modularity

Figure 2.2: Principles of object-oriented design.

62 Chapter 2. Object-Oriented Design

Abstraction

The notion of abstraction is to distill a complicated system down to its most funda-

mental parts. Typically, describing the parts of a system involves naming them and

explaining their functionality. Applying the abstraction paradigm to the design of

data structures gives rise to abstract data types (ADTs). An ADT is a mathematical

model of a data structure that specifies the type of data stored, the operations sup-

ported on them, and the types of parameters of the operations. An ADT specifies

what each operation does, but not how it does it. In Java, an ADT can be expressed

by an interface, which is simply a list of method declarations, where each method

has an empty body. (We will say more about Java interfaces in Section 2.3.1.)

An ADT is realized by a concrete data structure, which is modeled in Java by

a class. A class defines the data being stored and the operations supported by the

objects that are instances of the class. Also, unlike interfaces, classes specify how

the operations are performed in the body of each method. A Java class is said

to implement an interface if its methods include all the methods declared in the

interface, thus providing a body for them. However, a class can have more methods

than those of the interface.

Encapsulation

Another important principle of object-oriented design is encapsulation; different

components of a software system should not reveal the internal details of their

respective implementations. One of the main advantages of encapsulation is that it

gives one programmer freedom to implement the details of a component, without

concern that other programmers will be writing code that intricately depends on

those internal decisions. The only constraint on the programmer of a component

is to maintain the public interface for the component, as other programmers will

be writing code that depends on that interface. Encapsulation yields robustness

and adaptability, for it allows the implementation details of parts of a program to

change without adversely affecting other parts, thereby making it easier to fix bugs

or add new functionality with relatively local changes to a component.

Modularity

Modern software systems typically consist of several different components that

must interact correctly in order for the entire system to work properly. Keeping

these interactions straight requires that these different components be well orga-

nized. Modularity refers to an organizing principle in which different compo-

nents of a software system are divided into separate functional units. Robustness is

greatly increased because it is easier to test and debug separate components before

they are integrated into a larger software system.

2.1. Goals, Principles, and Patterns 63

2.1.3 Design Patterns

Object-oriented design facilitates reusable, robust, and adaptable software. De-

signing good code takes more than simply understanding object-oriented method-

ologies, however. It requires the effective use of object-oriented design techniques.

Computing researchers and practitioners have developed a variety of organiza-

tional concepts and methodologies for designing quality object-oriented software

that is concise, correct, and reusable. Of special relevance to this book is the con-

cept of a design pattern, which describes a solution to a “typical” software design

problem. A pattern provides a general template for a solution that can be applied in

many different situations. It describes the main elements of a solution in an abstract

way that can be specialized for a specific problem at hand. It consists of a name,

which identifies the pattern; a context, which describes the scenarios for which this

pattern can be applied; a template, which describes how the pattern is applied; and

a result, which describes and analyzes what the pattern produces.

We present several design patterns in this book, and we show how they can be

consistently applied to implementations of data structures and algorithms. These

design patterns fall into two groups—patterns for solving algorithm design prob-

lems and patterns for solving software engineering problems. Some of the algo-

rithm design patterns we discuss include the following:

• Recursion (Chapter 5)

• Amortization (Sections 7.2.3, 11.4.4, and 14.7.3)

• Divide-and-conquer (Section 12.1.1)

• Prune-and-search, also known as decrease-and-conquer (Section 12.5.1)

• Brute force (Section 13.2.1)

• The greedy method (Sections 13.4.2, 14.6.2, and 14.7)

• Dynamic programming (Section 13.5)

Likewise, some of the software engineering design patterns we discuss include:

• Template method (Sections 2.3.3, 10.5.1, and 11.2.1)

• Composition (Sections 2.5.2, 2.6, and 9.2.1)

• Adapter (Section 6.1.3)

• Position (Sections 7.3, 8.1.2, and 14.7.3)

• Iterator (Section 7.4)

• Factory Method (Sections 8.3.1 and 11.2.1)

• Comparator (Sections 9.2.2, 10.3, and Chapter 12)

• Locator (Section 9.5.1)

Rather than explain each of these concepts here, however, we will introduce

them throughout the text as noted above. For each pattern, be it for algorithm

engineering or software engineering, we explain its general use and we illustrate it

with at least one concrete example.

64 Chapter 2. Object-Oriented Design

2.2 Inheritance

A natural way to organize various structural components of a software package

is in a hierarchical fashion, with similar abstract definitions grouped together in

a level-by-level manner that goes from specific to more general as one traverses

up the hierarchy. An example of such a hierarchy is shown in Figure 2.3. Using

mathematical notations, the set of houses is a subset of the set of buildings, but a

superset of the set of ranches. The correspondence between levels is often referred

to as an “is a” relationship, as a house is a building, and a ranch is a house.

Building

Low-rise
Apartment

High-rise
Apartment

Two-story
House

Ranch Skyscraper

Commercial
Building

HouseApartment

Figure 2.3: An example of an “is a” hierarchy involving architectural buildings.

A hierarchical design is useful in software development, as common function-

ality can be grouped at the most general level, thereby promoting reuse of code,

while differentiated behaviors can be viewed as extensions of the general case. In

object-oriented programming, the mechanism for a modular and hierarchical orga-

nization is a technique known as inheritance. This allows a new class to be defined

based upon an existing class as the starting point. In object-oriented terminology,

the existing class is typically described as the base class, parent class, or super-

class, while the newly defined class is known as the subclass or child class. We

say that the subclass extends the superclass.

When inheritance is used, the subclass automatically inherits, as its starting

point, all methods from the superclass (other than constructors). The subclass can

differentiate itself from its superclass in two ways. It may augment the superclass

by adding new fields and new methods. It may also specialize existing behaviors

by providing a new implementation that overrides an existing method.

2.2. Inheritance 65

2.2.1 Extending the CreditCard Class

As an introduction to the use of inheritance, we revisit the CreditCard class of

Section 1.7, designing a new subclass that, for lack of a better name, we name

PredatoryCreditCard. The new class will differ from the original in two ways:

(1) if an attempted charge is rejected because it would have exceeded the credit

limit, a $5 fee will be charged, and (2) there will be a mechanism for assessing

a monthly interest charge on the outstanding balance, using an annual percentage

rate (APR) specified as a constructor parameter.

Figure 2.4 provides a UML diagram that serves as an overview of our design for

the new PredatoryCreditCard class as a subclass of the existing CreditCard class.

The hollow arrow in that diagram indicates the use of inheritance, with the arrow

oriented from the subclass to the superclass.

The PredatoryCreditCard class augments the original CreditCard class, adding

a new instance variable named apr to store the annual percentage rate, and adding a

new method named processMonth that will assess interest charges. The new class

also specializes its superclass by overriding the original charge method in order to

provide a new implementation that assess a $5 fee for an attempted overcharge.

class:

fields:

methods:

class:

fields:

methods:

− apr : double

PredatoryCreditCard

+ charge(price : double) : boolean + processMonth()

− limit : int

+ getBalance() : double
+ getLimit() : int
+ getAccount() : String

balance : double
− customer : String

− account : String
− bank : String

+ getCustomer() : String
+ getBank() : String
+ charge(price : double) : boolean
+ makePayment(amount : double)

CreditCard

Figure 2.4: A UML diagram showing PredatoryCreditCard as a subclass of

CreditCard. (See Figure 1.5 for the original CreditCard design.)

66 Chapter 2. Object-Oriented Design

To demonstrate the mechanisms for inheritance in Java, Code Fragment 2.1

presents a complete implementation of the new PredatoryCreditCard class. We

wish to draw attention to several aspects of the Java implementation.

We begin with the first line of the class definition, which indicates that the new

class inherits from the existing CreditCard class by using Java’s extends keyword

followed by the name of its superclass. In Java, each class can extend exactly one

other class. Because of this property, Java is said to allow only single inheritance

among classes. We should also note that even if a class definition makes no explicit

use of the extends clause, it automatically inherits from a class, java.lang.Object,
which serves as the universal superclass in Java.

We next consider the declaration of the new apr instance variable, at line 3 of

the code. Each instance of the PredatoryCreditCard class will store each of the

variables inherited from the CreditCard definition (customer, bank, account, limit,
and balance) in addition to the new apr variable. Yet we are only responsible for

declaring the new instance variable within the subclass definition.

1 public class PredatoryCreditCard extends CreditCard {
2 // Additional instance variable
3 private double apr; // annual percentage rate
4
5 // Constructor for this class
6 public PredatoryCreditCard(String cust, String bk, String acnt, int lim,
7 double initialBal, double rate) {
8 super(cust, bk, acnt, lim, initialBal); // initialize superclass attributes
9 apr = rate;

10 }
11

12 // A new method for assessing monthly interest charges
13 public void processMonth() {
14 if (balance > 0) { // only charge interest on a positive balance
15 double monthlyFactor = Math.pow(1 + apr, 1.0/12); // compute monthly rate
16 balance ∗= monthlyFactor; // assess interest
17 }
18 }
19

20 // Overriding the charge method defined in the superclass
21 public boolean charge(double price) {
22 boolean isSuccess = super.charge(price); // call inherited method
23 if (!isSuccess)
24 balance += 5; // assess a $5 penalty
25 return isSuccess;
26 }
27 }

Code Fragment 2.1: A subclass of CreditCard that assesses interest and fees.

2.2. Inheritance 67

Constructors are never inherited in Java. Lines 6–10 of Code Fragment 2.1

define a constructor for the new class. When a PredatoryCreditCard instance is

created, all of its fields must be properly initialized, including any inherited fields.

For this reason, the first operation performed within the body of a constructor must

be to invoke a constructor of the superclass, which is responsible for properly ini-

tializing the fields defined in the superclass.

In Java, a constructor of the superclass is invoked by using the keyword super
with appropriate parameterization, as demonstrated at line 8 of our implementation:

super(cust, mk, acnt, lim, initialBal);

This use of the super keyword is very similar to use of the keyword this when

invoking a different constructor within the same class (as described on page 15 of

Section 1.2.2). If a constructor for a subclass does not make an explicit call to super
or this as its first command, then an implicit call to super(), the zero-parameter

version of the superclass constructor, will be made. Returning our attention to the

constructor for PredatoryCreditCard, after calling the superclass constructor with

appropriate parameters, line 9 initializes the newly declared apr field. (That field

was unknown to the superclass.)

The processMonth method is a new behavior, so there is no inherited version

upon which to rely. In our model, this method should be invoked by the bank, once

each month, to add new interest charges to the customer’s balance. From a technical

aspect, we note that this method accesses the value of the inherited balance field

(at line 14), and potentially modifies that balance at line 16. This is permitted

precisely because the balance attributed was declared with protected visibility in

the original CreditCard class. (See Code Fragment 1.5.)

The most challenging aspect in implementing the processMonth method is

making sure we have working knowledge of how an annual percentage rate trans-

lates to a monthly rate. We do not simply divide the annual rate by twelve to get a

monthly rate (that would be too predatory, as it would result in a higher APR than

advertised). The correct computation is to take the twelfth-root of 1 + apr, and

use that as a multiplicative factor. For example, if the APR is 0.0825 (representing

8.25%), we compute 12
√

1.0825≈ 1.006628, and therefore charge 0.6628% interest

per month. In this way, each $100 of debt will amass $8.25 of compounded interest

in a year. Notice that we use the Math.pow method from Java’s libraries.

Finally, we consider the new implementation of the charge method provided for

the PredatoryCreditCard class (lines 21–27). This definition overrides the inherited

method. Yet, our implementation of the new method relies on a call to the inherited

method, with syntax super.charge(price) at line 22. The return value of that call

designates whether the charge was successful. We examine that return value to

decide whether to assess a fee, and in either case return that boolean to the caller, so

that the new version of charge maintains a similar outward interface as the original.

68 Chapter 2. Object-Oriented Design

2.2.2 Polymorphism and Dynamic Dispatch

The word polymorphism literally means “many forms.” In the context of object-

oriented design, it refers to the ability of a reference variable to take different forms.

Consider, for example, the declaration of a variable having CreditCard as its type:

CreditCard card;

Because this is a reference variable, the statement declares the new variable, which

does not yet refer to any card instance. While we have already seen that we can

assign it to a newly constructed instance of the CreditCard class, Java also allows us

to assign that variable to refer to an instance of the PredatoryCreditCard subclass.

That is, we can do the following:

CreditCard card = new PredatoryCreditCard(...); // parameters omitted

This is a demonstration of what is known as the Liskov Substitution Principle,

which states that a variable (or parameter) with a declared type can be assigned

an instance from any direct or indirect subclass of that type. Informally, this is

a manifestation of the “is a” relationship modeled by inheritance, as a predatory

credit card is a credit card (but a credit card is not necessarily predatory).

We say that the variable, card, is polymorphic; it may take one of many forms,

depending on the specific class of the object to which it refers. Because card
has been declared with type CreditCard, that variable may only be used to call

methods that are declared as part of the CreditCard definition. So we can call

card.makePayment(50) and card.charge(100), but a compilation error would be

reported for the call card.processMonth() because a CreditCard is not guaranteed

to have such a behavior. (That call could be made if the variable were originally

declared to have PredatoryCreditCard as its type.)

An interesting (and important) issue is how Java handles a call such as

card.charge(100) when the variable card has a declared type of CreditCard. Recall

that the object referenced by card might be an instance of the CreditCard class or

an instance of the PredatoryCreditCard class, and that there are distinct implemen-

tations of the charge method: CreditCard.charge and PredatoryCreditCard.charge.

Java uses a process known as dynamic dispatch, deciding at runtime to call the ver-

sion of the method that is most specific to the actual type of the referenced object

(not the declared type). So, if the object is a PredatoryCreditCard instance, it will

execute the PredatoryCreditCard.charge method, even if the reference variable has

a declared type of CreditCard.

Java also provides an instanceof operator that tests, at runtime, whether an in-

stance satisfies as a particular type. For example, the evaluation of the boolean con-

dition, (card instanceof PredatoryCreditCard), produces true if the object cur-

rently referenced by the variable card belongs to the PredatoryCreditCard class, or

any further subclass of that class. (See Section 2.5.1 for further discusion.)

2.2. Inheritance 69

2.2.3 Inheritance Hierarchies

Although a subclass may not inherit from multiple superclasses in Java, a superclass

may have many subclasses. In fact, it is quite common in Java to develop complex

inheritance hierarchies to maximize the reusability of code.

As a second example of the use of inheritance, we develop a hierarchy of classes

for iterating numeric progressions. A numeric progression is a sequence of num-

bers, where each number depends on one or more of the previous numbers. For

example, an arithmetic progression determines the next number by adding a fixed

constant to the previous value, and a geometric progression determines the next

number by multiplying the previous value by a fixed constant. In general, a pro-

gression requires a first value, and a way of identifying a new value based on one

or more previous values.

Our hierarchy stems from a general base class that we name Progression. This

class produces the progression of whole numbers: 0, 1, 2, More importantly,

this class has been designed so that it can easily be specialized by other progression

types, producing a hierarchy given in Figure 2.5.

FibonacciProgression

Progression

ArithmeticProgression GeometricProgression

Figure 2.5: An overview of our hierarchy of progression classes.

Our implementation of the basic Progression class is provided in Code Frag-

ment 2.2. This class has a single field, named current. It defines two constructors,

one accepting an arbitrary starting value for the progression and the other using 0

as the default value. The remainder of the class includes three methods:

nextValue(): A public method that returns the next value of the pro-

gression, implicitly advancing the value each time.

advance(): A protected method that is responsible for advancing the

value of current in the progression.

printProgression(n): A public utility that advances the progression n times

while displaying each value.

Our decision to factor out the protected advance() method, which is called dur-

ing the execution of nextValue(), is to minimize the burden on subclasses, which

are solely responsible for overriding the advance method to update the current field.

70 Chapter 2. Object-Oriented Design

1 /∗∗ Generates a simple progression. By default: 0, 1, 2, ... ∗/
2 public class Progression {
3

4 // instance variable
5 protected long current;
6

7 /∗∗ Constructs a progression starting at zero. ∗/
8 public Progression() { this(0); }
9

10 /∗∗ Constructs a progression with given start value. ∗/
11 public Progression(long start) { current = start; }
12

13 /∗∗ Returns the next value of the progression. ∗/
14 public long nextValue() {
15 long answer = current;
16 advance(); // this protected call is responsible for advancing the current value
17 return answer;
18 }
19
20 /∗∗ Advances the current value to the next value of the progression. ∗/
21 protected void advance() {
22 current++;
23 }
24
25 /∗∗ Prints the next n values of the progression, separated by spaces. ∗/
26 public void printProgression(int n) {
27 System.out.print(nextValue()); // print first value without leading space
28 for (int j=1; j < n; j++)
29 System.out.print(" " + nextValue()); // print leading space before others
30 System.out.println(); // end the line
31 }
32 }

Code Fragment 2.2: General numeric progression class.

The body of the nextValue method temporarily records the current value of

the progression, which will soon be returned, and then calls the protected advance
method in order to update the value in preparation for a subsequent call.

The implementation of the advance method in our Progression class simply

increments the current value. This method is the one that will be overridden by our

specialized subclasses in order to alter the progression of numbers.

In the remainder of this section, we present three subclasses of the Progression
class—ArithmeticProgression, GeometricProgression, and FibonacciProgression–

which respectively produce arithmetic, geometric, and Fibonacci progressions.

2.2. Inheritance 71

An Arithmetic Progression Class

Our first example of a specialized progression is an arithmetic progression. While

the default progression increases its value by one in each step, an arithmetic pro-

gression adds a fixed constant to one term of the progression to produce the next.

For example, using an increment of 4 for an arithmetic progression that starts at 0

results in the sequence 0,4,8,12,

Code Fragment 2.3 presents our implementation of an ArithmeticProgression
class, which relies on Progression as its base class. We include three construc-

tor forms, with the most general (at lines 12–15) accepting an increment value

and a start value, such that ArithmeticProgression(4, 2) produces the sequence

2,6,10,14, The body of that constructor invokes the superclass constructor,

with syntax super(start), to initialize current to the given start value, and then it

initializes the increment field introduced by this subclass.

For convenience, we offer two additional constructors, so that the default pro-

gression produces 0,1,2,3, . . . , and a one-parameter constructor produces an arith-

metic progression with a given increment value (but a default starting value of 0).

Finally (and most importantly), we override the protected advance method so

that the given increment is added to each successive value of the progression.

1 public class ArithmeticProgression extends Progression {
2

3 protected long increment;
4

5 /∗∗ Constructs progression 0, 1, 2, ... ∗/
6 public ArithmeticProgression() { this(1, 0); } // start at 0 with increment of 1
7

8 /∗∗ Constructs progression 0, stepsize, 2∗stepsize, ... ∗/
9 public ArithmeticProgression(long stepsize) { this(stepsize, 0); } // start at 0

10

11 /∗∗ Constructs arithmetic progression with arbitrary start and increment. ∗/
12 public ArithmeticProgression(long stepsize, long start) {
13 super(start);
14 increment = stepsize;
15 }
16
17 /∗∗ Adds the arithmetic increment to the current value. ∗/
18 protected void advance() {
19 current += increment;
20 }
21 }

Code Fragment 2.3: Class for arithmetic progressions, which inherits from the gen-

eral progression class shown in Code Fragment 2.2.

72 Chapter 2. Object-Oriented Design

A Geometric Progression Class

Our second example of a specialized progression is a geometric progression, in

which each value is produced by multiplying the preceding value by a fixed con-

stant, known as the base of the geometric progression. The starting point of a ge-

ometric progression is traditionally 1, rather than 0, because multiplying 0 by any

factor results in 0. As an example, a geometric progression with base 2, starting at

value 1, produces the sequence 1,2,4,8,16,

Code Fragment 2.4 presents our implementation of a GeometricProgression
class. It is quite similar to the ArithmeticProgression class in terms of the pro-

gramming techniques used. In particular, it introduces one new field (the base of

the geometric progression), provides three forms of a constructor for convenience,

and overrides the protected advance method so that the current value of the pro-

gression is multiplied by the base at each step.

In the case of a geometric progression, we have chosen to have the default (zero-

parameter) constructor use a starting value of 1 and a base of 2 so that it produces

the progression 1,2,4,8, The one-parameter version of the constructor accepts

an arbitrary base and uses 1 as the starting value, thus GeometricProgression(3)
produces the sequence 1,3,9,27, Finally, we offer a two-parameter version ac-

cepting both a base and start value, such that GeometricProgression(3,2) produces

the sequence 2,6,18,54,

1 public class GeometricProgression extends Progression {
2

3 protected long base;
4
5 /∗∗ Constructs progression 1, 2, 4, 8, 16, ... ∗/
6 public GeometricProgression() { this(2, 1); } // start at 1 with base of 2
7

8 /∗∗ Constructs progression 1, b, bˆ2, bˆ3, bˆ4, ... for base b. ∗/
9 public GeometricProgression(long b) { this(b, 1); } // start at 1

10

11 /∗∗ Constructs geometric progression with arbitrary base and start. ∗/
12 public GeometricProgression(long b, long start) {
13 super(start);
14 base = b;
15 }
16

17 /∗∗ Multiplies the current value by the geometric base. ∗/
18 protected void advance() {
19 current ∗= base; // multiply current by the geometric base
20 }
21 }

Code Fragment 2.4: Class for geometric progressions.

2.2. Inheritance 73

A Fibonacci Progression Class

As our final example, we demonstrate how to use our progression framework to

produce a Fibonacci progression. Each value of a Fibonacci series is the sum of the

two most recent values. To begin the series, the first two values are conventionally

0 and 1, leading to the Fibonacci series 0,1,1,2,3,5,8, More generally, such a

series can be generated from any two starting values. For example, if we start with

values 4 and 6, the series proceeds as 4,6,10,16,26,42,

Code Fragment 2.5 presents an implementation of the FibonacciProgression
class. This class is markedly different from those for the arithmetic and geometric

progressions because we cannot determine the next value of a Fibonacci series

solely from the current one. We must maintain knowledge of the two most recent

values. Our FibonacciProgression class introduces a new member, named prev,

to store the value that proceeded the current one (which is stored in the inherited

current field).

However, the question arises as to how to initialize the previous value in the

constructor, when provided with the desired first and second values as parame-

ters. The first should be stored as current so that it is reported by the first call to

nextValue(). Within that method call, an assignment will set the new current value

(which will be the second value reported) equal to the first value plus the “previ-

ous.” By initializing the previous value to (second − first), the initial advancement

will set the new current value to first + (second − first) = second, as desired.

1 public class FibonacciProgression extends Progression {
2

3 protected long prev;
4

5 /∗∗ Constructs traditional Fibonacci, starting 0, 1, 1, 2, 3, ... ∗/
6 public FibonacciProgression() { this(0, 1); }
7

8 /∗∗ Constructs generalized Fibonacci, with give first and second values. ∗/
9 public FibonacciProgression(long first, long second) {

10 super(first);
11 prev = second − first; // fictitious value preceding the first
12 }
13
14 /∗∗ Replaces (prev,current) with (current, current+prev). ∗/
15 protected void advance() {
16 long temp = prev;
17 prev = current;
18 current += temp;
19 }
20 }

Code Fragment 2.5: Class for the Fibonacci progression.

74 Chapter 2. Object-Oriented Design

class:

fields:

methods:

ArithmeticProgression

advance()

base : long

GeometricProgression

advance()

prev : long

FibonacciProgression

advance()

current : long

+ nextValue() : long
+ printProgression(n : int)
advance()

Progression

increment : long

Figure 2.6: Detailed inheritance diagram for class Progression and its subclasses.

As a summary, Figure 2.6 presents a more detailed version of our inheritance

design than was originally given in Figure 2.5. Notice that each of these classes

introduces an additional field that allows it to properly implement the advance()
method in an appropriate manner for its progression.

Testing Our Progression Hierarchy

To complete our example, we define a class TestProgression, shown in Code Frag-

ment 2.6, which performs a simple test of each of the three classes. In this class,

variable prog is polymorphic during the execution of the main method, since it

references objects of class ArithmeticProgression, GeometricProgression, and Fi-
bonacciProgression in turn. When the main method of the TestProgression class

is invoked by the Java runtime system, the output shown in Code Fragment 2.7 is

produced.

The example presented in this section is admittedly simple, but it provides an

illustration of an inheritance hierarchy in Java. As an interesting aside, we consider

how quickly the numbers grow in the three progressions, and how long it would

be before the long integers used for computations overflow. With the default in-

crement of one, an arithmetic progression would not overflow for 263 steps (that is

approximately 10 billion billions). In contrast, a geometric progression with base

b = 3 will overflow a long integer after 40 iterations, as 340 > 263. Likewise, the

94th Fibonacci number is greater than 263; hence, the Fibonacci progression will

overflow a long integer after 94 iterations.

2.2. Inheritance 75

1 /∗∗ Test program for the progression hierarchy. ∗/
2 public class TestProgression {
3 public static void main(String[] args) {
4 Progression prog;
5 // test ArithmeticProgression
6 System.out.print("Arithmetic progression with default increment: ");
7 prog = new ArithmeticProgression();
8 prog.printProgression(10);
9 System.out.print("Arithmetic progression with increment 5: ");

10 prog = new ArithmeticProgression(5);
11 prog.printProgression(10);
12 System.out.print("Arithmetic progression with start 2: ");
13 prog = new ArithmeticProgression(5, 2);
14 prog.printProgression(10);
15 // test GeometricProgression
16 System.out.print("Geometric progression with default base: ");
17 prog = new GeometricProgression();
18 prog.printProgression(10);
19 System.out.print("Geometric progression with base 3: ");
20 prog = new GeometricProgression(3);
21 prog.printProgression(10);
22 // test FibonacciProgression
23 System.out.print("Fibonacci progression with default start values: ");
24 prog = new FibonacciProgression();
25 prog.printProgression(10);
26 System.out.print("Fibonacci progression with start values 4 and 6: ");
27 prog = new FibonacciProgression(4, 6);
28 prog.printProgression(8);
29 }
30 }

Code Fragment 2.6: Program for testing the progression classes.

Arithmetic progression with default increment: 0 1 2 3 4 5 6 7 8 9
Arithmetic progression with increment 5: 0 5 10 15 20 25 30 35 40 45
Arithmetic progression with start 2: 2 7 12 17 22 27 32 37 42 47
Geometric progression with default base: 1 2 4 8 16 32 64 128 256 512
Geometric progression with base 3: 1 3 9 27 81 243 729 2187 6561 19683
Fibonacci progression with default start values: 0 1 1 2 3 5 8 13 21 34
Fibonacci progression with start values 4 and 6: 4 6 10 16 26 42 68 110

Code Fragment 2.7: Output of the TestProgression program of Code Fragment 2.6.

76 Chapter 2. Object-Oriented Design

2.3 Interfaces and Abstract Classes

In order for two objects to interact, they must “know” about the various messages

that each will accept, that is, the methods each object supports. To enforce this

“knowledge,” the object-oriented design paradigm asks that classes specify the

application programming interface (API), or simply interface, that their objects

present to other objects. In the ADT-based approach (see Section 2.1.2) to data

structures followed in this book, an interface defining an ADT is specified as a

type definition and a collection of methods for this type, with the arguments for

each method being of specified types. This specification is, in turn, enforced by

the compiler or runtime system, which requires that the types of parameters that

are actually passed to methods rigidly conform with the type specified in the in-

terface. This requirement is known as strong typing. Having to define interfaces

and then having those definitions enforced by strong typing admittedly places a

burden on the programmer, but this burden is offset by the rewards it provides, for

it enforces the encapsulation principle and often catches programming errors that

would otherwise go unnoticed.

2.3.1 Interfaces in Java

The main structural element in Java that enforces an API is an interface. An in-

terface is a collection of method declarations with no data and no bodies. That is,

the methods of an interface are always empty; they are simply method signatures.

Interfaces do not have constructors and they cannot be directly instantiated.

When a class implements an interface, it must implement all of the methods

declared in the interface. In this way, interfaces enforce requirements that an im-

plementing class has methods with certain specified signatures.

Suppose, for example, that we want to create an inventory of antiques we own,

categorized as objects of various types and with various properties. We might, for

instance, wish to identify some of our objects as sellable, in which case they could

implement the Sellable interface shown in Code Fragment 2.8.

We can then define a concrete class, Photograph, shown in Code Fragment 2.9,

that implements the Sellable interface, indicating that we would be willing to sell

any of our Photograph objects. This class defines an object that implements each

of the methods of the Sellable interface, as required. In addition, it adds a method,

isColor, which is specialized for Photograph objects.

Another kind of object in our collection might be something we could transport.

For such objects, we define the interface shown in Code Fragment 2.10.

2.3. Interfaces and Abstract Classes 77

1 /∗∗ Interface for objects that can be sold. ∗/
2 public interface Sellable {
3
4 /∗∗ Returns a description of the object. ∗/
5 public String description();
6
7 /∗∗ Returns the list price in cents. ∗/
8 public int listPrice();
9

10 /∗∗ Returns the lowest price in cents we will accept. ∗/
11 public int lowestPrice();
12 }

Code Fragment 2.8: Interface Sellable.

1 /∗∗ Class for photographs that can be sold. ∗/
2 public class Photograph implements Sellable {
3 private String descript; // description of this photo
4 private int price; // the price we are setting
5 private boolean color; // true if photo is in color
6

7 public Photograph(String desc, int p, boolean c) { // constructor
8 descript = desc;
9 price = p;

10 color = c;
11 }
12
13 public String description() { return descript; }
14 public int listPrice() { return price; }
15 public int lowestPrice() { return price/2; }
16 public boolean isColor() { return color; }
17 }

Code Fragment 2.9: Class Photograph implementing the Sellable interface.

1 /∗∗ Interface for objects that can be transported. ∗/
2 public interface Transportable {
3 /∗∗ Returns the weight in grams. ∗/
4 public int weight();
5 /∗∗ Returns whether the object is hazardous. ∗/
6 public boolean isHazardous();
7 }

Code Fragment 2.10: Interface Transportable.

78 Chapter 2. Object-Oriented Design

We could then define the class BoxedItem, shown in Code Fragment 2.11, for

miscellaneous antiques that we can sell, pack, and ship. Thus, the class BoxedItem
implements the methods of the Sellable interface and the Transportable interface,

while also adding specialized methods to set an insured value for a boxed shipment

and to set the dimensions of a box for shipment.

1 /∗∗ Class for objects that can be sold, packed, and shipped. ∗/
2 public class BoxedItem implements Sellable, Transportable {
3 private String descript; // description of this item
4 private int price; // list price in cents
5 private int weight; // weight in grams
6 private boolean haz; // true if object is hazardous
7 private int height=0; // box height in centimeters
8 private int width=0; // box width in centimeters
9 private int depth=0; // box depth in centimeters

10 /∗∗ Constructor ∗/
11 public BoxedItem(String desc, int p, int w, boolean h) {
12 descript = desc;
13 price = p;
14 weight = w;
15 haz = h;
16 }
17 public String description() { return descript; }
18 public int listPrice() { return price; }
19 public int lowestPrice() { return price/2; }
20 public int weight() { return weight; }
21 public boolean isHazardous() { return haz; }
22 public int insuredValue() { return price∗2; }
23 public void setBox(int h, int w, int d) {
24 height = h;
25 width = w;
26 depth = d;
27 }
28 }

Code Fragment 2.11: Class BoxedItem.

The class BoxedItem shows another feature of classes and interfaces in Java,

as well—that a class can implement multiple interfaces (even though it may only

extend one other class). This allows us a great deal of flexibility when defining

classes that should conform to multiple APIs.

2.3. Interfaces and Abstract Classes 79

2.3.2 Multiple Inheritance for Interfaces

The ability of extending from more than one type is known as multiple inheritance.

In Java, multiple inheritance is allowed for interfaces but not for classes. The reason

for this rule is that interfaces do not define fields or method bodies, yet classes

typically do. Thus, if Java were to allow multiple inheritance for classes, there

could be a confusion if a class tried to extend from two classes that contained fields

with the same name or methods with the same signatures. Since there is no such

confusion for interfaces, and there are times when multiple inheritance of interfaces

is useful, Java allows interfaces to use multiple inheritance.

One use for multiple inheritance of interfaces is to approximate a multiple in-

heritance technique called the mixin. Unlike Java, some object-oriented languages,

such as Smalltalk and C++, allow multiple inheritance of concrete classes, not just

interfaces. In such languages, it is common to define classes, called mixin classes,

that are never intended to be created as stand-alone objects, but are instead meant

to provide additional functionality to existing classes. Such inheritance is not al-

lowed in Java, however, so programmers must approximate it with interfaces. In

particular, we can use multiple inheritance of interfaces as a mechanism for “mix-

ing” the methods from two or more unrelated interfaces to define an interface that

combines their functionality, possibly adding more methods of its own. Returning

to our example of the antique objects, we could define an interface for insurable

items as follows:

public interface Insurable extends Sellable, Transportable {
/∗∗ Returns insured value in cents ∗/
public int insuredValue();
}

This interface combines the methods of the Transportable interface with the meth-

ods of the Sellable interface, and adds an extra method, insuredValue. Such an

interface could allow us to define the BoxedItem alternately as follows:

public class BoxedItem2 implements Insurable {

// ... same code as class BoxedItem
}

In this case, note that the method insuredValue is not optional, whereas it was

optional in the declaration of BoxedItem given previously.

Java interfaces that approximate the mixin include java.lang.Cloneable, which

adds a copy feature to a class; java.lang.Comparable, which adds a comparability

feature to a class (imposing a natural order on its instances); and java.util.Observer,
which adds an update feature to a class that wishes to be notified when certain

“observable” objects change state.

80 Chapter 2. Object-Oriented Design

2.3.3 Abstract Classes

In Java, an abstract class serves a role somewhat between that of a traditional class

and that of an interface. Like an interface, an abstract class may define signatures

for one or more methods without providing an implementation of those method

bodies; such methods are known as abstract methods. However, unlike an inter-

face, an abstract class may define one or more fields and any number of methods

with implementation (so-called concrete methods). An abstract class may also ex-

tend another class and be extended by further subclasses.

As is the case with interfaces, an abstract class may not be instantiated, that is,

no object can be created directly from an abstract class. In a sense, it remains an

incomplete class. A subclass of an abstract class must provide an implementation

for the abstract methods of its superclass, or else remain abstract. To distinguish

from abstract classes, we will refer to nonabstract classes as concrete classes.

In comparing the use of interfaces and abstract classes, it is clear that abstract

classes are more powerful, as they can provide some concrete functionality. How-

ever, the use of abstract classes in Java is limited to single inheritance, so a class

may have at most one superclass, whether concrete or abstract (see Section 2.3.2).

We will take great advantage of abstract classes in our study of data structures,

as they support greater reusability of code (one of our object-oriented design goals

from Section 2.1.1). The commonality between a family of classes can be placed

within an abstract class, which serves as a superclass to multiple concrete classes.

In this way, the concrete subclasses need only implement the additional functional-

ity that differentiates themselves from each other.

As a tangible example, we reconsider the progression hierarchy introduced in

Section 2.2.3. Although we did not formally declare the Progression base class as

abstract in that presentation, it would have been a reasonable design to have done

so. We did not intend for users to directly create instances of the Progression class;

in fact, the sequence that it produces is simply a special case of an arithmetic pro-

gression with increment one. The primary purpose of the Progression class is to

provide common functionality to all three subclasses: the declaration and initial-

ization of the current field, and the concrete implementations of the nextValue and

printProgression methods.

The most important aspect in specializing that class was in overriding the pro-

tected advance method. Although we gave a simple implementation of that method

within the Progression class to increment the current value, none of our three sub-

classes rely on that behavior. On the next page, we demonstrate the mechan-

ics of abstract classes in Java by redesigning the progression base class into an

AbstractProgression base class. In that design, we leave the advance method as

truly abstract, leaving the burden of an implementation to the various subclasses.

2.3. Interfaces and Abstract Classes 81

Mechanics of Abstract Classes in Java

In Code Fragment 2.12, we give a Java implementation of a new abstract base

class for our progression hierarchy. We name the new class AbstractProgression
rather than Progression, only to differentiate it in our discussion. The definitions

are almost identical; there are only two key differences that we highlight. The

first is the use of the abstract modifier on line 1, when declaring the class. (See

Section 1.2.2 for a discussion of class modifiers.)

As with our original class, the new class declares the current field and provides

constructors that initialize it. Although our abstract class cannot be instantiated,

the constructors can be invoked within the subclass constructors using the super
keyword. (We do just that, within all three of our progression subclasses.)

The new class has the same concrete implementations of methods nextValue
and printProgression as did our original. However, we explicitly define the advance
method with the abstract modifier at line 19, and without any method body.

Even though we have not implemented the advance method as part of the

AbstractProgression class, it is legal to call it from within the body of nextValue.

This is an example of an object-oriented design pattern known as the template

method pattern, in which an abstract base class provides a concrete behavior that

relies upon calls to other abstract behaviors. Once a subclass provides definitions

for the missing abstract behaviors, the inherited concrete behavior is well defined.

1 public abstract class AbstractProgression {
2 protected long current;
3 public AbstractProgression() { this(0); }
4 public AbstractProgression(long start) { current = start; }
5

6 public long nextValue() { // this is a concrete method
7 long answer = current;
8 advance(); // this protected call is responsible for advancing the current value
9 return answer;

10 }
11
12 public void printProgression(int n) { // this is a concrete method
13 System.out.print(nextValue()); // print first value without leading space
14 for (int j=1; j < n; j++)
15 System.out.print(" " + nextValue()); // print leading space before others
16 System.out.println(); // end the line
17 }
18

19 protected abstract void advance(); // notice the lack of a method body
20 }

Code Fragment 2.12: An abstract version of the progression base class, originally

given in Code Fragment 2.2. (We omit documentation for brevity.)

82 Chapter 2. Object-Oriented Design

2.4 Exceptions

Exceptions are unexpected events that occur during the execution of a program.

An exception might result due to an unavailable resource, unexpected input from a

user, or simply a logical error on the part of the programmer. In Java, exceptions

are objects that can be thrown by code that encounters an unexpected situation, or

by the Java Virtual Machine, for example, if running out of memory. An exception

may also be caught by a surrounding block of code that “handles” the problem

in an appropriate fashion. If uncaught, an exception causes the virtual machine to

stop executing the program and to report an appropriate message to the console. In

this section, we discuss common exception types in Java, as well as the syntax for

throwing and catch exceptions within user-defined blocks of code.

2.4.1 Catching Exceptions

If an exception occurs and is not handled, then the Java runtime system will termi-

nate the program after printing an appropriate message together with a trace of the

runtime stack. The stack trace shows the series of nested method calls that were

active at the time the exception occurred, as in the following example:

Exception in thread "main" java.lang.NullPointerException

at java.util.ArrayList.toArray(ArrayList.java:358)

at net.datastructures.HashChainMap.bucketGet(HashChainMap.java:35)

at net.datastructures.AbstractHashMap.get(AbstractHashMap.java:62)

at dsaj.design.Demonstration.main(Demonstration.java:12)

However, before a program is terminated, each method on the stack trace has an

opportunity to catch the exception. Starting with the most deeply nested method in

which the exception occurs, each method may either catch the exception, or allow

it to pass through to the method that called it. For example, in the above stack trace,

the ArrayList.java method had the first opportunity to catch the exception. Since it

did not do so, the exception was passed upward to the HashChainMap.bucketGet
method, which in turn ignored the exception, causing it to pass further upward to

the AbstractHashMap.get method. The final opportunity to catch the exception

was in the Demonstration.main method, but since it did not do so, the program

terminated with the above diagnostic message.

The general methodology for handling exceptions is a try-catch construct in

which a guarded fragment of code that might throw an exception is executed. If

it throws an exception, then that exception is caught by having the flow of control

jump to a predefined catch block that contains the code to analyze the exception

and apply an appropriate resolution. If no exception occurs in the guarded code, all

catch blocks are ignored.

2.4. Exceptions 83

A typical syntax for a try-catch statement in Java is as follows:

try {
guardedBody

} catch (exceptionType1 variable1) {
remedyBody1

} catch (exceptionType2 variable2) {
remedyBody2

} . . .
. . .

Each exceptionTypei is the type of some exception, and each variablei is a valid

Java variable name.

The Java runtime environment begins performing a try-catch statement such as

this by executing the block of statements, guardedBody. If no exceptions are gen-

erated during this execution, the flow of control continues with the first statement

beyond the last line of the entire try-catch statement.

If, on the other hand, the block, guardedBody, generates an exception at some

point, the execution of that block immediate terminates and execution jumps to the

catch block whose exceptionType most closely matches the exception thrown (if

any). The variable for this catch statement references the exception object itself,

which can be used in the block of the matching catch statement. Once execution of

that catch block completes, control flow continues with the first statement beyond

the entire try-catch construct.

If an exception occurs during the execution of the block, guardedBody, that

does not match any of the exception types declared in the catch statements, that

exception is rethrown in the surrounding context.

There are several possible reactions when an exception is caught. One possi-

bility is to print out an error message and terminate the program. There are also

some interesting cases in which the best way to handle an exception is to quietly

catch and ignore it (this can be done by having an empty body as a catch block).

Another legitimate way of handling exceptions is to create and throw another ex-

ception, possibly one that specifies the exceptional condition more precisely.

We note briefly that try-catch statements in Java support a few advanced tech-

niques that we will not use in this book. There can be an optional finally clause

with a body that will be executed whether or not an exception happens in the origi-

nal guarded body; this can be useful, for example, to close a file before proceeding

onward. Java SE 7 introduced a new syntax known as a “try with resource” that

provides even more advanced cleanup techniques for resources such as open files

that must be properly cleaned up. Also as of Java SE 7, each catch statement can

designate multiple exception types that it handles; previously, a separate clause

would be needed for each one, even if the same remedy were applied in each case.

84 Chapter 2. Object-Oriented Design

1 public static void main(String[] args) {
2 int n = DEFAULT;
3 try {
4 n = Integer.parseInt(args[0]);
5 if (n <= 0) {
6 System.out.println("n must be positive. Using default.");
7 n = DEFAULT;
8 }
9 } catch (ArrayIndexOutOfBoundsException e) {

10 System.out.println("No argument specified for n. Using default.");
11 } catch (NumberFormatException e) {
12 System.out.println("Invalid integer argument. Using default.");
13 }
14 }

Code Fragment 2.13: A demonstration of catching an exception.

As a tangible example of a try-catch statement, we consider the simple applica-

tion presented in Code Fragment 2.13. This main method attempts to interpret the

first command-line argument as a positive integer. (Command-line arguments were

introduced on page 16.)

The statement at risk of throwing an exception, at line 4, is the command

n = Integer.parseInt(args[0]). That command may fail for one of two reasons.

First, the attempt to access args[0] will fail if the user did not specify any argu-

ments, and thus, the array args is empty. An ArrayIndexOutOfBoundsException
will be thrown in that case (and caught by us at line 9). The second potential ex-

ception is when calling the Integer.parseInt method. That command succeeds so

long as the parameter is a string that is a legitimate integer representation, such as

"2013". Of course, since a command-line argument can be any string, the user

might provide an invalid integer representation, in which case the parseInt method

throws a NumberFormatException (caught by us at line 11).

A final condition we wish to enforce is that the integer specified by the user

is positive. To test this property, we rely on a traditional conditional statement

(lines 5–8). However, notice that we have placed that conditional statement within

the primary body of the try-catch statement. That conditional statement will only be

evaluated if the command at line 4 succeeded without exception; had an exception

occurred at line 4, the primary try block is terminated, and control proceeds directly

to the exception handling for the appropriate catch statement.

As an aside, if we had been willing to use the same error message for the two

exceptional cases, we can use a single catch clause with the following syntax:

} catch (ArrayIndexOutOfBoundsException | NumberFormatException e) {
System.out.println("Using default value for n.");
}

2.4. Exceptions 85

2.4.2 Throwing Exceptions

Exceptions originate when a piece of Java code finds some sort of problem during

execution and throws an exception object. This is done by using the throw keyword

followed by an instance of the exception type to be thrown. It is often convenient

to instantiate an exception object at the time the exception has to be thrown. Thus,

a throw statement is typically written as follows:

throw new exceptionType(parameters);

where exceptionType is the type of the exception and the parameters are sent to

that type’s constructor; most exception types offer a version of a constructor that

accepts an error message string as a parameter.

As an example, the following method takes an integer parameter, which it ex-

pects to be positive. If a negative integer is sent, an IllegalArgumentException is

thrown.

public void ensurePositive(int n) {
if (n < 0)
throw new IllegalArgumentException("That's not positive!");

// ...
}

The execution of a throw statement immediately terminates the body of a method.

The Throws Clause

When a method is declared, it is possible to explicitly declare, as part of its sig-

nature, the possibility that a particular exception type may be thrown during a call

to that method. It does not matter whether the exception is directly from a throw
statement in that method body, or propagated upward from a secondary method call

made from within the body.

The syntax for declaring possible exceptions in a method signature relies on the

keyword throws (not to be confused with an actual throw statement). For example,

the parseInt method of the Integer class has the following formal signature:

public static int parseInt(String s) throws NumberFormatException;

The designation “throws NumberFormatException” warns users about the possi-

bility of an exceptional case, so that they might be better prepared to handle an

exception that may arise. If one of many exception types may possibly be thrown,

all such types can be listed, separated with commas. Alternatively, it may be pos-

sible to list an appropriate superclass that encompasses all specific exceptions that

may be thrown.

86 Chapter 2. Object-Oriented Design

The use of a throws clause in a method signature does not take away the re-

sponsibility of properly documenting all possible exceptions through the use of the

@throws tag within a javadoc comment (see Section 1.9.4). The type and reasons

for any potential exceptions should always be properly declared in the documenta-

tion for a method.

In contrast, the use of the throws clause in a method signature is optional

for many types of exceptions. For example, the documentation for the nextInt()
method of the Scanner class makes clear that three different exception types may

arise:

• An IllegalStateException, if the scanner has been closed

• A NoSuchElementException, if the scanner is active, but there is currently

no token available for input

• An InputMismatchException, if the next available token does not represent

an integer

However, no potential exceptions are formally declared within the method signa-

ture; they are only noted in the documentation.

To better understand the functional purpose of the throws declaration in a

method signature, it is helpful to know more about the way Java organizes its hier-

archy of exception types.

2.4.3 Java’s Exception Hierarchy

Java defines a rich inheritance hierarchy of all objects that are deemed Throwable.

We show a small portion of this hierarchy in Figure 2.7. The hierarchy is intention-

ally divided into two subclasses: Error and Exception. Errors are typically thrown

only by the Java Virtual Machine and designate the most serious situations that are

unlikely to be recoverable, such as when the virtual machine is asked to execute

a corrupt class file, or when the system runs out of memory. In contrast, excep-

tions designate situations in which a running program might reasonably be able to

recover, for example, when unable to open a data file.

Checked and Unchecked Exceptions

Java provides further refinement by declaring the RuntimeException class as an

important subclass of Exception. All subtypes of RuntimeException in Java are

officially treated as unchecked exceptions, and any exception type that is not part

of the RuntimeException is a checked exception.

The intent of the design is that runtime exceptions occur entirely due to mis-

takes in programming logic, such as using a bad index with an array, or sending an

inappropriate value as a parameter to a method. While such programming errors

2.4. Exceptions 87

OutofMemoryError

RuntimeExceptionIOErrorVirtualMachineError

NullPointerException

Throwable

IOException

IllegalArgumentException

NoSuchElementException

. . .

EOFException

IndexOutOfBoundsException

Exception

ArrayIndexOutOfBoundsException

FileNotFoundException

. . .

NumberFormatException

Error

ClassCastException

Figure 2.7: A small portion of Java’s hierarchy of Throwable types.

will certainly occur as part of the software development process, they should pre-

sumably be resolved before software reaches production quality. Therefore, it is

not in the interest of efficiency to explicitly check for each such mistake at runtime,

and thus these are designated as “unchecked” exceptions.

In contrast, other exceptions occur because of conditions that cannot easily be

detected until a program is executing, such as an unavailable file or a failed network

connection. Those are typically designated as “checked” exceptions in Java (and

thus, not a subtype of RuntimeException).

The designation between checked and unchecked exceptions plays a significant

role in the syntax of the language. In particular, all checked exceptions that might

propagate upward from a method must be explicitly declared in its signature.

A consequence is that if one method calls a second method declaring checked

exceptions, then the call to that second method must either be guarded within a

try-catch statement, or else the calling method must itself declare the checked ex-

ceptions in its signature, since there is risk that such an exception might propagate

upward from the calling method.

Defining New Exception Types

In this book, we will rely entirely on existing RuntimeException types to designate

various requirements on the use of our data structures. However, some libraries

define new classes of exceptions to describe more specific conditions. Specialized

exceptions should inherit either from the Exception class (if checked), from the

RuntimeException class (if unchecked), or from an existing Exception subtype

that is more relevant.

88 Chapter 2. Object-Oriented Design

2.5 Casting and Generics

In this section, we discuss casting among reference variables, as well as a technique,

called generics, that allows us to define methods and classes that work with a variety

of data types without the need for explicit casting.

2.5.1 Casting

We begin our discussion with methods for type conversions for objects.

Widening Conversions

A widening conversion occurs when a type T is converted into a “wider” type U .

The following are common cases of widening conversions:

• T and U are class types and U is a superclass of T .

• T and U are interface types and U is a superinterface of T .

• T is a class that implements interface U .

Widening conversions are automatically performed to store the result of an ex-

pression into a variable, without the need for an explicit cast. Thus, we can directly

assign the result of an expression of type T into a variable v of type U when the

conversion from T to U is a widening conversion. When discussing polymorphism

on page 68, we gave the following example of an implicit widening cast, assigning

an instance of the narrower PredatoryCreditCard class to a variable of the wider

CreditCard type:

CreditCard card = new PredatoryCreditCard(...); // parameters omitted

The correctness of a widening conversion can be checked by the compiler and its

validity does not require testing by the Java runtime environment during program

execution.

Narrowing Conversions

A narrowing conversion occurs when a type T is converted into a “narrower”

type S. The following are common cases of narrowing conversions:

• T and S are class types and S is a subclass of T .

• T and S are interface types and S is a subinterface of T .

• T is an interface implemented by class S.

In general, a narrowing conversion of reference types requires an explicit cast.

Also, the correctness of a narrowing conversion may not be verifiable by the com-

piler. Thus, its validity should be tested by the Java runtime environment during

program execution.

2.5. Casting and Generics 89

The example code fragment below shows how to use a cast to perform a nar-

rowing conversion from type PredatoryCreditCard to type CreditCard.

CreditCard card = new PredatoryCreditCard(...); // widening
PredatoryCreditCard pc = (PredatoryCreditCard) card; // narrowing

Although variable card happens to reference an instance of a PredatoryCreditCard,

the variable has declared type, CreditCard. Therefore, the assignment pc = card
is a narrowing conversion and requires an explicit cast that will be evaluated at

runtime (as not all cards are predatory).

Casting Exceptions

In Java, we can cast an object reference o of type T into a type S, provided the

object o is referring to is actually of type S. If, on the other hand, object o is not

also of type S, then attempting to cast o to type S will throw an exception called

ClassCastException. We illustrate this rule in the following code fragment, using

Java’s Number abstract class, which is a superclass of both Integer and Double.

Number n;
Integer i;
n = new Integer(3);
i = (Integer) n; // This is legal
n = new Double(3.1415);
i = (Integer) n; // This is illegal

To avoid problems such as this and to avoid peppering our code with try-catch

blocks every time we perform a cast, Java provides a way to make sure an object

cast will be correct. Namely, it provides an operator, instanceof , that allows us to

test whether an object variable is referring to an object that belongs to a particular

type. The syntax for this operator is objectReference instanceof referenceType,

where objectReference is an expression that evaluates to an object reference and

referenceType is the name of some existing class, interface, or enum (Section 1.3).

If objectReference is indeed an instance satisfying referenceType, then the operator

returns true; otherwise, it returns false. Thus, we can avoid a ClassCastException
from being thrown in the code fragment above by modifying it as follows:

Number n;
Integer i;
n = new Integer(3);
if (n instanceof Integer)
i = (Integer) n; // This is legal

n = new Double(3.1415);
if (n instanceof Integer)
i = (Integer) n; // This will not be attempted

90 Chapter 2. Object-Oriented Design

Casting with Interfaces

Interfaces allow us to enforce that objects implement certain methods, but using

interface variables with concrete objects sometimes requires casting. Suppose we

declare a Person interface as shown in Code Fragment 2.14. Note that method

equals of the Person interface takes one parameter of type Person. Thus, we can

pass an object of any class implementing the Person interface to this method.

1 public interface Person {
2 public boolean equals(Person other); // is this the same person?
3 public String getName(); // get this person’s name
4 public int getAge(); // get this person’s age
5 }

Code Fragment 2.14: Interface Person.

In Code Fragment 2.15, we show a class, Student, that implements Person.

Because the parameter to equals is a Person, the implementation must not assume

that it is necessarily of type Student. Instead, it first uses the instanceof operator

at line 15, returning false if the argument is not a student (since it surely is not

the student in question). Only after verifying that the parameter is a student, is it

explicitly cast to a Student, at which point its id field can be accessed.

1 public class Student implements Person {
2 String id;
3 String name;
4 int age;
5 public Student(String i, String n, int a) { // simple constructor
6 id = i;
7 name = n;
8 age = a;
9 }

10 protected int studyHours() { return age/2;} // just a guess
11 public String getID() { return id;} // ID of the student
12 public String getName() { return name; } // from Person interface
13 public int getAge() { return age; } // from Person interface
14 public boolean equals(Person other) { // from Person interface
15 if (!(other instanceof Student)) return false; // cannot possibly be equal
16 Student s = (Student) other; // explicit cast now safe
17 return id.equals(s.id); // compare IDs
18 }
19 public String toString() { // for printing
20 return "Student(ID:" + id + ", Name:" + name + ", Age:" + age + ")";
21 }
22 }

Code Fragment 2.15: Class Student implementing interface Person.

2.5. Casting and Generics 91

2.5.2 Generics

Java includes support for writing generic classes and methods that can operate on a

variety of data types while often avoiding the need for explicit casts. The generics

framework allows us to define a class in terms of a set of formal type parameters,

which can then be used as the declared type for variables, parameters, and return

values within the class definition. Those formal type parameters are later specified

when using the generic class as a type elsewhere in a program.

To better motivate the use of generics, we consider a simple case study. Often,

we wish to treat a pair of related values as a single object, for example, so that

the pair can be returned from a method. A solution is to define a new class whose

instances store both values. This is our first example of an object-oriented design

pattern known as the composition design pattern. If we know, for example, that we

want a pair to store a string and a floating-point number, perhaps to store a stock

ticker label and a price, we could easily design a custom class for that purpose.

However, for another purpose, we might want to store a pair that consists of a Book
object and an integer that represents a quantity. The goal of generic programming

is to be able to write a single class that can represent all such pairs.

The generics framework was not a part of the original Java language; it was

added as part of Java SE 5. Prior to that, generic programming was implemented

by relying heavily on Java’s Object class, which is the universal supertype of all

objects (including the wrapper types corresponding to primitives). In that “classic”

style, a generic pair might be implemented as shown in Code Fragment 2.16.

1 public class ObjectPair {
2 Object first;
3 Object second;
4 public ObjectPair(Object a, Object b) { // constructor
5 first = a;
6 second = b;
7 }
8 public Object getFirst() { return first; }
9 public Object getSecond() { return second;}

10 }
Code Fragment 2.16: Representing a generic pair of objects using a classic style.

An ObjectPair instance stores the two objects that are sent to the constructor,

and provides individual accessors for each component of the pair. With this defini-

tion, a pair can be declared and instantiated with the following command:

ObjectPair bid = new ObjectPair("ORCL", 32.07);

This instantiation is legal because the parameters to the constructor undergo widen-

ing conversions. The first parameter, "ORCL", is a String, and thus also an Object.

92 Chapter 2. Object-Oriented Design

The second parameter is a double, but it is automatically boxed into a Double,

which then qualifies as an Object. (For the record, this is not quite the “classic”

style, as automatic boxing was not introduced until Java SE 5.)

The drawback of the classic approach involves use of the accessors, both of

which formally return an Object reference. Even if we know that the first object is

a string in our application, we cannot legally make the following assignment:

String stock = bid.getFirst(); // illegal; compile error

This represents a narrowing conversion from the declared return type of Object to

the variable of type String. Instead, an explicit cast is required, as follows:

String stock = (String) bid.getFirst(); // narrowing cast: Object to String

With the classic style for generics, code became rampant with such explicit casts.

Using Java’s Generics Framework

With Java’s generics framework, we can implement a pair class using formal type

parameters to represent the two relevant types in our composition. An implemen-

tation using this framework is given in Code Fragment 2.17.

1 public class Pair<A,B> {
2 A first;
3 B second;
4 public Pair(A a, B b) { // constructor
5 first = a;
6 second = b;
7 }
8 public A getFirst() { return first; }
9 public B getSecond() { return second;}

10 }
Code Fragment 2.17: Representing a pair of objects with generic type parameters.

Angle brackets are used at line 1 to enclose the sequence of formal type parameters.

Although any valid identifier can be used for a formal type parameter, single-letter

uppercase names are conventionally used (in this example, A and B). We may then

use these type parameters within the body of the class definition. For example, we

declare instance variable, first, to have type A; we similarly use A as the declared

type for the first constructor parameter and for the return type of method, getFirst.

When subsequently declaring a variable with such a parameterize type, we must

explicitly specify actual type parameters that will take the place of the generic

formal type parameters. For example, to declare a variable that is a pair holding a

stock-ticker string and a price, we write the following:

Pair<String,Double> bid;

2.5. Casting and Generics 93

Effectively, we have stated that we wish to have String serve in place of type A,

and Double serve in place of type B for the pair known as bid. The actual types for

generic programming must be object types, which is why we use the wrapper class

Double instead of the primitive type double. (Fortunately, the automatic boxing

and unboxing will work in our favor.)

We can subsequently instantiate the generic class using the following syntax:

bid = new Pair<>("ORCL", 32.07); // rely on type inference

After the new operator, we provide the name of the generic class, then an empty

set of angle brackets (known as the “diamond”), and finally the parameters to the

constructor. An instance of the generic class is created, with the actual types for

the formal type parameters determined based upon the original declaration of the

variable to which it is assigned (bid in this example). This process is known as type

inference, and was introduced to the generics framework in Java SE 7.

It is also possible to use a style that existed prior to Java SE 7, in which the

generic type parameters are explicitly specified between angle brackets during in-

stantiation. Using that style, our previous example would be implemented as:

bid = new Pair<String,Double>("ORCL", 32.07); // give explicit types

However, it is important that one of the two above styles be used. If angle

brackets are entirely omitted, as in the following example,

bid = new Pair("ORCL", 32.07); // classic style

this reverts to the classic style, with Object automatically used for all generic type

parameters, and resulting in a compiler warning when assigning to a variable with

more specific types.

Although the syntax for the declaration and instantiation of objects using the

generics framework is slightly more cluttered than the classic style, the advantage

is that there is no longer any need for explicit narrowing casts from Object to a

more specific type. Continuing with our example, since bid was declared with

actual type parameters <String,Double>, the return type of the getFirst() method

is String, and the return type of the getSecond() method is Double. Unlike the

classic style, we can make the following assignments without any explicit casting

(although there is still an automatic unboxing of the Double):

String stock = bid.getFirst();
double price = bid.getSecond();

94 Chapter 2. Object-Oriented Design

Generics and Arrays

There is an important caveat related to generic types and the use of arrays. Although

Java allows the declaration of an array storing a parameterized type, it does not

technically allow the instantiation of new arrays involving those types. Fortunately,

it allows an array defined with a parameterized type to be initialized with a newly

created, nonparametric array, which can then be cast to the parameterized type.

Even so, this latter mechanism causes the Java compiler to issue a warning, because

it is not 100% type-safe.

We will see this issue arise in two ways:

• Code outside a generic class may wish to declare an array storing instances

of the generic class with actual type parameters.

• A generic class may wish to declare an array storing objects that belong to

one of the formal parameter types.

As an example of the first use case, we continue with our stock market example

and presume that we would like to keep an array of Pair<String,Double> objects.

Such an array can be declared with a parameterized type, but it must be instantiated

with an unparameterized type and then cast back to the parameterized type. We

demonstrate this usage in the following:

Pair<String,Double>[] holdings;
holdings = new Pair<String,Double>[25]; // illegal; compile error
holdings = new Pair[25]; // correct, but warning about unchecked cast
holdings[0] = new Pair<>("ORCL", 32.07); // valid element assignment

As an example of the second use case, assume that we want to create a generic

Portfolio class that can store a fixed number of generic entries in an array. If the

class uses <T> as a parameterized type, it can declare an array of type T[], but

it cannot directly instantiate such an array. Instead, a common approach is to in-

stantiate an array of type Object[], and then make a narrowing cast to type T[], as

shown in the following:

public class Portfolio<T> {
T[] data;
public Portfolio(int capacity) {
data = new T[capacity]; // illegal; compiler error
data = (T[]) new Object[capacity]; // legal, but compiler warning
}
public T get(int index) { return data[index]; }
public void set(int index, T element) { data[index] = element; }
}

2.5. Casting and Generics 95

Generic Methods

The generics framework allows us to define generic versions of individual methods

(as opposed to generic versions of entire classes). To do so, we include a generic

formal type declaration among the method modifiers.

For example, we show below a nonparametric GenericDemo class with a pa-

rameterized static method that can reverse an array containing elements of any

object type.

public class GenericDemo {
public static <T> void reverse(T[] data) {
int low = 0, high = data.length − 1;
while (low < high) { // swap data[low] and data[high]
T temp = data[low];
data[low++] = data[high]; // post-increment of low
data[high−−] = temp; // post-decrement of high
}
}
}

Note the use of the <T> modifier to declare the method to be generic, and the use

of the type T within the method body, when declaring the local variable, temp.

The method can be called using the syntax, GenericDemo.reverse(books), with

type inference determining the generic type, assuming books is an array of some

object type. (This generic method cannot be applied to primitive arrays, because

autoboxing does not apply to entire arrays.)

As an aside, we note that we could have implemented a reverse method equally

well using a classic style, acting upon an Object[] array.

Bounded Generic Types

By default, when using a type name such as T in a generic class or method, a

user can specify any object type as the actual type of the generic. A formal pa-

rameter type can be restricted by using the extends keyword followed by a class

or interface. In that case, only a type that satisfies the stated condition is allowed

to substitute for the parameter. The advantage of such a bounded type is that it

becomes possible to call any methods that are guaranteed by the stated bound.

As an example, we might declare a generic ShoppingCart that could only be

instantiated with a type that satisfied the Sellable interface (from Code Fragment 2.8

on page 77). Such a class would be declared beginning with the line:

public class ShoppingCart<T extends Sellable> {
Within that class definition, we would then be allowed to call methods such as

description() and lowestPrice() on any instances of type T.

96 Chapter 2. Object-Oriented Design

2.6 Nested Classes

Java allows a class definition to be nested inside the definition of another class.

The main use for nesting classes is when defining a class that is strongly affili-

ated with another class. This can help increase encapsulation and reduce undesired

name conflicts. Nested classes are a valuable technique when implementing data

structures, as an instance of a nested use can be used to represent a small portion

of a larger data structure, or an auxiliary class that helps navigate a primary data

structure. We will use nested classes in many implementations within this book.

To demonstrate the mechanics of a nested class, we consider a new Transaction
class to support logging of transactions associated with a credit card. That new class

definition can be nested within the CreditCard class using a style as follows:

public class CreditCard {
private static class Transaction { /∗ details omitted ∗/ }

// instance variable for a CreditCard
Transaction[] history; // keep log of all transactions for this card
}

The containing class is known as the outer class. The nested class is formally a

member of the outer class, and its fully qualified name is OuterName.NestedName.

For example, with the above definition the nested class is CreditCard.Transaction,

although we may refer to it simply as Transaction from within the CreditCard class.

Much like packages (see Section 1.8), the use of nested classes can help re-

duce name collisions, as it is perfectly acceptable to have another class named

Transaction nested within some other class (or as a self-standing class).

A nested class has an independent set of modifiers from the outer class. Visi-

bility modifiers (e.g., public, private) effect whether the nested class definition is

accessible beyond the outer class definition. For example, a private nested class

can be used by the outer class, but by no other classes.

A nested class can also be designated as either static or (by default) nonstatic,

with significant consequences. A static nested class is most like a traditional class;

its instances have no association with any specific instance of the outer class.

A nonstatic nested class is more commonly known as an inner class in Java.

An instance of an inner class can only be created from within a nonstatic method of

the outer class, and that inner instance becomes associated with the outer instance

that creates it. Each instance of an inner class implicitly stores a reference to its

associated outer instance, accessible from within the inner class methods using the

syntax OuterName.this (as opposed to this, which refers to the inner instance).

The inner instance also has private access to all members of its associated outer

instance, and can rely on the formal type parameters of the outer class, if generic.

2.7. Exercises 97

2.7 Exercises

Reinforcement

R-2.1 Give three examples of life-critical software applications.

R-2.2 Give an example of a software application in which adaptability can mean the

difference between a prolonged lifetime of sales and bankruptcy.

R-2.3 Describe a component from a text-editor GUI and the methods that it encapsu-
lates.

R-2.4 Assume that we change the CreditCard class (see Code Fragment 1.5) so that
instance variable balance has private visibility. Why is the following implemen-

tation of the PredatoryCreditCard.charge method flawed?

public boolean charge(double price) {
boolean isSuccess = super.charge(price);
if (!isSuccess)
charge(5); // the penalty

return isSuccess;
}

R-2.5 Assume that we change the CreditCard class (see Code Fragment 1.5) so that
instance variable balance has private visibility. Why is the following implemen-

tation of the PredatoryCreditCard.charge method flawed?

public boolean charge(double price) {
boolean isSuccess = super.charge(price);
if (!isSuccess)
super.charge(5); // the penalty

return isSuccess;
}

R-2.6 Give a short fragment of Java code that uses the progression classes from Sec-
tion 2.2.3 to find the eighth value of a Fibonacci progression that starts with 2

and 2 as its first two values.

R-2.7 If we choose an increment of 128, how many calls to the nextValue method from

the ArithmeticProgression class of Section 2.2.3 can we make before we cause a
long-integer overflow?

R-2.8 Can two interfaces mutually extend each other? Why or why not?

R-2.9 What are some potential efficiency disadvantages of having very deep inheritance
trees, that is, a large set of classes, A, B, C, and so on, such that B extends A, C
extends B, D extends C, etc.?

R-2.10 What are some potential efficiency disadvantages of having very shallow inheri-

tance trees, that is, a large set of classes, A, B, C, and so on, such that all of these
classes extend a single class, Z?

98 Chapter 2. Object-Oriented Design

R-2.11 Consider the following code fragment, taken from some package:

public class Maryland extends State {
Maryland() { /∗ null constructor ∗/ }
public void printMe() { System.out.println("Read it."); }
public static void main(String[] args) {
Region east = new State();
State md = new Maryland();
Object obj = new Place();
Place usa = new Region();
md.printMe();
east.printMe();
((Place) obj).printMe();
obj = md;
((Maryland) obj).printMe();
obj = usa;
((Place) obj).printMe();
usa = md;
((Place) usa).printMe();
}
}
class State extends Region {
State() { /∗ null constructor ∗/ }
public void printMe() { System.out.println("Ship it."); }
}
class Region extends Place {
Region() { /∗ null constructor ∗/ }
public void printMe() { System.out.println("Box it."); }
}
class Place extends Object {
Place() { /∗ null constructor ∗/ }
public void printMe() { System.out.println("Buy it."); }
}

What is the output from calling the main() method of the Maryland class?

R-2.12 Draw a class inheritance diagram for the following set of classes:

• Class Goat extends Object and adds an instance variable tail and methods

milk() and jump().

• Class Pig extends Object and adds an instance variable nose and methods

eat(food) and wallow().

• Class Horse extends Object and adds instance variables height and color,
and methods run() and jump().

• Class Racer extends Horse and adds a method race().

• Class Equestrian extends Horse and adds instance variable weight and is-
Trained, and methods trot() and isTrained().

2.7. Exercises 99

R-2.13 Consider the inheritance of classes from Exercise R-2.12, and let d be an object
variable of type Horse. If d refers to an actual object of type Equestrian, can it

be cast to the class Racer? Why or why not?

R-2.14 Give an example of a Java code fragment that performs an array reference that

is possibly out of bounds, and if it is out of bounds, the program catches that
exception and prints the following error message:

“Don’t try buffer overflow attacks in Java!”

R-2.15 If the parameter to the makePayment method of the CreditCard class (see Code

Fragment 1.5) were a negative number, that would have the effect of raising

the balance on the account. Revise the implementation so that it throws an

IllegalArgumentException if a negative amount is sent as a parameter.

Creativity

C-2.16 Suppose you are on the design team for a new e-book reader. What are the

primary classes and methods that the Java software for your reader will need?
You should include an inheritance diagram for this code, but you don’t need to

write any actual code. Your software architecture should at least include ways for

customers to buy new books, view their list of purchased books, and read their
purchased books.

C-2.17 Most modern Java compilers have optimizers that can detect simple cases when

it is logically impossible for certain statements in a program to ever be executed.

In such cases, the compiler warns the programmer about the useless code. Write
a short Java method that contains code for which it is provably impossible for

that code to ever be executed, yet the Java compiler does not detect this fact.

C-2.18 The PredatoryCreditCard class provides a processMonth() method that models

the completion of a monthly cycle. Modify the class so that once a customer has
made ten calls to charge during a month, each additional call to that method in

the current month results in an additional $1 surcharge.

C-2.19 Modify the PredatoryCreditCard class so that a customer is assigned a minimum

monthly payment, as a percentage of the balance, and so that a late fee is assessed
if the customer does not subsequently pay that minimum amount before the next

monthly cycle.

C-2.20 Assume that we change the CreditCard class (see Code Fragment 1.5) so that
instance variable balance has private visibility, but a new protected method is

added, with signature setBalance(newBalance). Show how to properly imple-

ment the method PredatoryCreditCard.processMonth() in this setting.

C-2.21 Write a program that consists of three classes, A, B, and C, such that B extends
A and that C extends B. Each class should define an instance variable named “x”

(that is, each has its own variable named x). Describe a way for a method in C

to access and set A’s version of x to a given value, without changing B or C’s
version.

100 Chapter 2. Object-Oriented Design

C-2.22 Explain why the Java dynamic dispatch algorithm, which looks for the method

to invoke for a call obj.foo(), will never get into an infinite loop.

C-2.23 Modify the advance method of the FibonacciProgression class so as to avoid use

of any temporary variable.

C-2.24 Write a Java class that extends the Progression class so that each value in the pro-

gression is the absolute value of the difference between the previous two values.

You should include a default constructor that starts with 2 and 200 as the first two

values and a parametric constructor that starts with a specified pair of numbers

as the first two values.

C-2.25 Redesign the Progression class to be abstract and generic, producing a sequence

of values of generic type T, and supporting a single constructor that accepts an

initial value. Make all corresponding modifications to the rest of the classes in

our hierarchy so that they remain as nongeneric classes, while inheriting from the

new generic Progression class.

C-2.26 Use a solution to Exercise C-2.25 to create a new progression class for which

each value is the square root of the previous value, represented as a Double.
You should include a default constructor that has 65,536 as the first value and a

parametric constructor that starts with a specified number as the first value.

C-2.27 Use a solution to Exercise C-2.25 to reimplement the FibonacciProgression sub-

class to rely on the BigInteger class, in order to avoid overflows all together.

C-2.28 Write a set of Java classes that can simulate an Internet application in which one

party, Alice, is periodically creating a set of packets that she wants to send to

Bob. An Internet process is continually checking if Alice has any packets to

send, and if so, it delivers them to Bob’s computer; Bob is periodically checking

if his computer has a packet from Alice, and if so, he reads and deletes it.

C-2.29 Write a Java program that inputs a polynomial in standard algebraic notation and

outputs the first derivative of that polynomial.

Projects

P-2.30 Write a Java program that inputs a document and then outputs a bar-chart plot of

the frequencies of each alphabet character that appears within that document.

P-2.31 Write a Java program to simulate an ecosystem containing two types of creatures,

bears and fish. The ecosystem consists of a river, which is modeled as a relatively

large array. Each cell of the array should contain an Animal object, which can

be a Bear object, a Fish object, or null. In each time step, based on a random

process, each animal either attempts to move into an adjacent array cell or stay

where it is. If two animals of the same type are about to collide in the same

cell, then they stay where they are, but they create a new instance of that type

of animal, which is placed in a random empty (i.e., previously null) cell in the

array. If a bear and a fish collide, however, then the fish dies (i.e., it disappears).

Use actual object creation, via the new operator, to model the creation of new

objects, and provide a visualization of the array after each time step.

Chapter Notes 101

P-2.32 Write a simulator as in the previous project, but add a boolean gender field and
a floating-point strength field to each Animal object. Now, if two animals of

the same type try to collide, then they only create a new instance of that type of

animal if they are of different genders. Otherwise, if two animals of the same
type and gender try to collide, then only the one of larger strength survives.

P-2.33 Write a Java program that simulates a system that supports the functions of an e-
book reader. You should include methods for users of your system to “buy” new

books, view their list of purchased books, and read their purchased books. Your

system should use actual books, which have expired copyrights and are available
on the Internet, to populate your set of available books for users of your system

to “purchase” and read.

P-2.34 Define a Polygon interface that has methods area() and perimeter(). Then im-

plement classes for Triangle, Quadrilateral, Pentagon, Hexagon, and Octagon,
which implement this interface, with the obvious meanings for the area() and

perimeter() methods. Also implement classes, IsoscelesTriangle, Equilateral-
Triangle, Rectangle, and Square, which have the appropriate inheritance rela-
tionships. Finally, write a simple user interface, which allows users to create

polygons of the various types, input their geometric dimensions, and then out-

put their area and perimeter. For extra effort, allow users to input polygons by
specifying their vertex coordinates and be able to test if two such polygons are

similar.

P-2.35 Write a Java program that inputs a list of words, separated by whitespace, and

outputs how many times each word appears in the list. You need not worry about

efficiency at this point, however, as this topic is something that will be addressed
later in this book.

P-2.36 Write a Java program that can “make change.” Your program should take two
numbers as input, one that is a monetary amount charged and the other that is

a monetary amount given. It should then return the number of each kind of bill

and coin to give back as change for the difference between the amount given and
the amount charged. The values assigned to the bills and coins can be based on

the monetary system of any current or former government. Try to design your
program so that it returns the fewest number of bills and coins as possible.

Chapter Notes

For a broad overview of developments in computer science and engineering, we refer the

reader to The Computer Science and Engineering Handbook [89]. For more information
about the Therac-25 incident, please see the paper by Leveson and Turner [65].

The reader interested in studying object-oriented programming further is referred to the

books by Booch [16], Budd [19], and Liskov and Guttag [67]. Liskov and Guttag also pro-
vide a nice discussion of abstract data types, as does the book chapter by Demurjian [28] in

the The Computer Science and Engineering Handbook [89]. Design patterns are described

in the book by Gamma et al. [37].

Chapter

3 Fundamental Data Structures

Contents

3.1 Using Arrays . 104

3.1.1 Storing Game Entries in an Array 104

3.1.2 Sorting an Array . 110

3.1.3 java.util Methods for Arrays and Random Numbers 112

3.1.4 Simple Cryptography with Character Arrays 115

3.1.5 Two-Dimensional Arrays and Positional Games 118

3.2 Singly Linked Lists . 122

3.2.1 Implementing a Singly Linked List Class 126

3.3 Circularly Linked Lists . 128

3.3.1 Round-Robin Scheduling 128

3.3.2 Designing and Implementing a Circularly Linked List . . . 129

3.4 Doubly Linked Lists . 132

3.4.1 Implementing a Doubly Linked List Class 135

3.5 Equivalence Testing . 138

3.5.1 Equivalence Testing with Arrays 139

3.5.2 Equivalence Testing with Linked Lists 140

3.6 Cloning Data Structures 141

3.6.1 Cloning Arrays . 142

3.6.2 Cloning Linked Lists . 144

3.7 Exercises . 145

104 Chapter 3. Fundamental Data Structures

3.1 Using Arrays

In this section, we explore a few applications of arrays—the concrete data structures

introduced in Section 1.3 that access their entries using integer indices.

3.1.1 Storing Game Entries in an Array

The first application we study is storing a sequence of high score entries for a video

game in an array. This is representative of many applications in which a sequence

of objects must be stored. We could just as easily have chosen to store records for

patients in a hospital or the names of players on a football team. Nevertheless, let

us focus on storing high score entries, which is a simple application that is already

rich enough to present some important data-structuring concepts.

To begin, we consider what information to include in an object representing a

high score entry. Obviously, one component to include is an integer representing

the score itself, which we identify as score. Another useful thing to include is the

name of the person earning this score, which we identify as name. We could go

on from here, adding fields representing the date the score was earned or game

statistics that led to that score. However, we omit such details to keep our example

simple. A Java class, GameEntry, representing a game entry, is given in Code

Fragment 3.1.

1 public class GameEntry {
2 private String name; // name of the person earning this score
3 private int score; // the score value
4 /∗∗ Constructs a game entry with given parameters.. ∗/
5 public GameEntry(String n, int s) {
6 name = n;
7 score = s;
8 }
9 /∗∗ Returns the name field. ∗/

10 public String getName() { return name; }
11 /∗∗ Returns the score field. ∗/
12 public int getScore() { return score; }
13 /∗∗ Returns a string representation of this entry. ∗/
14 public String toString() {
15 return "(" + name + ", " + score + ")";
16 }
17 }

Code Fragment 3.1: Java code for a simple GameEntry class. Note that we include

methods for returning the name and score for a game entry object, as well as a

method for returning a string representation of this entry.

3.1. Using Arrays 105

A Class for High Scores

To maintain a sequence of high scores, we develop a class named Scoreboard. A

scoreboard is limited to a certain number of high scores that can be saved; once that

limit is reached, a new score only qualifies for the scoreboard if it is strictly higher

than the lowest “high score” on the board. The length of the desired scoreboard

may depend on the game, perhaps 10, 50, or 500. Since that limit may vary, we

allow it to be specified as a parameter to our Scoreboard constructor.

Internally, we will use an array named board to manage the GameEntry in-

stances that represent the high scores. The array is allocated with the specified

maximum capacity, but all entries are initially null. As entries are added, we will

maintain them from highest to lowest score, starting at index 0 of the array. We

illustrate a typical state of the data structure in Figure 3.1, and give Java code to

construct such a data structure in Code Fragment 3.2.

Figure 3.1: An illustration of an array of length ten storing references to six

GameEntry objects in the cells with indices 0 to 5; the rest are null references.

1 /∗∗ Class for storing high scores in an array in nondecreasing order. ∗/
2 public class Scoreboard {
3 private int numEntries = 0; // number of actual entries
4 private GameEntry[] board; // array of game entries (names & scores)
5 /∗∗ Constructs an empty scoreboard with the given capacity for storing entries. ∗/
6 public Scoreboard(int capacity) {
7 board = new GameEntry[capacity];
8 }
... // more methods will go here
36 }

Code Fragment 3.2: The beginning of a Scoreboard class for maintaining a set of

scores as GameEntry objects. (Completed in Code Fragments 3.3 and 3.4.)

106 Chapter 3. Fundamental Data Structures

Adding an Entry

One of the most common updates we might want to make to a Scoreboard is to add

a new entry. Keep in mind that not every entry will necessarily qualify as a high

score. If the board is not yet full, any new entry will be retained. Once the board is

full, a new entry is only retained if it is strictly better than one of the other scores,

in particular, the last entry of the scoreboard, which is the lowest of the high scores.

Code Fragment 3.3 provides an implementation of an update method for the

Scoreboard class that considers the addition of a new game entry.

9 /∗∗ Attempt to add a new score to the collection (if it is high enough) ∗/
10 public void add(GameEntry e) {
11 int newScore = e.getScore();
12 // is the new entry e really a high score?
13 if (numEntries < board.length | | newScore > board[numEntries−1].getScore()) {
14 if (numEntries < board.length) // no score drops from the board
15 numEntries++; // so overall number increases
16 // shift any lower scores rightward to make room for the new entry
17 int j = numEntries − 1;
18 while (j > 0 && board[j−1].getScore() < newScore) {
19 board[j] = board[j−1]; // shift entry from j-1 to j
20 j−−; // and decrement j
21 }
22 board[j] = e; // when done, add new entry
23 }
24 }

Code Fragment 3.3: Java code for inserting a GameEntry object into a Scoreboard.

When a new score is considered, the first goal is to determine whether it quali-

fies as a high score. This will be the case (see line 13) if the scoreboard is below its

capacity, or if the new score is strictly higher than the lowest score on the board.

Once it has been determined that a new entry should be kept, there are two

remaining tasks: (1) properly update the number of entries, and (2) place the new

entry in the appropriate location, shifting entries with inferior scores as needed.

The first of these tasks is easily handled at lines 14 and 15, as the total number

of entries can only be increased if the board is not yet at full capacity. (When full,

the addition of a new entry will be counteracted by the removal of the entry with

lowest score.)

The placement of the new entry is implemented by lines 17–22. Index j is

initially set to numEntries − 1, which is the index at which the last GameEntry will

reside after completing the operation. Either j is the correct index for the newest

entry, or one or more immediately before it will have lesser scores. The while loop

checks the compound condition, shifting entries rightward and decrementing j, as

long as there is another entry at index j−1 with a score less than the new score.

3.1. Using Arrays 107

Figure 3.2: Preparing to add Jill’s GameEntry object to the board array. In order to

make room for the new reference, we have to shift any references to game entries

with smaller scores than the new one to the right by one cell.

Figure 3.2 shows an example of the process, just after the shifting of existing

entries, but before adding the new entry. When the loop completes, j will be the

correct index for the new entry. Figure 3.3 shows the result of a complete operation,

after the assignment of board[j] = e, accomplished by line 22 of the code.

In Exercise C-3.19, we explore how game entry addition might be simplified

for the case when we don’t need to preserve relative orders.

Figure 3.3: Adding a reference to Jill’s GameEntry object to the board array. The

reference can now be inserted at index 2, since we have shifted all references to

GameEntry objects with scores less than the new one to the right.

108 Chapter 3. Fundamental Data Structures

Removing an Entry

Suppose some hot shot plays our video game and gets his or her name on our high

score list, but we later learn that cheating occurred. In this case, we might want

to have a method that lets us remove a game entry from the list of high scores.

Therefore, let us consider how we might remove a reference to a GameEntry object

from a Scoreboard.

We choose to add a method to the Scoreboard class, with signature remove(i),
where i designates the current index of the entry that should be removed and re-

turned. When a score is removed, any lower scores will be shifted upward, to fill in

for the removed entry. If index i is outside the range of current entries, the method

will throw an IndexOutOfBoundsException.

Our implementation for remove will involve a loop for shifting entries, much

like our algorithm for addition, but in reverse. To remove the reference to the object

at index i, we start at index i and move all the references at indices higher than i

one cell to the left. (See Figure 3.4.)

Figure 3.4: An illustration of the removal of Paul’s score from index 3 of an array

storing references to GameEntry objects.

Our implementation of the remove method for the Scoreboard class is given

in Code Fragment 3.4. The details for doing the remove operation contain a few

subtle points. The first is that, in order to remove and return the game entry (let’s

call it e) at index i in our array, we must first save e in a temporary variable. We

will use this variable to return e when we are done removing it.

3.1. Using Arrays 109

25 /∗∗ Remove and return the high score at index i. ∗/
26 public GameEntry remove(int i) throws IndexOutOfBoundsException {
27 if (i < 0 | | i >= numEntries)
28 throw new IndexOutOfBoundsException("Invalid index: " + i);
29 GameEntry temp = board[i]; // save the object to be removed
30 for (int j = i; j < numEntries − 1; j++) // count up from i (not down)
31 board[j] = board[j+1]; // move one cell to the left
32 board[numEntries −1] = null; // null out the old last score
33 numEntries−−;
34 return temp; // return the removed object
35 }

Code Fragment 3.4: Java code for performing the Scoreboard.remove operation.

The second subtle point is that, in moving references higher than i one cell to

the left, we don’t go all the way to the end of the array. First, we base our loop

on the number of current entries, not the capacity of the array, because there is

no reason for “shifting” a series of null references that may be at the end of the

array. We also carefully define the loop condition, j < numEntries − 1, so that the

last iteration of the loop assigns board[numEntries−2] = board[numEntries−1].
There is no entry to shift into cell board[numEntries−1], so we return that cell to

null just after the loop. We conclude by returning a reference to the removed entry

(which no longer has any reference pointing to it within the board array).

Conclusions

In the version of the Scoreboard class that is available online, we include an im-

plementation of the toString() method, which allows us to display the contents of

the current scoreboard, separated by commas. We also include a main method that

performs a basic test of the class.

The methods for adding and removing objects in an array of high scores are

simple. Nevertheless, they form the basis of techniques that are used repeatedly

to build more sophisticated data structures. These other structures may be more

general than the array structure above, of course, and often they will have a lot

more operations that they can perform than just add and remove. But studying the

concrete array data structure, as we are doing now, is a great starting point to un-

derstanding these other structures, since every data structure has to be implemented

using concrete means.

In fact, later in this book, we will study a Java collections class, ArrayList,
which is more general than the array structure we are studying here. The ArrayList
has methods to operate on an underlying array; yet it also eliminates the error that

occurs when adding an object to a full array by automatically copying the objects

into a larger array when necessary. We will discuss the ArrayList class in far more

detail in Section 7.2.

110 Chapter 3. Fundamental Data Structures

3.1.2 Sorting an Array

In the previous subsection, we considered an application for which we added an

object to an array at a given position while shifting other elements so as to keep the

previous order intact. In this section, we use a similar technique to solve the sorting

problem, that is, starting with an unordered array of elements and rearranging them

into nondecreasing order.

The Insertion-Sort Algorithm

We study several sorting algorithms in this book, most of which are described in

Chapter 12. As a warm-up, in this section we describe a simple sorting algorithm

known as insertion-sort. The algorithm proceeds by considering one element at

a time, placing the element in the correct order relative to those before it. We

start with the first element in the array, which is trivially sorted by itself. When

considering the next element in the array, if it is smaller than the first, we swap

them. Next we consider the third element in the array, swapping it leftward until it

is in its proper order relative to the first two elements. We continue in this manner

with the fourth element, the fifth, and so on, until the whole array is sorted. We can

express the insertion-sort algorithm in pseudocode, as shown in Code Fragment 3.5.

Algorithm InsertionSort(A):

Input: An array A of n comparable elements

Output: The array A with elements rearranged in nondecreasing order

for k from 1 to n−1 do

Insert A[k] at its proper location within A[0], A[1], . . ., A[k].

Code Fragment 3.5: High-level description of the insertion-sort algorithm.

This is a simple, high-level description of insertion-sort. If we look back to

Code Fragment 3.3 in Section 3.1.1, we see that the task of inserting a new entry

into the list of high scores is almost identical to the task of inserting a newly con-

sidered element in insertion-sort (except that game scores were ordered from high

to low). We provide a Java implementation of insertion-sort in Code Fragment 3.6,

using an outer loop to consider each element in turn, and an inner loop that moves

a newly considered element to its proper location relative to the (sorted) subarray

of elements that are to its left. We illustrate an example run of the insertion-sort

algorithm in Figure 3.5.

We note that if an array is already sorted, the inner loop of insertion-sort does

only one comparison, determines that there is no swap needed, and returns back

to the outer loop. Of course, we might have to do a lot more work than this if the

input array is extremely out of order. In fact, we will have to do the most work if

the input array is in decreasing order.

3.1. Using Arrays 111

1 /∗∗ Insertion-sort of an array of characters into nondecreasing order ∗/
2 public static void insertionSort(char[] data) {
3 int n = data.length;
4 for (int k = 1; k < n; k++) { // begin with second character
5 char cur = data[k]; // time to insert cur=data[k]
6 int j = k; // find correct index j for cur
7 while (j > 0 && data[j−1] > cur) { // thus, data[j-1] must go after cur
8 data[j] = data[j−1]; // slide data[j-1] rightward
9 j−−; // and consider previous j for cur

10 }
11 data[j] = cur; // this is the proper place for cur
12 }
13 }

Code Fragment 3.6: Java code for performing insertion-sort on a character array.

Figure 3.5: Execution of the insertion-sort algorithm on an array of eight charac-

ters. Each row corresponds to an iteration of the outer loop, and each copy of the

sequence in a row corresponds to an iteration of the inner loop. The current element

that is being inserted is highlighted in the array, and shown as the cur value.

insert

insert

insert

0

0

0

0

0

0

0

0

00

0 0

Done!

0

C E H G F

B C A E H G FD

B E H G FC D

A H G FB C D E

A FB C D E H

A G FB C D E H

E H G FDCBB E

C

F

F

G

H G FDC

A FB C D E H

C D E HG

BA

D

A B C D E G H A B C

A

G

H

E

A

D

D E HG

HGFED

A

C

B

B A

2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 71 2 3 4 5 6 7

1

1

2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

cur

1 2 3 4 5 6 7

move movemove

no move

no move

no move

no move

move no move

move move no move

112 Chapter 3. Fundamental Data Structures

3.1.3 java.util Methods for Arrays and Random Numbers

Because arrays are so important, Java provides a class, java.util.Arrays, with a

number of built-in static methods for performing common tasks on arrays. Later in

this book, we will describe the algorithms that several of these methods are based

upon. For now, we provide an overview of the most commonly used methods of

that class, as follows (more discussion is in Section 3.5.1):

equals(A, B): Returns true if and only if the array A and the array B are

equal. Two arrays are considered equal if they have the

same number of elements and every corresponding pair

of elements in the two arrays are equal. That is, A and B

have the same values in the same order.

fill(A, x): Stores value x in every cell of array A, provided the type

of array A is defined so that it is allowed to store the

value x.

copyOf(A, n): Returns an array of size n such that the first k elements of

this array are copied from A, where k=min{n,A.length}.
If n > A.length, then the last n−A.length elements in

this array will be padded with default values, e.g., 0 for

an array of int and null for an array of objects.

copyOfRange(A, s, t): Returns an array of size t − s such that the elements of

this array are copied in order from A[s] to A[t−1], where

s < t, padded as with copyOf() if t > A.length.

toString(A): Returns a String representation of the array A, beginning

with [, ending with], and with elements of A displayed

separated by string ", ". The string representation of

an element A[i] is obtained using String.valueOf(A[i]),
which returns the string "null" for a null reference and

otherwise calls A[i].toString().

sort(A): Sorts the array A based on a natural ordering of its el-

ements, which must be comparable. Sorting algorithms

are the focus of Chapter 12.

binarySearch(A, x): Searches the sorted array A for value x, returning the

index where it is found, or else the index of where it

could be inserted while maintaining the sorted order. The

binary-search algorithm is described in Section 5.1.3.

As static methods, these are invoked directly on the java.util.Arrays class, not

on a particular instance of the class. For example, if data were an array, we

could sort it with syntax, java.util.Arrays.sort(data), or with the shorter syntax

Arrays.sort(data) if we first import the Arrays class (see Section 1.8).

3.1. Using Arrays 113

PseudoRandom Number Generation

Another feature built into Java, which is often useful when testing programs dealing

with arrays, is the ability to generate pseudorandom numbers, that is, numbers that

appear to be random (but are not necessarily truly random). In particular, Java

has a built-in class, java.util.Random, whose instances are pseudorandom number

generators, that is, objects that compute a sequence of numbers that are statistically

random. These sequences are not actually random, however, in that it is possible

to predict the next number in the sequence given the past list of numbers. Indeed,

a popular pseudorandom number generator is to generate the next number, next,
from the current number, cur, according to the formula (in Java syntax):

next = (a ∗ cur + b) % n;

where a, b, and n are appropriately chosen integers, and % is the modulus opera-

tor. Something along these lines is, in fact, the method used by java.util.Random
objects, with n = 248. It turns out that such a sequence can be proven to be statis-

tically uniform, which is usually good enough for most applications requiring ran-

dom numbers, such as games. For applications, such as computer security settings,

where unpredictable random sequences are needed, this kind of formula should not

be used. Instead, ideally a sample from a source that is actually random should be

used, such as radio static coming from outer space.

Since the next number in a pseudorandom generator is determined by the pre-

vious number(s), such a generator always needs a place to start, which is called its

seed. The sequence of numbers generated for a given seed will always be the same.

The seed for an instance of the java.util.Random class can be set in its constructor

or with its setSeed() method.

One common trick to get a different sequence each time a program is run is

to use a seed that will be different for each run. For example, we could use some

timed input from a user or we could set the seed to the current time in milliseconds

since January 1, 1970 (provided by method System.currentTimeMillis).

Methods of the java.util.Random class include the following:

nextBoolean(): Returns the next pseudorandom boolean value.

nextDouble(): Returns the next pseudorandom double value, between

0.0 and 1.0.

nextInt(): Returns the next pseudorandom int value.

nextInt(n): Returns the next pseudorandom int value in the range

from 0 up to but not including n.

setSeed(s): Sets the seed of this pseudorandom number generator to

the long s.

114 Chapter 3. Fundamental Data Structures

An Illustrative Example

We provide a short (but complete) illustrative program in Code Fragment 3.7.

1 import java.util.Arrays;
2 import java.util.Random;
3 /∗∗ Program showing some array uses. ∗/
4 public class ArrayTest {
5 public static void main(String[] args) {
6 int data[] = new int[10];
7 Random rand = new Random(); // a pseudo-random number generator
8 rand.setSeed(System.currentTimeMillis()); // use current time as a seed
9 // fill the data array with pseudo-random numbers from 0 to 99, inclusive

10 for (int i = 0; i < data.length; i++)
11 data[i] = rand.nextInt(100); // the next pseudo-random number
12 int[] orig = Arrays.copyOf(data, data.length); // make a copy of the data array
13 System.out.println("arrays equal before sort: "+Arrays.equals(data, orig));
14 Arrays.sort(data); // sorting the data array (orig is unchanged)
15 System.out.println("arrays equal after sort: " + Arrays.equals(data, orig));
16 System.out.println("orig = " + Arrays.toString(orig));
17 System.out.println("data = " + Arrays.toString(data));
18 }
19 }

Code Fragment 3.7: A simple test of some built-in methods in java.util.Arrays.

We show a sample output of this program below:

arrays equal before sort: true

arrays equal after sort: false

orig = [41, 38, 48, 12, 28, 46, 33, 19, 10, 58]

data = [10, 12, 19, 28, 33, 38, 41, 46, 48, 58]

In another run, we got the following output:

arrays equal before sort: true

arrays equal after sort: false

orig = [87, 49, 70, 2, 59, 37, 63, 37, 95, 1]

data = [1, 2, 37, 37, 49, 59, 63, 70, 87, 95]

By using a pseudorandom number generator to determine program values, we

get a different input to our program each time we run it. This feature is, in fact, what

makes pseudorandom number generators useful for testing code, particularly when

dealing with arrays. Even so, we should not use random test runs as a replacement

for reasoning about our code, as we might miss important special cases in test runs.

Note, for example, that there is a slight chance that the orig and data arrays will be

equal even after data is sorted, namely, if orig is already ordered. The odds of this

occurring are less than 1 in 3 million, so it’s unlikely to happen during even a few

thousand test runs; however, we need to reason that this is possible.

3.1. Using Arrays 115

3.1.4 Simple Cryptography with Character Arrays

An important application of character arrays and strings is cryptography, which

is the science of secret messages. This field involves the process of encryption,

in which a message, called the plaintext, is converted into a scrambled message,

called the ciphertext. Likewise, cryptography studies corresponding ways of per-

forming decryption, turning a ciphertext back into its original plaintext.

Arguably the earliest encryption scheme is the Caesar cipher, which is named

after Julius Caesar, who used this scheme to protect important military messages.

(All of Caesar’s messages were written in Latin, of course, which already makes

them unreadable for most of us!) The Caesar cipher is a simple way to obscure a

message written in a language that forms words with an alphabet.

The Caesar cipher involves replacing each letter in a message with the letter that

is a certain number of letters after it in the alphabet. So, in an English message, we

might replace each A with D, each B with E, each C with F, and so on, if shifting by

three characters. We continue this approach all the way up to W, which is replaced

with Z. Then, we let the substitution pattern wrap around, so that we replace X

with A, Y with B, and Z with C.

Converting Between Strings and Character Arrays

Given that strings are immutable, we cannot directly edit an instance to encrypt

it. Instead, our goal will be to generate a new string. A convenient technique for

performing string transformations is to create an equivalent array of characters, edit

the array, and then reassemble a (new) string based on the array.

Java has support for conversions from strings to character arrays and vice versa.

Given a string S, we can create a new character array matching S by using the

method, S.toCharArray(). For example, if s="bird", the method returns the char-

acter array A={'b', 'i', 'r', 'd'}. Conversely, there is a form of the String
constructor that accepts a character array as a parameter. For example, with char-

acter array A={'b', 'i', 'r', 'd'}, the syntax new String(A) produces "bird".

Using Character Arrays as Replacement Codes

If we were to number our letters like array indices, so that A is 0, B is 1, C is 2, then

we can represent the replacement rule as a character array, encoder, such that A is

mapped to encoder[0], B is mapped to encoder[1], and so on. Then, in order to find

a replacement for a character in our Caesar cipher, we need to map the characters

from A to Z to the respective numbers from 0 to 25. Fortunately, we can rely on the

fact that characters are represented in Unicode by integer code points, and the code

points for the uppercase letters of the Latin alphabet are consecutive (for simplicity,

we restrict our encryption to uppercase letters).

116 Chapter 3. Fundamental Data Structures

Java allows us to “subtract” two characters from each other, with an integer

result equal to their separation distance in the encoding. Given a variable c that is

known to be an uppercase letter, the Java computation, j = c − 'A' produces the

desired index j. As a sanity check, if character c is 'A', then j = 0. When c is 'B',

the difference is 1. In general, the integer j that results from such a calculation can

be used as an index into our precomputed encoder array, as illustrated in Figure 3.6.

10 2423222120191817161514131211 259876543210

M O P Q R S T U V W X Y Z A B CD E F G H I J K L N

Here is the
replacement for 'T'

=
In Unicode

Using 'T' as an index

encoder array

= 19

'T' − 'A'

6584 −

Figure 3.6: Illustrating the use of uppercase characters as indices, in this case to

perform the replacement rule for Caesar cipher encryption.

The process of decrypting the message can be implemented by simply using

a different character array to represent the replacement rule—one that effectively

shifts characters in the opposite direction.

In Code Fragment 3.8, we present a Java class that performs the Caesar cipher

with an arbitrary rotational shift. The constructor for the class builds the encoder

and decoder translation arrays for the given rotation. We rely heavily on modular

arithmetic, as a Caesar cipher with a rotation of r encodes the letter having index k

with the letter having index (k + r) mod 26, where mod is the modulo operator,

which returns the remainder after performing an integer division. This operator is

denoted with % in Java, and it is exactly the operator we need to easily perform

the wraparound at the end of the alphabet, for 26 mod 26 is 0, 27 mod 26 is 1,

and 28 mod 26 is 2. The decoder array for the Caesar cipher is just the opposite—

we replace each letter with the one r places before it, with wraparound; to avoid

subtleties involving negative numbers and the modulus operator, we will replace

the letter having code k with the letter having code (k− r+26) mod 26.

With the encoder and decoder arrays in hand, the encryption and decryption

algorithms are essentially the same, and so we perform both by means of a private

utility method named transform. This method converts a string to a character ar-

ray, performs the translation diagrammed in Figure 3.6 for any uppercase alphabet

symbols, and finally returns a new string, constructed from the updated array.

The main method of the class, as a simple test, produces the following output:

Encryption code = DEFGHIJKLMNOPQRSTUVWXYZABC

Decryption code = XYZABCDEFGHIJKLMNOPQRSTUVW

Secret: WKH HDJOH LV LQ SODB; PHHW DW MRH’V.

Message: THE EAGLE IS IN PLAY; MEET AT JOE’S.

3.1. Using Arrays 117

1 /∗∗ Class for doing encryption and decryption using the Caesar Cipher. ∗/
2 public class CaesarCipher {
3 protected char[] encoder = new char[26]; // Encryption array
4 protected char[] decoder = new char[26]; // Decryption array
5 /∗∗ Constructor that initializes the encryption and decryption arrays ∗/
6 public CaesarCipher(int rotation) {
7 for (int k=0; k < 26; k++) {
8 encoder[k] = (char) ('A' + (k + rotation) % 26);
9 decoder[k] = (char) ('A' + (k − rotation + 26) % 26);

10 }
11 }
12 /∗∗ Returns String representing encrypted message. ∗/
13 public String encrypt(String message) {
14 return transform(message, encoder); // use encoder array
15 }
16 /∗∗ Returns decrypted message given encrypted secret. ∗/
17 public String decrypt(String secret) {
18 return transform(secret, decoder); // use decoder array
19 }
20 /∗∗ Returns transformation of original String using given code. ∗/
21 private String transform(String original, char[] code) {
22 char[] msg = original.toCharArray();
23 for (int k=0; k < msg.length; k++)
24 if (Character.isUpperCase(msg[k])) { // we have a letter to change
25 int j = msg[k] − 'A'; // will be value from 0 to 25
26 msg[k] = code[j]; // replace the character
27 }
28 return new String(msg);
29 }
30 /∗∗ Simple main method for testing the Caesar cipher ∗/
31 public static void main(String[] args) {
32 CaesarCipher cipher = new CaesarCipher(3);
33 System.out.println("Encryption code = " + new String(cipher.encoder));
34 System.out.println("Decryption code = " + new String(cipher.decoder));
35 String message = "THE EAGLE IS IN PLAY; MEET AT JOE'S.";
36 String coded = cipher.encrypt(message);
37 System.out.println("Secret: " + coded);
38 String answer = cipher.decrypt(coded);
39 System.out.println("Message: " + answer); // should be plaintext again
40 }
41 }

Code Fragment 3.8: A complete Java class for performing the Caesar cipher.

118 Chapter 3. Fundamental Data Structures

3.1.5 Two-Dimensional Arrays and Positional Games

Many computer games, be they strategy games, simulation games, or first-person

conflict games, involve objects that reside in a two-dimensional space. Software for

such positional games needs a way of representing objects in a two-dimensional

space. A natural way to do this is with a two-dimensional array, where we use two

indices, say i and j, to refer to the cells in the array. The first index usually refers

to a row number and the second to a column number. Given such an array, we can

maintain two-dimensional game boards and perform other kinds of computations

involving data stored in rows and columns.

Arrays in Java are one-dimensional; we use a single index to access each cell

of an array. Nevertheless, there is a way we can define two-dimensional arrays in

Java—we can create a two-dimensional array as an array of arrays. That is, we can

define a two-dimensional array to be an array with each of its cells being another

array. Such a two-dimensional array is sometimes also called a matrix. In Java, we

may declare a two-dimensional array as follows:

int[][] data = new int[8][10];

This statement creates a two-dimensional “array of arrays,” data, which is 8×10,

having 8 rows and 10 columns. That is, data is an array of length 8 such that each

element of data is an array of length 10 of integers. (See Figure 3.7.) The following

would then be valid uses of array data and int variables i, j, and k:

data[i][i+1] = data[i][i] + 3;
j = data.length; // j is 8
k = data[4].length; // k is 10

Two-dimensional arrays have many applications to numerical analysis. Rather

than going into the details of such applications, however, we explore an application

of two-dimensional arrays for implementing a simple positional game.

22 18 709 5 33 10 4 56 82 440

45 32 830 120 750 660 13 77 20 105

4 880 45 66 61 28 650 7 510 67

940 12 36 3 20 100 306 590 0 500

50 65 42 49 88 25 70 126 83 288

398 233 5 83 59 232 49 8 365 90

33 58 632 87 94 5 59 204 120 829

62 394 3 4 102 140 183 390 16 26

8

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 9

Figure 3.7: Illustration of a two-dimensional integer array, data, which has 8 rows

and 10 columns. The value of data[3][5] is 100 and the value of data[6][2] is 632.

3.1. Using Arrays 119

Tic-Tac-Toe

As most school children know, Tic-Tac-Toe is a game played in a three-by-three

board. Two players—X and O—alternate in placing their respective marks in the

cells of this board, starting with player X. If either player succeeds in getting three

of his or her marks in a row, column, or diagonal, then that player wins.

This is admittedly not a sophisticated positional game, and it’s not even that

much fun to play, since a good player O can always force a tie. Tic-Tac-Toe’s saving

grace is that it is a nice, simple example showing how two-dimensional arrays can

be used for positional games. Software for more sophisticated positional games,

such as checkers, chess, or the popular simulation games, are all based on the same

approach we illustrate here for using a two-dimensional array for Tic-Tac-Toe.

The basic idea is to use a two-dimensional array, board, to maintain the game

board. Cells in this array store values that indicate if that cell is empty or stores an

X or O. That is, board is a three-by-three matrix, whose middle row consists of the

cells board[1][0], board[1][1], and board[1][2]. In our case, we choose to make the

cells in the board array be integers, with a 0 indicating an empty cell, a 1 indicating

an X, and a −1 indicating an O. This encoding allows us to have a simple way of

testing if a given board configuration is a win for X or O, namely, if the values

of a row, column, or diagonal add up to 3 or −3, respectively. We illustrate this

approach in Figure 3.8.

Figure 3.8: An illustration of a Tic-Tac-Toe board and the two-dimensional integer

array, board, representing it.

We give a complete Java class for maintaining a Tic-Tac-Toe board for two

players in Code Fragments 3.9 and 3.10. We show a sample output in Figure 3.9.

Note that this code is just for maintaining the Tic-Tac-Toe board and register-

ing moves; it doesn’t perform any strategy or allow someone to play Tic-Tac-Toe

against the computer. The details of such a program are beyond the scope of this

chapter, but it might nonetheless make a good course project (see Exercise P-8.67).

120 Chapter 3. Fundamental Data Structures

1 /∗∗ Simulation of a Tic-Tac-Toe game (does not do strategy). ∗/
2 public class TicTacToe {
3 public static final int X = 1, O = −1; // players
4 public static final int EMPTY = 0; // empty cell
5 private int board[][] = new int[3][3]; // game board
6 private int player; // current player
7 /∗∗ Constructor ∗/
8 public TicTacToe() { clearBoard(); }
9 /∗∗ Clears the board ∗/

10 public void clearBoard() {
11 for (int i = 0; i < 3; i++)
12 for (int j = 0; j < 3; j++)
13 board[i][j] = EMPTY; // every cell should be empty
14 player = X; // the first player is 'X'

15 }
16 /∗∗ Puts an X or O mark at position i,j. ∗/
17 public void putMark(int i, int j) throws IllegalArgumentException {
18 if ((i < 0) | | (i > 2) | | (j < 0) | | (j > 2))
19 throw new IllegalArgumentException("Invalid board position");
20 if (board[i][j] != EMPTY)
21 throw new IllegalArgumentException("Board position occupied");
22 board[i][j] = player; // place the mark for the current player
23 player = − player; // switch players (uses fact that O = - X)
24 }
25 /∗∗ Checks whether the board configuration is a win for the given player. ∗/
26 public boolean isWin(int mark) {
27 return ((board[0][0] + board[0][1] + board[0][2] == mark∗3) // row 0
28 | | (board[1][0] + board[1][1] + board[1][2] == mark∗3) // row 1
29 | | (board[2][0] + board[2][1] + board[2][2] == mark∗3) // row 2
30 | | (board[0][0] + board[1][0] + board[2][0] == mark∗3) // column 0
31 | | (board[0][1] + board[1][1] + board[2][1] == mark∗3) // column 1
32 | | (board[0][2] + board[1][2] + board[2][2] == mark∗3) // column 2
33 | | (board[0][0] + board[1][1] + board[2][2] == mark∗3) // diagonal
34 | | (board[2][0] + board[1][1] + board[0][2] == mark∗3)); // rev diag
35 }
36 /∗∗ Returns the winning player's code, or 0 to indicate a tie (or unfinished game).∗/
37 public int winner() {
38 if (isWin(X))
39 return(X);
40 else if (isWin(O))
41 return(O);
42 else
43 return(0);
44 }

Code Fragment 3.9: A simple, complete Java class for playing Tic-Tac-Toe between

two players. (Continues in Code Fragment 3.10.)

3.1. Using Arrays 121

45 /∗∗ Returns a simple character string showing the current board. ∗/
46 public String toString() {
47 StringBuilder sb = new StringBuilder();
48 for (int i=0; i<3; i++) {
49 for (int j=0; j<3; j++) {
50 switch (board[i][j]) {
51 case X: sb.append("X"); break;
52 case O: sb.append("O"); break;
53 case EMPTY: sb.append(" "); break;
54 }
55 if (j < 2) sb.append("|"); // column boundary
56 }
57 if (i < 2) sb.append("\n-----\n"); // row boundary
58 }
59 return sb.toString();
60 }
61 /∗∗ Test run of a simple game ∗/
62 public static void main(String[] args) {
63 TicTacToe game = new TicTacToe();
64 /∗ X moves: ∗/ /∗ O moves: ∗/
65 game.putMark(1,1); game.putMark(0,2);
66 game.putMark(2,2); game.putMark(0,0);
67 game.putMark(0,1); game.putMark(2,1);
68 game.putMark(1,2); game.putMark(1,0);
69 game.putMark(2,0);
70 System.out.println(game);
71 int winningPlayer = game.winner();
72 String[] outcome = {"O wins", "Tie", "X wins"}; // rely on ordering
73 System.out.println(outcome[1 + winningPlayer]);
74 }
75 }

Code Fragment 3.10: A simple, complete Java class for playing Tic-Tac-Toe be-

tween two players. (Continued from Code Fragment 3.9.)

O|X|O

O|X|X

X|O|X

Tie

Figure 3.9: Sample output of a Tic-Tac-Toe game.

122 Chapter 3. Fundamental Data Structures

3.2 Singly Linked Lists

In the previous section, we presented the array data structure and discussed some

of its applications. Arrays are great for storing things in a certain order, but they

have drawbacks. The capacity of the array must be fixed when it is created, and

insertions and deletions at interior positions of an array can be time consuming if

many elements must be shifted.

In this section, we introduce a data structure known as a linked list, which pro-

vides an alternative to an array-based structure. A linked list, in its simplest form,

is a collection of nodes that collectively form a linear sequence. In a singly linked

list, each node stores a reference to an object that is an element of the sequence, as

well as a reference to the next node of the list (see Figure 3.10).

MSP

element next

Figure 3.10: Example of a node instance that forms part of a singly linked list.

The node’s element field refers to an object that is an element of the sequence (the

airport code MSP, in this example), while the next field refers to the subsequent

node of the linked list (or null if there is no further node).

A linked list’s representation relies on the collaboration of many objects (see

Figure 3.11). Minimally, the linked list instance must keep a reference to the first

node of the list, known as the head. Without an explicit reference to the head,

there would be no way to locate that node (or indirectly, any others). The last

node of the list is known as the tail. The tail of a list can be found by traversing the

linked list— starting at the head and moving from one node to another by following

each node’s next reference. We can identify the tail as the node having null as its

next reference. This process is also known as link hopping or pointer hopping.

However, storing an explicit reference to the tail node is a common efficiency to

avoid such a traversal. In similar regard, it is common for a linked list instance to

keep a count of the total number of nodes that comprise the list (also known as the

size of the list), to avoid traversing the list to count the nodes.

LAX MSP BOSATL

head tail

Figure 3.11: Example of a singly linked list whose elements are strings indicating

airport codes. The list instance maintains a member named head that refers to the

first node of the list, and another member named tail that refers to the last node of

the list. The null value is denoted as Ø.

3.2. Singly Linked Lists 123

Inserting an Element at the Head of a Singly Linked List

An important property of a linked list is that it does not have a predetermined fixed

size; it uses space proportional to its current number of elements. When using a

singly linked list, we can easily insert an element at the head of the list, as shown

in Figure 3.12, and described with pseudocode in Code Fragment 3.11. The main

idea is that we create a new node, set its element to the new element, set its next
link to refer to the current head, and set the list’s head to point to the new node.

ATL BOSMSP

head

(a)

BOS

newest

MSP ATL

head

LAX

(b)

LAX MSP ATL BOS

headnewest

(c)

Figure 3.12: Insertion of an element at the head of a singly linked list: (a) before the

insertion; (b) after a new node is created and linked to the existing head; (c) after

reassignment of the head reference to the newest node.

Algorithm addFirst(e):

newest = Node(e) {create new node instance storing reference to element e}
newest.next = head {set new node’s next to reference the old head node}
head = newest {set variable head to reference the new node}
size = size+1 {increment the node count}

Code Fragment 3.11: Inserting a new element at the beginning of a singly linked list.

Note that we set the next pointer of the new node before we reassign variable head
to it. If the list were initially empty (i.e., head is null), then a natural consequence

is that the new node has its next reference set to null.

124 Chapter 3. Fundamental Data Structures

Inserting an Element at the Tail of a Singly Linked List

We can also easily insert an element at the tail of the list, provided we keep a

reference to the tail node, as shown in Figure 3.13. In this case, we create a new

node, assign its next reference to null, set the next reference of the tail to point to

this new node, and then update the tail reference itself to this new node. We give

pseudocode for the process in Code Fragment 3.12.

ATL BOSMSP

tail

(a)

MIAATL BOSMSP

tail newest

(b)

MSP MIA

tail newest

ATL BOS

(c)

Figure 3.13: Insertion at the tail of a singly linked list: (a) before the insertion;

(b) after creation of a new node; (c) after reassignment of the tail reference. Note

that we must set the next link of the tail node in (b) before we assign the tail variable

to point to the new node in (c).

Algorithm addLast(e):

newest = Node(e) {create new node instance storing reference to element e}
newest.next = null {set new node’s next to reference the null object}
tail.next = newest {make old tail node point to new node}
tail = newest {set variable tail to reference the new node}
size = size+1 {increment the node count}

Code Fragment 3.12: Inserting a new node at the end of a singly linked list. Note

that we set the next pointer for the old tail node before we make variable tail point

to the new node. This code would need to be adjusted for inserting onto an empty

list, since there would not be an existing tail node.

3.2. Singly Linked Lists 125

Removing an Element from a Singly Linked List

Removing an element from the head of a singly linked list is essentially the reverse

operation of inserting a new element at the head. This operation is illustrated in

Figure 3.14 and described in detail in Code Fragment 3.13.

head

MSP ATL BOSLAX

(a)

BOS

head

MSP ATLLAX

(b)

ATL BOSMSP

head

(c)

Figure 3.14: Removal of an element at the head of a singly linked list: (a) before

the removal; (b) after “linking out” the old head; (c) final configuration.

Algorithm removeFirst():

if head == null then

the list is empty.

head = head.next {make head point to next node (or null)}
size = size−1 {decrement the node count}

Code Fragment 3.13: Removing the node at the beginning of a singly linked list.

Unfortunately, we cannot easily delete the last node of a singly linked list. Even

if we maintain a tail reference directly to the last node of the list, we must be able

to access the node before the last node in order to remove the last node. But we

cannot reach the node before the tail by following next links from the tail. The only

way to access this node is to start from the head of the list and search all the way

through the list. But such a sequence of link-hopping operations could take a long

time. If we want to support such an operation efficiently, we will need to make our

list doubly linked (as we do in Section 3.4).

126 Chapter 3. Fundamental Data Structures

3.2.1 Implementing a Singly Linked List Class

In this section, we present a complete implementation of a SinglyLinkedList class,

supporting the following methods:

size(): Returns the number of elements in the list.

isEmpty(): Returns true if the list is empty, and false otherwise.

first(): Returns (but does not remove) the first element in the list.

last(): Returns (but does not remove) the last element in the list.

addFirst(e): Adds a new element to the front of the list.

addLast(e): Adds a new element to the end of the list.

removeFirst(): Removes and returns the first element of the list.

If first(), last(), or removeFirst() are called on a list that is empty, we will simply

return a null reference and leave the list unchanged.

Because it does not matter to us what type of elements are stored in the list, we

use Java’s generics framework (see Section 2.5.2) to define our class with a formal

type parameter E that represents the user’s desired element type.

Our implementation also takes advantage of Java’s support for nested classes

(see Section 2.6), as we define a private Node class within the scope of the pub-

lic SinglyLinkedList class. Code Fragment 3.14 presents the Node class definition,

and Code Fragment 3.15 the rest of the SinglyLinkedList class. Having Node as a

nested class provides strong encapsulation, shielding users of our class from the un-

derlying details about nodes and links. This design also allows Java to differentiate

this node type from forms of nodes we may define for use in other structures.

1 public class SinglyLinkedList<E> {
2 //---------------- nested Node class ----------------
3 private static class Node<E> {
4 private E element; // reference to the element stored at this node
5 private Node<E> next; // reference to the subsequent node in the list
6 public Node(E e, Node<E> n) {
7 element = e;
8 next = n;
9 }

10 public E getElement() { return element; }
11 public Node<E> getNext() { return next; }
12 public void setNext(Node<E> n) { next = n; }
13 } //----------- end of nested Node class -----------

... rest of SinglyLinkedList class will follow ...

Code Fragment 3.14: A nested Node class within the SinglyLinkedList class. (The

remainder of the SinglyLinkedList class will be given in Code Fragment 3.15.)

3.2. Singly Linked Lists 127

1 public class SinglyLinkedList<E> {
... (nested Node class goes here)

14 // instance variables of the SinglyLinkedList
15 private Node<E> head = null; // head node of the list (or null if empty)
16 private Node<E> tail = null; // last node of the list (or null if empty)
17 private int size = 0; // number of nodes in the list
18 public SinglyLinkedList() { } // constructs an initially empty list
19 // access methods
20 public int size() { return size; }
21 public boolean isEmpty() { return size == 0; }
22 public E first() { // returns (but does not remove) the first element
23 if (isEmpty()) return null;
24 return head.getElement();
25 }
26 public E last() { // returns (but does not remove) the last element
27 if (isEmpty()) return null;
28 return tail.getElement();
29 }
30 // update methods
31 public void addFirst(E e) { // adds element e to the front of the list
32 head = new Node<>(e, head); // create and link a new node
33 if (size == 0)
34 tail = head; // special case: new node becomes tail also
35 size++;
36 }
37 public void addLast(E e) { // adds element e to the end of the list
38 Node<E> newest = new Node<>(e, null); // node will eventually be the tail
39 if (isEmpty())
40 head = newest; // special case: previously empty list
41 else
42 tail.setNext(newest); // new node after existing tail
43 tail = newest; // new node becomes the tail
44 size++;
45 }
46 public E removeFirst() { // removes and returns the first element
47 if (isEmpty()) return null; // nothing to remove
48 E answer = head.getElement();
49 head = head.getNext(); // will become null if list had only one node
50 size−−;
51 if (size == 0)
52 tail = null; // special case as list is now empty
53 return answer;
54 }
55 }

Code Fragment 3.15: The SinglyLinkedList class definition (when combined with

the nested Node class of Code Fragment 3.14).

128 Chapter 3. Fundamental Data Structures

3.3 Circularly Linked Lists

Linked lists are traditionally viewed as storing a sequence of items in a linear or-

der, from first to last. However, there are many applications in which data can

be more naturally viewed as having a cyclic order, with well-defined neighboring

relationships, but no fixed beginning or end.

For example, many multiplayer games are turn-based, with player A taking a

turn, then player B, then player C, and so on, but eventually back to player A again,

and player B again, with the pattern repeating. As another example, city buses and

subways often run on a continuous loop, making stops in a scheduled order, but

with no designated first or last stop per se. We next consider another important

example of a cyclic order in the context of computer operating systems.

3.3.1 Round-Robin Scheduling

One of the most important roles of an operating system is in managing the many

processes that are currently active on a computer, including the scheduling of those

processes on one or more central processing units (CPUs). In order to support

the responsiveness of an arbitrary number of concurrent processes, most operating

systems allow processes to effectively share use of the CPUs, using some form of

an algorithm known as round-robin scheduling. A process is given a short turn

to execute, known as a time slice, but it is interrupted when the slice ends, even if

its job is not yet complete. Each active process is given its own time slice, taking

turns in a cyclic order. New processes can be added to the system, and processes

that complete their work can be removed.

A round-robin scheduler could be implemented with a traditional linked list, by

repeatedly performing the following steps on linked list L (see Figure 3.15):

1. process p = L.removeFirst()

2. Give a time slice to process p

3. L.addLast(p)

Unfortunately, there are drawbacks to the use of a traditional linked list for this

purpose. It is unnecessarily inefficient to repeatedly throw away a node from one

end of the list, only to create a new node for the same element when reinserting it,

not to mention the various updates that are performed to decrement and increment

the list’s size and to unlink and relink nodes.

In the remainder of this section, we demonstrate how a slight modification to

our singly linked list implementation can be used to provide a more efficient data

structure for representing a cyclic order.

3.3. Circularly Linked Lists 129

1. Remove the next 3. Add process to end

of waiting pool

2. Give current process

a time slice on CPU

waiting processeswaiting process

CPU

Figure 3.15: The three iterative steps for round-robin scheduling.

3.3.2 Designing and Implementing a Circularly Linked List

In this section, we design a structure known as a circularly linked list, which is

essentially a singularly linked list in which the next reference of the tail node is set

to refer back to the head of the list (rather than null), as shown in Figure 3.16.

BOS

head tail

LAX MSP ATL

Figure 3.16: Example of a singly linked list with circular structure.

We use this model to design and implement a new CircularlyLinkedList class,

which supports all of the public behaviors of our SinglyLinkedList class and one

additional update method:

rotate(): Moves the first element to the end of the list.

With this new operation, round-robin scheduling can be efficiently implemented by

repeatedly performing the following steps on a circularly linked list C:

1. Give a time slice to process C.first()
2. C.rotate()

Additional Optimization
In implementing a new class, we make one additional optimization—we no longer

explicitly maintain the head reference. So long as we maintain a reference to the

tail, we can locate the head as tail.getNext(). Maintaining only the tail reference

not only saves a bit on memory usage, it makes the code simpler and more efficient,

as it removes the need to perform additional operations to keep a head reference

current. In fact, our new implementation is arguably superior to our original singly

linked list implementation, even if we are not interested in the new rotate method.

130 Chapter 3. Fundamental Data Structures

Operations on a Circularly Linked List

Implementing the new rotate method is quite trivial. We do not move any nodes

or elements, we simply advance the tail reference to point to the node that follows

it (the implicit head of the list). Figure 3.17 illustrates this operation using a more

symmetric visualization of a circularly linked list.

ATL

tail

(head)

MSP

LAX

BOS

ATL

tail
(head)

MSP

LAX

BOS

(a) (b)

Figure 3.17: The rotation operation on a circularly linked list: (a) before the rota-

tion, representing sequence { LAX, MSP, ATL, BOS }; (b) after the rotation, rep-

resenting sequence {MSP, ATL, BOS, LAX }. We display the implicit head refer-

ence, which is identified only as tail.getNext() within the implementation.

We can add a new element at the front of the list by creating a new node and

linking it just after the tail of the list, as shown in Figure 3.18. To implement the

addLast method, we can rely on the use of a call to addFirst and then immediately

advance the tail reference so that the newest node becomes the last.

Removing the first node from a circularly linked list can be accomplished by

simply updating the next field of the tail node to bypass the implicit head. A Java

implementation of all methods of the CircularlyLinkedList class is given in Code

Fragment 3.16.

BOS

newest

LAX

ATL

STL

MSP

tail

Figure 3.18: Effect of a call to addFirst(STL) on the circularly linked list of Fig-

ure 3.17(b). The variable newest has local scope during the execution of the

method. Notice that when the operation is complete, STL is the first element of

the list, as it is stored within the implicit head, tail.getNext().

3.3. Circularly Linked Lists 131

1 public class CircularlyLinkedList<E> {
... (nested node class identical to that of the SinglyLinkedList class)

14 // instance variables of the CircularlyLinkedList
15 private Node<E> tail = null; // we store tail (but not head)
16 private int size = 0; // number of nodes in the list
17 public CircularlyLinkedList() { } // constructs an initially empty list
18 // access methods
19 public int size() { return size; }
20 public boolean isEmpty() { return size == 0; }
21 public E first() { // returns (but does not remove) the first element
22 if (isEmpty()) return null;
23 return tail.getNext().getElement(); // the head is *after* the tail
24 }
25 public E last() { // returns (but does not remove) the last element
26 if (isEmpty()) return null;
27 return tail.getElement();
28 }
29 // update methods
30 public void rotate() { // rotate the first element to the back of the list
31 if (tail != null) // if empty, do nothing
32 tail = tail.getNext(); // the old head becomes the new tail
33 }
34 public void addFirst(E e) { // adds element e to the front of the list
35 if (size == 0) {
36 tail = new Node<>(e, null);
37 tail.setNext(tail); // link to itself circularly
38 } else {
39 Node<E> newest = new Node<>(e, tail.getNext());
40 tail.setNext(newest);
41 }
42 size++;
43 }
44 public void addLast(E e) { // adds element e to the end of the list
45 addFirst(e); // insert new element at front of list
46 tail = tail.getNext(); // now new element becomes the tail
47 }
48 public E removeFirst() { // removes and returns the first element
49 if (isEmpty()) return null; // nothing to remove
50 Node<E> head = tail.getNext();
51 if (head == tail) tail = null; // must be the only node left
52 else tail.setNext(head.getNext()); // removes ”head” from the list
53 size−−;
54 return head.getElement();
55 }
56 }

Code Fragment 3.16: Implementation of the CircularlyLinkedList class.

132 Chapter 3. Fundamental Data Structures

3.4 Doubly Linked Lists

In a singly linked list, each node maintains a reference to the node that is immedi-

ately after it. We have demonstrated the usefulness of such a representation when

managing a sequence of elements. However, there are limitations that stem from

the asymmetry of a singly linked list. In Section 3.2, we demonstrated that we can

efficiently insert a node at either end of a singly linked list, and can delete a node at

the head of a list, but we are unable to efficiently delete a node at the tail of the list.

More generally, we cannot efficiently delete an arbitrary node from an interior po-

sition of the list if only given a reference to that node, because we cannot determine

the node that immediately precedes the node to be deleted (yet, that node needs to

have its next reference updated).

To provide greater symmetry, we define a linked list in which each node keeps

an explicit reference to the node before it and a reference to the node after it. Such

a structure is known as a doubly linked list. These lists allow a greater variety of

O(1)-time update operations, including insertions and deletions at arbitrary posi-

tions within the list. We continue to use the term “next” for the reference to the

node that follows another, and we introduce the term “prev” for the reference to the

node that precedes it.

Header and Trailer Sentinels

In order to avoid some special cases when operating near the boundaries of a doubly

linked list, it helps to add special nodes at both ends of the list: a header node at the

beginning of the list, and a trailer node at the end of the list. These “dummy” nodes

are known as sentinels (or guards), and they do not store elements of the primary

sequence. A doubly linked list with such sentinels is shown in Figure 3.19.

SFOJFK PVD

next next next

prev prev prevprev

header trailernext

Figure 3.19: A doubly linked list representing the sequence { JFK, PVD, SFO },
using sentinels header and trailer to demarcate the ends of the list.

When using sentinel nodes, an empty list is initialized so that the next field

of the header points to the trailer, and the prev field of the trailer points to the

header; the remaining fields of the sentinels are irrelevant (presumably null, in

Java). For a nonempty list, the header’s next will refer to a node containing the first

real element of a sequence, just as the trailer’s prev references the node containing

the last element of a sequence.

3.4. Doubly Linked Lists 133

Advantage of Using Sentinels

Although we could implement a doubly linked list without sentinel nodes (as we

did with our singly linked list in Section 3.2), the slight extra memory devoted to the

sentinels greatly simplifies the logic of our operations. Most notably, the header and

trailer nodes never change—only the nodes between them change. Furthermore,

we can treat all insertions in a unified manner, because a new node will always be

placed between a pair of existing nodes. In similar fashion, every element that is to

be deleted is guaranteed to be stored in a node that has neighbors on each side.

For contrast, we look at our SinglyLinkedList implementation from Section 3.2.

Its addLast method required a conditional (lines 39–42 of Code Fragment 3.15) to

manage the special case of inserting into an empty list. In the general case, the new

node was linked after the existing tail. But when adding to an empty list, there is

no existing tail; instead it is necessary to reassign head to reference the new node.

The use of a sentinel node in that implementation would eliminate the special case,

as there would always be an existing node (possibly the header) before a new node.

Inserting and Deleting with a Doubly Linked List

Every insertion into our doubly linked list representation will take place between

a pair of existing nodes, as diagrammed in Figure 3.20. For example, when a new

element is inserted at the front of the sequence, we will simply add the new node

between the header and the node that is currently after the header. (See Figure 3.21.)

JFKBWI SFO

trailerheader

(a)

BWI PVD SFOJFK

trailerheader

(b)

BWI PVD SFOJFK

trailerheader

(c)

Figure 3.20: Adding an element to a doubly linked list with header and trailer sen-

tinels: (a) before the operation; (b) after creating the new node; (c) after linking the

neighbors to the new node.

134 Chapter 3. Fundamental Data Structures

JFKBWI SFO

trailerheader

(a)

PVD BWI JFK SFO

trailerheader

(b)

PVD JFK SFOBWI

trailerheader

(c)

Figure 3.21: Adding an element to the front of a sequence represented by a dou-

bly linked list with header and trailer sentinels: (a) before the operation; (b) after

creating the new node; (c) after linking the neighbors to the new node.

The deletion of a node, portrayed in Figure 3.22, proceeds in the opposite fash-

ion of an insertion. The two neighbors of the node to be deleted are linked directly

to each other, thereby bypassing the original node. As a result, that node will no

longer be considered part of the list and it can be reclaimed by the system. Because

of our use of sentinels, the same implementation can be used when deleting the first

or the last element of a sequence, because even such an element will be stored at a

node that lies between two others.

BWI PVD SFOJFK

trailerheader

(a)

BWI PVD SFOJFK

trailerheader

(b)

JFKBWI SFO

trailerheader

(c)

Figure 3.22: Removing the element PVD from a doubly linked list: (a) before

the removal; (b) after linking out the old node; (c) after the removal (and garbage

collection).

3.4. Doubly Linked Lists 135

3.4.1 Implementing a Doubly Linked List Class

In this section, we present a complete implementation of a DoublyLinkedList class,

supporting the following public methods:

size(): Returns the number of elements in the list.

isEmpty(): Returns true if the list is empty, and false otherwise.

first(): Returns (but does not remove) the first element in the list.

last(): Returns (but does not remove) the last element in the list.

addFirst(e): Adds a new element to the front of the list.

addLast(e): Adds a new element to the end of the list.

removeFirst(): Removes and returns the first element of the list.

removeLast(): Removes and returns the last element of the list.

If first(), last(), removeFirst(), or removeLast() are called on a list that is empty,

we will return a null reference and leave the list unchanged.

Although we have seen that it is possible to add or remove an element at an

internal position of a doubly linked list, doing so requires knowledge of one or

more nodes, to identify the position at which the operation should occur. In this

chapter, we prefer to maintain encapsulation, with a private, nested Node class. In

Chapter 7, we will revisit the use of doubly linked lists, offering a more advanced

interface that supports internal insertions and deletions while maintaining encapsu-

lation.

Code Fragments 3.17 and 3.18 present the DoublyLinkedList class implemen-

tation. As we did with our SinglyLinkedList class, we use the generics framework

to accept any type of element. The nested Node class for the doubly linked list is

similar to that of the singly linked list, except with support for an additional prev
reference to the preceding node.

Our use of sentinel nodes, header and trailer, impacts the implementation in

several ways. We create and link the sentinels when constructing an empty list

(lines 25–29). We also keep in mind that the first element of a nonempty list is

stored in the node just after the header (not in the header itself), and similarly that

the last element is stored in the node just before the trailer.

The sentinels greatly ease our implementation of the various update methods.

We will provide a private method, addBetween, to handle the general case of an

insertion, and then we will rely on that utility as a straightforward method to imple-

ment both addFirst and addLast. In similar fashion, we will define a private remove
method that can be used to easily implement both removeFirst and removeLast.

136 Chapter 3. Fundamental Data Structures

1 /∗∗ A basic doubly linked list implementation. ∗/
2 public class DoublyLinkedList<E> {
3 //---------------- nested Node class ----------------
4 private static class Node<E> {
5 private E element; // reference to the element stored at this node
6 private Node<E> prev; // reference to the previous node in the list
7 private Node<E> next; // reference to the subsequent node in the list
8 public Node(E e, Node<E> p, Node<E> n) {
9 element = e;

10 prev = p;
11 next = n;
12 }
13 public E getElement() { return element; }
14 public Node<E> getPrev() { return prev; }
15 public Node<E> getNext() { return next; }
16 public void setPrev(Node<E> p) { prev = p; }
17 public void setNext(Node<E> n) { next = n; }
18 } //----------- end of nested Node class -----------
19
20 // instance variables of the DoublyLinkedList
21 private Node<E> header; // header sentinel
22 private Node<E> trailer; // trailer sentinel
23 private int size = 0; // number of elements in the list
24 /∗∗ Constructs a new empty list. ∗/
25 public DoublyLinkedList() {
26 header = new Node<>(null, null, null); // create header
27 trailer = new Node<>(null, header, null); // trailer is preceded by header
28 header.setNext(trailer); // header is followed by trailer
29 }
30 /∗∗ Returns the number of elements in the linked list. ∗/
31 public int size() { return size; }
32 /∗∗ Tests whether the linked list is empty. ∗/
33 public boolean isEmpty() { return size == 0; }
34 /∗∗ Returns (but does not remove) the first element of the list. ∗/
35 public E first() {
36 if (isEmpty()) return null;
37 return header.getNext().getElement(); // first element is beyond header
38 }
39 /∗∗ Returns (but does not remove) the last element of the list. ∗/
40 public E last() {
41 if (isEmpty()) return null;
42 return trailer.getPrev().getElement(); // last element is before trailer
43 }

Code Fragment 3.17: Implementation of the DoublyLinkedList class. (Continues in

Code Fragment 3.18.)

3.4. Doubly Linked Lists 137

44 // public update methods
45 /∗∗ Adds element e to the front of the list. ∗/
46 public void addFirst(E e) {
47 addBetween(e, header, header.getNext()); // place just after the header
48 }
49 /∗∗ Adds element e to the end of the list. ∗/
50 public void addLast(E e) {
51 addBetween(e, trailer.getPrev(), trailer); // place just before the trailer
52 }
53 /∗∗ Removes and returns the first element of the list. ∗/
54 public E removeFirst() {
55 if (isEmpty()) return null; // nothing to remove
56 return remove(header.getNext()); // first element is beyond header
57 }
58 /∗∗ Removes and returns the last element of the list. ∗/
59 public E removeLast() {
60 if (isEmpty()) return null; // nothing to remove
61 return remove(trailer.getPrev()); // last element is before trailer
62 }
63
64 // private update methods
65 /∗∗ Adds element e to the linked list in between the given nodes. ∗/
66 private void addBetween(E e, Node<E> predecessor, Node<E> successor) {
67 // create and link a new node
68 Node<E> newest = new Node<>(e, predecessor, successor);
69 predecessor.setNext(newest);
70 successor.setPrev(newest);
71 size++;
72 }
73 /∗∗ Removes the given node from the list and returns its element. ∗/
74 private E remove(Node<E> node) {
75 Node<E> predecessor = node.getPrev();
76 Node<E> successor = node.getNext();
77 predecessor.setNext(successor);
78 successor.setPrev(predecessor);
79 size−−;
80 return node.getElement();
81 }
82 } //----------- end of DoublyLinkedList class -----------

Code Fragment 3.18: Implementation of the public and private update methods for

the DoublyLinkedList class. (Continued from Code Fragment 3.17.)

138 Chapter 3. Fundamental Data Structures

3.5 Equivalence Testing

When working with reference types, there are many different notions of what it

means for one expression to be equal to another. At the lowest level, if a and b are

reference variables, then expression a == b tests whether a and b refer to the same

object (or if both are set to the null value).

However, for many types there is a higher-level notion of two variables being

considered “equivalent” even if they do not actually refer to the same instance of

the class. For example, we typically want to consider two String instances to be

equivalent to each other if they represent the identical sequence of characters.

To support a broader notion of equivalence, all object types support a method

named equals. Users of reference types should rely on the syntax a.equals(b),
unless they have a specific need to test the more narrow notion of identity. The

equals method is formally defined in the Object class, which serves as a superclass

for all reference types, but that implementation reverts to returning the value of

expression a == b. Defining a more meaningful notion of equivalence requires

knowledge about a class and its representation.

The author of each class has a responsibility to provide an implementation of

the equals method, which overrides the one inherited from Object, if there is a more

relevant definition for the equivalence of two instances. For example, Java’s String
class redefines equals to test character-for-character equivalence.

Great care must be taken when overriding the notion of equality, as the consis-

tency of Java’s libraries depends upon the equals method defining what is known

as an equivalence relation in mathematics, satisfying the following properties:

Treatment of null: For any nonnull reference variable x, the call x.equals(null)
should return false (that is, nothing equals null except null).

Reflexivity: For any nonnull reference variable x, the call x.equals(x) should

return true (that is, an object should equal itself).

Symmetry: For any nonnull reference variables x and y, the calls x.equals(y)
and y.equals(x) should return the same value.

Transitivity: For any nonnull reference variables x, y, and z, if both calls

x.equals(y) and y.equals(z) return true, then call x.equals(z)
must return true as well.

While these properties may seem intuitive, it can be challenging to properly

implement equals for some data structures, especially in an object-oriented context,

with inheritance and generics. For most of the data structures in this book, we omit

the implementation of a valid equals method (leaving it as an exercise). However,

in this section, we consider the treatment of equivalence testing for both arrays and

linked lists, including a concrete example of a proper implementation of the equals
method for our SinglyLinkedList class.

3.5. Equivalence Testing 139

3.5.1 Equivalence Testing with Arrays

As we mentioned in Section 1.3, arrays are a reference type in Java, but not tech-

nically a class. However, the java.util.Arrays class, introduced in Section 3.1.3,

provides additional static methods that are useful when processing arrays. The fol-

lowing provides a summary of the treatment of equivalence for arrays, assuming

that variables a and b refer to array objects:

a == b: Tests if a and b refer to the same underlying array instance.

a.equals(b): Interestingly, this is identical to a == b. Arrays are not a

true class type and do not override the Object.equals method.

Arrays.equals(a,b): This provides a more intuitive notion of equivalence, return-

ing true if the arrays have the same length and all pairs

of corresponding elements are “equal” to each other. More

specifically, if the array elements are primitives, then it uses

the standard == to compare values. If elements of the ar-

rays are a reference type, then it makes pairwise compar-

isons a[k].equals(b[k]) in evaluating the equivalence.

For most applications, the Arrays.equals behavior captures the appropriate no-

tion of equivalence. However, there is an additional complication when using

multidimensional arrays. The fact that two-dimensional arrays in Java are really

one-dimensional arrays nested inside a common one-dimensional array raises an

interesting issue with respect to how we think about compound objects, which are

objects—like a two-dimensional array—that are made up of other objects. In par-

ticular, it brings up the question of where a compound object begins and ends.

Thus, if we have a two-dimensional array, a, and another two-dimensional ar-

ray, b, that has the same entries as a, we probably want to think that a is equal

to b. But the one-dimensional arrays that make up the rows of a and b (such as

a[0] and b[0]) are stored in different memory locations, even though they have the

same internal content. Therefore, a call to the method java.util.Arrays.equals(a,b)
will return false in this case, because it tests a[k].equals(b[k]), which invokes the

Object class’s definition of equals.

To support the more natural notion of multidimensional arrays being equal if

they have equal contents, the class provides an additional method:

Arrays.deepEquals(a,b): Identical to Arrays.equals(a,b) except when the elements

of a and b are themselves arrays, in which case it calls

Arrays.deepEquals(a[k],b[k]) for corresponding entries,

rather than a[k].equals(b[k]).

140 Chapter 3. Fundamental Data Structures

3.5.2 Equivalence Testing with Linked Lists

In this section, we develop an implementation of the equals method in the context

of the SinglyLinkedList class of Section 3.2.1. Using a definition very similar to the

treatment of arrays by the java.util.Arrays.equals method, we consider two lists to

be equivalent if they have the same length and contents that are element-by-element

equivalent. We can evaluate such equivalence by simultaneously traversing two

lists, verifying that x.equals(y) for each pair of corresponding elements x and y.

The implementation of the SinglyLinkedList.equals method is given in Code

Fragment 3.19. Although we are focused on comparing two singly linked lists, the

equals method must take an arbitrary Object as a parameter. We take a conservative

approach, demanding that two objects be instances of the same class to have any

possibility of equivalence. (For example, we do not consider a singly linked list to

be equivalent to a doubly linked list with the same sequence of elements.) After

ensuring, at line 2, that parameter o is nonnull, line 3 uses the getClass() method

supported by all objects to test whether the two instances belong to the same class.

When reaching line 4, we have ensured that the parameter was an instance of

the SinglyLinkedList class (or an appropriate subclass), and so we can safely cast

it to a SinglyLinkedList, so that we may access its instance variables size and head.

There is subtlety involving the treatment of Java’s generics framework. Although

our SinglyLinkedList class has a declared formal type parameter <E>, we cannot

detect at runtime whether the other list has a matching type. (For those interested,

look online for a discussion of erasure in Java.) So we revert to using a more classic

approach with nonparameterized type SinglyLinkedList at line 4, and nonparame-

terized Node declarations at lines 6 and 7. If the two lists have incompatible types,

this will be detected when calling the equals method on corresponding elements.

1 public boolean equals(Object o) {
2 if (o == null) return false;
3 if (getClass() != o.getClass()) return false;
4 SinglyLinkedList other = (SinglyLinkedList) o; // use nonparameterized type
5 if (size != other.size) return false;
6 Node walkA = head; // traverse the primary list
7 Node walkB = other.head; // traverse the secondary list
8 while (walkA != null) {
9 if (!walkA.getElement().equals(walkB.getElement())) return false; //mismatch

10 walkA = walkA.getNext();
11 walkB = walkB.getNext();
12 }
13 return true; // if we reach this, everything matched successfully
14 }

Code Fragment 3.19: Implementation of the SinglyLinkedList.equals method.

3.6. Cloning Data Structures 141

3.6 Cloning Data Structures

The beauty of object-oriented programming is that abstraction allows for a data

structure to be treated as a single object, even though the encapsulated implemen-

tation of the structure might rely on a more complex combination of many objects.

In this section, we consider what it means to make a copy of such a structure.

In a programming environment, a common expectation is that a copy of an

object has its own state and that, once made, the copy is independent of the original

(for example, so that changes to one do not directly affect the other). However,

when objects have fields that are reference variables pointing to auxiliary objects, it

is not always obvious whether a copy should have a corresponding field that refers

to the same auxiliary object, or to a new copy of that auxiliary object.

For example, if a hypothetical AddressBook class has instances that represent

an electronic address book—with contact information (such as phone numbers and

email addresses) for a person’s friends and acquaintances—how might we envision

a copy of an address book? Should an entry added to one book appear in the other?

If we change a person’s phone number in one book, would we expect that change

to be synchronized in the other?

There is no one-size-fits-all answer to questions like this. Instead, each class

in Java is responsible for defining whether its instances can be copied, and if

so, precisely how the copy is constructed. The universal Object superclass de-

fines a method named clone, which can be used to produce what is known as a

shallow copy of an object. This uses the standard assignment semantics to as-

sign the value of each field of the new object equal to the corresponding field of

the existing object that is being copied. The reason this is known as a shallow

copy is because if the field is a reference type, then an initialization of the form

duplicate.field = original.field causes the field of the new object to refer to the

same underlying instance as the field of the original object.

A shallow copy is not always appropriate for all classes, and therefore, Java

intentionally disables use of the clone() method by declaring it as protected, and

by having it throw a CloneNotSupportedException when called. The author of

a class must explicitly declare support for cloning by formally declaring that the

class implements the Cloneable interface, and by declaring a public version of the

clone() method. That public method can simply call the protected one to do the

field-by-field assignment that results in a shallow copy, if appropriate. However,

for many classes, the class may choose to implement a deeper version of cloning,

in which some of the referenced objects are themselves cloned.

For most of the data structures in this book, we omit the implementation of a

valid clone method (leaving it as an exercise). However, in this section, we consider

approaches for cloning both arrays and linked lists, including a concrete implemen-

tation of the clone method for the SinglyLinkedList class.

142 Chapter 3. Fundamental Data Structures

3.6.1 Cloning Arrays

Although arrays support some special syntaxes such as a[k] and a.length, it is im-

portant to remember that they are objects, and that array variables are reference

variables. This has important consequences. As a first example, consider the fol-

lowing code:

int[] data = {2, 3, 5, 7, 11, 13, 17, 19};
int[] backup;
backup = data; // warning; not a copy

The assignment of variable backup to data does not create any new array; it simply

creates a new alias for the same array, as portrayed in Figure 3.23.

20 1 73 4 5 6

2 3 7 11 13 17 195

backup

data

Figure 3.23: The result of the command backup = data for int arrays.

Instead, if we want to make a copy of the array, data, and assign a reference to

the new array to variable, backup, we should write:

backup = data.clone();

The clone method, when executed on an array, initializes each cell of the new array

to the value that is stored in the corresponding cell of the original array. This results

in an independent array, as shown in Figure 3.24.

3 4 5 6 70 1 2

3 4 5 6 70 1 2

2 3 7 11 13 17 195

1952 3 7 11 13 17

data

backup

Figure 3.24: The result of the command backup = data.clone() for int arrays.

If we subsequently make an assignment such as data[4] = 23 in this configuration,

the backup array is unaffected.

There are more considerations when copying an array that stores reference

types rather than primitive types. The clone() method produces a shallow copy

of the array, producing a new array whose cells refer to the same objects referenced

by the first array.

3.6. Cloning Data Structures 143

For example, if the variable contacts refers to an array of hypothetical Person
instances, the result of the command guests = contacts.clone() produces a shal-

low copy, as portrayed in Figure 3.25.

1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

guests

contacts

Figure 3.25: A shallow copy of an array of objects, resulting from the command

guests = contacts.clone().

A deep copy of the contact list can be created by iteratively cloning the indi-

vidual elements, as follows, but only if the Person class is declared as Cloneable.

Person[] guests = new Person[contacts.length];
for (int k=0; k < contacts.length; k++)
guests[k] = (Person) contacts[k].clone(); // returns Object type

Because a two-dimensional array is really a one-dimensional array storing other

one-dimensional arrays, the same distinction between a shallow and deep copy

exists. Unfortunately, the java.util.Arrays class does not provide any “deepClone”

method. However, we can implement our own method by cloning the individual

rows of an array, as shown in Code Fragment 3.20, for a two-dimensional array of

integers.

1 public static int[][] deepClone(int[][] original) {
2 int[][] backup = new int[original.length][]; // create top-level array of arrays
3 for (int k=0; k < original.length; k++)
4 backup[k] = original[k].clone(); // copy row k
5 return backup;
6 }

Code Fragment 3.20: A method for creating a deep copy of a two-dimensional array

of integers.

144 Chapter 3. Fundamental Data Structures

3.6.2 Cloning Linked Lists

In this section, we add support for cloning instances of the SinglyLinkedList class

from Section 3.2.1. The first step to making a class cloneable in Java is declaring

that it implements the Cloneable interface. Therefore, we adjust the first line of the

class definition to appear as follows:

public class SinglyLinkedList<E> implements Cloneable {
The remaining task is implementing a public version of the clone() method of

the class, which we present in Code Fragment 3.21. By convention, that method

should begin by creating a new instance using a call to super.clone(), which in our

case invokes the method from the Object class (line 3). Because the inherited ver-

sion returns an Object, we perform a narrowing cast to type SinglyLinkedList<E>.

At this point in the execution, the other list has been created as a shallow copy

of the original. Since our list class has two fields, size and head, the following

assignments have been made:

other.size = this.size;
other.head = this.head;

While the assignment of the size variable is correct, we cannot allow the new list to

share the same head value (unless it is null). For a nonempty list to have an inde-

pendent state, it must have an entirely new chain of nodes, each storing a reference

to the corresponding element from the original list. We therefore create a new head

node at line 5 of the code, and then perform a walk through the remainder of the

original list (lines 8–13) while creating and linking new nodes for the new list.

1 public SinglyLinkedList<E> clone() throws CloneNotSupportedException {
2 // always use inherited Object.clone() to create the initial copy
3 SinglyLinkedList<E> other = (SinglyLinkedList<E>) super.clone(); // safe cast
4 if (size > 0) { // we need independent chain of nodes
5 other.head = new Node<>(head.getElement(), null);
6 Node<E> walk = head.getNext(); // walk through remainder of original list
7 Node<E> otherTail = other.head; // remember most recently created node
8 while (walk != null) { // make a new node storing same element
9 Node<E> newest = new Node<>(walk.getElement(), null);

10 otherTail.setNext(newest); // link previous node to this one
11 otherTail = newest;
12 walk = walk.getNext();
13 }
14 }
15 return other;
16 }

Code Fragment 3.21: Implementation of the SinglyLinkedList.clone method.

3.7. Exercises 145

3.7 Exercises

Reinforcement

R-3.1 Give the next five pseudorandom numbers generated by the process described on

page 113, with a= 12, b= 5, and n= 100, and 92 as the seed for cur.

R-3.2 Write a Java method that repeatedly selects and removes a random entry from an
array until the array holds no more entries.

R-3.3 Explain the changes that would have to be made to the program of Code Frag-
ment 3.8 so that it could perform the Caesar cipher for messages that are written

in an alphabet-based language other than English, such as Greek, Russian, or

Hebrew.

R-3.4 The TicTacToe class of Code Fragments 3.9 and 3.10 has a flaw, in that it allows

a player to place a mark even after the game has already been won by someone.
Modify the class so that the putMark method throws an IllegalStateException in

that case.

R-3.5 The removeFirst method of the SinglyLinkedList class includes a special case to

reset the tail field to null when deleting the last node of a list (see lines 51 and 52

of Code Fragment 3.15). What are the consequences if we were to remove those
two lines from the code? Explain why the class would or would not work with

such a modification.

R-3.6 Give an algorithm for finding the second-to-last node in a singly linked list in

which the last node is indicated by a null next reference.

R-3.7 Consider the implementation of CircularlyLinkedList.addFirst, in Code Frag-
ment 3.16. The else body at lines 39 and 40 of that method relies on a locally

declared variable, newest. Redesign that clause to avoid use of any local vari-
able.

R-3.8 Describe a method for finding the middle node of a doubly linked list with header

and trailer sentinels by “link hopping,” and without relying on explicit knowledge
of the size of the list. In the case of an even number of nodes, report the node

slightly left of center as the “middle.” What is the running time of this method?

R-3.9 Give an implementation of the size() method for the SingularlyLinkedList class,

assuming that we did not maintain size as an instance variable.

R-3.10 Give an implementation of the size() method for the CircularlyLinkedList class,

assuming that we did not maintain size as an instance variable.

R-3.11 Give an implementation of the size() method for the DoublyLinkedList class,
assuming that we did not maintain size as an instance variable.

R-3.12 Implement a rotate() method in the SinglyLinkedList class, which has semantics
equal to addLast(removeFirst()), yet without creating any new node.

146 Chapter 3. Fundamental Data Structures

R-3.13 What is the difference between a shallow equality test and a deep equality test
between two Java arrays, A and B, if they are one-dimensional arrays of type int?
What if the arrays are two-dimensional arrays of type int?

R-3.14 Give three different examples of a single Java statement that assigns variable,

backup, to a new array with copies of all int entries of an existing array, original.

R-3.15 Implement the equals() method for the CircularlyLinkedList class, assuming that

two lists are equal if they have the same sequence of elements, with correspond-

ing elements currently at the front of the list.

R-3.16 Implement the equals() method for the DoublyLinkedList class.

Creativity

C-3.17 Let A be an array of size n≥ 2 containing integers from 1 to n−1 inclusive, one

of which is repeated. Describe an algorithm for finding the integer in A that is
repeated.

C-3.18 Let B be an array of size n≥ 6 containing integers from 1 to n−5 inclusive, five
of which are repeated. Describe an algorithm for finding the five integers in B

that are repeated.

C-3.19 Give Java code for performing add(e) and remove(i) methods for the Scoreboard
class, as in Code Fragments 3.3 and 3.4, except this time, don’t maintain the game

entries in order. Assume that we still need to keep n entries stored in indices 0 to
n−1. You should be able to implement the methods without using any loops, so

that the number of steps they perform does not depend on n.

C-3.20 Give examples of values for a and b in the pseudorandom generator given on

page 113 of this chapter such that the result is not very random looking, for

n= 1000.

C-3.21 Suppose you are given an array, A, containing 100 integers that were generated

using the method r.nextInt(10), where r is an object of type java.util.Random.
Let x denote the product of the integers in A. There is a single number that x will

equal with probability at least 0.99. What is that number and what is a formula
describing the probability that x is equal to that number?

C-3.22 Write a method, shuffle(A), that rearranges the elements of array A so that every

possible ordering is equally likely. You may rely on the nextInt(n) method of
the java.util.Random class, which returns a random number between 0 and n−1

inclusive.

C-3.23 Suppose you are designing a multiplayer game that has n ≥ 1000 players, num-

bered 1 to n, interacting in an enchanted forest. The winner of this game is the
first player who can meet all the other players at least once (ties are allowed).

Assuming that there is a method meet(i, j), which is called each time a player i

meets a player j (with i 6= j), describe a way to keep track of the pairs of meeting
players and who is the winner.

3.7. Exercises 147

C-3.24 Write a Java method that takes two three-dimensional integer arrays and adds
them componentwise.

C-3.25 Describe an algorithm for concatenating two singly linked lists L and M, into a
single list L′ that contains all the nodes of L followed by all the nodes of M.

C-3.26 Give an algorithm for concatenating two doubly linked lists L and M, with header

and trailer sentinel nodes, into a single list L′.

C-3.27 Describe in detail how to swap two nodes x and y (and not just their contents) in

a singly linked list L given references only to x and y. Repeat this exercise for the
case when L is a doubly linked list. Which algorithm takes more time?

C-3.28 Describe in detail an algorithm for reversing a singly linked list L using only a
constant amount of additional space.

C-3.29 Suppose you are given two circularly linked lists, L and M. Describe an algorithm

for telling if L and M store the same sequence of elements (but perhaps with
different starting points).

C-3.30 Given a circularly linked list L containing an even number of nodes, describe
how to split L into two circularly linked lists of half the size.

C-3.31 Our implementation of a doubly linked list relies on two sentinel nodes, header
and trailer, but a single sentinel node that guards both ends of the list should
suffice. Reimplement the DoublyLinkedList class using only one sentinel node.

C-3.32 Implement a circular version of a doubly linked list, without any sentinels, that
supports all the public behaviors of the original as well as two new update meth-

ods, rotate() and rotateBackward().

C-3.33 Solve the previous problem using inheritance, such that a DoublyLinkedList class

inherits from the existing CircularlyLinkedList, and the DoublyLinkedList.Node
nested class inherits from CircularlyLinkedList.Node.

C-3.34 Implement the clone() method for the CircularlyLinkedList class.

C-3.35 Implement the clone() method for the DoublyLinkedList class.

Projects

P-3.36 Write a Java program for a matrix class that can add and multiply arbitrary two-

dimensional arrays of integers.

P-3.37 Write a class that maintains the top ten scores for a game application, implement-

ing the add and remove methods of Section 3.1.1, but using a singly linked list
instead of an array.

P-3.38 Perform the previous project, but use a doubly linked list. Moreover, your imple-

mentation of remove(i) should make the fewest number of pointer hops to get to
the game entry at index i.

P-3.39 Write a program that can perform the Caesar cipher for English messages that
include both upper- and lowercase characters.

148 Chapter 3. Fundamental Data Structures

P-3.40 Implement a class, SubstitutionCipher, with a constructor that takes a string with
the 26 uppercase letters in an arbitrary order and uses that as the encoder for a

cipher (that is, A is mapped to the first character of the parameter, B is mapped

to the second, and so on.) You should derive the decoding map from the forward
version.

P-3.41 Redesign the CaesarCipher class as a subclass of the SubstitutionCipher from
the previous problem.

