
Böck

Shelve in
Programming Languages/Java

User level:
Beginning–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

The Definitive Guide to NetBeans
Platform 7
The Definitive Guide to NetBeans Platform 7 covers all the major APIs of the NetBeans
Platform in detail, with relevant code examples throughout. It focuses strongly on busi-
ness features such as how to use OSGi, how to add authentication/security, and how
modular architectures can save money by streamlining management and updates.

With The Definitive Guide to NetBeans Platform 7, you’ll learn how to:

• Start using the NetBeans Platform, with or without the IDE
• Set up a modular application using either Ant or Maven
• Work with the popular and powerful Visual Library, covering all its features in detail
• Reuse OSGI bundles within your NetBeans Platform application
• Distribute a modular application, with strategies for monetizing its modular architecture

The Definitive Guide to NetBeans Platform 7 begins by explaining what the platform
is and what needs it fulfills. Next, the book covers the major conceptual divisions of
the platform (actions, user interface, file IO, data persistence, internationalization sup-
port) in detail. In addition, author Heiko Böck leads you through the development of
a complete rich client application which demonstrates first-hand the techniques used
to develop a typical NetBeans business application. From initial draft to creating the
basic structure to implementing the application logic, you will build an MP3 manager
that integrates the Java Media Framework (JMF) as well as the Java DB database
system among others.

Inside this thorough, authoritative guide you will find the knowledge you need to
develop rich client applications with the NetBeans Platform.

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

 About the Author... xxv
 About the Translator .. xxvi
 About the Technical Reviewers .. xxvii
 Acknowledgments ... xxviii
 Introduction ... xxix
 Part 1: Basics & Concepts: Basics of the NetBeans Platform.................................1
 Chapter 1: Introduction...3
 Chapter 2: Structure of the NetBeans Platform ...9
 Chapter 3: The NetBeans Module System...17
 Chapter 4: The OSGi Framework...49
 Chapter 5: Lookup Concept...57
 Chapter 6: Actions ..75
 Chapter 7: Data and Files..87
 Chapter 8: Tips and Tricks..101
 Part 2: Look & Feel: Developing User Interfaces ..107
 Chapter 9: Menu Bar and Toolbar...109
 Chapter 10: Window System...123
 Chapter 11: Status Bar and Progress Bar...147
 Chapter 12: Nodes and Explorer ...157
 Chapter 13: Dialogs and Wizards..169
 Chapter 14: Visual Library ..187

 Chapter 15: Tips and Tricks..207

 CONTENTS AT A GLANCE

iv

 Part 3: Ready & Go: Using the NetBeans Platform Standard Modules................215
 Chapter 16: Help System ..217
 Chapter 17: Output Window..225
 Chapter 18: Navigator...229
 Chapter 19: Properties..235
 Chapter 20: Options and Settings ...241
 Chapter 21: Palette ...251
 Part 4: Use & Extend: Advanced APIs of the NetBeans Platform & ID261
 Chapter 22: Palette API...263
 Chapter 23: Task List API ...269
 Chapter 24: Quick Search API...275
 Chapter 25: Auto Update Services API..279
 Part 5: Server & Database: Enterprise Applications and the NetBeans Platform287
 Chapter 26: Java DB ...289
 Chapter 27: Hibernate...307
 Chapter 28: Java Persistence API ..315
 Chapter 29: MySQL and EclipseLink ...321
 Chapter 30: Web Services...327
 Chapter 31: Java Enterprise Edition and the NetBeans Platform333
 Chapter 32: RESTful Web Services..345
 Chapter 33: Authentication and Multi-User Login ...353
 Part 6: Pack & Ship: Adapting, Delivering, and Actualizing Applications369
 Chapter 34: Internationalization and Localization..371
 Chapter 35: Branding and Packaging Application ..379
 Chapter 36: Updating a NetBeans Platform Application389
 Part 7: Test & Tooling: Developing and Testing NetBeans Platform Applications399
 Chapter 37: Maven and the NetBeans Platform..401
 Chapter 38: Eclipse IDE and the NetBeans Platform...415
 Chapter 39: From Eclipse to NetBeans ...423

 CONTENTS AT A GLANCE

v

 Chapter 40: IntelliJ IDEA and the NetBeans Platform...431
 Chapter 41: NetBeans Swing GUI Builder ...439
 Chapter 42: Testing NetBeans Platform Applications...459
 Chapter 43: Debugging with the NetBeans IDE...481
 Part 8: Play & More: Developing an MP3-Manager ..493
 Chapter 44: Sample Project: MP3 Manager..493
 Appendix...529
 Index ...537

xxix

Introduction

With this work in your hands, you hold the most current and the most comprehensive guide to the
Swing-based rich client platform, NetBeans Platform 7. This theme-rich client platform is highly topical.
In addition to the NetBeans Platform, Eclipse RCP is also a principal representative of this category. The
development of these two platforms was mainly driven by the NetBeans and Eclipse integrated
development environments (IDEs). Those two IDEs are based on their respective platforms and
represent a rich client application themselves. The NetBeans Platform is completely based on the Java
API with AWT and Swing and integrates the concepts of the Java Standard Edition (JSE), while the
Eclipse RCP with SWT and JFace builds more and more on its own approaches and concepts.

Rich client platforms are flexible and used mainly for their constantly increasing requirements for
applications and their architecture. One crucial aspect is their increased productivity and flexibility to be
able to equip a product depending on its intended usage and to adapt it to a market. This is especially
important for professional applications.

In my opinion, the NetBeans Platform is always worth using, even if an application is very small or
quite huge, because of the comprehensive support actually provided by the NetBeans IDE. It is also
already worth it because of the execution environment, and even more so because of the numerous APIs
that provide practical solutions for frequently occurring problems and challenges with client application
development. These solutions are very close to the practice and the application and increase
productivity a lot.

However, this assumption is based on one basic condition: professional knowledge and use of the
workings of the rich client platform. The application developer should at least know the main principles;
only then can the real advantages of increased productivity and greater software quality be achieved in
practice.

Many developers have assumed the platform was too complex, which is one of the main reasons the
rich client platforms have not yet been established as quasi-standards for client application
development. At first, developers may get the impression that there is a huge wall of APIs and concepts
to master. However, once you begin to learn more, you find that there are immense synergies and
simplifications possible, which make up for the challenges of the initial learning phase.

The NetBeans IDE simplifies both daily usage and developers’ learning curve by providing
comprehensive, helpful, and intuitive wizards. It is surely important that all NetBeans APIs and concepts
build on the APIs and concepts of the Java Standard Edition (JSE). That fact simplifies everyday
experiences with it and also facilitates the reuse of already existing components.

News of the NetBeans Platform
The NetBeans Platform 7 contains numerous innovations. One crucial innovation is the introduction of
Annotations. Actions, for example, do not have to derive from a special class anymore. Thus, actions can
be registered via annotations, and at the same time, actions can be added to a menu or to a toolbar, too.
Before, you had to assign two separate configuration files for top components. Now, top components are
registered via annotations and made public to the NetBeans Platform. Declarative information can now
be directly and decentrally provided because of using annotations. Annotations are well documented

 INTRODUCTION

xxx

and are checked by the editor or respectively by the compiler;, information is provided in a simpler
manner and potential erratic entries in XML are avoided. Furthermore, the information is located
exactly at the position it refers to, so no additional files have to be managed. This also simplifies
refactoring and facilitates the NetBeans Platform’s independence of the NetBeans IDE. Bear in mind
that the necessary configuration files, or rather configuration entries, are created out of the annotations
at compile time. This means using annotations is not mandatory; you can also manually create the
necessary configuration as previously.

Whether or not you use annotations is a question of philosophy in the end, and also depends on the
project’s size and on your special needs. Of course, you can also look at the disadvantages of
annotations. For example, the meta-information is scattered in the source files. A central file might be
easier to adapt or to overlook.

The support of OSGi bundles is also a crucial innovation. Now OSGi bundles can be executed
parallel to NetBeans modules within the NetBeans Platform 7. For this purpose, the OSGi framework,
Felix or Equinox, is optionally integrated in the NetBeans Platform. It is also possible to convert the
NetBeans Platform modules into OSGi bundles. This innovation allows the use of numerous existing
OSGi bundles.

Out-of-the-box support of Maven can also be called an innovation. NetBeans Platform applications
can now be completely developed via Maven. With the NetBeans Maven plugin and the availability of all
NetBeans Platform modules in a public Maven repository, there is nothing that prevents using the
NetBeans Platform outside the NetBeans IDE.

How This Book Is Structured
This book is aimed at Java developers who want to develop client applications based on the NetBeans
Platform. No previous knowledge of rich client platforms is required. The main goal of this book is to
provide the basic ideas and functionalities of the NetBeans Platform close to actual practice and to
explain the very good support the NetBeans IDE provides for the development phase of your application
as well as the interfaces and advantages of the NetBeans Platform. In this way I hope to motivate you to
further use the NetBeans Platform—and to ask yourself why you have not been developing your
applications on the basis of a rich client platform already, especially once you recognize the numerous
advantages you could have benefited from in the past.

The separate chapters of the book are mostly independent of each other, in order to give you a way
to get directly into individual chapters, and to provide you an optimal manual for developing rich client
applications based on the NetBeans Platform. To keep the chapters clear and to facilitate direct access,
the explanations within this book are supported by small examples without referring to an overall
application. At the end of the book, I will show how to create a complete rich client application, from the
draft phase over creating the basic structure to implementing the application logic. I will explain this in a
tutorial-like format with the example of an MP3 manager. In this application you will integrate the Java
Media Framework (JMF) as well as the Java DB database system, among others.

Part 1 deals with the basic features and concepts of the NetBeans Platform. At first, you will learn
how a rich client is defined, which features a rich client platform generally contains, and which special
advantages the Netbeans Platform provides. Additionally, because the module-based nature is crucial, I
will cover both the NetBeans module system and the OSGi framework in the Part 1. The central topics of
Lookup, actions, and data management complete the first part with one chapter each.

Part 2 is completely devoted to developing user interfaces. This part mainly deals with the Window
System as well as the menu bar, toolbar, status bar, and progress bar. Due to the support of the Window
System, you can implement and easily manage your own windows. Connected to the data management,
which is explained in the first part, you will learn about the flexible node concept together with the

 INTRODUCTION

xxxi

Explorer API in a separate chapter. This part also covers developing dialogs and wizards as well as using
the powerful Visual Library API.

In Part 3 we will take a closer look at the standard modules of the NetBeans Platform which can be
used directly without great effort. This includes the help system, the output window, the navigator, the
properties window, the options dialog, and the palette module. I will explain how to use each of them in
a separate chapter.

Part 4 is about using the very helpful APIs of the NetBeans Platform and the NetBeans IDE. Actually,
you are not limited to the modules of the NetBeans Platform. One chapter explains how to use the
Palette API and another how to use the Task List API. Additionally, we will take a closer look at the Quick
Search and the Auto Update Services API by means of examples that are close to actual practice.

With Part 5 I put the NetBeans Platform in the context of databases and Java EE applications. First,
you will use the Java DB as a client-side database solution within a NetBeans Platform application. Using
Hibernate to facilitate accessing databases is covered in a following chapter. However, applying
Hibernate does not need to be dependent on a special object-relational mapping (ORM) framework. In a
later chapter, I will explain how to integrate the Java Persistence API (JPA) for this purpose. As an
alternative to Java DB and Hibernate, I will also go deeper into the MySQL database solution in
connection with EclipseLink. We will look at the topic of web services from both sides in this part: on the
one hand, it is about using any available web services using SOAP. On the other hand, it is about
connecting server-side Java EE applications using SOAP and REST-based web services. A final chapter
will answer questions concerning authentication of users and specific adaptation of the application.

In Part 6 you will learn which possibilities the NetBeans Platform provides concerning
internationalization and localization. Furthermore, this part covers the branding of the NetBeans
Platform as well as packing the whole application as a deliverable unit. In another chapter you will learn
about the update mechanism of the NetBeans Platform with which you can update your application in a
simple and transparent manner after delivering.

Part 7 of this book is about the different development and test tools of the NetBeans Platform or,
respectively, of the NetBeans IDE. First, it is about implementing NetBeans Platform applications using
the Maven build system. In another chapter you learn about how to develop NetBeans Platform
applications even within the Eclipse IDE using Maven. Additionally, one chapter will simplify changing
from the Eclipse IDE to the NetBeans IDE to develop NetBeans Platform applications. In addition to the
NetBeans and the Eclipse IDE, the IntelliJ IDEA can also be used to develop NetBeans Platform
applications. The NetBeans IDE provides a powerful GUI builder for the efficient development of user
interfaces. You will learn how to use it and how to debug and test your application in separate chapters.

Part 8 completes this guide with a fully functional example. In the course of this part, you develop
an MP3 manager application step by step. The previously described concepts and technologies come
together here and can be understood as in actual practice.

Downloading the Code
All examples and explanations in this book are based on Java 6 and NetBeans 7. You can download the
Java Development Kit (JDK 6) at http://java.oracle.com and NetBeans 7 at http://netbeans.org.

Each of the source code examples in this book can be downloaded from the Source Code/Download
area for this book on the Apress web site as a complete runnable NetBeans IDE project.

PART 1

Basics & Concepts: Basics
of the NetBeans Platform

C H A P T E R 1

3

Introduction

This chapter introduces you to rich client development. In the process, you will learn what a rich client is
and how a rich client platform can help you. This chapter will also briefly touch on the main advantages
and characteristics of the NetBeans Platform.

What Is a Rich Client?
In a client server architecture the term rich client is used for clients where the data processing occurs
mainly on the client side. The client also provides the graphical user interface (GUI). Often rich clients
are applications that are extendable via plugins and modules. In this way, rich clients are able to solve
more than one problem.

Rich clients are typically developed on top of a framework. A framework offers a basic starting point
on top of which the user can assemble logically related parts of the application, which are called
modules. Ideally, unrelated solutions (such as those made available by different providers) can work
together, so that all the modules appear to have been created as one whole.

Above and beyond all that, rich clients have the advantage that they are easy to distribute and
update, such as via an automatic online update function within the client itself or through a mechanism
that enables the rich client to start over the Internet (for example, via Java Web Start).

Here’s an overview of the characteristics of a rich client:

• Flexible and modular application architecture

• Platform independence

• Adaptability to the end user

• Ability to work online as well as offline

• Simplified distribution to the end user

• Simplified updating of the client

What Is a Rich Client Platform?
A rich client platform is an application lifecycle environment, a basis for desktop applications. Most
desktop applications have similar features, such as menus, toolbars, status bars, progress visualizations,

CHAPTER 1 INTRODUCTION

4

data displays, customization settings, the saving and loading of user-specific data and configurations,
splash screens, about boxes, internationalization, help systems, and so on. For these and other typical
client application features, a rich client platform provides a framework with which the features can
quickly and simply be put together.

The configurability and extensibility of an application take center stage in a framework of this kind.
As a result, you can, for example, declaratively provide the menu entries of an application in a text file,
then the menu will be loaded automatically by the framework. This means that the source code becomes
considerably more focused and manageable, and developers are able to concentrate on the actual
business needs of the application, while the menu is maximally configurable.

The most important aspect of a rich client platform is its architecture. Applications based on rich
client platforms are written in the form of modules, within which logically coherent parts of an
application are isolated. A module is described declaratively and automatically loaded by the platform.
As a result, there is no explicit binding necessary between the source code and the application. In this
way, a relatively loosely coupled relationship is established between independently functioning
modules, by means of which the dynamic extensibility of the application and the ability to swap its
constituent parts are enormously simplified. That way it is also very easy to assemble user- or domain-
specific applications from individual modules.

A rich client platform also frees the developer from being concerned with tasks that have little to do
with the application’s business logic. At the end of the development cycle, you achieve a well-deserved
and modern application architecture.

Advantages of a Rich Client Platform
Aside from the modularity offered by a rich client architecture,—which simultaneously implies a high
degree of robustness and end user value—the extensive development support it provides should also be
highlighted. These and other advantages of development based on rich client platforms are briefly
described here.

Reduction of Development Time
A rich client platform provides a multitude of application programming interfaces (APIs) for desktop
application development. For example, these APIs can be used by developers to manage windows and
menus or support the display of customization options. Through the reusability of many predefined
components, developers are able to concentrate very closely on the business logic of the application in
question.

User Interface Consistency
Usability of an application is always of crucial concern, particularly when the application is intended to
be used by professionals in a specific field. A rich client platform makes available a framework to display
the user interface (UI), with an emphasis on consistency, accessibility, and usability.

Updating an Application
Using a rich client platform, it is possible to quickly and efficiently distribute new or updated modules to
end users. As a result, not all the clients of an application need be informed by developers to switch to a

CHAPTER 1 INTRODuCTION

5

new version. Updates can be distributed and installed in the form of modules, so distinct features can be
developed and delivered by independently developer teams. The modular architecture of the
application ensures that completed modules can be distributed without having to wait for other
modules to be finalized.

Platform Independence
Rich client platforms are based on international standards and reusable components. As a result, Java
applications based on rich client platforms can be automatically deployed to multiple systems, such as
Windows or Linux, so long as an implementation of the Java Runtime Environment is available. Since
the feature set and the applicability of applications keep changing, it is very important that they are
developed in such a way that they are extendable and can be deployed to different target systems. All
this is provided by a rich client platform, saving time and money. Applications based on rich client
platforms do not require further libraries or components, other than the Java Runtime Environment.

Reusability and Reliability
Rich client platforms make a range of features and modules available, which can be used in the
developer’s own applications. If the module does not completely match the application’s requirements,
it is entirely possible to use it as a starting point, while extending it or changing it as needed. Since most
platforms also make their source code available, it may also, in some cases, be worth considering
changing or extending the platform itself. These factors imply a high degree of reliability and freedom.

Characteristics of the NetBeans Platform
In addition to the generic advantages of a rich client platform, the NetBeans Platform offers numerous
frameworks and several additional features that can be particularly useful to your applications. The
important ones, which constitute the main characteristics of the NetBeans Platform, are outlined here.

User Interface Framework
Windows, menus, toolbars, and other components are made available by the platform. As a result, you
focus on specific actions, which condense your code, making it better and less error prone. The
complete user interface offered by the NetBeans Platform is completely based on AWT/Swing and can
be extended with your own components.

Data Editor
The powerful NetBeans editor within the NetBeans integrated development environment (IDE) can be
used by your own application. The tools and functionality of the editor can quickly and easily be
extended and adapted to the purposes of the application.

CHAPTER 1 INTRODUCTION

6

Customization Display
A display of user- and application-specific settings is needed in every application. The NetBeans
Platform makes a framework available, making it extremely simple to integrate your own options
dialogs, letting the user save and restore settings in a way that is pleasing to the eye.

Wizard Framework
The NetBeans Platform offers simple tools to create extendable and user-friendly wizards, guiding the
user through complex steps in the application.

Data Systems
In terms of the NetBeans Platform, data can be local or available via FTP, CVS, a database, or an XML file.
By means of abstraction, data access by one module is transparent to all other modules. Actual data
access itself is therefore not a concern, since it is dealt with by the NetBeans Platform’s APIs.

Framework for the Management and Representation of Data
Based on the abstraction of files and saved data (described in the previous paragraph), the NetBeans
Platform provides a framework with which data can be assigned with specific actions or functions. It is
also part of the framework to manage and represent the data and its action on the user interface.

Central Service Management
The NetBeans Plaform provides a central service management with the lookup concept. This enables
you to provide and use certain services provided within an application independently of each other. This
concept is important, because it enables a loose coupling of application parts to be realized. This is one
of the important goals which the application of the NetBeans Platform pursues.

Internationalization
The NetBeans Platform provides classes and methods enabling the internationalization of JavaHelp and
other resources. You can easily store text constants in properties files. The NetBeans Platform also loads
text constants and icons applicable to the current country and language settings.

Help System
By means of the standard JavaHelp System, the NetBeans Platform offers a central system for the
integration and display of help topics to the end user. In addition, individual modules can contribute
their own topics to the application’s help system. On top of all that, the NetBeans Platform lets you
provide context-sensitive help as well.

CHAPTER 1 INTRODuCTION

7

Summary
In this chapter you learned the difference that a rich client can make. and the advantages a rich client
brings to the table, including its modular architecture, which is made possible by a module system
unique to rich client platforms. However, a rich client platform offers many other advantages and
features, including support for a consistent user interface and the ability to update applications with
new features at runtime. Finally, this chapter introduced the most important characteristics of the
NetBeans Platform.

C H A P T E R 2

9

Structure of the NetBeans
Platform

To give you an overview of how a rich client application is structured and to show the relationship of the
application you’re creating to the NetBeans Platform, this chapter will discuss the architecture of the
NetBeans Platform. It will also introduce the independent building blocks of the NetBeans Platform and
the responsibilities that the NetBeans runtime container handles for you. Finally, this chapter will
explain the structure of the NetBeans classloader system along with the role it plays in applications built
on top of the NetBeans Platform.

NetBeans Platform Architecture
The size and complexity of modern applications is steadily increasing. At the same time, professional
applications need to be flexible, above all, so that they can be quickly and easily extended. This makes it
necessary to divide an application into distinct parts. As a result, each distinct part is a building block
that makes up a modular architecture. The distinct parts must be independent, making available well-
defined interfaces that are used by other parts of the same application, with features that other parts of
the application can use and extend.

The division of an application into modules—that is, logically interdependent parts—enhances the
design of an application enormously. In contrast to a monolithic application, in which every class can
make use of code from any other class, the architecture is far more flexible and, more importantly, far
simpler to maintain. Although it is possible in Java to protect a class from access from the outside world,
but such class-level protection is too finely grained to be useful to most applications. It is exactly this
central aspect of modern client applications that the NetBeans Platform tackles. Its concepts and
structures support the development and conceptualization of flexible and modular applications.

The basic building block of the NetBeans Platform is modules. A module is a collection of
functionally-related classes together with a description of the interfaces that the module exposes, as well
as a description of the other modules that it needs in order to function. The complete NetBeans
Platform, as well as the application built on top of it, are divided into modules. These are loaded by the
core of the NetBeans Platform, which is known as the NetBeans runtime container. The NetBeans
runtime container loads the application’s modules dynamically and automatically, after which it is
responsible for running the application as well.

The NetBeans IDE is a very good example of a modular rich client application. The functionality and
characteristics of an IDE, such as its Java language support or the code editor, are created in the form of
modules on top of the NetBeans Platform, as shown in Figure 2-1. This offers a great advantage because
the application can be extended by additional modules and adapted to specific user needs, allowing
particular modules that are not used to be deactivated or uninstalled.

CHAPTER 2 STRUCTURE OF THE NETBEANS PLATFORM

10

Figure 2-1. Conceptual structure of the NetBeans IDE

To enable your applications to attain this level of modularity, the NetBeans Platform on the one
hand makes mechanisms and concepts available that enable modules to be extendable by other
modules, and on the other hand enables them to communicate with each other without being
dependent on each other. In other words, the NetBeans Platform supports a loose coupling of modules
within an application.

To optimize the encapsulation of code within modules, which is necessary within a modular system,
the NetBeans Platform provides its own classloader system. Each module is loaded by its classloader and,
in the process, makes a separate independent unit of code available. As a result, a module can explicitly
make its packages available, with specific functionality being exposed to other modules. To use
functionality from other modules, a module can declare dependencies on other modules. These
dependencies are declared in the module’s manifest file and resolved by the NetBeans runtime
container, ensuring that the application always starts up in a consistent state. More than anything else,
this loose coupling plays a role in the declarative concept of the NetBeans Platform. By that I mean that
as much as possible is defined in description and configuration files, in order to avoid a hard-wired
connection of these concepts with the Java source code.

A module is described by its manifest file’s data together with the data specified in related XML files
and therefore does not need to be explicitly added to the NetBeans Platform. Using XML files, the
NetBeans Platform knows the modules that are available to it, as well as their locations and the contracts
that need to be satisfied for them to be allowed to be loaded. These dependencies are declared in the
module’s manifest file and resolved by the NetBeans runtime container, ensuring that the application
always starts up in a consistent state. The NetBeans Platform itself is formed from a group of core
modules (see Figure 2-2), which are needed for starting the application and for defining its user
interface. To this end, the NetBeans Platform makes many API modules and service provider interface
(SPI) modules available, simplifying the development process considerably. Included in this group
(shown in Figure 2-2) are, for example, the Actions API, which makes available the often needed action
classes; the powerful Nodes API; and the Options SPI, which helps your own options dialogs to be easily
integrated into the application. In addition to these, there are also complete reusable components in the
NetBeans Platform, such as the Output Window and the Favorites module.

CHAPTER 2 STRUCTURE OF THE NETBEANS PLATFORM

11

Figure 2-2. NetBeans Platform architecture

NetBeans Platform Distribution
Normally you do not need to separately download a distribution of the NetBeans Platform, because the
NetBeans Platform is already a basic part of the NetBeans IDE, which is a rich client application itself.
Developing your application in the NetBeans IDE, the Platform is extracted from the NetBeans IDE.
However, there is the possibility of also adding multiple NetBeans Platforms to the NetBeans IDE. To
that end, you can download a separate distribution of the NetBeans Platform from the official site, at
http://netbeans.org/features/platform.

Now let’s take a closer look at the important parts of the NetBeans Platform distribution:

• The modules org.netbeans.bootstrap, org.netbeans.core.startup, org-openide-
filesystems, org-openide-modules, org-openide-util, and org-openide-util-
lookup comprise the NetBeans runtime container, which is the core of the
platform and is responsible for the development of all other modules.

• The NetBeans Platform also supports OSGi technology. The modules needed for
this are org.netbeans.libs.felix, org.netbeans.core.osgi,
org.netbeans.core.netigso, and org.netbeans.libs.osgi.

• The modules org-netbeans-core, org-netbeans-core-execution, org-netbeans-
core-ui, and org-netbeans-core-windows provide basic functionalities for the API
modules.

• org-netbeans-core-output2 is a complete application module which can be used
as a central output window.

• The module org-netbeans-core-multiview is a framework for MultiView Windows,
(e.g., the form editor window) and provides an API for it.

CHAPTER 2 STRUCTURE OF THE NETBEANS PLATFORM

12

• The module org-openide-windows contains the Window System API, which is the
API that is probably used most. It includes basic classes for developing windows
and the windows manager, among others. From the windows manager you can
access information about all existing windows.

• The update functionality of an application is implemented by the module org-
netbeans-modules-autoupdate-services. This module provides the complete
functionality for finding, downloading, and installing modules. The module org-
netbeans-modules-autoupdate-ui provides the Plugin Manager, which enables the
user to manage and control modules and updates.

• With the org-netbeans-modules-favorites module you can display random data
and directory structures and thereby influence their actions via the Data Systems
API.

• The org-openide-actions module provides a set of frequently used actions, such
as copy, cut, and print. The functionality of these actions can be implemented in a
context-sensitive manner.

• A very powerful module is org-openide-loaders, which contains the Data Systems
API. This can be used to create dataloaders that can be linked with certain types of
files and then create data objects for it. A special behavior can be added to these
data objects in a simple way.

• The Nodes API of the module org-openide-nodes is a very central feature of the
NetBeans Platform. Nodes can, for example, be displayed in an explorer view; by
doing so, nodes can provide actions and property sheets for data objects.

• The org-openide-explorer module provides a framework to develop explorer
views as used, for example, in the projects or file view of the NetBeans IDE.

• The org-netbeans-modules-editor-mimelookup module provides an API to find
MIME type–specific settings, services, and other objects, such as an SPI to
implement your own MIME type–specific data provider. The org-netbeans-
modules-editor-mimelookup-impl module is a special implementation of this SPI
which is responsible for finding objects in the directory structure of the System
Filesystem.

• org-netbeans-modules-javahelp contains the JavaHelp runtime library and
provides an implementation to the modules API, which makes it possible for
application modules to integrate their own helpsets by means of the JavaHelp
technology.

• The QuickSearch SPI for implementing and providing your own providers is
located in the module org.netbeans.spi.quicksearch.

• The master filesystem module org-netbeans-modules-masterfs provides an
important wrapper filesystem.

• The module org-netbeans-modules-options-api provides an option dialog and an
SPI, making it easy to add your own option panels.

CHAPTER 2 STRUCTURE OF THE NETBEANS PLATFORM

13

• Long-running tasks can be managed centrally by the module org-netbeans-api-
progress. The module org-netbeans-modules-progress-ui provides a visualization
of this with which it is possible to stop separate tasks.

• org-netbeans-modules-queries provides a general query API with which modules
can query information about files. An SPI is also provided to supply your own
query implementations.

• org-netbeans-modules-sendopts, this module provides a Command Line Parsing
API and an SPI with which your own handlers can become registered for
command lines.

• The org-netbeans-modules-settings module provides an API to save module-
specific settings in a user-defined format. It also provides several useful setting
formats.

• The org-openide-awt module includes the UI Utilities API, by which the different
help classes for creating the user interface are provided.

• In the module org-openide-dialogs an API for displaying standard and
application-specific dialogs is provided. The Wizard Framework is located in this
module.

• org-openide-execution provides an API for executing long-running asynchronous
tasks.

• org-openide-io provides an API and an SPI for the input and output of files. This
module also provides a standard implementation with which you can write on the
Output Window module.

• The Text API in the module org-openide-text provides an extension of the
javax.swing.text API.

• The modules org-netbeans-swing-plaf and org-netbeans-swing-tabcontrol are
responsible for the adaptation of the look and feel and displaying the tabs. The
module org-jdesktop-layout is a wrapper module of the Swing layout extenstion
library.

• The Visual Library API is provided by the module org-netbeans-api-visual.

Furthermore, it is possible to add modules out of the IDE distribution to the listed modules.

NetBeans Runtime Container
The basis of the NetBeans Platform and its modular architecture is called NetBeans Runtime Container.
It consists of the following five modules:

• Bootstrap: This module is executed initially. It executes all registered command-
line handlers, creates a boot classloader which loads the startup module, and then
executes it.

• Startup: This module deploys the application by initializing the module system
and the file system.

CHAPTER 2 STRUCTURE OF THE NETBEANS PLATFORM

14

• Module System API: This API is responsible for the management of the modules
and for their settings and dependencies.

• File System API: This API provides a virtual file system which provides a platform-
independent access . It is mostly used for loading resources of the modules.

• Lookup & Utilities API : This component provides an important base component
which is used for the intercommunication of the modules. The Lookup API is
located in an independent module, so it can be used independently of the
NetBeans Platform.

The arrows in Figure 2-3 show the dependencies of these five basic modules.

Figure 2-3. NetBeans runtime container

The runtime container is the minimal form of a rich client application and can be executed as such
without further modules. If there are no tasks to do, the runtime container would directly shut down
again after starting up. It is interesting to note that, on the one hand, the Netbeans Platform can create
applications with an extensive user interface, and on the other, can also use this runtime container for a
modular command-line application. Starting the runtime container, it finds all available modules and
creates an internal registry out of them. Usually, one module is just loaded when needed. First, it is
registered as existing. However, a module has the possibility to do tasks right at the start. This is done by
the Module Installer, which will be discussed in Chapter 3. The runtime container also facilitates
dynamic loading, unloading, installing, and uninstalling of modules during runtime. This functionality is
especially necessary for users when updating an application (with the auto update function). It is also
necessary for deactivating unneeded modules within an application.

For a complete understanding of the process of a rich client application, it is also important to
mention that the Bootstrap module (the first module executed) is started by a platform-specific
launcher. This launcher is also responsible for identifying the Java Runtime Environment. The launcher
is part of the NetBeans Platform and is operating system (or OS) specific, so that, for example, on
Windows systems it is an .exe file.

NetBeans Classloader System
The NetBeans classloader system is part of the NetBeans runtime container and a precondition for
encapsulating the module and the structure of a modular architecture. This system consists of three
different types of classloaders. These are the module classloader, the system classloader, and the original
classloader.

• Most classes are loaded by the module classloader.

CHAPTER 2 STRUCTURE OF THE NETBEANS PLATFORM

15

• The system classloader is only used in certain cases, such as when resources must
be accessed outside a module.

• The original classloader loads resources out of the class path of the launcher of the
application.

The module classloader and the system classloader are multiparent classloaders; they can have not
just one classloader as parent, as usual, but any number of parents. Figure 2-4 shows the connections of
the single classloader types.

Figure 2-4. NetBeans classloader system

Module Classloader
For each module registered in the Module System, an instance of the module classloader is created, by
means of which every module obtains its own namespace. This classloader primarily loads classes from
the module’s JAR archive, but it may load from multiple archives, as often happens with library wrapper
modules. You will learn more about this in Chapter 3.

The original classloader is implicitly a parent classloader of every module classloader, and is the first
on the parent’s list. Further parents are those of related modules, on which dependencies have been set.
How dependencies are set is described in Chapter 3.

This multiparent module classloader enables classes to be loaded from other modules, while
avoiding namespace conflicts. The loading of classes is delegated to the parent classloader, rather than
the modules themselves. In addition to the classes of the module JAR archive, this classloader is also
responsible for loading the Locale Extension Archive (see Chapter 34) from the subdirectory locale, as
well as the patch archives under the subdirectory patches, if these are available.

System Classloader
The system classloader is, by default, a multiparent classloader. It owns all the instantiated module
classloaders as its parents. As a result, it is theoretically possible to load everything provided by a module
with this classloader. Access to the system classloader can be obtained in one of two different ways: via

CHAPTER 2 STRUCTURE OF THE NETBEANS PLATFORM

16

Lookup (about which you will read much more later), as well as the context classloader of the current
thread. This is the default (insofar as you have not explicitly set other context classloaders) of the system
classloader.

ClassLoader cl = (ClassLoader) Lookup.getDefault().lookup(ClassLoader.class);

or

ClassLoader cl = Thread.currentThread().getContextClassLoader();

Original Classloader
The original (application) classloader is created by the launcher of the application. It loads classes and
other resources on the original CLASSPATH and from the lib directories and their ext subdirectories as
well. If a JAR archive is not recognized as a module (that is, the manifest entries are invalid), it is not
transferred to the module system. Such resources are always found first: if the same resource is found
here as in the module JAR archive, those found in the module are ignored. This arrangement is necessary
for the branding of modules, for example, as well as for the preparation of multiple language
distributions of a particular module. As before, this classloader is not used for loading all related
resources. It is much more likely to be used for resources that are needed in the early start phase of an
application, such as for the classes required for setting the look and feel classes.

Summary
This chapter examined the structure of the NetBeans Platform beginning with a look at its architecture,
the core of which is provided by its runtime container. The runtime container provides the execution
environment of applications created on top of the NetBeans Platform and also provides an
infrastructure for modular applications. The NetBeans classloader system, which ensures the
encapsulation of modules, was introduced and explained. Aside from the runtime container, many
modules form parts of the NetBeans Platform and this chapter looked briefly at each of these, finally
noting that the NetBeans IDE is itself a rich client application consisting of modules reusable in your
own applications.

C H A P T E R 3

17

The NetBeans Module System

The NetBeans Module System is responsible for managing all modules. This means it is responsible for
tasks such as creating the classloader, loading modules, or activating or deactivating them. The
NetBeans module system was designed using standard Java technologies, as much as possible. The basic
idea for the module format originates from the Java extension mechanism. The fundamental ideas of the
package versioning specification are used to describe and manage dependencies between application
modules and applications of system modules.

Basic properties, such as the description of a module and the dependencies on another module, are
described in a manifest file. This file uses the standard manifest format with additional NetBeans-
specific attributes. The Java Activation Framework and Java Development Kit (JDK) internal functions
(such as the support of executable JAR archives) were models for the module specification. Most
modules do not need a special installation code, except of the attributes in the manifest file, meaning
they are declaratively added to the Platform. An XML file, the layer.xml file, provides user-specific
information and defines the integration of a module into the Platform. In this file everything is specified
that a module wants to add to the Platform, ranging from actions to menu items to services, among
others.

Structure of a Module
A module is a simple JAR archive which usually consists of the following parts:

• Manifest file (manifest.mf)

• Layer file (layer.xml)

• Class files

• Resources like icons, properties bundles, helpsets, etc.

Only the manifest file is obligatory, because it identifies a module. All other content depends on its
modules task. For example, if the module just represents a library, no layer file is needed. The structure
of a module is shown in Figure 3-1.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

18

Figure 3-1. NetBeans module

Furthermore, an XML configuration file (com-galileo-netbeans-module.xml), which is located
outside the JAR archive, belongs to each module. This is the first file read by the module system; that is,
it announces the module to the Platform.

Configuration File
Each module is declared in the module system by an XML configuration file, located outside the module
in the directory config/Modules of a cluster. This directory is read by the module system when the
application is started. The modules are loaded according to this information. In this configuration file
the name, version, and the location of the module are defined and whether and how a module is loaded
is defined. This file has the following structure, as shown in Listing 3-1.

Listing 3-1. Module configuration file: com-galileo-netbeans-module.xml

<module name="com.galileo.netbeans.module">
 <param name="autoload">false</param>
 <param name="eager">false</param>
 <param name="enabled">true</param>
 <param name="jar">modules/com-galileo-netbeans-module.jar</param>
 <param name="reloadable">false</param>
 <param name="specversion">1.0</param>
</module>

The enabled attribute defines whether a module is loaded, and therefore whether it is provided to
the application. There are three ways to determine at which point a module should be loaded:

CHAPTER 3 THE NETBEANS MODULE SYSTEM

19

• Regular: Most application modules are this type. They are loaded when starting
the application. The application loading time is extended by the time of module
initialization. Therefore, it is recommended to keep the module initialization very
short. Normally, it is not necessary to run anything during module loading,
because many tasks can be defined declaratively.

• Autoload: These modules are just loaded, when another module requires them.
Autoload modules correspond to the principle of Lazy-Loading. This mode is
usually used for those modules acting as libraries.

• Eager: Eager modules are only loaded when all dependencies are met. This is
another possibility for minimizing the starting time. For example, if a module X
depends on the modules A and B which are actually not even available, it makes
no sense to load module X.

If the value of both attributes autoload and eager is false, a module is type Regular. If one of these
values is true, the module type is Autoload or Eager. The module type is defined in the API Versioning
section of the modules Properties (see Figure 3-7). Regular mode is used, by default.

Manifest File
Each module running within the NetBeans Platform has a manifest file. This file is a textual description
of the module and its environment. When loading a module, the manifest file is the first file read by the
module system. A NetBeans module is recognized if the manifest file contains the OpenIDE-Module
attribute. This is the only mandatory attribute. Its value can be any identifier (typically the code name is
the base of the used module—for example, com.galileo.netbeans.module). Therefore, conflicts cannot
occur between modules, even if created by various developers. This identifier is used to clearly
distinguish a non-ambiguous module which is necessary for upgrades or dependency definitions, for
example.

Attributes
In the following, frequently used manifest attributes are listed. A module can be textually described with
those manifest attributes. Additionally, those attributes determine the integration of a module into the
Platform.

• OpenIDE-Module: This attribute defines a unique name for the module used for
recognition as a module by the module system. Defining this attribute is
obligatory.

OpenIDE-Module: com.galileo.netbeans.module

• OpenIDE-Module-Name: This defines a displayable name of the module which is also
displayed in the plugin manager.

OpenIDE-Module-Name: My First Module

• OpenIDE-Module-Short-Description: A short functionality description by the
module.

OpenIDE-Module-Short-Description:
 This is a short description of my first module

CHAPTER 3 THE NETBEANS MODULE SYSTEM

20

• OpenIDE-Module-Long-Description: With this attribute the functionality of the
module can be better described. This text is also displayed in the plugin manager.
Thus, it makes sense to always use this attribute, to inform the user about the
module’s features.

OpenIDE-Module-Long-Description:
 Here you can put a longer description with more than one
 sentence. You can explain the capability of your module.

• OpenIDE-Module-Display-Category: With this attribute, modules can be grouped to
a virtual group so it can be presented to the user as a functional unit.

OpenIDE-Module-Display-Category: My Modules

• OpenIDE-Module-Install: A module installer class can be registered with this
attribute (see the section Lifecycle), in order to execute actions at certain points of
time of the module life cycle.

OpenIDE-Module-Install: com/galileo/netbeans/module/Installer.class

• OpenIDE-Module-Layer: This is one of the most important attributes. With it the
path of the layer file is specified (see the section Layer File). The integration of a
module into the Platform is described by the layer file.

OpenIDE-Module-Layer: com/galileo/netbeans/module/layer.xml

• OpenIDE-Module-Public-Packages: To support encapsulation, accessing classes in
other modules is denied by default. With this attribute, packages can be explicitly
declared as public so other modules can access it. This is especially essential with
libraries.

OpenIDE-Module-Public-Packages:
 com.galileo.netbeans.module.actions.*,
 com.galileo.netbeans.module.util.*

• OpenIDE-Module-Friends: If only certain modules can access the packages which
are declared as public with the attribute OpenIDE-Module-Public-Packages then
those may be stated here.

OpenIDE-Module-Friends:
 com.galileo.netbeans.module2,
 com.galileo.netbeans.module3

• OpenIDE-Module-Localizing-Bundle: Here, a properties file can be defined that is
used as a localizing bundle (see Chapter 8).

OpenIDE-Module-Localizing-Bundle:
 com/galileo/netbeans/module/Bundle.properties

Versions and Dependencies
Different versions and dependencies can be defined with the following attributes. In the section
Versioning and Dependencies you find a detailed description of the application and of the whole
functionality of these attributes.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

21

• OpenIDE-Module-Module-Dependencies: With this attribute the dependencies
between modules are defined, and the least-needed module version can also be
specified.

OpenIDE-Module-Module-Dependencies:
 org.openide.util > 6.8.1,
 org.openide.windows > 6.5.1

• OpenIDE-Module-Package-Dependencies: A module may also depend on a specific
package. Such dependencies are defined with this attribute.

OpenIDE-Module-Package-Dependencies: com.galileo.netbeans.module2.gui > 1.2

• OpenIDE-Module-Java-Dependencies: If a module requires a specific Java version, it
can be set with this attribute.

OpenIDE-Module-Java-Dependencies: Java > 1.5

• OpenIDE-Module-Specification-Version: This attribute indicates the specification
version of the module. It is usually written in the Dewey-Decimal format.

OpenIDE-Module-Specification-Version: 1.2.1

• OpenIDE-Module-Implementation-Version: This attribute sets the implementation
version of the module, usually by a timestamp. This number should change with
every change of the module.

OpenIDE-Module-Implementation-Version: 200701190920

• OpenIDE-Module-Build-Version: This attribute has only an optional character and
is ignored by the module system. Typically, a timestamp is given.

OpenIDE-Module-Build-Version: 20070305

• OpenIDE-Module-Module-Dependency-Message: Here, a text can be set. This text is
displayed if a module dependency cannot be resolved. In some cases, it can be
quite normal to have an unresolved dependency. In this case, it is a good idea to
show the user a helpful message, informing them where the required modules can
be found or why none are needed.

OpenIDE-Module-Module-Dependency-Message:
 The module dependency is broken. Please go to the
 following URL and download the module.

• OpenIDE-Module-Package-Dependency-Message: The message defined by this
attribute is displayed if a necessary reference to a package fails.

OpenIDE-Module-Package-Dependency-Message:
 The package dependency is broken. The reason could be…

• OpenIDE-Module-Deprecated: Use this to mark an old module which is no longer
supported. A warning is displayed if the user tries to load the module into the
Platform.

OpenIDE-Module-Deprecated: true

CHAPTER 3 THE NETBEANS MODULE SYSTEM

22

• OpenIDE-Module-Deprecation-Message: Use this attribute to add optional
information. Both the information and the deprecated warning are displayed in
the application log so, for example, you can tell the user which module to use
instead. Note that this message will only be displayed if the attribute OpenIDE-
Module-Deprecated is set to true.

OpenIDE-Module-Deprecation-Message:
 Module 1 is deprecated, use Module 3 instead.

Service Interfaces and Service Implementations
The following attributes are used to define certain service provider interfaces and implementations.
Further information on this topic can be found in Chapter 5.

• OpenIDE-Module-Provides: Use this attribute to declare a service interface to which
this module furnishes a service provider.

OpenIDE-Module-Provides: com.galileo.netbeans.spi.ServiceInterface

• OpenIDE-Module-Requires: Here, a service interface can be declared for which the
module needs a service provider. It does not matter which module provides an
implementation of the interfaces.

OpenIDE-Module-Requires: org.openide.windows.IOProvider

• OpenIDE-Module-Needs: This attribute is an understated version of the require
attribute and does not need any specific order of modules. This may be useful
with API modules which require a specific implementation.

OpenIDE-Module-Needs: org.openide.windows.IOProvider

• OpenIDE-Module-Recommends: Using this attribute, you can realize an optional
dependency. For example, if there is a module which provides a java.sql.Driver
implementation, this module is activated and access is granted. Nevertheless, if no
provider of this token is available, the module defined by the optional dependency
can be executed.

OpenIDE-Module-Recommends: java.sql.Driver

• OpenIDE-Module-Requires-Message: Like the two previous attributes, a message
can be defined with this attribute. This message is displayed if a required token is
not found.

OpenIDE-Module-Requires-Message:
 The required service provider is not available. For more
 information go to the following website.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

23

OPERATING SYSTEM-DEPENDENT MODULES

The manifest attribute OpenIDE-Module-Requires allows you to define modules that tend to be used on a
specific operating system. This attribute is used to check the presence of a particular token. The following
tokens are available:

org.openide.modules.os.Windows
org.openide.modules.os.Linux
org.openide.modules.os.Unix
org.openide.modules.os.PlainUnix
org.openide.modules.os.MacOSX
org.openide.modules.os.OS2
org.openide.modules.os.Solaris

The module system ensures that the tokens are only available on the appropriate operating systems. For
example, a module that is automatically activated by the module system using a Windows system would
automatically be deactivated with all others. To provide a module that automatically loads on Windows
systems but automatically deactivates on other operating systems, set the module type to eager and add
the following entry to the manifest file:

OpenIDE-Module-Requires: org.openide.modules.os.Windows

Visibility
With the following attributes, the visibility of modules within the plugin manager is controlled. This way,
modules can be hidden, which are not important to the end user of your application.

• AutoUpdate-Show-In-Client: This attribute determines whether a module is
displayed in the plugin manager. It can be set to true or false.

AutoUpdate-Show-In-Client: true

• AutoUpdate-Essential-Module: With this attribute you can mark modules that are
part of your application. A module which is marked like this cannot be deactivated
or uninstalled in the plugin manager by the user. It can be set to true or false.

AutoUpdate-Show-In-Client: true

In conjunction with these two attributes, so-called kit modules were introduced in the NetBeans
Platform. Each visible module (AutoUpdate-Show-In-Client: true) is treated as a kit module in the
plugin manager. All modules on which the kit module defines a dependency are treated the same way,
except for invisible modules which belong to other kit modules, too. This means if a kit module is
deactivated, all dependent modules will be deactivated as well.

This way you can build wrapper modules to several logically related modules. Then you can display
them to the end user as a unit. You can create an empty module in which the AutoUpdate-Show-In-
Client attribute is set to true, while defining a dependency on all modules which belong to this kit
module. Then you set the attribute AutoUpdate-Show-In-Client to false in the dependent modules so
they are not displayed separately.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

24

Example
Listing 3-2 shows a manifest file with some typical attributes.

Listing 3-2. Example of a Manifest File

OpenIDE-Module: com.galileo.netbeans.module
OpenIDE-Module-Public-Packages: -
OpenIDE-Module-Module-Dependencies:
 com.galileo.netbeans.module2 > 1.0,
 org.jdesktop.layout/1 > 1.4,
 org.netbeans.core/2 = 200610171010,
 org.openide.actions > 6.5.1,
 org.openide.awt > 6.9.0,
OpenIDE-Module-Java-Dependencies: Java > 1.6
OpenIDE-Module-Implementation-Version: 200701100122
OpenIDE-Module-Specification-Version: 1.3
OpenIDE-Module-Install: com/galileo/netbeans/module/Install.class
OpenIDE-Module-Layer: com/galileo/netbeans/module/layer.xml
OpenIDE-Module-Localizing-Bundle: com/galileo/netbeans/module/Bundle.properties
OpenIDE-Module-Requires:
 org.openide.windows.IOProvider,
 org.openide.modules.ModuleFormat1

Layer File
In addition to the manifest file of a module with which mainly the interfaces and the environment of a
module are described, there is also a Layer file. This is the central configuration file, in which virtually
everything is defined what a module adds to the Platform. So, the layer file is the interface between the
module and the NetBeans Platform, declaratively describing the integration of a module into the
Platform. Firstly, the attribute OpenIDE-Module-Layer makes public if a layer file exists in the manifest file.
During that process the path of the file is defined, usually using layer.xml as the file name.

OpenIDE-Module-Layer: com/galileo/netbeans/module/layer.xml

This file format is a hierarchical file system containing folders, files, and attributes. Starting the
application, all existing layer files are summarized to one virtual file system. This is the so-called System
Filesystem which is the runtime configuration of the NetBeans Platform.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

25

Figure 3-2. System Filesystem

This layer file contains certain default folders. They are defined by different modules which are
extension points. So, there is the default folder Menu, for example, which looks like Listing 3-3.

Listing 3-3. Default Folder of the Layer File

<folder name="Menu">
 <folder name="Edit">
 <file name="MyAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyAction.instance"/>
 </file>
 </folder>
</folder>

In this example, the action class MyAction is added to the Edit menu. Do not worry about the exact
syntax at this point; it is explained in the context of respective standard folders in later chapters. First of
all, we elaborate this basic structure of the layer file. In addition, the NetBeans Platform provides
practical features for working with the layer file, as shown in subsequent chapters, when our first module
will be created. You can also find an index with the most important extension points in this book’s
appendix.

Every module is able to add new menu items or create new toolbars. Since each layer file of a
module is merged to the System Filesystem, the entire menu bar content is assembled. The window
system, which is responsible for generating the menu bar, now has to read the Menu folder in order to
gain the content of the entire menu bar.

This System Filesystem also contributes significantly to the fact that modules can be added or
removed at runtime. Listeners can be registered on this System Filesystem. This is done by the window

CHAPTER 3 THE NETBEANS MODULE SYSTEM

26

system, too, for example. If any changes occur because of an added module, the window system or the
menu bar itself can update its content.

Order of Folders and Files
The order in which the entries are read out of the layer file (and the order they are displayed in the menu
bar), can be determined by a position attribute as shown in Listing 3-4.

Listing 3-4. Defining the Order of Entries in the Layer File

<filesystem>
 <folder name="Menu">
 <folder name="Edit">
 <file name="CopyAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/org-openide-actions-CopyAction.instance"/>
 <attr name="position" intvalue="10"/>
 </file>
 <file name="CutAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/org-openide-actions-CutAction.instance"/>
 <attr name="position" intvalue="20"/>
 </file>
 </folder>
 </folder>
</filesystem>

Thus, the copy action would be shown before the cut action. If necessary, you can also use this
attribute to define the order of the folder elements. In practice, positions are chosen with greater
distance. This simplifies the subsequent insertion of additional entries. Should the same position be
assigned twice, a warning message is logged while running the application.

In order to easily position the layer content, the NetBeans IDE offers a layer tree in the projects
window, in which all entries of the layer files are shown. There, their order can be defined by drag-and-
drop. The respective entries in the layer file are then handled by the IDE. Where exactly to find these
layer trees is already explained in the section Creating Modules after creating our first module. You can
determine the order of actions with the wizard of the NetBeans IDE (see Chapter 6). The respective
attributes are then created by the wizard.

Should positions of entries in the layer tree be changed, some entries will be added to the layer file.
These entries overwrite the default positions of the entries affected by the change. The position of an
entry (also of an entry of a NetBeans Platform module) is overwritten as follows:

<attr name="Menu/Edit/CopyAction.shadow/position" intvalue="15"/>

Use the complete file path of the affected entry in front of the attribute name position.

File Types
There are different file types provided within the System Filesystem. You will be confronted with them at
some points again, when developing your application. For example, registering actions and menu
entries in the layer file. I want to explain two frequently used file types in the following sections.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

27

instance Files
Files of the type .instance in the System Filesystem describe objects of which instances can be created.
The filename typically describes the full class name of a Java object (for example, com-galileo-netbeans-
module-MyClass.instance), which makes a default constructor or static method create an instance.

<filesystem>
 <file name="com-galileo-netbeans-module-MyClass.instance"/>
</filesystem>

An instance is created by using the File Systems and Data Systems API, as follows:

FileObject o = FileUtil.getConfigFile(name);
DataObject d = DataObject.find(o);
InstanceCookie c = d.getLookup.lookup(InstanceCookie.class);
c.instanceCreate();

If you want a more convenient name for an instance, the full class name can be defined by using the
instanceClass attribute. This enables much shorter names to be used:

<file name="MyClass.instance">
 <attr name="instanceClass" stringvalue="com.galileo.netbeans.module.MyClass"/>
</file>

In classes that do not have a parameterless defauld contructor, create the instance via a static
method defined by the instanceCreate attribute.

<file name="MyClass.instance">
 <attr name="instanceCreate" methodvalue="com.galileo.netbeans.module.MyClass.getDefault"/>
</file>

Doing so, the FileObject of the entry is passed to the getDefault() method, if declared so in the
factory method signature. With this FileObject you can read self-defined attributes, for example.
Assuming, you want to define the path of an icon or any other resource in the layer file as an attribute:

<file name="MyClass.instance">
 <attr name="instanceCreate" methodvalue="com.galileo.netbeans.module.MyClass.getDefault"/>
 <attr name="icon" urlvalue="nbres:/com/galileo/icon.gif"/>
</file>

The getDefault() method with which an instance of the MyClass class can be created could thus
look like the following:

public static MyClass getDefault(FileObject obj) {
 URL url = (URL) obj.getAttribute("icon");
 ...
 return new MyClass(...);
}

As you will recognize, I specified the path with a urlvalue attribute type. Therefore, a URL instance
is directly delivered. In addition to the already known attribute types stringvalue, methodvalue, and
urlvalue there are several others. We will take a closer look at them in the section Layer File.

One or more instances of a certain type can also be generated by a Lookup rather than via an
InstanceCookie, as previously shown. Contrary to what was shown previously, you can easily produce
multiple instances of a certain type and create the Lookup for a particular folder of the System

CHAPTER 3 THE NETBEANS MODULE SYSTEM

28

Filesystem. Using the lookup() or the lookupAll() method, one or more instances (if several have been
defined) can be delivered.

Lookup lkp = Lookups.forPath("MyFolder");
Collection<? extends MyClass> c = lkp.lookupAll(MyClass.class);

Such a Lookup is used in Chapter 10 to extend the content menu of the top component with your
own actions defined in the layer file. The basic class or the interface can be user defined by the
instanceOf attribute in the layer file. This allows a more efficient working of Lookup and avoids Lookup
having to initiate each object in order to determine from which base class the class will inherit, or which
interface it implements. This way, the Lookup can directly create only the desired object type instances.

If the class MyClass from the prior entry implements, for example, the MyInterface interface, we can
complete the entry as follows:

<file name="com-galileo-netbeans-module-MyAction.instance">
 <attr name="instanceOf" stringvalue="com.galileo.netbeans.module.MyInterface"/>
</file>

shadow Files
.shadow files are a kind of link of reference to an .instance file. They are mainly used when singleton
instances of objects, as with actions, are used. These are defined by an .instance file in the Actions
folder. An entry in the Menu or Toolbars folder then refers to the action by using the .shadow file. A
.shadow file refers to files in the System Filesystem as well as to files on disk. This way, the Favorites
module stores its entries. The path to the .instance file is specified by the attribute originalFile (see
Listing 3-5).

Listing 3-5, Connecting a .shadow File with an .instance File

<folder name="Actions">
 <folder name="Window">
 <file name="com-galileo-netbeans-module-MyAction.instance"/>
 </folder>
</folder>
<folder name="Menu">
 <folder name="Window">
 <file name="MyAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Window/com-galileo-netbeans-module-MyAction.instance"/>
 </file>
 </folder>
</folder>

Attribute Values
Mostly, file entries are expanded by attributes in the System Filesystem. The attributes can have quite
different meanings, though. For example, the name of a registered action is defined by the attribute. It is
possible to define class names or factory methods by attributes elsewhere. The System Filesystem
provides a series of types with which the attribute values become available; with those attributes, the
different attribute values can be read out. The most common types and their meaning are shown in
Table 3-1. All types are listed in the Filesystem DTD (see Appendix).

CHAPTER 3 THE NETBEANS MODULE SYSTEM

29

Table 3-1. Types of Attribute Values and Their Meanings

Type Meaning / Usage

intvalue Specification of numerical values, e.g., for the location of files
and folders by the position attribute.

boolvalue Specification of true or false, e.g., for defining whether an
action shall be executed asynchronously by the asynchronous
attribute.

stringvalue Specification of textual constants, e.g., naming an action.

urlvalue Specification of paths, e.g., assigning an icon of an action as
follows:

nbres:/com/galileo/netbeans/module/icon.gif

methodvalue With this you can define a factory method with which a class
shall become instantiated. To get there, specify the code name
base, the class name, and the method as follows:

com.galileo.netbeans.module.MyClass.getDefault

newvalue Use this type when a class shall be instantiated with its default
constructor. Specify the class name with code name base:

com.galileo.netbeans.module.MyClass

bundlevalue Using this type, the attribute value is read from a properties
bundle. This is very helpful with names of actions, for example.
Like this, you can outsource text constants so they can be
localized easier. The key follows the complete name of the
bundle, separated by the # symbol:

com.galileo.netbeans.Bundle#CTL_MyFirstAction

A factory method which is indicated by the type methodvalue has different signatures:

static MyClass factoryMethod();
static MyClass factoryMethod(FileObject fo);
static MyClass factoryMethod(FileObject fo, String attrName);
static MyClass factoryMethod(Map attrs);
static MyClass factoryMethod(Map attrs, String attrName);

You get access on the according entry in the System Filesystem by the FileObject parameter in a
simple way. With this object you can access the referring attributes (compare the section File Types). You
directly get the attributes when using a Map as parameter of your factory method.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

30

Accessing System Filesystem
Of course it it possible that your own module folder, files, and attributes are used from the layer file to
provide module extension points to others. You get access on the System Filesystem by the following call
for reading entries:

FileUtil.getConfigRoot();

This call provides the root of the System Filesystem as FileObject. From there, you can access the
whole content. You can also use the following method if you want to access a certain path in the System
Filesystem:

FileUtil.getConfigFile(String path);

In Chapter 10 I will show you an example of how to define your own entries in the layer file, read
them, and thus provide an extension point to other modules.

Creating Modules
Now it is time to create your first module. A good introduction to module development is also offered by
the sample applications already integrated in the NetBeans IDE. For simplicity’s sake, you will just
design a single module here.

First, create a NetBeans Platform Application or a Module Suite. This way you will be able to execute
and test the module easier, and you can define dependencies to your own modules and libraries (see the
“Defining Dependencies” section). Afterward, you can even create an independent rich client
distribution (see Chapter 35).

The NetBeans IDE provides a wizard to help you apply a NetBeans Platform Application project.

1. Start the NetBeans IDE and then select File New Project… in the menu.
Different project categories are displayed in the dialog that appears on the left
side. Select NetBeans Modules there. Then choose the project type NetBeans
Platform Application on the right side (see Figure 3-3).

CHAPTER 3 THE NETBEANS MODULE SYSTEM

31

Figure 3-3. Creating a new NetBeans Platform application project

2. On the next page, name the application (for example, My Application) and
choose the location where the project is to be saved. The remaining fields can
be left blank.

3. Click the Finish button to create the NetBeans Platform application project.

4. Now the first module can be created; another wizard is available for this task.
Open the File New Project … menu. Choose the category NetBeans Modules,
and then the project type Module on the right side.

5. Click the Next button to go to the next page, for naming the project. Enter here,
for example, My Module, and then select the option Add to Module Suite, and
select the previously created NetBeans Platform Application or Module Suite
from the list.

6. On the last page, define the Code Name Base and a module display name. The
default value for the Localizing Bundle can be kept. To make it complete,
activate the option Generate XML Layer due to create a layer file. If it is not
needed, it can be deleted later, together with the referring entry in the manifest
file.

7. Click the Finish button and let the wizard generate the module, as shown in
Figure 3-4.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

32

Figure 3-4. Configuration of a new module

Looking at the module in the Projects window, you see the folder Source Packages. At the moment,
this folder contains only the files Bundle.properties and layer.xml. The file Bundle.properties only
provides a localizing bundle for the information registered in the manifest file. The so-called Layer Tree,
a special view, which you can find in the folder Important Files, is provided for the layer.xml file. It
provides two different views. On the one hand, there is the folder <this layer>, in which only the content
of your layer file is displayed. On the other hand, there is the folder <this layer in context>, in which the
entries of the layer files of the modules (belonging to your NetBeans Platform application) are displayed.
This view is represented as System Filesystem, too, as provided to the Platform during the runtime.

In this view entries of the module (in which you look at the folders) are displayed in bold. This gives
you an overview of the most important default folders, and you can directly move, delete, or add entries.
Furthermore, you can find the manifest file, which was also created by the wizard, in the folder
Important Files (see Figure 3-5).

CHAPTER 3 THE NETBEANS MODULE SYSTEM

33

Figure 3-5. Module in the projects window

You can already start the created module as a rich client application. To do so, call Run ➤ Run Main
Project (F6) in the menu or Run in the context menu of your NetBeans Platform application project. (See
Figure 3-6.)

Figure 3-6. The basic structure of your NetBeans Platform application

CHAPTER 3 THE NETBEANS MODULE SYSTEM

34

We applied the basic structure of a NetBeans Platform application in just a few steps. In the
following chapters, we will equip our module with functionalities, such as windows and menu entries,
step by step. In this way we will enrich the rich client application.

Versioning and Dependencies
To ensure that a modular system remains consistent and maintainable, it is crucial that the modules
within the system prescribe the modules they need to use. To that end, the NetBeans Platform allows
definition of dependencies on other modules. Only by defining a dependency can one module access
the code from another module. Dependencies are set in the manifest file of a module. That information
is then read by the module system when the module is loaded.

Versioning
To guarantee compatibility between dependencies, you must define versions; for example, the Major
Release Version, the Specification Version, and the Implementation Version.These versions are based on
the Java Package Versioning Specification and reflect the basic concepts of dependencies. You can
define and edit dependencies in the Properties dialog of your module, which you can access via
Properties ➤ API Versioning (see Figure 3-7).

First, define the Major Release Version in this window. This is the version notifying the user of
incompatible changes, compared to the previous version of the module. Here, the slash is used to
separate the code name base from the version within the manifest file:

OpenIDE-Module: com.galileo.netbeans.module/1

CHAPTER 3 THE NETBEANS MODULE SYSTEM

35

Figure 3-7. Setting the module version

The most important version is the Specification Version. The Dewey-Decimal-Format is used to
define this version:

OpenIDE-Module-Specification-Version: 1.0.4

The Implementation Version is freely definable text. Typically, a timestamp is used, providing the
date and time. In that way, you determine it is unique. If not explicitly set in the Properties dialog of the
module, the IDE adds the implementation version when the module is created, using the current
timestamp, set within the manifest file:

OpenIDE-Module-Implementation-Version: 200701231820

On the other hand, if you define your own implementation version in the Properties dialog, the IDE
adds the OpenIDE-Module-Build-Version attribute with the current timestamp.

In the list of Public Packages, all packages in your module are listed. To expose a package to other
modules, check the box next to the package you want to expose. In doing so, you define the API of your
module. Exposed packages are listed as follows in the manifest file:

OpenIDE-Module-Public-Packages:
 com.galileo.netbeans.module.*,
 com.galileo.netbeans.module.model.*

CHAPTER 3 THE NETBEANS MODULE SYSTEM

36

To restrict access to the public packages (for example, to allow only your own modules to access the
public packages), you can define a module’s Friends. You define them beneath the list of public
packages in the API Versioning section of the Properties dialog. These are then listed as follows in the
manifest file:

OpenIDE-Module-Friends:
 com.galileo.netbeans.module2,
 com.galileo.netbeans.module3

Defining Dependencies
Based on these various versions, define your clear dependencies. To that end, three different types of
dependencies are available: a module depends on a module, a package, or a version of Java.

NO ACCESS WITHOUT DEPENDENCIES

To use classes from another module, including the NetBeans Platform’s own modules, you must first
define a dependency, as described in the following sections. That means, if you use a NetBeans Platform
class in your module and the code editor cannot find the desired class, the problem can normally be fixed
by simply setting a dependency on the module that provides the class.

Module Dependencies
You define and edit module dependencies via Properties ➤ Libraries, as shown in Figure 3-8.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

37

Figure 3-8. Definition of module dependencies

In this window, use Add Dependency… to add dependencies to your module. The NetBeans module
system offers different methods to connect dependencies to a particular module.

In the simplest case, no version is required. That means there should simply be a module available,
though not a particular version (although, where possible, you still specify a version):

OpenIDE-Module-Module-Dependencies: com.galileo.netbeans.module2

In addition, you may require a certain specification version. In this case, the module version should
be greater than version 7.1. This is the most common manner of defining dependencies:

OpenIDE-Module-Module-Dependencies: org.openide.dialogs > 7.1

If the module on which you want to depend has a major release version, it must be specified via a
slash after the name of the module:

OpenIDE-Module-Module-Dependencies: org.netbeans.modules.options.api/1 > 1.5

Additionally, you may also specify a range of major release versions:

OpenIDE-Module-Module-Dependencies: com.galileo.netbeans.module3/2-3 > 3.1.5

CHAPTER 3 THE NETBEANS MODULE SYSTEM

38

To create tight integration to another module it is possible to set an Implementation Dependency.
The main difference and the reason for this approach is to make use of all the packages in the module,
regardless of whether the module has exposed them or not. A dependency of this kind must be set with
care, since it negates the principle of encapsulation and the definition of APIs. To enable the system to
guarantee the consistency of the application, the dependency must be set precisely on the version of the
given implementation version. However, this version changes with each change to the module.

OpenIDE-Module-Module-Dependencies: com.galileo.netbeans.module2 = 200702031823

Select the required dependency in the list (see Figure 3-8) and click the Edit… button. As shown in
Figure 3-9 you can set various types of dependencies.

Figure 3-9. Editing module dependencies

Java Package Dependency
NetBeans lets you set a module dependency on a specific Java package. A dependency of this kind is set
in the manifest file:

OpenIDE-Module-Package-Dependencies: javax.sound.midi.spi > 1.4

Java Version Dependency
If your module depends on a specific Java version, such as Java 6, you can also specify that in the module
properties under Properties ➤ Sources, using the Source Level setting. Aside from that, you can require a
specific version of the Java Virtual Machine:

OpenIDE-Module-Java-Dependencies: Java > 1.6 VM > 1.0

CHAPTER 3 THE NETBEANS MODULE SYSTEM

39

You can require an exact version using the equal sign or require a version that is greater than the
specified version.

Lifecycle
You can implement a so-called Module Installer to influence the lifecycle of a module and thus react on
certain events. The Module System API provides the ModuleInstall class, from which we derive our own
module installer class. Doing so, the following methods of the desired events can be overwritten. The
following methods or events are available:

• validate(): This method is called before a module is installed or loaded. If
necessary, certain load sequences, such as the verification of a module license, are
set here. Should the sequence not succeed and the module not be loaded, an
IllegalStateException can be thrown. This exception prevents loading or
installing the module.

• restored(): This method is always called when an installed module is loaded.
Here, actions can be initialized starting a module.

• uninstalled(): This method is called when a module is removed from the
application.

• closing(): Before a module is ended, this method is called. Here, you can also test
whether the module is ready to be removed or if there are still activities to be
executed. If the return value is false, the module and the whole application is not
ended, because this method is always called before ending a module. The
application is just ended when all modules are set true. You can, for example,
show the user a dialog to confirm whether the application should really be closed.

• close(): If all modules are ready to end, this method is called. Here, you can call
the actions before shutting down a module.

 Note Using these methods, consider whether the actions you are calling could be set declaratively instead.
However, always check if the desired action could go a declarative way. In particular, in the cases of the methods
validate() and restored(), consider that these methods influence the startup time of the whole application. For
example, when services are registered, you could either use entries in the layer file or the Java Extension
Mechanism (see Chapter 5). This way they are loaded at their first usage and doesn’t extend the startup time of
the application as a whole.

Listing 3-6 shows the structure of a module installer class.

Listing 3-6. Structure of a Module Installer Class

public class Installer extends ModuleInstall {
 public void validate() throws IllegalStateException {
 // e. g. check for a license key and throw an

CHAPTER 3 THE NETBEANS MODULE SYSTEM

40

 // IllegalStateException if this is not valid.
 }
 public void restored() {
 // called when the module is loaded.
 }
 public void uninstalled() {
 // called when the module is deinstalled.
 }
 public boolean closing() {
 // called to check if the module can be closed.
 }
 public void close() {
 // called before the module will be closed.
 }
}

To record the state of the module installer class over different sessions, overwrite the methods
readExternal() and writeExternal() from the Externalizable interface, which is implemented by the
ModuleInstall class. There you store and retrieve necessary data. When doing so, it is recommended to
first call the methods to be overwritten on the superclass. To let the module system know at startup if a
module provides a module installer, and where to find it, register it in the manifest file:

OpenIDE-Module-Install: com/galileo/netbeans/module/Installer.class

Now you want to create your first module installer. The NetBeans IDE provides a wizard to create
this file (see Figure 3-10). Go to File New File… and choose the file type Installer / Activator in the
category Module Development.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

41

Figure 3-10. Creating a module installer

Click Next and then click Finish on the next page to complete the wizard. Now the module installer
class is created in the specified package and registered in the manifest file. You just need to overwrite the
required methods of this class. For example, you can overwrite the closing() method to show a dialog
confirming whether the application should really be shut down. You can implement this as shown in
Listing 3-7.

Listing 3-7. Dialog for Shutting Down the Application

import org.openide.DialogDisplayer;
import org.openide.NotifyDescriptor;
import org.openide.modules.ModuleInstall;

public class Installer extends ModuleInstall {
 public boolean closing() {
 NotifyDescriptor d = new NotifyDescriptor.Confirmation(
 "Do you really want to exit the application?",
 "Exit",
 NotifyDescriptor.YES_NO_OPTION);
 if (DialogDisplayer.getDefault().notify(d) == NotifyDescriptor.YES_OPTION) {
 return true;
 } else {

CHAPTER 3 THE NETBEANS MODULE SYSTEM

42

 return false;
 }
 }
}

Be aware that this module requires a dependency on the Dialogs API to be able to use the NetBeans
dialog support. Defining dependencies was described previously in the section Versioning and
Dependencies, while information about the Dialogs API can be found in Chapter 13.

To try this new functionality, invoke Run ➤ Run Main Project (F6). When the application shuts
down, the dialog is shown and you can confirm whether or not the application should actually be shut
down.

Module Registry
Modules do not normally need to worry about other modules. Nor should they need to know whether
other modules exist. However, it might sometimes be necessary to create a list of all available modules.
The module system provides a ModuleInfo class for each module, where all information about modules
is stored. The ModuleInfo objects are available centrally via the Lookup, and can be obtained there as
follows:

Collection<? extends ModuleInfo> modules = Lookup.getDefault().lookupAll(ModuleInfo.class);

The class provides information such as module name, version, dependencies, current status
(activated or deactivated), and the existence of service implementations for the current module. Use the
getAttribute() method to obtain this information from the manifest file. To be informed of changes,
register a PropertyChangeListener, which informs you both of the activation and deactivation of
modules in the system (ModuleInfo object). You can also register a LookupListener that informs you of
the installation and uninstallation of modules. For example, a listener could be defined as shown in
Listing 3-8.

Listing 3-8. Reacting on Changes in the Module System

Lookup.Result<ModuleInfo> result = Lookup.getDefault().lookupResult(ModuleInfo.class);
result.addLookupListener(new LookupListener() {
 public void resultChanged(LookupEvent lookupEvent) {
 Collection<? extends ModuleInfo> c = result.allInstances();
 System.out.println("Available modules: " + c.size());
 }
});
result.allItems(); // initialize the listener

Using Libraries
When developing rich client applications, you will more than likely need to include external libraries in
the form of JAR archives within your application. Since the whole application is based on modules, it is
desirable to integrate the external JAR file in the form of a module. That has the advantage of setting
dependencies on the module, enhancing the consistency of the application as a whole. You can also
bundle multiple JAR files into a single module, after which you will no longer need to put the physical
JAR files on the application classpath, as is normally done when developing applications.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

43

Library Wrapper Module
To achieve the scenario just outlined, create a Library Wrapper Module. The NetBeans IDE provides a
project type and a wizard for this purpose.

1. To create a new library wrapper project, go to File New Project…, and use
the dialog shown in Figure 3-11 to choose the category NetBeans Modules,
followed by the project type Library Wrapper Module.

Figure 3-11. Creating a library wrapper module

2. Click Next to choose the required JAR files. You can choose one or more JAR
files here (hold down the Ctrl key to select multiple JAR files). You are also able
to add a license file for the JAR you are wrapping as a module.

3. In the next step, provide a project name, as well as a location to store the new
module. Specify the Module Suite or Platform Application to which the library
wrapper module belongs.

4. Click Next again to fill out the Basic Module Configuration dialog, as shown in
Figure 3-12.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

44

Figure 3-12. Library wrapper module configuration

5. This is where you can define the code name base. Normally this field is
prefilled with the name of the selected JAR archive of the read code name base.
Furthermore, you can provide the module with a name and a Localizing
Bundle to localize the module manifest information. With a click on the Finish
button, you create the new project.

When you are looking at the newly created library wrapper module in the Projects window, and you
additionally open the Source Packages folder, you will see that the Bundle.properties file of the manifest
file is located here. The library, which is encapsulated by the module, was copied in the directory
release/modules/ext of the project folder.

To understand how a library wrapper module works, take a look at the related manifest file which is
found in the projects structure in the folder Important Files. Note that the manifest information, which is
depicted in the Listing 3-9, may not be found directly in the manifest file. Certain information, such as
the public packages, are just written when you build the module (when calling Build Project). To see the
entire manifest file, create the module and then open the manifest file within the created module JAR
archive (located in the build/cluster/modules directory of your NetBeans Platform application. You can
see which packages are exposed in the properties of your library wrapper module under API Versioning.
There, you can delete packages from the Public Packages list later.

Listing 3-9. Manifest File of a Library Wrapper Module

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0

CHAPTER 3 THE NETBEANS MODULE SYSTEM

45

Created-By: 1.6.0-b105 (Sun Microsystems Inc.)
OpenIDE-Module: com.hboeck.mp3
OpenIDE-Module-Public-Packages:
 com.hboeck.mp3.*,
 com.hboeck.mp3.id3.*,
 ...
OpenIDE-Module-Java-Dependencies: Java > 1.4
OpenIDE-Module-Specification-Version: 1.0
OpenIDE-Module-Implementation-Version: 101211
OpenIDE-Module-Localizing-Bundle:
 com/hboeck/mp3/Bundle.properties
OpenIDE-Module-Requires: org.openide.modules.ModuleFormat1
Class-Path: ext/com-hboeck-mp3.jar

Two very important things have been accomplished by the wizard. On the one hand, it marked all
packages of the library with the attribute OpenIDE-Module-Public-Packages, making all these packages
publicly accessible. This is useful because a library is supposed to be used by other modules, too. On the
other hand, the wizard marked the library (located in the distribution in the directory ext/) with the
Class-Path attribute, putting it on the module class path. This way, the classes of the library can be
loaded by the module classloader. The type Autoload was automatically assigned to the library wrapper
module (see the section Configuration File). This way, it is just loaded when needed.

Adding a Library to a Module
It is advisable to always use a library wrapper module when integrating a library into an application, as
seen in the preceding section. Creating a new module in this way for a third-party library adds to the
value and maintainability of the application as a whole, because you can then set dependencies on the
library with the module that wraps it. In some cases, it can be desirable to add a library to the existing
module (your own application module). To do this is simple and works similarly to creating a library
wrapper module.

To add a library, open the features of the desired module with Properties in the context menu. In the
category Libraries, in which dependencies on other modules are defined, you find the tab Wrapped JARs
on the right side. There you can add the wanted library with the Add JAR button.

Doing so, a class-path-extension entry is added to the Project Metadata file for each library. The
path defined by the runtime-relative-path attribute is the path within which the library is located in the
distribution (this is where it is automatically copied when creating the module). The location where the
original of the library is located is specified by the binary-origin attribute. As you can see, it is the same
directory as with the library wrapper modules. (See Listing 3-11.)

Listing 3-11. Project Metadata File with Class Path Extension

<class-path-extension>
 <runtime-relative-path>ext/com-hboeck-mp3.jar</runtime-relative-path>
 <binary-origin>release/modules/ext/com-hboeck-mp3.jar</binary-origin>
</class-path-extension>

With this entry into the project metadata file the library is copied into the ext/ directory and is added
to the manifest of the module with the entry Class-Path: ext/com-hboeck-mp3.jar when creating the
module. In contrast to a library wrapper module, the packages of the library are not exposed. As a result,
they can only be used by the module. (In most cases, this is the reason for the direct addition of the

CHAPTER 3 THE NETBEANS MODULE SYSTEM

46

library: it should not be made public). It is also possible to define the packages of the library as being
public, which is automatically the case with a library wrapper module.

WHEN TO USE WHICH APPROACH?

Bear in mind that you should create a library wrapper module of a library whenever possible rather than
directly adding libraries because of modularity and maintainability. As a rule, only add a library to a module
directly, when the library is solely used by this module and if it is not a problem to distribute the library
together with the module that uses it. Furthermore, note that you cannot load the same library from two
different modules with the Class-Path. This could lead to unforeseen problems. Also, do not try to use the
Class-Path attribute to refer to the module JAR archives or to libraries found in the NetBeans lib/
directory.

Reusing Modules
Usually, you create a NetBeans platform application project for applications which are not that big, then
add the whole logic of the application to this project in the form of modules. In case you then want to
implement, for example, a big application for enterprises in a team, it can be useful to break down the
application into multiple parts, each containing an amount of modules. For this purpose, the NetBeans
IDE offers the opportunity to add both a single module or a complete cluster (folder with NetBeans
modules) as dependency. So if you develop, for example, a series of base modules, whose functionality
you want to use in multiple applications, it is best to use a module suite.

You can create a module suite with File ➤ New Project… ➤ NetBeans Modules. Within this module
suite you can develop and test your base modules encapsulated from special application modules.
Starting the build process of your modules, all modules are stored in a cluster. Then you can add this
cluster to another NetBeans Platform project as follows: call Properties ➤ Libraries in the desired
application. There, you find the button Add Cluster… (see Figure 3-13) with which you can select the
cluster of the module suite.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

47

Figure 3-13. Adding a complete cluster for reusing external modules.

If you did not select a real cluster, the NetBeans IDE asks you to select the desired modules of the
folder, and then creates a respective cluster. This means the NetBeans IDE automatically creates a
cluster from a folder with modules.

Now, you can access further NetBeans modules from different NetBeans Platform applications with
the possibility of reusing modules, as described. This way, you can, for example, implement your generic
modules centrally, independent from special applications.

MODULE SUITE VS. NETBEANS PLATFORM APPLICATION

This book is primarily about developing independent applications based on the NetBeans Platform. This is
why it constantly uses the NetBeans Platform Application project type to create an application in the
following chapters. For this project type only the NetBeans Platform modules are provided, by default,
since it will become an independent application and not an extension of the NetBeans IDE. However, you
have the possibility of accessing any modules of the NetBeans IDE. For this purpose, call Properties
Libraries in your NetBeans Platform application project. There you can activate the desired modules. Your
own modules can only define dependencies on modules which are activated there. You can switch
between a NetBeans Platform application and a module suite anytime under Properties Libraries. The
branding support and creating an installer are logically just provided with a NetBeans Platform application.

CHAPTER 3 THE NETBEANS MODULE SYSTEM

48

Summary
In this chapter you learned how the underlying module system of NetBeans Platform applications is
structured and how it functions. The module system is part of the runtime container. First, we looked at
the structure of a NetBeans module. You learned about the many configuration options that are defined
in the manifest file. In addition to the manifest file, a module optionally provides a layer file. You learned
how to make contributions to the whole application, via registration entries in a module layer file.

You created your first module, learned how modules use code from other modules, and explored
the lifecycle of modules and how third-party libraries integrate in a module via a library wrapper
module. Finally, you discovered how those kinds of modules work, and you got some hands on
experience with them.

C H A P T E R 4

49

The OSGi Framework

The OSGi Framework provides a modular runtime environment. An application built on the OSGi
Framework is developed in a modular way—in the form of bundles—so the OSGi Framework is
comparable to the module system of the NetBeans Platform. An OSGi bundle matches the principle of a
NetBeans module. The OSGi Framework has been widely adopted because of its standardization by a
consortium of companies. By now, it is accepted as an official dynamic component model for Java
through the Java community process as JSR 291.

However, this chapter will not discuss the OSGi Framework in too much detail (there is plenty of
information specific to OSGi already available). Instead, it will demonstrate the possibilities of OSGi
connected with the NetBeans Platform.

OSGi and the NetBeans Platform
Because of the importance of OSGi—especially to companies—the NetBeans Platform has been
extended so that OSGi bundles can now be executed in a NetBeans Platform application. To do so,
bundles must not be executed by a NetBeans module system but by an integrated OSGi runtime
container (Felix or Equinox). This means you are able to develop hybrid applications in which NetBeans
modules and OSGi bundles can run in parallel. A special adapter layer must establish the connection
between both module systems; as a result, NetBeans modules are able to define dependencies on OSGi
bundles and refer to their APIs. It is also possible the other way around: OSGi bundles can define
dependencies on and refer to NetBeans modules.