P-3.42 Design a RandomCipher class as a subclass of the SubstitutionCipher from Ex-
ercise P-3.40, so that each instance of the class relies on a random permutation

of letters for its mapping.

P-3.43 In the children’s game, Duck, Duck, Goose, a group of children sit in a circle.

One of them is elected “it” and that person walks around the outside of the circle.

The person who is “it” pats each child on the head, saying “Duck” each time,
until randomly reaching a child that the “it” person identifies as “Goose.” At this

point there is a mad scramble, as the “Goose” and the “it” person race around the

circle. Whoever returns to the Goose’s former place first gets to remain in the
circle. The loser of this race is the “it” person for the next round of play. The

game continues like this until the children get bored or an adult tells them it’s
snack time. Write software that simulates a game of Duck, Duck, Goose.

Chapter Notes

The fundamental data structures of arrays and linked lists discussed in this chapter belong

to the folklore of computer science. They were first chronicled in the computer science
literature by Knuth in his seminal book on Fundamental Algorithms [60].

Chapter

4 Algorithm Analysis

Contents

4.1 Experimental Studies . 151

4.1.1 Moving Beyond Experimental Analysis 154

4.2 The Seven Functions Used in This Book 156

4.2.1 Comparing Growth Rates 163

4.3 Asymptotic Analysis . 164

4.3.1 The “Big-Oh” Notation 164

4.3.2 Comparative Analysis . 168

4.3.3 Examples of Algorithm Analysis 170

4.4 Simple Justification Techniques 178

4.4.1 By Example . 178

4.4.2 The “Contra” Attack . 178

4.4.3 Induction and Loop Invariants 179

4.5 Exercises . 182

150 Chapter 4. Algorithm Analysis

In a classic story, the famous mathematician Archimedes was asked to deter-

mine if a golden crown commissioned by the king was indeed pure gold, and not

part silver, as an informant had claimed. Archimedes discovered a way to perform

this analysis while stepping into a bath. He noted that water spilled out of the bath

in proportion to the amount of him that went in. Realizing the implications of this

fact, he immediately got out of the bath and ran naked through the city shouting,

“Eureka, eureka!” for he had discovered an analysis tool (displacement), which,

when combined with a simple scale, could determine if the king’s new crown was

good or not. That is, Archimedes could dip the crown and an equal-weight amount

of gold into a bowl of water to see if they both displaced the same amount. This

discovery was unfortunate for the goldsmith, however, for when Archimedes did

his analysis, the crown displaced more water than an equal-weight lump of pure

gold, indicating that the crown was not, in fact, pure gold.

In this book, we are interested in the design of “good” data structures and algo-

rithms. Simply put, a data structure is a systematic way of organizing and access-

ing data, and an algorithm is a step-by-step procedure for performing some task in

a finite amount of time. These concepts are central to computing, but to be able to

classify some data structures and algorithms as “good,” we must have precise ways

of analyzing them.

The primary analysis tool we will use in this book involves characterizing the

running times of algorithms and data structure operations, with space usage also

being of interest. Running time is a natural measure of “goodness,” since time is a

precious resource—computer solutions should run as fast as possible. In general,

the running time of an algorithm or data structure operation increases with the input

size, although it may also vary for different inputs of the same size. Also, the run-

ning time is affected by the hardware environment (e.g., the processor, clock rate,

memory, disk) and software environment (e.g., the operating system, programming

language) in which the algorithm is implemented and executed. All other factors

being equal, the running time of the same algorithm on the same input data will be

smaller if the computer has, say, a much faster processor or if the implementation

is done in a program compiled into native machine code instead of an interpreted

implementation run on a virtual machine. We begin this chapter by discussing tools

for performing experimental studies, yet also limitations to the use of experiments

as a primary means for evaluating algorithm efficiency.

Focusing on running time as a primary measure of goodness requires that we be

able to use a few mathematical tools. In spite of the possible variations that come

from different environmental factors, we would like to focus on the relationship

between the running time of an algorithm and the size of its input. We are interested

in characterizing an algorithm’s running time as a function of the input size. But

what is the proper way of measuring it? In this chapter, we “roll up our sleeves”

and develop a mathematical way of analyzing algorithms.

4.1. Experimental Studies 151

4.1 Experimental Studies

One way to study the efficiency of an algorithm is to implement it and experiment

by running the program on various test inputs while recording the time spent during

each execution. A simple mechanism for collecting such running times in Java is

based on use of the currentTimeMillis method of the System class. That method

reports the number of milliseconds that have passed since a benchmark time known

as the epoch (January 1, 1970 UTC). It is not that we are directly interested in the

time since the epoch; the key is that if we record the time immediately before

executing the algorithm and then immediately after, we can measure the elapsed

time of an algorithm’s execution by computing the difference of those times. A

typical way to automate this process is shown in Code Fragment 4.1.

1 long startTime = System.currentTimeMillis(); // record the starting time
2 /∗ (run the algorithm) ∗/
3 long endTime = System.currentTimeMillis(); // record the ending time
4 long elapsed = endTime − startTime; // compute the elapsed time

Code Fragment 4.1: Typical approach for timing an algorithm in Java.

Measuring elapsed time in this fashion provides a reasonable reflection of an

algorithm’s efficiency; for extremely quick operations, Java provides a method,

nanoTime, that measures in nanoseconds rather than milliseconds.

Because we are interested in the general dependence of running time on the

size and structure of the input, we should perform independent experiments on

many different test inputs of various sizes. We can then visualize the results by

plotting the performance of each run of the algorithm as a point with x-coordinate

equal to the input size, n, and y-coordinate equal to the running time, t. Such a

visualization provides some intuition regarding the relationship between problem

size and execution time for the algorithm. This may be followed by a statistical

analysis that seeks to fit the best function of the input size to the experimental data.

To be meaningful, this analysis requires that we choose good sample inputs and test

enough of them to be able to make sound statistical claims about the algorithm’s

running time.

However, the measured times reported by both methods currentTimeMillis and

nanoTime will vary greatly from machine to machine, and may likely vary from

trial to trial, even on the same machine. This is because many processes share use

of a computer’s central processing unit (or CPU) and memory system; therefore,

the elapsed time will depend on what other processes are running on the computer

when a test is performed. While the precise running time may not be dependable,

experiments are quite useful when comparing the efficiency of two or more algo-

rithms, so long as they gathered under similar circumstances.

152 Chapter 4. Algorithm Analysis

As a tangible example of experimental analysis, we consider two algorithms

for constructing long strings in Java. Our goal will be to have a method, with a

calling signature such as repeat('*', 40), that produces a string composed of 40

asterisks: "**".

The first algorithm we consider performs repeated string concatenation, based

on the + operator. It is implemented as method repeat1 in Code Fragment 4.2.

The second algorithm relies on Java’s StringBuilder class (see Section 1.3), and is

implemented as method repeat2 in Code Fragment 4.2.

1 /∗∗ Uses repeated concatenation to compose a String with n copies of character c. ∗/
2 public static String repeat1(char c, int n) {
3 String answer = "";
4 for (int j=0; j < n; j++)
5 answer += c;
6 return answer;
7 }
8

9 /∗∗ Uses StringBuilder to compose a String with n copies of character c. ∗/
10 public static String repeat2(char c, int n) {
11 StringBuilder sb = new StringBuilder();
12 for (int j=0; j < n; j++)
13 sb.append(c);
14 return sb.toString();
15 }

Code Fragment 4.2: Two algorithms for composing a string of repeated characters.

As an experiment, we used System.currentTimeMillis(), in the style of Code

Fragment 4.1, to measure the efficiency of both repeat1 and repeat2 for very large

strings. We executed trials to compose strings of increasing lengths to explore the

relationship between the running time and the string length. The results of our

experiments are shown in Table 4.1 and charted on a log-log scale in Figure 4.1.

n repeat1 (in ms) repeat2 (in ms)

50,000 2,884 1

100,000 7,437 1

200,000 39,158 2

400,000 170,173 3

800,000 690,836 7

1,600,000 2,874,968 13

3,200,000 12,809,631 28

6,400,000 59,594,275 58

12,800,000 265,696,421 135

Table 4.1: Results of timing experiment on the methods from Code Fragment 4.2.

4.1. Experimental Studies 153

n

repeat1

repeat2

104 105 106 107

108

107

106

105

104

103

102

101

100

R
u

n
n

in
g

T
im

e
(m

s)

109

Figure 4.1: Chart of the results of the timing experiment from Code Fragment 4.2,

displayed on a log-log scale. The divergent slopes demonstrate an order of magni-

tude difference in the growth of the running times.

The most striking outcome of these experiments is how much faster the repeat2
algorithm is relative to repeat1. While repeat1 is already taking more than 3 days

to compose a string of 12.8 million characters, repeat2 is able to do the same in a

fraction of a second. We also see some interesting trends in how the running times

of the algorithms each depend upon the size of n. As the value of n is doubled, the

running time of repeat1 typically increases more than fourfold, while the running

time of repeat2 approximately doubles.

Challenges of Experimental Analysis

While experimental studies of running times are valuable, especially when fine-

tuning production-quality code, there are three major limitations to their use for

algorithm analysis:

• Experimental running times of two algorithms are difficult to directly com-

pare unless the experiments are performed in the same hardware and software

environments.

• Experiments can be done only on a limited set of test inputs; hence, they

leave out the running times of inputs not included in the experiment (and

these inputs may be important).

• An algorithm must be fully implemented in order to execute it to study its

running time experimentally.

This last requirement is the most serious drawback to the use of experimental stud-

ies. At early stages of design, when considering a choice of data structures or

algorithms, it would be foolish to spend a significant amount of time implementing

an approach that could easily be deemed inferior by a higher-level analysis.

154 Chapter 4. Algorithm Analysis

4.1.1 Moving Beyond Experimental Analysis

Our goal is to develop an approach to analyzing the efficiency of algorithms that:

1. Allows us to evaluate the relative efficiency of any two algorithms in a way

that is independent of the hardware and software environment.

2. Is performed by studying a high-level description of the algorithm without

need for implementation.

3. Takes into account all possible inputs.

Counting Primitive Operations

To analyze the running time of an algorithm without performing experiments, we

perform an analysis directly on a high-level description of the algorithm (either in

the form of an actual code fragment, or language-independent pseudocode). We

define a set of primitive operations such as the following:

• Assigning a value to a variable

• Following an object reference

• Performing an arithmetic operation (for example, adding two numbers)

• Comparing two numbers

• Accessing a single element of an array by index

• Calling a method

• Returning from a method

Formally, a primitive operation corresponds to a low-level instruction with an exe-

cution time that is constant. Ideally, this might be the type of basic operation that is

executed by the hardware, although many of our primitive operations may be trans-

lated to a small number of instructions. Instead of trying to determine the specific

execution time of each primitive operation, we will simply count how many prim-

itive operations are executed, and use this number t as a measure of the running

time of the algorithm.

This operation count will correlate to an actual running time in a specific com-

puter, for each primitive operation corresponds to a constant number of instructions,

and there are only a fixed number of primitive operations. The implicit assumption

in this approach is that the running times of different primitive operations will be

fairly similar. Thus, the number, t, of primitive operations an algorithm performs

will be proportional to the actual running time of that algorithm.

Measuring Operations as a Function of Input Size

To capture the order of growth of an algorithm’s running time, we will associate,

with each algorithm, a function f (n) that characterizes the number of primitive

operations that are performed as a function of the input size n. Section 4.2 will in-

troduce the seven most common functions that arise, and Section 4.3 will introduce

a mathematical framework for comparing functions to each other.

4.1. Experimental Studies 155

Focusing on the Worst-Case Input

An algorithm may run faster on some inputs than it does on others of the same size.

Thus, we may wish to express the running time of an algorithm as the function of

the input size obtained by taking the average over all possible inputs of the same

size. Unfortunately, such an average-case analysis is typically quite challenging.

It requires us to define a probability distribution on the set of inputs, which is often

a difficult task. Figure 4.2 schematically shows how, depending on the input distri-

bution, the running time of an algorithm can be anywhere between the worst-case

time and the best-case time. For example, what if inputs are really only of types

“A” or “D”?

An average-case analysis usually requires that we calculate expected running

times based on a given input distribution, which usually involves sophisticated

probability theory. Therefore, for the remainder of this book, unless we specify

otherwise, we will characterize running times in terms of the worst case, as a func-

tion of the input size, n, of the algorithm.

Worst-case analysis is much easier than average-case analysis, as it requires

only the ability to identify the worst-case input, which is often simple. Also, this

approach typically leads to better algorithms. Making the standard of success for an

algorithm to perform well in the worst case necessarily requires that it will do well

on every input. That is, designing for the worst case leads to stronger algorithmic

“muscles,” much like a track star who always practices by running up an incline.

R
u

n
n

in
g

T
im

e

B C D E F G

best-case time

A

}

Input Instance

1 ms

2 ms

3 ms

4 ms

5 ms worst-case time

average-case time?

Figure 4.2: The difference between best-case and worst-case time. Each bar repre-

sents the running time of some algorithm on a different possible input.

156 Chapter 4. Algorithm Analysis

4.2 The Seven Functions Used in This Book

In this section, we will briefly discuss the seven most important functions used

in the analysis of algorithms. We will use only these seven simple functions for

almost all the analysis we do in this book. In fact, a section that uses a function

other than one of these seven will be marked with a star (⋆) to indicate that it is

optional. In addition to these seven fundamental functions, an appendix (available

on the companion website) contains a list of other useful mathematical facts that

apply in the analysis of data structures and algorithms.

The Constant Function

The simplest function we can think of is the constant function, that is,

f (n) = c,

for some fixed constant c, such as c = 5, c = 27, or c = 210. That is, for any

argument n, the constant function f (n) assigns the value c. In other words, it does

not matter what the value of n is; f (n) will always be equal to the constant value c.

Because we are most interested in integer functions, the most fundamental con-

stant function is g(n) = 1, and this is the typical constant function we use in this

book. Note that any other constant function, f (n) = c, can be written as a constant

c times g(n). That is, f (n) = cg(n) in this case.

As simple as it is, the constant function is useful in algorithm analysis because it

characterizes the number of steps needed to do a basic operation on a computer, like

adding two numbers, assigning a value to a variable, or comparing two numbers.

The Logarithm Function

One of the interesting and sometimes even surprising aspects of the analysis of

data structures and algorithms is the ubiquitous presence of the logarithm function,

f (n) = logb n, for some constant b > 1. This function is defined as the inverse of a

power, as follows:
x = logb n if and only if bx = n.

The value b is known as the base of the logarithm. Note that by the above definition,

for any base b > 0, we have that logb 1 = 0.

The most common base for the logarithm function in computer science is 2 as

computers store integers in binary. In fact, this base is so common that we will

typically omit it from the notation when it is 2. That is, for us,

log n = log2 n.

We note that most handheld calculators have a button marked LOG, but this is

typically for calculating the logarithm base-10, not base-two.

4.2. The Seven Functions Used in This Book 157

Computing the logarithm function exactly for any integer n involves the use of

calculus, but we can use an approximation that is good enough for our purposes

without calculus. We recall that the ceiling of a real number, x, is the smallest

integer greater than or equal to x, denoted with ⌈x⌉. The ceiling of x can be viewed

as an integer approximation of x since we have x ≤ ⌈x⌉ < x+ 1. For a positive

integer, n, we repeatedly divide n by b and stop when we get a number less than or

equal to 1. The number of divisions performed is equal to ⌈logb n⌉. We give below

three examples of the computation of ⌈logb n⌉ by repeated divisions:

• ⌈log3 27⌉ = 3, because ((27/3)/3)/3 = 1;

• ⌈log4 64⌉ = 3, because ((64/4)/4)/4 = 1;

• ⌈log2 12⌉ = 4, because (((12/2)/2)/2)/2 = 0.75 ≤ 1.

The following proposition describes several important identities that involve

logarithms for any base greater than 1.

Proposition 4.1 (Logarithm Rules): Given real numbers a > 0, b > 1, c > 0,

and d > 1, we have:

1. logb(ac) = logb a+ logb c

2. logb(a/c) = logb a− logb c

3. logb(a
c) = c logb a

4. logb a = logd a/ logd b

5. blogd a = alogd b

By convention, the unparenthesized notation log nc denotes the value log(nc).
We use a notational shorthand, logc n, to denote the quantity, (log n)c, in which the

result of the logarithm is raised to a power.

The above identities can be derived from converse rules for exponentiation that

we will present on page 161. We illustrate these identities with a few examples.

Example 4.2: We demonstrate below some interesting applications of the loga-

rithm rules from Proposition 4.1 (using the usual convention that the base of a

logarithm is 2 if it is omitted).

• log(2n) = log2+ logn = 1+ logn, by rule 1

• log(n/2) = log n− log2 = logn−1, by rule 2

• log n3 = 3log n, by rule 3

• log 2n = n log 2 = n ·1 = n, by rule 3

• log4 n = (log n)/ log 4 = (log n)/2, by rule 4

• 2log n = nlog 2 = n1 = n, by rule 5.

As a practical matter, we note that rule 4 gives us a way to compute the base-two

logarithm on a calculator that has a base-10 logarithm button, LOG, for

log2 n = LOG n/LOG 2.

158 Chapter 4. Algorithm Analysis

The Linear Function

Another simple yet important function is the linear function,

f (n) = n.

That is, given an input value n, the linear function f assigns the value n itself.

This function arises in algorithm analysis any time we have to do a single basic

operation for each of n elements. For example, comparing a number x to each

element of an array of size n will require n comparisons. The linear function also

represents the best running time we can hope to achieve for any algorithm that

processes each of n objects that are not already in the computer’s memory, because

reading in the n objects already requires n operations.

The N-Log-N Function

The next function we discuss in this section is the n-log-n function,

f (n) = n log n,

that is, the function that assigns to an input n the value of n times the logarithm

base-two of n. This function grows a little more rapidly than the linear function and

a lot less rapidly than the quadratic function; therefore, we would greatly prefer an

algorithm with a running time that is proportional to n log n, than one with quadratic

running time. We will see several important algorithms that exhibit a running time

proportional to the n-log-n function. For example, the fastest possible algorithms

for sorting n arbitrary values require time proportional to n log n.

The Quadratic Function

Another function that appears often in algorithm analysis is the quadratic function,

f (n) = n2.

That is, given an input value n, the function f assigns the product of n with itself

(in other words, “n squared”).

The main reason why the quadratic function appears in the analysis of algo-

rithms is that there are many algorithms that have nested loops, where the inner

loop performs a linear number of operations and the outer loop is performed a

linear number of times. Thus, in such cases, the algorithm performs n · n = n2

operations.

4.2. The Seven Functions Used in This Book 159

Nested Loops and the Quadratic Function

The quadratic function can also arise in the context of nested loops where the first

iteration of a loop uses one operation, the second uses two operations, the third uses

three operations, and so on. That is, the number of operations is

1+2+3+ · · ·+(n−2)+ (n−1)+n.

In other words, this is the total number of operations that will be performed by the

nested loop if the number of operations performed inside the loop increases by one

with each iteration of the outer loop. This quantity also has an interesting history.

In 1787, a German schoolteacher decided to keep his 9- and 10-year-old pupils

occupied by adding up the integers from 1 to 100. But almost immediately one

of the children claimed to have the answer! The teacher was suspicious, for the

student had only the answer on his slate. But the answer, 5050, was correct and the

student, Carl Gauss, grew up to be one of the greatest mathematicians of his time.

We presume that young Gauss used the following identity.

Proposition 4.3: For any integer n≥ 1, we have:

1+2+3+ · · ·+(n−2)+ (n−1)+n =
n(n+1)

2
.

We give two “visual” justifications of Proposition 4.3 in Figure 4.3.

1 2 n0

1

2

n

3

3

...

1 n/2
0

1

2

n

3

2

n+1

...

(a) (b)
Figure 4.3: Visual justifications of Proposition 4.3. Both illustrations visualize the

identity in terms of the total area covered by n unit-width rectangles with heights

1,2, . . . ,n. In (a), the rectangles are shown to cover a big triangle of area n2/2 (base

n and height n) plus n small triangles of area 1/2 each (base 1 and height 1). In

(b), which applies only when n is even, the rectangles are shown to cover a big

rectangle of base n/2 and height n+1.

160 Chapter 4. Algorithm Analysis

The lesson to be learned from Proposition 4.3 is that if we perform an algorithm

with nested loops such that the operations in the inner loop increase by one each

time, then the total number of operations is quadratic in the number of times, n,

we perform the outer loop. To be fair, the number of operations is n2/2 + n/2,

and so this is just over half the number of operations than an algorithm that uses n

operations each time the inner loop is performed. But the order of growth is still

quadratic in n.

The Cubic Function and Other Polynomials

Continuing our discussion of functions that are powers of the input, we consider

the cubic function,

f (n) = n3,

which assigns to an input value n the product of n with itself three times.

The cubic function appears less frequently in the context of algorithm analysis

than the constant, linear, and quadratic functions previously mentioned, but it does

appear from time to time.

Polynomials

The linear, quadratic and cubic functions can each be viewed as being part of a

larger class of functions, the polynomials. A polynomial function has the form,

f (n) = a0 +a1n+a2n2 +a3n3 + · · ·+adnd ,

where a0,a1, . . . ,ad are constants, called the coefficients of the polynomial, and

ad 6= 0. Integer d, which indicates the highest power in the polynomial, is called

the degree of the polynomial.

For example, the following functions are all polynomials:

• f (n) = 2+5n+n2

• f (n) = 1+n3

• f (n) = 1

• f (n) = n

• f (n) = n2

Therefore, we could argue that this book presents just four important functions used

in algorithm analysis, but we will stick to saying that there are seven, since the con-

stant, linear, and quadratic functions are too important to be lumped in with other

polynomials. Running times that are polynomials with small degree are generally

better than polynomial running times with larger degree.

4.2. The Seven Functions Used in This Book 161

Summations

A notation that appears again and again in the analysis of data structures and algo-

rithms is the summation, which is defined as follows:

b

∑
i=a

f (i) = f (a)+ f (a+1)+ f (a+2)+ · · ·+ f (b),

where a and b are integers and a≤ b. Summations arise in data structure and algo-

rithm analysis because the running times of loops naturally give rise to summations.

Using a summation, we can rewrite the formula of Proposition 4.3 as

n

∑
i=1

i =
n(n+1)

2
.

Likewise, we can write a polynomial f (n) of degree d with coefficients a0, . . . ,ad as

f (n) =
d

∑
i=0

ain
i.

Thus, the summation notation gives us a shorthand way of expressing sums of in-

creasing terms that have a regular structure.

The Exponential Function

Another function used in the analysis of algorithms is the exponential function,

f (n) = bn,

where b is a positive constant, called the base, and the argument n is the exponent.

That is, function f (n) assigns to the input argument n the value obtained by mul-

tiplying the base b by itself n times. As was the case with the logarithm function,

the most common base for the exponential function in algorithm analysis is b = 2.

For example, an integer word containing n bits can represent all the nonnegative

integers less than 2n. If we have a loop that starts by performing one operation

and then doubles the number of operations performed with each iteration, then the

number of operations performed in the n th iteration is 2n.

We sometimes have other exponents besides n, however; hence, it is useful

for us to know a few handy rules for working with exponents. In particular, the

following exponent rules are quite helpful.

Proposition 4.4 (Exponent Rules): Given positive integers a, b, and c, we have

1. (ba)c = bac

2. babc = ba+c

3. ba/bc = ba−c

162 Chapter 4. Algorithm Analysis

For example, we have the following:

• 256 = 162 = (24)2 = 24·2 = 28 = 256 (Exponent Rule 1)

• 243 = 35 = 32+3 = 3233 = 9 ·27 = 243 (Exponent Rule 2)

• 16 = 1024/64 = 210/26 = 210−6 = 24 = 16 (Exponent Rule 3)

We can extend the exponential function to exponents that are fractions or real

numbers and to negative exponents, as follows. Given a positive integer k, we de-

fine b1/k to be k th root of b, that is, the number r such that rk = b. For example,

251/2 = 5, since 52 = 25. Likewise, 271/3 = 3 and 161/4 = 2. This approach al-

lows us to define any power whose exponent can be expressed as a fraction, for

ba/c = (ba)1/c, by Exponent Rule 1. For example, 93/2 = (93)1/2 = 7291/2 = 27.

Thus, ba/c is really just the c th root of the integral exponent ba.

We can further extend the exponential function to define bx for any real number

x, by computing a series of numbers of the form ba/c for fractions a/c that get pro-

gressively closer and closer to x. Any real number x can be approximated arbitrarily

closely by a fraction a/c; hence, we can use the fraction a/c as the exponent of b

to get arbitrarily close to bx. For example, the number 2π is well defined. Finally,

given a negative exponent d, we define bd = 1/b−d , which corresponds to applying

Exponent Rule 3 with a = 0 and c =−d. For example, 2−3 = 1/23 = 1/8.

Geometric Sums

Suppose we have a loop for which each iteration takes a multiplicative factor longer

than the previous one. This loop can be analyzed using the following proposition.

Proposition 4.5: For any integer n≥ 0 and any real number a such that a > 0 and

a 6= 1, consider the summation

n

∑
i=0

ai = 1+a+a2 + · · ·+an

(remembering that a0 = 1 if a > 0). This summation is equal to

an+1−1

a−1
.

Summations as shown in Proposition 4.5 are called geometric summations, be-

cause each term is geometrically larger than the previous one if a> 1. For example,

everyone working in computing should know that

1+2+4+8+ · · ·+2n−1 = 2n−1,

for this is the largest unsigned integer that can be represented in binary notation

using n bits.

4.2. The Seven Functions Used in This Book 163

4.2.1 Comparing Growth Rates

To sum up, Table 4.2 shows, in order, each of the seven common functions used in

algorithm analysis.

constant logarithm linear n-log-n quadratic cubic exponential

1 log n n n log n n2 n3 an

Table 4.2: Seven functions commonly used in the analysis of algorithms. We recall

that logn = log2 n. Also, we denote with a a constant greater than 1.

Ideally, we would like data structure operations to run in times proportional

to the constant or logarithm function, and we would like our algorithms to run in

linear or n-log-n time. Algorithms with quadratic or cubic running times are less

practical, and algorithms with exponential running times are infeasible for all but

the smallest sized inputs. Plots of the seven functions are shown in Figure 4.4.

f(
n
)

107106

n

105104103102

Linear

Exponential

Constant

Logarithmic

N-Log-N

Quadratic

Cubic

101510141013101210111010109108101

100

104

108

1012

1016

1020

1028

1032

1036

1040

1044

100

1024

Figure 4.4: Growth rates for the seven fundamental functions used in algorithm

analysis. We use base a = 2 for the exponential function. The functions are plotted

on a log-log chart to compare the growth rates primarily as slopes. Even so, the

exponential function grows too fast to display all its values on the chart.

The Ceiling and Floor Functions

When discussing logarithms, we noted that the value is generally not an integer,

yet the running time of an algorithm is usually expressed by means of an integer

quantity, such as the number of operations performed. Thus, the analysis of an al-

gorithm may sometimes involve the use of the floor function and ceiling function,

which are defined respectively as follows:

• ⌊x⌋ = the largest integer less than or equal to x. (e.g., ⌊3.7⌋ = 3.)

• ⌈x⌉ = the smallest integer greater than or equal to x. (e.g., ⌈5.2⌉ = 6.)

164 Chapter 4. Algorithm Analysis

4.3 Asymptotic Analysis

In algorithm analysis, we focus on the growth rate of the running time as a function

of the input size n, taking a “big-picture” approach. For example, it is often enough

just to know that the running time of an algorithm grows proportionally to n.

We analyze algorithms using a mathematical notation for functions that disre-

gards constant factors. Namely, we characterize the running times of algorithms

by using functions that map the size of the input, n, to values that correspond to

the main factor that determines the growth rate in terms of n. This approach re-

flects that each basic step in a pseudocode description or a high-level language

implementation may correspond to a small number of primitive operations. Thus,

we can perform an analysis of an algorithm by estimating the number of primitive

operations executed up to a constant factor, rather than getting bogged down in

language-specific or hardware-specific analysis of the exact number of operations

that execute on the computer.

4.3.1 The “Big-Oh” Notation

Let f (n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f (n) is O(g(n)) if there is a real constant c > 0 and an integer constant

n0 ≥ 1 such that

f (n)≤ c ·g(n), for n≥ n0.

This definition is often referred to as the “big-Oh” notation, for it is sometimes pro-

nounced as “ f (n) is big-Oh of g(n).” Figure 4.5 illustrates the general definition.

Input Size

R
u
n
n
in

g
 T

im
e

cg(n)

f(n)

n0

Figure 4.5: Illustrating the “big-Oh” notation. The function f (n) is O(g(n)), since

f (n)≤ c ·g(n) when n≥ n0.

4.3. Asymptotic Analysis 165

Example 4.6: The function 8n+5 is O(n).

Justification: By the big-Oh definition, we need to find a real constant c > 0 and

an integer constant n0 ≥ 1 such that 8n+5≤ cn for every integer n≥ n0. It is easy

to see that a possible choice is c = 9 and n0 = 5. Indeed, this is one of infinitely

many choices available because there is a trade-off between c and n0. For example,

we could rely on constants c = 13 and n0 = 1.

The big-Oh notation allows us to say that a function f (n) is “less than or equal

to” another function g(n) up to a constant factor and in the asymptotic sense as n

grows toward infinity. This ability comes from the fact that the definition uses “≤”

to compare f (n) to a g(n) times a constant, c, for the asymptotic cases when n≥ n0.

However, it is considered poor taste to say “ f (n) ≤ O(g(n)),” since the big-Oh

already denotes the “less-than-or-equal-to” concept. Likewise, although common,

it is not fully correct to say “ f (n) = O(g(n)),” with the usual understanding of the

“=” relation, because there is no way to make sense of the symmetric statement,

“O(g(n)) = f (n).” It is best to say, “ f (n) is O(g(n)).”

Alternatively, we can say “ f (n) is order of g(n).” For the more mathematically

inclined, it is also correct to say, “ f (n) ∈O(g(n)),” for the big-Oh notation, techni-

cally speaking, denotes a whole collection of functions. In this book, we will stick

to presenting big-Oh statements as “ f (n) is O(g(n)).” Even with this interpretation,

there is considerable freedom in how we can use arithmetic operations with the big-

Oh notation, and with this freedom comes a certain amount of responsibility.

Some Properties of the Big-Oh Notation

The big-Oh notation allows us to ignore constant factors and lower-order terms and

focus on the main components of a function that affect its growth.

Example 4.7: 5n4 +3n3 +2n2 +4n+1 is O(n4).

Justification: Note that 5n4 +3n3 +2n2 +4n+1≤ (5+3+2+4+1)n4 = cn4,

for c = 15, when n≥ n0 = 1.

In fact, we can characterize the growth rate of any polynomial function.

Proposition 4.8: If f (n) is a polynomial of degree d, that is,

f (n) = a0 +a1n+ · · ·+adnd ,

and ad > 0, then f (n) is O(nd).

Justification: Note that, for n≥ 1, we have 1≤ n≤ n2 ≤ ·· · ≤ nd ; hence,

a0 +a1n+a2n2 + · · ·+adnd ≤ (|a0|+ |a1|+ |a2|+ · · ·+ |ad |)nd .

We show that f (n) is O(nd) by defining c = |a0|+ |a1|+ · · ·+ |ad | and n0 = 1.

166 Chapter 4. Algorithm Analysis

Thus, the highest-degree term in a polynomial is the term that determines the

asymptotic growth rate of that polynomial. We consider some additional properties

of the big-Oh notation in the exercises. Let us consider some further examples here,

focusing on combinations of the seven fundamental functions used in algorithm

design. We rely on the mathematical fact that logn≤ n for n≥ 1.

Example 4.9: 5n2 +3n log n+2n+5 is O(n2).

Justification: 5n2+3n log n+2n+5≤ (5+3+2+5)n2 = cn2, for c= 15, when

n≥ n0 = 1.

Example 4.10: 20n3 +10n log n+5 is O(n3).

Justification: 20n3 +10n log n+5≤ 35n3, for n≥ 1.

Example 4.11: 3log n+2 is O(logn).

Justification: 3logn+ 2 ≤ 5log n, for n ≥ 2. Note that logn is zero for n = 1.

That is why we use n≥ n0 = 2 in this case.

Example 4.12: 2n+2 is O(2n).

Justification: 2n+2 = 2n ·22 = 4 ·2n; hence, we can take c = 4 and n0 = 1 in this

case.

Example 4.13: 2n+100log n is O(n).

Justification: 2n+100log n≤ 102n, for n≥ n0 = 1; hence, we can take c = 102

in this case.

Characterizing Functions in Simplest Terms

In general, we should use the big-Oh notation to characterize a function as closely

as possible. While it is true that the function f (n) = 4n3 + 3n2 is O(n5) or even

O(n4), it is more accurate to say that f (n) is O(n3). Consider, by way of analogy,

a scenario where a hungry traveler driving along a long country road happens upon

a local farmer walking home from a market. If the traveler asks the farmer how

much longer he must drive before he can find some food, it may be truthful for the

farmer to say, “certainly no longer than 12 hours,” but it is much more accurate

(and helpful) for him to say, “you can find a market just a few minutes drive up this

road.” Thus, even with the big-Oh notation, we should strive as much as possible

to tell the whole truth.

It is also considered poor taste to include constant factors and lower-order terms

in the big-Oh notation. For example, it is not fashionable to say that the function

2n2 is O(4n2 + 6n log n), although this is completely correct. We should strive

instead to describe the function in the big-Oh in simplest terms.

4.3. Asymptotic Analysis 167

The seven functions listed in Section 4.2 are the most common functions used

in conjunction with the big-Oh notation to characterize the running times and space

usage of algorithms. Indeed, we typically use the names of these functions to refer

to the running times of the algorithms they characterize. So, for example, we would

say that an algorithm that runs in worst-case time 4n2 +n logn is a quadratic-time

algorithm, since it runs in O(n2) time. Likewise, an algorithm running in time at

most 5n+20log n+4 would be called a linear-time algorithm.

Big-Omega

Just as the big-Oh notation provides an asymptotic way of saying that a function is

“less than or equal to” another function, the following notations provide an asymp-

totic way of saying that a function grows at a rate that is “greater than or equal to”

that of another.

Let f (n) and g(n) be functions mapping positive integers to positive real num-

bers. We say that f (n) is Ω(g(n)), pronounced “ f (n) is big-Omega of g(n),” if g(n)
is O(f (n)), that is, there is a real constant c > 0 and an integer constant n0 ≥ 1 such

that

f (n) ≥ cg(n), for n≥ n0.

This definition allows us to say asymptotically that one function is greater than or

equal to another, up to a constant factor.

Example 4.14: 3n log n−2n is Ω(n log n).

Justification: 3n log n− 2n = n log n+ 2n(logn− 1) ≥ n log n for n ≥ 2; hence,

we can take c = 1 and n0 = 2 in this case.

Big-Theta

In addition, there is a notation that allows us to say that two functions grow at the

same rate, up to constant factors. We say that f (n) is Θ(g(n)), pronounced “ f (n)
is big-Theta of g(n),” if f (n) is O(g(n)) and f (n) is Ω(g(n)), that is, there are real

constants c′ > 0 and c′′ > 0, and an integer constant n0 ≥ 1 such that

c′g(n)≤ f (n) ≤ c′′g(n), for n≥ n0.

Example 4.15: 3n log n+4n+5logn is Θ(n log n).

Justification: 3n log n≤ 3n log n+4n+5logn≤ (3+4+5)n logn for n≥ 2.

168 Chapter 4. Algorithm Analysis

4.3.2 Comparative Analysis

The big-Oh notation is widely used to characterize running times and space bounds

in terms of some parameter n, which is defined as a chosen measure of the “size”

of the problem. Suppose two algorithms solving the same problem are available:

an algorithm A, which has a running time of O(n), and an algorithm B, which has a

running time of O(n2). Which algorithm is better? We know that n is O(n2), which

implies that algorithm A is asymptotically better than algorithm B, although for a

small value of n, B may have a lower running time than A.

We can use the big-Oh notation to order classes of functions by asymptotic

growth rate. Our seven functions are ordered by increasing growth rate in the fol-

lowing sequence, such that f (n) is O(g(n)) if function f (n) precedes function g(n):

1, logn, n, n log n, n2, n3, 2n.

We illustrate the growth rates of the seven functions in Table 4.3. (See also

Figure 4.4 from Section 4.2.1.)

n logn n n logn n2 n3 2n

8 3 8 24 64 512 256

16 4 16 64 256 4,096 65,536

32 5 32 160 1,024 32,768 4,294,967,296

64 6 64 384 4,096 262,144 1.84× 1019

128 7 128 896 16,384 2,097,152 3.40× 1038

256 8 256 2,048 65,536 16,777,216 1.15× 1077

512 9 512 4,608 262,144 134,217,728 1.34× 10154

Table 4.3: Selected values of fundamental functions in algorithm analysis.

We further illustrate the importance of the asymptotic viewpoint in Table 4.4.

This table explores the maximum size allowed for an input instance that is pro-

cessed by an algorithm in 1 second, 1 minute, and 1 hour. It shows the importance

of good algorithm design, because an asymptotically slow algorithm is beaten in

the long run by an asymptotically faster algorithm, even if the constant factor for

the asymptotically faster algorithm is worse.

Running Maximum Problem Size (n)

Time (µs) 1 second 1 minute 1 hour

400n 2,500 150,000 9,000,000

2n2 707 5,477 42,426

2n 19 25 31

Table 4.4: Maximum size of a problem that can be solved in 1 second, 1 minute,

and 1 hour, for various running times measured in microseconds.

4.3. Asymptotic Analysis 169

The importance of good algorithm design goes beyond just what can be solved

effectively on a given computer, however. As shown in Table 4.5, even if we

achieve a dramatic speedup in hardware, we still cannot overcome the handicap

of an asymptotically slow algorithm. This table shows the new maximum problem

size achievable for any fixed amount of time, assuming algorithms with the given

running times are now run on a computer 256 times faster than the previous one.

Running Time New Maximum Problem Size

400n 256m

2n2 16m

2n m+8

Table 4.5: Increase in the maximum size of a problem that can be solved in a fixed

amount of time, by using a computer that is 256 times faster than the previous one.

Each entry is a function of m, the previous maximum problem size.

Some Words of Caution

A few words of caution about asymptotic notation are in order at this point. First,

note that the use of the big-Oh and related notations can be somewhat misleading

should the constant factors they “hide” be very large. For example, while it is true

that the function 10100n is O(n), if this is the running time of an algorithm being

compared to one whose running time is 10n log n, we should prefer the O(n log n)-
time algorithm, even though the linear-time algorithm is asymptotically faster. This

preference is because the constant factor, 10100, which is called “one googol,” is

believed by many astronomers to be an upper bound on the number of atoms in the

observable universe. So we are unlikely to ever have a real-world problem that has

this number as its input size.

The observation above raises the issue of what constitutes a “fast” algorithm.

Generally speaking, any algorithm running in O(n logn) time (with a reasonable

constant factor) should be considered efficient. Even an O(n2)-time function may

be fast enough in some contexts, that is, when n is small. But an algorithm whose

running time is an exponential function, e.g., O(2n), should almost never be con-

sidered efficient.

Exponential Running Times

To see how fast the function 2n grows, consider the famous story about the inventor

of the game of chess. He asked only that his king pay him 1 grain of rice for the

first square on the board, 2 grains for the second, 4 grains for the third, 8 for the

fourth, and so on. The number of grains in the 64th square would be

263 = 9,223,372,036,854,775,808,
which is about nine billion billions!

170 Chapter 4. Algorithm Analysis

If we must draw a line between efficient and inefficient algorithms, therefore,

it is natural to make this distinction be that between those algorithms running in

polynomial time and those running in exponential time. That is, make the distinc-

tion between algorithms with a running time that is O(nc), for some constant c > 1,

and those with a running time that is O(bn), for some constant b > 1. Like so many

notions we have discussed in this section, this too should be taken with a “grain of

salt,” for an algorithm running in O(n100) time should probably not be considered

“efficient.” Even so, the distinction between polynomial-time and exponential-time

algorithms is considered a robust measure of tractability.

4.3.3 Examples of Algorithm Analysis

Now that we have the big-Oh notation for doing algorithm analysis, let us give

some examples by characterizing the running time of some simple algorithms using

this notation. Moreover, in keeping with our earlier promise, we will illustrate

below how each of the seven functions given earlier in this chapter can be used to

characterize the running time of an example algorithm.

Constant-Time Operations

All of the primitive operations, originally described on page 154, are assumed to

run in constant time; formally, we say they run in O(1) time. We wish to empha-

size several important constant-time operations that involve arrays. Assume that

variable A is an array of n elements. The expression A.length in Java is evaluated

in constant time, because arrays are represented internally with an explicit variable

that records the length of the array. Another central behavior of arrays is that for

any valid index j, the individual element, A[j], can be accessed in constant time.

This is because an array uses a consecutive block of memory. The j th element can

be found, not by iterating through the array one element at a time, but by validating

the index, and using it as an offset from the beginning of the array in determin-

ing the appropriate memory address. Therefore, we say that the expression A[j] is

evaluated in O(1) time for an array.

Finding the Maximum of an Array

As a classic example of an algorithm with a running time that grows proportional

to n, we consider the goal of finding the largest element of an array. A typical

strategy is to loop through elements of the array while maintaining as a variable

the largest element seen thus far. Code Fragment 4.3 presents a method named

arrayMax implementing this strategy.

4.3. Asymptotic Analysis 171

1 /∗∗ Returns the maximum value of a nonempty array of numbers. ∗/
2 public static double arrayMax(double[] data) {
3 int n = data.length;
4 double currentMax = data[0]; // assume first entry is biggest (for now)
5 for (int j=1; j < n; j++) // consider all other entries
6 if (data[j] > currentMax) // if data[j] is biggest thus far...
7 currentMax = data[j]; // record it as the current max
8 return currentMax;
9 }

Code Fragment 4.3: A method that returns the maximum value of an array.

Using the big-Oh notation, we can write the following mathematically precise

statement on the running time of algorithm arrayMax for any computer.

Proposition 4.16: The algorithm, arrayMax, for computing the maximum ele-

ment of an array of n numbers, runs in O(n) time.

Justification: The initialization at lines 3 and 4 and the return statement at line 8

require only a constant number of primitive operations. Each iteration of the loop

also requires only a constant number of primitive operations, and the loop executes

n− 1 times. Therefore, we account for the number of primitive operations being

c′ ·(n−1)+c′′ for appropriate constants c′ and c′′ that reflect, respectively, the work

performed inside and outside the loop body. Because each primitive operation runs

in constant time, we have that the running time of algorithm arrayMax on an input

of size n is at most c′ · (n−1)+ c′′ = c′ ·n+(c′′− c′)≤ c′ ·n if we assume, without

loss of generality, that c′′ ≤ c′. We conclude that the running time of algorithm

arrayMax is O(n).

Further Analysis of the Maximum-Finding Algorithm

A more interesting question about arrayMax is how many times we might update

the current “biggest” value. In the worst case, if the data is given to us in increasing

order, the biggest value is reassigned n− 1 times. But what if the input is given

to us in random order, with all orders equally likely; what would be the expected

number of times we update the biggest value in this case? To answer this question,

note that we update the current biggest in an iteration of the loop only if the current

element is bigger than all the elements that precede it. If the sequence is given to

us in random order, the probability that the j th element is the largest of the first j

elements is 1/ j (assuming uniqueness). Hence, the expected number of times we

update the biggest (including initialization) is Hn = ∑
n
j=1 1/ j, which is known as

the n th Harmonic number. It can be shown that Hn is O(logn). Therefore, the

expected number of times the biggest value is updated by arrayMax on a randomly

ordered sequence is O(logn).

172 Chapter 4. Algorithm Analysis

Composing Long Strings

As our next example, we revisit the experimental study from Section 4.1, in which

we examined two different implementations for composing a long string (see Code

Fragment 4.2). Our first algorithm was based on repeated use of the string concate-

nation operator; for convenience, that method is also given in Code Fragment 4.4.

1 /∗∗ Uses repeated concatenation to compose a String with n copies of character c. ∗/
2 public static String repeat1(char c, int n) {
3 String answer = "";
4 for (int j=0; j < n; j++)
5 answer += c;
6 return answer;
7 }

Code Fragment 4.4: Composing a string using repeated concatenation.

The most important aspect of this implementation is that strings in Java are

immutable objects. Once created, an instance cannot be modified. The command,

answer += c, is shorthand for answer = (answer + c). This command does not

cause a new character to be added to the existing String instance; instead it produces

a new String with the desired sequence of characters, and then it reassigns the

variable, answer, to refer to that new string.

In terms of efficiency, the problem with this interpretation is that the creation

of a new string as a result of a concatenation, requires time that is proportional

to the length of the resulting string. The first time through this loop, the result

has length 1, the second time through the loop the result has length 2, and so on,

until we reach the final string of length n. Therefore, the overall time taken by this

algorithm is proportional to

1+2+ · · ·+n,

which we recognize as the familiar O(n2) summation from Proposition 4.3. There-

fore, the total time complexity of the repeat1 algorithm is O(n2).

We see this theoretical analysis reflected in the experimental results. The run-

ning time of a quadratic algorithm should theoretically quadruple if the size of the

problem doubles, as (2n)2 = 4 · n2. (We say “theoretically,” because this does not

account for lower-order terms that are hidden by the asymptotic notation.) We see

such an approximate fourfold increase in the running time of repeat1 in Table 4.1

on page 152.

In contrast, the running times in that table for the repeat2 algorithm, which uses

Java’s StringBuilder class, demonstrate a trend of approximately doubling each

time the problem size doubles. The StringBuilder class relies on an advanced tech-

nique with a worst-case running time of O(n) for composing a string of length n;

we will later explore that technique as the focus of Section 7.2.1.

4.3. Asymptotic Analysis 173

Three-Way Set Disjointness

Suppose we are given three sets, A, B, and C, stored in three different integer arrays.

We will assume that no individual set contains duplicate values, but that there may

be some numbers that are in two or three of the sets. The three-way set disjointness

problem is to determine if the intersection of the three sets is empty, namely, that

there is no element x such that x ∈ A, x ∈ B, and x ∈C. A simple Java method to

determine this property is given in Code Fragment 4.5.

1 /∗∗ Returns true if there is no element common to all three arrays. ∗/
2 public static boolean disjoint1(int[] groupA, int[] groupB, int[] groupC) {
3 for (int a : groupA)
4 for (int b : groupB)
5 for (int c : groupC)
6 if ((a == b) && (b == c))
7 return false; // we found a common value
8 return true; // if we reach this, sets are disjoint
9 }

Code Fragment 4.5: Algorithm disjoint1 for testing three-way set disjointness.

This simple algorithm loops through each possible triple of values from the

three sets to see if those values are equivalent. If each of the original sets has size

n, then the worst-case running time of this method is O(n3).

We can improve upon the asymptotic performance with a simple observation.

Once inside the body of the loop over B, if selected elements a and b do not match

each other, it is a waste of time to iterate through all values of C looking for a

matching triple. An improved solution to this problem, taking advantage of this

observation, is presented in Code Fragment 4.6.

1 /∗∗ Returns true if there is no element common to all three arrays. ∗/
2 public static boolean disjoint2(int[] groupA, int[] groupB, int[] groupC) {
3 for (int a : groupA)
4 for (int b : groupB)
5 if (a == b) // only check C when we find match from A and B
6 for (int c : groupC)
7 if (a == c) // and thus b == c as well
8 return false; // we found a common value
9 return true; // if we reach this, sets are disjoint

10 }
Code Fragment 4.6: Algorithm disjoint2 for testing three-way set disjointness.

In the improved version, it is not simply that we save time if we get lucky. We

claim that the worst-case running time for disjoint2 is O(n2). There are quadrat-

ically many pairs (a,b) to consider. However, if A and B are each sets of distinct

174 Chapter 4. Algorithm Analysis

elements, there can be at most O(n) such pairs with a equal to b. Therefore, the

innermost loop, over C, executes at most n times.

To account for the overall running time, we examine the time spent executing

each line of code. The management of the for loop over A requires O(n) time. The

management of the for loop over B accounts for a total of O(n2) time, since that

loop is executed n different times. The test a == b is evaluated O(n2) times. The

rest of the time spent depends upon how many matching (a,b) pairs exist. As we

have noted, there are at most n such pairs; therefore, the management of the loop

over C and the commands within the body of that loop use at most O(n2) time. By

our standard application of Proposition 4.8, the total time spent is O(n2).

Element Uniqueness

A problem that is closely related to the three-way set disjointness problem is the

element uniqueness problem. In the former, we are given three sets and we pre-

sumed that there were no duplicates within a single set. In the element uniqueness

problem, we are given an array with n elements and asked whether all elements of

that collection are distinct from each other.

Our first solution to this problem uses a straightforward iterative algorithm.

The unique1 method, given in Code Fragment 4.7, solves the element uniqueness

problem by looping through all distinct pairs of indices j < k, checking if any of

those pairs refer to elements that are equivalent to each other. It does this using two

nested for loops, such that the first iteration of the outer loop causes n−1 iterations

of the inner loop, the second iteration of the outer loop causes n− 2 iterations of

the inner loop, and so on. Thus, the worst-case running time of this method is

proportional to

(n−1)+ (n−2)+ · · ·+2+1,

which we recognize as the familiar O(n2) summation from Proposition 4.3.

1 /∗∗ Returns true if there are no duplicate elements in the array. ∗/
2 public static boolean unique1(int[] data) {
3 int n = data.length;
4 for (int j=0; j < n−1; j++)
5 for (int k=j+1; k < n; k++)
6 if (data[j] == data[k])
7 return false; // found duplicate pair
8 return true; // if we reach this, elements are unique
9 }

Code Fragment 4.7: Algorithm unique1 for testing element uniqueness.

4.3. Asymptotic Analysis 175

Using Sorting as a Problem-Solving Tool

An even better algorithm for the element uniqueness problem is based on using

sorting as a problem-solving tool. In this case, by sorting the array of elements, we

are guaranteed that any duplicate elements will be placed next to each other. Thus,

to determine if there are any duplicates, all we need to do is perform a single pass

over the sorted array, looking for consecutive duplicates.

A Java implementation of this algorithm is given in Code Fragment 4.8. (See

Section 3.1.3 for discussion of the java.util.Arrays class.)

1 /∗∗ Returns true if there are no duplicate elements in the array. ∗/
2 public static boolean unique2(int[] data) {
3 int n = data.length;
4 int[] temp = Arrays.copyOf(data, n); // make copy of data
5 Arrays.sort(temp); // and sort the copy
6 for (int j=0; j < n−1; j++)
7 if (temp[j] == temp[j+1]) // check neighboring entries
8 return false; // found duplicate pair
9 return true; // if we reach this, elements are unique

10 }

Code Fragment 4.8: Algorithm unique2 for testing element uniqueness.

Sorting algorithms will be the focus of Chapter 12. The best sorting algorithms

(including those used by Array.sort in Java) guarantee a worst-case running time of

O(n log n). Once the data is sorted, the subsequent loop runs in O(n) time, and so

the entire unique2 algorithm runs in O(n log n) time. Exercise C-4.35 explores the

use of sorting to solve the three-way set disjointness problem in O(n log n) time.

Prefix Averages

The next problem we consider is computing what are known as prefix averages of

a sequence of numbers. Namely, given a sequence x consisting of n numbers, we

want to compute a sequence a such that aj is the average of elements x0, . . . ,x j, for

j = 0, . . . ,n−1, that is,

aj =
∑

j
i=0 xi

j+1
.

Prefix averages have many applications in economics and statistics. For example,

given the year-by-year returns of a mutual fund, ordered from recent to past, an

investor will typically want to see the fund’s average annual returns for the most

recent year, the most recent three years, the most recent five years, and so on. Like-

wise, given a stream of daily Web usage logs, a website manager may wish to track

average usage trends over various time periods. We present two implementation

for computing prefix averages, yet with significantly different running times.

176 Chapter 4. Algorithm Analysis

A Quadratic-Time Algorithm

Our first algorithm for computing prefix averages, denoted as prefixAverage1, is

shown in Code Fragment 4.9. It computes each element aj independently, using an

inner loop to compute that partial sum.

1 /∗∗ Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. ∗/
2 public static double[] prefixAverage1(double[] x) {
3 int n = x.length;
4 double[] a = new double[n]; // filled with zeros by default
5 for (int j=0; j < n; j++) {
6 double total = 0; // begin computing x[0] + ... + x[j]
7 for (int i=0; i <= j; i++)
8 total += x[i];
9 a[j] = total / (j+1); // record the average

10 }
11 return a;
12 }

Code Fragment 4.9: Algorithm prefixAverage1.

Let us analyze the prefixAverage1 algorithm.

• The initialization of n = x.length at line 3 and the eventual return of a refer-

ence to array a at line 11 both execute in O(1) time.

• Creating and initializing the new array, a, at line 4 can be done with in O(n)
time, using a constant number of primitive operations per element.

• There are two nested for loops, which are controlled, respectively, by coun-

ters j and i. The body of the outer loop, controlled by counter j, is ex-

ecuted n times, for j = 0, . . . ,n− 1. Therefore, statements total = 0 and

a[j] = total / (j+1) are executed n times each. This implies that these two

statements, plus the management of counter j in the loop, contribute a num-

ber of primitive operations proportional to n, that is, O(n) time.

• The body of the inner loop, which is controlled by counter i, is executed j+1

times, depending on the current value of the outer loop counter j. Thus, state-

ment total += x[i], in the inner loop, is executed 1+ 2+ 3+ · · ·+ n times.

By recalling Proposition 4.3, we know that 1+2+3+ · · ·+n = n(n+1)/2,

which implies that the statement in the inner loop contributes O(n2) time.

A similar argument can be done for the primitive operations associated with

maintaining counter i, which also take O(n2) time.

The running time of implementation prefixAverage1 is given by the sum of these

terms. The first term is O(1), the second and third terms are O(n), and the fourth

term is O(n2). By a simple application of Proposition 4.8, the running time of

prefixAverage1 is O(n2).

4.3. Asymptotic Analysis 177

A Linear-Time Algorithm

An intermediate value in the computation of the prefix average is the prefix sum

x0 + x1 + · · ·+ x j, denoted as total in our first implementation; this allows us to

compute the prefix average a[j] = total / (j + 1). In our first algorithm, the prefix

sum is computed anew for each value of j. That contributed O(j) time for each j,

leading to the quadratic behavior.

For greater efficiency, we can maintain the current prefix sum dynamically,

effectively computing x0 + x1 + · · ·+ x j as total + x j, where value total is equal to

the sum x0+x1+ · · ·+x j−1, when computed by the previous pass of the loop over j.

Code Fragment 4.10 provides a new implementation, denoted as prefixAverage2,

using this approach.

1 /∗∗ Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. ∗/
2 public static double[] prefixAverage2(double[] x) {
3 int n = x.length;
4 double[] a = new double[n]; // filled with zeros by default
5 double total = 0; // compute prefix sum as x[0] + x[1] + ...
6 for (int j=0; j < n; j++) {
7 total += x[j]; // update prefix sum to include x[j]
8 a[j] = total / (j+1); // compute average based on current sum
9 }

10 return a;
11 }

Code Fragment 4.10: Algorithm prefixAverage2.

The analysis of the running time of algorithm prefixAverage2 follows:

• Initializing variables n and total uses O(1) time.

• Initializing the array a uses O(n) time.

• There is a single for loop, which is controlled by counter j. The maintenance

of that loop contributes a total of O(n) time.

• The body of the loop is executed n times, for j = 0, . . . ,n− 1. Thus, state-

ments total += x[j] and a[j] = total / (j+1) are executed n times each.

Since each of these statements uses O(1) time per iteration, their overall

contribution is O(n) time.

• The eventual return of a reference to array A uses O(1) time.

The running time of algorithm prefixAverage2 is given by the sum of the five terms.

The first and last are O(1) and the remaining three are O(n). By a simple applica-

tion of Proposition 4.8, the running time of prefixAverage2 is O(n), which is much

better than the quadratic time of algorithm prefixAverage1.

178 Chapter 4. Algorithm Analysis

4.4 Simple Justification Techniques

Sometimes, we will want to make claims about an algorithm, such as showing that

it is correct or that it runs fast. In order to rigorously make such claims, we must

use mathematical language, and in order to back up such claims, we must justify or

prove our statements. Fortunately, there are several simple ways to do this.

4.4.1 By Example

Some claims are of the generic form, “There is an element x in a set S that has

property P.” To justify such a claim, we only need to produce a particular x in S

that has property P. Likewise, some hard-to-believe claims are of the generic form,

“Every element x in a set S has property P.” To justify that such a claim is false, we

only need to produce a particular x from S that does not have property P. Such an

instance is called a counterexample.

Example 4.17: Professor Amongus claims that every number of the form 2i− 1

is a prime, when i is an integer greater than 1. Professor Amongus is wrong.

Justification: To prove Professor Amongus is wrong, we find a counterexample.

Fortunately, we need not look too far, for 24−1 = 15 = 3 ·5.

4.4.2 The “Contra” Attack

Another set of justification techniques involves the use of the negative. The two

primary such methods are the use of the contrapositive and the contradiction. To

justify the statement “if p is true, then q is true,” we establish that “if q is not true,

then p is not true” instead. Logically, these two statements are the same, but the

latter, which is called the contrapositive of the first, may be easier to think about.

Example 4.18: Let a and b be integers. If ab is even, then a is even or b is even.

Justification: To justify this claim, consider the contrapositive, “If a is odd and

b is odd, then ab is odd.” So, suppose a = 2 j+1 and b = 2k+1, for some integers

j and k. Then ab = 4 jk+2 j+2k+1 = 2(2 jk+ j+ k)+1; hence, ab is odd.

Besides showing a use of the contrapositive justification technique, the previous

example also contains an application of de Morgan’s law. This law helps us deal

with negations, for it states that the negation of a statement of the form “p or q” is

“not p and not q.” Likewise, it states that the negation of a statement of the form

“p and q” is “not p or not q.”

4.4. Simple Justification Techniques 179

Contradiction

Another negative justification technique is justification by contradiction, which

also often involves using de Morgan’s law. In applying the justification by con-

tradiction technique, we establish that a statement q is true by first supposing that

q is false and then showing that this assumption leads to a contradiction (such as

2 6= 2 or 1 > 3). By reaching such a contradiction, we show that no consistent sit-

uation exists with q being false, so q must be true. Of course, in order to reach this

conclusion, we must be sure our situation is consistent before we assume q is false.

Example 4.19: Let a and b be integers. If ab is odd, then a is odd and b is odd.

Justification: Let ab be odd. We wish to show that a is odd and b is odd. So,

with the hope of leading to a contradiction, let us assume the opposite, namely,

suppose a is even or b is even. In fact, without loss of generality, we can assume

that a is even (since the case for b is symmetric). Then a = 2 j for some integer

j. Hence, ab = (2 j)b = 2(jb), that is, ab is even. But this is a contradiction: ab

cannot simultaneously be odd and even. Therefore, a is odd and b is odd.

4.4.3 Induction and Loop Invariants

Most of the claims we make about a running time or a space bound involve an inte-

ger parameter n (usually denoting an intuitive notion of the “size” of the problem).

Moreover, most of these claims are equivalent to saying some statement q(n) is true

“for all n ≥ 1.” Since this is making a claim about an infinite set of numbers, we

cannot justify this exhaustively in a direct fashion.

Induction

We can often justify claims such as those above as true, however, by using the

technique of induction. This technique amounts to showing that, for any particular

n ≥ 1, there is a finite sequence of implications that starts with something known

to be true and ultimately leads to showing that q(n) is true. Specifically, we begin a

justification by induction by showing that q(n) is true for n = 1 (and possibly some

other values n = 2,3, . . . ,k, for some constant k). Then we justify that the inductive

“step” is true for n > k, namely, we show “if q(j) is true for all j < n, then q(n) is

true.” The combination of these two pieces completes the justification by induction.

180 Chapter 4. Algorithm Analysis

Proposition 4.20: Consider the Fibonacci function F(n), which is defined such

that F(1) = 1, F(2) = 2, and F(n) = F(n− 2)+F(n− 1) for n > 2. (See Sec-

tion 2.2.3.) We claim that F(n)< 2n.

Justification: We will show our claim is correct by induction.

Base cases: (n≤ 2). F(1) = 1 < 2 = 21 and F(2) = 2 < 4 = 22.

Induction step: (n > 2). Suppose our claim is true for all j < n. Since both n− 2

and n−1 are less than n, we can apply the inductive assumption (sometimes called

the “inductive hypothesis”) to imply that

F(n) = F(n−2)+F(n−1)< 2n−2 +2n−1.

Since

2n−2 +2n−1 < 2n−1 +2n−1 = 2 ·2n−1 = 2n,

we have that F(n)< 2n, thus showing the inductive hypothesis for n.

Let us do another inductive argument, this time for a fact we have seen before.

Proposition 4.21: (which is the same as Proposition 4.3)

n

∑
i=1

i =
n(n+1)

2
.

Justification: We will justify this equality by induction.

Base case: n = 1. Trivial, for 1 = n(n+1)/2, if n = 1.

Induction step: n ≥ 2. Assume the inductive hypothesis is true for any j < n.

Therefore, for j = n−1, we have

n−1

∑
i=1

i =
(n−1)(n−1+1)

2
=

(n−1)n

2
.

Hence, we obtain

n

∑
i=1

i = n+
n−1

∑
i=1

i = n+
(n−1)n

2
=

2n+n2−n

2
=

n2 +n

2
=

n(n+1)

2
,

thereby proving the inductive hypothesis for n.

We may sometimes feel overwhelmed by the task of justifying something true

for all n≥ 1. We should remember, however, the concreteness of the inductive tech-

nique. It shows that, for any particular n, there is a finite step-by-step sequence of

implications that starts with something true and leads to the truth about n. In short,

the inductive argument is a template for building a sequence of direct justifications.

4.4. Simple Justification Techniques 181

Loop Invariants

The final justification technique we discuss in this section is the loop invariant. To

prove some statement L about a loop is correct, define L in terms of a series of

smaller statements L0,L1, . . . ,Lk, where:

1. The initial claim, L0, is true before the loop begins.

2. If L j−1 is true before iteration j, then L j will be true after iteration j.

3. The final statement, Lk, implies the desired statement L to be true.

Let us give a simple example of using a loop-invariant argument to justify the

correctness of an algorithm. In particular, we use a loop invariant to justify that

the method arrayFind (see Code Fragment 4.11) finds the smallest index at which

element val occurs in array A.

1 /∗∗ Returns index j such that data[j] == val, or −1 if no such element. ∗/
2 public static int arrayFind(int[] data, int val) {
3 int n = data.length;
4 int j = 0;
5 while (j < n) { // val is not equal to any of the first j elements of data
6 if (data[j] == val)
7 return j; // a match was found at index j
8 j++; // continue to next index
9 // val is not equal to any of the first j elements of data

10 }
11 return −1; // if we reach this, no match found
12 }

Code Fragment 4.11: Algorithm arrayFind for finding the first index at which a

given element occurs in an array.

To show that arrayFind is correct, we inductively define a series of statements,

L j, that lead to the correctness of our algorithm. Specifically, we claim the follow-

ing is true at the beginning of iteration j of the while loop:

L j: val is not equal to any of the first j elements of data.

This claim is true at the beginning of the first iteration of the loop, because j is

0 and there are no elements among the first 0 in data (this kind of a trivially true

claim is said to hold vacuously). In iteration j, we compare element val to element

data[j]; if these two elements are equivalent, we return the index j, which is clearly

correct since no earlier elements equal val. If the two elements val and data[j] are

not equal, then we have found one more element not equal to val and we increment

the index j. Thus, the claim L j will be true for this new value of j; hence, it is

true at the beginning of the next iteration. If the while loop terminates without ever

returning an index in data, then we have j = n. That is, Ln is true—there are no

elements of data equal to val. Therefore, the algorithm correctly returns −1 to

indicate that val is not in data.

182 Chapter 4. Algorithm Analysis

4.5 Exercises

Reinforcement

R-4.1 Graph the functions 8n, 4n logn, 2n2, n3, and 2n using a logarithmic scale for
the x- and y-axes; that is, if the function value f (n) is y, plot this as a point with

x-coordinate at logn and y-coordinate at logy.

R-4.2 The number of operations executed by algorithms A and B is 8n logn and 2n2,
respectively. Determine n0 such that A is better than B for n≥ n0.

R-4.3 The number of operations executed by algorithms A and B is 40n2 and 2n3, re-
spectively. Determine n0 such that A is better than B for n≥ n0.

R-4.4 Give an example of a function that is plotted the same on a log-log scale as it is
on a standard scale.

R-4.5 Explain why the plot of the function nc is a straight line with slope c on a log-log
scale.

R-4.6 What is the sum of all the even numbers from 0 to 2n, for any integer n≥ 1?

R-4.7 Show that the following two statements are equivalent:

(a) The running time of algorithm A is always O(f (n)).

(b) In the worst case, the running time of algorithm A is O(f (n)).

R-4.8 Order the following functions by asymptotic growth rate.

4n logn+2n 210 2logn

3n+100logn 4n 2n

n2 +10n n3 n logn

R-4.9 Give a big-Oh characterization, in terms of n, of the running time of the example1
method shown in Code Fragment 4.12.

R-4.10 Give a big-Oh characterization, in terms of n, of the running time of the example2
method shown in Code Fragment 4.12.

R-4.11 Give a big-Oh characterization, in terms of n, of the running time of the example3
method shown in Code Fragment 4.12.

R-4.12 Give a big-Oh characterization, in terms of n, of the running time of the example4
method shown in Code Fragment 4.12.

R-4.13 Give a big-Oh characterization, in terms of n, of the running time of the example5
method shown in Code Fragment 4.12.

R-4.14 Show that if d(n) is O(f (n)), then ad(n) is O(f (n)), for any constant a > 0.

R-4.15 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then the product d(n)e(n) is
O(f (n)g(n)).

R-4.16 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then d(n)+ e(n) is O(f (n)+
g(n)).

4.5. Exercises 183

1 /∗∗ Returns the sum of the integers in given array. ∗/
2 public static int example1(int[] arr) {
3 int n = arr.length, total = 0;
4 for (int j=0; j < n; j++) // loop from 0 to n-1
5 total += arr[j];
6 return total;
7 }
8

9 /∗∗ Returns the sum of the integers with even index in given array. ∗/
10 public static int example2(int[] arr) {
11 int n = arr.length, total = 0;
12 for (int j=0; j < n; j += 2) // note the increment of 2
13 total += arr[j];
14 return total;
15 }
16

17 /∗∗ Returns the sum of the prefix sums of given array. ∗/
18 public static int example3(int[] arr) {
19 int n = arr.length, total = 0;
20 for (int j=0; j < n; j++) // loop from 0 to n-1
21 for (int k=0; k <= j; k++) // loop from 0 to j
22 total += arr[j];
23 return total;
24 }
25

26 /∗∗ Returns the sum of the prefix sums of given array. ∗/
27 public static int example4(int[] arr) {
28 int n = arr.length, prefix = 0, total = 0;
29 for (int j=0; j < n; j++) { // loop from 0 to n-1
30 prefix += arr[j];
31 total += prefix;
32 }
33 return total;
34 }
35

36 /∗∗ Returns the number of times second array stores sum of prefix sums from first. ∗/
37 public static int example5(int[] first, int[] second) { // assume equal-length arrays
38 int n = first.length, count = 0;
39 for (int i=0; i < n; i++) { // loop from 0 to n-1
40 int total = 0;
41 for (int j=0; j < n; j++) // loop from 0 to n-1
42 for (int k=0; k <= j; k++) // loop from 0 to j
43 total += first[k];
44 if (second[i] == total) count++;
45 }
46 return count;
47 }

Code Fragment 4.12: Some sample algorithms for analysis.

184 Chapter 4. Algorithm Analysis

R-4.17 Show that if d(n) is O(f (n)) and e(n) is O(g(n)), then d(n)− e(n) is not neces-
sarily O(f (n)−g(n)).

R-4.18 Show that if d(n) is O(f (n)) and f (n) is O(g(n)), then d(n) is O(g(n)).

R-4.19 Show that O(max{ f (n),g(n)}) = O(f (n)+g(n)).

R-4.20 Show that f (n) is O(g(n)) if and only if g(n) is Ω(f (n)).

R-4.21 Show that if p(n) is a polynomial in n, then log p(n) is O(logn).

R-4.22 Show that (n+1)5 is O(n5).

R-4.23 Show that 2n+1 is O(2n).

R-4.24 Show that n is O(n logn).

R-4.25 Show that n2 is Ω(n logn).

R-4.26 Show that n logn is Ω(n).

R-4.27 Show that ⌈ f (n)⌉ is O(f (n)), if f (n) is a positive nondecreasing function that is

always greater than 1.

R-4.28 For each function f (n) and time t in the following table, determine the largest

size n of a problem P that can be solved in time t if the algorithm for solving P

takes f (n) microseconds (one entry is already completed).

1 Second 1 Hour 1 Month 1 Century

logn ≈ 10300000

n

n logn

n2

2n

R-4.29 Algorithm A executes an O(logn)-time computation for each entry of an array

storing n elements. What is its worst-case running time?

R-4.30 Given an n-element array X , Algorithm B chooses logn elements in X at random

and executes an O(n)-time calculation for each. What is the worst-case running

time of Algorithm B?

R-4.31 Given an n-element array X of integers, Algorithm C executes an O(n)-time com-

putation for each even number in X , and an O(logn)-time computation for each
odd number in X . What are the best-case and worst-case running times of Algo-

rithm C?

R-4.32 Given an n-element array X , Algorithm D calls Algorithm E on each element

X [i]. Algorithm E runs in O(i) time when it is called on element X [i]. What is
the worst-case running time of Algorithm D?

4.5. Exercises 185

R-4.33 Al and Bob are arguing about their algorithms. Al claims his O(n logn)-time
method is always faster than Bob’s O(n2)-time method. To settle the issue, they

perform a set of experiments. To Al’s dismay, they find that if n < 100, the

O(n2)-time algorithm runs faster, and only when n ≥ 100 is the O(n logn)-time
one better. Explain how this is possible.

R-4.34 There is a well-known city (which will go nameless here) whose inhabitants have

the reputation of enjoying a meal only if that meal is the best they have ever
experienced in their life. Otherwise, they hate it. Assuming meal quality is

distributed uniformly across a person’s life, describe the expected number of

times inhabitants of this city are happy with their meals?

Creativity

C-4.35 Assuming it is possible to sort n numbers in O(n logn) time, show that it is pos-
sible to solve the three-way set disjointness problem in O(n logn) time.

C-4.36 Describe an efficient algorithm for finding the ten largest elements in an array of

size n. What is the running time of your algorithm?

C-4.37 Give an example of a positive function f (n) such that f (n) is neither O(n) nor
Ω(n).

C-4.38 Show that ∑
n
i=1 i2 is O(n3).

C-4.39 Show that ∑
n
i=1 i/2i < 2.

C-4.40 Determine the total number of grains of rice requested by the inventor of chess.

C-4.41 Show that logb f (n) is Θ(log f (n)) if b > 1 is a constant.

C-4.42 Describe an algorithm for finding both the minimum and maximum of n numbers
using fewer than 3n/2 comparisons.

C-4.43 Bob built a website and gave the URL only to his n friends, which he numbered

from 1 to n. He told friend number i that he/she can visit the website at most

i times. Now Bob has a counter, C, keeping track of the total number of visits
to the site (but not the identities of who visits). What is the minimum value for

C such that Bob can know that one of his friends has visited his/her maximum
allowed number of times?

C-4.44 Draw a visual justification of Proposition 4.3 analogous to that of Figure 4.3(b)

for the case when n is odd.

C-4.45 An array A contains n−1 unique integers in the range [0,n−1], that is, there is

one number from this range that is not in A. Design an O(n)-time algorithm for
finding that number. You are only allowed to use O(1) additional space besides

the array A itself.

C-4.46 Perform an asymptotic analysis of the insertion-sort algorithm given in Sec-
tion 3.1.2. What are the worst-case and best-case running times?

186 Chapter 4. Algorithm Analysis

C-4.47 Communication security is extremely important in computer networks, and one
way many network protocols achieve security is to encrypt messages. Typical

cryptographic schemes for the secure transmission of messages over such net-

works are based on the fact that no efficient algorithms are known for factoring
large integers. Hence, if we can represent a secret message by a large prime

number p, we can transmit, over the network, the number r = p ·q, where q > p

is another large prime number that acts as the encryption key. An eavesdropper

who obtains the transmitted number r on the network would have to factor r in

order to figure out the secret message p.

Using factoring to figure out a message is hard without knowing the encryption

key q. To understand why, consider the following naive factoring algorithm:

for (int p=2; p < r; p++)
if (r % p == 0)
return "The secret message is p!";

a. Suppose the eavesdropper’s computer can divide two 100-bit integers in

µs (1 millionth of a second). Estimate the worst-case time to decipher the
secret message p if the transmitted message r has 100 bits.

b. What is the worst-case time complexity of the above algorithm? Since the
input to the algorithm is just one large number r, assume that the input size

n is the number of bytes needed to store r, that is, n = ⌊(log2 r)/8⌋+1, and
that each division takes time O(n).

C-4.48 Al says he can prove that all sheep in a flock are the same color:

Base case: One sheep. It is clearly the same color as itself.

Induction step: A flock of n sheep. Take a sheep, a, out. The remaining n− 1

are all the same color by induction. Now put sheep a back in and take out a
different sheep, b. By induction, the n− 1 sheep (now with a) are all the same

color. Therefore, all the sheep in the flock are the same color. What is wrong

with Al’s “justification”?

C-4.49 Consider the following “justification” that the Fibonacci function, F(n) is O(n):
Base case (n≤ 2): F(1) = 1 and F(2) = 2.

Induction step (n > 2): Assume claim true for n′ < n. Consider n. F(n) =
F(n−2)+F(n−1). By induction, F(n−2) is O(n−2) and F(n−1) is O(n−1).
Then, F(n) is O((n−2)+(n−1)), by the identity presented in Exercise R-4.16.

Therefore, F(n) is O(n).
What is wrong with this “justification”?

C-4.50 Consider the Fibonacci function, F(n) (see Proposition 4.20). Show by induction

that F(n) is Ω((3/2)n).

C-4.51 Let S be a set of n lines in the plane such that no two are parallel and no three

meet in the same point. Show, by induction, that the lines in S determine Θ(n2)
intersection points.

C-4.52 Show that the summation ∑
n
i=1 log i is O(n logn).

C-4.53 Show that the summation ∑
n
i=1 log i is Ω(n logn).

4.5. Exercises 187

C-4.54 Let p(x) be a polynomial of degree n, that is, p(x) = ∑
n
i=0 aix

i.

a. Describe a simple O(n2)-time algorithm for computing p(x).

b. Describe an O(n logn)-time algorithm for computing p(x), based upon a
more efficient calculation of xi.

c. Now consider a rewriting of p(x) as

p(x) = a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(an−1 + xan) · · ·))),

which is known as Horner’s method. Using the big-Oh notation, charac-
terize the number of arithmetic operations this method executes.

C-4.55 An evil king has n bottles of wine, and a spy has just poisoned one of them.

Unfortunately, they do not know which one it is. The poison is very deadly; just
one drop diluted even a billion to one will still kill. Even so, it takes a full month

for the poison to take effect. Design a scheme for determining exactly which

one of the wine bottles was poisoned in just one month’s time while expending
O(logn) taste testers.

C-4.56 An array A contains n integers taken from the interval [0,4n], with repetitions
allowed. Describe an efficient algorithm for determining an integer value k that

occurs the most often in A. What is the running time of your algorithm?

C-4.57 Given an array A of n positive integers, each represented with k = ⌈logn⌉+ 1

bits, describe an O(n)-time method for finding a k-bit integer not in A.

C-4.58 Argue why any solution to the previous problem must run in Ω(n) time.

C-4.59 Given an array A of n arbitrary integers, design an O(n)-time method for finding

an integer that cannot be formed as the sum of two integers in A.

Projects

P-4.60 Perform an experimental analysis of the two algorithms prefixAverage1 and pre-
fixAverage2, from Section 4.3.3. Visualize their running times as a function of
the input size with a log-log chart.

P-4.61 Perform an experimental analysis that compares the relative running times of the

methods shown in Code Fragment 4.12.

P-4.62 Perform an experimental analysis to test the hypothesis that Java’s Array.sort
method runs in O(n logn) time on average.

P-4.63 For each of the algorithms unique1 and unique2, which solve the element unique-

ness problem, perform an experimental analysis to determine the largest value of
n such that the given algorithm runs in one minute or less.

188 Chapter 4. Algorithm Analysis

Chapter Notes

The big-Oh notation has prompted several comments about its proper use [18, 43, 59].

Knuth [60, 59] defines it using the notation f (n) = O(g(n)), but says this “equality” is only
“one way.” We have chosen to take a more standard view of equality and view the big-Oh

notation as a set, following Brassard [18]. The reader interested in studying average-case
analysis is referred to the book chapter by Vitter and Flajolet [93].

Chapter

5 Recursion

Contents

5.1 Illustrative Examples . 191

5.1.1 The Factorial Function 191

5.1.2 Drawing an English Ruler 193

5.1.3 Binary Search . 196

5.1.4 File Systems . 198

5.2 Analyzing Recursive Algorithms 202

5.3 Further Examples of Recursion 206

5.3.1 Linear Recursion . 206

5.3.2 Binary Recursion . 211

5.3.3 Multiple Recursion . 212

5.4 Designing Recursive Algorithms 214

5.5 Recursion Run Amok . 215

5.5.1 Maximum Recursive Depth in Java 218

5.6 Eliminating Tail Recursion 219

5.7 Exercises . 221

190 Chapter 5. Recursion

One way to describe repetition within a computer program is the use of loops,

such as Java’s while-loop and for-loop constructs described in Section 1.5.2. An

entirely different way to achieve repetition is through a process known as recursion.

Recursion is a technique by which a method makes one or more calls to itself

during execution, or by which a data structure relies upon smaller instances of

the very same type of structure in its representation. There are many examples of

recursion in art and nature. For example, fractal patterns are naturally recursive. A

physical example of recursion used in art is in the Russian Matryoshka dolls. Each

doll is either made of solid wood, or is hollow and contains another Matryoshka

doll inside it.

In computing, recursion provides an elegant and powerful alternative for per-

forming repetitive tasks. In fact, a few programming languages (e.g., Scheme,

Smalltalk) do not explicitly support looping constructs and instead rely directly

on recursion to express repetition. Most modern programming languages support

functional recursion using the identical mechanism that is used to support tradi-

tional forms of method calls. When one invocation of the method makes a recursive

call, that invocation is suspended until the recursive call completes.

Recursion is an important technique in the study of data structures and algo-

rithms. We will use it prominently in several later chapters of this book (most

notably, Chapters 8 and 12). In this chapter, we begin with the following four illus-

trative examples of the use of recursion, providing a Java implementation for each.

• The factorial function (commonly denoted as n!) is a classic mathematical

function that has a natural recursive definition.

• An English ruler has a recursive pattern that is a simple example of a fractal

structure.

• Binary search is among the most important computer algorithms. It allows

us to efficiently locate a desired value in a data set with upwards of billions

of entries.

• The file system for a computer has a recursive structure in which directories

can be nested arbitrarily deeply within other directories. Recursive algo-

rithms are widely used to explore and manage these file systems.

We then describe how to perform a formal analysis of the running time of a

recursive algorithm, and we discuss some potential pitfalls when defining recur-

sions. In the balance of the chapter, we provide many more examples of recursive

algorithms, organized to highlight some common forms of design.

5.1. Illustrative Examples 191

5.1 Illustrative Examples

5.1.1 The Factorial Function

To demonstrate the mechanics of recursion, we begin with a simple mathematical

example of computing the value of the factorial function. The factorial of a posi-

tive integer n, denoted n!, is defined as the product of the integers from 1 to n. If

n = 0, then n! is defined as 1 by convention. More formally, for any integer n≥ 0,

n! =

{
1 if n = 0

n · (n−1) · (n−2) · · ·3 ·2 ·1 if n≥ 1.

For example, 5! = 5 ·4 ·3 ·2 ·1 = 120. The factorial function is important because

it is known to equal the number of ways in which n distinct items can be arranged

into a sequence, that is, the number of permutations of n items. For example, the

three characters a, b, and c can be arranged in 3! = 3 · 2 · 1 = 6 ways: abc, acb,

bac, bca, cab, and cba.

There is a natural recursive definition for the factorial function. To see this,

observe that 5! = 5 · (4 · 3 · 2 · 1) = 5 · 4!. More generally, for a positive integer n,

we can define n! to be n · (n−1)!. This recursive definition can be formalized as

n! =

{
1 if n = 0

n · (n−1)! if n≥ 1.

This definition is typical of many recursive definitions of functions. First, we

have one or more base cases, which refer to fixed values of the function. The above

definition has one base case stating that n! = 1 for n = 0. Second, we have one

or more recursive cases, which define the function in terms of itself. In the above

definition, there is one recursive case, which indicates that n!= n·(n−1)! for n≥ 1.

A Recursive Implementation of the Factorial Function

Recursion is not just a mathematical notation; we can use recursion to design a Java

implementation of the factorial function, as shown in Code Fragment 5.1.

1 public static int factorial(int n) throws IllegalArgumentException {
2 if (n < 0)
3 throw new IllegalArgumentException(); // argument must be nonnegative
4 else if (n == 0)
5 return 1; // base case
6 else
7 return n ∗ factorial(n−1); // recursive case
8 }

Code Fragment 5.1: A recursive implementation of the factorial function.

192 Chapter 5. Recursion

This method does not use any explicit loops. Repetition is achieved through

repeated recursive invocations of the method. The process is finite because each

time the method is invoked, its argument is smaller by one, and when a base case

is reached, no further recursive calls are made.

We illustrate the execution of a recursive method using a recursion trace. Each

entry of the trace corresponds to a recursive call. Each new recursive method call

is indicated by a downward arrow to a new invocation. When the method returns,

an arrow showing this return is drawn and the return value may be indicated along-

side this arrow. An example of such a trace for the factorial function is shown in

Figure 5.1.

return 4 ∗ 6 = 24

factorial(1)

factorial(0)

factorial(3)

factorial(2)

factorial(5)

factorial(4)

return 1

return 1 ∗ 1 = 1

return 2 ∗ 1 = 2

return 3 ∗ 2 = 6

return 5 ∗ 24 = 120

Figure 5.1: A recursion trace for the call factorial(5).

A recursion trace closely mirrors a programming language’s execution of the

recursion. In Java, each time a method (recursive or otherwise) is called, a structure

known as an activation record or activation frame is created to store information

about the progress of that invocation of the method. This frame stores the parame-

ters and local variables specific to a given call of the method, and information about

which command in the body of the method is currently executing.

When the execution of a method leads to a nested method call, the execution

of the former call is suspended and its frame stores the place in the source code at

which the flow of control should continue upon return of the nested call. A new

frame is then created for the nested method call. This process is used both in the

standard case of one method calling a different method, or in the recursive case

where a method invokes itself. The key point is to have a separate frame for each

active call.

5.1. Illustrative Examples 193

5.1.2 Drawing an English Ruler

In the case of computing the factorial function, there is no compelling reason for

preferring recursion over a direct iteration with a loop. As a more complex example

of the use of recursion, consider how to draw the markings of a typical English

ruler. For each inch, we place a tick with a numeric label. We denote the length

of the tick designating a whole inch as the major tick length. Between the marks

for whole inches, the ruler contains a series of minor ticks, placed at intervals of

1/2 inch, 1/4 inch, and so on. As the size of the interval decreases by half, the tick

length decreases by one. Figure 5.2 demonstrates several such rulers with varying

major tick lengths (although not drawn to scale).

---- 0 ----- 0 --- 0

- - -

-- -- --

- - -

--- --- --- 1

- - -

-- -- --

- - -

---- 1 ---- --- 2

- - -

-- -- --

- - -

--- --- --- 3

- -

-- --

- -

---- 2 ----- 1

(a) (b) (c)

Figure 5.2: Three sample outputs of an English ruler drawing: (a) a 2-inch ruler

with major tick length 4; (b) a 1-inch ruler with major tick length 5; (c) a 3-inch

ruler with major tick length 3.

A Recursive Approach to Ruler Drawing

The English ruler pattern is a simple example of a fractal, that is, a shape that has

a self-recursive structure at various levels of magnification. Consider the rule with

major tick length 5 shown in Figure 5.2(b). Ignoring the lines containing 0 and 1,

let us consider how to draw the sequence of ticks lying between these lines. The

central tick (at 1/2 inch) has length 4. Observe that the two patterns of ticks above

and below this central tick are identical, and each has a central tick of length 3.

194 Chapter 5. Recursion

In general, an interval with a central tick length L≥ 1 is composed of:

• An interval with a central tick length L−1

• A single tick of length L

• An interval with a central tick length L−1

Although it is possible to draw such a ruler using an iterative process (see Ex-

ercise P-5.29), the task is considerably easier to accomplish with recursion. Our

implementation consists of three methods, as shown in Code Fragment 5.2.

The main method, drawRuler, manages the construction of the entire ruler. Its

arguments specify the total number of inches in the ruler and the major tick length.

The utility method, drawLine, draws a single tick with a specified number of dashes

(and an optional integer label that is printed to the right of the tick).

The interesting work is done by the recursive drawInterval method. This method

draws the sequence of minor ticks within some interval, based upon the length of

the interval’s central tick. We rely on the intuition shown at the top of this page,

and with a base case when L = 0 that draws nothing. For L ≥ 1, the first and last

steps are performed by recursively calling drawInterval(L−1). The middle step is

performed by calling method drawLine(L).

1 /∗∗ Draws an English ruler for the given number of inches and major tick length. ∗/
2 public static void drawRuler(int nInches, int majorLength) {
3 drawLine(majorLength, 0); // draw inch 0 line and label
4 for (int j = 1; j <= nInches; j++) {
5 drawInterval(majorLength − 1); // draw interior ticks for inch
6 drawLine(majorLength, j); // draw inch j line and label
7 }
8 }
9 private static void drawInterval(int centralLength) {

10 if (centralLength >= 1) { // otherwise, do nothing
11 drawInterval(centralLength − 1); // recursively draw top interval
12 drawLine(centralLength); // draw center tick line (without label)
13 drawInterval(centralLength − 1); // recursively draw bottom interval
14 }
15 }
16 private static void drawLine(int tickLength, int tickLabel) {
17 for (int j = 0; j < tickLength; j++)
18 System.out.print("-");
19 if (tickLabel >= 0)
20 System.out.print(" " + tickLabel);
21 System.out.print("\n");
22 }
23 /∗∗ Draws a line with the given tick length (but no label). ∗/
24 private static void drawLine(int tickLength) {
25 drawLine(tickLength, −1);
26 }

Code Fragment 5.2: A recursive implementation of a method that draws a ruler.

5.1. Illustrative Examples 195

Illustrating Ruler Drawing Using a Recursion Trace

The execution of the recursive drawInterval method can be visualized using a re-

cursion trace. The trace for drawInterval is more complicated than in the factorial

example, however, because each instance makes two recursive calls. To illustrate

this, we will show the recursion trace in a form that is reminiscent of an outline for

a document. See Figure 5.3.

(previous pattern repeats)

drawInterval(3)

drawInterval(2)

drawInterval(1)

drawInterval(1)

drawInterval(0)

drawLine(1)

drawInterval(0)

drawInterval(0)

drawLine(1)

drawInterval(0)

drawLine(3)

drawInterval(2)

drawLine(2)

Output

Figure 5.3: A partial recursion trace for the call drawInterval(3). The second pattern

of calls for drawInterval(2) is not shown, but it is identical to the first.

196 Chapter 5. Recursion

5.1.3 Binary Search

In this section, we describe a classic recursive algorithm, binary search, used to

efficiently locate a target value within a sorted sequence of n elements stored in

an array. This is among the most important of computer algorithms, and it is the

reason that we so often store data in sorted order (as in Figure 5.4).

37

50 1 2 3 4 6 7 8 9 10 11 12 13 14 15

92 4 5 7 8 12 14 17 19 22 25 27 28 33

Figure 5.4: Values stored in sorted order within an array. The numbers at top are

the indices.

When the sequence is unsorted, the standard approach to search for a target

value is to use a loop to examine every element, until either finding the target or

exhausting the data set. This algorithm is known as linear search, or sequential

search, and it runs in O(n) time (i.e., linear time) since every element is inspected

in the worst case.

When the sequence is sorted and indexable, there is a more efficient algorithm.

(For intuition, think about how you would accomplish this task by hand!) If we

consider an arbitrary element of the sequence with value v, we can be sure that all

elements prior to that in the sequence have values less than or equal to v, and that all

elements after that element in the sequence have values greater than or equal to v.

This observation allows us to quickly “home in” on a search target using a variant

of the children’s game “high-low.” We call an element of the sequence a candidate

if, at the current stage of the search, we cannot rule out that this item matches the

target. The algorithm maintains two parameters, low and high, such that all the

candidate elements have index at least low and at most high. Initially, low = 0 and

high = n− 1. We then compare the target value to the median candidate, that is,

the element with index

mid= ⌊(low+high)/2⌋ .

We consider three cases:

• If the target equals the median candidate, then we have found the item we are

looking for, and the search terminates successfully.

• If the target is less than the median candidate, then we recur on the first half

of the sequence, that is, on the interval of indices from low to mid−1.

• If the target is greater than the median candidate, then we recur on the second

half of the sequence, that is, on the interval of indices from mid+1 to high.

An unsuccessful search occurs if low > high, as the interval [low,high] is empty.

5.1. Illustrative Examples 197

This algorithm is known as binary search. We give a Java implementation in

Code Fragment 5.3, and an illustration of the execution of the algorithm in Fig-

ure 5.5. Whereas sequential search runs in O(n) time, the more efficient binary

search runs in O(logn) time. This is a significant improvement, given that if n is

1 billion, log n is only 30. (We defer our formal analysis of binary search’s running

time to Proposition 5.2 in Section 5.2.)

1 /∗∗
2 ∗ Returns true if the target value is found in the indicated portion of the data array.
3 ∗ This search only considers the array portion from data[low] to data[high] inclusive.
4 ∗/
5 public static boolean binarySearch(int[] data, int target, int low, int high) {
6 if (low > high)
7 return false; // interval empty; no match
8 else {
9 int mid = (low + high) / 2;

10 if (target == data[mid])
11 return true; // found a match
12 else if (target < data[mid])
13 return binarySearch(data, target, low, mid − 1); // recur left of the middle
14 else
15 return binarySearch(data, target, mid + 1, high); // recur right of the middle
16 }
17 }

Code Fragment 5.3: An implementation of the binary search algorithm on a sorted

array.

mid

high

highlow

low mid

low mid

low=mid=high

high

14 19 22 25 27 28 33 37

6 7 8 9 10 11 12 13 14 15

7542 98

92 4 5 7 8 12 14 17

37332827252219

92 4 5 7 8 12 14 17 19 22 25 27 28 33 37

19 22 25 27 28 33 37

50 1 2 3 4

171412

92 4 5 7 8 12 17

Figure 5.5: Example of a binary search for target value 22 on a sorted array with 16

elements.

198 Chapter 5. Recursion

5.1.4 File Systems

Modern operating systems define file-system directories (also called “folders”) in

a recursive way. Namely, a file system consists of a top-level directory, and the

contents of this directory consists of files and other directories, which in turn can

contain files and other directories, and so on. The operating system allows directo-

ries to be nested arbitrarily deeply (as long as there is enough memory), although

by necessity there must be some base directories that contain only files, not fur-

ther subdirectories. A representation of a portion of such a file system is given in

Figure 5.6.

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

Figure 5.6: A portion of a file system demonstrating a nested organization.

Given the recursive nature of the file-system representation, it should not come

as a surprise that many common behaviors of an operating system, such as copying

a directory or deleting a directory, are implemented with recursive algorithms. In

this section, we consider one such algorithm: computing the total disk usage for all

files and directories nested within a particular directory.

For illustration, Figure 5.7 portrays the disk space being used by all entries in

our sample file system. We differentiate between the immediate disk space used by

each entry and the cumulative disk space used by that entry and all nested features.

For example, the cs016 directory uses only 2K of immediate space, but a total of

249K of cumulative space.

5.1. Illustrative Examples 199

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/hw1

3K

hw2

2K

hw3

4K

pr1

57K

pr2

97K

pr3

74K

grades

8K

market

4786K

buylow

26K

sellhigh

55K

grades

3K

2K 1K

1K

1K1K1K

1K 1K

10K 229K 4870K

82K 4787K

5124K

249K 4874K

Figure 5.7: The same portion of a file system given in Figure 5.6, but with additional

annotations to describe the amount of disk space that is used. Within the icon for

each file or directory is the amount of space directly used by that artifact. Above

the icon for each directory is an indication of the cumulative disk space used by

that directory and all its (recursive) contents.

The cumulative disk space for an entry can be computed with a simple recursive

algorithm. It is equal to the immediate disk space used by the entry plus the sum

of the cumulative disk space usage of any entries that are stored directly within

the entry. For example, the cumulative disk space for cs016 is 249K because it

uses 2K itself, 8K cumulatively in grades, 10K cumulatively in homeworks, and

229K cumulatively in programs. Pseudocode for this algorithm is given in Code

Fragment 5.4.

Algorithm DiskUsage(path):

Input: A string designating a path to a file-system entry

Output: The cumulative disk space used by that entry and any nested entries

total = size(path) {immediate disk space used by the entry}
if path represents a directory then

for each child entry stored within directory path do

total = total + DiskUsage(child) {recursive call}
return total

Code Fragment 5.4: An algorithm for computing the cumulative disk space usage

nested at a file-system entry. We presume that method size returns the immediate

disk space of an entry.

200 Chapter 5. Recursion

The java.io.File Class

To implement a recursive algorithm for computing disk usage in Java, we rely on

the java.io.File class. An instance of this class represents an abstract pathname in

the operating system and allows for properties of that operating system entry to be

queried. We will rely on the following methods of the class:

• new File(pathString) or new File(parentFile, childString)
A new File instance can be constructed either by providing the full path as

a string, or by providing an existing File instance that represents a directory

and a string that designates the name of a child entry within that directory.

• file.length()
Returns the immediate disk usage (measured in bytes) for the operating sys-

tem entry represented by the File instance (e.g., /user/rt/courses).

• file.isDirectory()
Returns true if the File instance represents a directory; false otherwise.

• file.list()
Returns an array of strings designating the names of all entries within the

given directory. In our sample file system, if we call this method on the

File associated with path /user/rt/courses/cs016, it returns an array with

contents: {"grades", "homeworks", "programs"}.

Java Implementation

With use of the File class, we now convert the algorithm from Code Fragment 5.4

into the Java implementation of Code Fragment 5.5.

1 /∗∗
2 ∗ Calculates the total disk usage (in bytes) of the portion of the file system rooted
3 ∗ at the given path, while printing a summary akin to the standard 'du' Unix tool.
4 ∗/
5 public static long diskUsage(File root) {
6 long total = root.length(); // start with direct disk usage
7 if (root.isDirectory()) { // and if this is a directory,
8 for (String childname : root.list()) { // then for each child
9 File child = new File(root, childname); // compose full path to child

10 total += diskUsage(child); // add child’s usage to total
11 }
12 }
13 System.out.println(total + "\t" + root); // descriptive output
14 return total; // return the grand total
15 }

Code Fragment 5.5: A recursive method for reporting disk usage of a file system.

5.1. Illustrative Examples 201

Recursion Trace

To produce a different form of a recursion trace, we have included an extraneous

print statement within our Java implementation (line 13 of Code Fragment 5.5).

The precise format of that output intentionally mirrors the output that is produced

by a classic Unix/Linux utility named du (for “disk usage”). It reports the amount

of disk space used by a directory and all contents nested within, and can produce a

verbose report, as given in Figure 5.8.

When executed on the sample file system portrayed in Figure 5.7, our imple-

mentation of the diskUsage method produces the result given in Figure 5.8. During

the execution of the algorithm, exactly one recursive call is made for each entry in

the portion of the file system that is considered. Because each line is printed just

before returning from a recursive call, the lines of output reflect the order in which

the recursive calls are completed. Notice that it computes and reports the cumula-

tive disk space for a nested entry before computing and reporting the cumulative

disk space for the directory that contains it. For example, the recursive calls regard-

ing entries grades, homeworks, and programs are computed before the cumulative

total for the directory /user/rt/courses/cs016 that contains them.

8 /user/rt/courses/cs016/grades
3 /user/rt/courses/cs016/homeworks/hw1
2 /user/rt/courses/cs016/homeworks/hw2
4 /user/rt/courses/cs016/homeworks/hw3
10 /user/rt/courses/cs016/homeworks
57 /user/rt/courses/cs016/programs/pr1
97 /user/rt/courses/cs016/programs/pr2
74 /user/rt/courses/cs016/programs/pr3
229 /user/rt/courses/cs016/programs
249 /user/rt/courses/cs016
26 /user/rt/courses/cs252/projects/papers/buylow
55 /user/rt/courses/cs252/projects/papers/sellhigh
82 /user/rt/courses/cs252/projects/papers
4786 /user/rt/courses/cs252/projects/demos/market
4787 /user/rt/courses/cs252/projects/demos
4870 /user/rt/courses/cs252/projects
3 /user/rt/courses/cs252/grades
4874 /user/rt/courses/cs252
5124 /user/rt/courses/

Figure 5.8: A report of the disk usage for the file system shown in Figure 5.7, as

generated by our diskUsage method from Code Fragment 5.5, or equivalently by

the Unix/Linux command du with option -a (which lists both directories and files).

202 Chapter 5. Recursion

5.2 Analyzing Recursive Algorithms

In Chapter 4, we introduced mathematical techniques for analyzing the efficiency

of an algorithm, based upon an estimate of the number of primitive operations that

are executed by the algorithm. We use notations such as big-Oh to summarize the

relationship between the number of operations and the input size for a problem. In

this section, we demonstrate how to perform this type of running-time analysis to

recursive algorithms.

With a recursive algorithm, we will account for each operation that is performed

based upon the particular activation of the method that manages the flow of control

at the time it is executed. Stated another way, for each invocation of the method,

we only account for the number of operations that are performed within the body of

that activation. We can then account for the overall number of operations that are

executed as part of the recursive algorithm by taking the sum, over all activations,

of the number of operations that take place during each individual activation. (As

an aside, this is also the way we analyze a nonrecursive method that calls other

methods from within its body.)

To demonstrate this style of analysis, we revisit the four recursive algorithms

presented in Sections 5.1.1 through 5.1.4: factorial computation, drawing an En-

glish ruler, binary search, and computation of the cumulative size of a file system.

In general, we may rely on the intuition afforded by a recursion trace in recogniz-

ing how many recursive activations occur, and how the parameterization of each

activation can be used to estimate the number of primitive operations that occur

within the body of that activation. However, each of these recursive algorithms has

a unique structure and form.

Computing Factorials

It is relatively easy to analyze the efficiency of our method for computing factorials,

as described in Section 5.1.1. A sample recursion trace for our factorial method was

given in Figure 5.1. To compute factorial(n), we see that there are a total of n+1

activations, as the parameter decreases from n in the first call, to n−1 in the second

call, and so on, until reaching the base case with parameter 0.

It is also clear, given an examination of the method body in Code Fragment 5.1,

that each individual activation of factorial executes a constant number of opera-

tions. Therefore, we conclude that the overall number of operations for computing

factorial(n) is O(n), as there are n+1 activations, each of which accounts for O(1)
operations.

5.2. Analyzing Recursive Algorithms 203

Drawing an English Ruler

In analyzing the English ruler application from Section 5.1.2, we consider the fun-

damental question of how many total lines of output are generated by an initial call

to drawInterval(c), where c denotes the center length. This is a reasonable bench-

mark for the overall efficiency of the algorithm as each line of output is based upon

a call to the drawLine utility, and each recursive call to drawInterval with nonzero

parameter makes exactly one direct call to drawLine.

Some intuition may be gained by examining the source code and the recur-

sion trace. We know that a call to drawInterval(c) for c > 0 spawns two calls to

drawInterval(c−1) and a single call to drawLine. We will rely on this intuition to

prove the following claim.

Proposition 5.1: For c ≥ 0, a call to drawInterval(c) results in precisely 2c− 1

lines of output.

Justification: We provide a formal proof of this claim by induction (see Sec-

tion 4.4.3). In fact, induction is a natural mathematical technique for proving the

correctness and efficiency of a recursive process. In the case of the ruler, we note

that an application of drawInterval(0) generates no output, and that 20−1= 1−1=
0. This serves as a base case for our claim.

More generally, the number of lines printed by drawInterval(c) is one more

than twice the number generated by a call to drawInterval(c−1), as one center line

is printed between two such recursive calls. By induction, we have that the number

of lines is thus 1+2 · (2c−1−1) = 1+2c−2 = 2c−1.

This proof is indicative of a more mathematically rigorous tool, known as a

recurrence equation, that can be used to analyze the running time of a recursive

algorithm. That technique is discussed in Section 12.1.4, in the context of recursive

sorting algorithms.

Performing a Binary Search

When considering the running time of the binary search algorithm, as presented

in Section 5.1.3, we observe that a constant number of primitive operations are

executed during each recursive call of the binary search method. Hence, the running

time is proportional to the number of recursive calls performed. We will show that

at most ⌊logn⌋+ 1 recursive calls are made during a binary search of a sequence

having n elements, leading to the following claim.

Proposition 5.2: The binary search algorithm runs in O(logn) time for a sorted

array with n elements.

204 Chapter 5. Recursion

Justification: To prove this claim, a crucial fact is that with each recursive call

the number of candidate elements still to be searched is given by the value

high− low+1.

Moreover, the number of remaining candidates is reduced by at least one-half with

each recursive call. Specifically, from the definition of mid, the number of remain-

ing candidates is either

(mid−1)− low+1 =

⌊
low+high

2

⌋
− low ≤ high− low+1

2

or
high− (mid+1)+1 = high−

⌊
low+high

2

⌋
≤ high− low+1

2
.

Initially, the number of candidates is n; after the first call in a binary search, it is

at most n/2; after the second call, it is at most n/4; and so on. In general, after

the j th call in a binary search, the number of candidate elements remaining is at

most n/2 j . In the worst case (an unsuccessful search), the recursive calls stop when

there are no more candidate elements. Hence, the maximum number of recursive

calls performed, is the smallest integer r such that
n

2r
< 1.

In other words (recalling that we omit a logarithm’s base when it is 2), r is the

smallest integer such that r > log n. Thus, we have

r = ⌊logn⌋+1,

which implies that binary search runs in O(logn) time.

Computing Disk Space Usage

Our final recursive algorithm from Section 5.1 was that for computing the overall

disk space usage in a specified portion of a file system. To characterize the “prob-

lem size” for our analysis, we let n denote the number of file-system entries in the

portion of the file system that is considered. (For example, the file system portrayed

in Figure 5.6 has n = 19 entries.)

To characterize the cumulative time spent for an initial call to diskUsage, we

must analyze the total number of recursive invocations that are made, as well as the

number of operations that are executed within those invocations.

We begin by showing that there are precisely n recursive invocations of the

method, in particular, one for each entry in the relevant portion of the file system.

Intuitively, this is because a call to diskUsage for a particular entry e of the file

system is only made from within the for loop of Code Fragment 5.5 when process-

ing the entry for the unique directory that contains e, and that entry will only be

explored once.

5.2. Analyzing Recursive Algorithms 205

To formalize this argument, we can define the nesting level of each entry such

that the entry on which we begin has nesting level 0, entries stored directly within

it have nesting level 1, entries stored within those entries have nesting level 2, and

so on. We can prove by induction that there is exactly one recursive invocation of

diskUsage upon each entry at nesting level k. As a base case, when k = 0, the only

recursive invocation made is the initial one. As the inductive step, once we know

there is exactly one recursive invocation for each entry at nesting level k, we can

claim that there is exactly one invocation for each entry e at nesting level k+ 1,

made within the for loop for the entry at level k that contains e.

Having established that there is one recursive call for each entry of the file

system, we return to the question of the overall computation time for the algorithm.

It would be great if we could argue that we spend O(1) time in any single invocation

of the method, but that is not the case. While there is a constant number of steps

reflected in the call to root.length() to compute the disk usage directly at that entry,

when the entry is a directory, the body of the diskUsage method includes a for loop

that iterates over all entries that are contained within that directory. In the worst

case, it is possible that one entry includes n−1 others.

Based on this reasoning, we could conclude that there are O(n) recursive calls,

each of which runs in O(n) time, leading to an overall running time that is O(n2).
While this upper bound is technically true, it is not a tight upper bound. Remark-

ably, we can prove the stronger bound that the recursive algorithm for diskUsage
completes in O(n) time! The weaker bound was pessimistic because it assumed

a worst-case number of entries for each directory. While it is possible that some

directories contain a number of entries proportional to n, they cannot all contain

that many. To prove the stronger claim, we choose to consider the overall number

of iterations of the for loop across all recursive calls. We claim there are precisely

n− 1 such iterations of that loop overall. We base this claim on the fact that each

iteration of that loop makes a recursive call to diskUsage, and yet we have already

concluded that there are a total of n calls to diskUsage (including the original call).

We therefore conclude that there are O(n) recursive calls, each of which uses O(1)
time outside the loop, and that the overall number of operations due to the loop

is O(n). Summing all of these bounds, the overall number of operations is O(n).

The argument we have made is more advanced than with the earlier examples

of recursion. The idea that we can sometimes get a tighter bound on a series of

operations by considering the cumulative effect, rather than assuming that each

achieves a worst case is a technique called amortization; we will see another ex-

ample of such analysis in Section 7.2.3. Furthermore, a file system is an implicit

example of a data structure known as a tree, and our disk usage algorithm is really

a manifestation of a more general algorithm known as a tree traversal. Trees will

be the focus of Chapter 8, and our argument about the O(n) running time of the

disk usage algorithm will be generalized for tree traversals in Section 8.4.

206 Chapter 5. Recursion

5.3 Further Examples of Recursion

In this section, we provide additional examples of the use of recursion. We organize

our presentation by considering the maximum number of recursive calls that may

be started from within the body of a single activation.

• If a recursive call starts at most one other, we call this a linear recursion.

• If a recursive call may start two others, we call this a binary recursion.

• If a recursive call may start three or more others, this is multiple recursion.

5.3.1 Linear Recursion

If a recursive method is designed so that each invocation of the body makes at

most one new recursive call, this is know as linear recursion. Of the recursions

we have seen so far, the implementation of the factorial method (Section 5.1.1) is a

clear example of linear recursion. More interestingly, the binary search algorithm

(Section 5.1.3) is also an example of linear recursion, despite the term “binary”

in the name. The code for binary search (Code Fragment 5.3) includes a case

analysis, with two branches that lead to a further recursive call, but only one branch

is followed during a particular execution of the body.

A consequence of the definition of linear recursion is that any recursion trace

will appear as a single sequence of calls, as we originally portrayed for the factorial

method in Figure 5.1 of Section 5.1.1. Note that the linear recursion terminol-

ogy reflects the structure of the recursion trace, not the asymptotic analysis of the

running time; for example, we have seen that binary search runs in O(logn) time.

Summing the Elements of an Array Recursively

Linear recursion can be a useful tool for processing a sequence, such as a Java array.

Suppose, for example, that we want to compute the sum of an array of n integers.

We can solve this summation problem using linear recursion by observing that if

n = 0 the sum is trivially 0, and otherwise it is the sum of the first n−1 integers in

the array plus the last value in the array. (See Figure 5.9.)

4 3 6 2 8 9 3 2 8 5 1 7 2 8 3

5

7

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

Figure 5.9: Computing the sum of a sequence recursively, by adding the last number

to the sum of the first n−1.

5.3. Further Examples of Recursion 207

A recursive algorithm for computing the sum of an array of integers based on

this intuition is implemented in Code Fragment 5.6.

1 /∗∗ Returns the sum of the first n integers of the given array. ∗/
2 public static int linearSum(int[] data, int n) {
3 if (n == 0)
4 return 0;
5 else
6 return linearSum(data, n−1) + data[n−1];
7 }

Code Fragment 5.6: Summing an array of integers using linear recursion.

A recursion trace of the linearSum method for a small example is given in

Figure 5.10. For an input of size n, the linearSum algorithm makes n+ 1 method

calls. Hence, it will take O(n) time, because it spends a constant amount of time

performing the nonrecursive part of each call. Moreover, we can also see that the

memory space used by the algorithm (in addition to the array) is also O(n), as we

use a constant amount of memory space for each of the n+1 frames in the trace at

the time we make the final recursive call (with n = 0).

return 15 + data[4] = 15 + 8 = 23

linearSum(data, 4)

linearSum(data, 3)

linearSum(data, 2)

linearSum(data, 1)

linearSum(data, 0)

linearSum(data, 5)

return 0

return 0 + data[0] = 0 + 4 = 4

return 4 + data[1] = 4 + 3 = 7

return 7 + data[2] = 7 + 6 = 13

return 13 + data[3] = 13 + 2 = 15

Figure 5.10: Recursion trace for an execution of linearSum(data, 5) with input

parameter data = 4, 3, 6, 2, 8.

208 Chapter 5. Recursion

Reversing a Sequence with Recursion

Next, let us consider the problem of reversing the n elements of an array, so that

the first element becomes the last, the second element becomes second to the last,

and so on. We can solve this problem using linear recursion, by observing that the

reversal of a sequence can be achieved by swapping the first and last elements and

then recursively reversing the remaining elements. We present an implementation

of this algorithm in Code Fragment 5.7, using the convention that the first time we

call this algorithm we do so as reverseArray(data, 0, n−1).

1 /∗∗ Reverses the contents of subarray data[low] through data[high] inclusive. ∗/
2 public static void reverseArray(int[] data, int low, int high) {
3 if (low < high) { // if at least two elements in subarray
4 int temp = data[low]; // swap data[low] and data[high]
5 data[low] = data[high];
6 data[high] = temp;
7 reverseArray(data, low + 1, high − 1); // recur on the rest
8 }
9 }

Code Fragment 5.7: Reversing the elements of an array using linear recursion.

We note that whenever a recursive call is made, there will be two fewer elements

in the relevant portion of the array. (See Figure 5.11.) Eventually a base case is

reached when the condition low < high fails, either because low == high in the

case that n is odd, or because low == high + 1 in the case that n is even.

The above argument implies that the recursive algorithm of Code Fragment 5.7

is guaranteed to terminate after a total of 1+
⌊

n
2

⌋
recursive calls. Because each call

involves a constant amount of work, the entire process runs in O(n) time.

9 4

8 9 5

7

7

7

7

50 1 2 3 4 6

5 9 8

5 9 8

5 9 6

5 3 6

7

4 3 6

7

2

2

2

2

2 6 3 4

6 3 4

8 3 4

8

Figure 5.11: A trace of the recursion for reversing a sequence. The highlighted

portion has yet to be reversed.

5.3. Further Examples of Recursion 209

Recursive Algorithms for Computing Powers

As another interesting example of the use of linear recursion, we consider the prob-

lem of raising a number x to an arbitrary nonnegative integer n. That is, we wish

to compute the power function, defined as power(x,n) = xn. (We use the name

“power” for this discussion, to differentiate from the pow method of the Math class,

which provides such functionality.) We will consider two different recursive for-

mulations for the problem that lead to algorithms with very different performance.

A trivial recursive definition follows from the fact that xn = x · xn−1 for n > 0.

power(x,n) =

{
1 if n = 0

x · power(x,n−1) otherwise.

This definition leads to a recursive algorithm shown in Code Fragment 5.8.

1 /∗∗ Computes the value of x raised to the nth power, for nonnegative integer n. ∗/
2 public static double power(double x, int n) {
3 if (n == 0)
4 return 1;
5 else
6 return x ∗ power(x, n−1);
7 }

Code Fragment 5.8: Computing the power function using trivial recursion.

A recursive call to this version of power(x,n) runs in O(n) time. Its recursion

trace has structure very similar to that of the factorial function from Figure 5.1,

with the parameter decreasing by one with each call, and constant work performed

at each of n+1 levels.

However, there is a much faster way to compute the power function using an

alternative definition that employs a squaring technique. Let k =
⌊

n
2

⌋
denote the

floor of the integer division (equivalent to n/2 in Java when n is an int). We consider

the expression
(
xk
)2

. When n is even,
⌊

n
2

⌋
= n

2
and therefore

(
xk
)2

=
(

x
n
2

)2
= xn.

When n is odd,
⌊

n
2

⌋
= n−1

2
and

(
xk
)2

= xn−1, and therefore xn =
(
xk
)2 · x, just as

213 =
(
26 ·26

)
·2. This analysis leads to the following recursive definition:

power(x,n) =

1 if n = 0(
power

(
x,
⌊

n
2

⌋))2 · x if n > 0 is odd(
power

(
x,
⌊

n
2

⌋))2
if n > 0 is even

If we were to implement this recursion making two recursive calls to compute

power(x,
⌊

n
2

⌋
) · power(x,

⌊
n
2

⌋
), a trace of the recursion would demonstrate O(n)

calls. We can perform significantly fewer operations by computing power(x,
⌊

n
2

⌋
)

and storing it in a variable as a partial result, and then multiplying it by itself. An

implementation based on this recursive definition is given in Code Fragment 5.9.

210 Chapter 5. Recursion

1 /∗∗ Computes the value of x raised to the nth power, for nonnegative integer n. ∗/
2 public static double power(double x, int n) {
3 if (n == 0)
4 return 1;
5 else {
6 double partial = power(x, n/2); // rely on truncated division of n
7 double result = partial ∗ partial;
8 if (n % 2 == 1) // if n odd, include extra factor of x
9 result ∗= x;

10 return result;
11 }
12 }

Code Fragment 5.9: Computing the power function using repeated squaring.

To illustrate the execution of our improved algorithm, Figure 5.12 provides a

recursion trace of the computation power(2, 13).

return 64 ∗ 64 ∗ 2 = 8192

power(2, 13)

power(2, 6)

power(2, 3)

power(2, 1)

power(2, 0)

return 1

return 1 ∗ 1 ∗ 2 = 2

return 2 ∗ 2 ∗ 2 = 8

return 8 ∗ 8 = 64

Figure 5.12: Recursion trace for an execution of power(2, 13).

To analyze the running time of the revised algorithm, we observe that the ex-

ponent in each recursive call of method power(x,n) is at most half of the preceding

exponent. As we saw with the analysis of binary search, the number of times that

we can divide n by two before getting to one or less is O(logn). Therefore, our new

formulation of power results in O(logn) recursive calls. Each individual activation

of the method uses O(1) operations (excluding the recursive call), and so the total

number of operations for computing power(x,n) is O(logn). This is a significant

improvement over the original O(n)-time algorithm.

The improved version also provides significant saving in reducing the memory

usage. The first version has a recursive depth of O(n), and therefore, O(n) frames

are simultaneously stored in memory. Because the recursive depth of the improved

version is O(log n), its memory usage is O(logn) as well.

5.3. Further Examples of Recursion 211

5.3.2 Binary Recursion

When a method makes two recursive calls, we say that it uses binary recursion.

We have already seen an example of binary recursion when drawing the English

ruler (Section 5.1.2). As another application of binary recursion, let us revisit the

problem of summing the n integers of an array. Computing the sum of one or zero

values is trivial. With two or more values, we can recursively compute the sum of

the first half, and the sum of the second half, and add those sums together. Our

implementation of such an algorithm, in Code Fragment 5.10, is initially invoked

as binarySum(data, 0, n−1).

1 /∗∗ Returns the sum of subarray data[low] through data[high] inclusive. ∗/
2 public static int binarySum(int[] data, int low, int high) {
3 if (low > high) // zero elements in subarray
4 return 0;
5 else if (low == high) // one element in subarray
6 return data[low];
7 else {
8 int mid = (low + high) / 2;
9 return binarySum(data, low, mid) + binarySum(data, mid+1, high);

10 }
11 }

Code Fragment 5.10: Summing the elements of a sequence using binary recursion.

To analyze algorithm binarySum, we consider, for simplicity, the case where

n is a power of two. Figure 5.13 shows the recursion trace of an execution of

binarySum(data, 0, 7). We label each box with the values of parameters low and

high for that call. The size of the range is divided in half at each recursive call,

and so the depth of the recursion is 1+ log2 n. Therefore, binarySum uses O(logn)
amount of additional space, which is a big improvement over the O(n) space used

by the linearSum method of Code Fragment 5.6. However, the running time of

binarySum is O(n), as there are 2n−1 method calls, each requiring constant time.

0,0 1,1 2,2 4,4 6,6 7,73,3 5,5

0,1 4,5 6,72,3

0,3 4,7

0,7

Figure 5.13: Recursion trace for the execution of binarySum(data, 0, 7).

212 Chapter 5. Recursion

5.3.3 Multiple Recursion

Generalizing from binary recursion, we define multiple recursion as a process in

which a method may make more than two recursive calls. Our recursion for an-

alyzing the disk space usage of a file system (see Section 5.1.4) is an example of

multiple recursion, because the number of recursive calls made during one invoca-

tion was equal to the number of entries within a given directory of the file system.

Another common application of multiple recursion is when we want to enumer-

ate various configurations in order to solve a combinatorial puzzle. For example,

the following are all instances of what are known as summation puzzles:

pot + pan = bib

dog + cat = pig

boy+ girl = baby

To solve such a puzzle, we need to assign a unique digit (that is, 0,1, . . . ,9) to each

letter in the equation, in order to make the equation true. Typically, we solve such

a puzzle by using our human observations of the particular puzzle we are trying to

solve to eliminate configurations (that is, possible partial assignments of digits to

letters) until we can work through the feasible configurations that remain, testing

for the correctness of each one.

If the number of possible configurations is not too large, however, we can use

a computer to simply enumerate all the possibilities and test each one, without em-

ploying any human observations. Such an algorithm can use multiple recursion

to work through the configurations in a systematic way. To keep the description

general enough to be used with other puzzles, we consider an algorithm that enu-

merates and tests all k-length sequences, without repetitions, chosen from a given

universe U . We show pseudocode for such an algorithm in Code Fragment 5.11,

building the sequence of k elements with the following steps:

1. Recursively generating the sequences of k−1 elements

2. Appending to each such sequence an element not already contained in it.

Throughout the execution of the algorithm, we use a set U to keep track of the

elements not contained in the current sequence, so that an element e has not been

used yet if and only if e is in U .

Another way to look at the algorithm of Code Fragment 5.11 is that it enumer-

ates every possible size-k ordered subset of U , and tests each subset for being a

possible solution to our puzzle.

For summation puzzles, U = {0,1,2,3,4,5,6,7,8,9} and each position in the

sequence corresponds to a given letter. For example, the first position could stand

for b, the second for o, the third for y, and so on.

5.3. Further Examples of Recursion 213

Algorithm PuzzleSolve(k, S, U):

Input: An integer k, sequence S, and set U

Output: An enumeration of all k-length extensions to S using elements in U

without repetitions

for each e in U do

Add e to the end of S

Remove e from U {e is now being used}
if k == 1 then

Test whether S is a configuration that solves the puzzle

if S solves the puzzle then

add S to output {a solution}
else

PuzzleSolve(k−1, S, U) {a recursive call}
Remove e from the end of S

Add e back to U {e is now considered as unused}

Code Fragment 5.11: Solving a combinatorial puzzle by enumerating and testing

all possible configurations.

In Figure 5.14, we show a recursion trace of a call to PuzzleSolve(3, S, U),
where S is empty and U = {a,b,c}. During the execution, all the permutations

of the three characters are generated and tested. Note that the initial call makes

three recursive calls, each of which in turn makes two more. If we had executed

PuzzleSolve(3, S, U) on a set U consisting of four elements, the initial call would

have made four recursive calls, each of which would have a trace looking like the

one in Figure 5.14.

initial call

PuzzleSolve(3, (), {a,b,c})

PuzzleSolve(2, b, {a,c}) PuzzleSolve(2, c, {a,b})

PuzzleSolve(1, ca, {b})

PuzzleSolve(2, a, {b,c})

PuzzleSolve(1, ab, {c}) PuzzleSolve(1, ba, {c})

PuzzleSolve(1, bc, {a})PuzzleSolve(1, ac, {b}) PuzzleSolve(1, cb, {a})

acb

abc bac cab

bca cba

Figure 5.14: Recursion trace for an execution of PuzzleSolve(3, S, U), where S is

empty and U = {a,b,c}. This execution generates and tests all permutations of a, b,

and c. We show the permutations generated directly below their respective boxes.

214 Chapter 5. Recursion

5.4 Designing Recursive Algorithms

An algorithm that uses recursion typically has the following form:

• Test for base cases. We begin by testing for a set of base cases (there should

be at least one). These base cases should be defined so that every possible

chain of recursive calls will eventually reach a base case, and the handling of

each base case should not use recursion.

• Recur. If not a base case, we perform one or more recursive calls. This recur-

sive step may involve a test that decides which of several possible recursive

calls to make. We should define each possible recursive call so that it makes

progress towards a base case.

Parameterizing a Recursion

To design a recursive algorithm for a given problem, it is useful to think of the

different ways we might define subproblems that have the same general structure

as the original problem. If one has difficulty finding the repetitive structure needed

to design a recursive algorithm, it is sometimes useful to work out the problem on

a few concrete examples to see how the subproblems should be defined.

A successful recursive design sometimes requires that we redefine the origi-

nal problem to facilitate similar-looking subproblems. Often, this involved repa-

rameterizing the signature of the method. For example, when performing a bi-

nary search in an array, a natural method signature for a caller would appear as

binarySearch(data, target). However, in Section 5.1.3, we defined our method

with calling signature binarySearch(data, target, low, high), using the additional

parameters to demarcate subarrays as the recursion proceeds. This change in pa-

rameterization is critical for binary search. Several other examples in this chapter

(e.g., reverseArray, linearSum, binarySum) also demonstrated the use of additional

parameters in defining recursive subproblems.

If we wish to provide a cleaner public interface to an algorithm without expos-

ing the user to the recursive parameterization, a standard technique is to make the

recursive version private, and to introduce a cleaner public method (that calls the

private one with appropriate parameters). For example, we might offer the follow-

ing simpler version of binarySearch for public use:

/∗∗ Returns true if the target value is found in the data array. ∗/
public static boolean binarySearch(int[] data, int target) {
return binarySearch(data, target, 0, data.length − 1); // use parameterized version
}

5.5. Recursion Run Amok 215

5.5 Recursion Run Amok

Although recursion is a very powerful tool, it can easily be misused in various

ways. In this section, we examine several cases in which a poorly implemented re-

cursion causes drastic inefficiency, and we discuss some strategies for recognizing

and avoid such pitfalls.

We begin by revisiting the element uniqueness problem, defined on page 174

of Section 4.3.3. We can use the following recursive formulation to determine if

all n elements of a sequence are unique. As a base case, when n = 1, the elements

are trivially unique. For n≥ 2, the elements are unique if and only if the first n−1

elements are unique, the last n−1 items are unique, and the first and last elements

are different (as that is the only pair that was not already checked as a subcase). A

recursive implementation based on this idea is given in Code Fragment 5.12, named

unique3 (to differentiate it from unique1 and unique2 from Chapter 4).

1 /∗∗ Returns true if there are no duplicate values from data[low] through data[high].∗/
2 public static boolean unique3(int[] data, int low, int high) {
3 if (low >= high) return true; // at most one item
4 else if (!unique3(data, low, high−1)) return false; // duplicate in first n−1
5 else if (!unique3(data, low+1, high)) return false; // duplicate in last n−1
6 else return (data[low] != data[high]); // do first and last differ?
7 }

Code Fragment 5.12: Recursive unique3 for testing element uniqueness.

Unfortunately, this is a terribly inefficient use of recursion. The nonrecursive

part of each call uses O(1) time, so the overall running time will be proportional to

the total number of recursive invocations. To analyze the problem, we let n denote

the number of entries under consideration, that is, let n = 1 + high − low.

If n = 1, then the running time of unique3 is O(1), since there are no recursive

calls for this case. In the general case, the important observation is that a single call

to unique3 for a problem of size n may result in two recursive calls on problems of

size n− 1. Those two calls with size n− 1 could in turn result in four calls (two

each) with a range of size n− 2, and thus eight calls with size n− 3 and so on.

Thus, in the worst case, the total number of method calls is given by the geometric

summation
1+2+4+ · · ·+2n−1,

which is equal to 2n− 1 by Proposition 4.5. Thus, the running time of method

unique3 is O(2n). This is an incredibly inefficient method for solving the ele-

ment uniqueness problem. Its inefficiency comes not from the fact that it uses

recursion—it comes from the fact that it uses recursion poorly, which is something

we address in Exercise C-5.12.

216 Chapter 5. Recursion

An Inefficient Recursion for Computing Fibonacci Numbers

In Section 2.2.3, we introduced a process for generating the progression of Fi-

bonacci numbers, which can be defined recursively as follows:

F0 = 0

F1 = 1

Fn = Fn−2 +Fn−1 for n > 1.

Ironically, a recursive implementation based directly on this definition results in the

method fibonacciBad shown in Code Fragment 5.13, which computes a Fibonacci

number by making two recursive calls in each non-base case.

1 /∗∗ Returns the nth Fibonacci number (inefficiently). ∗/
2 public static long fibonacciBad(int n) {
3 if (n <= 1)
4 return n;
5 else
6 return fibonacciBad(n−2) + fibonacciBad(n−1);
7 }

Code Fragment 5.13: Computing the n th Fibonacci number using binary recursion.

Unfortunately, such a direct implementation of the Fibonacci formula results

in a terribly inefficient method. Computing the n th Fibonacci number in this way

requires an exponential number of calls to the method. Specifically, let cn denote

the number of calls performed in the execution of fibonacciBad(n). Then, we have

the following values for the cn’s:

c0 = 1

c1 = 1

c2 = 1+ c0 + c1 = 1+1+1 = 3

c3 = 1+ c1 + c2 = 1+1+3 = 5

c4 = 1+ c2 + c3 = 1+3+5 = 9

c5 = 1+ c3 + c4 = 1+5+9 = 15

c6 = 1+ c4 + c5 = 1+9+15 = 25

c7 = 1+ c5 + c6 = 1+15+25 = 41

c8 = 1+ c6 + c7 = 1+25+41 = 67

If we follow the pattern forward, we see that the number of calls more than doubles

for each two consecutive indices. That is, c4 is more than twice c2, c5 is more than

twice c3, c6 is more than twice c4, and so on. Thus, cn > 2n/2, which means that

fibonacciBad(n) makes a number of calls that is exponential in n.

5.5. Recursion Run Amok 217

An Efficient Recursion for Computing Fibonacci Numbers

We were tempted into using the bad recursive formulation because of the way the

n th Fibonacci number, Fn, depends on the two previous values, Fn−2 and Fn−1. But

notice that after computing Fn−2, the call to compute Fn−1 requires its own recursive

call to compute Fn−2, as it does not have knowledge of the value of Fn−2 that was

computed at the earlier level of recursion. That is duplicative work. Worse yet, both

of those calls will need to (re)compute the value of Fn−3, as will the computation

of Fn−1. This snowballing effect is what leads to the exponential running time of

fibonacciBad.

We can compute Fn much more efficiently using a recursion in which each

invocation makes only one recursive call. To do so, we need to redefine the expec-

tations of the method. Rather than having the method return a single value, which

is the n th Fibonacci number, we define a recursive method that returns an array with

two consecutive Fibonacci numbers {Fn,Fn−1}, using the convention F−1 = 0. Al-

though it seems to be a greater burden to report two consecutive Fibonacci numbers

instead of one, passing this extra information from one level of the recursion to the

next makes it much easier to continue the process. (It allows us to avoid having

to recompute the second value that was already known within the recursion.) An

implementation based on this strategy is given in Code Fragment 5.14.

1 /∗∗ Returns array containing the pair of Fibonacci numbers, F(n) and F(n−1). ∗/
2 public static long[] fibonacciGood(int n) {
3 if (n <= 1) {
4 long[] answer = {n, 0};
5 return answer;
6 } else {
7 long[] temp = fibonacciGood(n − 1); // returns {Fn−1, Fn−2}
8 long[] answer = {temp[0] + temp[1], temp[0]}; // we want {Fn, Fn−1}
9 return answer;

10 }
11 }

Code Fragment 5.14: Computing the n th Fibonacci number using linear recursion.

In terms of efficiency, the difference between the bad and good recursions for

this problem is like night and day. The fibonacciBad method uses exponential

time. We claim that the execution of method fibonacciGood(n) runs in O(n) time.

Each recursive call to fibonacciGood decreases the argument n by 1; therefore, a

recursion trace includes a series of n method calls. Because the nonrecursive work

for each call uses constant time, the overall computation executes in O(n) time.

218 Chapter 5. Recursion

5.5.1 Maximum Recursive Depth in Java

Another danger in the misuse of recursion is known as infinite recursion. If each

recursive call makes another recursive call, without ever reaching a base case, then

we have an infinite series of such calls. This is a fatal error. An infinite recursion

can quickly swamp computing resources, not only due to rapid use of the CPU,

but because each successive call creates a frame requiring additional memory. A

blatant example of an ill-formed recursion is the following:

1 /∗∗ Don't call this (infinite) version. ∗/
2 public static int fibonacci(int n) {
3 return fibonacci(n); // After all Fn does equal Fn

4 }
However, there are far more subtle errors that can lead to an infinite recursion.

Revisiting our implementation of binary search (Code Fragment 5.3), when we

make a recursive call on the right portion of the sequence (line 15), we specify the

subarray from index mid+1 to high. Had that line instead been written as

return binarySearch(data, target, mid, high); // sending mid, not mid+1

this could result in an infinite recursion. In particular, when searching a range of

two elements, it becomes possible to make a recursive call on the identical range.

A programmer should ensure that each recursive call is in some way progress-

ing toward a base case (for example, by having a parameter value that decreases

with each call). To combat against infinite recursions, the designers of Java made

an intentional decision to limit the overall space used to store activation frames

for simultaneously active method calls. If this limit is reached, the Java Virtual

Machine throws a StackOverflowError. (We will further discuss the “stack” data

structure in Section 6.1.) The precise value of this limit depends upon the Java

installation, but a typical value might allow upward of 1000 simultaneous calls.

For many applications of recursion, allowing up to 1000 nested calls suffices.

For example, our binarySearch method (Section 5.1.3) has O(logn) recursive depth,

and so for the default recursive limit to be reached, there would need to be 21000

elements (far, far more than the estimated number of atoms in the universe). How-

ever, we have seen several linear recursions that have recursive depth proportional

to n. Java’s limit on the recursive depth might disrupt such computations.

It is possible to reconfigure the Java Virtual Machine so that it allows for greater

space to be devoted to nested method calls. This is done by setting the -Xss runtime

option when starting Java, either as a command-line option or through the settings

of an IDE. But it often possible to rely upon the intuition of a recursive algorithm,

yet to reimplement it more directly using traditional loops rather than method calls

to express the necessary repetition. We discuss just such an approach to conclude

the chapter.

5.6. Eliminating Tail Recursion 219

5.6 Eliminating Tail Recursion

The main benefit of a recursive approach to algorithm design is that it allows us to

succinctly take advantage of a repetitive structure present in many problems. By

making our algorithm description exploit the repetitive structure in a recursive way,

we can often avoid complex case analyses and nested loops. This approach can

lead to more readable algorithm descriptions, while still being quite efficient.

However, the usefulness of recursion comes at a modest cost. In particular,

the Java Virtual Machine must maintain frames that keep track of the state of each

nested call. When computer memory is at a premium, it can be beneficial to derive

nonrecursive implementations of recursive algorithms.

In general, we can use the stack data structure, which we will introduce in

Section 6.1, to convert a recursive algorithm into a nonrecursive algorithm by man-

aging the nesting of the recursive structure ourselves, rather than relying on the

interpreter to do so. Although this only shifts the memory usage from the inter-

preter to our stack, we may be able to further reduce the memory usage by storing

the minimal information necessary.

Even better, some forms of recursion can be eliminated without any use of aux-

iliary memory. One such form is known as tail recursion. A recursion is a tail

recursion if any recursive call that is made from one context is the very last opera-

tion in that context, with the return value of the recursive call (if any) immediately

returned by the enclosing recursion. By necessity, a tail recursion must be a lin-

ear recursion (since there is no way to make a second recursive call if you must

immediately return the result of the first).

Of the recursive methods demonstrated in this chapter, the binarySearch method

of Code Fragment 5.3 and the reverseArray method of Code Fragment 5.7 are ex-

amples of tail recursion. Several others of our linear recursions are almost like

tail recursion, but not technically so. For example, our factorial method of Code

Fragment 5.1 is not a tail recursion. It concludes with the command:

return n ∗ factorial(n−1);
This is not a tail recursion because an additional multiplication is performed after

the recursive call is completed, and the result returned is not the same. For similar

reasons, the linearSum method of Code Fragment 5.6, both power methods from

Code Fragments 5.8 and 5.9, and the fibonacciGood method of Code Fragment 5.13

fail to be tail recursions.

Tail recursions are special, as they can be automatically reimplemented nonre-

cursively by enclosing the body in a loop for repetition, and replacing a recursive

call with new parameters by a reassignment of the existing parameters to those

values. In fact, many programming language implementations may convert tail

recursions in this way as an optimization.

220 Chapter 5. Recursion

1 /∗∗ Returns true if the target value is found in the data array. ∗/
2 public static boolean binarySearchIterative(int[] data, int target) {
3 int low = 0;
4 int high = data.length − 1;
5 while (low <= high) {
6 int mid = (low + high) / 2;
7 if (target == data[mid]) // found a match
8 return true;
9 else if (target < data[mid])

10 high = mid − 1; // only consider values left of mid
11 else
12 low = mid + 1; // only consider values right of mid
13 }
14 return false; // loop ended without success
15 }

Code Fragment 5.15: A nonrecursive implementation of binary search.

As a tangible example, our binarySearch method can be reimplemented as

shown in Code Fragment 5.15. We initialize variables low and high to represent

the full extent of the array just prior to our while loop. Then, during each pass of

the loop, we either find the target, or we narrow the range of the candidate subar-

ray. Where we made the recursive call binarySearch(data, target, low, mid −1)
in the original version, we simply replace high = mid − 1 in our new version

and then continue to the next iteration of the loop. Our original base case con-

dition of low > high has simply been replaced by the opposite loop condition,

while low <= high. In our new implementation, we return false to designate a

failed search if the while loop ends without having ever returned true from within.

Most other linear recursions can be expressed quite efficiently with iteration,

even if they were not formally tail recursions. For example, there are trivial nonre-

cursive implementations for computing factorials, computing Fibonacci numbers,

summing elements of an array, or reversing the contents of an array. For example,

Code Fragment 5.16 provides a nonrecursive method to reverse the contents of an

array (as compared to the earlier recursive method from Code Fragment 5.7).

1 /∗∗ Reverses the contents of the given array. ∗/
2 public static void reverseIterative(int[] data) {
3 int low = 0, high = data.length − 1;
4 while (low < high) { // swap data[low] and data[high]
5 int temp = data[low];
6 data[low++] = data[high]; // post-increment of low
7 data[high−−] = temp; // post-decrement of high
8 }
9 }

Code Fragment 5.16: Reversing the elements of a sequence using iteration.

5.7. Exercises 221

5.7 Exercises

Reinforcement

R-5.1 Describe a recursive algorithm for finding the maximum element in an array, A,
of n elements. What is your running time and space usage?

R-5.2 Explain how to modify the recursive binary search algorithm so that it returns the

index of the target in the sequence or −1 (if the target is not found).

R-5.3 Draw the recursion trace for the computation of power(2,5), using the traditional

algorithm implemented in Code Fragment 5.8.

R-5.4 Draw the recursion trace for the computation of power(2,18), using the repeated

squaring algorithm, as implemented in Code Fragment 5.9.

R-5.5 Draw the recursion trace for the execution of reverseArray(data, 0, 4), from
Code Fragment 5.7, on array data = 4, 3, 6, 2, 6.

R-5.6 Draw the recursion trace for the execution of method PuzzleSolve(3,S,U), from

Code Fragment 5.11, where S is empty and U = {a,b,c,d}.
R-5.7 Describe a recursive algorithm for computing the n th Harmonic number, defined

as Hn = ∑
n
k=1 1/k.

R-5.8 Describe a recursive algorithm for converting a string of digits into the integer it

represents. For example, '13531' represents the integer 13,531.

R-5.9 Develop a nonrecursive implementation of the version of the power method from
Code Fragment 5.9 that uses repeated squaring.

R-5.10 Describe a way to use recursion to compute the sum of all the elements in an
n×n (two-dimensional) array of integers.

Creativity

C-5.11 Describe a recursive algorithm to compute the integer part of the base-two loga-

rithm of n using only addition and integer division.

C-5.12 Describe an efficient recursive algorithm for solving the element uniqueness

problem, which runs in time that is at most O(n2) in the worst case without using

sorting.

C-5.13 Give a recursive algorithm to compute the product of two positive integers, m and

n, using only addition and subtraction.

C-5.14 In Section 5.2 we prove by induction that the number of lines printed by a call to

drawInterval(c) is 2c− 1. Another interesting question is how many dashes are

printed during that process. Prove by induction that the number of dashes printed
by drawInterval(c) is 2c+1− c−2.

222 Chapter 5. Recursion

C-5.15 Write a recursive method that will output all the subsets of a set of n elements
(without repeating any subsets).

C-5.16 In the Towers of Hanoi puzzle, we are given a platform with three pegs, a, b, and
c, sticking out of it. On peg a is a stack of n disks, each larger than the next, so

that the smallest is on the top and the largest is on the bottom. The puzzle is to

move all the disks from peg a to peg c, moving one disk at a time, so that we
never place a larger disk on top of a smaller one. See Figure 5.15 for an example

of the case n = 4. Describe a recursive algorithm for solving the Towers of Hanoi
puzzle for arbitrary n. (Hint: Consider first the subproblem of moving all but

the n th disk from peg a to another peg using the third as “temporary storage.”)

Figure 5.15: An illustration of the Towers of Hanoi puzzle.

C-5.17 Write a short recursive Java method that takes a character string s and outputs its
reverse. For example, the reverse of 'pots&pans' would be 'snap&stop'.

C-5.18 Write a short recursive Java method that determines if a string s is a palindrome,
that is, it is equal to its reverse. Examples of palindromes include 'racecar'

and 'gohangasalamiimalasagnahog'.

C-5.19 Use recursion to write a Java method for determining if a string s has more vowels

than consonants.

C-5.20 Write a short recursive Java method that rearranges an array of integer values so

that all the even values appear before all the odd values.

C-5.21 Given an unsorted array, A, of integers and an integer k, describe a recursive
algorithm for rearranging the elements in A so that all elements less than or equal

to k come before any elements larger than k. What is the running time of your
algorithm on an array of n values?

C-5.22 Suppose you are given an array, A, containing n distinct integers that are listed
in increasing order. Given a number k, describe a recursive algorithm to find two

integers in A that sum to k, if such a pair exists. What is the running time of your

algorithm?

C-5.23 Describe a recursive algorithm that will check if an array A of integers contains

an integer A[i] that is the sum of two integers that appear earlier in A, that is, such
that A[i] = A[j]+A[k] for j,k < i.

Chapter Notes 223

C-5.24 Isabel has an interesting way of summing up the values in an array A of n integers,
where n is a power of two. She creates an array B of half the size of A and sets

B[i] = A[2i] + A[2i+ 1], for i = 0,1, . . . ,(n/2)− 1. If B has size 1, then she

outputs B[0]. Otherwise, she replaces A with B, and repeats the process. What is
the running time of her algorithm?

C-5.25 Describe a fast recursive algorithm for reversing a singly linked list L, so that the
ordering of the nodes becomes opposite of what it was before.

C-5.26 Give a recursive definition of a singly linked list class that does not use any Node
class.

Projects

P-5.27 Implement a recursive method with calling signature find(path, filename) that

reports all entries of the file system rooted at the given path having the given file

name.

P-5.28 Write a program for solving summation puzzles by enumerating and testing all

possible configurations. Using your program, solve the three puzzles given in
Section 5.3.3.

P-5.29 Provide a nonrecursive implementation of the drawInterval method for the En-
glish ruler project of Section 5.1.2. There should be precisely 2c− 1 lines of

output if c represents the length of the center tick. If incrementing a counter from

0 to 2c− 2, the number of dashes for each tick line should be exactly one more
than the number of consecutive 1’s at the end of the binary representation of the

counter.

P-5.30 Write a program that can solve instances of the Tower of Hanoi problem (from

Exercise C-5.16).

Chapter Notes

The use of recursion in programs belongs to the folklore of computer science (for example,

see the article of Dijkstra [31]). It is also at the heart of functional programming languages

(for example, see the book by Abelson, Sussman, and Sussman [1]). Interestingly, binary
search was first published in 1946, but was not published in a fully correct form until 1962.

For further discussions on lessons learned, see papers by Bentley [13] and Lesuisse [64].

Chapter

6 Stacks, Queues, and Deques

Contents

6.1 Stacks . 226

6.1.1 The Stack Abstract Data Type 227

6.1.2 A Simple Array-Based Stack Implementation 230

6.1.3 Implementing a Stack with a Singly Linked List 233

6.1.4 Reversing an Array Using a Stack 234

6.1.5 Matching Parentheses and HTML Tags 235

6.2 Queues . 238

6.2.1 The Queue Abstract Data Type 239

6.2.2 Array-Based Queue Implementation 241

6.2.3 Implementing a Queue with a Singly Linked List 245

6.2.4 A Circular Queue . 246

6.3 Double-Ended Queues . 248

6.3.1 The Deque Abstract Data Type 248

6.3.2 Implementing a Deque 250

6.3.3 Deques in the Java Collections Framework 251

6.4 Exercises . 252

226 Chapter 6. Stacks, Queues, and Deques

6.1 Stacks

A stack is a collection of objects that are inserted and removed according to the

last-in, first-out (LIFO) principle. A user may insert objects into a stack at any

time, but may only access or remove the most recently inserted object that remains

(at the so-called “top” of the stack). The name “stack” is derived from the metaphor

of a stack of plates in a spring-loaded, cafeteria plate dispenser. In this case, the

fundamental operations involve the “pushing” and “popping” of plates on the stack.

When we need a new plate from the dispenser, we “pop” the top plate off the stack,

and when we add a plate, we “push” it down on the stack to become the new top

plate. Perhaps an even more amusing example is a PEZ® candy dispenser, which

stores mint candies in a spring-loaded container that “pops” out the topmost candy

in the stack when the top of the dispenser is lifted (see Figure 6.1).

Figure 6.1: A schematic drawing of a PEZ® dispenser; a physical implementation

of the stack ADT. (PEZ® is a registered trademark of PEZ Candy, Inc.)

Stacks are a fundamental data structure. They are used in many applications,

including the following.

Example 6.1: Internet Web browsers store the addresses of recently visited sites

on a stack. Each time a user visits a new site, that site’s address is “pushed” onto the

stack of addresses. The browser then allows the user to “pop” back to previously

visited sites using the “back” button.

Example 6.2: Text editors usually provide an “undo” mechanism that cancels re-

cent editing operations and reverts to former states of a document. This undo oper-

ation can be accomplished by keeping text changes in a stack.

6.1. Stacks 227

6.1.1 The Stack Abstract Data Type

Stacks are the simplest of all data structures, yet they are also among the most

important, as they are used in a host of different applications, and as a tool for

many more sophisticated data structures and algorithms. Formally, a stack is an

abstract data type (ADT) that supports the following two update methods:

push(e): Adds element e to the top of the stack.

pop(): Removes and returns the top element from the stack

(or null if the stack is empty).

Additionally, a stack supports the following accessor methods for convenience:

top(): Returns the top element of the stack, without removing it

(or null if the stack is empty).

size(): Returns the number of elements in the stack.

isEmpty(): Returns a boolean indicating whether the stack is empty.

By convention, we assume that elements added to the stack can have arbitrary type

and that a newly created stack is empty.

Example 6.3: The following table shows a series of stack operations and their

effects on an initially empty stack S of integers.

Method Return Value Stack Contents

push(5) – (5)
push(3) – (5, 3)
size() 2 (5, 3)
pop() 3 (5)

isEmpty() false (5)
pop() 5 ()

isEmpty() true ()
pop() null ()
push(7) – (7)
push(9) – (7, 9)
top() 9 (7, 9)
push(4) – (7, 9, 4)
size() 3 (7, 9, 4)
pop() 4 (7, 9)
push(6) – (7, 9, 6)
push(8) – (7, 9, 6, 8)
pop() 8 (7, 9, 6)

228 Chapter 6. Stacks, Queues, and Deques

A Stack Interface in Java

In order to formalize our abstraction of a stack, we define what is known as its

application programming interface (API) in the form of a Java interface, which

describes the names of the methods that the ADT supports and how they are to be

declared and used. This interface is defined in Code Fragment 6.1.

We rely on Java’s generics framework (described in Section 2.5.2), allow-

ing the elements stored in the stack to belong to any object type <E>. For ex-

ample, a variable representing a stack of integers could be declared with type

Stack<Integer>. The formal type parameter is used as the parameter type for

the push method, and the return type for both pop and top.

Recall, from the discussion of Java interfaces in Section 2.3.1, that the interface

serves as a type definition but that it cannot be directly instantiated. For the ADT

to be of any use, we must provide one or more concrete classes that implement the

methods of the interface associated with that ADT. In the following subsections, we

will give two such implementations of the Stack interface: one that uses an array

for storage and another that uses a linked list.

The java.util.Stack Class

Because of the importance of the stack ADT, Java has included, since its original

version, a concrete class named java.util.Stack that implements the LIFO seman-

tics of a stack. However, Java’s Stack class remains only for historic reasons, and

its interface is not consistent with most other data structures in the Java library.

In fact, the current documentation for the Stack class recommends that it not be

used, as LIFO functionality (and more) is provided by a more general data struc-

ture known as a double-ended queue (which we describe in Section 6.3).

For the sake of comparison, Table 6.1 provides a side-by-side comparison of

the interface for our stack ADT and the java.util.Stack class. In addition to

some differences in method names, we note that methods pop and peek of the

java.util.Stack class throw a custom EmptyStackException if called when the stack

is empty (whereas null is returned in our abstraction).

Our Stack ADT Class java.util.Stack

size() size()

⇐isEmpty() empty()

push(e) push(e)

pop() pop()

⇐top() peek()

Table 6.1: Methods of our stack ADT and corresponding methods of the class

java.util.Stack, with differences highlighted in the right margin.

6.1. Stacks 229

1 /∗∗
2 ∗ A collection of objects that are inserted and removed according to the last-in
3 ∗ first-out principle. Although similar in purpose, this interface differs from
4 ∗ java.util.Stack.
5 ∗

6 ∗ @author Michael T. Goodrich
7 ∗ @author Roberto Tamassia
8 ∗ @author Michael H. Goldwasser
9 ∗/

10 public interface Stack<E> {
11

12 /∗∗
13 ∗ Returns the number of elements in the stack.
14 ∗ @return number of elements in the stack
15 ∗/
16 int size();
17
18 /∗∗
19 ∗ Tests whether the stack is empty.
20 ∗ @return true if the stack is empty, false otherwise
21 ∗/
22 boolean isEmpty();
23
24 /∗∗
25 ∗ Inserts an element at the top of the stack.
26 ∗ @param e the element to be inserted
27 ∗/
28 void push(E e);
29

30 /∗∗
31 ∗ Returns, but does not remove, the element at the top of the stack.
32 ∗ @return top element in the stack (or null if empty)
33 ∗/
34 E top();
35

36 /∗∗
37 ∗ Removes and returns the top element from the stack.
38 ∗ @return element removed (or null if empty)
39 ∗/
40 E pop();
41 }

Code Fragment 6.1: Interface Stack documented with comments in Javadoc style

(Section 1.9.4). Note also the use of the generic parameterized type, E, which

allows a stack to contain elements of any specified (reference) type.

230 Chapter 6. Stacks, Queues, and Deques

6.1.2 A Simple Array-Based Stack Implementation
As our first implementation of the stack ADT, we store elements in an array, named

data, with capacity N for some fixed N. We oriented the stack so that the bottom

element of the stack is always stored in cell data[0], and the top element of the

stack in cell data[t] for index t that is equal to one less than the current size of the

stack. (See Figure 6.2.)

0

B D E F G K L MA C

1 2 t N−1

data:

Figure 6.2: Representing a stack with an array; the top element is in cell data[t].

Recalling that arrays start at index 0 in Java, when the stack holds elements

from data[0] to data[t] inclusive, it has size t +1. By convention, when the stack is

empty it will have t equal to −1 (and thus has size t + 1, which is 0). A complete

Java implementation based on this strategy is given in Code Fragment 6.2 (with

Javadoc comments omitted due to space considerations).

1 public class ArrayStack<E> implements Stack<E> {
2 public static final int CAPACITY=1000; // default array capacity
3 private E[] data; // generic array used for storage
4 private int t = −1; // index of the top element in stack
5 public ArrayStack() { this(CAPACITY); } // constructs stack with default capacity
6 public ArrayStack(int capacity) { // constructs stack with given capacity
7 data = (E[]) new Object[capacity]; // safe cast; compiler may give warning
8 }
9 public int size() { return (t + 1); }

10 public boolean isEmpty() { return (t == −1); }
11 public void push(E e) throws IllegalStateException {
12 if (size() == data.length) throw new IllegalStateException("Stack is full");
13 data[++t] = e; // increment t before storing new item
14 }
15 public E top() {
16 if (isEmpty()) return null;
17 return data[t];
18 }
19 public E pop() {
20 if (isEmpty()) return null;
21 E answer = data[t];
22 data[t] = null; // dereference to help garbage collection
23 t−−;
24 return answer;
25 }
26 }

Code Fragment 6.2: Array-based implementation of the Stack interface.

6.1. Stacks 231

A Drawback of This Array-Based Stack Implementation

The array implementation of a stack is simple and efficient. Nevertheless, this

implementation has one negative aspect—it relies on a fixed-capacity array, which

limits the ultimate size of the stack.

For convenience, we allow the user of a stack to specify the capacity as a pa-

rameter to the constructor (and offer a default constructor that uses capacity of

1,000). In cases where a user has a good estimate on the number of items needing

to go in the stack, the array-based implementation is hard to beat. However, if the

estimate is wrong, there can be grave consequences. If the application needs much

less space than the reserved capacity, memory is wasted. Worse yet, if an attempt

is made to push an item onto a stack that has already reached its maximum ca-

pacity, the implementation of Code Fragment 6.2 throws an IllegalStateException,

refusing to store the new element. Thus, even with its simplicity and efficiency, the

array-based stack implementation is not necessarily ideal.

Fortunately, we will later demonstrate two approaches for implementing a stack

without such a size limitation and with space always proportional to the actual num-

ber of elements stored in the stack. One approach, given in the next subsection uses

a singly linked list for storage; in Section 7.2.1, we will provide a more advanced

array-based approach that overcomes the limit of a fixed capacity.

Analyzing the Array-Based Stack Implementation

The correctness of the methods in the array-based implementation follows from

our definition of index t. Note well that when pushing an element, t is incremented

before placing the new element, so that it uses the first available cell.

Table 6.2 shows the running times for methods of this array-based stack im-

plementation. Each method executes a constant number of statements involving

arithmetic operations, comparisons, and assignments, or calls to size and isEmpty,

which both run in constant time. Thus, in this implementation of the stack ADT,

each method runs in constant time, that is, they each run in O(1) time.

Method Running Time

size O(1)

isEmpty O(1)

top O(1)

push O(1)

pop O(1)

Table 6.2: Performance of a stack realized by an array. The space usage is O(N),
where N is the size of the array, determined at the time the stack is instantiated, and

independent from the number n≤ N of elements that are actually in the stack.

232 Chapter 6. Stacks, Queues, and Deques

Garbage Collection in Java

We wish to draw attention to one interesting aspect involving the implementation of

the pop method in Code Fragment 6.2. We set a local variable, answer, to reference

the element that is being popped, and then we intentionally reset data[t] to null at

line 22, before decrementing t. The assignment to null was not technically required,

as our stack would still operate correctly without it.

Our reason for returning the cell to a null reference is to assist Java’s garbage

collection mechanism, which searches memory for objects that are no longer ac-

tively referenced and reclaims their space for future use. (For more details, see

Section 15.1.3.) If we continued to store a reference to the popped element in our

array, the stack class would ignore it (eventually overwriting the reference if more

elements get added to the stack). But, if there were no other active references to the

element in the user’s application, that spurious reference in the stack’s array would

stop Java’s garbage collector from reclaiming the element.

Sample Usage

We conclude this section by providing a demonstration of code that creates and uses

an instance of the ArrayStack class. In this example, we declare the parameterized

type of the stack as the Integer wrapper class. This causes the signature of the push
method to accept an Integer instance as a parameter, and for the return type of both

top and pop to be an Integer. Of course, with Java’s autoboxing and unboxing (see

Section 1.3), a primitive int can be sent as a parameter to push.

Stack<Integer> S = new ArrayStack<>(); // contents: ()
S.push(5); // contents: (5)
S.push(3); // contents: (5, 3)
System.out.println(S.size()); // contents: (5, 3) outputs 2
System.out.println(S.pop()); // contents: (5) outputs 3
System.out.println(S.isEmpty()); // contents: (5) outputs false
System.out.println(S.pop()); // contents: () outputs 5
System.out.println(S.isEmpty()); // contents: () outputs true
System.out.println(S.pop()); // contents: () outputs null
S.push(7); // contents: (7)
S.push(9); // contents: (7, 9)
System.out.println(S.top()); // contents: (7, 9) outputs 9
S.push(4); // contents: (7, 9, 4)
System.out.println(S.size()); // contents: (7, 9, 4) outputs 3
System.out.println(S.pop()); // contents: (7, 9) outputs 4
S.push(6); // contents: (7, 9, 6)
S.push(8); // contents: (7, 9, 6, 8)
System.out.println(S.pop()); // contents: (7, 9, 6) outputs 8

Code Fragment 6.3: Sample usage of our ArrayStack class.

6.1. Stacks 233

6.1.3 Implementing a Stack with a Singly Linked List

In this section, we demonstrate how the Stack interface can be easily implemented

using a singly linked list for storage. Unlike our array-based implementation, the

linked-list approach has memory usage that is always proportional to the number

of actual elements currently in the stack, and without an arbitrary capacity limit.

In designing such an implementation, we need to decide if the top of the stack

is at the front or back of the list. There is clearly a best choice here, however, since

we can insert and delete elements in constant time only at the front. With the top

of the stack stored at the front of the list, all methods execute in constant time.

The Adapter Pattern

The adapter design pattern applies to any context where we effectively want to

modify an existing class so that its methods match those of a related, but different,

class or interface. One general way to apply the adapter pattern is to define a new

class in such a way that it contains an instance of the existing class as a hidden

field, and then to implement each method of the new class using methods of this

hidden instance variable. By applying the adapter pattern in this way, we have

created a new class that performs some of the same functions as an existing class,

but repackaged in a more convenient way.

In the context of the stack ADT, we can adapt our SinglyLinkedList class of

Section 3.2.1 to define a new LinkedStack class, shown in Code Fragment 6.4.

This class declares a SinglyLinkedList named list as a private field, and uses the

following correspondences:

Stack Method Singly Linked List Method

size() list.size()
isEmpty() list.isEmpty()
push(e) list.addFirst(e)
pop() list.removeFirst()
top() list.first()

1 public class LinkedStack<E> implements Stack<E> {
2 private SinglyLinkedList<E> list = new SinglyLinkedList<>(); // an empty list
3 public LinkedStack() { } // new stack relies on the initially empty list
4 public int size() { return list.size(); }
5 public boolean isEmpty() { return list.isEmpty(); }
6 public void push(E element) { list.addFirst(element); }
7 public E top() { return list.first(); }
8 public E pop() { return list.removeFirst(); }
9 }

Code Fragment 6.4: Implementation of a Stack using a SinglyLinkedList as storage.

234 Chapter 6. Stacks, Queues, and Deques

6.1.4 Reversing an Array Using a Stack

As a consequence of the LIFO protocol, a stack can be used as a general toll to

reverse a data sequence. For example, if the values 1, 2, and 3 are pushed onto a

stack in that order, they will be popped from the stack in the order 3, 2, and then 1.