Furthermore, it is possible to execute a whole NetBeans Platform application in an OSGi runtime
container. For this purpose all NetBeans Platform modules are converted into OSGi bundles while
creating an application. The NetBeans IDE naturally supports this as well as the development of
bundles. Because the two module systems are quite similar, it is possible for both systems to interact as
well as convert NetBeans modules into OSGi bundles.

OSGi Bundle Format
In Chapter 3 you learned about the basic structure of a NetBeans module and the special importance of
the manifest file in that structure. In the manifest file, you define features and interfaces of a module. An
OSGi bundle is also depicted by a manifest file; most attributes correspond to an attribute of the
NetBeans module system. The basic structure of an OSGi bundle is shown in Figure 4-1.

CHAPTER 4 THE OSGI FRAMEWORK

50

Figure 4-1. Components of an OSGi bundle

Table 4-1 lists the most important NetBeans module attributes together with the corresponding
OSGi bundle attributes.

Table 4-1. Comparison of the Attributes of NetBeans Modules and OSGi Bundles

NetBeans Module Attribute OSGi Bundle Attribute

OpenIDE-Module Bundle-SymbolicName

OpenIDE-Module-Name Bundle-Name

OpenIDE-Module-Specification-Version Bundle-Version

OpenIDE-Module-Public-Packages Export-Package

OpenIDE-Module-Module-Dependencies Require-Bundle

OpenIDE-Module-Localizing-Bundle Bundle-Localization

OpenIDE-Module-Install Bundle-Activator

OpenIDE-Module-Java-Dependencies Bundle-RequiredExecutionEnvironment

Each of the following Listings (Listing 4-1 and Listing 4-2) shows the manifest file of a simple

NetBeans module and of an equally structured OSGi bundle. As you can see, the differences between the
two files are negligible.

CHAPTER 4 THE OSGI FRAMEWORK

51

Listing 4-1. Manifest File of a NetBeans Module

OpenIDE-Module: com.galileo.netbeans.module
OpenIDE-Module-Specification-Version: 1.0
OpenIDE-Module-Name: My Module
OpenIDE-Module-Localizing-Bundle: com/galileo/netbeans/module/Bundle.properties
OpenIDE-Module-Install: com/galileo/netbeans/module/Installer.class
OpenIDE-Module-Public-Packages: com.galileo.netbeans.module.api.*
OpenIDE-Module-Module-Dependencies: com.galileo.netbeans.library > 1.0
OpenIDE-Module-Java-Dependencies: Java > 1.6

Listing 4-2. Manifest File of an OSGi Bundle

Bundle-SymbolicName: com.galileo.osgi.bundle
Bundle-Version: 1.0
Bundle-Name: My Bundle
Bundle-Localization: com/galileo/osgi/bundle/Bundle
Bundle-Activator: com.galileo.osgi.bundle.Installer
Export-Package: com.galileo.osgi.bundle.api
Require-Bundle: com.galileo.netbeans.library;bundle-version="[1.0,100)"
Bundle-RequiredExecutionEnvironment: JavaSE-1.6

Defining a localizing bundle with the attribute OpenIDE-Module-Localizing-Bundle or Bundle-
Localization, remember that the file extension is not given in an OSGi bundle. Defining a dependency
on another module or bundle by the attribute Require-Bundle indicates the needed version with bundle-
version. To define a minimum requirement on the runtime environment you can specify a tag list with
the attribute Bundle-RequiredExecutionEnvironment. Expecting Java 6, use JavaSE-1.6. Other examples
of tags are J2SE-1.5 or OSGi/Minimum-1.1.

Creating New OSGi Bundles
Creating a new OSGi bundle in the NetBeans IDE is easy. To do this use the wizard for creating a new
NetBeans module and indicate that it should become a bundle that is OSGi conformant, as shown in
Figure 4-2.

CHAPTER 4 THE OSGI FRAMEWORK

52

Figure 4-2. Creating an OSGi bundle with the NetBeans wizard

Choose the type Module with File ➤ New Project… in the category NetBeans Modules. Then activate
the option Generate OSGi Bundle under Basic Module Configuration (see Figure 4-2). Further usage of
the module or bundle is completely transparent then, meaning you can define dependencies or add
features to the bundle with the NetBeans wizard as usual. It is especially interesting that you can also
add a layer file to an OSGi bundle. This layer file is integrated in the layer files of the NetBeans modules
in the System Filesystem, too.

Within a NetBeans Platform application, please bear in mind that OSGi bundles are actually
executed by an OSGi container—by default the Apache Felix OSGi implementation—not by the
NetBeans module system. In connection with this, please also bear in mind that the following modules
are activated and hence included in your platform application:

• OSGi Specification

• Apache’s Felix OSGi Implementation

• NetBeans OSGi Integration

Bundle Lifecycle
Similar to a Module Installer for a NetBeans module, which was covered in Chapter 3, the OSGi
Framework offers a possibility for OSGi bundles that you can refer to certain events in the lifecycle of a
bundle. Such a class that implements the interface BundleActivator is called an activator (see Listing 4-
3). It provides the methods start() and stop().

CHAPTER 4 THE OSGI FRAMEWORK

53

Listing 4-3. Activator Class of an OSGi Bundle

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
 public void start(BundleContext c) throws Exception {
 }
 public void stop(BundleContext c) throws Exception {
 }
}

It is possible to create such a class with the same NetBeans wizard with which a Module Installer is
created, too. If you call this wizard for an OSGi bundle with File ➤ New File ➤ Modules Development ➤
Installer / Activator an Activator class will automatically be created.

Integrating Existing OSGi Bundles
One important advantage of supporting OSGi bundles by the NetBeans Platform is definitely the
reusability of already existing components that exist as OSGi bundles.

Adding a whole folder of bundles, called a cluster, to a Platform application is very easy. For this
purpose just activate the category Libraries in the Properties dialog of the referring project. You can add
bundles with the Add Cluster… button, which is where you can choose the modules which are provided
by the NetBeans Platform, too. (See Figure 4-3.) Choose the referring directory in the following dialog.
The wizard will point out that it is not a cluster. The wizard will list all JAR files (bundles and modules) if
you click Next. Then you can choose the desired bundles and finish the wizard with the Finish button.

CHAPTER 4 THE OSGI FRAMEWORK

54

Figure 4-3. Creating and importing bundle clusters

Now you can define dependencies from among the previously added bundles in your modules.

NetBeans Platform in OSGi Runtime Container
The preceding sections were about executing OSGi bundles within (or more precisely parallel to) the
NetBeans Platform; NetBeans Platform modules were still executed by the NetBeans Platform system.
Now, if you want to develop an application plainly based on OSGi, it is possible to treat the whole
NetBeans Platform as OSGi bundles.

To do this, click OSGi ➤ Build Bundles in the context menu of your NetBeans Platform application.
The whole application, meaning all necessary NetBeans Platform modules plus your self-created
modules, is created in the directory build/osgi as OSGi-conformant bundles. Furthermore, it is possible
that your applications will be executed directly out of the NetBeans IDE in the OSGi runtime container,
Felix. To do so, click on OSGi ➤ Run in Felix in the context menu; the bundles are automatically created
and started with Felix.

CHAPTER 4 THE OSGI FRAMEWORK

55

Summary
In this chapter you learned some basics about the OSGi framework. You looked at the structure of an
OSGi bundle and compared the manifest file attributes of NetBeans modules with those of OSGi
bundles. You also learned how you can create OSGi-compatible modules with the NetBeans IDE. The
last part of this chapter explained the bundle lifecycle and how you integrate existing bundles in a
NetBeans Platform application.

C H A P T E R 5

57

Lookup Concept

The Lookup concept is as important as it is simple. Used in many places within NetBeans Platform
applications, it allows modules to communicate with each other. This chapter shows typical use cases
and how the Lookup concept works.

Functionality
The Lookup is a central component and a commonly used concept in the NetBeans Platform for the
management of object instances. Simplified, the Lookup is a Map, with Class objects as keys and
instances of those Class objects as values.

The main idea behind the Lookup is decoupling components. I let modules communicate with each
other, which plays an important role in component-based systems, such as applications based on the
NetBeans Platform. On the one hand, modules can provide objects; on the other hand, modules can
search and use objects with the Lookup.

 Note The Lookup concept is implemented in the module Lookup API. It provides a very simple and clear
interface. The Lookup API module is used quite often within the NetBeans Platform (often indirectly, too); it is the
cornerstone of the modular concept of the NetBeans Platform. By the way, the Lookup API module works
completely innocently and has no dependencies on other modules at all. That is to say, you can use the Lookup
API module in any Java application, even if it was not developed on the basis of the NetBeans Platform.

The advantage of the Lookup is its type safety, achieved by using Class objects instead of strings as
keys. With this, the key defines the type of the retrieved instance. So it is impossible to request an
instance whose type is unknown in the module. This pattern results in a more robust application, since
errors like ClassCastException do not occur. The Lookup is also used to retrieve and manage multiple
instances for one key,which is to say of one type. This central management of specific instances is used
for different purposes. The Lookup is used to discover service providers for which declarative adding and
lazy-loading of instances is supported. In addition to this, you may pass instances via Lookup from one
module to another, without the modules knowing each other. In this way a kind of inter-module
communication is established. Even context-sensitive actions are realized using the Lookup component.

To clear up a common misunderstanding, within a single application it is possible to have more
than one Lookup. The most commonly used Lookup is global, provided by default in the NetBeans
Platform. In addition, there are components, such as TopComponent, that have their own Lookup. These

CHAPTER 5 LOOKUP CONCEPT

58

are local Lookups. As described in the “Inter-module communication” section, it is possible to create
your own Lookups and equip your components with a Lookup.

The Lookup concept is simple, efficient and convenient. Once you are familiar with this pattern, you
will find it applies to many different areas. In the following sections, the usage of the Lookup in its main
use cases is shown.

Services and Extension Points
A main application of the Lookup is the discovery and provision of services. The role of the Lookup in
this scenario is a function of a dynamic service locator, allowing separation of the service interface and
the service provider. A module makes use of functionality without knowing anything about
implementation. In this way, loose coupling is achieved between modules.

Using the Lookup and a service interface, it is simple to define extension points for graphic
components. A good example is the NetBeans status bar, defining the interface
StatusLineElementProvider. With this interface and a service provider registration, the status bar is
extended with user-defined components (an example of this is described in the “Status Bar” section of
Chapter 5) without the status bar knowing about or having a dependency on those components.

For a dynamic and flexible provision and exchange of services, these are added declaratively to the
Lookup, rather than programmed in the source code. This is achieved by either of two methods: adding
the implementation of a service using the Service Provider Configuration file in the META-INF/services
directory, or using the layer file of your module. Both are shown in the “Registering Service Providers”
section later in this chapter.

The NetBeans Platform provides a global Lookup, which is retrieved using the static method
Lookup.getDefault(). This global Lookup is used to discover services, added by using one of the
available declarative registrations. Use this approach to register more than one implementation for a
single service. The declarative registration allows instantiation of implementations on the first request.
This pattern is known as lazy loading.

To achieve a better understanding of this pattern for providing and requesting services, and to get a
more practical perspective, this chapter will illustrate the creation of a search list for MP3 files.

Defining the Service Interface
Module A is a module providing a user interface allowing the user to search for MP3 files by special
search criteria. The search results are shown in a list. To remain independent of the search algorithm
and ensure the dynamic use of multiple search variants (which may be switched at runtime), you specify
the service interface Mp3Finder in module A. This service defines the search interface for MP3 files. The
actual search algorithm is implemented in a separate module, module B, provided via declarative
registration.

Loose Service Provisioning
Module B is a service provider for implementation of the interface Mp3Finder. In this example, assume
the module is searching for MP3 files in a database. This allows multiple implementations of the service
provider to be registered. All implementations can be in either one or more than one separate modules.
To create an Mp3DatabaseFinder implementation of the interface Mp3Finder from module A, module B
must define a dependency on module A. However, module A, the search list user interface, needs no
dependency on module B. This is because the Lookup provides the service based on the interface (living
in module A as well) rather than the implementation (residing in module B). Thus, module A is

CHAPTER 5 LOOKUP CONCEPT

59

completely independent of the implementation of the service (see Figure 5-1) and can use it
transparently.

Figure 5-1. Service Lookup pattern

In module A, the service interface Mp3Finder is specified and a user interface is implemented for
search and display of MP3 files (see Listing 5-1). A service provider is retrieved by passing the Class
object of the interface Mp3Finder to Lookup, returning an instance matching the requested type. The
interface Mp3Finder is also known as an extension point of module A. Any module can register
implementations for it.

Listing 5-1. Module A: MP3 Searcher

public interface Mp3Finder {
 public List<Mp3FileObject> find(String search);
}
public class Mp3SearchList {
 public void doSearch(String search) {
 Mp3Finder finder =
 Lookup.getDefault().Lookup(Mp3Finder.class);
 List<Mp3FileObject> list = finder.find(search);
 }
}

Module B provides a service provider allowing the search of a database for MP3 files. This is done by
implementing the interface Mp3Finder, specified by module A (see Listing 5-2). So, module B is an
extension of module A at the extension point Mp3Finder.

The newly created service provider must be registered, so it can be discovered with Lookup. For this
purpose you use the ServiceProvider annotation.

CHAPTER 5 LOOKUP CONCEPT

60

Listing 5-2. Module B: MP3 Finder

import org.openide.util.Lookup.ServiceProvider;
...
@ServiceProvider(service = Mp3Finder.class)
public class Mp3DatabaseFinder implements Mp3Finder {
 public List<Mp3FileObject> find(String search) {
 // search in database for mp3 files
 }
}

Providing Multiple Service Implementations
It is useful to be able to register multiple MP3 search implementations. This is easy. Simply create
further implementations of the interface Mp3Finder. Again these have to be registered with an
annotation. Such an implementation could be, for example, as follows:

import org.openide.util.Lookup.ServiceProvider;
...
@ServiceProvider(service = Mp3Finder.class)
public class Mp3FilesystemFinder implements Mp3Finder {
 public List<Mp3FileObject> find(String search) {
 // search in local filesystem for mp3 files
 }
}

To use all registered implementations of a service, discovery of the services using Lookup must be
adopted. Rather than using the Lookup() method to retrieve a single implementation, use LookupAll() to
retrieve all registered implementations of the service. Call the find() method of all discovered services
as follows:

public class Mp3SearchList {
 public void doSearch(String search) {
 Collection<? extends Mp3Finder> finder =
 Lookup.getDefault().LookupAll(Mp3Finder.class);
 List<Mp3FileObject> list = new ArrayList<Mp3FileObject>();
 for(Mp3Finder f : finder) {
 list.addAll(f.find(search));
 }
 }
}

Ensuring Service Availability
A search module is of no use to the user if no search service is available allowing a search for MP3 files.
To enable module A, ensuring that at least one implementation of a service is available, the NetBeans
module system provides two attributes: OpenIDE-Module-Provides and OpenIDE-Module-Requires, which
allow definition in the manifest file of a module if a special service implementation is provided or
required. These and further attributes of the manifest file are described in more detail in the “Module
Manifest” section of Chapter 3.

4

CHAPTER 5 LOOKUP CONCEPT

61

Within the manifest file of module A, the existence of at least one provider of the Mp3Finder service is
required, with the following entry:

OpenIDE-Module-Requires: com.galileo.netbeans.modulea.Mp3Finder

To inform the module system during loading of the modules that module B provides the service
Mp3Finder, add the following entry to the manifest file of module B:

OpenIDE-Module-Provides: com.galileo.netbeans.modulea.Mp3Finder

If no module declares such an entry in its manifest file (that is, there is no service provider
available), the module system announces an error and does not load module A.

Global Services
Global services—services that can be used by multiple modules and are only provided by one module—
are typically implemented using abstract (singleton) classes. With this pattern, the services manage the
implementation on their own and provide an additional trivial implementation (as an inner class) in
case there is no other implementation registered in the system. This has the advantage that the user
always gets a valid reference to a service and never a null value.

An example would be an MP3 player service (see Listing 5-3), used by different modules—for
example, a search list or playlist. The implementation of the player should be exchangeable.

Listing 5-3. MP3 Player As a Global Service in Module MP3 Services

public abstract class Mp3Player {
 public abstract void play(Mp3FileObject mp3);
 public abstract void stop();
 public static Mp3Player getDefault() {
 Mp3Player player =
 Lookup.getDefault().Lookup(Mp3Player.class);
 if(player == null) {
 player = new DefaultMp3Player();
 }
 return player;
 }
 private static class DefaultMp3Player extends Mp3Player {
 public void play(Mp3FileObject mp3) {
 // send file to an external player or
 // provide own player implementation or
 // show a message that no player is available
 }
 public void stop() {}
 }
}

This service, implemented as an abstract class, specifies its interface via the abstract methods, and
at the same time provides access to the service via the static method getDefault().The advantage of this
pattern is that there is no need for users of the service to know anything about the Lookup API. This
keeps the application logic lean, as well as independent from the Lookup API.

The abstract class should normally be part of a module, which is, in turn, part of the standard
distribution of the application (in the example, this would be the module MP3 Services). The service

CHAPTER 5 LOOKUP CONCEPT

62

provider (that is, the classes that contain the real code for playing MP3 files) can be encapsulated in a
separate module (see Listing 5-4). In the example, this is the class MyMp3Player, for which you
subsequently create a skeleton and add it to module C.

Listing 5-4. MP3 Player Service Provider in Module MP3 Player

public class MyMp3Player extends Mp3Player {
 public void play(Mp3FileObject mp3) {
 // play file
 }
 public void stop() {
 // stop player
 }
}

Now the MyMp3Player service provider must be registered. For this purpose you can use the
ServiceProvider annotation which looks like the following:

@ServiceProvider (service = Mp3Player.class)
public class MyMp3Player extends Mp3Player { ...

The relationships and dependencies of the modules are shown in Figure 5-2.

Figure 5-2. Dependencies and relationships of global service, service provider, and application module

Good examples for global services inside the NetBeans Platform are StatusDisplayer and
IOProvider. The class IOProvider grants access to the Output window. The service provider actually
writing the data to the Output window is in a separate class, NbIOProvider, in a separate module. If the
module is available and the service provider registered, its implementation is retrieved via the static

CHAPTER 5 LOOKUP CONCEPT

63

method IOProvider.getDefault(). If the module is not available, the default implementation is
provided, which writes the output data to the default output (System.out and System.err).

Registering Service Providers
To allow a dynamic and flexible registration of service providers, even after delivering the application,
and to ensure those are loaded only if needed, the registration is done declaratively, using configuration
files.

Services which shall be available through the Lookup within a NetBeans Platform-based application
can be registered and made public to the system in different ways. These different possibilities will be
described in the following sections.

Annotation
The Lookup API provides the ServiceProvider annotation for the registration of a service provider. This
is the easiest and the most transparent way to make your provider class known to the Lookup. So, when
creating your application, a service provider configuration file is applied automatically, as you will see in
the section Service Provider Configuration File. Thus, if you do not want to use an annotation, you can
directly jump to that section. In the example shown in Listing 5-5, you see the attribute of this
annotation.

Listing 5-5. Registering a Service Provider with the @ServiceProvider Annotation

import com.galileo.netbeans.mp3object.Mp3FileObject;
import java.util.List;
import org.openide.util.Lookup.ServiceProvider;

@ServiceProvider(
 service = Mp3Finder.class,
 path = "Mp3FinderServices",
 position = 10,
 supersedes={"com.galileo.netbeans.module.DefaultMp3Finder"})
public class Mp3DatabaseFinder implements Mp3Finder {
 @Override
 public List<Mp3FileObject> find(String what){
 ...
 }
}

In Listing 5-5 the class Mp3DatabaseFinder is registered with the ServiceProvider annotation as
implementation of the service Mp3Finder. The only mandatory attribute is the service attribute, with
which you determine which service you want to provide. You can influence the order, how the Lookup
delivers multiple service providers, by the position attribute. With supersedes you can indicate a list of
already registered service providers wich are substituted in this registration. This way, you can, for
example, delete a registered standard implementation of a service. Finally, there is also the path
attribute. With it you can indicate a name or a whole path (for example, MyServices/Mp3Services) under
which the service provider configuration file is applied. However, in this case, the directory META-
INF/namedservices is used instead of META-INF/services. So in the example of Listing 5-5, the
configuration file would be stored in the directory META-INF/namedservices/Mp3FinderServices. Like
this, the implementation can be accessed by a Lookup which you can create with Lookups.forPath().

CHAPTER 5 LOOKUP CONCEPT

64

Service Provider Configuration File
Service provider can also be registered by a Service Provider Configuration file. Such a file is actually
created using the ServiceProvider annotation in the background.

This approach is part of the Java JAR File Specification. A file is named after its service and lists in its
content all service providers. The file must be placed in the META-INF/services directory, which is part of
the src/ directory of a module, or in other words, it must be part of the class path of a module.

src/META-INF/services/com.galileo.netbeans.module.Mp3Finder
com.galileo.netbeans.module.Mp3DatabaseFinder
com.galileo.netbeans.module.Mp3FilesystemFinder

In this example, two service providers are registered for the service (that is, the interface or abstract
class, Mp3Finder). The global Lookup, which is to say, the standard Lookup (Lookup.getDefault())
discovers the services in the META-INF/services directory and instantiates the providers. A successful
service instantiation requires that each service provider have a default constructor so that creation from
Lookup is possible.

As already described, you can make your service implementation public under a certain name; thus,
it can be accessed more quickly. To do this, create the configuration file in the META-INF/namedservices
directory. A subfolder of this directory indicates the name, for example META-
INF/namedservices/Mp3FinderServices. You get the services which are registered there by a Lookup
created with Lookups.forPath("Mp3FinderServices").

Based on the original specification of the service provider configuration file, the NetBeans Platform
provides two extensions, allowing the removal of existing service providers and changing the order of the
registered providers. To make these additions comply with the original Java specification, the add-ons
are prefixed with the comment sign #. So, these lines are ignored by the JDK implementation.

Removal of a Service Provider
It is possible to remove a service provider registered by another module. This feature can be used to
substitute the standard implementation of a service of the NetBeans Platform with your own
implementation.

A service provider is removed by adding the following entry in your service provider configuration
file. At the same time, you can provide your own implementation.

remove the other implementation (by prefixing the line with #-)
#-org.netbeans.core.ServiceImpl
provide my own
com.galileo.netbeans.module.MyServiceImpl

Order of Service Providers
The order in which service providers are returned from Lookup is controlled using a position attribute
for each provider entry. For example, this is necessary to control the order of additional entries in the
status bar (see Chapter 11) or to ensure that your own implementation is called before the NetBeans
Platform implementation. Also, it is allowed to specify a negative value for the position attribute. The
NetBeans Platform orders instances by ascending positions, so that instances with smaller numbers are
returned before instances with larger numbers. For that purpose, the following entry is added to the
service provider configuration file:

CHAPTER 5 LOOKUP CONCEPT

65

com.galileo.netbeans.module.MyServiceImpl
#position=20
com.galileo.netbeans.module.MyImportantServiceImpl
#position=10

It is recommended that position values are assigned in larger intervals, as shown in the example.
This simplifies adding further implementations later on.

Services Folder
Another way to provide a service implementation is registration using the Services folder in the module
layer file, as shown in Listing 5-6.

Listing 5-6. Registration of Service Providers in a Layer File

<folder name="Services">
 <folder name="Mp3Services">
 <file name="com-galileo-netbeans-module-Mp3DatabaseFinder.instance">
 <attr name="instanceOf" stringvalue="com.galileo.netbeans.module.Mp3Finder"/>
 </file>
 </folder>
</folder>

If a service is requested using the default Lookup, implementations are discovered by searching the
Services folder and its subdirectories for instances, which can be assigned to the requested service
interface. So, services can be grouped using arbitrary folders, as shown with the folder Mp3Services in
our example.

In contrast to the registration using the service provider configuration file, the service provider need
not provide a default constructor if registered in the layer file. With the layer file, specifying a static
method in the instanceCreate attribute is possible, creating an instance of the service provider. Let’s
assume the already created provider Mp3DatabaseFinder has a static method getDefault() that returns
the instance. The declaration can be changed by adding the following attribute:

<attr name="instanceCreate"
 methodvalue="com.galileo.netbeans.module.Mp3DatabaseFinder.getDefault"/>

With this attribute declaration, the service provider instance is not created using the default
constructor, but rather by calling the static method getDefault() (more detailed information regarding
this attribute and the corresponding .instance files are described in Chapter 3).

Also, using the registration via the Services folder allows removing existing service providers and
controlling the order of the providers. Both mechanisms are achieved using default features of the layer
file. A service provider can be removed by adding the suffix _hidden to its name, as it is done for menu
entries (see Chapter 9).

<file name="com-galileo-netbeans-module-ServImp.instance_hidden">

The order in which service providers are returned is controlled using the position attribute, which is
the same strategy as used for other entries in the layer file (see Chapter 3).

<folder name="Services">
 <file name="com-galileo-netbeans-module-ServImp.instance">
 <attr name="position" intvalue="10"/>
 </file>
 <file name="com-galileo-netbeans-module-ServImp2.instance">

CHAPTER 5 LOOKUP CONCEPT

66

 <attr name="position" intvalue="20"/>
 </file>
</folder>

In this example, the position attributes ensure that the service provider ServImp will be returned
before ServImp2.

Inter-Module Communication
In addition to the global Lookup, which is provided by the NetBeans Platform and allows access to all
registered services, it is possible to equip your own components with a local Lookup. The Lookup API
offers a factory to create Lookups and an opportunity to listen to changes in Lookups. Using the class
ProxyLookup, a user can create a proxy combining multiple Lookups into one. Using this feature of the
Lookup API and SPI, you enable communication between components of different modules without
making them interdependent.

A typical use case for the communication of loosely coupled modules is the visualization of detailed
information for a selected object. The selection of objects and visualization of information is done in
separate modules. As an example, imagine a list displaying the search results for MP3 files. Selecting an
entry in the list provides the selected entry via Lookup, so other parts of the application can access the
entry and display the required detailed information. This pattern is similar to the observer pattern. The
module providing the objects—in this case the search list—is the subject, and the information display
module is the observer. This allows multiple modules to display the data or detailed information in
various ways. Again, the advantage is loose coupling of the modules: they are completely independent of
each other. The only thing they have in common is the provided object (or, to be more precise, its
interface), which is the source of the information to be processed. This loose coupling is achieved by
using a proxy object, which acts as a substitute for the subject in the registration process of the observer.
So, the observer is registered with the proxy component (in this case the Lookup), not the subject.

Figure 5-3 shows the example implemented in the following paragraphs. Both windows are in a
separate module, each independent of the other (both can be exchanged or new ones can be added
arbitrarily).

CHAPTER 5 LOOKUP CONCEPT

67

Figure 5-3. Typical application example of a data exchange between two modules, without

interdependency

The structure of this concept is shown in Figure 5-4. The class Mp3SearchList in module A represents
a list of search results. A search result entry is represented by the class Mp3FileObject, residing in a
separate module, since this class is the most common denominator of all modules. If an entry is selected
in the list, the Mp3FileObject instance is added to the local Lookup. A broker (that is, a proxy component
depicted as the interface ContextGlobalProvider) is needed to decouple modules A and B. This proxy
component provides the local Lookup of module A to module B, which contains the currently selected
instance. To enable the centralized proxy component to access the local Lookup of the class
Mp3SearchList, the Lookup API provides the interface Lookup.Provider. This interface must be
implemented from the class Mp3SearchList.

With the getLookup() method, the local Lookup can be provided. The Lookup.Provider interface is
already implemented by the class TopComponent, which is the superclass of all visible NetBeans window
system components, as well as the Mp3SearchList. The NetBeans window system already provides an
instance of the central proxy component, the class GlobalActionContextImpl. This class provides a proxy
Lookup, which has access to the local Lookup of the focused TopComponent. This Lookup can be obtained
easily by calling the static utility method Utilities.actionsGlobalContext(). So, there is no need to care
about the ContextGlobalProvider instance, but you already have access to the global proxy Lookup. If
you are interested in more details and want to know more about this concept, it may be worthwhile to
investigate the sources for the classes and methods mentioned.

CHAPTER 5 LOOKUP CONCEPT

68

Figure 5-4. Structure of the intermodule communication concept using a local Lookup via a proxy

component to decouple subject and observer

The class Mp3DetailsView gains access to the local Lookup of the Mp3SearchList by calling
Utilities.actionsGlobalContext(). Based on the global proxy Lookup, you create a Lookup.Result for
the class Mp3FileObject. An instance of the class Lookup.Result provides a subset of a Lookup for a
special type of class. The main advantage is that the user can listen for changes in this subset by using a
LookupListener. So, the component will be notified as soon as another Mp3FileObject is selected in the
Mp3SearchList, or if the window showing the Mp3SearchList loses focus. As an example, no detailed MP3
information will be displayed.

Following, you find the classes of this example application. Only the important parts of the classes
are shown.

First, there is the class Mp3SearchList, which represents a window, and because of this, extends from
the base class TopComponent. To enable listening to selection changes in the result list, you also
implement the ListSelectionListener interface. As a private member, you have a data model that
manages the data in the table. For demonstration purposes, a simple data model has been chosen,
creating three example objects of the class Mp3FileObject in the constructor and adding them to the
model. This data would normally be provided using the search algorithm. The second private member

CHAPTER 5 LOOKUP CONCEPT

69

object is an instance of InstanceContent. This enables you to dynamically change the content of the
Lookup. In the constructor of the Mp3SearchList, you can now create a local Lookup, using the class
AbstractLookup and passing the InstanceContent object into its constructor. Using the method
associateLookup(), your local Lookup is set as the Lookup of the TopComponent, so that it will be returned
from the getLookup() method.

In the method valueChanged(), which gets called if a data set is selected in the table, you get the data
set from the data model, wrap it into a collection, and pass it to the InstanceContent instance (see Listing
5-7), which is the data storage for the Lookup. So, the selected element is always part of the local Lookup.

Listing 5-7. Mp3SearchList Displays the Search Results in a Table and Adds the Actual Selected Data Set to

the Local Lookup.

public class Mp3SearchList extends TopComponent
 implements ListSelectionListener {
 private Mp3SearchListModel model = new Mp3SearchListModel();
 private InstanceContent content = new InstanceContent();
 public Mp3SearchList() {
 initComponents();
 searchResults.setModel(model);
 searchResults.getSelectionModel().
 addListSelectionListener(this);
 associateLookup(new AbstractLookup(content));
 }
 public void valueChanged(ListSelectionEvent event) {
 if(!event.getValueIsAdjusting()) {
 Mp3FileObject mp3 =
 model.getRow(searchResults.getSelectedRow());
 content.set(Collections.singleton(mp3), null);
 }
 }
}

Here, the data model Mp3SearchListModel of the table with the search results is just an example and
kept quite simple (see Listing 5-8). Three objects of the type Mp3FileObject are directly created in the
constructor.

Listing 5-8. Simplified Data Model Managing and Providing the Data for the Result List

import javax.swing.table.AbstractTableModel;
...
public class Mp3SearchListModel extends AbstractTableModel {
 private String[] columns = {"Interpret", "Titel", "Jahr"};
 private List<Mp3FileObject> data = new ArrayList<Mp3FileObject>();

 public Mp3SearchListModel() {
 data.add(new Mp3FileObject("Gigi D'Agostino", "The rain", "2006"));
 data.add(new Mp3FileObject("Marquess", "El temperamento", "2006"));
 data.add(new Mp3FileObject("Floorfilla", "Cyberdream", "2006"));
 }
 public Mp3FileObject getRow(int row) {
 return data.get(row);

CHAPTER 5 LOOKUP CONCEPT

70

 }
 @Override
 public Object getValueAt(int row, int col) {
 Mp3FileObject mp3 = data.get(row);
 switch(col) {
 case 0: return mp3.getArtist();
 case 1: return mp3.getTitle();
 case 2: return mp3.getYear();
 }
 return "";
 }
}

The class Mp3DetailsView is the window showing detailed information of the selected entry of the
Mp3SearchList. To get notification of changes in the Lookup—in case of selection changes, for example—
the LookupListener interface is implemented. A Lookup.Result, which enables us to react to changes for
a specific type (in our case Mp3FileObject), is used as a private member. Opening a window triggers the
method componentOpened(). Use this callback to obtain the Lookup of the proxy component, using the
method Utilities.actionsGlobalContext(), which returns a Lookup that always delegates to the local
Lookup of the active TopComponent. Based on this proxy Lookup, you now create a Lookup.Result for the
type Mp3FileObject and register a LookupListener to listen to changes on this result. If a TopComponent
now gains the focus, which has one or more instances of this type in its local Lookup, the method
resultChanged() gets called. With this, you only need to retrieve the instances and display the
information accordingly as shown in Listing 5-9.

Listing 5-9. The Window Mp3DetailsView Shows the Information of the Mp3FileObject, Which is Selected

in the Mp3SearchList.

public class Mp3DetailsView extends TopComponent implements LookupListener {
 private Lookup.Result<Mp3FileObject> result = null;

 public Mp3DetailsView() {
 initComponents();
 }
 public void componentOpened() {
 result = Utilities.actionsGlobalContext().LookupResult(Mp3FileObject.class);
 result.addLookupListener(this);
 }
 public void resultChanged(LookupEvent event) {
 Collection<? extends Mp3FileObject> mp3s = result.allInstances();
 if(!mp3s.isEmpty()) {
 Mp3FileObject mp3 = mp3s.iterator().next();
 artist.setText(mp3.getArtist());
 title.setText(mp3.getTitle());
 year.setText(mp3.getYear());
 }
 }
}

The information provided via Mp3SearchList and displayed using Mp3DetailsView is part of the class
Mp3FileObject (see Listing 5-10). This class should be implemented in a separate module to achieve the
best possible encapsulation and reuse; in this example, it is module C. To grant modules A and B access

CHAPTER 5 LOOKUP CONCEPT

71

to this class, they must declare a dependency on module C. If the class Mp3FileObject is provided only
via module A, it is possible to move the class to module A.

Listing 5-10. Mp3FileObject Provides the Data

public class Mp3FileObject {
 private String artist;
 private String title;
 private String year;

 public Mp3FileObject(String artist, String title, String year) {
 this.artist = artist;
 this.title = title;
 this.year = year;
 }
 public String getArtist() {
 return this.artist;
 }
 public String getTitle() {
 return this.title;
 }
 public String getYear() {
 return this.year;
 }
}

As a proxy component, this example uses the global proxy Lookup provided by the NetBeans
Platform, which delegates to the local Lookup of the active TopComponent. In Figure 5-4, this is depicted
with the interface ContextGlobalProvider. This global proxy Lookup can also be easily substituted by
your own implementation. This implementation only has to provide the local Lookup of the component
containing the subject to the observer.

Dynamic Lookup
We already dealt with a typical use case for the Lookup in the section Registering Service Providers.
There, you learned how to add instances of your own classes to a Lookup by an InstanceContent object.
In this paragraph, I will show you how to use the advantages of the Lookup API for general application
purposes with a small helper class. To get there, you create a Lookup class based on the AbstractLookup
class. This class will be centrally provided and thus implemented by a singleton pattern. (See Listing 5-
11.)

Listing 5-11. Dynamic Lookup to Which Central Objects Can Be Added or Deleted Again

import org.openide.util.Lookup.AbstractLookup;
import org.openide.util.Lookup.InstanceContent;

public class DynamicLookup extends AbstractLookup {
 private static DynamicLookup Lookup = new DynamicLookup();
 private InstanceContent content = new InstanceContent();

 private DynamicLookup() {

CHAPTER 5 LOOKUP CONCEPT

72

 }
 public void add(Object instance) {
 content.add(instance);
 }
 public void remove(Object instance) {
 content.remove(instance);
 }
 public static DynamicLookup getDefault(){
 return Lookup;
 }
}

This simple Lookup class contains the InstanceContent object, which you already used in the
section Registering Service Providers; it manages the objects you want to add. By the getDefault()
method you deliver the central instance of the dynamic Lookup. With the two other methods add() and
remove() you can add and access objects from any location; a multidirectional communication emerges
easily.

Of course, there is the possibility for this Lookup to register a listener (LookupListener) (see the
section Registering Service Providers) and so to react on the presence of a certain object, for example.

Java Service Loader
Since Java 6, a similar API to Lookup is available: ServiceLoader. This class loads service providers, which
are registered over the META-INF/services directory. With this functionality, the ServiceLoader class
equals the NetBeans standard Lookup that can be obtained using Lookup.getDefault(). A ServiceLoader
is created for a special type using the Class object of the service interface or the abstract service class. A
static factory method is used for creating a ServiceLoader instance. Depending on the classloader used
to load the service providers, three methods for creating service loaders are available.

By default, service providers are loaded using the context classloader of the current thread. Inside
the NetBeans Platform, this is the system classloader (for more details on the NetBeans classloader
system, see Chapter 2). This allows the user to load service providers from all modules. Such a service
loader is created with the following call:

ServiceLoader<Mp3Finder> s = ServiceLoader.load(Mp3Finder.class);

You may want to use a special classloader to load service providers, such as the module classloader
to restrict loading of service providers to classes from your own module. To obtain such a ServiceLoader,
the classloader to be used is passed to the factory method:

ServiceLoader<Mp3Finder> s = ServiceLoader.load(
 Mp3Finder.class, this.getClass().getClassLoader());

In addition to this, it is possible to create a service loader that only returns installed service
providers—for example, a service provider from JAR archives located in the lib/ext directory or in the
platform-specific extension directory. Other service providers found on the class path are ignored. This
service loader is created using the loadInstalled() method:

ServiceLoader<Mp3Finder> s = ServiceLoader.loadInstalled(Mp3Finder.class);

The service provider can be obtained using an iterator. The iterator triggers dynamic loading of the
provider on first access. The loaded providers are stored in a local cache. The iterator returns the cached
providers before loading the remaining previously unloaded providers. If necessary, the internal cache
can be cleared using the method reload(). This ensures that all providers are reloaded.

CHAPTER 5 LOOKUP CONCEPT

73

Iterator<Mp3Finder> i = s.iterator();
if(i.hasNext()) {
 Mp3Finder finder = i.next();
}

If a provider cannot be instantiated, it does not match the indicated type, or the configuration file is
incorrect. In that case, a ServiceConfigurationError is triggered.

Summary
In this chapter, you learned one of the most interesting and important concepts of the NetBeans
Platform: Lookup. This chapter examined the functionality of Lookups and familiarized you with the
service interfaces and service providers. You learned to create service interfaces and use them within
service providers, as well as how service providers are discovered in a loosely coupled way. To that end,
you began to use the various registration mechanisms.

However, Lookups do a lot more than simply discover services. In fact, they also function to enable
intermodular communication. This chapter showed you an example, in which information is shared
between windows without them knowing about each other. Finally, the exploration of this topic was
broadened by relating it to the JDK 6 ServiceLoader class.

C H A P T E R 6

75

Actions

The treatment of actions of the NetBeans Platform is based on the Swing Action Framework.
Consequently, each action is based on the Swing interface ActionListener or Action. The benefit of the
NetBeans Platform is that it provides an infrastructure for different recurring types of actions. Previously
actions had to be derived from a special class depending on the type of action; since NetBeans Platform7
all actions have the same form and just need to implement the ActionListener interface. In addition to
the fact that actions are now easier to use, the implementation of actions has become more transparent
for you as a developer. Now the NetBeans Platform does the hard work for you in the background.

ENORMOUSLY EASIER: ACTIONS IN THE NETBEANS PLATFORM 7

Just implement your action logic via an ActionListener interface. Meta information, such as ID, name, or
the icon of the action, is simply added with annotations. The NetBeans Platform does the rest for you.

Not only is it possible to create rudimentary action classes which execute their logic encapsulated

(AlwaysEnabled), but actions can be created which dynamically transfer available actions (Callback) or
actions which are able to include their logic in a certain context (ContextAware). Figure 6-1 gives an
overview of these three main types of actions again with their most important features.

Figure 6-1. Different types of actions within the NetBeans Platform

The registration of actions is centrally done in the layer file of your standard folder Actions. This
central registration can then be referred to from other places. This has one great advantage: actions can

CHAPTER 6 ACTIONS

76

be used at different places at once, for example in the menu bar, in the toolbar, and in an application
module itself connected with a control element. So just one instance of the action class is created by the
platform. A further reason for the central declaration of the actions is the possibility of adapting the
toolbar user specifically. Like this, all available actions can be shown to the user and can be assigned to
any toolbar. If the user removes an entry from the toolbar, the action is not lost because only the
reference is deleted and not the action itself.

To simplify the registration and the assignment of actions the NetBeans Platform 7 has something
new, too. Now, annotations are used instead of the manual registration and assignment in the layer file.
With this information the referring layer entries are automatically generated creating the application.
You are not forced to use annotations, though. You can still create the layer entries directly in the layer
file.