We demonstrate this concept by revisiting the problem of reversing the elements

of an array. (We provided a recursive algorithm for this task in Section 5.3.1.) We

create an empty stack for auxiliary storage, push all of the array elements onto the

stack, and then pop those elements off of the stack while overwriting the cells of the

array from beginning to end. In Code Fragment 6.5, we give a Java implementation

of this algorithm. We show an example use of this method in Code Fragment 6.6.

1 /∗∗ A generic method for reversing an array. ∗/
2 public static <E> void reverse(E[] a) {
3 Stack<E> buffer = new ArrayStack<>(a.length);
4 for (int i=0; i < a.length; i++)
5 buffer.push(a[i]);
6 for (int i=0; i < a.length; i++)
7 a[i] = buffer.pop();
8 }

Code Fragment 6.5: A generic method that reverses the elements in an array with

objects of type E, using a stack declared with the interface Stack<E> as its type.

1 /∗∗ Tester routine for reversing arrays ∗/
2 public static void main(String args[]) {
3 Integer[] a = {4, 8, 15, 16, 23, 42}; // autoboxing allows this
4 String[] s = {"Jack", "Kate", "Hurley", "Jin", "Michael"};
5 System.out.println("a = " + Arrays.toString(a));
6 System.out.println("s = " + Arrays.toString(s));
7 System.out.println("Reversing...");
8 reverse(a);
9 reverse(s);

10 System.out.println("a = " + Arrays.toString(a));
11 System.out.println("s = " + Arrays.toString(s));
12 }

The output from this method is the following:

a = [4, 8, 15, 16, 23, 42]
s = [Jack, Kate, Hurley, Jin, Michael]
Reversing...
a = [42, 23, 16, 15, 8, 4]
s = [Michael, Jin, Hurley, Kate, Jack]

Code Fragment 6.6: A test of the reverse method using two arrays.

6.1. Stacks 235

6.1.5 Matching Parentheses and HTML Tags

In this subsection, we explore two related applications of stacks, both of which

involve testing for pairs of matching delimiters. In our first application, we consider

arithmetic expressions that may contain various pairs of grouping symbols, such as

• Parentheses: “(” and “)”
• Braces: “{” and “}”
• Brackets: “[” and “]”

Each opening symbol must match its corresponding closing symbol. For example,

a left bracket, “[,” must match a corresponding right bracket, “],” as in the following

expression

[(5+ x)− (y+ z)].

The following examples further illustrate this concept:

• Correct: ()(()){([()])}
• Correct: ((()(()){([()])}))
• Incorrect:)(()){([()])}
• Incorrect: ({[])}
• Incorrect: (

We leave the precise definition of a matching group of symbols to Exercise R-6.6.

An Algorithm for Matching Delimiters

An important task when processing arithmetic expressions is to make sure their

delimiting symbols match up correctly. We can use a stack to perform this task

with a single left-to-right scan of the original string.

Each time we encounter an opening symbol, we push that symbol onto the

stack, and each time we encounter a closing symbol, we pop a symbol from the

stack (assuming it is not empty) and check that these two symbols form a valid

pair. If we reach the end of the expression and the stack is empty, then the original

expression was properly matched. Otherwise, there must be an opening delimiter

on the stack without a matching symbol. If the length of the original expression

is n, the algorithm will make at most n calls to push and n calls to pop. Code

Fragment 6.7 presents a Java implementation of such an algorithm. It specifically

checks for delimiter pairs (), { }, and [], but could easily be changed to accommo-

date further symbols. Specifically, we define two fixed strings, "({[" and ")}]",

that are intentionally coordinated to reflect the symbol pairs. When examining a

character of the expression string, we call the indexOf method of the String class

on these special strings to determine if the character matches a delimiter and, if so,

which one. Method indexOf returns the the index at which a given character is first

found in a string (or −1 if the character is not found).

236 Chapter 6. Stacks, Queues, and Deques

1 /∗∗ Tests if delimiters in the given expression are properly matched. ∗/
2 public static boolean isMatched(String expression) {
3 final String opening = "({["; // opening delimiters
4 final String closing = ")}]"; // respective closing delimiters
5 Stack<Character> buffer = new LinkedStack<>();
6 for (char c : expression.toCharArray()) {
7 if (opening.indexOf(c) != −1) // this is a left delimiter
8 buffer.push(c);
9 else if (closing.indexOf(c) != −1) { // this is a right delimiter

10 if (buffer.isEmpty()) // nothing to match with
11 return false;
12 if (closing.indexOf(c) != opening.indexOf(buffer.pop()))
13 return false; // mismatched delimiter
14 }
15 }
16 return buffer.isEmpty(); // were all opening delimiters matched?
17 }

Code Fragment 6.7: Method for matching delimiters in an arithmetic expression.

Matching Tags in a Markup Language

Another application of matching delimiters is in the validation of markup languages

such as HTML or XML. HTML is the standard format for hyperlinked documents

on the Internet and XML is an extensible markup language used for a variety of

structured data sets. We show a sample HTML document in Figure 6.3.

<body>

<center>

<h1> The Little Boat </h1>

</center>

<p> The storm tossed the little

boat like a cheap sneaker in an

old washing machine. The three

drunken fishermen were used to

such treatment, of course, but

not the tree salesman, who even as

a stowaway now felt that he

had overpaid for the voyage. </p>

 Will the salesman die?

 What color is the boat?

 And what about Naomi?

</body>

The Little Boat

The storm tossed the little boat

like a cheap sneaker in an

old washing machine. The three

drunken fishermen were used to

such treatment, of course, but not

the tree salesman, who even as

a stowaway now felt that he had

overpaid for the voyage.

1. Will the salesman die?

2. What color is the boat?

3. And what about Naomi?

(a) (b)

Figure 6.3: Illustrating (a) an HTML document and (b) its rendering.

6.1. Stacks 237

In an HTML document, portions of text are delimited by HTML tags. A simple

opening HTML tag has the form “<name>” and the corresponding closing tag has

the form “</name>”. For example, we see the <body> tag on the first line of

Figure 6.3a, and the matching </body> tag at the close of that document. Other

commonly used HTML tags that are used in this example include:

• <body>: document body

• <h1>: section header

• <center>: center justify

• <p>: paragraph

• : numbered (ordered) list

• : list item

Ideally, an HTML document should have matching tags, although most browsers

tolerate a certain number of mismatching tags. In Code Fragment 6.8, we give a

Java method that matches tags in a string representing an HTML document.

We make a left-to-right pass through the raw string, using index j to track

our progress. The indexOf method of the String class, which optionally accepts a

starting index as a second parameter, locates the '<' and '>' characters that define

the tags. Method substring, also of the String class, returns the substring starting

at a given index and optionally ending right before another given index. Opening

tags are pushed onto the stack, and matched against closing tags as they are popped

from the stack, just as we did when matching delimiters in Code Fragment 6.7.

1 /∗∗ Tests if every opening tag has a matching closing tag in HTML string. ∗/
2 public static boolean isHTMLMatched(String html) {
3 Stack<String> buffer = new LinkedStack<>();
4 int j = html.indexOf('<'); // find first ’<’ character (if any)
5 while (j != −1) {
6 int k = html.indexOf('>', j+1); // find next ’>’ character
7 if (k == −1)
8 return false; // invalid tag
9 String tag = html.substring(j+1, k); // strip away < >

10 if (!tag.startsWith("/")) // this is an opening tag
11 buffer.push(tag);
12 else { // this is a closing tag
13 if (buffer.isEmpty())
14 return false; // no tag to match
15 if (!tag.substring(1).equals(buffer.pop()))
16 return false; // mismatched tag
17 }
18 j = html.indexOf('<', k+1); // find next ’<’ character (if any)
19 }
20 return buffer.isEmpty(); // were all opening tags matched?
21 }

Code Fragment 6.8: Method for testing if an HTML document has matching tags.

238 Chapter 6. Stacks, Queues, and Deques

6.2 Queues

Another fundamental data structure is the queue. It is a close “cousin” of the stack,

but a queue is a collection of objects that are inserted and removed according to the

first-in, first-out (FIFO) principle. That is, elements can be inserted at any time,

but only the element that has been in the queue the longest can be next removed.

We usually say that elements enter a queue at the back and are removed from

the front. A metaphor for this terminology is a line of people waiting to get on an

amusement park ride. People waiting for such a ride enter at the back of the line

and get on the ride from the front of the line. There are many other applications

of queues (see Figure 6.4). Stores, theaters, reservation centers, and other similar

services typically process customer requests according to the FIFO principle. A

queue would therefore be a logical choice for a data structure to handle calls to a

customer service center, or a wait-list at a restaurant. FIFO queues are also used by

many computing devices, such as a networked printer, or a Web server responding

to requests.

Tickets

(a)

Call C
enter

Call Queue

(b)

Figure 6.4: Real-world examples of a first-in, first-out queue. (a) People waiting in

line to purchase tickets; (b) phone calls being routed to a customer service center.

6.2. Queues 239

6.2.1 The Queue Abstract Data Type

Formally, the queue abstract data type defines a collection that keeps objects in a

sequence, where element access and deletion are restricted to the first element in

the queue, and element insertion is restricted to the back of the sequence. This

restriction enforces the rule that items are inserted and deleted in a queue accord-

ing to the first-in, first-out (FIFO) principle. The queue abstract data type (ADT)

supports the following two update methods:

enqueue(e): Adds element e to the back of queue.

dequeue(): Removes and returns the first element from the queue

(or null if the queue is empty).

The queue ADT also includes the following accessor methods (with first being

analogous to the stack’s top method):

first(): Returns the first element of the queue, without removing it

(or null if the queue is empty).

size(): Returns the number of elements in the queue.

isEmpty(): Returns a boolean indicating whether the queue is empty.

By convention, we assume that elements added to the queue can have arbitrary

type and that a newly created queue is empty. We formalize the queue ADT with

the Java interface shown in Code Fragment 6.9.

1 public interface Queue<E> {
2 /∗∗ Returns the number of elements in the queue. ∗/
3 int size();
4 /∗∗ Tests whether the queue is empty. ∗/
5 boolean isEmpty();
6 /∗∗ Inserts an element at the rear of the queue. ∗/
7 void enqueue(E e);
8 /∗∗ Returns, but does not remove, the first element of the queue (null if empty). ∗/
9 E first();

10 /∗∗ Removes and returns the first element of the queue (null if empty). ∗/
11 E dequeue();
12 }

Code Fragment 6.9: A Queue interface defining the queue ADT, with a standard

FIFO protocol for insertions and removals.

240 Chapter 6. Stacks, Queues, and Deques

Example 6.4: The following table shows a series of queue operations and their

effects on an initially empty queue Q of integers.

Method Return Value first← Q← last

enqueue(5) – (5)
enqueue(3) – (5, 3)

size() 2 (5, 3)
dequeue() 5 (3)
isEmpty() false (3)
dequeue() 3 ()
isEmpty() true ()
dequeue() null ()
enqueue(7) – (7)
enqueue(9) – (7, 9)

first() 7 (7, 9)
enqueue(4) – (7, 9, 4)

The java.util.Queue Interface in Java

Java provides a type of queue interface, java.util.Queue, which has functionality

similar to the traditional queue ADT, given above, but the documentation for the

java.util.Queue interface does not insist that it support only the FIFO principle.

When supporting the FIFO principle, the methods of the java.util.Queue interface

have the equivalences with the queue ADT shown in Table 6.3.

The java.util.Queue interface supports two styles for most operations, which

vary in the way that they treat exceptional cases. When a queue is empty, the

remove() and element() methods throw a NoSuchElementException, while the

corresponding methods poll() and peek() return null. For implementations with a

bounded capacity, the add method will throw an IllegalStateException when full,

while the offer method ignores the new element and returns false to signal that the

element was not accepted.

Our Queue ADT Interface java.util.Queue
throws exceptions returns special value

enqueue(e) add(e) offer(e)

dequeue() remove() poll()

first() element() peek()

size() size()

isEmpty() isEmpty()

Table 6.3: Methods of the queue ADT and corresponding methods of the interface

java.util.Queue, when supporting the FIFO principle.

6.2. Queues 241

6.2.2 Array-Based Queue Implementation

In Section 6.1.2, we implemented the LIFO semantics of the Stack ADT using an

array (albeit, with a fixed capacity), such that every operation executes in constant

time. In this section, we will consider how to use an array to efficiently support the

FIFO semantics of the Queue ADT.

Let’s assume that as elements are inserted into a queue, we store them in an

array such that the first element is at index 0, the second element at index 1, and so

on. (See Figure 6.5.)

0

A C D E F G K L MB

1 2 N−1

data:

Figure 6.5: Using an array to store elements of a queue, such that the first element

inserted, “A”, is at cell 0, the second element inserted, “B”, at cell 1, and so on.

With such a convention, the question is how we should implement the dequeue
operation. The element to be removed is stored at index 0 of the array. One strategy

is to execute a loop to shift all other elements of the queue one cell to the left, so that

the front of the queue is again aligned with cell 0 of the array. Unfortunately, the

use of such a loop would result in an O(n) running time for the dequeue method.

We can improve on the above strategy by avoiding the loop entirely. We will

replace a dequeued element in the array with a null reference, and maintain an

explicit variable f to represent the index of the element that is currently at the

front of the queue. Such an algorithm for dequeue would run in O(1) time. After

several dequeue operations, this approach might lead to the configuration portrayed

in Figure 6.6.

0

K L MF G

f1 2 N−1

data:

Figure 6.6: Allowing the front of the queue to drift away from index 0. In this

representation, index f denotes the location of the front of the queue.

However, there remains a challenge with the revised approach. With an array

of capacity N, we should be able to store up to N elements before reaching any

exceptional case. If we repeatedly let the front of the queue drift rightward over

time, the back of the queue would reach the end of the underlying array even when

there are fewer than N elements currently in the queue. We must decide how to

store additional elements in such a configuration.

242 Chapter 6. Stacks, Queues, and Deques

Using an Array Circularly

In developing a robust queue implementation, we allow both the front and back

of the queue to drift rightward, with the contents of the queue “wrapping around”

the end of an array, as necessary. Assuming that the array has fixed length N, new

elements are enqueued toward the “end” of the current queue, progressing from the

front to index N−1 and continuing at index 0, then 1. Figure 6.7 illustrates such a

queue with first element F and last element R.

0

M N O PQ R F G LK

1 2 N−1f

data:

Figure 6.7: Modeling a queue with a circular array that wraps around the end.

Implementing such a circular view is relatively easy with the modulo operator,

denoted with the symbol % in Java. Recall that the modulo operator is computed

by taking the remainder after an integral division. For example, 14 divided by 3
has a quotient of 4 with remainder 2, that is, 14

3 = 42
3 . So in Java, 14 / 3 evaluates

to the quotient 4, while 14 % 3 evaluates to the remainder 2.

The modulo operator is ideal for treating an array circularly. When we de-

queue an element and want to “advance” the front index, we use the arithmetic

f = (f +1) % N. As a concrete example, if we have an array of length 10, and a

front index 7, we can advance the front by formally computing (7+1) % 10, which

is simply 8, as 8 divided by 10 is 0 with a remainder of 8. Similarly, advancing

index 8 results in index 9. But when we advance from index 9 (the last one in the

array), we compute (9+1) % 10, which evaluates to index 0 (as 10 divided by 10

has a remainder of zero).

A Java Queue Implementation

A complete implementation of a queue ADT using an array in circular fashion is

presented in Code Fragment 6.10. Internally, the queue class maintains the follow-

ing three instance variables:

data: a reference to the underlying array.

f: an integer that represents the index, within array data, of the first

element of the queue (assuming the queue is not empty).

sz: an integer representing the current number of elements stored in

the queue (not to be confused with the length of the array).

We allow the user to specify the capacity of the queue as an optional parameter to

the constructor.

The implementations of methods size and isEmpty are trivial, given the sz field,

and the implementation of first is simple, given index f. A discussion of update

methods enqueue and dequeue follows the presentation of the code.

6.2. Queues 243

1 /∗∗ Implementation of the queue ADT using a fixed-length array. ∗/
2 public class ArrayQueue<E> implements Queue<E> {
3 // instance variables
4 private E[] data; // generic array used for storage
5 private int f = 0; // index of the front element
6 private int sz = 0; // current number of elements
7
8 // constructors
9 public ArrayQueue() {this(CAPACITY);} // constructs queue with default capacity

10 public ArrayQueue(int capacity) { // constructs queue with given capacity
11 data = (E[]) new Object[capacity]; // safe cast; compiler may give warning
12 }
13

14 // methods
15 /∗∗ Returns the number of elements in the queue. ∗/
16 public int size() { return sz; }
17

18 /∗∗ Tests whether the queue is empty. ∗/
19 public boolean isEmpty() { return (sz == 0); }
20
21 /∗∗ Inserts an element at the rear of the queue. ∗/
22 public void enqueue(E e) throws IllegalStateException {
23 if (sz == data.length) throw new IllegalStateException("Queue is full");
24 int avail = (f + sz) % data.length; // use modular arithmetic
25 data[avail] = e;
26 sz++;
27 }
28

29 /∗∗ Returns, but does not remove, the first element of the queue (null if empty). ∗/
30 public E first() {
31 if (isEmpty()) return null;
32 return data[f];
33 }
34
35 /∗∗ Removes and returns the first element of the queue (null if empty). ∗/
36 public E dequeue() {
37 if (isEmpty()) return null;
38 E answer = data[f];
39 data[f] = null; // dereference to help garbage collection
40 f = (f + 1) % data.length;
41 sz−−;
42 return answer;
43 }

Code Fragment 6.10: Array-based implementation of a queue.

244 Chapter 6. Stacks, Queues, and Deques

Adding and Removing Elements

The goal of the enqueue method is to add a new element to the back of the queue.

We need to determine the proper index at which to place the new element. Although

we do not explicitly maintain an instance variable for the back of the queue, we

compute the index of the next opening based on the formula:

avail = (f + sz) % data.length;

Note that we are using the size of the queue as it exists prior to the addition of

the new element. As a sanity check, for a queue with capacity 10, current size 3,

and first element at index 5, its three elements are stored at indices 5, 6, and 7, and

the next element should be added at index 8, computed as (5+3) % 10. As a case

with wraparound, if the queue has capacity 10, current size 3, and first element at

index 8, its three elements are stored at indices 8, 9, and 0, and the next element

should be added at index 1, computed as (8+3) % 10.

When the dequeue method is called, the current value of f designates the index

of the value that is to be removed and returned. We keep a local reference to the

element that will be returned, before setting its cell of the array back to null, to aid

the garbage collector. Then the index f is updated to reflect the removal of the first

element, and the presumed promotion of the second element to become the new

first. In most cases, we simply want to increment the index by one, but because

of the possibility of a wraparound configuration, we rely on modular arithmetic,

computing f = (f+1) % data.length, as originally described on page 242.

Analyzing the Efficiency of an Array-Based Queue

Table 6.4 shows the running times of methods in a realization of a queue by an

array. As with our array-based stack implementation, each of the queue methods in

the array realization executes a constant number of statements involving arithmetic

operations, comparisons, and assignments. Thus, each method in this implementa-

tion runs in O(1) time.

Method Running Time

size O(1)

isEmpty O(1)

first O(1)

enqueue O(1)

dequeue O(1)

Table 6.4: Performance of a queue realized by an array. The space usage is O(N),
where N is the size of the array, determined at the time the queue is created, and

independent from the number n < N of elements that are actually in the queue.

6.2. Queues 245

6.2.3 Implementing a Queue with a Singly Linked List

As we did for the stack ADT, we can easily adapt a singly linked list to imple-

ment the queue ADT while supporting worst-case O(1)-time for all operations, and

without any artificial limit on the capacity. The natural orientation for a queue is to

align the front of the queue with the front of the list, and the back of the queue with

the tail of the list, because the only update operation that singly linked lists support

at the back end is an insertion. Our Java implementation of a LinkedQueue class is

given in Code 6.11.

1 /∗∗ Realization of a FIFO queue as an adaptation of a SinglyLinkedList. ∗/
2 public class LinkedQueue<E> implements Queue<E> {
3 private SinglyLinkedList<E> list = new SinglyLinkedList<>(); // an empty list
4 public LinkedQueue() { } // new queue relies on the initially empty list
5 public int size() { return list.size(); }
6 public boolean isEmpty() { return list.isEmpty(); }
7 public void enqueue(E element) { list.addLast(element); }
8 public E first() { return list.first(); }
9 public E dequeue() { return list.removeFirst(); }

10 }

Code Fragment 6.11: Implementation of a Queue using a SinglyLinkedList.

Analyzing the Efficiency of a Linked Queue

Although we had not yet introduced asymptotic analysis when we presented our

SinglyLinkedList implementation in Chapter 3, it is clear upon reexamination that

each method of that class runs in O(1) worst-case time. Therefore, each method of

our LinkedQueue adaptation also runs in O(1) worst-case time.

We also avoid the need to specify a maximum size for the queue, as was done

in the array-based queue implementation. However, this benefit comes with some

expense. Because each node stores a next reference, in addition to the element

reference, a linked list uses more space per element than a properly sized array of

references.

Also, although all methods execute in constant time for both implementations,

it seems clear that the operations involving linked lists have a large number of

primitive operations per call. For example, adding an element to an array-based

queue consists primarily of calculating an index with modular arithmetic, storing

the element in the array cell, and incrementing the size counter. For a linked list,

an insertion includes the instantiation and initialization of a new node, relinking an

existing node to the new node, and incrementing the size counter. In practice, this

makes the linked-list method more expensive than the array-based method.

246 Chapter 6. Stacks, Queues, and Deques

6.2.4 A Circular Queue

In Section 3.3, we implemented a circularly linked list class that supports all be-

haviors of a singly linked list, and an additional rotate() method that efficiently

moves the first element to the end of the list. We can generalize the Queue in-

terface to define a new CircularQueue interface with such a behavior, as shown in

Code Fragment 6.12.

1 public interface CircularQueue<E> extends Queue<E> {
2 /∗∗
3 ∗ Rotates the front element of the queue to the back of the queue.
4 ∗ This does nothing if the queue is empty.
5 ∗/
6 void rotate();
7 }

Code Fragment 6.12: A Java interface, CircularQueue, that extends the Queue ADT

with a new rotate() method.

This interface can easily be implemented by adapting the CircularlyLinkedList
class of Section 3.3 to produce a new LinkedCircularQueue class. This class has an

advantage over the traditional LinkedQueue, because a call to Q.rotate() is imple-

mented more efficiently than the combination of calls, Q.enqueue(Q.dequeue()),
because no nodes are created, destroyed, or relinked by the implementation of a

rotate operation on a circularly linked list.

A circular queue is an excellent abstraction for applications in which elements

are cyclically arranged, such as for multiplayer, turn-based games, or round-robin

scheduling of computing processes. In the remainder of this section, we provide a

demonstration of the use of a circular queue.

The Josephus Problem

In the children’s game “hot potato,” a group of n children sit in a circle passing

an object, called the “potato,” around the circle. The potato begins with a starting

child in the circle, and the children continue passing the potato until a leader rings a

bell, at which point the child holding the potato must leave the game after handing

the potato to the next child in the circle. After the selected child leaves, the other

children close up the circle. This process is then continued until there is only one

child remaining, who is declared the winner. If the leader always uses the strategy

of ringing the bell so that every k th person is removed from the circle, for some

fixed value k, then determining the winner for a given list of children is known as the

Josephus problem (named after an ancient story with far more severe consequences

than in the children’s game).

6.2. Queues 247

Solving the Josephus Problem Using a Queue

We can solve the Josephus problem for a collection of n elements using a circular

queue, by associating the potato with the element at the front of the queue and stor-

ing elements in the queue according to their order around the circle. Thus, passing

the potato is equivalent to rotating the first element to the back of the queue. After

this process has been performed k− 1 times, we remove the front element by de-

queuing it from the queue and discarding it. We show a complete Java program for

solving the Josephus problem using this approach in Code Fragment 6.13, which

describes a solution that runs in O(nk) time. (We can solve this problem faster

using techniques beyond the scope of this book.)

1 public class Josephus {
2 /∗∗ Computes the winner of the Josephus problem using a circular queue. ∗/
3 public static <E> E Josephus(CircularQueue<E> queue, int k) {
4 if (queue.isEmpty()) return null;
5 while (queue.size() > 1) {
6 for (int i=0; i < k−1; i++) // skip past k-1 elements
7 queue.rotate();
8 E e = queue.dequeue(); // remove the front element from the collection
9 System.out.println(" " + e + " is out");

10 }
11 return queue.dequeue(); // the winner
12 }
13

14 /∗∗ Builds a circular queue from an array of objects. ∗/
15 public static <E> CircularQueue<E> buildQueue(E a[]) {
16 CircularQueue<E> queue = new LinkedCircularQueue<>();
17 for (int i=0; i<a.length; i++)
18 queue.enqueue(a[i]);
19 return queue;
20 }
21

22 /∗∗ Tester method ∗/
23 public static void main(String[] args) {
24 String[] a1 = {"Alice", "Bob", "Cindy", "Doug", "Ed", "Fred"};
25 String[] a2 = {"Gene", "Hope", "Irene", "Jack", "Kim", "Lance"};
26 String[] a3 = {"Mike", "Roberto"};
27 System.out.println("First winner is " + Josephus(buildQueue(a1), 3));
28 System.out.println("Second winner is " + Josephus(buildQueue(a2), 10));
29 System.out.println("Third winner is " + Josephus(buildQueue(a3), 7));
30 }
31 }

Code Fragment 6.13: A complete Java program for solving the Josephus problem

using a circular queue.

248 Chapter 6. Stacks, Queues, and Deques

6.3 Double-Ended Queues

We next consider a queue-like data structure that supports insertion and deletion

at both the front and the back of the queue. Such a structure is called a double-

ended queue, or deque, which is usually pronounced “deck” to avoid confusion

with the dequeue method of the regular queue ADT, which is pronounced like the

abbreviation “D.Q.”

The deque abstract data type is more general than both the stack and the queue

ADTs. The extra generality can be useful in some applications. For example, we

described a restaurant using a queue to maintain a waitlist. Occasionally, the first

person might be removed from the queue only to find that a table was not available;

typically, the restaurant will reinsert the person at the first position in the queue. It

may also be that a customer at the end of the queue may grow impatient and leave

the restaurant. (We will need an even more general data structure if we want to

model customers leaving the queue from other positions.)

6.3.1 The Deque Abstract Data Type

The deque abstract data type is richer than both the stack and the queue ADTs.

To provide a symmetrical abstraction, the deque ADT is defined to support the

following update methods:

addFirst(e): Insert a new element e at the front of the deque.

addLast(e): Insert a new element e at the back of the deque.

removeFirst(): Remove and return the first element of the deque

(or null if the deque is empty).

removeLast(): Remove and return the last element of the deque

(or null if the deque is empty).

Additionally, the deque ADT will include the following accessors:

first(): Returns the first element of the deque, without removing it

(or null if the deque is empty).

last(): Returns the last element of the deque, without removing it

(or null if the deque is empty).

size(): Returns the number of elements in the deque.

isEmpty(): Returns a boolean indicating whether the deque is empty.

We formalize the deque ADT with the Java interface shown in Code Fragment 6.14.

6.3. Double-Ended Queues 249

1 /∗∗
2 ∗ Interface for a double-ended queue: a collection of elements that can be inserted
3 ∗ and removed at both ends; this interface is a simplified version of java.util.Deque.
4 ∗/
5 public interface Deque<E> {
6 /∗∗ Returns the number of elements in the deque. ∗/
7 int size();
8 /∗∗ Tests whether the deque is empty. ∗/
9 boolean isEmpty();

10 /∗∗ Returns, but does not remove, the first element of the deque (null if empty). ∗/
11 E first();
12 /∗∗ Returns, but does not remove, the last element of the deque (null if empty). ∗/
13 E last();
14 /∗∗ Inserts an element at the front of the deque. ∗/
15 void addFirst(E e);
16 /∗∗ Inserts an element at the back of the deque. ∗/
17 void addLast(E e);
18 /∗∗ Removes and returns the first element of the deque (null if empty). ∗/
19 E removeFirst();
20 /∗∗ Removes and returns the last element of the deque (null if empty). ∗/
21 E removeLast();
22 }

Code Fragment 6.14: A Java interface, Deque, describing the double-ended queue

ADT. Note the use of the generic parameterized type, E, allowing a deque to contain

elements of any specified class.

Example 6.5: The following table shows a series of operations and their effects

on an initially empty deque D of integers.

Method Return Value D

addLast(5) – (5)
addFirst(3) – (3, 5)
addFirst(7) – (7, 3, 5)

first() 7 (7, 3, 5)
removeLast() 5 (7, 3)

size() 2 (7, 3)
removeLast() 3 (7)
removeFirst() 7 ()
addFirst(6) – (6)

last() 6 (6)
addFirst(8) – (8, 6)
isEmpty() false (8, 6)
last() 6 (8, 6)

250 Chapter 6. Stacks, Queues, and Deques

6.3.2 Implementing a Deque

We can implement the deque ADT efficiently using either an array or a linked list

for storing elements.

Implementing a Deque with a Circular Array

If using an array, we recommend a representation similar to the ArrayQueue class,

treating the array in circular fashion and storing the index of the first element and

the current size of the deque as fields; the index of the last element can be calcu-

lated, as needed, using modular arithmetic.

One extra concern is avoiding use of negative values with the modulo operator.

When removing the first element, the front index is advanced in circular fashion,

with the assignment f = (f+1) % N. But when an element is inserted at the front,

the first index must effectively be decremented in circular fashion and it is a mistake

to assign f = (f−1) % N. The problem is that when f is 0, the goal should be to

“decrement” it to the other end of the array, and thus to index N−1. However, a

calculation such as −1 % 10 in Java results in the value −1. A standard way to

decrement an index circularly is instead to assign f = (f−1+N) % N. Adding the

additional term of N before the modulus is calculated assures that the result is a

positive value. We leave details of this approach to Exercise P-6.40.

Implementing a Deque with a Doubly Linked List

Because the deque requires insertion and removal at both ends, a doubly linked

list is most appropriate for implementing all operations efficiently. In fact, the

DoublyLinkedList class from Section 3.4.1 already implements the entire Deque
interface; we simply need to add the declaration “implements Deque<E>” to

that class definition in order to use it as a deque.

Performance of the Deque Operations

Table 6.5 shows the running times of methods for a deque implemented with a

doubly linked list. Note that every method runs in O(1) time.

Method Running Time

size, isEmpty O(1)

first, last O(1)

addFirst, addLast O(1)

removeFirst, removeLast O(1)

Table 6.5: Performance of a deque realized by either a circular array or a doubly

linked list. The space usage for the array-based implementation is O(N), where N

is the size of the array, while the space usage of the doubly linked list is O(n) where

n < N is the actual number of elements in the deque.

6.3. Double-Ended Queues 251

6.3.3 Deques in the Java Collections Framework

The Java Collections Framework includes its own definition of a deque, as the

java.util.Deque interface, as well as several implementations of the interface in-

cluding one based on use of a circular array (java.util.ArrayDeque) and one based

on use of a doubly linked list (java.util.LinkedList). So, if we need to use a deque

and would rather not implement one from scratch, we can simply use one of those

built-in classes.

As is the case with the java.util.Queue class (see page 240), the java.util.Deque
provides duplicative methods that use different techniques to signal exceptional

cases. A summary of those methods is given in Table 6.6.

Our Deque ADT Interface java.util.Deque
throws exceptions returns special value

first() getFirst() peekFirst()

last() getLast() peekLast()

addFirst(e) addFirst(e) offerFirst(e)

addLast(e) addLast(e) offerLast(e)

removeFirst() removeFirst() pollFirst()

removeLast() removeLast() pollLast()

size() size()

isEmpty() isEmpty()

Table 6.6: Methods of our deque ADT and the corresponding methods of the

java.util.Deque interface.

When attempting to access or remove the first or last element of an empty deque,

the methods in the middle column of Table 6.6—that is, getFirst(), getLast(),
removeFirst(), and removeLast()—throw a NoSuchElementException. The meth-

ods in the rightmost column—that is, peekFirst(), peekLast(), pollFirst(), and

pollLast()—simply return the null reference when a deque is empty. In similar

manner, when attempting to add an element to an end of a deque with a capacity

limit, the addFirst and addLast methods throw an exception, while the offerFirst
and offerLast methods return false.

The methods that handle bad situations more gracefully (i.e., without throwing

exceptions) are useful in applications, known as producer-consumer scenarios, in

which it is common for one component of software to look for an element that may

have been placed in a queue by another program, or in which it is common to try to

insert an item into a fixed-sized buffer that might be full. However, having methods

return null when empty are not appropriate for applications in which null might

serve as an actual element of a queue.

252 Chapter 6. Stacks, Queues, and Deques

6.4 Exercises

Reinforcement

R-6.1 Suppose an initially empty stack S has performed a total of 25 push operations,

12 top operations, and 10 pop operations, 3 of which returned null to indicate an

empty stack. What is the current size of S?

R-6.2 Had the stack of the previous problem been an instance of the ArrayStack class,

from Code Fragment 6.2, what would be the final value of the instance vari-
able t?

R-6.3 What values are returned during the following series of stack operations, if exe-

cuted upon an initially empty stack? push(5), push(3), pop(), push(2), push(8),
pop(), pop(), push(9), push(1), pop(), push(7), push(6), pop(), pop(), push(4),
pop(), pop().

R-6.4 Implement a method with signature transfer(S, T) that transfers all elements

from stack S onto stack T , so that the element that starts at the top of S is the first

to be inserted onto T , and the element at the bottom of S ends up at the top of T .

R-6.5 Give a recursive method for removing all the elements from a stack.

R-6.6 Give a precise and complete definition of the concept of matching for grouping
symbols in an arithmetic expression. Your definition may be recursive.

R-6.7 Suppose an initially empty queue Q has performed a total of 32 enqueue opera-
tions, 10 first operations, and 15 dequeue operations, 5 of which returned null to

indicate an empty queue. What is the current size of Q?

R-6.8 Had the queue of the previous problem been an instance of the ArrayQueue class,

from Code Fragment 6.10, with capacity 30 never exceeded, what would be the

final value of the instance variable f?

R-6.9 What values are returned during the following sequence of queue operations, if

executed on an initially empty queue? enqueue(5), enqueue(3), dequeue(),
enqueue(2), enqueue(8), dequeue(), dequeue(), enqueue(9), enqueue(1),
dequeue(), enqueue(7), enqueue(6), dequeue(), dequeue(), enqueue(4),
dequeue(), dequeue().

R-6.10 Give a simple adapter that implements the stack ADT while using an instance of

a deque for storage.

R-6.11 Give a simple adapter that implements the queue ADT while using an instance

of a deque for storage.

R-6.12 What values are returned during the following sequence of deque ADT

operations, on an initially empty deque? addFirst(3), addLast(8), addLast(9),
addFirst(1), last(), isEmpty(), addFirst(2), removeLast(), addLast(7), first(),
last(), addLast(4), size(), removeFirst(), removeFirst().

6.4. Exercises 253

R-6.13 Suppose you have a deque D containing the numbers (1,2,3,4,5,6,7,8), in this
order. Suppose further that you have an initially empty queue Q. Give a code

fragment that uses only D and Q (and no other variables) and results in D storing

the elements in the order (1,2,3,5,4,6,7,8).

R-6.14 Repeat the previous problem using the deque D and an initially empty stack S.

R-6.15 Augment the ArrayQueue implementation with a new rotate() method having
semantics identical to the combination, enqueue(dequeue()). But, your imple-

mentation should be more efficient than making two separate calls (for example,

because there is no need to modify the size).

Creativity

C-6.16 Suppose Alice has picked three distinct integers and placed them into a stack S in

random order. Write a short, straightline piece of pseudocode (with no loops or

recursion) that uses only one comparison and only one variable x, yet that results
in variable x storing the largest of Alice’s three integers with probability 2/3.

Argue why your method is correct.

C-6.17 Show how to use the transfer method, described in Exercise R-6.4, and two tem-

porary stacks, to replace the contents of a given stack S with those same elements,
but in reversed order.

C-6.18 In Code Fragment 6.8 we assume that opening tags in HTML have form <name>,

as with . More generally, HTML allows optional attributes to be expressed

as part of an opening tag. The general form used for expressing an attribute is
<name attribute1="value1" attribute2="value2">; for example, a ta-

ble can be given a border and additional padding by using an opening tag of
<table border="3" cellpadding="5">. Modify Code Fragment 6.8 so that

it can properly match tags, even when an opening tag may include one or more

such attributes.

C-6.19 Postfix notation is an unambiguous way of writing an arithmetic expression with-
out parentheses. It is defined so that if “(exp1)op(exp2)” is a normal fully paren-

thesized expression whose operation is op, the postfix version of this is “pexp1

pexp2 op”, where pexp1 is the postfix version of exp1 and pexp2 is the postfix ver-
sion of exp2. The postfix version of a single number or variable is just that number

or variable. So, for example, the postfix version of “((5+ 2) ∗ (8− 3))/4” is “5

2 + 8 3 − ∗ 4 /”. Describe a nonrecursive way of evaluating an expression in
postfix notation.

C-6.20 Suppose you have three nonempty stacks R, S, and T . Describe a sequence of op-

erations that results in S storing all elements originally in T below all of S’s orig-
inal elements, with both sets of those elements in their original order. The final

configuration for R should be the same as its original configuration. For example,

if R = (1,2,3), S = (4,5), and T = (6,7,8,9), when ordered from bottom to top,
then the final configuration should have R = (1,2,3) and S = (6,7,8,9,4,5).

254 Chapter 6. Stacks, Queues, and Deques

C-6.21 Describe a nonrecursive algorithm for enumerating all permutations of the num-
bers {1,2, . . . ,n} using an explicit stack.

C-6.22 Alice has three array-based stacks, A, B, and C, such that A has capacity 100,
B has capacity 5, and C has capacity 3. Initially, A is full, and B and C are

empty. Unfortunately, the person who programmed the class for these stacks

made the push and pop methods private. The only method Alice can use is a static
method, dump(S,T), which transfers (by iteratively applying the private pop and

push methods) elements from stack S to stack T until either S becomes empty
or T becomes full. So, for example, starting from our initial configuration and

performing dump(A,C) results in A now holding 97 elements and C holding 3.

Describe a sequence of dump operations that starts from the initial configuration
and results in B holding 4 elements at the end.

C-6.23 Show how to use a stack S and a queue Q to generate all possible subsets of an
n-element set T nonrecursively.

C-6.24 Suppose you have a stack S containing n elements and a queue Q that is ini-
tially empty. Describe how you can use Q to scan S to see if it contains a certain

element x, with the additional constraint that your algorithm must return the el-

ements back to S in their original order. You may only use S, Q, and a constant
number of other primitive variables.

C-6.25 Describe how to implement the stack ADT using a single queue as an instance
variable, and only constant additional local memory within the method bodies.

What is the running time of the push(), pop(), and top() methods for your de-

sign?

C-6.26 When implementing the ArrayQueue class, we initialized f = 0 (at line 5 of Code

Fragment 6.10). What would happen had we initialized that field to some other
positive value? What if we had initialized it to −1?

C-6.27 Implement the clone() method for the ArrayStack class. (See Section 3.6 for a
discussion of cloning data structures.)

C-6.28 Implement the clone() method for the ArrayQueue class. (See Section 3.6 for a
discussion of cloning data structures.)

C-6.29 Implement a method with signature concatenate(LinkedQueue<E> Q2) for the
LinkedQueue<E> class that takes all elements of Q2 and appends them to the

end of the original queue. The operation should run in O(1) time and should

result in Q2 being an empty queue.

C-6.30 Give a pseudocode description for an array-based implementation of the double-

ended queue ADT. What is the running time for each operation?

C-6.31 Describe how to implement the deque ADT using two stacks as the only instance

variables. What are the running times of the methods?

C-6.32 Suppose you have two nonempty stacks S and T and a deque D. Describe how

to use D so that S stores all the elements of T below all of its original elements,
with both sets of elements still in their original order.

6.4. Exercises 255

C-6.33 Alice has two circular queues, C and D, which can store integers. Bob gives Alice
50 odd integers and 50 even integers and insists that she stores all 100 integers

in C and D. They then play a game where Bob picks C or D at random and then

applies the rotate() method to the chosen queue a random number of times. If
the last number to be rotated at the end of this game is odd, Bob wins. Otherwise,

Alice wins. How can Alice allocate integers to queues to optimize her chances
of winning? What is her chance of winning?

C-6.34 Suppose Bob has four cows that he wants to take across a bridge, but only one

yoke, which can hold up to two cows, side by side, tied to the yoke. The yoke is

too heavy for him to carry across the bridge, but he can tie (and untie) cows to
it in no time at all. Of his four cows, Mazie can cross the bridge in 2 minutes,

Daisy can cross it in 4 minutes, Crazy can cross it in 10 minutes, and Lazy can

cross it in 20 minutes. Of course, when two cows are tied to the yoke, they must
go at the speed of the slower cow. Describe how Bob can get all his cows across

the bridge in 34 minutes.

Projects

P-6.35 Implement a program that can input an expression in postfix notation (see Exer-

cise C-6.19) and output its value.

P-6.36 When a share of common stock of some company is sold, the capital gain (or,
sometimes, loss) is the difference between the share’s selling price and the price

originally paid to buy it. This rule is easy to understand for a single share, but
if we sell multiple shares of stock bought over a long period of time, then we

must identify the shares actually being sold. A standard accounting principle for

identifying which shares of a stock were sold in such a case is to use a FIFO
protocol—the shares sold are the ones that have been held the longest (indeed,

this is the default method built into several personal finance software packages).

For example, suppose we buy 100 shares at $20 each on day 1, 20 shares at $24
on day 2, 200 shares at $36 on day 3, and then sell 150 shares on day 4 at $30

each. Then applying the FIFO protocol means that of the 150 shares sold, 100
were bought on day 1, 20 were bought on day 2, and 30 were bought on day

3. The capital gain in this case would therefore be 100 · 10+ 20 · 6+ 30 · (−6),
or $940. Write a program that takes as input a sequence of transactions of the
form “buy x share(s) at $y each” or “sell x share(s) at $y each,”

assuming that the transactions occur on consecutive days and the values x and y

are integers. Given this input sequence, the output should be the total capital gain
(or loss) for the entire sequence, using the FIFO protocol to identify shares.

P-6.37 Design an ADT for a two-color, double-stack ADT that consists of two stacks—

one “red” and one “blue”—and has as its operations color-coded versions of the
regular stack ADT operations. For example, this ADT should support both a

redPush operation and a bluePush operation. Give an efficient implementation

of this ADT using a single array whose capacity is set at some value N that is
assumed to always be larger than the sizes of the red and blue stacks combined.

256 Chapter 6. Stacks, Queues, and Deques

P-6.38 The introduction of Section 6.1 notes that stacks are often used to provide “undo”
support in applications like a Web browser or text editor. While support for undo

can be implemented with an unbounded stack, many applications provide only

limited support for such an undo history, with a fixed-capacity stack. When push
is invoked with the stack at full capacity, rather than throwing an exception, a

more typical semantic is to accept the pushed element at the top while “leaking”
the oldest element from the bottom of the stack to make room. Give an imple-

mentation of such a LeakyStack abstraction, using a circular array.

P-6.39 Repeat the previous problem using a singly linked list for storage, and a maxi-
mum capacity specified as a parameter to the constructor.

P-6.40 Give a complete implementation of the Deque ADT using a fixed-capacity array,
so that each of the update methods runs in O(1) time.

Chapter Notes

We were introduced to the approach of defining data structures first in terms of their ADTs

and then in terms of concrete implementations by the classic books by Aho, Hopcroft, and

Ullman [5, 6]. Exercises C-6.22, C-6.33, and C-6.34 are similar to interview questions said

to be from a well-known software company. For further study of abstract data types, see

Liskov and Guttag [67] and Demurjian [28].

Chapter

7 List and Iterator ADTs

Contents

7.1 The List ADT . 258

7.2 Array Lists . 260

7.2.1 Dynamic Arrays . 263

7.2.2 Implementing a Dynamic Array 264

7.2.3 Amortized Analysis of Dynamic Arrays 265

7.2.4 Java’s StringBuilder class 269

7.3 Positional Lists . 270

7.3.1 Positions . 272

7.3.2 The Positional List Abstract Data Type 272

7.3.3 Doubly Linked List Implementation 276

7.4 Iterators . 282

7.4.1 The Iterable Interface and Java’s For-Each Loop 283

7.4.2 Implementing Iterators 284

7.5 The Java Collections Framework 288

7.5.1 List Iterators in Java . 289

7.5.2 Comparison to Our Positional List ADT 290

7.5.3 List-Based Algorithms in the Java Collections Framework . 291

7.6 Sorting a Positional List . 293

7.7 Case Study: Maintaining Access Frequencies 294

7.7.1 Using a Sorted List . 294

7.7.2 Using a List with the Move-to-Front Heuristic 297

7.8 Exercises . 300

258 Chapter 7. List and Iterator ADTs

7.1 The List ADT

In Chapter 6, we introduced the stack, queue, and deque abstract data types, and

discussed how either an array or a linked list could be used for storage in an efficient

concrete implementation of each. Each of those ADTs represents a linearly ordered

sequence of elements. The deque is the most general of the three, yet even so, it

only allows insertions and deletions at the front or back of a sequence.

In this chapter, we explore several abstract data types that represent a linear se-

quence of elements, but with more general support for adding or removing elements

at arbitrary positions. However, designing a single abstraction that is well suited for

efficient implementation with either an array or a linked list is challenging, given

the very different nature of these two fundamental data structures.

Locations within an array are easily described with an integer index. Recall

that an index of an element e in a sequence is equal to the number of elements

before e in that sequence. By this definition, the first element of a sequence has

index 0, and the last has index n− 1, assuming that n denotes the total number of

elements. The notion of an element’s index is well defined for a linked list as well,

although we will see that it is not as convenient of a notion, as there is no way to

efficiently access an element at a given index without traversing a portion of the

linked list that depends upon the magnitude of the index.

With that said, Java defines a general interface, java.util.List, that includes the

following index-based methods (and more):

size(): Returns the number of elements in the list.

isEmpty(): Returns a boolean indicating whether the list is empty.

get(i): Returns the element of the list having index i; an error condition

occurs if i is not in range [0,size()−1].

set(i, e): Replaces the element at index i with e, and returns the old element

that was replaced; an error condition occurs if i is not in range

[0,size()−1].

add(i, e): Inserts a new element e into the list so that it has index i, mov-

ing all subsequent elements one index later in the list; an error

condition occurs if i is not in range [0,size()].

remove(i): Removes and returns the element at index i, moving all subse-

quent elements one index earlier in the list; an error condition

occurs if i is not in range [0,size()−1].

We note that the index of an existing element may change over time, as other

elements are added or removed in front of it. We also draw attention to the fact that

the range of valid indices for the add method includes the current size of the list, in

which case the new element becomes the last.

7.1. The List ADT 259

Example 7.1 demonstrates a series of operations on a list instance, and Code

Fragment 7.1 below provides a formal definition of our simplified version of the

List interface; we use an IndexOutOfBoundsException to signal an invalid index

argument.

Example 7.1: We demonstrate operations on an initially empty list of characters.

Method Return Value List Contents

add(0, A) – (A)
add(0, B) – (B, A)
get(1) A (B, A)

set(2, C) “error” (B, A)
add(2, C) – (B, A, C)
add(4, D) “error” (B, A, C)
remove(1) A (B, C)
add(1, D) – (B, D, C)
add(1, E) – (B, E, D, C)
get(4) “error” (B, E, D, C)

add(4, F) – (B, E, D, C, F)
set(2, G) D (B, E, G, C, F)
get(2) G (B, E, G, C, F)

1 /∗∗ A simplified version of the java.util.List interface. ∗/
2 public interface List<E> {
3 /∗∗ Returns the number of elements in this list. ∗/
4 int size();
5
6 /∗∗ Returns whether the list is empty. ∗/
7 boolean isEmpty();
8
9 /∗∗ Returns (but does not remove) the element at index i. ∗/

10 E get(int i) throws IndexOutOfBoundsException;
11
12 /∗∗ Replaces the element at index i with e, and returns the replaced element. ∗/
13 E set(int i, E e) throws IndexOutOfBoundsException;
14

15 /∗∗ Inserts element e to be at index i, shifting all subsequent elements later. ∗/
16 void add(int i, E e) throws IndexOutOfBoundsException;
17

18 /∗∗ Removes/returns the element at index i, shifting subsequent elements earlier. ∗/
19 E remove(int i) throws IndexOutOfBoundsException;
20 }

Code Fragment 7.1: A simple version of the List interface.

260 Chapter 7. List and Iterator ADTs

7.2 Array Lists

An obvious choice for implementing the list ADT is to use an array A, where A[i]
stores (a reference to) the element with index i. We will begin by assuming that we

have a fixed-capacity array, but in Section 7.2.1 describe a more advanced technique

that effectively allows an array-based list to have unbounded capacity. Such an

unbounded list is known as an array list in Java (or a vector in C++ and in the

earliest versions of Java).

With a representation based on an array A, the get(i) and set(i, e) methods are

easy to implement by accessing A[i] (assuming i is a legitimate index). Methods

add(i, e) and remove(i) are more time consuming, as they require shifting elements

up or down to maintain our rule of always storing an element whose list index is i

at index i of the array. (See Figure 7.1.) Our initial implementation of the ArrayList
class follows in Code Fragments 7.2 and 7.3.

N−1i210 n−1

(a)

n−1i210 N−1

(b)

Figure 7.1: Array-based implementation of an array list that is storing n elements:

(a) shifting up for an insertion at index i; (b) shifting down for a removal at index i.

1 public class ArrayList<E> implements List<E> {
2 // instance variables
3 public static final int CAPACITY=16; // default array capacity
4 private E[] data; // generic array used for storage
5 private int size = 0; // current number of elements
6 // constructors
7 public ArrayList() { this(CAPACITY); } // constructs list with default capacity
8 public ArrayList(int capacity) { // constructs list with given capacity
9 data = (E[]) new Object[capacity]; // safe cast; compiler may give warning

10 }
Code Fragment 7.2: An implementation of a simple ArrayList class with bounded

capacity. (Continues in Code Fragment 7.3.)

7.2. Array Lists 261

11 // public methods
12 /∗∗ Returns the number of elements in the array list. ∗/
13 public int size() { return size; }
14 /∗∗ Returns whether the array list is empty. ∗/
15 public boolean isEmpty() { return size == 0; }
16 /∗∗ Returns (but does not remove) the element at index i. ∗/
17 public E get(int i) throws IndexOutOfBoundsException {
18 checkIndex(i, size);
19 return data[i];
20 }
21 /∗∗ Replaces the element at index i with e, and returns the replaced element. ∗/
22 public E set(int i, E e) throws IndexOutOfBoundsException {
23 checkIndex(i, size);
24 E temp = data[i];
25 data[i] = e;
26 return temp;
27 }
28 /∗∗ Inserts element e to be at index i, shifting all subsequent elements later. ∗/
29 public void add(int i, E e) throws IndexOutOfBoundsException,
30 IllegalStateException {
31 checkIndex(i, size + 1);
32 if (size == data.length) // not enough capacity
33 throw new IllegalStateException("Array is full");
34 for (int k=size−1; k >= i; k−−) // start by shifting rightmost
35 data[k+1] = data[k];
36 data[i] = e; // ready to place the new element
37 size++;
38 }
39 /∗∗ Removes/returns the element at index i, shifting subsequent elements earlier. ∗/
40 public E remove(int i) throws IndexOutOfBoundsException {
41 checkIndex(i, size);
42 E temp = data[i];
43 for (int k=i; k < size−1; k++) // shift elements to fill hole
44 data[k] = data[k+1];
45 data[size−1] = null; // help garbage collection
46 size−−;
47 return temp;
48 }
49 // utility method
50 /∗∗ Checks whether the given index is in the range [0, n−1]. ∗/
51 protected void checkIndex(int i, int n) throws IndexOutOfBoundsException {
52 if (i < 0 | | i >= n)
53 throw new IndexOutOfBoundsException("Illegal index: " + i);
54 }
55 }

Code Fragment 7.3: An implementation of a simple ArrayList class with bounded

capacity. (Continued from Code Fragment 7.2.)

262 Chapter 7. List and Iterator ADTs

The Performance of a Simple Array-Based Implementation

Table 7.1 shows the worst-case running times of the methods of an array list with n

elements realized by means of an array. Methods isEmpty, size, get and set clearly

run in O(1) time, but the insertion and removal methods can take much longer than

this. In particular, add(i, e) runs in time O(n). Indeed, the worst case for this

operation occurs when i is 0, since all the existing n elements have to be shifted

forward. A similar argument applies to method remove(i), which runs in O(n)
time, because we have to shift backward n− 1 elements in the worst case, when i

is 0. In fact, assuming that each possible index is equally likely to be passed as an

argument to these operations, their average running time is O(n), for we will have

to shift n/2 elements on average.

Method Running Time

size() O(1)

isEmpty() O(1)

get(i) O(1)

set(i, e) O(1)

add(i, e) O(n)

remove(i) O(n)

Table 7.1: Performance of an array list with n elements realized by a fixed-capacity

array.

Looking more closely at add(i, e) and remove(i), we note that they each run in

time O(n− i+ 1), for only those elements at index i and higher have to be shifted

up or down. Thus, inserting or removing an item at the end of an array list, us-

ing the methods add(n, e) and remove(n− 1) respectively, takes O(1) time each.

Moreover, this observation has an interesting consequence for the adaptation of the

array list ADT to the deque ADT from Section 6.3.1. If we do the “obvious” thing

and store elements of a deque so that the first element is at index 0 and the last

element at index n− 1, then methods addLast and removeLast of the deque each

run in O(1) time. However, methods addFirst and removeFirst of the deque each

run in O(n) time.

Actually, with a little effort, we can produce an array-based implementation of

the array list ADT that achieves O(1) time for insertions and removals at index 0, as

well as insertions and removals at the end of the array list. Achieving this requires

that we give up on our rule that an element at index i is stored in the array at index i,

however, as we would have to use a circular array approach like the one we used in

Section 6.2 to implement a queue. We leave the details of this implementation as

Exercise C-7.25.

7.2. Array Lists 263

7.2.1 Dynamic Arrays

The ArrayList implementation in Code Fragments 7.2 and 7.3 (as well as those for

a stack, queue, and deque from Chapter 6) has a serious limitation; it requires that

a fixed maximum capacity be declared, throwing an exception if attempting to add

an element once full. This is a major weakness, because if a user is unsure of the

maximum size that will be reached for a collection, there is risk that either too

large of an array will be requested, causing an inefficient waste of memory, or that

too small of an array will be requested, causing a fatal error when exhausting that

capacity.

Java’s ArrayList class provides a more robust abstraction, allowing a user to

add elements to the list, with no apparent limit on the overall capacity. To provide

this abstraction, Java relies on an algorithmic sleight of hand that is known as a

dynamic array.

In reality, elements of an ArrayList are stored in a traditional array, and the

precise size of that traditional array must be internally declared in order for the

system to properly allocate a consecutive piece of memory for its storage. For

example, Figure 7.2 displays an array with 12 cells that might be stored in memory

locations 2146 through 2157 on a computer system.

Figure 7.2: An array of 12 cells, allocated in memory locations 2146 through 2157.

Because the system may allocate neighboring memory locations to store other data,

the capacity of an array cannot be increased by expanding into subsequent cells.

The first key to providing the semantics of an unbounded array is that an array

list instance maintains an internal array that often has greater capacity than the

current length of the list. For example, while a user may have created a list with

five elements, the system may have reserved an underlying array capable of storing

eight object references (rather than only five). This extra capacity makes it easy to

add a new element to the end of the list by using the next available cell of the array.

If a user continues to add elements to a list, all reserved capacity in the underly-

ing array will eventually be exhausted. In that case, the class requests a new, larger

array from the system, and copies all references from the smaller array into the

beginning of the new array. At that point in time, the old array is no longer needed,

so it can be reclaimed by the system. Intuitively, this strategy is much like that of

the hermit crab, which moves into a larger shell when it outgrows its previous one.

21
60

21
45

21
46

21
47

21
48

21
49

21
50

21
51

21
52

21
53

21
54

21
55

21
56

21
57

21
58

21
44

21
59

264 Chapter 7. List and Iterator ADTs

7.2.2 Implementing a Dynamic Array

We now demonstrate how our original version of the ArrayList, from Code Frag-

ments 7.2 and 7.3, can be transformed to a dynamic-array implementation, having

unbounded capacity. We rely on the same internal representation, with a traditional

array A, that is initialized either to a default capacity or to one specified as a param-

eter to the constructor.

The key is to provide means to “grow” the array A, when more space is needed.

Of course, we cannot actually grow that array, as its capacity is fixed. Instead,

when a call to add a new element risks overflowing the current array, we perform

the following additional steps:

1. Allocate a new array B with larger capacity.

2. Set B[k] =A[k], for k = 0, . . . ,n−1, where n denotes current number of items.

3. Set A = B, that is, we henceforth use the new array to support the list.

4. Insert the new element in the new array.

An illustration of this process is shown in Figure 7.3.

B

A A

B A

(a) (b) (c)

Figure 7.3: An illustration of “growing” a dynamic array: (a) create new array B;

(b) store elements of A in B; (c) reassign reference A to the new array. Not shown

is the future garbage collection of the old array, or the insertion of a new element.

Code Fragment 7.4 provides a concrete implementation of a resize method,

which should be included as a protected method within the original ArrayList class.

The instance variable data corresponds to array A in the above discussion, and local

variable temp corresponds to array B.

/∗∗ Resizes internal array to have given capacity >= size. ∗/
protected void resize(int capacity) {
E[] temp = (E[]) new Object[capacity]; // safe cast; compiler may give warning
for (int k=0; k < size; k++)
temp[k] = data[k];

data = temp; // start using the new array
}

Code Fragment 7.4: An implementation of the ArrayList.resize method.

7.2. Array Lists 265

The remaining issue to consider is how large of a new array to create. A com-

monly used rule is for the new array to have twice the capacity of the existing array

that has been filled. In Section 7.2.3, we will provide a mathematical analysis to

justify such a choice.

To complete the revision to our original ArrayList implementation, we redesign

the add method so that it calls the new resize utility when detecting that the current

array is filled (rather than throwing an exception). The revised version appears in

Code Fragment 7.5.

28 /∗∗ Inserts element e to be at index i, shifting all subsequent elements later. ∗/
29 public void add(int i, E e) throws IndexOutOfBoundsException {
30 checkIndex(i, size + 1);
31 if (size == data.length) // not enough capacity
32 resize(2 ∗ data.length); // so double the current capacity
... // rest of method unchanged...

Code Fragment 7.5: A revision to the ArrayList.add method, originally from Code

Fragment 7.3, which calls the resize method of Code Fragment 7.4 when more

capacity is needed.

Finally, we note that our original implementation of the ArrayList class includes

two constructors: a default constructor that uses an initial capacity of 16, and a

parameterized constructor that allows the caller to specify a capacity value. With

the use of dynamic arrays, that capacity is no longer a fixed limit. Still, greater

efficiency is achieved when a user selects an initial capacity that matches the actual

size of a data set, as this can avoid time spent on intermediate array reallocations

and potential space that is wasted by having too large of an array.

7.2.3 Amortized Analysis of Dynamic Arrays

In this section, we will perform a detailed analysis of the running time of operations

on dynamic arrays. As a shorthand notation, let us refer to the insertion of an

element to be the last element in an array list as a push operation.

The strategy of replacing an array with a new, larger array might at first seem

slow, because a single push operation may require Ω(n) time to perform, where n

is the current number of elements in the array. (Recall, from Section 4.3.1, that

big-Omega notation, describes an asymptotic lower bound on the running time of

an algorithm.) However, by doubling the capacity during an array replacement, our

new array allows us to add n further elements before the array must be replaced

again. In this way, there are many simple push operations for each expensive one

(see Figure 7.4). This fact allows us to show that a series of push operations on an

initially empty dynamic array is efficient in terms of its total running time.

266 Chapter 7. List and Iterator ADTs

p
ri

m
it

iv
e

o
p

er
a
ti

o
n

s
fo

r
a
 p

u
sh

current number of elements

12 135 6 7 8 11 14 15 161 2 3 4 9 10

Figure 7.4: Running times of a series of push operations on a dynamic array.

Using an algorithmic design pattern called amortization, we show that perform-

ing a sequence of push operations on a dynamic array is actually quite efficient. To

perform an amortized analysis, we use an accounting technique where we view

the computer as a coin-operated appliance that requires the payment of one cyber-

dollar for a constant amount of computing time. When an operation is executed,

we should have enough cyber-dollars available in our current “bank account” to pay

for that operation’s running time. Thus, the total amount of cyber-dollars spent for

any computation will be proportional to the total time spent on that computation.

The beauty of using this analysis method is that we can overcharge some operations

in order to save up cyber-dollars to pay for others.

Proposition 7.2: Let L be an initially empty array list with capacity one, imple-

mented by means of a dynamic array that doubles in size when full. The total time

to perform a series of n push operations in L is O(n).

Justification: Let us assume that one cyber-dollar is enough to pay for the exe-

cution of each push operation in L, excluding the time spent for growing the array.

Also, let us assume that growing the array from size k to size 2k requires k cyber-

dollars for the time spent initializing the new array. We shall charge each push

operation three cyber-dollars. Thus, we overcharge each push operation that does

not cause an overflow by two cyber-dollars. Think of the two cyber-dollars profited

in an insertion that does not grow the array as being “stored” with the cell in which

the element was inserted. An overflow occurs when the array L has 2i elements, for

some integer i ≥ 0, and the size of the array used by the array representing L is 2i.

Thus, doubling the size of the array will require 2i cyber-dollars. Fortunately, these

cyber-dollars can be found stored in cells 2i−1 through 2i−1. (See Figure 7.5.)

7.2. Array Lists 267

(a)

0 2 4 5 6 731

$ $ $ $

$ $ $ $

(b)

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$

$

Figure 7.5: Illustration of a series of push operations on a dynamic array: (a) an

8-cell array is full, with two cyber-dollars “stored” at cells 4 through 7; (b) a push

operation causes an overflow and a doubling of capacity. Copying the eight old

elements to the new array is paid for by the cyber-dollars already stored in the

table. Inserting the new element is paid for by one of the cyber-dollars charged to

the current push operation, and the two cyber-dollars profited are stored at cell 8.

Note that the previous overflow occurred when the number of elements became

larger than 2i−1 for the first time, and thus the cyber-dollars stored in cells 2i−1

through 2i− 1 have not yet been spent. Therefore, we have a valid amortization

scheme in which each operation is charged three cyber-dollars and all the comput-

ing time is paid for. That is, we can pay for the execution of n push operations

using 3n cyber-dollars. In other words, the amortized running time of each push

operation is O(1); hence, the total running time of n push operations is O(n).

Geometric Increase in Capacity

Although the proof of Proposition 7.2 relies on the array being doubled each time it

is expanded, the O(1) amortized bound per operation can be proven for any geomet-

rically increasing progression of array sizes. (See Section 2.2.3 for discussion of

geometric progressions.) When choosing the geometric base, there exists a trade-

off between runtime efficiency and memory usage. If the last insertion causes a

resize event, with a base of 2 (i.e., doubling the array), the array essentially ends

up twice as large as it needs to be. If we instead increase the array by only 25%

of its current size (i.e., a geometric base of 1.25), we do not risk wasting as much

memory in the end, but there will be more intermediate resize events along the way.

Still it is possible to prove an O(1) amortized bound, using a constant factor greater

than the 3 cyber-dollars per operation used in the proof of Proposition 7.2 (see Ex-

ercise R-7.7). The key to the performance is that the amount of additional space is

proportional to the current size of the array.

268 Chapter 7. List and Iterator ADTs

Beware of Arithmetic Progression

To avoid reserving too much space at once, it might be tempting to implement a

dynamic array with a strategy in which a constant number of additional cells are

reserved each time an array is resized. Unfortunately, the overall performance of

such a strategy is significantly worse. At an extreme, an increase of only one cell

causes each push operation to resize the array, leading to a familiar 1+2+3+ · · ·+
n summation and Ω(n2) overall cost. Using increases of 2 or 3 at a time is slightly

better, as portrayed in Figure 7.4, but the overall cost remains quadratic.

p
ri

m
it

iv
e

o
p

er
a
ti

o
n

s
fo

r
a
 p

u
sh

current number of elements

12 135 6 7 8 11 14 15 161 2 3 4 9 10

p
ri

m
it

iv
e

o
p

er
a
ti

o
n

s
fo

r
a
 p

u
sh

current number of elements

1310 125 6 7 8 11 14 15 161 2 3 4 9

(a) (b)

Figure 7.6: Running times of a series of push operations on a dynamic array using

arithmetic progression of sizes. Part (a) assumes an increase of 2 in the size of the

array, while part (b) assumes an increase of 3.

Using a fixed increment for each resize, and thus an arithmetic progression of

intermediate array sizes, results in an overall time that is quadratic in the number

of operations, as shown in the following proposition. In essence, even an increase

in 10,000 cells per resize will become insignificant for large data sets.

Proposition 7.3: Performing a series of n push operations on an initially empty

dynamic array using a fixed increment with each resize takes Ω(n2) time.

Justification: Let c > 0 represent the fixed increment in capacity that is used for

each resize event. During the series of n push operations, time will have been spent

initializing arrays of size c, 2c, 3c, . . . , mc for m = ⌈n/c⌉, and therefore, the overall

time is proportional to c+2c+3c+ · · ·+mc. By Proposition 4.3, this sum is

m

∑
i=1

ci = c ·
m

∑
i=1

i = c
m(m+1)

2
≥ c

n
c
(n

c
+1)

2
≥ 1

2c
·n2.

Therefore, performing the n push operations takes Ω(n2) time.

7.2. Array Lists 269

Memory Usage and Shrinking an Array

Another consequence of the rule of a geometric increase in capacity when adding

to a dynamic array is that the final array size is guaranteed to be proportional to the

overall number of elements. That is, the data structure uses O(n) memory. This is

a very desirable property for a data structure.

If a container, such as an array list, provides operations that cause the removal

of one or more elements, greater care must be taken to ensure that a dynamic array

guarantees O(n) memory usage. The risk is that repeated insertions may cause the

underlying array to grow arbitrarily large, and that there will no longer be a propor-

tional relationship between the actual number of elements and the array capacity

after many elements are removed.

A robust implementation of such a data structure will shrink the underlying

array, on occasion, while maintaining the O(1) amortized bound on individual op-

erations. However, care must be taken to ensure that the structure cannot rapidly

oscillate between growing and shrinking the underlying array, in which case the

amortized bound would not be achieved. In Exercise C-7.29, we explore a strategy

in which the array capacity is halved whenever the number of actual element falls

below one-fourth of that capacity, thereby guaranteeing that the array capacity is at

most four times the number of elements; we explore the amortized analysis of such

a strategy in Exercises C-7.30 and C-7.31.

7.2.4 Java’s StringBuilder class

Near the beginning of Chapter 4, we described an experiment in which we com-

pared two algorithms for composing a long string (Code Fragment 4.2). The first

of those relied on repeated concatenation using the String class, and the second

relied on use of Java’s StringBuilder class. We observed the StringBuilder was sig-

nificantly faster, with empirical evidence that suggested a quadratic running time

for the algorithm with repeated concatenations, and a linear running time for the

algorithm with the StringBuilder. We are now able to explain the theoretical under-

pinning for those observations.

The StringBuilder class represents a mutable string by storing characters in a

dynamic array. With analysis similar to Proposition 7.2, it guarantees that a series

of append operations resulting in a string of length n execute in a combined time of

O(n). (Insertions at positions other than the end of a string builder do not carry this

guarantee, just as they do not for an ArrayList.)
In contrast, the repeated use of string concatenation requires quadratic time.

We originally analyzed that algorithm on page 172 of Chapter 4. In effect, that

approach is akin to a dynamic array with an arithmetic progression of size one, re-

peatedly copying all characters from one array to a new array with size one greater

than before.

270 Chapter 7. List and Iterator ADTs

7.3 Positional Lists

When working with array-based sequences, integer indices provide an excellent

means for describing the location of an element, or the location at which an inser-

tion or deletion should take place. However, numeric indices are not a good choice

for describing positions within a linked list because, knowing only an element’s in-

dex, the only way to reach it is to traverse the list incrementally from its beginning

or end, counting elements along the way.

Furthermore, indices are not a good abstraction for describing a more local

view of a position in a sequence, because the index of an entry changes over time

due to insertions or deletions that happen earlier in the sequence. For example, it

may not be convenient to describe the location of a person waiting in line based on

the index, as that requires knowledge of precisely how far away that person is from

the front of the line. We prefer an abstraction, as characterized in Figure 7.7, in

which there is some other means for describing a position.

Tickets
me

Figure 7.7: We wish to be able to identify the position of an element in a sequence

without the use of an integer index. The label “me” represents some abstraction

that identifies the position.

Our goal is to design an abstract data type that provides a user a way to refer to

elements anywhere in a sequence, and to perform arbitrary insertions and deletions.

This would allow us to efficiently describe actions such as a person deciding to

leave the line before reaching the front, or allowing a friend to “cut” into line right

behind him or her.

As another example, a text document can be viewed as a long sequence of

characters. A word processor uses the abstraction of a cursor to describe a position

within the document without explicit use of an integer index, allowing operations

such as “delete the character at the cursor” or “insert a new character just after the

cursor.” Furthermore, we may be able to refer to an inherent position within a doc-

ument, such as the beginning of a particular chapter, without relying on a character

index (or even a chapter number) that may change as the document evolves.

7.3. Positional Lists 271

For these reasons, we temporarily forego the index-based methods of Java’s

formal List interface, and instead develop our own abstract data type that we denote

as a positional list. Although a positional list is an abstraction, and need not rely

on a linked list for its implementation, we certainly have a linked list in mind as

we design the ADT, ensuring that it takes best advantage of particular capabilities

of a linked list, such as O(1)-time insertions and deletions at arbitrary positions

(something that is not possible with an array-based sequence).

We face an immediate challenge in designing the ADT; to achieve constant

time insertions and deletions at arbitrary locations, we effectively need a reference

to the node at which an element is stored. It is therefore very tempting to develop

an ADT in which a node reference serves as the mechanism for describing a posi-

tion. In fact, our DoublyLinkedList class of Section 3.4.1 has methods addBetween
and remove that accept node references as parameters; however, we intentionally

declared those methods as private.

Unfortunately, the public use of nodes in the ADT would violate the object-

oriented design principles of abstraction and encapsulation, which were introduced

in Chapter 2. There are several reasons to prefer that we encapsulate the nodes of a

linked list, for both our sake and for the benefit of users of our abstraction:

• It will be simpler for users of our data structure if they are not bothered with

unnecessary details of our implementation, such as low-level manipulation

of nodes, or our reliance on the use of sentinel nodes. Notice that to use

the addBetween method of our DoublyLinkedList class to add a node at the

beginning of a sequence, the header sentinel must be sent as a parameter.

• We can provide a more robust data structure if we do not permit users to

directly access or manipulate the nodes. We can then ensure that users do not

invalidate the consistency of a list by mismanaging the linking of nodes. A

more subtle problem arises if a user were allowed to call the addBetween or

remove method of our DoublyLinkedList class, sending a node that does not

belong to the given list as a parameter. (Go back and look at that code and

see why it causes a problem!)

• By better encapsulating the internal details of our implementation, we have

greater flexibility to redesign the data structure and improve its performance.

In fact, with a well-designed abstraction, we can provide a notion of a nonnu-

meric position, even if using an array-based sequence. (See Exercise C-7.43.)

Therefore, in defining the positional list ADT, we also introduce the concept

of a position, which formalizes the intuitive notion of the “location” of an element

relative to others in the list. (When we do use a linked list for the implementation,

we will later see how we can privately use node references as natural manifestations

of positions.)

272 Chapter 7. List and Iterator ADTs

7.3.1 Positions

To provide a general abstraction for the location of an element within a structure,

we define a simple position abstract data type. A position supports the following

single method:

getElement(): Returns the element stored at this position.

A position acts as a marker or token within a broader positional list. A position

p, which is associated with some element e in a list L, does not change, even if the

index of e changes in L due to insertions or deletions elsewhere in the list. Nor does

position p change if we replace the element e stored at p with another element. The

only way in which a position becomes invalid is if that position (and its element)

are explicitly removed from the list.

Having a formal definition of a position type allows positions to serve as pa-

rameters to some methods and return values from other methods of the positional

list ADT, which we next describe.

7.3.2 The Positional List Abstract Data Type

We now view a positional list as a collection of positions, each of which stores an

element. The accessor methods provided by the positional list ADT include the

following, for a list L:

first(): Returns the position of the first element of L (or null if empty).

last(): Returns the position of the last element of L (or null if empty).

before(p): Returns the position of L immediately before position p

(or null if p is the first position).

after(p): Returns the position of L immediately after position p

(or null if p is the last position).

isEmpty(): Returns true if list L does not contain any elements.

size(): Returns the number of elements in list L.

An error occurs if a position p, sent as a parameter to a method, is not a valid

position for the list.

Note well that the first() and last() methods of the positional list ADT return

the associated positions, not the elements. (This is in contrast to the corresponding

first and last methods of the deque ADT.) The first element of a positional list can

be determined by subsequently invoking the getElement method on that position,

as first().getElement. The advantage of receiving a position as a return value is

that we can subsequently use that position to traverse the list.

7.3. Positional Lists 273

As a demonstration of a typical traversal of a positional list, Code Fragment 7.6

traverses a list, named guests, that stores string elements, and prints each element

while traversing from the beginning of the list to the end.

1 Position<String> cursor = guests.first();
2 while (cursor != null) {
3 System.out.println(cursor.getElement());
4 cursor = guests.after(cursor); // advance to the next position (if any)
5 }

Code Fragment 7.6: A traversal of a positional list.

This code relies on the convention that the null reference is returned when the after
method is called upon the last position. (That return value is clearly distinguishable

from any legitimate position.) The positional list ADT similarly indicates that the

null value is returned when the before method is invoked at the front of the list, or

when first or last methods are called upon an empty list. Therefore, the above code

fragment works correctly even if the guests list is empty.

Updated Methods of a Positional List

The positional list ADT also includes the following update methods:

addFirst(e): Inserts a new element e at the front of the list, returning the

position of the new element.

addLast(e): Inserts a new element e at the back of the list, returning the

position of the new element.

addBefore(p, e): Inserts a new element e in the list, just before position p,

returning the position of the new element.

addAfter(p, e): Inserts a new element e in the list, just after position p,

returning the position of the new element.

set(p, e): Replaces the element at position p with element e, return-

ing the element formerly at position p.

remove(p): Removes and returns the element at position p in the list,

invalidating the position.

There may at first seem to be redundancy in the above repertoire of opera-

tions for the positional list ADT, since we can perform operation addFirst(e) with

addBefore(first(), e), and operation addLast(e) with addAfter(last(), e). But

these substitutions can only be done for a nonempty list.

274 Chapter 7. List and Iterator ADTs

Example 7.4: The following table shows a series of operations on an initially

empty positional list storing integers. To identify position instances, we use vari-

ables such as p and q. For ease of exposition, when displaying the list contents, we

use subscript notation to denote the position storing an element.

Method Return Value List Contents

addLast(8) p (8p)

first() p (8p)

addAfter(p, 5) q (8p, 5q)

before(q) p (8p, 5q)

addBefore(q, 3) r (8p, 3r, 5q)

r.getElement() 3 (8p, 3r, 5q)

after(p) r (8p, 3r, 5q)

before(p) null (8p, 3r, 5q)

addFirst(9) s (9s, 8p, 3r, 5q)

remove(last()) 5 (9s, 8p, 3r)

set(p, 7) 8 (9s, 7p, 3r)

remove(q) “error” (9s, 7p, 3r)

Java Interface Definitions

We are now ready to formalize the position ADT and positional list ADT. A Java

Position interface, representing the position ADT, is given in Code Fragment 7.7.

Following that, Code Fragment 7.8 presents a Java definition for our PositionalList
interface. If the getElement() method is called on a Position instance that has

previously been removed from its list, an IllegalStateException is thrown. If an

invalid Position instance is sent as a parameter to a method of a PositionalList, an

IllegalArgumentException is thrown. (Both of those exception types are defined in

the standard Java hierarchy.)

1 public interface Position<E> {
2 /∗∗
3 ∗ Returns the element stored at this position.
4 ∗

5 ∗ @return the stored element
6 ∗ @throws IllegalStateException if position no longer valid
7 ∗/
8 E getElement() throws IllegalStateException;
9 }

Code Fragment 7.7: The Position interface.

7.3. Positional Lists 275

1 /∗∗ An interface for positional lists. ∗/
2 public interface PositionalList<E> {
3

4 /∗∗ Returns the number of elements in the list. ∗/
5 int size();
6

7 /∗∗ Tests whether the list is empty. ∗/
8 boolean isEmpty();
9

10 /∗∗ Returns the first Position in the list (or null, if empty). ∗/
11 Position<E> first();
12
13 /∗∗ Returns the last Position in the list (or null, if empty). ∗/
14 Position<E> last();
15
16 /∗∗ Returns the Position immediately before Position p (or null, if p is first). ∗/
17 Position<E> before(Position<E> p) throws IllegalArgumentException;
18
19 /∗∗ Returns the Position immediately after Position p (or null, if p is last). ∗/
20 Position<E> after(Position<E> p) throws IllegalArgumentException;
21
22 /∗∗ Inserts element e at the front of the list and returns its new Position. ∗/
23 Position<E> addFirst(E e);
24

25 /∗∗ Inserts element e at the back of the list and returns its new Position. ∗/
26 Position<E> addLast(E e);
27

28 /∗∗ Inserts element e immediately before Position p and returns its new Position. ∗/
29 Position<E> addBefore(Position<E> p, E e)
30 throws IllegalArgumentException;
31
32 /∗∗ Inserts element e immediately after Position p and returns its new Position. ∗/
33 Position<E> addAfter(Position<E> p, E e)
34 throws IllegalArgumentException;
35

36 /∗∗ Replaces the element stored at Position p and returns the replaced element. ∗/
37 E set(Position<E> p, E e) throws IllegalArgumentException;
38

39 /∗∗ Removes the element stored at Position p and returns it (invalidating p). ∗/
40 E remove(Position<E> p) throws IllegalArgumentException;
41 }

Code Fragment 7.8: The PositionalList interface.

276 Chapter 7. List and Iterator ADTs

7.3.3 Doubly Linked List Implementation

Not surprisingly, our preferred implementation of the PositionalList interface relies

on a doubly linked list. Although we implemented a DoublyLinkedList class in

Chapter 3, that class does not adhere to the PositionalList interface.

In this section, we develop a concrete implementation of the PositionalList
interface using a doubly linked list. The low-level details of our new linked-list

representation, such as the use of header and trailer sentinels, will be identical

to our earlier version; we refer the reader to Section 3.4 for a discussion of the

doubly linked list operations. What differs in this section is our management of the

positional abstraction.

The obvious way to identify locations within a linked list are node references.

Therefore, we declare the nested Node class of our linked list so as to implement

the Position interface, supporting the required getElement method. So the nodes

are the positions. Yet, the Node class is declared as private, to maintain proper

encapsulation. All of the public methods of the positional list rely on the Position
type, so although we know we are sending and receiving nodes, these are only

known to be positions from the outside; as a result, users of our class cannot call

any method other than getElement().
In Code Fragments 7.9–7.12, we define a LinkedPositionalList class, which

implements the positional list ADT. We provide the following guide to that code:

• Code Fragment 7.9 contains the definition of the nested Node<E> class,

which implements the Position<E> interface. Following that are the decla-

ration of the instance variables of the outer LinkedPositionalList class and its

constructor.

• Code Fragment 7.10 begins with two important utility methods that help us

robustly cast between the Position and Node types. The validate(p) method

is called anytime the user sends a Position instance as a parameter. It throws

an exception if it determines that the position is invalid, and otherwise returns

that instance, implicitly cast as a Node, so that methods of the Node class

can subsequently be called. The private position(node) method is used when

about to return a Position to the user. Its primary purpose is to make sure that

we do not expose either sentinel node to a caller, returning a null reference

in such a case. We rely on both of these private utility methods in the public

accessor methods that follow.

• Code Fragment 7.11 provides most of the public update methods, relying on

a private addBetween method to unify the implementations of the various

insertion operations.

• Code Fragment 7.12 provides the public remove method. Note that it sets all

fields of the removed node back to null—a condition we can later detect to

recognize a defunct position.

7.3. Positional Lists 277

1 /∗∗ Implementation of a positional list stored as a doubly linked list. ∗/
2 public class LinkedPositionalList<E> implements PositionalList<E> {
3 //---------------- nested Node class ----------------
4 private static class Node<E> implements Position<E> {
5 private E element; // reference to the element stored at this node
6 private Node<E> prev; // reference to the previous node in the list
7 private Node<E> next; // reference to the subsequent node in the list
8 public Node(E e, Node<E> p, Node<E> n) {
9 element = e;

10 prev = p;
11 next = n;
12 }
13 public E getElement() throws IllegalStateException {
14 if (next == null) // convention for defunct node
15 throw new IllegalStateException("Position no longer valid");
16 return element;
17 }
18 public Node<E> getPrev() {
19 return prev;
20 }
21 public Node<E> getNext() {
22 return next;
23 }
24 public void setElement(E e) {
25 element = e;
26 }
27 public void setPrev(Node<E> p) {
28 prev = p;
29 }
30 public void setNext(Node<E> n) {
31 next = n;
32 }
33 } //----------- end of nested Node class -----------
34
35 // instance variables of the LinkedPositionalList
36 private Node<E> header; // header sentinel
37 private Node<E> trailer; // trailer sentinel
38 private int size = 0; // number of elements in the list
39

40 /∗∗ Constructs a new empty list. ∗/
41 public LinkedPositionalList() {
42 header = new Node<>(null, null, null); // create header
43 trailer = new Node<>(null, header, null); // trailer is preceded by header
44 header.setNext(trailer); // header is followed by trailer
45 }

Code Fragment 7.9: An implementation of the LinkedPositionalList class.

(Continues in Code Fragments 7.10–7.12.)

278 Chapter 7. List and Iterator ADTs

46 // private utilities
47 /∗∗ Validates the position and returns it as a node. ∗/
48 private Node<E> validate(Position<E> p) throws IllegalArgumentException {
49 if (!(p instanceof Node)) throw new IllegalArgumentException("Invalid p");
50 Node<E> node = (Node<E>) p; // safe cast
51 if (node.getNext() == null) // convention for defunct node
52 throw new IllegalArgumentException("p is no longer in the list");
53 return node;
54 }
55

56 /∗∗ Returns the given node as a Position (or null, if it is a sentinel). ∗/
57 private Position<E> position(Node<E> node) {
58 if (node == header | | node == trailer)
59 return null; // do not expose user to the sentinels
60 return node;
61 }
62

63 // public accessor methods
64 /∗∗ Returns the number of elements in the linked list. ∗/
65 public int size() { return size; }
66

67 /∗∗ Tests whether the linked list is empty. ∗/
68 public boolean isEmpty() { return size == 0; }
69

70 /∗∗ Returns the first Position in the linked list (or null, if empty). ∗/
71 public Position<E> first() {
72 return position(header.getNext());
73 }
74

75 /∗∗ Returns the last Position in the linked list (or null, if empty). ∗/
76 public Position<E> last() {
77 return position(trailer.getPrev());
78 }
79

80 /∗∗ Returns the Position immediately before Position p (or null, if p is first). ∗/
81 public Position<E> before(Position<E> p) throws IllegalArgumentException {
82 Node<E> node = validate(p);
83 return position(node.getPrev());
84 }
85

86 /∗∗ Returns the Position immediately after Position p (or null, if p is last). ∗/
87 public Position<E> after(Position<E> p) throws IllegalArgumentException {
88 Node<E> node = validate(p);
89 return position(node.getNext());
90 }

Code Fragment 7.10: An implementation of the LinkedPositionalList class.

(Continued from Code Fragment 7.9; continues in Code Fragments 7.11 and 7.12.)

7.3. Positional Lists 279

91 // private utilities
92 /∗∗ Adds element e to the linked list between the given nodes. ∗/
93 private Position<E> addBetween(E e, Node<E> pred, Node<E> succ) {
94 Node<E> newest = new Node<>(e, pred, succ); // create and link a new node
95 pred.setNext(newest);
96 succ.setPrev(newest);
97 size++;
98 return newest;
99 }

100
101 // public update methods
102 /∗∗ Inserts element e at the front of the linked list and returns its new Position. ∗/
103 public Position<E> addFirst(E e) {
104 return addBetween(e, header, header.getNext()); // just after the header
105 }
106

107 /∗∗ Inserts element e at the back of the linked list and returns its new Position. ∗/
108 public Position<E> addLast(E e) {
109 return addBetween(e, trailer.getPrev(), trailer); // just before the trailer
110 }
111
112 /∗∗ Inserts element e immediately before Position p, and returns its new Position.∗/
113 public Position<E> addBefore(Position<E> p, E e)
114 throws IllegalArgumentException {
115 Node<E> node = validate(p);
116 return addBetween(e, node.getPrev(), node);
117 }
118

119 /∗∗ Inserts element e immediately after Position p, and returns its new Position. ∗/
120 public Position<E> addAfter(Position<E> p, E e)
121 throws IllegalArgumentException {
122 Node<E> node = validate(p);
123 return addBetween(e, node, node.getNext());
124 }
125

126 /∗∗ Replaces the element stored at Position p and returns the replaced element. ∗/
127 public E set(Position<E> p, E e) throws IllegalArgumentException {
128 Node<E> node = validate(p);
129 E answer = node.getElement();
130 node.setElement(e);
131 return answer;
132 }

Code Fragment 7.11: An implementation of the LinkedPositionalList class.

(Continued from Code Fragments 7.9 and 7.10; continues in Code Fragment 7.12.)

280 Chapter 7. List and Iterator ADTs

133 /∗∗ Removes the element stored at Position p and returns it (invalidating p). ∗/
134 public E remove(Position<E> p) throws IllegalArgumentException {
135 Node<E> node = validate(p);
136 Node<E> predecessor = node.getPrev();
137 Node<E> successor = node.getNext();
138 predecessor.setNext(successor);
139 successor.setPrev(predecessor);
140 size−−;
141 E answer = node.getElement();
142 node.setElement(null); // help with garbage collection
143 node.setNext(null); // and convention for defunct node
144 node.setPrev(null);
145 return answer;
146 }
147 }

Code Fragment 7.12: An implementation of the LinkedPositionalList class.

(Continued from Code Fragments 7.9–7.11.)

The Performance of a Linked Positional List

The positional list ADT is ideally suited for implementation with a doubly linked

list, as all operations run in worst-case constant time, as shown in Table 7.2. This is

in stark contrast to the ArrayList structure (analyzed in Table 7.1), which requires

linear time for insertions or deletions at arbitrary positions, due to the need for a

loop to shift other elements.

Of course, our positional list does not support the index-based methods of the

official List interface of Section 7.1. It is possible to add support for those methods

by traversing the list while counting nodes (see Exercise C-7.38), but that requires

time proportional to the sublist that is traversed.

Method Running Time

size() O(1)

isEmpty() O(1)

first(), last() O(1)

before(p), after(p) O(1)

addFirst(e), addLast(e) O(1)

addBefore(p, e), addAfter(p, e) O(1)

set(p, e) O(1)

remove(p) O(1)

Table 7.2: Performance of a positional list with n elements realized by a doubly

linked list. The space usage is O(n).

7.3. Positional Lists 281

Implementing a Positional List with an Array

We can implement a positional list L using an array A for storage, but some care

is necessary in designing objects that will serve as positions. At first glance, it

would seem that a position p need only store the index i at which its associated

element is stored within the array. We can then implement method getElement(p)
simply by returning A[i]. The problem with this approach is that the index of an

element e changes when other insertions or deletions occur before it. If we have

already returned a position p associated with element e that stores an outdated

index i to a user, the wrong array cell would be accessed when the position was

used. (Remember that positions in a positional list should always be defined relative

to their neighboring positions, not their indices.)

Hence, if we are going to implement a positional list with an array, we need a

different approach. We recommend the following representation. Instead of storing

the elements of L directly in array A, we store a new kind of position object in each

cell of A. A position p stores the element e as well as the current index i of that

element within the list. Such a data structure is illustrated in Figure 7.8.

1 2 30 N−1

(3,SFO)(2,PVD)(0,JFK) (1,BWI)

Figure 7.8: An array-based representation of a positional list.

With this representation, we can determine the index currently associated with

a position, and we can determine the position currently associated with a specific

index. We can therefore implement an accessor, such as before(p), by finding the

index of the given position and using the array to find the neighboring position.

When an element is inserted or deleted somewhere in the list, we can loop

through the array to update the index variable stored in all later positions in the list

that are shifted during the update.

Efficiency Trade-Offs with an Array-Based Sequence

In this array implementation of a sequence, the addFirst, addBefore, addAfter, and

remove methods take O(n) time, because we have to shift position objects to make

room for the new position or to fill in the hole created by the removal of the old

position (just as in the insert and remove methods based on index). All the other

position-based methods take O(1) time.

282 Chapter 7. List and Iterator ADTs

7.4 Iterators

An iterator is a software design pattern that abstracts the process of scanning

through a sequence of elements, one element at a time. The underlying elements

might be stored in a container class, streaming through a network, or generated by

a series of computations.

In order to unify the treatment and syntax for iterating objects in a way that is

independent from a specific organization, Java defines the java.util.Iterator inter-

face with the following two methods:

hasNext(): Returns true if there is at least one additional element in the

sequence, and false otherwise.

next(): Returns the next element in the sequence.

The interface uses Java’s generic framework, with the next() method return-

ing a parameterized element type. For example, the Scanner class (described in

Section 1.6) formally implements the Iterator<String> interface, with its next()
method returning a String instance.

If the next() method of an iterator is called when no further elements are avail-

able, a NoSuchElementException is thrown. Of course, the hasNext() method can

be used to detect that condition before calling next().

The combination of these two methods allows a general loop construct for pro-

cessing elements of the iterator. For example, if we let variable, iter, denote an

instance of the Iterator<String> type, then we can write the following:

while (iter.hasNext()) {
String value = iter.next();
System.out.println(value);
}

The java.util.Iterator interface contains a third method, which is optionally

supported by some iterators:

remove(): Removes from the collection the element returned by the most

recent call to next(). Throws an IllegalStateException if next
has not yet been called, or if remove was already called since

the most recent call to next.

This method can be used to filter a collection of elements, for example to dis-

card all negative numbers from a data set.

For the sake of simplicity, we will not implement the remove method for most

data structures in this book, but we will give two tangible examples later in this

section. If removal is not supported, an UnsupportedOperationException is con-

ventionally thrown.

7.4. Iterators 283

7.4.1 The Iterable Interface and Java’s For-Each Loop

A single iterator instance supports only one pass through a collection; calls to next
can be made until all elements have been reported, but there is no way to “reset”

the iterator back to the beginning of the sequence.

However, a data structure that wishes to allow repeated iterations can support

a method that returns a new iterator, each time it is called. To provide greater

standardization, Java defines another parameterized interface, named Iterable, that

includes the following single method:

iterator(): Returns an iterator of the elements in the collection.

An instance of a typical collection class in Java, such as an ArrayList, is iterable

(but not itself an iterator); it produces an iterator for its collection as the return value

of the iterator() method. Each call to iterator() returns a new iterator instance,

thereby allowing multiple (even simultaneous) traversals of a collection.

Java’s Iterable class also plays a fundamental role in support of the “for-each”

loop syntax (described in Section 1.5.2). The loop syntax,

for (ElementType variable : collection) {
loopBody // may refer to ”variable”
}

is supported for any instance, collection, of an iterable class. ElementType must be

the type of object returned by its iterator, and variable will take on element values

within the loopBody. Essentially, this syntax is shorthand for the following:

Iterator<ElementType> iter = collection.iterator();
while (iter.hasNext()) {

ElementType variable = iter.next();
loopBody // may refer to ”variable”
}

We note that the iterator’s remove method cannot be invoked when using the

for-each loop syntax. Instead, we must explicitly use an iterator. As an example,

the following loop can be used to remove all negative numbers from an ArrayList
of floating-point values.

ArrayList<Double> data; // populate with random numbers (not shown)
Iterator<Double> walk = data.iterator();
while (walk.hasNext())
if (walk.next() < 0.0)
walk.remove();

284 Chapter 7. List and Iterator ADTs

7.4.2 Implementing Iterators

There are two general styles for implementing iterators that differ in terms of what

work is done when the iterator instance is first created, and what work is done each

time the iterator is advanced with a call to next().
A snapshot iterator maintains its own private copy of the sequence of elements,

which is constructed at the time the iterator object is created. It effectively records

a “snapshot” of the sequence of elements at the time the iterator is created, and is

therefore unaffected by any subsequent changes to the primary collection that may

occur. Implementing snapshot iterators tends to be very easy, as it requires a simple

traversal of the primary structure. The downside of this style of iterator is that it

requires O(n) time and O(n) auxiliary space, upon construction, to copy and store

a collection of n elements.

A lazy iterator is one that does not make an upfront copy, instead perform-

ing a piecewise traversal of the primary structure only when the next() method is

called to request another element. The advantage of this style of iterator is that

it can typically be implemented so the iterator requires only O(1) space and O(1)
construction time. One downside (or feature) of a lazy iterator is that its behavior

is affected if the primary structure is modified (by means other than by the itera-

tor’s own remove method) before the iteration completes. Many of the iterators in

Java’s libraries implement a “fail-fast” behavior that immediately invalidates such

an iterator if its underlying collection is modified unexpectedly.

We will demonstrate how to implement iterators for both the ArrayList and

LinkedPositionalList classes as examples. We implement lazy iterators for both,

including support for the remove operation (but without any fail-fast guarantee).

Iterations with the ArrayList class

We begin by discussing iteration for the ArrayList<E> class. We will have it im-

plement the Iterable<E> interface. (In fact, that requirement is already part of

Java’s List interface.) Therefore, we must add an iterator() method to that class

definition, which returns an instance of an object that implements the Iterator<E>
interface. For this purpose, we define a new class, ArrayIterator, as a nonstatic

nested class of ArrayList (i.e., an inner class, as described in Section 2.6). The

advantage of having the iterator as an inner class is that it can access private fields

(such as the array A) that are members of the containing list.

Our implementation is given in Code Fragment 7.13. The iterator() method

of ArrayList returns a new instance of the inner ArrayIterator class. Each iterator

maintains a field j that represents the index of the next element to be returned. It is

initialized to 0, and when j reaches the size of the list, there are no more elements to

return. In order to support element removal through the iterator, we also maintain

a boolean variable that denotes whether a call to remove is currently permissible.

7.4. Iterators 285

1 //---------------- nested ArrayIterator class ----------------
2 /∗∗
3 ∗ A (nonstatic) inner class. Note well that each instance contains an implicit
4 ∗ reference to the containing list, allowing it to access the list's members.
5 ∗/
6 private class ArrayIterator implements Iterator<E> {
7 private int j = 0; // index of the next element to report
8 private boolean removable = false; // can remove be called at this time?
9

10 /∗∗
11 ∗ Tests whether the iterator has a next object.
12 ∗ @return true if there are further objects, false otherwise
13 ∗/
14 public boolean hasNext() { return j < size; } // size is field of outer instance
15

16 /∗∗
17 ∗ Returns the next object in the iterator.
18 ∗

19 ∗ @return next object
20 ∗ @throws NoSuchElementException if there are no further elements
21 ∗/
22 public E next() throws NoSuchElementException {
23 if (j == size) throw new NoSuchElementException("No next element");
24 removable = true; // this element can subsequently be removed
25 return data[j++]; // post-increment j, so it is ready for future call to next
26 }
27
28 /∗∗
29 ∗ Removes the element returned by most recent call to next.
30 ∗ @throws IllegalStateException if next has not yet been called
31 ∗ @throws IllegalStateException if remove was already called since recent next
32 ∗/
33 public void remove() throws IllegalStateException {
34 if (!removable) throw new IllegalStateException("nothing to remove");
35 ArrayList.this.remove(j−1); // that was the last one returned
36 j−−; // next element has shifted one cell to the left
37 removable = false; // do not allow remove again until next is called
38 }
39 } //------------ end of nested ArrayIterator class ------------
40
41 /∗∗ Returns an iterator of the elements stored in the list. ∗/
42 public Iterator<E> iterator() {
43 return new ArrayIterator(); // create a new instance of the inner class
44 }

Code Fragment 7.13: Code providing support for ArrayList iterators. (This should

be nested within the ArrayList class definition of Code Fragments 7.2 and 7.3.)

286 Chapter 7. List and Iterator ADTs

Iterations with the LinkedPositionalList class

In support the concept of iteration with the LinkedPositionalList class, a first ques-

tion is whether to support iteration of the elements of the list or the positions of the

list. If we allow a user to iterate through all positions of the list, those positions

could be used to access the underlying elements, so support for position iteration is

more general. However, it is more standard for a container class to support iteration

of the core elements, by default, so that the for-each loop syntax could be used to

write code such as the following,

for (String guest : waitlist)

assuming that variable waitlist has type LinkedPositionalList<String>.

For maximum convenience, we will support both forms of iteration. We will

have the standard iterator() method return an iterator of the elements of the list,

so that our list class formally implements the Iterable interface for the declared

element type.

For those wishing to iterate through the positions of a list, we will provide a

new method, positions(). At first glance, it would seem a natural choice for such a

method to return an Iterator. However, we prefer for the return type of that method

to be an instance that is Iterable (and hence, has its own iterator() method that

returns an iterator of positions). Our reason for the extra layer of complexity is that

we wish for users of our class to be able to use a for-each loop with a simple syntax

such as the following:

for (Position<String> p : waitlist.positions())

For this syntax to be legal, the return type of positions() must be Iterable.

Code Fragment 7.14 presents our new support for the iteration of positions and

elements of a LinkedPositionalList. We define three new inner classes. The first

of these is PositionIterator, providing the core functionality of our list iterations.

Whereas the array list iterator maintained the index of the next element to be re-

turned as a field, this class maintains the position of the next element to be returned

(as well as the position of the most recently returned element, to support removal).

To support our goal of the positions() method returning an Iterable object,

we define a trivial PositionIterable inner class, which simply constructs and re-

turns a new PositionIterator object each time its iterator() method is called. The

positions() method of the top-level class returns a new PositionIterable instance.

Our framework relies heavily on these being inner classes, not static nested classes.

Finally, we wish to have the top-level iterator() method return an iterator of

elements (not positions). Rather than reinvent the wheel, we trivially adapt the

PositionIterator class to define a new ElementIterator class, which lazily manages

a position iterator instance, while returning the element stored at each position

when next() is called.

7.4. Iterators 287

1 //---------------- nested PositionIterator class ----------------
2 private class PositionIterator implements Iterator<Position<E>> {
3 private Position<E> cursor = first(); // position of the next element to report
4 private Position<E> recent = null; // position of last reported element
5 /∗∗ Tests whether the iterator has a next object. ∗/
6 public boolean hasNext() { return (cursor != null); }
7 /∗∗ Returns the next position in the iterator. ∗/
8 public Position<E> next() throws NoSuchElementException {
9 if (cursor == null) throw new NoSuchElementException("nothing left");

10 recent = cursor; // element at this position might later be removed
11 cursor = after(cursor);
12 return recent;
13 }
14 /∗∗ Removes the element returned by most recent call to next. ∗/
15 public void remove() throws IllegalStateException {
16 if (recent == null) throw new IllegalStateException("nothing to remove");
17 LinkedPositionalList.this.remove(recent); // remove from outer list
18 recent = null; // do not allow remove again until next is called
19 }
20 } //------------ end of nested PositionIterator class ------------
21

22 //---------------- nested PositionIterable class ----------------
23 private class PositionIterable implements Iterable<Position<E>> {
24 public Iterator<Position<E>> iterator() { return new PositionIterator(); }
25 } //------------ end of nested PositionIterable class ------------
26

27 /∗∗ Returns an iterable representation of the list's positions. ∗/
28 public Iterable<Position<E>> positions() {
29 return new PositionIterable(); // create a new instance of the inner class
30 }
31

32 //---------------- nested ElementIterator class ----------------
33 /∗ This class adapts the iteration produced by positions() to return elements. ∗/
34 private class ElementIterator implements Iterator<E> {
35 Iterator<Position<E>> posIterator = new PositionIterator();
36 public boolean hasNext() { return posIterator.hasNext(); }
37 public E next() { return posIterator.next().getElement(); } // return element!
38 public void remove() { posIterator.remove(); }
39 }
40

41 /∗∗ Returns an iterator of the elements stored in the list. ∗/
42 public Iterator<E> iterator() { return new ElementIterator(); }

Code Fragment 7.14: Support for providing iterations of positions and elements of a

LinkedPositionalList. (This should be nested within the LinkedPositionalList class

definition of Code Fragments 7.9–7.12.)

288 Chapter 7. List and Iterator ADTs

7.5 The Java Collections Framework

Java provides many data structure interfaces and classes, which together form the

Java Collections Framework. This framework, which is part of the java.util pack-

age, includes versions of several of the data structures discussed in this book, some

of which we have already discussed and others of which we will discuss later in

this book. The root interface in the Java collections framework is named Collec-
tion. This is a general interface for any data structure, such as a list, that represents a

collection of elements. The Collection interface includes many methods, including

some we have already seen (e.g., size(), isEmpty(), iterator()). It is a superinter-

face for other interfaces in the Java Collections Framework that can hold elements,

including the java.util interfaces Deque, List, and Queue, and other subinterfaces

discussed later in this book, including Set (Section 10.5.1) and Map (Section 10.1).

The Java Collections Framework also includes concrete classes implementing

various interfaces with a combination of properties and underlying representations.

We summarize but a few of those classes in Table 7.3. For each, we denote which

of the Queue, Deque, or List interfaces are implemented (possibly several). We

also discuss several behavioral properties. Some classes enforce, or allow, a fixed

capacity limit. Robust classes provide support for concurrency, allowing multiple

processes to share use of a data structure in a thread-safe manner. If the structure

is designated as blocking, a call to retrieve an element from an empty collection

waits until some other process inserts an element. Similarly, a call to insert into a

full blocking structure must wait until room becomes available.

Interfaces Properties Storage

Class Q
u
eu
e

D
eq
u
e

L
is
t

C
ap

ac
it

y
L

im
it

T
h
re

ad
-S

af
e

B
lo

ck
in

g

A
rr

ay

L
in

k
ed

L
is

t

ArrayBlockingQueue X X X X X

LinkedBlockingQueue X X X X X

ConcurrentLinkedQueue X X X

ArrayDeque X X X

LinkedBlockingDeque X X X X X X

ConcurrentLinkedDeque X X X X

ArrayList X X

LinkedList X X X X

Table 7.3: Several classes in the Java Collections Framework.

7.5. The Java Collections Framework 289

7.5.1 List Iterators in Java

The java.util.LinkedList class does not expose a position concept to users in its API,

as we do in our positional list ADT. Instead, the preferred way to access and update

a LinkedList object in Java, without using indices, is to use a ListIterator that is

returned by the list’s listIterator() method. Such an iterator provides forward and

backward traversal methods as well as local update methods. It views its current

position as being before the first element, between two elements, or after the last

element. That is, it uses a list cursor, much like a screen cursor is viewed as being

located between two characters on a screen. Specifically, the java.util.ListIterator
interface includes the following methods:

add(e): Adds the element e at the current position of the iterator.

hasNext(): Returns true if there is an element after the current position

of the iterator.

hasPrevious(): Returns true if there is an element before the current position

of the iterator.

previous(): Returns the element e before the current position and sets

the current position to be before e.

next(): Returns the element e after the current position and sets the

current position to be after e.

nextIndex(): Returns the index of the next element.

previousIndex(): Returns the index of the previous element.

remove(): Removes the element returned by the most recent next or

previous operation.

set(e): Replaces the element returned by the most recent call to the

next or previous operation with e.

It is risky to use multiple iterators over the same list while modifying its contents.

If insertions, deletions, or replacements are required at multiple “places” in a list, it

is safer to use positions to specify these locations. But the java.util.LinkedList class

does not expose its position objects to the user. So, to avoid the risks of modifying

a list that has created multiple iterators, the iterators have a “fail-fast” feature that

invalidates such an iterator if its underlying collection is modified unexpectedly.

For example, if a java.util.LinkedList object L has returned five different iterators

and one of them modifies L, a ConcurrentModificationException is thrown if any

of the other four is subsequently used. That is, Java allows many list iterators to

be traversing a linked list L at the same time, but if one of them modifies L (using

an add, set, or remove method), then all the other iterators for L become invalid.

Likewise, if L is modified by one of its own update methods, then all existing

iterators for L immediately become invalid.

290 Chapter 7. List and Iterator ADTs

7.5.2 Comparison to Our Positional List ADT

Java provides functionality similar to our array list and positional lists ADT in the

java.util.List interface, which is implemented with an array in java.util.ArrayList
and with a linked list in java.util.LinkedList.

Moreover, Java uses iterators to achieve a functionality similar to what our

positional list ADT derives from positions. Table 7.4 shows corresponding meth-

ods between our (array and positional) list ADTs and the java.util interfaces List
and ListIterator interfaces, with notes about their implementations in the java.util
classes ArrayList and LinkedList.

Positional List java.util.List ListIterator
Notes

ADT Method Method Method

size() size() O(1) time

isEmpty() isEmpty() O(1) time

get(i)
A is O(1),
L is O(min{i,n− i})

first() listIterator() first element is next

last() listIterator(size()) last element is previous

before(p) previous() O(1) time

after(p) next() O(1) time

set(p, e) set(e) O(1) time

set(i, e)
A is O(1),
L is O(min{i,n− i})

add(i, e) O(n) time

addFirst(e) add(0, e) A is O(n), L is O(1)

addFirst(e) addFirst(e) only exists in L, O(1)

addLast(e) add(e) O(1) time

addLast(e) addLast(e) only exists in L, O(1)

addAfter(p, e) add(e)
insertion is at cursor;

A is O(n), L is O(1)

addBefore(p, e) add(e)
insertion is at cursor;

A is O(n), L is O(1)

remove(p) remove()
deletion is at cursor;

A is O(n), L is O(1)

remove(i)
A is O(1),
L is O(min{i,n− i})

Table 7.4: Correspondences between methods in our positional list ADT and the

java.util interfaces List and ListIterator. We use A and L as abbreviations for

java.util.ArrayList and java.util.LinkedList (or their running times).

7.5. The Java Collections Framework 291

7.5.3 List-Based Algorithms in the Java Collections Framework

In addition to the classes that are provided in the Java Collections Framework, there

are a number of simple algorithms that it provides as well. These algorithms are

implemented as static methods in the java.util.Collections class (not to be confused

with the java.util.Collection interface) and they include the following methods:

copy(Ldest , Lsrc): Copies all elements of the Lsrc list into corresponding in-

dices of the Ldest list.

disjoint(C, D): Returns a boolean value indicating whether the collections

C and D are disjoint.

fill(L, e): Replaces each element of the list L with element e.

frequency(C, e): Returns the number of elements in the collection C that are

equal to e.

max(C): Returns the maximum element in the collection C, based on

the natural ordering of its elements.

min(C): Returns the minimum element in the collection C, based on

the natural ordering of its elements.

replaceAll(L, e, f): Replaces each element in L that is equal to e with element f .

reverse(L): Reverses the ordering of elements in the list L.

rotate(L, d): Rotates the elements in the list L by the distance d (which

can be negative), in a circular fashion.

shuffle(L): Pseudorandomly permutes the ordering of the elements in

the list L.

sort(L): Sorts the list L, using the natural ordering of its elements.

swap(L, i, j): Swap the elements at indices i and j of list L.

292 Chapter 7. List and Iterator ADTs

Converting Lists into Arrays

Lists are a beautiful concept and they can be applied in a number of different con-

texts, but there are some instances where it would be useful if we could treat a list

like an array. Fortunately, the java.util.Collection interface includes the following

helpful methods for generating an array that has the same elements as the given

collection:

toArray(): Returns an array of elements of type Object containing

all the elements in this collection.

toArray(A): Returns an array of elements of the same element type as

A containing all the elements in this collection.

If the collection is a list, then the returned array will have its elements stored in the

same order as that of the original list. Thus, if we have a useful array-based method

that we want to use on a list or other type of collection, then we can do so by simply

using that collection’s toArray() method to produce an array representation of that

collection.

Converting Arrays into Lists

In a similar vein, it is often useful to be able to convert an array into an equivalent

list. Fortunately, the java.util.Arrays class includes the following method:

asList(A): Returns a list representation of the array A, with the same

element type as the elements of A.

The list returned by this method uses the array A as its internal representation for

the list. So this list is guaranteed to be an array-based list and any changes made to

it will automatically be reflected in A. Because of these types of side effects, use of

the asList method should always be done with caution, so as to avoid unintended

consequences. But, used with care, this method can often save us a lot of work. For

instance, the following code fragment could be used to randomly shuffle an array

of Integer objects, arr:

Integer[] arr = {1, 2, 3, 4, 5, 6, 7, 8}; // allowed by autoboxing
List<Integer> listArr = Arrays.asList(arr);
Collections.shuffle(listArr); // this has side effect of shuffling arr

It is worth noting that the array A sent to the asList method should be a reference

type (hence, our use of Integer rather than int in the above example). This is

because the List interface is generic, and requires that the element type be an object.

7.6. Sorting a Positional List 293

7.6 Sorting a Positional List

In Section 3.1.2, we introduced the insertion-sort algorithm in the context of an

array-based sequence. In this section, we develop an implementation that operates

on a PositionalList, relying on the same high-level algorithm in which each element

is placed relative to a growing collection of previously sorted elements.

We maintain a variable named marker that represents the rightmost position of

the currently sorted portion of a list. During each pass, we consider the position just

past the marker as the pivot and consider where the pivot’s element belongs relative

to the sorted portion; we use another variable, named walk, to move leftward from

the marker, as long as there remains a preceding element with value larger than the

pivot’s. A typical configuration of these variables is diagrammed in Figure 7.9. A

Java implementation of this strategy is given in Code 7.15.

15 22 25 29 36 23 53 11 42

marker

pivotwalk

Figure 7.9: Overview of one step of our insertion-sort algorithm. The shaded ele-

ments, those up to and including marker, have already been sorted. In this step, the

pivot’s element should be relocated immediately before the walk position.

1 /∗∗ Insertion-sort of a positional list of integers into nondecreasing order ∗/
2 public static void insertionSort(PositionalList<Integer> list) {
3 Position<Integer> marker = list.first(); // last position known to be sorted
4 while (marker != list.last()) {
5 Position<Integer> pivot = list.after(marker);
6 int value = pivot.getElement(); // number to be placed
7 if (value > marker.getElement()) // pivot is already sorted
8 marker = pivot;
9 else { // must relocate pivot

10 Position<Integer> walk = marker; // find leftmost item greater than value
11 while (walk != list.first() && list.before(walk).getElement() > value)
12 walk = list.before(walk);
13 list.remove(pivot); // remove pivot entry and
14 list.addBefore(walk, value); // reinsert value in front of walk
15 }
16 }
17 }

Code Fragment 7.15: Java code for performing insertion-sort on a positional list.

294 Chapter 7. List and Iterator ADTs

7.7 Case Study: Maintaining Access Frequencies

The positional list ADT is useful in a number of settings. For example, a program

that simulates a game of cards could model each person’s hand as a positional list

(Exercise P-7.60). Since most people keep cards of the same suit together, inserting

and removing cards from a person’s hand could be implemented using the methods

of the positional list ADT, with the positions being determined by a natural order

of the suits. Likewise, a simple text editor embeds the notion of positional insertion

and deletion, since such editors typically perform all updates relative to a cursor,

which represents the current position in the list of characters of text being edited.

In this section, we will consider maintaining a collection of elements while

keeping track of the number of times each element is accessed. Keeping such access

counts allows us to know which elements are among the most popular. Examples

of such scenarios include a Web browser that keeps track of a user’s most accessed

pages, or a music collection that maintains a list of the most frequently played

songs for a user. We will model this with a new favorites list ADT that supports the

size and isEmpty methods as well as the following:

access(e): Accesses the element e, adding it to the favorites list if it is

not already present, and increments its access count.

remove(e): Removes element e from the favorites list, if present.

getFavorites(k): Returns an iterable collection of the k most accessed elements.

7.7.1 Using a Sorted List

Our first approach for managing a list of favorites is to store elements in a linked

list, keeping them in nonincreasing order of access counts. We access or remove

an element by searching the list from the most frequently accessed to the least

frequently accessed. Reporting the k most accessed elements is easy, as they are

the first k entries of the list.

To maintain the invariant that elements are stored in nonincreasing order of

access counts, we must consider how a single access operation may affect the order.

The accessed element’s count increases by one, and so it may become larger than

one or more of its preceding neighbors in the list, thereby violating the invariant.

Fortunately, we can reestablish the sorted invariant using a technique similar to

a single pass of the insertion-sort algorithm, introduced in the previous section. We

can perform a backward traversal of the list, starting at the position of the element

whose access count has increased, until we locate a valid position after which the

element can be relocated.

7.7. Case Study: Maintaining Access Frequencies 295

Using the Composition Pattern

We wish to implement a favorites list by making use of a PositionalList for storage.

If elements of the positional list were simply elements of the favorites list, we would

be challenged to maintain access counts and to keep the proper count with the

associated element as the contents of the list are reordered. We use a general object-

oriented design pattern, the composition pattern, in which we define a single object

that is composed of two or more other objects. (See, for example, Section 2.5.2.)

Specifically, we define a nonpublic nested class, Item, that stores the element

and its access count as a single instance. We then maintain our favorites list as

a PositionalList of item instances, so that the access count for a user’s element is

embedded alongside it in our representation. (An Item is never exposed to a user

of a FavoritesList.)

1 /∗∗ Maintains a list of elements ordered according to access frequency. ∗/
2 public class FavoritesList<E> {
3 // ---------------- nested Item class ----------------
4 protected static class Item<E> {
5 private E value;
6 private int count = 0;
7 /∗∗ Constructs new item with initial count of zero. ∗/
8 public Item(E val) { value = val; }
9 public int getCount() { return count; }

10 public E getValue() { return value; }
11 public void increment() { count++; }
12 } //----------- end of nested Item class -----------
13
14 PositionalList<Item<E>> list = new LinkedPositionalList<>(); // list of Items
15 public FavoritesList() { } // constructs initially empty favorites list
16

17 // nonpublic utilities
18 /∗∗ Provides shorthand notation to retrieve user's element stored at Position p. ∗/
19 protected E value(Position<Item<E>> p) { return p.getElement().getValue(); }
20

21 /∗∗ Provides shorthand notation to retrieve count of item stored at Position p. ∗/
22 protected int count(Position<Item<E>> p) {return p.getElement().getCount();}
23
24 /∗∗ Returns Position having element equal to e (or null if not found). ∗/
25 protected Position<Item<E>> findPosition(E e) {
26 Position<Item<E>> walk = list.first();
27 while (walk != null && !e.equals(value(walk)))
28 walk = list.after(walk);
29 return walk;
30 }

Code Fragment 7.16: Class FavoritesList. (Continues in Code Fragment 7.17.)

296 Chapter 7. List and Iterator ADTs

31 /∗∗ Moves item at Position p earlier in the list based on access count. ∗/
32 protected void moveUp(Position<Item<E>> p) {
33 int cnt = count(p); // revised count of accessed item
34 Position<Item<E>> walk = p;
35 while (walk != list.first() && count(list.before(walk)) < cnt)
36 walk = list.before(walk); // found smaller count ahead of item
37 if (walk != p)
38 list.addBefore(walk, list.remove(p)); // remove/reinsert item
39 }
40

41 // public methods
42 /∗∗ Returns the number of items in the favorites list. ∗/
43 public int size() { return list.size(); }
44
45 /∗∗ Returns true if the favorites list is empty. ∗/
46 public boolean isEmpty() { return list.isEmpty(); }
47

48 /∗∗ Accesses element e (possibly new), increasing its access count. ∗/
49 public void access(E e) {
50 Position<Item<E>> p = findPosition(e); // try to locate existing element
51 if (p == null)
52 p = list.addLast(new Item<E>(e)); // if new, place at end
53 p.getElement().increment(); // always increment count
54 moveUp(p); // consider moving forward
55 }
56

57 /∗∗ Removes element equal to e from the list of favorites (if found). ∗/
58 public void remove(E e) {
59 Position<Item<E>> p = findPosition(e); // try to locate existing element
60 if (p != null)
61 list.remove(p);
62 }
63
64 /∗∗ Returns an iterable collection of the k most frequently accessed elements. ∗/
65 public Iterable<E> getFavorites(int k) throws IllegalArgumentException {
66 if (k < 0 | | k > size())
67 throw new IllegalArgumentException("Invalid k");
68 PositionalList<E> result = new LinkedPositionalList<>();
69 Iterator<Item<E>> iter = list.iterator();
70 for (int j=0; j < k; j++)
71 result.addLast(iter.next().getValue());
72 return result;
73 }
74 }

Code Fragment 7.17: Class FavoritesList. (Continued from Code Fragment 7.16.)

7.7. Case Study: Maintaining Access Frequencies 297

7.7.2 Using a List with the Move-to-Front Heuristic

The previous implementation of a favorites list performs the access(e) method in

time proportional to the index of e in the favorites list. That is, if e is the k th most

popular element in the favorites list, then accessing it takes O(k) time. In many

real-life access sequences (e.g., Web pages visited by a user), once an element is

accessed it is more likely to be accessed again in the near future. Such scenarios

are said to possess locality of reference.

A heuristic, or rule of thumb, that attempts to take advantage of the locality of

reference that is present in an access sequence is the move-to-front heuristic. To

apply this heuristic, each time we access an element we move it all the way to the

front of the list. Our hope, of course, is that this element will be accessed again in

the near future. Consider, for example, a scenario in which we have n elements and

the following series of n2 accesses:

• element 1 is accessed n times.

• element 2 is accessed n times.

• · · ·
• element n is accessed n times.

If we store the elements sorted by their access counts, inserting each element the

first time it is accessed, then

• each access to element 1 runs in O(1) time.

• each access to element 2 runs in O(2) time.

• · · ·
• each access to element n runs in O(n) time.

Thus, the total time for performing the series of accesses is proportional to

n+2n+3n+ · · ·+n ·n = n(1+2+3+ · · ·+n) = n · n(n+1)

2
,

which is O(n3).
On the other hand, if we use the move-to-front heuristic, inserting each element

the first time it is accessed, then

• each subsequent access to element 1 takes O(1) time.

• each subsequent access to element 2 takes O(1) time.

• · · ·
• each subsequent access to element n runs in O(1) time.

So the running time for performing all the accesses in this case is O(n2). Thus,

the move-to-front implementation has faster access times for this scenario. Still,

the move-to-front approach is just a heuristic, for there are access sequences where

using the move-to-front approach is slower than simply keeping the favorites list

ordered by access counts.

298 Chapter 7. List and Iterator ADTs

The Trade-Offs with the Move-to-Front Heuristic

If we no longer maintain the elements of the favorites list ordered by their access

counts, when we are asked to find the k most accessed elements, we need to search

for them. We will implement the getFavorites(k) method as follows:

1. We copy all entries of our favorites list into another list, named temp.

2. We scan the temp list k times. In each scan, we find the entry with the largest

access count, remove this entry from temp, and add it to the results.

This implementation of method getFavorites(k) takes O(kn) time. Thus, when k is

a constant, method getFavorites(k) runs in O(n) time. This occurs, for example,

when we want to get the “top ten” list. However, if k is proportional to n, then the

method getFavorites(k) runs in O(n2) time. This occurs, for example, when we

want a “top 25%” list.

In Chapter 9 we will introduce a data structure that will allow us to implement

getFavorites in O(n+ k logn) time (see Exercise P-9.51), and more advanced tech-

niques could be used to perform getFavorites in O(n+ k logk) time.

We could easily achieve O(n logn) time if we use a standard sorting algorithm

to reorder the temporary list before reporting the top k (see Chapter 12); this ap-

proach would be preferred to the original in the case that k is Ω(logn). (Recall the

big-Omega notation introduced in Section 4.3.1 to give an asymptotic lower bound

on the running time of an algorithm.) There is a specialized sorting algorithm (see

Section 12.3.2) that can take advantage of the fact that access counts are integers in

order to achieve O(n) time for getFavorites, for any value of k.

Implementing the Move-to-Front Heuristic in Java

We give an implementation of a favorites list using the move-to-front heuristic in

Code Fragment 7.18. The new FavoritesListMTF class inherits most of its func-

tionality from the original FavoritesList as a base class.

By our original design, the access method of the original class relies on a pro-

tected utility named moveUp to enact the potential shifting of an element forward

in the list, after its access count had been incremented. Therefore, we implement

the move-to-front heuristic by simply overriding the moveUp method so that each

accessed element is moved directly to the front of the list (if not already there).

This action is easily implemented by means of the positional list ADT.

The more complex portion of our FavoritesListMTF class is the new defini-

tion for the getFavorites method. We rely on the first of the approaches outlined

above, inserting copies of the items into a temporary list and then repeatedly find-

ing, reporting, and removing an element that has the largest access count of those

remaining.

7.7. Case Study: Maintaining Access Frequencies 299

1 /∗∗ Maintains a list of elements ordered with move-to-front heuristic. ∗/
2 public class FavoritesListMTF<E> extends FavoritesList<E> {
3

4 /∗∗ Moves accessed item at Position p to the front of the list. ∗/
5 protected void moveUp(Position<Item<E>> p) {
6 if (p != list.first())
7 list.addFirst(list.remove(p)); // remove/reinsert item
8 }
9

10 /∗∗ Returns an iterable collection of the k most frequently accessed elements. ∗/
11 public Iterable<E> getFavorites(int k) throws IllegalArgumentException {
12 if (k < 0 | | k > size())
13 throw new IllegalArgumentException("Invalid k");
14

15 // we begin by making a copy of the original list
16 PositionalList<Item<E>> temp = new LinkedPositionalList<>();
17 for (Item<E> item : list)
18 temp.addLast(item);
19

20 // we repeated find, report, and remove element with largest count
21 PositionalList<E> result = new LinkedPositionalList<>();
22 for (int j=0; j < k; j++) {
23 Position<Item<E>> highPos = temp.first();
24 Position<Item<E>> walk = temp.after(highPos);
25 while (walk != null) {
26 if (count(walk) > count(highPos))
27 highPos = walk;
28 walk = temp.after(walk);
29 }
30 // we have now found element with highest count
31 result.addLast(value(highPos));
32 temp.remove(highPos);
33 }
34 return result;
35 }
36 }

Code Fragment 7.18: Class FavoritesListMTF implementing the move-to-front

heuristic. This class extends FavoritesList (Code Fragments 7.16 and 7.17) and

overrides methods moveUp and getFavorites.

300 Chapter 7. List and Iterator ADTs

7.8 Exercises

Reinforcement

R-7.1 Draw a representation, akin to Example 7.1, of an initially empty list L after per-

forming the following sequence of operations: add(0, 4), add(0, 3), add(0, 2),
add(2, 1), add(1, 5), add(1, 6), add(3, 7), add(0, 8).

R-7.2 Give an implementation of the stack ADT using an array list for storage.

R-7.3 Give an implementation of the deque ADT using an array list for storage.

R-7.4 Give a justification of the running times shown in Table 7.1 for the methods of
an array list implemented with a (nonexpanding) array.

R-7.5 The java.util.ArrayList includes a method, trimToSize(), that replaces the un-
derlying array with one whose capacity precisely equals the number of elements

currently in the list. Implement such a method for our dynamic version of the

ArrayList class from Section 7.2.

R-7.6 Redo the justification of Proposition 7.2 assuming that the the cost of growing

the array from size k to size 2k is 3k cyber-dollars. How much should each push
operation be charged to make the amortization work?

R-7.7 Consider an implementation of the array list ADT using a dynamic array, but
instead of copying the elements into an array of double the size (that is, from N to

2N) when its capacity is reached, we copy the elements into an array with ⌈N/4⌉
additional cells, going from capacity N to N + ⌈N/4⌉. Show that performing a

sequence of n push operations (that is, insertions at the end) still runs in O(n)
time in this case.

R-7.8 Suppose we are maintaining a collection C of elements such that, each time we

add a new element to the collection, we copy the contents of C into a new array
list of just the right size. What is the running time of adding n elements to an

initially empty collection C in this case?

R-7.9 The add method for a dynamic array, as described in Code Fragment 7.5, has

the following inefficiency. In the case when a resize occurs, the resize operation

takes time to copy all the elements from the old array to a new array, and then
the subsequent loop in the body of add shifts some of them to make room for a

new element. Give an improved implementation of the add method, so that, in
the case of a resize, the elements are copied into their final place in the new array

(that is, no shifting is done).

R-7.10 Reimplement the ArrayStack class, from Section 6.1.2, using dynamic arrays to

support unlimited capacity.

R-7.11 Describe an implementation of the positional list methods addLast and addBe-
fore realized by using only methods in the set {isEmpty, first, last, before, after,
addAfter, addFirst}.

7.8. Exercises 301

R-7.12 Suppose we want to extend the PositionalList abstract data type with a method,
indexOf(p), that returns the current index of the element stored at position p.

Show how to implement this method using only other methods of the Positional-
List interface (not details of our LinkedPositionalList implementation).

R-7.13 Suppose we want to extend the PositionalList abstract data type with a method,
findPosition(e), that returns the first position containing an element equal to

e (or null if no such position exists). Show how to implement this method
using only existing methods of the PositionalList interface (not details of our

LinkedPositionalList implementation).

R-7.14 The LinkedPositionalList implementation of Code Fragments 7.9–7.12 does not

do any error checking to test if a given position p is actually a member of the
relevant list. Give a detailed explanation of the effect of a call L.addAfter(p, e)
on a list L, yet with a position p that belongs to some other list M.

R-7.15 To better model a FIFO queue in which entries may be deleted before reach-

ing the front, design a LinkedPositionalQueue class that supports the complete
queue ADT, yet with enqueue returning a position instance and support for a

new method, remove(p), that removes the element associated with position p

from the queue. You may use the adapter design pattern (Section 6.1.3), using a
LinkedPositionalList as your storage.

R-7.16 Describe how to implement a method, alternateIterator(), for a positional list

that returns an iterator that reports only those elements having even index in the

list.

R-7.17 Redesign the Progression class, from Section 2.2.3, so that it formally imple-
ments the Iterator<long> interface.

R-7.18 The java.util.Collection interface includes a method, contains(o), that returns

true if the collection contains any object that equals Object o. Implement such a
method in the ArrayList class of Section 7.2.

R-7.19 The java.util.Collection interface includes a method, clear(), that removes all
elements from a collection. Implement such a method in the ArrayList class of

Section 7.2.

R-7.20 Demonstrate how to use the java.util.Colletions.reverse method to reverse an ar-
ray of objects.

R-7.21 Given the set of element {a,b,c,d,e, f} stored in a list, show the final state of

the list, assuming we use the move-to-front heuristic and access the elements

according to the following sequence: (a,b,c,d,e, f ,a,c, f ,b,d,e).

R-7.22 Suppose that we have made kn total accesses to the elements in a list L of n

elements, for some integer k ≥ 1. What are the minimum and maximum number

of elements that have been accessed fewer than k times?

R-7.23 Let L be a list of n items maintained according to the move-to-front heuristic.

Describe a series of O(n) accesses that will reverse L.

R-7.24 Implement a resetCounts() method for the FavoritesList class that resets all ele-
ments’ access counts to zero (while leaving the order of the list unchanged).

302 Chapter 7. List and Iterator ADTs

Creativity

C-7.25 Give an array-based list implementation, with fixed capacity, treating the array

circularly so that it achieves O(1) time for insertions and removals at index 0, as
well as insertions and removals at the end of the array list. Your implementation

should also provide for a constant-time get method.

C-7.26 Complete the previous exercise, except using a dynamic array to provide un-

bounded capacity.

C-7.27 Modify our ArrayList implementation to support the Cloneable interface, as de-

scribed in Section 3.6.

C-7.28 In Section 7.5.3, we demonstrated how the Collections.shuffle method can be

adapted to shuffle a reference-type array. Give a direct implementation of a
shuffle method for an array of int values. You may use the method, nextInt(n)
of the Random class, which returns a random number between 0 and n− 1, in-

clusive. Your method should guarantee that every possible ordering is equally
likely. What is the running time of your method?

C-7.29 Revise the array list implementation given in Section 7.2.1 so that when the ac-

tual number of elements, n, in the array goes below N/4, where N is the array

capacity, the array shrinks to half its size.

C-7.30 Prove that when using a dynamic array that grows and shrinks as in the previous

exercise, the following series of 2n operations takes O(n) time: n insertions at
the end of an initially empty list, followed by n deletions, each from the end of

the list.

C-7.31 Give a formal proof that any sequence of n push or pop operations (that is, in-

sertions or deletions at the end) on an initially empty dynamic array takes O(n)
time, if using the strategy described in Exercise C-7.29.

C-7.32 Consider a variant of Exercise C-7.29, in which an array of capacity N is resized
to capacity precisely that of the number of elements, any time the number of

elements in the array goes strictly below N/4. Give a formal proof that any

sequence of n push or pop operations on an initially empty dynamic array takes
O(n) time.

C-7.33 Consider a variant of Exercise C-7.29, in which an array of capacity N, is resized

to capacity precisely that of the number of elements, any time the number of

elements in the array goes strictly below N/2. Show that there exists a sequence
of n push and pop operations that requires Ω(n2) time to execute.

C-7.34 Describe how to implement the queue ADT using two stacks as instance vari-
ables, such that all queue operations execute in amortized O(1) time. Give a

formal proof of the amortized bound.

C-7.35 Reimplement the ArrayQueue class, from Section 6.2.2, using dynamic arrays to

support unlimited capacity. Be especially careful about the treatment of a circular
array when resizing.

7.8. Exercises 303

C-7.36 Suppose we want to extend the PositionalList interface to include a method,
positionAtIndex(i), that returns the position of the element having index i (or

throws an IndexOutOfBoundsException, if warranted). Show how to imple-

ment this method, using only existing methods of the PositionalList interface,
by traversing the appropriate number of steps from the front of the list.

C-7.37 Repeat the previous problem, but use knowledge of the size of the list to traverse
from the end of the list that is closest to the desired index.

C-7.38 Explain how any implementation of the PositionalList ADT can be made to sup-
port all methods of the List ADT, described in Section 7.1, assuming an imple-

mentation is given for the positionAtIndex(i) method, proposed in Exercise C-

7.36.

C-7.39 Suppose we want to extend the PositionalList abstract data type with a method,

moveToFront(p), that moves the element at position p to the front of a list (if
not already there), while keeping the relative order of the remaining elements un-

changed. Show how to implement this method using only existing methods of the

PositionalList interface (not details of our LinkedPositionalList implementation).

C-7.40 Redo the previous problem, but providing an implementation within the class

LinkedPositionalList that does not create or destroy any nodes.

C-7.41 Modify our LinkedPositionalList implementation to support the Cloneable inter-

face, as described in Section 3.6.

C-7.42 Describe a nonrecursive method for reversing a positional list represented with a

doubly linked list using a single pass through the list.

C-7.43 Page 281 describes an array-based representation for implementing the posi-

tional list ADT. Give a pseudocode description of the addBefore method for that
representation.

C-7.44 Describe a method for performing a card shuffle of a list of 2n elements, by
converting it into two lists. A card shuffle is a permutation where a list L is cut

into two lists, L1 and L2, where L1 is the first half of L and L2 is the second half

of L, and then these two lists are merged into one by taking the first element in
L1, then the first element in L2, followed by the second element in L1, the second

element in L2, and so on.

C-7.45 How might the LinkedPositionalList class be redesigned to detect the error de-

scribed in Exercise R-7.14.

C-7.46 Modify the LinkedPositionalList class to support a method swap(p, q) that causes

the underlying nodes referenced by positions p and q to be exchanged for each

other. Relink the existing nodes; do not create any new nodes.

C-7.47 An array is sparse if most of its entries are null. A list L can be used to implement

such an array, A, efficiently. In particular, for each nonnull cell A[i], we can store
a pair (i,e) in L, where e is the element stored at A[i]. This approach allows us to

represent A using O(m) storage, where m is the number of nonnull entries in A.

Describe and analyze efficient ways of performing the methods of the array list
ADT on such a representation.

304 Chapter 7. List and Iterator ADTs

C-7.48 Design a circular positional list ADT that abstracts a circularly linked list in the
same way that the positional list ADT abstracts a doubly linked list.

C-7.49 Provide an implementation of the listiterator() method, in the context of the class

LinkedPositionalList, that returns an object that supports the java.util.ListIterator
interface described in Section 7.5.1.

C-7.50 Describe a scheme for creating list iterators that fail fast, that is, they all become

invalid as soon as the underlying list changes.

C-7.51 There is a simple algorithm, called bubble-sort, for sorting a list L of n compa-
rable elements. This algorithm scans the list n− 1 times, where, in each scan,

the algorithm compares the current element with the next one and swaps them

if they are out of order. Give a pseudocode description of bubble-sort that is as
efficient as possible assuming L is implemented with a doubly linked list. What

is the running time of this algorithm?

C-7.52 Redo Exercise C-7.51 assuming L is implemented with an array list.

C-7.53 Describe an efficient method for maintaining a favorites list L, with the move-to-
front heuristic, such that elements that have not been accessed in the most recent

n accesses are automatically purged from the list.

C-7.54 Suppose we have an n-element list L maintained according to the move-to-front
heuristic. Describe a sequence of n2 accesses that is guaranteed to take Ω(n3)
time to perform on L.

C-7.55 A useful operation in databases is the natural join. If we view a database as a list
of ordered pairs of objects, then the natural join of databases A and B is the list

of all ordered triples (x,y,z) such that the pair (x,y) is in A and the pair (y,z) is

in B. Describe and analyze an efficient algorithm for computing the natural join
of a list A of n pairs and a list B of m pairs.

C-7.56 When Bob wants to send Alice a message M on the Internet, he breaks M into

n data packets, numbers the packets consecutively, and injects them into the
network. When the packets arrive at Alice’s computer, they may be out of order,

so Alice must assemble the sequence of n packets in order before she can be sure

she has the entire message. Describe an efficient scheme for Alice to do this.
What is the running time of this algorithm?

C-7.57 Implement the FavoritesList class using an array list.

Projects

P-7.58 Develop an experiment, using techniques similar to those in Section 4.1, to test

the efficiency of n successive calls to the add method of an ArrayList, for vari-

ous n, under each of the following three scenarios:

a. Each add takes place at index 0.

b. Each add takes place at index size()/2.

c. Each add takes place at index size().

Analyze your empirical results.

Chapter Notes 305

P-7.59 Reimplement the LinkedPositionalList class so that an invalid position is reported
in a scenario such as the one described in Exercise R-7.14.

P-7.60 Implement a CardHand class that supports a person arranging a group of cards
in his or her hand. The simulator should represent the sequence of cards using

a single positional list ADT so that cards of the same suit are kept together. Im-

plement this strategy by means of four “fingers” into the hand, one for each of
the suits of hearts, clubs, spades, and diamonds, so that adding a new card to the

person’s hand or playing a correct card from the hand can be done in constant

time. The class should support the following methods:

• addCard(r, s): Add a new card with rank r and suit s to the hand.

• play(s): Remove and return a card of suit s from the player’s hand; if there
is no card of suit s, then remove and return an arbitrary card from the hand.

• iterator(): Return an iterator for all cards currently in the hand.

• suitIterator(s): Return an iterator for all cards of suit s that are currently in
the hand.

P-7.61 Write a simple text editor, which stores and displays a string of characters using
the positional list ADT, together with a cursor object that highlights a position in

the string. The editor must support the following operations:

• left: Move cursor left one character (do nothing if at beginning).

• right: Move cursor right one character (do nothing if at end).

• insert c: Insert the character c just after the cursor.
• delete: Delete the character just after the cursor (if not at end).

Chapter Notes

The treatment of data structures as collections (and other principles of object-oriented de-

sign) can be found in object-oriented design books by Booch [16], Budd [19], and Liskov
and Guttag [67]. Lists and iterators are pervasive concepts in the Java Collections Frame-

work. Our positional list ADT is derived from the “position” abstraction introduced by

Aho, Hopcroft, and Ullman [6], and the list ADT of Wood [96]. Implementations of lists
via arrays and linked lists are discussed by Knuth [60].

Chapter

8 Trees

Contents

8.1 General Trees . 308

8.1.1 Tree Definitions and Properties 309

8.1.2 The Tree Abstract Data Type 312

8.1.3 Computing Depth and Height 314

8.2 Binary Trees . 317

8.2.1 The Binary Tree Abstract Data Type 319

8.2.2 Properties of Binary Trees 321

8.3 Implementing Trees . 323

8.3.1 Linked Structure for Binary Trees 323

8.3.2 Array-Based Representation of a Binary Tree 331

8.3.3 Linked Structure for General Trees 333

8.4 Tree Traversal Algorithms 334

8.4.1 Preorder and Postorder Traversals of General Trees 334

8.4.2 Breadth-First Tree Traversal 336

8.4.3 Inorder Traversal of a Binary Tree 337

8.4.4 Implementing Tree Traversals in Java 339

8.4.5 Applications of Tree Traversals 343

8.4.6 Euler Tours . 348

8.5 Exercises . 350

308 Chapter 8. Trees

8.1 General Trees

Productivity experts say that breakthroughs come by thinking “nonlinearly.” In

this chapter, we will discuss one of the most important nonlinear data structures in

computing—trees. Tree structures are indeed a breakthrough in data organization,

for they allow us to implement a host of algorithms much faster than when using

linear data structures, such as arrays or linked lists. Trees also provide a natural

organization for data, and consequently have become ubiquitous structures in file

systems, graphical user interfaces, databases, websites, and many other computer

systems.

It is not always clear what productivity experts mean by “nonlinear” thinking,

but when we say that trees are “nonlinear,” we are referring to an organizational

relationship that is richer than the simple “before” and “after” relationships be-

tween objects in sequences. The relationships in a tree are hierarchical, with some

objects being “above” and some “below” others. Actually, the main terminology

for tree data structures comes from family trees, with the terms “parent,” “child,”

“ancestor,” and “descendant” being the most common words used to describe rela-

tionships. We show an example of a family tree in Figure 8.1.

E
ld

aa
h

N
eb

ai
o

th
K

ed
ar

A
d

b
ee

l
M

ib
sa

m
M

is
h

m
a

D
u

m
ah

M
as

sa
H

ad
ad

T
em

a
Je

tu
r

N
ap

h
is

h
K

ed
em

ah

Is
h

m
ae

l

G
ad

N
ap

h
ta

li
D

an
Ju

d
ah

L
ev

i
S

im
eo

n

A
sh

er
Is

sa
ch

ar
Z

eb
u

lu
n

D
in

ah
Jo

se
p

h
B

en
ja

m
in

E
li

p
h

az
R

eu
el

Je
u

sh
Ja

la
m

R
eu

b
en

K
o

ra
h

Ja
co

b
(I

sr
ae

l)

E
sa

u

Is
aa

c

Z
im

ra
n

Jo
k

sh
an

M
ed

an

M
id

ia
n

Is
h

b
ak

S
h

u
ah

A
b

ra
h

am

S
h

eb
a

D
ed

an

E
p

h
ah

E
p

h
er

H
an

o
ch

A
b

id
a

Figure 8.1: A family tree showing some descendants of Abraham, as recorded in

Genesis, chapters 25–36.

8.1. General Trees 309

8.1.1 Tree Definitions and Properties

A tree is an abstract data type that stores elements hierarchically. With the excep-

tion of the top element, each element in a tree has a parent element and zero or

more children elements. A tree is usually visualized by placing elements inside

ovals or rectangles, and by drawing the connections between parents and children

with straight lines. (See Figure 8.2.) We typically call the top element the root

of the tree, but it is drawn as the highest element, with the other elements being

connected below (just the opposite of a botanical tree).

Europe AsiaAfrica Australia

Canada OverseasS. America

Domestic International TV CD Tuner

Sales Purchasing ManufacturingR&D

Electronics R’Us

Figure 8.2: A tree with 17 nodes representing the organization of a fictitious cor-

poration. The root stores Electronics R’Us. The children of the root store R&D,

Sales, Purchasing, and Manufacturing. The internal nodes store Sales, Interna-

tional, Overseas, Electronics R’Us, and Manufacturing.

Formal Tree Definition

Formally, we define a tree T as a set of nodes storing elements such that the nodes

have a parent-child relationship that satisfies the following properties:

• If T is nonempty, it has a special node, called the root of T , that has no parent.

• Each node v of T different from the root has a unique parent node w; every

node with parent w is a child of w.

Note that according to our definition, a tree can be empty, meaning that it does not

have any nodes. This convention also allows us to define a tree recursively such

that a tree T is either empty or consists of a node r, called the root of T , and a

(possibly empty) set of subtrees whose roots are the children of r.

310 Chapter 8. Trees

Other Node Relationships

Two nodes that are children of the same parent are siblings. A node v is external

if v has no children. A node v is internal if it has one or more children. External

nodes are also known as leaves.

Example 8.1: In Section 5.1.4, we discussed the hierarchical relationship be-

tween files and directories in a computer’s file system, although at the time we

did not emphasize the nomenclature of a file system as a tree. In Figure 8.3, we

revisit an earlier example. We see that the internal nodes of the tree are associ-

ated with directories and the leaves are associated with regular files. In the Unix

and Linux operating systems, the root of the tree is appropriately called the “root

directory,” and is represented by the symbol “/.”

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

Figure 8.3: Tree representing a portion of a file system.

A node u is an ancestor of a node v if u = v or u is an ancestor of the parent

of v. Conversely, we say that a node v is a descendant of a node u if u is an ancestor

of v. For example, in Figure 8.3, cs252/ is an ancestor of papers/, and pr3 is a

descendant of cs016/. The subtree of T rooted at a node v is the tree consisting of

all the descendants of v in T (including v itself). In Figure 8.3, the subtree rooted at

cs016/ consists of the nodes cs016/, grades, homeworks/, programs/, hw1, hw2,

hw3, pr1, pr2, and pr3.

Edges and Paths in Trees

An edge of tree T is a pair of nodes (u,v) such that u is the parent of v, or vice

versa. A path of T is a sequence of nodes such that any two consecutive nodes in

the sequence form an edge. For example, the tree in Figure 8.3 contains the path

(cs252/, projects/, demos/, market).

8.1. General Trees 311

Ordered Trees

A tree is ordered if there is a meaningful linear order among the children of each

node; that is, we purposefully identify the children of a node as being the first,

second, third, and so on. Such an order is usually visualized by arranging siblings

left to right, according to their order.

Example 8.2: The components of a structured document, such as a book, are hier-

archically organized as a tree whose internal nodes are parts, chapters, and sections,

and whose leaves are paragraphs, tables, figures, and so on. (See Figure 8.4.) The

root of the tree corresponds to the book itself. We could, in fact, consider expanding

the tree further to show paragraphs consisting of sentences, sentences consisting of

words, and words consisting of characters. Such a tree is an example of an ordered

tree, because there is a well-defined order among the children of each node.

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

...§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

Figure 8.4: An ordered tree associated with a book.

Let’s look back at the other examples of trees that we have described thus far,

and consider whether the order of children is significant. A family tree that de-

scribes generational relationships, as in Figure 8.1, is often modeled as an ordered

tree, with siblings ordered according to their birth.

In contrast, an organizational chart for a company, as in Figure 8.2, is typically

considered an unordered tree. Likewise, when using a tree to describe an inher-

itance hierarchy, as in Figure 2.7, there is no particular significance to the order

among the subclasses of a parent class. Finally, we consider the use of a tree in

modeling a computer’s file system, as in Figure 8.3. Although an operating system

often displays entries of a directory in a particular order (e.g., alphabetical, chrono-

logical), such an order is not typically inherent to the file system’s representation.

312 Chapter 8. Trees

8.1.2 The Tree Abstract Data Type

As we did with positional lists in Section 7.3, we define a tree ADT using the

concept of a position as an abstraction for a node of a tree. An element is stored

at each position, and positions satisfy parent-child relationships that define the tree

structure. A position object for a tree supports the method:

getElement(): Returns the element stored at this position.

The tree ADT then supports the following accessor methods, allowing a user

to navigate the various positions of a tree T :

root(): Returns the position of the root of the tree

(or null if empty).

parent(p): Returns the position of the parent of position p

(or null if p is the root).

children(p): Returns an iterable collection containing the children of

position p (if any).

numChildren(p): Returns the number of children of position p.

If a tree T is ordered, then children(p) reports the children of p in order.

In addition to the above fundamental accessor methods, a tree supports the

following query methods:

isInternal(p): Returns true if position p has at least one child.

isExternal(p): Returns true if position p does not have any children.

isRoot(p): Returns true if position p is the root of the tree.

These methods make programming with trees easier and more readable, since

we can use them in the conditionals of if statements and while loops.

Trees support a number of more general methods, unrelated to the specific

structure of the tree. These incude:

size(): Returns the number of positions (and hence elements)

that are contained in the tree.

isEmpty(): Returns true if the tree does not contain any positions

(and thus no elements).

iterator(): Returns an iterator for all elements in the tree

(so that the tree itself is Iterable).

positions(): Returns an iterable collection of all positions of the tree.

If an invalid position is sent as a parameter to any method of a tree, then an

IllegalArgumentException is thrown.

We do not define any methods for creating or modifying trees at this point.

We prefer to describe different tree update methods in conjunction with specific

implementations of the tree interface, and specific applications of trees.

8.1. General Trees 313

A Tree Interface in Java

In Code Fragment 8.1, we formalize the Tree ADT by defining the Tree interface

in Java. We rely upon the same definition of the Position interface as introduced

for positional lists in Section 7.3.2. Note well that we declare the Tree interface

to formally extend Java’s Iterable interface (and we include a declaration of the

required iterator() method).

1 /∗∗ An interface for a tree where nodes can have an arbitrary number of children. ∗/
2 public interface Tree<E> extends Iterable<E> {
3 Position<E> root();
4 Position<E> parent(Position<E> p) throws IllegalArgumentException;
5 Iterable<Position<E>> children(Position<E> p)
6 throws IllegalArgumentException;
7 int numChildren(Position<E> p) throws IllegalArgumentException;
8 boolean isInternal(Position<E> p) throws IllegalArgumentException;
9 boolean isExternal(Position<E> p) throws IllegalArgumentException;

10 boolean isRoot(Position<E> p) throws IllegalArgumentException;
11 int size();
12 boolean isEmpty();
13 Iterator<E> iterator();
14 Iterable<Position<E>> positions();
15 }

Code Fragment 8.1: Definition of the Tree interface.

An AbstractTree Base Class in Java

In Section 2.3, we discussed the role of interfaces and abstract classes in Java.

While an interface is a type definition that includes public declarations of vari-

ous methods, an interface cannot include definitions for any of those methods. In

contrast, an abstract class may define concrete implementations for some of its

methods, while leaving other abstract methods without definition.

An abstract class is designed to serve as a base class, through inheritance, for

one or more concrete implementations of an interface. When some of the func-

tionality of an interface is implemented in an abstract class, less work remains to

complete a concrete implementation. The standard Java libraries include many such

abstract classes, including several within the Java Collections Framework. To make

their purpose clear, those classes are conventionally named beginning with the word

Abstract. For example, there is an AbstractCollection class that implements some

of the functionality of the Collection interface, an AbstractQueue class that imple-

ments some of the functionality of the Queue interface, and an AbstractList class

that implements some of the functionality of the List interface.

314 Chapter 8. Trees

In the case of our Tree interface, we will define an AbstractTree base class,

demonstrating how many tree-based algorithms can be described independently of

the low-level representation of a tree data structure. In fact, if a concrete implemen-

tation provides three fundamental methods—root(), parent(p), and children(p)—
all other behaviors of the Tree interface can be derived within the AbstractTree
base class.

Code Fragment 8.2 presents an initial implementation of an AbstractTree base

class that provides the most trivial methods of the Tree interface. We will defer

until Section 8.4 a discussion of general tree-traversal algorithms that can be used

to produced the positions() iteration within the AbstractTree class. As with our

positional list ADT in Chapter 7, the iteration of positions of the tree can easily be

adapted to produce an iteration of the elements of a tree, or even to determine the

size of a tree (although our concrete tree implementations will provide more direct

means for reporting the size).

1 /∗∗ An abstract base class providing some functionality of the Tree interface. ∗/
2 public abstract class AbstractTree<E> implements Tree<E> {
3 public boolean isInternal(Position<E> p) { return numChildren(p) > 0; }
4 public boolean isExternal(Position<E> p) { return numChildren(p) == 0; }
5 public boolean isRoot(Position<E> p) { return p == root(); }
6 public boolean isEmpty() { return size() == 0; }
7 }

Code Fragment 8.2: An initial implementation of the AbstractTree base class. (We

add additional functionality to this class as the chapter continues.)

8.1.3 Computing Depth and Height

Let p be a position within tree T . The depth of p is the number of ancestors of

p, other than p itself. For example, in the tree of Figure 8.2, the node storing

International has depth 2. Note that this definition implies that the depth of the

root of T is 0. The depth of p can also be recursively defined as follows:

• If p is the root, then the depth of p is 0.

• Otherwise, the depth of p is one plus the depth of the parent of p.

Based on this definition, we present a simple recursive algorithm, depth, in Code

Fragment 8.3, for computing the depth of a position p in tree T . This method calls

itself recursively on the parent of p, and adds 1 to the value returned.

The running time of depth(p) for position p is O(dp + 1), where dp denotes

the depth of p in the tree, because the algorithm performs a constant-time recursive

step for each ancestor of p. Thus, algorithm depth(p) runs in O(n) worst-case time,

where n is the total number of positions of T , because a position of T may have

depth n− 1 if all nodes form a single branch. Although such a running time is a

function of the input size, it is more informative to characterize the running time in

terms of the parameter dp, as this parameter may be much smaller than n.

8.1. General Trees 315

1 /∗∗ Returns the number of levels separating Position p from the root. ∗/
2 public int depth(Position<E> p) {
3 if (isRoot(p))
4 return 0;
5 else
6 return 1 + depth(parent(p));
7 }

Code Fragment 8.3: Method depth, as implemented within the AbstractTree class.

Height

We next define the height of a tree to be equal to the maximum of the depths of

its positions (or zero, if the tree is empty). For example, the tree of Figure 8.2 has

height 4, as the node storing Africa (and its siblings) has depth 4. It is easy to see

that the position with maximum depth must be a leaf.

In Code Fragment 8.4, we present a method that computes the height of a tree

based on this definition. Unfortunately, such an approach is not very efficient,

and so name the algorithm heightBad and declare it as a private method of the

AbstractTree class (so that it cannot be used by others).

1 /∗∗ Returns the height of the tree. ∗/
2 private int heightBad() { // works, but quadratic worst-case time
3 int h = 0;
4 for (Position<E> p : positions())
5 if (isExternal(p)) // only consider leaf positions
6 h = Math.max(h, depth(p));
7 return h;
8 }

Code Fragment 8.4: Method heightBad of the AbstractTree class. Note that this

method calls the depth method from Code Fragment 8.3.

Although we have not yet defined the positions() method, we will see that it

can be implemented such that the entire iteration runs in O(n) time, where n is

the number of positions of T . Because heightBad calls algorithm depth(p) on

each leaf of T , its running time is O(n+∑p∈L(dp + 1)), where L is the set of leaf

positions of T . In the worst case, the sum ∑p∈L(dp +1) is proportional to n2. (See

Exercise C-8.31.) Thus, algorithm heightBad runs in O(n2) worst-case time.

We can compute the height of a tree more efficiently, in O(n) worst-case time,

by considering a recursive definition. To do this, we will parameterize a function

based on a position within the tree, and calculate the height of the subtree rooted at

that position. Formally, we define the height of a position p in a tree T as follows:

• If p is a leaf, then the height of p is 0.

• Otherwise, the height of p is one more than the maximum of the heights of

p’s children.

316 Chapter 8. Trees

The following proposition relates our original definition of the height of a tree

to the height of the root position using this recursive formula.

Proposition 8.3: The height of the root of a nonempty tree T , according to the

recursive definition, equals the maximum depth among all leaves of tree T .

We leave the justification of this proposition as Exercise R-8.3.

An implementation of a recursive algorithm to compute the height of a subtree

rooted at a given position p is presented in Code Fragment 8.5. The overall height

of a nonempty tree can be computed by sending the root of the tree as a parameter.

1 /∗∗ Returns the height of the subtree rooted at Position p. ∗/
2 public int height(Position<E> p) {
3 int h = 0; // base case if p is external
4 for (Position<E> c : children(p))
5 h = Math.max(h, 1 + height(c));
6 return h;
7 }

Code Fragment 8.5: Method height for computing the height of a subtree rooted at

a position p of an AbstractTree.

It is important to understand why method height is more efficient than method

heightBad. The algorithm is recursive, and it progresses in a top-down fashion. If

the method is initially called on the root of T , it will eventually be called once for

each position of T . This is because the root eventually invokes the recursion on

each of its children, which in turn invokes the recursion on each of their children,

and so on.

We can determine the running time of the recursive height algorithm by sum-

ming, over all the positions, the amount of time spent on the nonrecursive part of

each call. (Review Section 5.2 for analyses of recursive processes.) In our imple-

mentation, there is a constant amount of work per position, plus the overhead of

computing the maximum over the iteration of children. Although we do not yet

have a concrete implementation of children(p), we assume that such an iteration is

executed in O(cp + 1) time, where cp denotes the number of children of p. Algo-

rithm height(p) spends O(cp+1) time at each position p to compute the maximum,

and its overall running time is O(∑p(cp +1)) = O(n+∑p cp). In order to complete

the analysis, we make use of the following property.

Proposition 8.4: Let T be a tree with n positions, and let cp denote the number of

children of a position p of T . Then, summing over the positions of T , ∑p cp = n−1.

Justification: Each position of T , with the exception of the root, is a child of

another position, and thus contributes one unit to the above sum.

By Proposition 8.4, the running time of algorithm height, when called on the

root of T , is O(n), where n is the number of positions of T .

8.2. Binary Trees 317

8.2 Binary Trees

A binary tree is an ordered tree with the following properties:

1. Every node has at most two children.

2. Each child node is labeled as being either a left child or a right child.

3. A left child precedes a right child in the order of children of a node.

The subtree rooted at a left or right child of an internal node v is called a left subtree

or right subtree, respectively, of v. A binary tree is proper if each node has either

zero or two children. Some people also refer to such trees as being full binary

trees. Thus, in a proper binary tree, every internal node has exactly two children.

A binary tree that is not proper is improper.

Example 8.5: An important class of binary trees arises in contexts where we wish

to represent a number of different outcomes that can result from answering a series

of yes-or-no questions. Each internal node is associated with a question. Starting at

the root, we go to the left or right child of the current node, depending on whether

the answer to the question is “Yes” or “No.” With each decision, we follow an

edge from a parent to a child, eventually tracing a path in the tree from the root

to a leaf. Such binary trees are known as decision trees, because a leaf position p

in such a tree represents a decision of what to do if the questions associated with

p’s ancestors are answered in a way that leads to p. A decision tree is a proper

binary tree. Figure 8.5 illustrates a decision tree that provides recommendations to

a prospective investor.

Yes

Yes

Yes No

No

No

Are you nervous?

Will you need to access most of the

money within the next 5 years?

Are you willing to accept risks in

exchange for higher expected returns?
Money market fund.

Stock portfolio.

Savings account.

Diversified portfolio with stocks,

bonds, and short-term instruments.

Figure 8.5: A decision tree providing investment advice.

318 Chapter 8. Trees

Example 8.6: An arithmetic expression can be represented by a binary tree whose

leaves are associated with variables or constants, and whose internal nodes are

associated with one of the operators +, −, ∗, and /, as demonstrated in Figure 8.6.

Each node in such a tree has a value associated with it.

• If a node is leaf, then its value is that of its variable or constant.

• If a node is internal, then its value is defined by applying its operation to the

values of its children.

A typical arithmetic expression tree is a proper binary tree, since each operator

+, −, ∗, and / takes exactly two operands. Of course, if we were to allow unary

operators, like negation (−), as in “−x,” then we could have an improper binary

tree.

∗

+

−

+ 3

9 5

+

2− 3 −

6

3 1 7 4

/

∗

Figure 8.6: A binary tree representing an arithmetic expression. This tree repre-

sents the expression ((((3+1)∗3)/((9−5)+2))− ((3∗ (7−4))+6)). The value

associated with the internal node labeled “/” is 2.

A Recursive Binary Tree Definition

Incidentally, we can also define a binary tree in a recursive way. In that case, a

binary tree is either:

• An empty tree.

• A nonempty tree having a root node r, which stores an element, and two

binary trees that are respectively the left and right subtrees of r. We note that

one or both of those subtrees can be empty by this definition.

8.2. Binary Trees 319

8.2.1 The Binary Tree Abstract Data Type

As an abstract data type, a binary tree is a specialization of a tree that supports three

additional accessor methods:

left(p): Returns the position of the left child of p

(or null if p has no left child).

right(p): Returns the position of the right child of p

(or null if p has no right child).

sibling(p): Returns the position of the sibling of p

(or null if p has no sibling).

Just as in Section 8.1.2 for the tree ADT, we do not define specialized update meth-

ods for binary trees here. Instead, we will consider some possible update methods

when we describe specific implementations and applications of binary trees.

Defining a BinaryTree Interface

Code Fragment 8.6 formalizes the binary tree ADT by defining a BinaryTree in-

terface in Java. This interface extends the Tree interface that was given in Sec-

tion 8.1.2 to add the three new behaviors. In this way, a binary tree is expected to

support all the functionality that was defined for general trees (e.g., root, isExternal,
parent), and the new behaviors left, right, and sibling.

1 /∗∗ An interface for a binary tree, in which each node has at most two children. ∗/
2 public interface BinaryTree<E> extends Tree<E> {
3 /∗∗ Returns the Position of p's left child (or null if no child exists). ∗/
4 Position<E> left(Position<E> p) throws IllegalArgumentException;
5 /∗∗ Returns the Position of p's right child (or null if no child exists). ∗/
6 Position<E> right(Position<E> p) throws IllegalArgumentException;
7 /∗∗ Returns the Position of p's sibling (or null if no sibling exists). ∗/
8 Position<E> sibling(Position<E> p) throws IllegalArgumentException;
9 }

Code Fragment 8.6: A BinaryTree interface that extends the Tree interface from

Code Fragment 8.1.

Defining an AbstractBinaryTree Base Class

We continue our use of abstract base classes to promote greater reusability within

our code. The AbstractBinaryTree class, presented in Code Fragment 8.7, inherits

from the AbstractTree class from Section 8.1.2. It provides additional concrete

methods that can be derived from the newly declared left and right methods (which

remain abstract).

320 Chapter 8. Trees

The new sibling method is derived from a combination of left, right, and parent.
Typically, we identify the sibling of a position p as the “other” child of p’s parent.

However, p does not have a sibling if it is the root, or if it is the only child of its

parent.

We can also use the presumed left and right methods to provide concrete im-

plementations of the numChildren and children methods, which are part of the

original Tree interface. Using the terminology of Section 7.4, the implementa-

tion of the children method relies on producing a snapshot. We create an empty

java.util.ArrayList, which qualifies as being an iterable container, and then add any

children that exist, ordered so that a left child is reported before a right child.

1 /∗∗ An abstract base class providing some functionality of the BinaryTree interface.∗/
2 public abstract class AbstractBinaryTree<E> extends AbstractTree<E>
3 implements BinaryTree<E> {
4 /∗∗ Returns the Position of p's sibling (or null if no sibling exists). ∗/
5 public Position<E> sibling(Position<E> p) {
6 Position<E> parent = parent(p);
7 if (parent == null) return null; // p must be the root
8 if (p == left(parent)) // p is a left child
9 return right(parent); // (right child might be null)

10 else // p is a right child
11 return left(parent); // (left child might be null)
12 }
13 /∗∗ Returns the number of children of Position p. ∗/
14 public int numChildren(Position<E> p) {
15 int count=0;
16 if (left(p) != null)
17 count++;
18 if (right(p) != null)
19 count++;
20 return count;
21 }
22 /∗∗ Returns an iterable collection of the Positions representing p's children. ∗/
23 public Iterable<Position<E>> children(Position<E> p) {
24 List<Position<E>> snapshot = new ArrayList<>(2); // max capacity of 2
25 if (left(p) != null)
26 snapshot.add(left(p));
27 if (right(p) != null)
28 snapshot.add(right(p));
29 return snapshot;
30 }
31 }

Code Fragment 8.7: An AbstractBinaryTree class that extends the AbstractTree
class of Code Fragment 8.2 and implements the BinaryTree interface of Code Frag-

ment 8.6.

8.2. Binary Trees 321

8.2.2 Properties of Binary Trees

Binary trees have several interesting properties dealing with relationships between

their heights and number of nodes. We denote the set of all nodes of a tree T at the

same depth d as level d of T . In a binary tree, level 0 has at most one node (the

root), level 1 has at most two nodes (the children of the root), level 2 has at most

four nodes, and so on. (See Figure 8.7.) In general, level d has at most 2d nodes.

...

0

..
. ...

1

2

3

1

..
.

2

4

8

Level Nodes

Figure 8.7: Maximum number of nodes in the levels of a binary tree.

We can see that the maximum number of nodes on the levels of a binary tree

grows exponentially as we go down the tree. From this simple observation, we can

derive the following properties relating the height of a binary tree T with its number

of nodes. A detailed justification of these properties is left as Exercise R-8.8.

Proposition 8.7: Let T be a nonempty binary tree, and let n, nE , nI , and h denote

the number of nodes, number of external nodes, number of internal nodes, and

height of T , respectively. Then T has the following properties:

1. h+1≤ n≤ 2h+1−1

2. 1≤ nE ≤ 2h

3. h≤ nI ≤ 2h−1

4. log(n+1)−1≤ h≤ n−1

Also, if T is proper, then T has the following properties:

1. 2h+1≤ n≤ 2h+1−1

2. h+1≤ nE ≤ 2h

3. h≤ nI ≤ 2h−1

4. log(n+1)−1≤ h≤ (n−1)/2

322 Chapter 8. Trees

Relating Internal Nodes to External Nodes in a Proper Binary Tree

In addition to the earlier binary tree properties, the following relationship exists

between the number of internal nodes and external nodes in a proper binary tree.

Proposition 8.8: In a nonempty proper binary tree T , with nE external nodes and

nI internal nodes, we have nE = nI +1.

Justification: We justify this proposition by removing nodes from T and divid-

ing them up into two “piles,” an internal-node pile and an external-node pile, until

T becomes empty. The piles are initially empty. By the end, we will show that the

external-node pile has one more node than the internal-node pile. We consider two

cases:

Case 1: If T has only one node v, we remove v and place it on the external-node

pile. Thus, the external-node pile has one node and the internal-node pile is

empty.

Case 2: Otherwise (T has more than one node), we remove from T an (arbitrary)

external node w and its parent v, which is an internal node. We place w on

the external-node pile and v on the internal-node pile. If v has a parent u,

then we reconnect u with the former sibling z of w, as shown in Figure 8.8.

This operation, removes one internal node and one external node, and leaves

the tree being a proper binary tree.

Repeating this operation, we eventually are left with a final tree consisting

of a single node. Note that the same number of external and internal nodes

have been removed and placed on their respective piles by the sequence of

operations leading to this final tree. Now, we remove the node of the final

tree and we place it on the external-node pile. Thus, the external-node pile

has one more node than the internal-node pile.

v

u

wz

u

z

u

z

(a) (b) (c)

Figure 8.8: Operation that removes an external node and its parent node, used in

the justification of Proposition 8.8.

Note that the above relationship does not hold, in general, for improper binary

trees and nonbinary trees, although there are other interesting relationships that do

hold. (See Exercises C-8.30 through C-8.32.)

8.3. Implementing Trees 323

8.3 Implementing Trees

The AbstractTree and AbstractBinaryTree classes that we have defined thus far in

this chapter are both abstract base classes. Although they provide a great deal of

support, neither of them can be directly instantiated. We have not yet defined key

implementation details for how a tree will be represented internally, and how we

can effectively navigate between parents and children.

There are several choices for the internal representation of trees. We describe

the most common representations in this section. We begin with the case of a

binary tree, since its shape is more strictly defined.

8.3.1 Linked Structure for Binary Trees

A natural way to realize a binary tree T is to use a linked structure, with a node

(see Figure 8.9a) that maintains references to the element stored at a position p

and to the nodes associated with the children and parent of p. If p is the root

of T , then the parent field of p is null. Likewise, if p does not have a left child

(respectively, right child), the associated field is null. The tree itself maintains an

instance variable storing a reference to the root node (if any), and a variable, called

size, that represents the overall number of nodes of T . We show such a linked

structure representation of a binary tree in Figure 8.9b.

parent

element

rightleft

root

∅

∅

∅∅ ∅

∅

∅

Baltimore Chicago New York Providence Seattle

size

5

(a) (b)

Figure 8.9: A linked structure for representing: (a) a single node; (b) a binary tree.

324 Chapter 8. Trees

Operations for Updating a Linked Binary Tree

The Tree and BinaryTree interfaces define a variety of methods for inspecting an

existing tree, yet they do not declare any update methods. Presuming that a newly

constructed tree is empty, we would like to have means for changing the structure

of content of a tree.

Although the principle of encapsulation suggests that the outward behaviors of

an abstract data type need not depend on the internal representation, the efficiency of

the operations depends greatly upon the representation. We therefore prefer to have

each concrete implementation of a tree class support the most suitable behaviors for

updating a tree. In the case of a linked binary tree, we suggest that the following

update methods be supported:

addRoot(e): Creates a root for an empty tree, storing e as the element,

and returns the position of that root; an error occurs if the

tree is not empty.

addLeft(p, e): Creates a left child of position p, storing element e, and

returns the position of the new node; an error occurs if p

already has a left child.

addRight(p, e): Creates a right child of position p, storing element e, and

returns the position of the new node; an error occurs if p

already has a right child.

set(p, e): Replaces the element stored at position p with element e,

and returns the previously stored element.

attach(p, T1, T2): Attaches the internal structure of trees T1 and T2 as the

respective left and right subtrees of leaf position p and

resets T1 and T2 to empty trees; an error condition occurs

if p is not a leaf.

remove(p): Removes the node at position p, replacing it with its child

(if any), and returns the element that had been stored at p;

an error occurs if p has two children.

We have specifically chosen this collection of operations because each can be

implemented in O(1) worst-case time with our linked representation. The most

complex of these are attach and remove, due to the case analyses involving the

various parent-child relationships and boundary conditions, yet there remains only

a constant number of operations to perform. (The implementation of both methods

could be greatly simplified if we used a tree representation with a sentinel node,

akin to our treatment of positional lists; see Exercise C-8.38.)

8.3. Implementing Trees 325

Java Implementation of a Linked Binary Tree Structure

We now present a concrete implementation of a LinkedBinaryTree class that im-

plements the binary tree ADT, and supports the update methods described on the

previous page. The new class formally extends the AbstractBinaryTree base class,

inheriting several concrete implementations of methods from that class (as well as

the formal designation that it implements the BinaryTree interface).

The low-level details of our linked tree implementation are reminiscent of tech-

niques used when implementing the LinkedPositionalList class in Section 7.3.3. We

define a nonpublic nested Node class to represent a node, and to serve as a Position
for the public interface. As was portrayed in Figure 8.9, a node maintains a refer-

ence to an element, as well as references to its parent, its left child, and its right

child (any of which might be null). The tree instance maintains a reference to the

root node (possibly null), and a count of the number of nodes in the tree.

We also provide a validate utility that is called anytime a Position is received as

a parameter, to ensure that it is a valid node. In the case of a linked tree, we adopt

a convention in which we set a node’s parent pointer to itself when it is removed

from a tree, so that we can later recognize it as an invalid position.

The entire LinkedBinaryTree class is presented in Code Fragments 8.8–8.11.

We provide the following guide to that code:

• Code Fragment 8.8 contains the definition of the nested Node class, which

implements the Position interface. It also defines a method, createNode,

that returns a new node instance. Such a design uses what is known as the

factory method pattern, allowing us to later subclass our tree in order to use

a specialized node type. (See Section 11.2.1.) Code Fragment 8.8 concludes

with the declaration of the instance variables of the outer LinkedBinaryTree
class and its constructor.

• Code Fragment 8.9 includes the protected validate(p) method, followed by

the accessors size, root, left, and right. We note that all other methods of the

Tree and BinaryTree interfaces are derived from these four concrete methods,

via the AbstractTree and AbstractBinaryTree base classes.

• Code Fragments 8.10 and 8.11 provide the six update methods for a linked

binary tree, as described on the preceding page. We note that the three

methods—addRoot, addLeft, and addRight—each rely on use of the factory

method, createNode, to produce a new node instance.

The remove method, given at the end of Code Fragment 8.11, intentionally

sets the parent field of a deleted node to refer to itself, in accordance with our

conventional representation of a defunct node (as detected within the validate
method). It resets all other fields to null, to aid in garbage collection.

326 Chapter 8. Trees

1 /∗∗ Concrete implementation of a binary tree using a node-based, linked structure. ∗/
2 public class LinkedBinaryTree<E> extends AbstractBinaryTree<E> {
3
4 //---------------- nested Node class ----------------
5 protected static class Node<E> implements Position<E> {
6 private E element; // an element stored at this node
7 private Node<E> parent; // a reference to the parent node (if any)
8 private Node<E> left; // a reference to the left child (if any)
9 private Node<E> right; // a reference to the right child (if any)

10 /∗∗ Constructs a node with the given element and neighbors. ∗/
11 public Node(E e, Node<E> above, Node<E> leftChild, Node<E> rightChild) {
12 element = e;
13 parent = above;
14 left = leftChild;
15 right = rightChild;
16 }
17 // accessor methods
18 public E getElement() { return element; }
19 public Node<E> getParent() { return parent; }
20 public Node<E> getLeft() { return left; }
21 public Node<E> getRight() { return right; }
22 // update methods
23 public void setElement(E e) { element = e; }
24 public void setParent(Node<E> parentNode) { parent = parentNode; }
25 public void setLeft(Node<E> leftChild) { left = leftChild; }
26 public void setRight(Node<E> rightChild) { right = rightChild; }
27 } //----------- end of nested Node class -----------
28
29 /∗∗ Factory function to create a new node storing element e. ∗/
30 protected Node<E> createNode(E e, Node<E> parent,
31 Node<E> left, Node<E> right) {
32 return new Node<E>(e, parent, left, right);
33 }
34

35 // LinkedBinaryTree instance variables
36 protected Node<E> root = null; // root of the tree
37 private int size = 0; // number of nodes in the tree
38

39 // constructor
40 public LinkedBinaryTree() { } // constructs an empty binary tree

Code Fragment 8.8: An implementation of the LinkedBinaryTree class.

(Continues in Code Fragments 8.9–8.11.)

8.3. Implementing Trees 327

41 // nonpublic utility
42 /∗∗ Validates the position and returns it as a node. ∗/
43 protected Node<E> validate(Position<E> p) throws IllegalArgumentException {
44 if (!(p instanceof Node))
45 throw new IllegalArgumentException("Not valid position type");
46 Node<E> node = (Node<E>) p; // safe cast
47 if (node.getParent() == node) // our convention for defunct node
48 throw new IllegalArgumentException("p is no longer in the tree");
49 return node;
50 }
51

52 // accessor methods (not already implemented in AbstractBinaryTree)
53 /∗∗ Returns the number of nodes in the tree. ∗/
54 public int size() {
55 return size;
56 }
57

58 /∗∗ Returns the root Position of the tree (or null if tree is empty). ∗/
59 public Position<E> root() {
60 return root;
61 }
62

63 /∗∗ Returns the Position of p's parent (or null if p is root). ∗/
64 public Position<E> parent(Position<E> p) throws IllegalArgumentException {
65 Node<E> node = validate(p);
66 return node.getParent();
67 }
68

69 /∗∗ Returns the Position of p's left child (or null if no child exists). ∗/
70 public Position<E> left(Position<E> p) throws IllegalArgumentException {
71 Node<E> node = validate(p);
72 return node.getLeft();
73 }
74
75 /∗∗ Returns the Position of p's right child (or null if no child exists). ∗/
76 public Position<E> right(Position<E> p) throws IllegalArgumentException {
77 Node<E> node = validate(p);
78 return node.getRight();
79 }

Code Fragment 8.9: An implementation of the LinkedBinaryTree class.

(Continued from Code Fragment 8.8; continues in Code Fragments 8.10 and 8.11.)

328 Chapter 8. Trees

80 // update methods supported by this class
81 /∗∗ Places element e at the root of an empty tree and returns its new Position. ∗/
82 public Position<E> addRoot(E e) throws IllegalStateException {
83 if (!isEmpty()) throw new IllegalStateException("Tree is not empty");
84 root = createNode(e, null, null, null);
85 size = 1;
86 return root;
87 }
88

89 /∗∗ Creates a new left child of Position p storing element e; returns its Position. ∗/
90 public Position<E> addLeft(Position<E> p, E e)
91 throws IllegalArgumentException {
92 Node<E> parent = validate(p);
93 if (parent.getLeft() != null)
94 throw new IllegalArgumentException("p already has a left child");
95 Node<E> child = createNode(e, parent, null, null);
96 parent.setLeft(child);
97 size++;
98 return child;
99 }

100
101 /∗∗ Creates a new right child of Position p storing element e; returns its Position. ∗/
102 public Position<E> addRight(Position<E> p, E e)
103 throws IllegalArgumentException {
104 Node<E> parent = validate(p);
105 if (parent.getRight() != null)
106 throw new IllegalArgumentException("p already has a right child");
107 Node<E> child = createNode(e, parent, null, null);
108 parent.setRight(child);
109 size++;
110 return child;
111 }
112

113 /∗∗ Replaces the element at Position p with e and returns the replaced element. ∗/
114 public E set(Position<E> p, E e) throws IllegalArgumentException {
115 Node<E> node = validate(p);
116 E temp = node.getElement();
117 node.setElement(e);
118 return temp;
119 }

Code Fragment 8.10: An implementation of the LinkedBinaryTree class.

(Continued from Code Fragments 8.8 and 8.9; continues in Code Fragment 8.11.)

8.3. Implementing Trees 329

120 /∗∗ Attaches trees t1 and t2 as left and right subtrees of external p. ∗/
121 public void attach(Position<E> p, LinkedBinaryTree<E> t1,
122 LinkedBinaryTree<E> t2) throws IllegalArgumentException {
123 Node<E> node = validate(p);
124 if (isInternal(p)) throw new IllegalArgumentException("p must be a leaf");
125 size += t1.size() + t2.size();
126 if (!t1.isEmpty()) { // attach t1 as left subtree of node
127 t1.root.setParent(node);
128 node.setLeft(t1.root);
129 t1.root = null;
130 t1.size = 0;
131 }
132 if (!t2.isEmpty()) { // attach t2 as right subtree of node
133 t2.root.setParent(node);
134 node.setRight(t2.root);
135 t2.root = null;
136 t2.size = 0;
137 }
138 }
139 /∗∗ Removes the node at Position p and replaces it with its child, if any. ∗/
140 public E remove(Position<E> p) throws IllegalArgumentException {
141 Node<E> node = validate(p);
142 if (numChildren(p) == 2)
143 throw new IllegalArgumentException("p has two children");
144 Node<E> child = (node.getLeft() != null ? node.getLeft() : node.getRight());
145 if (child != null)
146 child.setParent(node.getParent()); // child’s grandparent becomes its parent
147 if (node == root)
148 root = child; // child becomes root
149 else {
150 Node<E> parent = node.getParent();
151 if (node == parent.getLeft())
152 parent.setLeft(child);
153 else
154 parent.setRight(child);
155 }
156 size−−;
157 E temp = node.getElement();
158 node.setElement(null); // help garbage collection
159 node.setLeft(null);
160 node.setRight(null);
161 node.setParent(node); // our convention for defunct node
162 return temp;
163 }
164 } //----------- end of LinkedBinaryTree class -----------

Code Fragment 8.11: An implementation of the LinkedBinaryTree class.

(Continued from Code Fragments 8.8–8.10.)

330 Chapter 8. Trees

Performance of the Linked Binary Tree Implementation

To summarize the efficiencies of the linked structure representation, we analyze the

running times of the LinkedBinaryTree methods, including derived methods that

are inherited from the AbstractTree and AbstractBinaryTree classes:

• The size method, implemented in LinkedBinaryTree, uses an instance vari-

able storing the number of nodes of a tree and therefore takes O(1) time.

Method isEmpty, inherited from AbstractTree, relies on a single call to size
and thus takes O(1) time.

• The accessor methods root, left, right, and parent are implemented directly

in LinkedBinaryTree and take O(1) time each. The sibling, children, and

numChildren methods are derived in AbstractBinaryTree using on a constant

number of calls to these other accessors, so they run in O(1) time as well.

• The isInternal and isExternal methods, inherited from the AbstractTree class,

rely on a call to numChildren, and thus run in O(1) time as well. The isRoot
method, also implemented in AbstractTree, relies on a comparison to the

result of the root method and runs in O(1) time.

• The update method, set, clearly runs in O(1) time. More significantly, all of

the methods addRoot, addLeft, addRight, attach, and remove run in O(1)
time, as each involves relinking only a constant number of parent-child rela-

tionships per operation.

• Methods depth and height were each analyzed in Section 8.1.3. The depth
method at position p runs in O(dp +1) time where dp is its depth; the height
method on the root of the tree runs in O(n) time.

The overall space requirement of this data structure is O(n), for a tree with

n nodes, as there is an instance of the Node class for every node, in addition to the

top-level size and root fields. Table 8.1 summarizes the performance of the linked

structure implementation of a binary tree.

Method Running Time

size, isEmpty O(1)

root, parent, left, right, sibling, children, numChildren O(1)

isInternal, isExternal, isRoot O(1)

addRoot, addLeft, addRight, set, attach, remove O(1)

depth(p) O(dp +1)

height O(n)

Table 8.1: Running times for the methods of an n-node binary tree implemented

with a linked structure. The space usage is O(n).

8.3. Implementing Trees 331

8.3.2 Array-Based Representation of a Binary Tree

An alternative representation of a binary tree T is based on a way of numbering the

positions of T . For every position p of T , let f (p) be the integer defined as follows.

• If p is the root of T , then f (p) = 0.

• If p is the left child of position q, then f (p) = 2 f (q)+1.

• If p is the right child of position q, then f (p) = 2 f (q)+2.

The numbering function f is known as a level numbering of the positions in a

binary tree T , for it numbers the positions on each level of T in increasing order

from left to right. (See Figure 8.10.) Note well that the level numbering is based

on potential positions within a tree, not the actual shape of a specific tree, so they

are not necessarily consecutive. For example, in Figure 8.10(b), there are no nodes

with level numbering 13 or 14, because the node with level numbering 6 has no

children.

(a)

.

4

10 11 12 13 1487

0

2

65

1

3

9

(b)

15

+

−

+

∗

3

9 5

+

2−

∗

3 −

6

3 1 7 4

/

0

1 2

543 6

121110

25 2620

9

19

7 8

16

Figure 8.10: Binary tree level numbering: (a) general scheme; (b) an example.

332 Chapter 8. Trees

The level numbering function f suggests a representation of a binary tree T by

means of an array-based structure A, with the element at position p of T stored at

index f (p) of the array. We show an example of an array-based representation of a

binary tree in Figure 8.11.

/

4 2

0

21

3 4 5 6

121187

3 1

+

∗

9 5

−

+

0 6 121 2 3 4 5 7 8 9 10 11 13 14

5∗ + + 4 − 2 3 1 9/

Figure 8.11: Representation of a binary tree by means of an array.

One advantage of an array-based representation of a binary tree is that a posi-

tion p can be represented by the single integer f (p), and that position-based meth-

ods such as root, parent, left, and right can be implemented using simple arithmetic

operations on the number f (p). Based on our formula for the level numbering, the

left child of p has index 2 f (p)+ 1, the right child of p has index 2 f (p)+ 2, and

the parent of p has index ⌊(f (p)−1)/2⌋. We leave the details of a complete array-

based implementation as Exercise R-8.16.

The space usage of an array-based representation depends greatly on the shape

of the tree. Let n be the number of nodes of T , and let fM be the maximum value

of f (p) over all the nodes of T . The array A requires length N = 1+ fM, since

elements range from A[0] to A[fM]. Note that A may have a number of empty cells

that do not refer to existing positions of T . In fact, in the worst case, N = 2n− 1,

the justification of which is left as an exercise (R-8.14). In Section 9.3, we will

see a class of binary trees, called “heaps” for which N = n. Thus, in spite of the

worst-case space usage, there are applications for which the array representation

of a binary tree is space efficient. Still, for general binary trees, the exponential

worst-case space requirement of this representation is prohibitive.

Another drawback of an array representation is that many update operations for

trees cannot be efficiently supported. For example, removing a node and promoting

its child takes O(n) time because it is not just the child that moves locations within

the array, but all descendants of that child.

8.3. Implementing Trees 333

8.3.3 Linked Structure for General Trees

When representing a binary tree with a linked structure, each node explicitly main-

tains fields left and right as references to individual children. For a general tree,

there is no a priori limit on the number of children that a node may have. A natural

way to realize a general tree T as a linked structure is to have each node store a

single container of references to its children. For example, a children field of a

node can be an array or list of references to the children of the node (if any). Such

a linked representation is schematically illustrated in Figure 8.12.

element

parent

children

Baltimore Chicago

New York

Providence Seattle

(a) (b)

Figure 8.12: The linked structure for a general tree: (a) the structure of a node; (b) a

larger portion of the data structure associated with a node and its children.

Table 8.2 summarizes the performance of the implementation of a general tree

using a linked structure. The analysis is left as an exercise (R-8.13), but we note

that, by using a collection to store the children of each position p, we can implement

children(p) by simply iterating that collection.

Method Running Time

size, isEmpty O(1)

root, parent, isRoot, isInternal, isExternal O(1)

numChildren(p) O(1)

children(p) O(cp +1)

depth(p) O(dp +1)

height O(n)

Table 8.2: Running times of the accessor methods of an n-node general tree im-

plemented with a linked structure. We let cp denote the number of children of a

position p, and dp its depth. The space usage is O(n).

334 Chapter 8. Trees

8.4 Tree Traversal Algorithms

A traversal of a tree T is a systematic way of accessing, or “visiting,” all the posi-

tions of T . The specific action associated with the “visit” of a position p depends

on the application of this traversal, and could involve anything from increment-

ing a counter to performing some complex computation for p. In this section, we

describe several common traversal schemes for trees, implement them in the con-

text of our various tree classes, and discuss several common applications of tree

traversals.

8.4.1 Preorder and Postorder Traversals of General Trees

In a preorder traversal of a tree T , the root of T is visited first and then the sub-

trees rooted at its children are traversed recursively. If the tree is ordered, then

the subtrees are traversed according to the order of the children. The pseudocode

for the preorder traversal of the subtree rooted at a position p is shown in Code

Fragment 8.12.

Algorithm preorder(p):

perform the “visit” action for position p { this happens before any recursion }
for each child c in children(p) do

preorder(c) { recursively traverse the subtree rooted at c }
Code Fragment 8.12: Algorithm preorder for performing the preorder traversal of a

subtree rooted at position p of a tree.

Figure 8.13 portrays the order in which positions of a sample tree are visited

during an application of the preorder traversal algorithm.

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 8.13: Preorder traversal of an ordered tree, where the children of each posi-

tion are ordered from left to right.

8.4. Tree Traversal Algorithms 335

Postorder Traversal

Another important tree traversal algorithm is the postorder traversal. In some

sense, this algorithm can be viewed as the opposite of the preorder traversal, be-

cause it recursively traverses the subtrees rooted at the children of the root first, and

then visits the root (hence, the name “postorder”). Pseudocode for the postorder

traversal is given in Code Fragment 8.13, and an example of a postorder traversal

is portrayed in Figure 8.14.

Algorithm postorder(p):

for each child c in children(p) do

postorder(c) { recursively traverse the subtree rooted at c }
perform the “visit” action for position p { this happens after any recursion }

Code Fragment 8.13: Algorithm postorder for performing the postorder traversal of

a subtree rooted at position p of a tree.

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

Figure 8.14: Postorder traversal of the ordered tree of Figure 8.13.

Running-Time Analysis

Both preorder and postorder traversal algorithms are efficient ways to access all the

positions of a tree. The analysis of either of these traversal algorithms is similar

to that of algorithm height, given in Code Fragment 8.5 of Section 8.1.3. At each

position p, the nonrecursive part of the traversal algorithm requires time O(cp+1),
where cp is the number of children of p, under the assumption that the “visit” itself

takes O(1) time. By Proposition 8.4, the overall running time for the traversal of

tree T is O(n), where n is the number of positions in the tree. This running time is

asymptotically optimal since the traversal must visit all n positions of the tree.

336 Chapter 8. Trees

8.4.2 Breadth-First Tree Traversal

Although the preorder and postorder traversals are common ways of visiting the

positions of a tree, another approach is to traverse a tree so that we visit all the

positions at depth d before we visit the positions at depth d+1. Such an algorithm

is known as a breadth-first traversal.

A breadth-first traversal is a common approach used in software for playing

games. A game tree represents the possible choices of moves that might be made

by a player (or computer) during a game, with the root of the tree being the initial

configuration for the game. For example, Figure 8.15 displays a partial game tree

for Tic-Tac-Toe.

X

X

X

O

X

O

X

O

X

O

O XX

O

X

O

X

O

X OX OO

X

O

X

X

16

32 4

1

5 6 87 9 10 11 12 13 14 15

Figure 8.15: Partial game tree for Tic-Tac-Toe when ignoring symmetries; annota-

tions denote the order in which positions are visited in a breadth-first tree traversal.

A breadth-first traversal of such a game tree is often performed because a computer

may be unable to explore a complete game tree in a limited amount of time. So the

computer will consider all moves, then responses to those moves, going as deep as

computational time allows.

Pseudocode for a breadth-first traversal is given in Code Fragment 8.14. The

process is not recursive, since we are not traversing entire subtrees at once. We use

a queue to produce a FIFO (i.e., first-in first-out) semantics for the order in which

we visit nodes. The overall running time is O(n), due to the n calls to enqueue and

n calls to dequeue.

Algorithm breadthfirst():

Initialize queue Q to contain root()

while Q not empty do

p = Q.dequeue() { p is the oldest entry in the queue }
perform the “visit” action for position p

for each child c in children(p) do

Q.enqueue(c) { add p’s children to the end of the queue for later visits }
Code Fragment 8.14: Algorithm for performing a breadth-first traversal of a tree.

8.4. Tree Traversal Algorithms 337

8.4.3 Inorder Traversal of a Binary Tree

The standard preorder, postorder, and breadth-first traversals that were introduced

for general trees can be directly applied to binary trees. In this section, we will

introduce another common traversal algorithm specifically for a binary tree.

During an inorder traversal, we visit a position between the recursive traver-

sals of its left and right subtrees. The inorder traversal of a binary tree T can be

informally viewed as visiting the nodes of T “from left to right.” Indeed, for every

position p, the inorder traversal visits p after all the positions in the left subtree of

p and before all the positions in the right subtree of p. Pseudocode for the inorder

traversal algorithm is given in Code Fragment 8.15, and an example of an inorder

traversal is portrayed in Figure 8.16.

Algorithm inorder(p):

if p has a left child lc then

inorder(lc) { recursively traverse the left subtree of p }
perform the “visit” action for position p

if p has a right child rc then

inorder(rc) { recursively traverse the right subtree of p }

Code Fragment 8.15: Algorithm inorder for performing an inorder traversal of a

subtree rooted at position p of a binary tree.

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

Figure 8.16: Inorder traversal of a binary tree.

The inorder traversal algorithm has several important applications. When using

a binary tree to represent an arithmetic expression, as in Figure 8.16, the inorder

traversal visits positions in a consistent order with the standard representation of

the expression, as in 3+1×3/9−5+2 . . . (albeit without parentheses).

338 Chapter 8. Trees

Binary Search Trees

An important application of the inorder traversal algorithm arises when we store an

ordered sequence of elements in a binary tree, defining a structure we call a binary

search tree. Let S be a set whose unique elements have an order relation. For

example, S could be a set of integers. A binary search tree for S is a proper binary

tree T such that, for each internal position p of T :

• Position p stores an element of S, denoted as e(p).

• Elements stored in the left subtree of p (if any) are less than e(p).

• Elements stored in the right subtree of p (if any) are greater than e(p).

An example of a binary search tree is shown in Figure 8.17. The above properties

assure that an inorder traversal of a binary search tree T visits the elements in

nondecreasing order.

36

58

75

62

12

42

31

25

90

Figure 8.17: A binary search tree storing integers. The solid path is traversed when

searching (successfully) for 42. The dashed path is traversed when searching (un-

successfully) for 70.

We can use a binary search tree T for set S to find whether a given search value

v is in S, by traversing a path down the tree T , starting at the root. At each internal

position p encountered, we compare our search value v with the element e(p) stored

at p. If v < e(p), then the search continues in the left subtree of p. If v = e(p), then

the search terminates successfully. If v > e(p), then the search continues in the

right subtree of p. Finally, if we reach a leaf, the search terminates unsuccessfully.

In other words, a binary search tree can be viewed as a binary decision tree (recall

Example 8.5), where the question asked at each internal node is whether the ele-

ment at that node is less than, equal to, or larger than the element being searched

for. We illustrate several examples of the search operation in Figure 8.17.

Note that the running time of searching in a binary search tree T is proportional

to the height of T . Recall from Proposition 8.7 that the height of a binary tree with

n nodes can be as small as log(n+1)−1 or as large as n−1. Thus, binary search

trees are most efficient when they have small height. Chapter 11 is devoted to the

study of search trees.

8.4. Tree Traversal Algorithms 339

8.4.4 Implementing Tree Traversals in Java

When first defining the tree ADT in Section 8.1.2, we stated that tree T must include

the following supporting methods:

iterator(): Returns an iterator for all elements in the tree.

positions(): Returns an iterable collection of all positions of the tree.

At that time, we did not make any assumption about the order in which these

iterations report their results. In this section, we will demonstrate how any of the

tree traversal algorithms we have introduced can be used to produce these iterations

as concrete implementations within the AbstractTree or AbstractBinaryTree base

classes.

First, we note that an iteration of all elements of a tree can easily be produced

if we have an iteration of all positions of that tree. Code Fragment 8.16 provides

an implementation of the iterator() method by adapting an iteration produced by

the positions() method. In fact, this is the identical approach we used in Code

Fragment 7.14 of Section 7.4.2 for the LinkedPositionalList class.

1 //---------------- nested ElementIterator class ----------------
2 /∗ This class adapts the iteration produced by positions() to return elements. ∗/
3 private class ElementIterator implements Iterator<E> {
4 Iterator<Position<E>> posIterator = positions().iterator();
5 public boolean hasNext() { return posIterator.hasNext(); }
6 public E next() { return posIterator.next().getElement(); } // return element!
7 public void remove() { posIterator.remove(); }
8 }
9

10 /∗∗ Returns an iterator of the elements stored in the tree. ∗/
11 public Iterator<E> iterator() { return new ElementIterator(); }

Code Fragment 8.16: Iterating all elements of an AbstractTree instance, based upon

an iteration of the positions of the tree.

To implement the positions() method, we have a choice of tree traversal algo-

rithms. Given that there are advantages to each of those traversal orders, we provide

public implementations of each strategy that can be called directly by a user of our

class. We can then trivially adapt one of those as a default order for the positions
method of the AbstractTree class. For example, on the following page we will de-

fine a public method, preorder(), that returns an iteration of the positions of a tree

in preorder; Code Fragment 8.17 demonstrates how the positions() method can be

trivially defined to rely on that order.

public Iterable<Position<E>> positions() { return preorder(); }
Code Fragment 8.17: Defining preorder as the default traversal algorithm for the

public positions method of an abstract tree.

340 Chapter 8. Trees

Preorder Traversals

We begin by considering the preorder traversal algorithm. Our goal is to provide a

public method preorder(), as part of the AbstractTree class, which returns an iter-

able container of the positions of the tree in preorder. For ease of implementation,

we choose to produce a snapshot iterator, as defined in Section 7.4.2, returning

a list of all positions. (Exercise C-8.47 explores the goal of implementing a lazy

iterator that reports positions in preorder.)

We begin by defining a private utility method, preorderSubtree, given in Code

Fragment 8.18, which allows us to parameterize the recursive process with a spe-

cific position of the tree that serves as the root of a subtree to traverse. (We also

pass a list as a parameter that serves as a buffer to which “visited” positions are

added.)

1 /∗∗ Adds positions of the subtree rooted at Position p to the given snapshot. ∗/
2 private void preorderSubtree(Position<E> p, List<Position<E>> snapshot) {
3 snapshot.add(p); // for preorder, we add position p before exploring subtrees
4 for (Position<E> c : children(p))
5 preorderSubtree(c, snapshot);
6 }

Code Fragment 8.18: A recursive subroutine for performing a preorder traversal of

the subtree rooted at position p of a tree. This code should be included within the

body of the AbstractTree class.

The preorderSubtree method follows the high-level algorithm originally de-

scribed as pseudocode in Code Fragment 8.12. It has an implicit base case, as the

for loop body never executes if a position has no children.

The public preorder method, shown in Code Fragment 8.19, has the respon-

sibility of creating an empty list for the snapshot buffer, and invoking the recur-

sive method at the root of the tree (assuming the tree is nonempty). We rely on a

java.util.ArrayList instance as an Iterable instance for the snapshot buffer.

1 /∗∗ Returns an iterable collection of positions of the tree, reported in preorder. ∗/
2 public Iterable<Position<E>> preorder() {
3 List<Position<E>> snapshot = new ArrayList<>();
4 if (!isEmpty())
5 preorderSubtree(root(), snapshot); // fill the snapshot recursively
6 return snapshot;
7 }

Code Fragment 8.19: A public method that performs a preorder traversal of an entire

tree. This code should be included within the body of the AbstractTree class.

8.4. Tree Traversal Algorithms 341

Postorder Traversal

We implement a postorder traversal using a similar design as we used for a pre-

order traversal. The only difference is that a “visited” position is not added to a

postorder snapshot until after all of its subtrees have been traversed. Both the re-

cursive utility and the top-level public method are given in Code Fragment 8.20.

1 /∗∗ Adds positions of the subtree rooted at Position p to the given snapshot. ∗/
2 private void postorderSubtree(Position<E> p, List<Position<E>> snapshot) {
3 for (Position<E> c : children(p))
4 postorderSubtree(c, snapshot);
5 snapshot.add(p); // for postorder, we add position p after exploring subtrees
6 }
7 /∗∗ Returns an iterable collection of positions of the tree, reported in postorder. ∗/
8 public Iterable<Position<E>> postorder() {
9 List<Position<E>> snapshot = new ArrayList<>();

10 if (!isEmpty())
11 postorderSubtree(root(), snapshot); // fill the snapshot recursively
12 return snapshot;
13 }

Code Fragment 8.20: Support for performing a postorder traversal of a tree. This

code should be included within the body of the AbstractTree class.

Breadth-First Traversal

On the following page, we will provide an implementation of the breadth-first

traversal algorithm in the context of our AbstractTree class (Code Fragment 8.21).

Recall that the breadth-first traversal algorithm is not recursive; it relies on a queue

of positions to manage the traversal process. We will use the LinkedQueue class

from Section 6.2.3, although any implementation of the queue ADT would suffice.

Inorder Traversal for Binary Trees

The preorder, postorder, and breadth-first traversal algorithms are applicable to all

trees. The inorder traversal algorithm, because it explicitly relies on the notion of

a left and right child of a node, only applies to binary trees. We therefore include

its definition within the body of the AbstractBinaryTree class. We use a similar

design to our preorder and postorder traversals, with a private recursive utility for

traversing subtrees. (See Code Fragment 8.22.)

For many applications of binary trees (for example, see Chapter 11), an inorder

traversal is the most natural order. Therefore, Code Fragment 8.22 makes it the

default for the AbstractBinaryTree class by overriding the positions method that

was inherited from the AbstractTree class. Because the iterator() method relies on

positions(), it will also use inorder when reporting the elements of a binary tree.

342 Chapter 8. Trees

1 /∗∗ Returns an iterable collection of positions of the tree in breadth-first order. ∗/
2 public Iterable<Position<E>> breadthfirst() {
3 List<Position<E>> snapshot = new ArrayList<>();
4 if (!isEmpty()) {
5 Queue<Position<E>> fringe = new LinkedQueue<>();
6 fringe.enqueue(root()); // start with the root
7 while (!fringe.isEmpty()) {
8 Position<E> p = fringe.dequeue(); // remove from front of the queue
9 snapshot.add(p); // report this position

10 for (Position<E> c : children(p))
11 fringe.enqueue(c); // add children to back of queue
12 }
13 }
14 return snapshot;
15 }

Code Fragment 8.21: An implementation of a breadth-first traversal of a tree. This

code should be included within the body of the AbstractTree class.

1 /∗∗ Adds positions of the subtree rooted at Position p to the given snapshot. ∗/
2 private void inorderSubtree(Position<E> p, List<Position<E>> snapshot) {
3 if (left(p) != null)
4 inorderSubtree(left(p), snapshot);
5 snapshot.add(p);
6 if (right(p) != null)
7 inorderSubtree(right(p), snapshot);
8 }
9 /∗∗ Returns an iterable collection of positions of the tree, reported in inorder. ∗/

10 public Iterable<Position<E>> inorder() {
11 List<Position<E>> snapshot = new ArrayList<>();
12 if (!isEmpty())
13 inorderSubtree(root(), snapshot); // fill the snapshot recursively
14 return snapshot;
15 }
16 /∗∗ Overrides positions to make inorder the default order for binary trees. ∗/
17 public Iterable<Position<E>> positions() {
18 return inorder();
19 }

Code Fragment 8.22: Support for performing an inorder traversal of a binary tree,

and for making that order the default traversal for binary trees. This code should be

included within the body of the AbstractBinaryTree class.

8.4. Tree Traversal Algorithms 343

8.4.5 Applications of Tree Traversals

In this section, we demonstrate several representative applications of tree traversals,

including some customizations of the standard traversal algorithms.

Table of Contents

When using a tree to represent the hierarchical structure of a document, a preorder

traversal of the tree can be used to produce a table of contents for the document. For

example, the table of contents associated with the tree from Figure 8.13 is displayed

in Figure 8.18. Part (a) of that figure gives a simple presentation with one element

per line; part (b) shows a more attractive presentation, produced by indenting each

element based on its depth within the tree.

Paper Paper

Title Title

Abstract Abstract

§1 §1

§1.1 §1.1

§1.2 §1.2

§2 §2

§2.1 §2.1

... ...

(a) (b)

Figure 8.18: Table of contents for a document represented by the tree in Figure 8.13:

(a) without indentation; (b) with indentation based on depth within the tree.

The unindented version of the table of contents can be produced with the fol-

lowing code, given a tree T supporting the preorder() method:

for (Position<E> p : T.preorder())
System.out.println(p.getElement());

To produce the presentation of Figure 8.18(b), we indent each element with

a number of spaces equal to twice the element’s depth in the tree (hence, the

root element was unindented). If we assume that method, spaces(n), produces a

string of n spaces, we could replace the body of the above loop with the statement

System.out.println(spaces(2∗T.depth(p)) + p.getElement()). Unfortunately, al-

though the work to produce the preorder traversal runs in O(n) time, based on the

analysis of Section 8.4.1, the calls to depth incur a hidden cost. Making a call to

depth from every position of the tree results in O(n2) worst-case time, as noted

when analyzing the algorithm heightBad in Section 8.1.3.

344 Chapter 8. Trees

A preferred approach to producing an indented table of contents is to redesign

a top-down recursion that includes the current depth as an additional parameter.

Such an implementation is provided in Code Fragment 8.23. This implementation

runs in worst-case O(n) time (except, technically, the time it takes to print strings

of increasing lengths).

1 /∗∗ Prints preorder representation of subtree of T rooted at p having depth d. ∗/
2 public static <E> void printPreorderIndent(Tree<E> T, Position<E> p, int d) {
3 System.out.println(spaces(2∗d) + p.getElement()); // indent based on d
4 for (Position<E> c : T.children(p))
5 printPreorderIndent(T, c, d+1); // child depth is d+1
6 }

Code Fragment 8.23: Efficient recursion for printing indented version of a pre-

order traversal. To print an entire tree T, the recursion should be started with form

printPreorderIndent(T, T.root(), 0).

In the example of Figure 8.18, we were fortunate in that the numbering was

embedded within the elements of the tree. More generally, we might be interested

in using a preorder traversal to display the structure of a tree, with indentation and

also explicit numbering that was not present in the tree. For example, we might

display the tree from Figure 8.2 beginning as:

Electronics R’Us

1 R&D

2 Sales

2.1 Domestic

2.2 International

2.2.1 Canada

2.2.2 S. America

This is more challenging, because the numbers used as labels are implicit in

the structure of the tree. A label depends on the path from the root to the current

position. To accomplish our goal, we add an additional parameter to the recursive

signature. We send a list of integers representing the labels leading to a particular

position. For example, when visiting the node Domestic above, we will send the

list of values {2,1} that comprise its label.

At the implementation level, we wish to avoid the inefficiency of duplicating

such lists when sending a new parameter from one level of the recursion to the next.

A standard solution is to pass the same list instance throughout the recursion. At

one level of the recursion, a new entry is temporarily added to the end of the list

before making further recursive calls. In order to “leave no trace,” the extraneous

entry must later be removed from the list by the same recursive call that added it.

An implementation based on this approach is given in Code Fragment 8.24.

8.4. Tree Traversal Algorithms 345

1 /∗∗ Prints labeled representation of subtree of T rooted at p having depth d. ∗/
2 public static <E>
3 void printPreorderLabeled(Tree<E> T, Position<E> p, ArrayList<Integer> path) {
4 int d = path.size(); // depth equals the length of the path
5 System.out.print(spaces(2∗d)); // print indentation, then label
6 for (int j=0; j < d; j++) System.out.print(path.get(j) + (j == d−1 ? " " : "."));
7 System.out.println(p.getElement());
8 path.add(1); // add path entry for first child
9 for (Position<E> c : T.children(p)) {

10 printPreorderLabeled(T, c, path);
11 path.set(d, 1 + path.get(d)); // increment last entry of path
12 }
13 path.remove(d); // restore path to its incoming state
14 }

Code Fragment 8.24: Efficient recursion for printing an indented and labeled pre-

sentation of a preorder traversal.

Computing Disk Space

In Example 8.1, we considered the use of a tree as a model for a file-system struc-

ture, with internal positions representing directories and leaves representing files.

In fact, when introducing the use of recursion back in Chapter 5, we specifically

examined the topic of file systems (see Section 5.1.4). Although we did not explic-

itly model it as a tree at that time, we gave an implementation of an algorithm for

computing the disk usage (Code Fragment 5.5).

The recursive computation of disk space is emblematic of a postorder traversal,

as we cannot effectively compute the total space used by a directory until after we

know the space that is used by its children directories. Unfortunately, the formal

implementation of postorder, as given in Code Fragment 8.20, does not suffice for

this purpose. We would like to have a mechanism for children to return information

to the parent as part of the traversal process. A custom solution to the disk space

problem, with each level of recursion providing a return value to the (parent) caller,

is provided in Code Fragment 8.25.

1 /∗∗ Returns total disk space for subtree of T rooted at p. ∗/
2 public static int diskSpace(Tree<Integer> T, Position<Integer> p) {
3 int subtotal = p.getElement(); // we assume element represents space usage
4 for (Position<Integer> c : T.children(p))
5 subtotal += diskSpace(T, c);
6 return subtotal;
7 }

Code Fragment 8.25: Recursive computation of disk space for a tree. We assume

that each tree element reports the local space used at that position.

346 Chapter 8. Trees

Parenthetic Representations of a Tree

It is not possible to reconstruct a general tree, given only the preorder sequence of

elements, as in Figure 8.18a. Some additional context is necessary for the structure

of the tree to be well defined. The use of indentation or numbered labels provides

such context, with a very human-friendly presentation. However, there are more

concise string representations of trees that are computer-friendly.

In this section, we explore one such representation. The parenthetic string

representation P(T) of tree T is recursively defined. If T consists of a single

position p, then P(T) = p.getElement(). Otherwise, it is defined recursively as,

P(T) = p.getElement()+"("+P(T1)+", "+ · · · +", "+P(Tk)+")"

where p is the root of T and T1,T2, . . . ,Tk are the subtrees rooted at the children

of p, which are given in order if T is an ordered tree. We are using “+” here to

denote string concatenation. As an example, the parenthetic representation of the

tree of Figure 8.2 would appear as follows (line breaks are cosmetic):

Electronics R’Us (R&D, Sales (Domestic, International (Canada,

S. America, Overseas (Africa, Europe, Asia, Australia))),

Purchasing, Manufacturing (TV, CD, Tuner))

Although the parenthetic representation is essentially a preorder traversal, we

cannot easily produce the additional punctuation using the formal implementation

of preorder. The opening parenthesis must be produced just before the loop over

a position’s children, the separating commas between children, and the closing

parenthesis just after the loop completes. The Java method parenthesize, shown

in Code Fragment 8.26, is a custom traversal that prints such a parenthetic string

representation of a tree T .

1 /∗∗ Prints parenthesized representation of subtree of T rooted at p. ∗/
2 public static <E> void parenthesize(Tree<E> T, Position<E> p) {
3 System.out.print(p.getElement());
4 if (T.isInternal(p)) {
5 boolean firstTime = true;
6 for (Position<E> c : T.children(p)) {
7 System.out.print((firstTime ? " (" : ", ")); // determine proper punctuation
8 firstTime = false; // any future passes will get comma
9 parenthesize(T, c); // recur on child

10 }
11 System.out.print(")");
12 }
13 }

Code Fragment 8.26: Method that prints parenthetic string representation of a tree.

8.4. Tree Traversal Algorithms 347

Using Inorder Traversal for Tree Drawing

An inorder traversal can be applied to the problem of computing a graphical layout

of a binary tree, as shown in Figure 8.19. We assume the convention, common

to computer graphics, that x-coordinates increase left to right and y-coordinates

increase top to bottom, so that the origin is in the upper left corner of the drawing.

12

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11

4

Figure 8.19: An inorder drawing of a binary tree.

The geometry is determined by an algorithm that assigns x- and y-coordinates

to each position p of a binary tree T using the following two rules:

• x(p) is the number of positions visited before p in an inorder traversal of T .

• y(p) is the depth of p in T .

Code Fragment 8.27 provides an implementation of a recursive method that

assigns x- and y-coordinates to positions of a tree in this manner. Depth information

is passed from one level of the recursion to another, as done in our earlier example

for indentation. To maintain an accurate value for the x-coordinate as the traversal

proceeds, the method must be provided with the value of x that should be assigned

to the leftmost node of the current subtree, and it must return to its parent a revised

value of x that is appropriate for the first node drawn to the right of the subtree.

1 public static <E> int layout(BinaryTree<E> T, Position<E> p, int d, int x) {
2 if (T.left(p) != null)
3 x = layout(T, T.left(p), d+1, x); // resulting x will be increased
4 p.getElement().setX(x++); // post-increment x
5 p.getElement().setY(d);
6 if (T.right(p) != null)
7 x = layout(T, T.right(p), d+1, x); // resulting x will be increased
8 return x;
9 }

Code Fragment 8.27: Recursive method for computing coordinates at which to draw

positions of a binary tree. We assume that the element type for the tree supports

setX and setY methods. The initial call should be layout(T, T.root(), 0, 0).

348 Chapter 8. Trees

8.4.6 Euler Tours

The various applications described in Section 8.4.5 demonstrate the great power of

recursive tree traversals, but they also show that not every application strictly fits the

mold of a preorder, postorder, or inorder traversal. We can unify the tree-traversal

algorithms into a single framework known as an Euler tour traversal. The Euler

tour traversal of a tree T can be informally defined as a “walk” around T , where

we start by going from the root toward its leftmost child, viewing the edges of T as

being “walls” that we always keep to our left. (See Figure 8.20.)

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

Figure 8.20: Euler tour traversal of a tree.

The complexity of the walk is O(n), for a tree with n nodes, because it pro-

gresses exactly two times along each of the n− 1 edges of the tree—once going

downward along the edge, and later going upward along the edge. To unify the

concept of preorder and postorder traversals, we can view there being two notable

“visits” to each position p:

• A “pre visit” occurs when first reaching the position, that is, when the walk

passes immediately left of the node in our visualization.

• A “post visit” occurs when the walk later proceeds upward from that position,

that is, when the walk passes to the right of the node in our visualization.

The process of an Euler tour can be naturally viewed as recursive. In between

the “pre visit” and “post visit” of a given position will be a recursive tour of each

of its subtrees. Looking at Figure 8.20 as an example, there is a contiguous portion

of the entire tour that is itself an Euler tour of the subtree of the node with element

“/”. That tour contains two contiguous subtours, one traversing that position’s left

subtree and another traversing the right subtree.

In the special case of a binary tree, we can designate the time when the walk

passes immediately below a node as an “in visit” event. This will be just after the

tour of its left subtree (if any), but before the tour of its right subtree (if any).

8.4. Tree Traversal Algorithms 349

The pseudocode for an Euler tour traversal of a subtree rooted at a position p is

shown in Code Fragment 8.28.

Algorithm eulerTour(T , p):

perform the “pre visit” action for position p

for each child c in T .children(p) do

eulerTour(T , c) { recursively tour the subtree rooted at c }
perform the “post visit” action for position p

Code Fragment 8.28: Algorithm eulerTour for performing an Euler tour traversal of

a subtree rooted at position p of a tree.

The Euler tour traversal extends the preorder and postorder traversals, but it can

also perform other kinds of traversals. For example, suppose we wish to compute

the number of descendants of each position p in an n-node binary tree. We start an

Euler tour by initializing a counter to 0, and then increment the counter during the

“pre visit” for each position. To determine the number of descendants of a posi-

tion p, we compute the difference between the values of the counter from when the

pre-visit occurs and when the post-visit occurs, and add 1 (for p). This simple rule

gives us the number of descendants of p, because each node in the subtree rooted

at p is counted between p’s visit on the left and p’s visit on the right. Therefore, we

have an O(n)-time method for computing the number of descendants of each node.

For the case of a binary tree, we can customize the algorithm to include an

explicit “in visit” action, as shown in Code Fragment 8.29.

Algorithm eulerTourBinary(T , p):

perform the “pre visit” action for position p

if p has a left child lc then

eulerTourBinary(T , lc) { recursively tour the left subtree of p }
perform the “in visit” action for position p

if p has a right child rc then

eulerTourBinary(T , rc) { recursively tour the right subtree of p }
perform the “post visit” action for position p

Code Fragment 8.29: Algorithm eulerTourBinary for performing an Euler tour

traversal of a subtree rooted at position p of a binary tree.

For example, a binary Euler tour can produce a traditional parenthesized arith-

metic expression, such as "((((3+1)x3)/((9-5)+2))-((3x(7-4))+6))" for

the tree in Figure 8.20, as follows:

• “Pre visit” action: if the position is internal, print “(”.

• “In visit” action: print the value or operator stored at the position.

• “Post visit” action: if the position is internal, print “)”.

350 Chapter 8. Trees

8.5 Exercises

Reinforcement

R-8.1 The following questions refer to the tree of Figure 8.3.

a. Which node is the root?

b. What are the internal nodes?
c. How many descendants does node cs016/ have?

d. How many ancestors does node cs016/ have?
e. What are the siblings of node homeworks/?

f. Which nodes are in the subtree rooted at node projects/?

g. What is the depth of node papers/?
h. What is the height of the tree?

R-8.2 Show a tree achieving the worst-case running time for algorithm depth.

R-8.3 Give a justification of Proposition 8.3.

R-8.4 What is the running time of a call to T .height(p) when called on a position p

distinct from the root of tree T ? (See Code Fragment 8.5.)

R-8.5 Describe an algorithm, relying only on the BinaryTree operations, that counts the
number of leaves in a binary tree that are the left child of their respective parent.

R-8.6 Let T be an n-node binary tree that may be improper. Describe how to represent

T by means of a proper binary tree T ′ with O(n) nodes.

R-8.7 What are the minimum and maximum number of internal and external nodes in

an improper binary tree with n nodes?

R-8.8 Answer the following questions so as to justify Proposition 8.7.

a. What is the minimum number of external nodes for a proper binary tree
with height h? Justify your answer.

b. What is the maximum number of external nodes for a proper binary tree

with height h? Justify your answer.
c. Let T be a proper binary tree with height h and n nodes. Show that

log(n+1)−1≤ h≤ (n−1)/2.

d. For which values of n and h can the above lower and upper bounds on h be
attained with equality?

R-8.9 Give a proof by induction of Proposition 8.8.

R-8.10 Find the value of the arithmetic expression associated with each subtree of the
binary tree of Figure 8.6.

R-8.11 Draw an arithmetic expression tree that has four external nodes, storing the num-
bers 1, 5, 6, and 7 (with each number stored in a distinct external node, but not

necessarily in this order), and has three internal nodes, each storing an operator

from the set {+,−,∗,/}, so that the value of the root is 21. The operators may
return and act on fractions, and an operator may be used more than once.

8.5. Exercises 351

R-8.12 Draw the binary tree representation of the following arithmetic expression:
“(((5+2)∗ (2−1))/((2+9)+((7−2)−1))∗8)”.

R-8.13 Justify Table 8.2, summarizing the running time of the methods of a tree repre-

sented with a linked structure, by providing, for each method, a description of its
implementation, and an analysis of its running time.

R-8.14 Let T be a binary tree with n nodes, and let f () be the level numbering function

of the positions of T , as given in Section 8.3.2.

a. Show that, for every position p of T , f (p) ≤ 2n−2.

b. Show an example of a binary tree with seven nodes that attains the above

upper bound on f (p) for some position p.

R-8.15 Show how to use an Euler tour traversal to compute the level number f (p), as

defined in Section 8.3.2, of each position in a binary tree T .

R-8.16 Let T be a binary tree with n positions that is realized with an array representation
A, and let f () be the level numbering function of the positions of T , as given in

Section 8.3.2. Give pseudocode descriptions of each of the methods root, parent,
left, right, isExternal, and isRoot.

R-8.17 Our definition of the level numbering function f (p), as given in Section 8.3.2, be-

gins with the root having number 0. Some people prefer to use a level numbering
g(p) in which the root is assigned number 1, because it simplifies the arithmetic

for finding neighboring positions. Redo Exercise R-8.16, but assuming that we

use a level numbering g(p) in which the root is assigned number 1.

R-8.18 In what order are positions visited during a preorder traversal of the tree of Fig-

ure 8.6?

R-8.19 In what order are positions visited during a postorder traversal of the tree of
Figure 8.6?

R-8.20 Let T be an ordered tree with more than one node. Is it possible that the preorder

traversal of T visits the nodes in the same order as the postorder traversal of T ?
If so, give an example; otherwise, explain why this cannot occur. Likewise, is it

possible that the preorder traversal of T visits the nodes in the reverse order of

the postorder traversal of T ? If so, give an example; otherwise, explain why this
cannot occur.

R-8.21 Answer the previous question for the case when T is a proper binary tree with

more than one node.

R-8.22 Draw a binary tree T that simultaneously satisfies the following:

• Each internal node of T stores a single character.

• A preorder traversal of T yields EXAMFUN.

• An inorder traversal of T yields MAFXUEN.

R-8.23 Consider the example of a breadth-first traversal given in Figure 8.15. Using the

annotated numbers from that figure, describe the contents of the queue before

each pass of the while loop in Code Fragment 8.14. To get started, the queue has
contents {1} before the first pass, and contents {2,3,4} before the second pass.

352 Chapter 8. Trees

R-8.24 Give the output of the method parenthesize(T, T.root()), as described in Code
Fragment 8.26, when T is the tree of Figure 8.6.

R-8.25 Describe a modification to parenthesize, from Code Fragment 8.26, that relies on

the length() method for the String class to output the parenthetic representation
of a tree with line breaks added to display the tree in a text window that is 80

characters wide.

R-8.26 What is the running time of parenthesize(T, T.root()), as given in Code Frag-

ment 8.26, for a tree T with n nodes?

Creativity

C-8.27 Describe an efficient algorithm for converting a fully balanced string of paren-
theses into an equivalent tree. The tree associated with such a string is defined

recursively. The outermost pair of balanced parentheses is associated with the

root and each substring inside this pair, defined by the substring between two
balanced parentheses, is associated with a subtree of this root.

C-8.28 The path length of a tree T is the sum of the depths of all positions in T . Describe

a linear-time method for computing the path length of a tree T .

C-8.29 Define the internal path length, I(T), of a tree T to be the sum of the depths of
all the internal positions in T . Likewise, define the external path length, E(T),
of a tree T to be the sum of the depths of all the external positions in T . Show
that if T is a proper binary tree with n positions, then E(T) = I(T)+n−1.

C-8.30 Let T be a (not necessarily proper) binary tree with n nodes, and let D be the sum

of the depths of all the external nodes of T . Show that if T has the minimum

number of external nodes possible, then D is O(n) and if T has the maximum
number of external nodes possible, then D is O(n logn).

C-8.31 Let T be a (possibly improper) binary tree with n nodes, and let D be the sum of

the depths of all the external nodes of T . Describe a configuration for T such that
D is Ω(n2). Such a tree would be the worst case for the asymptotic running time

of method heightBad (Code Fragment 8.4).

C-8.32 For a tree T , let nI denote the number of its internal nodes, and let nE denote the
number of its external nodes. Show that if every internal node in T has exactly 3

children, then nE = 2nI +1.

C-8.33 Two ordered trees T ′ and T ′′ are said to be isomorphic if one of the following

holds:

• Both T ′ and T ′′ are empty.

• Both T ′ and T ′′ consist of a single node

• The roots of T ′ and T ′′ have the same number k ≥ 1 of subtrees, and the
i th such subtree of T ′ is isomorphic to the i th such subtree of T ′′ for i =
1, . . . ,k.

Design an algorithm that tests whether two given ordered trees are isomorphic.
What is the running time of your algorithm?

8.5. Exercises 353

C-8.34 Show that there are more than 2n improper binary trees with n internal nodes
such that no pair are isomorphic (see Exercise C-8.33).

C-8.35 If we exclude isomorphic trees (see Exercise C-8.33), exactly how many proper

binary trees exist with exactly 4 leaves?

C-8.36 Add support in LinkedBinaryTree for a method, pruneSubtree(p), that removes
the entire subtree rooted at position p, making sure to maintain an accurate count

of the size of the tree. What is the running time of your implementation?

C-8.37 Add support in LinkedBinaryTree for a method, swap(p, q), that has the effect of
restructuring the tree so that the node referenced by p takes the place of the node

referenced by q, and vice versa. Make sure to properly handle the case when the

nodes are adjacent.

C-8.38 We can simplify parts of our LinkedBinaryTree implementation if we make use

of of a single sentinel node, such that the sentinel is the parent of the real root of

the tree, and the root is referenced as the left child of the sentinel. Furthermore,
the sentinel will take the place of null as the value of the left or right member for

a node without such a child. Give a new implementation of the update methods

remove and attach, assuming such a representation.

C-8.39 Describe how to clone a LinkedBinaryTree instance representing a proper binary

tree, with use of the attach method.

C-8.40 Describe how to clone a LinkedBinaryTree instance representing a (not necessar-
ily proper) binary tree, with use of the addLeft and addRight methods.

C-8.41 Modify the LinkedBinaryTree class to formally support the Cloneable interface,

as described in Section 3.6.

C-8.42 Give an efficient algorithm that computes and prints, for every position p of a
tree T , the element of p followed by the height of p’s subtree.

C-8.43 Give an O(n)-time algorithm for computing the depths of all positions of a tree

T , where n is the number of nodes of T .

C-8.44 The balance factor of an internal position p of a proper binary tree is the dif-
ference between the heights of the right and left subtrees of p. Show how to

specialize the Euler tour traversal of Section 8.4.6 to print the balance factors of
all the internal nodes of a proper binary tree.

C-8.45 Design algorithms for the following operations for a binary tree T :

• preorderNext(p): Return the position visited after p in a preorder traversal
of T (or null if p is the last node visited).

• inorderNext(p): Return the position visited after p in an inorder traversal
of T (or null if p is the last node visited).

• postorderNext(p): Return the position visited after p in a postorder traver-

sal of T (or null if p is the last node visited).

What are the worst-case running times of your algorithms?

C-8.46 Describe, in pseudocode, a nonrecursive method for performing an inorder traver-
sal of a binary tree in linear time.

354 Chapter 8. Trees

C-8.47 To implement the preorder method of the AbstractTree class, we relied on the
convenience of creating a snapshot. Reimplement a preorder method that creates

a lazy iterator. (See Section 7.4.2 for discussion of iterators.)

C-8.48 Repeat Exercise C-8.47, implementing the postorder method of the AbstractTree
class.

C-8.49 Repeat Exercise C-8.47, implementing theAbstractBinaryTree’s inorder method.

C-8.50 Algorithm preorderDraw draws a binary tree T by assigning x- and y-coordinates

to each position p such that x(p) is the number of nodes preceding p in the
preorder traversal of T and y(p) is the depth of p in T .

a. Show that the drawing of T produced by preorderDraw has no pairs of
crossing edges.

b. Redraw the binary tree of Figure 8.19 using preorderDraw.

C-8.51 Redo the previous problem for the algorithm postorderDraw that is similar to
preorderDraw except that it assigns x(p) to be the number of nodes preceding

position p in the postorder traversal.

C-8.52 We can define a binary tree representation T ′ for an ordered general tree T as

follows (see Figure 8.21):

• For each position p of T , there is an associated position p′ of T ′.

• If p is a leaf of T , then p′ in T ′ does not have a left child; otherwise the left
child of p′ is q′, where q is the first child of p in T .

• If p has a sibling q ordered immediately after it in T , then q′ is the right

child of p′ in T ; otherwise p′ does not have a right child.

Given such a representation T ′ of a general ordered tree T , answer each of the

following questions:

a. Is a preorder traversal of T ′ equivalent to a preorder traversal of T?

b. Is a postorder traversal of T ′ equivalent to a postorder traversal of T ?

c. Is an inorder traversal of T ′ equivalent to one of the standard traversals

of T ? If so, which one?

D

F GE

C

A

B

A

DF

G

E C

B

(a) (b)

Figure 8.21: Representation of a tree with a binary tree: (a) tree T ; (b) binary tree

T ′ for T . The dashed edges connect nodes of T ′ that are siblings in T .

8.5. Exercises 355

C-8.53 Design an algorithm for drawing general trees, using a style similar to the inorder
traversal approach for drawing binary trees.

C-8.54 Let the rank of a position p during a traversal be defined such that the first ele-

ment visited has rank 1, the second element visited has rank 2, and so on. For

each position p in a tree T , let pre(p) be the rank of p in a preorder traversal of
T , let post(p) be the rank of p in a postorder traversal of T , let depth(p) be the

depth of p, and let desc(p) be the number of descendants of p, including p itself.

Derive a formula defining post(p) in terms of desc(p), depth(p), and pre(p), for
each node p in T .

C-8.55 Let T be a tree with n positions. Define the lowest common ancestor (LCA)

between two positions p and q as the lowest position in T that has both p and q

as descendants (where we allow a position to be a descendant of itself). Given
two positions p and q, describe an efficient algorithm for finding the LCA of p

and q. What is the running time of your algorithm?

C-8.56 Suppose each position p of a binary tree T is labeled with its value f (p) in a

level numbering of T . Design a fast method for determining f (a) for the lowest
common ancestor (LCA), a, of two positions p and q in T , given f (p) and f (q).
You do not need to find position a, just value f (a).

C-8.57 Let T be a binary tree with n positions, and, for any position p in T , let dp

denote the depth of p in T . The distance between two positions p and q in T is
dp + dq− 2da, where a is the lowest common ancestor (LCA) of p and q. The

diameter of T is the maximum distance between two positions in T . Describe
an efficient algorithm for finding the diameter of T . What is the running time of

your algorithm?

C-8.58 The indented parenthetic representation of a tree T is a variation of the paren-

thetic representation of T (see Code Fragment 8.26) that uses indentation and
line breaks as illustrated in Figure 8.22. Give an algorithm that prints this repre-

sentation of a tree.

Europe AsiaAfrica Australia

Canada OverseasS. America

Domestic International

Sales
Sales (

Domestic
International (

Canada
S. America
Overseas (

Africa
Europe
Asia
Australia

)
)

)

(a) (b)

Figure 8.22: (a) Tree T ; (b) indented parenthetic representation of T .

356 Chapter 8. Trees

C-8.59 As mentioned in Exercise C-6.19, postfix notation is an unambiguous way of
writing an arithmetic expression without parentheses. It is defined so that if

“(exp1)op(exp2)” is a normal (infix) fully parenthesized expression with opera-

tion op, then its postfix equivalent is “pexp1 pexp2 op”, where pexp1 is the postfix
version of exp1 and pexp2 is the postfix version of exp2. The postfix version of

a single number or variable is just that number or variable. So, for example, the
postfix version of the infix expression “((5+ 2) ∗ (8− 3))/4” is “5 2 + 8 3 − ∗
4 /”. Give an efficient algorithm for converting an infix arithmetic expression to

its equivalent postfix notation. (Hint: First convert the infix expression into its
equivalent binary tree representation.)

C-8.60 Let T be a binary tree with n positions. Define a Roman position to be a position

p in T , such that the number of descendants in p’s left subtree differ from the
number of descendants in p’s right subtree by at most 5. Describe a linear-time

method for finding each position p of T , such that p is not a Roman position, but
all of p’s descendants are Roman.

Projects

P-8.61 Implement the binary tree ADT using the array-based representation described

in Section 8.3.2.

P-8.62 Implement the tree ADT using a linked structure as described in Section 8.3.3.
Provide a reasonable set of update methods for your tree.

P-8.63 Implement the tree ADT using the binary tree representation described in Exer-
cise C-8.52. You may adapt the LinkedBinaryTree implementation.

P-8.64 The memory usage for the LinkedBinaryTree class can be streamlined by remov-

ing the parent reference from each node, and instead implementing a Position as
an object that keeps a list of nodes representing the entire path from the root to

that position. Reimplement the LinkedBinaryTree class using this strategy.

P-8.65 Write a program that takes as input a fully parenthesized, arithmetic expression
and converts it to a binary expression tree. Your program should display the tree

in some way and also print the value associated with the root. For an additional
challenge, allow the leaves to store variables of the form x1, x2, x3, and so on,

which are initially 0 and which can be updated interactively by your program,

with the corresponding update in the printed value of the root of the expression
tree.

P-8.66 A slicing floor plan divides a rectangle with horizontal and vertical sides using

horizontal and vertical cuts. (See Figure 8.23a.) A slicing floor plan can be
represented by a proper binary tree, called a slicing tree, whose internal nodes

represent the cuts, and whose external nodes represent the basic rectangles into
which the floor plan is decomposed by the cuts. (See Figure 8.23b.) The com-
paction problem for a slicing floor plan is defined as follows. Assume that each

basic rectangle of a slicing floor plan is assigned a minimum width w and a min-
imum height h. The compaction problem is to find the smallest possible height

8.5. Exercises 357

A

B

C D

E F

D

E F

B

C

A

(a) (b)

Figure 8.23: (a) Slicing floor plan; (b) slicing tree associated with the floor plan.

and width for each rectangle of the slicing floor plan that is compatible with the
minimum dimensions of the basic rectangles. Namely, this problem requires the

assignment of values h(p) and w(p) to each position p of the slicing tree such

that:

w(p) =

w
if p is a leaf whose basic rectangle has mini-

mum width w

max(w(ℓ),w(r))
if p is an internal position, associated with

a horizontal cut, with left child ℓ and right
child r

w(ℓ)+w(r)
if p is an internal position, associated with a

vertical cut, with left child ℓ and right child r

h(p) =

h
if p is a leaf node whose basic rectangle has

minimum height h

h(ℓ)+h(r)
if p is an internal position, associated with

a horizontal cut, with left child ℓ and right

child r

max(h(ℓ),h(r))
if p is an internal position, associated with a

vertical cut, with left child ℓ and right child r

Design a data structure for slicing floor plans that supports the operations:

• Create a floor plan consisting of a single basic rectangle.

• Decompose a basic rectangle by means of a horizontal cut.

• Decompose a basic rectangle by means of a vertical cut.

• Assign minimum height and width to a basic rectangle.

• Draw the slicing tree associated with the floor plan.

• Compact and draw the floor plan.

358 Chapter 8. Trees

P-8.67 Write a program that can play Tic-Tac-Toe effectively. (See Section 3.1.5.) To do
this, you will need to create a game tree T , which is a tree where each position

corresponds to a game configuration, which, in this case, is a representation of

the Tic-Tac-Toe board. (See Section 8.4.2.) The root corresponds to the initial
configuration. For each internal position p in T , the children of p correspond

to the game states we can reach from p’s game state in a single legal move for
the appropriate player, A (the first player) or B (the second player). Positions at

even depths correspond to moves for A and positions at odd depths correspond to

moves for B. Leaves are either final game states or are at a depth beyond which
we do not want to explore. We score each leaf with a value that indicates how

good this state is for player A. In large games, like chess, we have to use a heuris-

tic scoring function, but for small games, like Tic-Tac-Toe, we can construct the
entire game tree and score leaves as +1, 0, −1, indicating whether player A has

a win, draw, or lose in that configuration. A good algorithm for choosing moves
is minimax. In this algorithm, we assign a score to each internal position p in

T , such that if p represents A’s turn, we compute p’s score as the maximum of

the scores of p’s children (which corresponds to A’s optimal play from p). If an
internal node p represents B’s turn, then we compute p’s score as the minimum

of the scores of p’s children (which corresponds to B’s optimal play from p).

P-8.68 Write a program that takes as input a general tree T and a position p of T and

converts T to another tree with the same set of position adjacencies, but now with

p as its root.

P-8.69 Write a program that draws a binary tree.

P-8.70 Write a program that draws a general tree.

P-8.71 Write a program that can input and display a person’s family tree.

P-8.72 Write a program that visualizes an Euler tour traversal of a proper binary tree,
including the movements from node to node and the actions associated with visits

on the left, from below, and on the right. Illustrate your program by having it
compute and display preorder labels, inorder labels, postorder labels, ancestor

counts, and descendant counts for each node in the tree (not necessarily all at the

same time).

Chapter Notes

Discussions of the classic preorder, inorder, and postorder tree traversal methods can be

found in Knuth’s Fundamental Algorithms book [60]. The Euler tour traversal technique
comes from the parallel algorithms community; it is introduced by Tarjan and Vishkin [86]

and is discussed by JáJá [50] and by Karp and Ramachandran [55]. The algorithm for

drawing a tree is generally considered to be a part of the “folklore” of graph-drawing al-
gorithms. The reader interested in graph drawing is referred to the book by Di Battista,

Eades, Tamassia, and Tollis [29] and the survey by Tamassia and Liotta [85]. The puzzle
in Exercise R-8.11 was communicated by Micha Sharir.

Chapter

9 Priority Queues

Contents

9.1 The Priority Queue Abstract Data Type 360

9.1.1 Priorities . 360

9.1.2 The Priority Queue ADT 361

9.2 Implementing a Priority Queue 362

9.2.1 The Entry Composite . 362

9.2.2 Comparing Keys with Total Orders 363

9.2.3 The AbstractPriorityQueue Base Class 364

9.2.4 Implementing a Priority Queue with an Unsorted List . . . 366

9.2.5 Implementing a Priority Queue with a Sorted List 368

9.3 Heaps . 370

9.3.1 The Heap Data Structure 370

9.3.2 Implementing a Priority Queue with a Heap 372

9.3.3 Analysis of a Heap-Based Priority Queue 379

9.3.4 Bottom-Up Heap Construction ⋆ 380

9.3.5 Using the java.util.PriorityQueue Class 384

9.4 Sorting with a Priority Queue 385

9.4.1 Selection-Sort and Insertion-Sort 386

9.4.2 Heap-Sort . 388

9.5 Adaptable Priority Queues 390

9.5.1 Location-Aware Entries 391

9.5.2 Implementing an Adaptable Priority Queue 392

9.6 Exercises . 395

360 Chapter 9. Priority Queues

9.1 The Priority Queue Abstract Data Type

9.1.1 Priorities

In Chapter 6, we introduced the queue ADT as a collection of objects that are

added and removed according to the first-in, first-out (FIFO) principle. A com-

pany’s customer call center embodies such a model in which waiting customers are

told “calls will be answered in the order that they were received.” In that setting, a

new call is added to the back of the queue, and each time a customer service rep-

resentative becomes available, he or she is connected with the call that is removed

from the front of the call queue.

In practice, there are many applications in which a queue-like structure is used

to manage objects that must be processed in some way, but for which the first-in,

first-out policy does not suffice. Consider, for example, an air-traffic control center

that has to decide which flight to clear for landing from among many approaching

the airport. This choice may be influenced by factors such as each plane’s distance

from the runway, time spent waiting in a holding pattern, or amount of remaining

fuel. It is unlikely that the landing decisions are based purely on a FIFO policy.

There are other situations in which a “first come, first serve” policy might seem

reasonable, yet for which other priorities come into play. To use another airline

analogy, suppose a certain flight is fully booked an hour prior to departure. Be-

cause of the possibility of cancellations, the airline maintains a queue of standby

passengers hoping to get a seat. Although the priority of a standby passenger is

influenced by the check-in time of that passenger, other considerations include the

fare paid and frequent-flyer status. So it may be that an available seat is given to

a passenger who has arrived later than another, if such a passenger is assigned a

better priority by the airline agent.

In this chapter, we introduce a new abstract data type known as a priority queue.

This is a collection of prioritized elements that allows arbitrary element insertion,

and allows the removal of the element that has first priority. When an element is

added to a priority queue, the user designates its priority by providing an associ-

ated key. The element with the minimal key will be the next to be removed from

the queue (thus, an element with key 1 will be given priority over an element with

key 2). Although it is quite common for priorities to be expressed numerically, any

Java object may be used as a key, as long as there exists means to compare any two

instances a and b, in a way that defines a natural order of the keys. With such gen-

erality, applications may develop their own notion of priority for each element. For

example, different financial analysts may assign different ratings (i.e., priorities) to

a particular asset, such as a share of stock.

9.1. The Priority Queue Abstract Data Type 361

9.1.2 The Priority Queue ADT

We model an element and its priority as a key-value composite known as an entry.

(However, we defer until Section 9.2.1 the technical definition of the Entry type.)

We define the priority queue ADT to support the following methods:

insert(k, v): Creates an entry with key k and value v in the priority queue.

min(): Returns (but does not remove) a priority queue entry (k,v)

having minimal key; returns null if the priority queue is empty.

removeMin(): Removes and returns an entry (k,v) having minimal key from

the priority queue; returns null if the priority queue is empty.

size(): Returns the number of entries in the priority queue.

isEmpty(): Returns a boolean indicating whether the priority queue is

empty.

A priority queue may have multiple entries with equivalent keys, in which case

methods min and removeMin may report an arbitrary choice among those entry

having minimal key. Values may be any type of object.

In our initial model for a priority queue, we assume that an element’s key re-

mains fixed once it has been added to a priority queue. In Section 9.5, we consider

an extension that allows a user to update an element’s key within the priority queue.

Example 9.1: The following table shows a series of operations and their effects

on an initially empty priority queue. The “Priority Queue Contents” column is

somewhat deceiving since it shows the entries sorted by key. Such an internal

representation is not required of a priority queue.

Method Return Value Priority Queue Contents

insert(5,A) { (5,A) }
insert(9,C) { (5,A), (9,C) }
insert(3,B) { (3,B), (5,A), (9,C) }

min() (3,B) { (3,B), (5,A), (9,C) }
removeMin() (3,B) { (5,A), (9,C) }
insert(7,D) { (5,A), (7,D), (9,C) }
removeMin() (5,A) { (7,D), (9,C) }
removeMin() (7,D) { (9,C) }
removeMin() (9,C) { }
removeMin() null { }
isEmpty() true { }

362 Chapter 9. Priority Queues

9.2 Implementing a Priority Queue

In this section, we discuss several technical issues involving the implementation of

the priority queue ADT in Java, and we define an abstract base class that provides

functionality that is shared by all priority queue implementations in this chapter. We

then provide two concrete priority queue implementations using a positional list L

(see Section 7.3) for storage. They differ in whether or not entries are maintained

in sorted order according to their keys.

9.2.1 The Entry Composite

One challenge in implementing a priority queue is that we must keep track of both

an element and its key, even as entries are relocated within a data structure. This

is reminiscent of a case study from Section 7.7 in which we maintain a list of

elements with access frequencies. In that setting, we introduced the composition

design pattern, defining an Item class that paired each element with its associated

count in our primary data structure. For priority queues, we use composition to

pair a key k and a value v as a single object. To formalize this, we define the public

interface, Entry, shown in Code Fragment 9.1.

1 /∗∗ Interface for a key-value pair. ∗/
2 public interface Entry<K,V> {
3 K getKey(); // returns the key stored in this entry
4 V getValue(); // returns the value stored in this entry
5 }

Code Fragment 9.1: Java interface for an entry storing a key-value pair.

We then use the Entry type in the formal interface for the priority queue, shown

in Code Fragment 9.2. This allows us to return both a key and value as a single

object from methods such as min and removeMin. We also define the insert method

to return an entry; in a more advanced adaptable priority queue (see Section 9.5),

that entry can be subsequently updated or removed.

1 /∗∗ Interface for the priority queue ADT. ∗/
2 public interface PriorityQueue<K,V> {
3 int size();
4 boolean isEmpty();
5 Entry<K,V> insert(K key, V value) throws IllegalArgumentException;
6 Entry<K,V> min();
7 Entry<K,V> removeMin();
8 }

Code Fragment 9.2: Java interface for the priority queue ADT.

9.2. Implementing a Priority Queue 363

9.2.2 Comparing Keys with Total Orders

In defining the priority queue ADT, we can allow any type of object to serve as a

key, but we must be able to compare keys to each other in a meaningful way. More

so, the results of the comparisons must not be contradictory. For a comparison rule,

which we denote by ≤, to be self-consistent, it must define a total order relation,

which is to say that it satisfies the following properties for any keys k1, k2, and k3:

• Comparability property: k1 ≤ k2 or k2 ≤ k1.

• Antisymmetric property: if k1 ≤ k2 and k2 ≤ k1, then k1 = k2.

• Transitive property: if k1 ≤ k2 and k2 ≤ k3, then k1 ≤ k3.

The comparability property states that comparison rule is defined for every pair of

keys. Note that this property implies the following one:

• Reflexive property: k ≤ k.

A comparison rule, ≤, that defines a total order relation will never lead to a con-

tradiction. Such a rule defines a linear ordering among a set of keys; hence, if a

(finite) set of elements has a total order defined for it, then the notion of a minimal

key, kmin, is well defined, as a key in which kmin ≤ k, for any other key k in our set.

The Comparable Interface

Java provides two means for defining comparisons between object types. The first

of these is that a class may define what is known as the natural ordering of its

instances by formally implementing the java.lang.Comparable interface, which in-

cludes a single method, compareTo. The syntax a.compareTo(b) must return an

integer i with the following meaning:

• i < 0 designates that a < b.

• i = 0 designates that a = b.

• i > 0 designates that a > b.

For example, the compareTo method of the String class defines the natural

ordering of strings to be lexicographic, which is a case-sensitive extension of the

alphabetic ordering to Unicode.

The Comparator Interface

In some applications, we may want to compare objects according to some notion

other than their natural ordering. For example, we might be interested in which

of two strings is the shortest, or in defining our own complex rules for judging

which of two stocks is more promising. To support generality, Java defines the

java.util.Comparator interface. A comparator is an object that is external to the

class of the keys it compares. It provides a method with the signature compare(a, b)
that returns an integer with similar meaning to the compareTo method described

above.

364 Chapter 9. Priority Queues

As a concrete example, Code Fragment 9.3 defines a comparator that evaluates

strings based on their length (rather than their natural lexicographic order).

1 public class StringLengthComparator implements Comparator<String> {
2 /∗∗ Compares two strings according to their lengths. ∗/
3 public int compare(String a, String b) {
4 if (a.length() < b.length()) return −1;
5 else if (a.length() == b.length()) return 0;
6 else return 1;
7 }
8 }

Code Fragment 9.3: A comparator that evaluates strings based on their lengths.

Comparators and the Priority Queue ADT

For a general and reusable form of a priority queue, we allow a user to choose

any key type and to send an appropriate comparator instance as a parameter to the

priority queue constructor. The priority queue will use that comparator anytime it

needs to compare two keys to each other.

For convenience, we also allow a default priority queue to instead rely on the

natural ordering for the given keys (assuming those keys come from a comparable

class). In that case, we build our own instance of a DefaultComparator class, shown

in Code Fragment 9.4.

1 public class DefaultComparator<E> implements Comparator<E> {
2 public int compare(E a, E b) throws ClassCastException {
3 return ((Comparable<E>) a).compareTo(b);
4 }
5 }

Code Fragment 9.4: A DefaultComparator class that implements a comparator

based upon the natural ordering of its element type.

9.2.3 The AbstractPriorityQueue Base Class

To manage technical issues common to all our priority queue implementations, we

define an abstract base class named AbstractPriorityQueue in Code Fragment 9.5.

(See Section 2.3.3 for a discussion of abstract base classes.) This includes a nested

PQEntry class that implements the public Entry interface.

Our abstract class also declares and initializes an instance variable, comp, that

stores the comparator being used for the priority queue. We then provide a protected

method, compare, that invokes the comparator on the keys of two given entries.

9.2. Implementing a Priority Queue 365

1 /∗∗ An abstract base class to assist implementations of the PriorityQueue interface.∗/
2 public abstract class AbstractPriorityQueue<K,V>
3 implements PriorityQueue<K,V> {
4 //---------------- nested PQEntry class ----------------
5 protected static class PQEntry<K,V> implements Entry<K,V> {
6 private K k; // key
7 private V v; // value
8 public PQEntry(K key, V value) {
9 k = key;

10 v = value;
11 }
12 // methods of the Entry interface
13 public K getKey() { return k; }
14 public V getValue() { return v; }
15 // utilities not exposed as part of the Entry interface
16 protected void setKey(K key) { k = key; }
17 protected void setValue(V value) { v = value; }
18 } //----------- end of nested PQEntry class -----------
19
20 // instance variable for an AbstractPriorityQueue
21 /∗∗ The comparator defining the ordering of keys in the priority queue. ∗/
22 private Comparator<K> comp;
23 /∗∗ Creates an empty priority queue using the given comparator to order keys. ∗/
24 protected AbstractPriorityQueue(Comparator<K> c) { comp = c; }
25 /∗∗ Creates an empty priority queue based on the natural ordering of its keys. ∗/
26 protected AbstractPriorityQueue() { this(new DefaultComparator<K>()); }
27 /∗∗ Method for comparing two entries according to key ∗/
28 protected int compare(Entry<K,V> a, Entry<K,V> b) {
29 return comp.compare(a.getKey(), b.getKey());
30 }
31 /∗∗ Determines whether a key is valid. ∗/
32 protected boolean checkKey(K key) throws IllegalArgumentException {
33 try {
34 return (comp.compare(key,key) == 0); // see if key can be compared to itself
35 } catch (ClassCastException e) {
36 throw new IllegalArgumentException("Incompatible key");
37 }
38 }
39 /∗∗ Tests whether the priority queue is empty. ∗/
40 public boolean isEmpty() { return size() == 0; }
41 }

Code Fragment 9.5: The AbstractPriorityQueue class. This provides a nested

PQEntry class that composes a key and a value into a single object, and support

for managing a comparator. For convenience, we also provide an implementation

of isEmpty based on a presumed size method.

366 Chapter 9. Priority Queues

9.2.4 Implementing a Priority Queue with an Unsorted List

In our first concrete implementation of a priority queue, we store entries within an

unsorted linked list. Code Fragment 9.6 presents our UnsortedPriorityQueue class

as a subclass of the AbstractPriorityQueue class (from Code Fragment 9.5). For

internal storage, key-value pairs are represented as composites, using instances of

the inherited PQEntry class. These entries are stored within a PositionalList that

is an instance variable. We assume that the positional list is implemented with a

doubly linked list, as in Section 7.3, so that all operations of that ADT execute in

O(1) time.

We begin with an empty list when a new priority queue is constructed. At all

times, the size of the list equals the number of key-value pairs currently stored in

the priority queue. For this reason, our priority queue size method simply returns

the length of the internal list. By the design of our AbstractPriorityQueue class,

we inherit a concrete implementation of the isEmpty method that relies on a call to

our size method.

Each time a key-value pair is added to the priority queue, via the insert method,

we create a new PQEntry composite for the given key and value, and add that entry

to the end of the list. Such an implementation takes O(1) time.

The remaining challenge is that when min or removeMin is called, we must

locate the entry with minimal key. Because the entries are not sorted, we must

inspect all entries to find one with a minimal key. For convenience, we define

a private findMin utility that returns the position of an entry with minimal key.

Knowledge of the position allows the removeMin method to invoke the remove
method on the positional list. The min method simply uses the position to retrieve

the entry when preparing a key-value tuple to return. Due to the loop for finding

the minimal key, both min and removeMin methods run in O(n) time, where n is

the number of entries in the priority queue.

A summary of the running times for the UnsortedPriorityQueue class is given

in Table 9.1.

Method Running Time

size O(1)

isEmpty O(1)

insert O(1)

min O(n)

removeMin O(n)

Table 9.1: Worst-case running times of the methods of a priority queue of size

n, realized by means of an unsorted, doubly linked list. The space requirement

is O(n).

9.2. Implementing a Priority Queue 367

1 /∗∗ An implementation of a priority queue with an unsorted list. ∗/
2 public class UnsortedPriorityQueue<K,V> extends AbstractPriorityQueue<K,V> {
3 /∗∗ primary collection of priority queue entries ∗/
4 private PositionalList<Entry<K,V>> list = new LinkedPositionalList<>();
5
6 /∗∗ Creates an empty priority queue based on the natural ordering of its keys. ∗/
7 public UnsortedPriorityQueue() { super(); }
8 /∗∗ Creates an empty priority queue using the given comparator to order keys. ∗/
9 public UnsortedPriorityQueue(Comparator<K> comp) { super(comp); }

10

11 /∗∗ Returns the Position of an entry having minimal key. ∗/
12 private Position<Entry<K,V>> findMin() { // only called when nonempty
13 Position<Entry<K,V>> small = list.first();
14 for (Position<Entry<K,V>> walk : list.positions())
15 if (compare(walk.getElement(), small.getElement()) < 0)
16 small = walk; // found an even smaller key
17 return small;
18 }
19
20 /∗∗ Inserts a key-value pair and returns the entry created. ∗/
21 public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
22 checkKey(key); // auxiliary key-checking method (could throw exception)
23 Entry<K,V> newest = new PQEntry<>(key, value);
24 list.addLast(newest);
25 return newest;
26 }
27
28 /∗∗ Returns (but does not remove) an entry with minimal key. ∗/
29 public Entry<K,V> min() {
30 if (list.isEmpty()) return null;
31 return findMin().getElement();
32 }
33

34 /∗∗ Removes and returns an entry with minimal key. ∗/
35 public Entry<K,V> removeMin() {
36 if (list.isEmpty()) return null;
37 return list.remove(findMin());
38 }
39

40 /∗∗ Returns the number of items in the priority queue. ∗/
41 public int size() { return list.size(); }
42 }

Code Fragment 9.6: An implementation of a priority queue using an unsorted list.

The parent class AbstractPriorityQueue is given in Code Fragment 9.5, and the

LinkedPositionalList class is from Section 7.3.

368 Chapter 9. Priority Queues

9.2.5 Implementing a Priority Queue with a Sorted List

Our next implementation of a priority queue also uses a positional list, yet maintains

entries sorted by nondecreasing keys. This ensures that the first element of the list

is an entry with the smallest key.

Our SortedPriorityQueue class is given in Code Fragment 9.7. The implemen-

tation of min and removeMin are rather straightforward given knowledge that the

first element of a list has a minimal key. We rely on the first method of the posi-

tional list to find the position of the first entry, and the remove method to remove

the entry from the list. Assuming that the list is implemented with a doubly linked

list, operations min and removeMin take O(1) time.

This benefit comes at a cost, however, for method insert now requires that we

scan the list to find the appropriate position to insert the new entry. Our implemen-

tation starts at the end of the list, walking backward until the new key is smaller

than that of an existing entry; in the worst case, it progresses until reaching the

front of the list. Therefore, the insert method takes O(n) worst-case time, where n

is the number of entries in the priority queue at the time the method is executed. In

summary, when using a sorted list to implement a priority queue, insertion runs in

linear time, whereas finding and removing the minimum can be done in constant

time.

Comparing the Two List-Based Implementations

Table 9.2 compares the running times of the methods of a priority queue realized

by means of a sorted and unsorted list, respectively. We see an interesting trade-

off when we use a list to implement the priority queue ADT. An unsorted list

supports fast insertions but slow queries and deletions, whereas a sorted list allows

fast queries and deletions, but slow insertions.

Method Unsorted List Sorted List

size O(1) O(1)

isEmpty O(1) O(1)

insert O(1) O(n)

min O(n) O(1)

removeMin O(n) O(1)

Table 9.2: Worst-case running times of the methods of a priority queue of size n,

realized by means of an unsorted or sorted list, respectively. We assume that the

list is implemented by a doubly linked list. The space requirement is O(n).

9.2. Implementing a Priority Queue 369

1 /∗∗ An implementation of a priority queue with a sorted list. ∗/
2 public class SortedPriorityQueue<K,V> extends AbstractPriorityQueue<K,V> {
3 /∗∗ primary collection of priority queue entries ∗/
4 private PositionalList<Entry<K,V>> list = new LinkedPositionalList<>();
5
6 /∗∗ Creates an empty priority queue based on the natural ordering of its keys. ∗/
7 public SortedPriorityQueue() { super(); }
8 /∗∗ Creates an empty priority queue using the given comparator to order keys. ∗/
9 public SortedPriorityQueue(Comparator<K> comp) { super(comp); }

10
11 /∗∗ Inserts a key-value pair and returns the entry created. ∗/
12 public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
13 checkKey(key); // auxiliary key-checking method (could throw exception)
14 Entry<K,V> newest = new PQEntry<>(key, value);
15 Position<Entry<K,V>> walk = list.last();
16 // walk backward, looking for smaller key
17 while (walk != null && compare(newest, walk.getElement()) < 0)
18 walk = list.before(walk);
19 if (walk == null)
20 list.addFirst(newest); // new key is smallest
21 else
22 list.addAfter(walk, newest); // newest goes after walk
23 return newest;
24 }
25

26 /∗∗ Returns (but does not remove) an entry with minimal key. ∗/
27 public Entry<K,V> min() {
28 if (list.isEmpty()) return null;
29 return list.first().getElement();
30 }
31

32 /∗∗ Removes and returns an entry with minimal key. ∗/
33 public Entry<K,V> removeMin() {
34 if (list.isEmpty()) return null;
35 return list.remove(list.first());
36 }
37
38 /∗∗ Returns the number of items in the priority queue. ∗/
39 public int size() { return list.size(); }
40 }

Code Fragment 9.7: An implementation of a priority queue using a sorted list.

The parent class AbstractPriorityQueue is given in Code Fragment 9.5, and the

LinkedPositionalList class is from Section 7.3.

370 Chapter 9. Priority Queues

9.3 Heaps

The two strategies for implementing a priority queue ADT in the previous section

demonstrate an interesting trade-off. When using an unsorted list to store entries,

we can perform insertions in O(1) time, but finding or removing an element with

minimal key requires an O(n)-time loop through the entire collection. In contrast,

if using a sorted list, we can trivially find or remove the minimal element in O(1)
time, but adding a new element to the queue may require O(n) time to restore the

sorted order.

In this section, we provide a more efficient realization of a priority queue using

a data structure called a binary heap. This data structure allows us to perform both

insertions and removals in logarithmic time, which is a significant improvement

over the list-based implementations discussed in Section 9.2. The fundamental

way the heap achieves this improvement is to use the structure of a binary tree to

find a compromise between elements being entirely unsorted and perfectly sorted.

9.3.1 The Heap Data Structure

A heap (see Figure 9.1) is a binary tree T that stores entries at its positions, and

that satisfies two additional properties: a relational property defined in terms of the

way keys are stored in T and a structural property defined in terms of the shape of

T itself. The relational property is the following:

Heap-Order Property: In a heap T , for every position p other than the root, the

key stored at p is greater than or equal to the key stored at p’s parent.

As a consequence of the heap-order property, the keys encountered on a path from

the root to a leaf of T are in nondecreasing order. Also, a minimal key is always

stored at the root of T . This makes it easy to locate such an entry when min or

removeMin is called, as it is informally said to be “at the top of the heap” (hence,

the name “heap” for the data structure). By the way, the heap data structure defined

here has nothing to do with the memory heap (Section 15.1.2) used in the runtime

environment supporting a programming language like Java.

For the sake of efficiency, as will become clear later, we want the heap T to have

as small a height as possible. We enforce this requirement by insisting that the heap

T satisfy an additional structural property; it must be what we term complete.

Complete Binary Tree Property: A heap T with height h is a complete binary tree

if levels 0,1,2, . . . ,h− 1 of T have the maximal number of nodes possible

(namely, level i has 2i nodes, for 0 ≤ i ≤ h− 1) and the remaining nodes at

level h reside in the leftmost possible positions at that level.

9.3. Heaps 371

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

Figure 9.1: Example of a heap storing 13 entries with integer keys. The last position

is the one storing entry (13,W).

The tree in Figure 9.1 is complete because levels 0, 1, and 2 are full, and the six

nodes in level 3 are in the six leftmost possible positions at that level. In formalizing

what we mean by the leftmost possible positions, we refer to the discussion of level

numbering from Section 8.3.2, in the context of an array-based representation of a

binary tree. (In fact, in Section 9.3.2 we will discuss the use of an array to represent

a heap.) A complete binary tree with n elements is one that has positions with level

numbering 0 through n− 1. For example, in an array-based representation of the

above tree, its 13 entries would be stored consecutively from A[0] to A[12].

The Height of a Heap

Let h denote the height of T . Insisting that T be complete also has an important

consequence, as shown in Proposition 9.2.

Proposition 9.2: A heap T storing n entries has height h = ⌊log n⌋.

Justification: From the fact that T is complete, we know that the number of

nodes in levels 0 through h−1 of T is precisely 1+2+4+ · · ·+2h−1 = 2h−1, and

that the number of nodes in level h is at least 1 and at most 2h. Therefore

n≥ 2h−1+1 = 2h and n≤ 2h−1+2h = 2h+1−1.

By taking the logarithm of both sides of inequality n ≥ 2h, we see that height

h≤ log n. By rearranging terms and taking the logarithm of both sides of inequality

n ≤ 2h+1 − 1, we see that h ≥ log(n + 1)− 1. Since h is an integer, these two

inequalities imply that h = ⌊log n⌋.

372 Chapter 9. Priority Queues

9.3.2 Implementing a Priority Queue with a Heap

Proposition 9.2 has an important consequence, for it implies that if we can perform

update operations on a heap in time proportional to its height, then those opera-

tions will run in logarithmic time. Let us therefore turn to the problem of how to

efficiently perform various priority queue methods using a heap.

We will use the composition pattern from Section 9.2.1 to store key-value pairs

as entries in the heap. The size and isEmpty methods can be implemented based

on examination of the tree, and the min operation is equally trivial because the

heap property assures that the element at the root of the tree has a minimal key.

The interesting algorithms are those for implementing the insert and removeMin
methods.

Adding an Entry to the Heap

Let us consider how to perform insert(k, v) on a priority queue implemented with

a heap T . We store the pair (k,v) as an entry at a new node of the tree. To maintain

the complete binary tree property, that new node should be placed at a position p

just beyond the rightmost node at the bottom level of the tree, or as the leftmost

position of a new level, if the bottom level is already full (or if the heap is empty).

Up-Heap Bubbling After an Insertion

After this action, the tree T is complete, but it may violate the heap-order property.

Hence, unless position p is the root of T (that is, the priority queue was empty

before the insertion), we compare the key at position p to that of p’s parent, which

we denote as q. If key kp≥ kq, the heap-order property is satisfied and the algorithm

terminates. If instead kp < kq, then we need to restore the heap-order property,

which can be locally achieved by swapping the entries stored at positions p and q.

(See Figure 9.2c and d.) This swap causes the new entry to move up one level.

Again, the heap-order property may be violated, so we repeat the process, going up

in T until no violation of the heap-order property occurs. (See Figure 9.2e and h.)

The upward movement of the newly inserted entry by means of swaps is con-

ventionally called up-heap bubbling. A swap either resolves the violation of the

heap-order property or propagates it one level up in the heap. In the worst case, up-

heap bubbling causes the new entry to move all the way up to the root of heap T .

Thus, in the worst case, the number of swaps performed in the execution of method

insert is equal to the height of T . By Proposition 9.2, that bound is ⌊logn⌋.

9.3. Heaps 373

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

(a) (b)

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)

(c) (d)

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)

(e) (f)

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

(g) (h)

Figure 9.2: Insertion of a new entry with key 2 into the heap of Figure 9.1: (a) initial

heap; (b) after adding a new node; (c and d) swap to locally restore the partial order

property; (e and f) another swap; (g and h) final swap.

374 Chapter 9. Priority Queues

Removing the Entry with Minimal Key

Let us now turn to method removeMin of the priority queue ADT. We know that an

entry with the smallest key is stored at the root r of T (even if there is more than

one entry with smallest key). However, in general we cannot simply delete node r,

because this would leave two disconnected subtrees.

Instead, we ensure that the shape of the heap respects the complete binary tree

property by deleting the leaf at the last position p of T , defined as the rightmost

position at the bottommost level of the tree. To preserve the entry from the last

position p, we copy it to the root r (in place of the entry with minimal key that is

being removed by the operation). Figure 9.3a and b illustrates an example of these

steps, with minimal entry (4,C) being removed from the root and replaced by entry

(13,W) from the last position. The node at the last position is removed from the

tree.

Down-Heap Bubbling After a Removal

We are not yet done, however, for even though T is now complete, it likely violates

the heap-order property. If T has only one node (the root), then the heap-order

property is trivially satisfied and the algorithm terminates. Otherwise, we distin-

guish two cases, where p initially denotes the root of T :

• If p has no right child, let c be the left child of p.

• Otherwise (p has both children), let c be a child of p with minimal key.

If key kp ≤ kc, the heap-order property is satisfied and the algorithm terminates. If

instead kp > kc, then we need to restore the heap-order property. This can be locally

achieved by swapping the entries stored at p and c. (See Figure 9.3c and d.) It is

worth noting that when p has two children, we intentionally consider the smaller

key of the two children. Not only is the key of c smaller than that of p, it is at

least as small as the key at c’s sibling. This ensures that the heap-order property is

locally restored when that smaller key is promoted above the key that had been at

p and that at c’s sibling.

Having restored the heap-order property for node p relative to its children, there

may be a violation of this property at c; hence, we may have to continue swapping

down T until no violation of the heap-order property occurs. (See Figure 9.3e–h.)

This downward swapping process is called down-heap bubbling. A swap either

resolves the violation of the heap-order property or propagates it one level down in

the heap. In the worst case, an entry moves all the way down to the bottom level.

(See Figure 9.3.) Thus, the number of swaps performed in the execution of method

removeMin is, in the worst case, equal to the height of heap T , that is, it is ⌊log n⌋
by Proposition 9.2.

9.3. Heaps 375

(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

(a) (b)

(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z) (13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)

(c) (d)

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

(e) (f)

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)

(g) (h)

Figure 9.3: Removal of the entry with the smallest key from a heap: (a and b)

deletion of the last node, whose entry gets stored into the root; (c and d) swap to

locally restore the heap-order property; (e and f) another swap; (g and h) final swap.

376 Chapter 9. Priority Queues

Array-Based Representation of a Complete Binary Tree

The array-based representation of a binary tree (Section 8.3.2) is especially suitable

for a complete binary tree. We recall that in this implementation, the elements of

the tree are stored in an array-based list A such that the element at position p is

stored in A with index equal to the level number f (p) of p, defined as follows:

• If p is the root, then f (p) = 0.

• If p is the left child of position q, then f (p) = 2 f (q)+1.

• If p is the right child of position q, then f (p) = 2 f (q)+2.

For a tree with of size n, the elements have contiguous indices in the range [0,n−1]
and the last position of is always at index n−1. (See Figure 9.4.)

(12,H)

(4,C)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(14,E)

7

0

1 2

3 4 5 6

8 9 10 11 12

0 1 2 3 4 5 1211109876

(5,A) (13,W)(11,S)(12,H)(14,E)(25,J)(16,X)(20,B)(7,Q)(9,F)(15,K)(6,Z)(4,C)

Figure 9.4: Array-based representation of a heap.

The array-based heap representation avoids some complexities of a linked tree

structure. Specifically, methods insert and removeMin depend on locating the last

position of a heap. With the array-based representation of a heap of size n, the last

position is simply at index n−1. Locating the last position in a heap implemented

with a linked tree structure requires more effort. (See Exercise C-9.33.)

If the size of a priority queue is not known in advance, use of an array-based

representation does introduce the need to dynamically resize the array on occasion,

as is done with a Java ArrayList. The space usage of such an array-based repre-

sentation of a complete binary tree with n nodes is O(n), and the time bounds of

methods for adding or removing elements become amortized. (See Section 7.2.2.)

Java Heap Implementation

In Code Fragments 9.8 and 9.9, we provide a Java implementation of a heap-based

priority queue. Although we think of our heap as a binary tree, we do not formally

9.3. Heaps 377

use the binary tree ADT. We prefer to use the more efficient array-based represen-

tation of a tree, maintaining a Java ArrayList of entry composites. To allow us to

formalize our algorithms using tree-like terminology of parent, left, and right, the

class includes protected utility methods that compute the level numbering of a par-

ent or child of another position (lines 10–14 of Code Fragment 9.8). However, the

“positions” in this representation are simply integer indices into the array-list.

Our class also has protected utilities swap, upheap, and downheap for the low-

level movement of entries within the array-list. A new entry is added the end of

the array-list, and then repositioned as needed with upheap. To remove the entry

with minimal key (which resides at index 0), we move the last entry of the array-list

from index n−1 to index 0, and then invoke downheap to reposition it.

1 /∗∗ An implementation of a priority queue using an array-based heap. ∗/
2 public class HeapPriorityQueue<K,V> extends AbstractPriorityQueue<K,V> {
3 /∗∗ primary collection of priority queue entries ∗/
4 protected ArrayList<Entry<K,V>> heap = new ArrayList<>();
5 /∗∗ Creates an empty priority queue based on the natural ordering of its keys. ∗/
6 public HeapPriorityQueue() { super(); }
7 /∗∗ Creates an empty priority queue using the given comparator to order keys. ∗/
8 public HeapPriorityQueue(Comparator<K> comp) { super(comp); }
9 // protected utilities

10 protected int parent(int j) { return (j−1) / 2; } // truncating division
11 protected int left(int j) { return 2∗j + 1; }
12 protected int right(int j) { return 2∗j + 2; }
13 protected boolean hasLeft(int j) { return left(j) < heap.size(); }
14 protected boolean hasRight(int j) { return right(j) < heap.size(); }
15 /∗∗ Exchanges the entries at indices i and j of the array list. ∗/
16 protected void swap(int i, int j) {
17 Entry<K,V> temp = heap.get(i);
18 heap.set(i, heap.get(j));
19 heap.set(j, temp);
20 }
21 /∗∗ Moves the entry at index j higher, if necessary, to restore the heap property. ∗/
22 protected void upheap(int j) {
23 while (j > 0) { // continue until reaching root (or break statement)
24 int p = parent(j);
25 if (compare(heap.get(j), heap.get(p)) >= 0) break; // heap property verified
26 swap(j, p);
27 j = p; // continue from the parent's location
28 }
29 }

Code Fragment 9.8: Priority queue that uses an array-based heap and extends

AbstractPriorityQueue (Code Fragment 9.5). (Continues in Code Fragment 9.9.)

378 Chapter 9. Priority Queues

30 /∗∗ Moves the entry at index j lower, if necessary, to restore the heap property. ∗/
31 protected void downheap(int j) {
32 while (hasLeft(j)) { // continue to bottom (or break statement)
33 int leftIndex = left(j);
34 int smallChildIndex = leftIndex; // although right may be smaller
35 if (hasRight(j)) {
36 int rightIndex = right(j);
37 if (compare(heap.get(leftIndex), heap.get(rightIndex)) > 0)
38 smallChildIndex = rightIndex; // right child is smaller
39 }
40 if (compare(heap.get(smallChildIndex), heap.get(j)) >= 0)
41 break; // heap property has been restored
42 swap(j, smallChildIndex);
43 j = smallChildIndex; // continue at position of the child
44 }
45 }
46

47 // public methods
48 /∗∗ Returns the number of items in the priority queue. ∗/
49 public int size() { return heap.size(); }
50 /∗∗ Returns (but does not remove) an entry with minimal key (if any). ∗/
51 public Entry<K,V> min() {
52 if (heap.isEmpty()) return null;
53 return heap.get(0);
54 }
55 /∗∗ Inserts a key-value pair and returns the entry created. ∗/
56 public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
57 checkKey(key); // auxiliary key-checking method (could throw exception)
58 Entry<K,V> newest = new PQEntry<>(key, value);
59 heap.add(newest); // add to the end of the list
60 upheap(heap.size() − 1); // upheap newly added entry
61 return newest;
62 }
63 /∗∗ Removes and returns an entry with minimal key (if any). ∗/
64 public Entry<K,V> removeMin() {
65 if (heap.isEmpty()) return null;
66 Entry<K,V> answer = heap.get(0);
67 swap(0, heap.size() − 1); // put minimum item at the end
68 heap.remove(heap.size() − 1); // and remove it from the list;
69 downheap(0); // then fix new root
70 return answer;
71 }
72 }

Code Fragment 9.9: Priority queue implemented with an array-based heap (contin-

ued from Code Fragment 9.8).

9.3. Heaps 379

9.3.3 Analysis of a Heap-Based Priority Queue

Table 9.3 shows the running time of the priority queue ADT methods for the heap

implementation of a priority queue, assuming that two keys can be compared in

O(1) time and that the heap T is implemented with an array-based or linked-based

tree representation.

In short, each of the priority queue ADT methods can be performed in O(1) or

in O(logn) time, where n is the number of entries at the time the method is exe-

cuted. The analysis of the running time of the methods is based on the following:

• The heap T has n nodes, each storing a reference to a key-value entry.

• The height of heap T is O(log n), since T is complete (Proposition 9.2).

• The min operation runs in O(1) because the root of the tree contains such an

element.

• Locating the last position of a heap, as required for insert and removeMin,

can be performed in O(1) time for an array-based representation, or O(logn)
time for a linked-tree representation. (See Exercise C-9.33.)

• In the worst case, up-heap and down-heap bubbling perform a number of

swaps equal to the height of T .

Method Running Time

size, isEmpty O(1)

min O(1)

insert O(log n)∗

removeMin O(log n)∗

∗amortized, if using dynamic array

Table 9.3: Performance of a priority queue realized by means of a heap. We let n

denote the number of entries in the priority queue at the time an operation is ex-

ecuted. The space requirement is O(n). The running time of operations min and

removeMin are amortized for an array-based representation, due to occasional re-

sizing of a dynamic array; those bounds are worst case with a linked tree structure.

We conclude that the heap data structure is a very efficient realization of the

priority queue ADT, independent of whether the heap is implemented with a linked

structure or an array. The heap-based implementation achieves fast running times

for both insertion and removal, unlike the implementations that were based on using

an unsorted or sorted list.

380 Chapter 9. Priority Queues

9.3.4 Bottom-Up Heap Construction ⋆

If we start with an initially empty heap, n successive calls to the insert operation

will run in O(n log n) time in the worst case. However, if all n key-value pairs to

be stored in the heap are given in advance, such as during the first phase of the

heap-sort algorithm (introduced in Section 9.4.2), there is an alternative bottom-up

construction method that runs in O(n) time.

In this section, we describe the bottom-up heap construction, and provide an

implementation that can be used by the constructor of a heap-based priority queue.

For simplicity of exposition, we describe this bottom-up heap construction as-

suming the number of keys, n, is an integer such that n = 2h+1 − 1. That is,

the heap is a complete binary tree with every level being full, so the heap has

height h = log(n+ 1)− 1. Viewed nonrecursively, bottom-up heap construction

consists of the following h+1 = log(n+1) steps:

1. In the first step (see Figure 9.5b), we construct (n+ 1)/2 elementary heaps

storing one entry each.

2. In the second step (see Figure 9.5c–d), we form (n+1)/4 heaps, each storing

three entries, by joining pairs of elementary heaps and adding a new entry.

The new entry is placed at the root and may have to be swapped with the

entry stored at a child to preserve the heap-order property.

3. In the third step (see Figure 9.5e–f), we form (n+ 1)/8 heaps, each storing

7 entries, by joining pairs of 3-entry heaps (constructed in the previous step)

and adding a new entry. The new entry is placed initially at the root, but may

have to move down with a down-heap bubbling to preserve the heap-order

property.

...

i. In the generic i th step, 2≤ i≤ h, we form (n+1)/2i heaps, each storing 2i−1

entries, by joining pairs of heaps storing (2i−1−1) entries (constructed in the

previous step) and adding a new entry. The new entry is placed initially at

the root, but may have to move down with a down-heap bubbling to preserve

the heap-order property.

...

h+1. In the last step (see Figure 9.5g–h), we form the final heap, storing all the

n entries, by joining two heaps storing (n− 1)/2 entries (constructed in the

previous step) and adding a new entry. The new entry is placed initially at

the root, but may have to move down with a down-heap bubbling to preserve

the heap-order property.

We illustrate bottom-up heap construction in Figure 9.5 for h = 3.

9.3. Heaps 381

415 12 6 7 23 2016

(a) (b)

416 15

9

12 6 7

11

23

17

20

25

2016 25 9

4

12 11 7

6

23

1715

(c) (d)

25 12 11 23 20

1715

16

8

4

9

5

6

7 25 12 11 23 20

1715

16 8

5

9

4 6

7

(e) (f)

25 12 11 8 23 20

17715

6

16

5

14

4

9 25 12 11 8 23 20

17715

6

16 14

4

5

9

(g) (h)

Figure 9.5: Bottom-up construction of a heap with 15 entries: (a and b) we begin by

constructing 1-entry heaps on the bottom level; (c and d) we combine these heaps

into 3-entry heaps; (e and f) we build 7-entry heaps; (g and h) we create the final

heap. The paths of the down-heap bubblings are highlighted in (d, f, and h). For

simplicity, we only show the key within each node instead of the entire entry.

382 Chapter 9. Priority Queues

Java Implementation of a Bottom-Up Heap Construction

Implementing a bottom-up heap construction is quite easy, given the existence of

a “down-heap” utility method. The “merging” of two equally sized heaps that are

subtrees of a common position p, as described in the opening of this section, can

be accomplished simply by down-heaping p’s entry. For example, that is what

happened to the key 14 in going from Figure 9.5(f) to (g).

With our array-based representation of a heap, if we initially store all n entries

in arbitrary order within the array, we can implement the bottom-up heap construc-

tion process with a single loop that makes a call to downheap from each position

of the tree, as long as those calls are ordered starting with the deepest level and

ending with the root of the tree. In fact, that loop can start with the deepest internal

position, since there is no effect when down-heap is called at an external position.

In Code Fragment 9.10, we augment the original HeapPriorityQueue class from

Section 9.3.2 to provide support for the bottom-up construction of an initial collec-

tion. We introduce a nonpublic utility method, heapify, that calls downheap on

each nonleaf position, beginning with the deepest and concluding with a call at the

root of the tree.

We introduce an additional constructor for the class that accepts an initial se-

quence of keys and values, parameterized as two coordinate arrays that are pre-

sumed to have the same length. We create new entries, pairing the first key with

the first value, the second key with the second value, and so on. We then call the

heapify utility to establish the heap ordering. For brevity, we omit a similar con-

structor that accepts a nondefault comparator for the priority queue.

/∗∗ Creates a priority queue initialized with the given key-value pairs. ∗/
public HeapPriorityQueue(K[] keys, V[] values) {
super();
for (int j=0; j < Math.min(keys.length, values.length); j++)
heap.add(new PQEntry<>(keys[j], values[j]));

heapify();
}

/∗∗ Performs a bottom-up construction of the heap in linear time. ∗/
protected void heapify() {
int startIndex = parent(size()−1); // start at PARENT of last entry
for (int j=startIndex; j >= 0; j−−) // loop until processing the root
downheap(j);

}
Code Fragment 9.10: Revision to the HeapPriorityQueue class of Code Frag-

ments 9.8 and 9.9, supporting linear-time construction given an initial collection

of key-value pairs.

9.3. Heaps 383

Asymptotic Analysis of Bottom-Up Heap Construction

Bottom-up heap construction is asymptotically faster than incrementally inserting

n entries into an initially empty heap. Intuitively, we are performing a single down-

heap operation at each position in the tree, rather than a single up-heap operation

from each. Since more nodes are closer to the bottom of a tree than the top, the

sum of the downward paths is linear, as shown in the following proposition.

Proposition 9.3: Bottom-up construction of a heap with n entries takes O(n)
time, assuming two keys can be compared in O(1) time.

Justification: The primary cost of the construction is due to the down-heap

steps performed at each nonleaf position. Let πv denote the path of T from nonleaf

node v to its “inorder successor” leaf, that is, the path that starts at v, goes to the

right child of v, and then goes down leftward until it reaches a leaf. Although, πv

is not necessarily the path followed by the down-heap bubbling step from v, its

number of edges ‖πv‖ is proportional to the height of the subtree rooted at v, and

thus a bound on the complexity of the down-heap operation at v. The total running

time of the bottom-up heap construction algorithm is therefore bounded by the sum

∑v ‖πv‖. For intuition, Figure 9.6 illustrates the justification “visually,” marking

each edge with the label of the nonleaf node v whose path πv contains that edge.

We claim that the paths πv for all nonleaf v are edge-disjoint, and thus the sum

of the path lengths is bounded by the number of total edges in the tree, hence O(n).
To show this, we consider what we term “right-leaning” and “left-leaning” edges

(i.e., those going from a parent to a right, respectively left, child). A particular right-

leaning edge e can only be part of the path πv for node v that is the parent in the

relationship represented by e. Left-leaning edges can be partitioned by considering

the leaf that is reached if continuing down leftward until reaching a leaf. Each

nonleaf node only uses left-leaning edges in the group leading to that nonleaf node’s

inorder successor. Since each nonleaf node must have a different inorder successor,

no two such paths can contain the same left-leaning edge. We conclude that the

bottom-up construction of heap T takes O(n) time.

15

6

4

16

5

25 14 12 11 8 23 20

1779
15 7 17

5 4 6

5 4 6

4

9

Figure 9.6: Visual justification of the linear running time of bottom-up heap con-

struction. Each edge e is labeled with a node v for which πv contains e (if any).

384 Chapter 9. Priority Queues

9.3.5 Using the java.util.PriorityQueue Class

There is no priority queue interface built into Java, but Java does include a class,

java.util.PriorityQueue, which implements the java.util.Queue interface. Instead

of adding and removing elements according to the standard FIFO policy used by

most queues, the java.util.PriorityQueue class processes its entries according to a

priority The “front” of the queue will always be a minimal element, with priori-

ties based either on the natural ordering of the elements, or in accordance with a

comparator object sent as a parameter when constructing the priority queue.

The most notable difference between the java.util.PriorityQueue class and our

own priority queue ADT is the model for managing keys and values. Whereas our

public interface distinguishes between keys and values, the java.util.PriorityQueue
class relies on a single element type. That element is effectively treated as a key.

If a user wishes to insert distinct keys and values, the burden is on the user to

define and insert appropriate composite objects, and to ensure that those objects can

be compared based on their keys. (The Java Collections Framework does include

its own entry interface, java.util.Map.Entry, and a concrete implementation in the

java.util.AbstractMap.SimpleEntry class; we discuss the map ADT in the next

chapter.)

Table 9.4 shows the correspondance between methods of our priority queue

ADT and those of the java.util.PriorityQueue class. The java.util.PriorityQueue
class is implemented with a heap, so it guarantees O(log n)-time performance for

methods add and remove, and constant-time performance for accessors peek, size,
and isEmpty. In addition, it provides a parameterized method, remove(e), that

removes a specific element e from the priority queue. However, that method runs

in O(n) time, performing a sequential search to locate the element within the heap.

(In Section 9.5, we extend our heap-based priority queue implementation to support

a more efficient means for removing an arbitrary entry, or for updating the priority

of an existing entry.)

Our Priority Queue ADT java.util.PriorityQueue Class

insert(k,v) add(new SimpleEntry(k,v))

min() peek()

removeMin() remove()

size() size()

isEmpty() isEmpty()

Table 9.4: Methods of our priority queue ADT and the corresponding methods

when using the java.util.PriorityQueue class.

9.4. Sorting with a Priority Queue 385

9.4 Sorting with a Priority Queue

One application of priority queues is sorting, where we are given a sequence of

elements that can be compared according to a total order relation, and we want to

rearrange them in increasing order (or at least in nondecreasing order if there are

ties). The algorithm for sorting a sequence S with a priority queue P is quite simple

and consists of the following two phases:

1. In the first phase, we insert the elements of S as keys into an initially empty

priority queue P by means of a series of n insert operations, one for each

element.

2. In the second phase, we extract the elements from P in nondecreasing order

by means of a series of n removeMin operations, putting them back into S in

that order.

A Java implementation of this algorithm is given in Code Fragment 9.11, as-

suming that the sequence is stored as a positional list. (Code for a different type of

collection, such as an array or an array list, would be similar.)

The algorithm works correctly for any priority queue P, no matter how P is

implemented. However, the running time of the algorithm is determined by the

running times of operations insert and removeMin, which do depend on how P

is implemented. Indeed, pqSort should be considered more a sorting “scheme”

than a sorting “algorithm,” because it does not specify how the priority queue P

is implemented. The pqSort scheme is the paradigm of several popular sorting

algorithms, including selection-sort, insertion-sort, and heap-sort, which we will

discuss in this section.

1 /∗∗ Sorts sequence S, using initially empty priority queue P to produce the order. ∗/
2 public static <E> void pqSort(PositionalList<E> S, PriorityQueue<E,?> P) {
3 int n = S.size();
4 for (int j=0; j < n; j++) {
5 E element = S.remove(S.first());
6 P.insert(element, null); // element is key; null value
7 }
8 for (int j=0; j < n; j++) {
9 E element = P.removeMin().getKey();

10 S.addLast(element); // the smallest key in P is next placed in S
11 }
12 }

Code Fragment 9.11: An implementation of a pqSort method that sorts elements of

a positional list using an initially empty priority queue to produce the ordering.

386 Chapter 9. Priority Queues

9.4.1 Selection-Sort and Insertion-Sort

We next demonstrate how the pqSort scheme results in two classic sorting algo-

rithms when using an unsorted or sorted list for a priority queue.

Selection-Sort

In Phase 1 of the pqSort scheme, we insert all elements into a priority queue P; in

Phase 2 we repeatedly remove the minimal element from P using the removeMin
method. If we implement P with an unsorted list, then Phase 1 of pqSort takes O(n)
time, for we can insert each element in O(1) time. In Phase 2, the running time of

each removeMin operation is proportional to the size of P. Thus, the bottleneck

computation is the repeated “selection” of the minimum element in Phase 2. For

this reason, this algorithm is better known as selection-sort. (See Figure 9.7.)

Sequence S Priority Queue P

Input (7, 4, 8, 2, 5, 3, 9) ()
Phase 1 (a) (4, 8, 2, 5, 3, 9) (7)

(b) (8, 2, 5, 3, 9) (7, 4)
...

...
...

(g) () (7, 4, 8, 2, 5, 3, 9)
Phase 2 (a) (2) (7, 4, 8, 5, 3, 9)

(b) (2, 3) (7, 4, 8, 5, 9)
(c) (2, 3, 4) (7, 8, 5, 9)
(d) (2, 3, 4, 5) (7, 8, 9)
(e) (2, 3, 4, 5, 7) (8, 9)
(f) (2, 3, 4, 5, 7, 8) (9)
(g) (2, 3, 4, 5, 7, 8, 9) ()

Figure 9.7: Execution of selection-sort on sequence S = (7, 4, 8, 2, 5, 3, 9).

As noted above, the bottleneck is in Phase 2 where we repeatedly remove an

entry with smallest key from the priority queue P. The size of P starts at n and

incrementally decreases with each removeMin until it becomes 0. Thus, the first

removeMin operation takes time O(n), the second one takes time O(n−1), and so

on, until the last (n th) operation takes time O(1). Therefore, the total time needed

for the second phase is

O(n+(n−1)+ · · ·+2+1) = O

(
n

∑
i=1

i

)
.

By Proposition 4.3, we have ∑
n
i=1 i = n(n+1)/2. Thus, Phase 2 takes time O(n2),

as does the entire selection-sort algorithm.

9.4. Sorting with a Priority Queue 387

Insertion-Sort

If we implement the priority queue P using a sorted list, then the running time of

Phase 2 improves to O(n), for each operation removeMin on P now takes O(1) time.

Unfortunately, Phase 1 now becomes the bottleneck for the running time, since, in

the worst case, each insert operation takes time proportional to the size of P. This

sorting algorithm is therefore better known as insertion-sort (see Figure 9.8), for

the bottleneck in this sorting algorithm involves the repeated “insertion” of a new

element at the appropriate position in a sorted list.

Sequence S Priority Queue P

Input (7, 4, 8, 2, 5, 3, 9) ()
Phase 1 (a) (4, 8, 2, 5, 3, 9) (7)

(b) (8, 2, 5, 3, 9) (4, 7)
(c) (2, 5, 3, 9) (4, 7, 8)
(d) (5, 3, 9) (2, 4, 7, 8)
(e) (3, 9) (2, 4, 5, 7, 8)
(f) (9) (2, 3, 4, 5, 7, 8)
(g) () (2, 3, 4, 5, 7, 8, 9)

Phase 2 (a) (2) (3, 4, 5, 7, 8, 9)
(b) (2, 3) (4, 5, 7, 8, 9)
...

...
...

(g) (2, 3, 4, 5, 7, 8, 9) ()

Figure 9.8: Execution of insertion-sort on sequence S = (7, 4, 8, 2, 5, 3, 9). In

Phase 1, we repeatedly remove the first element of S and insert it into P. In Phase 2,

we repeatedly perform the removeMin operation on P and add the returned element

to the end of S.

Analyzing the running time of Phase 1 of insertion-sort, we note that it is

O(1+2+ . . .+(n−1)+n) = O

(
n

∑
i=1

i

)
.

Again, by recalling Proposition 4.3, Phase 1 runs in O(n2) time, and hence, so does

the entire insertion-sort algorithm.

Alternatively, we could change our definition of insertion-sort so that we insert

elements starting from the end of the priority-queue list in Phase 1, in which case

performing insertion-sort on a sequence that is already sorted would run in O(n)
time. Indeed, the running time of insertion-sort in this case is O(n+ I), where I is

the number of inversions in the sequence, that is, the number of pairs of elements

that start out in the input sequence in the wrong relative order.

388 Chapter 9. Priority Queues

9.4.2 Heap-Sort

As we have previously observed, realizing a priority queue with a heap has the

advantage that all the methods in the priority queue ADT run in logarithmic time or

better. Hence, this realization is suitable for applications where fast running times

are sought for all the priority queue methods. Therefore, let us again consider the

pqSort scheme, this time using a heap-based implementation of the priority queue.

During Phase 1, the i th insert operation takes O(log i) time, since the heap has i

entries after the operation is performed. Therefore, this phase takes O(n log n) time.

(It could be improved to O(n) with the bottom-up heap construction described in

Section 9.3.4.)

During the second phase of method pqSort, the j th removeMin operation runs

in O(log(n− j+ 1)), since the heap has n− j+ 1 entries at the time the operation

is performed. Summing over all j, this phase takes O(n log n) time, so the entire

priority-queue sorting algorithm runs in O(n log n) time when we use a heap to

implement the priority queue. This sorting algorithm is better known as heap-sort,

and its performance is summarized in the following proposition.

Proposition 9.4: The heap-sort algorithm sorts a sequence S of n elements in

O(n log n) time, assuming two elements of S can be compared in O(1) time.

Let us stress that the O(n log n) running time of heap-sort is considerably better

than the O(n2) running time of selection-sort and insertion-sort.

Implementing Heap-Sort In-Place

If the sequence S to be sorted is implemented by means of an array-based sequence,

such as an ArrayList in Java, we can speed up heap-sort and reduce its space re-

quirement by a constant factor by using a portion of the array itself to store the

heap, thus avoiding the use of an auxiliary heap data structure. This is accom-

plished by modifying the algorithm as follows:

1. We redefine the heap operations to be a maximum-oriented heap, with each

position key being at least as large as its children. This can be done by re-

coding the algorithm, or by providing a new comparator that reverses the

outcome of each comparison. At any time during the execution of the al-

gorithm, we use the left portion of S, up to a certain index i− 1, to store

the entries of the heap, and the right portion of S, from index i to n− 1, to

store the elements of the sequence. Thus, the first i elements of S (at indices

0, . . . , i−1) provide the array-list representation of the heap.

2. In the first phase of the algorithm, we start with an empty heap and move the

boundary between the heap and the sequence from left to right, one step at a

time. In step i, for i = 1, . . . ,n, we expand the heap by adding the element at

index i−1.

9.4. Sorting with a Priority Queue 389

3. In the second phase of the algorithm, we start with an empty sequence and

move the boundary between the heap and the sequence from right to left, one

step at a time. At step i, for i = 1, . . . ,n, we remove a maximal element from

the heap and store it at index n− i.

In general, we say that a sorting algorithm is in-place if it uses only a small

amount of memory in addition to the sequence storing the objects to be sorted. The

variation of heap-sort above qualifies as in-place; instead of transferring elements

out of the sequence and then back in, we simply rearrange them. We illustrate the

second phase of in-place heap-sort in Figure 9.9.

(e) 4

57

9

62 4

2 5

7624

(c) 6 4 5 7 9

6 7 9

54

4 5 6 7 9

6

2(f) 2

5

(b) 7 6 5 2 4 9

2

2

4

56

7

42

4 2
9

(a) 9 7 5 2 6 4

2

5(d)

Figure 9.9: Phase 2 of an in-place heap-sort. The heap portion of each sequence

representation is highlighted. The binary tree that each sequence (implicitly) repre-

sents is diagrammed with the most recent path of down-heap bubbling highlighted.

390 Chapter 9. Priority Queues

9.5 Adaptable Priority Queues

The methods of the priority queue ADT given in Section 9.1.2 are sufficient for

most basic applications of priority queues, such as sorting. However, there are

situations in which additional methods would be useful, as shown by the scenarios

below involving the standby airline passenger application.

• A standby passenger with a pessimistic attitude may become tired of waiting

and decide to leave ahead of the boarding time, requesting to be removed

from the waiting list. Thus, we would like to remove from the priority queue

the entry associated with this passenger. Operation removeMin does not suf-

fice since the passenger leaving does not necessarily have first priority. In-

stead, we want a new operation, remove, that removes an arbitrary entry.

• Another standby passenger finds her gold frequent-flyer card and shows it

to the agent. Thus, her priority has to be modified accordingly. To achieve

this change of priority, we would like to have a new operation replaceKey
allowing us to replace the key of an existing entry with a new key.

• Finally, a third standby passenger notices her name is misspelled on the ticket

and asks it to be corrected. To perform this change, we need to update the

passenger’s record. Hence, we would like to have a new operation replace-
Value, allowing us to replace the value of an existing entry with a new value.

The Adaptable Priority Queue ADT

The above scenarios motivate the definition of a new adaptable priority queue

ADT that extends the priority queue ADT with additional functionality. We will

see another application of adaptable priority queues when implementing certain

graph algorithms in Sections 14.6.2 and 14.7.1.

In order to implement methods remove, replaceKey, and replaceValue effi-

ciently, we need a mechanism for finding a user’s element within a priority queue,

ideally in a way that avoids performing a linear search through the entire collection.

In the original definition of the priority queue ADT, a call to insert(k, v) formally

returns an instance of type Entry to the user. In order to be able to update or re-

move an entry in our new adaptable priority queue ADT, the user must retain that

Entry object as a token that can be sent back as a parameter to identify the relevant

entry. Formally, the adaptable priority queue ADT includes the following methods

(in addition to those of the standard priority queue):

remove(e): Removes entry e from the priority queue.

replaceKey(e, k): Replaces the key of existing entry e with k.

replaceValue(e, v): Replaces the value of existing entry e with v.

An error occurs with each of these methods if parameter e is invalid (for example,

because it had previously been removed from the priority queue).

9.5. Adaptable Priority Queues 391

9.5.1 Location-Aware Entries
To allow an entry instance to encode a location within a priority queue, we ex-

tend the PQEntry class (originally defined with the AbstractPriorityQueue base

class), adding a third field that designates the current index of an entry within the

array-based representation of the heap, as shown in Figure 9.10. (This approach is

similar to our recommendation, on page 281, for implementing the positional list

abstraction with an array.)

0 1 2 3 4 5 6 7

token

(15,K,3) (16,X,7)(9,F,4)(5,A,1) (20,B,6)(6,Z,2) (7,Q,5)(4,C,0)

Figure 9.10: Representing a heap using an array of location-aware entries. The third

field of each entry instance corresponds to the index of that entry within the array.

Identifier token is presumed to be an entry reference in the user’s scope.

When we perform priority queue operations on our heap, causing entries to be

relocated within our structure, we must make sure to update the third field of each

affected entry to reflect its new index within the array. As an example, Figure 9.11

shows the state of the above heap after a call to removeMin(). The heap operation

causes the minimal entry, (4,C), to be removed, and the last entry, (16,X), to be

temporarily moved from the last position to the root, followed by a down-heap

bubble phase. During the down-heap, element (16,X) is swapped with its left child,

(5,A), at index 1 of the list, then swapped with its right child, (9,F), at index 4 of

the list. In the final configuration, the last field for all affected entries has been

modified to reflect their new location.

1 2 3 4 5 6 70

token

(9,F,1) (16,X,4) (7,Q,5)(15,K,3) (20,B,6)(6,Z,2)(5,A,0)

Figure 9.11: The result of a call to removeMin() on the heap originally portrayed in

Figure 9.10. Identifier token continues to reference the same entry as in the original

configuration, but the placement of that entry in the array has changed, as has the

third field of the entry.

392 Chapter 9. Priority Queues

9.5.2 Implementing an Adaptable Priority Queue

Code Fragments 9.12 and 9.13 present a Java implementation of an adaptable pri-

ority queue, as a subclass of the HeapPriorityQueue class from Section 9.3.2. We

begin by defining a nested AdaptablePQEntry class (lines 5–15) that extends the

inherited PQEntry class, augmenting it with an additional index field. The inher-

ited insert method is overridden, so that we create and initialize an instance of the

AdaptablePQEntry class (not the original PQEntry class).

An important aspect of our design is that the original HeapPriorityQueue class

relies exclusively on a protected swap method for all low-level data movement dur-

ing up-heap or down-heap operations. The AdaptablePriorityQueue class overrides

that utility in order to update the stored indices of our location-aware entries when

they are relocated (as discussed on the previous page).

When an entry is sent as a parameter to remove, replaceKey, or replaceValue,

we rely on the new index field of that entry to designate where the element resides

in the heap (a fact that is easily validated). When a key of an existing entry is

replaced, that new key may violate the heap-order property by being either too

big or too small. We provide a new bubble utility that determines whether an up-

heap or down-heap bubbling step is warranted. When removing an arbitrary entry,

we replace it with the last entry in the heap (to maintain the complete binary tree

property) and perform the bubbling step, since the displaced element may have a

key that is too large or too small for its new location.

Performance of Adaptable Priority Queue Implementations

The performance of an adaptable priority queue by means of our location-aware

heap structure is summarized in Table 9.5. The new class provides the same asymp-

totic efficiency and space usage as the nonadaptive version, and provides logarith-

mic performance for the new locator-based remove and replaceKey methods, and

constant-time performance for the new replaceValuemethod.

Method Running Time

size, isEmpty, min O(1)

insert O(logn)

remove O(logn)

removeMin O(logn)

replaceKey O(logn)

replaceValue O(1)

Table 9.5: Running times of the methods of an adaptable priority queue with size n,

realized by means of our array-based heap representation. The space requirement

is O(n).

9.5. Adaptable Priority Queues 393

1 /∗∗ An implementation of an adaptable priority queue using an array-based heap. ∗/
2 public class HeapAdaptablePriorityQueue<K,V> extends HeapPriorityQueue<K,V>
3 implements AdaptablePriorityQueue<K,V> {
4

5 //---------------- nested AdaptablePQEntry class ----------------
6 /∗∗ Extension of the PQEntry to include location information. ∗/
7 protected static class AdaptablePQEntry<K,V> extends PQEntry<K,V> {
8 private int index; // entry’s current index within the heap
9 public AdaptablePQEntry(K key, V value, int j) {

10 super(key, value); // this sets the key and value
11 index = j; // this sets the new field
12 }
13 public int getIndex() { return index; }
14 public void setIndex(int j) { index = j; }
15 } //----------- end of nested AdaptablePQEntry class -----------
16
17 /∗∗ Creates an empty adaptable priority queue using natural ordering of keys. ∗/
18 public HeapAdaptablePriorityQueue() { super(); }
19 /∗∗ Creates an empty adaptable priority queue using the given comparator. ∗/
20 public HeapAdaptablePriorityQueue(Comparator<K> comp) { super(comp);}
21
22 // protected utilites
23 /∗∗ Validates an entry to ensure it is location-aware. ∗/
24 protected AdaptablePQEntry<K,V> validate(Entry<K,V> entry)
25 throws IllegalArgumentException {
26 if (!(entry instanceof AdaptablePQEntry))
27 throw new IllegalArgumentException("Invalid entry");
28 AdaptablePQEntry<K,V> locator = (AdaptablePQEntry<K,V>) entry; // safe
29 int j = locator.getIndex();
30 if (j >= heap.size() | | heap.get(j) != locator)
31 throw new IllegalArgumentException("Invalid entry");
32 return locator;
33 }
34
35 /∗∗ Exchanges the entries at indices i and j of the array list. ∗/
36 protected void swap(int i, int j) {
37 super.swap(i,j); // perform the swap
38 ((AdaptablePQEntry<K,V>) heap.get(i)).setIndex(i); // reset entry's index
39 ((AdaptablePQEntry<K,V>) heap.get(j)).setIndex(j); // reset entry's index
40 }

Code Fragment 9.12: An implementation of an adaptable priority queue. (Contin-

ues in Code Fragment 9.13.) This extends the HeapPriorityQueue class of Code

Fragments 9.8 and 9.9.

394 Chapter 9. Priority Queues

41 /∗∗ Restores the heap property by moving the entry at index j upward/downward.∗/
42 protected void bubble(int j) {
43 if (j > 0 && compare(heap.get(j), heap.get(parent(j))) < 0)
44 upheap(j);
45 else
46 downheap(j); // although it might not need to move
47 }
48

49 /∗∗ Inserts a key-value pair and returns the entry created. ∗/
50 public Entry<K,V> insert(K key, V value) throws IllegalArgumentException {
51 checkKey(key); // might throw an exception
52 Entry<K,V> newest = new AdaptablePQEntry<>(key, value, heap.size());
53 heap.add(newest); // add to the end of the list
54 upheap(heap.size() − 1); // upheap newly added entry
55 return newest;
56 }
57

58 /∗∗ Removes the given entry from the priority queue. ∗/
59 public void remove(Entry<K,V> entry) throws IllegalArgumentException {
60 AdaptablePQEntry<K,V> locator = validate(entry);
61 int j = locator.getIndex();
62 if (j == heap.size() − 1) // entry is at last position
63 heap.remove(heap.size() − 1); // so just remove it
64 else {
65 swap(j, heap.size() − 1); // swap entry to last position
66 heap.remove(heap.size() − 1); // then remove it
67 bubble(j); // and fix entry displaced by the swap
68 }
69 }
70

71 /∗∗ Replaces the key of an entry. ∗/
72 public void replaceKey(Entry<K,V> entry, K key)
73 throws IllegalArgumentException {
74 AdaptablePQEntry<K,V> locator = validate(entry);
75 checkKey(key); // might throw an exception
76 locator.setKey(key); // method inherited from PQEntry
77 bubble(locator.getIndex()); // with new key, may need to move entry
78 }
79
80 /∗∗ Replaces the value of an entry. ∗/
81 public void replaceValue(Entry<K,V> entry, V value)
82 throws IllegalArgumentException {
83 AdaptablePQEntry<K,V> locator = validate(entry);
84 locator.setValue(value); // method inherited from PQEntry
85 }

Code Fragment 9.13: An implementation of an adaptable priority queue (continued

from Code Fragment 9.12).

9.6. Exercises 395

9.6 Exercises

Reinforcement

R-9.1 How long would it take to remove the ⌈logn⌉ smallest elements from a heap that

contains n entries, using the removeMin operation?

R-9.2 Suppose you set the key for each position p of a binary tree T equal to its preorder

rank. Under what circumstances is T a heap?

R-9.3 What does each removeMin call return within the following sequence of priority
queue ADT operations: insert(5, A), insert(4, B), insert(7, F), insert(1, D),
removeMin(), insert(3, J), insert(6, L), removeMin(),
removeMin(), insert(8, G), removeMin(), insert(2, H), removeMin(),
removeMin()?

R-9.4 An airport is developing a computer simulation of air-traffic control that handles

events such as landings and takeoffs. Each event has a time stamp that denotes
the time when the event will occur. The simulation program needs to efficiently

perform the following two fundamental operations:

• Insert an event with a given time stamp (that is, add a future event).

• Extract the event with smallest time stamp (that is, determine the next event
to process).

Which data structure should be used for the above operations? Why?

R-9.5 The min method for the UnsortedPriorityQueue class executes in O(n) time, as

analyzed in Table 9.2. Give a simple modification to the class so that min runs in

O(1) time. Explain any necessary modifications to other methods of the class.

R-9.6 Can you adapt your solution to the previous problem to make removeMin run in
O(1) time for the UnsortedPriorityQueue class? Explain your answer.

R-9.7 Illustrate the execution of the selection-sort algorithm on the following input se-

quence: (22, 15, 36, 44, 10, 3, 9, 13, 29, 25).

R-9.8 Illustrate the execution of the insertion-sort algorithm on the input sequence of

the previous problem.

R-9.9 Give an example of a worst-case sequence with n elements for insertion-sort, and
show that insertion-sort runs in Ω(n2) time on such a sequence.

R-9.10 At which positions of a heap might the third smallest key be stored?

R-9.11 At which positions of a heap might the largest key be stored?

R-9.12 Consider a situation in which a user has numeric keys and wishes to have a pri-

ority queue that is maximum-oriented. How could a standard (min-oriented) pri-

ority queue be used for such a purpose?

R-9.13 Illustrate the execution of the in-place heap-sort algorithm on the following input
sequence: (2, 5, 16, 4, 10, 23, 39, 18, 26, 15).

396 Chapter 9. Priority Queues

R-9.14 Let T be a complete binary tree such that position p stores an element with key
f (p), where f (p) is the level number of p (see Section 8.3.2). Is tree T a heap?

Why or why not?

R-9.15 Explain why the description of down-heap bubbling does not consider the case
in which position p has a right child but not a left child.

R-9.16 Is there a heap H storing seven entries with distinct keys such that a preorder

traversal of H yields the entries of H in increasing or decreasing order by key?
How about an inorder traversal? How about a postorder traversal? If so, give an

example; if not, say why.

R-9.17 Let H be a heap storing 15 entries using the array-based representation of a com-
plete binary tree. What is the sequence of indices of the array that are visited in

a preorder traversal of H? What about an inorder traversal of H? What about a

postorder traversal of H?

R-9.18 Show that the sum
n

∑
i=1

log i, appearing in the analysis of heap-sort, is Ω(n logn).

R-9.19 Bill claims that a preorder traversal of a heap will list its keys in nondecreasing
order. Draw an example of a heap that proves him wrong.

R-9.20 Hillary claims that a postorder traversal of a heap will list its keys in nonincreas-

ing order. Draw an example of a heap that proves her wrong.

R-9.21 Illustrate all the steps of the adaptable priority queue call remove(e) for entry e

storing (16,X) in the heap of Figure 9.1.

R-9.22 Illustrate all the steps of the adaptable priority queue call replaceKey(e, 18) for
entry e storing (5, A) in the heap of Figure 9.1.

R-9.23 Draw an example of a heap whose keys are all the odd numbers from 1 to 59

(with no repeats), such that the insertion of an entry with key 32 would cause

up-heap bubbling to proceed all the way up to a child of the root (replacing that
child’s key with 32).

R-9.24 Describe a sequence of n insertions in a heap that requires Ω(n logn) time to

process.

Creativity

C-9.25 Show how to implement the stack ADT using only a priority queue and one
additional integer instance variable.

C-9.26 Show how to implement the FIFO queue ADT using only a priority queue and

one additional integer instance variable.

C-9.27 Professor Idle suggests the following solution to the previous problem. Whenever

an entry is inserted into the queue, it is assigned a key that is equal to the current

size of the queue. Does such a strategy result in FIFO semantics? Prove that it is
so or provide a counterexample.

9.6. Exercises 397

C-9.28 Reimplement the SortedPriorityQueue using a Java array. Make sure to maintain
removeMin’s O(1) performance.

C-9.29 Give an alternative implementation of the HeapPriorityQueue’s upheap method

that uses recursion (and no loop).

C-9.30 Give an implementation of the HeapPriorityQueue’s downheap method that uses
recursion (and no loop).

C-9.31 Assume that we are using a linked representation of a complete binary tree T , and

an extra reference to the last node of that tree. Show how to update the reference
to the last node after operations insert or remove in O(logn) time, where n is the

current number of nodes of T . Be sure to handle all possible cases, as illustrated

in Figure 9.12.

C-9.32 When using a linked-tree representation for a heap, an alternative method for

finding the last node during an insertion in a heap T is to store, in the last node

and each leaf node of T , a reference to the leaf node immediately to its right
(wrapping to the first node in the next lower level for the rightmost leaf node).

Show how to maintain such references in O(1) time per operation of the priority

queue ADT assuming that T is implemented with a linked structure.

C-9.33 We can represent a path from the root to a given node of a binary tree by means of

a binary string, where 0 means “go to the left child” and 1 means “go to the right

child.” For example, the path from the root to the node storing (8,W) in the heap
of Figure 9.12a is represented by “101.” Design an O(logn)-time algorithm for

finding the last node of a complete binary tree with n nodes, based on the above

representation. Show how this algorithm can be used in the implementation of a
complete binary tree by means of a linked structure that does not keep an explicit

reference to the last node instance.

C-9.34 Given a heap H and a key k, give an algorithm to compute all the entries in H

having a key less than or equal to k. For example, given the heap of Figure 9.12a

and query k = 7, the algorithm should report the entries with keys 2, 4, 5, 6, and 7
(but not necessarily in this order). Your algorithm should run in time proportional

to the number of entries returned, and should not modify the heap.

(11,S)

(2,B)

(5,A) (4,C)

(6,Z)(9,F)(15,K)

(25,J) (12,H)(14,E)(16,X)

(7,Q)

(8,W) (10,L)(20,B)

z

w

(5,A) (6,Z)

(20,B)(9,F)(15,K)

(25,J) (14,E)(16,X)

(7,Q)

(12,H)

(4,C)

w z

(a) (b)

Figure 9.12: Two cases of updating the last node in a complete binary tree after

operation insert or remove. Node w is the last node before operation insert or after

operation remove. Node z is the last node after operation insert or before operation

remove.

398 Chapter 9. Priority Queues

C-9.35 Provide a justification of the time bounds in Table 9.5.

C-9.36 Give an alternative analysis of bottom-up heap construction by showing the fol-

lowing summation is O(1), for any positive integer h:
h

∑
i=1

(
i/2i
)
.

C-9.37 Suppose two binary trees, T1 and T2, hold entries satisfying the heap-order prop-
erty (but not necessarily the complete binary tree property). Describe a method

for combining T1 and T2 into a binary tree T , whose nodes hold the union of
the entries in T1 and T2 and also satisfy the heap-order property. Your algorithm

should run in time O(h1 + h2) where h1 and h2 are the respective heights of T1

and T2.

C-9.38 Tamarindo Airlines wants to give a first-class upgrade coupon to their top logn

frequent flyers, based on the number of miles accumulated, where n is the total

number of the airlines’ frequent flyers. The algorithm they currently use, which
runs in O(n logn) time, sorts the flyers by the number of miles flown and then

scans the sorted list to pick the top logn flyers. Describe an algorithm that iden-

tifies the top logn flyers in O(n) time.

C-9.39 Explain how the k largest elements from an unordered collection of size n can be

found in time O(n+ k logn) using a maximum-oriented heap.

C-9.40 Explain how the k largest elements from an unordered collection of size n can be
found in time O(n logk) using O(k) auxiliary space.

C-9.41 Write a comparator for nonnegative integers that determines order based on the

number of 1’s in each integer’s binary expansion, so that i < j if the number of

1’s in the binary representation of i is less than the number of 1’s in the binary
representation of j.

C-9.42 Implement the binarySearch algorithm (see Section 5.1.3) using a Comparator
for an array with elements of generic type E.

C-9.43 Given a class, MinPriorityQueue, that implements the minimum-oriented pri-

ority queue ADT, provide an implementation of a MaxPriorityQueue class that

adapts to provide a maximum-oriented abstraction with methods insert, max, and
removeMax. Your implementation should not make any assumption about the in-

ternal workings of the original MinPriorityQueue class, nor the type of keys that
might be used.

C-9.44 Describe an in-place version of the selection-sort algorithm for an array that uses

only O(1) space for instance variables in addition to the array.

C-9.45 Assuming the input to the sorting problem is given in an array A, describe how
to implement the insertion-sort algorithm using only the array A and at most six

additional (base-type) variables.

C-9.46 Give an alternate description of the in-place heap-sort algorithm using the stan-
dard minimum-oriented priority queue (instead of a maximum-oriented one).

9.6. Exercises 399

C-9.47 A group of children want to play a game, called Unmonopoly, where in each turn
the player with the most money must give half of his/her money to the player

with the least amount of money. What data structure(s) should be used to play

this game efficiently? Why?

C-9.48 An online computer system for trading stocks needs to process orders of the form
“buy 100 shares at $x each” or “sell 100 shares at $y each.” A buy order for $x

can only be processed if there is an existing sell order with price $y such that
y ≤ x. Likewise, a sell order for $y can only be processed if there is an existing

buy order with price $x such that y ≤ x. If a buy or sell order is entered but

cannot be processed, it must wait for a future order that allows it to be processed.
Describe a scheme that allows buy and sell orders to be entered in O(logn) time,

independent of whether or not they can be immediately processed.

C-9.49 Extend a solution to the previous problem so that users are allowed to update the

prices for their buy or sell orders that have yet to be processed.

Projects

P-9.50 Implement the in-place heap-sort algorithm. Experimentally compare its running

time with that of the standard heap-sort that is not in-place.

P-9.51 Use the approach of either Exercise C-9.39 or C-9.40 to reimplement the method
getFavorites of the FavoritesListMTF class from Section 7.7.2. Make sure that

results are generated from largest to smallest.

P-9.52 Develop a Java implementation of an adaptable priority queue that is based on an

unsorted list and supports location-aware entries.

P-9.53 Write an applet or stand-alone graphical program that animates a heap. Your
program should support all the priority queue operations and should visualize

the swaps in the up-heap and down-heap bubblings. (Extra: Visualize bottom-up

heap construction as well.)

P-9.54 Write a program that can process a sequence of stock buy and sell orders as
described in Exercise C-9.48.

P-9.55 One of the main applications of priority queues is in operating systems—for

scheduling jobs on a CPU. In this project you are to build a program that sched-
ules simulated CPU jobs. Your program should run in a loop, each iteration of

which corresponds to a time slice for the CPU. Each job is assigned a priority,

which is an integer between−20 (highest priority) and 19 (lowest priority), inclu-
sive. From among all jobs waiting to be processed in a time slice, the CPU must

work on a job with highest priority. In this simulation, each job will also come

with a length value, which is an integer between 1 and 100, inclusive, indicating
the number of time slices that are needed to process this job. For simplicity, you

may assume jobs cannot be interrupted—once it is scheduled on the CPU, a job
runs for a number of time slices equal to its length. Your simulator must output

the name of the job running on the CPU in each time slice and must process a

sequence of commands, one per time slice, each of which is of the form “add job
name with length n and priority p” or “no new job this slice”.

400 Chapter 9. Priority Queues

P-9.56 Let S be a set of n points in the plane with distinct integer x- and y-coordinates.
Let T be a complete binary tree storing the points from S at its external nodes,

such that the points are ordered left to right by increasing x-coordinates. For

each node v in T , let S(v) denote the subset of S consisting of points stored in the
subtree rooted at v. For the root r of T , define top(r) to be the point in S = S(r)
with maximal y-coordinate. For every other node v, define top(r) to be the point
in S with highest y-coordinate in S(v) that is not also the highest y-coordinate in

S(u), where u is the parent of v in T (if such a point exists). Such labeling turns

T into a priority search tree. Describe a linear-time algorithm for turning T into
a priority search tree. Implement this approach.

Chapter Notes

Knuth’s book on sorting and searching [61] describes the motivation and history for the

selection-sort, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is due

to Williams [95], and the linear-time heap construction algorithm is due to Floyd [35].

Additional algorithms and analyses for heaps and heap-sort variations can be found in

papers by Bentley [14], Carlsson [21], Gonnet and Munro [39], McDiarmid and Reed [69],

and Schaffer and Sedgewick [82].

Chapter

10 Maps, Hash Tables, and Skip Lists

Contents

10.1 Maps . 402

10.1.1 The Map ADT . 403

10.1.2 Application: Counting Word Frequencies 405

10.1.3 An AbstractMap Base Class 406

10.1.4 A Simple Unsorted Map Implementation 408

10.2 Hash Tables . 410

10.2.1 Hash Functions . 411

10.2.2 Collision-Handling Schemes 417

10.2.3 Load Factors, Rehashing, and Efficiency 420

10.2.4 Java Hash Table Implementation 422

10.3 Sorted Maps . 428

10.3.1 Sorted Search Tables . 429

10.3.2 Two Applications of Sorted Maps 433

10.4 Skip Lists . 436

10.4.1 Search and Update Operations in a Skip List 438

10.4.2 Probabilistic Analysis of Skip Lists ⋆ 442

10.5 Sets, Multisets, and Multimaps 445

10.5.1 The Set ADT . 445

10.5.2 The Multiset ADT . 447

10.5.3 The Multimap ADT . 448

10.6 Exercises . 451

402 Chapter 10. Maps, Hash Tables, and Skip Lists

10.1 Maps

A map is an abstract data type designed to efficiently store and retrieve values based

upon a uniquely identifying search key for each. Specifically, a map stores key-

value pairs (k,v), which we call entries, where k is the key and v is its corresponding

value. Keys are required to be unique, so that the association of keys to values

defines a mapping. Figure 10.1 provides a conceptual illustration of a map using

the file-cabinet metaphor. For a more modern metaphor, think about the web as

being a map whose entries are the web pages. The key of a page is its URL (e.g.,

http://datastructures.net/) and its value is the page content.

Figure 10.1: A conceptual illustration of the map ADT. Keys (labels) are assigned

to values (folders) by a user. The resulting entries (labeled folders) are inserted into

the map (file cabinet). The keys can be used later to retrieve or remove values.

Maps are also known as associative arrays, because the entry’s key serves

somewhat like an index into the map, in that it assists the map in efficiently lo-

cating the associated entry. However, unlike a standard array, a key of a map need

not be numeric, and is does not directly designate a position within the structure.