In the following sections I will explain how to simply create actions, how to build them, and how to
register them via annotations or by a manual layer entry. To create action classes you use the wizard that
is provided by the NetBeans IDE. You will learn that action classes are so simple that you do not even
need the wizard.

Always Enabled Actions
Choose File ➤ New File… ➤ Module Development ➤ Action to call the wizard for creating a new action
class. In the first step you can choose the type of action. Doing so you can choose between an Always
Enabled action and a Conditionally Enabled action. You want to create an action that is always provided
and so you should choose Always Enabled. In the next step you can integrate your action class into the
menu bar and the toolbar and you can also define a short cut (see Figure 6-2). Right now you’re
concerned with the actions so you deactivate these options and just assign the action to create to the
existing or a new category.

Figure 6-2. Creating an action class with the NetBeans wizards

CHAPTER 6 ACTIONS

77

Press the Next button to get to the last step. You can define the name of the action class, which will
be shown in the menu, there. Furthermore you can or must choose an icon for the action. This icon
should typically have a size of 16 × 16 pixels. You should provide the same icon sized 24 × 24 pixels. Like
this, the user has the possibility of depicting the toolbar in two different sizes. You do not have to
especially select it, it should only be in the same folder and named the same with 24 attached. If the 16 ×
16 pixels icon is called icon.gif, the 24 × 24 pixels icon has to be called icon24.gif. Furthermore, you can
provide the icons icon_pressed.gif, icon_disabled.gif, icon_rollover.gif for the referring conditions. Then
press the Finish button to close the wizard and to generate the action class. Now let’s look at the action
class, shown in Listing 6-1.

Listing 6-1. Example of an Action Class—although the Assignment and the Provision Occur by Meta

Information via Annotations

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import org.openide.awt.ActionID;
import org.openide.awt.ActionRegistration;
import org.openide.awt.ActionReferences;

@ActionID(
 id = "com.galileo.netbeans.MyFirstAction",
 category = "File")
@ActionRegistration(
 displayName = "#CTL_MyFirstAction",
 iconBase = "com/galileo/netbeans/icon.gif")
@ActionReferences({})
public final class MyFirstAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }
}

First, you should give each action a unique identifier by means of the ActionID annotation. You do
so by specifying a unique string with the id parameter. I suggest using the classname in connection with
its code name base. This way the ID is really unique. Moreover, the action has to be assigned to a
category; that can either be an already existing category or a new category.

The action is registered by the ActionRegistration annotation. The action is registered at the
identifier which is assigned by the ActionID. The display name is read by the assignment of the key
#CTL_MyFirstAction from the Bundle.properties file. The advantage of this is that the name can be
localized easily (the name can be adjusted to another language). Besides, an icon with the iconBase
parameter is specified.

 Note For the time being I will ignore the ActionReferences annotation, which is automatically created by the
wizard. This way, an action is assigned to a menu or to a toolbar. I will get to this in Chapter 9.

CHAPTER 6 ACTIONS

78

The action class itself is quite simple. Only the actionPerformed() method of the ActionListener
inferface has to be implemented. The action that you intend will be executed by this method.

As already mentioned at the beginning of the chapter, the registration of actions via annotations is
the normal method. However, you do not have to use it. It is equally good to introduce your actions to
the NetBeans Platform by referring entries in the layer file since, in principle, it is not really different
using annotations. The only difference is that these entries are created when automatically creating your
application out of the information of the annotations. To register an always enabled action class without
annotations, create the following .instance element in the Actions folder, as shown in Listing 6-2.

Listing 6-2. Registration of an Always Enabled Action by a Direct Entry in the Layer File

<file name="com-galileo-netbeans-MyFirstAction.instance">
 <attr name="displayName" bundlevalue=
 "com.galileo.netbeans.Bundle#CTL_MyFirstAction"/>
 <attr name="iconBase"
 stringvalue="com/galileo/netbeans/icon.gif"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.awt.Actions.alwaysEnabled"/>
 <attr name="delegate"
 newvalue="com.galileo.netbeans.MyFirstAction"/>
</file>

The attributes with names, which correspond to the annotation parameters, refer to its meaning.
These and other necessary attributes and their values are explained in Table 6-1.

Table 6-1. Attributes of an .instance Element to Register an Always Enabled Action

Attribute Meaning

displayName Name under which the action is displayed, e.g., in the menu
(stringvalue). Can also be read out of a Bundle.properties file
(bundlevalue).

iconBase Path to an icon which is used, e.g., in the menu or in the
toolbar.

instanceCreate Assigns a factory method which will create the action. This
is org.openide.awt.Actions.alwaysEnabled for an always
enabled action.

delegate Assigns the implementation of your action out of which the
real action is created by the above mentioned factory
method.

In addition to these attributes two more optional attributes are provided. These are presented in
Table 6-2.

CHAPTER 6 ACTIONS

79

Table 6-2. Optional Attributes of an .instance Element for the Registration of an Always Enabled Action

Attribute Meaning

noIconInMenu Determines that no icon is displayed in the menu. If you
have not defined an icon with iconBase there is also no
placeholder.

asynchronous Can be set to true or false. This way, it is possible to simply
execute actions asynchronously. That means the action is
executed out of the Event Dispatch thread and so does not
block the GUI.

Callback Actions
A callback action is different from an always enabled action since a callback action is able to delegate to
another action which typically depends on the context. Typically, a callback action does not contain
action logic, but delegates further to a so called Action Performer. In case no action performer exists, you
can add a so-called fallback implementation within the callback action. Callback actions are mainly used
for global actions, meaning actions that follow different logics depending on the context. These are
actions such as search, copy, or paste. Such global actions are also already provided in multiples by the
actions API of the NetBeans Platform. Action performers are provided by a Java ActionMap. During that
process, the action performer and the key of the callback action are registered within this map. All
classes, which transfer from JComponent, have an ActionMap by default. The NetBeans Platform base class
also has a TopComponent by default. It is used for windows that will be displayed within a NetBeans
Platform application (more about this in Chapter 10). This ActionMap is provided by a Lookup. It is the
task of a callback action class to check if an ActionMap exists in the global proxy Lookup. And if there is
one, the task is to check whether an action performer was registered for your own action. In this case,
action representers, such as menu and toolbar entries, are automatically activated. If no action
performer and no fallback implementation are provided, the action representers are deactivated.

The NetBeans IDE does not provide a special wizard to create a callback action. If you want to create
a callback action with a fallback implementation, just use the wizard for an always enabled action class
as described in the section “Always Enabled Actions.” Then you just have to add another parameter to
the ActionRegistration annotation. It is even easier if you do not want a fallback implementation. Then
just add the ActionID and the ActionRegistration annotation to the key. In this case, a class is not even
necessary anymore.

In Listing 6-3, an action with fallback implementation will be created to be able to refresh. It will
execute a different action depending on which window has the focus. Create an action class named
RefreshAction with the wizard for an always enabled action and add it to a menu or a toolbar. The class
which was already extended with the key parameter should then look like Listing 6-3.

Listing 6-3. Callback Action with Fallback Implementation

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import org.openide.awt.ActionRegistration;
import org.openide.awt.ActionReference;

CHAPTER 6 ACTIONS

80

import org.openide.awt.ActionReferences;
import org.openide.awt.ActionID;

@ActionID(
 category = "File",
 id = "com.galileo.netbeans.RefreshAction")
@ActionRegistration(
 iconBase = "com/galileo/netbeans/icon.gif",
 displayName = "#CTL_RefreshAction"
 key = "RefreshAction")
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 900),
 @ActionReference(path = "Toolbars/File", position = 300)
})
public final class RefreshAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 // TODO fallback implementation
 }
}

The only difference with an always enabled action is that a callback action uses the additional
parameter key. This way you can assign a random identifier by which an action performer is linked.

The class RefreshAction itself functions as a fallback implementation. If you do not need such a
class, you just have to annotate a key as shown in Listing 6-4.

Listing 6-4. Callback Action Without Fallback Implementation

@ActionID(
 category = "File",
 id = "com.galileo.netbeans.RefreshAction")
@ActionRegistration(
 iconBase = "com/galileo/netbeans/icon.gif",
 displayName = "#CTL_RefreshAction")
public static final String REFRESH_ACTION = "RefreshAction";

Now if you start the application and neither a fallback implementation nor an action performer is
provided, the action is deactivated in the menu as well as in the toolbar. Listing 6-5 conventionally
explains how to provide an action performer since it assumes a window which derives from the class
TopComponent. You will create such a window in Chapter 10. As soon as you have created it, you can also
test this action class practically.

Listing 6-5. Registration of an Action Performer for a Callback Action

public final class MyTopComponent extends TopComponent {
 public MyTopComponent() {
 ...
 getActionMap().put("RefreshAction",
 new AbstractAction() {
 public void actionPerformed(ActionEvent event) {
 // refresh content of top component
 }
 });

CHAPTER 6 ACTIONS

81

 }
}

Give the action map of the top component by the method getActionMap(), which is defined by the
class JComponent. Then add an instance of the actions implementations connected with the key of the
RefreshAction. Now the action, which is created by the class AbstractAction, is in the context of
MyTopComponent. You can add each action class to the action map which implements the interface Action.

As soon as the window MyTopComponent is focused, the RefreshAction is active. Confirming the
action, the method actionPerformed() provided by MyTopComponent is executed. For a comprehensive
understanding it makes sense to know how a callback class gets to the action performer, since the action
performer is not provided to the RefreshAction class just by adding it to the action map. The connection
between those two parts is still missing. The Lookup concept is responsible for that connection. In this
case the Lookup concept means a local Lookup of the top component and a global proxy Lookup which
facilitates access of the callback action to the local Lookup.The top component has to ensure that its
action map is located in its Lookup. Then, a callback action can find an action performer. By default, the
action map is already in the local Lookup of the top component; you do not have to worry about it
anymore, except for setting another local Lookup with the method associateLookup() or overwriting the
getLookup() method. Just know that you will need to add the action map again. But that is enough
about the Lookup concept; you can find more information about it in Chapter 5.

You are now able to add any number of action performers, which are automatically executed,
depending on the current concept, to a callback action. You might be asking yourself how to use actions
provided by the NetBeans Actions API such as the CopyAction, the CutAction, or the DeleteAction
classes, which at least are already integrated in the menu and so can be used. These classes are all
callback actions and can be used just by providing an action performer, as explained before by means of
the class RefreshAction.

If you do not want to use annotations for your callback action you can also register them in the
folder Actions via the entries shown in Listing 6-6.

Listing 6-6. Registration of a Callback Action via an Entry in the Layer File

<file name="com-galileo-netbeans-RefreshAction.instance">
 <attr name="displayName"
 bundlevalue="com.galileo.netbeans.Bundle#CTL_RefreshAction"/>
 <attr name="iconBase"
 stringvalue="com/galileo/netbeans/icon.gif"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.awt.Actions.callback"/>
 <attr name="fallback"
 methodvalue="org.openide.awt.Actions.alwaysEnabled" />
 <attr name="delegate"
 newvalue="com.galileo.netbeans.RefreshAction"/>
 <attr name="key" stringvalue="RefreshAction"/>
</file>

The attributes displayName and iconBase correspond to the attributes of an always enabled action
explained in the section “Always Enabled Actions”. The special attributes for a callback action are listed
and explained in Table 6-3.

The optional attributes of an always enabled action (see Table 6-2) are also provided using a
callback action.

CHAPTER 6 ACTIONS

82

Table 6-3. Attributes of an .instance Element to Register a Callback Action

Attribute Meaning

instanceCreate Indicates a method which will create the action. For a
callback action this would be

org.openide.awt.Actions.callback

fallback Indicates either a factory method (methodvalue), which
creates the fallback action, or the fallback action as Action
instance (newvalue).

delegate Indicates the fallback implementation (newvalue) out of
which the already named factory method creates the
fallback action.

key Key with which an action performer is registered in an
action map.

surviveFocusChange Optional attribute which defines whether the action is still
active when the focus is not on the context any more (if the
action had been activated before because of a certain
context).

Context Aware Actions
Actions of this type work in a particular context—a file, for example. The special thing about this type of
action is that such actions are only active when the referring context in the application is active, too. In
the example, the file is opened in the application. The context is automatically transferred to the action
by the NetBeans Platform, so the action can execute the referring action on the context, such as edit a
file, for example. Typically, connecting the context and the action by a so-called Context Interface (also
called a Cookie), which is implemented by the context.

We want to use a node class as context in the following example. A node is the representation of
certain data. In practice, a node can be a file which is depicted in a tree structure or which is opened in
an editor, for example. You will learn more about this concept, which is frequently used within the
NetBeans Platform, in Chapters 7 and 12.

To create a context aware action you can use the action wizard again (File ➤ New File… ➤ Module
Development ➤ Action). However in this case you should choose the type Conditionally Enabled. Specify
the context interface then and choose whether the action should be even active when multiple instances
of the context interface exist. We use the context interface Editable in this example and specify that the
action will only work on one context instance. On the following page of the wizard you can then
integrate the action into the menubar and the toolbar (see the “Always Enabled Action” section). After
completing the wizard, your action class should about look like Listing 6-7.

CHAPTER 6 ACTIONS

83

Listing 6-7. Action Class of the Type Context Aware Which Becomes Active When an Instance of the

Context Interface Editable Exists

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import org.netbeans.api.actions.Editable;
import org.openide.awt.ActionID;
import org.openide.awt.ActionRegistration;
import org.openide.awt.ActionReferences;

@ActionID(
 category = "Edit",
 id = "com.galileo.netbeans.MyContextAction")
@ActionRegistration(
 iconBase = "com/galileo/netbeans/icon.gif",
 displayName = "#CTL_MyContextAction")
@ActionReferences({})
public final class MyContextAction implements ActionListener {
 private final Editable context;
 public MyContextAction(Editable context) {
 this.context = context;
 }
 public void actionPerformed(ActionEvent ev) {
 // do something with context
 context.edit();
 }
}

Now looking at the created action class, you will quickly recognize that it hardly differs from an
always enabled action. A context aware action is registered the same way with ActionID and
ActionRegistration annotations.

A context aware action has a constructor unlike an always enabled action. A constructor gets the
desired context as parameter. In the actionPerformed() method you can then access this context. If you
define that the action should be active even when the majority of the context instances are active,
creating the action (or afterwards), a list of context instances is transferred to the constructor. You do not
have to define other parameters when registering. Only the following section changes:

private final List<Editable> context;
public MyContextAction(List<Editable> context) {
 this.context = context;
}

What we still need now is a node with which the action will be active. As an example, I created the
class MyNode which derives from the Node subclass AbstractNode. In a real application, such a node class
could represent a file of a certain type, for example. The class in this example will only clarify the
connection of a context aware action with a certain context. In the action class, you defined that the
node has to implement the interface Editable. So you have to do this now. This context interface
specifies the method edit(), which you just created by an empty implementation. The method is later
called in by the action class; it represents the context dependent action logic. The Actions API provides a
series of frequently used context interfaces such as Openable or Closable. Because you do not need a
certain super interface, though, you can just use any interface as context interface. (See Listing 6-8.)

CHAPTER 6 ACTIONS

84

Listing 6-8. Node That Implements the Context Interface Editable and So Represents the Context of the

Action

import org.netbeans.api.actions.Editable;
import org.openide.nodes.AbstractNode;
import org.openide.nodes.Children;

public class MyNode extends AbstractNode implements Editable {
 public MyNode() {
 super(Children.LEAF);
 }
 public void edit() {
 // edit something depend on the data, this node represents
 }
}

Now you just have to set the active node in your top component, which could be a file editor, for
example, in which that file which is represented by the node is opened. To get there, you just have to add
the node to the local Lookup of the top component. (See Listing 6-9.)

Listing 6-9. Set Active Node. By Doing So, the Action Becomes Active, When Implementing the Referring

Context Interface of this Node.

public final class MyTopComponent extends TopComponent {
 public MyTopComponent() {
 MyNode node = new MyNode();
 ...
 associateLookup(Lookups.fixed(node, getActionMap()));
 }
}

If the focus in your application is on this top component, the NetBeans Platform ensures that the
local Lookup (in which there is now a MyNode instance) is provided to the action as global context. In this
case, even the action in the menubar and/or in the toolbar is automatically activated by the NetBeans
Platform.

Finally, regarding a context aware action, Listing 6-10 shows how to register such an action class
without annotation by a direct entry in the layer file.

Listing 6-10. Registration of a Context Aware Action by a Direct Entry in the Layer File

<file name="com-galileo-netbeans-MyContextAction.instance">
 <attr name="displayName" bundlevalue=
 "com.galileo.netbeans.Bundle#CTL_MyContextAction"/>
 <attr name="iconBase"
 stringvalue="com/galileo/netbeans/icon.gif"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.awt.Actions.context"/>
 <attr name="delegate"
 methodvalue="org.openide.awt.Actions.inject"/>
 <attr name="injectable"
 stringvalue="com.galileo.netbeans.MyContextAction"/>

CHAPTER 6 ACTIONS

85

 <attr name="type"
 stringvalue="org.netbeans.api.actions.Editable"/>
 <attr name="selectionType" stringvalue="EXACTLY_ONE"/>
</file>

The attributes displayName and iconBase refer to the attributes of an always enabled action
depicted in the“Always Enabled Actions” section. In Table 6-4, the special attributes for a context aware
action are listed and explained. The optional attributes of an always enabled action from Table 6-2 are
provided with a context aware action.

Table 6-4. Attributes of an .instance Element for Registering a Context Aware Action.

Attribute Meaning

instanceCreate Defines a factory method which will create the action. For
a context aware action this is

org.openide.awt.Actions.context

delegate The method of the Actions API shown here:
org.openide.awt.Actions.inject cares about the transfer
of your action to the constructor.

injectable With this you define your own action class which will be
registered.

type With this attribute you define the desired context
interface.

selectionType Defines whether the action just expects one (EXACTLY_ONE)
or more (ANY) context instances.

surviveFocusChange Optional attribute which defines whether the action is
even active when the context is not focused anymore (if it
had been activated before because of a certain context).

Summary
This chapter discussed actions. You learned how to quickly and efficiently create actions via a wizard in
NetBeans IDE. You also saw the various types of actions that are available and learned how to make
effective use of them. For example, some actions are always available, while others are only available
within specific contexts. You learned how easy it is to register and assign actions with annotations.

C H A P T E R 7

87

Data and Files

The NetBeans Platform provides a very substantial concept for creating, managing, manipulating, and
presenting data. This concept mainly embraces the File Systems API and the Data Systems API.
Additionally, there is the Nodes API and the Explorer API. Each of these APIs is located on its own
abstraction level. This system can be divided into four levels together with the concrete data outside the
NetBeans Platform application, as shown in Figure 7-1.

Figure 7-1. Architecture for managing data and files within the NetBeans Platform

A data system is initially abstracted using the FileSystem class. Doing so, the physical data, which lie
below, can be present in any form. The FileSystem class lets users address physical data from different
sources in the same way—for example, a local file system, a file system in the form of an XML file (similar
to how the System Filesystem is built, too) or a JAR file. Only an implementation of the abstract
FileSystem class has to be provided in the desired form. This way, the File Systems API abstracts from
the concrete data and provides it within the application in a virtual file system. Thus access is possible
independent from the origin of the data. The abstracted data on the abstraction layer in the form of a
FileObject class do not have information yet about what kind of data to manage. So this layer does not
contain data-specific logic. Building upon this layer, there is the Data Systems API in the logical layer.
There are objects, which represent the data of a very specific type. These objects build upon the

CHAPTER 7 DATA AND FILES

88

DataObject class. For each of the desired data types there exists a DataObject.Factory which is
responsible for creating objects. The NodesAPI is the top layer in this concept (it is on the presentation
layer). So a node is responsible for the type-specific representation of data. In this respect, a Node
represents a DataObject, which itself is responsible for creating the node. In Chapter 12, I will explain in
detail how to represent your data by means of nodes and the explorer.

File Systems API
The NetBeans Platform provides transparent access to files and folders by means of the File Systems API.
In this process, access is very abstract; it works the same way, whether the data are present, for example,
as a virtual XML file system (such as the System Filesystem), or if they are in a JAR archive or a normal
directory. The general interfaces of a file system are described in the abstract class FileSystem. The
abstract class AbstractFileSystem implements some of the tasks of a file system. Thus it is helpful as a
base class for special file system implementations. The concrete implementation LocalFileSystem,
JarFileSystem, and XMLFileSystem derive from this class. The class MultiFileSystem represents a proxy
for multiple file systems; it is mostly used as a base class. The file system class hierarchy is shown in
Figure 7-2.

Figure 7-2. Class hierarchy of the file systems

The File Object
Files within a filesystem—directories and files—are represented by the class FileObject.This is an
abstract wrapper class for the File class of the Java Platform. The implementation of a FileObject is
provided by the concrete file system. Apart from the standard file operations, the class FileObject also
provides the possibility of supervising changes of files or directories. The following sections will describe
the operations of the class FileObject.

Creating
If you want to create a FileObject for an existing file in your local file system, you can do this with the
helper class FileUtil:

CHAPTER 7 DATA AND FILES

89

FileObject obj = FileUtil.toFileObject(new File("C:/file.txt"));

If you want to create a FileObject out of a concrete FileSystem object, you can indicate the
complete paths with the method findResource():

FileSystem fs = ...
FileObject obj = fs.findResource("folder/file");

Here is how to create new files or directories based on a File object:

File file = new File("E:/newfolder/newfile.txt");
File folder = new File("E:/newfolder2");
FileObject fo1 = FileUtil.createData(file);
FileObject fo2 = FileUtil.createFolder(folder);

If you already have a directory in the form of a FileObject, you can create a file or a directory in its
file system as follows:

FileObject folder = ...
FileObject file = folder.createData("newfile.txt");
FileObject subfolder = folder.createFolder("newfolder");

Renaming
If you want to rename a file or a directory, you first have to ensure that the FileObject cannot be edited
by just anybody. You do this by means of a FileLock object. After renaming, you release this FileLock
again in a finally block.

FileObject myfile = ...
FileLock lock = null;
try {
 lock = myfile.lock();
} catch (FileAlreadyLockedException e) {
 return;
}
try {
 myfile.rename(lock, "newfilename", myfile.getExt());
} finally {
 lock.releaseLock();
}

Deleting
Deleting files or directories is very easy, because the method delete() is concerned with reserving and
opening a FileLock itself. Consequently, deleting only requires the following line:

FileObject myfile = ...
myfile.delete();

Furthermore, a variant of the method is provided. It enables you to pass your own FileLock,
analogous to the renaming of a FileObject.

CHAPTER 7 DATA AND FILES

90

Removing
A FileObject cannot just be removed by renaming as you can do it with a File. The FileUtil class
provides the moveFile() method for removing a FileObject. This method copies the file or the directory
into a destination directory, deletes the source, and in doing so, automatically reserves the needed
FileLock objects and releases them again.

FileObject fileToMove = ...
FileObject destFolder = ...
FileUtil.moveFile(fileToMove, destFolder, fileToMove.getName());

Reading and Writing Data
As with Java, reading and writing a FileObject works by streams. For this purpose, the FileObject class
provides the InputStream and the OutputStream. You pack them in a BufferedReader for simple and
performant reading and in a PrintWriter for writing, as shown in Listing 7-1.

Listing 7-1. Reading and Writing a FileObject

FileObject myFile = ...
BufferedReader input = new BufferedReader(new InputStreamReader(myFile.getInputStream()));
try {
 String line = null;
 while((line = input.readLine()) != null) {
 // process the line
} finally {
 input.close();
}
PrintWriter output = new PrintWriter(
 myFile.getOutputStream());
try {
 output.println("the new content of myfile");
} finally {
 output.close();
}

Optionally, you can transfer your own FileLock to the method getOutputStream().
The FileObject class itself provides two simple methods for the easy reading of a text-based

FileObject. On the one hand, it is possible to get the complete content of a file at once with the method
asText(). On the other hand, you can get a list with all separate lines with the method asLines(). You
can add a special encoding (such as UTF-8) as parameter to both methods, alternatively.

FileObject myFile = ...
for (String line : fo.asLines()) {
 // process the line
}

Monitoring Changes
The class FileObject enables you to react on changes of files within a filesystem because you can register
a FileChangeListener for that case, as shown in Listing 7-2

CHAPTER 7 DATA AND FILES

91

Listing 7-2. Reacting on Changes of a Data Object

File file = new File("E:/NetBeans 7/file.txt");
FileObject fo = FileUtil.toFileObject(file);
fo.addFileChangeListener(new FileChangeListener(){
 public void fileFolderCreated(FileEvent fe) {
 }
 public void fileDataCreated(FileEvent fe) {
 }
 public void fileChanged(FileEvent fe) {
 }
 public void fileDeleted(FileEvent fe) {
 }
 public void fileRenamed(FileRenameEvent fre) {
 }
 public void fileAttributeChanged(FileAttributeEvent fae) {
 }
});

The methods fileFolderCreated() and fileDataCreated() are called when creating a directory or
when calling a file. These methods only make sense when the supervised FileObject is a directory.
Changing a file, the event is always triggered for the file itself and for the parent directory. This means
the methods are informed about changes of data, even when supervising the parent directory. If you are
not interested in all events of the FileChangeListener interfaces, you can instead use the adapter class
FileChangeAdapter.

 Caution Remember that you can only be informed about events that are executed within your application on
the concrete FileObject. You cannot be informed when renaming a file outside of the application in the Windows
Explorer, for example.

The classes FileSystem, FileObject, and FileUtil provide numerous very helpful methods. So, in
this respect, it is totally worthwhile to take a closer look at the documentation of the File Systems API.

Data Systems API
The Data Systems API provides a logical layer which is based on the File Systems API. While a FileObject
manages its data regardless of the type, a DataObject is a wrapper for a FileObject of a really specific
type. A DataObject expands a FileObject with type-specific features and functionalities. These
functionalities are specified by interfaces or abstract classes, the so-called context interfaces.
Implementations of the functionalities are provided by the DataObject via the local Lookup. Due to this
mechanism, the abilities of a DataObject can be adapted dynamically and flexibly and they can be called
from outside. Since a DataObject knows the type of its managed data, it is able to represent the data
accordingly. That means, a DataObject is responsible itself for creating a Node which accordingly
represents the data on the user interface. A DataObject is created by a special DataObject.Factory which
is exactly responsible for one type of data.

CHAPTER 7 DATA AND FILES

92

The coherence of this system is easily demonstrated. In the following example it becomes quite
clear how the APIs of the three layers work together and build upon each other. In this regard, the
NetBeans IDE does quite a lot of work and provides a wizard.

Now you want to use this wizard to add a data file for MP3 files to a module.

1. To do so, select File New File… and File Type in the category Module
Development.

2. For the moment, you can determine the MIME type; type in audio/mpeg, for
this example. The file type is recognized on the basis of the ending; it is also
possible with XML files that the type of the content is recognized by means of
the root element. Here, you want the files to be recognized by the ending mp3.
Accordingly, you fill this in (see Figure 7-3). Optionally, you can define
multiple file endings, each separated by a comma. So for video files, mpg or
mpeg would make sense.

Figure 7-3. Creating a new file type for MP3 files with the NetBeans wizard

3. To get to the last page, press Next. Type in Mp3 as class name prefix and
choose any icon sized 16 × 16 pixels, too.

4. Then press the Finish button so the wizard creates the data object class.

The Data Object
In principle, a data object is specified by the abstact class DataObject. Usually, the subclass
MultiDataObject is used as base class. On the one hand, it already implements most abstract methods of
DataObject; this is why your own data object class remains very small. On the other hand, a multidata
object can contain one or more file object. A data object always has a file object which is called a primary

CHAPTER 7 DATA AND FILES

93

file. Furthermore, a multidata object can optionally contain one or more files, which are called
secondary files. Secondary files typically occur with related data—as, for example, with the form editor.
In the editor, the files myform.java, myform.form, myform.class are represented by a data object. In this
example, the file myform.java is the primary file and the files myform.class and myform.form are the
secondary files. A file object within a data object is managed by the class MultiDataObject.Entry. Here
the subclass FileEntry is mostly used. The standard file operations, such as removing or deleting, are
executed via this class. Look at the class Mp3DataObject which was created by the wizard, shown in
Listing 7-3.

Listing 7-3. Data Object Class for a File Object Type Mp3. This Class Provides the Logic for the MP3 Files.

import java.io.IOException;
import org.openide.filesystems.FileObject;
import org.openide.loaders.DataNode;
import org.openide.loaders.DataObjectExistsException;
import org.openide.loaders.MultiDataObject;
import org.openide.loaders.MultiFileLoader;
import org.openide.nodes.Node;
import org.openide.nodes.Children;
import org.openide.util.Lookup;

public class Mp3DataObject extends MultiDataObject {
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 }
 protected Node createNodeDelegate() {
 return new DataNode(this, Children.LEAF, getLookup());
 }
 public Lookup getLookup() {
 return getCookieSet().getLookup();
 }
}

As you already know, a data object is normally created by a data object factory. This factory is
responsible for the creation of a certain data object type. The constructor of the Mp3DataObject class
contains two parameters. First, the primary file, which contains or represents the actual MP3 files.
Second, it contains the factory instance in form of a MultiFileLoader object, which is responsible for the
data object. You just hand these parameters over to the base class constructor which does the
management. A data object cares about the creation of according nodes, because the object knows the
type of its data. The nodes are used to represent data objects on the user interface. You do this with the
method createNodeDelegate() which creates an instance of the node class DataNode and returns. This is
the interface with the Nodes API which is located on the presentation layer (see Figure 7-1). You will
learn more about this in Chapter 12.

The main difference between a file object and a data object is that a data object knows which data it
contains. This means that a data object is characterized by being able to provide features and
functionalities for this type of data—in this case an MP3 file. The functionalities, which provide a data
object for its files, are described by interfaces or by abstract classes. These are the context interfaces.
Instances of these interfaces are managed by the data object in a local Lookup. Because the interfaces
are not necessarily implemented by DataObject itself, but are managed by the Lookup, a data object is
able to provide its capabilities dynamically. This means it can offer a playing MP3 file during the

CHAPTER 7 DATA AND FILES

94

runtime, for example. This is provided as long as the MP3 file is playing. Furthermore, it is possible to
flexibly expand a data object with further functionalities. The Lookup offers type-safe access on these
interfaces per se.

Now, the basic structure of your Mp3DataObject is finished. The contructor gets the file object to
manage from the lower abstraction layer by the corresponding factory. The abstraction layer delivers a
representative for the upper presentation layer and finally abandons its functionalities to the
environment by a Lookup. The base classes DataObject and MultiDataObject provide numerous
methods for using a data object. Here a look at the API documentation can be very helpful.

Implementing Context Interfaces
First, you specify the functionality which will receive your Mp3DataObject by an interface. You should
now call it PlayInterface and so specify the method play() with which the corresponding Mp3DataObject
can be played:

public interface PlayInterface {
 public void play();
}

Of course, you then need an implementation of the desired functionality which you have specified
by the context interface. You might imagine that you implement the interface directly by the class
Mp3DataObject; however, it is better to do this by a separate class, a Support class. That way the
functionality can be flexibly added to the Mp3DataObject and deleted again. Furthermore, multiple
context interfaces can be grouped semantically and the Mp3DataObject class remains very small.

public class PlaySupport implements PlayInterface {
 private Mp3DataObject mp3 = null;
 public PlaySupport(Mp3DataObject mp3) {
 this.mp3 = mp3;
 }
 public void play() {
 System.out.println("Play: " + mp3.getPrimaryFile().getName());
 }
}

Furthermore, it is only necessary to add an instance of this support class to the Lookup of the
Mp3DataObject class. You do this with the method getCookieSet().assign() and in doing so indicate that
it is the type PlayInterface. Of course, you could also indicate PlaySupport.class, but this way, you are
independent of the implementation.

public class Mp3DataObject extends MultiDataObject {
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 getCookieSet().assign(PlayInterface.class, new PlaySupport(this));
 }
}

You finally expanded your Mp3DataObject with a functionality in three steps. This functionality can
be used from outside in the local Lookup which is available through getLookup().

CHAPTER 7 DATA AND FILES

95

Using Context Interfaces
Finally, the question remains how to access the functionalities of a data object. I want to answer this
question by means of a context aware action class. To do this, you create a new class with the wizard by
File ➤ New File… ➤ Module Development ➤ Action. You now use Mp3DataObject as context. This way,
the action only becomes active when a Mp3DataObject, meaning its node, is selected. As you already
know from Chapter 6, the context is transferred to the constructor of a context aware class:

public final class MyContextAction implements ActionListener {
 private final Mp3DataObject context;
 public MyContextAction(Mp3DataObject context) {
 this.context = context;
 }
 public void actionPerformed(ActionEvent ev) {
 // do something with context
 PlayInterface p = context.getLookup().Lookup(PlayInterface.class);
 p.play();
 }
}

If an Mp3DataObject is now selected in your application, the context aware action automatically
becomes active through the NetBeans Platform. You can then access the context, which is the
Mp3DataObject instance, in the actionPerformed() method. As you already know, the features of the
data object are managed in a Lookup. So you catch this Lookup and deliver the implementation of the
PlayInterface by the Lookup() method. You can now access the implementation of the PlaySupport class
and you can execute its methods.

You can test everything with the Favorites module.

1. To do this, ensure that the module Favorites is activated in your NetBeans
Platform application under Properties Libraries in the cluster platform.

2. Next start your application and open the Favorites window with Window
Favorites.

3. Right-click the window and choose Add to Favorites.

4. Then select an MP3 file or a directory with MP3 files in the selection dialog and
press Add to add the selected entry from the Favorites window. The shown
MP3 files are represented by a data node instance which was created by the
Mp3DataObject itself. The object was created by a data loader when you added
the MP3 files to the Favorites window.

If you selected an MP3 file and you now execute the action—looking at the output of the play()
method—you see that you can directly access the selected data by the context class of this action.

Providing Context Interfaces Dynamically
In the following example (Listing 7-4), I will show you how to change the functionalities provided by an
Mp3DataObject during the runtime of the application. This way, you can also implicitly control the
actions which are available to the user. You already created a context interface and a support class for
playing an MP3 file. Now, you want to apply the same just for stopping an MP3 file. Furthermore, the
support classes and the method playing() now set the current playing status of the Mp3DataObject.

CHAPTER 7 DATA AND FILES

96

Listing 7-4. Context Interfaces and Support Class for Playing Mp3DataObject

public interface PlayInterface {
 public void play();
}
public class PlaySupport implements PlayInterface {
 private Mp3DataObject mp3 = null;
 public PlaySupport(Mp3DataObject mp3) {
 this.mp3 = mp3;
 }
 public void play() {
 System.out.println("play");
 mp3.playing(true);
 }
}
public interface StopInterface {
 public void stop();
}
public class StopSupport implements StopInterface {
 private Mp3DataObject mp3 = null;
 public StopSupport(Mp3DataObject mp3) {
 this.mp3 = mp3;
 }
 public void stop() {
 System.out.println("stop");
 mp3.playing(false);
 }
}

You create both support classes in the constructor. First, you can assume that the MP3 file is not
played, and so you add the PlaySupport with the assign() method to the Lookup. You change the
context interfaces, which are in the context interfaces. You do this in the playing() method which is
called by the support classes by corresponding parameters. If only the file is playing, delete all instances
of the type by only passing the type PlayInterface and no instances to the assign() method and add an
instance of StopInterface (see Listing 7-5). If the file is stopped, it works the other way around.

Listing 7-5. Dynamically Adding and Deleting Instances of Context Interfaces

public class Mp3DataObject extends MultiDataObject {
 private PlaySupport playSupport = null;
 private StopSupport stopSupport = null;
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 playSupport = new PlaySupport(this);
 stopSupport = new StopSupport(this);
 getCookieSet().assign(PlayInterface.class, playSupport);
 }
 public synchronized void playing(boolean value) {

CHAPTER 7 DATA AND FILES

97

 if(value) {
 getCookieSet().assign(PlayInterface.class);
 getCookieSet().assign(StopInterface.class, stopSupport);
 } else {
 getCookieSet().assign(StopInterface.class);
 getCookieSet().assign(PlayInterface.class, playSupport);
 }
 }
}

To complete the example, you need another two action classes with which you can start and stop
the MP3 file. These should be two ContextAware classes which use PlayInterface and StopInterface as
context. Then, the menu or tool entries are automatically activated or deactivated, depending on which
context interface or which support class is provided by the selected MP3 file (see Listing 7-6).

Listing 7-6. Context-Sensitive Actions Which Are Active When the Selected Mp3DataObject Provides an

Instance of the According Context Interface

public final class PlayAction implements ActionListener {
 private final PlayInterface context;
 public PlayAction(PlayInterface context) {
 this.context = context;
 }
 @Override
 public void actionPerformed(ActionEvent ev) {
 context.play();
 }
}
public final class StopAction implements ActionListener {
 private final StopInterface context;
 public StopAction(StopInterface context) {
 this.context = context;
 }
 @Override
 public void actionPerformed(ActionEvent ev) {
 context.stop();
 }
}

Data Object Factory
Data Objects are created by a data object factory. A factory is responsible for exactly one type. A factory
can recognize the type of a file either because of the file ending or with an XML root element. Factories
are registered in the layer and automatically created by the NetBeans Platform, which manages all
existing factories and can find the corresponding file for the respective file type. A factory is specified by
the interface DataObject.Factory. The class MultiFileLoader represents an implementation which is
used by default (see Listing 7-6).

The factory, responsible for creating data objects of the type Mp3DataObject, has also been registered
in the layer file by the NetBeans wizard. A look into the layer file (Listing 7-7) reveals how such a factory
registration is built.

CHAPTER 7 DATA AND FILES

98

Listing 7-7. Registration of a Data Object Factory in the Layer File

<folder name="Loaders">
 <folder name="audio">
 <folder name="mpeg">
 <folder name="Factories">
 <file name="Mp3DataLoader.instance">
 <attr name="SystemFileSystem.icon" urlvalue=
 "nbresloc:/com/galileo/netbeans/module/mp3.png"/>
 <attr name="dataObjectClass" stringvalue=
 "com.galileo.netbeans.module.Mp3DataObject"/>
 <attr name="instanceCreate" methodvalue=
 "org.openide.loaders.DataLoaderPool.factory"/>
 <attr name="mimeType" stringvalue="audio/mpeg"/>
 </file>
 </folder>
 </folder>
 </folder>
</folder>

In the standard folder Loaders subfolders are created according to the defined MIME type (in this
example audio/mpeg). Under them is the standard folder Factories in which our special data object
factory is registered with the name Mp3DataLoader.instance. An icon for this file type is specified by the
attribute SystemFileSystem.icon. With the attributes mimeType and dataObjectClass you determine for
which type of data which data object type shall be produced by the factory. This means, here, that only
the MIME type, not the file ending is determined. This determination is also made in the layer file in the
standard folder Services/MIMEResolver. Finally, the now-registered special factory for your
Mp3DataObject class is created by the method DataLoaderPool.factory().

When you created the MP3 file type at the beginning of this chapter, the file Mp3Resolver.xml was
created besides the Mp3DataObject class by the NetBeans wizard. This file determines that the file
extension .mp3 is assigned to the MIME type audio/mpeg (see Listing 7-8).

Listing 7-8. MIME Resolver-Datei

<!DOCTYPE MIME-resolver PUBLIC
 "-//NetBeans//DTD MIME Resolver 1.0//EN"
 "http://www.netbeans.org/dtds/mime-resolver-1_0.dtd">
<MIME-resolver>
 <file>
 <ext name="mp3"/>
 <resolver mime="audio/mpeg"/>
 </file>
</MIME-resolver>

This file is also registered in the layer file. For this purpose, the already mentioned standard folder
Services/MIMEResolver is used, as shown in Listing 7-9.

Listing 7-9. Registration of a MIME Type

<folder name="Services">
 <folder name="MIMEResolver">

CHAPTER 7 DATA AND FILES

99

 <file name="Mp3Resolver.xml" url="Mp3Resolver.xml">
 <attr name="displayName" bundlevalue=
 "com.galileo.netbeans.module.Bundle#Services/MIMEResolver/Mp3Resolver.xml"/>
 </file>
 </folder>
</folder>

Manually Creating Data Object
Usually, a data object does not have to be created explicitly, but is created by a factory on demand.
However, you have the possibility of creating a DataObject for a given FileObject with the static find()
method of the DataObject class:

FileObject myFile = ...
try {
 DataObject obj = DataObject.find(myFile);
} catch(DataObjectNotFoundException ex) {
 // no loader available for this file type
}

In that process, the FileObject is passed. A factory is searched for its file type. If one is found, it
creates a DataObject and returns it. Otherwise, a DataObjectNotFoundException is thrown, in case no
factory is registered for this file type.

Summary
In this chapter, you learned about two of the four most important NetBeans APIs, together with their
dependencies. You learned about these by means of an example with MP3 files. Of the four, the File
Systems API is found on the lowest level, as a generic abstraction layer over any kind of data. On top of
that, the Data Systems API handles the logic relating to the data abstracted by the File Systems API; for
example, you can use the Data Systems API to connect an MP3 file with the functionality that plays it.