Common applications of maps include the following:

• A university’s information system relies on some form of a student ID as a

key that is mapped to that student’s associated record (such as the student’s

name, address, and course grades) serving as the value.

• The domain-name system (DNS) maps a host name, such as www.wiley.com,

to an Internet-Protocol (IP) address, such as 208.215.179.146.

• A social media site typically relies on a (nonnumeric) username as a key that

can be efficiently mapped to a particular user’s associated information.

• A company’s customer base may be stored as a map, with a customer’s ac-

count number or unique user ID as a key, and a record with the customer’s

information as a value. The map would allow a service representative to

quickly access a customer’s record, given the key.

• A computer graphics system may map a color name, such as 'turquoise',

to the triple of numbers that describes the color’s RGB (red-green-blue) rep-

resentation, such as (64, 224, 208).

http://datastructures.net/
http://www.wiley.com

10.1. Maps 403

10.1.1 The Map ADT

Since a map stores a collection of objects, it should be viewed as a collection of

key-value pairs. As an ADT, a map M supports the following methods:

size(): Returns the number of entries in M.

isEmpty(): Returns a boolean indicating whether M is empty.

get(k): Returns the value v associated with key k, if such an entry exists;

otherwise returns null.

put(k, v): If M does not have an entry with key equal to k, then adds entry

(k,v) to M and returns null; else, replaces with v the existing

value of the entry with key equal to k and returns the old value.

remove(k): Removes from M the entry with key equal to k, and returns its

value; if M has no such entry, then returns null.

keySet(): Returns an iterable collection containing all the keys stored in M.

values(): Returns an iterable collection containing all the values of entries

stored in M (with repetition if multiple keys map to the same

value).

entrySet(): Returns an iterable collection containing all the key-value en-

tries in M.

Maps in the java.util Package

Our definition of the map ADT is a simplified version of the java.util.Map interface.

For the elements of the iteration returned by entrySet, we will rely on the composite

Entry interface introduced in Section 9.2.1 (the java.util.Map relies on the nested

java.util.Map.Entry interface).

Notice that each of the operations get(k), put(k, v), and remove(k) returns the

existing value associated with key k, if the map has such an entry, and otherwise

returns null. This introduces ambiguity in an application for which null is allowed

as a natural value associated with a key k. That is, if an entry (k, null) exists in a

map, then the operation get(k) will return null, not because it couldn’t find the key,

but because it found the key and is returning its associated value.

Some implementations of the java.util.Map interface explicitly forbid use of

a null value (and null keys, for that matter). However, to resolve the ambiguity

when null is allowable, the interface contains a boolean method, containsKey(k) to

definitively check whether k exists as a key. (We leave implementation of such a

method as an exercise.)

404 Chapter 10. Maps, Hash Tables, and Skip Lists

Example 10.1: In the following, we show the effect of a series of operations on

an initially empty map storing entries with integer keys and single-character values.

Method Return Value Map

isEmpty() true {}
put(5,A) null {(5,A)}
put(7,B) null {(5,A),(7,B)}
put(2,C) null {(5,A),(7,B),(2,C)}
put(8,D) null {(5,A),(7,B),(2,C),(8,D)}
put(2,E) C {(5,A),(7,B),(2,E),(8,D)}
get(7) B {(5,A),(7,B),(2,E),(8,D)}
get(4) null {(5,A),(7,B),(2,E),(8,D)}
get(2) E {(5,A),(7,B),(2,E),(8,D)}
size() 4 {(5,A),(7,B),(2,E),(8,D)}

remove(5) A {(7,B),(2,E),(8,D)}
remove(2) E {(7,B),(8,D)}
get(2) null {(7,B),(8,D)}

remove(2) null {(7,B),(8,D)}
isEmpty() false {(7,B),(8,D)}
entrySet() {(7,B),(8,D)} {(7,B),(8,D)}
keySet() {7,8} {(7,B),(8,D)}
values() {B,D} {(7,B),(8,D)}

A Java Interface for the Map ADT

A formal definition of a Java interface for our version of the map ADT is given

in Code Fragment 10.1. It uses the generics framework (Section 2.5.2), with K
designating the key type and V designating the value type.

1 public interface Map<K,V> {
2 int size();
3 boolean isEmpty();
4 V get(K key);
5 V put(K key, V value);
6 V remove(K key);
7 Iterable<K> keySet();
8 Iterable<V> values();
9 Iterable<Entry<K,V>> entrySet();

10 }

Code Fragment 10.1: Java interface for our simplified version of the map ADT.

10.1. Maps 405

10.1.2 Application: Counting Word Frequencies

As a case study for using a map, consider the problem of counting the number

of occurrences of words in a document. This is a standard task when performing a

statistical analysis of a document, for example, when categorizing an email or news

article. A map is an ideal data structure to use here, for we can use words as keys

and word counts as values. We show such an application in Code Fragment 10.2.

We begin with an empty map, mapping words to their integer frequencies. (We

rely on the ChainHashMap class that will be introduced in Section 10.2.4.) We

first scan through the input, considering adjacent alphabetic characters to be words,

which we then convert to lowercase. For each word found, we attempt to retrieve

its current frequency from the map using the get method, with a yet unseen word

having frequency zero. We then (re)set its frequency to be one more to reflect the

current occurrence of the word. After processing the entire input, we loop through

the entrySet() of the map to determine which word has the most occurrences.

1 /∗∗ A program that counts words in a document, printing the most frequent. ∗/
2 public class WordCount {
3 public static void main(String[] args) {
4 Map<String,Integer> freq = new ChainHashMap<>(); // or any concrete map
5 // scan input for words, using all nonletters as delimiters
6 Scanner doc = new Scanner(System.in).useDelimiter("[^a-zA-Z]+");
7 while (doc.hasNext()) {
8 String word = doc.next().toLowerCase(); // convert next word to lowercase
9 Integer count = freq.get(word); // get the previous count for this word

10 if (count == null)
11 count = 0; // if not in map, previous count is zero
12 freq.put(word, 1 + count); // (re)assign new count for this word
13 }
14 int maxCount = 0;
15 String maxWord = "no word";
16 for (Entry<String,Integer> ent : freq.entrySet()) // find max-count word
17 if (ent.getValue() > maxCount) {
18 maxWord = ent.getKey();
19 maxCount = ent.getValue();
20 }
21 System.out.print("The most frequent word is '" + maxWord);
22 System.out.println("' with " + maxCount + " occurrences.");
23 }
24 }

Code Fragment 10.2: A program for counting word frequencies in a document,

printing the most frequent word. The document is parsed using the Scanner class,

for which we change the delimiter for separating tokens from whitespace to any

nonletter. We also convert words to lowercase.

406 Chapter 10. Maps, Hash Tables, and Skip Lists

10.1.3 An AbstractMap Base Class

In the remainder of this chapter (and the next), we will be providing many different

implementations of the map ADT using a variety of data structures, each with its

own trade-off of advantages and disadvantages. As we have done in earlier chap-

ters, we rely on a combination of abstract and concrete classes in the interest of

greater code reuse. Figure 10.2 provides a preview of those classes.

(Section 10.1.1)

SortedTableMap
(Chapter 11)
TreeMap

(Section 10.2.4)
AbstractHashMap

(Section 10.2.4)
ChainHashMap

(Section 10.2.4)
ProbeHashMap

(Section 10.1.4)
UnsortedTableMap

(Section 10.3)
AbstractSortedMap

(Section 10.1.3)
AbstractMap

Map

(Section 10.3.1)

≪interface≫
SortedMap

(Section 10.3)

≪interface≫

(additional subclasses)

Figure 10.2: Our hierarchy of map types (with references to where they are defined).

We begin, in this section, by designing an AbstractMap base class that provides

functionality that is shared by all of our map implementations. More specifically,

the base class (given in Code Fragment 10.3) provides the following support:

• An implementation of the isEmpty method, based upon the presumed imple-

mentation of the size method.

• A nested MapEntry class that implements the public Entry interface, while

providing a composite for storing key-value entries in a map data structure.

• Concrete implementations of the keySet and values methods, based upon an

adaption to the entrySet method. In this way, concrete map classes need only

implement the entrySet method to provide all three forms of iteration.

We implement the iterations using the technique introduced in Section 7.4.2

(at that time providing an iteration of all elements of a positional list given

an iteration of all positions of the list).

10.1. Maps 407

1 public abstract class AbstractMap<K,V> implements Map<K,V> {
2 public boolean isEmpty() { return size() == 0; }
3 //---------------- nested MapEntry class ----------------
4 protected static class MapEntry<K,V> implements Entry<K,V> {
5 private K k; // key
6 private V v; // value
7 public MapEntry(K key, V value) {
8 k = key;
9 v = value;

10 }
11 // public methods of the Entry interface
12 public K getKey() { return k; }
13 public V getValue() { return v; }
14 // utilities not exposed as part of the Entry interface
15 protected void setKey(K key) { k = key; }
16 protected V setValue(V value) {
17 V old = v;
18 v = value;
19 return old;
20 }
21 } //----------- end of nested MapEntry class -----------
22
23 // Support for public keySet method...
24 private class KeyIterator implements Iterator<K> {
25 private Iterator<Entry<K,V>> entries = entrySet().iterator(); // reuse entrySet
26 public boolean hasNext() { return entries.hasNext(); }
27 public K next() { return entries.next().getKey(); } // return key!
28 public void remove() { throw new UnsupportedOperationException(); }
29 }
30 private class KeyIterable implements Iterable<K> {
31 public Iterator<K> iterator() { return new KeyIterator(); }
32 }
33 public Iterable<K> keySet() { return new KeyIterable(); }
34

35 // Support for public values method...
36 private class ValueIterator implements Iterator<V> {
37 private Iterator<Entry<K,V>> entries = entrySet().iterator(); // reuse entrySet
38 public boolean hasNext() { return entries.hasNext(); }
39 public V next() { return entries.next().getValue(); } // return value!
40 public void remove() { throw new UnsupportedOperationException(); }
41 }
42 private class ValueIterable implements Iterable<V> {
43 public Iterator<V> iterator() { return new ValueIterator(); }
44 }
45 public Iterable<V> values() { return new ValueIterable(); }
46 }

Code Fragment 10.3: Implementation of the AbstractMap base class.

408 Chapter 10. Maps, Hash Tables, and Skip Lists

10.1.4 A Simple Unsorted Map Implementation

We demonstrate the use of the AbstractMap class with a very simple concrete

implementation of the map ADT that relies on storing key-value pairs in arbitrary

order within a Java ArrayList. The presentation of such an UnsortedTableMap class

is given in Code Fragments 10.4 and 10.5.

Each of the fundamental methods get(k), put(k, v), and remove(k) requires an

initial scan of the array to determine whether an entry with key equal to k exists.

For this reason, we provide a nonpublic utility, findIndex(key), that returns the

index at which such an entry is found, or −1 if no such entry is found. (See Code

Fragment 10.4.)

The rest of the implementation is rather simple. One subtlety worth mentioning

is the way in which we remove an entry from the array list. Although we could use

the remove method of the ArrayList class, that would result in an unnecessary loop

to shift all subsequent entries to the left. Because the map is unordered, we prefer

to fill the vacated cell of the array by relocating the last entry to that location. Such

an update step runs in constant time.

Unfortunately, the UnsortedTableMap class on the whole is not very efficient.

On a map with n entries, each of the fundamental methods takes O(n) time in the

worst case because of the need to scan through the entire list when searching for an

existing entry. Fortunately, as we discuss in the next section, there is a much faster

strategy for implementing the map ADT.

1 public class UnsortedTableMap<K,V> extends AbstractMap<K,V> {
2 /∗∗ Underlying storage for the map of entries. ∗/
3 private ArrayList<MapEntry<K,V>> table = new ArrayList<>();
4

5 /∗∗ Constructs an initially empty map. ∗/
6 public UnsortedTableMap() { }
7

8 // private utility
9 /∗∗ Returns the index of an entry with equal key, or −1 if none found. ∗/

10 private int findIndex(K key) {
11 int n = table.size();
12 for (int j=0; j < n; j++)
13 if (table.get(j).getKey().equals(key))
14 return j;
15 return −1; // special value denotes that key was not found
16 }

Code Fragment 10.4: An implementation of a map using a Java ArrayList as an

unsorted table. (Continues in Code Fragment 10.5.) The parent class AbstractMap
is given in Code Fragment 10.3.

10.1. Maps 409

17 /∗∗ Returns the number of entries in the map. ∗/
18 public int size() { return table.size(); }
19 /∗∗ Returns the value associated with the specified key (or else null). ∗/
20 public V get(K key) {
21 int j = findIndex(key);
22 if (j == −1) return null; // not found
23 return table.get(j).getValue();
24 }
25 /∗∗ Associates given value with given key, replacing a previous value (if any). ∗/
26 public V put(K key, V value) {
27 int j = findIndex(key);
28 if (j == −1) {
29 table.add(new MapEntry<>(key, value)); // add new entry
30 return null;
31 } else // key already exists
32 return table.get(j).setValue(value); // replaced value is returned
33 }
34 /∗∗ Removes the entry with the specified key (if any) and returns its value. ∗/
35 public V remove(K key) {
36 int j = findIndex(key);
37 int n = size();
38 if (j == −1) return null; // not found
39 V answer = table.get(j).getValue();
40 if (j != n − 1)
41 table.set(j, table.get(n−1)); // relocate last entry to ’hole’ created by removal
42 table.remove(n−1); // remove last entry of table
43 return answer;
44 }
45 // Support for public entrySet method...
46 private class EntryIterator implements Iterator<Entry<K,V>> {
47 private int j=0;
48 public boolean hasNext() { return j < table.size(); }
49 public Entry<K,V> next() {
50 if (j == table.size()) throw new NoSuchElementException();
51 return table.get(j++);
52 }
53 public void remove() { throw new UnsupportedOperationException(); }
54 }
55 private class EntryIterable implements Iterable<Entry<K,V>> {
56 public Iterator<Entry<K,V>> iterator() { return new EntryIterator(); }
57 }
58 /∗∗ Returns an iterable collection of all key-value entries of the map. ∗/
59 public Iterable<Entry<K,V>> entrySet() { return new EntryIterable(); }
60 }

Code Fragment 10.5: An implementation of a map using a Java ArrayList as an

unsorted table (continued from Code Fragment 10.4).

410 Chapter 10. Maps, Hash Tables, and Skip Lists

10.2 Hash Tables

In this section, we introduce one of the most efficient data structures for imple-

menting a map, and the one that is used most in practice. This structure is known

as a hash table.

Intuitively, a map M supports the abstraction of using keys as “addresses” that

help locate an entry. As a mental warm-up, consider a restricted setting in which

a map with n entries uses keys that are known to be integers in a range from 0 to

N−1 for some N ≥ n. In this case, we can represent the map using a lookup table

of length N, as diagrammed in Figure 10.3.

0 1 2 3 4 5 6 7 8 9 10

D Z C Q

Figure 10.3: A lookup table with length 11 for a map containing entries (1,D), (3,Z),

(6,C), and (7,Q).

In this representation, we store the value associated with key k at index k of the

table (presuming that we have a distinct way to represent an empty slot). Basic map

operations get, put, and remove can be implemented in O(1) worst-case time.

There are two challenges in extending this framework to the more general set-

ting of a map. First, we may not wish to devote an array of length N if it is the case

that N ≫ n. Second, we do not in general require that a map’s keys be integers.

The novel concept for a hash table is the use of a hash function to map general

keys to corresponding indices in a table. Ideally, keys will be well distributed in the

range from 0 to N−1 by a hash function, but in practice there may be two or more

distinct keys that get mapped to the same index. As a result, we will conceptualize

our table as a bucket array, as shown in Figure 10.4, in which each bucket may

manage a collection of entries that are sent to a specific index by the hash function.

(To save space, an empty bucket may be replaced by a null reference.)

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

Figure 10.4: A bucket array of capacity 11 with entries (1,D), (25,C), (3,F), (14,Z),

(6,A), (39,C), and (7,Q), using a simple hash function.

10.2. Hash Tables 411

10.2.1 Hash Functions

The goal of a hash function, h, is to map each key k to an integer in the range

[0,N− 1], where N is the capacity of the bucket array for a hash table. Equipped

with such a hash function, h, the main idea of this approach is to use the hash

function value, h(k), as an index into our bucket array, A, instead of the key k

(which may not be appropriate for direct use as an index). That is, we store the

entry (k,v) in the bucket A[h(k)].

If there are two or more keys with the same hash value, then two different

entries will be mapped to the same bucket in A. In this case, we say that a collision

has occurred. To be sure, there are ways of dealing with collisions, which we will

discuss later, but the best strategy is to try to avoid them in the first place. We say

that a hash function is “good” if it maps the keys in our map so as to sufficiently

minimize collisions. For practical reasons, we also would like a hash function to

be fast and easy to compute.

It is common to view the evaluation of a hash function, h(k), as consisting of

two portions—a hash code that maps a key k to an integer, and a compression

function that maps the hash code to an integer within a range of indices, [0,N−1],
for a bucket array. (See Figure 10.5.)

−2

hash code

compression function

Arbitrary Objects

0

10 2 N−1· · ·

−1· · · · · ·21

Figure 10.5: Two parts of a hash function: a hash code and a compression function.

The advantage of separating the hash function into two such components is that

the hash code portion of that computation is independent of a specific hash table

size. This allows the development of a general hash code for each object that can

be used for a hash table of any size; only the compression function depends upon

the table size. This is particularly convenient, because the underlying bucket array

for a hash table may be dynamically resized, depending on the number of entries

currently stored in the map. (See Section 10.2.3.)

412 Chapter 10. Maps, Hash Tables, and Skip Lists

Hash Codes

The first action that a hash function performs is to take an arbitrary key k in our

map and compute an integer that is called the hash code for k; this integer need not

be in the range [0,N−1], and may even be negative. We desire that the set of hash

codes assigned to our keys should avoid collisions as much as possible. For if the

hash codes of our keys cause collisions, then there is no hope for our compression

function to avoid them. In this subsection, we begin by discussing the theory of

hash codes. Following that, we discuss practical implementations of hash codes in

Java.

Treating the Bit Representation as an Integer

To begin, we note that, for any data type X that is represented using at most as many

bits as our integer hash codes, we can simply take as a hash code for X an integer

interpretation of its bits. Java relies on 32-bit hash codes, so for base types byte,

short, int, and char, we can achieve a good hash code simply by casting a value

to int. Likewise, for a variable x of base type float, we can convert x to an integer

using a call to Float.floatToIntBits(x), and then use this integer as x’s hash code.

For a type whose bit representation is longer than a desired hash code (such as

Java’s long and double types), the above scheme is not immediately applicable.

One possibility is to use only the high-order 32 bits (or the low-order 32 bits). This

hash code, of course, ignores half of the information present in the original key,

and if many of the keys in our map only differ in these bits, then they will collide

using this simple hash code.

A better approach is to combine in some way the high-order and low-order por-

tions of a 64-bit key to form a 32-bit hash code, which takes all the original bits

into consideration. A simple implementation is to add the two components as 32-

bit numbers (ignoring overflow), or to take the exclusive-or of the two components.

These approaches of combining components can be extended to any object x whose

binary representation can be viewed as an n-tuple (x0,x1, . . . ,xn−1) of 32-bit inte-

gers, for example, by forming a hash code for x as ∑
n−1
i=0 xi, or as x0⊕x1⊕·· ·⊕xn−1,

where the ⊕ symbol represents the bitwise exclusive-or operation (which is the

ˆ operator in Java).

Polynomial Hash Codes

The summation and exclusive-or hash codes, described above, are not good choices

for character strings or other variable-length objects that can be viewed as tuples of

the form (x0,x1, . . . ,xn−1), where the order of the xi’s is significant. For example,

consider a 16-bit hash code for a character string s that sums the Unicode values

of the characters in s. This hash code unfortunately produces lots of unwanted

10.2. Hash Tables 413

collisions for common groups of strings. In particular, "temp01" and "temp10"

collide using this function, as do "stop", "tops", "pots", and "spot". A better

hash code should somehow take into consideration the positions of the xi’s. An

alternative hash code, which does exactly this, is to choose a nonzero constant,

a 6= 1, and use as a hash code the value

x0an−1 + x1an−2 + · · ·+ xn−2a+ xn−1.

Mathematically speaking, this is simply a polynomial in a that takes the compo-

nents (x0,x1, . . . ,xn−1) of an object x as its coefficients. This hash code is therefore

called a polynomial hash code. By Horner’s rule (see Exercise C-4.54), this poly-

nomial can be computed as

xn−1 +a(xn−2 +a(xn−3 + · · ·+a(x2 +a(x1 +ax0)) · · ·)).

Intuitively, a polynomial hash code uses multiplication by different powers as a

way to spread out the influence of each component across the resulting hash code.

Of course, on a typical computer, evaluating a polynomial will be done using

the finite bit representation for a hash code; hence, the value will periodically over-

flow the bits used for an integer. Since we are more interested in a good spread of

the object x with respect to other keys, we simply ignore such overflows. Still, we

should be mindful that such overflows are occurring and choose the constant a so

that it has some nonzero, low-order bits, which will serve to preserve some of the

information content even as we are in an overflow situation.

We have done some experimental studies that suggest that 33, 37, 39, and 41

are particularly good choices for a when working with character strings that are

English words. In fact, in a list of over 50,000 English words formed as the union

of the word lists provided in two variants of Unix, we found that taking a to be 33,

37, 39, or 41 produced fewer than 7 collisions in each case!

Cyclic-Shift Hash Codes

A variant of the polynomial hash code replaces multiplication by a with a cyclic

shift of a partial sum by a certain number of bits. For example, a 5-bit cyclic shift

of the 32-bit value 00111101100101101010100010101000 is achieved by taking

the leftmost five bits and placing those on the rightmost side of the representation,

resulting in 10110010110101010001010100000111. While this operation has little

natural meaning in terms of arithmetic, it accomplishes the goal of varying the bits

of the calculation. In Java, a cyclic shift of bits can be accomplished through careful

use of the bitwise shift operators.

414 Chapter 10. Maps, Hash Tables, and Skip Lists

An implementation of a cyclic-shift hash code computation for a character

string in Java appears as follows:

static int hashCode(String s) {
int h=0;
for (int i=0; i<s.length(); i++) {
h = (h << 5) | (h >>> 27); // 5-bit cyclic shift of the running sum
h += (int) s.charAt(i); // add in next character
}
return h;
}

As with the traditional polynomial hash code, fine-tuning is required when using a

cyclic-shift hash code, as we must wisely choose the amount to shift by for each

new character. Our choice of a 5-bit shift is justified by experiments run on a list of

just over 230,000 English words, comparing the number of collisions for various

shift amounts (see Table 10.1).

Collisions

Shift Total Max

0 234735 623

1 165076 43

2 38471 13

3 7174 5

4 1379 3

5 190 3

6 502 2

7 560 2

8 5546 4

9 393 3

10 5194 5

11 11559 5

12 822 2

13 900 4

14 2001 4

15 19251 8

16 211781 37

Table 10.1: Comparison of collision behavior for the cyclic-shift hash code as ap-

plied to a list of 230,000 English words. The “Total” column records the total num-

ber of words that collide with at least one other, and the “Max” column records the

maximum number of words colliding at any one hash code. Note that with a cyclic

shift of 0, this hash code reverts to the one that simply sums all the characters.

10.2. Hash Tables 415

Hash Codes in Java

The notion of hash codes are an integral part of the Java language. The Object
class, which serves as an ancestor of all object types, includes a default hashCode()
method that returns a 32-bit integer of type int, which serves as an object’s hash

code. The default version of hashCode() provided by the Object class is often just

an integer representation derived from the object’s memory address.

However, we must be careful if relying on the default version of hashCode()
when authoring a class. For hashing schemes to be reliable, it is imperative that

any two objects that are viewed as “equal” to each other have the same hash code.

This is important because if an entry is inserted into a map, and a later search is

performed on a key that is considered equivalent to that entry’s key, the map must

recognize this as a match. (See, for example, the UnsortedTableMap.findIndex
method in Code Fragment 10.4.) Therefore, when using a hash table to implement

a map, we want equivalent keys to have the same hash code so that they are guar-

anteed to map to the same bucket. More formally, if a class defines equivalence

through the equals method (see Section 3.5), then that class should also provide a

consistent implementation of the hashCode method, such that if x.equals(y) then

x.hashCode() == y.hashCode().

As an example, Java’s String class defines the equals method so that two in-

stances are equivalent if they have precisely the same sequence of characters. That

class also overrides the hashCode method to provide consistent behavior. In fact,

the implementation of hash codes for the String class is excellent. If we repeat

the experiment from the previous page using Java’s implementation of hash codes,

there are only 12 collisions among more than 230,000 words. Java’s primitive

wrapper classes also define hashCode, using techniques described on page 412.

As an example of how to properly implement hashCode for a user-defined class,

we will revisit the SinglyLinkedList class from Chapter 3. We defined the equals
method for that class, in Section 3.5.2, so that two lists are equivalent if they rep-

resent equal-length sequences of elements that are pairwise equivalent. We can

compute a robust hash code for a list by taking the exclusive-or of its elements’

hash codes, while performing a cyclic shift. (See Code Fragment 10.6.)

1 public int hashCode() {
2 int h = 0;
3 for (Node walk=head; walk != null; walk = walk.getNext()) {
4 h ˆ= walk.getElement().hashCode(); // bitwise exclusive-or with element’s code
5 h = (h << 5) | (h >>> 27); // 5-bit cyclic shift of composite code
6 }
7 return h;
8 }

Code Fragment 10.6: A robust implementation of the hashCode method for the

SinglyLinkedList class from Chapter 3.

416 Chapter 10. Maps, Hash Tables, and Skip Lists

Compression Functions

The hash code for a key k will typically not be suitable for immediate use with a

bucket array, because the integer hash code may be negative or may exceed the ca-

pacity of the bucket array. Thus, once we have determined an integer hash code for

a key object k, there is still the issue of mapping that integer into the range [0,N−1].
This computation, known as a compression function, is the second action per-

formed as part of an overall hash function. A good compression function is one

that minimizes the number of collisions for a given set of distinct hash codes.

The Division Method

A simple compression function is the division method, which maps an integer i to

i mod N,

where N, the size of the bucket array, is a fixed positive integer. Additionally, if we

take N to be a prime number, then this compression function helps “spread out” the

distribution of hashed values. Indeed, if N is not prime, then there is greater risk

that patterns in the distribution of hash codes will be repeated in the distribution of

hash values, thereby causing collisions. For example, if we insert keys with hash

codes {200,205,210,215,220, . . . ,600} into a bucket array of size 100, then each

hash code will collide with three others. But if we use a bucket array of size 101,

then there will be no collisions. If a hash function is chosen well, it should ensure

that the probability of two different keys getting hashed to the same bucket is 1/N.

Choosing N to be a prime number is not always enough, however, for if there is

a repeated pattern of hash codes of the form pN + q for several different p’s, then

there will still be collisions.

The MAD Method

A more sophisticated compression function, which helps eliminate repeated pat-

terns in a set of integer keys, is the Multiply-Add-and-Divide (or “MAD”) method.

This method maps an integer i to

[(ai+b) mod p] mod N,

where N is the size of the bucket array, p is a prime number larger than N, and a

and b are integers chosen at random from the interval [0, p− 1], with a > 0. This

compression function is chosen in order to eliminate repeated patterns in the set of

hash codes and get us closer to having a “good” hash function, that is, one such that

the probability any two different keys collide is 1/N. This good behavior would be

the same as we would have if these keys were “thrown” into A uniformly at random.

10.2. Hash Tables 417

10.2.2 Collision-Handling Schemes

The main idea of a hash table is to take a bucket array, A, and a hash function, h, and

use them to implement a map by storing each entry (k,v) in the “bucket” A[h(k)].
This simple idea is challenged, however, when we have two distinct keys, k1 and k2,

such that h(k1) = h(k2). The existence of such collisions prevents us from simply

inserting a new entry (k,v) directly into the bucket A[h(k)]. It also complicates our

procedure for performing insertion, search, and deletion operations.

Separate Chaining

A simple and efficient way for dealing with collisions is to have each bucket A[j]
store its own secondary container, holding all entries (k,v) such that h(k) = j. A

natural choice for the secondary container is a small map instance implemented

using an unordered list, as described in Section 10.1.4. This collision resolution

rule is known as separate chaining, and is illustrated in Figure 10.6.

A

1 2 3 4 5 6 7 8 9 100 11 12

12

38

25

90

54

28

41

36

18 10

Figure 10.6: A hash table of size 13, storing 10 entries with integer keys, with

collisions resolved by separate chaining. The compression function is h(k)= k mod

13. For simplicity, we do not show the values associated with the keys.

In the worst case, operations on an individual bucket take time proportional to

the size of the bucket. Assuming we use a good hash function to index the n entries

of our map in a bucket array of capacity N, the expected size of a bucket is n/N.

Therefore, if given a good hash function, the core map operations run in O(⌈n/N⌉).
The ratio λ = n/N, called the load factor of the hash table, should be bounded by

a small constant, preferably below 1. As long as λ is O(1), the core operations on

the hash table run in O(1) expected time.

418 Chapter 10. Maps, Hash Tables, and Skip Lists

Open Addressing

The separate chaining rule has many nice properties, such as affording simple im-

plementations of map operations, but it nevertheless has one slight disadvantage: It

requires the use of an auxiliary data structure to hold entries with colliding keys. If

space is at a premium (for example, if we are writing a program for a small hand-

held device), then we can use the alternative approach of storing each entry directly

in a table slot. This approach saves space because no auxiliary structures are em-

ployed, but it requires a bit more complexity to properly handle collisions. There

are several variants of this approach, collectively referred to as open addressing

schemes, which we discuss next. Open addressing requires that the load factor is

always at most 1 and that entries are stored directly in the cells of the bucket array

itself.

Linear Probing and Its Variants

A simple method for collision handling with open addressing is linear probing.

With this approach, if we try to insert an entry (k,v) into a bucket A[j] that is already

occupied, where j = h(k), then we next try A[(j+1) mod N]. If A[(j+1) mod N]
is also occupied, then we try A[(j+ 2) mod N], and so on, until we find an empty

bucket that can accept the new entry. Once this bucket is located, we simply insert

the entry there. Of course, this collision resolution strategy requires that we change

the implementation when searching for an existing key—the first step of all get,

put, or remove operations. In particular, to attempt to locate an entry with key equal

to k, we must examine consecutive slots, starting from A[h(k)], until we either find

an entry with an equal key or we find an empty bucket. (See Figure 10.7.) The

name “linear probing” comes from the fact that accessing a cell of the bucket array

can be viewed as a “probe,” and that consecutive probes occur in neighboring cells

(when viewed circularly).

5 6 7 8 9 100

New element with

key = 15 to be inserted

Must probe 4 times

before finding empty slot

5 37 16 2113 26

1 2 3 4

Figure 10.7: Insertion into a hash table with integer keys using linear probing. The

hash function is h(k) = k mod 11. Values associated with keys are not shown.

10.2. Hash Tables 419

To implement a deletion, we cannot simply remove a found entry from its slot

in the array. For example, after the insertion of key 15 portrayed in Figure 10.7,

if the entry with key 37 were trivially deleted, a subsequent search for 15 would

fail because that search would start by probing at index 4, then index 5, and then

index 6, at which an empty cell is found. A typical way to get around this difficulty

is to replace a deleted entry with a special “defunct” sentinel object. With this

special marker possibly occupying spaces in our hash table, we modify our search

algorithm so that the search for a key k will skip over cells containing the defunct

sentinel and continue probing until reaching the desired entry or an empty bucket

(or returning back to where we started from). Additionally, our algorithm for put
should remember a defunct location encountered during the search for k, since this

is a valid place to put a new entry (k,v), if no existing entry is found beyond it.

Although use of an open addressing scheme can save space, linear probing

suffers from an additional disadvantage. It tends to cluster the entries of a map into

contiguous runs, which may even overlap (particularly if more than half of the cells

in the hash table are occupied). Such contiguous runs of occupied hash cells cause

searches to slow down considerably.

Another open addressing strategy, known as quadratic probing, iteratively tries

the buckets A[(h(k)+ f (i)) mod N], for i = 0,1,2, . . ., where f (i) = i2, until finding

an empty bucket. As with linear probing, the quadratic probing strategy compli-

cates the removal operation, but it does avoid the kinds of clustering patterns that

occur with linear probing. Nevertheless, it creates its own kind of clustering, called

secondary clustering, where the set of filled array cells still has a nonuniform pat-

tern, even if we assume that the original hash codes are distributed uniformly. When

N is prime and the bucket array is less than half full, the quadratic probing strategy

is guaranteed to find an empty slot. However, this guarantee is not valid once the

table becomes at least half full, or if N is not chosen as a prime number; we explore

the cause of this type of clustering in an exercise (C-10.42).

An open addressing strategy that does not cause clustering of the kind produced

by linear probing or the kind produced by quadratic probing is the double hashing

strategy. In this approach, we choose a secondary hash function, h′, and if h maps

some key k to a bucket A[h(k)] that is already occupied, then we iteratively try

the buckets A[(h(k)+ f (i)) mod N] next, for i = 1,2,3, . . ., where f (i) = i · h′(k).
In this scheme, the secondary hash function is not allowed to evaluate to zero; a

common choice is h′(k) = q− (k mod q), for some prime number q < N. Also, N

should be a prime.

Another approach to avoid clustering with open addressing is to iteratively try

buckets A[(h(k) + f (i)) mod N] where f (i) is based on a pseudorandom number

generator, providing a repeatable, but somewhat arbitrary, sequence of subsequent

probes that depends upon bits of the original hash code.

420 Chapter 10. Maps, Hash Tables, and Skip Lists

10.2.3 Load Factors, Rehashing, and Efficiency

In the hash table schemes described thus far, it is important that the load factor,

λ = n/N, be kept below 1. With separate chaining, as λ gets very close to 1, the

probability of a collision greatly increases, which adds overhead to our operations,

since we must revert to linear-time list-based methods in buckets that have col-

lisions. Experiments and average-case analyses suggest that we should maintain

λ < 0.9 for hash tables with separate chaining. (By default, Java’s implementation

uses separate chaining with λ < 0.75.)

With open addressing, on the other hand, as the load factor λ grows beyond 0.5
and starts approaching 1, clusters of entries in the bucket array start to grow as well.

These clusters cause the probing strategies to “bounce around” the bucket array

for a considerable amount of time before they find an empty slot. In Exercise C-

10.42, we explore the degradation of quadratic probing when λ≥ 0.5. Experiments

suggest that we should maintain λ < 0.5 for an open addressing scheme with linear

probing, and perhaps only a bit higher for other open addressing schemes.

If an insertion causes the load factor of a hash table to go above the specified

threshold, then it is common to resize the table (to regain the specified load factor)

and to reinsert all objects into this new table. Although we need not define a new

hash code for each object, we do need to reapply a new compression function that

takes into consideration the size of the new table. Rehashing will generally scatter

the entries throughout the new bucket array. When rehashing to a new table, it is

a good requirement for the new array’s size to be a prime number approximately

double the previous size (see Exercise C-10.32). In that way, the cost of rehashing

all the entires in the table can be amortized against the time used to insert them in

the first place (as with dynamic arrays; see Section 7.2.1).

Efficiency of Hash Tables

Although the details of the average-case analysis of hashing are beyond the scope

of this book, its probabilistic basis is quite intuitive. If our hash function is good,

then we expect the entries to be uniformly distributed in the N cells of the bucket

array. Thus, to store n entries, the expected number of keys in a bucket would

be ⌈n/N⌉, which is O(1) if n is O(N).
The costs associated with a periodic rehashing (when resizing a table after oc-

casional insertions or deletions) can be accounted for separately, leading to an ad-

ditional O(1) amortized cost for put and remove.

In the worst case, a poor hash function could map every entry to the same

bucket. This would result in linear-time performance for the core map operations

with separate chaining, or with any open addressing model in which the secondary

sequence of probes depends only on the hash code. A summary of these costs is

given in Table 10.2.

10.2. Hash Tables 421

Method
Unsorted Hash Table

List expected worst case

get O(n) O(1) O(n)

put O(n) O(1) O(n)

remove O(n) O(1) O(n)

size, isEmpty O(1) O(1) O(1)

entrySet, keySet, values O(n) O(n) O(n)

Table 10.2: Comparison of the running times of the methods of a map realized by

means of an unsorted list (as in Section 10.1.4) or a hash table. We let n denote

the number of entries in the map, and we assume that the bucket array supporting

the hash table is maintained such that its capacity is proportional to the number of

entries in the map.

An Anecdote About Hashing and Computer Security

In a 2003 academic paper, researchers discuss the possibility of exploiting a hash

table’s worst-case performance to cause a denial-of-service (DoS) attack of Internet

technologies. Since many published algorithms compute hash codes with a deter-

ministic function, an attacker could precompute a very large number of moderate-

length strings that all hash to the identical 32-bit hash code. (Recall that by any

of the hashing schemes we describe, other than double hashing, if two keys are

mapped to the same hash code, they will be inseparable in the collision resolution.)

This concern was brought to the attention of the Java development team, and that

of many other programming languages, but deemed an insignificant risk at the time

by most. (Kudos to the Perl team for implementing a fix in 2003.)

In late 2011, another team of researchers demonstrated an implementation of

just such an attack. Web servers allow a series of key-value parameters to be em-

bedded in a URL using a syntax such as ?key1=val1&key2=val2&key3=val3.

Those key-value pairs are strings and a typical Web server immediately stores them

in a hash-map. Servers already place a limit on the length and number of such

parameters, to avoid overload, but they presume that the total insertion time in the

map will be linear in the number of entries, given the expected constant-time oper-

ations. However, if all keys were to collide, the insertions into the map will require

quadratic time, causing the server to perform an inordinate amount of work.

In 2012, the OpenJDK team announced the following resolution: they dis-

tributed a security patch that includes an alternative hash function that introduces

randomization into the computation of hash codes, making it less tractable to re-

verse engineer a set of colliding strings. However, to avoid breaking existing code,

the new feature is disabled by default in Java SE 7 and, when enabled, is only used

for hashing strings and only when a table size grows beyond a certain threshold.

Enhanced hashing will be enabled in Java SE 8 for all types and uses.

422 Chapter 10. Maps, Hash Tables, and Skip Lists

10.2.4 Java Hash Table Implementation

In this section, we develop two implementations of a hash table, one using sep-

arate chaining and the other using open addressing with linear probing. While

these approaches to collision resolution are quite different, there are many higher-

level commonalities to the two hashing algorithms. For that reason, we extend the

AbstractMap class (from Code Fragment 10.3) to define a new AbstractHashMap
class (see Code Fragment 10.7), which provides much of the functionality common

to our two hash table implementations.

We will begin by discussing what this abstract class does not do—it does not

provide any concrete representation of a table of “buckets.” With separate chaining,

each bucket will be a secondary map. With open addressing, however, there is no

tangible container for each bucket; the “buckets” are effectively interleaved due to

the probing sequences. In our design, the AbstractHashMap class presumes the

following to be abstract methods—to be implemented by each concrete subclass:

createTable(): This method should create an initially empty table having

size equal to a designated capacity instance variable.

bucketGet(h, k): This method should mimic the semantics of the public get
method, but for a key k that is known to hash to bucket h.

bucketPut(h, k, v): This method should mimic the semantics of the public put
method, but for a key k that is known to hash to bucket h.

bucketRemove(h, k): This method should mimic the semantics of the public

remove method, but for a key k known to hash to bucket h.

entrySet(): This standard map method iterates through all entries of the

map. We do not delegate this on a per-bucket basis because

“buckets” in open addressing are not inherently disjoint.

What the AbstractHashMap class does provide is mathematical support in

the form of a hash compression function using a randomized Multiply-Add-and-

Divide (MAD) formula, and support for automatically resizing the underlying hash

table when the load factor reaches a certain threshold.

The hashValue method relies on an original key’s hash code, as returned by its

hashCode() method, followed by MAD compression based on a prime number and

the scale and shift parameters that are randomly chosen in the constructor.

To manage the load factor, the AbstractHashMap class declares a protected

member, n, which should equal the current number of entries in the map; however,

it must rely on the subclasses to update this field from within methods bucketPut
and bucketRemove. If the load factor of the table increases beyond 0.5, we request

a bigger table (using the createTable method) and reinsert all entries into the new

table. (For simplicity, this implementation uses tables of size 2k + 1, even though

these are not generally prime.)

10.2. Hash Tables 423

1 public abstract class AbstractHashMap<K,V> extends AbstractMap<K,V> {
2 protected int n = 0; // number of entries in the dictionary
3 protected int capacity; // length of the table
4 private int prime; // prime factor
5 private long scale, shift; // the shift and scaling factors
6 public AbstractHashMap(int cap, int p) {
7 prime = p;
8 capacity = cap;
9 Random rand = new Random();

10 scale = rand.nextInt(prime−1) + 1;
11 shift = rand.nextInt(prime);
12 createTable();
13 }
14 public AbstractHashMap(int cap) { this(cap, 109345121); } // default prime
15 public AbstractHashMap() { this(17); } // default capacity
16 // public methods
17 public int size() { return n; }
18 public V get(K key) { return bucketGet(hashValue(key), key); }
19 public V remove(K key) { return bucketRemove(hashValue(key), key); }
20 public V put(K key, V value) {
21 V answer = bucketPut(hashValue(key), key, value);
22 if (n > capacity / 2) // keep load factor <= 0.5
23 resize(2 ∗ capacity − 1); // (or find a nearby prime)
24 return answer;
25 }
26 // private utilities
27 private int hashValue(K key) {
28 return (int) ((Math.abs(key.hashCode()∗scale + shift) % prime) % capacity);
29 }
30 private void resize(int newCap) {
31 ArrayList<Entry<K,V>> buffer = new ArrayList<>(n);
32 for (Entry<K,V> e : entrySet())
33 buffer.add(e);
34 capacity = newCap;
35 createTable(); // based on updated capacity
36 n = 0; // will be recomputed while reinserting entries
37 for (Entry<K,V> e : buffer)
38 put(e.getKey(), e.getValue());
39 }
40 // protected abstract methods to be implemented by subclasses
41 protected abstract void createTable();
42 protected abstract V bucketGet(int h, K k);
43 protected abstract V bucketPut(int h, K k, V v);
44 protected abstract V bucketRemove(int h, K k);
45 }

Code Fragment 10.7: A base class for our hash table implementations, extending

the AbstractMap class from Code Fragment 10.3.

424 Chapter 10. Maps, Hash Tables, and Skip Lists

Separate Chaining

To represent each bucket for separate chaining, we use an instance of the simpler

UnsortedTableMap class from Section 10.1.4. This technique, in which we use a

simple solution to a problem to create a new, more advanced solution, is known as

bootstrapping. The advantage of using a map for each bucket is that it becomes

easy to delegate responsibilities for top-level map operations to the appropriate

bucket.

The entire hash table is then represented as a fixed-capacity array A of the

secondary maps. Each cell, A[h], is initially a null reference; we only create a

secondary map when an entry is first hashed to a particular bucket.

As a general rule, we implement bucketGet(h, k) by calling A[h].get(k), we

implement bucketPut(h, k, v) by calling A[h].put(k, v), and bucketRemove(h, k)
by calling A[h].remove(k). However, care is needed for two reasons.

First, because we choose to leave table cells as null until a secondary map is

needed, each of these fundamental operations must begin by checking to see if

A[h] is null. In the case of bucketGet and bucketRemove, if the bucket does not

yet exist, we can simply return null as there can not be any entry matching key k.

In the case of bucketPut, a new entry must be inserted, so we instantiate a new

UnsortedTableMap for A[h] before continuing.

The second issue is that, in our AbstractHashMap framework, the subclass

has the responsibility to properly maintain the instance variable n when an entry is

newly inserted or deleted. Remember that when put(k, v) is called on a map, the

size of the map only increases if key k is new to the map (otherwise, the value of an

existing entry is reassigned). Similarly, a call to remove(k) only decreases the size

of the map when an entry with key equal to k is found. In our implementation, we

determine the change in the overall size of the map, by determining if there is any

change in the size of the relevant secondary map before and after an operation.

Code Fragment 10.8 provides a complete definition for our ChainHashMap
class, which implements a hash table with separate chaining. If we assume that the

hash function performs well, a map with n entries and a table of capacity N will

have an expected bucket size of n/N (recall, this is its load factor). So even though

the individual buckets, implemented as UnsortedTableMap instances, are not par-

ticularly efficient, each bucket has expected O(1) size, provided that n is O(N),
as in our implementation. Therefore, the expected running time of operations get,
put, and remove for this map is O(1). The entrySet method (and thus the related

keySet and values) runs in O(n+N) time, as it loops through the length of the table

(with length N) and through all buckets (which have cumulative lengths n).

10.2. Hash Tables 425

1 public class ChainHashMap<K,V> extends AbstractHashMap<K,V> {
2 // a fixed capacity array of UnsortedTableMap that serve as buckets
3 private UnsortedTableMap<K,V>[] table; // initialized within createTable
4 public ChainHashMap() { super(); }
5 public ChainHashMap(int cap) { super(cap); }
6 public ChainHashMap(int cap, int p) { super(cap, p); }
7 /∗∗ Creates an empty table having length equal to current capacity. ∗/
8 protected void createTable() {
9 table = (UnsortedTableMap<K,V>[]) new UnsortedTableMap[capacity];

10 }
11 /∗∗ Returns value associated with key k in bucket with hash value h, or else null. ∗/
12 protected V bucketGet(int h, K k) {
13 UnsortedTableMap<K,V> bucket = table[h];
14 if (bucket == null) return null;
15 return bucket.get(k);
16 }
17 /∗∗ Associates key k with value v in bucket with hash value h; returns old value. ∗/
18 protected V bucketPut(int h, K k, V v) {
19 UnsortedTableMap<K,V> bucket = table[h];
20 if (bucket == null)
21 bucket = table[h] = new UnsortedTableMap<>();
22 int oldSize = bucket.size();
23 V answer = bucket.put(k,v);
24 n += (bucket.size() − oldSize); // size may have increased
25 return answer;
26 }
27 /∗∗ Removes entry having key k from bucket with hash value h (if any). ∗/
28 protected V bucketRemove(int h, K k) {
29 UnsortedTableMap<K,V> bucket = table[h];
30 if (bucket == null) return null;
31 int oldSize = bucket.size();
32 V answer = bucket.remove(k);
33 n −= (oldSize − bucket.size()); // size may have decreased
34 return answer;
35 }
36 /∗∗ Returns an iterable collection of all key-value entries of the map. ∗/
37 public Iterable<Entry<K,V>> entrySet() {
38 ArrayList<Entry<K,V>> buffer = new ArrayList<>();
39 for (int h=0; h < capacity; h++)
40 if (table[h] != null)
41 for (Entry<K,V> entry : table[h].entrySet())
42 buffer.add(entry);
43 return buffer;
44 }
45 }

Code Fragment 10.8: A concrete hash map implementation using separate chaining.

426 Chapter 10. Maps, Hash Tables, and Skip Lists

Linear Probing

Our implementation of a ProbeHashMap class, using open addressing with linear

probing, is given in Code Fragments 10.9 and 10.10. In order to support deletions,

we use a technique described in Section 10.2.2 in which we place a special marker

in a table location at which an entry has been deleted, so that we can distinguish

between it and a location that has always been empty. To this end, we create a

fixed entry instance, DEFUNCT, as a sentinel (disregarding any key or value stored

within), and use references to that instance to mark vacated cells.

The most challenging aspect of open addressing is to properly trace the series

of probes when collisions occur during a search for an existing entry, or placement

of a new entry. To this end, the three primary map operations each rely on a utility,

findSlot, that searches for an entry with key k in “bucket” h (that is, where h is

the index returned by the hash function for key k). When attempting to retrieve

the value associated with a given key, we must continue probing until we find the

key, or until we reach a table slot with a null reference. We cannot stop the search

upon reaching an DEFUNCT sentinel, because it represents a location that may

have been filled at the time the desired entry was once inserted.

When a key-value pair is being placed in the map, we must first attempt to find

an existing entry with the given key, so that we might overwrite its value. Therefore,

we must search beyond any occurrences of the DEFUNCT sentinel when inserting.

However, if no match is found, we prefer to repurpose the first slot marked with

DEFUNCT, if any, when placing the new element in the table. The findSlot method

enacts this logic, continuing an unsuccessful search until finding a truly empty slot,

and returning the index of the first available slot for an insertion.

When deleting an existing entry within bucketRemove, we intentionally set the

table entry to the DEFUNCT sentinel in accordance with our strategy.

1 public class ProbeHashMap<K,V> extends AbstractHashMap<K,V> {
2 private MapEntry<K,V>[] table; // a fixed array of entries (all initially null)
3 private MapEntry<K,V> DEFUNCT = new MapEntry<>(null, null); //sentinel
4 public ProbeHashMap() { super(); }
5 public ProbeHashMap(int cap) { super(cap); }
6 public ProbeHashMap(int cap, int p) { super(cap, p); }
7 /∗∗ Creates an empty table having length equal to current capacity. ∗/
8 protected void createTable() {
9 table = (MapEntry<K,V>[]) new MapEntry[capacity]; // safe cast

10 }
11 /∗∗ Returns true if location is either empty or the ”defunct” sentinel. ∗/
12 private boolean isAvailable(int j) {
13 return (table[j] == null | | table[j] == DEFUNCT);
14 }

Code Fragment 10.9: Concrete ProbeHashMap class that uses linear probing for

collision resolution. (Continues in Code Fragment 10.10.)

10.2. Hash Tables 427

15 /∗∗ Returns index with key k, or −(a+1) such that k could be added at index a. ∗/
16 private int findSlot(int h, K k) {
17 int avail = −1; // no slot available (thus far)
18 int j = h; // index while scanning table
19 do {
20 if (isAvailable(j)) { // may be either empty or defunct
21 if (avail == −1) avail = j; // this is the first available slot!
22 if (table[j] == null) break; // if empty, search fails immediately
23 } else if (table[j].getKey().equals(k))
24 return j; // successful match
25 j = (j+1) % capacity; // keep looking (cyclically)
26 } while (j != h); // stop if we return to the start
27 return −(avail + 1); // search has failed
28 }
29 /∗∗ Returns value associated with key k in bucket with hash value h, or else null. ∗/
30 protected V bucketGet(int h, K k) {
31 int j = findSlot(h, k);
32 if (j < 0) return null; // no match found
33 return table[j].getValue();
34 }
35 /∗∗ Associates key k with value v in bucket with hash value h; returns old value. ∗/
36 protected V bucketPut(int h, K k, V v) {
37 int j = findSlot(h, k);
38 if (j >= 0) // this key has an existing entry
39 return table[j].setValue(v);
40 table[−(j+1)] = new MapEntry<>(k, v); // convert to proper index
41 n++;
42 return null;
43 }
44 /∗∗ Removes entry having key k from bucket with hash value h (if any). ∗/
45 protected V bucketRemove(int h, K k) {
46 int j = findSlot(h, k);
47 if (j < 0) return null; // nothing to remove
48 V answer = table[j].getValue();
49 table[j] = DEFUNCT; // mark this slot as deactivated
50 n−−;
51 return answer;
52 }
53 /∗∗ Returns an iterable collection of all key-value entries of the map. ∗/
54 public Iterable<Entry<K,V>> entrySet() {
55 ArrayList<Entry<K,V>> buffer = new ArrayList<>();
56 for (int h=0; h < capacity; h++)
57 if (!isAvailable(h)) buffer.add(table[h]);
58 return buffer;
59 }
60 }

Code Fragment 10.10: Concrete ProbeHashMap class that uses linear probing for

collision resolution (continued from Code Fragment 10.9).

428 Chapter 10. Maps, Hash Tables, and Skip Lists

10.3 Sorted Maps

The traditional map ADT allows a user to look up the value associated with a given

key, but the search for that key is a form known as an exact search. In this section,

we will introduce an extension known as the sorted map ADT that includes all

behaviors of the standard map, plus the following:

firstEntry(): Returns the entry with smallest key value (or null, if the

map is empty).

lastEntry(): Returns the entry with largest key value (or null, if the

map is empty).

ceilingEntry(k): Returns the entry with the least key value greater than or

equal to k (or null, if no such entry exists).

floorEntry(k): Returns the entry with the greatest key value less than or

equal to k (or null, if no such entry exists).

lowerEntry(k): Returns the entry with the greatest key value strictly less

than k (or null, if no such entry exists).

higherEntry(k): Returns the entry with the least key value strictly greater

than k (or null if no such entry exists).

subMap(k1, k2): Returns an iteration of all entries with key greater than or

equal to k1, but strictly less than k2.

We note that the above methods are included within the java.util.NavigableMap
interface (which extends the simpler java.util.SortedMap interface).

To motivate the use of a sorted map, consider a computer system that maintains

information about events that have occurred (such as financial transactions), with a

time stamp marking the occurrence of each event. If the time stamps were unique

for a particular system, we could organize a map with a time stamp serving as a key,

and a record about the event that occurred at that time as the value. A particular

time stamp could serve as a reference ID for an event, in which case we can quickly

retrieve information about that event from the map. However, the (unsorted) map

ADT does not provide any way to get a list of all events ordered by the time at

which they occur, or to search for which event occurred closest to a particular time.

In fact, hash-based implementations of the map ADT intentionally scatter keys that

may seem very “near” to each other in the original domain, so that they are more

uniformly distributed in a hash table.

10.3. Sorted Maps 429

10.3.1 Sorted Search Tables

Several data structures can efficiently support the sorted map ADT, and we will

examine some advanced techniques in Section 10.4 and Chapter 11. In this section,

we will begin by exploring a simple implementation of a sorted map. We store the

map’s entries in an array list A so that they are in increasing order of their keys.

(See Figure 10.8.) We refer to this implementation as a sorted search table.

92 4 5 7 8 12 14 17 19 22 25 27 28 33

5

37

0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

Figure 10.8: Realization of a map by means of a sorted search table. We show only

the keys for this map, so as to highlight their ordering.

As was the case with the unsorted table map of Section 10.1.4, the sorted search

table has a space requirement that is O(n). The primary advantage of this represen-

tation, and our reason for insisting that A be array-based, is that it allows us to use

the binary search algorithm for a variety of efficient operations.

Binary Search and Inexact Searches

We originally presented the binary search algorithm in Section 5.1.3, as a means for

detecting whether a given target is stored within a sorted sequence. In our original

presentation (Code Fragment 5.3 on page 197), a binarySearch method returned

true or false to designate whether the desired target was found.

The important realization is that, while performing a binary search, we can in-

stead return the index at or near where a target might be found. During a successful

search, the standard implementation determines the precise index at which the tar-

get is found. During an unsuccessful search, although the target is not found, the

algorithm will effectively determine a pair of indices designating elements of the

collection that are just less than or just greater than the missing target.

In Code Fragments 10.11 and 10.12, we present a complete implementation

of a class, SortedTableMap, that supports the sorted map ADT. The most notable

feature of our design is the inclusion of a findIndex utility method. This method

uses the recursive binary search algorithm, but returns the index of the leftmost

entry in the search range having key greater than or equal to k; if no entry in the

search range has such a key, we return the index just beyond the end of the search

range. By this convention, if an entry has the target key, the search returns the index

of that entry. (Recall that keys are unique in a map.) If the key is absent, the method

returns the index at which a new entry with that key would be inserted.

430 Chapter 10. Maps, Hash Tables, and Skip Lists

1 public class SortedTableMap<K,V> extends AbstractSortedMap<K,V> {
2 private ArrayList<MapEntry<K,V>> table = new ArrayList<>();
3 public SortedTableMap() { super(); }
4 public SortedTableMap(Comparator<K> comp) { super(comp); }
5 /∗∗ Returns the smallest index for range table[low..high] inclusive storing an entry
6 with a key greater than or equal to k (or else index high+1, by convention). ∗/
7 private int findIndex(K key, int low, int high) {
8 if (high < low) return high + 1; // no entry qualifies
9 int mid = (low + high) / 2;

10 int comp = compare(key, table.get(mid));
11 if (comp == 0)
12 return mid; // found exact match
13 else if (comp < 0)
14 return findIndex(key, low, mid − 1); // answer is left of mid (or possibly mid)
15 else
16 return findIndex(key, mid + 1, high); // answer is right of mid
17 }
18 /∗∗ Version of findIndex that searches the entire table ∗/
19 private int findIndex(K key) { return findIndex(key, 0, table.size() − 1); }
20 /∗∗ Returns the number of entries in the map. ∗/
21 public int size() { return table.size(); }
22 /∗∗ Returns the value associated with the specified key (or else null). ∗/
23 public V get(K key) {
24 int j = findIndex(key);
25 if (j == size() | | compare(key, table.get(j)) != 0) return null; // no match
26 return table.get(j).getValue();
27 }
28 /∗∗ Associates the given value with the given key, returning any overridden value.∗/
29 public V put(K key, V value) {
30 int j = findIndex(key);
31 if (j < size() && compare(key, table.get(j)) == 0) // match exists
32 return table.get(j).setValue(value);
33 table.add(j, new MapEntry<K,V>(key,value)); // otherwise new
34 return null;
35 }
36 /∗∗ Removes the entry having key k (if any) and returns its associated value. ∗/
37 public V remove(K key) {
38 int j = findIndex(key);
39 if (j == size() | | compare(key, table.get(j)) != 0) return null; // no match
40 return table.remove(j).getValue();
41 }

Code Fragment 10.11: An implementation of the SortedTableMap class. (Con-

tinues in Code Fragment 10.12.) The AbstractSortedMap base class (available

online), provides the utility method, compare, based on a given comparator.

10.3. Sorted Maps 431

42 /∗∗ Utility returns the entry at index j, or else null if j is out of bounds. ∗/
43 private Entry<K,V> safeEntry(int j) {
44 if (j < 0 | | j >= table.size()) return null;
45 return table.get(j);
46 }
47 /∗∗ Returns the entry having the least key (or null if map is empty). ∗/
48 public Entry<K,V> firstEntry() { return safeEntry(0); }
49 /∗∗ Returns the entry having the greatest key (or null if map is empty). ∗/
50 public Entry<K,V> lastEntry() { return safeEntry(table.size()−1); }
51 /∗∗ Returns the entry with least key greater than or equal to given key (if any). ∗/
52 public Entry<K,V> ceilingEntry(K key) {
53 return safeEntry(findIndex(key));
54 }
55 /∗∗ Returns the entry with greatest key less than or equal to given key (if any). ∗/
56 public Entry<K,V> floorEntry(K key) {
57 int j = findIndex(key);
58 if (j == size() | | ! key.equals(table.get(j).getKey()))
59 j−−; // look one earlier (unless we had found a perfect match)
60 return safeEntry(j);
61 }
62 /∗∗ Returns the entry with greatest key strictly less than given key (if any). ∗/
63 public Entry<K,V> lowerEntry(K key) {
64 return safeEntry(findIndex(key) − 1); // go strictly before the ceiling entry
65 }
66 public Entry<K,V> higherEntry(K key) {
67 /∗∗ Returns the entry with least key strictly greater than given key (if any). ∗/
68 int j = findIndex(key);
69 if (j < size() && key.equals(table.get(j).getKey()))
70 j++; // go past exact match
71 return safeEntry(j);
72 }
73 // support for snapshot iterators for entrySet() and subMap() follow
74 private Iterable<Entry<K,V>> snapshot(int startIndex, K stop) {
75 ArrayList<Entry<K,V>> buffer = new ArrayList<>();
76 int j = startIndex;
77 while (j < table.size() && (stop == null | | compare(stop, table.get(j)) > 0))
78 buffer.add(table.get(j++));
79 return buffer;
80 }
81 public Iterable<Entry<K,V>> entrySet() { return snapshot(0, null); }
82 public Iterable<Entry<K,V>> subMap(K fromKey, K toKey) {
83 return snapshot(findIndex(fromKey), toKey);
84 }
85 }

Code Fragment 10.12: An implementation of the SortedTableMap class (continued

from Code Fragment 10.11).

432 Chapter 10. Maps, Hash Tables, and Skip Lists

Analysis

We conclude by analyzing the performance of our SortedTableMap implementa-

tion. A summary of the running times for all methods of the sorted map ADT

(including the traditional map operations) is given in Table 10.3. It should be clear

that the size, firstEntry, and lastEntry methods run in O(1) time, and that iterating

the keys of the table in either direction can be performed in O(n) time.

The analysis for the various forms of search all depend on the fact that a binary

search on a table with n entries runs in O(logn) time. This claim was originally

shown as Proposition 5.2 in Section 5.2, and that analysis clearly applies to our

findIndex method as well. We therefore claim an O(log n) worst-case running time

for methods get, ceilingEntry, floorEntry, lowerEntry, and higherEntry. Each of

these makes a single call to findIndex, followed by a constant number of additional

steps to determine the appropriate answer based on the index. The analysis of

subMap is a bit more interesting. It begins with a binary search to find the first

item within the range (if any). After that, it executes a loop that takes O(1) time per

iteration to gather subsequent values until reaching the end of the range. If there

are s items reported in the range, the total running time is O(s+ logn).

In contrast to the efficient search operations, update operations for a sorted

table may take considerable time. Although binary search can help identify the

index at which an update occurs, both insertions and deletions require, in the worst

case, that linearly many existing elements be shifted in order to maintain the sorted

order of the table. Specifically, the potential call to table.add from within put and

table.remove from within remove lead to O(n) worst-case time. (See the discussion

of corresponding operations of the ArrayList class in Section 7.2.)

In conclusion, sorted tables are primarily used in situations where we expect

many searches but relatively few updates.

Method Running Time

size O(1)

get O(logn)

put O(n); O(logn) if map has entry with given key

remove O(n)

firstEntry, lastEntry O(1)

ceilingEntry, floorEntry,
O(logn)

lowerEntry, higherEntry

subMap O(s+ logn) where s items are reported

entrySet, keySet, values O(n)

Table 10.3: Performance of a sorted map, as implemented with SortedTableMap.

We use n to denote the number of items in the map at the time the operation is

performed. The space requirement is O(n).

10.3. Sorted Maps 433

10.3.2 Two Applications of Sorted Maps

In this section, we explore applications in which there is particular advantage to

using a sorted map rather than a traditional (unsorted) map. To apply a sorted

map, keys must come from a domain that is totally ordered. Furthermore, to take

advantage of the inexact or range searches afforded by a sorted map, there should

be some reason why nearby keys have relevance to a search.

Flight Databases

There are several websites on the Internet that allow users to perform queries on

flight databases to find flights between various cities, typically with the intent to

buy a ticket. To make a query, a user specifies origin and destination cities, a depar-

ture date, and a departure time. To support such queries, we can model the flight

database as a map, where keys are Flight objects that contain fields corresponding

to these four parameters. That is, a key is a tuple

k = (origin,destination,date, time).

Additional information about a flight, such as the flight number, the number of seats

still available in first (F) and coach (Y) class, the flight duration, and the fare, can

be stored in the value object.

Finding a requested flight is not simply a matter of finding an exact match for

a requested query. Although a user typically wants to exactly match the origin

and destination cities, he or she may have flexibility for the departure date, and

certainly will have some flexibility for the departure time on a specific day. We

can handle such a query by ordering our keys lexicographically. Then, an efficient

implementation for a sorted map would be a good way to satisfy users’ queries.

For instance, given a user query key k, we could call ceilingEntry(k) to return the

first flight between the desired cities, having a departure date and time matching

the desired query or later. Better yet, with well-constructed keys, we could use

subMap(k1, k2) to find all flights within a given range of times. For example, if

k1 = (ORD, PVD, 05May, 09:30), and k2 = (ORD, PVD, 05May, 20:00), a re-

spective call to subMap(k1, k2) might result in the following sequence of key-value

pairs:

(ORD, PVD, 05May, 09:53) : (AA 1840, F5, Y15, 02:05, $251),

(ORD, PVD, 05May, 13:29) : (AA 600, F2, Y0, 02:16, $713),

(ORD, PVD, 05May, 17:39) : (AA 416, F3, Y9, 02:09, $365),

(ORD, PVD, 05May, 19:50) : (AA 1828, F9, Y25, 02:13, $186)

434 Chapter 10. Maps, Hash Tables, and Skip Lists

Maxima Sets

Life is full of trade-offs. We often have to trade off a desired performance measure

against a corresponding cost. Suppose, for the sake of an example, we are interested

in maintaining a database rating automobiles by their maximum speeds and their

cost. We would like to allow someone with a certain amount of money to query our

database to find the fastest car they can possibly afford.

We can model such a trade-off problem as this by using a key-value pair to

model the two parameters that we are trading off, which in this case would be the

pair (cost,speed) for each car. Notice that some cars are strictly better than other

cars using this measure. For example, a car with cost-speed pair (30000,100) is

strictly better than a car with cost-speed pair (40000,90). At the same time, there

are some cars that are not strictly dominated by another car. For example, a car with

cost-speed pair (30000,100) may be better or worse than a car with cost-speed pair

(40000,120), depending on how much money we have to spend. (See Figure 10.9.)

P
er

fo
rm

an
ce

Cost

d

f

h

a

p

g

b

e

c

Figure 10.9: Illustrating the cost-performance trade-off with pairs represented by

points in the plane. Notice that point p is strictly better than points c, d, and e, but

may be better or worse than points a, b, f , g, and h, depending on the price we are

willing to pay. Thus, if we were to add p to our set, we could remove the points c,

d, and e, but not the others.

Formally, we say a cost-performance pair (a,b) dominates pair (c,d) 6= (a,b)
if a ≤ c and b ≥ d, that is, if the first pair has no greater cost and at least as good

performance. A pair (a,b) is called a maximum pair if it is not dominated by any

other pair. We are interested in maintaining the set of maxima of a collection of

cost-performance pairs. That is, we would like to add new pairs to this collection

(for example, when a new car is introduced), and to query this collection for a given

dollar amount, d, to find the fastest car that costs no more than d dollars.

10.3. Sorted Maps 435

Maintaining a Maxima Set with a Sorted Map

We can store the set of maxima pairs in a sorted map so that the cost is the key field

and performance (speed) is the value. We can then implement operations add(c, p),
which adds a new cost-performance entry (c, p), and best(c), which returns the

entry having best performance of those with cost at most c. Code Fragment 10.13

provides an implementation of such a CostPerformanceDatabase class.

1 /∗∗ Maintains a database of maximal (cost,performance) pairs. ∗/
2 public class CostPerformanceDatabase {
3

4 SortedMap<Integer,Integer> map = new SortedTableMap<>();
5
6 /∗∗ Constructs an initially empty database. ∗/
7 public CostPerformanceDatabase() { }
8

9 /∗∗ Returns the (cost,performance) entry with largest cost not exceeding c.
10 ∗ (or null if no entry exist with cost c or less).
11 ∗/
12 public Entry<Integer,Integer> best(int cost) {
13 return map.floorEntry(cost);
14 }
15

16 /∗∗ Add a new entry with given cost c and performance p. ∗/
17 public void add(int c, int p) {
18 Entry<Integer,Integer> other = map.floorEntry(c); // other is at least as cheap
19 if (other != null && other.getValue() >= p) // if its performance is as good,
20 return; // (c,p) is dominated, so ignore
21 map.put(c, p); // else, add (c,p) to database
22 // and now remove any entries that are dominated by the new one
23 other = map.higherEntry(c); // other is more expensive than c
24 while (other != null && other.getValue() <= p) { // if not better performance
25 map.remove(other.getKey()); // remove the other entry
26 other = map.higherEntry(c);
27 }
28 }
29 }

Code Fragment 10.13: An implementation of a class maintaining a set of maximal

cost-performance entries using a sorted map.

Unfortunately, if we implement the sorted map using the SortedTableMap
class, the add behavior has O(n) worst-case running time. If, on the other hand,

we implement the map using a skip list, which we next describe, we can perform

best(c) queries in O(logn) expected time and add(c, p) updates in O((1+ r) log n)
expected time, where r is the number of points removed.

436 Chapter 10. Maps, Hash Tables, and Skip Lists

10.4 Skip Lists

In Section 10.3.1, we saw that a sorted table will allow O(logn)-time searches via

the binary search algorithm. Unfortunately, update operations on a sorted table have

O(n) worst-case running time because of the need to shift elements. In Chapter 7

we demonstrated that linked lists support very efficient update operations, as long

as the position within the list is identified. Unfortunately, we cannot perform fast

searches on a standard linked list; for example, the binary search algorithm requires

an efficient means for direct accessing an element of a sequence by index.

An interesting data structure for efficiently realizing the sorted map ADT is the

skip list. Skip lists provide a clever compromise to efficiently support search and

update operations; they are implemented as the java.util.ConcurrentSkipListMap
class. A skip list S for a map M consists of a series of lists {S0,S1, . . . ,Sh}. Each

list Si stores a subset of the entries of M sorted by increasing keys, plus entries with

two sentinel keys denoted −∞ and +∞, where −∞ is smaller than every possible

key that can be inserted in M and +∞ is larger than every possible key that can be

inserted in M. In addition, the lists in S satisfy the following:

• List S0 contains every entry of the map M (plus sentinels −∞ and +∞).

• For i = 1, . . . ,h−1, list Si contains (in addition to −∞ and +∞) a randomly

generated subset of the entries in list Si−1.

• List Sh contains only −∞ and +∞.

An example of a skip list is shown in Figure 10.10. It is customary to visualize a

skip list S with list S0 at the bottom and lists S1, . . . ,Sh above it. Also, we refer to h

as the height of skip list S.

Intuitively, the lists are set up so that Si+1 contains roughly alternate entries

of Si. However, the halving of the number of entries from one list to the next is not

enforced as an explicit property of skip lists; instead, randomization is used. As

25

25

-∞

-∞

-∞

-∞

-∞

-∞

17

17

17

1712

S5

S4

S3

S2

S1

S0

55

55

55

5512 17 20 25 31 38 39 44 50 +∞

+∞

+∞

+∞

+∞

+∞

44

31

31

25

Figure 10.10: Example of a skip list storing 10 entries. For simplicity, we show

only the entries’ keys, not their associated values.

10.4. Skip Lists 437

we shall see in the details of the insertion method, the entries in Si+1 are chosen

at random from the entries in Si by picking each entry from Si to also be in Si+1

with probability 1/2. That is, in essence, we “flip a coin” for each entry in Si and

place that entry in Si+1 if the coin comes up “heads.” Thus, we expect S1 to have

about n/2 entries, S2 to have about n/4 entries, and, in general, Si to have about

n/2i entries. As a consequence, we expect the height h of S to be about logn.

Functions that generate random-like numbers are built into most modern com-

puters, because they are used extensively in computer games, cryptography, and

computer simulations. Some functions, called pseudorandom number genera-

tors, generate such numbers, starting with an initial seed. (See discussion of the

java.util.Random class in Section 3.1.3.) Other methods use hardware devices to

extract “true” random numbers from nature. In any case, we will assume that our

computer has access to numbers that are sufficiently random for our analysis.

An advantage of using randomization in data structure and algorithm design is

that the structures and methods that result can be simple and efficient. The skip list

has the same logarithmic time bounds for searching as is achieved by the binary

search algorithm, yet it extends that performance to update methods when inserting

or deleting entries. Nevertheless, the bounds are expected for the skip list, while

binary search of a sorted table has a worst-case bound.

A skip list makes random choices in arranging its structure in such a way that

search and update times are O(logn) on average, where n is the number of entries

in the map. Interestingly, the notion of average time complexity used here does not

depend on the probability distribution of the keys in the input. Instead, it depends

on the use of a random-number generator in the implementation of the insertions

to help decide where to place the new entry. The running time is averaged over all

possible outcomes of the random numbers used when inserting entries.

As with the position abstraction used for lists and trees, we view a skip list

as a two-dimensional collection of positions arranged horizontally into levels and

vertically into towers. Each level is a list Si and each tower contains positions

storing the same entry across consecutive lists. The positions in a skip list can be

traversed using the following operations:

next(p): Returns the position following p on the same level.

prev(p): Returns the position preceding p on the same level.

above(p): Returns the position above p in the same tower.

below(p): Returns the position below p in the same tower.

We conventionally assume that these operations return null if the position requested

does not exist. Without going into the details, we note that we can easily implement

a skip list by means of a linked structure such that the individual traversal methods

each take O(1) time, given a skip-list position p. Such a linked structure is essen-

tially a collection of h doubly linked lists aligned at towers, which are also doubly

linked lists.

438 Chapter 10. Maps, Hash Tables, and Skip Lists

10.4.1 Search and Update Operations in a Skip List

The skip-list structure affords simple map search and update algorithms. In fact,

all of the skip-list search and update algorithms are based on an elegant SkipSearch
method that takes a key k and finds the position p of the entry in list S0 that has the

largest key less than or equal to k (which is possibly −∞).

Searching in a Skip List

Suppose we are given a search key k. We begin the SkipSearch method by setting

a position variable p to the topmost, left position in the skip list S, called the start

position of S. That is, the start position is the position of Sh storing the special

entry with key−∞. We then perform the following steps (see Figure 10.11), where

key(p) denotes the key of the entry at position p:

1. If S.below(p) is null, then the search terminates—we are at the bottom and

have located the entry in S with the largest key less than or equal to the search

key k. Otherwise, we drop down to the next lower level in the present tower

by setting p = S.below(p).
2. Starting at position p, we move p forward until it is at the rightmost position

on the present level such that key(p)≤ k. We call this the scan forward step.

Note that such a position always exists, since each level contains the keys

+∞ and −∞. It may be that p remains where it started after we perform

such a forward scan for this level.

3. Return to step 1.

+∞

+∞

+∞

+∞

+∞

S0

S5

55

S4

S3

S2

S1

-∞

-∞

-∞ 12

12-∞

17

17 25

252017 31 38 39

-∞

-∞ 17

17 25

25 31

31 44

44 50

55

55

55

+∞

Figure 10.11: Example of a search in a skip list. The positions examined when

searching for key 50 are highlighted.

We give a pseudocode description of the skip-list search algorithm, SkipSearch,

in Code Fragment 10.14. Given this method, we perform the map operation get(k)
by computing p = SkipSearch(k) and testing whether or not key(p) = k. If these

two keys are equal, we return the associated value; otherwise, we return null.

10.4. Skip Lists 439

Algorithm SkipSearch(k):

Input: A search key k

Output: Position p in the bottom list S0 with the largest key having key(p)≤ k

p = s {begin at start position}
while below(p) 6= null do

p = below(p) {drop down}
while k ≥ key(next(p)) do

p = next(p) {scan forward}
return p

Code Fragment 10.14: Algorithm to search a skip list S for key k. Variable s holds

the start position of S.

As it turns out, the expected running time of algorithm SkipSearch on a skip list

with n entries is O(logn). We postpone the justification of this fact, however, until

after we discuss the implementation of the update methods for skip lists. Navigation

starting at the position identified by SkipSearch(k) can be easily used to provide the

additional forms of searches in the sorted map ADT (e.g., ceilingEntry, subMap).

Insertion in a Skip List

The execution of the map operation put(k, v) begins with a call to SkipSearch(k).
This gives us the position p of the bottom-level entry with the largest key less than

or equal to k (note that p may hold the special entry with key −∞). If key(p) = k,

the associated value is overwritten with v. Otherwise, we need to create a new

tower for entry (k,v). We insert (k,v) immediately after position p within S0. After

inserting the new entry at the bottom level, we use randomization to decide the

height of the tower for the new entry. We “flip” a coin, and if the flip comes up tails,

then we stop here. Else (the flip comes up heads), we backtrack to the previous

(next higher) level and insert (k,v) in this level at the appropriate position. We

again flip a coin; if it comes up heads, we go to the next higher level and repeat.

Thus, we continue to insert the new entry (k,v) in lists until we finally get a flip that

comes up tails. We link together all the references to the new entry (k,v) created in

this process to create its tower. A fair coin flip can be simulated with Java’s built-

in pseudorandom number generator java.util.Random by calling nextBoolean(),
which returns true or false, each with probability 1/2.

We give the insertion algorithm for a skip list S in Code Fragment 10.15 and we

illustrate it in Figure 10.12. The algorithm uses an insertAfterAbove(p, q, (k,v))
method that inserts a position storing the entry (k,v) after position p (on the same

level as p) and above position q, returning the new position r (and setting internal

references so that next, prev, above, and below methods will work correctly for p,

q, and r). The expected running time of the insertion algorithm on a skip list with

n entries is O(logn), as we show in Section 10.4.2.

440 Chapter 10. Maps, Hash Tables, and Skip Lists

Algorithm SkipInsert(k, v):

Input: Key k and value v

Output: Topmost position of the entry inserted in the skip list

p = SkipSearch(k) {position in bottom list with largest key less than k}
q = null {current node of new entry’s tower}
i = −1 {current height of new entry’s tower}
repeat

i = i +1 {increase height of new entry’s tower}
if i ≥ h then

h = h +1 {add a new level to the skip list}
t = next(s)

s = insertAfterAbove(null, s, (−∞,null)) {grow leftmost tower}
insertAfterAbove(s, t, (+∞,null)) {grow rightmost tower}

q = insertAfterAbove(p, q, (k,v)) {add node to new entry’s tower}
while above(p) == null do

p = prev(p) {scan backward}
p = above(p) {jump up to higher level}

until coinFlip() == tails

n = n +1

return q {top node of new entry’s tower}
Code Fragment 10.15: Insertion in a skip list of entry (k,v) We assume the skip list

does not have an entry with key k. Method coinFlip() returns “heads” or “tails”,

each with probability 1/2. Instance variables n, h, and s respectively hold the

number of entries, the height, and the start node of the skip list.

38

S1

S2

S3

S4

S5

+∞

+∞

+∞

+∞

+∞

+∞

-∞

-∞

-∞ 12

12-∞

17

17 25

252017 31

-∞

-∞ 17

17 25

25 31

31 44

44

42

42

42

55

55

5539 42 50

55

S0

Figure 10.12: Insertion of an entry with key 42 into the skip list of Figure 10.10

using method SkipInsert (Code Fragment 10.15). We assume that the random “coin

flips” for the new entry came up heads three times in a row, followed by tails. The

positions visited are highlighted in blue. The positions of the tower of the new

entry (variable q) are drawn with thick lines, and the positions preceding them

(variable p) are flagged.

10.4. Skip Lists 441

Removal in a Skip List

Like the search and insertion algorithms, the removal algorithm for a skip list is

quite simple. In fact, it is even easier than the insertion algorithm. To perform the

map operation remove(k), we will begin by executing method SkipSearch(k). If

the returned position p stores an entry with key different from k, we return null.
Otherwise, we remove p and all the positions above p, which are easily accessed

by using above operations to climb up the tower of this entry in S starting at posi-

tion p. While removing levels of the tower, we reestablish links between the hori-

zontal neighbors of each removed position. The removal algorithm is illustrated in

Figure 10.13 and a detailed description of it is left as an exercise (R-10.24). As we

show in the next subsection, the remove operation in a skip list with n entries has

O(logn) expected running time.

Before we give this analysis, however, there are some minor improvements to

the skip-list data structure we would like to discuss. First, we do not actually need

to store references to values at the levels of the skip list above the bottom level,

because all that is needed at these levels are references to keys. In fact, we can

more efficiently represent a tower as a single object, storing the key-value pair,

and maintaining j previous references and j next references if the tower reaches

level Sj. Second, for the horizontal axes, it is possible to keep the list singly linked,

storing only the next references. We can perform insertions and removals in strictly

a top-down, scan-forward fashion. We explore the details of this optimization in

Exercise C-10.55. Neither of these optimizations improve the asymptotic perfor-

mance of skip lists by more than a constant factor, but these improvements can,

nevertheless, be meaningful in practice. In fact, experimental evidence suggests

that optimized skip lists are faster in practice than AVL trees and other balanced

search trees, which are discussed in Chapter 11.

31

S5

S4

S3

S2

S1

-∞

-∞

-∞ 12

12-∞

17

17 25

25 31

31

42

5550

55

+∞

+∞

+∞

+∞

+∞

-∞

-∞

17

38 39 42

42

42

44

44

55

55

+∞

17

17

20 25

25

S0

Figure 10.13: Removal of the entry with key 25 from the skip list of Figure 10.12.

The positions visited after the search for the position of S0 holding the entry are

highlighted in blue. The positions removed are drawn with dashed lines.

442 Chapter 10. Maps, Hash Tables, and Skip Lists

Maintaining the Topmost Level

A skip list S must maintain a reference to the start position (the topmost, leftmost

position in S) as an instance variable, and must have a policy for any insertion that

wishes to continue growing the tower for a new entry past the top level of S. There

are two possible courses of action we can take, both of which have their merits.

One possibility is to restrict the top level, h, to be kept at some fixed value that

is a function of n, the number of entries currently in the map (from the analysis we

will see that h=max{10,2⌈log n⌉} is a reasonable choice, and picking h= 3⌈log n⌉
is even safer). Implementing this choice means that we must modify the insertion

algorithm to stop inserting a new position once we reach the topmost level (unless

⌈log n⌉< ⌈log(n+1)⌉, in which case we can now go at least one more level, since

the bound on the height is increasing).

The other possibility is to let an insertion continue growing a tower as long

as heads keep getting returned from the random number generator. This is the

approach taken by algorithm SkipInsert of Code Fragment 10.15. As we show in

the analysis of skip lists, the probability that an insertion will go to a level that is

more than O(logn) is very low, so this design choice should also work.

Either choice will still result in the expected O(logn) time to perform search,

insertion, and removal, as we will show in the next section.

10.4.2 Probabilistic Analysis of Skip Lists ⋆

As we have shown above, skip lists provide a simple implementation of a sorted

map. In terms of worst-case performance, however, skip lists are not a superior

data structure. In fact, if we do not officially prevent an insertion from continu-

ing significantly past the current highest level, then the insertion algorithm can go

into what is almost an infinite loop (it is not actually an infinite loop, however,

since the probability of having a fair coin repeatedly come up heads forever is 0).

Moreover, we cannot infinitely add positions to a list without eventually running

out of memory. In any case, if we terminate position insertion at the highest level

h, then the worst-case running time for performing the get, put, and remove map

operations in a skip list S with n entries and height h is O(n+ h). This worst-case

performance occurs when the tower of every entry reaches level h− 1, where h is

the height of S. However, this event has very low probability. Judging from this

worst case, we might conclude that the skip-list structure is strictly inferior to the

other map implementations discussed earlier in this chapter. But this would not be

a fair analysis, for this worst-case behavior is a gross overestimate.

⋆We use a star (⋆) to indicate sections containing material more advanced than the material in the

rest of the chapter; this material can be considered optional in a first reading.

10.4. Skip Lists 443

Bounding the Height of a Skip List

Because the insertion step involves randomization, a more accurate analysis of skip

lists involves a bit of probability. At first, this might seem like a major undertaking,

for a complete and thorough probabilistic analysis could require deep mathemat-

ics (and, indeed, there are several such deep analyses that have appeared in data

structures research literature). Fortunately, such an analysis is not necessary to un-

derstand the expected asymptotic behavior of skip lists. The informal and intuitive

probabilistic analysis we give below uses only basic concepts of probability theory.

Let us begin by determining the expected value of the height h of a skip list S

with n entries (assuming that we do not terminate insertions early). The probability

that a given entry has a tower of height i≥ 1 is equal to the probability of getting i

consecutive heads when flipping a coin, that is, this probability is 1/2i. Hence, the

probability Pi that level i has at least one position is at most

Pi ≤
n

2i
,

because the probability that any one of n different events occurs is at most the sum

of the probabilities that each occurs.

The probability that the height h of S is larger than i is equal to the probability

that level i has at least one position, that is, it is no more than Pi. This means that h

is larger than, say, 3log n with probability at most

P3 logn ≤ n

23log n

=
n

n3
=

1

n2
.

For example, if n = 1000, this probability is a one-in-a-million long shot. More

generally, given a constant c > 1, h is larger than c log n with probability at most

1/nc−1. That is, the probability that h is smaller than c log n is at least 1−1/nc−1.

Thus, with high probability, the height h of S is O(logn).

Analyzing Search Time in a Skip List

Next, consider the running time of a search in skip list S, and recall that such a

search involves two nested while loops. The inner loop performs a scan forward on

a level of S as long as the next key is no greater than the search key k, and the outer

loop drops down to the next level and repeats the scan forward iteration. Since the

height h of S is O(logn) with high probability, the number of drop-down steps is

O(logn) with high probability.

444 Chapter 10. Maps, Hash Tables, and Skip Lists

So we have yet to bound the number of scan-forward steps we make. Let ni be

the number of keys examined while scanning forward at level i. Observe that, after

the key at the starting position, each additional key examined in a scan-forward at

level i cannot also belong to level i+ 1. If any of these keys were on the previous

level, we would have encountered them in the previous scan-forward step. Thus,

the probability that any key is counted in ni is 1/2. Therefore, the expected value of

ni is exactly equal to the expected number of times we must flip a fair coin before

it comes up heads. This expected value is 2. Hence, the expected amount of time

spent scanning forward at any level i is O(1). Since S has O(logn) levels with high

probability, a search in S takes expected time O(log n). By a similar analysis, we

can show that the expected running time of an insertion or a removal is O(log n).

Space Usage in a Skip List

Finally, let us turn to the space requirement of a skip list S with n entries. As we

observed above, the expected number of positions at level i is n/2i, which means

that the expected total number of positions in S is

h

∑
i=0

n

2i
= n

h

∑
i=0

1

2i
.

Using Proposition 4.5 on geometric summations, we have

h

∑
i=0

1

2i
=

(
1
2

)h+1−1
1
2
−1

= 2 ·
(

1− 1

2h+1

)
< 2 for all h≥ 0.

Hence, the expected space requirement of S is O(n).
Table 10.4 summarizes the performance of a sorted map realized by a skip list.

Method Running Time

size, isEmpty O(1)

get O(logn) expected

put O(logn) expected

remove O(logn) expected

firstEntry, lastEntry O(1)

ceilingEntry, floorEntry
O(logn) expected

lowerEntry, higherEntry

subMap O(s+ logn) expected, with s entries reported

entrySet, keySet, values O(n)

Table 10.4: Performance of a sorted map implemented with a skip list. We use n to

denote the number of entries in the dictionary at the time the operation is performed.

The expected space requirement is O(n).

10.5. Sets, Multisets, and Multimaps 445

10.5 Sets, Multisets, and Multimaps

We conclude this chapter by examining several additional abstractions that are

closely related to the map ADT, and that can be implemented using data structures

similar to those for a map.

• A set is an unordered collection of elements, without duplicates, that typi-

cally supports efficient membership tests. In essence, elements of a set are

like keys of a map, but without any auxiliary values.

• A multiset (also known as a bag) is a set-like container that allows duplicates.

• A multimap is similar to a traditional map, in that it associates values with

keys; however, in a multimap the same key can be mapped to multiple values.

For example, the index of this book (page 714) maps a given term to one or

more locations at which the term occurs elsewhere in the book.

10.5.1 The Set ADT

The Java Collections Framework defines the java.util.Set interface, which includes

the following fundamental methods:

add(e): Adds the element e to S (if not already present).

remove(e): Removes the element e from S (if it is present).

contains(e): Returns whether e is an element of S.

iterator(): Returns an iterator of the elements of S.

There is also support for the traditional mathematical set operations of union,

intersection, and subtraction of two sets S and T :

S∪T = {e : e is in S or e is in T},
S∩T = {e : e is in S and e is in T},
S−T = {e : e is in S and e is not in T}.

In the java.util.Set interface, these operations are provided through the following

methods, if executed on a set S:

addAll(T): Updates S to also include all elements of set T , effec-

tively replacing S by S∪T .

retainAll(T): Updates S so that it only keeps those elements that are

also elements of set T , effectively replacing S by S∩T .

removeAll(T): Updates S by removing any of its elements that also occur

in set T , effectively replacing S by S−T .

446 Chapter 10. Maps, Hash Tables, and Skip Lists

The template method pattern can be applied to implement each of the methods

addAll, retainAll, and removeAll using only calls to the more fundamental methods

add, remove, contains, and iterator. In fact, the java.util.AbstractSet class pro-

vides such implementations. To demonstrate the technique, we could implement

the addAll method in the context of a set class as follows:

public void addAll(Set<E> other) {
for (E element : other) // rely on iterator() method of other
add(element); // duplicates will be ignored by add

}
The removeAll and retailAll methods can be implemented with similar techniques,

although a bit more care is needed for retainAll, to avoid removing elements while

iterating over the same set (see Exercise C-10.59). The efficiency of these methods

for a concrete set implementation will depend on the underlying efficiency of the

fundamental methods upon which they rely.

Sorted Sets

For the standard set abstraction, there is no explicit notion of keys being ordered;

all that is assumed is that the equals method can detect equivalent elements.

If, however, elements come from a Comparable class (or a suitable Comparator
object is provided), we can extend the notion of a set to define the sorted set ADT,

including the following additional methods:

first(): Returns the smallest element in S.

last(): Returns the largest element in S.

ceiling(e): Returns the smallest element greater than or equal to e.

floor(e): Returns the largest element less than or equal to e.

lower(e): Returns the largest element strictly less than e.

higher(e): Returns the smallest element strictly greater than e.

subSet(e1, e2): Returns an iteration of all elements greater than or equal

to e1, but strictly less than e2.

pollFirst(): Returns and removes the smallest element in S.

pollLast(): Returns and removes the largest element in S.

In the Java Collection Framework, the above methods are included in a combi-

nation of the java.util.SortedSet and java.util.NavigableSet interfaces.

10.5. Sets, Multisets, and Multimaps 447

Implementing Sets

Although a set is a completely different abstraction than a map, the techniques used

to implement the two can be quite similar. In effect, a set is simply a map in which

(unique) keys do not have associated values.

Therefore, any data structure used to implement a map can be modified to im-

plement the set ADT with similar performance guarantees. As a trivial adaption

of a map, each set element can be stored as a key, and the null reference can be

stored as an (irrelevant) value. Of course, such an implementation is unnecessarily

wasteful; a more efficient set implementation should abandon the Entry composite

and store set elements directly in a data structure.

The Java Collections Framework includes the following set implementations,

mirroring similar data structures used for maps:

• java.util.HashSet provides an implementation of the (unordered) set ADT

with a hash table.

• java.util.concurrent.ConcurrentSkipListSet provides an implementation of

the sorted set ADT using a skip list.

• java.util.TreeSet provides an implementation of the sorted set ADT using a

balanced search tree. (Search trees are the focus of Chapter 11.)

10.5.2 The Multiset ADT

Before discussing models for a multiset abstraction, we must carefully consider the

notion of “duplicate” elements. Throughout the Java Collections Framework, ob-

jects are considered equivalent to each other based on the standard equals method

(see Section 3.5). For example, keys of a map must be unique, but the notion of

uniqueness allows distinct yet equivalent objects to be matched. This is impor-

tant for many typical uses of maps. For example, when strings are used as keys,

the instance of the string "October" that is used when inserting an entry may not

be the same instance of "October" that is used when later retrieving the associ-

ated value. The call birthstones.get("October") will succeed in such a scenario

because strings are considered equal to each other.

In the context of multisets, if we represent a collection that appears through

the notion of equivalence as {a,a,a,a,b,c,c}, we must decide if we want a data

structure to explicitly maintain each instance of a (because each might be distinct

though equivalent), or just that there exist four occurrences. In either case, a mul-

tiset can be implemented by directly adapting a map. We can use one element

from a group of equivalent occurrences as the key in a map, with the associated

value either a secondary container containing all of the equivalent instances, or a

count of the number of occurrences. Note that our word-frequency application in

Section 10.1.2 uses just such a map, associating strings with counts.

448 Chapter 10. Maps, Hash Tables, and Skip Lists

The Java Collections Framework does not include any form of a multiset. How-

ever, implementations exist in several widely used, open source Java collections

libraries. The Apache Commons defines Bag and SortedBag interfaces that cor-

respond respectively to unsorted and sorted multisets. The Google Core Libraries

for Java (named Guava) includes Multiset and SortedMultiset interfaces for these

abstractions. Both of those libraries take the approach of modeling a multiset as

a collection of elements having multiplicities, and both offer several concrete im-

plementations using standard data structures. In formalizing the abstract data type,

the Multiset interface of the Guava library includes the following behaviors (and

more):

add(e): Adds a single occurrences of e to the multiset.

contains(e): Returns true if the multiset contains an element equal to e.

count(e): Returns the number of occurrences of e in the multiset.

remove(e): Removes a single occurrence of e from the multiset.

remove(e, n): Removes n occurrences of e from the multiset.

size(): Returns the number of elements of the multiset (including

duplicates).

iterator(): Returns an iteration of all elements of the multiset

(repeating those with multiplicity greater than one).

The multiset ADT also includes the notion of an immutable Entry that repre-

sents an element and its count, and the SortedMultiset interface includes additional

methods such as firstEntry and lastEntry.

10.5.3 The Multimap ADT

Like a map, a multimap stores entries that are key-value pairs (k,v), where k is

the key and v is the value. Whereas a map insists that entries have unique keys,

a multimap allows multiple entries to have the same key, much like an English

dictionary, which allows multiple definitions for the same word. That is, we will

allow a multimap to contain entries (k,v) and (k,v′) having the same key.

There are two standard approaches for representing a multimap as a variation of

a traditional map. One is to redesign the underlying data structure to allow separate

entries to be stored for pairs such as (k,v) and (k,v′). The other is to map key k to

a secondary container of all values associated with that key (e.g., {v,v′}).
Much as it is missing a formal abstraction for a multiset, the Java Collections

Framework does not include any multiset interface nor implementations. However,

as we will soon demonstrate, it is easy to represent a multiset by adapting other

collection classes that are included in the java.util package.

10.5. Sets, Multisets, and Multimaps 449

To formalize the multimap abstract data type, we consider a simplified version

of the Multimap interface included in Google’s Guava library. Among its methods

are the following:

get(k): Returns a collection of all values associated with key k in the

multimap.

put(k, v): Adds a new entry to the multimap associating key k with

value v, without overwriting any existing mappings for key k.

remove(k, v): Removes an entry mapping key k to value v from the multimap

(if one exists).

removeAll(k): Removes all entries having key equal to k from the multimap.

size(): Returns the number of entries of the multiset

(including multiple associations).

entries(): Returns a collection of all entries in the multimap.

keys(): Returns a collection of keys for all entries in the multimap

(including duplicates for keys with multiple bindings).

keySet(): Returns a nonduplicative collection of keys in the multimap.

values(): Returns a collection of values for all entries in the multimap.

In Code Fragments 10.16 and 10.17, we provide an implementation of a class,

HashMultimap, that uses a java.util.HashMap to map each key to a secondary

ArrayList of all values that are associated with the key. For brevity, we omit the

formality of defining a Multimap interface, and we provide the entries() method

as the only form of iteration.

1 public class HashMultimap<K,V> {
2 Map<K,List<V>> map = new HashMap<>(); // the primary map
3 int total = 0; // total number of entries in the multimap
4 /∗∗ Constructs an empty multimap. ∗/
5 public HashMultimap() { }
6 /∗∗ Returns the total number of entries in the multimap. ∗/
7 public int size() { return total; }
8 /∗∗ Returns whether the multimap is empty. ∗/
9 public boolean isEmpty() { return (total == 0); }

10 /∗∗ Returns a (possibly empty) iteration of all values associated with the key. ∗/
11 Iterable<V> get(K key) {
12 List<V> secondary = map.get(key);
13 if (secondary != null)
14 return secondary;
15 return new ArrayList<>(); // return an empty list of values
16 }

Code Fragment 10.16: An implementation of a multimap as an adaptation of classes

from the java.util package. (Continues in Code Fragment 10.17.)

450 Chapter 10. Maps, Hash Tables, and Skip Lists

17 /∗∗ Adds a new entry associating key with value. ∗/
18 void put(K key, V value) {
19 List<V> secondary = map.get(key);
20 if (secondary == null) {
21 secondary = new ArrayList<>();
22 map.put(key, secondary); // begin using new list as secondary structure
23 }
24 secondary.add(value);
25 total++;
26 }
27 /∗∗ Removes the (key,value) entry, if it exists. ∗/
28 boolean remove(K key, V value) {
29 boolean wasRemoved = false;
30 List<V> secondary = map.get(key);
31 if (secondary != null) {
32 wasRemoved = secondary.remove(value);
33 if (wasRemoved) {
34 total−−;
35 if (secondary.isEmpty())
36 map.remove(key); // remove secondary structure from primary map
37 }
38 }
39 return wasRemoved;
40 }
41 /∗∗ Removes all entries with the given key. ∗/
42 Iterable<V> removeAll(K key) {
43 List<V> secondary = map.get(key);
44 if (secondary != null) {
45 total −= secondary.size();
46 map.remove(key);
47 } else
48 secondary = new ArrayList<>(); // return empty list of removed values
49 return secondary;
50 }
51 /∗∗ Returns an iteration of all entries in the multimap. ∗/
52 Iterable<Map.Entry<K,V>> entries() {
53 List<Map.Entry<K,V>> result = new ArrayList<>();
54 for (Map.Entry<K,List<V>> secondary : map.entrySet()) {
55 K key = secondary.getKey();
56 for (V value : secondary.getValue())
57 result.add(new AbstractMap.SimpleEntry<K,V>(key,value));
58 }
59 return result;
60 }
61 }

Code Fragment 10.17: An implementation of a multimap as an adaptation of classes

from the java.util package. (Continued from Code Fragment 10.16.)

10.6. Exercises 451

10.6 Exercises

Reinforcement

R-10.1 What is the worst-case running time for inserting n key-value pairs into an ini-
tially empty map M that is implemented with the UnsortedTableMap class?

R-10.2 Reimplement the UnsortedTableMap class using the PositionalList class from

Section 7.3 rather than an ArrayList.

R-10.3 The use of null values in a map is problematic, as there is then no way to dif-
ferentiate whether a null value returned by the call get(k) represents the legit-

imate value of an entry (k,null), or designates that key k was not found. The

java.util.Map interface includes a boolean method, containsKey(k), that resolves
any such ambiguity. Implement such a method for the UnsortedTableMap class.

R-10.4 Which of the hash table collision-handling schemes could tolerate a load factor

above 1 and which could not?

R-10.5 What would be a good hash code for a vehicle identification number that is a

string of numbers and letters of the form “9X9XX99X9XX999999,” where a “9”

represents a digit and an “X” represents a letter?

R-10.6 Draw the 11-entry hash table that results from using the hash function, h(i) =
(3i+ 5) mod 11, to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5,

assuming collisions are handled by chaining.

R-10.7 What is the result of the previous exercise, assuming collisions are handled by

linear probing?

R-10.8 Show the result of Exercise R-10.6, assuming collisions are handled by quadratic
probing, up to the point where the method fails.

R-10.9 What is the result of Exercise R-10.6 when collisions are handled by double

hashing using the secondary hash function h′(k) = 7− (k mod 7)?

R-10.10 What is the worst-case time for putting n entries in an initially empty hash table,
with collisions resolved by chaining? What is the best case?

R-10.11 Show the result of rehashing the hash table shown in Figure 10.6 into a table of

size 19 using the new hash function h(k) = 3k mod 17.

R-10.12 Modify the Pair class from Code Fragment 2.17 on page 92 so that it provides a
natural definition for both the equals() and hashCode() methods.

R-10.13 Consider lines 31–33 of Code Fragment 10.8 in our implementation of the class

ChainHashMap. We use the difference in the size of a secondary bucket before
and after a call to bucket.remove(k) to update the variable n. If we replace those

three lines with the following, does the class behave properly? Explain.

V answer = bucket.remove(k);
if (answer != null) // value of removed entry
n−−; // size has decreased

452 Chapter 10. Maps, Hash Tables, and Skip Lists

R-10.14 Our AbstractHashMap class maintains a load factor λ ≤ 0.5. Reimplement that
class to allow the user to specify the maximum load, and adjust the concrete

subclasses accordingly.

R-10.15 Give a pseudocode description of an insertion into a hash table that uses quadratic

probing to resolve collisions, assuming we also use the trick of replacing deleted
entries with a special “available” object.

R-10.16 Modify our ProbeHashMap to use quadratic probing.

R-10.17 Explain why a hash table is not suited to implement a sorted map.

R-10.18 What is the worst-case asymptotic running time for performing n deletions from

a SortedTableMap instance that initially contains 2n entries?

R-10.19 Implement the containKey(k) method, as described in Exercise R-10.3, for the
SortedTableClass.

R-10.20 Describe how a sorted list implemented as a doubly linked list could be used to

implement the sorted map ADT.

R-10.21 Consider the following variant of the findIndex method of the SortedTableMap
class, originally given in Code Fragment 10.11:

1 private int findIndex(K key, int low, int high) {
2 if (high < low) return high + 1;
3 int mid = (low + high) / 2;
4 if (compare(key, table.get(mid)) < 0)
5 return findIndex(key, low, mid − 1);
6 else
7 return findIndex(key, mid + 1, high);
8 }

Does this always produce the same result as the original version? Justify your

answer.

R-10.22 What is the expected running time of the methods for maintaining a maxima
set if we insert n pairs such that each pair has lower cost and performance than

one before it? What is contained in the sorted map at the end of this series of

operations? What if each pair had a lower cost and higher performance than the
one before it?

R-10.23 Draw the result after performing the following series of operations on the skip list

shown in Figure 10.13: remove(38), put(48, x), put(24, y), remove(55). Use an

actual coin flip to generate random bits as needed (and report your sequence of
flips).

R-10.24 Give a pseudocode description of the remove map operation for a skip list.

R-10.25 Give a description, in pseudocode, for implementing the removeAll method for

the set ADT, using only the other fundamental methods of the set.

R-10.26 Give a description, in pseudocode, for implementing the retainAll method for the
set ADT, using only the other fundamental methods of the set.

10.6. Exercises 453

R-10.27 If we let n denote the size of set S, and m denote the size of set T , what would
be the running time of the operation S.addAll(T), as implemented on page 446,

if both sets were implemented as skip lists?

R-10.28 If we let n denote the size of set S, and m denote the size of set T , what would

be the running time of the operation S.addAll(T), as implemented on page 446,

if both sets were implemented using hashing?

R-10.29 If we let n denote the size of set S, and m denote the size of set T , what would

be the running time of the operation S.removeAll(T) when both sets are imple-
mented using hashing?

R-10.30 If we let n denote the size of set S, and m denote the size of set T , what would be
the running time of the operation S.retainAll(T) when both sets are implemented

using hashing?

R-10.31 What abstraction would you use to manage a database of friends’ birthdays in or-

der to support efficient queries such as “find all friends whose birthday is today”

and “find the friend who will be the next to celebrate a birthday”?

Creativity

C-10.32 For an ideal compression function, the capacity of the bucket array for a hash

table should be a prime number. Therefore, we consider the problem of locating
a prime number in a range [M,2M]. Implement a method for finding such a prime

by using the sieve algorithm. In this algorithm, we allocate a 2M cell boolean

array A, such that cell i is associated with the integer i. We then initialize the array
cells to all be “true” and we “mark off” all the cells that are multiples of 2, 3, 5,

7, and so on. This process can stop after it reaches a number larger than
√

2M.

(Hint: Consider a bootstrapping method for finding the primes up to
√

2M.)

C-10.33 Consider the goal of adding entry (k,v) to a map only if there does not yet exist

some other entry with key k. For a map M (without null values), this might be
accomplished as follows.

if (M.get(k) == null)
M.put(k, v);

While this accomplishes the goal, its efficiency is less than ideal, as time will

be spent on the failed search during the get call, and again during the put call

(which always begins by trying to locate an existing entry with the given key).
To avoid this inefficiency, some map implementations support a custom method

putIfAbsent(k, v) that accomplishes this goal. Given such an implementation of

putIfAbsent for the UnsortedTableMap class.

C-10.34 Repeat Exercise C-10.33 for the ChainHashMap class.

C-10.35 Repeat Exercise C-10.33 for the ProbeHashMap class.

C-10.36 Describe how to redesign the AbstractHashMap framework to include support
for a method, containsKey, as described in Exercise R-10.3.

454 Chapter 10. Maps, Hash Tables, and Skip Lists

C-10.37 Modify the ChainHashMap class in accordance with your design for the previous
exercise.

C-10.38 Modify the ProbeHashMap class in accordance with Exercise C-10.36.

C-10.39 Redesign the AbstractHashMap class so that it halves the capacity of the table if

the load factor falls below 0.25. Your solution must not involve any changes to
the concrete ProbeHashMap and ChainHashMap classes.

C-10.40 The java.util.HashMap class uses separate chaining, but without any explicit sec-

ondary structures. The table is an array of entries, and each entry has an addi-

tional next field that can reference another entry in that bucket. In this way,
the entry instances can be threaded as a singly linked list. Reimplement our

ChainHashMap class using such an approach.

C-10.41 Describe how to perform a removal from a hash table that uses linear probing
to resolve collisions where we do not use a special marker to represent deleted

elements. That is, we must rearrange the contents so that it appears that the

removed entry was never inserted in the first place.

C-10.42 The quadratic probing strategy has a clustering problem related to the way it
looks for open slots. Namely, when a collision occurs at bucket h(k), it checks

buckets A[(h(k)+ i2) mod N], for i = 1,2, . . . ,N−1.

a. Show that i2 mod N will assume at most (N + 1)/2 distinct values, for N

prime, as i ranges from 1 to N−1. As a part of this justification, note that

i2 mod N = (N− i)2 mod N for all i.

b. A better strategy is to choose a prime N such that N mod 4 = 3 and then

to check the buckets A[(h(k)± i2) mod N] as i ranges from 1 to (N−1)/2,

alternating between plus and minus. Show that this alternate version is
guaranteed to check every bucket in A.

C-10.43 Redesign our ProbeHashMap class so that the sequence of secondary probes

for collision resolution can be more easily customized. Demonstrate your new
design by providing separate concrete subclasses for linear probing and quadratic

probing.

C-10.44 The java.util.LinkedHashMap class is a subclass of the standard HashMap class
that retains the expected O(1) performance for the primary map operations while

guaranteeing that iterations report entries of the map according to first-in, first-

out (FIFO) principle. That is, the key that has been in the map the longest is
reported first. (The order is unaffected when the value for an existing key is

changed.) Describe an algorithmic approach for achieving such performance.

C-10.45 Develop a location-aware version of the UnsortedTableMap class so that an op-
eration remove(e) for existing Entry e can be implemented in O(1) time.

C-10.46 Repeat the previous exercise for the ProbeHashMap class.

C-10.47 Repeat Exercise C-10.45 for the ChainHashMap class.

10.6. Exercises 455

C-10.48 Although keys in a map are distinct, the binary search algorithm can be applied
in a more general setting in which an array stores possibly duplicative elements

in nondecreasing order. Consider the goal of identifying the index of the leftmost

element with key greater than or equal to given k. Does the findIndex method
as given in Code Fragment 10.11 guarantee such a result? Does the findIndex
method as given in Exercise R-10.21 guarantee such a result? Justify your an-
swers.

C-10.49 Suppose we are given two sorted search tables S and T , each with n entries (with
S and T being implemented with arrays). Describe an O(log2 n)-time algorithm

for finding the k th smallest key in the union of the keys from S and T (assuming

no duplicates).

C-10.50 Give an O(logn)-time solution for the previous problem.

C-10.51 Give an alternative implementation of the SortedTableMap’s entrySet method

that creates a lazy iterator rather than a snapshot. (See Section 7.4.2 for discus-

sion of iterators.)

C-10.52 Repeat the previous exercise for the ChainHashMap class.

C-10.53 Repeat Exercise C-10.51 for the ProbeHashMap class.

C-10.54 Given a database D of n cost-performance pairs (c, p), describe an algorithm for
finding the maxima pairs of C in O(n logn) time.

C-10.55 Show that the methods above(p) and before(p) are not actually needed to effi-
ciently implement a map using a skip list. That is, we can implement insertions

and deletions in a skip list using a strictly top-down, scan-forward approach,
without ever using the above or before methods. (Hint: In the insertion algo-

rithm, first repeatedly flip the coin to determine the level where you should start

inserting the new entry.)

C-10.56 Describe how to modify the skip-list data structure to support the method me-
dian(), which returns the position of the element in the “bottom” list S0 at index
⌊n/2⌋, Show that your implementation of this method runs in O(logn) expected

time.

C-10.57 Describe how to modify a skip-list representation so that index-based operations,

such as retrieving the entry at index j, can be performed in O(logn) expected

time.

C-10.58 Suppose that each row of an n× n array A consists of 1’s and 0’s such that, in
any row of A, all the 1’s come before any 0’s in that row. Assuming A is already

in memory, describe a method running in O(n logn) time (not O(n2) time) for

counting the number of 1’s in A.

C-10.59 Give a concrete implementation of the retainAll method for the set ADT, using

only the other fundamental methods of the set. You are to assume that the under-
lying set implementation uses fail-fast iterators (see Section 7.4.2).

456 Chapter 10. Maps, Hash Tables, and Skip Lists

C-10.60 Consider sets whose elements are integers in the range [0,N − 1]. A popular
scheme for representing a set A of this type is by means of a boolean array, B,

where we say that x is in A if and only if B[x] = true. Since each cell of B

can be represented with a single bit, B is sometimes referred to as a bit vector.
Describe and analyze efficient algorithms for performing the methods of the set

ADT assuming this representation.

C-10.61 An inverted file is a critical data structure for implementing applications such an
index of a book or a search engine. Given a document D, which can be viewed as

an unordered, numbered list of words, an inverted file is an ordered list of words,
L, such that, for each word w in L, we store the indices of the places in D where

w appears. Design an efficient algorithm for constructing L from D.

C-10.62 The operation get(k) for our multimap ADT is responsible for returning a col-

lection of all values currently associated with key k. Design a variation of binary
search for performing this operation on a sorted search table that includes du-

plicates, and show that it runs in time O(s + logn), where n is the number of
elements in the dictionary and s is the number of entries with given key k.

C-10.63 Describe an efficient multimap structure for storing n entries that have an asso-

ciated set of r < n keys that come from a total order. That is, the set of keys
is smaller than the number of entries. Your structure should perform operation

getAll in O(logr+ s) expected time, where s is the number of entries returned,

operation entrySet() in O(n) time, and the remaining operations of the multimap
ADT in O(logr) expected time.

C-10.64 Describe an efficient multimap structure for storing n entries whose r < n keys

have distinct hash codes. Your structure should perform operation getAll in
O(1 + s) expected time, where s is the number of entries returned, operation

entrySet() in O(n) time, and the remaining operations of the multimap ADT in

O(1) expected time.

Projects

P-10.65 An interesting strategy for hashing with open addressing is known as cuckoo
hashing. Two independent hash functions are computed for each key, and an

element is always stored in one of the two cells indicated by those hash functions.

When a new element is inserted, if either of those two cells is available, it is
placed there. Otherwise, it is placed into one of its choice of locations, evicting

another entry. The evicted entry is then placed in its alternate choice of cells,

potentially evicting yet another entry. This continues until an open cell is found,
or an infinite loop is detected (in which case, two new hash functions are chosen

and all entries are deleted and reinserted). It can be shown that as long as the
load factor of the table remains below 0.5, then an insertion succeeds in expected

constant time. Notice that a search can be performed in worst-case constant time,

because it can only be stored in one of two possible locations. Give a complete
map implementation based on this strategy.

10.6. Exercises 457

P-10.66 An interesting strategy for hashing with separate chaining is known as power-
of-two-choices hashing. Two independent hash functions are computed for each

key, and a newly inserted element is placed into the choice of the two indicated

buckets that currently has the fewest entries. Give a complete map implementa-
tion based on this strategy.

P-10.67 Implement a LinkedHashMap class, as described in Exercise C-10.44, ensuring
that the primary map operations run in O(1) expected time.

P-10.68 Perform experiments on ourChainHashMap and ProbeHashMap classes to mea-
sure its efficiency using random key sets and varying limits on the load factor (see

Exercise R-10.14).

P-10.69 Perform a comparative analysis that studies the collision rates for various hash
codes for character strings, such as polynomial hash codes for different values

of the parameter a. Use a hash table to determine collisions, but only count
collisions where different strings map to the same hash code (not if they map to

the same location in this hash table). Test these hash codes on text files found on

the Internet.

P-10.70 Perform a comparative analysis as in the previous exercise, but for 10-digit tele-

phone numbers instead of character strings.

P-10.71 Design a Java class that implements the skip-list data structure. Use this class to

create a complete implementation of the sorted map ADT.

P-10.72 Extend the previous project by providing a graphical animation of the skip-list
operations. Visualize how entries move up the skip list during insertions and are

linked out of the skip list during removals. Also, in a search operation, visualize
the scan-forward and drop-down actions.

P-10.73 Describe how to use a skip list to implement the array list ADT, so that index-

based insertions and removals both run in O(logn) expected time.

P-10.74 Write a spell-checker class that stores a lexicon of words, W , in a set, and im-

plements a method, check(s), which performs a spell check on the string s with
respect to the set of words, W . If s is in W , then the call to check(s) returns

a list containing only s, as it is assumed to be spelled correctly in this case. If

s is not in W , then the call to check(s) returns a list of every word in W that
might be a correct spelling of s. Your program should be able to handle all the

common ways that s might be a misspelling of a word in W , including swapping
adjacent characters in a word, inserting a single character in between two adja-

cent characters in a word, deleting a single character from a word, and replacing

a character in a word with another character. For an extra challenge, consider
phonetic substitutions as well.

458 Chapter 10. Maps, Hash Tables, and Skip Lists

Chapter Notes

Hashing is a well-studied technique. The reader interested in further study is encouraged to

explore the book by Knuth [61], as well as the book by Vitter and Chen [92]. The denial-
of-service vulnerability exploiting the worst-case performance of hash tables was first de-

scribed by Crosby and Wallach [27], and later demonstrated by Klink and Wälde [58]. The
remedy adopted by the OpenJDK team for Java is described in [76].

Skip lists were introduced by Pugh [80]. Our analysis of skip lists is a simplification

of a presentation given by Motwani and Raghavan [75]. For a more in-depth analysis of
skip lists, please see the various research papers on skip lists that have appeared in the data

structures literature [56, 77, 78]. Exercise C-10.42 was contributed by James Lee.

Chapter

11 Search Trees

Contents

11.1 Binary Search Trees . 460

11.1.1 Searching Within a Binary Search Tree 461

11.1.2 Insertions and Deletions 463

11.1.3 Java Implementation . 466

11.1.4 Performance of a Binary Search Tree 470

11.2 Balanced Search Trees . 472

11.2.1 Java Framework for Balancing Search Trees 475

11.3 AVL Trees . 479

11.3.1 Update Operations . 481

11.3.2 Java Implementation . 486

11.4 Splay Trees . 488

11.4.1 Splaying . 488

11.4.2 When to Splay . 492

11.4.3 Java Implementation . 494

11.4.4 Amortized Analysis of Splaying ⋆ 495

11.5 (2,4) Trees . 500

11.5.1 Multiway Search Trees 500

11.5.2 (2,4)-Tree Operations . 503

11.6 Red-Black Trees . 510

11.6.1 Red-Black Tree Operations 512

11.6.2 Java Implementation . 522

11.7 Exercises . 525

460 Chapter 11. Search Trees

11.1 Binary Search Trees

In Chapter 8 we introduced the tree data structure and demonstrated a variety of

applications. One important use is as a search tree (as described on page 338). In

this chapter, we use a search-tree structure to efficiently implement a sorted map.

The three most fundamental methods of of a map (see Section 10.1.1) are:

get(k): Returns the value v associated with key k, if such an entry exists;

otherwise returns null.

put(k, v): Associates value v with key k, replacing and returning any existing

value if the map already contains an entry with key equal to k.

remove(k): Removes the entry with key equal to k, if one exists, and returns its

value; otherwise returns null.

The sorted map ADT includes additional functionality (see Section 10.3), guar-

anteeing that an iteration reports keys in sorted order, and supporting additional

searches such as higherEntry(k) and subMap(k1, k2).
Binary trees are an excellent data structure for storing entries of a map, assum-

ing we have an order relation defined on the keys. In this chapter, we define a

binary search tree as a proper binary tree (see Section 8.2) such that each internal

position p stores a key-value pair (k,v) such that:

• Keys stored in the left subtree of p are less than k.

• Keys stored in the right subtree of p are greater than k.

An example of such a binary search tree is given in Figure 11.1. Notice that the

leaves of the tree serve only as “placeholders.” Their use as sentinels simplifies the

presentation of several of our search and update algorithms. With care, they can be

represented as null references in practice, thereby reducing the number of nodes in

half (since there are more leaves than internal nodes in a proper binary tree).

17 88

65

54

29

8

44

76

80

97

93

21

32

28 82

Figure 11.1: A binary search tree with integer keys. We omit the display of associ-

ated values in this chapter, since they are not relevant to the order of entries within

a search tree.

11.1. Binary Search Trees 461

11.1.1 Searching Within a Binary Search Tree

The most important consequence of the structural property of a binary search tree

is its namesake search algorithm. We can attempt to locate a particular key in a

binary search tree by viewing it as a decision tree (recall Figure 8.5). In this case,

the question asked at each internal position p is whether the desired key k is less

than, equal to, or greater than the key stored at position p, which we denote as

key(p). If the answer is “less than,” then the search continues in the left subtree.

If the answer is “equal,” then the search terminates successfully. If the answer is

“greater than,” then the search continues in the right subtree. Finally, if we reach a

leaf, then the search terminates unsuccessfully. (See Figure 11.2.)

28

21 29

82

88

65

54

44

32

17

8

93

97

76

80

28

29

80

82

88

65

54

44

32

17

8

93

97

7621

(a) (b)

Figure 11.2: (a) A successful search for key 65 in a binary search tree; (b) an

unsuccessful search for key 68 that terminates at the leaf to the left of the key 76.

We describe this approach in Code Fragment 11.1. If key k occurs in a subtree

rooted at p, a call to TreeSearch(p, k) results in the position at which the key is

found. For an unsuccessful search, the TreeSearch algorithm returns the final leaf

explored on the search path (which we will later make use of when determining

where to insert a new entry in a search tree).

Algorithm TreeSearch(p, k):

if p is external then

return p {unsuccessful search}
else if k == key(p) then

return p {successful search}
else if k < key(p) then

return TreeSearch(left(p), k) {recur on left subtree}
else {we know that k > key(p)}

return TreeSearch(right(p), k) {recur on right subtree}
Code Fragment 11.1: Recursive search in a binary search tree.

462 Chapter 11. Search Trees

Analysis of Binary Tree Searching

The analysis of the worst-case running time of searching in a binary search tree

T is simple. Algorithm TreeSearch is recursive and executes a constant number

of primitive operations for each recursive call. Each recursive call of TreeSearch
is made on a child of the previous position. That is, TreeSearch is called on the

positions of a path of T that starts at the root and goes down one level at a time.

Thus, the number of such positions is bounded by h+1, where h is the height of T .

In other words, since we spend O(1) time per position encountered in the search,

the overall search runs in O(h) time, where h is the height of the binary search

tree T . (See Figure 11.3.)

Tree T:

Time per level

Total time:

Height

h

O(h)

O(1)

O(1)

O(1)

Figure 11.3: Illustrating the running time of searching in a binary search tree. The

figure uses a standard visualization shortcut of a binary search tree as a big triangle

and a path from the root as a zig-zag line.

In the context of the sorted map ADT, the search will be used as a subroutine

for implementing the get method, as well as for the put and remove methods, since

each of these begins by trying to locate an existing entry with the given key. We

will later demonstrate how to implement sorted map operations, such as lowerEntry
and higherEntry, by navigating within the tree after performing a standard search.

All of these operations will run in worst-case O(h) time for a tree with height h.

Admittedly, the height h of T can be as large as the number of entries, n, but we

expect that it is usually much smaller. Later in this chapter we will show various

strategies to maintain an upper bound of O(logn) on the height of a search tree T .

11.1. Binary Search Trees 463

11.1.2 Insertions and Deletions

Binary search trees allow implementations of the put and remove operations using

algorithms that are fairly straightforward, although not trivial.

Insertion

The map operation put(k, v) begins with a search for an entry with key k. If found,

that entry’s existing value is reassigned. Otherwise, the new entry can be inserted

into the underlying tree by expanding the leaf that was reached at the end of the

failed search into an internal node. The binary search-tree property is sustained by

that placement (note that it is placed exactly where a search would expect it). Let

us assume a proper binary tree supports the following update operation:

expandExternal(p, e): Stores entry e at the external position p, and expands p

to be internal, having two new leaves as children.

We can then describe the TreeInsert algorithm with the pseudocode given in in

Code Fragment 11.2. An example of insertion into a binary search tree is shown

in Figure 11.4.

Algorithm TreeInsert(k, v):

Input: A search key k to be associated with value v

p = TreeSearch(root(), k)

if k == key(p) then

Change p’s value to (v)

else

expandExternal(p, (k,v))

Code Fragment 11.2: Algorithm for inserting a key-value pair into a map that is

represented as a binary search tree.

28

29

80

82

88

65

54

44

32

17

8

93

97

7621 21

8068

82

88

65

54

44

32

17

8

93

97

76

28

29

(a) (b)

Figure 11.4: Insertion of an entry with key 68 into the search tree of Figure 11.2.

Finding the position to insert is shown in (a), and the resulting tree is shown in (b).

464 Chapter 11. Search Trees

Deletion

Deleting an entry from a binary search tree is a bit more complex than inserting a

new entry because the position of an entry to be deleted might be anywhere in the

tree (as opposed to insertions, which always occur at a leaf). To delete an entry with

key k, we begin by calling TreeSearch(root(), k) to find the position p storing an

entry with key equal to k (if any). If the search returns an external node, then there

is no entry to remove. Otherwise, we distinguish between two cases (of increasing

difficulty):

• If at most one of the children of position p is internal, the deletion of the

entry at position p is easily implemented (see Figure 11.5). Let position r be

a child of p that is internal (or an arbitrary child, if both are leaves). We will

remove p and the leaf that is r’s sibling, while promoting r upward to take the

place of p. We note that all remaining ancestor-descendant relationships that

remain in the tree after the operation existed before the operation; therefore,

the binary search-tree property is maintained.

• If position p has two children, we cannot simply remove the node from the

tree since this would create a “hole” and two orphaned children. Instead, we

proceed as follows (see Figure 11.6):

◦ We locate position r containing the entry having the greatest key that

is strictly less than that of position p (its so-called predecessor in the

ordering of keys). That predecessor will always be located in the right-

most internal position of the left subtree of position p.

◦ We use r’s entry as a replacement for the one being deleted at posi-

tion p. Because r has the immediately preceding key in the map, any

entries in p’s right subtree will have keys greater than r and any other

entries in p’s left subtree will have keys less than r. Therefore, the

binary search-tree property is satisfied after the replacement.

◦ Having used r’s entry as a replacement for p, we instead delete the

node at position r from the tree. Fortunately, since r was located as

the rightmost internal position in a subtree, r does not have an internal

right child. Therefore, its deletion can be performed using the first (and

simpler) approach.

As with searching and insertion, this algorithm for a deletion involves the

traversal of a single path downward from the root, possibly moving an entry be-

tween two positions of this path, and removing a node from that path and promoting

its child. Therefore, it executes in time O(h) where h is the height of the tree.

11.1. Binary Search Trees 465

21

p

76

82

88

65

54

44

32

17

8

93

97

8068

r

28

29

28

29

68

r

82

88

65

54

44

17

93

97

76

80

8

21

(a) (b)

Figure 11.5: Deletion from the binary search tree of Figure 11.4b, where the entry

to delete (with key 32) is stored at a position p with one child r : (a) before the

deletion; (b) after the deletion.

p

21 29

8

82

88

65

54

44

93

97

76

8068

r

17

28

97
r

93

17

29

8068

76

658

p

82

28

21 54

44

(a) (b)

Figure 11.6: Deletion from the binary search tree of Figure 11.5b, where the entry

to delete (with key 88) is stored at a position p with two children, and replaced by

its predecessor r : (a) before the deletion; (b) after the deletion.

466 Chapter 11. Search Trees

11.1.3 Java Implementation

In Code Fragments 11.3 through 11.6 we define a TreeMap class that implements

the sorted map ADT while using a binary search tree for storage. The TreeMap
class is declared as a child of the AbstractSortedMap base class, thereby inheriting

support for performing comparisons based upon a given (or default) Comparator,
a nested MapEntry class for storing key-value pairs, and concrete implementations

of methods keySet and values based upon the entrySet method, which we will

provide. (See Figure 10.2 on page 406 for an overview of our entire map hierarchy.)

For representing the tree structure, our TreeMap class maintains an instance of a

subclass of the LinkedBinaryTree class from Section 8.3.1. In this implementation,

we choose to represent the search tree as a proper binary tree, with explicit leaf

nodes in the binary tree as sentinels, and map entries stored only at internal nodes.

(We leave the task of a more space-efficient implementation to Exercise P-11.55.)

The TreeSearch algorithm of Code Fragment 11.1 is implemented as a private

recursive method, treeSearch(p, k). That method either returns a position with an

entry equal to key k, or else the last position that is visited on the search path. The

method is not only used for all of the primary map operations, get(k), put(k, v), and

remove(k), but for most of the sorted map methods, as the final internal position

visited during an unsuccessful search has either the greatest key less than k or the

least key greater than k.

Finally, we note that our TreeMap class is designed so that it can be subclassed

to implement various forms of balanced search trees. We discuss the balancing

framework more thoroughly in Section 11.2, but there are two aspects of the design

that impact the code presented in this section. First, our tree member is technically

declared as an instance of a BalanceableBinaryTree class, which is a specialization

of the LinkedBinaryTree class; however, we rely only on the inherited behaviors in

this section. Second, our code is peppered with calls to presumed methods named

rebalanceAccess, rebalanceInsert, and rebalanceDelete; these methods do not do

anything in this class, but they serve as hooks that can later be customized.

We conclude with a brief guide to the organization of our code.

Code Fragment 11.3: Beginning of TreeMap class, including constructors, size
method, and expandExternal and treeSearch utilities.

Code Fragment 11.4: Map operations get(k), put(k, v), and remove(k).

Code Fragment 11.5: Sorted map ADT methods lastEntry(), floorEntry(k), and

lowerEntry(k), and protected utility treeMax. Symmet-

ric methods firstEntry(), ceilingEntry(k), higherEntry(k),
and treeMin are provided online.

Code Fragment 11.6: Support for producing an iteration of all entries (method

entrySet of the map ADT), or of a selected range of entries

(method subMap(k1, k2) of the sorted map ADT).

11.1. Binary Search Trees 467

1 /∗∗ An implementation of a sorted map using a binary search tree. ∗/
2 public class TreeMap<K,V> extends AbstractSortedMap<K,V> {
3 // To represent the underlying tree structure, we use a specialized subclass of the
4 // LinkedBinaryTree class that we name BalanceableBinaryTree (see Section 11.2).
5 protected BalanceableBinaryTree<K,V> tree = new BalanceableBinaryTree<>();
6

7 /∗∗ Constructs an empty map using the natural ordering of keys. ∗/
8 public TreeMap() {
9 super(); // the AbstractSortedMap constructor

10 tree.addRoot(null); // create a sentinel leaf as root
11 }
12 /∗∗ Constructs an empty map using the given comparator to order keys. ∗/
13 public TreeMap(Comparator<K> comp) {
14 super(comp); // the AbstractSortedMap constructor
15 tree.addRoot(null); // create a sentinel leaf as root
16 }
17 /∗∗ Returns the number of entries in the map. ∗/
18 public int size() {
19 return (tree.size() − 1) / 2; // only internal nodes have entries
20 }
21 /∗∗ Utility used when inserting a new entry at a leaf of the tree ∗/
22 private void expandExternal(Position<Entry<K,V>> p, Entry<K,V> entry) {
23 tree.set(p, entry); // store new entry at p
24 tree.addLeft(p, null); // add new sentinel leaves as children
25 tree.addRight(p, null);
26 }
27

28 // Omitted from this code fragment, but included in the online version of the code,
29 // are a series of protected methods that provide notational shorthands to wrap
30 // operations on the underlying linked binary tree. For example, we support the
31 // protected syntax root() as shorthand for tree.root() with the following utility:
32 protected Position<Entry<K,V>> root() { return tree.root(); }
33

34 /∗∗ Returns the position in p's subtree having given key (or else the terminal leaf).∗/
35 private Position<Entry<K,V>> treeSearch(Position<Entry<K,V>> p, K key) {
36 if (isExternal(p))
37 return p; // key not found; return the final leaf
38 int comp = compare(key, p.getElement());
39 if (comp == 0)
40 return p; // key found; return its position
41 else if (comp < 0)
42 return treeSearch(left(p), key); // search left subtree
43 else
44 return treeSearch(right(p), key); // search right subtree
45 }

Code Fragment 11.3: Beginning of a TreeMap class based on a binary search tree.

468 Chapter 11. Search Trees

46 /∗∗ Returns the value associated with the specified key (or else null). ∗/
47 public V get(K key) throws IllegalArgumentException {
48 checkKey(key); // may throw IllegalArgumentException
49 Position<Entry<K,V>> p = treeSearch(root(), key);
50 rebalanceAccess(p); // hook for balanced tree subclasses
51 if (isExternal(p)) return null; // unsuccessful search
52 return p.getElement().getValue(); // match found
53 }
54 /∗∗ Associates the given value with the given key, returning any overridden value.∗/
55 public V put(K key, V value) throws IllegalArgumentException {
56 checkKey(key); // may throw IllegalArgumentException
57 Entry<K,V> newEntry = new MapEntry<>(key, value);
58 Position<Entry<K,V>> p = treeSearch(root(), key);
59 if (isExternal(p)) { // key is new
60 expandExternal(p, newEntry);
61 rebalanceInsert(p); // hook for balanced tree subclasses
62 return null;
63 } else { // replacing existing key
64 V old = p.getElement().getValue();
65 set(p, newEntry);
66 rebalanceAccess(p); // hook for balanced tree subclasses
67 return old;
68 }
69 }
70 /∗∗ Removes the entry having key k (if any) and returns its associated value. ∗/
71 public V remove(K key) throws IllegalArgumentException {
72 checkKey(key); // may throw IllegalArgumentException
73 Position<Entry<K,V>> p = treeSearch(root(), key);
74 if (isExternal(p)) { // key not found
75 rebalanceAccess(p); // hook for balanced tree subclasses
76 return null;
77 } else {
78 V old = p.getElement().getValue();
79 if (isInternal(left(p)) && isInternal(right(p))) { // both children are internal
80 Position<Entry<K,V>> replacement = treeMax(left(p));
81 set(p, replacement.getElement());
82 p = replacement;
83 } // now p has at most one child that is an internal node
84 Position<Entry<K,V>> leaf = (isExternal(left(p)) ? left(p) : right(p));
85 Position<Entry<K,V>> sib = sibling(leaf);
86 remove(leaf);
87 remove(p); // sib is promoted in p’s place
88 rebalanceDelete(sib); // hook for balanced tree subclasses
89 return old;
90 }
91 }

Code Fragment 11.4: Primary map operations for the TreeMap class.

11.1. Binary Search Trees 469

92 /∗∗ Returns the position with the maximum key in subtree rooted at Position p. ∗/
93 protected Position<Entry<K,V>> treeMax(Position<Entry<K,V>> p) {
94 Position<Entry<K,V>> walk = p;
95 while (isInternal(walk))
96 walk = right(walk);
97 return parent(walk); // we want the parent of the leaf
98 }
99 /∗∗ Returns the entry having the greatest key (or null if map is empty). ∗/

100 public Entry<K,V> lastEntry() {
101 if (isEmpty()) return null;
102 return treeMax(root()).getElement();
103 }
104 /∗∗ Returns the entry with greatest key less than or equal to given key (if any). ∗/
105 public Entry<K,V> floorEntry(K key) throws IllegalArgumentException {
106 checkKey(key); // may throw IllegalArgumentException
107 Position<Entry<K,V>> p = treeSearch(root(), key);
108 if (isInternal(p)) return p.getElement(); // exact match
109 while (!isRoot(p)) {
110 if (p == right(parent(p)))
111 return parent(p).getElement(); // parent has next lesser key
112 else
113 p = parent(p);
114 }
115 return null; // no such floor exists
116 }
117 /∗∗ Returns the entry with greatest key strictly less than given key (if any). ∗/
118 public Entry<K,V> lowerEntry(K key) throws IllegalArgumentException {
119 checkKey(key); // may throw IllegalArgumentException
120 Position<Entry<K,V>> p = treeSearch(root(), key);
121 if (isInternal(p) && isInternal(left(p)))
122 return treeMax(left(p)).getElement(); // this is the predecessor to p
123 // otherwise, we had failed search, or match with no left child
124 while (!isRoot(p)) {
125 if (p == right(parent(p)))
126 return parent(p).getElement(); // parent has next lesser key
127 else
128 p = parent(p);
129 }
130 return null; // no such lesser key exists
131 }

Code Fragment 11.5: A sample of the sorted map operations for the TreeMap class.

The symmetrical utility, treeMin, and public methods firstEntry, ceilingEntry, and

higherEntry are available online.

470 Chapter 11. Search Trees

132 /∗∗ Returns an iterable collection of all key-value entries of the map. ∗/
133 public Iterable<Entry<K,V>> entrySet() {
134 ArrayList<Entry<K,V>> buffer = new ArrayList<>(size());
135 for (Position<Entry<K,V>> p : tree.inorder())
136 if (isInternal(p)) buffer.add(p.getElement());
137 return buffer;
138 }
139 /∗∗ Returns an iterable of entries with keys in range [fromKey, toKey). ∗/
140 public Iterable<Entry<K,V>> subMap(K fromKey, K toKey) {
141 ArrayList<Entry<K,V>> buffer = new ArrayList<>(size());
142 if (compare(fromKey, toKey) < 0) // ensure that fromKey < toKey
143 subMapRecurse(fromKey, toKey, root(), buffer);
144 return buffer;
145 }
146 private void subMapRecurse(K fromKey, K toKey, Position<Entry<K,V>> p,
147 ArrayList<Entry<K,V>> buffer) {
148 if (isInternal(p))
149 if (compare(p.getElement(), fromKey) < 0)
150 // p's key is less than fromKey, so any relevant entries are to the right
151 subMapRecurse(fromKey, toKey, right(p), buffer);
152 else {
153 subMapRecurse(fromKey, toKey, left(p), buffer); // first consider left subtree
154 if (compare(p.getElement(), toKey) < 0) { // p is within range
155 buffer.add(p.getElement()); // so add it to buffer, and consider
156 subMapRecurse(fromKey, toKey, right(p), buffer); // right subtree as well
157 }
158 }
159 }

Code Fragment 11.6: TreeMap operations supporting iteration of the entire map, or

a portion of the map with a given key range.

11.1.4 Performance of a Binary Search Tree

An analysis of the operations of our TreeMap class is given in Table 11.1. Almost

all operations have a worst-case running time that depends on h, where h is the

height of the current tree. This is because most operations rely on traversing a path

from the root of the tree, and the maximum path length within a tree is proportional

to the height of the tree. Most notably, our implementations of map operations

get, put, and remove, and most of the sorted map operations, each begins with

a call to the treeSearch utility. Similar paths are traced when searching for the

minimum or maximum entry in a subtree, a task used when finding a replacement

during a deletion or in finding the overall first or last entry in the map. An iteration

of the entire map is accomplished in O(n) time using an inorder traversal of the

underlying tree, and the recursive subMap implementation can be shown to run in

O(s+h) worst-case bound for a call that reports s results (see Exercise C-11.34).

11.1. Binary Search Trees 471

Method Running Time

size, isEmpty O(1)

get, put, remove O(h)

firstEntry, lastEntry O(h)

ceilingEntry, floorEntry, lowerEntry, higherEntry O(h)

subMap O(s+h)

entrySet, keySet, values O(n)

Table 11.1: Worst-case running times of the operations for a TreeMap. We denote

the current height of the tree with h, and the number of entries reported by subMap
as s. The space usage is O(n), where n is the number of entries stored in the map.

A binary search tree T is therefore an efficient implementation of a map with n

entries only if its height is small. In the best case, T has height h= ⌈log(n+1)⌉−1,

which yields logarithmic-time performance for most of the map operations. In the

worst case, however, T has height n, in which case it would look and feel like

an ordered list implementation of a map. Such a worst-case configuration arises,

for example, if we insert entries with keys in increasing or decreasing order. (See

Figure 11.7.)

30

40

10

20

Figure 11.7: Example of a binary search tree with linear height, obtained by insert-

ing entries in increasing order of their keys.

We can nevertheless take comfort that, on average, a binary search tree with

n keys generated from a random series of insertions and removals of keys has ex-

pected height O(logn); the justification of this statement is beyond the scope of the

book, requiring careful mathematical language to precisely define what we mean

by a random series of insertions and removals, and sophisticated probability theory.

In applications where one cannot guarantee the random nature of updates, it

is better to rely on variations of search trees, presented in the remainder of this

chapter, that guarantee a worst-case height of O(logn), and thus O(logn) worst-

case time for searches, insertions, and deletions.

472 Chapter 11. Search Trees

11.2 Balanced Search Trees

In the closing of the previous section, we noted that if we could assume a random

series of insertions and removals, the standard binary search tree supports O(logn)
expected running times for the basic map operations. However, we may only claim

O(n) worst-case time, because some sequences of operations may lead to an unbal-

anced tree with height proportional to n.

In the remainder of this chapter, we will explore four search-tree algorithms that

provide stronger performance guarantees. Three of the four data structures (AVL

trees, splay trees, and red-black trees) are based on augmenting a standard binary

search tree with occasional operations to reshape the tree and reduce its height.

The primary operation to rebalance a binary search tree is known as a rotation.

During a rotation, we “rotate” a child to be above its parent, as diagrammed in

Figure 11.8.

y x

y

T1

T2 T3T1 T2

T3

x

Figure 11.8: A rotation operation in a binary search tree. A rotation can be per-

formed to transform the left formation into the right, or the right formation into the

left. Note that all keys in subtree T1 have keys less than that of position x, all keys

in subtree T2 have keys that are between those of positions x and y, and all keys in

subtree T3 have keys that are greater than that of position y.

To maintain the binary search-tree property through a rotation, we note that

if position x was a left child of position y prior to a rotation (and therefore the

key of x is less than the key of y), then y becomes the right child of x after the

rotation, and vice versa. Furthermore, we must relink the subtree of entries with

keys that lie between the keys of the two positions that are being rotated. For

example, in Figure 11.8 the subtree labeled T2 represents entries with keys that are

known to be greater than that of position x and less than that of position y. In the

first configuration of that figure, T2 is the right subtree of position x; in the second

configuration, it is the left subtree of position y.

Because a single rotation modifies a constant number of parent-child relation-

ships, it can be implemented in O(1) time with a linked binary tree representation.

11.2. Balanced Search Trees 473

In the context of a tree-balancing algorithm, a rotation allows the shape of a

tree to be modified while maintaining the search-tree property. If used wisely, this

operation can be performed to avoid highly unbalanced tree configurations. For

example, a rightward rotation from the first formation of Figure 11.8 to the second

reduces the depth of each node in subtree T1 by one, while increasing the depth

of each node in subtree T3 by one. (Note that the depth of nodes in subtree T2 are

unaffected by the rotation.)

One or more rotations can be combined to provide broader rebalancing within a

tree. One such compound operation we consider is a trinode restructuring. For this

manipulation, we consider a position x, its parent y, and its grandparent z. The goal

is to restructure the subtree rooted at z in order to reduce the overall path length

to x and its subtrees. Pseudocode for a restructure(x) method is given in Code

Fragment 11.7 and illustrated in Figure 11.9. In describing a trinode restructuring,

we temporarily rename the positions x, y, and z as a, b, and c, so that a precedes b

and b precedes c in an inorder traversal of T . There are four possible orientations

mapping x, y, and z to a, b, and c, as shown in Figure 11.9, which are unified

into one case by our relabeling. The trinode restructuring replaces z with the node

identified as b, makes the children of this node be a and c, and makes the children

of a and c be the four previous children of x, y, and z (other than x and y), while

maintaining the inorder relationships of all the nodes in T .

Algorithm restructure(x):

Input: A position x of a binary search tree T that has both a parent y and a

grandparent z

Output: Tree T after a trinode restructuring (which corresponds to a single or

double rotation) involving positions x, y, and z

1: Let (a, b, c) be a left-to-right (inorder) listing of the positions x, y, and z, and

let (T1, T2, T3, T4) be a left-to-right (inorder) listing of the four subtrees of x, y,

and z not rooted at x, y, or z.

2: Replace the subtree rooted at z with a new subtree rooted at b.

3: Let a be the left child of b and let T1 and T2 be the left and right subtrees of a,

respectively.

4: Let c be the right child of b and let T3 and T4 be the left and right subtrees of c,

respectively.

Code Fragment 11.7: The trinode restructuring operation in a binary search tree.

In practice, the modification of a tree T caused by a trinode restructuring op-

eration can be implemented through case analysis either as a single rotation (as in

Figure 11.9a and b) or as a double rotation (as in Figure 11.9c and d). The double

rotation arises when position x has the middle of the three relevant keys and is first

rotated above its parent, and then above what was originally its grandparent. In any

of the cases, the trinode restructuring is completed with O(1) running time.

474 Chapter 11. Search Trees

single rotation

T1

a = z

b = y

T2

c = x

T3 T4

a = z

T1 T2

b = y

c = x

T3 T4

(a)

T1

a = x

T1 T2

b = y

c = z

T3 T4

single rotation

T4

c = z

b = y

T3

a = x

T2

(b)

T3

T1

a = z

T1 T2

b = x

c = y

T3 T4

double rotation

a = z

T4

c = y

b = x

T2

(c)

T2

T1 T2

b = x

c = z

T3 T4

double rotation

a = y

T4

c = z

T1

a = y

b = x

T3

(d)

Figure 11.9: Schematic illustration of a trinode restructuring operation: (a and b)

require a single rotation; (c and d) require a double rotation.

11.2. Balanced Search Trees 475

11.2.1 Java Framework for Balancing Search Trees

Our TreeMap class (introduced in Section 11.1.3) is a fully functional map imple-

mentation. However, the running time for its operations depend on the height of the

tree, and in the worst-case, that height may be O(n) for a map with n entries. There-

fore, we have intentionally designed the TreeMap class in a way that allows it to

be easily extended to provide more advanced tree-balancing strategies. In later sec-

tions of this chapter, we will implement subclasses AVLTreeMap, SplayTreeMap,

and RBTreeMap. In this section, we describe three important forms of support that

the TreeMap class offers these subclasses.

Hooks for Rebalancing Operations

Our implementation of the basic map operations in Section 11.1.3 includes strategic

calls to three nonpublic methods that serve as hooks for rebalancing algorithms:

• A call to rebalanceInsert(p) is made from within the put method, after a new

node is added to the tree at position p (line 61 of Code Fragment 11.4).

• A call to rebalanceDelete(p) is made from within the remove method, after

a node is deleted from the tree (line 88 of Code Fragment 11.4); position p

identifies the child of the removed node that was promoted in its place.

• A call to rebalanceAccess(p) is made by any call to get, put, or remove that

does not result in a structural change. Position p, which could be internal

or external, represents the deepest node of the tree that was accessed during

the operation. This hook is specifically used by the splay tree structure (see

Section 11.4) to restructure a tree so that more frequently accessed nodes are

brought closer to the root.

Within our TreeMap class, we provide the trivial declarations of these three

methods, having bodies that do nothing, as shown in Code Fragment 11.8. A sub-

class of TreeMap may override any of these methods to implement a nontrivial

action to rebalance a tree. This is another example of the template method design

pattern, as originally discussed in Section 2.3.3.

protected void rebalanceInsert(Position<Entry<K,V>> p) { }
protected void rebalanceDelete(Position<Entry<K,V>> p) { }
protected void rebalanceAccess(Position<Entry<K,V>> p) { }

Code Fragment 11.8: Trivial definitions of TreeMap methods that serve as hooks

for our rebalancing framework. These methods may be overridden by subclasses

in order to perform appropriate rebalancing operations.

476 Chapter 11. Search Trees

Protected Methods for Rotating and Restructuring

To support common restructuring operations, our TreeMap class relies on storing

the tree as an instance of a new nested class, BalanceableBinaryTree (shown in

Code Fragments 11.9 and 11.10). That class is a specialization of the original

LinkedBinaryTree class from Section 8.3.1. This new class provides protected util-

ity methods rotate and restructure that, respectively, implement a single rotation

and a trinode restructuring (described at the beginning of Section 11.2). Although

these methods are not invoked by the standard TreeMap operations, their inclusion

supports greater code reuse, as they are available to all balanced-tree subclasses.

These methods are implemented in Code Fragment 11.10. To simplify the code,

we define an additional relink utility that properly links parent and child nodes to

each other. The focus of the rotate method then becomes redefining the relation-

ship between the parent and child, relinking a rotated node directly to its original

grandparent, and shifting the “middle” subtree (that labeled as T2 in Figure 11.8)

between the rotated nodes.

For the trinode restructuring, we determine whether to perform a single or dou-

ble rotation, as originally described in Figure 11.9. The four cases in that figure

demonstrate a downward path z to y to x that are respectively right-right, left-left,

right-left, and left-right. The first two patterns, with matching orientation, war-

rant a single rotation moving y upward, while the last two patterns, with opposite

orientations, warrant a double rotation moving x upward.

Specialized Nodes with an Auxiliary Data Member

Many tree-balancing strategies require that some form of auxiliary “balancing” in-

formation be stored at nodes of a tree. To ease the burden on the balanced-tree

subclasses, we choose to add an auxiliary integer value to every node within the

BalanceableSearchTree class. This is accomplished by defining a new BSTNode
class, which itself inherits from the nested LinkedBinaryTree.Node class. The new

class declares the auxiliary variable, and provides methods for getting and setting

its value.

We draw attention to an important subtlety in our design, including that of

the original LinkedBinaryTree subclass. Whenever a low-level operation on an

underlying linked tree requires a new node, we must ensure that the correct type

of node is created. That is, for our balanceable tree, we need each node to be

a BTNode, which includes the auxiliary field. However, the creation of nodes

occurs within low-level operations, such as addLeft and addRight, that reside in

the original LinkedBinaryTree class.

11.2. Balanced Search Trees 477

We rely on a technique known as the factory method design pattern. The

LinkedBinaryTree class includes a protected method, createNode (originally given

at lines 30–33 of Code Fragment 8.8), that is responsible for instantiating a new

node of the appropriate type. The rest of the code in that class makes sure to always

use the createNode method when a new node is needed.

In the LinkedBinaryTree class, the createNode method returns a simple Node
instance. In our new BalanceableBinaryTree class, we override the createNode
method (see lines 22–27 in Code Fragment 11.9), so that a new instance of the

BSTNode class is returned. In this way, we effectively change the behavior of the

low-level operations in the LinkedBinaryTree class so that it uses instances of our

specialized node class, and therefore, that every node in our balanced trees includes

support for the new auxiliary field.

1 /∗∗ A specialized version of LinkedBinaryTree with support for balancing. ∗/
2 protected static class BalanceableBinaryTree<K,V>
3 extends LinkedBinaryTree<Entry<K,V>> {
4 //-------------- nested BSTNode class --------------
5 // this extends the inherited LinkedBinaryTree.Node class
6 protected static class BSTNode<E> extends Node<E> {
7 int aux=0;
8 BSTNode(E e, Node<E> parent, Node<E> leftChild, Node<E> rightChild) {
9 super(e, parent, leftChild, rightChild);

10 }
11 public int getAux() { return aux; }
12 public void setAux(int value) { aux = value; }
13 } //--------- end of nested BSTNode class ---------
14

15 // positional-based methods related to aux field
16 public int getAux(Position<Entry<K,V>> p) {
17 return ((BSTNode<Entry<K,V>>) p).getAux();
18 }
19 public void setAux(Position<Entry<K,V>> p, int value) {
20 ((BSTNode<Entry<K,V>>) p).setAux(value);
21 }
22 // Override node factory function to produce a BSTNode (rather than a Node)
23 protected
24 Node<Entry<K,V>> createNode(Entry<K,V> e, Node<Entry<K,V>> parent,
25 Node<Entry<K,V>> left, Node<Entry<K,V>> right) {
26 return new BSTNode<>(e, parent, left, right);
27 }

Code Fragment 11.9: The BalanceableBinaryTree class, which is nested within the

TreeMap class definition. (Continues in Code Fragment 11.10.)

478 Chapter 11. Search Trees

28 /∗∗ Relinks a parent node with its oriented child node. ∗/
29 private void relink(Node<Entry<K,V>> parent, Node<Entry<K,V>> child,
30 boolean makeLeftChild) {
31 child.setParent(parent);
32 if (makeLeftChild)
33 parent.setLeft(child);
34 else
35 parent.setRight(child);
36 }
37 /∗∗ Rotates Position p above its parent. ∗/
38 public void rotate(Position<Entry<K,V>> p) {
39 Node<Entry<K,V>> x = validate(p);
40 Node<Entry<K,V>> y = x.getParent(); // we assume this exists
41 Node<Entry<K,V>> z = y.getParent(); // grandparent (possibly null)
42 if (z == null) {
43 root = x; // x becomes root of the tree
44 x.setParent(null);
45 } else
46 relink(z, x, y == z.getLeft()); // x becomes direct child of z
47 // now rotate x and y, including transfer of middle subtree
48 if (x == y.getLeft()) {
49 relink(y, x.getRight(), true); // x’s right child becomes y’s left
50 relink(x, y, false); // y becomes x’s right child
51 } else {
52 relink(y, x.getLeft(), false); // x’s left child becomes y’s right
53 relink(x, y, true); // y becomes left child of x
54 }
55 }
56 /∗∗ Performs a trinode restructuring of Position x with its parent/grandparent. ∗/
57 public Position<Entry<K,V>> restructure(Position<Entry<K,V>> x) {
58 Position<Entry<K,V>> y = parent(x);
59 Position<Entry<K,V>> z = parent(y);
60 if ((x == right(y)) == (y == right(z))) { // matching alignments
61 rotate(y); // single rotation (of y)
62 return y; // y is new subtree root
63 } else { // opposite alignments
64 rotate(x); // double rotation (of x)
65 rotate(x);
66 return x; // x is new subtree root
67 }
68 }
69 }

Code Fragment 11.10: The BalanceableBinaryTree class, which is nested within

the TreeMap class definition (continued from Code Fragment 11.9).

11.3. AVL Trees 479

11.3 AVL Trees

The TreeMap class, which uses a standard binary search tree as its data structure,

should be an efficient map data structure, but its worst-case performance for the

various operations is linear time, because it is possible that a series of operations

results in a tree with linear height. In this section, we describe a simple balancing

strategy that guarantees worst-case logarithmic running time for all the fundamental

map operations.

Definition of an AVL Tree

The simple correction is to add a rule to the binary search-tree definition that will

maintain a logarithmic height for the tree. Recall that we defined the height of a

subtree rooted at position p of a tree to be the number of edges on the longest path

from p to a leaf (see Section 8.1.3). By this definition, a leaf position has height 0.

In this section, we consider the following height-balance property, which char-

acterizes the structure of a binary search tree T in terms of the heights of its nodes.

Height-Balance Property: For every internal position p of T , the heights of the

children of p differ by at most 1.

Any binary search tree T that satisfies the height-balance property is said to be an

AVL tree, named after the initials of its inventors: Adel’son-Vel’skii and Landis.

An example of an AVL tree is shown in Figure 11.10.

1

4

11

2 3

2

1

17

32

48 62

50

78

88

44

Figure 11.10: An example of an AVL tree. The keys of the entries are shown inside

the nodes, and the heights of the nodes are shown above the nodes (all leaves have

height 0).

480 Chapter 11. Search Trees

An immediate consequence of the height-balance property is that a subtree of an

AVL tree is itself an AVL tree. The height-balance property also has the important

consequence of keeping the height small, as shown in the following proposition.

Proposition 11.1: The height of an AVL tree storing n entries is O(logn).

Justification: Instead of trying to find an upper bound on the height of an AVL

tree directly, it turns out to be easier to work on the “inverse problem” of finding

a lower bound on the minimum number of internal nodes, denoted as n(h), of an

AVL tree with height h. We will show that n(h) grows at least exponentially. From

this, it will be an easy step to derive that the height of an AVL tree storing n entries

is O(log n).

We begin by noting that n(1) = 1 and n(2) = 2, because an AVL tree of height 1

must have exactly one internal node and an AVL tree of height 2 must have at least

two internal nodes. Now, an AVL tree with the minimum number of nodes having

height h for h ≥ 3, is such that both its subtrees are AVL trees with the minimum

number of nodes: one with height h−1 and the other with height h−2. Taking the

root into account, we obtain the following formula that relates n(h) to n(h−1) and

n(h−2), for h≥ 3:

n(h) = 1+n(h−1)+n(h−2). (11.1)

At this point, the reader familiar with the properties of Fibonacci progressions (Sec-

tions 2.2.3 and 5.5) will already see that n(h) is a function exponential in h. To

formalize that observation, we proceed as follows.

Formula 11.1 implies that n(h) is a strictly increasing function of h. Thus, we

know that n(h− 1) > n(h− 2). Replacing n(h− 1) with n(h− 2) in Formula 11.1

and dropping the 1, we get, for h≥ 3,

n(h) > 2 ·n(h−2). (11.2)

Formula 11.2 indicates that n(h) at least doubles each time h increases by 2, which

intuitively means that n(h) grows exponentially. To show this fact in a formal way,

we apply Formula 11.2 repeatedly, yielding the following series of inequalities:

n(h) > 2 ·n(h−2)

> 4 ·n(h−4)

> 8 ·n(h−6)

...

> 2i ·n(h−2i). (11.3)

That is, n(h)> 2i ·n(h−2i), for any integer i, such that h−2i≥ 1. Since we already

know the values of n(1) and n(2), we pick i so that h−2i is equal to either 1 or 2.

11.3. AVL Trees 481

That is, we pick

i =

⌈
h

2

⌉
−1.

By substituting the above value of i in Formula 11.3, we obtain, for h≥ 3,

n(h) > 2⌈ h
2⌉−1 ·n

(
h−2

⌈
h

2

⌉
+2

)

≥ 2⌈ h
2⌉−1n(1)

≥ 2
h
2
−1. (11.4)

By taking logarithms of both sides of Formula 11.4, we obtain

log(n(h)) >
h

2
−1,

from which we get
h < 2log(n(h))+2, (11.5)

which implies that an AVL tree storing n entries has height at most 2logn+2.

By Proposition 11.1 and the analysis of binary search trees given in Section 11.1,

the operation get, in a map implemented with an AVL tree, runs in time O(log n),
where n is the number of entries in the map. Of course, we still have to show how

to maintain the height-balance property after an insertion or deletion.

11.3.1 Update Operations

Given a binary search tree T , we say that a position is balanced if the absolute

value of the difference between the heights of its children is at most 1, and we say

that it is unbalanced otherwise. Thus, the height-balance property characterizing

AVL trees is equivalent to saying that every position is balanced.

The insertion and deletion operations for AVL trees begin similarly to the corre-

sponding operations for (standard) binary search trees, but with post-processing for

each operation to restore the balance of any portions of the tree that are adversely

affected by the change.

Insertion

Suppose that tree T satisfies the height-balance property, and hence is an AVL tree,

prior to the insertion of a new entry. An insertion of a new entry in a binary search

tree, as described in Section 11.1.2, results in a leaf position p being expanded

to become internal, with two new external children. This action may violate the

height-balance property (see, for example, Figure 11.11a), yet the only positions

that may become unbalanced are ancestors of p, because those are the only posi-

tions whose subtrees have changed. Therefore, let us describe how to restructure T

to fix any unbalance that may have occurred.

482 Chapter 11. Search Trees

T4

T2

T1

54

88
2

4

5

44

17

32
1

1

2

1

1

48 62

z

y

x

T3

50

78
3

T1 T2 T4

2

3

4

2

y

44

17

78

x

z

2

50
1

88

32

54

1 1

62

48

T3

1

(a) (b)

Figure 11.11: An example insertion of an entry with key 54 in the AVL tree of

Figure 11.10: (a) after adding a new node for key 54, the nodes storing keys 78

and 44 become unbalanced; (b) a trinode restructuring restores the height-balance

property. We show the heights of nodes above them, and we identify the nodes x,

y, and z and subtrees T1, T2, T3, and T4 participating in the trinode restructuring.

We restore the balance of the nodes in the binary search tree T by a simple

“search-and-repair” strategy. In particular, let z be the first position we encounter in

going up from p toward the root of T such that z is unbalanced (see Figure 11.11a.)

Also, let y denote the child of z with greater height (and note that y must be an

ancestor of p). Finally, let x be the child of y with greater height (there cannot be

a tie and position x must also be an ancestor of p, possibly p itself). We rebalance

the subtree rooted at z by calling the trinode restructuring method, restructure(x),
originally described in Section 11.2. An example of such a restructuring in the

context of an AVL insertion is portrayed in Figure 11.11.

To formally argue the correctness of this process in reestablishing the AVL

height-balance property, we consider the implication of z being the nearest ancestor

of p that became unbalanced after the insertion of p. It must be that the height

of y increased by one due to the insertion and that it is now 2 greater than its

sibling. Since y remains balanced, it must be that it formerly had subtrees with

equal heights, and that the subtree containing x has increased its height by one.

That subtree increased either because x = p, and thus its height changed from 0

to 1, or because x previously had equal-height subtrees and the height of the one

containing p has increased by 1. Letting h≥ 0 denote the height of the tallest child

of x, this scenario might be portrayed as in Figure 11.12.

After the trinode restructuring, each of x, y, and z is balanced. Furthermore,

the root of the subtree after the restructuring has height h+ 2, which is precisely

the height that z had before the insertion of the new entry. Therefore, any ancestor

of z that became temporarily unbalanced becomes balanced again, and this one

restructuring restores the height-balance property globally.

11.3. AVL Trees 483

T3T2

xh−1 h−1

T4

y

T1

zh

h+2

h
h

h+1

(a)

h+2

T3

T2

xh−1 h

T4

y

T1

zh

h+3

h
h+1

(b)

h

h+2

T2
T1

h z h−1

h+1

T4

h

T3

y

h+1
x

(c)

Figure 11.12: Rebalancing of a subtree during a typical insertion into an AVL tree:

(a) before the insertion; (b) after an insertion in subtree T3 causes imbalance at z;

(c) after restoring balance with trinode restructuring. Notice that the overall height

of the subtree after the insertion is the same as before the insertion.

484 Chapter 11. Search Trees

Deletion

Recall that a deletion from a regular binary search tree results in the structural

removal of a node having either zero or one internal children. Such a change may

violate the height-balance property in an AVL tree. In particular, if position p

represents a (possibly external) child of the removed node in tree T , there may be

an unbalanced node on the path from p to the root of T . (See Figure 11.13a.) In

fact, there can be at most one such unbalanced node. (The justification of this fact

is left as Exercise C-11.41.)

T1

T2
T4

1

2

32 x50
1

17

54

1

48

z44

62
2

88

1

T3

3

4

y

78

T1 T4

T2

4

62

x44

y

3

T3

78
2 0

50

48 54

17

1

1 1

z

2

1

88

(a) (b)

Figure 11.13: Deletion of the entry with key 32 from the AVL tree of Figure 11.11b:

(a) after removing the node storing key 32, the root becomes unbalanced; (b) a

trinode restructuring of x, y, and z restores the height-balance property.

As with insertion, we use trinode restructuring to restore balance in the tree T .

In particular, let z be the first unbalanced position encountered going up from p

toward the root of T , and let y be that child of z with greater height (y will not be an

ancestor of p). Furthermore, let x be the child of y defined as follows: if one of the

children of y is taller than the other, let x be the taller child of y; else (both children

of y have the same height), let x be the child of y on the same side as y (that is, if y

is the left child of z, let x be the left child of y, else let x be the right child of y). We

then perform a restructure(x) operation. (See Figure 11.13b.)

The restructured subtree is rooted at the middle position denoted as b in the

description of the trinode restructuring operation. The height-balance property is

guaranteed to be locally restored within the subtree of b. (See Exercises R-11.11

and R-11.12.) Unfortunately, this trinode restructuring may reduce the height of the

subtree rooted at b by 1, which may cause an ancestor of b to become unbalanced.

So, after rebalancing z, we continue walking up T looking for unbalanced positions.

If we find another, we perform a restructure operation to restore its balance, and

continue marching up T looking for more, all the way to the root. Since the height

of T is O(logn), where n is the number of entries, by Proposition 11.1, O(logn)
trinode restructurings are sufficient to restore the height-balance property.

11.3. AVL Trees 485

Performance of AVL Trees

By Proposition 11.1, the height of an AVL tree with n entries is guaranteed to

be O(logn). Because the standard binary search-tree operation had running times

bounded by the height (see Table 11.1), and because the additional work in main-

taining balance factors and restructuring an AVL tree can be bounded by the length

of a path in the tree, the traditional map operations run in worst-case logarithmic

time with an AVL tree. We summarize these results in Table 11.2, and illustrate

this performance in Figure 11.14.

Method Running Time

size, isEmpty O(1)

get, put, remove O(logn)

firstEntry, lastEntry O(logn)

ceilingEntry, floorEntry, lowerEntry, higherEntry O(logn)

subMap O(s+ logn)

entrySet, keySet, values O(n)

Table 11.2: Worst-case running times of operations for an n-entry sorted map real-

ized as an AVL tree T, with s denoting the number of entries reported by subMap.

Worst-case time: O(logn)

Height Time per level

AVL Tree T:

down phase

up phase

O(logn)

O(1)

O(1)

O(1)

Figure 11.14: Illustrating the running time of searches and updates in an AVL tree.

The time performance is O(1) per level, broken into a down phase, which typi-

cally involves searching, and an up phase, which typically involves updating height

values and performing local trinode restructurings (rotations).

486 Chapter 11. Search Trees

11.3.2 Java Implementation

A complete implementation of an AVLTreeMap class is provided in Code Frag-

ments 11.11 and 11.12. It inherits from the standard TreeMap class and relies on

the balancing framework described in Section 11.2.1. We highlight two important

aspects of our implementation. First, the AVLTreeMap uses the node’s auxiliary

balancing variable to store the height of the subtree rooted at that node, with leaves

having a balance factor of 0 by default. We also provide several utilities involving

heights of nodes (see Code Fragment 11.11).

To implement the core logic of the AVL balancing strategy, we define a utility,

named rebalance, that suffices to restore the height-balance property after an inser-

tion or a deletion (see Code Fragment 11.11). Although the inherited behaviors for

insertion and deletion are quite different, the necessary post-processing for an AVL

tree can be unified. In both cases, we trace an upward path from the position p at

which the change took place, recalculating the height of each position based on the

(updated) heights of its children. We perform a trinode restructuring operation if

an imbalanced position is reached. The upward march from p continues until we

reach an ancestor with height that was unchanged by the map operation, or with

height that was restored to its previous value by a trinode restructuring operation,

or until reaching the root of the tree (in which case the overall height of the tree

has increased by one). To easily detect the stopping condition, we record the “old”

height of a position, as it existed before the insertion or deletion operation begin,

and compare that to the newly calculated height after a possible restructuring.

1 /∗∗ An implementation of a sorted map using an AVL tree. ∗/
2 public class AVLTreeMap<K,V> extends TreeMap<K,V> {
3 /∗∗ Constructs an empty map using the natural ordering of keys. ∗/
4 public AVLTreeMap() { super(); }
5 /∗∗ Constructs an empty map using the given comparator to order keys. ∗/
6 public AVLTreeMap(Comparator<K> comp) { super(comp); }
7 /∗∗ Returns the height of the given tree position. ∗/
8 protected int height(Position<Entry<K,V>> p) {
9 return tree.getAux(p);

10 }
11 /∗∗ Recomputes the height of the given position based on its children's heights. ∗/
12 protected void recomputeHeight(Position<Entry<K,V>> p) {
13 tree.setAux(p, 1 + Math.max(height(left(p)), height(right(p))));
14 }
15 /∗∗ Returns whether a position has balance factor between −1 and 1 inclusive. ∗/
16 protected boolean isBalanced(Position<Entry<K,V>> p) {
17 return Math.abs(height(left(p)) − height(right(p))) <= 1;
18 }

Code Fragment 11.11: AVLTreeMap class. (Continues in Code Fragment 11.12.)

11.3. AVL Trees 487

19 /∗∗ Returns a child of p with height no smaller than that of the other child. ∗/
20 protected Position<Entry<K,V>> tallerChild(Position<Entry<K,V>> p) {
21 if (height(left(p)) > height(right(p))) return left(p); // clear winner
22 if (height(left(p)) < height(right(p))) return right(p); // clear winner
23 // equal height children; break tie while matching parent's orientation
24 if (isRoot(p)) return left(p); // choice is irrelevant
25 if (p == left(parent(p))) return left(p); // return aligned child
26 else return right(p);
27 }
28 /∗∗
29 ∗ Utility used to rebalance after an insert or removal operation. This traverses the
30 ∗ path upward from p, performing a trinode restructuring when imbalance is found,
31 ∗ continuing until balance is restored.
32 ∗/
33 protected void rebalance(Position<Entry<K,V>> p) {
34 int oldHeight, newHeight;
35 do {
36 oldHeight = height(p); // not yet recalculated if internal
37 if (!isBalanced(p)) { // imbalance detected
38 // perform trinode restructuring, setting p to resulting root,
39 // and recompute new local heights after the restructuring
40 p = restructure(tallerChild(tallerChild(p)));
41 recomputeHeight(left(p));
42 recomputeHeight(right(p));
43 }
44 recomputeHeight(p);
45 newHeight = height(p);
46 p = parent(p);
47 } while (oldHeight != newHeight && p != null);
48 }
49 /∗∗ Overrides the TreeMap rebalancing hook that is called after an insertion. ∗/
50 protected void rebalanceInsert(Position<Entry<K,V>> p) {
51 rebalance(p);
52 }
53 /∗∗ Overrides the TreeMap rebalancing hook that is called after a deletion. ∗/
54 protected void rebalanceDelete(Position<Entry<K,V>> p) {
55 if (!isRoot(p))
56 rebalance(parent(p));
57 }
58 }

Code Fragment 11.12: AVLTreeMap class (continued from Code Fragment 11.11).

488 Chapter 11. Search Trees

11.4 Splay Trees

The next search-tree structure we study is known as a a splay tree. This structure is

conceptually quite different from the other balanced search trees we will discuss in

this chapter, for a splay tree does not strictly enforce a logarithmic upper bound on

the height of the tree. In fact, no additional height, balance, or other auxiliary data

need be stored with the nodes of this tree.

The efficiency of splay trees is due to a certain move-to-root operation, called

splaying, that is performed at the bottommost position p reached during every in-

sertion, deletion, or even a search. (In essence, this is a variant of the move-to-front

heuristic that we explored for lists in Section 7.7.2.) Intuitively, a splay operation

causes more frequently accessed elements to remain nearer to the root, thereby re-

ducing the typical search times. The surprising thing about splaying is that it allows

us to guarantee a logarithmic amortized running time, for insertions, deletions, and

searches.

11.4.1 Splaying

Given a node x of a binary search tree T , we splay x by moving x to the root of T

through a sequence of restructurings. The particular restructurings we perform are

important, for it is not sufficient to move x to the root of T by just any sequence

of restructurings. The specific operation we perform to move x up depends upon

the relative positions of x, its parent y, and x’s grandparent z (if it exists). There are

three cases that we will consider.

zig-zig: The node x and its parent y are both left children or both right children.

(See Figure 11.15.) We promote x, making y a child of x and z a child of y,

while maintaining the inorder relationships of the nodes in T .

T1

y

T2

T3 T4

z

10

x

20

30

T4

T3

T2T1

20

y10

30

z

x

(a) (b)

Figure 11.15: Zig-zig: (a) before; (b) after. There is another symmetric configura-

tion where x and y are left children.

11.4. Splay Trees 489

zig-zag: One of x and y is a left child and the other is a right child. (See Fig-

ure 11.16.) In this case, we promote x by making x have y and z as its chil-

dren, while maintaining the inorder relationships of the nodes in T .

x

z

T4

y

T2 T3

30

10

20

T1

10

T2

y

T3 T4

20

z

x 30

T1

(a) (b)

Figure 11.16: Zig-zag: (a) before; (b) after. There is another symmetric configura-

tion where x is a right child and y is a left child.

zig: x does not have a grandparent. (See Figure 11.17.) In this case, we perform a

single rotation to promote x over y, making y a child of x, while maintaining

the relative inorder relationships of the nodes in T .

T1

T2 T3

10

y

20

x

T1 T2

T3

10

y

20

x

(a) (b)

Figure 11.17: Zig: (a) before; (b) after. There is another symmetric configuration

where x is originally a left child of y.

We perform a zig-zig or a zig-zag when x has a grandparent, and we perform a

zig when x has a parent but not a grandparent. A splaying step consists of repeating

these restructurings at x until x becomes the root of T . An example of the splaying

of a node is shown in Figures 11.18 and 11.19.

490 Chapter 11. Search Trees

4

5

6

14

10

11

12

13 17

16

8

3

7

(a)

4

5

6

16

11

17

8

3 10

12

14

13

7

(b)

4

5

6

17

10

11

12

13 16

14

8

3

7

(c)

Figure 11.18: Example of splaying a node: (a) splaying the node storing 14 starts

with a zig-zag; (b) after the zig-zag; (c) the next step will be a zig-zig. (Continues

in Figure 11.19.)

11.4. Splay Trees 491

4

5

6

17

8

3 10

12 16

14

11 137

(d)

16

11

10

4

13

3

8

14

126

5 7 17

(e)

8

3

12

4

1311

17

1610

6

5 7

14

(f)

Figure 11.19: Example of splaying a node:(d) after the zig-zig; (e) the next step is

again a zig-zig; (f) after the zig-zig. (Continued from Figure 11.18.)

492 Chapter 11. Search Trees

11.4.2 When to Splay

The rules that dictate when splaying is performed are as follows:

• When searching for key k, if k is found at position p, we splay p, else we

splay the parent of the leaf position at which the search terminates unsuccess-

fully. For example, the splaying in Figures 11.18 and 11.19 would be per-

formed after searching successfully for key 14 or unsuccessfully for key 15.

• When inserting key k, we splay the newly created internal node where k

gets inserted. For example, the splaying in Figures 11.18 and 11.19 would

be performed if 14 were the newly inserted key. We show a sequence of

insertions in a splay tree in Figure 11.20.

1
1

3

3

1

(a) (b) (c)

3

1

2

1 3

2 2

1 3

4

(d) (e) (f)

1

4

3

2

(g)

Figure 11.20: A sequence of insertions in a splay tree: (a) initial tree; (b) after

inserting 3, but before a zig step; (c) after splaying; (d) after inserting 2, but before

a zig-zag step; (e) after splaying; (f) after inserting 4, but before a zig-zig step;

(g) after splaying.

11.4. Splay Trees 493

• When deleting a key k, we splay the position p that is the parent of the re-

moved node; recall that by the removal algorithm for binary search trees, the

removed node may be that originally containing k, or a descendant node with

a replacement key. An example of splaying following a deletion is shown in

Figure 11.21.

8

103

4

5

6

7

w

p
11 4

103

11

6

7

5

(a) (b)

5

106

114

3

7

5

106

114

3

7

(c) (d)

3 5

4

6

7

10

11

(e)

Figure 11.21: Deletion from a splay tree: (a) the deletion of 8 from the root node

is performed by moving to the root the key of its inorder predecessor w, deleting

w, and splaying the parent p of w; (b) splaying p starts with a zig-zig; (c) after the

zig-zig; (d) the next step is a zig; (e) after the zig.

494 Chapter 11. Search Trees

11.4.3 Java Implementation

Although the mathematical analysis of a splay tree’s performance is complex (see

Section 11.4.4), the implementation of splay trees is a rather simple adaptation to

a standard binary search tree. Code Fragment 11.13 provides a complete imple-

mentation of a SplayTreeMap class, based upon the underlying TreeMap class and

use of the balancing framework described in Section 11.2.1. Note that the original

TreeMap class makes calls to the rebalanceAccess method, not just from within the

get method, but also within the put method when modifying the value associated

with an existing key, and within a failed remove operation.

1 /∗∗ An implementation of a sorted map using a splay tree. ∗/
2 public class SplayTreeMap<K,V> extends TreeMap<K,V> {
3 /∗∗ Constructs an empty map using the natural ordering of keys. ∗/
4 public SplayTreeMap() { super(); }
5 /∗∗ Constructs an empty map using the given comparator to order keys. ∗/
6 public SplayTreeMap(Comparator<K> comp) { super(comp); }
7 /∗∗ Utility used to rebalance after a map operation. ∗/
8 private void splay(Position<Entry<K,V>> p) {
9 while (!isRoot(p)) {

10 Position<Entry<K,V>> parent = parent(p);
11 Position<Entry<K,V>> grand = parent(parent);
12 if (grand == null) // zig case
13 rotate(p);
14 else if ((parent == left(grand)) == (p == left(parent))) { // zig-zig case
15 rotate(parent); // move PARENT upward
16 rotate(p); // then move p upward
17 } else { // zig-zag case
18 rotate(p); // move p upward
19 rotate(p); // move p upward again
20 }
21 }
22 }
23 // override the various TreeMap rebalancing hooks to perform the appropriate splay
24 protected void rebalanceAccess(Position<Entry<K,V>> p) {
25 if (isExternal(p)) p = parent(p);
26 if (p != null) splay(p);
27 }
28 protected void rebalanceInsert(Position<Entry<K,V>> p) {
29 splay(p);
30 }
31 protected void rebalanceDelete(Position<Entry<K,V>> p) {
32 if (!isRoot(p)) splay(parent(p));
33 }
34 }

Code Fragment 11.13: A complete implementation of the SplayTreeMap class.

11.4. Splay Trees 495

11.4.4 Amortized Analysis of Splaying ⋆

After a zig-zig or zig-zag, the depth of position p decreases by two, and after a zig

the depth of p decreases by one. Thus, if p has depth d, splaying p consists of a

sequence of ⌊d/2⌋ zig-zigs and/or zig-zags, plus one final zig if d is odd. Since a

single zig-zig, zig-zag, or zig affects a constant number of nodes, it can be done in

O(1) time. Thus, splaying a position p in a binary search tree T takes time O(d),
where d is the depth of p in T . In other words, the time for performing a splaying

step for a position p is asymptotically the same as the time needed just to reach that

position in a top-down search from the root of T .

Worst-Case Time

In the worst case, the overall running time of a search, insertion, or deletion in a

splay tree of height h is O(h), since the position we splay might be the deepest

position in the tree. Moreover, it is possible for h to be as large as n, as shown in

Figure 11.20. Thus, from a worst-case point of view, a splay tree is not an attractive

data structure.

In spite of its poor worst-case performance, a splay tree performs well in an

amortized sense. That is, in a sequence of intermixed searches, insertions, and

deletions, each operation takes on average logarithmic time. We perform the amor-

tized analysis of splay trees using the accounting method.

Amortized Performance of Splay Trees

For our analysis, we note that the time for performing a search, insertion, or deletion

is proportional to the time for the associated splaying. So let us consider only

splaying time.

Let T be a splay tree with n keys, and let w be a node of T . We define the

size n(w) of w as the number of nodes in the subtree rooted at w. Note that this

definition implies that the size of an internal node is one more than the sum of the

sizes of its children. We define the rank r(w) of a node w as the logarithm in base 2

of the size of w, that is, r(w) = log(n(w)). Clearly, the root of T has the maximum

size, n, and the maximum rank, logn, while each leaf has size 1 and rank 0.

We use cyber-dollars to pay for the work we perform in splaying a position p

in T , and we assume that one cyber-dollar pays for a zig, while two cyber-dollars

pay for a zig-zig or a zig-zag. Hence, the cost of splaying a position at depth d is

d cyber-dollars. We keep a virtual account storing cyber-dollars at each position of

T . Note that this account exists only for the purpose of our amortized analysis, and

does not need to be included in a data structure implementing the splay tree T .

496 Chapter 11. Search Trees

An Accounting Analysis of Splaying

When we perform a splaying, we pay a certain number of cyber-dollars (the exact

value of the payment will be determined at the end of our analysis). We distinguish

three cases:

• If the payment is equal to the splaying work, then we use it all to pay for the

splaying.

• If the payment is greater than the splaying work, we deposit the excess in the

accounts of several nodes.

• If the payment is less than the splaying work, we make withdrawals from the

accounts of several nodes to cover the deficiency.

We show below that a payment of O(logn) cyber-dollars per operation is sufficient

to keep the system working, that is, to ensure that each node keeps a nonnegative

account balance.

An Accounting Invariant for Splaying

We use a scheme in which transfers are made between the accounts of the nodes

to ensure that there will always be enough cyber-dollars to withdraw for paying for

splaying work when needed.

In order to use the accounting method to perform our analysis of splaying, we

maintain the following invariant:

Before and after a splaying, each node w of T has r(w) cyber-dollars

in its account.

Note that the invariant is “financially sound,” since it does not require us to make a

preliminary deposit to endow a tree with zero keys.

Let r(T) be the sum of the ranks of all the nodes of T . To preserve the invariant

after a splaying, we must make a payment equal to the splaying work plus the total

change in r(T). We refer to a single zig, zig-zig, or zig-zag operation in a splaying

as a splaying substep. Also, we denote the rank of a node w of T before and after

a splaying substep with r(w) and r′(w), respectively. The following proposition

gives an upper bound on the change of r(T) caused by a single splaying substep.

We will repeatedly use this lemma in our analysis of a full splaying of a node to the

root.

11.4. Splay Trees 497

Proposition 11.2: Let δ be the variation of r(T) caused by a single splaying sub-

step (a zig, zig-zig, or zig-zag) for a node x in T . We have the following:

• δ≤ 3(r′(x)− r(x))−2 if the substep is a zig-zig or zig-zag.

• δ≤ 3(r′(x)− r(x)) if the substep is a zig.

Justification: We use the fact that, if a > 0, b > 0, and c > a+b,
log a+ logb < 2log c−2. (11.6)

Let us consider the change in r(T) caused by each type of splaying substep.

zig-zig: (Recall Figure 11.15.) Since the size of each node is one more than the

size of its two children, note that only the ranks of x, y, and z change in a

zig-zig operation, where y is the parent of x and z is the parent of y. Also,

r′(x) = r(z), r′(y)≤ r′(x), and r(x) ≤ r(y). Thus,

δ = r′(x)+ r′(y)+ r′(z)− r(x)− r(y)− r(z)

= r′(y)+ r′(z)− r(x)− r(y)

≤ r′(x)+ r′(z)−2r(x). (11.7)

Note that n(x) + n′(z) < n′(x). Thus, r(x) + r′(z) < 2r′(x)− 2, as per For-

mula 11.6; that is,

r′(z)< 2r′(x)− r(x)−2.

This inequality and Formula 11.7 imply

δ ≤ r′(x)+ (2r′(x)− r(x)−2)−2r(x)

≤ 3(r′(x)− r(x))−2.

zig-zag: (Recall Figure 11.16.) Again, by the definition of size and rank, only the

ranks of x, y, and z change, where y denotes the parent of x and z denotes the

parent of y. Also, r(x) < r(y)< r(z) = r′(x). Thus,

δ = r′(x)+ r′(y)+ r′(z)− r(x)− r(y)− r(z)

= r′(y)+ r′(z)− r(x)− r(y)

≤ r′(y)+ r′(z)−2r(x). (11.8)

Note that n′(y)+n′(z) < n′(x); hence, r′(y)+ r′(z) < 2r′(x)−2, as per For-

mula 11.6. Thus,

δ ≤ 2r′(x)−2−2r(x)

= 2(r′(x)− r(x))−2 ≤ 3(r′(x)− r(x))−2.

zig: (Recall Figure 11.17.) In this case, only the ranks of x and y change, where y

denotes the parent of x. Also, r′(y)≤ r(y) and r′(x) ≥ r(x). Thus,

δ = r′(y)+ r′(x)− r(y)− r(x)

≤ r′(x)− r(x)

≤ 3(r′(x)− r(x)).

498 Chapter 11. Search Trees

Proposition 11.3: Let T be a splay tree with root t, and let ∆ be the total variation

of r(T) caused by splaying a node x at depth d. We have

∆≤ 3(r(t)− r(x))−d +2.

Justification: Splaying node x consists of c = ⌈d/2⌉ splaying substeps, each

of which is a zig-zig or a zig-zag, except possibly the last one, which is a zig if

d is odd. Let r0(x) = r(x) be the initial rank of x, and for i = 1, . . . ,c, let ri(x) be

the rank of x after the i th substep and δi be the variation of r(T) caused by the i th

substep. By Proposition 11.2, the total variation ∆ of r(T) caused by splaying x is

∆ =
c

∑
i=1

δi

≤ 2+
c

∑
i=1

3(ri(x)− ri−1(x))−2

= 3(rc(x)− r0(x))−2c+2

≤ 3(r(t)− r(x))−d +2.

By Proposition 11.3, if we make a payment of 3(r(t)− r(x))+2 cyber-dollars

towards the splaying of node x, we have enough cyber-dollars to maintain the in-

variant, keeping r(w) cyber-dollars at each node w in T , and pay for the entire

splaying work, which costs d cyber-dollars. Since the size of the root t is n, its

rank r(t) = logn. Given that r(x) ≥ 0, the payment to be made for splaying is

O(logn) cyber-dollars. To complete our analysis, we have to compute the cost for

maintaining the invariant when a node is inserted or deleted.

When inserting a new node w into a splay tree with n keys, the ranks of all

the ancestors of w are increased. Namely, let w0,wi, . . . ,wd be the ancestors of w,

where w0 = w, wi is the parent of wi−1, and wd is the root. For i = 1, . . . ,d, let

n′(wi) and n(wi) be the size of wi before and after the insertion, respectively, and

let r′(wi) and r(wi) be the rank of wi before and after the insertion. We have

n′(wi) = n(wi)+1.

Also, since n(wi)+ 1 ≤ n(wi+1), for i = 0,1, . . . ,d− 1, we have the following for

each i in this range:

r′(wi) = log(n′(wi)) = log(n(wi)+1)≤ log(n(wi+1)) = r(wi+1).

Thus, the total variation of r(T) caused by the insertion is
d

∑
i=1

(
r′(wi)− r(wi)

)
≤ r′(wd)+

d−1

∑
i=1

(r(wi+1)− r(wi))

= r′(wd)− r(w0)

≤ logn.

Therefore, a payment of O(logn) cyber-dollars is sufficient to maintain the invariant

when a new node is inserted.

11.4. Splay Trees 499

When deleting a node w from a splay tree with n keys, the ranks of all the an-

cestors of w are decreased. Thus, the total variation of r(T) caused by the deletion

is negative, and we do not need to make any payment to maintain the invariant

when a node is deleted. Therefore, we may summarize our amortized analysis in

the following proposition (which is sometimes called the “balance proposition” for

splay trees):

Proposition 11.4: Consider a sequence of m operations on a splay tree, each one

a search, insertion, or deletion, starting from a splay tree with zero keys. Also, let

ni be the number of keys in the tree after operation i, and n be the total number of

insertions. The total running time for performing the sequence of operations is

O

(
m+

m

∑
i=1

logni

)
,

which is O(m logn).

In other words, the amortized running time of performing a search, insertion,

or deletion in a splay tree is O(log n), where n is the size of the splay tree at the

time. Thus, a splay tree can achieve logarithmic-time amortized performance for

implementing a sorted map ADT. This amortized performance matches the worst-

case performance of AVL trees, (2,4) trees, and red-black trees, but it does so

using a simple binary tree that does not need any extra balance information stored

at each of its nodes. In addition, splay trees have a number of other interesting

properties that are not shared by these other balanced search trees. We explore one

such additional property in the following proposition (which is sometimes called

the “Static Optimality” proposition for splay trees):

Proposition 11.5: Consider a sequence of m operations on a splay tree, each one

a search, insertion, or deletion, starting from a splay tree T with zero keys. Also, let

f (i) denote the number of times the entry i is accessed in the splay tree, that is, its

frequency, and let n denote the total number of entries. Assuming that each entry is

accessed at least once, then the total running time for performing the sequence of

operations is

O

(
m+

n

∑
i=1

f (i) log(m/ f (i))

)
.

We omit the proof of this proposition, but it is not as hard to justify as one might

imagine. The remarkable thing is that this proposition states that the amortized

running time of accessing an entry i is O(log(m/ f (i))).

500 Chapter 11. Search Trees

11.5 (2,4) Trees

In this section, we will consider a data structure known as a (2,4) tree. It is a

particular example of a more general structure known as a multiway search tree, in

which internal nodes may have more than two children. Other forms of multiway

search trees will be discussed in Section 15.3.

11.5.1 Multiway Search Trees

Recall that general trees are defined so that internal nodes may have many children.

In this section, we discuss how general trees can be used as multiway search trees.

Map entries stored in a search tree are pairs of the form (k,v), where k is the key

and v is the value associated with the key.

Definition of a Multiway Search Tree

Let w be a node of an ordered tree. We say that w is a d-node if w has d children.

We define a multiway search tree to be an ordered tree T that has the following

properties, which are illustrated in Figure 11.22a:

• Each internal node of T has at least two children. That is, each internal node

is a d-node such that d ≥ 2.

• Each internal d-node w of T with children c1, . . . ,cd stores an ordered set of

d−1 key-value pairs (k1,v1), . . ., (kd−1,vd−1), where k1 ≤ ·· · ≤ kd−1.

• Let us conventionally define k0 = −∞ and kd = +∞. For each entry (k,v)
stored at a node in the subtree of w rooted at ci, i = 1, . . . ,d, we have that

ki−1 ≤ k ≤ ki.

That is, if we think of the set of keys stored at w as including the special fictitious

keys k0 = −∞ and kd = +∞, then a key k stored in the subtree of T rooted at a

child node ci must be “in between” two keys stored at w. This simple viewpoint

gives rise to the rule that a d-node stores d− 1 regular keys, and it also forms the

basis of the algorithm for searching in a multiway search tree.

By the above definition, the external nodes of a multiway search do not store

any data and serve only as “placeholders.” As with our convention for binary search

trees (Section 11.1), these can be replaced by null references in practice. A binary

search tree can be viewed as a special case of a multiway search tree, where each

internal node stores one entry and has two children.

Whether internal nodes of a multiway tree have two children or many, however,

there is an interesting relationship between the number of key-value pairs and the

number of external nodes in a multiway search tree.

Proposition 11.6: An n-entry multiway search tree has n+1 external nodes.

We leave the justification of this proposition as an exercise (C-11.49).

11.5. (2,4) Trees 501

25

11 13

6 8 2723 243 4 14

5 10

22

17

(a)

6 8

5 10

22

25

11 13 17

23 24 273 4 14

(b)

23 24

17

273 4 6 8

25

11 13

14

5 10

22

(c)

Figure 11.22: (a) A multiway search tree T ; (b) search path in T for key 12 (unsuc-

cessful search); (c) search path in T for key 24 (successful search).

502 Chapter 11. Search Trees

Searching in a Multiway Tree

Searching for an entry with key k in a multiway search tree T is simple. We perform

such a search by tracing a path in T starting at the root. (See Figure 11.22b and c.)

When we are at a d-node w during this search, we compare the key k with the keys

k1, . . . ,kd−1 stored at w. If k = ki for some i, the search is successfully completed.

Otherwise, we continue the search in the child ci of w such that ki−1 < k < ki.

(Recall that we conventionally define k0 = −∞ and kd = +∞.) If we reach an

external node, then we know that there is no entry with key k in T , and the search

terminates unsuccessfully.

Data Structures for Representing Multiway Search Trees

In Section 8.3.3, we discuss a linked data structure for representing a general tree.

This representation can also be used for a multiway search tree. When using a

general tree to implement a multiway search tree, we must store at each node one

or more key-value pairs associated with that node. That is, we need to store with w

a reference to some collection that stores the entries for w.

During a search for key k in a multiway search tree, the primary operation

needed when navigating a node is finding the smallest key at that node that is greater

than or equal to k. For this reason, it is natural to model the information at a node

itself as a sorted map, allowing use of the ceilingEntry(k) method. We say such

a map serves as a secondary data structure to support the primary data structure

represented by the entire multiway search tree. This reasoning may at first seem

like a circular argument, since we need a representation of a (secondary) ordered

map to represent a (primary) ordered map. We can avoid any circular dependence,

however, by using the bootstrapping technique, where we use a simple solution to

a problem to create a new, more advanced solution.

In the context of a multiway search tree, a natural choice for the secondary

structure at each node is the SortedTableMap of Section 10.3.1. Because we want

to determine the associated value in case of a match for key k, and otherwise the

corresponding child ci such that ki−1 < k < ki, we recommend having each key

ki in the secondary structure map to the pair (vi,ci). With such a realization of a

multiway search tree T , processing a d-node w while searching for an entry of T

with key k can be performed using a binary search operation in O(logd) time. Let

dmax denote the maximum number of children of any node of T , and let h denote the

height of T . The search time in a multiway search tree is therefore O(h log dmax).
If dmax is a constant, the running time for performing a search is O(h).

The primary efficiency goal for a multiway search tree is to keep the height

as small as possible. We will next discuss a strategy that caps dmax at 4 while

guaranteeing a height h that is logarithmic in n, the total number of entries stored

in the map.

11.5. (2,4) Trees 503

11.5.2 (2,4)-Tree Operations

One form of a multiway search tree that keeps the tree balanced while using small

secondary data structures at each node is the (2,4) tree, also known as a 2-4 tree

or 2-3-4 tree. This data structure achieves these goals by maintaining two simple

properties (see Figure 11.23):

Size Property: Every internal node has at most four children.

Depth Property: All the external nodes have the same depth.

12

17116 7 83 4

5 10 15

13 14

Figure 11.23: A (2,4) tree.

Again, we assume that external nodes are empty and, for the sake of simplicity,

we describe our search and update methods assuming that external nodes are real

nodes, although this latter requirement is not strictly needed.

Enforcing the size property for (2,4) trees keeps the nodes in the multiway

search tree simple. It also gives rise to the alternative name “2-3-4 tree,” since it

implies that each internal node in the tree has 2, 3, or 4 children. Another implica-

tion of this rule is that we can represent the secondary map stored at each internal

node using an unordered list or an ordered array, and still achieve O(1)-time perfor-

mance for all operations (since dmax = 4). The depth property, on the other hand,

enforces an important bound on the height of a (2,4) tree.

Proposition 11.7: The height of a (2,4) tree storing n entries is O(log n).

Justification: Let h be the height of a (2,4) tree T storing n entries. We justify

the proposition by showing the claim

1

2
log(n+1)≤ h≤ log(n+1). (11.9)

To justify this claim note first that, by the size property, we can have at most

4 nodes at depth 1, at most 42 nodes at depth 2, and so on. Thus, the number of

external nodes in T is at most 4h. Likewise, by the depth property and the definition

504 Chapter 11. Search Trees

of a (2,4) tree, we must have at least 2 nodes at depth 1, at least 22 nodes at depth

2, and so on. Thus, the number of external nodes in T is at least 2h. In addition, by

Proposition 11.6, the number of external nodes in T is n+1. Therefore, we obtain

2h ≤ n+1≤ 4h.

Taking the logarithm in base 2 of the terms for the above inequalities, we get that

h≤ log(n+1)≤ 2h,

which justifies our claim (Formula 11.9) when terms are rearranged.

Proposition 11.7 states that the size and depth properties are sufficient for keep-

ing a multiway tree balanced. Moreover, this proposition implies that performing

a search in a (2,4) tree takes O(logn) time and that the specific realization of the

secondary structures at the nodes is not a crucial design choice, since the maximum

number of children dmax is a constant.

Maintaining the size and depth properties requires some effort after performing

insertions and deletions in a (2,4) tree, however. We discuss these operations next.

Insertion

To insert a new entry (k,v), with key k, into a (2,4) tree T , we first perform a

search for k. Assuming that T has no entry with key k, this search terminates

unsuccessfully at an external node z. Let w be the parent of z. We insert the new

entry into node w and add a new child y (an external node) to w on the left of z.

Our insertion method preserves the depth property, since we add a new external

node at the same level as existing external nodes. Nevertheless, it may violate the

size property. Indeed, if a node w was previously a 4-node, then it would become

a 5-node after the insertion, which causes the tree T to no longer be a (2,4) tree.

This type of violation of the size property is called an overflow at node w, and it

must be resolved in order to restore the properties of a (2,4) tree. Let c1, . . . ,c5 be

the children of w, and let k1, . . . ,k4 be the keys stored at w. To remedy the overflow

at node w, we perform a split operation on w as follows (see Figure 11.24):

• Replace w with two nodes w′ and w′′, where

◦ w′ is a 3-node with children c1,c2,c3 storing keys k1 and k2.

◦ w′′ is a 2-node with children c4,c5 storing key k4.

• If w is the root of T , create a new root node u; else, let u be the parent of w.

• Insert key k3 into u and make w′ and w′′ children of u, so that if w was child

i of u, then w′ and w′′ become children i and i+1 of u, respectively.

As a consequence of a split operation on node w, a new overflow may occur at the

parent u of w. If such an overflow occurs, it triggers in turn a split at node u. (See

Figure 11.25.) A split operation either eliminates the overflow or propagates it into

the parent of the current node. We show a sequence of insertions in a (2,4) tree in

Figure 11.26.

11.5. (2,4) Trees 505

h1 h2

c3c2c1 c5

u

w

k1 k2 k3 k4

c4

k3

c3c2c1 c5

w

k1 k2 k4

c4

u

h1 h2

w′

c2c1 c4 c5

k1 k2 k4

h1 k3 h2

u

w′′

c3

(a) (b) (c)

Figure 11.24: A node split: (a) overflow at a 5-node w; (b) the third key of w inserted

into the parent u of w; (c) node w replaced with a 3-node w′ and a 2-node w′′.

13

12

146 7 8 113 4

105

15 15 17

12

146 7 8 113 4

105

13

(a) (b)

6 7 8 11 13 14 17

15
5 10 12

3 4 13 14 17116 7 83 4

5 10 12 15

(c) (d)

12

13 14 17116 7 83 4

5 10 15 15

17116 7 83 4

12

5 10

13 14

(e) (f)

Figure 11.25: An insertion in a (2,4) tree that causes a cascading split: (a) before

the insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the split

a new overflow occurs; (e) another split, creating a new root node; (f) final tree.

506 Chapter 11. Search Trees

4 4 6 64 12 6 124 15

(a) (b) (c) (d)

12

4 6 15

12

4 156

(e) (f)

6 15

12

43 15

12

3 4 5 6

(g) (h)

15

12

3 4

5

6

12

1543

5

6

(i) (j)

10

12

3 1564

5

3 15

12

104 6 8

5

(k) (l)

Figure 11.26: A sequence of insertions into a (2,4) tree: (a) initial tree with one

entry; (b) insertion of 6; (c) insertion of 12; (d) insertion of 15, which causes an

overflow; (e) split, which causes the creation of a new root node; (f) after the split;

(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; (j) after the

split; (k) insertion of 10; (l) insertion of 8.

11.5. (2,4) Trees 507

Analysis of Insertion in a (2,4) Tree

Because dmax is at most 4, the original search for the placement of new key k uses

O(1) time at each level, and thus O(logn) time overall, since the height of the tree

is O(log n) by Proposition 11.7.

The modifications to a single node to insert a new key and child can be im-

plemented to run in O(1) time, as can a single split operation. The number of

cascading split operations is bounded by the height of the tree, and so that phase of

the insertion process also runs in O(log n) time. Therefore, the total time to perform

an insertion in a (2,4) tree is O(logn).

Deletion

Let us now consider the removal of an entry with key k from a (2,4) tree T . We

begin such an operation by performing a search in T for an entry with key k. Re-

moving an entry from a (2,4) tree can always be reduced to the case where the entry

to be removed is stored at a node w whose children are external nodes. Suppose,

for instance, that the entry with key k that we wish to remove is stored in the i th

entry (ki,vi) at a node z that has internal children. In this case, we swap the entry

(ki,vi) with an appropriate entry that is stored at a node w with external children as

follows (see Figure 11.27d):

1. We find the rightmost internal node w in the subtree rooted at the i th child of

z, noting that the children of node w are all external nodes.

2. We swap the entry (ki,vi) at z with the last entry of w.

Once we ensure that the entry to remove is stored at a node w with only external

children (because either it was already at w or we swapped it into w), we simply

remove the entry from w and remove the external node that is the i th child of w.

Removing an entry (and a child) from a node w as described above preserves

the depth property, for we always remove an external child from a node w with only

external children. However, in removing such an external node, we may violate the

size property at w. Indeed, if w was previously a 2-node, then it becomes a 1-node

with no entries after the removal (Figure 11.27a and d), which is not allowed in

a (2,4) tree. This type of violation of the size property is called an underflow at

node w. To remedy an underflow, we check whether an immediate sibling of w

is a 3-node or a 4-node. If we find such a sibling s, then we perform a transfer

operation, in which we move a child of s to w, a key of s to the parent u of w and s,

and a key of u to w. (See Figure 11.27b and c.) If w has only one sibling, or if both

immediate siblings of w are 2-nodes, then we perform a fusion operation, in which

we merge w with a sibling, creating a new node w′, and move a key from the parent

u of w to w′. (See Figure 11.27e and f.)

508 Chapter 11. Search Trees

6 8 1713 14

15

12

11

4

5 10 10

8

15

13 14 1711

u

w

12

5
6 s

(a) (b)

w

11 1713 14

15106

5 8

12

s

u

13 1485

6 10

17

12

15

11

(c) (d)

17

10

w

11

13 14

15

85

6

u

6

13 148 10

w′

15

17

u

11

5

(e) (f)

6

148 10

13

15

175

11

8 10

11

1714

6 15

5

(g) (h)

Figure 11.27: A sequence of removals from a (2,4) tree: (a) removal of 4, causing

an underflow; (b) a transfer operation; (c) after the transfer operation; (d) removal

of 12, causing an underflow; (e) a fusion operation; (f) after the fusion operation;

(g) removal of 13; (h) after removing 13.

11.5. (2,4) Trees 509

A fusion operation at node w may cause a new underflow to occur at the parent

u of w, which in turn triggers a transfer or fusion at u. (See Figure 11.28.) Hence,

the number of fusion operations is bounded by the height of the tree, which is

O(logn) by Proposition 11.7. If an underflow propagates all the way up to the root,

then the root is simply deleted. (See Figure 11.28c and d.)

11

178 10

6

5

14

15 6

w

8 10 17

11

u

5

15

(a) (b)

8 10

6

u

w

17155

11

1785 10

6 11

15

(c) (d)

Figure 11.28: A propagating sequence of fusions in a (2,4) tree: (a) removal of 14,

which causes an underflow; (b) fusion, which causes another underflow; (c) second

fusion operation, which causes the root to be removed; (d) final tree.

Performance of (2,4) Trees

The asymptotic performance of a (2,4) tree is identical to that of an AVL tree (see

Table 11.2) in terms of the sorted map ADT, with guaranteed logarithmic bounds

for most operations. The time complexity analysis for a (2,4) tree having n key-

value pairs is based on the following:

• The height of a (2,4) tree storing n entries is O(logn), by Proposition 11.7.

• A split, transfer, or fusion operation takes O(1) time.

• A search, insertion, or removal of an entry visits O(logn) nodes.

Thus, (2,4) trees provide for fast map search and update operations. (2,4) trees

also have an interesting relationship to the data structure we discuss next.

510 Chapter 11. Search Trees

11.6 Red-Black Trees

Although AVL trees and (2,4) trees have a number of nice properties, they also

have some disadvantages. For instance, AVL trees may require many restructure

operations (rotations) to be performed after a deletion, and (2,4) trees may require

many split or fusing operations to be performed after an insertion or removal. The

data structure we discuss in this section, the red-black tree, does not have these

drawbacks; it uses O(1) structural changes after an update in order to stay balanced.

Formally, a red-black tree is a binary search tree (see Section 11.1) with nodes

colored red and black in a way that satisfies the following properties:

Root Property: The root is black.

External Property: Every external node is black.

Red Property: The children of a red node are black.

Depth Property: All external nodes have the same black depth, defined as the

number of proper ancestors that are black.

An example of a red-black tree is shown in Figure 11.29.

14

13 17

15

12

5

3

4

86

7 11

10

Figure 11.29: An example of a red-black tree, with “red” nodes drawn in white. The

common black depth for this tree is 3.

We can make the red-black tree definition more intuitive by noting an inter-

esting correspondence between red-black trees and (2,4) trees. Namely, given a

red-black tree, we can construct a corresponding (2,4) tree by merging every red

node w into its parent, storing the entry from w at its parent, and with the chil-

dren of w becoming ordered children of the parent. For example, the red-black tree

in Figure 11.29 corresponds to the (2,4) tree from Figure 11.23, as illustrated in

Figure 11.30. The depth property of the red-black tree corresponds to the depth

property of the (2,4) tree since exactly one black node of the red-black tree con-

tributes to each node of the corresponding (2,4) tree.

11.6. Red-Black Trees 511

12

15

11

17

7

5

6

13

8

3

4 14

10

Figure 11.30: An illustration of the correspondance between the red-black tree of

Figure 11.29 and the (2,4) tree of Figure 11.23, based on the highlighted grouping

of red nodes with their black parents.

Conversely, we can transform any (2,4) tree into a corresponding red-black tree

by coloring each node w black and then performing the following transformations,

as illustrated in Figure 11.31.

• If w is a 2-node, then keep the (black) children of w as is.

• If w is a 3-node, then create a new red node y, give w’s last two (black)

children to y, and make the first child of w and y be the two children of w.

• If w is a 4-node, then create two new red nodes y and z, give w’s first two

(black) children to y, give w’s last two (black) children to z, and make y and

z be the two children of w.

Notice that a red node always has a black parent in this construction.

15
←→

15

(a)

13 14
←→

13

14

14

13

or

(b)

76 8
←→

7

86(c)

Figure 11.31: Correspondence between nodes of a (2,4) tree and a red-black tree:

(a) 2-node; (b) 3-node; (c) 4-node.

512 Chapter 11. Search Trees

Proposition 11.8: The height of a red-black tree storing n entries is O(logn).

Justification: Let T be a red-black tree storing n entries, and let h be the height

of T . We justify this proposition by establishing the following fact:

log(n+1)≤ h≤ 2log(n+1).

Let d be the common black depth of all the external nodes of T . Let T ′ be the

(2,4) tree associated with T , and let h′ be the height of T ′. Because of the corre-

spondence between red-black trees and (2,4) trees, we know that h′ = d. Hence, by

Proposition 11.7, d = h′ ≤ log(n+1). By the red property, h≤ 2d. Thus, we obtain

h≤ 2log(n+1). The other inequality, log(n+1)≤ h, follows from Proposition 8.7

and the fact that T has n internal nodes.

11.6.1 Red-Black Tree Operations

The algorithm for searching in a red-black tree T is the same as that for a standard

binary search tree (Section 11.1). Thus, searching in a red-black tree takes time

proportional to the height of the tree, which is O(logn) by Proposition 11.8.

The correspondence between (2,4) trees and red-black trees provides important

intuition that we will use in our discussion of how to perform updates in red-black

trees; in fact, the update algorithms for red-black trees can seem mysteriously com-

plex without this intuition. Split and fuse operations of a (2,4) tree will be effec-

tively mimicked by recoloring neighboring red-black tree nodes. A rotation within

a red-black tree will be used to change orientations of a 3-node between the two

forms shown in Figure 11.31(b).

Insertion

Consider the insertion of a key-value pair (k,v) into a red-black tree T . The al-

gorithm initially proceeds as in a standard binary search tree (Section 11.1.2).

Namely, we search for k in T and if we reach an external node, we replace this

node with an internal node x, storing the entry and having two external children.

If this is the first entry in T , and thus x is the root, we color it black. In all other

cases, we color x red. That action corresponds to inserting (k,v) into a node of the

(2,4) tree T ′ at the lowest internal level. The insertion preserves the root and depth

properties of T , but it may violate the red property. Indeed, if x is not the root of T

and its parent y is red, then we have a parent and a child (namely, y and x) that are

both red. Note that by the root property, y cannot be the root of T , and by the red

property (which was previously satisfied), the parent z of y must be black. Since x

and its parent are red, but x’s grandparent z is black, we call this violation of the red

property a double red at node x. To remedy a double red, we consider two cases.

11.6. Red-Black Trees 513

Case 1: The Sibling s of y is Black. (See Figure 11.32.) In this case, the double

red denotes the fact that we have added the new node to a corresponding

3-node of the (2,4) tree T ′, effectively creating a malformed 4-node. This

formation has one red node, y, that is the parent of another red node, x;

we want the two red nodes to be siblings instead. To fix this problem, we

perform a trinode restructuring of T . The trinode restructuring (introduced

in Section 11.2) is done by the operation restructure(x), which consists of

the following steps (see again Figure 11.32):

• Take node x, its parent y, and grandparent z, and temporarily relabel

them as a, b, and c, in left-to-right order, so that a, b, and c will be

visited in this order by an inorder tree traversal.

• Replace the grandparent z with the node labeled b, and make nodes a

and c the children of b, keeping inorder relationships unchanged.

After performing the restructure(x) operation, we color b black and we color

a and c red. Thus, the restructuring eliminates the double-red problem. No-

tice that the portion of any path through the restructured part of the tree is

incident to exactly one black node, both before and after the trinode restruc-

turing. Therefore, the black depth of the tree is unaffected.

z

sx

y

10

20

30

x

z

y

s10

30

20

y

x

z

s

30

20

10

x

z

y

s 30

10

20

(a)

b

a c

10 30

20

(b)

Figure 11.32: Restructuring a red-black tree to remedy a double red: (a) the four

configurations for x, y, and z before restructuring; (b) after restructuring.

514 Chapter 11. Search Trees

Case 2: The Sibling s of y is Red. (See Figure 11.33.) In this case, the double red

denotes an overflow in the corresponding (2,4) tree T ′. To fix the problem,

we perform the equivalent of a split operation. Namely, we do a recoloring:

we color y and s black and their parent z red (unless z is the root, in which

case, it remains black). Notice that unless z is the root, the portion of any

path through the affected part of the tree is incident to exactly one black

node, both before and after the recoloring. Therefore, the black depth of the

tree is unaffected by the recoloring unless z is the root, in which case it is

increased by one.

However, it is possible that the double-red problem reappears after such a

recoloring, albeit higher up in the tree T , since z may have a red parent. If

the double-red problem reappears at z, then we repeat the consideration of the

two cases at z. Thus, a recoloring either eliminates the double-red problem

at node x, or propagates it to the grandparent z of x. We continue going

up T performing recolorings until we finally resolve the double-red problem

(with either a final recoloring or a trinode restructuring). Thus, the number

of recolorings caused by an insertion is no more than half the height of tree

T , that is, O(logn) by Proposition 11.8.

z

y

x

s

10

20 40

30

10 20 30 40

(a)

z

y

x

s
30

20 40

104010 20

. . . 30 . . .

(b)

Figure 11.33: Recoloring to remedy the double-red problem: (a) before recoloring

and the corresponding 5-node in the associated (2,4) tree before the split; (b) after

recoloring and the corresponding nodes in the associated (2,4) tree after the split.

As further examples, Figures 11.34 and 11.35 show a sequence of insertion

operations in a red-black tree.

11.6. Red-Black Trees 515

4

7

4

12

4

7

7

124

(a) (b) (c) (d)

7

124

15 15

7

4 12

7

153

124 124

7

3 155

(e) (f) (g) (h)

14

4

3 5 15

7

12

7

4

3 5 12

14

15

(i) (j)

3

18

15

14

125

7

4

3

18

15

14

125

7

4

(k) (l)

Figure 11.34: A sequence of insertions in a red-black tree: (a) initial tree; (b) inser-

tion of 7; (c) insertion of 12, which causes a double red; (d) after restructuring; (e)

insertion of 15, which causes a double red; (f) after recoloring (the root remains

black); (g) insertion of 3; (h) insertion of 5; (i) insertion of 14, which causes a

double red; (j) after restructuring; (k) insertion of 18, which causes a double red;

(l) after recoloring. (Continues in Figure 11.35.)

516 Chapter 11. Search Trees

3

4

16

5

14

12

18

7

15 3

4

15

5

14

12

18

7

16

(m) (n)

4 14

5 16

18

12

15

3

7

17

12

14

15

7

17

4

1653

18

(o) (p)

1812

7

17

15

5

16

3

4

14

(q)

Figure 11.35: A sequence of insertions in a red-black tree (continued from Fig-

ure 11.34): (m) insertion of 16, which causes a double red; (n) after restructuring;

(o) insertion of 17, which causes a double red; (p) after recoloring there is again a

double red, to be handled by a restructuring; (q) after restructuring.

11.6. Red-Black Trees 517

Deletion

Deleting an entry with key k from a red-black tree T initially proceeds as for a bi-

nary search tree (Section 11.1.2). Structurally, the process results in the removal of

an internal node (either that originally containing key k or its inorder predecessor)

together with a child that is external, and the promotion of its other child.

If the removed internal node was red, this structural change does not affect the

black depths of any paths in the tree, nor introduce any red violations, and so the

resulting tree remains a valid red-black tree. In the corresponding (2,4) tree T ′, this

case denotes the shrinking of a 4-node or 3-node. If the removed internal node was

black, it must have had black height 1, and therefore either both of its children were

external, or it had one red child that was an internal node with two external children.

In the latter case, the removed node represents the black part of a corresponding 3-

node, and we restore the red-black properties by recoloring the promoted child to

be black.

The most complex case is when the removed node was black and had two exter-

nal children. In the corresponding (2,4) tree, this denotes the removal of an entry

from a 2-node. Without rebalancing, such a change results in a deficit of one for

the black depth of the external position p that is the promoted child of the deleted

internal node. To preserve the depth property, we temporarily assign the promoted

leaf a fictitious double black color. A double black in T denotes an underflow in

the corresponding (2,4) tree T ′. To remedy a double-black problem at an arbitrary

position p, we will consider three cases.

Case 1: The Sibling y of p is Black and has a Red Child x. (See Figure 11.36.)

We perform a trinode restructuring, as originally described in Section 11.2.

The operation restructure(x) takes the node x, its parent y, and grandparent

z, labels them temporarily left to right as a, b, and c, and replaces z with the

node labeled b, making it the parent of the other two. We color a and c black,

and give b the former color of z.

Notice that the path to p in the result includes one additional black node af-

ter the restructure, while the number of black nodes on paths to any of the

other three subtrees illustrated in Figure 11.36 remains unchanged. There-

fore, we return p to be colored (regular) black, and the double-black problem

is eliminated.

Resolving this case corresponds to a transfer operation in the (2,4) tree T ′

between two children of node z. The fact that y has a red child assures us

that it represents either a 3-node or a 4-node. In effect, the entry previously

stored at z is demoted to become a new 2-node to resolve the deficiency,

while an entry stored at y or its child is promoted to take the place of the

entry previously stored at z.

518 Chapter 11. Search Trees

x

p

z

y

20

40

30

10 20

. . . 30 . . .

40

10

(a)

x

p

z

y

10

40

30

10 20

. . . 30 . . .

40

20

(b)

b

a c

p

40

10
30

40

10

20

30

. . . 20 . . .

(c)

Figure 11.36: Restructuring of a red-black tree to remedy the double-black problem:

(a) and (b) configurations before the restructuring, where p is a right child and

the associated nodes in the corresponding (2,4) tree before the transfer (two other

symmetric configurations where p is a left child are possible); (c) configuration

after the restructuring and the associated nodes in the corresponding (2,4) tree

after the transfer. The gray color for node z in parts (a) and (b) and for node b in

part (c) denotes the fact that this node may be colored either red or black.

11.6. Red-Black Trees 519

Case 2: The Sibling y of p is Black and Both Children of y are Black.

We do a recoloring, beginning by changing the color of p from double black

to black and the color of y from black to red. This does not create any red

violation, because both children of y are black. To counteract the decrease in

black depth for paths passing through y or p, we consider the common parent

of p and y, which we denote as z. If z is red, we color it black and the problem

has been resolved (see Figure 11.37a). If z is black, we color it double black,

thereby propagating the problem higher up the tree (see Figure 11.37b).

Resolving this case corresponds to a fusion operation in the corresponding

(2,4) tree T ′, as y must represent a 2-node. The case where the problem

propagates upward is when parent z also represents a 2-node.

z

y p

z

y p

20

30

40

30

20 40

(a)

z

y p y

z

p

20

30

40

30

20 40

(b)

Figure 11.37: A recoloring operation, which has neutral effect on the black depth

for paths: (a) when z is originally red, the recoloring resolves the double-black

problem, ending the process; (b) when z is originally black, it becomes double-

black, requiring a cascading remedy.

Case 3: Sibling y of p is Red. (See Figure 11.38.)

Let z denote the common parent of y and p, and note that z must be black,

because y is red. The combination of y and z represents a 3-node in the

corresponding (2,4) tree T ′. In this case, we perform a rotation about y and

z, and then recolor y black and z red. This denotes a reorientation of a 3-node

in the corresponding (2,4) tree T ′.

We now reconsider the double-black problem at p. After the adjustment,

the sibling of p is black, and either Case 1 or Case 2 applies. Furthermore,

the next application will be the last, because Case 1 is always terminal and

Case 2 will be terminal given that the parent of p is now red.

520 Chapter 11. Search Trees

z

y p p

z

y

40

30

20

40

30

20

Figure 11.38: A rotation and recoloring about red node y and black node z in the

presence of a double-black problem (a symmetric configuration is possible). This

amounts to a change of orientation in the corresponding 3-node of a (2,4) tree.

This operation does not affect the black depth of any paths through this portion of

the tree, but after the operation, one of the other resolutions to the double-black

problem may be applied, as the sibling of p will be black.

In Figure 11.39, we show a sequence of deletions on a red-black tree. We

illustrate a Case 1 restructuring in parts (c) and (d). We illustrate a Case 2 recoloring

in parts (f) and (g). Finally, we show an example of a Case 3 rotation between parts

(i) and (j), concluding with a Case 2 recoloring in part (k).

Performance of Red-Black Trees

The asymptotic performance of a red-black tree is identical to that of an AVL tree

or a (2,4) tree in terms of the sorted map ADT, with guaranteed logarithmic time

bounds for most operations. (See Table 11.2 for a summary of the AVL perfor-

mance.) The primary advantage of a red-black tree is that an insertion or deletion

requires only a constant number of restructuring operations. (This is in contrast

to AVL trees and (2,4) trees, both of which require a logarithmic number of struc-

tural changes per map operation in the worst case.) That is, an insertion or deletion

in a red-black tree requires logarithmic time for a search, and may require a loga-

rithmic number of recoloring operations that cascade upward. We formalize these

facts with the following propositions.

Proposition 11.9: The insertion of an entry in a red-black tree storing n entries

can be done in O(logn) time and requires O(logn) recolorings and at most one

trinode restructuring.

Proposition 11.10: The algorithm for deleting an entry from a red-black tree

with n entries takes O(log n) time and performs O(log n) recolorings and at most

two restructuring operations.

The proofs of these propositions are left as Exercises R-11.26 and R-11.27.

11.6. Red-Black Trees 521

1812

7

17

15

5

16

3

4

14

167

4 12 1815

5 17

14

(a) (b)

4 1815

5 17

16

14

7

7

5

15

17

14

18

16

4

(c) (d)

18

5

4 7

14

15

16 5

14

4

16

7 15

5

15

14

16

74

(e) (f) (g)

5

14

7

16

4 4

14

7

5 14

7

5

4

5

4

7

14

(h) (i) (j) (k)

Figure 11.39: A sequence of deletions from a red-black tree: (a) initial tree; (b) re-

moval of 3; (c) removal of 12, causing a black deficit to the right of 7 (handled by

restructuring); (d) after restructuring; (e) removal of 17; (f) removal of 18, causing

a black deficit to the right of 16 (handled by recoloring); (g) after recoloring; (h) re-

moval of 15; (i) removal of 16, causing a black deficit to the right of 14 (handled

initially by a rotation); (j) after the rotation the black deficit needs to be handled by

a recoloring; (k) after the recoloring.

522 Chapter 11. Search Trees

11.6.2 Java Implementation

In this section, we will provide an implementation of a RBTreeMap class that in-

herits from the standard TreeMap class and relies on the balancing framework de-

scribed in Section 11.2.1. In that framework, each node stores an auxiliary integer

that can be used for maintaining balance information. For a red-black tree, we use

that integer to represent color, choosing to let value 0 (the default) designate the

color black, and value 1 the color red; with this convention, any newly created leaf

in the tree will be black.

Our implementation begins in Code Fragment 11.14, with constructors for an

empty map, and a series of convenient utilities for managing the auxiliary field to

represent color information. That code fragment continues with support for rebal-

ancing the tree after an insertion is performed. When an entry has been inserted in a

tree by the standard search-tree algorithm, it will be stored at a previously external

node that was converted to an internal node with two new external children. The

rebalanceInsert hook is then called, allowing us the opportunity to modify the tree.

Except for the special case where the new element is at the root, we change the color

of the node with the new element to red (it had been black when a leaf), and then we

consider the possibility that we have a double-red violation. The resolveRed utility

closely follows the case analysis described in Section 11.6.1, recurring in the case

when the red violation is propagated upward.

Code Fragment 11.15 manages the rebalancing process after a deletion, based

upon the case analysis described in Section 11.6.1. If the removed node was red,

then no other action is necessary; however, if the removed node was black, we

must consider a way to restore the depth property. An additional challenge is that

by the time the rebalanceDelete method is called, a node has already been removed

from the tree (this hook is invoked on the promoted child of that removed node).

Fortunately, we can infer the properties of the removed node based upon the red-

black tree properties, which were satisfied before the deletion.

In particular, let p denote the promoted child of the removed node. If a black

node with a red child has been deleted, then p will be that red child; we remedy

this by coloring p black. Otherwise, if p is not the root, let s denote the removed

node’s sibling (which will appear as p’s sibling after the deletion). If the deleted

node was black with two black children, we must treat p as a double black node to

be remedied. This is the case if, and only if, its sibling’s subtree has a black internal

node (because the red-black depth property was satisfied prior to the deletion). We

therefore test whether s is a black internal node, or a red internal node with an

internal node as a child (which must be black due to the red property of the tree).

We are able to detect the double-black problem within the rebalanceDelete
method of Code Fragment 11.15, and we rely on the recursive remedyDoubleBlack
method of that code fragment to resolve the problem.

11.6. Red-Black Trees 523

1 /∗∗ An implementation of a sorted map using a red-black tree. ∗/
2 public class RBTreeMap<K,V> extends TreeMap<K,V> {
3 /∗∗ Constructs an empty map using the natural ordering of keys. ∗/
4 public RBTreeMap() { super(); }
5 /∗∗ Constructs an empty map using the given comparator to order keys. ∗/
6 public RBTreeMap(Comparator<K> comp) { super(comp); }
7 // we use the inherited aux field with convention that 0=black and 1=red
8 // (note that new leaves will be black by default, as aux=0)
9 private boolean isBlack(Position<Entry<K,V>> p) { return tree.getAux(p)==0;}

10 private boolean isRed(Position<Entry<K,V>> p) { return tree.getAux(p)==1; }
11 private void makeBlack(Position<Entry<K,V>> p) { tree.setAux(p, 0); }
12 private void makeRed(Position<Entry<K,V>> p) { tree.setAux(p, 1); }
13 private void setColor(Position<Entry<K,V>> p, boolean toRed) {
14 tree.setAux(p, toRed ? 1 : 0);
15 }
16 /∗∗ Overrides the TreeMap rebalancing hook that is called after an insertion. ∗/
17 protected void rebalanceInsert(Position<Entry<K,V>> p) {
18 if (!isRoot(p)) {
19 makeRed(p); // the new internal node is initially colored red
20 resolveRed(p); // but this may cause a double-red problem
21 }
22 }
23 /∗∗ Remedies potential double-red violation above red position p. ∗/
24 private void resolveRed(Position<Entry<K,V>> p) {
25 Position<Entry<K,V>> parent,uncle,middle,grand; // used in case analysis
26 parent = parent(p);
27 if (isRed(parent)) { // double-red problem exists
28 uncle = sibling(parent);
29 if (isBlack(uncle)) { // Case 1: misshapen 4-node
30 middle = restructure(p); // do trinode restructuring
31 makeBlack(middle);
32 makeRed(left(middle));
33 makeRed(right(middle));
34 } else { // Case 2: overfull 5-node
35 makeBlack(parent); // perform recoloring
36 makeBlack(uncle);
37 grand = parent(parent);
38 if (!isRoot(grand)) {
39 makeRed(grand); // grandparent becomes red
40 resolveRed(grand); // recur at red grandparent
41 }
42 }
43 }
44 }

Code Fragment 11.14: The RBTreeMap class. (Continues in Code Frag-

ment 11.15.)

524 Chapter 11. Search Trees

45 /∗∗ Overrides the TreeMap rebalancing hook that is called after a deletion. ∗/
46 protected void rebalanceDelete(Position<Entry<K,V>> p) {
47 if (isRed(p)) // deleted parent was black
48 makeBlack(p); // so this restores black depth
49 else if (!isRoot(p)) {
50 Position<Entry<K,V>> sib = sibling(p);
51 if (isInternal(sib) && (isBlack(sib) | | isInternal(left(sib))))
52 remedyDoubleBlack(p); // sib's subtree has nonzero black height
53 }
54 }
55

56 /∗∗ Remedies a presumed double-black violation at the given (nonroot) position. ∗/
57 private void remedyDoubleBlack(Position<Entry<K,V>> p) {
58 Position<Entry<K,V>> z = parent(p);
59 Position<Entry<K,V>> y = sibling(p);
60 if (isBlack(y)) {
61 if (isRed(left(y)) | | isRed(right(y))) { // Case 1: trinode restructuring
62 Position<Entry<K,V>> x = (isRed(left(y)) ? left(y) : right(y));
63 Position<Entry<K,V>> middle = restructure(x);
64 setColor(middle, isRed(z)); // root of restructured subtree gets z's old color
65 makeBlack(left(middle));
66 makeBlack(right(middle));
67 } else { // Case 2: recoloring
68 makeRed(y);
69 if (isRed(z))
70 makeBlack(z); // problem is resolved
71 else if (!isRoot(z))
72 remedyDoubleBlack(z); // propagate the problem
73 }
74 } else { // Case 3: reorient 3-node
75 rotate(y);
76 makeBlack(y);
77 makeRed(z);
78 remedyDoubleBlack(p); // restart the process at p
79 }
80 }
81 }

Code Fragment 11.15: Support for deletion in the RBTreeMap class (continued

from Code Fragment 11.14).

11.7. Exercises 525

11.7 Exercises

Reinforcement

R-11.1 If we insert the entries (1,A), (2,B), (3,C), (4,D), and (5,E), in this order, into

an initially empty binary search tree, what will it look like?

R-11.2 Insert, into an empty binary search tree, entries with keys 30, 40, 24, 58, 48, 26,

11, 13 (in this order). Draw the tree after each insertion.

R-11.3 How many different binary search trees can store the keys {1,2,3}?
R-11.4 Dr. Amongus claims that the order in which a fixed set of entries is inserted into

a binary search tree does not matter—the same tree results every time. Give a

small example that proves he is wrong.

R-11.5 Dr. Amongus claims that the order in which a fixed set of entries is inserted into

an AVL tree does not matter—the same AVL tree results every time. Give a small
example that proves he is wrong.

R-11.6 Our implementation of the treeSearch utility, from Code Fragment 11.3, relies

on recursion. For a large unbalanced tree, it is possible that Java’s call stack will

reach its limit due to the recursive depth. Give an alternative implementation of
that method that does not rely on the use of recursion.

R-11.7 Does the trinode restructuring in Figure 11.11 rely on a single or double rotation?

What about the restructuring in Figure 11.13?

R-11.8 Draw the AVL tree resulting from the insertion of an entry with key 52 into the

AVL tree of Figure 11.13b.

R-11.9 Draw the AVL tree resulting from the removal of the entry with key 62 from the
AVL tree of Figure 11.13b.

R-11.10 Explain why performing a rotation in an n-node binary tree when using the array-

based representation of Section 8.3.2 takes Ω(n) time.

R-11.11 Consider a deletion operation in an AVL tree that triggers a trinode restructuring

for the case in which both children of the node denoted as y have equal heights.
Give a schematic figure, in the style of Figure 11.12, showing the tree before and

after the deletion. What is the net effect of the height of the rebalanced subtree
due to the operation?

R-11.12 Repeat the previous problem, considering the case in which y’s children start with
different heights.

R-11.13 The rules for a deletion in an AVL tree specifically require that when the two

subtrees of the node denoted as y have equal height, child x should be chosen to be
“aligned” with y (so that x and y are both left children or both right children). To

better understand this requirement, repeat Exercise R-11.11 assuming we picked

the misaligned choice of x. Why might there be a problem in restoring the AVL
property with that choice?

526 Chapter 11. Search Trees

R-11.14 What does a splay tree look like if its entries are accessed in increasing order by
their keys?

R-11.15 Perform the following sequence of operations in an initially empty splay tree and

draw the tree after each set of operations.

a. Insert keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.

b. Search for keys 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, in this order.

c. Delete keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.

R-11.16 The splay tree does not have good performance for the sorted map operations,

because those methods lack calls to the rebalanceAccess hook. Reimplement
TreeMap to include such calls.

R-11.17 Is the search tree of Figure 11.22(a) a (2,4) tree? Why or why not?

R-11.18 An alternative way of performing a split at a node w in a (2,4) tree is to partition
w into w′ and w′′, with w′ being a 2-node and w′′ a 3-node. Which of the keys

k1, k2, k3, or k4 do we store at w’s parent? Why?

R-11.19 Dr. Amongus claims that a (2,4) tree storing a set of entries will always have the
same structure, regardless of the order in which the entries are inserted. Show

that he is wrong.

R-11.20 Draw four different red-black trees that correspond to the same (2,4) tree.

R-11.21 Consider the set of keys K = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}.
a. Draw a (2,4) tree storing K as its keys using the fewest number of nodes.

b. Draw a (2,4) tree storing K as its keys using the greatest number of nodes.

R-11.22 Consider the sequence of keys (5,16,22,45,2,10,18,30,50,12,1). Draw the

result of inserting entries with these keys (in the given order) into

a. An initially empty (2,4) tree.

b. An initially empty red-black tree.

R-11.23 For the following statements about red-black trees, provide a justification for
each true statement and a counterexample for each false one.

a. A subtree of a red-black tree is itself a red-black tree.

b. The sibling of an external node is either external or it is red.
c. There is a unique (2,4) tree associated with a given red-black tree.

d. There is a unique red-black tree associated with a given (2,4) tree.

R-11.24 Consider a tree T storing 100,000 entries. What is the worst-case height of T in
the following cases?

a. T is a binary search tree.

b. T is an AVL tree.
c. T is a splay tree.

d. T is a (2,4) tree.
e. T is a red-black tree.

R-11.25 Draw an example of a red-black tree that is not an AVL tree.

R-11.26 Give a proof of Proposition 11.9

R-11.27 Give a proof of Proposition 11.10

11.7. Exercises 527

Creativity

C-11.28 Explain why you would get the same output in an inorder listing of the entries

in a binary search tree, T , independent of whether T is maintained to be an AVL

tree, splay tree, or red-black tree.

C-11.29 Explain how to use an AVL tree or a red-black tree to sort n comparable elements

in O(n logn) time in the worst case.

C-11.30 Can we use a splay tree to sort n comparable elements in O(n logn) time in the

worst case? Why or why not?

C-11.31 Implement a putIfAbsent method, as originally described in Exercise C-10.33,

for the TreeMap class.

C-11.32 Show that any n-node binary tree can be converted to any other n-node binary
tree using O(n) rotations.

C-11.33 For a key k that is not found in binary search tree T , prove that both the greatest
key less than k and the least key greater than k lie on the path traced by the search

for k.

C-11.34 In Section 11.1.4 we claim that the subMap method of a binary search tree, as

implemented in Code Fragment 11.6, executes in O(s+ h) time where s is the

number of entries contained within the submap and h is the height of the tree.
Prove this result, by arguing about the maximum number of times the recursive

submethod can be called on positions that are not included within the submap.

C-11.35 Consider a sorted map that is implemented with a standard binary search tree T .

Describe how to perform an operation removeSubMap(k1, k2) that removes all

the entries whose keys fall within subMap(k1, k2), in worst-case time O(s+ h),
where s is the number of entries removed and h is the height of T .

C-11.36 Repeat the previous problem using an AVL tree, achieving a running time of
O(s logn). Why doesn’t the solution to the previous problem trivially result in an

O(s+ logn) algorithm for AVL trees?

C-11.37 Suppose we wish to support a new method countRange(k1, k2) that determines
how many keys of a sorted map fall in the specified range. We could clearly

implement this in O(s + h) time by adapting our approach to subMap. De-
scribe how to modify the search-tree structure to support O(h) worst-case time

for countRange.

C-11.38 If the approach described in the previous problem were implemented as part of
the TreeMap class, what additional modifications (if any) would be necessary to a

subclass such as AVLTreeMap in order to maintain support for the new method?

C-11.39 Draw a schematic of an AVL tree such that a single remove operation could

require Ω(logn) trinode restructurings (or rotations) from a leaf to the root in

order to restore the height-balance property.

C-11.40 Show that the nodes that become temporarily unbalanced in an AVL tree during

an insertion may be nonconsecutive on the path from the newly inserted node to
the root.

528 Chapter 11. Search Trees

C-11.41 Show that at most one node in an AVL tree becomes temporarily unbalanced after
the immediate deletion of a node as part of the standard remove map operation.

C-11.42 In our AVL implementation, each node stores the height of its subtree, which is
an arbitrarily large integer. The space usage for an AVL tree can be reduced by

instead storing the balance factor of a node, which is defined as the height of its
left subtree minus the height of its right subtree. Thus, the balance factor of a

node is always equal to −1, 0, or 1, except during an insertion or removal, when

it may become temporarily equal to −2 or +2. Reimplement the AVLTreeMap
class storing balance factors rather than subtree heights.

C-11.43 If we maintain a reference to the position of the leftmost node of a binary search
tree, then operation firstEntry can be performed in O(1) time. Describe how

the implementation of the other map methods need to be modified to maintain a
reference to the leftmost position.

C-11.44 If the approach described in the previous problem were implemented as part of
the TreeMap class, what additional modifications (if any) would be necessary to

a subclass such as AVLTreeMap in order to accurately maintain the reference to

the leftmost position?

C-11.45 Describe a modification to the binary search-tree data structure that would sup-
port the following two index-based operations for a sorted map in O(h) time,

where h is the height of the tree.

atIndex(i): Return the position p of the entry at index i of a sorted map.

indexOf(p): Return the index i of the entry at position p of a sorted map.

C-11.46 Draw a splay tree, T1, together with the sequence of updates that produced it, and
a red-black tree, T2, on the same set of ten entries, such that a preorder traversal

of T1 would be the same as a preorder traversal of T2.

C-11.47 Let T and U be (2,4) trees storing n and m entries, respectively, such that all

the entries in T have keys less than the keys of all the entries in U . Describe an
O(logn+ logm)-time method for joining T and U into a single tree that stores

all the entries in T and U .

C-11.48 Let T be a red-black tree storing n entries, and let k be the key of an entry in T .

Show how to construct from T , in O(logn) time, two red-black trees T ′ and T ′′,
such that T ′ contains all the keys of T less than k, and T ′′ contains all the keys of

T greater than k. This operation destroys T .

C-11.49 Prove that an n-entry multiway search tree has n+1 external nodes.

C-11.50 The boolean indicator used to mark nodes in a red-black tree as being “red” or
“black” is not strictly needed when we have distinct keys. Describe a scheme for

implementing a red-black tree without adding any extra space to standard binary
search-tree nodes.

C-11.51 Show that the nodes of any AVL tree T can be colored “red” and “black” so that
T becomes a red-black tree.

11.7. Exercises 529

C-11.52 The standard splaying step requires two passes, one downward pass to find the
node x to splay, followed by an upward pass to splay the node x. Describe a

method for splaying and searching for x in one downward pass. Each substep

now requires that you consider the next two nodes in the path down to x, with a
possible zig substep performed at the end. Describe how to perform the zig-zig,

zig-zag, and zig steps.

C-11.53 Consider a variation of splay trees, called half-splay trees, where splaying a node

at depth d stops as soon as the node reaches depth ⌊d/2⌋. Perform an amortized

analysis of half-splay trees.

C-11.54 Describe a sequence of accesses to an n-node splay tree T , where n is odd, that

results in T consisting of a single chain of nodes such that the path down T

alternates between left children and right children.

Projects

P-11.55 Reimplement the TreeMap class using null references in place of explicit sen-

tinels for the leaves of a tree.

P-11.56 Modify the TreeMap implementation to support location-aware entries. Pro-
vide methods firstEntry(), lastEntry(), findEntry(k), before(e), after(e), and

remove(e), with all but the last of these returning an Entry instance, and the

latter three accepting an Entry e as a parameter.

P-11.57 Perform an experimental study to compare the speed of our AVL tree, splay tree,

and red-black tree implementations for various sequences of operations.

P-11.58 Redo the previous exercise, including an implementation of skip lists. (See Ex-
ercise P-10.71.)

P-11.59 Implement the Sorted Map ADT using a (2,4) tree. (See Section 10.3.)

P-11.60 Write a Java class that can take any red-black tree and convert it into its corre-

sponding (2,4) tree and can take any (2,4) tree and convert it into its correspond-

ing red-black tree.

P-11.61 In describing multisets and multimaps in Section 10.5.3, we describe a general

approach for adapting a traditional map by storing all duplicates within a sec-

ondary container as a value in the map. Give an alternative implementation of
a multimap using a binary search tree such that each entry of the map is stored

at a distinct node of the tree. With the existence of duplicates, we redefine the

search-tree property so that all entries in the left subtree of a position p with key k

have keys that are less than or equal to k, while all entries in the right subtree of

p have keys that are greater than or equal to k. Use the public interface given in
Section 10.5.3.

P-11.62 Prepare an implementation of splay trees that uses top-down splaying as de-

scribed in Exercise C-11.52. Perform extensive experimental studies to compare
its performance to the standard bottom-up splaying implemented in this chapter.

530 Chapter 11. Search Trees

P-11.63 The mergeable heap ADT is an extension of the priority queue ADT consist-
ing of operations insert(k, v), min(), removeMin(), and merge(h), where the

merge(h) operations performs a union of the mergeable heap h with the present

one, incorporating all entries into the current one while emptying h. Describe a
concrete implementation of the mergeable heap ADT that achieves O(logn) per-

formance for all its operations, where n denotes the size of the resulting heap for
the merge operation.

P-11.64 Write a program that performs a simple n-body simulation, called “Jumping Lep-

rechauns.” This simulation involves n leprechauns, numbered 1 to n. It maintains
a gold value gi for each leprechaun i, which begins with each leprechaun start-

ing out with a million dollars worth of gold, that is, gi = 1,000,000 for each
i = 1,2, . . . ,n. In addition, the simulation also maintains, for each leprechaun,

i, a place on the horizon, which is represented as a double-precision floating-

point number, xi. In each iteration of the simulation, the simulation processes the
leprechauns in order. Processing a leprechaun i during this iteration begins by

computing a new place on the horizon for i, which is determined by the assign-

ment
xi = xi + rgi,

where r is a random floating-point number between −1 and 1. The leprechaun i

then steals half the gold from the nearest leprechauns on either side of him and

adds this gold to his gold value, gi. Write a program that can perform a series

of iterations in this simulation for a given number, n, of leprechauns. You must
maintain the set of horizon positions using a sorted map data structure described

in this chapter.

Chapter Notes

Some of the data structures discussed in this chapter are extensively covered by Knuth

in his Sorting and Searching book [61], and by Mehlhorn in [71]. AVL trees are due to

Adel’son-Vel’skii and Landis [2], who invented this class of balanced search trees in 1962.

Binary search trees, AVL trees, and hashing are described in Knuth’s Sorting and Search-

ing [61] book. Average-height analyses for binary search trees can be found in the books by

Aho, Hopcroft, and Ullman [6] and Cormen, Leiserson, Rivest and Stein [25]. The hand-

book by Gonnet and Baeza-Yates [38] contains a number of theoretical and experimental

comparisons among map implementations. Aho, Hopcroft, and Ullman [5] discuss (2,3)

trees, which are similar to (2,4) trees. Red-black trees were defined by Bayer [10]. Vari-

ations and interesting properties of red-black trees are presented in a paper by Guibas and

Sedgewick [42]. The reader interested in learning more about different balanced tree data

structures is referred to the books by Mehlhorn [71] and Tarjan [88], and the book chapter

by Mehlhorn and Tsakalidis [73]. Knuth [61] is excellent additional reading that includes

early approaches to balancing trees. Splay trees were invented by Sleator and Tarjan [83]

(see also [88]).

Chapter

12 Sorting and Selection

Contents

12.1 Merge-Sort . 532

12.1.1 Divide-and-Conquer . 532

12.1.2 Array-Based Implementation of Merge-Sort 537

12.1.3 The Running Time of Merge-Sort 538

12.1.4 Merge-Sort and Recurrence Equations ⋆ 540

12.1.5 Alternative Implementations of Merge-Sort 541

12.2 Quick-Sort . 544

12.2.1 Randomized Quick-Sort 551

12.2.2 Additional Optimizations for Quick-Sort 553

12.3 Studying Sorting through an Algorithmic Lens 556

12.3.1 Lower Bound for Sorting 556

12.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort 558

12.4 Comparing Sorting Algorithms 561

12.5 Selection . 563

12.5.1 Prune-and-Search . 563

12.5.2 Randomized Quick-Select 564

12.5.3 Analyzing Randomized Quick-Select 565

12.6 Exercises . 566

532 Chapter 12. Sorting and Selection

12.1 Merge-Sort

We have introduced several sorting algorithms thus far, including insertion-sort

(see Sections 3.1.2, 7.6, and 9.4.1); selection-sort (see Section 9.4.1); bubble-sort

(see Exercise C-7.51); and heap-sort (see Section 9.4.2). In this chapter, we will

present four other sorting algorithms, called merge-sort, quick-sort, bucket-sort,

and radix-sort, and then discuss the advantages and disadvantages of the various

algorithms in Section 12.4.

12.1.1 Divide-and-Conquer

The first two algorithms we describe in this chapter, merge-sort and quick-sort, use

recursion in an algorithmic design pattern called divide-and-conquer. We have

already seen the power of recursion in describing algorithms in an elegant manner

(see Chapter 5). The divide-and-conquer pattern consists of the following three

steps:

1. Divide: If the input size is smaller than a certain threshold (say, one or two

elements), solve the problem directly using a straightforward method and

return the solution so obtained. Otherwise, divide the input data into two or

more disjoint subsets.

2. Conquer: Recursively solve the subproblems associated with the subsets.

3. Combine: Take the solutions to the subproblems and merge them into a so-

lution to the original problem.

Using Divide-and-Conquer for Sorting

We first describe the merge-sort algorithm at a high level, without focusing on

whether the data is an array or linked list. (We will soon give concrete implemen-

tations for each.) To sort a sequence S with n elements using the three divide-and-

conquer steps, the merge-sort algorithm proceeds as follows:

1. Divide: If S has zero or one element, return S immediately; it is already

sorted. Otherwise (S has at least two elements), remove all the elements

from S and put them into two sequences, S1 and S2, each containing about

half of the elements of S; that is, S1 contains the first ⌊n/2⌋ elements of S,

and S2 contains the remaining ⌈n/2⌉ elements.

2. Conquer: Recursively sort sequences S1 and S2.

3. Combine: Put the elements back into S by merging the sorted sequences S1

and S2 into a sorted sequence.

In reference to the divide step, we recall that the notation ⌊x⌋ indicates the floor of

x, that is, the largest integer k, such that k ≤ x. Similarly, the notation ⌈x⌉ indicates

the ceiling of x, that is, the smallest integer m, such that x≤m.

12.1. Merge-Sort 533

We can visualize an execution of the merge-sort algorithm by means of a binary

tree T , called the merge-sort tree. Each node of T represents a recursive invocation

(or call) of the merge-sort algorithm. We associate with each node v of T the

sequence S that is processed by the invocation associated with v. The children of

node v are associated with the recursive calls that process the subsequences S1 and

S2 of S. The external nodes of T are associated with individual elements of S,

corresponding to instances of the algorithm that make no recursive calls.

Figure 12.1 summarizes an execution of the merge-sort algorithm by showing

the input and output sequences processed at each node of the merge-sort tree. The

step-by-step evolution of the merge-sort tree is shown in Figures 12.2 through 12.4.

This algorithm visualization in terms of the merge-sort tree helps us analyze

the running time of the merge-sort algorithm. In particular, since the size of the

input sequence roughly halves at each recursive call of merge-sort, the height of

the merge-sort tree is about logn (recall that the base of log is 2 if omitted).

45

85

5031

24 17 3163 45 96 50

45632485 17 31 96 50

17 31 96 5085 24 63 45

85 63 17 9624

(a)

31 50

24

96

85 17 3145 63 50 96

17 31 50 9624 45 63 85

45312417 50 63 85 96

85 63 1724 45

(b)

Figure 12.1: Merge-sort tree T for an execution of the merge-sort algorithm on

a sequence with 8 elements: (a) input sequences processed at each node of T ;

(b) output sequences generated at each node of T .

534 Chapter 12. Sorting and Selection

9645632485 17 31 50 31 96 50

85 24 63 45

17

(a) (b)

50

4563

85

17 31 96

24

4563

17

24

85

31 96 50

(c) (d)

45

50

85

63

24

17 31 96

24

63

50963117

85

45

(e) (f)

Figure 12.2: Visualization of an execution of merge-sort. Each node of the tree

represents a recursive call of merge-sort. The nodes drawn with dashed lines repre-

sent calls that have not been made yet. The node drawn with thick lines represents

the current call. The empty nodes drawn with thin lines represent completed calls.

The remaining nodes (drawn with thin lines and not empty) represent calls that are

waiting for a child call to return. (Continues in Figure 12.3.)

12.1. Merge-Sort 535

24 85 63

50963117

45

63 45

17 31 96 50

24 85

(g) (h)

45

63

17 31 96 50

24 85

63

45

17 31 96 50

24 85

(i) (j)

45 63

17 31 96 50

24 85

17 31 96 50

24 6345 85

(k) (l)

Figure 12.3: Visualization of an execution of merge-sort. (Combined with Fig-

ures 12.2 and 12.4.)

536 Chapter 12. Sorting and Selection

24

17 31 96 50

856345

17 31 50 96

85634524

(m) (n)

63 85 96501724 3145 45312417 50 63 85 96

(o) (p)

Figure 12.4: Visualization of an execution of merge-sort (continued from Fig-

ure 12.3). Several calls are omitted between (m) and (n). Note the merging of

two halves performed in step (p).

Proposition 12.1: The merge-sort tree associated with an execution of merge-

sort on a sequence of size n has height ⌈log n⌉.

We leave the justification of Proposition 12.1 as a simple exercise (R-12.1). We

will use this proposition to analyze the running time of the merge-sort algorithm.

Having given an overview of merge-sort and an illustration of how it works,

let us consider each of the steps of this divide-and-conquer algorithm in more de-

tail. Dividing a sequence of size n involves separating it at the element with index

⌈n/2⌉, and recursive calls can be started by passing these smaller sequences as pa-

rameters. The difficult step is combining the two sorted sequences into a single

sorted sequence. Thus, before we present our analysis of merge-sort, we need to

say more about how this is done.

12.1. Merge-Sort 537

12.1.2 Array-Based Implementation of Merge-Sort

We begin by focusing on the case when a sequence of items is represented with an

array. The merge method (Code Fragment 12.1) is responsible for the subtask of

merging two previously sorted sequences, S1 and S2, with the output copied into S.

We copy one element during each pass of the while loop, conditionally determining

whether the next element should be taken from S1 or S2. The divide-and-conquer

merge-sort algorithm is given in Code Fragment 12.2.

We illustrate a step of the merge process in Figure 12.5. During the process,

index i represents the number of elements of S1 that have been copied to S, while

index j represents the number of elements of S2 that have been copied to S. Assum-

ing S1 and S2 both have at least one uncopied element, we copy the smaller of the

two elements being considered. Since i+ j objects have been previously copied,

the next element is placed in S[i+ j]. (For example, when i+ j is 0, the next ele-

ment is copied to S[0]). If we reach the end of one of the sequences, we must copy

the next element from the other.

1 /∗∗ Merge contents of arrays S1 and S2 into properly sized array S. ∗/
2 public static <K> void merge(K[] S1, K[] S2, K[] S, Comparator<K> comp) {
3 int i = 0, j = 0;
4 while (i + j < S.length) {
5 if (j == S2.length | | (i < S1.length && comp.compare(S1[i], S2[j]) < 0))
6 S[i+j] = S1[i++]; // copy ith element of S1 and increment i
7 else
8 S[i+j] = S2[j++]; // copy jth element of S2 and increment j
9 }

10 }

Code Fragment 12.1: An implementation of the merge operation for a Java array.

S1

S

S2

0 1 2 3 4 65

2518 19 229 10

92

j

i

i+ j

3

1 2 3 4 65

11 12 142 5 8

0

15

0 1 2 3 4 6 7 8 9 105 11 12 13

83 5 S

S1

S2

5

0 1 2 3 4 65

2518 19 223 10

92

i

j

i+ j

10

9

1 2 3 4 65

11 12 142 5 8

0

15

0 1 2 3 4 6 7 8 9 105 11 12 13

83

(a) (b)

Figure 12.5: A step in the merge of two sorted arrays for which S2[j] < S1[i]. We

show the arrays before the copy step in (a) and after it in (b).

538 Chapter 12. Sorting and Selection

1 /∗∗ Merge-sort contents of array S. ∗/
2 public static <K> void mergeSort(K[] S, Comparator<K> comp) {
3 int n = S.length;
4 if (n < 2) return; // array is trivially sorted
5 // divide
6 int mid = n/2;
7 K[] S1 = Arrays.copyOfRange(S, 0, mid); // copy of first half
8 K[] S2 = Arrays.copyOfRange(S, mid, n); // copy of second half
9 // conquer (with recursion)

10 mergeSort(S1, comp); // sort copy of first half
11 mergeSort(S2, comp); // sort copy of second half
12 // merge results
13 merge(S1, S2, S, comp); // merge sorted halves back into original
14 }

Code Fragment 12.2: An implementation of the recursive merge-sort algorithm for

a Java array (using the merge method defined in Code Fragment 12.1).

We note that methods merge and mergeSort rely on use of a Comparator in-

stance to compare a pair of generic objects that are presumed to belong to a total

order. This is the same approach we introduced when defining priority queues in

Section 9.2.2, and when studying implementing sorted maps in Chapters 10 and 11.

12.1.3 The Running Time of Merge-Sort

We begin by analyzing the running time of the merge algorithm. Let n1 and n2

be the number of elements of S1 and S2, respectively. It is clear that the operations

performed inside each pass of the while loop take O(1) time. The key observation is

that during each iteration of the loop, one element is copied from either S1 or S2 into

S (and that element is considered no further). Therefore, the number of iterations

of the loop is n1 +n2. Thus, the running time of algorithm merge is O(n1 +n2).

Having analyzed the running time of the merge algorithm used to combine

subproblems, let us analyze the running time of the entire merge-sort algorithm,

assuming it is given an input sequence of n elements. For simplicity, we restrict our

attention to the case where n is a power of 2. We leave it to an exercise (R-12.3) to

show that the result of our analysis also holds when n is not a power of 2.

When evaluating the merge-sort recursion, we rely on the analysis technique

introduced in Section 5.2. We account for the amount of time spent within each

recursive call, but excluding any time spent waiting for successive recursive calls

to terminate. In the case of our mergeSort method, we account for the time to

divide the sequence into two subsequences, and the call to merge to combine the

two sorted sequences, but we exclude the two recursive calls to mergeSort.

12.1. Merge-Sort 539

A merge-sort tree T , as portrayed in Figures 12.2 through 12.4, can guide our

analysis. Consider a recursive call associated with a node v of the merge-sort tree T .

The divide step at node v is straightforward; this step runs in time proportional to

the size of the sequence for v, based on the use of slicing to create copies of the two

list halves. We have already observed that the merging step also takes time that is

linear in the size of the merged sequence. If we let i denote the depth of node v,

the time spent at node v is O(n/2i), since the size of the sequence handled by the

recursive call associated with v is equal to n/2i.

Looking at the tree T more globally, as shown in Figure 12.6, we see that, given

our definition of “time spent at a node,” the running time of merge-sort is equal to

the sum of the times spent at the nodes of T . Observe that T has exactly 2i nodes at

depth i. This simple observation has an important consequence, for it implies that

the overall time spent at all the nodes of T at depth i is O(2i ·n/2i), which is O(n).
By Proposition 12.1, the height of T is ⌈logn⌉. Thus, since the time spent at each

of the ⌈log n⌉+1 levels of T is O(n), we have the following result:

Proposition 12.2: Algorithm merge-sort sorts a sequence S of size n in O(n logn)
time, assuming two elements of S can be compared in O(1) time.

Height Time per level

Total time: O(n logn)

O(n)

O(n)

O(logn)
O(n)

n

n/2

n/4n/4n/4n/4

n/2

Figure 12.6: A visual analysis of the running time of merge-sort. Each node rep-

resents the time spent in a particular recursive call, labeled with the size of its

subproblem.

540 Chapter 12. Sorting and Selection

12.1.4 Merge-Sort and Recurrence Equations ⋆
There is another way to justify that the running time of the merge-sort algorithm is

O(n log n) (Proposition 12.2). Namely, we can deal more directly with the recursive

nature of the merge-sort algorithm. In this section, we will present such an analysis

of the running time of merge-sort, and in so doing, introduce the mathematical

concept of a recurrence equation (also known as recurrence relation).

Let the function t(n) denote the worst-case running time of merge-sort on an

input sequence of size n. Since merge-sort is recursive, we can characterize func-

tion t(n) by means of an equation where the function t(n) is recursively expressed

in terms of itself. In order to simplify our characterization of t(n), let us restrict

our attention to the case when n is a power of 2. (We leave the problem of showing

that our asymptotic characterization still holds in the general case as an exercise.)

In this case, we can specify the definition of t(n) as

t(n) =

{
b if n≤ 1

2t(n/2)+ cn otherwise.

An expression such as the one above is called a recurrence equation, since the

function appears on both the left- and right-hand sides of the equal sign. Although

such a characterization is correct and accurate, what we really desire is a big-Oh

type of characterization of t(n) that does not involve the function t(n) itself. That

is, we want a closed-form characterization of t(n).
We can obtain a closed-form solution by applying the definition of a recurrence

equation, assuming n is relatively large. For example, after one more application

of the equation above, we can write a new recurrence for t(n) as

t(n) = 2(2t(n/22)+ (cn/2))+ cn

= 22t(n/22)+2(cn/2)+ cn = 22t(n/22)+2cn.

If we apply the equation again, we get t(n) = 23t(n/23)+ 3cn. At this point, we

should see a pattern emerging, so that after applying this equation i times, we get

t(n) = 2it(n/2i)+ icn.

The issue that remains, then, is to determine when to stop this process. To see when

to stop, recall that we switch to the closed form t(n) = b when n ≤ 1, which will

occur when 2i = n. In other words, this will occur when i = logn. Making this

substitution, then, yields

t(n) = 2log nt(n/2log n)+ (logn)cn

= nt(1)+ cn log n

= nb+ cn log n.

That is, we get an alternative justification of the fact that t(n) is O(n log n).

12.1. Merge-Sort 541

12.1.5 Alternative Implementations of Merge-Sort

Sorting Linked Lists

The merge-sort algorithm can easily be adapted to use any form of a basic queue

as its container type. In Code Fragment 12.3, we provide such an implementation,

based on use of the LinkedQueue class from Section 6.2.3. The O(n log n) bound

for merge-sort from Proposition 12.2 applies to this implementation as well, since

each basic operation runs in O(1) time when implemented with a linked list. We

show an example execution of this version of the merge algorithm in Figure 12.7.

1 /∗∗ Merge contents of sorted queues S1 and S2 into empty queue S. ∗/
2 public static <K> void merge(Queue<K> S1, Queue<K> S2, Queue<K> S,
3 Comparator<K> comp) {
4 while (!S1.isEmpty() && !S2.isEmpty()) {
5 if (comp.compare(S1.first(), S2.first()) < 0)
6 S.enqueue(S1.dequeue()); // take next element from S1
7 else
8 S.enqueue(S2.dequeue()); // take next element from S2
9 }

10 while (!S1.isEmpty())
11 S.enqueue(S1.dequeue()); // move any elements that remain in S1
12 while (!S2.isEmpty())
13 S.enqueue(S2.dequeue()); // move any elements that remain in S2
14 }
15

16 /∗∗ Merge-sort contents of queue. ∗/
17 public static <K> void mergeSort(Queue<K> S, Comparator<K> comp) {
18 int n = S.size();
19 if (n < 2) return; // queue is trivially sorted
20 // divide
21 Queue<K> S1 = new LinkedQueue<>(); // (or any queue implementation)
22 Queue<K> S2 = new LinkedQueue<>();
23 while (S1.size() < n/2)
24 S1.enqueue(S.dequeue()); // move the first n/2 elements to S1
25 while (!S.isEmpty())
26 S2.enqueue(S.dequeue()); // move remaining elements to S2
27 // conquer (with recursion)
28 mergeSort(S1, comp); // sort first half
29 mergeSort(S2, comp); // sort second half
30 // merge results
31 merge(S1, S2, S, comp); // merge sorted halves back into original
32 }

Code Fragment 12.3: An implementation of merge-sort using a basic queue.

542 Chapter 12. Sorting and Selection

24 45 63 85S1

17 31 50 96S2

S

24 45 63 85S1

17

31 50 96S2

S

(a) (b)

24

45 63 85S1

17

31 50 96S2

S 24

45 63 85S1

17

50 96S2

S 31

(c) (d)

24

63 85S1

17

50 96S2

S 31 45 24

63 85S1

17

96S2

S 31 45 50

(e) (f)

24

85S1

17

96S2

S 31 45 50 63
24

S1

17

96S2

S 31 45 50 63 85

(g) (h)

24

S1

17

S2

S 31 45 50 63 85 96

(i)

Figure 12.7: Example of an execution of the merge algorithm, as implemented in

Code Fragment 12.3 using queues.

12.1. Merge-Sort 543

A Bottom-Up (Nonrecursive) Merge-Sort

There is a nonrecursive version of array-based merge-sort, which runs in O(n logn)
time. It is a bit faster than recursive merge-sort in practice, as it avoids the extra

overheads of recursive calls and temporary memory at each level. The main idea

is to perform merge-sort bottom-up, performing the merges level by level going up

the merge-sort tree. Given an input array of elements, we begin by merging every

successive pair of elements into sorted runs of length two. We merge these runs into

runs of length four, merge these new runs into runs of length eight, and so on, until

the array is sorted. To keep the space usage reasonable, we deploy a second array

that stores the merged runs (swapping input and output arrays after each iteration).

We give a Java implementation in Code Fragment 12.4, using the built-in method

System.arraycopy to copy a range of cells between two arrays. A similar bottom-up

approach can be used for sorting linked lists. (See Exercise C-12.30.)

1 /∗∗ Merges in[start..start+inc−1] and in[start+inc..start+2∗inc−1] into out. ∗/
2 public static <K> void merge(K[] in, K[] out, Comparator<K> comp,
3 int start, int inc) {
4 int end1 = Math.min(start + inc, in.length); // boundary for run 1
5 int end2 = Math.min(start + 2 ∗ inc, in.length); // boundary for run 2
6 int x=start; // index into run 1
7 int y=start+inc; // index into run 2
8 int z=start; // index into output
9 while (x < end1 && y < end2)

10 if (comp.compare(in[x], in[y]) < 0)
11 out[z++] = in[x++]; // take next from run 1
12 else
13 out[z++] = in[y++]; // take next from run 2
14 if (x < end1) System.arraycopy(in, x, out, z, end1 − x); // copy rest of run 1
15 else if (y < end2) System.arraycopy(in, y, out, z, end2 − y); // copy rest of run 2
16 }
17 /∗∗ Merge-sort contents of data array. ∗/
18 public static <K> void mergeSortBottomUp(K[] orig, Comparator<K> comp) {
19 int n = orig.length;
20 K[] src = orig; // alias for the original
21 K[] dest = (K[]) new Object[n]; // make a new temporary array
22 K[] temp; // reference used only for swapping
23 for (int i=1; i < n; i ∗= 2) { // each iteration sorts all runs of length i
24 for (int j=0; j < n; j += 2∗i) // each pass merges two runs of length i
25 merge(src, dest, comp, j, i);
26 temp = src; src = dest; dest = temp; // reverse roles of the arrays
27 }
28 if (orig != src)
29 System.arraycopy(src, 0, orig, 0, n); // additional copy to get result to original
30 }

Code Fragment 12.4: An implementation of the nonrecursive merge-sort algorithm.

544 Chapter 12. Sorting and Selection

12.2 Quick-Sort

The next sorting algorithm we discuss is called quick-sort. Like merge-sort, this

algorithm is also based on the divide-and-conquer paradigm, but it uses this tech-

nique in a somewhat opposite manner, as all the hard work is done before the

recursive calls.

High-Level Description of Quick-Sort

The quick-sort algorithm sorts a sequence S using a simple recursive approach.

The main idea is to apply the divide-and-conquer technique, whereby we divide

S into subsequences, recur to sort each subsequence, and then combine the sorted

subsequences by a simple concatenation. In particular, the quick-sort algorithm

consists of the following three steps (see Figure 12.8):

1. Divide: If S has at least two elements (nothing needs to be done if S has

zero or one element), select a specific element x from S, which is called the

pivot. As is common practice, choose the pivot x to be the last element in S.

Remove all the elements from S and put them into three sequences:

• L, storing the elements in S less than x

• E , storing the elements in S equal to x

• G, storing the elements in S greater than x

Of course, if the elements of S are distinct, then E holds just one element—

the pivot itself.

2. Conquer: Recursively sort sequences L and G.

3. Combine: Put back the elements into S in order by first inserting the elements

of L, then those of E , and finally those of G.

2. Recur

1. Split using pivot x

3. Concatenate

2. Recur

G(> x)L(< x)

E(= x)

Figure 12.8: A visual schematic of the quick-sort algorithm.

12.2. Quick-Sort 545

Like merge-sort, the execution of quick-sort can be visualized by means of a bi-

nary recursion tree, called the quick-sort tree. Figure 12.9 summarizes an execution

of the quick-sort algorithm by showing the input and output sequences processed at

each node of the quick-sort tree. The step-by-step evolution of the quick-sort tree

is shown in Figures 12.10, 12.11, and 12.12.

Unlike merge-sort, however, the height of the quick-sort tree associated with

an execution of quick-sort is linear in the worst case. This happens, for example,

if the sequence consists of n distinct elements and is already sorted. Indeed, in this

case, the standard choice of the last element as pivot yields a subsequence L of size

n−1, while subsequence E has size 1 and subsequence G has size 0. At each call

of quick-sort on subsequence L, the size decreases by 1. Hence, the height of the

quick-sort tree is n−1.

45

45

632485 17 31 96 50

85 63 9624 45 17 31

24 85 6317

24 85

(a)

24

31 63 85 96

45312417 50 63 85 96

17 24 45

17 63 85

24 85

45

(b)

Figure 12.9: Quick-sort tree T for an execution of the quick-sort algorithm on a se-

quence with 8 elements: (a) input sequences processed at each node of T ; (b) output

sequences generated at each node of T . The pivot used at each level of the recursion

is shown in bold.

546 Chapter 12. Sorting and Selection

632485 17 31 96 5045 24 31 85 63 965045 17

(a) (b)

85 63 9650

45 1724 31

63 9650

453124 17

85

(c) (d)

63 9650

45

24 17

31

85 63 9650

4531

17 24

85

(e) (f)

Figure 12.10: Visualization of quick-sort. Each node of the tree represents a re-

cursive call. The nodes drawn with dashed lines represent calls that have not been

made yet. The node drawn with thick lines represents the running call. The empty

nodes drawn with thin lines represent terminated calls. The remaining nodes repre-

sent suspended calls (that is, active calls that are waiting for a child call to return).

Note the divide steps performed in (b), (d), and (f). (Continues in Figure 12.11.)

12.2. Quick-Sort 547

63 9650

4531

2417

85 63 9650

4531

17 24

85

(g) (h)

63 9650

4531

17

24

85 63 9650

4531

17 24

85

(i) (j)

63 9650

4531

17 24

85 85 63 9650

453117 24

(k) (l)

Figure 12.11: Visualization of an execution of quick-sort. Note the concatenation

step performed in (k). (Continues in Figure 12.12.)

548 Chapter 12. Sorting and Selection

85 63 9650

17 24 31

45

85 63 9650

453117 24

(m) (n)

85 63 9650

24 3117 45

63 965024 3117 45 85

(o) (p)

85634517 3124 50 96 5024 3117 45 63 85 96

(q) (r)

Figure 12.12: Visualization of an execution of quick-sort. Several calls between (p)

and (q) have been omitted. Note the concatenation steps performed in (o) and (r).

(Continued from Figure 12.11.)

12.2. Quick-Sort 549

Performing Quick-Sort on General Sequences

In Code Fragment 12.5, we give an implementation of the quick-sort algorithm

that works on any sequence type that operates as a queue. This particular version

relies on the LinkedQueue class from Section 6.2.3; we provide a more streamlined

implementation of quick-sort using an array-based sequence in Section 12.2.2.

Our implementation chooses the first item of the queue as the pivot (since it

is easily accessible), and then it divides sequence S into queues L, E , and G of

elements that are respectively less than, equal to, and greater than the pivot. We

then recur on the L and G lists, and transfer elements from the sorted lists L, E ,

and G back to S. All of the queue operations run in O(1) worst-case time when

implemented with a linked list.

1 /∗∗ Quick-sort contents of a queue. ∗/
2 public static <K> void quickSort(Queue<K> S, Comparator<K> comp) {
3 int n = S.size();
4 if (n < 2) return; // queue is trivially sorted
5 // divide
6 K pivot = S.first(); // using first as arbitrary pivot
7 Queue<K> L = new LinkedQueue<>();
8 Queue<K> E = new LinkedQueue<>();
9 Queue<K> G = new LinkedQueue<>();

10 while (!S.isEmpty()) { // divide original into L, E, and G
11 K element = S.dequeue();
12 int c = comp.compare(element, pivot);
13 if (c < 0) // element is less than pivot
14 L.enqueue(element);
15 else if (c == 0) // element is equal to pivot
16 E.enqueue(element);
17 else // element is greater than pivot
18 G.enqueue(element);
19 }
20 // conquer
21 quickSort(L, comp); // sort elements less than pivot
22 quickSort(G, comp); // sort elements greater than pivot
23 // concatenate results
24 while (!L.isEmpty())
25 S.enqueue(L.dequeue());
26 while (!E.isEmpty())
27 S.enqueue(E.dequeue());
28 while (!G.isEmpty())
29 S.enqueue(G.dequeue());
30 }

Code Fragment 12.5: Quick-sort for a sequence S implemented as a queue.

550 Chapter 12. Sorting and Selection

Running Time of Quick-Sort

We can analyze the running time of quick-sort with the same technique used for

merge-sort in Section 12.1.3. Namely, we can identify the time spent at each node

of the quick-sort tree T and sum up the running times for all the nodes.

Examining Code Fragment 12.5, we see that the divide step and the final con-

catenation of quick-sort can be implemented in linear time. Thus, the time spent

at a node v of T is proportional to the input size s(v) of v, defined as the size of

the sequence handled by the call of quick-sort associated with node v. Since sub-

sequence E has at least one element (the pivot), the sum of the input sizes of the

children of v is at most s(v)−1.

Let si denote the sum of the input sizes of the nodes at depth i for a particular

quick-sort tree T . Clearly, s0 = n, since the root r of T is associated with the entire

sequence. Also, s1 ≤ n− 1, since the pivot is not propagated to the children of r.

More generally, it must be that si < si−1 since the elements of the subsequences at

depth i all come from distinct subsequences at depth i−1, and at least one element

from depth i−1 does not propagate to depth i because it is in a set E (in fact, one

element from each node at depth i−1 does not propagate to depth i).

We can therefore bound the overall running time of an execution of quick-sort

as O(n ·h) where h is the overall height of the quick-sort tree T for that execution.

Unfortunately, in the worst case, the height of a quick-sort tree is n−1, as observed

in Section 12.2. Thus, quick-sort runs in O(n2) worst-case time. Paradoxically,

if we choose the pivot as the last element of the sequence, this worst-case behav-

ior occurs for problem instances when sorting should be easy—if the sequence is

already sorted.

Given its name, we would expect quick-sort to run quickly, and it often does

in practice. The best case for quick-sort on a sequence of distinct elements oc-

curs when subsequences L and G have roughly the same size. In that case, as

we saw with merge-sort, the tree has height O(logn) and therefore quick-sort runs

in O(n logn) time; we leave the justification of this fact as an exercise (R-12.12).

More so, we can observe an O(n log n) running time even if the split between L

and G is not as perfect. For example, if every divide step caused one subsequence

to have one-fourth of those elements and the other to have three-fourths of the

elements, the height of the tree would remain O(logn) and thus the overall perfor-

mance O(n log n).

We will see in the next section that introducing randomization in the choice of

a pivot will makes quick-sort essentially behave in this way on average, with an

expected running time that is O(n log n).

12.2. Quick-Sort 551

12.2.1 Randomized Quick-Sort

One common method for analyzing quick-sort is to assume that the pivot will al-

ways divide the sequence in a reasonably balanced manner. However, we feel such

an assumption would presuppose knowledge about the input distribution that is typ-

ically not available. For example, we would have to assume that we will rarely be

given “almost” sorted sequences to sort, which are actually common in many ap-

plications. Fortunately, this assumption is not needed in order for us to match our

intuition to quick-sort’s behavior.

In general, we desire some way of getting close to the best-case running time

for quick-sort. The way to get close to the best-case running time, of course, is for

the pivot to divide the input sequence S almost equally. If this outcome were to

occur, then it would result in a running time that is asymptotically the same as the

best-case running time. That is, having pivots close to the “middle” of the set of

elements leads to an O(n log n) running time for quick-sort.

Picking Pivots at Random

Since the goal of the partition step of the quick-sort method is to divide the sequence

S with sufficient balance, let us introduce randomization into the algorithm and pick

as the pivot a random element of the input sequence. That is, instead of picking

the pivot as the first or last element of S, we pick an element of S at random as the

pivot, keeping the rest of the algorithm unchanged. This variation of quick-sort is

called randomized quick-sort. The following proposition shows that the expected

running time of randomized quick-sort on a sequence with n elements is O(n log n).
This expectation is taken over all the possible random choices the algorithm makes,

and is independent of any assumptions about the distribution of the possible input

sequences the algorithm is likely to be given.

Proposition 12.3: The expected running time of randomized quick-sort on a se-

quence S of size n is O(n log n).

Justification: Let S be a sequence with n elements and let T be the binary tree

associated with an execution of randomized quick-sort on S. First, we observe that

the running time of the algorithm is proportional to the number of comparisons per-

formed. We consider the recursive call associated with a node of T and observe that

during the call, all comparisons are between the pivot element and another element

of the input of the call. Thus, we can evaluate the total number of comparisons per-

formed by the algorithm as ∑s∈SC(x), where C(x) is the number of comparisons

involving x as a nonpivot element. Next, we will show that for every element x ∈ S,

the expected value of C(x) is O(logn). Since the expected value of a sum is the

sum of the expected values of its terms, an O(logn) bound on the expected value

of C(x) implies that randomized quick-sort runs in expected O(n log n) time.

552 Chapter 12. Sorting and Selection

To show that the expected value of C(x) is O(n logn) for any x, we fix an arbi-

trary element x and consider the path of nodes in the tree T associated with recursive

calls for which x is part of the input sequence. (See Figure 12.13.) By definition,

C(x) is equal to that path length, as x will take part in one nonpivot comparison per

level of the tree until it is chosen as the pivot or is the only element that remains.

Let nd denote the input size for the node of that path at depth d of tree T , for

0≤ d ≤C(x). Since all elements are in the initial recursive call, n0 = n. We know

that the input size for any recursive call is at least one less than the size of its parent,

and thus that nd+1 ≤ nd − 1 for any d < C(x). In the worst case, this implies that

C(x)≤ n−1, as the recursive process stops if nd = 1 or if x is chosen as the pivot.

We can show the stronger claim that the expected value of C(x) is O(logn)
based on the random selection of a pivot at each level. The choice of pivot at

depth d of this path is considered “good” if nd+1 ≤ 3nd/4. The choice of a pivot

will be good with probability at least 1/2, as there are at least nd/2 elements in the

input that, if chosen as pivot, will result in at least nd/4 elements begin placed in

each subproblem, thereby leaving x in a group with at most 3nd/4 elements.

We conclude by noting that there can be at most log4/3 n such good pivot

choices before x is isolated. Since a choice is good with probability at least 1/2,

the expected number of recursive calls before achieving log4/3 n good choices is at

most 2log4/3 n, which implies that C(x) is O(logn).

With a more rigorous analysis, we can show that the running time of random-

ized quick-sort is O(n log n) with high probability. (See Exercise C-12.55.)

17 9663

244 85 31

4 10 17 24 31 45 63 85 96

4 10 17 24 31 45 63 85 9650

4 10 24 31

2410

Figure 12.13: An illustration of the analysis of Proposition 12.3 for an execution of

randomized quick-sort. We focus on element x = 31, which has value C(x) = 3, as

it is the nonpivot element in a comparison with 50, 45, and 17. By our notation,

n0 = 10, n1 = 6, n2 = 5, and n3 = 2, and the pivot choices of 50 and 17 are good.

12.2. Quick-Sort 553

12.2.2 Additional Optimizations for Quick-Sort

An algorithm is in-place if it uses only a small amount of memory in addition

to that needed for the original input. Our implementation of heap-sort, from Sec-

tion 9.4.2, is an example of such an in-place sorting algorithm. Our implementation

of quick-sort from Code Fragment 12.5 does not qualify as in-place because we use

additional containers L, E , and G when dividing a sequence S within each recursive

call. Quick-sort of an array-based sequence can be adapted to be in-place, and such

an optimization is used in most deployed implementations.

Performing the quick-sort algorithm in-place requires a bit of ingenuity, how-

ever, for we must use the input sequence itself to store the subsequences for all

the recursive calls. We show algorithm quickSortInPlace, which performs in-place

quick-sort of an array, in Code Fragment 12.6. In-place quick-sort modifies the in-

put sequence using element swapping and does not explicitly create subsequences.

Instead, a subsequence of the input sequence is implicitly represented by a range

of positions specified by a leftmost index a and a rightmost index b. The divide

1 /∗∗ Sort the subarray S[a..b] inclusive. ∗/
2 private static <K> void quickSortInPlace(K[] S, Comparator<K> comp,
3 int a, int b) {
4 if (a >= b) return; // subarray is trivially sorted
5 int left = a;
6 int right = b−1;
7 K pivot = S[b];
8 K temp; // temp object used for swapping
9 while (left <= right) {

10 // scan until reaching value equal or larger than pivot (or right marker)
11 while (left <= right && comp.compare(S[left], pivot) < 0) left++;
12 // scan until reaching value equal or smaller than pivot (or left marker)
13 while (left <= right && comp.compare(S[right], pivot) > 0) right−−;
14 if (left <= right) { // indices did not strictly cross
15 // so swap values and shrink range
16 temp = S[left]; S[left] = S[right]; S[right] = temp;
17 left++; right−−;
18 }
19 }
20 // put pivot into its final place (currently marked by left index)
21 temp = S[left]; S[left] = S[b]; S[b] = temp;
22 // make recursive calls
23 quickSortInPlace(S, comp, a, left − 1);
24 quickSortInPlace(S, comp, left + 1, b);
25 }

Code Fragment 12.6: In-place quick-sort for an array S. The entire array can be

sorted as quickSortInPlace(S, comp, 0, S.length−1).

554 Chapter 12. Sorting and Selection

step is performed by scanning the array simultaneously using local variables left,
which advances forward, and right, which advances backward, swapping pairs of

elements that are in reverse order, as shown in Figure 12.14. When these two in-

dices pass each other, the division step is complete and the algorithm completes by

recurring on these two sublists. There is no explicit “combine” step, because the

concatenation of the two sublists is implicit to the in-place use of the original list.

It is worth noting that if a sequence has duplicate values, we are not explicitly

creating three sublists L, E , and G, as in our original quick-sort description. We in-

stead allow elements equal to the pivot (other than the pivot itself) to be dispersed

across the two sublists. Exercise R-12.11 explores the subtlety of our implementa-

tion in the presence of duplicate keys, and Exercise C-12.34 describes an in-place

algorithm that strictly partitions into three sublists L, E , and G.

24 63 45 17 31 96 50

l

85

r
(a)

24 63 45 17 31 96 50

l

85

r
(b)

24 63 45 17 85 96 50

l

31

r
(c)

24 63 45 17 85 96 50

r

31

l
(d)

24 17 45 63 85 96 5031

l,r

(e)

r <

31 24 17 45 63 85 96 50

l

(f)

24 17 4531 85 96 6350

(g)

Figure 12.14: Divide step of in-place quick-sort, using index l as shorthand for iden-

tifier left, and index r as shorthand for identifier right. Index l scans the sequence

from left to right, and index r scans the sequence from right to left. A swap is per-

formed when l is at an element as large as the pivot and r is at an element as small

as the pivot. A final swap with the pivot, in part (f), completes the divide step.

12.2. Quick-Sort 555

Although the implementation we describe in this section for dividing the se-

quence into two pieces is in-place, we note that the complete quick-sort algorithm

needs space for a stack proportional to the depth of the recursion tree, which in

this case can be as large as n−1. Admittedly, the expected stack depth is O(log n),
which is small compared to n. Nevertheless, a simple trick lets us guarantee the

stack size is O(logn). The main idea is to design a nonrecursive version of in-place

quick-sort using an explicit stack to iteratively process subproblems (each of which

can be represented with a pair of indices marking subarray boundaries). Each iter-

ation involves popping the top subproblem, splitting it in two (if it is big enough),

and pushing the two new subproblems. The trick is that when pushing the new

subproblems, we should first push the larger subproblem and then the smaller one.

In this way, the sizes of the subproblems will at least double as we go down the

stack; hence, the stack can have depth at most O(logn). We leave the details of this

implementation as an exercise (P-12.59).

Pivot Selection

Our implementation in this section blindly picks the last element as the pivot at each

level of the quick-sort recursion. This leaves it susceptible to the Θ(n2)-time worst

case, most notably when the original sequence is already sorted, reverse sorted, or

nearly sorted.

As described in Section 12.2.1, this can be improved upon by using a randomly

chosen pivot for each partition step. In practice, another common technique for

choosing a pivot is to use the median of tree values, taken respectively from the

front, middle, and tail of the array. This median-of-three heuristic will more often

choose a good pivot and computing a median of three may require lower overhead

than selecting a pivot with a random number generator. For larger data sets, the

median of more than three potential pivots might be computed.

Hybrid Approaches

Although quick-sort has very good performance on large data sets, it has rather

high overhead on relatively small data sets. For example, the process of quick-

sorting a sequence of eight elements, as illustrated in Figures 12.10 through 12.12,

involves considerable bookkeeping. In practice, a simple algorithm like insertion-

sort (Section 7.6) will execute faster when sorting such a short sequence.

It is therefore common, in optimized sorting implementations, to use a hybrid

approach, with a divide-and-conquer algorithm used until the size of a subsequence

falls below some threshold (perhaps 50 elements); insertion-sort can be directly

invoked upon portions with length below the threshold. We will further discuss

such practical considerations in Section 12.4, when comparing the performance of

various sorting algorithms.

556 Chapter 12. Sorting and Selection

12.3 Studying Sorting through an Algorithmic Lens

Recapping our discussions on sorting to this point, we have described several meth-

ods with either a worst case or expected running time of O(n log n) on an input se-

quence of size n. These methods include merge-sort and quick-sort, described in

this chapter, as well as heap-sort (Section 9.4.2). In this section, we will study sort-

ing as an algorithmic problem, addressing general issues about sorting algorithms.

12.3.1 Lower Bound for Sorting

A natural first question to ask is whether we can sort any faster than O(n logn)
time. Interestingly, if the computational primitive used by a sorting algorithm is the

comparison of two elements, this is in fact the best we can do—comparison-based

sorting has an Ω(n log n) worst-case lower bound on its running time. (Recall the

notation Ω(·) from Section 4.3.1.) To focus on the main cost of comparison-based

sorting, let us only count comparisons, for the sake of a lower bound.

Suppose we are given a sequence S = (x0,x1, . . . ,xn−1) that we wish to sort,

and assume that all the elements of S are distinct (this is not really a restriction

since we are deriving a lower bound). We do not care if S is implemented as an

array or a linked list, for the sake of our lower bound, since we are only counting

comparisons. Each time a sorting algorithm compares two elements xi and x j (that

is, it asks, “is xi < x j?”), there are two outcomes: “yes” or “no.” Based on the result

of this comparison, the sorting algorithm may perform some internal calculations

(which we are not counting here) and will eventually perform another comparison

between two other elements of S, which again will have two outcomes. Therefore,

we can represent a comparison-based sorting algorithm with a decision tree T (re-

call Example 8.5). That is, each internal node v in T corresponds to a comparison

and the edges from position v to its children correspond to the computations result-

ing from either a “yes” or “no” answer. It is important to note that the hypothetical

sorting algorithm in question probably has no explicit knowledge of the tree T . The

tree simply represents all the possible sequences of comparisons that a sorting algo-

rithm might make, starting from the first comparison (associated with the root) and

ending with the last comparison (associated with the parent of an external node).

Each possible initial order, or permutation, of the elements in S will cause

our hypothetical sorting algorithm to execute a series of comparisons, traversing a

path in T from the root to some external node. Let us associate with each external

node v in T , then, the set of permutations of S that cause our sorting algorithm to

end up in v. The most important observation in our lower-bound argument is that

each external node v in T can represent the sequence of comparisons for at most

one permutation of S. The justification for this claim is simple: If two different

12.3. Studying Sorting through an Algorithmic Lens 557

permutations P1 and P2 of S are associated with the same external node, then there

are at least two objects xi and x j, such that xi is before x j in P1 but xi is after x j

in P2. At the same time, the output associated with v must be a specific reordering

of S, with either xi or x j appearing before the other. But if P1 and P2 both cause the

sorting algorithm to output the elements of S in this order, then that implies there is

a way to trick the algorithm into outputting xi and x j in the wrong order. Since this

cannot be allowed by a correct sorting algorithm, each external node of T must be

associated with exactly one permutation of S. We use this property of the decision

tree associated with a sorting algorithm to prove the following result:

Proposition 12.4: The running time of any comparison-based algorithm for sort-

ing an n-element sequence is Ω(n log n) in the worst case.

Justification: The running time of a comparison-based sorting algorithm must

be greater than or equal to the height of the decision tree T associated with this

algorithm, as described above. (See Figure 12.15.) By the argument above, each

external node in T must be associated with one permutation of S. Moreover, each

permutation of S must result in a different external node of T . The number of

permutations of n objects is n! = n(n− 1)(n− 2) · · ·2 · 1. Thus, T must have at

least n! external nodes. By Proposition 8.7, the height of T is at least log(n!). This

immediately justifies the proposition, because there are at least n/2 terms that are

greater than or equal to n/2 in the product n!; hence,

log(n!) ≥ log

((n

2

) n
2

)
=

n

2
log

n

2
,

which is Ω(n log n).

(i.e., worst-case running time)
Minimum Height

log(n!)

n!

xk < xl ?xg < xh ?

xc < xd ?

xm < xn ?

xa < xb ?

xe < xf ?

xi < xj ?

Figure 12.15: Visualizing the lower bound for comparison-based sorting.

558 Chapter 12. Sorting and Selection

12.3.2 Linear-Time Sorting: Bucket-Sort and Radix-Sort

In the previous section, we showed that Ω(n log n) time is necessary, in the worst

case, to sort an n-element sequence with a comparison-based sorting algorithm. A

natural question to ask, then, is whether there are other kinds of sorting algorithms

that can be designed to run asymptotically faster than O(n log n) time. Interest-

ingly, such algorithms exist, but they require special assumptions about the input

sequence to be sorted. Even so, such scenarios often arise in practice, such as when

sorting integers from a known range or sorting character strings, so discussing them

is worthwhile. In this section, we will consider the problem of sorting a sequence

of entries, each a key-value pair, where the keys have a restricted type.

Bucket-Sort

Consider a sequence S of n entries whose keys are integers in the range [0,N−1],
for some integer N ≥ 2, and suppose that S should be sorted according to the keys

of the entries. In this case, it is possible to sort S in O(n+N) time. It might seem

surprising, but this implies, for example, that if N is O(n), then we can sort S in

O(n) time. Of course, the crucial point is that, because of the restrictive assumption

about the format of the elements, we can avoid using comparisons.

The main idea is to use an algorithm called bucket-sort, which is not based on

comparisons, but on using keys as indices into a bucket array B that has cells in-

dexed from 0 to N− 1. An entry with key k is placed in the “bucket” B[k], which

itself is a sequence (of entries with key k). After inserting each entry of the input

sequence S into its bucket, we can put the entries back into S in sorted order by enu-

merating the contents of the buckets B[0],B[1], . . . ,B[N− 1] in order. We describe

the bucket-sort algorithm in Code Fragment 12.7.

Algorithm bucketSort(S):

Input: Sequence S of entries with integer keys in the range [0,N−1]
Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of n sequences, each of which is initially empty

for each entry e in S do

let k denote the key of e

remove e from S and insert it at the end of bucket (sequence) B[k]
for i = 0 to n−1 do

for each entry e in sequence B[i] do

remove e from B[i] and insert it at the end of S

Code Fragment 12.7: Bucket-sort.

12.3. Studying Sorting through an Algorithmic Lens 559

It is easy to see that bucket-sort runs in O(n + N) time and uses O(n+ N)
space. Hence, bucket-sort is efficient when the range N of values for the keys is

small compared to the sequence size n, say N = O(n) or N = O(n logn). Still, its

performance deteriorates as N grows compared to n.

An important property of the bucket-sort algorithm is that it works correctly

even if there are many different elements with the same key. Indeed, we described

it in a way that anticipates such occurrences.

Stable Sorting

When sorting key-value pairs, an important issue is how equal keys are handled. Let

S = ((k0,v0), . . . ,(kn−1,vn−1)) be a sequence of such entries. We say that a sorting

algorithm is stable if, for any two entries (ki,vi) and (k j,v j) of S such that ki = k j

and (ki,vi) precedes (k j,v j) in S before sorting (that is, i < j), entry (ki,vi) also

precedes entry (k j,v j) after sorting. Stability is important for a sorting algorithm

because applications may want to preserve the initial order of elements with the

same key.

Our informal description of bucket-sort in Code Fragment 12.7 guarantees sta-

bility as long as we ensure that all sequences act as queues, with elements processed

and removed from the front of a sequence and inserted at the back. That is, when

initially placing elements of S into buckets, we should process S from front to back,

and add each element to the end of its bucket. Subsequently, when transferring el-

ements from the buckets back to S, we should process each B[i] from front to back,

with those elements added to the end of S.

Radix-Sort

One of the reasons that stable sorting is so important is that it allows the bucket-

sort approach to be applied to more general contexts than to sort integers. Suppose,

for example, that we want to sort entries with keys that are pairs (k, l), where k

and l are integers in the range [0,N − 1], for some integer N ≥ 2. In a context

such as this, it is common to define an order on these keys using the lexicographic

(dictionary) convention, where (k1, l1)< (k2, l2) if k1 < k2 or if k1 = k2 and l1 < l2
(see page 363). This is a pairwise version of the lexicographic comparison function,

which can be applied to equal-length character strings, or to tuples of length d.

The radix-sort algorithm sorts a sequence S of entries with keys that are pairs,

by applying a stable bucket-sort on the sequence twice; first using one component

of the pair as the key when ordering and then using the second component. But

which order is correct? Should we first sort on the k’s (the first component) and

then on the l’s (the second component), or should it be the other way around?

560 Chapter 12. Sorting and Selection

To gain intuition before answering this question, we consider the following

example.

Example 12.5: Consider the following sequence S (we show only the keys):

S = ((3,3),(1,5),(2,5), (1,2), (2,3), (1,7), (3,2),(2,2)).

If we sort S stably on the first component, then we get the sequence

S1 = ((1,5),(1,2),(1,7),(2,5),(2,3),(2,2),(3,3),(3,2)).

If we then stably sort this sequence S1 using the second component, we get the

sequence

S1,2 = ((1,2),(2,2),(3,2),(2,3),(3,3),(1,5),(2,5),(1,7)),

which is unfortunately not a sorted sequence. On the other hand, if we first stably

sort S using the second component, then we get the sequence

S2 = ((1,2),(3,2),(2,2),(3,3),(2,3),(1,5),(2,5),(1,7)).

If we then stably sort sequence S2 using the first component, we get the sequence

S2,1 = ((1,2),(1,5),(1,7),(2,2),(2,3),(2,5),(3,2),(3,3)),

which is indeed sequence S lexicographically ordered.

So, from this example, we are led to believe that we should first sort using

the second component and then again using the first component. This intuition is

exactly right. By first stably sorting by the second component and then again by

the first component, we guarantee that if two entries are equal in the second sort

(by the first component), then their relative order in the starting sequence (which

is sorted by the second component) is preserved. Thus, the resulting sequence is

guaranteed to be sorted lexicographically every time. We leave to a simple exercise

(R-12.19) the determination of how this approach can be extended to triples and

other d-tuples of numbers. We can summarize this section as follows:

Proposition 12.6: Let S be a sequence of n key-value pairs, each of which has a

key (k1,k2, . . . ,kd), where ki is an integer in the range [0,N − 1] for some integer

N ≥ 2. We can sort S lexicographically in time O(d(n+N)) using radix-sort.

Radix-sort can be applied to any key that can be viewed as a composite of

smaller pieces that are to be sorted lexicographically. For example, we can apply

it to sort character strings of moderate length, as each individual character can be

represented as an integer value. (Some care is needed to properly handle strings

with varying lengths.)

12.4. Comparing Sorting Algorithms 561

12.4 Comparing Sorting Algorithms

At this point, it might be useful for us to take a moment and consider all the algo-

rithms we have studied in this book to sort an n-element sequence.

Considering Running Time and Other Factors

We have studied several methods, such as insertion-sort and selection-sort, that

have O(n2)-time behavior in the average and worst case. We have also studied sev-

eral methods with O(n log n)-time behavior, including heap-sort, merge-sort, and

quick-sort. Finally, the bucket-sort and radix-sort methods run in linear time for

certain types of keys. Certainly, the selection-sort algorithm is a poor choice in any

application, since it runs in O(n2) time even in the best case. But, of the remaining

sorting algorithms, which is the best?

As with many things in life, there is no clear “best” sorting algorithm from

the remaining candidates. There are trade-offs involving efficiency, memory usage,

and stability. The sorting algorithm best suited for a particular application depends

on the properties of that application. In fact, the default sorting algorithm used

by computing languages and systems has evolved greatly over time. We can offer

some guidance and observations, therefore, based on the known properties of the

“good” sorting algorithms.

Insertion-Sort

If implemented well, the running time of insertion-sort is O(n+m), where m is

the number of inversions (that is, the number of pairs of elements out of order).

Thus, insertion-sort is an excellent algorithm for sorting small sequences (say, less

than 50 elements), because insertion-sort is simple to program, and small sequences

necessarily have few inversions. Also, insertion-sort is quite effective for sorting

sequences that are already “almost” sorted. By “almost,” we mean that the number

of inversions is small. But the O(n2)-time performance of insertion-sort makes it a

poor choice outside of these special contexts.

Heap-Sort

Heap-sort, on the other hand, runs in O(n log n) time in the worst case, which is

optimal for comparison-based sorting methods. Heap-sort can easily be made to ex-

ecute in-place, and is a natural choice on small- and medium-sized sequences, when

input data can fit into main memory. However, heap-sort tends to be outperformed

by both quick-sort and merge-sort on larger sequences. A standard heap-sort does

not provide a stable sort, because of the swapping of elements.

562 Chapter 12. Sorting and Selection

Quick-Sort

Although its O(n2)-time worst-case performance makes quick-sort susceptible in

real-time applications where we must make guarantees on the time needed to com-

plete a sorting operation, we expect its performance to be O(n log n) time, and ex-

perimental studies have shown that it outperforms both heap-sort and merge-sort on

many tests. Quick-sort does not naturally provide a stable sort, due to the swapping

of elements during the partitioning step.

For decades quick-sort was the default choice for a general-purpose, in-memory

sorting algorithm. Quick-sort was included as the qsort sorting utility provided

in C language libraries, and was the basis for sorting utilities on Unix operating

systems for many years. It has long been the standard algorithm for sorting arrays

of primitive type in Java. (We discuss sorting of object types below.)

Merge-Sort

Merge-sort runs in O(n log n) time in the worst case. It is quite difficult to make

merge-sort run in-place for arrays, and without that optimization the extra overhead

of allocate a temporary array, and copying between the arrays is less attractive than

in-place implementations of heap-sort and quick-sort for sequences that can fit en-

tirely in a computer’s main memory. Even so, merge-sort is an excellent algorithm

for situations where the input is stratified across various levels of the computer’s

memory hierarchy (e.g., cache, main memory, external memory). In these contexts,

the way that merge-sort processes runs of data in long merge streams makes the best

use of all the data brought as a block into a level of memory, thereby reducing the

total number of memory transfers.

The GNU sorting utility (and most current versions of the Linux operating sys-

tem) relies on a multiway merge-sort variant. Tim-sort (designed by Tim Peters) is

a hybrid approach that is essentially a bottom-up merge-sort that takes advantage of

initial runs in the data while using insertion-sort to build additional runs. Tim-sort

has been the standard sorting algorithm in Python since 2003, and it has become

the default algorithm for sorting arrays of object types, as of Java SE 7.

Bucket-Sort and Radix-Sort

Finally, if an application involves sorting entries with small integer keys, character

strings, or d-tuples of keys from a discrete range, then bucket-sort or radix-sort is

an excellent choice, for it runs in O(d(n+N)) time, where [0,N−1] is the range of

integer keys (and d = 1 for bucket sort). Thus, if d(n+N) is significantly “below”

the n log n function, then this sorting method should run faster than even quick-sort,

heap-sort, or merge-sort.

12.5. Selection 563

12.5 Selection

As important as it is, sorting is not the only interesting problem dealing with a total

order relation on a set of elements. There are a number of applications in which

we are interested in identifying a single element in terms of its rank relative to

the sorted order of the entire set. Examples include identifying the minimum and

maximum elements, but we may also be interested in, say, identifying the median

element, that is, the element such that half of the other elements are smaller and the

remaining half are larger. In general, queries that ask for an element with a given

rank are called order statistics.

Defining the Selection Problem

In this section, we discuss the general order-statistic problem of selecting the k th

smallest element from an unsorted collection of n comparable elements. This is

known as the selection problem. Of course, we can solve this problem by sorting

the collection and then indexing into the sorted sequence at index k− 1. Using

the best comparison-based sorting algorithms, this approach would take O(n logn)
time, which is obviously an overkill for the cases where k = 1 or k = n (or even

k = 2, k = 3, k = n− 1, or k = n− 5), because we can easily solve the selection

problem for these values of k in O(n) time. Thus, a natural question to ask is

whether we can achieve an O(n) running time for all values of k (including the

interesting case of finding the median, where k = ⌊n/2⌋).

12.5.1 Prune-and-Search

We can indeed solve the selection problem in O(n) time for any value of k. More-

over, the technique we use to achieve this result involves an interesting algorithmic

design pattern. This design pattern is known as prune-and-search or decrease-

and-conquer. In applying this design pattern, we solve a given problem that is

defined on a collection of n objects by pruning away a fraction of the n objects

and recursively solving the smaller problem. When we have finally reduced the

problem to one defined on a constant-sized collection of objects, we then solve

the problem using some brute-force method. Returning back from all the recursive

calls completes the construction. In some cases, we can avoid using recursion, in

which case we simply iterate the prune-and-search reduction step until we can ap-

ply a brute-force method and stop. Incidentally, the binary search method described

in Section 5.1.3 is an example of the prune-and-search design pattern.

564 Chapter 12. Sorting and Selection

12.5.2 Randomized Quick-Select

In applying the prune-and-search pattern to finding the k th smallest element in an

unordered sequence of n elements, we describe a simple and practical algorithm,

known as randomized quick-select. This algorithm runs in O(n) expected time,

taken over all possible random choices made by the algorithm; this expectation

does not depend whatsoever on any randomness assumptions about the input dis-

tribution. We note though that randomized quick-select runs in O(n2) time in the

worst case, the justification of which is left as an exercise (R-12.25). We also

provide an exercise (C-12.56) for modifying randomized quick-select to define a

deterministic selection algorithm that runs in O(n) worst-case time. The existence

of this deterministic algorithm is mostly of theoretical interest, however, since the

constant factor hidden by the big-Oh notation is relatively large in that case.

Suppose we are given an unsorted sequence S of n comparable elements to-

gether with an integer k ∈ [1,n]. At a high level, the quick-select algorithm for

finding the k th smallest element in S is similar to the randomized quick-sort algo-

rithm described in Section 12.2.1. We pick a “pivot” element from S at random and

use this to subdivide S into three subsequences L, E , and G, storing the elements of

S less than, equal to, and greater than the pivot, respectively. In the prune step, we

determine which of these subsets contains the desired element, based on the value

of k and the sizes of those subsets. We then recur on the appropriate subset, noting

that the desired element’s rank in the subset may differ from its rank in the full set.

Pseudocode for randomized quick-select is shown in Code Fragment 12.8.

Algorithm quickSelect(S,k):

Input: Sequence S of n comparable elements, and an integer k ∈ [1,n]
Output: The k th smallest element of S

if n == 1 then

return the (first) element of S.

pick a random (pivot) element x of S and divide S into three sequences:

• L, storing the elements in S less than x

• E , storing the elements in S equal to x

• G, storing the elements in S greater than x

if k ≤ |L| then

return quickSelect(L,k)
else if k ≤ |L|+ |E| then

return x {each element in E is equal to x}
else

return quickSelect(G,k−|L|− |E|) {note the new selection parameter}
Code Fragment 12.8: Randomized quick-select algorithm.

12.5. Selection 565

12.5.3 Analyzing Randomized Quick-Select

Showing that randomized quick-select runs in O(n) time requires a simple prob-

abilistic argument. The argument is based on the linearity of expectation, which

states that if X and Y are random variables and c is a number, then

E(X +Y) = E(X)+E(Y) and E(cX) = cE(X),

where we use E(Z) to denote the expected value of the expression Z .

Let t(n) be the running time of randomized quick-select on a sequence of size n.

Since this algorithm depends on random events, its running time, t(n), is a random

variable. We want to bound E(t(n)), the expected value of t(n). Say that a recursive

call of our algorithm is “good” if it partitions S so that the size of each of L and

G is at most 3n/4. Clearly, a recursive call is good with probability at least 1/2.

Let g(n) denote the number of consecutive recursive calls we make, including the

present one, before we get a good one. Then we can characterize t(n) using the

following recurrence equation:

t(n)≤ bn ·g(n)+ t(3n/4),

where b≥ 1 is a constant. Applying the linearity of expectation for n > 1, we get

E (t(n)) ≤ E (bn ·g(n)+ t(3n/4)) = bn ·E (g(n))+E (t(3n/4)) .

Since a recursive call is good with probability at least 1/2, and whether a recursive

call is good or not is independent of its parent call being good, the expected value

of g(n) is at most the expected number of times we must flip a fair coin before it

comes up “heads.” That is, E(g(n)) ≤ 2. Thus, if we let T (n) be shorthand for

E(t(n)), then we can write the case for n > 1 as

T (n)≤ T (3n/4)+2bn.

To convert this relation into a closed form, let us iteratively apply this inequality

assuming n is large. So, for example, after two applications,

T (n)≤ T ((3/4)2n)+2b(3/4)n+2bn.

At this point, we should see that the general case is

T (n)≤ 2bn ·
⌈log4/3 n⌉

∑
i=0

(3/4)i.

In other words, the expected running time is at most 2bn times a geometric sum

whose base is a positive number less than 1. Thus, by Proposition 4.5, T (n) is O(n).

Proposition 12.7: The expected running time of randomized quick-select on a

sequence S of size n is O(n), assuming two elements of S can be compared in O(1)
time.

566 Chapter 12. Sorting and Selection

12.6 Exercises

Reinforcement

R-12.1 Give a complete justification of Proposition 12.1.

R-12.2 In the merge-sort tree shown in Figures 12.2 through 12.4, some edges are drawn
as arrows. What is the meaning of a downward arrow? How about an upward

arrow?

R-12.3 Show that the running time of the merge-sort algorithm on an n-element sequence
is O(n logn), even when n is not a power of 2.

R-12.4 Is our array-based implementation of merge-sort given in Section 12.1.2 stable?

Explain why or why not.

R-12.5 Is our linked-list-based implementation of merge-sort (Code Fragment 12.3) sta-
ble? Explain why or why not.

R-12.6 An algorithm that sorts key-value entries by key is said to be straggling if any

time two entries ei and e j have equal keys, but ei appears before e j in the input,

then the algorithm places ei after e j in the output. Describe a change to the
merge-sort algorithm in Section 12.1 to make it straggling.

R-12.7 Suppose we are given two n-element sorted sequences A and B each with distinct

elements, but potentially some elements that are in both sequences. Describe an
O(n)-time method for computing a sequence representing the union A∪B (with

no duplicates) as a sorted sequence.

R-12.8 Give pseudocode descriptions for the retainAll and removeAll methods of the set
ADT, assuming we use sorted sequences to implement sets.

R-12.9 Suppose we modify the deterministic version of the quick-sort algorithm so that,

instead of selecting the last element in an n-element sequence as the pivot, we

choose the element at index ⌊n/2⌋. What is the running time of this version of
quick-sort on a sequence that is already sorted?

R-12.10 Consider a modification of the deterministic version of the quick-sort algorithm

where we choose the element at index ⌊n/2⌋ as our pivot. Describe the kind of
sequence that would cause this version of quick-sort to run in Ω(n2) time.

R-12.11 Suppose the method quickSortInPlace is executed on a sequence with duplicate

elements. Prove that the algorithm still correctly sorts the input sequence. What
happens in the partition step when there are elements equal to the pivot? What is

the running time of the algorithm if all the input elements are equal?

R-12.12 Show that the best-case running time of quick-sort on a sequence of size n with

distinct elements is Ω(n logn).

R-12.13 If the outermost while loop of our implementation of quickSortInPlace (line 9

of Code Fragment 12.6) were changed to use condition left < right, instead of

condition left <= right, there would be a flaw. Explain the flaw and give a
specific input sequence on which such an implementation fails.

12.6. Exercises 567

R-12.14 If the conditional at line 14 of our quickSortInPlace implementation of Code
Fragment 12.6 were changed to use condition left < right, instead of condition

left <= right, there would be a flaw. Explain the flaw and give a specific input

sequence on which such an implementation fails.

R-12.15 Following our analysis of randomized quick-sort in Section 12.2.1, show that the

probability that a given input element x belongs to more than 2logn subproblems

in size group i is at most 1/n2.

R-12.16 Of the n! possible inputs to a given comparison-based sorting algorithm, what is

the absolute maximum number of inputs that could be correctly sorted with just
n comparisons?

R-12.17 Jonathan has a comparison-based sorting algorithm that sorts the first k elements

of a sequence of size n in O(n) time. Give a big-Oh characterization of the biggest
that k can be.

R-12.18 Is the bucket-sort algorithm in-place? Why or why not?

R-12.19 Describe a radix-sort method for lexicographically sorting a sequence S of triplets
(k, l,m), where k, l, and m are integers in the range [0,N− 1], for N ≥ 2. How

could this scheme be extended to sequences of d-tuples (k1,k2, . . . ,kd), where

each ki is an integer in the range [0,N−1]?

R-12.20 Suppose S is a sequence of n values, each equal to 0 or 1. How long will it take

to sort S with the merge-sort algorithm? What about quick-sort?

R-12.21 Suppose S is a sequence of n values, each equal to 0 or 1. How long will it take
to sort S stably with the bucket-sort algorithm?

R-12.22 Given a sequence S of n values, each equal to 0 or 1, describe an in-place method

for sorting S.

R-12.23 Give an example input that requires merge-sort and heap-sort to take O(n logn)
time to sort, but insertion-sort runs in O(n) time. What if you reverse this list?

R-12.24 What is the best algorithm for sorting each of the following: general comparable
objects, long character strings, 32-bit integers, double-precision floating-point

numbers, and bytes? Justify your answer.

R-12.25 Show that the worst-case running time of quick-select on an n-element sequence
is Ω(n2).

Creativity

C-12.26 Describe and analyze an efficient method for removing all duplicates from a col-
lection A of n elements.

C-12.27 Augment the PositionalList class (see Section 7.3) to support a method named

sort that sorts the elements of a list by relinking existing nodes; you are not to
create any new nodes. You may use your choice of sorting algorithm.

568 Chapter 12. Sorting and Selection

C-12.28 Linda claims to have an algorithm that takes an input sequence S and produces
an output sequence T that is a sorting of the n elements in S.

a. Give an algorithm, isSorted, that tests in O(n) time if T is sorted.

b. Explain why the algorithm isSorted is not sufficient to prove a particular
output T to Linda’s algorithm is a sorting of S.

c. Describe what additional information Linda’s algorithm could output so

that her algorithm’s correctness could be established on any given S and T

in O(n) time.

C-12.29 Augment the PositionalList class (see Section 7.3) to support a method named

merge with the following behavior. If A and B are PositionalList instances whose

elements are sorted, the syntax A.merge(B) should merge all elements of B into
A so that A remains sorted and B becomes empty. Your implementation must

accomplish the merge by relinking existing nodes; you are not to create any new

nodes.

C-12.30 Implement a bottom-up merge-sort for a collection of items by placing each item
in its own queue, and then repeatedly merging pairs of queues until all items are

sorted within a single queue.

C-12.31 Modify our in-place quick-sort implementation of Code Fragment 12.6 to be a

randomized version of the algorithm, as discussed in Section 12.2.1.

C-12.32 Consider a version of deterministic quick-sort where we pick as our pivot the

median of the d last elements in the input sequence of n elements, for a fixed,
constant odd number d ≥ 3. What is the asymptotic worst-case running time of

quick-sort in this case?

C-12.33 Another way to analyze randomized quick-sort is to use a recurrence equation.

In this case, we let T (n) denote the expected running time of randomized quick-
sort, and we observe that, because of the worst-case partitions for good and bad

splits, we can write

T (n)≤ 1

2
(T (3n/4)+T(n/4))+

1

2
(T (n−1))+ bn,

where bn is the time needed to partition a list for a given pivot and concatenate
the result sublists after the recursive calls return. Show, by induction, that T (n)
is O(n logn).

C-12.34 Our high-level description of quick-sort describes partitioning the elements into

three sets L, E, and G, having keys less than, equal to, or greater than the pivot,
respectively. However, our in-place quick-sort implementation of Code Frag-

ment 12.6 does not gather all elements equal to the pivot into a set E. An alterna-

tive strategy for an in-place, three-way partition is as follows. Loop through the
elements from left to right maintaining indices a, b, and c and the invariant that

elements with index i such that 0 ≤ i < a are strictly less than the pivot, those
with a ≤ i < b are equal to the pivot, and those with index b ≤ i < c are strictly

greater than the pivot; elements with index c≤ i < n are yet unclassified. In each

pass of the loop, classify one additional element, performing a constant number
of swaps as needed. Implement an in-place quick-sort using this strategy.

12.6. Exercises 569

C-12.35 Suppose we are given an n-element sequence S such that each element in S rep-
resents a different vote for president, where each vote is given as an integer rep-

resenting a particular candidate, yet the integers may be arbitrarily large (even

if the number of candidates is not). Design an O(n logn)-time algorithm to see
who wins the election S represents, assuming the candidate with the most votes

wins.

C-12.36 Consider the voting problem from Exercise C-12.35, but now suppose that we

know the number k < n of candidates running, even though the integer IDs for
those candidates can be arbitrarily large. Describe an O(n logk)-time algorithm

for determining who wins the election.

C-12.37 Consider the voting problem from Exercise C-12.35, but now suppose the inte-
gers 1 to k are used to identify k < n candidates. Design an O(n)-time algorithm

to determine who wins the election.

C-12.38 Show that any comparison-based sorting algorithm can be made to be stable with-

out affecting its asymptotic running time.

C-12.39 Suppose we are given two sequences A and B of n elements, possibly containing

duplicates, on which a total order relation is defined. Describe an efficient algo-
rithm for determining if A and B contain the same set of elements. What is the

running time of this method?

C-12.40 Given an array A of n integers in the range [0,n2−1], describe a simple method

for sorting A in O(n) time.

C-12.41 Let S1,S2, . . . ,Sk be k different sequences whose elements have integer keys in the
range [0,N−1], for some parameter N ≥ 2. Describe an algorithm that produces

k respective sorted sequences in O(n+N) time, where n denotes the sum of the
sizes of those sequences.

C-12.42 Given a sequence S of n elements, on which a total order relation is defined, de-
scribe an efficient method for determining whether there are two equal elements

in S. What is the running time of your method?

C-12.43 Let S be a sequence of n elements on which a total order relation is defined.

Recall that an inversion in S is a pair of elements x and y such that x appears

before y in S but x > y. Describe an algorithm running in O(n logn) time for
determining the number of inversions in S.

C-12.44 Let S be a sequence of n integers. Describe a method for printing out all the pairs
of inversions in S in O(n+ k) time, where k is the number of such inversions.

C-12.45 Let S be a random permutation of n distinct integers. Argue that the expected
running time of insertion-sort on S is Ω(n2). (Hint: Note that half of the elements

ranked in the top half of a sorted version of S are expected to be in the first half

of S.)

C-12.46 Let A and B be two sequences of n integers each. Given an integer m, describe

an O(n logn)-time algorithm for determining if there is an integer a in A and an
integer b in B such that m = a+b.

570 Chapter 12. Sorting and Selection

C-12.47 Given two sets A and B represented as sorted sequences, describe an efficient
algorithm for computing A⊕B, which is the set of elements that are in A or B,

but not in both.

C-12.48 Given a set of n integers, describe and analyze a fast method for finding the

⌈logn⌉ integers closest to the median.

C-12.49 Bob has a set A of n nuts and a set B of n bolts, such that each nut in A has a

unique matching bolt in B. Unfortunately, the nuts in A all look the same, and the
bolts in B all look the same as well. The only kind of a comparison that Bob can

make is to take a nut-bolt pair (a,b), such that a is in A and b is in B, and test it
to see if the threads of a are larger, smaller, or a perfect match with the threads

of b. Describe and analyze an efficient algorithm for Bob to match up all of his

nuts and bolts.

C-12.50 Our quick-select implementation can be made more space-efficient by initially

computing only the counts for sets L, E, and G, and creating only the new subset
that will be needed for recursion. Implement such a version.

C-12.51 Describe an in-place version of the quick-select algorithm in pseudocode, assum-

ing that you are allowed to modify the order of elements.

C-12.52 Show how to use a deterministic O(n)-time selection algorithm to sort a sequence

of n elements in O(n logn)-worst-case time.

C-12.53 Given an unsorted sequence S of n comparable elements, and an integer k, give an

O(n logk)-expected-time algorithm for finding the O(k) elements that have rank
⌈n/k⌉, 2⌈n/k⌉, 3⌈n/k⌉, and so on.

C-12.54 Space aliens have given us a method, alienSplit, that can take a sequence S of n

integers and partition S in O(n) time into sequences S1,S2, . . . ,Sk of size at most

⌈n/k⌉ each, such that the elements in Si are less than or equal to every element in
Si+1, for i = 1,2, . . . ,k−1, for a fixed number, k < n. Show how to use alienSplit
to sort S in O(n logn/ logk) time.

C-12.55 Show that randomized quick-sort runs in O(n logn) time with probability at least

1−1/n, that is, with high probability, by answering the following:

a. For each input element x, define Ci, j(x) to be a 0/1 random variable that is
1 if and only if element x is in j+1 subproblems that have size s such that

(3/4)i+1n < s≤ (3/4)in. Argue why we need not define Ci, j for j > n.

b. Let Xi, j be an independent 0/1 random variable that is 1 with probability

1/2 j, and let L= ⌈log4/3 n⌉. Argue that ∑
L−1
i=0 ∑

n
j=0Ci, j(x)≤∑

L−1
i=0 ∑

n
j=0 Xi, j.

c. Show that the expected value of ∑
L−1
i=0 ∑

n
j=0 Xi, j is (2−1/2n)L.

d. Show that the probability that ∑
L
i=0 ∑

n
j=0 Xi, j > 4L is at most 1/n2, using

the Chernoff bound that states that if X is the sum of a finite number

of independent 0/1 random variables, having expected value µ > 0, then

Pr(X > 2µ)< (4/e)−µ, where e = 2.71828128
e. Argue that randomized quick-sort runs in O(n logn) time with probability

at least 1−1/n.

12.6. Exercises 571

C-12.56 We can make the quick-select algorithm deterministic, by choosing the pivot of
an n-element sequence as follows:

Partition the set S into ⌈n/5⌉ groups of size 5 each (except possibly

for one group). Sort each little set and identify the median element in
this set. From this set of ⌈n/5⌉ “baby” medians, apply the selection

algorithm recursively to find the median of the baby medians. Use

this element as the pivot and proceed as in the quick-select algorithm.

Show that this deterministic quick-select algorithm runs in O(n) time by answer-
ing the following questions (please ignore floor and ceiling functions if that sim-

plifies the mathematics, for the asymptotics are the same either way):

a. How many baby medians are less than or equal to the chosen pivot? How
many are greater than or equal to the pivot?

b. For each baby median less than or equal to the pivot, how many other

elements are less than or equal to the pivot? Is the same true for those
greater than or equal to the pivot?

c. Argue why the method for finding the deterministic pivot and using it to

partition S takes O(n) time.

d. Based on these estimates, write a recurrence equation to bound the worst-

case running time t(n) for this selection algorithm (note that in the worst

case there are two recursive calls—one to find the median of the baby me-
dians and one to recur on the larger of L and G).

e. Using this recurrence equation, show by induction that t(n) is O(n).

C-12.57 Suppose we are interested in dynamically maintaining a set S of integers, which
is initially empty, while supporting the following two operations:

add(v): Adds value v to set S.

median(): Returns the current median value of the set. For a set with

even cardinality, we define the median as the average of the
two most central values.

We will store each element of the set in one of two priority queues: a min-oriented

priority queue, Q+, of all elements greater than or equal to the current median

value, and a max-oriented priority queue, Q−, of all elements less than the current
median value.

a. Explain how to perform the operation median() in O(1) time given such a

representation.

b. Explain how to perform the operation S.add(k) in O(logn) time, where n is

the current cardinality of the set, while maintaining such a representation.

C-12.58 As a generalization of the previous problem, revisit Exercise C-11.45, which
involves performing general selection queries on a dynamic set of values.

572 Chapter 12. Sorting and Selection

Projects

P-12.59 Implement a nonrecursive, in-place version of the quick-sort algorithm, as de-

scribed at the end of Section 12.2.2.

P-12.60 Experimentally compare the performance of in-place quick-sort and a version of
quick-sort that is not in-place.

P-12.61 Perform a series of benchmarking tests on a version of merge-sort and quick-sort
to determine which one is faster. Your tests should include sequences that are

“random” as well as “almost” sorted.

P-12.62 Implement deterministic and randomized versions of the quick-sort algorithm

and perform a series of benchmarking tests to see which one is faster. Your tests

should include sequences that are very “random” looking as well as ones that are
“almost” sorted.

P-12.63 Implement an in-place version of insertion-sort and an in-place version of quick-
sort. Perform benchmarking tests to determine the range of values of n where

quick-sort is on average better than insertion-sort.

P-12.64 Design and implement a version of the bucket-sort algorithm for sorting a list

of n entries with integer keys taken from the range [0,N− 1], for N ≥ 2. The

algorithm should run in O(n+N) time.

P-12.65 Implement an animation of one of the sorting algorithms described in this chap-

ter, illustrating key properties of the algorithm in an intuitive manner.