C H A P T E R 8

101

Tips and Tricks

This chapter will cover two topics of general importance. The first section will introduce you to the
possibilities for doing tasks on specific NetBeans Platform lifecyle events. The second section will look
at how logging is typically done within a NetBeans Platform application.

Lifecycle of the NetBeans Platform
The NetBeans Platform provides different opportunities to react on certain events of the lifecycle and to
trigger them yourself.

Tasks on Starting the Platform
The NetBeans Platform offers an extension point named WarmUp for executing asynchronous tasks when
starting applications:

<folder name="WarmUp">
 <file name="com-galileo-netbeans-module-MyWarmUpTask.instance"/>
</folder>

You can add any instances (that implement the Runnable interface) to this extension point in your
layer file:

public class MyWarmUpTask implements Runnable {
 public void run() {
 // do something on application startup
 }
}

Critical tasks—for example, tasks that are necessary as module-starting conditions—must not be
started here. These tasks are executed asynchronously at the start of applications, which means there is
no guarantee about when the task is started or finished. In this case, a module installer should be used
(see Chapter 3).

Tasks on Ending the Platform
When a NetBeans Platform application is shut down, all user-specific settings (such as the information
about open top components, application window size, and toolbars) are saved to the application user
directory. In addition, all modules that implement a module installer (see Chapter 3) are asked if the
application can be shut down. Thus, an application is not only closed, but it is shut down properly.

CHAPTER 8 TIPS AND TRICKS

102

Usually, an application is closed using the menu or the close button in the title bar. In some cases, you
might close an application programmatically. This could be an option if wrong data is entered in a login
dialog, and the application should then be closed. In this case, you must not or cannot—as usual in Java
applications—close the application using System.exit().The process for shutting down an application is
specified by the Utilities API in the global service LifecycleManager. The NetBeans Core module offers a
service provider for that purpose, responsible for executing the tasks mentioned earlier. This standard
implementation of the LifecycleManager can be obtained by calling the getDefault() method. Close an
application by calling the following line:

LifecycleManager.getDefault().exit();

Since this LifecycleManager is implemented as a service, you can provide your own implementation
of this abstract class. This does not mean that the standard implementation of the NetBeans Platform is
no longer available—you simply need to call it. This way, it is possible to execute custom tasks while the
application is closed. Listing 8-1 demonstrates how to call the standard implementation after executing
custom tasks and shut down applications properly.

Listing 8-1. A Custom LifecycleManager Implementation, Which Calls the Standard Implementation

import org.openide.LifecycleManager;

public class MyLifecycleManager extends LifecycleManager {
 @Override
 public void saveAll() {
 for(LifecycleManager manager :
 Lookup.getDefault().lookupAll(LifecycleManager.class)) {
 if(manager != this) { /* skip our own instance */
 manager.saveAll();
 }
 }
 }
 @Override
 public void exit() {
 // do application specific shutdown tasks
 for(LifecycleManager manager :
 Lookup.getDefault().lookupAll(LifecycleManager.class)) {
 if(manager != this) { /* skip our own instance */
 manager.exit();
 }
 }
 }
}

This implementation must be registered as a service provider. It is important to note that a position
must be declared to ensure that the custom implementation is delivered and called first by the Lookup.
The standard LifecycleManager would be called only if this were not done. We register the class with the
following annotation:

@ServiceProvider(service=LifecycleManager.class, position=1)

CHAPTER 8 TIPS AND TRICKS

103

Restart of the Platform
You can not only finish, but also restart your application by means of the lifecycle manager of the
NetBeans Platform. For this purpose, the LifecycleManager class offers the method markForRestart(). If
this is called before finishing, a restart is realized:

LifecycleManager.getDefault().markForRestart();
LifecycleManager.getDefault().exit();

Logging
A very important and helpful (but often disregarded) topic is logging. Logging is the practice of recording
status, warning, and error messages. Logging in the NetBeans Platform is based on the Java Logging API.

Logger
Log output is recorded by the Logging API using a Logger object. Typically, different Logger instances are
used for specific components. You get an instance of a Logger via the factory method getLogger(). You
can also use a global logger, but you should use a named component-specific logger whenever possible.
This way, different loggers can be individually turned on or off, which is very helpful when searching for
bugs. A named logger is obtained by the following call:

Logger log = Logger.getLogger(MyClass.class.getName());

Typically, the full name of the class that creates the log output is used as the name for the logger.
This name is obtained from the Class method getName(). If a logger already exists for this name, it is
returned. The global logger can be obtained using the name Logger.GLOBAL_LOGGER_NAME.

Record log output (of a defined Level) using the log() methods in the Logger class. The following log
levels are provided in the Level class:

• FINEST

• FINER

• FINE

• CONFIG

• INFO

• WARNING

• SEVERE

For convenience, the methods finest(), finer(), fine(), config(), info(), warning(), and severe()
are also provided; these record the given message at the declared level.

LogManager
The Java Logging API specifies a central LogManager. This manager controls a hierarchical namespace
holding all named loggers. That is why it is reasonable to use the full names of classes (that hold the
hierarchical package structure) for logger names. For access to this manager, use the following:

CHAPTER 8 TIPS AND TRICKS

104

LogManager manager = LogManager.getDefault();

The LogManager provides all names of all loggers. As a result, you can detect the name of a NetBeans
Platform logger whose level may be changed for debugging purposes, for example. A list of all loggers
can be retrieved as follows:

LogManager manager = LogManager.getLogManager();
for(String name : Collections.list(manager.getLoggerNames())) {
 System.out.println(name);
}

Configuration
Besides the loggers, the manager also administers configuration files, which are initially loaded from the
lib/logging.properties file in the Java Platform directory. You can load special configuration files from
a specific file by setting their file name to the system property java.util.logging.config.file.
Configuration data may be loaded from a database, for example. For this purpose, implement a class
that extracts the data from the database. Then register this class with the system property
java.util.logging.config.class. Registration causes it to be automatically instantiated. Within this
class, you provide the configuration data for the LogManager via an InputStream for the
readConfiguration(InputStream) with the LogManager method.

Register Handler implementations in the configuration file so they output log data to the console
(ConsoleHandler) or into a file (FileHandler). You can register your own implementations like the
handler from the NetBeans Platform that display log messages graphically. The logging system comes
with a root logger. All other loggers forward their logs to this root logger. Register a handler for this root
logger, with the following property:

handlers = java.util.logging.ConsoleHandler

Multiple handlers can be listed using commas. To disable forwarding logs to the root logger, do so
by using the following:

<logger name>.useParentHandlers = false

In this case, you can or must define a handler especially for this logger in order to obtain log output:

<logger name>.handlers = java.util.logging.FileHandler

Finally, setting the log level is important in the configuration. A log level defines which kind of log is
recorded. This way, you can hide simple status messages and just show warning and error messages
when searching errors. On the one hand, you can globally define the log level with the following feature:

.level = WARNING

On the other hand, you can overwrite a single logger’s log level by using its name as a prefix:

<logger name>.level = INFO

Configuration data is not only set in the configuration file, but also as system properties. Set it at
runtime using the System.setProperty() method. Doing so, make sure to call the LogManager’s
readConfiguration() method in order to apply the new configuration data. Alternatively, determine the
configuration right at the application’s startup using command-line parameters. During development in
NetBeans, set your Module Suite start parameters in the Project Properties file (under Important Files)
using the property run.args.extra . For example, use the following:

run.args.extra = -J-Dcom.galileo.netbeans.myclass.level=INFO

CHAPTER 8 TIPS AND TRICKS

105

For distribution of your application, set command-line parameters using the property
default_options in the etc/<application>.conf file.

Error Reports
The NetBeans Platform implements and registers a special log handler that displays recorded error
messages for the user in a dialog. Therefore, use either the SEVERE or WARNING log level, and pass the
Exception directly to the log() method.

Logger logger = Logger.getLogger(MyClass.class.getName());
try {
 ...
} catch(Exception e) {
 logger.log(Level.SEVERE, null, e);
 // oder
 logger.log(Level.WARNING, null, e);
}

Summary
In this chapter you learned how to execute tasks on starting and finishing a NetBeans Platform
application. You can register any Runnable instances as tasks. You can also restart your application with
the lifecycle manager. The second part of this chapter dealt with the important topic of logging,
including the different kinds of log output and how you can configure them.

PART 2

Look & Feel: Developing
User Interfaces

C H A P T E R 9

109

Menu Bar and Toolbar

In addition to managing your own windows, a status bar, and a progress bar, the application window of
a NetBeans Platform application manages a menu bar and a toolbar by default. The following sections
will cover how to use the menu bar and the toolbar.

 Tip Creation and registration of menus, menu entries, and toolbar actions has been quite simplified with
NetBeans Platform 7. In connection with the annotations for actions described in Chapter 6, menu entries and
toolbar actions are easily created.

Menu Bar
The menu bar of an application based on the NetBeans Platform is built by the Platform itself via the
System Filesystem. Every menu (as well as the menu entries) is defined in the module layer file. This
allows each module to declaratively add its menu entries to the menu bar. With NetBeans Platform 7 this
is even easier. Just implement the action performed when selecting a menu entry; that way, this action is
supplied with an annotation and the corresponding layer entries are automatically created out of these
annotations.

In Chapter 6, you learned how to create and annotate action classes. In this section you will learn
how to integrate actions into the menu bar.

Creating and Positioning Menu and Menu Entries
When creating an action with the action wizard of the NetBeans IDE (see Chapter 6) you can easily
assign it to a menu and position it in the desired location via the wizard GUI. So you know what happens
meanwhile in the background—to change something later or to be able to get by without the support of
the NetBeans IDE—I will explain the process of creating menu entries for your own actions.

For example, say you want to add a menu entry to the Edit menu. To do this, use the simple action
class mentioned in the “Always Enabled Actions” section in Chapter 6. You have not assigned the action
to a menu or toolbar there yet—so far, we have ignored the ActionReferences annotation, which has
automatically been created by the action wizard. Now, you need exactly this annotation to assign an
action to a menu (see Listing 9-1).

CHAPTER 9 MENU BAR AND TOOLBAR

110

Listing 9-1. Assign Actions to a Menu with Annotations

@ActionID(
 category = "Edit",
 id = "com.galileo.netbeans.module.MyFirstAction")
@ActionRegistration(
 iconBase = "com/galileo/netbeans/module/icon.png",
 displayName = "#CTL_MyFirstAction")
@ActionReferences({
 @ActionReference(
 path = "Menu/Edit",
 position = 1200)
})
public final class MyFirstAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }
}

In Listing 9-1 you see that the ActionReferences annotation is a list of assignments. An assignment is
done by the ActionReference annotation. Specify with the path attribute where the action will be
displayed. Menu is a standard folder in the System Filesystem in which the complete menu bar of your
application is managed. The menu is determined by the name that follows Menu/. In this example, the
action is displayed in the Edit menu. The name of the menu entry is given by the action itself; it is the
value determined by displayName. Additionally, define the position of your action within the menu with
the position attribute.

Listing 9-2 shows the effects of this annotation: a correspondent entry is generated in the layer file
when creating the software. If you do not want to use an annotation, you can create this entry yourself
and assign your action to a menu this way, too.

Listing 9-2. Assigning Action to a Menu by Direct Layer Entry

<filesystem>
 <folder name="Menu">
 <folder name="Edit">
 <file name="MyFirstAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyFirstAction.instance"/>
 <attr name="position" intvalue="1200"/>
 </file>
 </folder>
 </folder>
</filesystem>

You assigned the menu Edit with the folder element in the standard folder Menu. The menu entry is
added by the file element. Now, referencing on the action class, which must be defined in the standard
folder Actions, follows with the attribute originalFile. Since the module system brings together all layer
files, the menu entries of all modules, which are set below the folder Edit, are displayed in the Edit
menu. So a menu is only created by the definition with the folder element. Thus, you have created your
first menu entry. So far, we have assumed that the Edit menu is already present. However, this must not
be the case. Since menus do not have to be explicitly applied, they are automatically created by the

CHAPTER 9 MENU BAR AND TOOLBAR

111

NetBeans Platform. This way, you can easily create menus in any combination. So, for example, to move
the action above into a submenu of Edit, you just have to modify the path attribute of the
ActionReference annotation:

@ActionReference(
 path = "Menu/Edit/My Submenu",
 position = 1200)

This leads to another folder My Submenu in the layer file which represents the content of the
submenu, as shown in Listing 9-3 and Figure 9-1.

Listing 9-3. Creating a Submenu

<folder name="Menu">
 <folder name="Edit">
 <folder name="My Submenu">
 <file name="MyFirstAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyFirstAction.instance"/>
 <attr name="position" intvalue="1200"/>
 </file>
 </folder>
 </folder>
</folder>

Figure 9-1. Menu ➤ Submenu ➤ Menu entry

You can look at the order of menus or menu entries in the layer tree (see Chapter 3) before executing
your application. In the preceding examples, you learned how to determine the position of a menu entry
by the position attribute (either with the ActionReference annotation or directly in the layer file). Since

CHAPTER 9 MENU BAR AND TOOLBAR

112

menus and submenus are implicitly applied when creating a menu entry, you cannot determine the
order via annotation. So when assigning a new menu or submenu which you want to position exactly,
you must assign the menu before using it in the layer file. There you can determine the position as
shown in Listing 9-4. For more information see Chapter 3.

Listing 9-4. Determining the Position of a Menu or Submenu

<folder name="Menu">
 <folder name="Edit">
 <folder name="My Submenu">
 <attr name="position" intvalue="800"/>
 </folder>
 </folder>
</folder>

Insert Separator
You can determine seperators, which will be displayed between the menu entries, when defining a menu
entry with the ActionReference annotation. For this purpose, the attributes separatorBefore and
separatorAfter are provided. This is when you enter their absolute position. To add a separator in front
of the example menu entry in Listing 9-1, extend the annotation of the action as shown in Listing 9-5.

Listing 9-5. Adding Separator via Annotation Attribute

@ActionReference(
 path = "Menu/Edit",
 position = 1200,
 separatorBefore = 1190)

Furthermore, there is an opportunity to define separators directly in the layer file. The layer entry
would look like that shown in Listing 9-6, analogous to the previous example.

Listing 9-6. Adding Separator via Layer Entry

<folder name="Menu">
 <folder name="Edit">
 <folder name="My Submenu">
 <file name="MyFirstAction.shadow"> ... </file>
 <file name="MyFirstAction-separatorBefore.instance">
 <attr name="instanceCreate" newvalue="javax.swing.JSeparator"/>
 <attr name="position" intvalue="1190"/>
 </file>
 </folder>
 </folder>
</folder>

Hiding Present Menu Entries
You also have the possibility of hiding preexisting menus or menu entries, which either derive from
Platform modules or were added by other application modules. This is quite easy because of the layer
tree. To do so, open the folder Important Files ➤ XML Layer ➤ <this layer in context> in your module.

CHAPTER 9 MENU BAR AND TOOLBAR

113

The entries you defined are shown there, as well as those from other modules of your application or
from Platform modules. Below the Menu Bar folder you see all menus and menu entries. Choose the
desired entry here and delete it via the context menu. They will not actually be deleted now, but just set
as invisible in your layer file, assuming you deleted the View menu and the menu entry Edit ➤ Find…. In
this case, the entries in Listing 9-7 are added to your layer file.

Listing 9-7. Hiding of Menu Entries

<folder name="Menu">
 <folder name="View_hidden"/>
 <folder name="Edit">
 <file name="org-openide-actions-FindAction.shadow_hidden"/>
 </folder>
</folder>

So the suffix _hidden is added to the according entry. If you now want to add a deleted (i.e. a hidden)
entry again, just remove the suffix from your layer file.

Shortcuts and Mnemonics
Shortcuts are defined and managed centrally in the layer file. This is why the standard folder Shortcuts
exists. The shortcut is defined by the file element and is referred on an action class as an attribute from
the central Actions folder. So a shortcut is not created for a menu entry, but for an action. A shortcut
consists of one or more modifiers and an identifier, separated by a minus sign:

modifier-identifier

The following keys can be used as modifiers which are represented by a letter (code) in the layer file:

• C – (Ctrl)

• A – (Alt)

• S – (Shift)

• M – (Cmd)/(Meta)

Furthermore, there are two wildcard codes that ensure that the shortcuts are independent from the
operating system; these should be used:

• D – (Ctrl) or (Cmd)/(Meta) (with Mac OS)

• O – (Alt) or (Ctrl) (with Mac OS)

All constants, which are defined by the Java class KeyEvent, can be used as identifier. For example,
for KeyEvent.VK_M, just omit the prefix VK_, so the identifier would be M.

As mentioned at the beginning of this section, shortcuts are managed in the layer file,even though
you can create them with an ActionReference annotation in a simple manner. This means, creating a
shortcut is analogous to creating a menu entry. For example, using the shortcut (Ctrl) + (M) concerning
the action MyFirstAction, you add the annotation shown in Listing 9-8.

CHAPTER 9 MENU BAR AND TOOLBAR

114

Listing 9-8. Definition of a Shortcut with Annotations

@ActionID(
 category = "Edit",
 id = "com.galileo.netbeans.module.MyFirstAction")
@ActionRegistration(
 iconBase = "com/galileo/netbeans/module/icon.png",
 displayName = "#CTL_MyFirstAction")
@ActionReferences({
 @ActionReference(path = "Menu/Edit", position = 100),
 @ActionReference(path = "Shortcuts", name = "D-M")
})
public final class MyFirstAction implements ActionListener {
 ...
}

This annotation leads to a layer entry as shown in Listing 9-9. This means, defining shortcuts, you
have the option of using a direct layer entry if you do not want to use annotations that represent the
preferred variant (see Listing 9-9).

Listing 9-9. Definition of Shortcuts in the Layer File

<folder name="Shortcuts">
 <file name="D-M.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyFirstAction.instance"/>
 </file>
</folder>

In this context, it can be helpful to look at the Javadocs of the functions Utilities.keyToString()
and Utilities.stringToKey(), which are used to encode the shortcuts. Some possible combinations are
listed in Table 9-1 as an example. If you do not know the spelling for a certain key, you can also use the
action wizard (see Chapter 6).

Table 9-1. Examples of Shortcuts and the Corresponding Entries in the Layer File

Shortcut Entry in the Layer File

(Ctrl)+(+) <file name="D-PLUS.shadow">

(Ctrl)+(Shift)+(S) <file name="DS-S.shadow">

(F3) <file name="F3.shadow">

(Alt)+(Enter) <file name="O-ENTER.shadow">

(Alt)+(O) <file name="O-O.shadow">

(Alt)+(Shift)+(S) <file name="OS-S.shadow">

CHAPTER 9 MENU BAR AND TOOLBAR

115

Mnemonics are inserted directly by setting an ampersand (&) before the corresponding character in
the name of an action. This can also take place in the action class or in a properties file:

CTL_OpenMyWindow=Open MyWind&ow

bear in mind that the mnemonics are displayed only when holding the (Alt) key.

Creating Your Own Menu Bar
If you want to create your own menu bar to use within a module, you can easily use the features of the
NetBeans APIs. The Data Systems API actually provides a subclass of the JMenubar class with the class
MenuBar. This class can create a DataFolder object out of its content, so you can define your own menu
like the standard menu in the layer file of your module.

Now, only a DataFolder object needs to be created, too. To do this, you need to get access to the root
folder of our menu by the method FileUtil.getConfigFile(). In this example it is called MyModuleMenu.
For this module you create a DataFolder object and transfer this directly to the MenuBar constructor with
the static method findFolder(), as shown in Listing 9-10.

Listing 9-10. Creating Your Own Menu Bar That Reads Its Content out of the System Filesystem

FileObject menu = FileUtil.getConfigFile("MyModuleMenu");
MenuBar bar = new MenuBar(DataFolder.findFolder(menu));

Toolbar

Creating Toolbar and Toolbar Actions
You can add actions to the toolbar the same way you add actions to the menu bar. You can use the
existing toolbar or create any number of custom toolbars to group your toolbar buttons. Toolbars are
defined in the standard folder Toolbars in the layer file. As described in the “Menu Bar” section, use the
ActionReference annotation to add an action to a toolbar. You want to add the action class to the
MyFirstAction toolbar, as shown in Listing 9-11.

Listing 9-11. Adding an Action to a Toolbar with Annotations

@ActionID(
 category = "Edit",
 id = "com.galileo.netbeans.module.MyFirstAction")
@ActionRegistration(
 iconBase = "com/galileo/netbeans/module/icon.png",
 displayName = "#CTL_MyFirstAction")
@ActionReferences({
 @ActionReference(
 path = "Toolbars/MyToolbars",
 position = 100)
})
public final class MyFirstAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }

CHAPTER 9 MENU BAR AND TOOLBAR

116

}

As you see in Listing 9-11, a toolbar only differentiates from a menu entry by the corresponding path
specification. A menu entry refers to an action in the standard folder Menu with the ActionReference
annotation, while for a toolbar action the standard folder Toolbars is used. Remember that for a toolbar
action the action class is provided with a corresponding icon by the iconBase attribute.

Analogous to the menu bar, such an annotation leads to an automatically created layer entry. If you
do not want to use annotations, you can also add your toolbar actions by direct entries into the layer file
of a toolbar. An entry that matches Listing 9-9 would look like that shown in Listing 9-12.

Listing 9-12. Adding an Action to a Toolbar with Direct Layer Entry

<folder name="Toolbars">
 <folder name="MyToolbar">
 <file name="MyFirstAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyFirstAction.instance"/>
 </file>
 </folder>
</folder>

Toolbar Configurations
Which toolbars are displayed in what order is saved in a toolbar configuration in XML format. (Please
find the corresponding DTD in the appendix.) The toolbars, which the NetBeans Platform entails by
default, are defined by the configuration Standard.xml in the Core-UI module. This looks like
Listing 9-13.

Listing 9-13. Standard Platform Toolbar Configuration: Standard.xml

<Configuration>
 <Row>
 <Toolbar name="File"/>
 <Toolbar name="Clipboard"/>
 <Toolbar name="UndoRedo"/>
 <Toolbar name="Memory"/>
 </Row>
</Configuration>

You have the option to create your own configurations and set them dynamically during the
runtime, so you show and hide your toolbars dependent on the context. Now, you create your own
configuration, in which you want to show the already created toolbar named MyToolbar and the standard
toolbar Edit, while the toolbar File will be hidden. The configuration could look like Listing 9-14.

CHAPTER 9 MENU BAR AND TOOLBAR

117

Listing 9-14. Configuration of Your Own Toolbar

<!DOCTYPE Configuration PUBLIC
 "-//NetBeans IDE//DTD toolbar//EN"
 "http://www.netbeans.org/dtds/toolbar.dtd">
<Configuration>
 <Row>
 <Toolbar name="UndoRedo"/>
 <Toolbar name="MyToolbar"/>
 </Row>
 <Row>
 <Toolbar name="File" visible="false"/>
 </Row>
</Configuration>

You can save this newly created configuration with any name. You now add it to the layer file to
make the configuration public in the Platform. To do so, define the location of the configuration relative
to the layer file with the url attribute, as shown in Listing 9-15.

Listing 9-15. Registering Toolbar Configuration

<folder name="Toolbars">
 <file name="MyToolbarConfig.xml" url="toolbars/MyToolbarConfig.xml"/>
</folder>

To display the desired toolbar and to activate the configuration, you just have to add a line in your
source code at the place you want it. For this purpose, the UI Utilities module provides a helpful API:

ToolbarPool.getDefault().setConfiguration("MyToolbarConfig");

This call could occur, for example, when activating a window, to display a context-independent
toolbar to the user. For this chapter you want to set this up as soon as you create your first window.

The class ToolbarPool is responsible for managing toolbars that are registered in the System
Filesystem. The getDefault() method delivers the ToolbarPool object which is produced by the system
and which cares about the toolbars that were defined in the standard folder Toolbars. You also have the
option to create your own ToolbarPool object which manages toolbars that were defined in your own
folder. To do so, you just have to pass a DataFolder object to the constructor. I will show you how this
works in the section “Creating Your Own Toolbars.”

The class ToolbarPool provides some useful functions, as shown in Table 9-2.

Table 9-2. Useful Methods of the ToolbarPool Class

Methode Function

findToolbar(String name) Returns a certain toolbar.

getToolbars() Returns all available toolbars in this pool.

getConfiguration() Returns the name of the currently active configuration.

CHAPTER 9 MENU BAR AND TOOLBAR

118

getConfigurations() Returns an array with all available configurations.

setConfiguration(String c) Changes the current toolbar configuration.

setPreferredIconSize(int s) With it you can define the icon size of the toolbar buttons. The
values 16 and 24 pixels are supported.

Adaptation by the User
Pressing the right mouse button, a context menu is displayed on the toolbars in your application. The
user can use it to show and hide separate toolbars. The toolbars can also be configured by the user via
Customize… during the runtime. Add or delete single actions via drag-and-drop, as shown in Figure 9-2.

Figure 9-2. User-specific toolbars setting

Creating Your Own Toolbars
As with the menu bar, you have the possibility of creating your own toolbar or a pool of toolbars. Then
you can use these toolbars within your top component, for example. For this purpose, the ToolbarPool
class and the Menubar class provide a constructor to which you can pass a DataFolder object that
represents a folder of the toolbars in the System Filesystem, as shown in Listing 9-16. You can define
your toolbars exactly as you do with the standard toolbars.

CHAPTER 9 MENU BAR AND TOOLBAR

119

Listing 9-16. Creating Your Own Toolbars Which Read Their Content out of the System Filesystem

FileObject tbs = FileUtil.getConfigFile("MyToolbars");
ToolbarPool pool = new ToolbarPool(DataFolder.findFolder(tbs));

You will find more information about which components you can add to the toolbars via the System
Filesystem in the API documentation of the class ToolbarPool.

Using Your Own Controls
Your actions are displayed as an icon in the toolbar, by default. Over and above that you can equip your
toolbar actions with a certain control element, such as a combo box. You do not need a special action
class for that. You can use a standard action as used in the previous sections. Instead of implementing
the ActionListener interface, this class must inherit of AbstractAction. We implement the
Presenter.Toolbar interface so the action can always provide its special control element. Furthermore, it
makes sense to implement a standard constructor for the initialization of the control element.

Combo Box in Toolbar
As an example, I want to show you an action class which has a combo box as control element with which
you can edit a zoom, for example.

Listing 9-17. User-Specific Control Elements for a Toolbar Action

@ActionID(
 category = "View",
 id = "com.galileo.netbeans.module.MyComboboxAction")
@ActionRegistration(displayName = "#CTL_MyComboboxAction")
@ActionReferences({
 @ActionReference(path="Toolbars/MyToolbar")
})
public final class MyComboboxAction extends AbstractAction implements Presenter.Toolbar {
 JComboBox box = new JComboBox(new String[]{"100%", "200%"});

 public MyComboboxAction() {
 box.setMaximumSize(box.getPreferredSize());
 box.setAction(this);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 System.out.print("Adjust zoom to: ");
 System.out.println(box.getSelectedItem());
 }

 @Override
 public Component getToolbarPresenter() {
 return box;

CHAPTER 9 MENU BAR AND TOOLBAR

120

 }
}

The action class is usually registered by the annotations, and thus assigned to a toolbar. You add
your own control element as a private field. You want to avoid having the combo box taking the whole
width, so you set the maximal width of the combo box on the preferred width in the constructor. The
connection of control element and action is very important. You achieve this by the setAction() method
of the combo box to which you pass the reference on your own class by the this operator. If the combo
box is now operated, this action is executed. Finally, you just have to implement the
getToolbarPresenter() method and return the combo box with it. The combo box you created is
displayed instead of the standard button.

Drop-down Menu in Toolbar
The NetBeans Platform provides a special factory class for creating a drop-down button with popup
menu (see Figure 9-3). You can integrate such a button into the toolbar the same way as the combo box
that was previously shown. So first, you create an action class and add a toolbar to it. It must inherit from
the class AbstractAction to be able to implement the Toolbar.Presenter interface. In the
getToolbarPresenter() method, you then produce a popup menu which you fill with the actions of the
layer file. Then you produce the corresponding button by the method
DropDownButtonFactory.createDropDownButton() and return it, as shown in Listing 9-18.

Listing 9-18. Creating a Drop-down Button

@ActionID(
 category = "File",
 id = "com.galileo.netbeans.module.MyDropDownButton")
@ActionRegistration(
 iconBase = "com/galileo/netbeans/module/icon.png",
 displayName = "#CTL_MyDropDownButton")
@ActionReferences({
 @ActionReference(path = "Toolbars/File", position = 300)
})
public final class MyDropDownButton extends AbstractAction implements Presenter.Toolbar {
 final String EXTENSION_POINT = "MyDropDownActions";
 JPopupMenu popup = new JPopupMenu();

 @Override
 public void actionPerformed(ActionEvent e) { }

 @Override
 public Component getToolbarPresenter() {
 for (Action a: Utilities.actionsForPath(EXTENSION_POINT))
 popup.add(a);
 return DropDownButtonFactory.createDropDownButton(
 ImageUtilities.loadImageIcon("com/galileo/netbeans/module/icon.png", false),
 popup);
 }
}

CHAPTER 9 MENU BAR AND TOOLBAR

121

If you look at the source code in Listing 9-17 you see that only a few lines are necessary to create a
flexible extendable drop-down button with popup menu. Besides the factory method that creates the
button, the actionsForPath() method of the Utilities class is important. It provides a list of all actions
which are registered in a certain folder. You can register them there by an ActionReference annotation,
by default, like this:

@ActionReference(path = "MyDropDownActions", position = 100)
public final class MyDropDownAction1 implements ActionListener

Thus, the action MyDropDownAction1 is registered in the System Filesystem in the folder
MyDropDownActions. It works the same way as adding an action to the menu bar or the toolbar. You see,
the System Filesystem is not just helpful for standard components, such as the menu bar or the toolbar,
but you can also take advantage of it for your own components.

Figure 9-3. Drop-down button with popup menu in the toolbar

Summary
This chapter covered the menu bar and the toolbar of a NetBeans Platform application. You learned how
a menu is structured, how to set your own toolbar, and, most important, how to simply add your actions
to a toolbar or to a menu.

C H A P T E R 10

123

Window System

The Window System is a framework provided by the NetBeans Platform. It is responsible for the
administration and display of all application windows and allows the user to customize the layout of the
user interface.

 Tip The registration of windows now works with annotations, making the development of NetBeans Platform
applications not just easier, but also more independent of the NetBeans IDE.

The basic structure of the visual window system is document based . That means the central
section—that is, the editor section—is all about the display of several files in tabs. Different windows can
be placed in variant areas around the editor area, the view areas (see Figure 10-1). Usually, these are
supporting windows that offer edit functionality to the documents. In the case of the NetBeans IDE, for
example, these windows provide the structure of the project, the Properties dialog, and the Output
window. These three are located around the editor area.

By default, all windows are displayed in the NetBeans main application window. Moreover,
undocking windows by using the context menu or dragging the window from the application window is
possible (Dock/Undock). What that looks like is shown in Figure 10-2, where the project window is
undocked. Docking and undocking allows for flexible window positioning. The so-called Floating
Windows feature is especially useful when you are using multiple monitors.

CHAPTER 10 WINDOW SYSTEM

124

Figure 10-1. Structure of the NetBeans Platform application window

The window system is comprised of modes. A mode is a container in which windows can be
displayed like a tab. The windows must be subclasses of TopComponent. All displayed windows are
managed by the WindowManager. It is also possible to group windows. The assembly of the window system
is declaratively described in the layer file. This assembly entails a description of the available modes, the
windows that are displayed within them, and a definition of which window belongs to what group of
windows. This information is also provided to the window system via the System Filesystem. In the
following sections, the separate parts of the window system are described in detail; I will also show you
how to use them in your module.

CHAPTER 10 WINDOW SYSTEM

125

Figure 10-2. NetBeans window system with floating windows

Configuration
A module configures its windows, modes, and groups in the layer file, within the folders Components,
Modes, and Groups within the standard folder Windows2. This way, a module can define its available
windows, associate them with modes, and group them.

This configuration is the default configuration a module defines. The default configuration is used
by the window system upon the first start. When exiting the application, any changes made to the layout
of the application (e.g., moving a window to another mode or closing a window group) are stored within
the user directory in the folder config/Windows2Local in a hierarchy identical to the layer file. Upon
restarting, the application settings are read first. Only if no configuration files exist in the user directory
(as is the case when starting the application for the very first time), are the settings read from the layer
file.

Window: Top Component
The Window System API provides the class TopComponent for creating windows that integrate into the
NetBeans Platform. This is a subclass of the Java class JComponent and it provides optional support for
window interactions with the window system. A TopComponent always exists inside a mode and, as such,
is dockable, is automatically managed by the WindowManager, and receives lifecycle events.

CHAPTER 10 WINDOW SYSTEM

126

Creating a Top Component
The NetBeans IDE provides a helpful wizard for creating TopComponents. This wizard creates the
complete basic skeleton. It is started by calling File ➤ New File…, and selecting the category Module
Development and file type Window. On the following page, Basic Settings, you can edit a series of settings
for your top component, as shown in Figure 10-3.

Figure 10-3. Creating a top component: Basic Settings

First, define the Window Position, meaning the mode in which your top component is supposed to
be displayed. For the moment, you can only select the modules that the NetBeans Platform provides.
However, later you can substitute it with a self-defined mode. Furthermore, you can define the behavior
of the top component to create on this wizard page. I will explain the meaning of this option later in the
“Behavior” section.

Press Next to get to the last page of the wizard. There, you can determine a prefix for the class name
and an icon for the top component, as shown in Figure 10-4.

CHAPTER 10 WINDOW SYSTEM

127

Figure 10-4. Creating a top component: Name, Icon and Location

Press the Finish button to end the wizard and to create the top component. The wizard has already
done everything you need for you. Now you can edit the top component and equip it with the desired
functionality with the Form Editor. You can test everything with Run ➤ Run Main Project.

Now let’s take a look at the class which has been created by the wizard. This class is now marked by
a series of annotations whose meaning is explained in Listing 10-1.

Listing 10-1. Basic Structure of a Top Component with Annotations

import org.openide.util.NbBundle;
import org.openide.windows.TopComponent;
import org.netbeans.api.settings.ConvertAsProperties;
import org.openide.awt.ActionID;
import org.openide.awt.ActionReference;

@ConvertAsProperties(
 dtd = "-//com.galileo.netbeans.module//My//EN",
 autostore = false)
@TopComponent.Description(
 preferredID = "MyTopComponent",
 iconBase = "com/galileo/netbeans/module/icon.png",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS)

CHAPTER 10 WINDOW SYSTEM

128

@TopComponent.Registration(
 mode = "editor",
 openAtStartup = true)
@ActionID(
 category = "Window",
 id = "com.galileo.netbeans.module.MyTopComponent")
@ActionReference(
 path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_MyAction",
 preferredID = "MyTopComponent")
public final class MyTopComponent extends TopComponent {
 public MyTopComponent() {
 initComponents();
 setName(NbBundle.getMessage(MyTopComponent.class, "CTL_MyTopComponent"));
 setToolTipText(NbBundle.getMessage(MyTopComponent.class, "HINT_MyTopComponent"));
 }
 ...
}

The top component is marked with basic information by the annotation TopComponent.Description.
A unique identifier (preferredID), the path to an icon (iconBase), and the determination whether the top
component will be saved or not (persistenceType) belong to this basic information. The possibilities are
described in the next section, “Persistence”.

You add the top component to a mode by the TopComponent.Registration annotation. The mode
determined by the attribute mode must already exist. You can either choose a mode that is already
defined by the NetBeans Platform or you can create one yourself. In the section “Creating a Mode” you
will learn how to do this. With the openAtStartup attribute you can determine whether your top
component will be automatically opened when starting the application. Finally, the optional attribute
position is provided for determining the order of multiple top components within a mode.

The NetBeans Platform does a lot of work in the background with the annotation
TopComponent.OpenActionRegistration. This annotation causes the registration of an action to open the
annotated top component in the layer file. In this respect, it is interesting that not only the registration
occurs, but the action is also automatically provided. This means, no corresponding action class exists in
your module anymore. The action class is created in the background by means of the transferred
parameters with the factory method TopComponent.openAction(). You define the name of the action by
the displayName attribute. Using # you can determine a key for a text constant out of a properties bundle
(see Chapter 6). With the preferredID attribute you can easily determine whether only one or more
instances can be produced by your top component. For this purpose use the already defined identifier of
your top component. That way, only a singleton instance is created. Omitting the attribute, a new
instance of the top component is opened when executing the action.

The two attributes ActionID and ActionReference are connected to the
TopComponent.OpenActionRegistration annotation. As described in Chapter 6, with ActionID, a unique
identifier is added to the open action with a category. With the ActionReference annotation you
determine where and in which menu the action will be displayed (see Chapter 9). While using the
annotation as described is considerably easier than registering a top component, I will explain (see
Listing 10-2)—its use is not mandatory, however. You also have the possibility here of directly specifying
the necessary information in the layer file. First, the top component is defined in the standard folder
Windows2/Components in the layer file. The assignment to a mode occurs in the standard folder
Windows2/Modes.

CHAPTER 10 WINDOW SYSTEM

129

Listing 10-2. Definition and Assignment of a Top Component in the Layer File

<folder name="Windows2">
 <folder name="Components">
 <file name="MyTopComponent.settings" url="MyTopComponentSettings.xml"/>
 </folder>
 <folder name="Modes">
 <folder name="editor">
 <file name="MyTopComponent.wstcref" url="MyTopComponentWstcref.xml"/>
 </folder>
 </folder>
</folder>

A Settings file is needed for defining a top component in the folder Windows2/Components. The
complete class name of the top component is named in this file. Thus, the window system is able to
create an instance of the top component. (See Listing 10-3.)

Listing 10-3. Settings File to Declaratively Add a Top Component

<!DOCTYPE settings PUBLIC
 "-//NetBeans//DTD Session settings 1.0//EN"
 "http://www.netbeans.org/dtds/sessionsettings-1_0.dtd">
<settings version="1.0">
 <instance class="com.galileo.netbeans.module.MyTopComponent"/>
</settings>

Mapping a top component to a mode is done using a Top Component Reference file, as shown in
Listing 10-4. In this file a unique identifier of the top component is defined. Additionally, it is defined by
the opened attribute of the state element, whether the window is opened starting the application.

Listing 10-4. Top Component Reference File Mapping a Top Component to a Mode

<!DOCTYPE tc-ref PUBLIC
 "-//NetBeans//DTD Top Component in Mode Properties 2.0//EN"
 "http://www.netbeans.org/dtds/tc-ref2_0.dtd">
<tc-ref version="2.0" >
 <tc-id id="MyTopComponent"/>
 <state opened="true"/>
</tc-ref>

If you chose the declarative way instead of the annotations, you should finally overwrite the two
methods preferredID() and getPersistenceType() of your top component class and thus deliver the
corresponding values.

Behavior
A top component’s behavior can be adapted by a series of features, shown in Table 10-1. You edit the
settings of these features with the NetBeans window wizard. Otherwise, you can also adapt these
features which are set in the constructor of a top component later.

CHAPTER 10 WINDOW SYSTEM

130

Table 10-1. Features of a Top Component Which Can Be Adapted User Specifically

Feature Description

CLOSING_DISABLED Top component cannot be closed by the user. Close
symbol and menu entry are hidden in the context menu.

DRAGGING_DISABLED Drag-and-drop of the top component is deactivated.
This means the top component cannot be removed in
another mode.

MAXIMIZATION_DISABLED Top component cannot be maximized. A corresponding
entry is hidden in the context menu.

SLIDING_DISABLED Deactivates marginal minimizing of a top component.
The minimize button as well as the context menu entry
are hidden. This feature is not provided with a top
component in the editor mode.

UNDOCKING_DISABLED Undocking the top component is not possible. This
means the window cannot be detached by dragging. The
corresponding context menu entry is deactivated, too.

KEEP_PREFERRED_SIZE_WHEN_SLIDED_IN The top component is displayed in the original size. This
feature is not provided with a top component in the
editor mode.

These features can be prepended by PROP_ with the following method within a top component:

putClientProperty(
 TopComponent.PROP_CLOSING_DISABLED,
 Boolean.TRUE);

States
A top component can have several states, listed in Table 10-2.

Table 10-2. Different States of a Top Component

State Condition

Opened A top component has the state opened when it is displayed in a tab
inside one of the window system modes.

Closed A top component has the state closed either after it is closed or if
it has not yet been opened. Even closed, a top component
continues to exist.

CHAPTER 10 WINDOW SYSTEM

131

Visible If a top component is alone in its mode or is in top position, it
remains in the visible state.

Invisible If one top component is covered by another one inside a mode, it
changes to the invisible state.

Active A top component is in the active state when it or one of its
components is focused. In this state, the global selection context
is provided by the top component.

Inactive A top component that is unfocused is in the inactive state.

Entering a specific state is announced via a call to one of the methods shown in Table 10-3. If a

window has to perform an action in a specific state, simply override the corresponding method.

Table 10-3. Methods for the Different States

State Method

opened protected void componentOpened()

closed protected void componentClosed()

visible protected void componentShowing()

invisible protected void componentHidden()

active protected void componentActivated()

inactive protected void componentDeactivated()

Chapter 9 showed how to create toolbar configurations and how to use them to display application-

specific toolbars. Use two previously described methods that inform us about the state of the top
component to display the currently active top component, as shown in Listing 10-5.

Listing 10-5. Displaying and Hiding Toolbars Based on Context

public class MyTopComponent extends TopComponent {
 private String origConfig = "Standard";
 private String myConfig = "MyToolbarConfig";

 protected void componentActivated() {
 origConfig = ToolbarPool.getDefault().getConfiguration();
 ToolbarPool.getDefault().setConfiguration(myConfig);
 }

CHAPTER 10 WINDOW SYSTEM

132

 protected void componentDeactivated() {
 ToolbarPool.getDefault().setConfiguration(origConfig);
 }
}

If the top component is focused, the method componentActivated() is called. The current
configuration is stored for later reactivation. Then, you set your own toolbar configuration
MyToolbarConfig (created in Chapter 9). If another top component is selected, this top component loses
focus and the method componentDeactivated() is called. The stored configuration is set in this method to
restore previous toolbars.

Context Menu
When right-clicking the title bar of a top component, a context menu is displayed, with actions such as
Undock Window or Close Window. These actions are obtained from the TopComponent class via its
getActions() method. To add your own actions to this context menu, you can override this method (see
Listing 10-6). When doing so, it is useful to add the actions declaratively. In Chapter 3, I mentioned that
it is possible to add your own folders and extension points to the layer file. That is exactly what you want
to use here. The actions are declared in the layer file and read it on demand in the getActions() method.

Listing 10-6. Reading Actions for a Context Menu from the Layer File

public class MyTopComponent extends TopComponent {
 private List<Action> ca = null;

 @Override
 public Action[] getActions() {
 if (ca == null) {
 ca = new ArrayList<Action>(Arrays.asList(super.getActions()));
 ca.add(null); /* add separator */
 Lookup lkp = Lookups.forPath("ContextActions/MyTC");
 ca.addAll(lkp.lookupAll(Action.class));
 }

 return ca.toArray(new Action[ca.size()]);
 }
}

First, the superclass’s getActions() method is called in order to obtain default actions. With the help
of the method Lookups.forPath() you can easily create a Lookup for the declared folder
ContextActions/MyTC. The method lookupAll() then obtains all registered actions that implement the
Action interface. When creating the menu, a null value is automatically replaced by a separator by the
Platform. The assembled list of actions is returned as an array. Finally, you just have to create references
on the actual action definitions (usually in the standard folder Actions). You can realize the references
either elegantly via annotation in the respective action class itself or by a direct entry in the layer file. The
necessary annotation would look like the following:

@ActionReference(path = "ContextActions/MyTC")

The corresponding entry in the layer file in the self-defined folder could look like Listing 10-7, for
example.

CHAPTER 10 WINDOW SYSTEM

133

Listing 10-7. Defining Context Menu Actions in the Layer File

<folder name="ContextActions">
 <folder name="MyTC">
 <file name="MyAction1.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyAction1.instance"/>
 </file>
 <file name="MyAction2.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-MyAction2.instance"/>
 </file>
 </folder>
</folder>

You have now created an extension point. Other modules can easily add actions to the context
menu of your top component by defining this action in their layer file in the folder ContextActions/MyTC.
Thus, the context menu can be flexibly extended by any other module without any dependency.

Persistence
The window system is capable of storing opened top components upon exiting the application and
restoring them upon restart. However, there are use cases where storing the top component is not
desirable. Determining whether a top component will be stored or not is done via the value that is
delivered by the method getPersistenceType(). You can determine this value with the persistenceType
attribute of the TopComponent.Description annotation. If you do not use annotations, though, the named
method should always be overridden. The constants listed in Table 10-4 are available as return values.

Table 10-4. Possible Persistence Types of a Top Component

Constant Property

PERSISTENCE_ALWAYS The top component is always stored.

PERSISTENCE_ONLY_OPENED This constant defines a top component stored
only when opened in a mode.

PERSISTENCE_NEVER With this constant, the top component is never
stored.

The window system calls the methods writeProperties() and readProperties() upon storing or
restoring a top component. The window system then calls the methods when saving and loading a top
component. You can use these methods in order to save or load your top component-specific data. For
this purpose you always get a Properties object as parameter. The data that is saved there is saved by the
NetBeans Platform in the user directory as an XML file. From there it is loaded, too.

CHAPTER 10 WINDOW SYSTEM

134

Registry
All top components of the NetBeans window system are centrally managed in a registry. The interface of
this registry is specified by the TopComponent.Registry interface. An instance of this registry is obtained
either directly via the TopComponent class by calling

TopComponent.Registry registry = TopComponent.getRegistry();

or via the WindowManager:

TopComponent.Registry registry = WindowManager.getDefault().getRegistry();

This registry will return, for example the currently activated top components via getActivated() or
all opened top components via getOpened(). Furthermore, a PropertyChangeListener can be registered
on the registry in order to globally react to state changes of the top component, for example (see Table
10-5).

Table 10-5. Publicly Accessing a Top Component’s State

Property Condition

PROP_ACTIVATED If a top component is being activated

PROP_TC_CLOSED If a top component has been closed

PROP_TC_OPENED If a top component has been opened

In the following example, a listener is added to the registry. This listener reacts when a top

component is opened (see Listing 10-8).

Listing 10-8. Track Changes of Top Component States Globally

public class MyTopComponent extends TopComponent implements PropertyChangeListener {

 public MyTopComponent() {
 TopComponent.Registry reg = TopComponent.getRegistry();
 reg.addPropertyChangeListener(WeakListeners.propertyChange(this, reg));
 }

 public void propertyChange(PropertyChangeEvent evt) {
 if(evt.getPropertyName().equals(TopComponent.Registry.PROP_OPENED))
 // Top Component opened
 }
}

Docking Container: Mode
The entire window system of the NetBeans Platform comprises sections, where multiple components
can be displayed docked in tabs. These sections are the previously mentioned editor and view sections.
Such a section is called a mode. However, a mode as such is not a displayed component, but acts as
controller and container for those components displayed therein. These components are of the type

CHAPTER 10 WINDOW SYSTEM

135

TopComponent, as mentioned in the previous section. A mode is specified by the interface Mode of the
Window System API.

Creating a Mode
A mode is not a fixed section, but it can be defined individually via an XML file. Some important sections
(such as the central editor section or the section where the NetBeans IDE usually opens the project view)
are already defined in NetBeans Platform modules. You can also define and add your own modes. A
configuration file for a mode has the structure shown in Listing 10-9.

Listing 10-9. Mode Configuration File: MyMode.wsmode

<!DOCTYPE mode PUBLIC
 "-//NetBeans//DTD Mode Properties 2.3//EN"
 "http://www.netbeans.org/dtds/mode-properties2_3.dtd">
<mode version="2.3">
 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <name unique="MyMode"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="vertical" number="0" weight="0.2"/>
 <path orientation="horizontal" number="0" weight="1.0"/>
 </constraints>
 <empty-behavior permanent="true"/>
</mode>

First, with the module attribute you define the module to which the mode belongs. The most
important element is the name element. The value of the name element must be a unique identifier and
also has to match the file name (uppercase and lowercase, too). Additionally, by the kind element you
can define the way the mode displays its components. There are three mode types: editor, view, and
sliding. Figure 10-5 displays the appearance of each of the three via the NetBeans IDE.

CHAPTER 10 WINDOW SYSTEM

136

Figure 10-5. Different types of modes

A mode of the type editor is for the most part centrally arranged in an application, like the Editor
Mode which is specified by the Core Windows module by a wsmode file (as the name of the mode already
reveals). The top components, arranged surrounding this editor mode, are typically displayed in modes
of the type view.

These windows are often also called helper windows, because they offer features to, for example,
edit documents. Aside from differently displaying the tabs in the modes, the editor and view modes
differ in so far as the editor type has control elements in the top-right corner for easier navigation
between documents and the top components. Furthermore, there is also the mode of the type sliding.
The window system gives you the possibility of moving or minimizing top components to the right, left,
or bottom border of the application window. This is often useful when working with windows that are
seldom or sporadically used. When hovering with the mouse above the button of the minimized top
component, it opens above the opened windows and hides automatically again when exiting the control
element. These windows are in a mode of the type sliding.

A mode of the type sliding can also define the element slidingSide. It selects borders (left, right,
bottom) upon which the mode will be located. Concerning this, the following values are allowed:

<slidingSide side="left"/>

<slidingSide side="right"/>

CHAPTER 10 WINDOW SYSTEM

137

<slidingSide side="bottom"/>

The element state defines whether the mode is docked in the application window or undocked in a
separate window. The admissible values are joined for the docked mode and separated for the
undocked representation. For example, when a top component is undocked, its mode changes to
separated.

The constraints element allows the definition of dimension and position in relation to other
modes. The preceding example would display the mode on the top border of the application window, for
example. If it is on the bottom border, a bigger number (e.g., 30) is put into the attribute number. Since
this number controls the position of all modes, it is helpful to take a look at the configuration files of the
predefined modes for the NetBeans Platform. Some of them are in the module Core-UI.

We now add this configuration file to the Platform via the module’s layer file. For this purpose, we
refer the .wsmode file in the folder Windows2/Modes (see Listing 10-10).

Listing 10-10. Adding a New Mode to the Layer File

<folder name="Windows2">
 <folder name="Modes">
 <file name="MyMode.wsmode" url="MyMode.wsmode"/>
 <folder name="MyMode">
 <file name="MyTopComponent.wstcref" url="MyTopComponentWstcref.xml"/>
 </folder>
 </folder>
</folder>

The top component is added to the new mode via the top component reference file which the
wizard created. This allows for flexible declarative changes in the arrangement of top components. As
you can see, you can flexibly change the arrangement of your components because of the declarative
assignment.

A top component can be maximized by double-clicking the title bar in the application window. By
default, all other components are changed to a sliding mode. If a component must stay in place and not
move to the border, an attribute can be added to the corresponding top component reference file
(.wstcref), as follows:

<docking-status maximized-mode="docked">

Direct Docking
It is also possible to directly dock a top component into a certain mode, as shown in Listing 10-11.

Listing 10-11. Programmatically Adding a Top Component to a Certain Mode

TopComponent tc = new MyTopComponent();
Mode m = WindowManager.getDefault().findMode("explorer");
if(m != null)
 m.dockInto(tc);
tc.open();
tc.requestActive();

For this purpose use the findMode() method of the WindowManager class. The mode is returned
because of the unique name, in case it exists. With the dockInto() method you can then dock your
instance to a top component directly in the mode.

CHAPTER 10 WINDOW SYSTEM

138

Modifying a Mode
At runtime, the user retains the ability to move the top components to other modes or change the
dimension of a mode. These changes of data are stored in the user directory and restored upon
restarting the application. Configurations are read from the layer file and the module’s configuration
files only if no data was stored in the user directory. This is why it is often helpful to clean and build the
project (Clean & Build Project) when changing configuration files during development.

Groups of Windows: Top Component Group
Frequently, multiple windows are required at once for certain tasks. One such case is creating a GUI
within the NetBeans IDE. The Inspector, Palette, and Properties windows are displayed in this case.
Upon leaving the Form Editor mode, these windows are hidden. For this purpose, the NetBeans
Platform provides the ability to assemble top components into a group that enables toggling the
visibility of them all. The Window System API provides the interface TopComponentGroup for this purpose.
However, a group does not change the layout of the windows, meaning the assembly or dimension of
modes, but it is responsible for opening and closing the groups’ windows.

Behavior of a Top Component Group
Groups manage their windows in accordance with the user settings, allowing the following cases:

• When a group is being opened, all windows that have not already opened will be
opened, if the open attribute is set to true (if no window has been opened, yet).

• Upon closing a group, all windows will be closed that were not open prior to
opening the group, and their close attribute will be set to true. That means the
windows the user had open prior to opening the group will remain open.

• Closing a group (if one of the windows has already been opened before opening
the group), only those windows are closed in which the close attribute is true and
whose attributes have not been opened before opening the group. This means the
windows the user opened before opening the group itself stay open.

• If a window of a group is closed by the user, the open attribute is set to false when
closing the group. When the group is reopened, the window will thus not be
opened.

• If during the time a group is open, the user opens a window from the group that
was previously closed, the open attribute is set to true, opening the window when
the group is reopened.

So, the user is able to influence the content of a group. Even if you found the descriptions of the
preceding cases somewhat confusing, the best way of digging these logic groups is to directly explore
them.

Creating a Top Component Group
Groups are defined via a Group Configuration file and groups are declared in the layer file in the folder
Windows2/Groups, announcing its existence to the platform. This file has the structure shown in Listing
10-12.

CHAPTER 10 WINDOW SYSTEM

139

Listing 10-12. The Group Configuration File: MyGroup.wsgrp

<!DOCTYPE group PUBLIC
 "-//NetBeans//DTD Group Properties 2.0//EN"
 "http://www.netbeans.org/dtds/group-properties2_0.dtd">
<group version="2.0">
 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <name unique="MyGroup"/>
 <state opened="false"/>
</group>

By the optional module attribute you declare the name of the module that this group belongs to. The
name attribute defines unique identifiers that must correspond to the file name. Whether the group is
currently displayed or not is set in the state attribute. Now you create the group in the layer file and
refer it to the Group Configuration file (see Listing 10-13).

Listing 10-13. Adding a Group to the Layer File

<folder name="Windows2">
 <folder name="Groups">
 <file name="MyGroup.wsgrp" url="MyGroup.wsgrp"/>
 <folder name="MyGroup">
 <file name="MyTopComponent.wstcgrp" url="MyTopComponent.wstcgrp"/>
 </folder>
 </folder>
</folder>

As you see, I already added your first top component to the newly created group. This is done by
declaring a Group Reference Configuration file (.wstcgrp), where the behavior of the top component
inside the group is declared (as shown in Listing 10-14).

Listing 10-14. Group Reference Configuration: MyTopComponent.wstcgrp

<!DOCTYPE tc-group PUBLIC
 "-//NetBeans//DTD Top Component in Group Properties 2.0//EN"
 "http://www.netbeans.org/dtds/tc-group2_0.dtd">
<tc-group version="2.0">
 <module name="com.galileo.netbeans.module" spec="1.0"/>
 <tc-id id="MyTopComponent"/>
 <open-close-behavior open="true" close="true"/>
</tc-group>

This file references a top component via its unique identifier. The TopComponent must be declared in
the layer file in the folder Windows2/Components with a .settings file (as occurs automatically when using
the wizard to create a top component. See the section “Creating a Top Component”). Further, the
behavior of the window is defined considering opening and closing. (Those attributes are discussed in
the previous section.)

For each window that you now want to add to the group, create such a file and make an entry in the
folder of your group in the layer file. You can easily use the group via the Window Manager. The Window
Manager also provides a method for finding a group, as shown in Listing 10-15.

CHAPTER 10 WINDOW SYSTEM

140

Listing 10-15. Opening and Closing a Top Component Group

TopComponentGroup group = WindowManager.getDefault().findTopComponentGroup("MyGroup");
if(group != null) { /* group found */
 group.open();
}

Administration: Window Manager
The Window Manager is the central component of the window system. It manages modes, windows, and
groups, and provides an API to access its administrated components. For this purpose, the methods for
locating components (see Table 10-6) are very helpful.

Table 10-6. Methods Locating Components of the Window System

Method Description

findMode(
 String name)

Find a mode via its name.

findMode(
 TopComponent tc)

Find the mode into which the TopComponent is docked.

findTopComponent(
 String id)

Find a top component via its unique ID.

findTopComponentID(
 TopComponent tc)

Get a top component’s unique ID.

findTopComponentGroup(
 String name)

Find a top component group via its name.

A PropertyChangeListener can be added to the Window Manager, for example to become informed

when a mode is activated. Additionally, a set of all available modes in the window system can be
obtained via a call to getModes(). The main application window is accessed via the following call:

Frame main = WindowManager.getDefault().getMainWindow();

The architecture of the window system classes is summarized in Figure 10-6.

CHAPTER 10 WINDOW SYSTEM

141

Figure 10-6. Architecture of NetBeans window system

MultiViews
Use the MultiViewAPI to internally divide a top component across multiple containers or components.
Typically, as the name suggests, this approach is used to provide more than one view for a single data
object. The most common example of this is the NetBeans Form Editor, in which the user can switch
between the Source view and the Design view. Both views have as their basis the same .java and .form
file. However, a relationship between the views is not mandatory. That means you can integrate any
components into the container that are completely independent of each other, displaying different data.
The MultiView SPI can, as a result, be used as a generic framework.

The button bar provided by a multiview top component allows the user to switch between the
different views. Optionally, one of the views, consisting of any kind of JComponent, provides a toolbar
displayed next to the drop-down list (see Figure 10-7).

CHAPTER 10 WINDOW SYSTEM

142

Figure 10-7. Multiview top component with three views/components

Each view consists of an independent component, which must be a subclass of JComponent.
Typically, the base class JPanel is used. However, nothing prevents you from using the class
TopComponent, allowing integration of one or more windows into a multiview. To allow a component to
be a view in a multiview top component, implement the MultiViewElement interface. The meaning of the
methods, specified by this interface, can best be illustrated via a simple example, as follows:

public class MultiViewPanel1 extends JPanel implements MultiViewElement {
 private JToolBar toolbar = new JToolBar();
 private MultiViewElementCallback callback = null;

 public MultiViewPanel1() {
 initComponents();
 toolbar.add(new Panel1ToolbarAction1());
 toolbar.add(new Panel1ToolbarAction2());
 }

The view initially receives a MultiViewElementCallback via the setMultiViewElementCallback()
method in order to access the top component (that it is embedded in). For example, via this object you
obtain the multiview top component or—as you will see—you can adapt the name of the multiview top
component. To use this callback object in your class, save the data as a private element. The instance of
the view is obtained via the getVisualRepresentation() method. This method is called whenever the
view is activated, meaning that creating the component in this method should be avoided. Normally, use
this to deliver the current component. The toolbar of the current view is obtained via the
getToolbarRepresentation() method. It is also repeatedly called. For this purpose, you should also
provide an already created toolbar. Actions in the context menu of the multiview top component are
obtained from the currently active view, via the getActions() method. First, use this method to access
the standard actions of a top component via the MultiViewElementCallback object. Next, you can add
your own actions to the set of standard actions. Use getLookup() to provide a Lookup which gets part of
the multiview top component’s Lookup and thus is also part of the global context.

CHAPTER 10 WINDOW SYSTEM

143

 public void setMultiViewCallback(MultiViewElementCallback c) {
 callback = c;
 }

 public JComponent getVisualRepresentation() {
 return this;
 }

 public JComponent getToolbarRepresentation() {
 return toolbar;
 }

 public Action[] getActions() {
 if(callback != null) {
 return callback.createDefaultActions();
 } else {
 return new Action[]{};
 }
 }

 public Lookup getLookup() {
 return Lookups.singleton(this);
 }

The next methods should be familiar, since they were covered in discussions concerning the
TopComponent class. Via these methods you are informed about the various states of the view and the
multiview top component. In this example you want to name the title of the top component dynamically
(like the name of the view), whenever the view is opened or activated. The title can be changed via the
MultiViewElementCallback object, using the updateTitle() method.

 public void componentOpened() {
 callback.updateTitle("View 1");
 }

 public void componentClosed() {}
 public void componentShowing() {}
 public void componentHidden() {}

 public void componentActivated() {
 callback.updateTitle("View 1");
 }

 public void componentDeactivated() {}

Each view offers its own undo/redo functionality, via the getUndoRedo() method. (How to
implement undo/redo via the NetBeans API is discussed in Chapter 15.) If this support is unwanted,
provide UndoRedo.NONE, as shown in the following:

 public UndoRedo getUndoRedo() {
 return UndoRedo.NONE;
 }

CHAPTER 10 WINDOW SYSTEM

144

Finally, implement the canCloseElement() method. This method is called on each of the views when
the multiview top component closes. Only if all the views have provided CloseOperationState.STATE_OK
is the top component closed. If your view is not immediately closed because (for example) changed data
has not yet been saved, provide a CloseOperationState object, created via the
MultiViewFactory.createUnsafeCloseState() method. However, this makes sense only when
CloseOperationHandler has been implemented, which is passed when the multiview top component is
created, since this handler is responsible for resolving the CloseOperationState objects of all views. For
example, within this handler, a dialog can then be shown to the user.

 public CloseOperationState canCloseElement() {
 return CloseOperationState.STATE_OK;
 }
}

For creating and describing each view component you need one MultiViewDescription. The main
point of this class is the instantiation of graphic view components, which are just created on demand by
the createElement() method. The method is called only once, when the user opens the view for the first
time. The method getPersistenceType() is used to specify how the top component is saved. Use the
constants of the TopComponent class (discussed in the “Persistence” section). See Listing 10-16.

Listing 10-16. Description and Factory of a View

public class MultiViewPanel1Description implements MultiViewDescription, Serializable {

 public MultiViewElement createElement() {
 return new MultiViewPanel1());
 }

 public String preferredID() {
 return "PANEL_1";
 }

 public int getPersistenceType() {
 return TopComponent.PERSISTENCE_NEVER;
 }

 public String getDisplayName() {
 return "View 1";
 }

 public Image getIcon() {
 return null;
 }

 public HelpCtx getHelpCtx() {
 return HelpCtx.DEFAULT_HELP;
 }
}

Finally, there remains the creation of a multiview top component from independently created
views. To that end, the MultiView SPI provides a factory: the MultiViewFactory class. This class contains
methods permitting the creation of a TopComponent or of a CloneableTopComponent, depending on need.

CHAPTER 10 WINDOW SYSTEM

145

MultiViewDescription dsc[] = {
 new MultiViewPanel1Description(),
 new MultiViewPanel2Description(),
 new MultiViewPanel3Description()};
TopComponent tc = MultiViewFactory.createMultiView(dsc, dsc[0]);
tc.open();

First, create an array with the instances of the MultiViewDescription classes of your views. Then,
pass this array to the createMultiView() method. As second parameter you determine the initial active
view. Optionally, you can pass an implementation of the CloseOperationHandler as third parameter. This
handler is responsible for processing the CloseOperationState objects that are created of the views via
the canCloseElement() method when closing the multiview top component. Thus, the multiview top
component is created, and you just have to open and display this component via the open() method. To
also get access to the views from outside, you can use the static method
MultiViews.findMultiViewHandler() in oder to create a MultiViewHandler for a view top component. Via
this handler, you can then get the currently selected view or all available views at once.

Summary
The NetBeans Platform window system definitely represents a central part of the graphical user interface
with which you implement and manage your user-specific GUI in separate windows. In this chapter you
learned about the basic structure of the window system. You looked at the operation and the features of
top components, modes, and groups. Finally, you also learned how to use the MultiView API combining
multiple top components.

C H A P T E R 11

147

Status Bar and Progress Bar

The status bar enables you to give information directly to the user of your application. At the same time,
it is possible to extend the status bar with your own components. In addition to the status bar, a progress
bar that is able to manage and display multiple tasks at once is integrated in the application. In the
following sections you will learn how to use these two components.

Status Bar
A status bar is already integrated in the application window of the NetBeans Platform. You access this
status bar via the abstract class StatusDisplayer. You get the standard implementation of the status bar
(this is the standard NetBeans Platform status bar if no other is provided) via the getDefault() method.
It is also possible to provide your own implementation of the status bar. (Chapter 5 describes how to
create your own implementation for a service, such as the status bar.)

Using the Status Bar
You can output a text on the status bar via the method setStatusText():

StatusDisplayer.getDefault().setStatusText("my first status");

There is a variant belonging to this method. With this variant you can determine the importance of
the displayed text via an additional parameter. This means the status message is displayed until a new
message (with the same or higher importance) is set. Additionally, you have the option to delete the
message yourself. For this purpose, the setStatusText() method returns a handle:

StatusDisplayer.Message setStatusText(String t, int importance)

You can delete the corresponding message after a parameterizable number of milliseconds. You can
do this via a handle in the form of a StatusDisplayer.Message instance by the method clear(int
timeInMillis).

You can register a ChangeListener via the method addChangeListener() to react to these changes
(changes of the text) of the status bar. If you want to use the status bar, you must ensure that your
module defines a dependency on the UI Utilities module.

Extending the Status Bar
You can extend the status bar (if there is enough space) very simply. The UI Utilities API provides the
service interface StatusLineElementProvider. This interface specifies the method
getStatusLineElement(), with which the component that will be added to the status bar is returned.

CHAPTER 11 STATUS BAR AND PROGRESS BAR

148

You add your implementation via the ServiceProvider annotation. More information about how a
service provider provides its implementation and how to determine the position of your component in
the status bar is provided in Chapter 5. As an example, Listing 11-1 shows adding a clock to the status bar
(see Figure 11-1).

Listing 11-1. Extending the Status Bar with a Clock

import org.openide.awt.StatusLineElementProvider;

public class MyStatusLineClock implements StatusLineElementProvider {
 private static final DateFormat format = DateFormat.getTimeInstance(DateFormat.MEDIUM);
 private static JLabel time = new JLabel(" " + format.format(new Date()) + " ");
 private JPanel panel = new JPanel(new BorderLayout());

 public MyStatusLineClock() {
 Timer t = new Timer(1000, new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 time.setText(" " + format.format(new Date()) + " ");
 }
 });
 t.start();
 panel.add(new JSeparator(SwingConstants.VERTICAL), BorderLayout.WEST);
 panel.add(time, BorderLayout.CENTER);
 }

 public Component getStatusLineElement() {
 return panel;
 }
}

Now, the implementation must be published to be found by the status bar. For this purpose, add
the following annotation to the class:

import org.openide.util.lookup.ServiceProvider
@ServiceProvider(service = StatusLineElementProvider.class)
public class MyStatusLineClock implements StatusLineElementProvider { … }

Thus, your clock is declaratively added to the Lookup. Consequently, it can be found by the status
bar which then adds the component.

CHAPTER 11 STATUS BAR AND PROGRESS BAR

149

Figure 11-1. Extending the Status Bar with Your Own Components

Notifications
Besides the display of static text on the left side of the status bar, you can also display notifications in the
form of a balloon on the right (see Figure 11-2). Not only can messages be displayed more conspicuously
to the user, but the user can also trigger an action by clicking the message. This kind of notification is
used by the Plugin Manager, for example, from which you can download or install new modules. This
way the user can directly start the process with one click.

Figure 11-2. Displaying Notifications As Balloons Within the NetBeans Platform

The displayed balloon is hidden again after a few seconds. However, the icon remains in the status
bar so the user still has the option to call the notification later (see Listing 11-2).

CHAPTER 11 STATUS BAR AND PROGRESS BAR

150

Listing 11-2. Displaying a Notification in the Status Bar

Notification noti = NotificationDisplayer.getDefault().notify(
 "My first notification...",
 ImageUtilities.loadImageIcon("com/galileo/netbeans/module/info16.png", true),
 "... which disappears in a few seconds",
 Lookups.forPath("NotificationActions").lookup(ActionListener.class));

Pass a title, an icon, a detailed description, and an action to the notify() method (in the example,
an action is used via the Lookup of the System Filesystem), as shown in Listing 11-2. Or instead, you can
just pass null if no action will be provided. Optionally, you can determine the priority of the message
with NotificationDisplayer.Priority. The values HIGH, LOW, NORMAL and SILENT are provided; however,
SILENT means that only the icon is displayed in the status bar. When clicking this icon, the balloon
appears. If the message will consist of more than one string you can also use a JComponent instance both
for the detailed description in the balloon and for displaying it in the notification list. You can use a
variant of the notify() method for this.

The message remains visible in the status bar in the notification list until it is closed by the user. You
also have the option of closing the notification by the clear() method over the handle Notification,
which the notify() method returns as return value.

Progress Bar
By default, the NetBeans status bar has an integrated progress bar. It is used via the Progress API. There
are classes available for visualizing the progress of simple tasks as well as for monitoring multiple tasks
that have their progress displayed as one. The progress of separate tasks can be monitored as well.

Displaying the Progress of Separate Tasks
There are three variants of displays available that you can set depending on the information about the
task in progress, as shown in Figure 11-3:

• A finite display of percentile progress until completion, if the number of required
steps is known.

• A finite display of remaining seconds until completion, if the number of required
steps and their total duration are known.

• An infinite display if neither the number nor the total duration of required steps is
known.

CHAPTER 11 STATUS BAR AND PROGRESS BAR

151

Figure 11-3. Different Kinds of Progress Display

The most basic use case entails the use of ProgressHandleFactory, creating an instance of
ProgressHandle for a specific task (see Listing 11-3). The ProgressHandle provides control of the progress
display.

Listing 11-3. Using the Progress Bar for Separate Tasks

Runnable run = new Runnable() {
 public void run() {
 ProgressHandle p = ProgressHandleFactory.createHandle("My Task");
 p.start(100);
 // do some work
 p.progress("Step 1", 10);
 // do next work
 p.progress(100);
 p.finish();
 }
};

Thread t = new Thread(run);
t.start(); // start the task and progress visualisation

Table 11-1 lists the methods used to start different display types.

Table 11-1. Methods Starting the Different Display Types

Method Display

start() Lets the progress bar run until a call to the finish()
method is made

start(int workunits) Displays the progress of execution in percentiles

start(int workunits, long sec) Displays the remaining time in seconds

CHAPTER 11 STATUS BAR AND PROGRESS BAR

152

The methods shown in Table 11-2 allow switching between finite and infinite progress bars during
runtime, including displaying percentile or seconds.

Table 11-2. Methods for Changing the Display Type

Method Description

switchToDeterminate(
 int workunits)

Switches to percentile progress display

switchToDeterminate(
 int workunits,
 long estimate)

Switches to time progress display with the
remaining seconds

switchToIndeterminate() Switches to infinite mode

 Caution a common error working with progress bars concerns the real task performed in the event dispatch
thread that is responsible for updating the GUI. Executing the task there blocks the thread, which in turn blocks
displaying the progress bar, because this step is already finished until the event dispatch thread comes into play
again updating the GUI. To separately execute the task, the SwingWorker class of the Java API can be used, for
example. Its use is shown via an asynchronous initialization in Chapter 15. In this context, the class
ProgressUtils also provides useful functions.

There are several methods for creating a ProgressHandle with the ProgressHandleFactory. One of
these methods allows passing the Cancellable service interface, allowing the user to abort the task with a
button displayed next to the progress bar (see Figure 11-3).

createHandle(String displayName, Cancellable allowToCancel)

With the suspend(String message) method you can pause the progress bar and display a
corresponding message.

Displaying the Progress of Multiple Related Tasks
Additionally, the Progress API provides an extended method for monitoring progress. An
AggregateProgressHandle can be created via the AggregateProgressFactory. With the help of this handle,
you can assemble the progress of multiple tasks and display them in a single progress bar. For this
purpose, the class ProgressContributor is additionally required. Every task requires an instance of it to
communicate current progress to the AggregateProgressHandle.

The following example shows the use of this type of progress display. For this purpose, we want to
create a number of tasks with different durations of execution and then display its progress in the
progress bar.

For this purpose, we firstly create the abstract class AbstractTask that inherits from the class Thread.
This allows the parallel execution of tasks from the list. It is also possible not to derive from Thread and

CHAPTER 11 STATUS BAR AND PROGRESS BAR

153

start the tasks sequentially. This abstract class shall take care of creating and managing the
ProgressContributor class and it shall communicating current progress.

public abstract class AbstractTask extends Thread {
 protected ProgressContributor p = null;

 public AbstractTask(String id) {
 p = AggregateProgressFactory.createProgressContributor(id);
 }

 public ProgressContributor getProgressContributor() {
 return p;
 }
}

You now create an example task that takes ten steps to finish via the class MyTask. You just have to
implement the run() method, in which the task is executed and progress is communicated.

public class MyTask extends AbstractTask {
 public MyTask(String id) {
 super(id);
 }

 public void run() {
 p.start(10);
 //do some work
 p.progress(5);
 //do some work
 p.progress(10);
 p.finish();
 }
}

The class MyTask2 is an additional example task that takes more steps to finish than the class
MyTask1.

public class MyTask2 extends AbstractTask {
 public MyTask2(String id) {
 super(id);
 }

 public void run() {
 p.start(30);
 //do another work
 p.progress(2);
 //do another work
 p.progress(15);
 p.finish();
 }
}

Located in the MyProgram class is a list of the tasks and the processTaskList() method to execute the
tasks. As an example, you store three tasks in the constructor and add them to your task list. By calling
the method processTaskList() (which could, for example, be called by a button), an array for the

CHAPTER 11 STATUS BAR AND PROGRESS BAR

154

ProgressContributor is created, and every task’s ProgressContributor is added to that array. Then, you
pass this array to the AggregateProgressFactory (which creates an AggregateProgressHandle) via the
createHandle() method (see Listing 11-4). When starting this handle, the progress bar is displayed and
ready to receive progress notifications from the tasks. What remains is to start the tasks. The progress
bar automatically terminates when the last task is finished.

Listing 11-4. Executing a List of Tasks

public class MyProgram {
 private List<AbstractTask> tasks = new ArrayList<AbstractTask>();

 public MyProgram() {
 tasks.add(new MyTask("Task1"));
 tasks.add(new MyTask2("Task2"));
 tasks.add(new MyTask2("Task3"));
 }

 public void processTaskList() {
 ProgressContributor cps[] = new ProgressContributor[tasks.size()];
 int i = 0;
 for(AbstractTask task : tasks) {
 cps[i] = task.getProgressContributor();
 i++;
 }

 AggregateProgressHandle aph = AggregateProgressFactory.createHandle(
 "MyTasks”, // displayed name
 cps, // progress contributors
 null, // not canceable
 null); // no output
 aph.start();
 for(AbstractTask task : tasks) {
 task.start();
 }
 }
}

If you want to be informed about the separate events of all tasks, a monitor can be passed to the
instance of AggregateProgressHandle. To do so, you just have to implement the interface
ProgressMonitor at the desired position and pass an instance of it to the AggregateProgressHandle (see
Listing 11-5).

Listing 11-5. Supervising Events of Separate Tasks via a Monitor

public class MyProgressMonitor implements ProgressMonitor {
 public void started(ProgressContributor pc) {
 System.out.println(pc.getTrackingId() + " started");
 }

 public void progressed(ProgressContributor pc) {
 System.out.println(pc.getTrackingId() + " progressed");
 }

CHAPTER 11 STATUS BAR AND PROGRESS BAR

155

 public void finished(ProgressContributor pc) {
 System.out.println(pc.getTrackingId() + " finished");
 }
}

AggregateProgressHandle aph = AggregateProgressFactory.create...
aph.setMonitor(new MyProgressMonitor());

Integrating a Progress Bar into Your Component
For integrating a progress bar into a component, both ProgressHandleFactory and
AggregateProgressFactory offer three methods to get a label with the name, a label with the details, and
the progress bar for a certain ProgressHandle or AggregateProgressHandle:

JLabel createMainLabelComponent(ProgressHandle ph)
JLabel createDetailLabelComponent(ProgressHandle ph)
JComponent createProgressComponent(ProgressHandle ph)

Summary
Besides the menu bar, the toolbar, and the window system, a status bar and a progress bar are integrated
into the application window of the NetBeans Platform. In this chapter you got to know both of them. In
the first part you saw how you can use and extend the status bar. You also looked at the support to
display notifications in the form of a balloon. In the second part you learned about the various methods
for showing the progress of more or less ongoing tasks.

C H A P T E R 12

157

Nodes and Explorer

In Chapter 7 you learned that the NetBeans Platform provides a very substantial concept for creating,
managing, editing, and presenting data. You then looked at the File Systems API and the Data Systems
API. This chapter is about the presentation of data in the form of nodes. Nodes can be provided with
actions and displayed in an explorer view. So, a node is responsible for the type-specific representation
of the data. In this context, a Node represents a DataObject that is itself responsible for creating the nodes
(see Chapter 7).

Nodes API
The Nodes API is the third and uppermost layer in the NetBeans Resource Management System. In this
context, the role of the Nodes API is the visual representation of data. Closely connected to this API is the
Explorer API, which is used for displaying and managing nodes. A node is used to present data to the
user interface of an application, as well as to give the user actions, functionalities, and properties for
interacting with underlying data. However, a node does not need to merely present data, but can also be
used for many other things as well. For example, an action hiding beneath a node could be invoked
when the node is double-clicked. Besides, a node is not typically concerned with business logic, but
focuses on providing a presentation layer, delegating user interaction to action classes and, where
applicable, to its related data object.

Node Classes
The general interfaces and features are described by the abstract base class Node (see Figure 12-1). All
subclasses of Node can be managed and displayed in an explorer view, the possibilities for which are
covered in the “Explorer API” section.

CHAPTER 12 NODES AND EXPLORER

158

Figure 12-1. Hierarchy of the node base classes

The two classes AbstractNode and FilterNode derive from Node. The class AbstractNode represents
the simplest form of a node by providing the abstract methods of the base class with a standard
implementation. So, starting from this class, you can directly create an instance. A proxy node can be
realized by the class FilterNode that delegates its method calls to the original node. This kind of node is
typically used when a data set will be visualized at multiple positions. The class BeanNode is used for
representing a JavaBean. The child element of the node can be classified with an Index via the class
IndexedNode. Finally, there is also the subclass DataNode which is the most commonly used; with this kind
of node, data objects are represented. In the simplest case, this class is used directly; this was also the
case in Chapter 7 with the MP3 file type. This class is instantiated by the method createNodeDelegate()
of the Mp3DataObject. This object is responsible for providing the corresponding node itself.

Besides the reference to the data object, the Lookup of the Mp3DataObject is also passed to the
constructor. With this Lookup, a data object can, in a way, provide its actions to the user or bring its
actions to the surface. For example, an action that is executed on the node gets the features of the node
via the getLookup() method and thus gets the Lookup of the data object below. So, the node just
forwards the Lookup. However, a node itself —as well as a data object—can possess and provide
functionalities in the form of context interfaces. These functionalities are associated—exactly as with the
data object—by the node via getCookieSet().assign() and also called from outside via the getLookup()
method. In this case, no Lookup must be passed to the node constructor, because the constructor uses
its own Lookup.

If a node will not display a data object, but something special—as, for example, with a root node—
you create your own node class that directly derives from AbstractNode. Using this base class, you also
implement the folder nodes in the subsequent example.

Node Container
Each node has its own Children object, representing a container for child nodes, which are the node’s
subnodes. In this context, the container is responsible for adding, deleting, and structuring the child
nodes. Each node that is located in this container gets the node (the owner of the container) as parent.
For those nodes that do not have child nodes—as, in this case, the DataNode of the Mp3DataObject— an
empty container can be passed via Children.LEAF. There are multiple variants of the abstract base class
Children. Usually, you should not derive from this base class. The most common class is the
Children.Keys<T> class, where mostly a one-to-one relationship is given between key and node. In the
example shown in Figure 12-2 the key for a node is a file object. However, you do not directly use the

CHAPTER 12 NODES AND EXPLORER

159

class, but instead derive from the class ChildFactory and create a Children object via the factory method
Children.create(). This enables you to simply create the child nodes in the background (if, for example,
it would otherwise block the GUI for too long).

Figure 12-2. Hierarchy of the different children container classes

Node Icons
You use the method setIconBaseWithExtension() to set the path to a set of icons (displayed for a node),
depending on the node’s current state. You define the base name of four different icons via this method.
For example, if you indicate com/galileo/netbeans/module/icon.png, the following icons (which should
already be provided) are automatically found:

• com/galileo/netbeans/module/icon.png

• com/galileo/netbeans/module/iconOpen.png

• com/galileo/netbeans/module/icon32.png

• com/galileo/netbeans/module/iconOpen32.png

Node Context Menu
A node provides a context menu to the user over which context-independent actions can be provided. A
DataNode gets its entries or respective actions for its context menu by the factory of the data object that is
managed by the node. In turn, the node class provides the actions via the getActions() method. As you
already learned in Chapter 7, it is possible in this respect to register actions in the standard folder
Loaders below a MIME type–specific folder. If the MIME type is, for example, audio/mpeg, as in
Chapter 7, the actions are registered in Loaders/audio/mpeg/Actions. Of course, you can use the
mechanisms of the Actions API (described in Chapter 6) for this purpose. The actions are automatically
read and added to the context menu of the node. To explain this, I will continue with the example of the
MP3 data object from Chapter 7. Only the following additional annotation is needed to add the action
PlayAction to the node context menu of the Mp3DataObject.