P-12.66 Design and implement two versions of the bucket-sort algorithm in Java, one

for sorting an array of byte values and one for sorting an array of short values.
Experimentally compare the performance of your implementations with that of

the method, java.util.Arrays.sort.

Chapter Notes

Knuth’s classic text on Sorting and Searching [61] contains an extensive history of the

sorting problem and algorithms for solving it. Huang and Langston [49] show how to

merge two sorted lists in-place in linear time. The standard quick-sort algorithm is due

to Hoare [45]. Several optimizations for quick-sort are described by Bentley and McIl-

roy [15]. More information about randomized algorithms can be found in the book by

Motwani and Raghavan [75]. The quick-sort analysis given in this chapter is a combina-

tion of the analysis given in an earlier Java edition of this book and the analysis of Kleinberg

and Tardos [57]. Exercise C-12.33 is due to Littman. Gonnet and Baeza-Yates [38] ana-

lyze and compare experimentally several sorting algorithms. The term “prune-and-search”

comes originally from the computational geometry literature (such as in the work of Clark-

son [22] and Megiddo [70]). The term “decrease-and-conquer” is from Levitin [66].

Chapter

13 Text Processing

Contents

13.1 Abundance of Digitized Text 574

13.1.1 Notations for Character Strings 575

13.2 Pattern-Matching Algorithms 576

13.2.1 Brute Force . 576

13.2.2 The Boyer-Moore Algorithm 578

13.2.3 The Knuth-Morris-Pratt Algorithm 582

13.3 Tries . 586

13.3.1 Standard Tries . 586

13.3.2 Compressed Tries . 590

13.3.3 Suffix Tries . 592

13.3.4 Search Engine Indexing 594

13.4 Text Compression and the Greedy Method 595

13.4.1 The Huffman Coding Algorithm 596

13.4.2 The Greedy Method . 597

13.5 Dynamic Programming . 598

13.5.1 Matrix Chain-Product . 598

13.5.2 DNA and Text Sequence Alignment 601

13.6 Exercises . 605

574 Chapter 13. Text Processing

13.1 Abundance of Digitized Text

Despite the wealth of multimedia information, text processing remains one of the

dominant functions of computers. Computers are used to edit, store, and display

documents, and to transport files over the Internet. Furthermore, digital systems are

used to archive a wide range of textual information, and new data is being generated

at a rapidly increasing pace. A large corpus can readily surpass a petabyte of data

(which is equivalent to a thousand terabytes, or a million gigabytes). Common

examples of digital collections that include textual information are:

• Snapshots of the World Wide Web, as Internet document formats HTML and

XML are primarily text formats, with added tags for multimedia content

• All documents stored locally on a user’s computer

• Email archives

• Compilations of status updates on social networking sites such as Facebook

• Feeds from microblogging sites such as Twitter and Tumblr

These collections include written text from hundreds of international languages.

Furthermore, there are large data sets (such as DNA) that can be viewed computa-

tionally as “strings” even though they are not language.

In this chapter, we explore some of the fundamental algorithms that can be

used to efficiently analyze and process large textual data sets. In addition to having

interesting applications, text-processing algorithms also highlight some important

algorithmic design patterns.

We begin by examining the problem of searching for a pattern as a substring

of a larger piece of text, for example, when searching for a word in a document.

The pattern-matching problem gives rise to the brute-force method, which is of-

ten inefficient but has wide applicability. We continue by describing more effi-

cient algorithms for solving the pattern-matching problem, and we examine several

special-purpose data structures that can be used to better organize textual data in

order to support more efficient runtime queries.

Because of the massive size of textual data sets, the issue of compression is

important, both in minimizing the number of bits that need to be communicated

through a network and to reduce the long-term storage requirements for archives.

For text compression, we can apply the greedy method, which often allows us to

approximate solutions to hard problems, and for some problems (such as in text

compression) actually gives rise to optimal algorithms.

Finally, we introduce dynamic programming, an algorithmic technique that can

be applied in certain settings to solve a problem in polynomial time, which appears

at first to require exponential time to solve. We demonstrate the application on this

technique to the problem of finding partial matches between strings that may be

similar but not perfectly aligned. This problem arises when making suggestions for

a misspelled word, or when trying to match related genetic samples.

13.1. Abundance of Digitized Text 575

13.1.1 Notations for Character Strings

When discussing algorithms for text processing, we use character strings as a model

for text. Character strings can come from a wide variety of sources, including

scientific, linguistic, and Internet applications. Indeed, the following are examples

of such strings:

S = "CGTAAACTGCTTTAATCAAACGC"

T = "http://www.wiley.com"

The first string, S, comes from DNA applications, and the second string, T , is the

Internet address (URL) for the publisher of this book.

To allow fairly general notions of a string in our algorithm descriptions, we

only assume that characters of a string come from a known alphabet, which we

denote as Σ. For example, in the context of DNA, there are four symbols in the

standard alphabet, Σ = {A,C,G,T}. This alphabet Σ can, of course, be a subset of

the ASCII or Unicode character sets, but it could also be something more general.

Although we assume that an alphabet has a fixed finite size, denoted as |Σ|, that size

can be nontrivial, as with Java’s treatment of the Unicode alphabet, which allows

more than a million distinct characters. We therefore consider the impact of |Σ| in
our asymptotic analysis of text-processing algorithms.

Java’s String class provides support for representing an immutable sequence

of characters, while its StringBuilder class supports mutable character sequences

(see Section 1.3). For much of this chapter, we rely on the more primitive rep-

resentation of a string as a char array, primarily because it allows us to use the

standard indexing notation S[i], rather than the String class’s more cumbersome

syntax, S.charAt(i).

In order to discuss pieces of a string, we denote as a substring of an n-character

string P a string of the form P[i]P[i+1]P[i+2] · · ·P[j], for some 0≤ i≤ j ≤ n−1.

To simplify the notation for referring to such substrings in prose, we let P[i.. j]
denote the substring of P from index i to index j inclusive. We note that string is

technically a substring of itself (taking i = 0 and j = n− 1), so if we want to rule

this out as a possibility, we must restrict the definition to proper substrings, which

require that either i > 0 or j < n−1. We use the convention that if i> j, then P[i.. j]
is equal to the null string, which has length 0.

In addition, in order to distinguish some special kinds of substrings, let us refer

to any substring of the form P[0.. j], for 0 ≤ j ≤ n− 1, as a prefix of P, and any

substring of the form P[i..n−1], for 0≤ i≤ n−1, as a suffix of P. For example, if

we again take P to be the string of DNA given above, then "CGTAA" is a prefix of

P, "CGC" is a suffix of P, and "TTAATC" is a (proper) substring of P. Note that the

null string is a prefix and a suffix of any other string.

http://www.wiley.com

576 Chapter 13. Text Processing

13.2 Pattern-Matching Algorithms

In the classic pattern-matching problem, we are given a text string of length n

and a pattern string of length m ≤ n, and must determine whether the pattern is a

substring of the text. If so, we may want to find the lowest index within the text at

which the pattern begins, or perhaps all indices at which the pattern begins.

The pattern-matching problem is inherent to many behaviors of Java’s String
class, such as text.contains(pattern) and text.indexOf(pattern), and is a subtask

of more complex string operations such as text.replace(pattern, substitute) and

text.split(pattern).

In this section, we present three pattern-matching algorithms, with increasing

levels of sophistication. Our implementations report the index that begins the left-

most occurrence of the pattern, if found. For a failed search, we adopt the conven-

tions of the indexOf method of Java’s String class, returning −1 as a sentinel.

13.2.1 Brute Force

The brute-force algorithmic design pattern is a powerful technique for algorithm

design when we have something we wish to search for or when we wish to optimize

some function. When applying this technique in a general situation, we typically

enumerate all possible configurations of the inputs involved and pick the best of all

these enumerated configurations.

In applying this technique to design a brute-force pattern-matching algorithm,

we derive what is probably the first algorithm that we might think of for solving the

problem—we simply test all the possible placements of the pattern relative to the

text. An implementation of this algorithm is shown in Code Fragment 13.1.

1 /∗∗ Returns the lowest index at which substring pattern begins in text (or else −1).∗/
2 public static int findBrute(char[] text, char[] pattern) {
3 int n = text.length;
4 int m = pattern.length;
5 for (int i=0; i <= n − m; i++) { // try every starting index within text
6 int k = 0; // k is index into pattern
7 while (k < m && text[i+k] == pattern[k]) // kth character of pattern matches
8 k++;
9 if (k == m) // if we reach the end of the pattern,

10 return i; // substring text[i..i+m-1] is a match
11 }
12 return −1; // search failed
13 }

Code Fragment 13.1: An implementation of the brute-force pattern-matching algo-

rithm. (We use character arrays rather than strings to simplify indexing notation.)

13.2. Pattern-Matching Algorithms 577

Performance

The analysis of the brute-force pattern-matching algorithm could not be simpler.

It consists of two nested loops, with the outer loop indexing through all possible

starting indices of the pattern in the text, and the inner loop indexing through each

character of the pattern, comparing it to its potentially corresponding character

in the text. Thus, the correctness of the brute-force pattern-matching algorithm

follows immediately from this exhaustive search approach.

The running time of brute-force pattern matching in the worst case is not good,

however, because we can perform up to m character comparisons for each candidate

alignment of the pattern within the text. Referring to Code Fragment 13.1, we see

that the outer for loop is executed at most n−m+1 times, and the inner while loop

is executed at most m times. Thus, the worst-case running time of the brute-force

method is O(nm).

Example 13.1: Suppose we are given the text string

text = "abacaabaccabacabaabb"

and the pattern string

pattern = "abacab"

Figure 13.1 illustrates the execution of the brute-force pattern-matching algorithm

on this selection of text and pattern.

a

b

ab c

c

10

2322

Text:

11 comparisons not shown

ba a a bc

7

bPattern:

ba

a a a bc

654321

a a

ba a a bc

8 9

bc

27262524

ba a a

bbaaabaccabaac ba

Figure 13.1: Example run of the brute-force pattern-matching algorithm. The algo-

rithm performs 27 character comparisons, indicated above with numerical labels.

578 Chapter 13. Text Processing

13.2.2 The Boyer-Moore Algorithm

At first, it might seem that it is always necessary to examine every character in the

text in order to locate a pattern as a substring or to rule out its existence. But this is

not always the case. The Boyer-Moore pattern-matching algorithm, which we will

study in this section, can sometimes avoid examining a significant fraction of the

character in the text. In this section, we will describe a simplified version of the

original algorithm by Boyer and Moore.

The main idea of the Boyer-Moore algorithm is to improve the running time of

the brute-force algorithm by adding two potentially time-saving heuristics. Roughly

stated, these heuristics are as follows:

Looking-Glass Heuristic: When testing a possible placement of the pattern against

the text, perform the comparisons against the pattern from right-to-left.

Character-Jump Heuristic: During the testing of a possible placement of the pat-

tern within the text, a mismatch of character text[i]=c with the corresponding

character pattern[k] is handled as follows. If c is not contained anywhere in

the pattern, then shift the pattern completely past text[i] = c. Otherwise,

shift the pattern until an occurrence of character c gets aligned with text[i].

We will formalize these heuristics shortly, but at an intuitive level, they work as an

integrated team to allow us to avoid comparisons with whole groups of characters

in the text. In particular, when a mismatch is found near the right end of the pattern,

we may end up realigning the pattern beyond the mismatch, without ever examining

several characters of the text preceding the mismatch. For example, Figure 13.2

demonstrates a few simple applications of these heuristics. Notice that when the

characters e and imismatch at the right end of the original placement of the pattern,

we slide the pattern beyond the mismatched character, without ever examining the

first four characters of the text.

s i

·

Pattern:

·····s···e·· · · ··Text: · ··

hus s i

hus s i

hu s

Figure 13.2: A simple example demonstrating the intuition of the Boyer-Moore

pattern-matching algorithm. The original comparison results in a mismatch with

character e of the text. Because that character is nowhere in the pattern, the entire

pattern is shifted beyond its location. The second comparison is also a mismatch,

but the mismatched character s occurs elsewhere in the pattern. The pattern is then

shifted so that its last occurrence of s is aligned with the corresponding s in the

text. The remainder of the process is not illustrated in this figure.

13.2. Pattern-Matching Algorithms 579

The example of Figure 13.2 is rather basic, because it only involves mismatches

with the last character of the pattern. More generally, when a match is found for

that last character, the algorithm continues by trying to extend the match with the

second-to-last character of the pattern in its current alignment. That process contin-

ues until either matching the entire pattern, or finding a mismatch at some interior

position of the pattern.

If a mismatch is found, and the mismatched character of the text does not occur

in the pattern, we shift the entire pattern beyond that location, as originally illus-

trated in Figure 13.2. If the mismatched character occurs elsewhere in the pattern,

we must consider two possible subcases depending on whether its last occurrence

is before or after the character of the pattern that was mismatched. Those two cases

are illustrated in Figure 13.3.

In the case of Figure 13.3(b), we slide the pattern only one unit. It would

be more productive to slide it rightward until finding another occurrence of mis-

matched character text[i] in the pattern, but we do not wish to take time to search

(a)

·

· b ··

kj

i′

· a

· ··

· b ··

j+1

m− (j+1)

Text:

Pattern:

·····a········ · ·

i

a ·

(b)

·

k j

i′

· · b·· a

· · b·· a

k

m− k

Text:

Pattern:

· ·······a········ · ·

i

Figure 13.3: Additional rules for the character-jump heuristic of the Boyer-Moore

algorithm. We let i represent the index of the mismatched character in the text, k

represent the corresponding index in the pattern, and j represent the index of the

last occurrence of text[i] within the pattern. We distinguish two cases: (a) j < k,

in which case we shift the pattern by k− j units, and thus, index i advances by

m− (j + 1) units; (b) j > k, in which case we shift the pattern by one unit, and

index i advances by m− k units.

580 Chapter 13. Text Processing

for another occurrence. The efficiency of the Boyer-Moore algorithm relies on

quickly determining where a mismatched character occurs elsewhere in the pat-

tern. In particular, we define a function last(c) as

• If c is in the pattern, last(c) is the index of the last (rightmost) occurrence of

c in the pattern. Otherwise, we conventionally define last(c) =−1.

If we assume that the alphabet is of fixed, finite size, and that characters can be

converted to indices of an array (for example, by using their character code), the

last function can be easily implemented as a lookup table with worst-case O(1)-
time access to the value last(c). However, the table would have length equal to the

size of the alphabet (rather than the size of the pattern), and time would be required

to initialize the entire table.

We prefer to use a hash table to represent the last function, with only those

characters from the pattern occurring in the map. The space usage for this approach

is proportional to the number of distinct alphabet symbols that occur in the pattern,

and thus O(max(m, |Σ|)). The expected lookup time remains O(1) (as does the

worst-case, if we consider |Σ| a constant). Our complete implementation of the

Boyer-Moore pattern-matching algorithm is given in Code Fragment 13.2.

1 /∗∗ Returns the lowest index at which substring pattern begins in text (or else −1).∗/
2 public static int findBoyerMoore(char[] text, char[] pattern) {
3 int n = text.length;
4 int m = pattern.length;
5 if (m == 0) return 0; // trivial search for empty string
6 Map<Character,Integer> last = new HashMap<>(); // the 'last' map
7 for (int i=0; i < n; i++)
8 last.put(text[i], −1); // set −1 as default for all text characters
9 for (int k=0; k < m; k++)

10 last.put(pattern[k], k); // rightmost occurrence in pattern is last
11 // start with the end of the pattern aligned at index m−1 of the text
12 int i = m−1; // an index into the text
13 int k = m−1; // an index into the pattern
14 while (i < n) {
15 if (text[i] == pattern[k]) { // a matching character
16 if (k == 0) return i; // entire pattern has been found
17 i−−; // otherwise, examine previous
18 k−−; // characters of text/pattern
19 } else {
20 i += m − Math.min(k, 1 + last.get(text[i])); // case analysis for jump step
21 k = m − 1; // restart at end of pattern
22 }
23 }
24 return −1; // pattern was never found
25 }

Code Fragment 13.2: An implementation of the Boyer-Moore algorithm.

13.2. Pattern-Matching Algorithms 581

The correctness of the Boyer-Moore pattern-matching algorithm follows from

the fact that each time the method makes a shift, it is guaranteed not to “skip” over

any possible matches. For last(c) is the location of the last occurrence of c in the

pattern. In Figure 13.4, we illustrate the execution of the Boyer-Moore pattern-

matching algorithm on an input string similar to Example 13.1.

c a b c d

last(c) 4 5 3 −1

acdabaac ba ab cText:

Pattern: ba a a bc

1

ba a a bc

234

ba a a bc

5

ba a a bc

6

ba a a bc

7

ba a a bc

8910111213

bbaaaba

Figure 13.4: An illustration of the Boyer-Moore pattern-matching algorithm, in-

cluding a summary of the last(c) function. The algorithm performs 13 character

comparisons, which are indicated with numerical labels.

Performance

If using a traditional lookup table, the worst-case running time of the Boyer-Moore

algorithm is O(nm+ |Σ|). The computation of the last function takes O(m+ |Σ|)
time, although the dependence on |Σ| is removed if using a hash table. The actual

search for the pattern takes O(nm) time in the worst case—the same as the brute-

force algorithm. An example that achieves the worst case for Boyer-Moore is

text =

n︷ ︸︸ ︷
aaaaaa · · · a

pattern = b

m−1︷ ︸︸ ︷
aa · · ·a

The worst-case performance, however, is unlikely to be achieved for English text;

in that case, the Boyer-Moore algorithm is often able to skip large portions of text.

Experimental evidence on English text shows that the average number of compar-

isons done per character is 0.24 for a five-character pattern string.

We have actually presented a simplified version of the Boyer-Moore algorithm.

The original algorithm achieves worst-case running time O(n+m+ |Σ|) by using

an alternative shift heuristic for a partially matched text string, whenever it shifts

the pattern more than the character-jump heuristic. This alternative shift heuristic

is based on applying the main idea from the Knuth-Morris-Pratt pattern-matching

algorithm, which we discuss next.

582 Chapter 13. Text Processing

13.2.3 The Knuth-Morris-Pratt Algorithm

In examining the worst-case performances of the brute-force and Boyer-Moore

pattern-matching algorithms on specific instances of the problem, such as that given

in Example 13.1, we should notice a major inefficiency (at least in the worst case).

For a certain alignment of the pattern, if we find several matching characters but

then detect a mismatch, we ignore all the information gained by the successful

comparisons after restarting with the next incremental placement of the pattern.

The Knuth-Morris-Pratt (or “KMP”) algorithm, discussed in this section, avoids

this waste of information and, in so doing, it achieves a running time of O(n+m),
which is asymptotically optimal. That is, in the worst case any pattern-matching

algorithm will have to examine all the characters of the text and all the characters

of the pattern at least once. The main idea of the KMP algorithm is to precom-

pute self-overlaps between portions of the pattern so that when a mismatch occurs

at one location, we immediately know the maximum amount to shift the pattern

before continuing the search. A motivating example is shown in Figure 13.5.

a · · · · · · · · · ·

am

am t o nima a g al

t o nima a g al

·t

am t o nima a g al

Text:

Pattern:

a amaglamc

Figure 13.5: A motivating example for the Knuth-Morris-Pratt algorithm. If a mis-

match occurs at the indicated location, the pattern could be shifted to the second

alignment, without explicit need to recheck the partial match with the prefix ama.

If the mismatched character is not an l, then the next potential alignment of the

pattern can take advantage of the common a.

The Failure Function

To implement the KMP algorithm, we will precompute a failure function, f , that

indicates the proper shift of the pattern upon a failed comparison. Specifically, the

failure function f (k) is defined as the length of the longest prefix of the pattern that

is a suffix of the substring pattern[1..k] (note that we did not include pattern[0]
here, since we will shift at least one unit). Intuitively, if we find a mismatch upon

character pattern[k+1], the function f (k) tells us how many of the immediately

preceding characters can be reused to restart the pattern. Example 13.2 describes

the value of the failure function for the example pattern from Figure 13.5.

13.2. Pattern-Matching Algorithms 583

Example 13.2: Consider the pattern "amalgamation" from Figure 13.5. The

Knuth-Morris-Pratt (KMP) failure function, f (k), for the string P is as shown in

the following table:

k 0 1 2 3 4 5 6 7 8 9 10 11

P[k] a m a l g a m a t i o n

f (k) 0 0 1 0 0 1 2 3 0 0 0 0

Implementation

Our implementation of the KMP pattern-matching algorithm is shown in Code

Fragment 13.3. It relies on a utility method, computeFailKMP, discussed on the

next page, to compute the failure function efficiently.

The main part of the KMP algorithm is its while loop, each iteration of which

performs a comparison between the character at index j in the text and the character

at index k in the pattern. If the outcome of this comparison is a match, the algorithm

moves on to the next characters in both (or reports a match if reaching the end of

the pattern). If the comparison failed, the algorithm consults the failure function

for a new candidate character in the pattern, or starts over with the next index in the

text if failing on the first character of the pattern (since nothing can be reused).

1 /∗∗ Returns the lowest index at which substring pattern begins in text (or else −1).∗/
2 public static int findKMP(char[] text, char[] pattern) {
3 int n = text.length;
4 int m = pattern.length;
5 if (m == 0) return 0; // trivial search for empty string
6 int[] fail = computeFailKMP(pattern); // computed by private utility
7 int j = 0; // index into text
8 int k = 0; // index into pattern
9 while (j < n) {

10 if (text[j] == pattern[k]) { // pattern[0..k] matched thus far
11 if (k == m − 1) return j − m + 1; // match is complete
12 j++; // otherwise, try to extend match
13 k++;
14 } else if (k > 0)
15 k = fail[k−1]; // reuse suffix of P[0..k-1]
16 else
17 j++;
18 }
19 return −1; // reached end without match
20 }

Code Fragment 13.3: An implementation of the KMP pattern-matching algorithm.

The computeFailKMP utility method is given in Code Fragment 13.4.

584 Chapter 13. Text Processing

Constructing the KMP Failure Function

To construct the failure function, we use the method shown in Code Fragment 13.4,

which is a “bootstrapping” process that compares the pattern to itself as in the KMP

algorithm. Each time we have two characters that match, we set f (j) = k+1. Note

that since we have j > k throughout the execution of the algorithm, f (k− 1) is

always well defined when we need to use it.

1 private static int[] computeFailKMP(char[] pattern) {
2 int m = pattern.length;
3 int[] fail = new int[m]; // by default, all overlaps are zero
4 int j = 1;
5 int k = 0;
6 while (j < m) { // compute fail[j] during this pass, if nonzero
7 if (pattern[j] == pattern[k]) { // k + 1 characters match thus far
8 fail[j] = k + 1;
9 j++;

10 k++;
11 } else if (k > 0) // k follows a matching prefix
12 k = fail[k−1];
13 else // no match found starting at j
14 j++;
15 }
16 return fail;
17 }

Code Fragment 13.4: An implementation of the computeFailKMP utility in support

of the KMP pattern-matching algorithm. Note how the algorithm uses the previous

values of the failure function to efficiently compute new values.

Performance

Excluding the computation of the failure function, the running time of the KMP

algorithm is clearly proportional to the number of iterations of the while loop. For

the sake of the analysis, let us define s = j− k. Intuitively, s is the total amount by

which the pattern has been shifted with respect to the text. Note that throughout the

execution of the algorithm, we have s≤ n. One of the following three cases occurs

at each iteration of the loop.

• If text[j] = pattern[k], then j and k each increase by 1, thus s is unchanged.

• If text[j] 6= pattern[k] and k > 0, then j does not change and s increases by

at least 1, since in this case s changes from j− k to j− f (k− 1); note that

this is an addition of k− f (k−1), which is positive because f (k−1)< k.

• If text[j] 6= pattern[k] and k = 0, then j increases by 1 and s increases by 1,

since k does not change.

13.2. Pattern-Matching Algorithms 585

Thus, at each iteration of the loop, either j or s increases by at least 1 (possibly

both); hence, the total number of iterations of the while loop in the KMP pattern-

matching algorithm is at most 2n. Achieving this bound, of course, assumes that

we have already computed the failure function for the pattern.

The algorithm for computing the failure function runs in O(m) time. Its analysis

is analogous to that of the main KMP algorithm, yet with a pattern of length m

compared to itself. Thus, we have:

Proposition 13.3: The Knuth-Morris-Pratt algorithm performs pattern matching

on a text string of length n and a pattern string of length m in O(n+m) time.

The correctness of this algorithm follows from the definition of the failure func-

tion. Any comparisons that are skipped are actually unnecessary, for the failure

function guarantees that all the ignored comparisons are redundant—they would

involve comparing the same matching characters over again.

In Figure 13.6, we illustrate the execution of the KMP pattern-matching algo-

rithm on the same input strings as in Example 13.1. Note the use of the failure

function to avoid redoing one of the comparisons between a character of the pat-

tern and a character of the text. Also note that the algorithm performs fewer overall

comparisons than the brute-force algorithm run on the same strings (Figure 13.1).

Failure function:

k 0 1 2 3 4 5

pattern[k] a b a c a b

f (k) 0 0 1 0 1 2

a

a bc

13

ba a a bc

191817161514

no comparison
performed

Text:

Pattern: ba a a bc

654321

bbaaabaccabaac ba ab c

ba a a bc

7

ba a a bc

8 9 10 11 12

ba a

Figure 13.6: An illustration of the KMP pattern-matching algorithm. The primary

algorithm performs 19 character comparisons, which are indicated with numerical

labels. (Additional comparisons would be performed during the computation of the

failure function.)

586 Chapter 13. Text Processing

13.3 Tries

The pattern-matching algorithms presented in Section 13.2 speed up the search in a

text by preprocessing the pattern (to compute the last function in the Boyer-Moore

algorithm or the failure function in the Knuth-Morris-Pratt algorithm). In this sec-

tion, we take a complementary approach, namely, we present string searching al-

gorithms that preprocess the text, rather than the pattern. This approach is suitable

for applications in which many queries are performed on a fixed text, so that the

initial cost of preprocessing the text is compensated by a speedup in each subse-

quent query (for example, a website that offers pattern matching in Shakespeare’s

Hamlet or a search engine that offers Web pages containing the term Hamlet).

A trie (pronounced “try”) is a tree-based data structure for storing strings in

order to support fast pattern matching. The main application for tries is in infor-

mation retrieval. Indeed, the name “trie” comes from the word “retrieval.” In an

information retrieval application, such as a search for a certain DNA sequence in a

genomic database, we are given a collection S of strings, all defined using the same

alphabet. The primary query operations that tries support are pattern matching and

prefix matching. The latter operation involves being given a string X , and looking

for all the strings in S that being with X .

13.3.1 Standard Tries

Let S be a set of s strings from alphabet Σ such that no string in S is a prefix

of another string. A standard trie for S is an ordered tree T with the following

properties (see Figure 13.7):

• Each node of T , except the root, is labeled with a character of Σ.

• The children of an internal node of T have distinct labels.

• T has s leaves, each associated with a string of S, such that the concatenation

of the labels of the nodes on the path from the root to a leaf v of T yields the

string of S associated with v.

Thus, a trie T represents the strings of S with paths from the root to the leaves

of T . Note the importance of assuming that no string in S is a prefix of another

string. This ensures that each string of S is uniquely associated with a leaf of T .

(This is similar to the restriction for prefix codes with Huffman coding, as described

in Section 13.4.) We can always satisfy this assumption by adding a special char-

acter that is not in the original alphabet Σ at the end of each string.

An internal node in a standard trie T can have anywhere between 1 and |Σ|
children. There is an edge going from the root r to one of its children for each

character that is first in some string in the collection S. In addition, a path from

the root of T to an internal node v at depth k corresponds to a k-character prefix

13.3. Tries 587

b

e

l

i

l

d

l

y

u e

c

k

oa

r

l

s

l

t

l

p

Figure 13.7: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock, stop}.

X [0..k−1] of a string X of S. In fact, for each character c that can follow the prefix

X [0..k− 1] in a string of the set S, there is a child of v labeled with character c.

In this way, a trie concisely stores the common prefixes that exist among a set of

strings.

As a special case, if there are only two characters in the alphabet, then the

trie is essentially a binary tree, with some internal nodes possibly having only one

child (that is, it may be an improper binary tree). In general, although it is possible

that an internal node has up to |Σ| children, in practice the average degree of such

nodes is likely to be much smaller. For example, the trie shown in Figure 13.7 has

several internal nodes with only one child. On larger data sets, the average degree

of nodes is likely to get smaller at greater depths of the tree, because there may

be fewer strings sharing the common prefix, and thus fewer continuations of that

pattern. Furthermore, in many languages, there will be character combinations that

are unlikely to naturally occur.

The following proposition provides some important structural properties of a

standard trie:

Proposition 13.4: A standard trie storing a collection S of s strings of total length

n from an alphabet Σ has the following properties:

• The height of T is equal to the length of the longest string in S.

• Every internal node of T has at most |Σ| children.

• T has s leaves.

• The number of nodes of T is at most n+1.

The worst case for the number of nodes of a trie occurs when no two strings

share a common nonempty prefix; that is, except for the root, all internal nodes

have one child.

588 Chapter 13. Text Processing

A trie T for a set S of strings can be used to implement a set or map whose keys

are the strings of S. Namely, we perform a search in T for a string X by tracing

down from the root the path indicated by the characters in X . If this path can be

traced and terminates at a leaf node, then we know X is a string in S. For example,

in the trie in Figure 13.7, tracing the path for “bull” ends up at a leaf. If the path

cannot be traced or the path can be traced but terminates at an internal node, then

X is not a string in S. In the example in Figure 13.7, the path for “bet” cannot be

traced and the path for “be” ends at an internal node. Neither such word is in the

set S.

It is easy to see that the running time of the search for a string of length m is

O(m · |Σ|), because we visit at most m+ 1 nodes of T and we spend O(|Σ|) time

at each node determining the child having the subsequent character as a label. The

O(|Σ|) upper bound on the time to locate a child with a given label is achievable,

even if the children of a node are unordered, since there are at most |Σ| children.

We can improve the time spent at a node to be O(log |Σ|) or expected O(1), by

mapping characters to children using a secondary search table or hash table at each

node, or by using a direct lookup table of size |Σ| at each node, if |Σ| is sufficiently

small (as is the case for DNA strings). For these reasons, we typically expect a

search for a string of length m to run in O(m) time.

From the discussion above, it follows that we can use a trie to perform a spe-

cial type of pattern matching, called word matching, where we want to determine

whether a given pattern matches one of the words of the text exactly. Word match-

ing differs from standard pattern matching because the pattern cannot match an

arbitrary substring of the text—only one of its words. To accomplish this, each

word of the original document must be added to the trie. (See Figure 13.8.) A sim-

ple extension of this scheme supports prefix-matching queries. However, arbitrary

occurrences of the pattern in the text (for example, the pattern is a proper suffix of

a word or spans two words) cannot be efficiently performed.

To construct a standard trie for a set S of strings, we can use an incremental

algorithm that inserts the strings one at a time. Recall the assumption that no string

of S is a prefix of another string. To insert a string X into the current trie T , we

trace the path associated with X in T , creating a new chain of nodes to store the

remaining characters of X when we get stuck. The running time to insert X with

length m is similar to a search, with worst-case O(m · |Σ|) performance, or expected

O(m) if using secondary hash tables at each node. Thus, constructing the entire trie

for set S takes expected O(n) time, where n is the total length of the strings of S.

There is a potential space inefficiency in the standard trie that has prompted the

development of the compressed trie, which is also known (for historical reasons)

as the Patricia trie. Namely, there are potentially a lot of nodes in the standard trie

that have only one child, and the existence of such nodes is a waste. We discuss the

compressed trie next.

13.3. Tries 589

e a b e a r ? s e l l

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s t o c k

17 18 19 20 21

!

22

s e e a b u l l ?

23 24 25 26 27 28 29 30 31 32 33 34

b u y s t o c k !

35 36 37 38 39 40 41 42 43 44 45

b i d

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

s t o c k ! b i d s t o c k !

h e a r t h e b e l l ? s t o p !

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

s e

(a)

69

0,24

l

12

l

84

p

17,40,51,62

l

e

e

c

k

oa

r

h s

te

a

r

b

e i

d

6 78

l

47,58

u

30

y

36

l

l

(b)

Figure 13.8: Word matching with a standard trie: (a) text to be searched (articles

and prepositions, which are also known as stop words, excluded); (b) standard trie

for the words in the text, with leaves augmented with indications of the index at

which the given work begins in the text. For example, the leaf for the word “stock”

notes that the word begins at indices 17, 40, 51, and 62 of the text.

590 Chapter 13. Text Processing

13.3.2 Compressed Tries

A compressed trie is similar to a standard trie but it ensures that each internal node

in the trie has at least two children. It enforces this rule by compressing chains of

single-child nodes into individual edges. (See Figure 13.9.) Let T be a standard

trie. We say that an internal node v of T is redundant if v has one child and is not

the root. For example, the trie of Figure 13.7 has eight redundant nodes. Let us

also say that a chain of k ≥ 2 edges,

(v0,v1)(v1,v2) · · · (vk−1,vk),

is redundant if:

• vi is redundant for i = 1, . . . ,k−1.

• v0 and vk are not redundant.

We can transform T into a compressed trie by replacing each redundant chain

(v0,v1) · · · (vk−1,vk) of k ≥ 2 edges into a single edge (v0,vk), relabeling vk with

the concatenation of the labels of nodes v1, . . . ,vk.

s

to

p

b

ck

e id

ar yll

u

ll

ell

Figure 13.9: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock,

stop}. (Compare this with the standard trie shown in Figure 13.7.) Notice that, in

addition to compression at the leaves, the internal node with label “to” is shared by

words “stock” and “stop”.

Thus, nodes in a compressed trie are labeled with strings, which are substrings

of strings in the collection, rather than with individual characters. The advantage of

a compressed trie over a standard trie is that the number of nodes of the compressed

trie is proportional to the number of strings and not to their total length, as shown

in the following proposition (compare with Proposition 13.4).

Proposition 13.5: A compressed trie storing a collection S of s strings from an

alphabet of size d has the following properties:

• Every internal node of T has at least two children and most d children.

• T has s leaves nodes.

• The number of nodes of T is O(s).

13.3. Tries 591

The attentive reader may wonder whether the compression of paths provides

any significant advantage, since it is offset by a corresponding expansion of the

node labels. Indeed, a compressed trie is truly advantageous only when it is used as

an auxiliary index structure over a collection of strings already stored in a primary

structure, and is not required to actually store all the characters of the strings in the

collection.

Suppose, for example, that the collection S of strings is an array of strings S[0],
S[1], . . ., S[s− 1]. Instead of storing the label X of a node explicitly, we represent

it implicitly by a combination of three integers (i, j, k), such that X = S[i][j..k];
that is, X is the substring of S[i] consisting of the characters from the j th to the k th

inclusive. (See the example in Figure 13.10. Also compare with the standard trie

of Figure 13.8.)

S[2] =

S[3] =

S[4] =

S[5] =

S[6] = S[9] =

S[8] =

S[7] =S[0] =

S[1] =

kt co

s e ll

b e ra

s e e

ll

0 1 2 3

b u ll r

b u y

h

b i d

e

s t po

a

b e

0 1 2 30 1 2 3 4

s

(a)

5, 2, 2

3, 1, 2

0, 2, 2 3, 3, 4

0, 1, 1

7, 0, 31, 0, 0

9, 3, 3

0, 0, 0

6, 1, 2 4, 1, 1

4, 2, 3

1, 1, 1

1, 2, 3 8, 2, 3 2, 2, 3

(b)

Figure 13.10: (a) Collection S of strings stored in an array. (b) Compact represen-

tation of the compressed trie for S.

This additional compression scheme allows us to reduce the total space for the

trie itself from O(n) for the standard trie to O(s) for the compressed trie, where n

is the total length of the strings in S and s is the number of strings in S. We must

still store the different strings in S, of course, but we nevertheless reduce the space

for the trie.

Searching in a compressed trie is not necessarily faster than in a standard tree,

since there is still need to compare every character of the desired pattern with the

potentially multicharacter labels while traversing paths in the trie.

592 Chapter 13. Text Processing

13.3.3 Suffix Tries

One of the primary applications for tries is for the case when the strings in the

collection S are all the suffixes of a string X . Such a trie is called the suffix trie (also

known as a suffix tree or position tree) of string X . For example, Figure 13.11a

shows the suffix trie for the eight suffixes of string “minimize.” For a suffix trie, the

compact representation presented in the previous section can be further simplified.

Namely, the label of each vertex is a pair “j..k” indicating the string X [j..k]. (See

Figure 13.11b.) To satisfy the rule that no suffix of X is a prefix of another suffix,

we can add a special character, denoted with $, that is not in the original alphabet Σ

at the end of X (and thus to every suffix). That is, if string X has length n, we build

a trie for the set of n strings X [j..n−1]$, for j = 0, . . . ,n−1.

Saving Space

Using a suffix trie allows us to save space over a standard trie by using several space

compression techniques, including those used for the compressed trie.

The advantage of the compact representation of tries now becomes apparent for

suffix tries. Since the total length of the suffixes of a string X of length n is

1+2+ · · ·+n =
n(n+1)

2
,

storing all the suffixes of X explicitly would take O(n2) space. Even so, the suf-

fix trie represents these strings implicitly in O(n) space, as formally stated in the

following proposition.

Proposition 13.6: The compact representation of a suffix trie T for a string X of

length n uses O(n) space.

Construction

We can construct the suffix trie for a string of length n with an incremental algo-

rithm like the one given in Section 13.3.1. This construction takes O(|Σ|n2) time

because the total length of the suffixes is quadratic in n. However, the (compact)

suffix trie for a string of length n can be constructed in O(n) time with a specialized

algorithm, different from the one for general tries. This linear-time construction

algorithm is fairly complex, however, and is not reported here. Still, we can take

advantage of the existence of this fast construction algorithm when we want to use

a suffix trie to solve other problems.

13.3. Tries 593

e

ze

ze

mize

i

nimize zenimize

mi nimize

(a)

0..1 6..7

6..72..7 2..7

2..71..1

6..7

7..7

4..7

e

0 1 2 3 4 5 6 7

m i n i m i z

(b)

Figure 13.11: (a) Suffix trie T for the string X = "minimize". (b) Compact repre-

sentation of T , where pair j..k denotes the substring X [j..k] in the reference string.

Using a Suffix Trie

The suffix trie T for a string X can be used to efficiently perform pattern-matching

queries on text X . Namely, we can determine whether a pattern is a substring of X

by trying to trace a path associated with P in T . P is a substring of X if and only

if such a path can be traced. The search down the trie T assumes that nodes in T

store some additional information, with respect to the compact representation of

the suffix trie:

If node v has label j..k and Y is the string of length y associated with

the path from the root to v (included), then X [k− y+1..k] = Y .

This property ensures that we can compute the start index of the pattern in the text

when a match occurs in O(m) time.

594 Chapter 13. Text Processing

13.3.4 Search Engine Indexing

The World Wide Web contains a huge collection of text documents (Web pages).

Information about these pages are gathered by a program called a Web crawler,

which then stores this information in a special dictionary database. A Web search

engine allows users to retrieve relevant information from this database, thereby

identifying relevant pages on the Web containing given keywords. In this section,

we will present a simplified model of a search engine.

Inverted Files

The core information stored by a search engine is a map, called an inverted index or

inverted file, storing key-value pairs (w,L), where w is a word and L is a collection

of pages containing word w. The keys (words) in this map are called index terms

and should be a set of vocabulary entries and proper nouns as large as possible. The

values in this map are called occurrence lists and should cover as many Web pages

as possible.

We can efficiently implement an inverted index with a data structure consisting

of the following:

1. An array storing the occurrence lists of the terms (in no particular order).

2. A compressed trie for the set of index terms, where each leaf stores the index

of the occurrence list of the associated term.

The reason for storing the occurrence lists outside the trie is to keep the size of the

trie data structure sufficiently small to fit in internal memory. Instead, because of

their large total size, the occurrence lists have to be stored on disk.

With our data structure, a query for a single keyword is similar to a word-

matching query (Section 13.3.1). Namely, we find the keyword in the trie and we

return the associated occurrence list.

When multiple keywords are given and the desired output are the pages con-

taining all the given keywords, we retrieve the occurrence list of each keyword

using the trie and return their intersection. To facilitate the intersection computa-

tion, each occurrence list should be implemented with a sequence sorted by address

or with a map, to allow efficient set operations.

In addition to the basic task of returning a list of pages containing given key-

words, search engines provide an important additional service by ranking the pages

returned by relevance. Devising fast and accurate ranking algorithms for search

engines is a major challenge for computer researchers and electronic commerce

companies.

13.4. Text Compression and the Greedy Method 595

13.4 Text Compression and the Greedy Method

In this section, we will consider the important task of text compression. In this

problem, we are given a string X defined over some alphabet, such as the ASCII

or Unicode character sets, and we want to efficiently encode X into a small binary

string Y (using only the characters 0 and 1). Text compression is useful in any

situation where we wish to reduce bandwidth for digital communications, so as to

minimize the time needed to transmit our text. Likewise, text compression is useful

for storing large documents more efficiently, so as to allow a fixed-capacity storage

device to contain as many documents as possible.

The method for text compression explored in this section is the Huffman code.

Standard encoding schemes, such as ASCII, use fixed-length binary strings to en-

code characters (with 7 or 8 bits in the traditional or extended ASCII systems,

respectively). The Unicode system was originally proposed as a 16-bit fixed-

length representation, although common encodings reduce the space usage by al-

lowing common groups of characters, such as those from the ASCII system, with

fewer bits. The Huffman code saves space over a fixed-length encoding by using

short code-word strings to encode high-frequency characters and long code-word

strings to encode low-frequency characters. Furthermore, the Huffman code uses

a variable-length encoding specifically optimized for a given string X over any al-

phabet. The optimization is based on the use of character frequencies, where we

have, for each character c, a count f (c) of the number of times c appears in the

string X .

To encode the string X , we convert each character in X to a variable-length

code-word, and we concatenate all these code-words in order to produce the en-

coding Y for X . In order to avoid ambiguities, we insist that no code-word in our

encoding be a prefix of another code-word in our encoding. Such a code is called

a prefix code, and it simplifies the decoding of Y to retrieve X . (See Figure 13.12.)

Even with this restriction, the savings produced by a variable-length prefix code

can be significant, particularly if there is a wide variance in character frequencies

(as is the case for natural language text in almost every written language).

Huffman’s algorithm for producing an optimal variable-length prefix code for

X is based on the construction of a binary tree T that represents the code. Each

edge in T represents a bit in a code-word, with an edge to a left child representing

a “0” and an edge to a right child representing a “1”. Each leaf v is associated

with a specific character, and the code-word for that character is defined by the

sequence of bits associated with the edges in the path from the root of T to v. (See

Figure 13.12.) Each leaf v has a frequency, f (v), which is simply the frequency in

X of the character associated with v. In addition, we give each internal node v in T

a frequency, f (v), that is the sum of the frequencies of all the leaves in the subtree

rooted at v.

596 Chapter 13. Text Processing

(a)
Character a b d e f h i k n o r s t u v

Frequency 9 5 1 3 7 3 1 1 1 4 1 5 1 2 1 1

(b)

46

5

k

1

i

1

2

o

1

2

4

8

t

2

s

1

15

n

4

7

f

3

4

v

1

u

1

2

5

b

1

2

h

1

d

3

12

e

7

2719

a

5

10

9

r

Figure 13.12: An illustration of an example Huffman code for the input string

X = "a fast runner need never be afraid of the dark": (a) frequency

of each character of X ; (b) Huffman tree T for string X . The code for a character c

is obtained by tracing the path from the root of T to the leaf where c is stored, and

associating a left child with 0 and a right child with 1. For example, the code for

"r" is 011, and the code for "h" is 10111.

13.4.1 The Huffman Coding Algorithm

The Huffman coding algorithm begins with each of the d distinct characters of the

string X to encode being the root node of a single-node binary tree. The algorithm

proceeds in a series of rounds. In each round, the algorithm takes the two binary

trees with the smallest frequencies and merges them into a single binary tree. It

repeats this process until only one tree is left. (See Code Fragment 13.5.)

Each iteration of the while loop in Huffman’s algorithm can be implemented

in O(logd) time using a priority queue represented with a heap. In addition, each

iteration takes two nodes out of Q and adds one in, a process that will be repeated

d − 1 times before exactly one node is left in Q. Thus, this algorithm runs in

O(n+ d logd) time. Although a full justification of this algorithm’s correctness is

beyond our scope here, we note that its intuition comes from a simple idea—any

optimal code can be converted into an optimal code in which the code-words for the

two lowest-frequency characters, a and b, differ only in their last bit. Repeating the

argument for a string with a and b replaced by a character c, gives the following:

Proposition 13.7: Huffman’s algorithm constructs an optimal prefix code for a

string of length n with d distinct characters in O(n+d logd) time.

13.4. Text Compression and the Greedy Method 597

Algorithm Huffman(X):

Input: String X of length n with d distinct characters

Output: Coding tree for X

Compute the frequency f (c) of each character c of X .

Initialize a priority queue Q.

for each character c in X do

Create a single-node binary tree T storing c.

Insert T into Q with key f (c).
while Q.size() > 1 do

Entry e1 = Q.removeMin() with e1 having key f1 and value T1.

Entry e2 = Q.removeMin() with e2 having key f2 and value T2.

Create a new binary tree T with left subtree T1 and right subtree T2.

Insert T into Q with key f1 + f2.

Entry e = Q.removeMin() with e having tree T as its value.

return tree T

Code Fragment 13.5: Huffman coding algorithm.

13.4.2 The Greedy Method

Huffman’s algorithm for building an optimal encoding is an example application

of an algorithmic design pattern called the greedy method. This design pattern is

applied to optimization problems, where we are trying to construct some structure

while minimizing or maximizing some property of that structure.

The general formula for the greedy-method pattern is almost as simple as that

for the brute-force method. In order to solve a given optimization problem using

the greedy method, we proceed by a sequence of choices. The sequence starts

from some well-understood starting condition, and computes the cost for that ini-

tial condition. The pattern then asks that we iteratively make additional choices

by identifying the decision that achieves the best cost improvement from all of

the choices that are currently possible. This approach does not always lead to an

optimal solution.

But there are several problems that it does work for, and such problems are said

to possess the greedy-choice property. This is the property that a global optimal

condition can be reached by a series of locally optimal choices (that is, choices

that are each the current best from among the possibilities available at the time),

starting from a well-defined starting condition. The problem of computing an opti-

mal variable-length prefix code is just one example of a problem that possesses the

greedy-choice property.

598 Chapter 13. Text Processing

13.5 Dynamic Programming

In this section, we will discuss the dynamic-programming algorithmic design pat-

tern. This technique is similar to the divide-and-conquer technique (Section 12.1.1),

in that it can be applied to a wide variety of different problems. Dynamic program-

ming can often be used to produce polynomial-time algorithms to solve problems

that seem to require exponential time. In addition, the algorithms that result from

applications of the dynamic programming technique are usually quite simple, often

needing little more than a few lines of code to describe some nested loops for filling

in a table.

13.5.1 Matrix Chain-Product

Rather than starting out with an explanation of the general components of the dy-

namic programming technique, we begin by giving a classic, concrete example.

Suppose we are given a collection of n two-dimensional matrices for which we

wish to compute the mathematical product

A = A0 ·A1 ·A2 · · ·An−1,

where Ai is a di × di+1 matrix, for i = 0,1,2, . . . ,n− 1. In the standard matrix

multiplication algorithm (which is the one we will use), to multiply a d×e-matrix B

times an e× f -matrix C, we compute the product, A, as

A[i][j] =
e−1

∑
k=0

B[i][k] ·C[k][j].

This definition implies that matrix multiplication is associative, that is, it implies

that B · (C ·D) = (B ·C) ·D. Thus, we can parenthesize the expression for A any

way we wish and we will end up with the same answer. However, we will not

necessarily perform the same number of primitive (that is, scalar) multiplications

in each parenthesization, as is illustrated in the following example.

Example 13.8: Let B be a 2×10-matrix, let C be a 10×50-matrix, and let D be

a 50× 20-matrix. Computing B · (C ·D) requires 2 · 10 · 20+ 10 · 50 · 20 = 10400

multiplications, whereas computing (B ·C) ·D requires 2 ·10 ·50+2 ·50 ·20 = 3000

multiplications.

The matrix chain-product problem is to determine the parenthesization of the

expression defining the product A that minimizes the total number of scalar mul-

tiplications performed. As the example above illustrates, the differences between

parenthesizations can be dramatic, so finding a good solution can result in signifi-

cant speedups.

13.5. Dynamic Programming 599

Defining Subproblems

One way to solve the matrix chain-product problem is to simply enumerate all the

possible ways of parenthesizing the expression for A and determine the number

of multiplications performed by each one. Unfortunately, the set of all different

parenthesizations of the expression for A is equal in number to the set of all dif-

ferent binary trees that have n leaves. This number is exponential in n. Thus, this

straightforward (“brute-force”) algorithm runs in exponential time, for there are an

exponential number of ways to parenthesize an associative arithmetic expression.

We can significantly improve the performance achieved by the brute-force al-

gorithm, however, by making a few observations about the nature of the matrix

chain-product problem. The first is that the problem can be split into subproblems.

In this case, we can define a number of different subproblems, each of which is to

compute the best parenthesization for some subexpression Ai ·Ai+1 · · ·A j. As a con-

cise notation, we use Ni, j to denote the minimum number of multiplications needed

to compute this subexpression. Thus, the original matrix chain-product problem

can be characterized as that of computing the value of N0,n−1. This observation

is important, but we need one more in order to apply the dynamic programming

technique.

Characterizing Optimal Solutions

The other important observation we can make about the matrix chain-product prob-

lem is that it is possible to characterize an optimal solution to a particular subprob-

lem in terms of optimal solutions to its subproblems. We call this property the

subproblem optimality condition.

In the case of the matrix chain-product problem, we observe that, no mat-

ter how we parenthesize a subexpression, there has to be some final matrix mul-

tiplication that we perform. That is, a full parenthesization of a subexpression

Ai ·Ai+1 · · ·A j has to be of the form (Ai · · ·Ak) · (Ak+1 · · ·A j), for some k ∈ {i, i+
1, . . . , j−1}. Moreover, for whichever k is the correct one, the products (Ai · · ·Ak)
and (Ak+1 · · ·A j) must also be solved optimally. If this were not so, then there would

be a global optimal that had one of these subproblems solved suboptimally. But this

is impossible, since we could then reduce the total number of multiplications by re-

placing the current subproblem solution by an optimal solution for the subproblem.

This observation implies a way of explicitly defining the optimization problem for

Ni, j in terms of other optimal subproblem solutions. Namely, we can compute Ni, j

by considering each place k where we could put the final multiplication and taking

the minimum over all such choices.

600 Chapter 13. Text Processing

Designing a Dynamic Programming Algorithm

We can therefore characterize the optimal subproblem solution, Ni, j, as

Ni, j = min
i≤k< j

{Ni,k +Nk+1, j +didk+1dj+1},

where Ni,i = 0, since no work is needed for a single matrix. That is, Ni, j is the

minimum, taken over all possible places to perform the final multiplication, of the

number of multiplications needed to compute each subexpression plus the number

of multiplications needed to perform the final matrix multiplication.

Notice that there is a sharing of subproblems going on that prevents us from

dividing the problem into completely independent subproblems (as we would need

to do to apply the divide-and-conquer technique). We can, nevertheless, use the

equation for Ni, j to derive an efficient algorithm by computing Ni, j values in a

bottom-up fashion, and storing intermediate solutions in a table of Ni, j values. We

can begin simply enough by assigning Ni,i = 0 for i = 0,1, . . . ,n− 1. We can then

apply the general equation for Ni, j to compute Ni,i+1 values, since they depend only

on Ni,i and Ni+1,i+1 values that are available. Given the Ni,i+1 values, we can then

compute the Ni,i+2 values, and so on. Therefore, we can build Ni, j values up from

previously computed values until we can finally compute the value of N0,n−1, which

is the number that we are searching for. A Java implementation of this dynamic

programming solution is given in Code Fragment 13.6; we use techniques from

Section 3.1.5 for working with a two-dimensional array in Java.

1 public static int[][] matrixChain(int[] d) {
2 int n = d.length − 1; // number of matrices
3 int[][] N = new int[n][n]; // n-by-n matrix; initially zeros
4 for (int b=1; b < n; b++) // number of products in subchain
5 for (int i=0; i < n − b; i++) { // start of subchain
6 int j = i + b; // end of subchain
7 N[i][j] = Integer.MAX VALUE; // used as ’infinity’
8 for (int k=i; k < j; k++)
9 N[i][j] = Math.min(N[i][j], N[i][k] + N[k+1][j] + d[i]∗d[k+1]∗d[j+1]);

10 }
11 return N;
12 }

Code Fragment 13.6: Dynamic programming algorithm for the matrix chain-

product problem.

Thus, we can compute N0,n−1 with an algorithm that consists primarily of three

nested loops (the third of which computes the min term). Each of these loops

iterates at most n times per execution, with a constant amount of additional work

within. Therefore, the total running time of this algorithm is O(n3).

13.5. Dynamic Programming 601

13.5.2 DNA and Text Sequence Alignment

A common text-processing problem, which arises in genetics and software engi-

neering, is to test the similarity between two text strings. In a genetics application,

the two strings could correspond to two strands of DNA, for which we want to com-

pute similarities. Likewise, in a software engineering application, the two strings

could come from two versions of source code for the same program, for which we

want to determine changes made from one version to the next. Indeed, determining

the similarity between two strings is so common that the Unix and Linux operating

systems have a built-in program, named diff, for comparing text files.

Given a string X = x0x1x2 · · ·xn−1, a subsequence of X is any string that is of

the form xi1 xi2 · · ·xik , where i j < i j+1; that is, it is a sequence of characters that are

not necessarily contiguous but are nevertheless taken in order from X . For example,

the string AAAG is a subsequence of the string CGAT AAT T GAGA.

The DNA and text similarity problem we address here is the longest common

subsequence (LCS) problem. In this problem, we are given two character strings,

X = x0x1x2 · · ·xn−1 and Y = y0y1y2 · · ·ym−1, over some alphabet (such as the al-

phabet {A,C,G,T} common in computational genomics) and are asked to find a

longest string S that is a subsequence of both X and Y . One way to solve the

longest common subsequence problem is to enumerate all subsequences of X and

take the largest one that is also a subsequence of Y . Since each character of X is

either in or not in a subsequence, there are potentially 2n different subsequences of

X , each of which requires O(m) time to determine whether it is a subsequence of Y .

Thus, this brute-force approach yields an exponential-time algorithm that runs in

O(2nm) time, which is very inefficient. Fortunately, the LCS problem is efficiently

solvable using dynamic programming.

The Components of a Dynamic Programming Solution

As mentioned above, the dynamic programming technique is used primarily for

optimization problems, where we wish to find the “best” way of doing something.

We can apply the dynamic programming technique in such situations if the problem

has certain properties:

Simple Subproblems: There has to be some way of repeatedly breaking the global

optimization problem into subproblems. Moreover, there should be a way to

parameterize subproblems with just a few indices, like i, j, k, and so on.

Subproblem Optimization: An optimal solution to the global problem must be a

composition of optimal subproblem solutions.

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain

subproblems in common.

602 Chapter 13. Text Processing

Applying Dynamic Programming to the LCS Problem

Recall that in the LCS problem, we are given two character strings, X and Y , of

length n and m, respectively, and are asked to find a longest string S that is a sub-

sequence of both X and Y . Since X and Y are character strings, we have a natural

set of indices with which to define subproblems—indices into the strings X and Y .

Let us define a subproblem, therefore, as that of computing the value L j,k, which

we will use to denote the length of a longest string that is a subsequence of both the

first j characters of X and the first k characters of Y , that is of prefixes X [0.. j− 1]
and Y [0..k−1]. If either j = 0 or k = 0, then L j,k is trivially defined as 0.

When both j ≥ 1 and k ≥ 1, this definition allows us to rewrite L j,k recursively

in terms of optimal subproblem solutions. This definition depends on which of two

cases we are in. (See Figure 13.13.)

• x j−1 = yk−1. In this case, we have a match between the last character of

X [0.. j−1] and the last character of Y [0..k−1]. We claim that this character

belongs to a longest common subsequence of X [0.. j− 1] and Y [0..k− 1].
To justify this claim, let us suppose it is not true. There has to be some

longest common subsequence xa1
xa2

. . .xac = yb1
yb2

. . .ybc . If xac = x j−1 or

ybc = yk−1, then we get the same sequence by setting ac = j− 1 and bc =
k− 1. Alternately, if xac 6= x j−1 and ybc 6= yk−1, then we can get an even

longer common subsequence by adding x j−1 = yk−1 to the end. Thus, a

longest common subsequence of X [0.. j− 1] and Y [0..k− 1] ends with x j−1.

Therefore, we set

L j,k = 1+L j−1,k−1 if x j−1 = yk−1.

• x j−1 6= yk−1. In this case, we cannot have a common subsequence that in-

cludes both x j−1 and yk−1. That is, we can have a common subsequence end

with x j−1 or one that ends with yk−1 (or possibly neither), but certainly not

both. Therefore, we set

L j,k = max{L j−1,k , L j,k−1} if x j−1 6= yk−1.

6 7 8 9 10 11

G T T C C T A A T A

C A T A A T T GG AGA

0 1 2 3 4 5 6 7 8 9
X =

0
Y =

1 2 3 4 5 5 6 7 8 9 10

G T T C C T A A T

C A T A A T T GG GA

0 1 2 3 4 5 6 7 8
X =

0
Y =

1 2 3 4

L10,12 = 1+L9,11 L9,11 = max(L9,10, L8,11)

(a) (b)

Figure 13.13: The two cases in the longest common subsequence algorithm for

computing L j,k when j,k ≥ 1: (a) x j−1 = yk−1; (b) x j−1 6= yk−1.

13.5. Dynamic Programming 603

The LCS Algorithm

The definition of L j,k satisfies subproblem optimization, for we cannot have a

longest common subsequence without also having longest common subsequences

for the subproblems. Also, it uses subproblem overlap, because a subproblem so-

lution L j,k can be used in several other problems (namely, the problems L j+1,k,

L j,k+1, and L j+1,k+1). Turning this definition of L j,k into an algorithm is actually

quite straightforward. We create an (n+1)×(m+1) array, L, defined for 0≤ j≤ n

and 0 ≤ k ≤ m. We initialize all entries to 0, in particular so that all entries of the

form L j,0 and L0,k are zero. Then, we iteratively build up values in L until we have

Ln,m, the length of a longest common subsequence of X and Y . We give a Java

implementation of this algorithm in Code Fragment 13.7.

1 /∗∗ Returns table such that L[j][k] is length of LCS for X[0..j−1] and Y[0..k−1]. ∗/
2 public static int[][] LCS(char[] X, char[] Y) {
3 int n = X.length;
4 int m = Y.length;
5 int[][] L = new int[n+1][m+1];
6 for (int j=0; j < n; j++)
7 for (int k=0; k < m; k++)
8 if (X[j] == Y[k]) // align this match
9 L[j+1][k+1] = L[j][k] + 1;

10 else // choose to ignore one character
11 L[j+1][k+1] = Math.max(L[j][k+1], L[j+1][k]);
12 return L;
13 }

Code Fragment 13.7: Dynamic programming algorithm for the LCS problem.

The running time of the algorithm of the LCS algorithm is easy to analyze,

for it is dominated by two nested for loops, with the outer one iterating n times

and the inner one iterating m times. Since the if-statement and assignment inside

the loop each requires O(1) primitive operations, this algorithm runs in O(nm)
time. Thus, the dynamic programming technique can be applied to the longest

common subsequence problem to improve significantly over the exponential-time

brute-force solution to the LCS problem.

The LCS method of Code Fragment 13.7 computes the length of the longest

common subsequence (stored as Ln,m), but not the subsequence itself. Fortunately,

it is easy to extract the actual longest common subsequence if given the complete ta-

ble of L j,k values computed by the LCS method. The solution can be reconstructed

back to front by reverse engineering the calculation of length Ln,m. At any position

L j,k, if x j = yk, then the length is based on the common subsequence associated

with length L j−1,k−1, followed by common character x j. We can record x j as part

of the sequence, and then continue the analysis from L j−1,k−1. If x j 6= yk, then we

can move to the larger of L j,k−1 and L j−1,k. We continue this process until reaching

604 Chapter 13. Text Processing

some L j,k = 0 (for example, if j or k is 0 as a boundary case). A Java implemen-

tation of this strategy is given in Code Fragment 13.8. This method constructs a

longest common subsequence in O(n+m) additional time, since each pass of the

while loop decrements either j or k (or both). An illustration of the algorithm for

computing the longest common subsequence is given in Figure 13.14.

1 /∗∗ Returns the longest common substring of X and Y, given LCS table L. ∗/

2 public static char[] reconstructLCS(char[] X, char[] Y, int[][] L) {
3 StringBuilder solution = new StringBuilder();

4 int j = X.length;

5 int k = Y.length;

6 while (L[j][k] > 0) // common characters remain

7 if (X[j−1] == Y[k−1]) {
8 solution.append(X[j−1]);

9 j−−;

10 k−−;

11 } else if (L[j−1][k] >= L[j][k−1])

12 j−−;

13 else

14 k−−;

15 // return left-to-right version, as char array

16 return solution.reverse().toString().toCharArray();

17 }
Code Fragment 13.8: Reconstructing the longest common subsequence.

1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 2 2 2 2 2 2 2 2 2

0 0 1 1 2 2 2 3 3 3 3 3 3

0 1 1 1 2 2 2 3 3 3 3 3 3

0 1 1 1 2 2 2 3 3 3 3 3 3

0 1 1 1 2 2 2 3 4 4 4 4 4

0 1 1 2 2 3 3 3 4 4 5 5 5

0 1 1 2 3 3 4 5 5 5 5 5 6

0 1 1 2 3 4

0

5 5 5 6 6 6

0 1 1 2 2 3 4 4 4 4 5 5 6

0

1

2

3

4

5

6

7

8

9

10 4

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 00

0 0

6 7 8 9 10 11

G T T C C T A A T A

C A T A A T T GG AGAY =

0 1 2 3 4 5 6 7 8 9

0

X =

1 2 3 4 5

Figure 13.14: Illustration of the algorithm for constructing a longest common sub-

sequence from the array L. A diagonal step on the highlighted path represents the

use of a common character (with that character’s respective indices in the sequences

highlighted in the margins).

13.6. Exercises 605

13.6 Exercises

Reinforcement

R-13.1 List the prefixes of the string P ="aaabbaaa" that are also suffixes of P.

R-13.2 What is the longest (proper) prefix of the string "cgtacgttcgtacg" that is also
a suffix of this string?

R-13.3 Draw a figure illustrating the comparisons done by brute-force pattern matching

for the text "aaabaadaabaaa" and pattern "aabaaa".

R-13.4 Repeat the previous problem for the Boyer-Moore algorithm, not counting the

comparisons made to compute the last(c) function.

R-13.5 Repeat Exercise R-13.3 for the Knuth-Morris-Pratt algorithm, not counting the
comparisons made to compute the failure function.

R-13.6 Compute a map representing the last function used in the Boyer-Moore pattern-

matching algorithm for characters in the pattern string:

"the quick brown fox jumped over a lazy cat".

R-13.7 Compute a table representing the Knuth-Morris-Pratt failure function for the pat-

tern string "cgtacgttcgtac".

R-13.8 Draw a standard trie for the following set of strings:

{ abab, baba, ccccc, bbaaaa, caa, bbaacc, cbcc, cbca }.

R-13.9 Draw a compressed trie for the strings given in the previous problem.

R-13.10 Draw the compact representation of the suffix trie for the string:

"minimize minime".

R-13.11 Draw the frequency array and Huffman tree for the following string:

"dogs do not spot hot pots or cats".

R-13.12 What is the best way to multiply a chain of matrices with dimensions that are

10×5, 5×2, 2×20, 20×12, 12×4, and 4×60? Show your work.

R-13.13 In Figure 13.14, we illustrate that GTTTAA is a longest common subsequence for
the given strings X and Y . However, that answer is not unique. Give another

common subsequence of X and Y having length six.

R-13.14 Show the longest common subsequence array L for the two strings:

X = "skullandbones"

Y = "lullabybabies"

What is a longest common subsequence between these strings?

606 Chapter 13. Text Processing

Creativity

C-13.15 Describe an example of a text T of length n and a pattern P of length m such

that the brute-force pattern-matching algorithm achieves a running time that is

Ω(nm).

C-13.16 Adapt the brute-force pattern-matching algorithm so as to implement a method

findLastBrute(T,P) that returns the index at which the rightmost occurrence of

pattern P within text T , if any.

C-13.17 Redo the previous problem, adapting the Boyer-Moore pattern-matching algo-

rithm to implement a method findLastBoyerMoore(T,P).

C-13.18 Redo Exercise C-13.16, adapting the Knuth-Morris-Pratt pattern-matching algo-
rithm appropriately to implement a method findLastKMP(T,P).

C-13.19 Give a justification of why the computeFailKMP method (Code Fragment 13.4)

runs in O(m) time on a pattern of length m.

C-13.20 Let T be a text of length n, and let P be a pattern of length m. Describe an O(n+
m)-time method for finding the longest prefix of P that is a substring of T .

C-13.21 Say that a pattern P of length m is a circular substring of a text T of length

n > m if P is a (normal) substring of T , or if P is equal to the concatenation

of a suffix of T and a prefix of T , that is, if there is an index 0 ≤ k < m, such
that P = T [n−m+ k..n−1]+T[0..k−1]. Give an O(n+m)-time algorithm for

determining whether P is a circular substring of T .

C-13.22 The Knuth-Morris-Pratt pattern-matching algorithm can be modified to run faster
on binary strings by redefining the failure function as:

f (k) = the largest j < k such that P[0.. j−1]p̂ j is a suffix of P[1..k],

where p̂ j denotes the complement of the j th bit of P. Describe how to modify the
KMP algorithm to be able to take advantage of this new failure function and also

give a method for computing this failure function. Show that this method makes

at most n comparisons between the text and the pattern (as opposed to the 2n

comparisons needed by the standard KMP algorithm given in Section 13.2.3).

C-13.23 Modify the simplified Boyer-Moore algorithm presented in this chapter using

ideas from the KMP algorithm so that it runs in O(n+m) time.

C-13.24 Let T be a text string of length n. Describe an O(n)-time method for finding the

longest prefix of T that is a substring of the reversal of T .

C-13.25 Describe an efficient algorithm to find the longest palindrome that is a suffix of

a string T of length n. Recall that a palindrome is a string that is equal to its

reversal. What is the running time of your method?

C-13.26 Give an efficient algorithm for deleting a string from a standard trie and analyze

its running time.

C-13.27 Give an efficient algorithm for deleting a string from a compressed trie and ana-
lyze its running time.

13.6. Exercises 607

C-13.28 Describe an algorithm for constructing the compact representation of a suffix trie,
given its noncompact representation, and analyze its running time.

C-13.29 Create a class that implements a standard trie for a set of strings. The class should
have a constructor that takes a list of strings as an argument, and the class should

have a method that tests whether a given string is stored in the trie.

C-13.30 Create a class that implements a compressed trie for a set of strings. The class

should have a constructor that takes a list of strings as an argument, and the class

should have a method that tests whether a given string is stored in the trie.

C-13.31 Create a class that implements a prefix trie for a string. The class should have a

constructor that takes a string as an argument, and a method for pattern matching
on the string.

C-13.32 Given a string X of length n and a string Y of length m, describe an O(n+m)-time

algorithm for finding the longest prefix of X that is a suffix of Y .

C-13.33 Describe an efficient greedy algorithm for making change for a specified value

using a minimum number of coins, assuming there are four denominations of
coins (called quarters, dimes, nickels, and pennies), with values 25, 10, 5, and 1,

respectively. Argue why your algorithm is correct.

C-13.34 Give an example set of denominations of coins so that a greedy change-making

algorithm will not use the minimum number of coins.

C-13.35 In the art gallery guarding problem we are given a line L that represents a long

hallway in an art gallery. We are also given a set X = {x0,x1, . . . ,xn−1} of real

numbers that specify the positions of paintings in this hallway. Suppose that a
single guard can protect all the paintings within distance at most 1 of his or her

position (on both sides). Design an algorithm for finding a placement of guards

that uses the minimum number of guards to guard all the paintings with positions
in X .

C-13.36 Anna has just won a contest that allows her to take n pieces of candy out of a
candy store for free. Anna is old enough to realize that some candy is expensive,

while other candy is relatively cheap, costing much less. The jars of candy are

numbered 0, 1, . . ., m−1, so that jar j has n j pieces in it, with a price of c j

per piece. Design an O(n+m)-time algorithm that allows Anna to maximize the

value of the pieces of candy she takes for her winnings. Show that your algorithm

produces the maximum value for Anna.

C-13.37 Implement a compression and decompression scheme that is based on Huffman

coding.

C-13.38 Design an efficient algorithm for the matrix chain multiplication problem that

outputs a fully parenthesized expression for how to multiply the matrices in the
chain using the minimum number of operations.

C-13.39 A native Australian named Anatjari wishes to cross a desert carrying only a sin-
gle water bottle. He has a map that marks all the watering holes along the way.

Assuming he can walk k miles on one bottle of water, design an efficient algo-

rithm for determining where Anatjari should refill his bottle in order to make as
few stops as possible. Argue why your algorithm is correct.

608 Chapter 13. Text Processing

C-13.40 Given a sequence S= (x0,x1, . . . ,xn−1) of numbers, describe an O(n2)-time algo-
rithm for finding a longest subsequence T = (xi0 ,xi1 , . . . ,xik−1

) of numbers, such

that i j < i j+1 and xi j
> xi j+1

. That is, T is a longest decreasing subsequence of S.

C-13.41 Let P be a convex polygon, a triangulation of P is an addition of diagonals
connecting the vertices of P so that each interior face is a triangle. The weight of

a triangulation is the sum of the lengths of the diagonals. Assuming that we can
compute lengths and add and compare them in constant time, give an efficient

algorithm for computing a minimum-weight triangulation of P.

C-13.42 Give an efficient algorithm for determining if a pattern P is a subsequence (not
substring) of a text T . What is the running time of your algorithm?

C-13.43 Define the edit distance between two strings X and Y of length n and m, respec-
tively, to be the number of edits that it takes to change X into Y . An edit consists

of a character insertion, a character deletion, or a character replacement. For ex-

ample, the strings "algorithm" and "rhythm" have edit distance 6. Design an
O(nm)-time algorithm for computing the edit distance between X and Y .

C-13.44 Write a program that takes two character strings (which could be, for example,

representations of DNA strands) and computes their edit distance, based on your
algorithm from the previous exercise.

C-13.45 Let X and Y be strings of length n and m, respectively. Define B(j,k) to be the
length of the longest common substring of the suffix X [n− j..n−1] and the suffix

Y [m− k..m− 1]. Design an O(nm)-time algorithm for computing all the values

of B(j,k) for j = 1, . . . ,n and k = 1, . . . ,m.

C-13.46 Let three integer arrays, A, B, and C, be given, each of size n. Given an arbi-

trary integer k, design an O(n2 logn)-time algorithm to determine if there exist
numbers, a in A, b in B, and c in C, such that k = a+b+ c.

C-13.47 Give an O(n2)-time algorithm for the previous problem.

Projects

P-13.48 Perform an experimental analysis of the efficiency (number of character compar-

isons performed) of the brute-force and KMP pattern-matching algorithms for
varying-length patterns.

P-13.49 Perform an experimental analysis of the efficiency (number of character com-
parisons performed) of the brute-force and Boyer-Moore pattern-matching algo-

rithms for varying-length patterns.

P-13.50 Perform an experimental comparison of the relative speeds of the brute-force,
KMP, and Boyer-Moore pattern-matching algorithms. Document the relative

running times on large text documents that are then searched using varying-

length patterns.

P-13.51 Experiment with the efficiency of the indexOf method of Java’s String class and

develop a hypothesis about which pattern-matching algorithm it uses. Describe
your experiments and your conclusions.

13.6. Exercises 609

P-13.52 A very effective pattern-matching algorithm, developed by Rabin and Karp [54],
relies on the use of hashing to produce an algorithm with very good expected

performance. Recall that the brute-force algorithm compares the pattern to each

possible placement in the text, spending O(m) time, in the worst case, for each
such comparison. The premise of the Rabin-Karp algorithm is to compute a hash

function, h(·), on the length-m pattern, and then to compute the hash function on
all length-m substrings of the text. The pattern P occurs at substring, T [j.. j +
m− 1], only if h(P) equals h(T [j.. j +m− 1]). If the hash values are equal, the

authenticity of the match at that location must then be verified with the brute-
force approach, since there is a possibility that there was a coincidental collision

of hash values for distinct strings. But with a good hash function, there will be

very few such false matches.

The next challenge, however, is that computing a good hash function on a length-
m substring would presumably require O(m) time. If we did this for each of

O(n) possible locations, the algorithm would be no better than the brute-force
approach. The trick is to rely on the use of a polynomial hash code, as originally

introduced in Section 10.2.1, such as

(x0am−1 + x1am−2 + · · ·+ xn−2a+ xm−1) mod p

for a substring (x0,x1, . . . ,xm−1), randomly chosen a, and large prime p. We can

compute the hash value of each successive substring of the text in O(1) time each,
by using the following formula

h(T [j+1.. j+m]) = (a ·h(T [j.. j+m−1])− x ja
m + x j+m) mod p.

Implement the Rabin-Karp algorithm and evaluate its efficiency.

P-13.53 Implement the simplified search engine described in Section 13.3.4 for the pages
of a small Web site. Use all the words in the pages of the site as index terms,

excluding stop words such as articles, prepositions, and pronouns.

P-13.54 Implement a search engine for the pages of a small Web site by adding a page-

ranking feature to the simplified search engine described in Section 13.3.4. Your
page-ranking feature should return the most relevant pages first. Use all the words

in the pages of the site as index terms, excluding stop words, such as articles,
prepositions, and pronouns.

P-13.55 Use the LCS algorithm to compute the best sequence alignment between some
DNA strings, which you can get online from GenBank.

P-13.56 Develop a spell-checker that uses edit distance (see Exercise C-13.43) to deter-

mine which correctly spelled words are closest to a misspelling.

610 Chapter 13. Text Processing

Chapter Notes

The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article [62],

and Boyer and Moore describe their algorithm in a journal article published the same
year [17]. In their article, however, Knuth et al. [62] also prove that the Boyer-Moore

algorithm runs in linear time. More recently, Cole [23] shows that the Boyer-Moore algo-
rithm makes at most 3n character comparisons in the worst case, and this bound is tight.

All of the algorithms discussed above are also discussed in the book chapter by Aho [4],

albeit in a more theoretical framework, including the methods for regular-expression pat-
tern matching. The reader interested in further study of string pattern-matching algorithms

is referred to the book by Stephen [84] and the book chapters by Aho [4], and Crochemore

and Lecroq [26]. The trie was invented by Morrison [74] and is discussed extensively in the
classic Sorting and Searching book by Knuth [61]. The name “Patricia” is short for “Prac-

tical Algorithm to Retrieve Information Coded in Alphanumeric” [74]. McCreight [68]

shows how to construct suffix tries in linear time. Dynamic programming was developed
in the operations research community and formalized by Bellman [12].

Chapter

14 Graph Algorithms

Contents

14.1 Graphs . 612

14.1.1 The Graph ADT . 618

14.2 Data Structures for Graphs 619

14.2.1 Edge List Structure . 620

14.2.2 Adjacency List Structure 622

14.2.3 Adjacency Map Structure 624

14.2.4 Adjacency Matrix Structure 625

14.2.5 Java Implementation . 626

14.3 Graph Traversals . 630

14.3.1 Depth-First Search . 631

14.3.2 DFS Implementation and Extensions 636

14.3.3 Breadth-First Search . 640

14.4 Transitive Closure . 643

14.5 Directed Acyclic Graphs . 647

14.5.1 Topological Ordering . 647

14.6 Shortest Paths . 651

14.6.1 Weighted Graphs . 651

14.6.2 Dijkstra’s Algorithm . 653

14.7 Minimum Spanning Trees 662

14.7.1 Prim-Jarńık Algorithm 664

14.7.2 Kruskal’s Algorithm . 667

14.7.3 Disjoint Partitions and Union-Find Structures 672

14.8 Exercises . 677

612 Chapter 14. Graph Algorithms

14.1 Graphs

A graph is a way of representing relationships that exist between pairs of objects.

That is, a graph is a set of objects, called vertices, together with a collection of

pairwise connections between them, called edges. Graphs have applications in

modeling many domains, including mapping, transportation, computer networks,

and electrical engineering. By the way, this notion of a “graph” should not be

confused with bar charts and function plots, as these kinds of “graphs” are unrelated

to the topic of this chapter.

Viewed abstractly, a graph G is simply a set V of vertices and a collection E

of pairs of vertices from V , called edges. Thus, a graph is a way of representing

connections or relationships between pairs of objects from some set V . Incidentally,

some books use different terminology for graphs and refer to what we call vertices

as nodes and what we call edges as arcs. We use the terms “vertices” and “edges.”

Edges in a graph are either directed or undirected. An edge (u,v) is said to

be directed from u to v if the pair (u,v) is ordered, with u preceding v. An edge

(u,v) is said to be undirected if the pair (u,v) is not ordered. Undirected edges are

sometimes denoted with set notation, as {u,v}, but for simplicity we use the pair

notation (u,v), noting that in the undirected case (u,v) is the same as (v,u). Graphs

are typically visualized by drawing the vertices as ovals or rectangles and the edges

as segments or curves connecting pairs of ovals and rectangles. The following are

some examples of directed and undirected graphs.

Example 14.1: We can visualize collaborations among the researchers of a cer-

tain discipline by constructing a graph whose vertices are associated with the re-

searchers themselves, and whose edges connect pairs of vertices associated with

researchers who have coauthored a paper or book. (See Figure 14.1.) Such edges

are undirected because coauthorship is a symmetric relation; that is, if A has coau-

thored something with B, then B necessarily has coauthored something with A.

Chiang

Goldwasser

TamassiaGoodrich

GargSnoeyink

Tollis

Vitter Preparata

Figure 14.1: Graph of coauthorship among some authors.

14.1. Graphs 613

Example 14.2: We can associate with an object-oriented program a graph whose

vertices represent the classes defined in the program, and whose edges indicate

inheritance between classes. There is an edge from a vertex v to a vertex u if

the class for v inherits from the class for u. Such edges are directed because the

inheritance relation only goes in one direction (that is, it is asymmetric).

If all the edges in a graph are undirected, then we say the graph is an undirected

graph. Likewise, a directed graph, also called a digraph, is a graph whose edges

are all directed. A graph that has both directed and undirected edges is often called

a mixed graph. Note that an undirected or mixed graph can be converted into a

directed graph by replacing every undirected edge (u,v) by the pair of directed

edges (u,v) and (v,u). It is often useful, however, to keep undirected and mixed

graphs represented as they are, for such graphs have several applications, as in the

following example.

Example 14.3: A city map can be modeled as a graph whose vertices are intersec-

tions or dead ends, and whose edges are stretches of streets without intersections.

This graph has both undirected edges, which correspond to stretches of two-way

streets, and directed edges, which correspond to stretches of one-way streets. Thus,

in this way, a graph modeling a city map is a mixed graph.

Example 14.4: Physical examples of graphs are present in the electrical wiring

and plumbing networks of a building. Such networks can be modeled as graphs,

where each connector, fixture, or outlet is viewed as a vertex, and each uninter-

rupted stretch of wire or pipe is viewed as an edge. Such graphs are actually com-

ponents of much larger graphs, namely the local power and water distribution net-

works. Depending on the specific aspects of these graphs that we are interested in,

we may consider their edges as undirected or directed, for, in principle, water can

flow in a pipe and current can flow in a wire in either direction.

The two vertices joined by an edge are called the end vertices (or endpoints)

of the edge. If an edge is directed, its first endpoint is its origin and the other is the

destination of the edge. Two vertices u and v are said to be adjacent if there is an

edge whose end vertices are u and v. An edge is said to be incident to a vertex if

the vertex is one of the edge’s endpoints. The outgoing edges of a vertex are the

directed edges whose origin is that vertex. The incoming edges of a vertex are the

directed edges whose destination is that vertex. The degree of a vertex v, denoted

deg(v), is the number of incident edges of v. The in-degree and out-degree of a

vertex v are the number of the incoming and outgoing edges of v, and are denoted

indeg(v) and outdeg(v), respectively.

614 Chapter 14. Graph Algorithms

Example 14.5: We can study air transportation by constructing a graph G, called

a flight network, whose vertices are associated with airports, and whose edges

are associated with flights. (See Figure 14.2.) In graph G, the edges are directed

because a given flight has a specific travel direction. The endpoints of an edge e in

G correspond respectively to the origin and destination of the flight corresponding

to e. Two airports are adjacent in G if there is a flight that flies between them,

and an edge e is incident to a vertex v in G if the flight for e flies to or from the

airport for v. The outgoing edges of a vertex v correspond to the outbound flights

from v’s airport, and the incoming edges correspond to the inbound flights to v’s

airport. Finally, the in-degree of a vertex v of G corresponds to the number of

inbound flights to v’s airport, and the out-degree of a vertex v in G corresponds to

the number of outbound flights.

ORD

MIA
N

W
35

A
A

9
0
3 D

L
2
4
7

D
L

3
3
5

AA 49

AA 411

AA 523

UA
12

0

U
A

8
7
7

SW 45

AA
1387

DFW

LAX

SFO

BOS

JFK

Figure 14.2: Example of a directed graph representing a flight network. The end-

points of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent.

The in-degree of DFW is 3, and the out-degree of DFW is 2.

The definition of a graph refers to the group of edges as a collection, not a

set, thus allowing two undirected edges to have the same end vertices, and for two

directed edges to have the same origin and the same destination. Such edges are

called parallel edges or multiple edges. A flight network can contain parallel edges

(Example 14.5), such that multiple edges between the same pair of vertices could

indicate different flights operating on the same route at different times of the day.

Another special type of edge is one that connects a vertex to itself. Namely, we say

that an edge (undirected or directed) is a self-loop if its two endpoints coincide. A

self-loop may occur in a graph associated with a city map (Example 14.3), where

it would correspond to a “circle” (a curving street that returns to its starting point).

With few exceptions, graphs do not have parallel edges or self-loops. Such

graphs are said to be simple. Thus, we can usually say that the edges of a simple

graph are a set of vertex pairs (and not just a collection). Throughout this chapter,

we will assume that a graph is simple unless otherwise specified.

14.1. Graphs 615

A path is a sequence of alternating vertices and edges that starts at a vertex and

ends at a vertex such that each edge is incident to its predecessor and successor

vertex. A cycle is a path that starts and ends at the same vertex, and that includes at

least one edge. We say that a path is simple if each vertex in the path is distinct, and

we say that a cycle is simple if each vertex in the cycle is distinct, except for the

first and last one. A directed path is a path such that all edges are directed and are

traversed along their direction. A directed cycle is similarly defined. For example,

in Figure 14.2, (BOS, NW 35, JFK, AA 1387, DFW) is a directed simple path, and

(LAX, UA 120, ORD, UA 877, DFW, AA 49, LAX) is a directed simple cycle.

Note that a directed graph may have a cycle consisting of two edges with opposite

direction between the same pair of vertices, for example (ORD, UA 877, DFW,

DL 335, ORD) in Figure 14.2. A directed graph is acyclic if it has no directed

cycles. For example, if we were to remove the edge UA 877 from the graph in

Figure 14.2, the remaining graph is acyclic. If a graph is simple, we may omit the

edges when describing path P or cycle C, as these are well defined, in which case

P is a list of adjacent vertices and C is a cycle of adjacent vertices.

Example 14.6: Given a graph G representing a city map (see Example 14.3), we

can model a couple driving to dinner at a recommended restaurant as traversing a

path though G. If they know the way, and do not accidentally go through the same

intersection twice, then they traverse a simple path in G. Likewise, we can model

the entire trip the couple takes, from their home to the restaurant and back, as a

cycle. If they go home from the restaurant in a completely different way than how

they went, not even going through the same intersection twice, then their entire

round trip is a simple cycle. Finally, if they travel along one-way streets for their

entire trip, we can model their night out as a directed cycle.

Given vertices u and v of a (directed) graph G, we say that u reaches v, and

that v is reachable from u, if G has a (directed) path from u to v. In an undirected

graph, the notion of reachability is symmetric, that is to say, u reaches v if an only

if v reaches u. However, in a directed graph, it is possible that u reaches v but v does

not reach u, because a directed path must be traversed according to the respective

directions of the edges. A graph is connected if, for any two vertices, there is a path

between them. A directed graph ~G is strongly connected if for any two vertices u

and v of ~G, u reaches v and v reaches u. (See Figure 14.3 for some examples.)

A subgraph of a graph G is a graph H whose vertices and edges are subsets of

the vertices and edges of G, respectively. A spanning subgraph of G is a subgraph

of G that contains all the vertices of the graph G. If a graph G is not connected,

its maximal connected subgraphs are called the connected components of G. A

forest is a graph without cycles. A tree is a connected forest, that is, a connected

graph without cycles. A spanning tree of a graph is a spanning subgraph that is a

tree. (Note that this definition of a tree is somewhat different from the one given in

Chapter 8, as there is not necessarily a designated root.)

616 Chapter 14. Graph Algorithms

DFW

MIA

ORD

JFK

BOS

SFO

LAX

DFW

SFO

MIA

ORD

JFK

BOS

LAX

(a) (b)

JFK

BOS

LAX

DFW

ORD

MIA

SFO

DFW

MIA

ORD

JFK

BOS

SFO

LAX

(c) (d)

Figure 14.3: Examples of reachability in a directed graph: (a) a directed path from

BOS to LAX is highlighted; (b) a directed cycle (ORD, MIA, DFW, LAX, ORD) is

highlighted; its vertices induce a strongly connected subgraph; (c) the subgraph of

the vertices and edges reachable from ORD is highlighted; (d) the removal of the

dashed edges results in a directed acyclic graph.

Example 14.7: Perhaps the most talked about graph today is the Internet, which

can be viewed as a graph whose vertices are computers and whose (undirected)

edges are communication connections between pairs of computers on the Inter-

net. The computers and the connections between them in a single domain, like

wiley.com, form a subgraph of the Internet. If this subgraph is connected, then two

users on computers in this domain can send email to one another without having

their information packets ever leave their domain. Suppose the edges of this sub-

graph form a spanning tree. This implies that, if even a single connection goes

down (for example, because someone pulls a communication cable out of the back

of a computer in this domain), then this subgraph will no longer be connected.

http://wiley.com

14.1. Graphs 617

In the propositions that follow, we explore a few important properties of graphs.

Proposition 14.8: If G is a graph with m edges and vertex set V , then

∑
v in V

deg(v) = 2m.

Justification: An edge (u,v) is counted twice in the summation above; once by

its endpoint u and once by its endpoint v. Thus, the total contribution of the edges

to the degrees of the vertices is twice the number of edges.

Proposition 14.9: If G is a directed graph with m edges and vertex set V , then

∑
v in V

indeg(v) = ∑
v in V

outdeg(v) = m.

Justification: In a directed graph, an edge (u,v) contributes one unit to the

out-degree of its origin u and one unit to the in-degree of its destination v. Thus,

the total contribution of the edges to the out-degrees of the vertices is equal to the

number of edges, and similarly for the in-degrees.

We next show that a simple graph with n vertices has O(n2) edges.

Proposition 14.10: Let G be a simple graph with n vertices and m edges. If G is

undirected, then m≤ n(n−1)/2, and if G is directed, then m≤ n(n−1).

Justification: Suppose that G is undirected. Since no two edges can have the

same endpoints and there are no self-loops, the maximum degree of a vertex in G

is n−1 in this case. Thus, by Proposition 14.8, 2m ≤ n(n−1). Now suppose that

G is directed. Since no two edges can have the same origin and destination, and

there are no self-loops, the maximum in-degree of a vertex in G is n−1 in this case.

Thus, by Proposition 14.9, m≤ n(n−1).

There are a number of simple properties of trees, forests, and connected graphs.

Proposition 14.11: Let G be an undirected graph with n vertices and m edges.

• If G is connected, then m≥ n−1.

• If G is a tree, then m = n−1.

• If G is a forest, then m≤ n−1.

618 Chapter 14. Graph Algorithms

14.1.1 The Graph ADT

A graph is a collection of vertices and edges. We model the abstraction as a com-

bination of three data types: Vertex, Edge, and Graph. A Vertex is a lightweight

object that stores an arbitrary element provided by the user (e.g., an airport code);

we assume the element can be retrieved with the getElement() method. An Edge
also stores an associated object (e.g., a flight number, travel distance, cost), which

is returned by its getElement() method.

The primary abstraction for a graph is the Graph ADT. We presume that a graph

can be either undirected or directed, with the designation declared upon construc-

tion; recall that a mixed graph can be represented as a directed graph, modeling

edge {u,v} as a pair of directed edges (u,v) and (v,u). The Graph ADT includes

the following methods:

numVertices(): Returns the number of vertices of the graph.

vertices(): Returns an iteration of all the vertices of the graph.

numEdges(): Returns the number of edges of the graph.

edges(): Returns an iteration of all the edges of the graph.

getEdge(u, v): Returns the edge from vertex u to vertex v, if one exists;

otherwise return null. For an undirected graph, there is no

difference between getEdge(u, v) and getEdge(v, u).

endVertices(e): Returns an array containing the two endpoint vertices of

edge e. If the graph is directed, the first vertex is the origin

and the second is the destination.

opposite(v, e): For edge e incident to vertex v, returns the other vertex of

the edge; an error occurs if e is not incident to v.

outDegree(v): Returns the number of outgoing edges from vertex v.

inDegree(v): Returns the number of incoming edges to vertex v. For

an undirected graph, this returns the same value as does

outDegree(v).

outgoingEdges(v): Returns an iteration of all outgoing edges from vertex v.

incomingEdges(v): Returns an iteration of all incoming edges to vertex v. For

an undirected graph, this returns the same collection as

does outgoingEdges(v).

insertVertex(x): Creates and returns a new Vertex storing element x.

insertEdge(u, v, x): Creates and returns a new Edge from vertex u to vertex v,

storing element x; an error occurs if there already exists an

edge from u to v.

removeVertex(v): Removes vertex v and all its incident edges from the graph.

removeEdge(e): Removes edge e from the graph.

14.2. Data Structures for Graphs 619

14.2 Data Structures for Graphs

In this section, we introduce four data structures for representing a graph. In each

representation, we maintain a collection to store the vertices of a graph. However,

the four representations differ greatly in the way they organize the edges.

• In an edge list, we maintain an unordered list of all edges. This minimally

suffices, but there is no efficient way to locate a particular edge (u,v), or the

set of all edges incident to a vertex v.

• In an adjacency list, we additionally maintain, for each vertex, a separate

list containing those edges that are incident to the vertex. This organization

allows us to more efficiently find all edges incident to a given vertex.

• An adjacency map is similar to an adjacency list, but the secondary container

of all edges incident to a vertex is organized as a map, rather than as a list,

with the adjacent vertex serving as a key. This allows more efficient access

to a specific edge (u,v), for example, in O(1) expected time with hashing.

• An adjacency matrix provides worst-case O(1) access to a specific edge

(u,v) by maintaining an n× n matrix, for a graph with n vertices. Each

slot is dedicated to storing a reference to the edge (u,v) for a particular pair

of vertices u and v; if no such edge exists, the slot will store null.

A summary of the performance of these structures is given in Table 14.1.

Method Edge List Adj. List Adj. Map Adj. Matrix

numVertices() O(1) O(1) O(1) O(1)

numEdges() O(1) O(1) O(1) O(1)

vertices() O(n) O(n) O(n) O(n)

edges() O(m) O(m) O(m) O(m)

getEdge(u, v) O(m) O(min(du,dv)) O(1) exp. O(1)

outDegree(v) O(m) O(1) O(1) O(n)
inDegree(v)

outgoingEdges(v) O(m) O(dv) O(dv) O(n)
incomingEdges(v)

insertVertex(x) O(1) O(1) O(1) O(n2)

removeVertex(v) O(m) O(dv) O(dv) O(n2)

insertEdge(u, v, x) O(1) O(1) O(1) exp. O(1)

removeEdge(e) O(1) O(1) O(1) exp. O(1)

Table 14.1: A summary of the running times for the methods of the graph ADT, us-

ing the graph representations discussed in this section. We let n denote the number

of vertices, m the number of edges, and dv the degree of vertex v. Note that the

adjacency matrix uses O(n2) space, while all other structures use O(n+m) space.

620 Chapter 14. Graph Algorithms

14.2.1 Edge List Structure

The edge list structure is possibly the simplest, though not the most efficient, rep-

resentation of a graph G. All vertex objects are stored in an unordered list V , and

all edge objects are stored in an unordered list E . We illustrate an example of the

edge list structure for a graph G in Figure 14.4.

h

e g

v

u

w z
f

z

e

f

g

h

V E

v

u

w

(a) (b)

Figure 14.4: (a) A graph G; (b) schematic representation of the edge list structure

for G. Notice that an edge object refers to the two vertex objects that correspond to

its endpoints, but that vertices do not refer to incident edges.

To support the many methods of the Graph ADT (Section 14.1), we assume the

following additional features of an edge list representation. Collections V and E

are represented with doubly linked lists using our LinkedPositionalList class from

Chapter 7.

Vertex Objects

The vertex object for a vertex v storing element x has instance variables for:

• A reference to element x, to support the getElement() method.

• A reference to the position of the vertex instance in the list V , thereby allow-

ing v to be efficiently removed from V if it were removed from the graph.

Edge Objects

The edge object for an edge e storing element x has instance variables for:

• A reference to element x, to support the getElement() method.

• References to the vertex objects associated with the endpoint vertices of e.

These will allow for constant-time support for methods endVertices(e) and

opposite(v, e).

• A reference to the position of the edge instance in list E , thereby allowing e

to be efficiently removed from E if it were removed from the graph.

14.2. Data Structures for Graphs 621

Performance of the Edge List Structure

The performance of an edge list structure in fulfilling the graph ADT is summarized

in Table 14.2. We begin by discussing the space usage, which is O(n+ m) for

representing a graph with n vertices and m edges. Each individual vertex or edge

instance uses O(1) space, and the additional lists V and E use space proportional

to their number of entries.

In terms of running time, the edge list structure does as well as one could hope

in terms of reporting the number of vertices or edges, or in producing an iteration

of those vertices or edges. By querying the respective list V or E , the numVertices
and numEdges methods run in O(1) time, and by iterating through the appropriate

list, the methods vertices and edges run respectively in O(n) and O(m) time.

The most significant limitations of an edge list structure, especially when com-

pared to the other graph representations, are the O(m) running times of methods

getEdge(u, v), outDegree(v), and outgoingEdges(v) (and corresponding methods

inDegree and incomingEdges). The problem is that with all edges of the graph in

an unordered list E , the only way to answer those queries is through an exhaustive

inspection of all edges.

Finally, we consider the methods that update the graph. It is easy to add a new

vertex or a new edge to the graph in O(1) time. For example, a new edge can be

added to the graph by creating an Edge instance storing the given element as data,

adding that instance to the positional list E , and recording its resulting Position
within E as an attribute of the edge. That stored position can later be used to

locate and remove this edge from E in O(1) time, and thus implement the method

removeEdge(e).

It is worth discussing why the removeVertex(v) method has a running time of

O(m). As stated in the graph ADT, when a vertex v is removed from the graph, all

edges incident to v must also be removed (otherwise, we would have a contradiction

of edges that refer to vertices that are not part of the graph). To locate the incident

edges to the vertex, we must examine all edges of E .

Method Running Time

numVertices(), numEdges() O(1)

vertices() O(n)

edges() O(m)

getEdge(u, v), outDegree(v), outgoingEdges(v) O(m)

insertVertex(x), insertEdge(u, v, x), removeEdge(e) O(1)

removeVertex(v) O(m)

Table 14.2: Running times of the methods of a graph implemented with the edge

list structure. The space used is O(n+m), where n is the number of vertices and m

is the number of edges.

622 Chapter 14. Graph Algorithms

14.2.2 Adjacency List Structure

The adjacency list structure for a graph adds extra information to the edge list struc-

ture that supports direct access to the incident edges (and thus to the adjacent ver-

tices) of each vertex. Specifically, for each vertex v, we maintain a collection I(v),
called the incidence collection of v, whose entries are edges incident to v. In the

case of a directed graph, outgoing and incoming edges can be respectively stored in

two separate collections, Iout(v) and Iin(v). Traditionally, the incidence collection

I(v) for a vertex v is a list, which is why we call this way of representing a graph

the adjacency list structure.

We require that the primary structure for an adjacency list maintain the col-

lection V of vertices in a way so that we can locate the secondary structure I(v)
for a given vertex v in O(1) time. This could be done by using a positional list

to represent V , with each Vertex instance maintaining a direct reference to its I(v)
incidence collection; we illustrate such an adjacency list structure of a graph in Fig-

ure 14.5. If vertices can be uniquely numbered from 0 to n− 1, we could instead

use a primary array-based structure to access the appropriate secondary lists.

The primary benefit of an adjacency list is that the collection I(v) (or more

specifically, Iout(v)) contains exactly those edges that should be reported by the

method outgoingEdges(v). Therefore, we can implement this method by iterating

the edges of I(v) in O(deg(v)) time, where deg(v) is the degree of vertex v. This

is the best possible outcome for any graph representation, because there are deg(v)
edges to be reported.

h

e g

v

u

w z
f f h

h

ge

fe

g

u

v

w

z

V

(a) (b)

Figure 14.5: (a) An undirected graph G; (b) a schematic representation of the ad-

jacency list structure for G. Collection V is the primary list of vertices, and each

vertex has an associated list of incident edges. Although not diagrammed as such,

we presume that each edge of the graph is represented with a unique Edge instance

that maintains references to its endpoint vertices, and that E is a list of all edges.

14.2. Data Structures for Graphs 623

Performance of the Adjacency List Structure

Table 14.3 summarizes the performance of the adjacency list structure implemen-

tation of a graph, assuming that the primary collection V and E , and all secondary

collections I(v) are implemented with doubly linked lists.

Asymptotically, the space requirements for an adjacency list are the same as

an edge list structure, using O(n + m) space for a graph with n vertices and m

edges. It is clear that the primary lists of vertices and edges use O(n+m) space.

In addition, the sum of the lengths of all secondary lists is O(m), for reasons that

were formalized in Propositions 14.8 and 14.9. In short, an undirected edge (u,v)
is referenced in both I(u) and I(v), but its presence in the graph results in only a

constant amount of additional space.

We have already noted that the outgoingEdges(v) method can be achieved in

O(deg(v)) time based on use of I(v). For a directed graph, this is more specifically

O(outdeg(v)) based on use of Iout(v). The outDegree(v) method of the graph ADT

can run in O(1) time, assuming collection I(v) can report its size in similar time.

To locate a specific edge for implementing getEdge(u, v), we can search through

either I(u) and I(v) (or for a directed graph, either Iout(u) or Iin(v)). By choosing

the smaller of the two, we get O(min(deg(u),deg(v))) running time.

The rest of the bounds in Table 14.3 can be achieved with additional care. To

efficiently support deletions of edges, an edge (u,v) would need to maintain a ref-

erence to its positions within both I(u) and I(v), so that it could be deleted from

those collections in O(1) time. To remove a vertex v, we must also remove any

incident edges, but at least we can locate those edges in O(deg(v)) time.

Method Running Time

numVertices(), numEdges() O(1)

vertices() O(n)

edges() O(m)

getEdge(u, v) O(min(deg(u),deg(v)))

outDegree(v), inDegree(v) O(1)

outgoingEdges(v), incomingEdges(v) O(deg(v))

insertVertex(x), insertEdge(u, v, x) O(1)

removeEdge(e) O(1)

removeVertex(v) O(deg(v))

Table 14.3: Running times of the methods of a graph implemented with the adja-

cency list structure. The space used is O(n+m), where n is the number of vertices

and m is the number of edges.

624 Chapter 14. Graph Algorithms

14.2.3 Adjacency Map Structure

In the adjacency list structure, we assume that the secondary incidence collections

are implemented as unordered linked lists. Such a collection I(v) uses space pro-

portional to O(deg(v)), allows an edge to be added or removed in O(1) time, and

allows an iteration of all edges incident to vertex v in O(deg(v)) time. However,

the best implementation of getEdge(u, v) requires O(min(deg(u),deg(v))) time,

because we must search through either I(u) or I(v).

We can improve the performance by using a hash-based map to implement I(v)
for each vertex v. Specifically, we let the opposite endpoint of each incident edge

serve as a key in the map, with the edge structure serving as the value. We call such

a graph representation an adjacency map. (See Figure 14.6.) The space usage for

an adjacency map remains O(n+m), because I(v) uses O(deg(v)) space for each

vertex v, as with the adjacency list.

The advantage of the adjacency map, relative to an adjacency list, is that the

getEdge(u, v) method can be implemented in expected O(1) time by searching for

vertex u as a key in I(v), or vice versa. This provides a likely improvement over the

adjacency list, while retaining the worst-case bound of O(min(deg(u),deg(v))).

In comparing the performance of adjacency map to other representations (see

Table 14.1), we find that it essentially achieves optimal running times for all meth-

ods, making it an excellent all-purpose choice as a graph representation.

h

e g

v

u

w z
f g h

w

h

u

u
wv

ge

fe

w

vu z

f

v

w

z

V

(a) (b)

Figure 14.6: (a) An undirected graph G; (b) a schematic representation of the ad-

jacency map structure for G. Each vertex maintains a secondary map in which

neighboring vertices serve as keys, with the connecting edges as associated values.

As with the adjacency list, we presume that there is also an overall list E of all Edge
instances.

14.2. Data Structures for Graphs 625

14.2.4 Adjacency Matrix Structure

The adjacency matrix structure for a graph G augments the edge list structure with

a matrix A (that is, a two-dimensional array, as in Section 3.1.5), which allows us

to locate an edge between a given pair of vertices in worst-case constant time. In

the adjacency matrix representation, we think of the vertices as being the integers

in the set {0,1, . . . ,n−1} and the edges as being pairs of such integers. This allows

us to store references to edges in the cells of a two-dimensional n× n array A.

Specifically, the cell A[i][j] holds a reference to the edge (u,v), if it exists, where u

is the vertex with index i and v is the vertex with index j. If there is no such edge,

then A[i][j] = null. We note that array A is symmetric if graph G is undirected, as

A[i][j] = A[j][i] for all pairs i and j. (See Figure 14.7.)

The most significant advantage of an adjacency matrix is that any edge (u,v)
can be accessed in worst-case O(1) time; recall that the adjacency map supports

that operation in O(1) expected time. However, several operation are less efficient

with an adjacency matrix. For example, to find the edges incident to vertex v, we

must presumably examine all n entries in the row associated with v; recall that an

adjacency list or map can locate those edges in optimal O(deg(v)) time. Adding or

removing vertices from a graph is problematic, as the matrix must be resized.

Furthermore, the O(n2) space usage of an adjacency matrix is typically far

worse than the O(n+m) space required of the other representations. Although,

in the worst case, the number of edges in a dense graph will be proportional to

n2, most real-world graphs are sparse. In such cases, use of an adjacency matrix

is inefficient. However, if a graph is dense, the constants of proportionality of an

adjacency matrix can be smaller than that of an adjacency list or map. In fact, if

edges do not have auxiliary data, a boolean adjacency matrix can use one bit per

edge slot, such that A[i][j] = true if and only if associated (u,v) is an edge.

h

e g

v

u

w z
f h

0

1

2

3

0 1 2 3

u

v

w

z

e

e

g

g

f

f h

(a) (b)

Figure 14.7: (a) An undirected graph G; (b) a schematic representation of the aux-

iliary adjacency matrix structure for G, in which n vertices are mapped to indices 0

to n−1. Although not diagrammed as such, we presume that there is a unique Edge
instance for each edge, and that it maintains references to its endpoint vertices. We

also assume that there is a secondary edge list (not pictured), to allow the edges()
method to run in O(m) time, for a graph with m edges.

626 Chapter 14. Graph Algorithms

14.2.5 Java Implementation

In this section, we provide an implementation of the Graph ADT, based on the

adjacency map representation, as described in Section 14.2.3. We use positional

lists to represent each of the primary lists V and E , as originally described in the

edge list representation. Additionally, for each vertex v, we use a hash-based map

to represent the secondary incidence map I(v).

To gracefully support both undirected and directed graphs, each vertex main-

tains two different map references: outgoing and incoming. In the directed case,

these are initialized to two distinct map instances, representing Iout(v) and Iin(v),
respectively. In the case of an undirected graph, we assign both outgoing and

incoming as aliases to a single map instance.

Our implementation is organized as follows. We assume definitions for Vertex,

Edge, and Graph interfaces, although for the sake of brevity, we do not include

those definitions in the book (they are available online). We then define a concrete

AdjacencyMapGraph class, with nested classes InnerVertex and InnerEdge to im-

plement the vertex and edge abstractions. These classes use generic parameters V
and E to designate the element type stored respectively at vertices and edges.

We begin in Code Fragment 14.1, with the definitions of the InnerVertex and

InnerEdge classes (although in reality, those definitions should be nested within the

following AdjacencyMapGraph class). Note well how the InnerVertex constructor

initializes the outgoing and incoming instance variables depending on whether the

overall graph is undirected or directed.

Code Fragments 14.2 and 14.3 contain the core implementation of the class

AdjacencyMapGraph. A graph instance maintains a boolean variable that desig-

nates whether the graph is directed, and it maintains the vertex list and edge list.

Although not shown in these code fragments, our implementation includes pri-

vate validate methods that perform type conversions between the public Vertex
and Edge interface types to the concrete InnerVertex and InnerEdge classes, while

also performing some error checking. This design is similar to the validate method

of the LinkedPositionalList class (see Code Fragment 7.10 of Section 7.3.3), which

converts an outward Position to the underlying Node type for that class.

The most complex methods are those that modify the graph. When insertVertex
is called, we must create a new InnerVertex instance, add that vertex to the list of

vertices, and record its position within that list (so that we can efficiently delete

it from the list if the vertex is removed from the graph). When inserting an edge

(u,v), we must also create a new instance, add it to the edge list, and record its

position, yet we must also add the new edge to the outgoing adjacency map for

vertex u, and the incoming map for vertex v. Code Fragment 14.3 contains code

for removeVertex as well; the implementation of removeEdge is not included, but

is available in the online version of the code.

14.2. Data Structures for Graphs 627

1 /∗∗ A vertex of an adjacency map graph representation. ∗/
2 private class InnerVertex<V> implements Vertex<V> {
3 private V element;
4 private Position<Vertex<V>> pos;
5 private Map<Vertex<V>, Edge<E>> outgoing, incoming;
6 /∗∗ Constructs a new InnerVertex instance storing the given element. ∗/
7 public InnerVertex(V elem, boolean graphIsDirected) {
8 element = elem;
9 outgoing = new ProbeHashMap<>();

10 if (graphIsDirected)
11 incoming = new ProbeHashMap<>();
12 else
13 incoming = outgoing; // if undirected, alias outgoing map
14 }
15 /∗∗ Returns the element associated with the vertex. ∗/
16 public V getElement() { return element; }
17 /∗∗ Stores the position of this vertex within the graph's vertex list. ∗/
18 public void setPosition(Position<Vertex<V>> p) { pos = p; }
19 /∗∗ Returns the position of this vertex within the graph's vertex list. ∗/
20 public Position<Vertex<V>> getPosition() { return pos; }
21 /∗∗ Returns reference to the underlying map of outgoing edges. ∗/
22 public Map<Vertex<V>, Edge<E>> getOutgoing() { return outgoing; }
23 /∗∗ Returns reference to the underlying map of incoming edges. ∗/
24 public Map<Vertex<V>, Edge<E>> getIncoming() { return incoming; }
25 } //------------ end of InnerVertex class ------------
26

27 /∗∗ An edge between two vertices. ∗/
28 private class InnerEdge<E> implements Edge<E> {
29 private E element;
30 private Position<Edge<E>> pos;
31 private Vertex<V>[] endpoints;
32 /∗∗ Constructs InnerEdge instance from u to v, storing the given element. ∗/
33 public InnerEdge(Vertex<V> u, Vertex<V> v, E elem) {
34 element = elem;
35 endpoints = (Vertex<V>[]) new Vertex[]{u,v}; // array of length 2
36 }
37 /∗∗ Returns the element associated with the edge. ∗/
38 public E getElement() { return element; }
39 /∗∗ Returns reference to the endpoint array. ∗/
40 public Vertex<V>[] getEndpoints() { return endpoints; }
41 /∗∗ Stores the position of this edge within the graph's vertex list. ∗/
42 public void setPosition(Position<Edge<E>> p) { pos = p; }
43 /∗∗ Returns the position of this edge within the graph's vertex list. ∗/
44 public Position<Edge<E>> getPosition() { return pos; }
45 } //------------ end of InnerEdge class ------------

Code Fragment 14.1: InnerVertex and InnerEdge classes (to be nested within the

AdjacencyMapGraph class). Interfaces Vertex<V> and Edge<E> are not shown.

628 Chapter 14. Graph Algorithms

1 public class AdjacencyMapGraph<V,E> implements Graph<V,E> {
2 // nested InnerVertex and InnerEdge classes defined here...
3 private boolean isDirected;
4 private PositionalList<Vertex<V>> vertices = new LinkedPositionalList<>();
5 private PositionalList<Edge<E>> edges = new LinkedPositionalList<>();
6 /∗∗ Constructs an empty graph (either undirected or directed). ∗/
7 public AdjacencyMapGraph(boolean directed) { isDirected = directed; }
8 /∗∗ Returns the number of vertices of the graph ∗/
9 public int numVertices() { return vertices.size(); }

10 /∗∗ Returns the vertices of the graph as an iterable collection ∗/
11 public Iterable<Vertex<V>> vertices() { return vertices; }
12 /∗∗ Returns the number of edges of the graph ∗/
13 public int numEdges() { return edges.size(); }
14 /∗∗ Returns the edges of the graph as an iterable collection ∗/
15 public Iterable<Edge<E>> edges() { return edges; }
16 /∗∗ Returns the number of edges for which vertex v is the origin. ∗/
17 public int outDegree(Vertex<V> v) {
18 InnerVertex<V> vert = validate(v);
19 return vert.getOutgoing().size();
20 }
21 /∗∗ Returns an iterable collection of edges for which vertex v is the origin. ∗/
22 public Iterable<Edge<E>> outgoingEdges(Vertex<V> v) {
23 InnerVertex<V> vert = validate(v);
24 return vert.getOutgoing().values(); // edges are the values in the adjacency map
25 }
26 /∗∗ Returns the number of edges for which vertex v is the destination. ∗/
27 public int inDegree(Vertex<V> v) {
28 InnerVertex<V> vert = validate(v);
29 return vert.getIncoming().size();
30 }
31 /∗∗ Returns an iterable collection of edges for which vertex v is the destination. ∗/
32 public Iterable<Edge<E>> incomingEdges(Vertex<V> v) {
33 InnerVertex<V> vert = validate(v);
34 return vert.getIncoming().values(); // edges are the values in the adjacency map
35 }
36 public Edge<E> getEdge(Vertex<V> u, Vertex<V> v) {
37 /∗∗ Returns the edge from u to v, or null if they are not adjacent. ∗/
38 InnerVertex<V> origin = validate(u);
39 return origin.getOutgoing().get(v); // will be null if no edge from u to v
40 }
41 /∗∗ Returns the vertices of edge e as an array of length two. ∗/
42 public Vertex<V>[] endVertices(Edge<E> e) {
43 InnerEdge<E> edge = validate(e);
44 return edge.getEndpoints();
45 }

Code Fragment 14.2: AdjacencyMapGraph class definition. (Continues in Code

Fragment 14.3.) The validate(v) and validate(e) methods are available online.

14.2. Data Structures for Graphs 629

46 /∗∗ Returns the vertex that is opposite vertex v on edge e. ∗/
47 public Vertex<V> opposite(Vertex<V> v, Edge<E> e)
48 throws IllegalArgumentException {
49 InnerEdge<E> edge = validate(e);
50 Vertex<V>[] endpoints = edge.getEndpoints();
51 if (endpoints[0] == v)
52 return endpoints[1];
53 else if (endpoints[1] == v)
54 return endpoints[0];
55 else
56 throw new IllegalArgumentException("v is not incident to this edge");
57 }
58 /∗∗ Inserts and returns a new vertex with the given element. ∗/
59 public Vertex<V> insertVertex(V element) {
60 InnerVertex<V> v = new InnerVertex<>(element, isDirected);
61 v.setPosition(vertices.addLast(v));
62 return v;
63 }
64 /∗∗ Inserts and returns a new edge between u and v, storing given element. ∗/
65 public Edge<E> insertEdge(Vertex<V> u, Vertex<V> v, E element)
66 throws IllegalArgumentException {
67 if (getEdge(u,v) == null) {
68 InnerEdge<E> e = new InnerEdge<>(u, v, element);
69 e.setPosition(edges.addLast(e));
70 InnerVertex<V> origin = validate(u);
71 InnerVertex<V> dest = validate(v);
72 origin.getOutgoing().put(v, e);
73 dest.getIncoming().put(u, e);
74 return e;
75 } else
76 throw new IllegalArgumentException("Edge from u to v exists");
77 }
78 /∗∗ Removes a vertex and all its incident edges from the graph. ∗/
79 public void removeVertex(Vertex<V> v) {
80 InnerVertex<V> vert = validate(v);
81 // remove all incident edges from the graph
82 for (Edge<E> e : vert.getOutgoing().values())
83 removeEdge(e);
84 for (Edge<E> e : vert.getIncoming().values())
85 removeEdge(e);
86 // remove this vertex from the list of vertices
87 vertices.remove(vert.getPosition());
88 }
89 }

Code Fragment 14.3: AdjacencyMapGraph class definition (continued from Code

Fragment 14.2). We omit the removeEdge method, for brevity.

630 Chapter 14. Graph Algorithms

14.3 Graph Traversals

Greek mythology tells of an elaborate labyrinth that was built to house the mon-

strous Minotaur, which was part bull and part man. This labyrinth was so complex

that neither beast nor human could escape it. No human, that is, until the Greek

hero, Theseus, with the help of the king’s daughter, Ariadne, decided to implement

a graph traversal algorithm. Theseus fastened a ball of thread to the door of the

labyrinth and unwound it as he traversed the twisting passages in search of the

monster. Theseus obviously knew about good algorithm design, for, after finding

and defeating the beast, Theseus easily followed the string back out of the labyrinth

to the loving arms of Ariadne.

Formally, a traversal is a systematic procedure for exploring a graph by exam-

ining all of its vertices and edges. A traversal is efficient if it visits all the vertices

and edges in time proportional to their number, that is, in linear time.

Graph traversal algorithms are key to answering many fundamental questions

about graphs involving the notion of reachability, that is, in determining how to

travel from one vertex to another while following paths of a graph. Interesting

problems that deal with reachability in an undirected graph G include the following:

• Computing a path from vertex u to vertex v, or reporting that no such path

exists.

• Given a start vertex s of G, computing, for every vertex v of G, a path with

the minimum number of edges between s and v, or reporting that no such

path exists.

• Testing whether G is connected.

• Computing a spanning tree of G, if G is connected.

• Computing the connected components of G.

• Identifying a cycle in G, or reporting that G has no cycles.

Interesting problems that deal with reachability in a directed graph ~G include the

following:

• Computing a directed path from vertex u to vertex v, or reporting that no such

path exists.

• Finding all the vertices of ~G that are reachable from a given vertex s.

• Determine whether ~G is acyclic.

• Determine whether ~G is strongly connected.

In the remainder of this section, we will present two efficient graph traversal

algorithms, called depth-first search and breadth-first search, respectively.

14.3. Graph Traversals 631

14.3.1 Depth-First Search

The first traversal algorithm we consider in this section is depth-first search (DFS).

Depth-first search is useful for testing a number of properties of graphs, including

whether there is a path from one vertex to another and whether or not a graph is

connected.

Depth-first search in a graph G is analogous to wandering in a labyrinth with

a string and a can of paint without getting lost. We begin at a specific starting

vertex s in G, which we initialize by fixing one end of our string to s and painting

s as “visited.” The vertex s is now our “current” vertex. In general, if we call

our current vertex u, we traverse G by considering an arbitrary edge (u,v) incident

to the current vertex u. If the edge (u,v) leads us to a vertex v that is already

visited (that is, painted), we ignore that edge. If, on the other hand, (u,v) leads

to an unvisited vertex v, then we unroll our string, and go to v. We then paint

v as “visited,” and make it the current vertex, repeating the computation above.

Eventually, we will get to a “dead end,” that is, a current vertex v such that all the

edges incident to v lead to vertices already visited. To get out of this impasse, we

roll our string back up, backtracking along the edge that brought us to v, going back

to a previously visited vertex u. We then make u our current vertex and repeat the

computation above for any edges incident to u that we have not yet considered. If

all of u’s incident edges lead to visited vertices, then we again roll up our string

and backtrack to the vertex we came from to get to u, and repeat the procedure at

that vertex. Thus, we continue to backtrack along the path that we have traced so

far until we find a vertex that has yet unexplored edges, take one such edge, and

continue the traversal. The process terminates when our backtracking leads us back

to the start vertex s, and there are no more unexplored edges incident to s.

The pseudocode for a depth-first search traversal starting at a vertex u (see

Code Fragment 14.4) follows our analogy with string and paint. We use recursion

to implement the string analogy, and we assume that we have a mechanism (the

paint analogy) to determine whether a vertex or edge has been previously explored.

Algorithm DFS(G, u):

Input: A graph G and a vertex u of G

Output: A collection of vertices reachable from u, with their discovery edges

Mark vertex u as visited.

for each of u’s outgoing edges, e = (u,v) do

if vertex v has not been visited then

Record edge e as the discovery edge for vertex v.

Recursively call DFS(G, v).

Code Fragment 14.4: The DFS algorithm.

632 Chapter 14. Graph Algorithms

Classifying Graph Edges with DFS

An execution of depth-first search can be used to analyze the structure of a graph,

based upon the way in which edges are explored during the traversal. The DFS

process naturally identifies what is known as the depth-first search tree rooted at

a starting vertex s. Whenever an edge e = (u,v) is used to discover a new vertex v

during the DFS algorithm of Code Fragment 14.4, that edge is known as a discovery

edge or tree edge, as oriented from u to v. All other edges that are considered during

the execution of DFS are known as nontree edges, which take us to a previously

visited vertex. In the case of an undirected graph, we will find that all nontree edges

that are explored connect the current vertex to one that is an ancestor of it in the

DFS tree. We will call such an edge a back edge. When performing a DFS on a

directed graph, there are three possible kinds of nontree edges:

• back edges, which connect a vertex to an ancestor in the DFS tree

• forward edges, which connect a vertex to a descendant in the DFS tree

• cross edges, which connect a vertex to a vertex that is neither its ancestor nor

its descendant

An example application of the DFS algorithm on a directed graph is shown in

Figure 14.8, demonstrating each type of nontree edge. An example application of

the DFS algorithm on an undirected graph is shown in Figure 14.9.

BOS

JFK

ORD

MIA

SFO

LAX

DFW

4

1

5

2

3

6

7

SFO

MIA

JFK

DFW

BOS

ORD

LAX

(a) (b)

Figure 14.8: An example of a DFS in a directed graph, starting at vertex (BOS):

(a) intermediate step, where, for the first time, a considered edge leads to an already

visited vertex (DFW); (b) the completed DFS. The tree edges are shown with thick

blue lines, the back edges are shown with dashed blue lines, and the forward and

cross edges are shown with dotted black lines. The order in which the vertices are

visited is indicated by a label next to each vertex. The edge (ORD,DFW) is a back

edge, but (DFW,ORD) is a forward edge. Edge (BOS,SFO) is a forward edge, and

(SFO,LAX) is a cross edge.

14.3. Graph Traversals 633

A C D

E F G H

I J K L

M N O P

B A C D

E F G H

I J K L

M N O P

B

(a) (b)

A C D

E F G H

I J K L

M N O P

B A C D

E F G H

I J K L

M N O P

B

(c) (d)

A C D

E F G H

I J K L

M N O P

B A C D

E F G H

I J K L

M N O P

B

(e) (f)

Figure 14.9: Example of depth-first search traversal on an undirected graph starting

at vertex A. We assume that a vertex’s adjacencies are considered in alphabetical

order. Visited vertices and explored edges are highlighted, with discovery edges

drawn as solid lines and nontree (back) edges as dashed lines: (a) input graph;

(b) path of tree edges, traced from A until back edge (G,C) is examined; (c) reach-

ing F, which is a dead end; (d) after backtracking to I, resuming with edge (I,M),

and hitting another dead end at O; (e) after backtracking to G, continuing with edge

(G,L), and hitting another dead end at H; (f) final result.

634 Chapter 14. Graph Algorithms

Properties of a Depth-First Search

There are a number of observations that we can make about the depth-first search

algorithm, many of which derive from the way the DFS algorithm partitions the

edges of a graph G into groups. We will begin with the most significant property.

Proposition 14.12: Let G be an undirected graph on which a DFS traversal start-

ing at a vertex s has been performed. Then the traversal visits all vertices in the

connected component of s, and the discovery edges form a spanning tree of the

connected component of s.

Justification: Suppose there is at least one vertex w in s’s connected component

not visited, and let v be the first unvisited vertex on some path from s to w (we may

have v = w). Since v is the first unvisited vertex on this path, it has a neighbor u

that was visited. But when we visited u, we must have considered the edge (u,v);
hence, it cannot be correct that v is unvisited. Therefore, there are no unvisited

vertices in s’s connected component.

Since we only follow a discovery edge when we go to an unvisited vertex, we

will never form a cycle with such edges. Therefore, the discovery edges form a

connected subgraph without cycles, hence a tree. Moreover, this is a spanning

tree because, as we have just seen, the depth-first search visits each vertex in the

connected component of s.

Proposition 14.13: Let ~G be a directed graph. Depth-first search on ~G starting at

a vertex s visits all the vertices of ~G that are reachable from s. Also, the DFS tree

contains directed paths from s to every vertex reachable from s.

Justification: Let Vs be the subset of vertices of ~G visited by DFS starting at

vertex s. We want to show that Vs contains s and every vertex reachable from s

belongs to Vs. Suppose now, for the sake of a contradiction, that there is a vertex w

reachable from s that is not in Vs. Consider a directed path from s to w, and let (u,v)
be the first edge on such a path taking us out of Vs, that is, u is in Vs but v is not

in Vs. When DFS reaches u, it explores all the outgoing edges of u, and thus must

also reach vertex v via edge (u,v). Hence, v should be in Vs, and we have obtained

a contradiction. Therefore, Vs must contain every vertex reachable from s.

We prove the second fact by induction on the steps of the algorithm. We claim

that each time a discovery edge (u,v) is identified, there exists a directed path from

s to v in the DFS tree. Since u must have previously been discovered, there exists

a path from s to u, so by appending the edge (u,v) to that path, we have a directed

path from s to v.

Note that since back edges always connect a vertex v to a previously visited

vertex u, each back edge implies a cycle in G, consisting of the discovery edges

from u to v plus the back edge (u,v).

14.3. Graph Traversals 635

Running Time of Depth-First Search

In terms of its running time, depth-first search is an efficient method for traversing

a graph. Note that DFS is called at most once on each vertex (since it gets marked

as visited), and therefore every edge is examined at most twice for an undirected

graph, once from each of its end vertices, and at most once in a directed graph,

from its origin vertex. If we let ns ≤ n be the number of vertices reachable from

a vertex s, and ms ≤ m be the number of incident edges to those vertices, a DFS

starting at s runs in O(ns+ms) time, provided the following conditions are satisfied:

• The graph is represented by a data structure such that creating and iterating

through the outgoingEdges(v) takes O(deg(v)) time, and the opposite(v, e)
method takes O(1) time. The adjacency list structure is one such structure,

but the adjacency matrix structure is not.

• We have a way to “mark” a vertex or edge as explored, and to test if a vertex

or edge has been explored in O(1) time. We discuss ways of implementing

DFS to achieve this goal in the next section.

Given the assumptions above, we can solve a number of interesting problems.

Proposition 14.14: Let G be an undirected graph with n vertices and m edges. A

DFS traversal of G can be performed in O(n+m) time, and can be used to solve

the following problems in O(n+m) time:

• Computing a path between two given vertices of G, if one exists.

• Testing whether G is connected.

• Computing a spanning tree of G, if G is connected.

• Computing the connected components of G.

• Computing a cycle in G, or reporting that G has no cycles.

Proposition 14.15: Let ~G be a directed graph with n vertices and m edges. A

DFS traversal of ~G can be performed in O(n+m) time, and can be used to solve

the following problems in O(n+m) time:

• Computing a directed path between two given vertices of ~G, if one exists.

• Computing the set of vertices of ~G that are reachable from a given vertex s.

• Testing whether ~G is strongly connected.

• Computing a directed cycle in ~G, or reporting that ~G is acyclic.

The justification of Propositions 14.14 and 14.15 is based on algorithms that

use slightly modified versions of the DFS algorithm as subroutines. We will explore

some of those extensions in the remainder of this section.

636 Chapter 14. Graph Algorithms

14.3.2 DFS Implementation and Extensions

We will begin by providing a Java implementation of the depth-first search al-

gorithm. We originally described the algorithm with pseudocode in Code Frag-

ment 14.4. In order to implement it, we must have a mechanism for keeping track

of which vertices have been visited, and for recording the resulting DFS tree edges.

For this bookkeeping, we use two auxiliary data structures. First, we maintain a set,

named known, containing vertices that have already been visited. Second, we keep

a map, named forest, that associates, with a vertex v, the edge e of the graph that is

used to discover v (if any). Our DFS method is presented in Code Fragment 14.5.

1 /∗∗ Performs depth-first search of Graph g starting at Vertex u. ∗/
2 public static <V,E> void DFS(Graph<V,E> g, Vertex<V> u,
3 Set<Vertex<V>> known, Map<Vertex<V>,Edge<E>> forest) {
4 known.add(u); // u has been discovered
5 for (Edge<E> e : g.outgoingEdges(u)) { // for every outgoing edge from u
6 Vertex<V> v = g.opposite(u, e);
7 if (!known.contains(v)) {
8 forest.put(v, e); // e is the tree edge that discovered v
9 DFS(g, v, known, forest); // recursively explore from v

10 }
11 }
12 }

Code Fragment 14.5: Recursive implementation of depth-first search on a graph,

starting at a designated vertex u. As an outcome of a call, visited vertices are added

to the known set, and discovery edges are added to the forest.

Our DFS method does not make any assumption about how the Set or Map
instances are implemented; however, the O(n+m) running-time analysis of the

previous section does presume that we can “mark” a vertex as explored or test the

status of a vertex in O(1) time. If we use hash-based implementations of the set

and map structure, then all of their operations run in O(1) expected time, and the

overall algorithm runs in O(n+m) time with very high probability. In practice, this

is a compromise we are willing to accept.

If vertices can be numbered from 0, . . . ,n−1 (a common assumption for graph

algorithms), then the set and map can be implemented more directly as a lookup

table, with a vertex label used as an index into an array of size n. In that case, the

necessary set and map operations run in worst-case O(1) time. Alternatively, we

can “decorate” each vertex with the auxiliary information, either by leveraging the

generic type of the element that is stored with each vertex, or by redesigning the

Vertex type to store additional fields. That would allow marking operations to be

performed in O(1)-time, without any assumption about vertices being numbered.

14.3. Graph Traversals 637

Reconstructing a Path from u to v

We can use the basic DFS method as a tool to identify the (directed) path leading

from vertex u to v, if v is reachable from u. This path can easily be reconstructed

from the information that was recorded in the forest of discovery edges during the

traversal. Code Fragment 14.6 provides an implementation of a secondary method

that produces an ordered list of vertices on the path from u to v, if given the map of

discovery edges that was computed by the original DFS method.

To reconstruct the path, we begin at the end of the path, examining the forest

of discovery edges to determine what edge was used to reach vertex v. We then

determine the opposite vertex of that edge and repeat the process to determine what

edge was used to discover it. By continuing this process until reaching u, we can

construct the entire path. Assuming constant-time lookup in the forest map, the

path reconstruction takes time proportional to the length of the path, and therefore,

it runs in O(n) time (in addition to the time originally spent calling DFS).

1 /∗∗ Returns an ordered list of edges comprising the directed path from u to v. ∗/
2 public static <V,E> PositionalList<Edge<E>>
3 constructPath(Graph<V,E> g, Vertex<V> u, Vertex<V> v,
4 Map<Vertex<V>,Edge<E>> forest) {
5 PositionalList<Edge<E>> path = new LinkedPositionalList<>();
6 if (forest.get(v) != null) { // v was discovered during the search
7 Vertex<V> walk = v; // we construct the path from back to front
8 while (walk != u) {
9 Edge<E> edge = forest.get(walk);

10 path.addFirst(edge); // add edge to *front* of path
11 walk = g.opposite(walk, edge); // repeat with opposite endpoint
12 }
13 }
14 return path;
15 }

Code Fragment 14.6: Method to reconstruct a directed path from u to v, given the

trace of discovery from a DFS started at u. The method returns an ordered list of

vertices on the path.

Testing for Connectivity

We can use the basic DFS method to determine whether a graph is connected. In

the case of an undirected graph, we simply start a depth-first search at an arbitrary

vertex and then test whether known.size() equals n at the conclusion. If the graph

is connected, then by Proposition 14.12, all vertices will have been discovered;

conversely, if the graph is not connected, there must be at least one vertex v that is

not reachable from u, and that will not be discovered.

638 Chapter 14. Graph Algorithms

For directed graph, ~G, we may wish to test whether it is strongly connected, that

is, whether for every pair of vertices u and v, both u reaches v and v reaches u. If we

start an independent call to DFS from each vertex, we could determine whether this

was the case, but those n calls when combined would run in O(n(n+m)). However,

we can determine if ~G is strongly connected much faster than this, requiring only

two depth-first searches.

We begin by performing a depth-first search of our directed graph ~G starting at

an arbitrary vertex s. If there is any vertex of ~G that is not visited by this traversal,

and is not reachable from s, then the graph is not strongly connected. If this first

depth-first search visits each vertex of ~G, we need to then check whether s is reach-

able from all other vertices. Conceptually, we can accomplish this by making a

copy of graph ~G, but with the orientation of all edges reversed. A depth-first search

starting at s in the reversed graph will reach every vertex that could reach s in the

original. In practice, a better approach than making a new graph is to reimplement

a version of the DFS method that loops through all incoming edges to the current

vertex, rather than all outgoing edges. Since this algorithm makes just two DFS

traversals of ~G, it runs in O(n+m) time.

Computing All Connected Components

When a graph is not connected, the next goal we may have is to identify all of the

connected components of an undirected graph, or the strongly connected compo-

nents of a directed graph. We will begin by discussing the undirected case.

If an initial call to DFS fails to reach all vertices of a graph, we can restart a

new call to DFS at one of those unvisited vertices. An implementation of such a

comprehensive DFSComplete method is given in Code Fragment 14.7. It returns a

map that represents a DFS forest for the entire graph. We say this is a forest rather

than a tree, because the graph may not be connected.

Vertices that serve as roots of DFS trees within this forest will not have discov-

ery edges and will not appear as keys in the returned map. Therefore, the number of

connected components of the graph g is equal to g.numVertices() − forest.size().

1 /∗∗ Performs DFS for the entire graph and returns the DFS forest as a map. ∗/
2 public static <V,E> Map<Vertex<V>,Edge<E>> DFSComplete(Graph<V,E> g) {
3 Set<Vertex<V>> known = new HashSet<>();
4 Map<Vertex<V>,Edge<E>> forest = new ProbeHashMap<>();
5 for (Vertex<V> u : g.vertices())
6 if (!known.contains(u))
7 DFS(g, u, known, forest); // (re)start the DFS process at u
8 return forest;
9 }

Code Fragment 14.7: Top-level method that returns a DFS forest for an entire graph.

14.3. Graph Traversals 639

We can further determine which vertices are in which component, either by

examining the structure of the forest that is returned, or by making a minor modifi-

cation to the core DFS method to tag each vertex with a component number when

it is first discovered. (See Exercise C-14.43.)

Although the DFSComplete method makes multiple calls to the original DFS
method, the total time spent by a call to DFSComplete is O(n+m). For an undi-

rected graph, recall from our original analysis on page 635 that a single call to DFS
starting at vertex s runs in time O(ns+ms) where ns is the number of vertices reach-

able from s, and ms is the number of incident edges to those vertices. Because each

call to DFS explores a different component, the sum of ns +ms terms is n+m.

The situation is more complex for finding strongly connected components of

a directed graph. The O(n+m) total bound for a call to DFSComplete applies to

the directed case as well, because when restarting the process, we proceed with the

existing set of known vertices. This ensures that the DFS subroutine is called once

on each vertex, and therefore that each outgoing edge is explored only once during

the entire process.

As an example, consider again the graph of Figure 14.8. If we were to start

the original DFS method at vertex ORD, the known set of vertices would become

{ ORD, DFW, SFO, LAX, MIA }. If restarting the DFS method at vertex BOS,

the outgoing edges to vertices SFO and MIA would not result in further recursion,

because those vertices are marked as known.

However, the forest returned by a single call to DFSComplete does not rep-

resent the strongly connected components of the graph. There exists an approach

for computing those components in O(n + m) time, making use of two calls to

DFSComplete, but the details are beyond the scope of this book.

Detecting Cycles with DFS

For both undirected and directed graphs, a cycle exists if and only if a back edge

exists relative to the DFS traversal of that graph. It is easy to see that if a back edge

exists, a cycle exists by taking the back edge from the descendant to its ancestor

and then following the tree edges back to the descendant. Conversely, if a cycle

exists in the graph, there must be a back edge relative to a DFS (although we do not

prove this fact here).

Algorithmically, detecting a back edge in the undirected case is easy, because

all edges are either tree edges or back edges. In the case of a directed graph, addi-

tional modifications to the core DFS implementation are needed to properly cate-

gorize a nontree edge as a back edge. When a directed edge is explored leading to

a previously visited vertex, we must recognize whether that vertex is an ancestor of

the current vertex. This can be accomplished, for example, by maintaining another

set, with all vertices upon which a recursive call to DFS is currently active. We

leave details as an exercise (C-14.42).

640 Chapter 14. Graph Algorithms

14.3.3 Breadth-First Search

The advancing and backtracking of a depth-first search, as described in the previ-

ous section, defines a traversal that could be physically traced by a single person

exploring a graph. In this section, we will consider another algorithm for travers-

ing a connected component of a graph, known as a breadth-first search (BFS). The

BFS algorithm is more akin to sending out, in all directions, many explorers who

collectively traverse a graph in coordinated fashion.

A BFS proceeds in rounds and subdivides the vertices into levels. BFS starts

at vertex s, which is at level 0. In the first round, we paint as “visited,” all vertices

adjacent to the start vertex s; these vertices are one step away from the beginning

and are placed into level 1. In the second round, we allow all explorers to go

two steps (i.e., edges) away from the starting vertex. These new vertices, which

are adjacent to level 1 vertices and not previously assigned to a level, are placed

into level 2 and marked as “visited.” This process continues in similar fashion,

terminating when no new vertices are found in a level.

A Java implementation of BFS is given in Code Fragment 14.8. We follow a

convention similar to that of DFS (Code Fragment 14.5), maintaining a known set

of vertices, and storing the BFS tree edges in a map. We illustrate a BFS traversal

in Figure 14.10.

1 /∗∗ Performs breadth-first search of Graph g starting at Vertex u. ∗/
2 public static <V,E> void BFS(Graph<V,E> g, Vertex<V> s,
3 Set<Vertex<V>> known, Map<Vertex<V>,Edge<E>> forest) {
4 PositionalList<Vertex<V>> level = new LinkedPositionalList<>();
5 known.add(s);
6 level.addLast(s); // first level includes only s
7 while (!level.isEmpty()) {
8 PositionalList<Vertex<V>> nextLevel = new LinkedPositionalList<>();
9 for (Vertex<V> u : level)

10 for (Edge<E> e : g.outgoingEdges(u)) {
11 Vertex<V> v = g.opposite(u, e);
12 if (!known.contains(v)) {
13 known.add(v);
14 forest.put(v, e); // e is the tree edge that discovered v
15 nextLevel.addLast(v); // v will be further considered in next pass
16 }
17 }
18 level = nextLevel; // relabel ’next’ level to become the current
19 }
20 }

Code Fragment 14.8: Implementation of breadth-first search on a graph, starting at

a designated vertex s.

14.3. Graph Traversals 641

F H

I J K L

M N O P

A B C

E

D

G

0

B

I J K L

M N O P

C D

GFE

A

H

0 1

(a) (b)

A

J K L

M N O P

B C

E

D

HGF

I

0 1 2

K L

M N O P

I

HGF

A B C D

E

J

2 30 1

(c) (d)

F G H

I J K L

M N O P

A B C D

E

4

1 2 30

F G H

I J K L

M N O P

A B C D

E

4

1 2 30

5

(e) (f)

Figure 14.10: Example of breadth-first search traversal, where the edges incident to

a vertex are considered in alphabetical order of the adjacent vertices. The discovery

edges are shown with solid lines and the nontree (cross) edges are shown with

dashed lines: (a) starting the search at A; (b) discovery of level 1; (c) discovery of

level 2; (d) discovery of level 3; (e) discovery of level 4; (f) discovery of level 5.

642 Chapter 14. Graph Algorithms

When discussing DFS, we described a classification of nontree edges being

either back edges, which connect a vertex to one of its ancestors, forward edges,

which connect a vertex to one of its descendants, or cross edges, which connect a

vertex to another vertex that is neither its ancestor nor its descendant. For BFS on

an undirected graph, all nontree edges are cross edges (see Exercise C-14.46), and

for BFS on a directed graph, all nontree edges are either back edges or cross edges

(see Exercise C-14.47).

The BFS traversal algorithm has a number of interesting properties, some of

which we explore in the proposition that follows. Most notably, a path in a breadth-

first search tree rooted at vertex s to any other vertex v is guaranteed to be the

shortest such path from s to v in terms of the number of edges.

Proposition 14.16: Let G be an undirected or directed graph on which a BFS

traversal starting at vertex s has been performed. Then

• The traversal visits all vertices of G that are reachable from s.

• For each vertex v at level i, the path of the BFS tree T between s and v has i

edges, and any other path of G from s to v has at least i edges.

• If (u,v) is an edge that is not in the BFS tree, then the level number of v can

be at most 1 greater than the level number of u.

We leave the justification of this proposition as Exercise C-14.49.

The analysis of the running time of BFS is similar to the one of DFS, with

the algorithm running in O(n+m) time, or more specifically, in O(ns +ms) time

if ns is the number of vertices reachable from vertex s, and ms ≤ m is the num-

ber of incident edges to those vertices. To explore the entire graph, the process

can be restarted at another vertex, akin to the DFSComplete method of Code Frag-

ment 14.7. The actual path from vertex s to vertex v can be reconstructed using the

constructPath method of Code Fragment 14.6

Proposition 14.17: Let G be a graph with n vertices and m edges represented

with the adjacency list structure. A BFS traversal of G takes O(n+m) time.

Although our implementation of BFS in Code Fragment 14.8 progresses level

by level, the BFS algorithm can also be implemented using a single FIFO queue

to represent the current fringe of the search. Starting with the source vertex in the

queue, we repeatedly remove the vertex from the front of the queue and insert any

of its unvisited neighbors to the back of the queue. (See Exercise C-14.50.)

In comparing the capabilities of DFS and BFS, both can be used to efficiently

find the set of vertices that are reachable from a given source, and to determine paths

to those vertices. However, BFS guarantees that those paths use as few edges as

possible. For an undirected graph, both algorithms can be used to test connectivity,

to identify connected components, or to locate a cycle. For directed graphs, the

DFS algorithm is better suited for certain tasks, such as finding a directed cycle in

the graph, or in identifying the strongly connected components.

14.4. Transitive Closure 643

14.4 Transitive Closure

We have seen that graph traversals can be used to answer basic questions of reach-

ability in a directed graph. In particular, if we are interested in knowing whether

there is a path from vertex u to vertex v in a graph, we can perform a DFS or BFS

traversal starting at u and observe whether v is discovered. If representing a graph

with an adjacency list or adjacency map, we can answer the question of reachability

for u and v in O(n+m) time (see Propositions 14.15 and 14.17).

In certain applications, we may wish to answer many reachability queries more

efficiently, in which case it may be worthwhile to precompute a more convenient

representation of a graph. For example, the first step for a service that computes

driving directions from an origin to a destination might be to assess whether the

destination is reachable. Similarly, in an electricity network, we may wish to be

able to quickly determine whether current flows from one particular vertex to an-

other. Motivated by such applications, we introduce the following definition. The

transitive closure of a directed graph ~G is itself a directed graph ~G∗ such that the

vertices of ~G∗ are the same as the vertices of ~G, and ~G∗ has an edge (u,v), when-

ever ~G has a directed path from u to v (including the case where (u,v) is an edge of

the original ~G).

If a graph is represented as an adjacency list or adjacency map, we can compute

its transitive closure in O(n(n+m)) time by making use of n graph traversals, one

from each starting vertex. For example, a DFS starting at vertex u can be used to

determine all vertices reachable from u, and thus a collection of edges originating

with u in the transitive closure.

In the remainder of this section, we explore an alternative technique for comput-

ing the transitive closure of a directed graph that is particularly well suited for when

a directed graph is represented by a data structure that supports O(1)-time lookup

for the getEdge(u, v) method (for example, the adjacency-matrix structure). Let ~G
be a directed graph with n vertices and m edges. We compute the transitive closure

of ~G in a series of rounds. We initialize ~G0 = ~G. We also arbitrarily number the

vertices of ~G as v1,v2, . . . , vn. We then begin the computation of the rounds, begin-

ning with round 1. In a generic round k, we construct directed graph ~Gk starting

with ~Gk = ~Gk−1 and adding to ~Gk the directed edge (vi,v j) if directed graph ~Gk−1

contains both the edges (vi,vk) and (vk,v j). In this way, we will enforce a simple

rule embodied in the proposition that follows.

Proposition 14.18: For i = 1, . . . , n, directed graph ~Gk has an edge (vi,v j) if and

only if directed graph ~G has a directed path from vi to v j, whose intermediate

vertices (if any) are in the set {v1, . . . ,vk}. In particular, ~Gn is equal to ~G∗, the

transitive closure of ~G.

644 Chapter 14. Graph Algorithms

Proposition 14.18 suggests a simple algorithm for computing the transitive clo-

sure of ~G that is based on the series of rounds to compute each ~Gk. This algorithm

is known as the Floyd-Warshall algorithm, and its pseudocode is given in Code

Fragment 14.9. We illustrate an example run of the Floyd-Warshall algorithm in

Figure 14.11.

Algorithm FloydWarshall(~G):

Input: A directed graph ~G with n vertices

Output: The transitive closure ~G∗ of ~G

let v1,v2, . . . , vn be an arbitrary numbering of the vertices of ~G
~G0 = ~G
for k = 1 to n do

~Gk = ~Gk−1

for all i, j in {1, . . . , n} with i 6= j and i, j 6= k do

if both edges (vi,vk) and (vk,v j) are in ~Gk−1 then

add edge (vi,v j) to ~Gk (if it is not already present)

return ~Gn

Code Fragment 14.9: Pseudocode for the Floyd-Warshall algorithm. This algorithm

computes the transitive closure ~G∗ of G by incrementally computing a series of

directed graphs ~G0, ~G1, . . . , ~Gn, for k = 1, . . . , n.

From this pseudocode, we can easily analyze the running time of the Floyd-

Warshall algorithm assuming that the data structure representing G supports meth-

ods getEdge and insertEdge in O(1) time. The main loop is executed n times and

the inner loop considers each of O(n2) pairs of vertices, performing a constant-time

computation for each one. Thus, the total running time of the Floyd-Warshall al-

gorithm is O(n3). From the description and analysis above we may immediately

derive the following proposition.

Proposition 14.19: Let ~G be a directed graph with n vertices, and let ~G be repre-

sented by a data structure that supports lookup and update of adjacency information

in O(1) time. Then the Floyd-Warshall algorithm computes the transitive closure
~G∗ of ~G in O(n3) time.

Performance of the Floyd-Warshall Algorithm

Asymptotically, the O(n3) running time of the Floyd-Warshall algorithm is no bet-

ter than that achieved by repeatedly running DFS, once from each vertex, to com-

pute the reachability. However, the Floyd-Warshall algorithm matches the asymp-

totic bounds of the repeated DFS when a graph is dense, or when a graph is sparse

but represented as an adjacency matrix. (See Exercise R-14.13.)

14.4. Transitive Closure 645

v7

v2 v6

v4

v1

v5

v3

DFW

MIA

SFO

ORD

JFK

BOS

LAX

v7

v2 v6

v4

v1

v5

v3

MIA

SFO

ORD

JFK

LAX

BOS

DFW

(a) (b)

v7

v2 v6

v4

v1

v5

v3
LAX

MIA

SFO

ORD

JFK

BOS

DFW

v7

v2 v6

v4

v5

v3
v1

JFK

LAX

DFW

BOS

SFO

ORD

MIA

(c) (d)

v4

v1

v5

v7

v3

v2 v6
SFO

ORD

MIA

LAX

BOS

JFK

DFW

v4

v1

v5

v7

v3

v2 v6

LAX

BOS

JFK

DFW

SFO

ORD

MIA

(e) (f)

Figure 14.11: Sequence of directed graphs computed by the Floyd-Warshall algo-

rithm: (a) initial directed graph ~G = ~G0 and numbering of the vertices; (b) directed

graph ~G1; (c) ~G2; (d) ~G3; (e) ~G4; (f) ~G5. Note that ~G5 = ~G6 = ~G7. If directed

graph ~Gk−1 has the edges (vi,vk) and (vk,v j), but not the edge (vi,v j), in the draw-

ing of directed graph ~Gk, we show edges (vi,vk) and (vk,v j) with dashed lines, and

edge (vi,v j) with a thick line. For example, in (b) existing edges (MIA,LAX) and

(LAX,ORD) result in new edge (MIA,ORD).

646 Chapter 14. Graph Algorithms

The importance of the Floyd-Warshall algorithm is that it is much easier to im-

plement than repeated DFS, and much faster in practice because there are relatively

few low-level operations hidden within the asymptotic notation. The algorithm is

particularly well suited for the use of an adjacency matrix, as a single bit can be

used to designate the reachability modeled as an edge (u,v) in the transitive closure.

However, note that repeated calls to DFS results in better asymptotic perfor-

mance when the graph is sparse and represented using an adjacency list or adja-

cency map. In that case, a single DFS runs in O(n+m) time, and so the transitive

closure can be computed in O(n2 +nm) time, which is preferable to O(n3).

Java Implementation

We will conclude with a Java implementation of the Floyd-Warshall algorithm,

as presented in Code Fragment 14.10. Although the pseudocode for the algorithm

describes a series of directed graphs ~G0, ~G1, . . . , ~Gn, we directly modify the original

graph, repeatedly adding new edges to the closure as we progress through rounds

of the Floyd-Warshall algorithm.

Also, the pseudocode for the algorithm describes the loops based on vertices

being indexed from 0 to n− 1. With our graph ADT, we prefer to use Java’s for-

each loop syntax directly on the vertices of the graph. Therefore, in Code Frag-

ment 14.10, variables i, j, and k are references to vertices, not integer indices into

the sequence of vertices.

Finally, we make one additional optimization in the Java implementation, rel-

ative to the pseudocode, by not bothering to iterate through values of j unless we

have verified that edge (i,k) exists in the current version of the closure.

1 /∗∗ Converts graph g into its transitive closure. ∗/
2 public static <V,E> void transitiveClosure(Graph<V,E> g) {
3 for (Vertex<V> k : g.vertices())
4 for (Vertex<V> i : g.vertices())
5 // verify that edge (i,k) exists in the partial closure
6 if (i != k && g.getEdge(i,k) != null)
7 for (Vertex<V> j : g.vertices())
8 // verify that edge (k,j) exists in the partial closure
9 if (i != j && j != k && g.getEdge(k,j) != null)

10 // if (i,j) not yet included, add it to the closure
11 if (g.getEdge(i,j) == null)
12 g.insertEdge(i, j, null);
13 }

Code Fragment 14.10: Java implementation of the Floyd-Warshall algorithm.

14.5. Directed Acyclic Graphs 647

14.5 Directed Acyclic Graphs

Directed graphs without directed cycles are encountered in many applications.

Such a directed graph is often referred to as a directed acyclic graph, or DAG,

for short. Applications of such graphs include the following:

• Prerequisites between courses of an academic program.

• Inheritance between classes of an object-oriented program.

• Scheduling constraints between the tasks of a project.

We will explore this latter application further in the following example:

Example 14.20: In order to manage a large project, it is convenient to break it up

into a collection of smaller tasks. The tasks, however, are rarely independent, be-

cause scheduling constraints exist between them. (For example, in a house building

project, the task of ordering nails obviously precedes the task of nailing shingles

to the roof deck.) Clearly, scheduling constraints cannot have circularities, because

they would make the project impossible. (For example, in order to get a job you

need to have work experience, but in order to get work experience you need to have

a job.) The scheduling constraints impose restrictions on the order in which the

tasks can be executed. Namely, if a constraint says that task a must be completed

before task b is started, then a must precede b in the order of execution of the tasks.

Thus, if we model a feasible set of tasks as vertices of a directed graph, and we

place a directed edge from u to v whenever the task for u must be executed before

the task for v, then we define a directed acyclic graph.

14.5.1 Topological Ordering

The example above motivates the following definition. Let ~G be a directed graph

with n vertices. A topological ordering of ~G is an ordering v1, . . . ,vn of the vertices

of ~G such that for every edge (vi,v j) of ~G, it is the case that i < j. That is, a topo-

logical ordering is an ordering such that any directed path in ~G traverses vertices in

increasing order. Note that a directed graph may have more than one topological

ordering. (See Figure 14.12.)

Proposition 14.21: ~G has a topological ordering if and only if it is acyclic.

Justification: The necessity (the “only if” part of the statement) is easy to

demonstrate. Suppose ~G is topologically ordered. Assume, for the sake of a con-

tradiction, that ~G has a cycle consisting of edges (vi0 ,vi1),(vi1 ,vi2), . . . ,(vik−1
,vi0).

Because of the topological ordering, we must have i0 < i1 < · · ·< ik−1 < i0, which

is clearly impossible. Thus, ~G must be acyclic.

648 Chapter 14. Graph Algorithms

1

8

3

2

7

6

5

4

F

C

D

G

B

H

E

A

2

8

6

3

7

5

4

1

F

C

D

G

B

H

E

A

(a) (b)

Figure 14.12: Two topological orderings of the same acyclic directed graph.

We now argue the sufficiency of the condition (the “if” part). Suppose ~G is

acyclic. We will give an algorithmic description of how to build a topological

ordering for ~G. Since ~G is acyclic, ~G must have a vertex with no incoming edges

(that is, with in-degree 0). Let v1 be such a vertex. Indeed, if v1 did not exist,

then in tracing a directed path from an arbitrary start vertex, we would eventually

encounter a previously visited vertex, thus contradicting the acyclicity of ~G. If we

remove v1 from ~G, together with its outgoing edges, the resulting directed graph is

still acyclic. Hence, the resulting directed graph also has a vertex with no incoming

edges, and we let v2 be such a vertex. By repeating this process until the directed

graph becomes empty, we obtain an ordering v1, . . . ,vn of the vertices of ~G. Because

of the construction above, if (vi,v j) is an edge of ~G, then vi must be deleted before

v j can be deleted, and thus, i < j. Therefore, v1, . . . ,vn is a topological ordering.

Proposition 14.21’s justification suggests an algorithm for computing a topo-

logical ordering of a directed graph, which we call topological sorting. We present

a Java implementation of the technique in Code Fragment 14.11, and an example

execution of the algorithm in Figure 14.13. Our implementation uses a map, named

inCount, to map each vertex v to a counter that represents the current number of

incoming edges to v, excluding those coming from vertices that have previously

been added to the topological order. As was the case with our graph traversals, a

hash-based map only provides O(1) expected time access to its entries, rather than

worst-case time. This could easily be converted to worst-case time if vertices could

be indexed from 0 to n−1, or if we store the count as a field of the vertex instance.

As a side effect, the topological sorting algorithm of Code Fragment 14.11

also tests whether the given directed graph ~G is acyclic. Indeed, if the algorithm

terminates without ordering all the vertices, then the subgraph of the vertices that

have not been ordered must contain a directed cycle.

14.5. Directed Acyclic Graphs 649

1 /∗∗ Returns a list of verticies of directed acyclic graph g in topological order. ∗/
2 public static <V,E> PositionalList<Vertex<V>> topologicalSort(Graph<V,E> g) {
3 // list of vertices placed in topological order
4 PositionalList<Vertex<V>> topo = new LinkedPositionalList<>();
5 // container of vertices that have no remaining constraints
6 Stack<Vertex<V>> ready = new LinkedStack<>();
7 // map keeping track of remaining in-degree for each vertex
8 Map<Vertex<V>, Integer> inCount = new ProbeHashMap<>();
9 for (Vertex<V> u : g.vertices()) {

10 inCount.put(u, g.inDegree(u)); // initialize with actual in-degree
11 if (inCount.get(u) == 0) // if u has no incoming edges,
12 ready.push(u); // it is free of constraints
13 }
14 while (!ready.isEmpty()) {
15 Vertex<V> u = ready.pop();
16 topo.addLast(u);
17 for (Edge<E> e : g.outgoingEdges(u)) { // consider all outgoing neighbors of u
18 Vertex<V> v = g.opposite(u, e);
19 inCount.put(v, inCount.get(v) − 1); // v has one less constraint without u
20 if (inCount.get(v) == 0)
21 ready.push(v);
22 }
23 }
24 return topo;
25 }

Code Fragment 14.11: Java implementation for the topological sorting algorithm.

(We show an example execution of this algorithm in Figure 14.13.)

Proposition 14.22: Let ~G be a directed graph with n vertices and m edges, using

an adjacency list representation. The topological sorting algorithm runs in O(n+m)
time using O(n) auxiliary space, and either computes a topological ordering of ~G
or fails to include some vertices, which indicates that ~G has a directed cycle.

Justification: The initial recording of the n in-degrees uses O(n) time based

on the inDegree method. Say that a vertex u is visited by the topological sorting

algorithm when u is removed from the ready list. A vertex u can be visited only

when inCount.get(u) is 0, which implies that all its predecessors (vertices with

outgoing edges into u) were previously visited. As a consequence, any vertex that

is on a directed cycle will never be visited, and any other vertex will be visited

exactly once. The algorithm traverses all the outgoing edges of each visited vertex

once, so its running time is proportional to the number of outgoing edges of the

visited vertices. In accordance with Proposition 14.9, the running time is (n+m).
Regarding the space usage, observe that containers topo, ready, and inCount have

at most one entry per vertex, and therefore use O(n) space.

650 Chapter 14. Graph Algorithms

1

0

3

2

3

1

0

2

G

C

H

D

F

B

E

A
0

0

3

2

1 2

1

2E F

C

A B

D

G

H

0

2

2

0 2

2

1

1E F

C

A B

D

G

H

(a) (b) (c)

01

2

1

3 2

2

1E F

C

A B

D

G

H 2

1

3 1

0

4

2

1

F

C

D

A B

G

H

E

2

1

3 0

4

2

5

1

C

B

D

F

A

G

H

E

(d) (e) (f)

1

0

3

4

6

1

2

5E F

H

G

D

C

A B

7

0

3 6

2

5

1 4

C

G

H

BA

D

FE

8

4

7

3 6

1

2

5E F

H

G

D

C

A B

(g) (h) (i)

Figure 14.13: Example of a run of algorithm topologicalSort (Code Frag-

ment 14.11). The label near a vertex shows its current inCount value, and its

eventual rank in the resulting topological order. The highlighted vertex is one with

inCount equal to zero that will become the next vertex in the topological order.

Dashed lines denote edges that have already been examined, which are no longer

reflected in the inCount values.