@ActionReferences({
 ...
 @ActionReference(
 path = "Loaders/audio/mpeg/Actions",
 position = 50, separatorAfter=60)
})

CHAPTER 12 NODES AND EXPLORER

160

public final class PlayAction implements ActionListener { ...

Thus, the play functionality also appears in the context menu of an MP3 file (see Figure 12-3). Of
course, with the context sensitivity implemented in Chapter 7 (see also Chapter 6). This means if the file
is being played, the play action is deactivated in the context menu, too.

Figure 12-3. Adding actions to the context menu of a node

A node delivers the action that is executed when double clicking via the getPreferredAction()
method. If this method is not overridden, the first action of the array is used by getActions().

Event Handling
To react on the events of a node, you can install a PropertyChangeListener as well as a NodeListener. You
can use the PropertyChangeListener to monitor the properties that a node supplies via the
getPropertySet() method. With the NodeListener you can be informed about internal node changes
such as the name, the parent node, and also the child nodes, for example. For this purpose, the node
class provides a series of public property keys, such as PROP_NAME or PROP_LEAF. The NodeListener
provides the methods shown in Table 12-1.

CHAPTER 12 NODES AND EXPLORER

161

Table 12-1. Methods of the NodeListener Interface

Method Event

childrenAdded(
 NodeMemberEvent evt)

Triggered when child nodes are added

childrenRemoved(
 NodeMemberEvent evt)

Triggered when child nodes are deleted

childrenReordered(
 NodeReorderEvent evt)

Triggered when the order of the child nodes
changes

nodeDestroyed(
 NodeEvent evt)

Triggered when the monitored node itself is
deleted

propertyChange(
 PropertyChangeEvent evt)

Occurs when node features change (for
example, the name)

If you do not want to become informed about or implement all events, you can use the adapter class

NodeAdapter instead of the NodeListener interface.

Example
Next I will show you an example of how to use the Nodes API to create your own node classes and build a
children container. Doing so, you will also see that there cannot only be files behind a node. In this
example, the nodes will be used for representing actions in a tree structure while you want to define the
content via the layer file. This way, the content can be flexibly adapted and an extension point is offered
to other modules. To display the nodes in a tree structure, use the Explorer API (discussed in the next
section). The complete example will result in an explorer window like the one shown in Figure 12-4.

CHAPTER 12 NODES AND EXPLORER

162

Figure 12-4. Example for using nodes and explorer views

You determine the context of the explorer window in a separate folder in the layer file. We will call
this folder Explorer; it represents the extension point of the window or of the module, respectively.
Actions, which are represented by nodes in the tree structure of the explorer window, can be registered
in any subfolder there (see Listing 12-1). The content of the layer file looks like the example shown in
Figure 12-4.

Listing 12-1. Extension Point in the Layer File; All Entries in the Explorer Folder Are Displayed in the

Explorer Window.

<folder name="Explorer">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/explorer.png"/>
 <folder name="MP3 Player">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/player.png"/>
 <file name="PlaylistAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Edit/com-galileo-netbeans-module-PlaylistAction.instance"/>
 </file>
 </folder>
 <folder name="Views">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/views.png"/>
 <file name="OutputAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Window/org-netbeans-core-io-ui-IOWindowAction.instance"/>
 </file>
 </folder>
 <folder name="Favorites">
 <attr name="icon" stringvalue="com/galileo/netbeans/module/favorites.png"/>

CHAPTER 12 NODES AND EXPLORER

163

 <file name="FavoritesAction.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Window/org-netbeans-modules-favorites-View.instance"/>
 </file>
 </folder>
</folder>

You can see that the actions—which are registered at this point via shadow files—refer to already
registered actions. Moreover, you want to be able to assign an icon to a folder by the self-defined
attribute icon. The references can, of course, also be created by corresponding annotations (see
Chapter 6). To display this structure with nodes you need a node class and a child factory class for each
action . Start with the node class which represents the content of a folder. Call it ExplorerFolderNode and
derive it from the node standard implementation AbstractNode. Thus, for now, you do not need anything
other than a constructor. You pass the FileObject to the constructor of this node. The FileObject
represents a folder entry of the layer file and a Children object that is responsible for creating the child
elements. You pass this object to the base class constructor. Then you set the name and the icon base
path of the node via the values of the layer file. (See Listing 12-2.)

Listing 12-2. Node Class for Representing a Folder

import org.openide.filesystems.FileObject;
import org.openide.nodes.AbstractNode;
import org.openide.nodes.Children;

public class ExplorerFolderNode extends AbstractNode {

 public ExplorerFolderNode(FileObject node, Children ch) {
 super(ch);
 setDisplayName(node.getName());
 String iconBase = (String) node.getAttribute("icon");
 if(iconBase != null) {
 setIconBaseWithExtension(iconBase);
 }
 }
}

You create a ChildFactory class for the Children object. This class will be called
ExplorerFolderFactory. The nodes will be created by means of a FileObject, which means you derive
from ChildFactory<FileObject> (see Listing 12-3).

Listing 12-3. Child Factory for Elements of the Type ExplorerFolderNode

import org.openide.filesystems.FileObject;
import org.openide.nodes.ChildFactory;
import org.openide.nodes.Children;
import org.openide.nodes.Node;

public class ExplorerFolderFactory extends ChildFactory<FileObject> {
 private FileObject folder = null;

CHAPTER 12 NODES AND EXPLORER

164

 public ExplorerFolderFactory(FileObject folder) {
 this.folder = folder;
 }

 @Override
 protected boolean createKeys(List<FileObject> toPopulate) {
 toPopulate.addAll(Arrays.asList(folder.getChildren()));
 return true;
 }

 @Override
 protected Node createNodeForKey(FileObject key) {
 return new ExplorerFolderNode(key,
 Children.create(new ExplorerChildFactory(key), false));
 }
}

You pass the FileObject of the parent node to the constructor of the factory class (which is depicted
in Listing 12-3). You want to load and manage all entries here, located below this node. The
createKeys() method is automatically called when the parent node is opened. This means the child
nodes are just created then on demand. You read all subordinate folders from there, and add them to the
list toPopulate. This list is managed by the ChildFactory class. The createNodeForKey() method is called
for each key, added within this method. So, this is where you create the ExplorerFolderNode object. In
turn, such an object will contain the action. Thus, you pass an ExplorerChildFactory instance to the
object. Listing 12-4 shows the implementation of the object in the context of the ExplorerLeafNode class.

Listing 12-4. Node Class for the Representation of an Action

import org.openide.awt.Actions;
import org.openide.nodes.AbstractNode;
import org.openide.nodes.Children;

public class ExplorerLeafNode extends AbstractNode {
 private Action action = null;

 public ExplorerLeafNode(Action action) {
 super(Children.LEAF);
 this.action = action;
 setDisplayName(Actions.cutAmpersand((String)action.getValue(Action.NAME)));
 }

 @Override
 public Action getPreferredAction() {
 return action;
 }

 @Override
 public Image getIcon(int type) {
 ImageIcon img = (ImageIcon) action.getValue(Action.SMALL_ICON);
 if(img != null) {
 return img.getImage();
 } else {

CHAPTER 12 NODES AND EXPLORER

165

 return null;
 }
 }
}

You derive the node classes (shown in Listing 12-4) that will each represent an action, from
AbstractNode, too. The constructor gets delivered the actual action by the child factory. Of course, those
nodes are not supposed to have further child nodes, so you pass an empty container with Children.LEAF.
Moreover, set the name and the icon of the node. You overwrite the getPreferredAction() method in
order to deliver the action which is behind this node. When you double-click this node, the
corresponding action is actually executed.

Listing 12-5 shows how these kinds of nodes are created by the class ExplorerChildFactory.

Listing 12-5. Child Factory for Elements of the Type ExplorerLeafNode

import org.openide.filesystems.FileObject;
import org.openide.nodes.ChildFactory;
import org.openide.nodes.Node;
import org.openide.util.lookup.Lookups;

public class ExplorerChildFactory extends ChildFactory<Action> {
 private FileObject folder = null;

 public ExplorerChildFactory(FileObject folder) {
 this.folder = folder;
 }

 @Override
 protected boolean createKeys(List<Action> toPopulate) {
 for(Action action : Lookups.forPath(folder.getPath()).lookupAll(Action.class)) {
 toPopulate.add(action);
 }
 return true;
 }

 @Override
 protected Node createNodeForKey(Action key) {
 return new ExplorerLeafNode(key);
 }
}

The child elements of the type ExplorerLeafNode will be created via an action instance, so you derive
from ChildFactory<Action>. Pass the corresponding parent element to the constructor in the form of a
FileObject instance. In the createKeys() method you can now access the parent element and create a
Lookup for the the parent element. This offers a very elegant way to get to all actions that are registered
there. Finally, you create the node object for the actions via the createNodeForKey() method.

So far you have learned how to implement your own node classes and how to create instances of
them. With these classes, you are able to completely depict the defined structure in the layer file. But you
still need another view to depict the nodes in a tree structure in a window. The Explorer API
accomplishes representing the nodes. To illustrate this, the following sections offer a short introduction
to the Explorer API, after which we will finish with the example already begun.

CHAPTER 12 NODES AND EXPLORER

166

Explorer API
With the Explorer API you can visually display and manage your nodes in different variants. For this
purpose, the API provides a set of explorer views with which you can display your nodes in typical
structures. The class hierarchy of these views is shown in Figure 12-5. For example, the class ChoiceView
presents its nodes in a combo box, while the MenuView presents it in a menu structure of any depth. The
most commonly used view—and probably the most popular one—is the BeanTreeView which presents its
nodes in a tree structure. Besides representing nodes and processing actions (such as cutting out,
inserting, deleting, or dragging and dropping nodes), those views are responsible for displaying the
context menu of a node. The view gets the actions of a node via the getActions() method of a node.

Figure 12-5. Class hierarchy of the different explorer views

Managing an explorer view is always done by the ExplorerManager class. An instance of this manager
must be provided by the component that contains the explorer view. In most cases, this is its top
component.

The remarkable thing about this is that the manager does not have to be connected to the view,
since, the view automatically searches for a manager in the component hierarchy, which is to say, in the
parent components. The parent component must implement the interface ExplorerManager.Provider,
so this manager can be found. This interface specifies the getExplorerManager() method, by which the
view determines the manager. In the course of this, multiple different views can use the same manager.

One of the main tasks of the explorer manager is to monitor the selection of nodes in a view. The
manager always provides the selected node and its Lookup. You proceed as follows, so the current
context can be accessed by another top component or even by another module from outside (from an
action class). With the helper class ExplorerUtils you can create a Lookup that always represents the
selected node (or several nodes, delivered by the explorer manager) via the method createLookup().
Using the associateLookup() method you define the Lookup (that was created this way) as local Lookup
of your top component. Thus, the Lookup can be accessed from outside via the global proxy Lookup
(which you get when calling Utilities.actionsGlobalContext()).

In the previous section, you created the necessary node classes and child factory classes for the
explorer example. What is still missing at this point is a window with an explorer view that can display
the nodes. By means of this still missing step, I will explain the usage of a view and the manager. First,

CHAPTER 12 NODES AND EXPLORER

167

you create the top component ExplorerTopComponent by the window wizard of the NetBeans IDE. Then
you provide it with an explorer manager. For this purpose, you have to implement the interface
ExplorerManager.Provider and apply an instance of the ExplorerManager as private data element. With
the getExplorerManager() method you return this manager. In the next step, you add a BeanTreeView to
the top component; this is most easily done by dragging a scroll pane on the window by the Form Editor
and entering new BeanTreeView() in the properties in the category Code at Custom Creation Code. Then,
your initComponents() method should look like the example. As already mentioned, the view finds the
explorer manager itself, so you do not have to make further steps to connect the view and the manager.
Every view, respectively every manager, is based on a root element from which all the other nodes
originate. You set this root element with setRootContext() in the initTree() method. You also pass an
instance of the node class ExplorerFolderNode to the just-named method. From this node, the creation
of all other nodes is initiated. Of course, you only create this node if the folder Explorer exists in the
System Filesystem (meaning, if any module added the entry to the folder Explorer in its layer file). See
Listing 12-6.

Listing 12-6. Explorer Window Which Displays the Nodes by a BeanTreeView. The Nodes Are Managed by

an Explorer Manager.

public final class ExplorerTopComponent extends TopComponent
 implements ExplorerManager.Provider {

 private static final String ROOT_NODE = "Explorer";
 private final ExplorerManager manager = new ExplorerManager();

 public ExplorerTopComponent() {
 initComponents();
 initTree();
 initActions();
 associateLookup(ExplorerUtils.createLookup(manager, getActionMap()));
 }

 private JScrollPane jScrollPane1;

 private void initComponents() {
 jScrollPane1 = new BeanTreeView();
 setLayout(new BorderLayout());
 add(jScrollPane1, BorderLayout.CENTER);
 ...
 }

 private void initTree() {
 FileObject root = FileUtil.getConfigFile(ROOT_NODE);
 if(root != null) { /* folder found */
 manager.setRootContext(
 new ExplorerFolderNode(root, Children.create(
 new ExplorerFolderFactory(root), false)));
 }
 }

 private void initActions() {

CHAPTER 12 NODES AND EXPLORER

168

 CutAction cut = SystemAction.get(CutAction.class);
 getActionMap().put(cut.getActionMapKey(), ExplorerUtils.actionCut(manager));
 CopyAction copy = SystemAction.get(CopyAction.class);
 getActionMap().put(copy.getActionMapKey(), ExplorerUtils.actionCopy(manager));
 PasteAction paste = SystemAction.get(PasteAction.class);
 getActionMap().put(paste.getActionMapKey(), ExplorerUtils.actionPaste(manager));
 DeleteAction delete = SystemAction.get(DeleteAction.class);
 getActionMap().put(delete.getActionMapKey(), ExplorerUtils.actionDelete(manager, true));
 }

 public ExplorerManager getExplorerManager() {
 return manager;
 }

 protected void componentActivated() {
 ExplorerUtils.activateActions(manager, true);
 }

 protected void componentDeactivated() {
 ExplorerUtils.activateActions(manager, false);
 }
}

As a next step, you connect the standard actions (cut, copy, paste, and delete) provided by the
Platform with the actions of the explorer manager in the initActions() method. The actions of the
explorer manager are provided by the ExplorerUtils class which you register by the action map key in
the action map of your top component. You create a proxy Lookup (which provides the respectively
selected node with its Lookup) by means of the ExplorerUtils.createLookup method, so the respectively
selected nodes of a view can be accessed via the Lookup of the top component. You define this proxy
Lookup as local Lookup of your top component via the associateLookup() method. The action map also
has to be located in the Lookup of the top component, so the previously registered actions (registered in
the action map) are actually active. Practically, you can directly pass the action map to the
createLookup() method, which makes the action map available via the proxy Lookup.

To save resources, you can switch on or switch off the listener of the explorer manager actions
(which you previously connected to the system actions) in the methods componentActivated() and
componentDeactivated(), which are called when activating and deactivating your windows. This way,
they are not notified of events in the clipboard, for example, if the window is not even active.

At this point, I should mention the many interesting examples and tutorials available on the
NetBeans website at http://netbeans.org/kb/trails/platform.html. The tutorials are easy to
understand and the examples concerning the Nodes, Explorer, and Property Sheet API are particularly
useful.

Summary
With the Nodes and Explorer API the NetBeans Platform provides a universal framework for displaying
very different data. In this chapter you learned the basics about the different node classes and the
functionality of a node container. Using an example, you created your own node classes and container
and used the Explorer API to display some data defined in an XML file.

C H A P T E R 13

169

Dialogs and Wizards

The Dialogs API helps you create and display dialogs and wizards. The dialogs are based on the Java
Dialog class. Using the Dialogs API, you can display standard dialogs, as well as custom dialogs tailored
to specific business needs. In addition, the API integrates well with the NetBeans window system, as well
as the NetBeans help system. Wizards can be seen as a special kind of dialog and are therefore part of the
Dialogs API.

Standard Dialogs
Use the NotifyDescriptor class to define the properties of a standard dialog. Provide a message in the
form of a String, an Icon, or a Component, which will be displayed with the dialog. Optionally, use an
array to display multiple messages in varying situations. Different types of messages can be specified,
giving control over the icon displayed. Define the type via the predefined constants in the
NotifyDescriptor, as listed in Table 13-1.

Table 13-1. Constants to Determine the Message Type

Constant Message Type/Symbol

PLAIN_MESSAGE The message is displayed neutrally, without a symbol.

INFORMATION_MESSAGE The default information symbol is displayed with the
message.

QUESTION_MESSAGE The question symbol is displayed with the message.

WARNING_MESSAGE The warning symbol is displayed with the message.

ERROR_MESSAGE The error symbol is shown with the message.

An option type defines which buttons are displayed in the dialog, for which the constants shown in

Table 13-2 are provided.

CHAPTER 13 DIALOGS AND WIZARDS

170

Table 13-2. Constants Defining Dialog Buttons

Constants Buttons Displayed

DEFAULT_OPTION The standard buttons are displayed according to the
dialog type. For example, an information dialog only
has an OK button, while an entry dialog has an OK
button as well as a Cancel button.

OK_CANCEL_OPTION OK and Cancel buttons are displayed.

YES_NO_OPTION Yes and No buttons are displayed.

YES_NO_CANCEL_OPTION Yes, No, and Cancel buttons are displayed.

Additionally, you can use the constructor or the setAdditionalOptions() method to pass in an

Object array whose components are added to the buttons of the dialog in the form of JButton objects.
Typically, String objects are passed here, though you can also use Component or Icon objects. However, if
you want to omit the default buttons, only custom buttons can be provided via the setOptions() method
or by passing them in to the constructor. Here, too, the classes String, Component, and Icon are used:

NotifyDescriptor d = new NotifyDescriptor(
 "Text", // Dialog message
 "Title", // Dialog title
 NotifyDescriptor.OK_CANCEL_OPTION, // Buttons
 NotifyDescriptor.INFORMATION_MESSAGE, // Symbol
 null, // Own buttons as Object[]
 null); // Additional buttons as Object[]

Dialog description, such as the one defined previously, is passed in to the notify() method of the
DialogDisplayer class, which is responsible for the creation and display of dialogs, and also gives a
return value when the dialog closes. The DialogDisplayer is designed as a global service, whose provider
is supplied by the getDefault() method via the Lookup.

Object retval = DialogDisplayer.getDefault().notify(d);

You can identify the buttons the user clicked by comparison with the constants listed in Table 13-3.

Table 13-3. Dialog Return Value Constants

Constant Returned When

OK_OPTION The OK button is clicked.

YES_OPTION The Yes button is clicked.

NO_OPTION The No button is clicked.

CANCEL_OPTION The Cancel button is clicked.

CHAPTER 13 DIALOGS AND WIZARDS

171

CLOSED_OPTION The dialog is closed without any button having been clicked.

For the most common dialog types, the Dialogs API provides three subclasses of the

NotifyDescriptor class, so you only need to define a few parameters. We will take a closer look at these
classes with examples in the following sections.

Information Dialog
Create an information dialog via the NotifyDescriptor.Message class. Pass the text to be displayed to the
constructor, as well as an optional message type. By default, the dialog shows the information symbol, as
shown in Figure 13-1.

NotifyDescriptor nd = new NotifyDescriptor.Message("Information");

Figure 13-1. Information dialog

Question Dialog
Should the user be enabled to answer a question posed in the dialog (see Figure 13-2), use the
NotifyDescriptor.Confirmation class. To that end, a range of constructors is available for passing in the
message, title, message type, and additional option types.

NotifyDescriptor d = new NotifyDescriptor.Confirmation(
 "You can place any String or Component here",
 "That’s a question");

Figure 13-2. Question dialog

CHAPTER 13 DIALOGS AND WIZARDS

172

Input Dialog
An input dialog is easily created via the NotifyDescriptor.InputLine class. Define the text and title to be
displayed in the input area of the dialog (see Figure 13-3). Optionally, pass in an option type and
message type so that the desired buttons and symbols are shown.

NotifyDescriptor d = new NotifyDescriptor.InputLine(
 "First and last name: ",
 "Please enter your name");

Figure 13-3. Input dialog

Access text entered by the user via the getInputText() method. Optionally, enter text into the field
via the setInputText() method.

Custom Dialogs
Custom dialogs are created via the DialogDescriptor class. This class is an extension of the
NotifyDescriptor class. Pass in a Component object to be displayed, while also defining dialog modality
and a related ActionListener that reacts when the buttons are clicked. Optionally, pass in a HelpCtx
object, providing the ID of a help topic so that a Help button is automatically displayed on the dialog.
For the DialogDescriptor, create a Dialog object via the DialogDisplayer’s createDialog() method.
Alternatively, display the dialog directly, via the notify() or notifyLater() methods.

Displaying Notifications
Creating your own dialogs, for example, in order to query certain data from the user, you can display
notifications to the user (see the section Wizards), equivalent to a wizard. The notification line, which is
automatically integrated by the Dialogs API, can be created if needed via the
createNotificationLineSupport() method of your NotifyDescriptor instance. Thus, the notification line
is created in the form of a NotificationLineSupport instance at the bottom of the dialog (see Figure
13-4). You can display information with the following methods in that line:

setInformationMessage(String msg)
setWarningMessage(String msg)
setErrorMessage(String msg)

Each of these methods also sets a corresponding icon in front of the displayed notification. You can
read the respectively displayed notification via the corresponding get methods. With the
clearMessages() method you can delete a displayed notification again.

CHAPTER 13 DIALOGS AND WIZARDS

173

Figure 13-4. Dialog with integrated notification line

Example
The following example illustrates creation of a Login dialog via the DialogDescriptor class. It is
important that the dialog is displayed at the appropriate time: when the application starts. The
application should be blocked until the login details are correctly entered. Two approaches are
supported, as discussed in the following paragraphs.

As mentioned, a Component object can be passed in to the DialogDescriptor, displaying it in the
dialog. In the example shown in Figure 13-5, this approach is used to integrate two text fields into the
dialog so that the user can enter a username and password. The panel provides the username and
password via its getUsername() and getPassword() methods. To display the dialog at application startup,
a Module Installer is needed (see Chapter 3). In the restored() method of the Module Installer you
create the DialogDescriptor to display the Login dialog.

Figure 13-5. Login dialog created via DialogDescriptor and an additional panel

Because you need to execute the dialog asynchronously—otherwise the dialog would be displayed
during the initialization phase—it is necessary to register an ActionListener to react to user button
clicks. The actual login process is executed in the actionPerformed() method. If the entered values are
incorrect, exit the application via the LifecycleManager class (see Chapter 8).

To allow reaction when users click the Close button (on the upper-right side of the dialog), register a
PropertyChangeListener, in which the application is shut down. To display the dialog immediately after
the initialization phase—that is, directly after the splash screen—use the notifyLater() method, as
shown in Listing 13-1.

CHAPTER 13 DIALOGS AND WIZARDS

174

Listing 13-1. Login Dialog Displayed When the Application Starts, Blocking the Application Until the

Username and Password Are Successfully Entered

public class Installer extends ModuleInstall
 implements ActionListener {
 private LoginPanel panel = new LoginPanel();
 private DialogDescriptor d = null;
 @Override
 public void restored() {
 d = new DialogDescriptor(panel, "Login", true, this);
 d.setClosingOptions(new Object[]{});
 d.addPropertyChangeListener(new PropertyChangeListener() {
 public void propertyChange(PropertyChangeEvent e) {
 if(e.getPropertyName().equals(DialogDescriptor.PROP_VALUE)
 && e.getNewValue()==DialogDescriptor.CLOSED_OPTION) {
 LifecycleManager.getDefault().exit();
 }
 }
 });
 DialogDisplayer.getDefault().notifyLater(d);
 }
 public void actionPerformed(ActionEvent event) {
 if(event.getSource() == DialogDescriptor.CANCEL_OPTION) {
 LifecycleManager.getDefault().exit();
 } else {
 if(!SecurityManager.login(panel.getUsername(), panel.getPassword())) {
 panel.setInfo("Wrong user name or password");
 } else {
 d.setClosingOptions(null);
 }
 }
 }
}

Another way to display the dialog uses the notify() method, which is executed in a separate thread,
as soon as the application is available. Do this via the invokeWhenUIReady() method provided by the
WindowManager class. The difference between this approach and notifyLater() is that the dialog is only
displayed when the application window is completely loaded.

WindowManager.getDefault().invokeWhenUIReady(new Runnable(){
 public void run() {
 DialogDisplayer.getDefault().notify(d);
 }
});

Finally, a complete dialog can be built from scratch, by extending JDialog. To that end, use the
related NetBeans IDE wizard available via File ➤ New File… ➤ Java GUI Forms ➤ JDialog Form. If you
need the main application window as a parent for your dialog, you can obtain it via the Window
Manager, like this:

Frame f = WindowManager.getDefault().getMainWindow();

CHAPTER 13 DIALOGS AND WIZARDS

175

Wizards
Aside from support for dialogs, the Dialogs API includes a wizard framework to create step-by-step
procedures that help users work through a particular process. Wizards of this kind are familiar within the
NetBeans IDE itself, such as those used to create new windows or actions. For each step, provide a panel
appropriate to the related data entry required for the step. Coordination between steps is handled by the
wizard framework. We will use this wizard for the following example by which I will show you the
possibilities for designing a wizard and its architecture, in particular. In this example you will make a
wizard for creating playlists. The wizard provides two steps. The first step allows users to describe the
playlist, as shown in Figure 13-6, while the second allows music titles to be chosen and added to the
playlist.

Figure 13-6. First step in the example wizard for playlist creation

Wizard Architecture
The WizardDescriptor class describes and configures a wizard in principle. The class is a subclass of the
DialogDescriptor class, explained in the previous section. The DialogDescriptor class, in turn, is a
subclass of NotifyDescriptor. The WizardDescriptor contains and manages all panels in the wizards and
is responsible for central tasks such as controlling the action buttons and displaying the table of
contents. In other words, the WizardDescriptor is the controller of the entire wizard. Typically, the
WizardDescriptor also provides the data model, from which data collected over various steps is saved as
properties. But you can also provide your own data model.

CHAPTER 13 DIALOGS AND WIZARDS

176

For each step in the wizard, a panel has to be provided. Typically, a panel is built out of two separate
classes. The first class implements the GUI. This class is known as the Visual Panel, and normally
extends JPanel. The second class, handling the management and validation of the panel, is known as the
Wizard Panel. This class extends the WizardDescriptor.Panel<Data> class. It creates the Visual Panel on
demand and makes it available to the wizard. In terms of the MVC (Model-View-Controller) paradigm,
the Visual Panel is the view, and the Wizard Panel is the controller. The Visual Panel only contains the
user interface implementation and provides the user-entered data via get and set methods. The Visual
Panel should not include business logic and, in particular, does not deal with any wizard-specific classes
or calls. As a result, the panel is completely reusable and can also be used outside of the wizard. In this
way, the panel is reusable—for example, in a dialog for later editing of a playlist. The relationship
between WizardDescriptor, WizardPanel, and VisualPanel is illustrated again in Figure 13-7.

Figure 13-7. Architecture of a wizard

Creating Panels
The skeleton of a wizard is created in the NetBeans IDE. Go to File ➤ New File… and, in the Module
Development category, choose the Wizard file type. In the next step, choose Custom as the Registration
Type, and set the Wizard Step Sequence to Static. Enter 2 for the number of panels to be created. In the
final step, provide a prefix for the name of the classes created. For this example, use Playlist as the
prefix. Finally, click Finish. The IDE then creates the skeleton of two panels, both with a Visual Panel and
a Wizard Panel. However, you will adapt the content of some predefined methods.

First, create the user interface of the first panel—this is the class PlaylistVisualPanel1—in the
NetBeans Form Editor. Add several fields with which the user can describe the playlist. The user must be
able to assign a name to the playlist, while choosing a genre and providing a description and image. The
completed panel should look like Figure 13-6, whereby the panel is already shown integrated into the

CHAPTER 13 DIALOGS AND WIZARDS

177

wizard. The panel is a normal Swing component, extending JPanel; however, you should bear in mind
the following implementation details:

• For each piece of data requested from the user, a public property constant is
defined. These are constants for the name of the playlist, the genre, a description,
and an image. In particular, these constants are needed later to save and load data
into the data model.

• In the constructor, a listener is added to each field to be monitored. In the
example, you want to ensure that the name has at least three characters, the
chosen image has a maximum size of 128 × 128 pixels, and a warning message is
shown when no image has been selected. To that end, you register a
DocumentListener for the two text fields playlistName and imagePath.

• It is important to override the getName() method. Thus you provide the names of
the panels displayed in the headers of the steps in the wizard.

• For each field, add a getter method which the wizard panel uses to access data
entered by the user.

• In the DocumentListener methods changedUpdate(), insertUpdate(), and
removeUpdate(), use the firePropertyChange() method to notify all registered
PropertyChangeListeners. The interaction between the three layers of a wizard is
discussed in detail in the next section.

Listing 13-2 shows a section from the Visual Panel PlaylistWizardPanel1. Notice the panel is
completely free from any wizard logic. The complete source code of this class as well as the complete
example project can be downloaded from the Source Code/Download area for this book on the Apress
web site.

Listing 13-2. Visual Panel of the First Wizard Step

public final class PlaylistVisualPanel1 extends JPanel
 implements DocumentListener {
 public static final String PROP_PLAYLIST_NAME = "playlist";
 public static final String PROP_GENRE = "genre";
 public static final String PROP_DESCRIPTION = "description";
 public static final String PROP_IMAGE_PATH = "imagePath";
 public PlaylistVisualPanel1() {
 initComponents();
 playlistName.getDocument().addDocumentListener(this);
 imagePath.getDocument().addDocumentListener(this);
 }
 public String getName() {
 return NbBundle.getMessage(PlaylistWizardPanel1.class, "Panel1.Name");
 }
 public String getPlaylistName() {
 return playlistName.getText();
 }
 public String getGenre() {
 return (String)genre.getSelectedItem();
 }

CHAPTER 13 DIALOGS AND WIZARDS

178

 public String getDescription() {
 return description.getText();
 }
 public String getImagePath() {
 return imagePath.getText();
 }
 public void changedUpdate(DocumentEvent e) {
 if (playlistName.getDocument() == e.getDocument()) {
 firePropertyChange(PROP_PLAYLIST_NAME, 0, 1);
 } else if(imagePath.getDocument() == e.getDocument()) {
 firePropertyChange(PROP_IMAGE_PATH, 0, 1);
 }
 }
}

Look at the content of the related Wizard Panel, providing the controller for the Visual Panel. The
class implements the WizardDescriptor.Panel<Data> interface, defining the interface of wizard panels.
As a template, you can define a class that will be used as a data model. Since you need no special custom
data model, typically the class WizardDescriptor is used to define the wizard panel. In addition,
implement a PropertyChangeListener, allowing reaction to changes in the visual panel.

A wizard panel has a status: valid or invalid. Validity depends on your individual requirements. In
this case, a panel is only valid when the name has at least three characters. The status is saved via the
private data element isValid.

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import javax.swing.event.EventListenerList;
import org.openide.WizardDescriptor;
...
public class PlaylistWizardPanel1 implements
 WizardDescriptor.Panel<WizardDescriptor>, PropertyChangeListener {
 private PlaylistVisualPanel1 view = null;
 private WizardDescriptor model = null;
 private boolean isValid = false;
 private ResourceBundle bundle = NbBundle.getBundle(PlaylistWizardPanel1.class);

The getComponent() method is a factory method with which you create the visual panel on demand.
The method is called from the WizardDescriptor when the panel is first created in the wizard. The
method is called from the WizardDescriptor when the panel in the wizard should be displayed for the
first time. Thus not all panels need to be created at the very start of a wizard. This will significantly
improve the performance of wizards that provide many different steps. Therefore, be very careful when
using the getComponent() method. For example, do not call it in the getName() method, which is called
when the wizard is created. After creating the Visual Panel, you set some properties that influence
display of components in the wizard.

• Use PROP_CONTENT_SELECTED_INDEX to provide the number of the panel (shown in
the table of contents on the left side of the wizard), enabling the user to see the
number of the current step.

CHAPTER 13 DIALOGS AND WIZARDS

179

• Set the property PROP_AUTO_WIZARD_STYLE to true, which creates wizards with the
typical components, such as a contents section as well as a header. Setting this to
false makes sense when the wizard has only one step, so only the panel and the
buttons are displayed.

• Via the properties PROP_CONTENT_DISPLAYED and PROP_CONTENT_NUMBERED, specify
that names and numbers of wizard steps are shown on the left side of the wizard.

 public PlaylistVisualPanel1 getComponent() {
 if (view == null) {
 view = new PlaylistVisualPanel1();
 view.putClientProperty(WizardDescriptor.PROP_CONTENT_SELECTED_INDEX, new Integer(0));
 view.putClientProperty(WizardDescriptor.PROP_AUTO_WIZARD_STYLE, Boolean.TRUE);
 view.putClientProperty(WizardDescriptor.PROP_CONTENT_DISPLAYED, Boolean.TRUE);
 view.putClientProperty(WizardDescriptor.PROP_CONTENT_NUMBERED, Boolean.TRUE);
 }
 return view;
 }

With the getName() method, you provide the name to be displayed in the header of the wizard. With
the getHelp() method, you first return HelpCtx.DEFAULT_HELP. This means the Help button is disabled in
the wizard. Return a HelpCtx object if you want to provide help for your panel. (Further information
about the HelpCtx class and the NetBeans help system are described in Chapter 16.) The status of panels,
discussed earlier (in the section on defining whether the wizard step is valid or not), is provided via the
isValid() method. This method is called from the WizardDescriptor when a panel is called or via
notifications received from the ChangeListener. Only when the method returns the value true are the
Next or Finish buttons of the wizard activated. The setMessage() method is a helper method for which a
notification is displayed to the user. The notification line of the wizard is provided by default and
displayed underneath a panel in the wizard window. This line is represented by the class
NotificationLineSupport. You get access via the getNotificationLineSupport() method of the
WizardDescriptor.

Then, set the text via the method setErrorMessage(). If a text is set this way and the isValid()
method delivers the value false, an error symbol is displayed. If the isValid() method delivers the value
true, though, only a warning sign is shown. If you want to constantly display a warning sign or an info
sign, you can use the methods setWarningMessage() or setInformationMessage().

 public String getName() {
 return bundle.getString("Panel1.Name");
 }
 public HelpCtx getHelp() {
 return HelpCtx.DEFAULT_HELP;
 }
 public boolean isValid() {
 return isValid;
 }
 private void setMessage(String message) {
 model.getNotificationLineSupport().setInformationMessage(message);
 }

The data model is accessed via the readSettings() and storeSettings() methods. The type of the
data model depends on the template, specified via the WizardDescriptor.Panel interface in the class
signature. In this case, the class in question is WizardDescriptor. The readSettings() method is called
when the panel is opened. Here, values from a previous panel can be read in, for example. Register a

CHAPTER 13 DIALOGS AND WIZARDS

180

PropertyChangeListener on the Visual Panel, informing you of user activities in the panel. Register it
here to make sure the WizardDescriptor is available. The storeSettings() method is called when panels
are exited. Save the user-entered values in the WizardDescriptor via the property names defined in the
Visual Panel. In this way, the values are immediately passed from panel to panel until they can be read
from the WizardDescriptor after completion of the wizard.

 public void readSettings(WizardDescriptor model) {
 this.model = model;
 getComponent().addPropertyChangeListener(this);
 }
 public void storeSettings(WizardDescriptor model) {
 model.putProperty(PlaylistVisualPanel1.PROP_PLAYLIST_NAME,
 getComponent().getPlaylistName());
 model.putProperty(PlaylistVisualPanel1.PROP_GENRE,
 getComponent().getGenre());
 model.putProperty(PlaylistVisualPanel1.PROP_DESCRIPTION,
 getComponent().getDescription());
 model.putProperty(PlaylistVisualPanel1.PROP_IMAGE_PATH,
 getComponent().getImagePath());
 }

When discussing the Visual Panel, I have already said that values entered by the user must be
validated. More specifically, you want to make sure the user has entered a name consisting of at least
three characters and that the size of the chosen image doesn’t exceed 128 pixels in width and height. To
be informed about changes made to the visual panel—that is, when the user enters a name or chooses
an image—you register a PropertyChangeListener on the Visual Panel in the readSettings() method.
You need to implement the propertyChange() method. There, the values entered in the wizard can be
validated via the checkValidity() method, which examines the relevant criteria, possibly displays a
message, and returns the corresponding return value. We now need to inform the parent
WizardDescriptor about the changes so that relevant buttons can be activated or deactivated. The user
can only proceed to the next step when the entered data are validated and the WizardDescriptor is
notified of that fact. Achieve this via the fireChangeEvent() method.

 public void propertyChange(PropertyChangeEvent event) {
 boolean oldState = isValid;
 isValid = checkValidity();
 fireChangeEvent(this, oldState, isValid);
 }
 private boolean checkValidity() {
 if(getComponent().getPlaylistName().trim().length() < 3) {
 setMessage(bundle.getString("Panel1.Error1"));
 return false;
 } else if(getComponent().getImagePath().length() != 0) {
 ImageIcon img = new ImageIcon(getComponent().getImagePath());
 if(img.getIconHeight()>128 || img.getIconWidth()>128) {
 setMessage(bundle.getString("Panel1.Error2"));
 return false;
 }
 } else if(getComponent().getImagePath().length() == 0) {
 setMessage(bundle.getString("Panel1.Warning1"));
 return true;
 }

CHAPTER 13 DIALOGS AND WIZARDS

181

 setMessage(null);
 return true;
 }

To register a WizardDescriptor with a wizard panel, the WizardDescriptor.Panel interface specifies
the addChangeListener() and removeChangeListener() methods. Implement these in the class. Use the
fireChangeEvent() method to inform all registered listeners. For performance reasons, first verify
whether the status of panels has changed, so that the WizardDescriptor is notified only when changes
occur. If the isValid() method returns true, indicating that the panel has valid status, you can
implement the methods with an empty body. The fireChangeEvent() method would even by omitted
completely in this case. This scenario applies to the second panel of the example, which always returns
true.

 private final EventListenerList listeners =
 new EventListenerList();
 public void addChangeListener(ChangeListener l) {
 listeners.add(ChangeListener.class, l);
 }
 public void removeChangeListener(ChangeListener l) {
 listeners.remove(ChangeListener.class, l);
 }
 protected final void fireChangeEvent(
 Object source, boolean oldState, boolean newState) {
 if(oldState != newState) {
 ChangeEvent ev = new ChangeEvent(source);
 for (ChangeListener listener : listeners.getListeners(ChangeListener.class)) {
 listener.stateChanged(ev);
 }
 }
 }
}

SHARING A BASE PANEL BETWEEN MULTIPLE WIZARD STEPS

If the wizard consists of multiple panels, it is advisable to create a base class which handles the listener
logic and provides helper methods such as the setMessage() method. This base class implements the
WizardDescriptor.Panel<Data> interface, so specific panels only need to derive from the base class.
This approach is also considered in Figure 13-7.

Creating a Wizard from Panels
So far, you’ve learned about constructing a panel that represents a step in a wizard. You saw how the
tasks of view and controller are distributed and, above all, clearly separated. Only one small step remains
before the entire wizard is completed. A wizard is represented by the WizardDescriptor class, which
manages the individual panels. One option now is to instantiate your own panels and pass them to a
WizardDescriptor. The action class—which is created automatically when using the IDE to create the
panels—works that way. In the interest of encapsulation, a clearer structuring, and reusability, it is a
good idea to create an individual wizard descriptor, extending the WizardDescriptor class. Thus this

CHAPTER 13 DIALOGS AND WIZARDS

182

class can even take care of the creation of panels and their properties. Action classes, when starting a
wizard, only need to create an instance of the wizard descriptor. This one can be directly passed to the
DialogDisplayer. In this way, your wizard can be called fully transparent.

Therefore, for this example, create the PlaylistWizardDescriptor class, extending the
WizardDescriptor class (see Listing 13-3). Use the setPanelsAndSettings() method to pass in both
panels, which are declared as private fields. The panels must be passed with an iterator instance; such an
iterator class is responsible for the order of the panels. Use the default ArrayIterator. The second
parameter for setPanelsAndSettings() is a data model, which is passed to the panels via the
readSettings() and storeSettings() methods. In this data model the data collected by the wizard are
stored. Pass this as a reference to the PlaylistWizardDescriptor, which you want to use as data model.
Finally, carry out a few configuration tasks.