14.6. Shortest Paths 651

14.6 Shortest Paths

As we saw in Section 14.3.3, the breadth-first search strategy can be used to find a

path with as few edges as possible from some starting vertex to every other vertex in

a connected graph. This approach makes sense in cases where each edge is as good

as any other, but there are many situations where this approach is not appropriate.

For example, we might want to use a graph to represent the roads between

cities, and we might be interested in finding the fastest way to travel cross-country.

In this case, it is probably not appropriate for all the edges to be equal to each other,

for some inter-city distances will likely be much larger than others. Likewise, we

might be using a graph to represent a computer network (such as the Internet), and

we might be interested in finding the fastest way to route a data packet between

two computers. In this case, it again may not be appropriate for all the edges to

be equal to each other, for some connections in a computer network are typically

much faster than others (for example, some edges might represent low-bandwidth

connections, while others might represent high-speed, fiber-optic connections). It

is natural, therefore, to consider graphs whose edges are not weighted equally.

14.6.1 Weighted Graphs

A weighted graph is a graph that has a numeric (for example, integer) label w(e)
associated with each edge e, called the weight of edge e. For e = (u,v), we let

notation w(u,v) = w(e). We show an example of a weighted graph in Figure 14.14.

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802

1464

337

2342

1235

1121

187

Figure 14.14: A weighted graph whose vertices represent major U.S. airports and

whose edge weights represent distances in miles. This graph has a path from JFK to

LAX of total weight 2,777 (going through ORD and DFW). This is the minimum-

weight path in the graph from JFK to LAX.

652 Chapter 14. Graph Algorithms

Defining Shortest Paths in a Weighted Graph

Let G be a weighted graph. The length (or weight) of a path is the sum of the

weights of the edges of P. That is, if P = ((v0,v1),(v1,v2), . . . ,(vk−1,vk)), then the

length of P, denoted w(P), is defined as

w(P) =
k−1

∑
i=0

w(vi,vi+1).

The distance from a vertex u to a vertex v in G, denoted d(u,v), is the length of a

minimum-length path (also called shortest path) from u to v, if such a path exists.

People often use the convention that d(u,v) =∞ if there is no path at all from

u to v in G. Even if there is a path from u to v in G, however, if there is a cycle

in G whose total weight is negative, the distance from u to v may not be defined.

For example, suppose vertices in G represent cities, and the weights of edges in

G represent how much money it costs to go from one city to another. If someone

were willing to actually pay us to go from say JFK to ORD, then the “cost” of the

edge (JFK,ORD) would be negative. If someone else were willing to pay us to go

from ORD to JFK, then there would be a negative-weight cycle in G and distances

would no longer be defined. That is, anyone could now build a path (with cycles)

in G from any city A to another city B that first goes to JFK and then cycles as

many times as he or she likes from JFK to ORD and back, before going on to B.

The existence of such paths would allow us to build arbitrarily low negative-cost

paths (and, in this case, make a fortune in the process). But distances cannot be

arbitrarily low negative numbers. Thus, any time we use edge weights to represent

distances, we must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted graph G, and we are asked to find a shortest

path from some vertex s to each other vertex in G, viewing the weights on the edges

as distances. In this section, we explore efficient ways of finding all such shortest

paths, if they exist. The first algorithm we discuss is for the simple, yet common,

case when all the edge weights in G are nonnegative (that is, w(e)≥ 0 for each edge

e of G); hence, we know in advance that there are no negative-weight cycles in G.

Recall that the special case of computing a shortest path when all weights are equal

to one was solved with the BFS traversal algorithm presented in Section 14.3.3.

There is an interesting approach for solving this single-source problem based

on the greedy-method design pattern (Section 13.4.2). Recall that in this pattern we

solve the problem at hand by repeatedly selecting the best choice from among those

available in each iteration. This paradigm can often be used in situations where we

are trying to optimize some cost function over a collection of objects. We can add

objects to our collection, one at a time, always picking the next one that optimizes

the function from among those yet to be chosen.

14.6. Shortest Paths 653

14.6.2 Dijkstra’s Algorithm

The main idea in applying the greedy-method pattern to the single-source shortest-

path problem is to perform a “weighted” breadth-first search starting at the source

vertex s. In particular, we can use the greedy method to develop an algorithm that

iteratively grows a “cloud” of vertices out of s, with the vertices entering the cloud

in order of their distances from s. Thus, in each iteration, the next vertex chosen

is the vertex outside the cloud that is closest to s. The algorithm terminates when

no more vertices are outside the cloud (or when those outside the cloud are not

connected to those within the cloud), at which point we have a shortest path from

s to every vertex of G that is reachable from s. This approach is a simple, but

nevertheless powerful, example of the greedy-method design pattern. Applying the

greedy method to the single-source, shortest-path problem, results in an algorithm

known as Dijkstra’s algorithm.

Edge Relaxation

Let us define a label D[v] for each vertex v in V , which we use to approximate the

distance in G from s to v. The meaning of these labels is that D[v] will always store

the length of the best path we have found so far from s to v. Initially, D[s] = 0 and

D[v] =∞ for each v 6= s, and we define the set C, which is our “cloud” of vertices,

to initially be the empty set. At each iteration of the algorithm, we select a vertex

u not in C with smallest D[u] label, and we pull u into C. (In general, we will use

a priority queue to select among the vertices outside the cloud.) In the very first

iteration we will, of course, pull s into C. Once a new vertex u is pulled into C,

we update the label D[v] of each vertex v that is adjacent to u and is outside of C,

to reflect the fact that there may be a new and better way to get to v via u. This

update operation is known as a relaxation procedure, for it takes an old estimate

and checks if it can be improved to get closer to its true value. The specific edge

relaxation operation is as follows:

Edge Relaxation:

if D[u]+w(u,v)< D[v] then

D[v] = D[u]+w(u,v)

Algorithm Description and Example

We give the pseudocode for Dijkstra’s algorithm in Code Fragment 14.12, and il-

lustrate several iterations of Dijkstra’s algorithm in Figures 14.15 through 14.17.

654 Chapter 14. Graph Algorithms

Algorithm ShortestPath(G,s):

Input: A directed or undirected graph G with nonnegative edge weights, and a

distinguished vertex s of G.

Output: The length of a shortest path from s to v for each vertex v of G.

Initialize D[s] = 0 and D[v] = ∞ for each vertex v 6= s.

Let a priority queue Q contain all the vertices of G using the D labels as keys.

while Q is not empty do

{pull a new vertex u into the cloud}
u = value returned by Q.removeMin()

for each edge (u,v) such that v is in Q do

{perform the relaxation procedure on edge (u,v)}
if D[u]+w(u,v)< D[v] then

D[v] = D[u]+w(u,v)
Change the key of vertex v in Q to D[v].

return the label D[v] of each vertex v

Code Fragment 14.12: Pseudocode for Dijkstra’s algorithm, solving the single-

source shortest-path problem for an undirected or directed graph.

337

1846

187

849

1258

1090

867

144

946

621

2704

184

2342

1235

740

1391

1121

PVD

1464

802

BWI

DFW

LAX

ORD

MIA

SFO

BOS

JFK

∞

∞

∞
∞

0

∞

∞

∞

∞

1464

621

740

1391

1121

946

184

2704

2342

1235

802

337

1846

187

849 PVD

1258

1090

867

144

DFW

JFK

MIA

ORD

BWI

LAX

BOS

SFO

∞

946

621

184

0

∞

∞

∞

∞

(a) (b)

Figure 14.15: An example execution of Dijkstra’s shortest-path algorithm on a

weighted graph. The start vertex is BWI. A box next to each vertex v stores the

label D[v]. The edges of the shortest-path tree are drawn as thick arrows, and for

each vertex u outside the “cloud” we show the current best edge for pulling in u

with a thick line. (Continues in Figure 14.16.)

14.6. Shortest Paths 655

337

1846

187

946

184

2704

2342

PVD

1235

802

849

1258

1090

867

144

621

740

1391

1121

1464

DFW

LAX

ORD

MIA

SFO

BOS

JFK

BWI

946

1575

184

621

∞

0

371

328

∞

802

337

1846

144

946

184

2704

2342

1235

187

849

1258

1090

867

621

740

1391

1121

1464

PVD

DFW

LAX

ORD

MIA

SFO

BOS

JFK

BWI

946

1575

184

621

∞

0

371

328

∞

(c) (d)

144

946

184

2704

2342

1235

802

337

1846

187

849

1258

1090

867

621

740

1391

1121

PVD

1464

DFW

LAX

ORD

MIA

SFO

BOS

JFK

BWI

∞

328

3075

946

371

1575

184

0

621

144

PVD

1464

1121

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

946

SFO

LAX

ORD

MIA

BOS

JFK

BWI

DFW

0

621
328

1423

371

2467

∞

184

946

(e) (f)

2342

1235

802

337

1846

187

849

1258

1090

867

621

PVD

740

1391

1121

1464

144

946

2704

184

DFW

LAX

ORD

BOS

JFK

BWI
SFO

MIA

946

371

2467

621

1423

3288

0

328

184

802

337

1846

187

849

1258

1090

867

621

PVD

740

1391

1121

144

946

1464

184

2704

1235

2342

LAX

ORD

BOS

JFK

BWI
SFO

MIA

DFW

946

371

1423

621

2467

2658

0

328

184

(g) (h)

Figure 14.16: An example execution of Dijkstra’s shortest-path algorithm on a

weighted graph. (Continued from Figure 14.15; continues in Figure 14.17.)

656 Chapter 14. Graph Algorithms

2342

1235

802

337

1846

187

849

1258

1090

867

621

PVD

740

1391

1121

144

946

1464

184

2704

LAX

ORD

BOS

JFK

BWI

MIA

DFW

SFO

946

371

2658

621

1423

2467

0

328

184

802

337

1846

187

849

1258

1090

867

621

PVD

740

1391

1121

144

946

1464

184

2704

2342

1235

ORD

BOS

JFK

BWI

MIA

DFW

SFO

LAX

946

371

2467

621

1423

2658

0

328

184

(i) (j)

Figure 14.17: An example execution of Dijkstra’s shortest-path algorithm on a

weighted graph. (Continued from Figure 14.16.)

Why It Works

The interesting aspect of the Dijkstra algorithm is that, at the moment a vertex u

is pulled into C, its label D[u] stores the correct length of a shortest path from v

to u. Thus, when the algorithm terminates, it will have computed the shortest-path

distance from s to every vertex of G. That is, it will have solved the single-source

shortest-path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds the

shortest path from the start vertex s to each other vertex u in the graph. Why is it

that the distance from s to u is equal to the value of the label D[u] at the time vertex

u is removed from the priority queue Q and added to the cloud C? The answer

to this question depends on there being no negative-weight edges in the graph, for

it allows the greedy method to work correctly, as we show in the proposition that

follows.

Proposition 14.23: In Dijkstra’s algorithm, whenever a vertex v is pulled into the

cloud, the label D[v] is equal to d(s,v), the length of a shortest path from s to v.

Justification: Suppose that D[v] > d(s,v) for some vertex v in V , and let z

be the first vertex the algorithm pulled into the cloud C (that is, removed from

Q) such that D[z] > d(s,z). There is a shortest path P from s to z (for otherwise

d(s,z) =∞ = D[z]). Let us therefore consider the moment when z is pulled into

C, and let y be the first vertex of P (when going from s to z) that is not in C at this

moment. Let x be the predecessor of y in path P (note that we could have x = s).

(See Figure 14.18.) We know, by our choice of y, that x is already in C at this point.

14.6. Shortest Paths 657

the first “wrong” vertex picked

z picked implies
that D[z]≤ D[y]

P

D[z]> d(s,z)

C

D[y] = d(s,y)
y

z

s

x

D[x] = d(s,x)

Figure 14.18: A schematic illustration for the justification of Proposition 14.23.

Moreover, D[x] = d(s,x), since z is the first incorrect vertex. When x was pulled

into C, we tested (and possibly updated) D[y] so that we had at that point

D[y]≤ D[x]+w(x,y) = d(s,x)+w(x,y).

But since y is the next vertex on the shortest path from s to z, this implies that

D[y] = d(s,y).

But we are now at the moment when we are picking z, not y, to join C; hence,

D[z]≤D[y].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,

since y is on the shortest path from s to z,

d(s,y)+d(y,z) = d(s,z).

Moreover, d(y,z)≥ 0 because there are no negative-weight edges. Therefore,

D[z]≤D[y] = d(s,y) ≤ d(s,y)+d(y,z) = d(s,z).

But this contradicts the definition of z; hence, there can be no such vertex z.

The Running Time of Dijkstra’s Algorithm

In this section, we analyze the time complexity of Dijkstra’s algorithm. We denote

with n and m the number of vertices and edges of the input graph G, respectively.

We assume that the edge weights can be added and compared in constant time.

Because of the high level of the description we gave for Dijkstra’s algorithm in

Code Fragment 14.12, analyzing its running time requires that we give more details

on its implementation. Specifically, we should indicate the data structures used and

how they are implemented.

658 Chapter 14. Graph Algorithms

Let us first assume that we are representing the graph G using an adjacency

list or adjacency map structure. This data structure allows us to step through the

vertices adjacent to u during the relaxation step in time proportional to their number.

Therefore, the time spent in the management of the nested for loop, and the number

of iterations of that loop, is

∑
u in VG

outdeg(u),

which is O(m) by Proposition 14.9. The outer while loop executes O(n) times,

since a new vertex is added to the cloud during each iteration. This still does not

settle all the details for the algorithm analysis, however, for we must say more about

how to implement the other principal data structure in the algorithm—the priority

queue Q.

Referring back to Code Fragment 14.12 in search of priority queue operations,

we find that n vertices are originally inserted into the priority queue; since these are

the only insertions, the maximum size of the queue is n. In each of n iterations of

the while loop, a call to removeMin is made to extract the vertex u with smallest

D label from Q. Then, for each neighbor v of u, we perform an edge relaxation,

and may potentially update the key of v in the queue. Thus, we actually need an

implementation of an adaptable priority queue (Section 9.5), in which case the

key of a vertex v is changed using the method replaceKey(e, k), where e is the

priority queue entry associated with vertex v. In the worst case, there could be one

such update for each edge of the graph. Overall, the running time of Dijkstra’s

algorithm is bounded by the sum of the following:

• n insertions into Q.

• n calls to the removeMin method on Q.

• m calls to the replaceKey method on Q.

If Q is an adaptable priority queue implemented as a heap, then each of the

above operations run in O(logn), and so the overall running time for Dijkstra’s

algorithm is O((n+m) logn). Note that if we wish to express the running time as a

function of n only, then it is O(n2 log n) in the worst case.

Let us now consider an alternative implementation for the adaptable priority

queue Q using an unsorted sequence. (See Exercise P-9.52.) This, of course, re-

quires that we spend O(n) time to extract the minimum element, but it affords

very fast key updates, provided Q supports location-aware entries (Section 9.5.1).

Specifically, we can implement each key update done in a relaxation step in O(1)
time—we simply change the key value once we locate the entry in Q to update.

Hence, this implementation results in a running time that is O(n2 +m), which can

be simplified to O(n2) since G is simple.

14.6. Shortest Paths 659

Comparing the Two Implementations

We have two choices for implementing the adaptable priority queue with location-

aware entries in Dijkstra’s algorithm: a heap implementation, which yields a run-

ning time of O((n+m) logn), and an unsorted sequence implementation, which

yields a running time of O(n2). Since both implementations would be fairly simple

to code, they are about equal in terms of the programming sophistication needed.

These two implementations are also about equal in terms of the constant factors in

their worst-case running times. Looking only at these worst-case times, we prefer

the heap implementation when the number of edges in the graph is small (that is,

when m < n2/ log n), and we prefer the sequence implementation when the number

of edges is large (that is, when m > n2/ log n).

Proposition 14.24: Given a weighted graph G with n vertices and m edges, such

that the weight of each edge is nonnegative, and a vertex s of G, Dijkstra’s algorithm

can compute the distance from s to all other vertices of G in the better of O(n2) or

O((n+m) logn) time.

We note that an advanced priority queue implementation, known as a Fibonacci

heap, can be used to implement Dijkstra’s algorithm in O(m+n logn) time.

Programming Dijkstra’s Algorithm in Java

Having given a pseudocode description of Dijkstra’s algorithm, let us now present

Java code for performing Dijkstra’s algorithm, assuming we are given a graph

whose edge elements are nonnegative integer weights. Our implementation of the

algorithm is in the form of a method, shortestPathLengths, that takes a graph and

a designated source vertex as parameters. (See Code Fragment 14.13.) It returns

a map, named cloud, storing the shortest-path distance d(s,v) for each vertex v

that is reachable from the source. We rely on our HeapAdaptablePriorityQueue
developed in Section 9.5.2 as an adaptable priority queue.

As we have done with other algorithms in this chapter, we rely on hash-based

maps to store auxiliary data (in this case, mapping v to its distance bound D[v] and

its adaptable priority queue entry). The expected O(1)-time access to elements of

these dictionaries could be converted to worst-case bounds, either by numbering

vertices from 0 to n−1 to use as indices into an array, or by storing the information

within each vertex’s element.

The pseudocode for Dijkstra’s algorithm begins by assigning D[v] =∞ for each

v other than the source; we rely on the special value Integer.MAX VALUE in Java to

provide a sufficient numeric value to model infinity. However, we avoid including

vertices with this “infinite” distance in the resulting cloud that is returned by the

method. The use of this numeric limit could be avoided altogether by waiting to

add a vertex to the priority queue until after an edge that reaches it is relaxed. (See

Exercise C-14.62.)

660 Chapter 14. Graph Algorithms

1 /∗∗ Computes shortest-path distances from src vertex to all reachable vertices of g. ∗/
2 public static <V> Map<Vertex<V>, Integer>
3 shortestPathLengths(Graph<V,Integer> g, Vertex<V> src) {
4 // d.get(v) is upper bound on distance from src to v
5 Map<Vertex<V>, Integer> d = new ProbeHashMap<>();
6 // map reachable v to its d value
7 Map<Vertex<V>, Integer> cloud = new ProbeHashMap<>();
8 // pq will have vertices as elements, with d.get(v) as key
9 AdaptablePriorityQueue<Integer, Vertex<V>> pq;

10 pq = new HeapAdaptablePriorityQueue<>();
11 // maps from vertex to its pq locator
12 Map<Vertex<V>, Entry<Integer,Vertex<V>>> pqTokens;
13 pqTokens = new ProbeHashMap<>();
14

15 // for each vertex v of the graph, add an entry to the priority queue, with
16 // the source having distance 0 and all others having infinite distance
17 for (Vertex<V> v : g.vertices()) {
18 if (v == src)
19 d.put(v,0);
20 else
21 d.put(v, Integer.MAX VALUE);
22 pqTokens.put(v, pq.insert(d.get(v), v)); // save entry for future updates
23 }
24 // now begin adding reachable vertices to the cloud
25 while (!pq.isEmpty()) {
26 Entry<Integer, Vertex<V>> entry = pq.removeMin();
27 int key = entry.getKey();
28 Vertex<V> u = entry.getValue();
29 cloud.put(u, key); // this is actual distance to u
30 pqTokens.remove(u); // u is no longer in pq
31 for (Edge<Integer> e : g.outgoingEdges(u)) {
32 Vertex<V> v = g.opposite(u,e);
33 if (cloud.get(v) == null) {
34 // perform relaxation step on edge (u,v)
35 int wgt = e.getElement();
36 if (d.get(u) + wgt < d.get(v)) { // better path to v?
37 d.put(v, d.get(u) + wgt); // update the distance
38 pq.replaceKey(pqTokens.get(v), d.get(v)); // update the pq entry
39 }
40 }
41 }
42 }
43 return cloud; // this only includes reachable vertices
44 }

Code Fragment 14.13: Java implementation of Dijkstra’s algorithm for computing

the shortest-path distances from a single source. We assume that e.getElement()
for edge e represents the weight of that edge.

14.6. Shortest Paths 661

Reconstructing a Shortest-Path Tree

Our pseudocode description of Dijkstra’s algorithm in Code Fragment 14.12 and

our implementation in Code Fragment 14.13 compute the value D[v], for each ver-

tex v, that is the length of a shortest path from the source vertex s to v. However,

those forms of the algorithm do not explicitly compute the actual paths that achieve

those distances. Fortunately, it is possible to represent shortest paths from source

s to every reachable vertex in a graph using a compact data structure known as a

shortest-path tree. This is possible because if a shortest path from s to v passes

through an intermediate vertex u, it must begin with a shortest path from s to u.

We next demonstrate that a shortest-path tree rooted at source s can be recon-

structed in O(n+m) time, given the D[v] values produced by Dijkstra’s algorithm

using s as the source. As we did when representing the DFS and BFS trees, we

will map each vertex v 6= s to a parent u (possibly, u = s), such that u is the vertex

immediately before v on a shortest path from s to v. If u is the vertex just before v

on a shortest path from s to v, it must be that

D[u]+w(u,v) = D[v].

Conversely, if the above equation is satisfied, then a shortest path from s to u fol-

lowed by the edge (u,v) is a shortest path to v.

Our implementation in Code Fragment 14.14 reconstructs a tree based on this

logic, testing all incoming edges to each vertex v, looking for a (u,v) that satisfies

the key equation. The running time is O(n+m), as we consider each vertex and all

incoming edges to those vertices. (See Proposition 14.9.)

1 /∗∗
2 ∗ Reconstructs a shortest-path tree rooted at vertex s, given distance map d.
3 ∗ The tree is represented as a map from each reachable vertex v (other than s)
4 ∗ to the edge e = (u,v) that is used to reach v from its parent u in the tree.
5 ∗/
6 public static <V> Map<Vertex<V>,Edge<Integer>>
7 spTree(Graph<V,Integer> g, Vertex<V> s, Map<Vertex<V>,Integer> d) {
8 Map<Vertex<V>, Edge<Integer>> tree = new ProbeHashMap<>();
9 for (Vertex<V> v : d.keySet())

10 if (v != s)
11 for (Edge<Integer> e : g.incomingEdges(v)) { // consider INCOMING edges
12 Vertex<V> u = g.opposite(v, e);
13 int wgt = e.getElement();
14 if (d.get(v) == d.get(u) + wgt)
15 tree.put(v, e); // edge is is used to reach v
16 }
17 return tree;
18 }

Code Fragment 14.14: Java method that reconstructs a single-source shortest-path

tree, based on knowledge of the shortest-path distances.

662 Chapter 14. Graph Algorithms

14.7 Minimum Spanning Trees

Suppose we wish to connect all the computers in a new office building using the

least amount of cable. We can model this problem using an undirected, weighted

graph G whose vertices represent the computers, and whose edges represent all

the possible pairs (u,v) of computers, where the weight w(u,v) of edge (u,v) is

equal to the amount of cable needed to connect computer u to computer v. Rather

than computing a shortest-path tree from some particular vertex v, we are interested

instead in finding a tree T that contains all the vertices of G and has the minimum

total weight over all such trees. Algorithms for finding such a tree are the focus of

this section.

Problem Definition

Given an undirected, weighted graph G, we are interested in finding a tree T that

contains all the vertices in G and minimizes the sum

w(T) = ∑
(u,v) in T

w(u,v).

A tree, such as this, that contains every vertex of a connected graph G is said to

be a spanning tree, and the problem of computing a spanning tree T with smallest

total weight is known as the minimum spanning tree (or MST) problem.

The development of efficient algorithms for the minimum spanning tree prob-

lem predates the modern notion of computer science itself. In this section, we

discuss two classic algorithms for solving the MST problem. These algorithms

are both applications of the greedy method, which, as was discussed briefly in the

previous section, is based on choosing objects to join a growing collection by it-

eratively picking an object that minimizes some cost function. The first algorithm

we discuss is the Prim-Jarńık algorithm, which grows the MST from a single root

vertex, much in the same way as Dijkstra’s shortest-path algorithm. The second

algorithm we discuss is Kruskal’s algorithm, which “grows” the MST in clusters

by considering edges in nondecreasing order of their weights.

In order to simplify the description of the algorithms, we assume, in the follow-

ing, that the input graph G is undirected (that is, all its edges are undirected) and

simple (that is, it has no self-loops and no parallel edges). Hence, we denote the

edges of G as unordered vertex pairs (u,v).

Before we discuss the details of these algorithms, however, let us give a crucial

fact about minimum spanning trees that forms the basis of the algorithms.

14.7. Minimum Spanning Trees 663

A Crucial Fact about Minimum Spanning Trees

The two MST algorithms we discuss are based on the greedy method, which in this

case depends crucially on the following fact. (See Figure 14.19.)

V1 V2

e

min-weight
“bridge” edge

e Belongs to a Minimum Spanning Tree

Figure 14.19: An illustration of the crucial fact about minimum spanning trees.

Proposition 14.25: Let G be a weighted connected graph, and let V1 and V2 be a

partition of the vertices of G into two disjoint nonempty sets. Furthermore, let e be

an edge in G with minimum weight from among those with one endpoint in V1 and

the other in V2. There is a minimum spanning tree T that has e as one of its edges.

Justification: Let T be a minimum spanning tree of G. If T does not contain

edge e, the addition of e to T must create a cycle. Therefore, there is some edge

f 6= e of this cycle that has one endpoint in V1 and the other in V2. Moreover, by

the choice of e, w(e) ≤ w(f). If we remove f from T ∪{e}, we obtain a spanning

tree whose total weight is no more than before. Since T was a minimum spanning

tree, this new tree must also be a minimum spanning tree.

In fact, if the weights in G are distinct, then the minimum spanning tree is

unique; we leave the justification of this less crucial fact as an exercise (C-14.64).

In addition, note that Proposition 14.25 remains valid even if the graph G con-

tains negative-weight edges or negative-weight cycles, unlike the algorithms we

presented for shortest paths.

664 Chapter 14. Graph Algorithms

14.7.1 Prim-Jarńık Algorithm

In the Prim-Jarńık algorithm, we grow a minimum spanning tree from a single

cluster starting from some “root” vertex s. The main idea is similar to that of

Dijkstra’s algorithm. We will begin with some vertex s, defining the initial “cloud”

of vertices C. Then, in each iteration, we choose a minimum-weight edge e= (u,v),
connecting a vertex u in the cloud C to a vertex v outside of C. The vertex v is

then brought into the cloud C and the process is repeated until a spanning tree is

formed. Again, the crucial fact about minimum spanning trees comes into play,

for by always choosing the smallest-weight edge joining a vertex inside C to one

outside C, we are assured of always adding a valid edge to the MST.

To efficiently implement this approach, we can take another cue from Dijkstra’s

algorithm. We maintain a label D[v] for each vertex v outside the cloud C, so that

D[v] stores the weight of the minimum observed edge for joining v to the cloud

C. (In Dijkstra’s algorithm, this label measured the full path length from starting

vertex s to v, including an edge (u,v).) These labels serve as keys in a priority

queue used to decide which vertex is next in line to join the cloud. We give the

pseudocode in Code Fragment 14.15.

Algorithm PrimJarnik(G):

Input: An undirected, weighted, connected graph G with n vertices and m edges

Output: A minimum spanning tree T for G

Pick any vertex s of G

D[s] = 0

for each vertex v 6= s do

D[v] = ∞
Initialize T = ∅.
Initialize a priority queue Q with an entry (D[v],v) for each vertex v.

For each vertex v, maintain connect(v) as the edge achieving D[v] (if any).

while Q is not empty do

Let u be the value of the entry returned by Q.removeMin().

Connect vertex u to T using edge connect(e).
for each edge e′ = (u,v) such that v is in Q do

{check if edge (u,v) better connects v to T}
if w(u,v)< D[v] then

D[v] = w(u,v)
connect(v) = e′.

Change the key of vertex v in Q to D[v].
return the tree T

Code Fragment 14.15: The Prim-Jarńık algorithm for the MST problem.

14.7. Minimum Spanning Trees 665

Analyzing the Prim-Jarńık Algorithm

The implementation issues for the Prim-Jarńık algorithm are similar to those for

Dijkstra’s algorithm, relying on an adaptable priority queue Q (Section 9.5.1).

We initially perform n insertions into Q, later perform n extract-min operations,

and may update a total of m priorities as part of the algorithm. Those steps are

the primary contributions to the overall running time. With a heap-based priority

queue, each operation runs in O(logn) time, and the overall time for the algorithm

is O((n+m) logn), which is O(m logn) for a connected graph. Alternatively, we

can achieve O(n2) running time by using an unsorted list as a priority queue.

Illustrating the Prim-Jarńık Algorithm

We illustrate the Prim-Jarńık algorithm in Figures 14.20 and 14.21.

187

1391

740

621

867

1090

849

1846

802

1235

2704

184

144

337

2342

1258

946

PVD

1464

1121

JFK

BWI

ORD

MIA

LAX

DFW

SFO

BOS

144

1391

740

621

867

1090

849

1846

802

1235

2704

184

337

2342

1258

946

187

PVD

1464

1121

SFO

BOS

JFK

BWI

ORD

MIA

LAX

DFW

(a) (b)

1090

621

867

849

187

1846

802

1235

2704

184

144

337

2342

1258

946

740

1391

PVD

1464

1121

SFO

BOS

JFK

BWI

ORD

MIA

LAX

DFW

187740

867

1090

849

1846

802

1235

2704

184

144

337

2342

1258

1391

621

946

PVD

1464

1121

SFO

BOS

JFK

BWI

ORD

MIA

LAX

DFW

(c) (d)

Figure 14.20: An illustration of the Prim-Jarńık MST algorithm, starting with vertex

PVD. (Continues in Figure 14.21.)

666 Chapter 14. Graph Algorithms

946

1391

740

867

1090

1258

849

187

1846

802

1235

2704

184

144

337

2342

621

PVD

1464

1121

DFW

BOS

JFK

BWI

ORD

MIA

SFO

LAX

1464

621

867

1090

1258

849

187

1846

802

1235

2704

184

946

144

337

2342

1121

PVD

1391

740

DFW

BOS

JFK

BWI

ORD

MIA

SFO

LAX

(e) (f)

1235

1391

740

621

867

1090

1258

849

187

1846

802

2704

184

946

144

337

2342

PVD

1464

1121
LAX

BOS

JFK

BWI

ORD

MIA

DFW

SFO

1235

1391

740

621

867

1090

1258

849

187

1846

802

2342

2704

184

946

144

337

PVD

1464

1121
LAX

BOS

JFK

BWI

ORD

MIA

DFW

SFO

(g) (h)

337

1391

740

621

867

1090

1258

849

187

1846

802

1235

2342

2704

184

946

144

PVD

1464

1121
LAX

BOS

JFK

BWI

ORD

MIA

DFW

SFO

144

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

946

PVD

1464

1121
LAX

BOS

JFK

BWI

ORD

MIA

DFW

SFO

(i) (j)

Figure 14.21: An illustration of the Prim-Jarńık MST algorithm. (Continued from

Figure 14.20.)

14.7. Minimum Spanning Trees 667

14.7.2 Kruskal’s Algorithm

In this section, we will introduce Kruskal’s algorithm for constructing a minimum

spanning tree. While the Prim-Jarńık algorithm builds the MST by growing a single

tree until it spans the graph, Kruskal’s algorithm maintains many smaller trees in a

forest, repeatedly merging pairs of trees until a single tree spans the graph.

Initially, each vertex is in its own cluster. The algorithm then considers each

edge in turn, ordered by increasing weight. If an edge e connects vertices in two

different clusters, then e is added to the set of edges of the minimum spanning

tree, and the two trees are merged with the addition of e. If, on the other hand, e

connects two vertices in the same cluster, then e is discarded. Once the algorithm

has added enough edges to form a spanning tree, it terminates and outputs this tree

as the minimum spanning tree.

We give pseudocode for Kruskal’s MST algorithm in Code Fragment 14.16 and

we show an example of this algorithm in Figures 14.22, 14.23, and 14.24.

Algorithm Kruskal(G):

Input: A simple connected weighted graph G with n vertices and m edges

Output: A minimum spanning tree T for G

for each vertex v in G do

Define an elementary cluster C(v) = {v}.
Initialize a priority queue Q to contain all edges in G, using the weights as keys.

T = ∅ {T will ultimately contain the edges of an MST}
while T has fewer than n−1 edges do

(u,v) = value returned by Q.removeMin()

Let C(u) be the cluster containing u, and let C(v) be the cluster containing v.

if C(u) 6=C(v) then

Add edge (u,v) to T .

Merge C(u) and C(v) into one cluster.

return tree T

Code Fragment 14.16: Kruskal’s algorithm for the MST problem.

As was the case with the Prim-Jarńık algorithm, the correctness of Kruskal’s al-

gorithm is based upon the crucial fact about minimum spanning trees from Propo-

sition 14.25. Each time Kruskal’s algorithm adds an edge (u,v) to the minimum

spanning tree T , we can define a partitioning of the set of vertices V (as in the

proposition) by letting V1 be the cluster containing v and letting V2 contain the rest

of the vertices in V . This clearly defines a disjoint partitioning of the vertices of

V and, more importantly, since we are extracting edges from Q in order by their

weights, e must be a minimum-weight edge with one vertex in V1 and the other in

V2. Thus, Kruskal’s algorithm always adds a valid minimum spanning tree edge.

668 Chapter 14. Graph Algorithms

144

1391

740

867

1090

1258

849

187

1846

337

802

1235

2342

2704

946

621

184

PVD

1464

1121

BWI

LAX

BOS

JFK

MIA

ORD

SFO

DFW

184

PVD

1391

740

867

1090

1258

849

187

1846

337

802

1235

2342

2704

144

946

621

1464

1121
LAX

JFK

BOS

SFO

MIA

ORD

BWI

DFW

(a) (b)

187

PVD

1391

740

867

1090

1258

849

1846

337

802

1235

2342

2704

184

144

946

621

1464

1121

DFW

LAX

JFK

BOS

MIA

ORD

BWI
SFO

621

PVD

1391

740

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

144

946

1464

1121

MIA

DFW

SFO

LAX

BOS

JFK

BWI

ORD

(c) (d)

621

1391

740

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

144

946

PVD

1464

1121

ORD

MIA

DFW

SFO

LAX

JFK

BOS

BWI

946

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

144

PVD

1464

1121

BOS

BWI

MIA

DFW

SFO

LAX

JFK

ORD

(e) (f)

Figure 14.22: Example of an execution of Kruskal’s MST algorithm on a graph with

integer weights. We show the clusters as shaded regions and we highlight the edge

being considered in each iteration. (Continues in Figure 14.23.)

14.7. Minimum Spanning Trees 669

1235

1391

740

621

867

1090

1258

849

187

1846

337

802

2342

2704

184

144

946

PVD

1464

1121

ORD

BWI

MIA

DFW

SFO

LAX

BOS

JFK

946

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

144

PVD

1464

1121

ORD

BWI

BOS

MIA

DFW

SFO

LAX

JFK

(g) (h)

946

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

144

PVD

1464

1121

ORD

BWI

BOS

MIA

DFW

SFO

LAX

JFK

946

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

144

PVD

1464

1121

BWI

ORD

MIA

DFW

SFO

LAX

BOS

JFK

(i) (j)

144

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

946

PVD

1464

1121

BOS

JFK

BWI

ORD

MIA

DFW

SFO

LAX

144

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

946

PVD

1464

1121

JFK

BWI

BOS

MIA

DFW

SFO

LAX

ORD

(k) (l)

Figure 14.23: An example of an execution of Kruskal’s MST algorithm. Rejected

edges are shown dashed. (Continues in Figure 14.24.)

670 Chapter 14. Graph Algorithms

144

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

946

PVD

1464

1121

BOS

JFK

BWI

ORD

MIA

DFW

SFO

LAX

144

1391

740

621

867

1090

1258

849

187

1846

337

802

1235

2342

2704

184

946

PVD

1464

1121

ORD

JFK

BWI

MIA

DFW

SFO

LAX

BOS

(m) (n)

Figure 14.24: Example of an execution of Kruskal’s MST algorithm (continued).

The edge considered in (n) merges the last two clusters, which concludes this exe-

cution of Kruskal’s algorithm. (Continued from Figure 14.23.)

The Running Time of Kruskal’s Algorithm

There are two primary contributions to the running time of Kruskal’s algorithm.

The first is the need to consider the edges in nondecreasing order of their weights,

and the second is the management of the cluster partition. Analyzing its running

time requires that we give more details on its implementation.

The ordering of edges by weight can be implemented in O(m logm), either by

use of a sorting algorithm or a priority queue Q. If that queue is implemented with a

heap, we can initialize Q in O(m logm) time by repeated insertions, or in O(m) time

using bottom-up heap construction (see Section 9.3.4), and the subsequent calls to

removeMin each run in O(log m) time, since the queue has size O(m). We note that

since m is O(n2) for a simple graph, O(logm) is the same as O(logn). Therefore,

the running time due to the ordering of edges is O(m logn).

The remaining task is the management of clusters. To implement Kruskal’s

algorithm, we must be able to find the clusters for vertices u and v that are endpoints

of an edge e, to test whether those two clusters are distinct, and if so, to merge

those two clusters into one. None of the data structures we have studied thus far

are well suited for this task. However, we conclude this chapter by formalizing the

problem of managing disjoint partitions, and introducing efficient union-find data

structures. In the context of Kruskal’s algorithm, we perform at most 2m “find”

operations and n− 1 “union” operations. We will see that a simple union-find

structure can perform that combination of operations in O(m+ n log n) time (see

Proposition 14.26), and a more advanced structure can support an even faster time.

For a connected graph, m ≥ n− 1; therefore, the bound of O(m logn) time for

ordering the edges dominates the time for managing the clusters. We conclude that

the running time of Kruskal’s algorithm is O(m logn).

14.7. Minimum Spanning Trees 671

Java Implementation

Code Fragment 14.17 presents a Java implementation of Kruskal’s algorithm. The

minimum spanning tree is returned in the form of a list of edges. As a consequence

of Kruskal’s algorithm, those edges will be reported in nondecreasing order of their

weights.

Our implementation assumes use of a Partition class for managing the cluster

partition. An implementation of the Partition class is presented in Section 14.7.3.

1 /∗∗ Computes a minimum spanning tree of graph g using Kruskal's algorithm. ∗/
2 public static <V> PositionalList<Edge<Integer>> MST(Graph<V,Integer> g) {
3 // tree is where we will store result as it is computed
4 PositionalList<Edge<Integer>> tree = new LinkedPositionalList<>();
5 // pq entries are edges of graph, with weights as keys
6 PriorityQueue<Integer, Edge<Integer>> pq = new HeapPriorityQueue<>();
7 // union-find forest of components of the graph
8 Partition<Vertex<V>> forest = new Partition<>();
9 // map each vertex to the forest position

10 Map<Vertex<V>,Position<Vertex<V>>> positions = new ProbeHashMap<>();
11
12 for (Vertex<V> v : g.vertices())
13 positions.put(v, forest.makeGroup(v));
14
15 for (Edge<Integer> e : g.edges())
16 pq.insert(e.getElement(), e);
17

18 int size = g.numVertices();
19 // while tree not spanning and unprocessed edges remain...
20 while (tree.size() != size − 1 && !pq.isEmpty()) {
21 Entry<Integer, Edge<Integer>> entry = pq.removeMin();
22 Edge<Integer> edge = entry.getValue();
23 Vertex<V>[] endpoints = g.endVertices(edge);
24 Position<Vertex<V>> a = forest.find(positions.get(endpoints[0]));
25 Position<Vertex<V>> b = forest.find(positions.get(endpoints[1]));
26 if (a != b) {
27 tree.addLast(edge);
28 forest.union(a,b);
29 }
30 }
31

32 return tree;
33 }

Code Fragment 14.17: Java implementation of Kruskal’s algorithm for the mini-

mum spanning tree problem. The Partition class is discussed in Section 14.7.3.

672 Chapter 14. Graph Algorithms

14.7.3 Disjoint Partitions and Union-Find Structures

In this section, we consider a data structure for managing a partition of elements

into a collection of disjoint sets. Our initial motivation is in support of Kruskal’s

minimum spanning tree algorithm, in which a forest of disjoint trees is maintained,

with occasional merging of neighboring trees. More generally, the disjoint partition

problem can be applied to various models of discrete growth.

We formalize the problem with the following model. A partition data structure

manages a universe of elements that are organized into disjoint sets (that is, an

element belongs to one and only one of these sets). Unlike with the Set ADT, we

do not expect to be able to iterate through the contents of a set, nor to efficiently test

whether a given set includes a given element. To avoid confusion with such notions

of a set, we will refer to the sets of our partition as clusters. However, we will not

require an explicit structure for each cluster, instead allowing the organization of

clusters to be implicit. To differentiate between one cluster and another, we assume

that at any point in time, each cluster has a designated element that we refer to as

the leader of the cluster.

Formally, we define the methods of a partition ADT using positions, each of

which stores an element x. The partition ADT supports the following methods.

makeCluster(x): Creates a singleton cluster containing new element x and

returns its position.

union(p, q): Merges the clusters containing positions p and q.

find(p): Returns the position of the leader of the cluster contain-

ing position p.

Sequence Implementation

A simple implementation of a partition with a total of n elements uses a collection

of sequences, one for each cluster, where the sequence for a cluster A stores element

positions. Each position object stores a reference to its associated element x, and a

reference to the sequence storing p, since this sequence is representing the cluster

containing p’s element. (See Figure 14.25.)

With this representation, we can easily perform the makeCluster(x) and find(p)
operations in O(1) time, allowing the first position in a sequence to serve as the

“leader.” Operation union(p, q) requires that we join two sequences into one and

update the cluster references of the positions in one of the two. We choose to

implement this operation by removing all the positions from the sequence with

smaller size, and inserting them in the sequence with larger size. Each time we

take a position from the smaller cluster A and insert it into the larger cluster B, we

update the cluster reference for that position to now point to B. Hence, the operation

union(p, q) takes time O(min(np,nq)), where np (resp. nq) is the cardinality of the

14.7. Minimum Spanning Trees 673

C

5 11 12 10 8

B

9 3 6 2

A

4 1 7

Figure 14.25: Sequence-based implementation of a partition consisting of three

clusters: A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.

cluster containing position p (resp. q). Clearly, this time is O(n) if there are n

elements in the partition universe. However, we next present an amortized analysis

that shows this implementation to be much better than appears from this worst-case

analysis.

Proposition 14.26: When using the sequence-based partition implementation,

performing a series of k makeCluster, union, and find operations on an initially

empty partition involving at most n elements takes O(k+n log n) time.

Justification: We use the accounting method and assume that one cyber-dollar

can pay for the time to perform a find operation, a makeCluster operation, or the

movement of a position object from one sequence to another in a union operation.

In the case of a find or makeCluster operation, we charge the operation itself 1

cyber-dollar. In the case of a union operation, we assume that 1 cyber-dollar pays

for the constant-time work in comparing the sizes of the two sequences, and that we

charge 1 cyber-dollar to each position that we move from the smaller cluster to the

larger cluster. Clearly, the 1 cyber-dollar charged for each find and makeCluster
operation, together with the first cyber-dollar collected for each union operation,

accounts for a total of k cyber-dollars.

Consider, then, the number of charges made to positions on behalf of union
operations. The important observation is that each time we move a position from

one cluster to another, the size of that position’s cluster at least doubles. Thus,

each position is moved from one cluster to another at most logn times; hence, each

position can be charged at most O(logn) times. Since we assume that the partition

is initially empty, there are O(n) different elements referenced in the given series of

operations, which implies that the total time for moving elements during the union
operations is O(n log n).

674 Chapter 14. Graph Algorithms

A Tree-Based Partition Implementation ⋆
An alternative data structure for representing a partition uses a collection of

trees to store the n elements, where each tree is associated with a different cluster.

In particular, we implement each tree with a linked data structure whose nodes

serve as the position objects. (See Figure 14.26.) We view each position p as

being a node having an instance variable, element, referring to its element x, and

an instance variable, parent, referring to its parent node. By convention, if p is the

root of its tree, we set p’s parent reference to itself.

2

9 11

6 107 34

1

12

5

8

Figure 14.26: Tree-based implementation of a partition consisting of three clusters:

A = {1,4,7}, B = {2,3,6,9}, and C = {5,8,10,11,12}.

With this partition data structure, operation find(p) is performed by walking

up from position p to the root of its tree, which takes O(n) time in the worst case.

Operation union(p, q) can be implemented by making one of the trees a subtree

of the other. This can be done by first locating the two roots, and then in O(1)
additional time by setting the parent reference of one root to point to the other root.

See Figure 14.27 for an example of both operations.

2

10

11

8

5

9

63

12

3

11

8

2

10

5

9

6

12

(a) (b)

Figure 14.27: Tree-based implementation of a partition: (a) operation union(p, q);
(b) operation find(p), where p denotes the position object for element 12.

14.7. Minimum Spanning Trees 675

At first, this implementation may seem to be no better than the sequence-based

data structure, but we add the following two simple heuristics to make it run faster.

Union-by-Size: With each position p, store the number of elements in the subtree

rooted at p. In a union operation, make the root of the smaller cluster become

a child of the other root, and update the size field of the larger root.

Path Compression: In a find operation, for each position q that the find visits,

reset the parent of q to the root. (See Figure 14.28.)

3

11

8

2

10

5

9

6

12

3

12

11

2

10

5

9

6

8

(a) (b)

Figure 14.28: Path-compression heuristic: (a) path traversed by operation find on

element 12; (b) restructured tree.

A surprising property of this data structure, when implemented using the union-

by-size and path-compression heuristics, is that performing a series of k operations

involving n elements takes O(k log∗ n) time, where log∗ n is the log-star function,

which is the inverse of the tower-of-twos function. Intuitively, log∗ n is the number

of times that one can iteratively take the logarithm (base 2) of a number before

getting a number smaller than 2. Table 14.4 shows a few sample values.

minimum n 2 22 = 4 222
= 16 2222

= 65,536 22222

= 265,536

log∗ n 1 2 3 4 5

Table 14.4: Some values of log∗ n and critical values for its inverse.

Proposition 14.27: When using the tree-based partition representation with both

union-by-size and path compression, performing a series of k makeCluster, union,

and find operations on an initially empty partition involving at most n elements

takes O(k log∗ n) time.

Although the analysis for this data structure is rather complex, its implemen-

tation is quite straightforward. We conclude with a Java implementation of the

structure, given in Code Fragment 14.18.

676 Chapter 14. Graph Algorithms

1 /∗∗ A Union-Find structure for maintaining disjoint sets. ∗/
2 public class Partition<E> {
3 //--------------- nested Locator class -------------
4 private class Locator<E> implements Position<E> {
5 public E element;
6 public int size;
7 public Locator<E> parent;
8 public Locator(E elem) {
9 element = elem;

10 size = 1;
11 parent = this; // convention for a cluster leader
12 }
13 public E getElement() { return element; }
14 } //--------- end of nested Locator class ---------
15 /∗∗ Makes a new cluster containing element e and returns its position. ∗/
16 public Position<E> makeCluster(E e) {
17 return new Locator<E>(e);
18 }
19 /∗∗
20 ∗ Finds the cluster containing the element identified by Position p
21 ∗ and returns the Position of the cluster's leader.
22 ∗/
23 public Position<E> find(Position<E> p) {
24 Locator<E> loc = validate(p);
25 if (loc.parent != loc)
26 loc.parent = (Locator<E>) find(loc.parent); // overwrite parent after recursion
27 return loc.parent;
28 }
29 /∗∗ Merges the clusters containing elements with positions p and q (if distinct). ∗/
30 public void union(Position<E> p, Position<E> q) {
31 Locator<E> a = (Locator<E>) find(p);
32 Locator<E> b = (Locator<E>) find(q);
33 if (a != b)
34 if (a.size > b.size) {
35 b.parent = a;
36 a.size += b.size;
37 } else {
38 a.parent = b;
39 b.size += a.size;
40 }
41 }
42 }

Code Fragment 14.18: Java implementation of a Partition class using union-by-size

and path compression. We omit the validate method due to space limitation.

14.8. Exercises 677

14.8 Exercises

Reinforcement

R-14.1 Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3 connected

components.

R-14.2 If G is a simple undirected graph with 12 vertices and 3 connected components,

what is the largest number of edges it might have?

R-14.3 Draw an adjacency matrix representation of the undirected graph shown in Fig-
ure 14.1.

R-14.4 Draw an adjacency list representation of the undirected graph shown in Fig-
ure 14.1.

R-14.5 Draw a simple, connected, directed graph with 8 vertices and 16 edges such that

the in-degree and out-degree of each vertex is 2. Show that there is a single
(nonsimple) cycle that includes all the edges of your graph, that is, you can trace

all the edges in their respective directions without ever lifting your pencil. (Such

a cycle is called an Euler tour.)

R-14.6 Suppose we represent a graph G having n vertices and m edges with the edge list

structure. Why, in this case, does the insertVertex method run in O(1) time while

the removeVertex method runs in O(m) time?

R-14.7 Give pseudocode for performing the operation insertEdge(u, v, x) in O(1) time

using the adjacency matrix representation.

R-14.8 Repeat Exercise R-14.7 for the adjacency list representation, as described in the
chapter.

R-14.9 Can edge list E be omitted from the adjacency matrix representation while still
achieving the time bounds given in Table 14.1? Why or why not?

R-14.10 Can edge list E be omitted from the adjacency list representation while still

achieving the time bounds given in Table 14.3? Why or why not?

R-14.11 Would you use the adjacency matrix structure or the adjacency list structure in

each of the following cases? Justify your choice.

a. The graph has 10,000 vertices and 20,000 edges, and it is important to use

as little space as possible.

b. The graph has 10,000 vertices and 20,000,000 edges, and it is important to
use as little space as possible.

c. You need to answer the query getEdge(u, v) as fast as possible, no matter

how much space you use.

R-14.12 In order to verify that all of its nontree edges are back edges, redraw the graph

from Figure 14.8b so that the DFS tree edges are drawn with solid lines and

oriented downward, as in a standard portrayal of a tree, and with all nontree
edges drawn using dashed lines.

678 Chapter 14. Graph Algorithms

R-14.13 Explain why the DFS traversal runs in O(n2) time on an n-vertex simple graph
that is represented with the adjacency matrix structure.

R-14.14 A simple undirected graph is complete if it contains an edge between every pair
of distinct vertices. What does a depth-first search tree of a complete graph look

like?

R-14.15 Recalling the definition of a complete graph from Exercise R-14.14, what does a

breadth-first search tree of a complete graph look like?

R-14.16 Let G be an undirected graph whose vertices are the integers 1 through 8, and let

the adjacent vertices of each vertex be given by the table below:

vertex adjacent vertices
1 (2, 3, 4)

2 (1, 3, 4)

3 (1, 2, 4)
4 (1, 2, 3, 6)

5 (6, 7, 8)

6 (4, 5, 7)
7 (5, 6, 8)

8 (5, 7)

Assume that, in a traversal of G, the adjacent vertices of a given vertex are re-

turned in the same order as they are listed in the table above.

a. Draw G.

b. Give the sequence of vertices of G visited using a DFS traversal starting at
vertex 1.

c. Give the sequence of vertices visited using a BFS traversal starting at ver-

tex 1.

R-14.17 Bob loves foreign languages and wants to plan his course schedule for the fol-

lowing years. He is interested in the following nine language courses: LA15,
LA16, LA22, LA31, LA32, LA126, LA127, LA141, and LA169. The course

prerequisites are:

• LA15: (none)

• LA16: LA15

• LA22: (none)
• LA31: LA15

• LA32: LA16, LA31

• LA126: LA22, LA32
• LA127: LA16

• LA141: LA22, LA16
• LA169: LA32

In what order can Bob take these courses, respecting the prerequisites?

R-14.18 Compute a topological ordering for the directed graph drawn with solid edges in

Figure 14.3d.

R-14.19 Draw the transitive closure of the directed graph shown in Figure 14.2.

14.8. Exercises 679

R-14.20 If the vertices of the graph from Figure 14.11 are ordered as (JFK, LAZ, MIA,
BOS, ORD, SFO, DFW), in what order would edges be added to the transitive

closure during the Floyd-Warshall algorithm?

R-14.21 How many edges are in the transitive closure of a graph that consists of a simple

directed path of n vertices?

R-14.22 Given an n-node complete binary tree T , rooted at a given position, consider a

directed graph ~G having the nodes of T as its vertices. For each parent-child
pair in T , create a directed edge in ~G from the parent to the child. Show that the

transitive closure of ~G has O(n logn) edges.

R-14.23 Draw a simple, connected, weighted graph with 8 vertices and 16 edges, each

with unique edge weights. Identify one vertex as a “start” vertex and illustrate a

running of Dijkstra’s algorithm on this graph.

R-14.24 Show how to modify the pseudocode for Dijkstra’s algorithm for the case when

the graph is directed and we want to compute shortest directed paths from the
source vertex to all the other vertices.

R-14.25 Draw a simple, connected, undirected, weighted graph with 8 vertices and 16

edges, each with unique edge weights. Illustrate the execution of the Prim-Jarńık
algorithm for computing the minimum spanning tree of this graph.

R-14.26 Repeat the previous problem for Kruskal’s algorithm.

R-14.27 There are eight small islands in a lake, and the state wants to build seven bridges

to connect them so that each island can be reached from any other one via one or

more bridges. The cost of constructing a bridge is proportional to its length. The
distances between pairs of islands are given in the following table.

1 2 3 4 5 6 7 8

1 - 240 210 340 280 200 345 120
2 - - 265 175 215 180 185 155

3 - - - 260 115 350 435 195

4 - - - - 160 330 295 230
5 - - - - - 360 400 170

6 - - - - - - 175 205
7 - - - - - - - 305

8 - - - - - - - -
Find which bridges to build to minimize the total construction cost.

R-14.28 Describe the meaning of the graphical conventions used in Figure 14.9 illustrat-

ing a DFS traversal. What do the line thicknesses signify? What do the arrows
signify? How about dashed lines?

R-14.29 Repeat Exercise R-14.28 for Figure 14.8 that illustrates a directed DFS traver-

sal.

R-14.30 Repeat Exercise R-14.28 for Figure 14.10 that illustrates a BFS traversal.

R-14.31 Repeat Exercise R-14.28 for Figure 14.11 illustrating the Floyd-Warshall algo-
rithm.

680 Chapter 14. Graph Algorithms

R-14.32 Repeat Exercise R-14.28 for Figure 14.13 that illustrates the topological sorting
algorithm.

R-14.33 Repeat Exercise R-14.28 for Figures 14.15 and 14.16 illustrating Dijkstra’s algo-
rithm.

R-14.34 Repeat Exercise R-14.28 for Figures 14.20 and 14.21 that illustrate the Prim-

Jarńık algorithm.

R-14.35 Repeat Exercise R-14.28 for Figures 14.22 through 14.24 that illustrate Kruskal’s

algorithm.

R-14.36 George claims he has a fast way to do path compression in a partition struc-

ture, starting at a position p. He puts p into a list L, and starts following parent

pointers. Each time he encounters a new position, q, he adds q to L and updates
the parent pointer of each node in L to point to q’s parent. Show that George’s

algorithm runs in Ω(h2) time on a path of length h.

Creativity

C-14.37 Give a Java implementation of the removeEdge(e) method for our adjacency map

implementation of Section 14.2.5, making sure your implementation works for
both directed and undirected graphs. Your method should run in O(1) time.

C-14.38 Suppose we wish to represent an n-vertex graph G using the edge list structure,
assuming that we identify the vertices with the integers in the set {0,1, . . . ,n−1}.
Describe how to implement the collection E to support O(logn)-time perfor-

mance for the getEdge(u, v) method. How are you implementing the method in
this case?

C-14.39 Let T be the spanning tree rooted at the start vertex produced by the depth-first

search of a connected, undirected graph G. Argue why every edge of G not in T

goes from a vertex in T to one of its ancestors, that is, it is a back edge.

C-14.40 Our solution to reporting a path from u to v in Code Fragment 14.6 could be made
more efficient in practice if the DFS process ended as soon as v is discovered.

Describe how to modify our code base to implement this optimization.

C-14.41 Let G be an undirected graph with n vertices and m edges. Describe an O(n+m)-
time algorithm for traversing each edge of G exactly once in each direction.

C-14.42 Implement an algorithm that returns a cycle in a directed graph ~G, if one exists.

C-14.43 Write a method, components(G), for undirected graph G, that returns a dictio-

nary mapping each vertex to an integer that serves as an identifier for its con-

nected component. That is, two vertices should be mapped to the same identifier
if and only if they are in the same connected component.

C-14.44 Say that a maze is constructed correctly if there is one path from the start to
the finish, the entire maze is reachable from the start, and there are no loops

around any portions of the maze. Given a maze drawn in an n× n grid, how

can we determine if it is constructed correctly? What is the running time of this
algorithm?

14.8. Exercises 681

C-14.45 Computer networks should avoid single points of failure, that is, network vertices
that can disconnect the network if they fail. We say an undirected, connected

graph G is biconnected if it contains no vertex whose removal would divide G

into two or more connected components. Give an algorithm for adding at most
n edges to a connected graph G, with n ≥ 3 vertices and m ≥ n− 1 edges, to

guarantee that G is biconnected. Your algorithm should run in O(n+m) time.

C-14.46 Explain why all nontree edges are cross edges, with respect to a BFS tree con-
structed for an undirected graph.

C-14.47 Explain why there are no forward nontree edges with respect to a BFS tree con-

structed for a directed graph.

C-14.48 Show that if T is a BFS tree produced for a connected graph G, then, for each
vertex v at level i, the path of T between s and v has i edges, and any other path

of G between s and v has at least i edges.

C-14.49 Justify Proposition 14.16.

C-14.50 Provide an implementation of the BFS algorithm that uses a FIFO queue, rather
than a level-by-level formulation, to manage vertices that have been discovered

until the time when their neighbors are considered.

C-14.51 A graph G is bipartite if its vertices can be partitioned into two sets X and Y

such that every edge in G has one end vertex in X and the other in Y . Design

and analyze an efficient algorithm for determining if an undirected graph G is

bipartite (without knowing the sets X and Y in advance).

C-14.52 An Euler tour of a directed graph ~G with n vertices and m edges is a cycle that

traverses each edge of ~G exactly once according to its direction. Such a tour

always exists if ~G is connected and the in-degree equals the out-degree of each
vertex in ~G. Describe an O(n+m)-time algorithm for finding an Euler tour of

such a directed graph ~G.

C-14.53 A company named RT&T has a network of n switching stations connected by m

high-speed communication links. Each customer’s phone is directly connected to

one station in his or her area. The engineers of RT&T have developed a prototype

video-phone system that allows two customers to see each other during a phone
call. In order to have acceptable image quality, however, the number of links

used to transmit video signals between the two parties cannot exceed 4. Suppose
that RT&T’s network is represented by a graph. Design an efficient algorithm

that computes, for each station, the set of stations it can reach using no more than

4 links.

C-14.54 The time delay of a long-distance call can be determined by multiplying a small
fixed constant by the number of communication links on the telephone network

between the caller and callee. Suppose the telephone network of a company
named RT&T is a tree. The engineers of RT&T want to compute the maximum

possible time delay that may be experienced in a long-distance call. Given a tree

T , the diameter of T is the length of a longest path between two nodes of T . Give
an efficient algorithm for computing the diameter of T .

682 Chapter 14. Graph Algorithms

C-14.55 Tamarindo University and many other schools worldwide are doing a joint project
on multimedia. A computer network is built to connect these schools using com-

munication links that form a tree. The schools decide to install a file server at

one of the schools to share data among all the schools. Since the transmission
time on a link is dominated by the link setup and synchronization, the cost of a

data transfer is proportional to the number of links used. Hence, it is desirable to
choose a “central” location for the file server. Given a tree T and a node v of T ,

the eccentricity of v is the length of a longest path from v to any other node of T .

A node of T with minimum eccentricity is called a center of T .

a. Design an efficient algorithm that, given an n-node tree T , computes a

center of T .

b. Is the center unique? If not, how many distinct centers can a tree have?

C-14.56 Say that an n-vertex directed acyclic graph ~G is compact if there is some way of

numbering the vertices of ~G with the integers from 0 to n−1 such that ~G contains
the edge (i, j) if and only if i < j, for all i, j in [0,n− 1]. Give an O(n2)-time

algorithm for detecting if ~G is compact.

C-14.57 Let ~G be a weighted directed graph with n vertices. Design a variation of Floyd-

Warshall’s algorithm for computing the lengths of the shortest paths from each
vertex to every other vertex in O(n3) time.

C-14.58 Design an efficient algorithm for finding a longest directed path from a vertex

s to a vertex t of an acyclic weighted directed graph ~G. Specify the graph rep-
resentation used and any auxiliary data structures used. Also, analyze the time

complexity of your algorithm.

C-14.59 An independent set of an undirected graph G = (V,E) is a subset I of V such that

no two vertices in I are adjacent. That is, if u and v are in I, then (u,v) is not in E.

A maximal independent set M is an independent set such that, if we were to add
any additional vertex to M, then it would not be independent any more. Every

graph has a maximal independent set. (Can you see this? This question is not
part of the exercise, but it is worth thinking about.) Give an efficient algorithm

that computes a maximal independent set for a graph G. What is this method’s

running time?

C-14.60 Give an example of an n-vertex simple graph G that causes Dijkstra’s algorithm

to run in Ω(n2 logn) time when its implemented with a heap.

C-14.61 Give an example of a weighted directed graph ~G with negative-weight edges, but

no negative-weight cycle, such that Dijkstra’s algorithm incorrectly computes the
shortest-path distances from some start vertex s.

C-14.62 Our implementation of shortestPathLengths in Code Fragment 14.13 relies on
use of “infinity” as a numeric value, to represent the distance bound for vertices

that are not (yet) known to be reachable from the source. Reimplement that

method without such a sentinel, so that vertices, other than the source, are not
added to the priority queue until it is evident that they are reachable.

14.8. Exercises 683

C-14.63 Consider the following greedy strategy for finding a shortest path from vertex
start to vertex goal in a given connected graph.

1: Initialize path to start.

2: Initialize set visited to {start}.
3: If start=goal, return path and exit. Otherwise, continue.

4: Find the edge (start,v) of minimum weight such that v is adjacent to start

and v is not in visited.

5: Add v to path.

6: Add v to visited.

7: Set start equal to v and go to step 3.

Does this greedy strategy always find a shortest path from start to goal? Either

explain intuitively why it works, or give a counterexample.

C-14.64 Show that if all the weights in a connected weighted graph G are distinct, then

there is exactly one minimum spanning tree for G.

C-14.65 An old MST method, called Barůvka’s algorithm, works as follows on a graph

G having n vertices and m edges with distinct weights:

Let T be a subgraph of G initially containing just the vertices in V .
while T has fewer than n−1 edges do

for each connected component Ci of T do

Find the lowest-weight edge (u,v) in E with u in Ci and v not in Ci.
Add (u,v) to T (unless it is already in T).

return T

Prove that this algorithm is correct and that it runs in O(m logn) time.

C-14.66 Let G be a graph with n vertices and m edges such that all the edge weights

in G are integers in the range [1,n]. Give an algorithm for finding a minimum

spanning tree for G in O(m log∗ n) time.

C-14.67 Consider a diagram of a telephone network, which is a graph G whose vertices
represent switching centers, and whose edges represent communication lines

joining pairs of centers. Edges are marked by their bandwidth, and the band-

width of a path is equal to the lowest bandwidth among the path’s edges. Give an
algorithm that, given a network and two switching centers a and b, outputs the

maximum bandwidth of a path between a and b.

C-14.68 NASA wants to link n stations spread over the country using communication

channels. Each pair of stations has a different bandwidth available, which is

known a priori. NASA wants to select n−1 channels (the minimum possible) in
such a way that all the stations are linked by the channels and the total bandwidth

(defined as the sum of the individual bandwidths of the channels) is maximum.
Give an efficient algorithm for this problem and determine its worst-case time

complexity. Consider the weighted graph G = (V,E), where V is the set of sta-

tions and E is the set of channels between the stations. Define the weight w(e) of
an edge e in E as the bandwidth of the corresponding channel.

684 Chapter 14. Graph Algorithms

C-14.69 Inside the Castle of Asymptopia there is a maze, and along each corridor of the
maze there is a bag of gold coins. The amount of gold in each bag varies. A noble

knight, named Sir Paul, will be given the opportunity to walk through the maze,

picking up bags of gold. He may enter the maze only through a door marked
“ENTER” and exit through another door marked “EXIT.” While in the maze he

may not retrace his steps. Each corridor of the maze has an arrow painted on the
wall. Sir Paul may only go down the corridor in the direction of the arrow. There

is no way to traverse a “loop” in the maze. Given a map of the maze, including

the amount of gold in each corridor, describe an algorithm to help Sir Paul pick
up the most gold.

C-14.70 Suppose you are given a timetable, which consists of:

• A set A of n airports, and for each airport a in A, a minimum connecting
time c(a).

• A set F of m flights, and the following, for each flight f in F :

◦ Origin airport a1(f) in A
◦ Destination airport a2(f) in A
◦ Departure time t1(f)
◦ Arrival time t2(f)

Describe an efficient algorithm for the flight scheduling problem. In this problem,

we are given airports a and b, and a time t, and we wish to compute a sequence of
flights that allows one to arrive at the earliest possible time in b when departing

from a at or after time t. Minimum connecting times at intermediate airports

must be observed. What is the running time of your algorithm as a function of n

and m?

C-14.71 Suppose we are given a directed graph ~G with n vertices, and let M be the n×n

adjacency matrix corresponding to ~G.

a. Let the product of M with itself (M2) be defined, for 1≤ i, j≤ n, as follows:

M2(i, j) = M(i,1)⊙M(1, j)⊕·· ·⊕M(i,n)⊙M(n, j),

where “⊕” is the boolean or operator and “⊙” is boolean and. Given this
definition, what does M2(i, j) = 1 imply about the vertices i and j? What

if M2(i, j) = 0?

b. Suppose M4 is the product of M2 with itself. What do the entries of M4

signify? How about the entries of M5 = (M4)(M)? In general, what infor-

mation is contained in the matrix Mp?
c. Now suppose that ~G is weighted and assume the following:

1: for 1≤ i≤ n, M(i, i) = 0.
2: for 1≤ i, j ≤ n, M(i, j) = weight(i, j) if (i, j) is in E.

3: for 1≤ i, j ≤ n, M(i, j) =∞ if (i, j) is not in E.

Also, let M2 be defined, for 1≤ i, j ≤ n, as follows:

M2(i, j) = min{M(i,1)+M(1, j), . . . ,M(i,n)+M(n, j)}.

If M2(i, j) = k, what may we conclude about the relationship between ver-
tices i and j?

14.8. Exercises 685

C-14.72 Karen has a new way to do path compression in a tree-based union/find partition
data structure starting at a position p. She puts all the positions that are on the

path from p to the root in a set S. Then she scans through S and sets the parent
pointer of each position in S to its parent’s parent pointer (recall that the parent
pointer of the root points to itself). If this pass changed the value of any position’s

parent pointer, then she repeats this process, and goes on repeating this process
until she makes a scan through S that does not change any position’s parent value.

Show that Karen’s algorithm is correct and analyze its running time for a path of

length h.

Projects

P-14.73 Use an adjacency matrix to implement a class supporting a simplified graph ADT

that does not include update methods. Your class should include a constructor
method that takes two collections—a collection V of vertex elements and a col-

lection E of pairs of vertex elements—and produces the graph G that these two
collections represent.

P-14.74 Implement the simplified graph ADT described in Exercise P-14.73, using the
edge list structure.

P-14.75 Implement the simplified graph ADT described in Exercise P-14.73, using the

adjacency list structure.

P-14.76 Extend the class of Exercise P-14.75 to support the update methods of the graph

ADT.

P-14.77 Design an experimental comparison of repeated DFS traversals versus the Floyd-
Warshall algorithm for computing the transitive closure of a directed graph.

P-14.78 Develop a Java implementation of the Prim-Jarńık algorithm for computing the

minimum spanning tree of a graph.

P-14.79 Perform an experimental comparison of two of the minimum spanning tree algo-

rithms discussed in this chapter (Kruskal and Prim-Jarńık). Develop an extensive
set of experiments to test the running times of these algorithms using randomly

generated graphs.

P-14.80 One way to construct a maze starts with an n× n grid such that each grid cell

is bounded by four unit-length walls. We then remove two boundary unit-length
walls, to represent the start and finish. For each remaining unit-length wall not

on the boundary, we assign a random value and create a graph G, called the dual,
such that each grid cell is a vertex in G and there is an edge joining the vertices
for two cells if and only if the cells share a common wall. The weight of each

edge is the weight of the corresponding wall. We construct the maze by finding
a minimum spanning tree T for G and removing all the walls corresponding to

edges in T . Write a program that uses this algorithm to generate mazes and then

solves them. Minimally, your program should draw the maze and, ideally, it
should visualize the solution as well.

686 Chapter 14. Graph Algorithms

P-14.81 Write a program that builds the routing tables for the nodes in a computer net-
work, based on shortest-path routing, where path distance is measured by hop

count, that is, the number of edges in a path. The input for this problem is the

connectivity information for all the nodes in the network, as in the following
example:

241.12.31.14: 241.12.31.15 241.12.31.18 241.12.31.19

which indicates three network nodes that are connected to 241.12.31.14, that is,

three nodes that are one hop away. The routing table for the node at address A

is a set of pairs (B,C), which indicates that, to route a message from A to B, the
next node to send to (on the shortest path from A to B) is C. Your program should

output the routing table for each node in the network, given an input list of node

connectivity lists, each of which is input in the syntax as shown above, one per
line.

Chapter Notes

The depth-first search method is a part of the “folklore” of computer science, but Hopcroft

and Tarjan [46, 87] are the ones who showed how useful this algorithm is for solving
several different graph problems. Knuth [60] discusses the topological sorting problem.

The simple linear-time algorithm that we describe for determining if a directed graph is
strongly connected is due to Kosaraju. The Floyd-Warshall algorithm appears in a paper

by Floyd [34] and is based upon a theorem of Warshall [94].

The first known minimum spanning tree algorithm is due to Barůvka [9], and was
published in 1926. The Prim-Jarńık algorithm was first published in Czech by Jarńık [51]

in 1930 and in English in 1957 by Prim [79]. Kruskal published his minimum spanning

tree algorithm in 1956 [63]. The reader interested in further study of the history of the
minimum spanning tree problem is referred to the paper by Graham and Hell [41]. The

current asymptotically fastest minimum spanning tree algorithm is a randomized method
of Karger, Klein, and Tarjan [53] that runs in O(m) expected time. Dijkstra [30] published

his single-source, shortest-path algorithm in 1959. The running time for the Prim-Jarńık
algorithm, and also that of Dijkstra’s algorithm, can actually be improved to be O(n logn+
m) by implementing the queue Q with either of two more sophisticated data structures, the

“Fibonacci Heap” [36] or the “Relaxed Heap” [32].

To learn about different algorithms for drawing graphs, please see the book chapter by
Tamassia and Liotta [85] and the book by Di Battista, Eades, Tamassia and Tollis [29]. The

reader interested in further study of graph algorithms is referred to the books by Ahuja,

Magnanti, and Orlin [7], Cormen, Leiserson, Rivest and Stein [25], Mehlhorn [72], and
Tarjan [88], and the book chapter by van Leeuwen [90].

Chapter

15 Memory Management and B-Trees

Contents

15.1 Memory Management . 688

15.1.1 Stacks in the Java Virtual Machine 688

15.1.2 Allocating Space in the Memory Heap 691

15.1.3 Garbage Collection . 693

15.2 Memory Hierarchies and Caching 695

15.2.1 Memory Systems . 695

15.2.2 Caching Strategies . 696

15.3 External Searching and B-Trees 701

15.3.1 (a,b) Trees . 702

15.3.2 B-Trees . 704

15.4 External-Memory Sorting 705

15.4.1 Multiway Merging . 706

15.5 Exercises . 707

688 Chapter 15. Memory Management and B-Trees

15.1 Memory Management

Computer memory is organized into a sequence of words, each of which typically

consists of 4, 8, or 16 bytes (depending on the computer). These memory words

are numbered from 0 to N−1, where N is the number of memory words available

to the computer. The number associated with each memory word is known as its

memory address. Thus, the memory in a computer can be viewed as basically one

giant array of memory words, as portrayed in Figure 15.1.

21
60

21
45

21
46

21
47

21
48

21
49

21
50

21
51

21
52

21
53

21
54

21
55

21
56

21
57

21
58

21
44

21
59

Figure 15.1: Memory addresses.

In order to run programs and store information, the computer’s memory must

be managed so as to determine what data is stored in what memory cells. In this

section, we discuss the basics of memory management, most notably describing the

way in which memory is allocated for various purposes in a Java program, and the

way in which portions of memory are deallocated and reclaimed, when no longer

needed.

15.1.1 Stacks in the Java Virtual Machine

A Java program is typically compiled into a sequence of byte codes that serve

as “machine” instructions for a well-defined model—the Java Virtual Machine

(JVM). The definition of the JVM is at the heart of the definition of the Java lan-

guage itself. By compiling Java code into the JVM byte codes, rather than the

machine language of a specific CPU, a Java program can be run on any computer

that has a program that can emulate the JVM.

Stacks have an important application to the runtime environment of Java pro-

grams. A running Java program (more precisely, a running Java thread) has a pri-

vate stack, called the Java method stack or just Java stack for short, which is used

to keep track of local variables and other important information on methods as they

are invoked during execution. (See Figure 15.2.)

More specifically, during the execution of a Java program, the Java Virtual

Machine (JVM) maintains a stack whose elements are descriptors of the currently

active (that is, nonterminated) invocations of methods. These descriptors are called

frames. A frame for some invocation of method “fool” stores the current values of

the local variables and parameters of method fool, as well as information on method

“cool” that called fool and on what needs to be returned to method “cool”.

15.1. Memory Management 689

Java Program

main() {

cool(i);

int i=5;

}

cool(int j) {

fool(k);

}

14

216

int k=7;

fool:

PC = 320

fool(int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

Figure 15.2: An example of a Java method stack: method fool has just been called

by method cool, which itself was previously called by method main. Note the

values of the program counter, parameters, and local variables stored in the stack

frames. When the invocation of method fool terminates, the invocation of method

cool will resume its execution at instruction 217, which is obtained by incrementing

the value of the program counter stored in the stack frame.

Keeping Track of the Program Counter

The JVM keeps a special variable, called the program counter, to maintain the

address of the statement the JVM is currently executing in the program. When a

method “cool” invokes another method “fool”, the current value of the program

counter is recorded in the frame of the current invocation of cool (so the JVM

will know where to return to when method fool is done). At the top of the Java

stack is the frame of the running method, that is, the method that currently has

control of the execution. The remaining elements of the stack are frames of the

suspended methods, that is, methods that have invoked another method and are

currently waiting for it to return control to them upon its termination. The order of

the elements in the stack corresponds to the chain of invocations of the currently

active methods. When a new method is invoked, a frame for this method is pushed

onto the stack. When it terminates, its frame is popped from the stack and the JVM

resumes the processing of the previously suspended method.

690 Chapter 15. Memory Management and B-Trees

Implementing Recursion

One of the benefits of using a stack to implement method invocation is that it allows

programs to use recursion. That is, it allows a method to call itself, as discussed

in Chapter 5. We implicitly described the concept of the call stack and the use

of frames within our portrayal of recursion traces in that chapter. Interestingly,

early programming languages, such as Cobol and Fortran, did not originally use

call stacks to implement function and procedure calls. But because of the elegance

and efficiency that recursion allows, all modern programming languages, including

the modern versions of classic languages like Cobol and Fortran, utilize a runtime

stack for method and procedure calls.

Each box of a recursion trace corresponds to a frame of the Java method stack.

At any point in time, the contents of the Java method stack corresponds to the chain

of boxes from the initial method invocation to the current one.

To better illustrate how a runtime stack allows recursive methods, we refer

back to the Java implementation of the classic recursive definition of the factorial

function,

n! = n(n−1)(n−2) · · ·1,

with the code originally given in Code Fragment 5.1, and the recursion trace in Fig-

ure 5.1. The first time we call method factorial(n), its stack frame includes a local

variable storing the value n. The method recursively calls itself to compute (n−1)!,
which pushes a new frame on the Java runtime stack. In turn, this recursive invo-

cation calls itself to compute (n−2)!, etc. The chain of recursive invocations, and

thus the runtime stack, only grows up to size n+ 1, with the most deeply nested

call being factorial(0), which returns 1 without any further recursion. The runtime

stack allows several invocations of the factorial method to exist simultaneously.

Each has a frame that stores the value of its parameter n as well as the value to

be returned. When the first recursive call eventually terminates, it returns (n−1)!,
which is then multiplied by n to compute n! for the original call of the factorial
method.

The Operand Stack

Interestingly, there is actually another place where the JVM uses a stack. Arith-

metic expressions, such as ((a+b)∗(c+d))/e, are evaluated by the JVM using an

operand stack. A simple binary operation, such as a+b, is computed by pushing a

on the stack, pushing b on the stack, and then calling an instruction that pops the top

two items from the stack, performs the binary operation on them, and pushes the re-

sult back onto the stack. Likewise, instructions for writing and reading elements to

and from memory involve the use of pop and push methods for the operand stack.

Thus, the JVM uses a stack to evaluate arithmetic expressions in Java.

15.1. Memory Management 691

15.1.2 Allocating Space in the Memory Heap

We have already discussed (in Section 15.1.1) how the Java Virtual Machine allo-

cates a method’s local variables in that method’s frame on the Java runtime stack.

The Java stack is not the only kind of memory available for program data in Java,

however.

Dynamic Memory Allocation

Memory for an object can also be allocated dynamically during a method’s execu-

tion, by having that method utilize the special new operator built into Java. For

example, the following Java statement creates an array of integers whose size is

given by the value of variable k:

int[] items = new int[k];

The size of the array above is known only at runtime. Moreover, the array may

continue to exist even after the method that created it terminates. Thus, the memory

for this array cannot be allocated on the Java stack.

The Memory Heap

Instead of using the Java stack for this object’s memory, Java uses memory from

another area of storage—the memory heap (which should not be confused with

the “heap” data structure presented in Chapter 9). We illustrate this memory area,

together with the other memory areas, in a Java Virtual Machine in Figure 15.3. The

storage available in the memory heap is divided into blocks, which are contiguous

array-like “chunks” of memory that may be of variable or fixed sizes.

To simplify the discussion, let us assume that blocks in the memory heap are

of a fixed size, say, 1,024 bytes, and that one block is big enough for any object

we might want to create. (Efficiently handling the more general case is actually an

interesting research problem.)

Program Code Java Stack Memory HeapFree Memory

fixed size − doesn’t grow grows into higher memory grows into lower memory

Figure 15.3: A schematic view of the layout of memory addresses in the Java Virtual

Machine.

692 Chapter 15. Memory Management and B-Trees

Memory Allocation Algorithms

The Java Virtual Machine definition requires that the memory heap be able to

quickly allocate memory for new objects, but it does not specify the algorithm

that should be used to do this. One popular method is to keep contiguous “holes”

of available free memory in a linked list, called the free list. The links joining these

holes are stored inside the holes themselves, since their memory is not being used.

As memory is allocated and deallocated, the collection of holes in the free lists

changes, with the unused memory being separated into disjoint holes divided by

blocks of used memory. This separation of unused memory into separate holes is

known as fragmentation. The problem is that it becomes more difficult to find large

continuous chunks of memory, when needed, even though an equivalent amount of

memory may be unused (yet fragmented).

Two kinds of fragmentation can occur. Internal fragmentation occurs when a

portion of an allocated memory block is unused. For example, a program may re-

quest an array of size 1000, but only use the first 100 cells of this array. A runtime

environment can not do much to reduce internal fragmentation. External frag-

mentation, on the other hand, occurs when there is a significant amount of unused

memory between several contiguous blocks of allocated memory. Since the run-

time environment has control over where to allocate memory when it is requested

(for example, when the new keyword is used in Java), the runtime environment

should allocate memory in a way to try to reduce external fragmentation.

Several heuristics have been suggested for allocating memory from the heap

so as to minimize external fragmentation. The best-fit algorithm searches the en-

tire free list to find the hole whose size is closest to the amount of memory being

requested. The first-fit algorithm searches from the beginning of the free list for

the first hole that is large enough. The next-fit algorithm is similar, in that it also

searches the free list for the first hole that is large enough, but it begins its search

from where it left off previously, viewing the free list as a circularly linked list

(Section 3.3). The worst-fit algorithm searches the free list to find the largest hole

of available memory, which might be done faster than a search of the entire free list

if this list were maintained as a priority queue (Chapter 9). In each algorithm, the

requested amount of memory is subtracted from the chosen memory hole and the

leftover part of that hole is returned to the free list.

Although it might sound good at first, the best-fit algorithm tends to produce

the worst external fragmentation, since the leftover parts of the chosen holes tend

to be small. The first-fit algorithm is fast, but it tends to produce a lot of external

fragmentation at the front of the free list, which slows down future searches. The

next-fit algorithm spreads fragmentation more evenly throughout the memory heap,

thus keeping search times low. This spreading also makes it more difficult to allo-

cate large blocks, however. The worst-fit algorithm attempts to avoid this problem

by keeping contiguous sections of free memory as large as possible.

15.1. Memory Management 693

15.1.3 Garbage Collection

In some languages, like C and C++, the memory space for objects must be explic-

itly deallocated by the programmer, which is a duty often overlooked by beginning

programmers and is the source of frustrating programming errors even for experi-

enced programmers. The designers of Java instead placed the burden of memory

management entirely on the runtime environment.

As mentioned above, memory for objects is allocated from the memory heap

and the space for the instance variables of a running Java program are placed in its

method stacks, one for each running thread (for the simple programs discussed in

this book there is typically just one running thread). Since instance variables in a

method stack can refer to objects in the memory heap, all the variables and objects

in the method stacks of running threads are called root objects. All those objects

that can be reached by following object references that start from a root object

are called live objects. The live objects are the active objects currently being used

by the running program; these objects should not be deallocated. For example, a

running Java program may store, in a variable, a reference to a sequence S that is

implemented using a doubly linked list. The reference variable to S is a root object,

while the object for S is a live object, as are all the node objects that are referenced

from this object and all the elements that are referenced from these node objects.

From time to time, the Java virtual machine (JVM) may notice that available

space in the memory heap is becoming scarce. At such times, the JVM can elect to

reclaim the space that is being used for objects that are no longer live, and return the

reclaimed memory to the free list. This reclamation process is known as garbage

collection. There are several different algorithms for garbage collection, but one of

the most used is the mark-sweep algorithm.

The Mark-Sweep Algorithm

In the mark-sweep garbage collection algorithm, we associate a “mark” bit with

each object that identifies whether that object is live. When we determine at some

point that garbage collection is needed, we suspend all other activity and clear the

mark bits of all the objects currently allocated in the memory heap. We then trace

through the Java stacks of the currently running threads and we mark all the root

objects in these stacks as “live.” We must then determine all the other live objects—

the ones that are reachable from the root objects.

To do this efficiently, we can perform a depth-first search (see Section 14.3.1)

on the directed graph that is defined by objects referencing other objects. In this

case, each object in the memory heap is viewed as a vertex in a directed graph,

and the reference from one object to another is viewed as a directed edge. By

performing a directed DFS from each root object, we can correctly identify and

mark each live object. This process is known as the “mark” phase.

694 Chapter 15. Memory Management and B-Trees

Once this process has completed, we then scan through the memory heap and

reclaim any space that is being used for an object that has not been marked. At this

time, we can also optionally coalesce all the allocated space in the memory heap

into a single block, thereby eliminating external fragmentation for the time being.

This scanning and reclamation process is known as the “sweep” phase, and when

it completes, we resume running the suspended program. Thus, the mark-sweep

garbage collection algorithm will reclaim unused space in time proportional to the

number of live objects and their references plus the size of the memory heap.

Performing DFS In-Place

The mark-sweep algorithm correctly reclaims unused space in the memory heap,

but there is an important issue we must face during the mark phase. Since we are

reclaiming memory space at a time when available memory is scarce, we must take

care not to use extra space during the garbage collection itself. The trouble is that

the DFS algorithm, in the recursive way we have described it in Section 14.3.1, can

use space proportional to the number of vertices in the graph. In the case of garbage

collection, the vertices in our graph are the objects in the memory heap; hence, we

probably don’t have this much memory to use. So our only alternative is to find a

way to perform DFS in-place rather than recursively.

The main idea for performing DFS in-place is to simulate the recursion stack

using the edges of the graph (which in the case of garbage collection correspond

to object references). When we traverse an edge from a visited vertex v to a new

vertex w, we change the edge (v,w) stored in v’s adjacency list to point back to v’s

parent in the DFS tree. When we return back to v (simulating the return from the

“recursive” call at w), we can now switch the edge we modified to point back to w.

Of course, we need to have some way of identifying which edge we need to change

back. One possibility is to number the references going out of v as 1, 2, and so on,

and store, in addition to the mark bit (which we are using for the “visited” tag in

our DFS), a count identifier that tells us which edges we have modified.

Using a count identifier requires an extra word of storage per object. This

extra word can be avoided in some implementations, however. For example, many

implementations of the Java virtual machine represent an object as a composition

of a reference with a type identifier (which indicates if this object is an Integer
or some other type) and as a reference to the other objects or data fields for this

object. Since the type reference is always supposed to be the first element of the

composition in such implementations, we can use this reference to “mark” the edge

we changed when leaving an object v and going to some object w. We simply swap

the reference at v that refers to the type of v with the reference at v that refers to w.

When we return to v, we can quickly identify the edge (v,w) we changed, because it

will be the first reference in the composition for v, and the position of the reference

to v’s type will tell us the place where this edge belongs in v’s adjacency list.

15.2. Memory Hierarchies and Caching 695

15.2 Memory Hierarchies and Caching

With the increased use of computing in society, software applications must man-

age extremely large data sets. Such applications include the processing of online

financial transactions, the organization and maintenance of databases, and analy-

ses of customers’ purchasing histories and preferences. The amount of data can be

so large that the overall performance of algorithms and data structures sometimes

depends more on the time to access the data than on the speed of the CPU.

15.2.1 Memory Systems

In order to accommodate large data sets, computers have a hierarchy of differ-

ent kinds of memories, which vary in terms of their size and distance from the

CPU. Closest to the CPU are the internal registers that the CPU itself uses. Ac-

cess to such locations is very fast, but there are relatively few such locations. At

the second level in the hierarchy are one or more memory caches. This memory

is considerably larger than the register set of a CPU, but accessing it takes longer.

At the third level in the hierarchy is the internal memory, which is also known as

main memory or core memory. The internal memory is considerably larger than

the cache memory, but also requires more time to access. Another level in the hi-

erarchy is the external memory, which usually consists of disks, CD drives, DVD

drives, and/or tapes. This memory is very large, but it is also very slow. Data stored

through an external network can be viewed as yet another level in this hierarchy,

with even greater storage capacity, but even slower access. Thus, the memory hi-

erarchy for computers can be viewed as consisting of five or more levels, each of

which is larger and slower than the previous level. (See Figure 15.4.) During the

execution of a program, data is routinely copied from one level of the hierarchy to

a neighboring level, and these transfers can become a computational bottleneck.

External Memory

Internal Memory

Caches

Registers

CPU

Bigger

Network Storage Faster

Figure 15.4: The memory hierarchy.

696 Chapter 15. Memory Management and B-Trees

15.2.2 Caching Strategies

The significance of the memory hierarchy on the performance of a program de-

pends greatly upon the size of the problem we are trying to solve and the physical

characteristics of the computer system. Often, the bottleneck occurs between two

levels of the memory hierarchy—the one that can hold all data items and the level

just below that one. For a problem that can fit entirely in main memory, the two

most important levels are the cache memory and the internal memory. Access times

for internal memory can be as much as 10 to 100 times longer than those for cache

memory. It is desirable, therefore, to be able to perform most memory accesses

in cache memory. For a problem that does not fit entirely in main memory, on

the other hand, the two most important levels are the internal memory and the ex-

ternal memory. Here the differences are even more dramatic, for access times for

disks, the usual general-purpose external-memory device, are typically as much as

100,000 to 1,000,000 times longer than those for internal memory.

To put this latter figure into perspective, imagine there is a student in Baltimore

who wants to send a request-for-money message to his parents in Chicago. If the

student sends his parents an email message, it can arrive at their home computer

in about five seconds. Think of this mode of communication as corresponding to

an internal-memory access by a CPU. A mode of communication corresponding to

an external-memory access that is 500,000 times slower would be for the student

to walk to Chicago and deliver his message in person, which would take about a

month if he can average 20 miles per day. Thus, we should make as few accesses

to external memory as possible.

Most algorithms are not designed with the memory hierarchy in mind, in spite

of the great variance between access times for the different levels. Indeed, all of the

algorithm analyses thus far described in this book have assumed that all memory

accesses are equal. This assumption might seem, at first, to be a great oversight—

and one we are only addressing now in the final chapter—but there are good reasons

why it is actually a reasonable assumption to make.

One justification for this assumption is that it is often necessary to assume that

all memory accesses take the same amount of time, since specific device-dependent

information about memory sizes is often hard to come by. In fact, information about

memory size may be difficult to get. For example, a Java program that is designed

to run on many different computer platforms cannot easily be defined in terms of

a specific computer architecture configuration. We can certainly use architecture-

specific information, if we have it (and we will show how to exploit such informa-

tion later in this chapter). But once we have optimized our software for a certain

architecture configuration, our software will no longer be device-independent. For-

tunately, such optimizations are not always necessary, primarily because of the

second justification for the equal-time memory-access assumption.

15.2. Memory Hierarchies and Caching 697

Caching and Blocking

Another justification for the memory-access equality assumption is that operating

system designers have developed general mechanisms that allow most memory

accesses to be fast. These mechanisms are based on two important locality-of-

reference properties that most software possesses:

• Temporal locality: If a program accesses a certain memory location, then

there is increased likelihood that it accesses that same location again in the

near future. For example, it is common to use the value of a counter vari-

able in several different expressions, including one to increment the counter’s

value. In fact, a common adage among computer architects is that a program

spends 90% of its time in 10% of its code.

• Spatial locality: If a program accesses a certain memory location, then there

is increased likelihood that it soon accesses other locations that are near this

one. For example, a program using an array may be likely to access the

locations of this array in a sequential or near-sequential manner.

Computer scientists and engineers have performed extensive software profiling ex-

periments to justify the claim that most software possesses both of these kinds of

locality of reference. For example, a nested for loop used to repeatedly scan through

an array will exhibit both kinds of locality.

Temporal and spatial localities have, in turn, given rise to two fundamental

design choices for multilevel computer memory systems (which are present in the

interface between cache memory and internal memory, and also in the interface

between internal memory and external memory).

The first design choice is called virtual memory. This concept consists of pro-

viding an address space as large as the capacity of the secondary-level memory, and

of transferring data located in the secondary level into the primary level, when they

are addressed. Virtual memory does not limit the programmer to the constraint of

the internal memory size. The concept of bringing data into primary memory is

called caching, and it is motivated by temporal locality. By bringing data into pri-

mary memory, we are hoping that it will be accessed again soon, and we will be

able to respond quickly to all the requests for this data that come in the near future.

The second design choice is motivated by spatial locality. Specifically, if data

stored at a secondary-level memory location ℓ is accessed, then we bring into

primary-level memory a large block of contiguous locations that include the lo-

cation ℓ. (See Figure 15.5.) This concept is known as blocking, and it is motivated

by the expectation that other secondary-level memory locations close to ℓ will soon

be accessed. In the interface between cache memory and internal memory, such

blocks are often called cache lines, and in the interface between internal memory

and external memory, such blocks are often called pages.

698 Chapter 15. Memory Management and B-Trees

A block in the external memory address space

A block on disk

0 1 2 3 ... 1024 ... 2048 ...

Figure 15.5: Blocks in external memory.

When implemented with caching and blocking, virtual memory often allows

us to perceive secondary-level memory as being faster than it really is. There is

still a problem, however. Primary-level memory is much smaller than secondary-

level memory. Moreover, because memory systems use blocking, any program

of substance will likely reach a point where it requests data from secondary-level

memory, but the primary memory is already full of blocks. In order to fulfill the

request and maintain our use of caching and blocking, we must remove some block

from primary memory to make room for a new block from secondary memory in

this case. Deciding which block to evict brings up a number of interesting data

structure and algorithm design issues.

Caching in Web Browsers

For motivation, we will consider a related problem that arises when revisiting in-

formation presented in Web pages. To exploit temporal locality of reference, it is

often advantageous to store copies of Web pages in a cache memory, so these pages

can be quickly retrieved when requested again. This effectively creates a two-level

memory hierarchy, with the cache serving as the smaller, quicker internal memory,

and the network being the external memory. In particular, suppose we have a cache

memory that has m “slots” that can contain Web pages. We assume that a Web page

can be placed in any slot of the cache. This is known as a fully associative cache.

As a browser executes, it requests different Web pages. Each time the browser

requests such a Web page p, the browser determines (using a quick test) if p is

unchanged and currently contained in the cache. If p is contained in the cache,

then the browser satisfies the request using the cached copy. If p is not in the

cache, however, the page for p is requested over the Internet and transferred into

the cache. If one of the m slots in the cache is available, then the browser assigns

p to one of the empty slots. But if all the m cells of the cache are occupied, then

the computer must determine which previously viewed Web page to evict before

bringing in p to take its place. There are, of course, many different policies that can

be used to determine the page to evict.

15.2. Memory Hierarchies and Caching 699

Page Replacement Algorithms

Some of the better-known page replacement policies include the following (see

Figure 15.6):

• First-in, first-out (FIFO): Evict the page that has been in the cache the

longest, that is, the page that was transferred to the cache furthest in the past.

• Least recently used (LRU): Evict the page whose last request occurred fur-

thest in the past.

In addition, we can consider a simple and purely random strategy:

• Random: Choose a page at random to evict from the cache.

Figure 15.6: The Random, FIFO, and LRU page replacement policies.

The Random strategy is one of the easiest policies to implement, for it only

requires a random or pseudorandom number generator. The overhead involved in

implementing this policy is an O(1) additional amount of work per page replace-

ment. Moreover, there is no additional overhead for each page request, other than to

determine whether a page request is in the cache or not. Still, this policy makes no

attempt to take advantage of any temporal locality exhibited by a user’s browsing.

700 Chapter 15. Memory Management and B-Trees

The FIFO strategy is quite simple to implement, as it only requires a queue

Q to store references to the pages in the cache. Pages are enqueued in Q when

they are referenced by a browser, and then are brought into the cache. When a

page needs to be evicted, the computer simply performs a dequeue operation on Q

to determine which page to evict. Thus, this policy also requires O(1) additional

work per page replacement. Also, the FIFO policy incurs no additional overhead

for page requests. Moreover, it tries to take some advantage of temporal locality.

The LRU strategy goes a step further than the FIFO strategy, for the LRU strat-

egy explicitly takes advantage of temporal locality as much as possible, by always

evicting the page that was least-recently used. From a policy point of view, this is

an excellent approach, but it is costly from an implementation point of view. That

is, its way of optimizing temporal and spatial locality is fairly costly. Implement-

ing the LRU strategy requires the use of an adaptable priority queue Q that supports

updating the priority of existing pages. If Q is implemented with a sorted sequence

based on a linked list, then the overhead for each page request and page replace-

ment is O(1). When we insert a page in Q or update its key, the page is assigned

the highest key in Q and is placed at the end of the list, which can also be done

in O(1) time. Even though the LRU strategy has constant-time overhead, using

the implementation above, the constant factors involved, in terms of the additional

time overhead and the extra space for the priority queue Q, make this policy less

attractive from a practical point of view.

Since these different page replacement policies have different trade-offs be-

tween implementation difficulty and the degree to which they seem to take advan-

tage of localities, it is natural for us to ask for some kind of comparative analysis

of these methods to see which one, if any, is the best.

From a worst-case point of view, the FIFO and LRU strategies have fairly

unattractive competitive behavior. For example, suppose we have a cache con-

taining m pages, and consider the FIFO and LRU methods for performing page

replacement for a program that has a loop that repeatedly requests m+ 1 pages in

a cyclic order. Both the FIFO and LRU policies perform badly on such a sequence

of page requests, because they perform a page replacement on every page request.

Thus, from a worst-case point of view, these policies are almost the worst we can

imagine—they require a page replacement on every page request.

This worst-case analysis is a little too pessimistic, however, for it focuses on

each protocol’s behavior for one bad sequence of page requests. An ideal analy-

sis would be to compare these methods over all possible page-request sequences.

Of course, this is impossible to do exhaustively, but there have been a great num-

ber of experimental simulations done on page-request sequences derived from real

programs. Based on these experimental comparisons, the LRU strategy has been

shown to be usually superior to the FIFO strategy, which is usually better than the

Random strategy.

15.3. External Searching and B-Trees 701

15.3 External Searching and B-Trees

Consider the problem of maintaining a large collection of items that does not fit in

main memory, such as a typical database. In this context, we refer to the secondary-

memory blocks as disk blocks. Likewise, we refer to the transfer of a block between

secondary memory and primary memory as a disk transfer. Recalling the great

time difference that exists between main memory accesses and disk accesses, the

main goal of maintaining such a collection in external memory is to minimize the

number of disk transfers needed to perform a query or update. We refer to this

count as the I/O complexity of the algorithm involved.

Some Inefficient External-Memory Representations

A typical operation we would like to support is the search for a key in a map. If we

were to store n items unordered in a doubly linked list, searching for a particular

key within the list requires n transfers in the worst case, since each link hop we

perform on the linked list might access a different block of memory.

We can reduce the number of block transfers by storing the sequence in an

array. A sequential search of an array can be performed using only O(n/B) block

transfers because of spatial locality of reference, where B denotes the number of

elements that fit into a block. This is because the block transfer when accessing

the first element of the array actually retrieves the first B elements, and so on with

each successive block. It is worth noting that the bound of O(n/B) transfers is only

achieved when using an array of primitives in Java. For an array of objects, the

array stores the sequence of references; the actual objects that are referenced are

not necessarily stored near each other in memory, and so there may be n distinct

block transfers in the worst case.

If a sequence is stored in sorted order within an array, a binary search performs

O(log2 n) transfers, which is a nice improvement. But we do not get significant

benefit from block transfers because each query during a binary search is likely in

a different block of the sequence. As usual, update operations are expensive for a

sorted array.

Since these simple implementations are I/O inefficient, we should consider the

logarithmic-time internal-memory strategies that use balanced binary trees (for ex-

ample, AVL trees or red-black trees) or other search structures with logarithmic

average-case query and update times (for example, skip lists or splay trees). Typi-

cally, each node accessed for a query or update in one of these structures will be in

a different block. Thus, these methods all require O(log2 n) transfers in the worst

case to perform a query or update operation. But we can do better! We can perform

map queries and updates using only O(logB n) = O(logn/ log B) transfers.

702 Chapter 15. Memory Management and B-Trees

15.3.1 (a,b) Trees

To reduce the number of external-memory accesses when searching, we can repre-

sent our map using a multiway search tree (Section 11.5.1). This approach gives

rise to a generalization of the (2,4) tree data structure known as the (a,b) tree.

An (a,b) tree is a multiway search tree such that each node has between a and

b children and stores between a−1 and b−1 entries. The algorithms for searching,

inserting, and removing entries in an (a,b) tree are straightforward generalizations

of the corresponding ones for (2,4) trees. The advantage of generalizing (2,4)
trees to (a,b) trees is that a parameterized class of trees provides a flexible search

structure, where the size of the nodes and the running time of the various map

operations depends on the parameters a and b. By setting the parameters a and b

appropriately with respect to the size of disk blocks, we can derive a data structure

that achieves good external-memory performance.

Definition of an (a,b) Tree

An (a,b) tree, where parameters a and b are integers such that 2 ≤ a ≤ (b+1)/2,

is a multiway search tree T with the following additional restrictions:

Size Property: Each internal node has at least a children, unless it is the root, and

has at most b children.

Depth Property: All the external nodes have the same depth.

Proposition 15.1: The height of an (a,b) tree storing n entries is Ω(logn/ log b)
and O(logn/ log a).

Justification: Let T be an (a,b) tree storing n entries, and let h be the height of

T . We justify the proposition by establishing the following bounds on h:

1

logb
log(n+1)≤ h≤ 1

loga
log

n+1

2
+1.

By the size and depth properties, the number n′′ of external nodes of T is at least

2ah−1 and at most bh. By Proposition 11.6, n′′ = n+1. Thus,

2ah−1 ≤ n+1≤ bh.

Taking the logarithm in base 2 of each term, we get

(h−1) log a+1≤ log(n+1)≤ h log b.

An algebraic manipulation of these inequalities completes the justification.

15.3. External Searching and B-Trees 703

Search and Update Operations

We recall that in a multiway search tree T , each node w of T holds a secondary

structure M(w), which is itself a map (Section 11.5.1). If T is an (a,b) tree, then

M(w) stores at most b entries. Let f (b) denote the time for performing a search

in a map, M(w). The search algorithm in an (a,b) tree is exactly like the one for

multiway search trees given in Section 11.5.1. Hence, searching in an (a,b) tree T

with n entries takes O(f (b)
log a

logn) time. Note that if b is considered a constant (and

thus a is also), then the search time is O(logn).

The main application of (a,b) trees is for maps stored in external memory.

Namely, to minimize disk accesses, we select the parameters a and b so that each

tree node occupies a single disk block (so that f (b) = 1 if we wish to simply count

block transfers). Providing the right a and b values in this context gives rise to

a data structure known as the B-tree, which we will describe shortly. Before we

describe this structure, however, let us discuss how insertions and removals are

handled in (a,b) trees.

The insertion algorithm for an (a,b) tree is similar to that for a (2,4) tree.

An overflow occurs when an entry is inserted into a b-node v, which becomes an

illegal (b+ 1)-node. (Recall that a node in a multiway tree is a d-node if it has d

children.) To remedy an overflow, we split node w by moving the median entry of w

into the parent of w and replacing w with a ⌈(b+1)/2⌉-node w′ and a ⌊(b+1)/2⌋-
node w′′. We can now see the reason for requiring a ≤ (b+ 1)/2 in the definition

of an (a,b) tree. Note that as a consequence of the split, we need to build the

secondary structures M(w′) and M(w′′).

Removing an entry from an (a,b) tree is similar to what was done for (2,4)
trees. An underflow occurs when a key is removed from an a-node w, distinct from

the root, which causes w to become an illegal (a−1)-node. To remedy an underflow,

we perform a transfer with a sibling of w that is not an a-node or we perform a

fusion of w with a sibling that is an a-node. The new node w′ resulting from the

fusion is a (2a−1)-node, which is another reason for requiring a≤ (b+1)/2.

Table 15.1 shows the performance of a map realized with an (a,b) tree.

Method Running Time

get O
(

f (b)
log a

logn
)

put O
(

g(b)
log a

logn
)

remove O
(

g(b)
log a

logn
)

Table 15.1: Time bounds for an n-entry map realized by an (a,b) tree T . We assume

the secondary structure of the nodes of T support search in f (b) time, and split and

fusion operations in g(b) time, for some functions f (b) and g(b), which can be

made to be O(1) when we are only counting disk transfers.

704 Chapter 15. Memory Management and B-Trees

15.3.2 B-Trees

A version of the (a,b) tree data structure, which is the best-known method for

maintaining a map in external memory, is called the “B-tree.” (See Figure 15.7.) A

B-tree of order d is an (a,b) tree with a = ⌈d/2⌉ and b = d. Since we discussed

the standard map query and update methods for (a,b) trees above, we restrict our

discussion here to the I/O complexity of B-trees.

7066 989575744543 635929241211 8583 864038 41 5048 51 53 56

3722 5846 8072 93

6542

Figure 15.7: A B-tree of order 6.

An important property of B-trees is that we can choose d so that the d children

references and the d− 1 keys stored at a node can fit compactly into a single disk

block, implying that d is proportional to B. This choice allows us to assume that a

and b are also proportional to B in the analysis of the search and update operations

on (a,b) trees. Thus, f (b) and g(b) are both O(1), for each time we access a node

to perform a search or an update operation, we need only perform a single disk

transfer.

As we have already observed above, each search or update requires that we

examine at most O(1) nodes for each level of the tree. Therefore, any map search

or update operation on a B-tree requires only O(log⌈d/2⌉ n), that is, O(logn/ log B),
disk transfers. For example, an insert operation proceeds down the B-tree to locate

the node in which to insert the new entry. If the node would overflow (to have d+1

children) because of this addition, then this node is split into two nodes that have

⌊(d + 1)/2⌋ and ⌈(d + 1)/2⌉ children, respectively. This process is then repeated

at the next level up, and will continue for at most O(logB n) levels.

Likewise, if a remove operation results in a node underflow (to have ⌈d/2⌉−1

children), then we move references from a sibling node with at least ⌈d/2⌉+ 1

children or we perform a fusion operation of this node with its sibling (and repeat

this computation at the parent). As with the insert operation, this will continue up

the B-tree for at most O(logB n) levels. The requirement that each internal node

have at least ⌈d/2⌉ children implies that each disk block used to support a B-tree is

at least half full. Thus, we have the following:

Proposition 15.2: A B-tree with n entries has I/O complexity O(logB n) for search

or update operation, and uses O(n/B) blocks, where B is the size of a block.

15.4. External-Memory Sorting 705

15.4 External-Memory Sorting

In addition to data structures, such as maps, that need to be implemented in external

memory, there are many algorithms that must also operate on input sets that are too

large to fit entirely into internal memory. In this case, the objective is to solve the

algorithmic problem using as few block transfers as possible. The most classic

domain for such external-memory algorithms is the sorting problem.

Multiway Merge-Sort

An efficient way to sort a set S of n objects in external memory amounts to a sim-

ple external-memory variation on the familiar merge-sort algorithm. The main idea

behind this variation is to merge many recursively sorted lists at a time, thereby

reducing the number of levels of recursion. Specifically, a high-level description

of this multiway merge-sort method is to divide S into d subsets S1, S2, . . ., Sd of

roughly equal size, recursively sort each subset Si, and then simultaneously merge

all d sorted lists into a sorted representation of S. If we can perform the merge pro-

cess using only O(n/B) disk transfers, then, for large enough values of n, the total

number of transfers performed by this algorithm satisfies the following recurrence

equation:

t(n) = d · t(n/d)+ cn/B,

for some constant c ≥ 1. We can stop the recursion when n ≤ B, since we can

perform a single block transfer at this point, getting all of the objects into internal

memory, and then sort the set with an efficient internal-memory algorithm. Thus,

the stopping criterion for t(n) is

t(n) = 1 if n/B ≤ 1.

This implies a closed-form solution that t(n) is O((n/B) logd(n/B)), which is

O((n/B) log(n/B)/ log d).

Thus, if we can choose d to be Θ(M/B), where M is the size of the internal memory,

then the worst-case number of block transfers performed by this multiway merge-

sort algorithm will be quite low. For reasons given in the next section, we choose

d = (M/B)−1.

The only aspect of this algorithm left to specify, then, is how to perform the d-way

merge using only O(n/B) block transfers.

706 Chapter 15. Memory Management and B-Trees

15.4.1 Multiway Merging

In a standard merge-sort (Section 12.1), the merge process combines two sorted

sequences into one by repeatedly taking the smaller of the items at the front of the

two respective lists. In a d-way merge, we repeatedly find the smallest among the

items at the front of the d sequences and place it as the next element of the merged

sequence. We continue until all elements are included.

In the context of an external-memory sorting algorithm, if main memory has

size M and each block has size B, we can store up to M/B blocks within main

memory at any given time. We specifically choose d = (M/B)− 1 so that we can

afford to keep one block from each input sequence in main memory at any given

time, and to have one additional block to use as a buffer for the merged sequence.

(See Figure 15.8.)

Q11

13 16 19 33

44 53 56

60

66 75

72 78 88

25 27 40 43

41 49 50 57

37 46 52 58

35 48 51 59

45 54 654230 39

12 24 26 34

17 18 29

7 8 10

Figure 15.8: A d-way merge with d = 5 and B = 4. Blocks that currently reside in

main memory are shaded.

We maintain the smallest unprocessed element from each input sequence in

main memory, requesting the next block from a sequence when the preceding block

has been exhausted. Similarly, we use one block of internal memory to buffer the

merged sequence, flushing that block to external memory when full. In this way,

the total number of transfers performed during a single d-way merge is O(n/B),
since we scan each block of list Si once, and we write out each block of the merged

list S′ once. In terms of computation time, choosing the smallest of d values can

trivially be performed using O(d) operations. If we are willing to devote O(d)
internal memory, we can maintain a priority queue identifying the smallest element

from each sequence, thereby performing each step of the merge in O(logd) time

by removing the minimum element and replacing it with the next element from the

same sequence. Hence, the internal time for the d-way merge is O(n log d).

Proposition 15.3: Given an array-based sequence S of n elements stored in ex-

ternal memory, we can sort S with O((n/B) log(n/B)/ log(M/B)) block transfers

and O(n log n) internal computations, where M is the size of the internal memory

and B is the size of a block.

15.5. Exercises 707

15.5 Exercises

Reinforcement

R-15.1 Julia just bought a new computer that uses 64-bit integers to address memory
cells. Argue why Julia will never in her life be able to upgrade the main memory

of her computer so that it is the maximum-size possible, assuming that you have

to have distinct atoms to represent different bits.

R-15.2 Consider an initially empty memory cache consisting of four pages. How many

page misses does the LRU algorithm incur on the following page request se-
quence: (2,3,4,1,2,5,1,3,5,4,1,2,3)?

R-15.3 Consider an initially empty memory cache consisting of four pages. How many
page misses does the FIFO algorithm incur on the following page request se-

quence: (2,3,4,1,2,5,1,3,5,4,1,2,3)?

R-15.4 Consider an initially empty memory cache consisting of four pages. What is
the maximum number of page misses that the random algorithm incurs on the

following page request sequence: (2,3,4,1,2,5,1,3,5,4,1,2,3)? Show all of
the random choices the algorithm made in this case.

R-15.5 Describe, in detail, algorithms for adding an item to, or deleting an item from, an

(a,b) tree.

R-15.6 Suppose T is a multiway tree in which each internal node has at least five and at

most eight children. For what values of a and b is T a valid (a,b) tree?

R-15.7 For what values of d is the tree T of the previous exercise an order-d B-tree?

R-15.8 Draw the result of inserting, into an initially empty order-7 B-tree, entries with
keys (4,40,23,50,11,34,62,78,66,22,90,59,25,72,64,77,39,12), in this order.

Creativity

C-15.9 Describe an efficient external-memory algorithm for removing all the duplicate

entries in an array list of size n.

C-15.10 Describe an external-memory data structure to implement the stack ADT so that

the total number of disk transfers needed to process a sequence of k push and
pop operations is O(k/B).

C-15.11 Describe an external-memory data structure to implement the queue ADT so that
the total number of disk transfers needed to process a sequence of k enqueue and

dequeue operations is O(k/B).

C-15.12 Describe an external-memory version of the PositionalList ADT (Section 7.3),

with block size B, such that an iteration of a list of length n is completed using

O(n/B) transfers in the worst case, and all other methods of the ADT require
only O(1) transfers.

708 Chapter 15. Memory Management and B-Trees

C-15.13 Change the rules that define red-black trees so that each red-black tree T has a
corresponding (4,8) tree, and vice versa.

C-15.14 Describe a modified version of the B-tree insertion algorithm so that each time

we create an overflow because of a split of a node w, we redistribute keys among

all of w’s siblings, so that each sibling holds roughly the same number of keys
(possibly cascading the split up to the parent of w). What is the minimum fraction

of each block that will always be filled using this scheme?

C-15.15 Another possible external-memory map implementation is to use a skip list, but to

collect consecutive groups of O(B) nodes, in individual blocks, on any level in the
skip list. In particular, we define an order-d B-skip list to be such a representation

of a skip list structure, where each block contains at least ⌈d/2⌉ list nodes and at

most d list nodes. Let us also choose d in this case to be the maximum number
of list nodes from a level of a skip list that can fit into one block. Describe how

we should modify the skip-list insertion and removal algorithms for a B-skip list
so that the expected height of the structure is O(logn/ logB).

C-15.16 Describe how to use a B-tree to implement the Partition ADT (Section 14.7.3) so
that the union and find operations each use at most O(logn/ logB) disk transfers.

C-15.17 Suppose we are given a sequence S of n elements with integer keys such that

some elements in S are colored “blue” and some elements in S are colored “red.”

In addition, say that a red element e pairs with a blue element f if they have the
same key value. Describe an efficient external-memory algorithm for finding all

the red-blue pairs in S. How many disk transfers does your algorithm perform?

C-15.18 Consider the page caching problem where the memory cache can hold m pages,

and we are given a sequence P of n requests taken from a pool of m+1 possible
pages. Describe the optimal strategy for the offline algorithm and show that it

causes at most m+n/m page misses in total, starting from an empty cache.

C-15.19 Describe an efficient external-memory algorithm that determines whether an ar-

ray of n integers contains a value occurring more than n/2 times.

C-15.20 Consider the page caching strategy based on the least frequently used (LFU)
rule, where the page in the cache that has been accessed the least often is the one

that is evicted when a new page is requested. If there are ties, LFU evicts the

least frequently used page that has been in the cache the longest. Show that there
is a sequence P of n requests that causes LFU to miss Ω(n) times for a cache of

m pages, whereas the optimal algorithm will miss only O(m) times.

C-15.21 Suppose that instead of having the node-search function f (d) = 1 in an order-

d B-tree T , we have f (d) = logd. What does the asymptotic running time of
performing a search in T now become?

Projects

P-15.22 Write a Java class that simulates the best-fit, worst-fit, first-fit, and next-fit algo-

rithms for memory management. Determine experimentally which method is the
best under various sequences of memory requests.

Chapter Notes 709

P-15.23 Write a Java class that implements all the methods of the sorted map ADT by
means of an (a,b) tree, where a and b are integer constants passed as parameters

to a constructor.

P-15.24 Implement the B-tree data structure, assuming a block size of 1024 and integer

keys. Test the number of “disk transfers” needed to process a sequence of map

operations.

Chapter Notes

The reader interested in the study of the architecture of hierarchical memory systems is

referred to the book chapter by Burger et al. [20] or the book by Hennessy and Patter-

son [44]. The mark-sweep garbage collection method we describe is one of many different

algorithms for performing garbage collection. We encourage the reader interested in fur-

ther study of garbage collection to examine the book by Jones and Lins [52]. Knuth [61]

has very nice discussions about external-memory sorting and searching. The handbook

by Gonnet and Baeza-Yates [38] compares the performance of a number of different sort-

ing algorithms, many of which are external-memory algorithms. B-trees were invented by

Bayer and McCreight [11] and Comer [24] provides a very nice overview of this data struc-

ture. The books by Mehlhorn [71] and Samet [81] also have nice discussions about B-trees

and their variants. Aggarwal and Vitter [3] study the I/O complexity of sorting and related

problems, establishing upper and lower bounds. Goodrich et al. [40] study the I/O com-

plexity of several computational geometry problems. The reader interested in further study

of I/O-efficient algorithms is encouraged to examine the survey paper of Vitter [91].

Bibliography

[1] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of Computer Pro-

grams. Cambridge, MA: MIT Press, 2nd ed., 1996.

[2] G. M. Adel’son-Vel’skii and Y. M. Landis, “An algorithm for the organization of information,”

Doklady Akademii Nauk SSSR, vol. 146, pp. 263–266, 1962. English translation in Soviet Math.

Doklady, vol. 3, pp. 1259–1262.

[3] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting and related problems,”

Commun. ACM, vol. 31, pp. 1116–1127, 1988.

[4] A. V. Aho, “Algorithms for finding patterns in strings,” in Handbook of Theoretical Computer

Science (J. van Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 255–300, Amsterdam:

Elsevier, 1990.

[5] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms.

Reading, MA: Addison-Wesley, 1974.

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms. Reading, MA:

Addison-Wesley, 1983.

[7] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Appli-

cations. Englewood Cliffs, NJ: Prentice Hall, 1993.

[8] K. Arnold, J. Gosling, and D. Holmes, The Java Programming Language. The Java Series,

Upper Saddle River, NJ: Prentice Hall, 4th ed., 2006.

[9] O. Barůvka, “O jistem problemu minimalnim,” Praca Moravske Prirodovedecke Spolecnosti,

vol. 3, pp. 37–58, 1926. (in Czech).

[10] R. Bayer, “Symmetric binary B-trees: Data structure and maintenance,” Acta Informatica,

vol. 1, no. 4, pp. 290–306, 1972.

[11] R. Bayer and McCreight, “Organization of large ordered indexes,” Acta Inform., vol. 1, pp. 173–

189, 1972.

[12] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.

[13] J. L. Bentley, “Programming pearls: Writing correct programs,” Communications of the ACM,

vol. 26, pp. 1040–1045, 1983.

[14] J. L. Bentley, “Programming pearls: Thanks, heaps,” Communications of the ACM, vol. 28,

pp. 245–250, 1985.

[15] J. L. Bentley and M. D. McIlroy, “Engineering a sort function,” Software—Practice and Expe-

rience, vol. 23, no. 11, pp. 1249–1265, 1993.

[16] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood City, CA: Ben-

jamin/Cummings, 1994.

[17] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of the ACM,

vol. 20, no. 10, pp. 762–772, 1977.

[18] G. Brassard, “Crusade for a better notation,” SIGACT News, vol. 17, no. 1, pp. 60–64, 1985.

[19] T. Budd, An Introduction to Object-Oriented Programming. Reading, MA: Addison-Wesley,

1991.

[20] D. Burger, J. R. Goodman, and G. S. Sohi, “Memory systems,” in The Computer Science and

Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 18, pp. 447–461, CRC Press, 1997.

Bibliography 711

[21] S. Carlsson, “Average case results on heapsort,” BIT, vol. 27, pp. 2–17, 1987.

[22] K. L. Clarkson, “Linear programming in O(n3d2

) time,” Inform. Process. Lett., vol. 22, pp. 21–

24, 1986.

[23] R. Cole, “Tight bounds on the complexity of the Boyer-Moore pattern matching algorithm,”

SIAM J. Comput., vol. 23, no. 5, pp. 1075–1091, 1994.

[24] D. Comer, “The ubiquitous B-tree,” ACM Comput. Surv., vol. 11, pp. 121–137, 1979.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. Cam-

bridge, MA: MIT Press, 3rd ed., 2009.

[26] M. Crochemore and T. Lecroq, “Pattern matching and text compression algorithms,” in The

Computer Science and Engineering Handbook (A. B. Tucker, Jr., ed.), ch. 8, pp. 162–202, CRC

Press, 1997.

[27] S. Crosby and D. Wallach, “Denial of service via algorithmic complexity attacks,” in Proc. 12th

Usenix Security Symp., pp. 29–44, 2003.

[28] S. A. Demurjian, Sr., “Software design,” in The Computer Science and Engineering Handbook

(A. B. Tucker, Jr., ed.), ch. 108, pp. 2323–2351, CRC Press, 1997.

[29] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing. Upper Saddle River,

NJ: Prentice Hall, 1999.

[30] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik,

vol. 1, pp. 269–271, 1959.

[31] E. W. Dijkstra, “Recursive programming,” Numerische Mathematik, vol. 2, no. 1, pp. 312–318,

1960.

[32] J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan, “Relaxed heaps: An alternative to

Fibonacci heaps with applications to parallel computation,” Commun. ACM, vol. 31, pp. 1343–

1354, 1988.

[33] D. Flanagan, Java in a Nutshell. O’Reilly, 5th ed., 2005.

[34] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM, vol. 5, no. 6, p. 345,

1962.

[35] R. W. Floyd, “Algorithm 245: Treesort 3,” Communications of the ACM, vol. 7, no. 12, p. 701,

1964.

[36] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network opti-

mization algorithms,” J. ACM, vol. 34, pp. 596–615, 1987.

[37] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[38] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures. Addison-

Wesley, 1991.

[39] G. H. Gonnet and J. I. Munro, “Heaps on heaps,” SIAM J. Comput., vol. 15, no. 4, pp. 964–971,

1986.

[40] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, “External-memory computational

geometry,” in Proc. 34th Annu. IEEE Sympos. Found. Comput. Sci., pp. 714–723, 1993.

[41] R. L. Graham and P. Hell, “On the history of the minimum spanning tree problem,” Annals of

the History of Computing, vol. 7, no. 1, pp. 43–57, 1985.

[42] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced trees,” in Proc. 19th

Annu. IEEE Sympos. Found. Comput. Sci., Lecture Notes Comput. Sci., pp. 8–21, Springer-

Verlag, 1978.

[43] Y. Gurevich, “What does O(n) mean?,” SIGACT News, vol. 17, no. 4, pp. 61–63, 1986.

[44] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach. San Francisco:

Morgan Kaufmann, 2nd ed., 1996.

[45] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, pp. 10–15, 1962.

[46] J. E. Hopcroft and R. E. Tarjan, “Efficient algorithms for graph manipulation,” Communications

of the ACM, vol. 16, no. 6, pp. 372–378, 1973.

712 Bibliography

[47] C. S. Horstmann and G. Cornell, Core Java, vol. I–Fundamentals. Upper Saddle River, NJ:

Prentice Hall, 8th ed., 2008.

[48] C. S. Horstmann and G. Cornell, Core Java, vol. II–Advanced Features. Upper Saddle River,

NJ: Prentice Hall, 8th ed., 2008.

[49] B.-C. Huang and M. Langston, “Practical in-place merging,” Communications of the ACM,

vol. 31, no. 3, pp. 348–352, 1988.

[50] J. JáJá, An Introduction to Parallel Algorithms. Reading, MA: Addison-Wesley, 1992.

[51] V. Jarńık, “O jistem problemu minimalnim,” Praca Moravske Prirodovedecke Spolecnosti,

vol. 6, pp. 57–63, 1930. (in Czech).

[52] R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic Dynamic Memory Man-

agement. John Wiley and Sons, 1996.

[53] D. R. Karger, P. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find minimum

spanning trees,” Journal of the ACM, vol. 42, pp. 321–328, 1995.

[54] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,” IBM J. Res.

Develop., vol. 31, no. 2, pp. 249–260, 1987.

[55] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared memory machines,” in Hand-

book of Theoretical Computer Science (J. van Leeuwen, ed.), pp. 869–941, Amsterdam: Else-

vier/The MIT Press, 1990.

[56] P. Kirschenhofer and H. Prodinger, “The path length of random skip lists,” Acta Informatica,

vol. 31, pp. 775–792, 1994.

[57] J. Kleinberg and É. Tardos, Algorithm Design. Reading, MA: Addison-Wesley, 2006.

[58] A. Klink and J. Wälde, “Efficient denial of service attacks on web application platforms.” 2011.

[59] D. E. Knuth, “Big omicron and big omega and big theta,” in SIGACT News, vol. 8, pp. 18–24,

1976.

[60] D. E. Knuth, Fundamental Algorithms, vol. 1 of The Art of Computer Programming. Reading,

MA: Addison-Wesley, 3rd ed., 1997.

[61] D. E. Knuth, Sorting and Searching, vol. 3 of The Art of Computer Programming. Reading,

MA: Addison-Wesley, 2nd ed., 1998.

[62] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, “Fast pattern matching in strings,” SIAM J.

Comput., vol. 6, no. 1, pp. 323–350, 1977.

[63] J. B. Kruskal, Jr., “On the shortest spanning subtree of a graph and the traveling salesman

problem,” Proc. Amer. Math. Soc., vol. 7, pp. 48–50, 1956.

[64] R. Lesuisse, “Some lessons drawn from the history of the binary search algorithm,” The Com-

puter Journal, vol. 26, pp. 154–163, 1983.

[65] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25 accidents,” IEEE Computer,

vol. 26, no. 7, pp. 18–41, 1993.

[66] A. Levitin, “Do we teach the right algorithm design techniques?,” in 30th ACM SIGCSE Symp.

on Computer Science Education, pp. 179–183, 1999.

[67] B. Liskov and J. Guttag, Abstraction and Specification in Program Development. Cambridge,

MA/New York: The MIT Press/McGraw-Hill, 1986.

[68] E. M. McCreight, “A space-economical suffix tree construction algorithm,” Journal of Algo-

rithms, vol. 23, no. 2, pp. 262–272, 1976.

[69] C. J. H. McDiarmid and B. A. Reed, “Building heaps fast,” Journal of Algorithms, vol. 10,

no. 3, pp. 352–365, 1989.

[70] N. Megiddo, “Linear programming in linear time when the dimension is fixed,” J. ACM, vol. 31,

pp. 114–127, 1984.

[71] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, vol. 1 of EATCS

Monographs on Theoretical Computer Science. Heidelberg, Germany: Springer-Verlag, 1984.

[72] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness,

vol. 2 of EATCS Monographs on Theoretical Computer Science. Heidelberg, Germany:

Springer-Verlag, 1984.

Bibliography 713

[73] K. Mehlhorn and A. Tsakalidis, “Data structures,” in Algorithms and Complexity (J. van

Leeuwen, ed.), vol. A of Handbook of Theoretical Computer Science, pp. 303–334, Amster-

dam: Elsevier, 1990.

[74] D. R. Morrison, “PATRICIA—practical algorithm to retrieve information coded in alphanu-

meric,” Journal of the ACM, vol. 15, no. 4, pp. 514–534, 1968.

[75] R. Motwani and P. Raghavan, Randomized Algorithms. New York, NY: Cambridge University

Press, 1995.

[76] Oracle Corporation, “Collections framework enhancements in Java SE 7.” http://docs.

oracle.com/javase/7/docs/technotes/guides/collections/changes7.html. Ac-

cessed online, December 2013.

[77] T. Papadakis, J. I. Munro, and P. V. Poblete, “Average search and update costs in skip lists,”

BIT, vol. 32, pp. 316–332, 1992.

[78] P. V. Poblete, J. I. Munro, and T. Papadakis, “The binomial transform and its application to

the analysis of skip lists,” in Proceedings of the European Symposium on Algorithms (ESA),

pp. 554–569, 1995.

[79] R. C. Prim, “Shortest connection networks and some generalizations,” Bell Syst. Tech. J.,

vol. 36, pp. 1389–1401, 1957.

[80] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,” Commun. ACM, vol. 33,

no. 6, pp. 668–676, 1990.

[81] H. Samet, The Design and Analysis of Spatial Data Structures. Reading, MA: Addison-Wesley,

1990.

[82] R. Schaffer and R. Sedgewick, “The analysis of heapsort,” Journal of Algorithms, vol. 15, no. 1,

pp. 76–100, 1993.

[83] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” J. ACM, vol. 32, no. 3,

pp. 652–686, 1985.

[84] G. A. Stephen, String Searching Algorithms. World Scientific Press, 1994.

[85] R. Tamassia and G. Liotta, “Graph drawing,” in Handbook of Discrete and Computational

Geometry (J. E. Goodman and J. O’Rourke, eds.), ch. 52, pp. 1163–1186, CRC Press LLC,

2nd ed., 2004.

[86] R. Tarjan and U. Vishkin, “An efficient parallel biconnectivity algorithm,” SIAM J. Comput.,

vol. 14, pp. 862–874, 1985.

[87] R. E. Tarjan, “Depth first search and linear graph algorithms,” SIAM J. Comput., vol. 1, no. 2,

pp. 146–160, 1972.

[88] R. E. Tarjan, Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Regional Con-

ference Series in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied

Mathematics, 1983.

[89] A. B. Tucker, Jr., The Computer Science and Engineering Handbook. CRC Press, 1997.

[90] J. van Leeuwen, “Graph algorithms,” in Handbook of Theoretical Computer Science (J. van

Leeuwen, ed.), vol. A. Algorithms and Complexity, pp. 525–632, Amsterdam: Elsevier, 1990.

[91] J. S. Vitter, “Efficient memory access in large-scale computation,” in Proc. 8th Sympos. Theoret.

Aspects Comput. Sci., Lecture Notes Comput. Sci., Springer-Verlag, 1991.

[92] J. S. Vitter and W. C. Chen, Design and Analysis of Coalesced Hashing. New York: Oxford

University Press, 1987.

[93] J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data structures,” in Algo-

rithms and Complexity (J. van Leeuwen, ed.), vol. A of Handbook of Theoretical Computer

Science, pp. 431–524, Amsterdam: Elsevier, 1990.

[94] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM, vol. 9, no. 1, pp. 11–12,

1962.

[95] J. W. J. Williams, “Algorithm 232: Heapsort,” Communications of the ACM, vol. 7, no. 6,

pp. 347–348, 1964.

[96] D. Wood, Data Structures, Algorithms, and Performance. Addison-Wesley, 1993.

http://docs.oracle.com/javase/7/docs/technotes/guides/collections/changes7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/changes7.html

Index

% operator, 24, 242

== operator, 25, 138

ˆ operator, 412

Abelson, Hal, 223

abstract class, 80–81,

313–314, 323

abstract data type, 62

deque, 248–249

graph, 612–618

map, 402–404

partition, 672–675

positional list, 272–275

priority queue, 361

queue, 239–240

sorted map, 428

stack, 227–228

string, 17–18

tree, 312–314

abstract methods, 80

abstract modifier, 11, 81

AbstractBinaryTree class,

319–320, 323, 325, 330,

339, 341, 342

AbstractHashMap class, 406,

422–424

abstraction, 62

AbstractMap class, 384,

406–407, 408, 422

AbstractPriorityQueue class,

364–365, 366

AbstractSortedMap class,

406, 430, 466

AbstractTree class, 313–316,

323, 330, 339–342

(a,b) tree, 702–704

access frequency, 294

accessor method, 5

activation record, see frame

acyclic graph, 615

adaptability, 60, 61

adaptable priority queue,

390–392, 658, 659

adapter design pattern, 233,

245

Adel’son-Vel’skii, Georgii,

479, 530

adjacency list, 619, 622–623

adjacency map, 619, 624, 626

adjacency matrix, 619, 625

Aggarwal, Alok, 709

Aho, Alfred, 256, 305, 530,

610

Ahuja, Ravindra, 686

algorithm analysis, 164–181

alphabet, 17, 575

amortization, 205, 266–269,

376, 672–675

ancestor, 310

antisymmetric property, 363

Apache Commons, 448

API, 76, 228

arithmetic operators, 24

arithmetic progression, 71, 268

Arnold, Ken, 57

array, 20–21, 104–119

dynamic, 263–269

array list, 260–265

ArrayDeque class, 251

ArrayIndexOutOfBounds
exception, 20, 33, 84, 87

ArrayList class, 260–261,

263–265, 283–285, 290

ArrayQueue class, 242–244,

302

Arrays class, 112, 114, 139,

175

ArrayStack class, 230–232,

300

associative array, 402

asymptotic notation, 164–177

big-Oh, 164–167

big-Omega, 167, 265

big-Theta, 167

autoboxing, 19, 92

AVL tree, 479–486

back edge, 639, 680

Baeza-Yates, Ricardo, 530,

572, 709

BalanceableBinaryTree class,

476–478

Barůvka, Otakar, 683, 686

base class, 64

base type, 4

Bayer, Rudolf, 530, 709

Bellman, Richard, 610

Bentley, Jon, 223, 400, 572

best-fit algorithm, 692

BFS, see breadth-first search

biconnected graph, 681

big-Oh notation, 164–167

big-Omega notation, 167, 265

big-Theta notation, 167

binary heap, 370–384

binary search, 196–197,

203–204, 429–432, 563

binary search tree, 338,

460–478

rotation, 472

trinode restructuring, 473

binary tree, 317–330, 533

array-based representation,

331–332

complete, 370

improper, 317

level, 321

linked structure, 323–330

proper, 317

BinaryTree interface, 319

bipartite graph, 681

bit vector, 456

Index 715

Booch, Grady, 101, 305

bootstrapping, 424, 502

Boyer, Robert, 610

Boyer-Moore algorithm,

578–581

Brassard, Gilles, 188

breadth-first search, 640–642

breadth-first tree traversal,

336, 341–342

break statement, 32, 37

brute force, 576

B-tree, 704

bubble-sort, 304

bucket-sort, 558–559, 562

Budd, Timothy, 101, 305

buffer overflow attack, 20

Burger, Doug, 709

caching, 695–700

Caesar cipher, 115–117

Carlsonn, Svante, 400

casting, 28–29, 88–90

implicit, 29

catch, 82

catching an exception, 82–84

ceiling function, 163

central processing unit (CPU),

151

ChainHashMap class, 406,

424–425

character, 17

checked exception, 86

Chen, Wen-Chin, 458

Chernoff bound, 570

child class, see subclass

circular queue, 246–247

circularly linked list, 128–131,

246

Clarkson, Kenneth, 572

class, 2, 5–22, 60, 62

abstract, 80–81, 313–314

base, 64

child, 64

inner, 96, 284

nested, 96

outer, 96

parent, 64

sub, 64

super, 64

class diagram, 47

ClassCastException, 87, 89

clone method, 141–144

Cloneable interface, 79, 141,

144, 302, 303, 353

cloning, 141–144

clustering, 419

coding, 46

Cole, Richard, 610

Collection interface, 288

collections, see Java

collections framework

collision resolution, 411,

417–419

Comer, Douglas, 709

comparability property, 363

Comparable interface, 79, 363

Comparator interface, 363,

538

complete binary tree, 370

complete graph, 678

composition design pattern,

91, 295

compression function, 411,

416

concatenation, 17, 24

concrete methods, 80

ConcurrentSkipListMap
class, 436

connected components, 615,

635, 638

constructor, 14

continue statement, 37

contradiction, 178

contrapositive, 178

control flow, 30–37

core memory, 695

Cormen, Thomas, 530, 686

Cornell, Gary, 57

CPU, 151

CRC cards, 47

CreditCard class, 41–43, 47,

50–51, 65–68, 88–89

Crochemore, Maxime, 610

Crosby, Scott, 458

cryptography, 115–117

cubic function, 160

cuckoo hashing, 456

currentTimeMillis method,

113, 151

cyber-dollar, 266–267,

495–498, 673

cycle, 615

directed, 615

cyclic-shift hash code,

413–414

DAG, see directed acyclic

graph

data packets, 304

de Morgan’s law, 178

debugging, 46

decision tree, 317, 461, 556

decrease-and-conquer,

563–565

decryption, 115

default constructor, 6, 14

degree of a vertex, 613

delimiter, 40, 235

Demurjian, Steven, 101, 256

denial-of-service attack, 421

depth of a tree, 314–316

depth-first search (DFS),

631–639

deque, 248–251

abstract data type, 248–249

linked-list implementation,

250

Deque interface, 288

descendant, 310

design patterns, 49, 63

adapter, 233, 245

amortization, 266–269

brute force, 576

composition, 91, 295, 362

divide-and-conquer,

532–536, 544–545

dynamic programming,

598–604

factory method, 325, 477

greedy method, 597

iterator, 282–286

position, 272–275

prune-and-search, 563–565

template method, 81, 446,

475

DFS, see depth-first search

Di Battista, Giuseppe, 358,

686

diameter, 355

dictionary, see map

Dijkstra’s algorithm, 653–661

Dijkstra, Edsger, 223, 686

716 Index

directed acyclic graph,

647–649

disk usage, 198–201, 204–205,

345

divide-and-conquer, 532–536,

544–545

division method for hash

codes, 416

dot operator, 7

double hashing, 419

double-ended queue, see deque

doubly linked list, 125,

132–137

DoublyLinkedList class,

135–137, 250, 271, 276

down-heap bubbling, 374

dynamic array, 263–269

shrinking, 269

dynamic dispatch, 68

dynamic programming,

598–604

Eades, Peter, 358, 686

edge, 310

destination, 613

endpoint, 613

incident, 613

multiple, 614

origin, 613

outgoing, 613

parallel, 614

self-loop, 614

edge list, 619–621

edge of a graph, 612

edge relaxation, 653

edit distance, 608

element uniqueness problem,

174–175, 215

encapsulation, 62

encryption, 115

endpoints, 613

enum, 22

equals method, 25, 138–140

equivalence relation, 138

equivalence testing, 138–140

erasure, 140

Error class, 86, 87

Euclidean norm, 56

Euler tour of a graph, 677, 681

Euler tour tree traversal,

348–349, 358

evolvability, 61

exception, 82–87

catching, 82–84

checked, 86

throwing, 85–86

unchecked, 86

Exception class, 86, 87

exponential function, 161–162,

209–210

expression, 23–29

expression tree, 318

external memory, 695–707,

709

external-memory algorithm,

695–707

external-memory sorting,

705–707

factorial function, 191–192,

202, 690

factory method pattern, 325,

477

fail-fast iterator, 284, 304

favorites list, 294–299

FavoritesList class, 295–296

FavoritesListMTF class, 298,

399

Fibonacci heap, 659

Fibonacci series, 73, 180, 186,

216–217, 480

field, 5

FIFO, see first-in, first-out

File class, 200

file system, 198–201, 310, 345

final modifier, 11

first-fit algorithm, 692

first-in, first-out (FIFO)

protocol, 238, 255, 336,

360, 699–700

Flajolet, Philippe, 188

Flanagan, David, 57

floor function, 163, 209

flowchart, 31

Floyd, Robert, 400, 686

Floyd-Warshall algorithm,

644–646, 686

for-each loop, 36, 283

forest, 615

fractal, 193

fragmentation of memory, 692

frame, 192, 688

free list, 692

game tree, 336, 358

Gamma, Erich, 101

garbage collection, 232,

693–694

mark-sweep, 693

Gauss, Carl, 159

generics, 91–95, 126, 228

geometric progression, 72, 267

geometric sum, 162

Gonnet, Gaston, 400, 530, 572,

709

Goodrich, Michael, 709

Gosling, James, 57

Graham, Ronald, 686

graph, 612–686

abstract data type, 612–618

acyclic, 615, 647–649

breadth-first search,

640–642

connected, 615, 630

data structures, 619–629

adjacency list, 619,

622–623

adjacency map, 619, 624,

626

adjacency matrix, 619, 625

edge list, 619–621

depth-first search, 631–639

directed, 612, 613, 647–649

mixed, 613

reachability, 643–646

shortest paths, 651–661

simple, 614

strongly connected, 615

traversal, 630–642

undirected, 612, 613

weighted, 651–686

greedy method, 597, 652, 653

Guava library, 448

Guibas, Leonidas, 530

Guttag, John, 101, 256, 305

Harmonic number, 171, 221

hash code, 411–415

cyclic-shift, 413–414

polynomial, 413, 609

hash table, 410–427

clustering, 419

collision, 411

Index 717

collision resolution,

417–419

double hashing, 419

linear probing, 418

quadratic probing, 419

hashing

cuckoo, 456

power-of-two-choices, 457

header sentinel, 132

heap, 370–384

bottom-up construction,

380–384

heap-sort, 388–389, 561

HeapAdaptablePriorityQueue
class, 392–394

HeapAdaptablePriorityQueue
class, 659

HeapPriorityQueue class,

377–378, 382

height of a tree, 315–316, 471

Hell, Pavol, 686

Hennessy, John, 709

heuristic, 297

hierarchy, 64

Hoare, C. A. R., 572

Holmes, David, 57

hook, 466, 475

Hopcroft, John, 256, 305, 530,

686

Horner’s method, 187

Horstman, Cay, 57

HTML, 235–237, 253, 574

Huang, Bing-Chao, 572

Huffman coding, 595–596

I/O complexity, 701

identifier, 2

IllegalArgumentException,

85, 87

immutable, 18

implicit cast, 29

import statement, 45

in-degree, 613

in-place algorithm, 389, 553

incoming edges, 613

index, 17, 20

IndexOutOfBoundsException,

259

induction, 179–180, 203

infix notation, 356

inheritance, 64–74

multiple, 79

single, 66

inner class, 96, 284

inorder tree traversal, 337,

341, 473

insertion-sort, 110–111,

293–294, 387, 561

instance, 5, 60

instance variable, 5, 60

instanceof operator, 68, 89

integrated development

environment (IDE), 16, 49

interface, 62, 76–79, 90, 228

internal memory, 695

Internet, 304

inversion, 387, 561, 569

inverted file, 456

isomorphism, 352

Iterable interface, 36, 283

iterator, 282–286

fail-fast, 284, 304

JáJá, Joseph, 358

Jarńık, Vojtěch, 686

Java, 2–57, 60–96

arrays, 20–21, 104–119

casting, 88–90

control flow, 30–37

exceptions, 82–87

expressions, 23–29

input, 38–40

method stack, 688–690

methods, 12–13

output, 38–40

packages, 44–45

Java collections framework,

251, 288–292, 384,

445–448

Java Virtual Machine (JVM),

688–693

javadoc, 50

Jones, Richard, 709

Josephus problem, 246

Karger, David, 686

Karp, Richard, 358, 609

Klein, Philip, 686

Kleinberg, Jon, 572

Klink, Alexander, 458

Knuth, Donald, 148, 188, 305,

358, 400, 458, 530, 572,

610, 686, 709

Knuth-Morris-Pratt algorithm,

582–585

Kosaraju, S. Rao, 686

Kruskal’s algorithm, 667–675

Kruskal, Joseph, 686

Landis, Evgenii, 479, 530

Langston, Michael, 572

last-in, first-out (LIFO)

protocol, 226, 228

lazy iterator, 284

LCS, see longest common

subsequence

leaf of a tree, 310

least recently used (LRU)

protocol, 699–700

Lecroq, Thierry, 610

Leiserson, Charles, 530, 686

Lesuisse, R., 223

level in a tree, 321

level numbering, 331, 371

Leveson, Nancy, 101

lexicographic order, 363, 559

LIFO, see last-in, first-out

linear function, 158

linear probing, 418

linearity of expectation, 565

linked list, 122–137, 233, 245

circularly linked, 128–131,

246

doubly linked, 125,

132–137, 250, 276–280

singly linked, 122–127,

233, 245

LinkedBinaryTree class,

325–330, 466, 476–477

LinkedHashMap class, 454

LinkedList class, 251, 288,

289, 290

LinkedPositionalList class,

276–280, 286–287, 620

LinkedQueue class, 245, 341,

541, 549

Lins, Rafael, 709

Liotta, Giuseppe, 358, 686

Liskov substitution principle,

68

Liskov, Barbara, 68, 101, 256,

305

list

of favorites, 294–299

718 Index

positional, 270–281

List interface, 258–259, 284,

288

literal, 23

Littman, Michael, 572

live objects, 693

load factor, 417, 420–421

locality of reference, 297, 697

log-star function, 675

logarithm function, 156–157

longest common subsequence,

601–604

looking-glass heuristic, 578

lookup table, 410

loop invariant, 181

lowest common ancestor, 355

Magnanti, Thomas, 686

main memory, 695

map, 402–444

abstract data type, 402–404

binary search tree, 460–478

hash table, 410–427

skip list, 436–444

sorted, 428–435, 460

Map interface, 406

mark-sweep algorithm, 693

matrix, 118

matrix chain-product, 598–600

maximal independent set, 682

McCreight, Edward, 610, 709

McDiarmid, Colin, 400

McIlroy, Douglas, 572

median, 196, 555, 563, 571

Megiddo, Nimrod, 572

Mehlhorn, Kurt, 530, 686, 709

member of a class, 5

memory address, 688

memory allocation, 692

memory heap, 691

memory hierarchy, 695

memory management,

688–694

merge-sort, 532–544, 562

multiway, 705–707

mergeable heap, 530

method, 2, 12–13, 60

abstract, 80

concrete, 80

signature, 12

minimum spanning tree,

662–675

Kruskal’s algorithm,

667–675

Prim-Jarnik algorithm,

664–666

mixin, 79

modularity, 62

modulo operator, 24, 116, 242

Moore, J. Strother, 610

Morris, James, 610

Morrison, Donald, 610

Motwani, Rajeev, 458, 572

move-to-front heuristic,

297–299

MST, see minimum spanning

tree

multimap, 445, 448–450

multiple inheritance, 79

Multiply-Add-and-Divide

(MAD), 416

multiset, 445, 447–448

multiway merge-sort, 705–707

multiway search tree, 500–502

Munro, J. Ian, 400

n-log-n function, 158

narrowing conversion, 88

natural join, 304

natural ordering, 363

nested class, 96

nested loops, 159

next-fit algorithm, 692

node, 309

ancestor, 310

child, 309

descendant, 310

external, 310

internal, 310

leaf, 310

parent, 309

root, 309

sibling, 310

node of a graph, 612

NoSuchElementException,

86, 87, 240, 251, 282

null value, 6, 7, 21, 23

NullPointerException, 7, 87

Number class, 89

NumberFormatException, 28,

84, 85, 87

object, 5–22, 60

Object class, 66, 91, 138, 141

object-oriented design, 60–101

open addressing, 418

operand stack, 690

order statistic, 563

Orlin, James, 686

out-degree, 613

outer class, 96

outgoing edge, 613

override, 64

p-norm, 56

package, 10, 44–45

palindrome, 222, 606

parameter passing, 13

parent class, 64

parent node, 309

parenthetic string

representation, 346

partition, 670, 672–675

path, 310, 615

compression, 675

directed, 615

length, 352, 652

simple, 615

pattern matching, 576–585

Boyer-Moore algorithm,

578–581

brute force, 576–577

Knuth-Morris-Pratt

algorithm, 582–585

Rabin-Karp algorithm, 609

Patterson, David, 709

permutation, 191

Peters, Tim, 562

polymorphism, 68

polynomial function, 160, 187

polynomial hash code, 413,

609

portability, 61

position, 272–275, 312, 437

Position interface, 274, 313,

325

positional list, 270–281

abstract data type, 272–280

PositionalList interface, 275,

293, 295

postfix notation, 253, 356

postorder tree traversal, 335

power function, 209

Index 719

power-of-two-choices hashing,

457

Pratt, Vaughan, 610

PredatoryCreditCard, 65–68,

88–89

prefix average, 175–177

prefix code, 595

prefix of a string, 575

preorder tree traversal, 334

Prim, Robert, 686

Prim-Jarnik algorithm,

664–666

primitive operations, 154

primitive type, 4

priority queue, 360–400

adaptable, 390–392, 658

ADT, 361

heap implementation,

372–379

sorted list implementation,

368–369

unsorted list

implementation, 366–367

priority search tree, 400

private modifier, 10

ProbeHashMap class, 406,

426–427

program counter, 689

progression

arithmetic, 71, 268

Fibonacci, 73

geometric, 72, 267

protected modifier, 10, 67

prune-and-search, 563–565

pseudocode, 48

pseudorandom number

generator, 113–114, 437

public modifier, 9

Pugh, William, 458

puzzle solver, 212–213

quadratic function, 158

quadratic probing, 419

queue, 238–247

abstract data type, 239–240

array implementation,

241–244

circular, 246–247

linked-list implementation,

245

Queue interface, 239, 240, 288

java.util.Queue interface, 384

quick-sort, 544–555, 562

Rabin, Michael, 609

Rabin-Karp algorithm, 609

radix-sort, 559–560, 562

Raghavan, Prabhakar, 458, 572

Ramachandran, Vijaya, 358

Random class, 53, 113, 437

randomization, 421, 437,

442–444, 551–552,

564–565

randomized quick-select, 564

randomized quick-sort, 551

reachability, 615, 630

recurrence equation, 203, 540,

565, 705

recursion, 190–220, 314–316,

334–335, 344–349,

461–462, 532, 540, 563,

690

binary, 211

depth limit, 218, 525

linear, 206–210

multiple, 212–213

tail, 219–220

trace, 192, 202, 690

red-black tree, 510–524

Reed, Bruce, 400

reference type, 6

reference variable, 6

reflexive property, 363

rehashing, 420

reusability, 60, 61

Rivest, Ronald, 530, 686

robustness, 60

root objects, 693

root of a tree, 309

round-robin scheduling, 128

running time, 150

RuntimeException, 87

Samet, Hanan, 709

Scanner class, 39–40, 45, 86

Schaffer, Russel, 400

scheduling, 399

Scoreboard class, 105–109

search engine, 594

search table, 429–432

search tree, 460–530

Sedgewick, Robert, 400, 530

seed, 113, 437

selection problem, 563–565

selection-sort, 386

self-loop, 614

sentinel, 132–133

separate chaining, 417

sequential search, 196

set ADT, 445–447

Sharir, Micha, 358

short-circuit evaluation, 33

shortest path, 651–661

Dijkstra’s algorithm,

653–661

tree, 661

sieve algorithm, 453

signature, 7, 12, 14

single inheritance, 66

singly linked list, 122–127,

233, 245

SinglyLinkedList class,

126–127, 140, 144

skip list, 436–444

Sleator, Daniel, 530

snapshot iterator, 284, 320,

340

sort method, 175

sorted map, 428–435, 460

abstract data type, 428

search table, 429–432

SortedMap interface, 406

SortedPriorityQueue class,

368–369

SortedTableMap class, 406,

429–432

sorting, 110, 385–389,

532–560

bucket-sort, 558–559

external-memory, 705–707

heap-sort, 388–389

in-place, 389, 553

insertion-sort, 110–111,

293, 387

lower bound, 556–557

merge-sort, 532–544

priority-queue, 385–389

quick-sort, 544–555

radix-sort, 559–560

selection-sort, 386

stable, 559

Tim-sort, 562

space usage, 150

720 Index

spanning tree, 615, 630, 634,

635, 662

sparse array, 303

splay tree, 475, 488–499

stable sorting, 559

stack, 226–237

abstract data type, 227–228

array implementation,

230–232

linked-list implementation,

233

Stack interface, 228–229

static modifier, 10

Stein, Clifford, 530, 686

Stephen, Graham, 610

stop words, 588, 609

string

mutable, 18

prefix, 575

suffix, 575

String class, 17–18

StringBuilder class, 18, 152,

269

strong typing, 76

strongly connected

components, 638

strongly connected graph, 615

subclass, 10, 64

subgraph, 615

subsequence, 601

subtree, 310

suffix of a string, 575

summation, 161

geometric, 162

super keyword, 67, 81

superclass, 64

Sussman, Gerald, 223

Sussman, Julie, 223

Tamassia, Roberto, 358, 686

Tardos, Éva, 572

Tarjan, Robert, 358, 530, 686

template method pattern, 81,

446, 475

testing, 46

text compression, 595–596

this keyword, 15, 67, 96

three-way set disjointness,

173–174

throw statement, 85

Throwable class, 86, 87

throwing an exception, 85–86

Tic-Tac-Toe, 119, 336, 358

Tim-sort, 562

Tollis, Ioannis, 358, 686

topological ordering, 647–649

total order, 363

tower-of-twos, 675

Towers of Hanoi, 222

trailer sentinel, 132

transitive closure, 643–646

transitive property, 363

tree, 205, 307–358, 615

abstract data type, 312–314

binary, see binary tree

binary search, see binary

search tree

binary tree representation,

354

child node, 309

decision, 317

depth, 314–316

edge, 310

expression, 318

external node, 310

height, 315–316

internal node, 310

leaf, 310

level, 321

linked structure, 333

multiway, 500–502

node, 309

ordered, 311

parent node, 309

path, 310

red-black, see red-black tree

root node, 309

splay, see splay tree

traversal, 205, 334–349

breadth-first, 336,

341–342

Euler tour, 348–349

inorder, 337, 341, 473

postorder, 335, 341

preorder, 334, 340

(2,4), see (2,4) tree

TreeMap class, 406

triangulation, 608

trie, 586–594

compressed, 590

trinode restructuring, 473, 482,

513

try-catch statement, 82

Tsakalidis, Athanasios, 530

Turner, Clark, 101

two-dimensional array, 118

(2,4) tree, 500–509

type, 5

type conversion, 28–29

type inference, 93

Ullman, Jeffrey, 256, 305, 530

unboxing, 19, 93

unchecked exception, 86

Unicode, 115, 575

union-find, 670, 672–675

unit testing, 54

UnsortedPriorityQueue class,

366–367

UnsortedTableMap class,

406, 408–409, 424

up-heap bubbling, 372

update method, 5

van Leeuwen, Jan, 686

vertex of a graph, 612

virtual memory, 697

Vishkin, Uzi, 358

visibility, 9

Vitter, Jeffrey, 188, 458, 709

Wälde, Julian, 458

Wallach, Dan, 458

Warshall, Stephen, 686

widening conversion, 88

Williams, J. W. J., 400

Wood, Derick, 305

worst-fit algorithm, 692

wrapper type, 19, 91, 93, 232

XML, 236, 574

	Cover
	Title Page
	Copyright
	Preface to the Sixth Edition
	Prerequisites
	Online Resources
	Use as a Textbook
	About the Authors
	Additional Books by These Authors
	Acknowledgments

	Contents
	Chapter 1: Java Primer
	1.1 Getting Started
	1.2 Classes and Objects
	1.3 Strings, Wrappers, Arrays, and Enum Types
	1.4 Expressions
	1.5 Control Flow
	1.6 Simple Input and Output
	1.7 An Example Program
	1.8 Packages and Imports
	1.9 Software Development
	1.10 Exercises

	Chapter 2: Object-Oriented Design
	2.1 Goals, Principles, and Patterns
	2.2 Inheritance
	2.3 Interfaces and Abstract Classes
	2.4 Exceptions
	2.5 Casting and Generics
	2.6 Nested Classes
	2.7 Exercises

	Chapter 3: Fundamental Data Structures
	3.1 Using Arrays
	3.2 Singly Linked Lists
	3.3 Circularly Linked Lists
	3.4 Doubly Linked Lists
	3.5 Equivalence Testing
	3.6 Cloning Data Structures
	3.7 Exercises

	Chapter 4: Algorithm Analysis
	4.1 Experimental Studies
	4.2 The Seven Functions Used in This Book
	4.3 Asymptotic Analysis
	4.4 Simple Justification Techniques
	4.5 Exercises

	Chapter 5: Recursion
	5.1 Illustrative Examples
	5.2 Analyzing Recursive Algorithms
	5.3 Further Examples of Recursion
	5.4 Designing Recursive Algorithms
	5.5 Recursion Run Amok
	5.6 Eliminating Tail Recursion
	5.7 Exercises

	Chapter 6: Stacks, Queues, and Deques
	6.1 Stacks
	6.2 Queues
	6.3 Double-Ended Queues
	6.4 Exercises

	Chapter 7: List and Iterator ADTs
	7.1 The List ADT
	7.2 Array Lists
	7.3 Positional Lists
	7.4 Iterators
	7.5 The Java Collections Framework
	7.6 Sorting a Positional List
	7.7 Case Study: Maintaining Access Frequencies
	7.8 Exercises

	Chapter 8: Trees
	8.1 General Trees
	8.2 Binary Trees
	8.3 Implementing Trees
	8.4 Tree Traversal Algorithms
	8.5 Exercises

	Chapter 9: Priority Queues
	9.1 The Priority Queue Abstract Data Type
	9.2 Implementing a Priority Queue
	9.3 Heaps
	9.4 Sorting with a Priority Queue
	9.5 Adaptable Priority Queues
	9.6 Exercises

	Chapter 10: Maps, Hash Tables, and Skip Lists
	10.1 Maps
	10.2 Hash Tables
	10.3 Sorted Maps
	10.4 Skip Lists
	10.5 Sets, Multisets, and Multimaps
	10.6 Exercises

	Chapter 11: Search Trees
	11.1 Binary Search Trees
	11.2 Balanced Search Trees
	11.3 AVL Trees
	11.4 Splay Trees
	11.5 (2,4) Trees
	11.6 Red-Black Trees
	11.7 Exercises

	Chapter 12: Sorting and Selection
	12.1 Merge-Sort
	12.2 Quick-Sort
	12.3 Studying Sorting through an Algorithmic Lens
	12.4 Comparing Sorting Algorithms
	12.5 Selection
	12.6 Exercises

	Chapter 13: Text Processing
	13.1 Abundance of Digitized Text
	13.2 Pattern-Matching Algorithms
	13.3 Tries
	13.4 Text Compression and the Greedy Method
	13.5 Dynamic Programming
	13.6 Exercises

	Chapter 14: Graph Algorithms
	14.1 Graphs
	14.2 Data Structures for Graphs
	14.3 Graph Traversals
	14.4 Transitive Closure
	14.5 Directed Acyclic Graphs
	14.6 Shortest Paths
	14.7 Minimum Spanning Trees
	14.8 Exercises

	Chapter 15: Memory Management and B-Trees
	15.1 Memory Management
	15.2 Memory Hierarchies and Caching
	15.3 External Searching and B-Trees
	15.4 External-Memory Sorting
	15.5 Exercises

	Bibliography
	Index