Listing 13-3. Wizard Descriptor, Which Assembles the Panels to a Wizard

public class PlaylistWizardDescriptor extends WizardDescriptor {

 private PlaylistWizardPanel1 p1 = new PlaylistWizardPanel1();
 private PlaylistWizardPanel2 p2 = new PlaylistWizardPanel2();

 public PlaylistWizardDescriptor() {
 List<Panel<WizardDescriptor>> panels = new ArrayList<Panel<WizardDescriptor>>();
 panels.add(p1);
 panels.add(p2);
 this.setPanelsAndSettings(new ArrayIterator<WizardDescriptor>(panels), this);
 this.setTitleFormat(new MessageFormat("{0}"));
 this.setTitle(NbBundle.getMessage(PlaylistWizardDescriptor.class, "Wizard.Name"));

 putProperty(WizardDescriptor.PROP_CONTENT_DATA,
 new String[]{panel1.getName(), panel2.getName()});
 putProperty(WizardDescriptor.PROP_AUTO_WIZARD_STYLE,
 Boolean.TRUE);
 putProperty(WizardDescriptor.PROP_CONTENT_DISPLAYED,
 Boolean.TRUE);
 putProperty(WizardDescriptor.PROP_CONTENT_NUMBERED,
 Boolean.TRUE);
 }
}

Simpler than the WizardDescriptor itself is the action class that starts the wizard. Create a simple
instance of the PlaylistWizardDescriptor class and immediately pass it to the createDialog() method,
as illustrated in the “Custom Dialogs” section earlier in the chapter. This creates a Dialog object, which
contains a wizard displayed as usual, via the setVisible() method (see Listing 13-4). After completing
the wizard, you can determine which button the user has pressed with the getValue() method. The most
important point here is how the data is analyzed. Since the WizardDescriptor itself is your data model,
you can read the data directly from it. The best approach is to use the getProperties() method,
providing a Map with all the properties that have been saved.

CHAPTER 13 DIALOGS AND WIZARDS

183

Listing 13-4. Action Class That Creates and Calls a Wizard

@ActionID(
 category = "Tools",
 id = "com.galileo.netbeans.module.PlaylistWizardAction")
@ActionRegistration(
 displayName = "#CTL_PlaylistWizardAction",
 iconBase = "com/galileo/netbeans/module/wizard.png")
@ActionReference(path = "Menu/Tools", position = 1200)
public final class PlaylistWizardAction implements ActionListener {
 @Override
 public void actionPerformed(ActionEvent e) {
 PlaylistWizardDescriptor descriptor = new PlaylistWizardDescriptor();
 Dialog dialog = DialogDisplayer.getDefault().createDialog(descriptor);
 dialog.setVisible(true);
 dialog.toFront();
 if(descriptor.getValue()==WizardDescriptor.FINISH_OPTION) {
 Map<String, Object> props = descriptor.getProperties();
 //Create the playlist with the data stored in props
 }
 }
}

Event Handling
In this section, I will again explain in overview the concept of interaction between the three layers—
wizard descriptor, wizard panel and visual panel—and how events and notifications are received and
processed. In the sequence diagram in Figure 13-8, both scenarios—the initialization of a wizard and the
interaction between the various parts of the wizard as the user enters data—are displayed.

CHAPTER 13 DIALOGS AND WIZARDS

184

Figure 13-8. Interaction between the wizard descriptor, wizard panel, and visual panel.

In the actionPerformed() method of the action class to start the wizard, an instance of the
PlaylistWizardDescriptor is created. This descriptor generates its panels and registers a ChangeListener
for each, so that it is notified whenever the status of the panel changes. The visual panels are then
obtained via the getComponent() method of the wizard panels. This method creates the visual panel on
demand and registers a PropertyChangeListener, informing of changes made by the user. The wizard
descriptor observes the status of its panels via a ChangeListener, which in turn observes the status of the
visual panels via a PropertyChangeListener.

When the user types data into a field that is monitored by the view with a listener, a
PropertyChangeEvent is fired, notifying the wizard panel that data has changed. The wizard panel
retrieves the data via the getters and then verifies received data. Depending on the result of the
verification, status of the panel is set.

If the status changes, a ChangeEvent is fired, notifying the wizard descriptor, which verifies the panel
status, calling the isValid() method. Depending on the value of the isValid() method, the wizard
descriptor activates or deactivates the buttons in the wizard.

CHAPTER 13 DIALOGS AND WIZARDS

185

Ending a Wizard Prematurely
Depending on the use case, it may be useful to allow the user to end the wizard prematurely. Normally
the Finish button is only activated in the last panel. To allow the user to end the wizard in an earlier
panel, implement the interface WizardDescriptor.FinishablePanel on the corresponding panel. This
specifies the method isFinishPanel() with which you can return the value true, if the wizard can be
finished. In the example, it is conceivable to implement this interface in the first panel, allowing the user
to end the wizard already after entering the data without adding tracks to the playlist.

Additional Validation of Data
A panel announces the validity of its data to the wizard descriptor via the isValid() method. The
method is called on opening a panel and on notification via the ChangeListener. Should additional
verifications be done when the user clicks Next or ends the wizard, implement the
WizardDescriptor.ValidatingPanel interface. This interface specifies the validate() method, in which
detailed verifications can be performed. Errors identified in this way are announced with a
WizardValidationException. The constructor of this exception class receives a JComponent, which obtains
the focus, in order to show the user the wrong place. In addition, a failure message can be added, which
is then shown in the wizard.

Rather than using the validate() method of the WizardDescriptor.ValidatingPanel interface,
which is executed asynchronously in the event dispatch thread (EDT) (where no long-running tasks
should be performed, or else the complete user interface is blocked), use the
WizardDescriptor.AsynchronousValidatingPanel interface to asynchronously handle verification. Using
this interface, the validate() method is automatically executed in a separate thread. As a result, the user
interface is available to the user, enabling use of the Cancel button to end the process. Since the
asynchronous method is not carried out in the EDT, you should not access GUI components to read data
from them. To that end, the interface specifies the prepareValidation() method, which is called in the
EDT, allowing access to data in the GUI components while disallowing further change. Accomplish your
checks on these data using the validate() method.

Iterators
Within a wizard descriptor the panels are managed by an iterator. This iterator is responsible for the
order of the panels. The interface of an iterator of this kind is described by the
WizardDescriptor.Iterator class. A standard implementation of this interface provides the
WizardDescriptor.ArrayIterator class, providing panels in a sequential order. This class is also used
when passing panels as an array to the WizardDescriptor class. However, when giving the user the
choice to skip one or more panels, based on the chosen or entered data, assign your own iterator
implementation to the WizardDescriptor, which handles the dynamic order of the panels. The skeleton
of such an interator can also be created via a wizard in the NetBeans IDE. Returning to the first step of
the Wizard wizard, you set the Wizard Step Sequence to Static. However, if you set Dynamic at this point,
the IDE will create an iterator class.

Based on the WizardDescriptor.Iterator interface there are a few extensions. Use the
WizardDescriptor.InstantiatingIterator interface and its instantiate() method to create a Set of
objects. An extension is the WizardDescriptor.AsynchronousInstantiatingIterator, with its
instantiate() method, which is performed asynchronously outside the EDT, when the user clicks the
Finish button. Finally, use the WizardDescriptor.ProgressInstantiatingIterator interface to show the
user a progress bar when the wizard ends, while the instantiate() method is processing. In this case,
the instantiate() method is called in a separate thread, receiving a ProgressHandle. The status is shown
via this class, as is done with the standard progress bar (see Chapter 11).

CHAPTER 13 DIALOGS AND WIZARDS

186

Summary
The NetBeans Platform provides a professional API for creating dialogs and wizards. In this chapter you
learned both how to quickly create simple standard dialogs and how to create complex dialogs that are
adapted to your special needs. Additionally, you learned how to implement clearly structured wizards by
the Dialogs API, in order to guide the user through a complex world of facts.

C H A P T E R 14

187

Visual Library

The NetBeans Visual Library API is a generic library for visualizing very different structures. It is
particularly well suited to graph-oriented representations. The Visual Library API is part of the standard
NetBeans Platform and is used by the NetBeans IDE itself in numerous modules and areas, such as the
visual modeling of midlets in a Java Micro Edition (JME) application, as shown in Figure 14-1. To use the
Visual Library API, you just need to define a dependency on the module (under Libraries within your
module’s Properties), as previously noted with respect to other modules.

Structure of the Visual Library API
The components of the Visual Library API, like Swing, are structured and managed as a tree. The
superclass of all graphic components is the Widget class. If you consider Figure 14-1, then the three
components (Mobile Device, form, and loginScreen), as well as the edges connected to the components,
are all widgets. A widget can also be a container for more widgets. Each widget has a position that is
determined relative to its parent widget. The Widget superclass is responsible for presenting the border
and background of a widget in addition to managing properties such as color and transparency. Like a
Swing container, a widget has a certain layout responsible for positioning its child widgets. Widgets can
also depend upon each other in order to be notified about changes. A widget enables a series of actions
(which are executed when specific user events occur) to be linked.

CHAPTER 14 VISUAL LIBRARY

188

Figure 14-1. Visual model of a graph-oriented structure using the Visual Library API

The Widget Classes
All graphic components of the Visual Library API are subclasses of the Widget class, which manages and
provides basic features and functionalities such as layout, background, and font. So, a Widget is a graphic
primitive, equivalent to the JComponent class in Swing. From Widget, numerous classes are derived,
which provide a Widget implementation for the respective purpose. This inheritance hierarchy is
represented in Figure 14-2, and the meanings of these various widget classes are listed in Table 14-1. The
most important of these classes are dealt with in more detail in the following sections. For a more
exhaustive description of these classes, see the Visual Library API documentation, found within the
JavaDoc page of the Visual Library.

CHAPTER 14 VISUAL LIBRARY

189

Figure 14-2. Widget inheritance hierarchy of the Visual Library API

CHAPTER 14 VISUAL LIBRARY

190

Table 14-1 provides an overview of the features and functionalities of various widget
implementations.

Table 14-1. The Meanings of the Different Widget Subclasses

Class Description

ComponentWidget Using a ComponentWidget, AWT/Swing components can be used
within a Scene. In this respect, that widget serves as a placeholder
and is responsible for displaying and updating the contained
component.

ConnectionWidget A ConnectionWidget is used to connect two points determined by
anchors. Thus, it is responsible for the presentation of the
connecting line, as well as for the presentation of control points,
endpoints, and anchors. Control points, resolved by a Router,
specify the path of a connecting line.

ConvolveWidget A ConvolveWidget applies a convolve filter to a child element.

ImageWidget With an ImageWidget, images can be represented within a Scene.

LabelWidget With this widget, text can be displayed. Thus, the text can be
represented in four different horizontal and vertical alignments.

LayerWidget A LayerWidget is a transparent widget, whose function is similar to
a JGlassPane. For example, a Scene uses several such layers to
organize different types of widgets.

LevelOfDetailsWidget A LevelOfDetailsWidget just serves as container for its child
widgets, depending on the zoom factor of the Scene.

Scene The Scene widget is the root element of the current hierarchy of
widgets to display. In this respect, it is responsible for the control
and representation of the whole rendered area. This class makes a
view of the Scene available in the form of a JComponent instance,
which can then be embedded into any Swing component. We will
look at this important class in more detail in the section “The
Scene.”s

ScrollWidget A ScrollWidget is a scrollable container whose functionality
corresponds to a JScrollPane. The scroll bars are only shown
when needed.

SeparatorWidget This widget represents a separator whose thickness and
orientation can be set.

SwingScrollWidget This widget, like a ScrollWidget, also represents a scrollable area;

CHAPTER 14 VISUAL LIBRARY

191

Class Description
the JScrollBar class is used for the scroll bars, though.

IconNodeWidget An IconNodeWidget represents both an image and a label that can
alternatively be placed below the image or on the right side of the
image.

Dependencies
Dependencies can be defined between individual widgets. You are thereby able to respond to changes in
position or size of other widgets. This dependency is realized by a listener that is registered on the
widget. For this purpose, the Widget class provides two methods, addDependency() and
removeDependency(). With these two methods, a listener can be added or removed. A listener is specified
by the interface Widget.Dependency. Doing so, the listener must implement the method
revalidateDependency(), which is called by the respective widget when there is a change of position or
size. In this method you should call the revalidate() method of your widget, meaning the widget that
depends on another widget.

Border
Each widget has a border. By default, this is an empty border, represented by the class EmptyBorder. You
can determine another border with the setBorder() method. A border is specified by the interface
Border. This interface is implemented by numerous border classes. Besides the EmptyBorder class, these
are the classes LineBorder, BevelBorder, DashedBorder, ImageBorder, ResizeBorder, RoundedBorder and
SwingBorder. A ResizeBorder adds eight points to the edges of your widget, which are used to change its
size. Beyond the class SwingBorder you can use any Swing javax.swing.border.Border implementation.
Finally, the CompositeBorder class is provided, to which you can pass any amount of the already
mentioned Border instances in order to combine multiple different borders.

However, the borders are not created directly, but via a factory. This is the BorderFactory class that
provides numerous methods with which you can create various border types. You can also use instances
produced by this factory for multiple widgets at once. So, if you wish to use the same border for several
widgets, you just need to create one instance of it.

Layout
A widget (like a Swing container) has a special layout, managed and determined by a layout manager. A
layout is specified by the interface Layout and is responsible for the arrangement of the child widgets.
Four different variants of layouts are available. You create them via the LayoutFactory class and add
them to a widget via the setLayout() method.

• AbsoluteLayout: With the AbsoluteLayout, child widgets are arranged according to
the coordinates that are supplied by getPreferredLocation(). The size of child
widgets corresponds to the proportions provided by getPreferredBounds(). If both
methods supply null, the position becomes (0, 0) or the size (0, 0, 0, 0) is
used. By default, this layout is used by a widget. This layout is generated with

 Layout al = LayoutFactory.createAbsoluteLayout();

CHAPTER 14 VISUAL LIBRARY

192

• FlowLayout: The FlowLayout arranges its widgets in sequential order in a
horizontal or vertical direction. Doing so, four different alignments can be
selected: left top, center, right bottom, and justified. Furthermore, the gap
between individual widgets can be determined. The size of the widgets
corresponds to the value that getPreferredBounds() returns. The following
methods are available for the creation of this layout; alternatively, supply the
alignment as a LayoutFactory.SerialAlignment type along with the gap:

 Layout hfl = LayoutFactory.createHorizontalFlowLayout();
 Layout vfl = LayoutFactory.createVerticalFlowLayout();

• CardLayout: A CardLayout always shows the currently active widget only, which is
determined by the method setActiveCard(). The size of the active widget is
determined by getPreferredBounds(). All other widgets are represented in the size
(0, 0, 0, 0), so are practically invisible. Determine the currently active widget by
the method getActiveCard(). You can create the layout with the following:

 Layout cl = LayoutFactory.createCardLayout();

and specify the active widget by the following call:

 LayoutFactory.setActiveCard(Widget parent, Widget act);

You can switch to another widget using the SwitchCardAction class.

• OverlayLayout: The OverlayLayout determines the minimum area containing all
child widgets. Both the widget that contains this layout and all child widgets are
set to the size of this determined area and arranged on top of each other. The last
child widget is displayed on top. You create this layout as follows:

 Layout ol = LayoutFactory.createOverlayLayout();

A widget knows its position, size, and content, but it does not get information about its behavior.
The behavior of a widget is influenced by actions added arbitrarily to a widget. These actions are
specified by the interface WidgetAction, which defines a number of event methods. These methods are
called by corresponding events, such as clicking a mouse button on the widget the action is assigned to.
The implementation of the action class then executes the desired behavior such as moving a widget by
drag and drop.

Like borders and layouts, actions are created by a factory. This is the ActionFactory class. These
actions are managed within a widget by the WidgetAction.Chain class. This class receives the user events
and forwards them to the appropriate actions that are managed by this class. Each widget has an
instance of this class, which is obtained by the getAction() method. With the methods addAction() and
removeAction() of the WidgetAction.Chain class you can add or remove actions to your widget.

Some of the factory methods of the ActionFactory class require a provider as parameter. A provider
implements a specific behavior of an action. In some cases (for example, the EditAction), a provider
implementation (which is executed when double-clicking the respective widget) must be specified. For
other actions, such as the MoveAction, you can optionally specify a provider if you wish the behavior to
deviate from the default. These providers are each specified through a special interface such as
EditProvider or HoverProvider.

The possibility of grouping is the real advantage or purpose of managing a widget’s actions in a
WidgetAction.Chain class. In some applications, you may only want to permit certain actions for a Scene.
So, for example, it will only be possible to move widgets, but not to edit them. You determine the current
status of a Scene using the setActiveTool() method in the Scene class. Now, the Widget class can manage
a separate WidgetAction.Chain instance concerning different states. Previously, access was gained to

CHAPTER 14 VISUAL LIBRARY

193

actions via the getAction() method. This method supplied the default WidgetAction.Chain instance,
which is also used if no status is set (setActiveTool(null)). Now you can use a variant of the
getActions(String tool) method (to which you supply the name of the tool and obtain the relevant
WidgetAction.Chain instance), in order to get an instance for a specific status.

AcceptAction
This action is for the treatment of drag-and-drop operations. Thus, an AcceptProvider implementation
must be provided when creating the action. The AcceptProvider interface specifies the method
isAcceptable(), which allows specifying whether a drop operation on this widget is allowed, as well as
the method accept(), with which you accomplish the drop operation.

ActionFactory.createAcceptAction(AcceptProvider p);

ActionMapAction
This action creates a context menu, displayed by right-clicking the widget. Connected to this, it is
possible to create the action using the default method without parameters, whereby actions for the
menu are inferred from the ActionMap of the Scene view. Additionally, there is an option to supply the
method with an InputMap and ActionMap used for creating the menu.

ActionFactory.createActionMapAction();
ActionFactory.createActionMapAction(InputMap i, ActionMap a);

AddRemoveControlPointAction
This action can only be used by FreeConnectionWidget widgets. You can add or remove control points by
double-clicking them. Optionally, you can also indicate the sensitivity used.

ActionFactory.createAddRemoveControlPointAction();
ActionFactory.createAddRemoveControlPointAction(
 double createSensitivity,
 double deleteSensitivity);

MoveAction/AlignWithMoveAction
With the MoveAction, a Widget can be moved by drag-and-drop. Please note that this action only works if
the parent widget has an AbsoluteLayout. The AlignWithMoveAction behaves similarly to the MoveAction.
In contrast with the MoveAction, in the AlignWithMoveAction an additional “snapping” with other widgets
occurs, though. You can check which widgets will be aligned or respectively checked either by a list with
an AlignWithWidgetCollector instance or by a LayerWidget. In the second case, the alignment of all child
widgets within each layer is checked.

ActionFactory.createMoveAction();
ActionFactory.createMoveAction(
 MoveStrategy strategy,
 MoveProvider provider);
ActionFactory.createAlignWithMoveAction(
 AlignWithWidgetCollector collector,
 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);

CHAPTER 14 VISUAL LIBRARY

194

ActionFactory.createAlignWithMoveAction(
 LayerWidget collectionLayer,
 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);

ResizeAction/AlignWithResizeAction
With the ResizeAction, you change the size of widgets. Additionally, the AlignWithResizeAction checks
the alignment of other widgets. You can pass widgets that need their alignment checked against others
either by an AlignWithWidgetCollector or by a LayerWidget.

ActionFactory.createResizeAction();
ActionFactory.createResizeAction(
 ResizeStrategy strategy,
 ResizeProvider provider);
ActionFactory.createResizeAction(
 ResizeStrategy strategy,
 ResizeControlPointResolver resolver,
 ResizeProvider provider);
ActionFactory.createAlignWithResizeAction(
 AlignWithWidgetCollector collector,
 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);
ActionFactory.createAlignWithResizeAction(
 LayerWidget collectionLayer,
 LayerWidget interactionLayer,
 AlignWithMoveDecorator decorator);

ZoomAction/CenteredZoomAction
With these actions, you can change the zoom of the whole scene with the mouse wheel. So you do not
add these actions to a widget, but directly to a scene.

ActionFactory.createZoomAction();
ActionFactory.createZoomAction(double zoom, boolean animated);
ActionFactory.createCenteredZoomAction(double zoomMultiplier);

ConnectAction/ExtendedConnectAction/ReconnectAction
With a ConnectAction instance, you check the source and the target widgets on the desired connection
and you can then establish this connection. Optionally, you can indicate a user-specific connection
element by a ConnectDecorator. With the ExtendedConnectAction, a connection can only be established
as long as the Ctrl key is pressed. This action is meant for those cases where conflicts with other actions
occur—for example, if you want to use the ConnectAction and the MoveAction at the same time. In those
cases, use the ExtendedConnectAction.

ActionFactory.createConnectAction(
 LayerWidget interactionLayer,
 ConnectProvider provider);
ActionFactory.createConnectAction(
 ConnectDecorator decorator,

CHAPTER 14 VISUAL LIBRARY

195

 LayerWidget interactionLayer,
 ConnectProvider provider);
ActionFactory.createExtendedConnectAction(
 LayerWidget interactionLayer,
 ConnectProvider provider);
ActionFactory.createExtendedConnectAction(
 ConnectDecorator decorator,
 LayerWidget interactionLayer,
 ConnectProvider provider);
ActionFactory.createReconnectAction(
 ReconnectProvider provider);
ActionFactory.createReconnectAction(
 ReconnectDecorator decorator,
 ReconnectProvider provider);

CycleFocusAction/CycleObjectSceneFocusAction
With CycleFocusAction and CycleObjectSceneFocusAction you can shift the focus between widgets of a
scene using the Tab key, either forward or backward. With CycleFocusAction you specify the behavior,
i. e. the preceding or following widget to set the focus on, using a CycleFocusProvider. In the case of
CycleObjectSceneFocusAction, which can be applied to an ObjectScene, the order of the focusing is
determined by the return value of getIdentityCode().

ActionFactory.createCycleFocusAction(CycleFocusProvider p);
ActionFactory.createCycleObjectSceneFocusAction();

EditAction/InplaceEditorAction
To edit a widget by double-clicking, add an EditAction to the widget. You implement the behavior that
this will trigger by means of an EditProvider. Moreover, you can also supply an in-place editor that is
displayed upon double-clicking. For this purpose, use the InplaceEditorAction, with which the editor
can be any JComponent subclass. For example, with an IconNodeWidget or a LabelWidget, this would
typically be a JTextField.

ActionFactory.createEditAction(
 EditProvider provider);
ActionFactory.createInplaceEditorAction(
 InplaceEditorProvider provider);
ActionFactory.createInplaceEditorAction(
 TextFieldInplaceEditor editor);
ActionFactory.createInplaceEditorAction(
 TextFieldInplaceEditor editor,
 EnumSet expansionDirections);

ForwardKeyEventsAction
Wih this action, you can forward keyboard events to other widgets.

ActionFactory.createForwardKeyEventsAction(
 Widget forwardToWidget,
 String forwardToTool);

CHAPTER 14 VISUAL LIBRARY

196

HoverAction
With the HoverAction, you can react when the mouse pointer is moved above your widget. How the
widget behaves is specified by a HoverProvider or a TwoStateHoverProvider.

ActionFactory.createHoverAction(HoverProvider p);
ActionFactory.createHoverAction(TwoStateHoverProvider p);

MoveControlPointAction/FreeMoveControlPointAction/OrthogonalMoveControlPointAction
These actions move the control points of the connecting line of a ConnectionWidget. The
OrthogonalMoveControlPointAction is used when a ConnectionWidget has an OrthogonalSearchRouter.
The FreeMoveControlPointAction has no restrictions at all on positioning the points.

ActionFactory.createMoveControlPointAction(MoveControlPointProvider provider);
ActionFactory.createFreeMoveControlPointAction();
ActionFactory.createOrthogonalMoveControlPointAction();

PanAction
If the view of a scene is contained within a JScrollPane, the PanAction allows scrolling the view of a
scene by moving the mouse while the middle button is pressed. So, this action is added to a scene:

ActionFactory.createPanAction();

PopupMenuAction
Use the PopupMenuAction to provide a widget with a context menu. This requires implementing a
PopupMenuProvider with which you provide a JPopupMenu instance.

ActionFactory.createPopupMenuAction(PopupMenuProvider provider);

SelectAction/RectangularSelectAction
The SelectAction is similar to the EditAction, but this event is the result of just a single click. The logic
implementation for the click event is provided by a SelectProvider. With this provider you can also
determine whether a widget may even be selected. Usually, the RectangularSelectAction is added to an
ObjectScene or to a LayerWidget with which you select widgets by drawing rectangles around them.

ActionFactory.createSelectAction(SelectProvider provider);
ActionFactory.createRectangularSelectAction(
 ObjectScene scene,
 LayerWidget interactionLayer);
ActionFactory.createRectangularSelectAction(
 RectangularSelectDecorator decorator,
 LayerWidget interactionLayer,
 RectangularSelectProvider provider);

SwitchCardAction
This action is required for switching between widgets that are in a CardLayout:

ActionFactory.createSwitchCardAction(Widget cardLayoutWidget);

CHAPTER 14 VISUAL LIBRARY

197

The Scene: The Root Element
As you already know, the components of the Visual Library API—that is, the widgets—are arranged and
managed in a hierarchical tree structure. In turn, this means widgets can contain other widgets. The
Scene class, which is itself a widget, represents the container for the subsequent elements and therefore
is the root element of the tree hierarchy (see Figure 14-2). Graphically, a scene is represented by a view,
which is a simple JComponent instance. This is then typically added to a JScrollPane. You always start
with creating a scene, to which you then add further widgets in hierarchical arrangement, depending on
the application’s purpose. Listing 14-1 illustrates this.

Listing 14-1. Creating a Scene and Adding Widgets

import org.netbeans.api.visual.action.ActionFactory;
import org.netbeans.api.visual.action.WidgetAction;
import org.netbeans.api.visual.widget.ImageWidget;
import org.netbeans.api.visual.widget.LayerWidget;
import org.netbeans.api.visual.widget.Scene;
...
public final class SceneTopComponent extends TopComponent {
 private JScrollPane scenePane = new JScrollPane();
 private Scene sc = new Scene();

 public SceneTopComponent() {
 scenePane.setViewportView(sc.createView());
 LayerWidget layer1 = new LayerWidget(sc);
 sc.addChild(layer1);
 ImageWidget w1 = new ImageWidget(sc,
 ImageUtilities.loadImage("com/galileo/netbeans/module/node.gif"));
 layer1.addChild(w1);
 ImageWidget w2 = new ImageWidget(sc,
 ImageUtilities.loadImage("com/galileo/netbeans/module/node.gif"));
 layer1.addChild(w2);
 LayerWidget layer2 = new LayerWidget(sc);
 sc.addChild(layer2);
 ImageWidget w3 = new ImageWidget(sc,
 ImageUtilities.loadImage("com/galileo/netbeans/module/node2.gif"));
 layer2.addChild(w3);
 WidgetAction ma = ActionFactory.createMoveAction();
 w1.getActions().addAction(ma);
 w2.getActions().addAction(ma);
 w3.getActions().addAction(ma);
 }
}

The scene was created as a private data element. With the createView() method you can create a
view for this scene which is of the type JComponent, which can thus be embedded into any Swing
containers. Add this to a JScrollPane, so the scene or the view is not limited to a certain size. Now, you
can hierarchically add widgets to the scene after creating a LayerWidget that acts like a JGlassPane and to
which you can then add two ImageWidgets. To illustrate the grouping and alignment of widgets, you
create another LayerWidget instance and add an additional ImageWidget. So, you add each of the
ImageWidgets to a LayerWidget which in turn are assigned to the scene. We add it to a MoveAction

CHAPTER 14 VISUAL LIBRARY

198

instance, so the widgets can be moved within the scene. The move action instance is created with the
ActionFactory and you can use it repeatedly. This example is shown in Figure 14-3.

Satellite View
In order to keep the overview and to enable fast navigation within larger scenes, a scene offers an
overview in the form of an interactive JComponent. This is a Satellite View created using the
createSatelliteView() method. If the view of your scene is embedded in a JScrollPane and the scene is
larger than the displayed area at the same time, you can navigate the scene by moving the gray frame
present in the overview to update the view (see Figure 14-3).

Figure 14-3. An overview for a scene can be created that can be used for navigation at the same time.

Exporting a Scene
In a few steps and with the assistance of some Java utilities, you can export a scene, generated with the
Visual Library API, into an image within a PNG file. To this end, you first create a BufferedImage object
into which you can write the graphic data. Specify the size of this Image instance using the current size of
the view of the respective scene, to ensure that the complete content is stored. From this object, you get
the Graphics2D context with which you feed data into the buffer of the BufferedImage object. Next, you
must supply this context to the paint() method of the scene. Then the scene writes its content on the
buffer of the BufferedImage instance rather than on the screen (see Listing 14-2). Following this, dispose
of the context so that the resources can be released. With a JFileChooser, you request a file name and, if
necessary, append the appropriate suffix. Once this is done, you utilize the ImageIO class that looks for an

CHAPTER 14 VISUAL LIBRARY

199

ImageWriter for PNG files, using the ImageWriter to write the data of the BufferedImage object into the
selected file.

Listing 14-2. Exporting a Scene into a PNG File

private Scene sc = new Scene();

public void exportScene() {
 BufferedImage img = new BufferedImage(
 sc.getView().getWidth(),
 sc.getView().getHeight(),
 BufferedImage.TYPE_4BYTE_ABGR);

 Graphics2D graphics = img.createGraphics();
 sc.paint(graphics);
 graphics.dispose();

 JFileChooser chooser = new JFileChooser();
 chooser.setFileFilter(new FileNameExtensionFilter(
 "Portable Network Graphics (.png)", "png"));

 if(chooser.showSaveDialog(sc.getView()) == JFileChooser.APPROVE_OPTION) {
 File f = chooser.getSelectedFile();
 if (!f.getName().toLowerCase().endsWith(".png")) {
 f = new File(f.getParentFile(), f.getName() + ".png");
 }
 try {
 ImageIO.write(img, "png", file);
 } catch (IOException e) {
 Logger.getLogger(getName()).warning(e.toString());
 }
 }
}

ObjectScene – Model-View Relation
The Visual Library API provides only the constituent components of a view. That means a widget has
only information about the kind of presentation or flow of data. What a widget does not have is a data
model. This is where the ObjectScene class comes into play, representing an extension of the Scene class.
The function (or extension) of this class is to manage the mapping between the view (i.e., the widget)
and an associated data model, which can be any object. The class ObjectScene provides methods
allowing the assignment of a data model or of multiple widgets. Furthermore, it is possible to determine
the data model registered to a widget or vice versa. Besides representing the data model and the widgets,
the ObjectScene class also provides information about the current state (represented by the ObjectState
class) of a widget or of a data model.

Data models are stored internally in a Map. For identification and comparison purposes, the
equals() method of the data models is used. Ensure that your data model contains a useful
implementation of this method and note additionally that each unique data model can only be added
once (because of the unique identification). Thus, if the data model, d1, is in an ObjectScene and you
add a second data model, d2, whereby d1.equals(d2) == true applies, an exception is raised.

CHAPTER 14 VISUAL LIBRARY

200

Table 14-2 summarizes the most important methods of the ObjectScene class and their functions.

Table 14-2. The Most Important Methods of the ObjectScene Class

Method Description
void addObject(
 Object model,
 Widget... widgets)

With the addObject() method, several widgets and
their associated data models are added to a scene.

void removeObject(
 Object model)

You can remove a known data model with the
removeObject() method. In this respect, note that the
associated widget is not removed, but eliminated
separately via the removeChild() method.

Object findObject(
 Widget widget)

Use the findObject() method to find the data model
belonging to a certain Widget.

Widget findWidget(
 Object model)

This method is the counterpart to findObject() and
finds the widget to a given data model.

List<Widget> findWidgets(
 Object model)

If multiple widgets are assigned to a model, these can
be called with findWidgets().

ObjectState getObjectState(
 Object model)

To receive the current state of a model, use the
getObjectState() method. If the state of a data model
changes, the state of the widget is changed
accordingly. The opposite does not occur, though. The
status of a widget is determined via the getState()
method.

Graphs
To simplify creating graphs—that is, the creation of nodes and associated edges—the API based on the
ObjectScene class (which was introduced in the previous section) provides the classes GraphScene and
GraphPinScene. Listing 14-3 illustrates the practical meaning of the ObjectScene class for these classes,
again.

Both GraphScene and GraphPinScene are abstract classes, whose only task is the management of data
models and widgets. Creating widgets is done by subclasses that create widgets depending on the data
model. This is achieved by the abstract attach methods which must be overridden by the subclasses. The
types of data models are defined by templates and can vary in each case for nodes, edges, and pins. In
the simplest case, as in this example, you use the type String. For the nodes and edges, you must
provide a separate LayerWidget to each and add them to the scene.

CHAPTER 14 VISUAL LIBRARY

201

Listing 14-3. Implementation of a GraphPinScene Class

public class MyGraphPinScene extends GraphPinScene<String, String, String> {
 private LayerWidget mainLayer;
 private LayerWidget connectionLayer;

 public MyGraphPinScene() {
 mainLayer = new LayerWidget(this);
 addChild(mainLayer);
 connectionLayer = new LayerWidget(this);
 addChild(connectionLayer);
 }

The attachNodeWidget() method is responsible for creating nodes. For this purpose, this example
uses the IconNodeWidget class. (The ImageWidget class could also be used.) Practically, you can also
manage the accompanying pins with the IconNodeWidget class. This is done by using LabelWidget, which
is accessed by the getLabelWidget() method. A FlowLayout is defined for this widget, so that the pins can
be arranged and presented correctly. To move the node, add a MoveAction instance. Finally, add the
node to the mainLayer and return it.

 protected Widget attachNodeWidget(String node) {
 IconNodeWidget widget = new IconNodeWidget(this);
 widget.setImage(ImageUtilities.loadImage("com/galileo/netbeans/module/node.gif"));
 widget.getLabelWidget().setLayout(
 LayoutFactory.createHorizontalFlowLayout(LayoutFactory.SerialAlignment.JUSTIFY, 5));
 widget.getActions().addAction(ActionFactory.createMoveAction());
 mainLayer.addChild(widget);
 return(widget);
 }

The attachEdgeWidget() method is responsible for creating edges. For this purpose, you want to use
the ConnectionWidget class. Use a router so that you do not just draw the edges between the nodes in a
straight line (eventually intersecting other nodes or edges). You can pass a series of LayerWidgets to a
router. Doing so, the widgets of the LayerWidgets are not crossed. Accordingly, the router determines a
path for the edges, so that no intersections occur. You can create such a router with the RouterFactory.
Then, we add the configured edges to the ConnectionLayer and return them.

 protected Widget attachEdgeWidget(String edge) {
 ConnectionWidget widget = new ConnectionWidget(this);
 widget.setTargetAnchorShape(AnchorShape.TRIANGLE_FILLED);
 widget.setRouter(RouterFactory.createOrthogonalSearchRouter(mainLayer,connectionLayer));
 connectionLayer.addChild(widget);
 return widget;
 }

Pins are created with the attachPinWidget() method. A pin is an input or output of a node, to which
an edge can be connected (the red points in Figure 14-4 represent the pins). So, a pin is assigned to a
node; this node may possess multiple pins. You receive the data model for the pin and for the node to
which the pin will be added as data model. Via the findWidget() method you can determine the widget
of the node. Afterward, you can add the created pin to this widget.

 protected Widget attachPinWidget(String node, String pin) {

CHAPTER 14 VISUAL LIBRARY

202

 ImageWidget widget = new ImageWidget(this,
 ImageUtilities.loadImage("com/galileo/netbeans/module/pin.gif"));
 IconNodeWidget n = (IconNodeWidget) findWidget(node);
 n.getLabelWidget().addChild(widget);
 return widget;
 }

Finally, you must override the attachEdgeSourceAnchor() and attachEdgeTargetAnchor() methods.
With these methods, the starting point and the endpoint of an edge are specified. In this respect, you
first determine the pin to which the edge is to be connected via the findWidget() method. Then, you
create an anchor point for this pin via the AnchorFactory. Afterward, you add this pin to the edge that
you already traced by the findWidget().

 protected void attachEdgeSourceAnchor(String edge, String oldPin, String pin) {
 ConnectionWidget c = (ConnectionWidget) findWidget(edge);
 Widget widget = findWidget(pin);
 Anchor a = AnchorFactory.createRectangularAnchor(widget);
 c.setSourceAnchor(a);
 }

 protected void attachEdgeTargetAnchor(String edge, String oldPin, String pin) {
 ConnectionWidget c = (ConnectionWidget) findWidget(edge);
 Widget widget = findWidget(pin);
 Anchor a = AnchorFactory.createRectangularAnchor(widget);
 c.setTargetAnchor(a);
 }
}

Analogously, you could also create an implementation for the GraphScene class, which has no pins.
There, edges are connected directly to the node rather than to a pin. The advantages of the just-created
implementation now become apparent when using it (see Listing 14-4). As with a normal scene, you
create an instance and add its view to a JScrollPane. Now, you do not need to create separate widgets.
You just need to supply the data model (which is a string in this case) to the methods addNode(),
addPin(), or addEdge(). Then, these methods internally call the attach methods that you implemented
for creating the widgets—plus they create the mapping of the widget on the passed data model.

Listing 14-4. Usage of a GraphPinScene

import org.netbeans.api.visual.graph.layout.GridGraphLayout;
import org.netbeans.api.visual.layout.LayoutFactory;
import org.netbeans.api.visual.layout.SceneLayout;
...
public final class GraphTopComponent extends TopComponent {
 public GraphTopComponent() {
 MyGraphPinScene scene = new MyGraphPinScene();
 scenePane.setViewportView(scene.createView());
 scene.addNode("Node 1");
 scene.addNode("Node 2");
 scene.addNode("Node 3");
 scene.addPin("Node 1", "p1");
 scene.addPin("Node 2", "p2");

CHAPTER 14 VISUAL LIBRARY

203

 scene.addPin("Node 2", "p3");
 scene.addPin("Node 3", "p4");
 scene.addEdge("Edge 1");
 scene.addEdge("Edge 2");
 scene.setEdgeSource("Edge 1", "p1");
 scene.setEdgeTarget("Edge 1", "p2");
 scene.setEdgeSource("Edge 2", "p3");
 scene.setEdgeTarget("Edge 2", "p4");

 GridGraphLayout<String, String> layout = new GridGraphLayout<String, String>();
 SceneLayout sceneLayout = LayoutFactory.createSceneGraphLayout(scene, layout);
 sceneLayout.invokeLayout();
 }
}

Figure 14-4. Example of creating a graph using a GraphPinScene implementation

VMD: Visual Mobile Designer
The implementation of graphs using the VMD classes is even easier. In this respect, VMD stands for
Visual Mobile Designer and marks the classes that are used by the VMD. These classes provide a
GraphPinScene implementation, as shown in the previous section. In addition to the scene, there are also
special classes for nodes, edges, and pins that offer a conform design. So, you do not have to care about
any details of implementation, such as the creation of widgets, setting of the layout or of a router; you

CHAPTER 14 VISUAL LIBRARY

204

can just add the necessary elements. A VMDGraphScene already has four layers and actions, such as zoom,
pan, and select. Let’s pick up the simple example with the three nodes (above) again, and realize it with a
VMDGraphScene (see Listing 14-5).

Listing 14-5. Creating a Graph Using the VMD Classes

import org.netbeans.api.visual.vmd.VMDGraphScene;
import org.netbeans.api.visual.vmd.VMDNodeWidget;
import org.netbeans.api.visual.vmd.VMDPinWidget;
...
public final class VMDTopComponent extends TopComponent {
 private VMDGraphScene scene = new VMDGraphScene();
 public VMDTopComponent() {
 VMDGraphScene scene = new VMDGraphScene();
 scenePane.setViewportView(scene.createView());
 VMDNodeWidget n1 = (VMDNodeWidget)scene.addNode("Node 1");
 n1.setNodeName("Node 1");
 VMDNodeWidget n2 = (VMDNodeWidget)scene.addNode("Node 2");
 n2.setNodeName("Node 2");
 VMDNodeWidget n3 = (VMDNodeWidget)scene.addNode("Node 3");
 n3.setNodeName("Node 3");
 VMDPinWidget p1 = (VMDPinWidget)scene.addPin("Node 1","Pin 1");
 p1.setPinName("Pin 1");
 VMDPinWidget p2 = (VMDPinWidget)scene.addPin("Node 2","Pin 2");
 p2.setPinName("Pin 2");
 VMDPinWidget p3 = (VMDPinWidget)scene.addPin("Node 2","Pin 3");
 p3.setPinName("Pin 3");
 VMDPinWidget p4 = (VMDPinWidget)scene.addPin("Node 3","Pin 4");
 pin4.setPinName("Pin 4");
 scene.addEdge("Edge 1");
 scene.setEdgeSource("Edge 1", "Pin 1");
 scene.setEdgeTarget("Edge 1", "Pin 2");
 scene.addEdge("Edge 2");
 scene.setEdgeSource("Edge 2", "Pin 3");
 scene.setEdgeTarget("Edge 2", "Pin 4");
 }
}

The VMDGraphScene uses the type String for the data models of nodes, edges, and pins. As you
already know from the previous section, elements are added by the methods addNode(), addPin(), and
addEdge(). In this example, you just give the nodes and pins names. With the setProperties() method
and with additional set methods, you can set additional properties, such as icons for nodes or for a pin,
for example.

CHAPTER 14 VISUAL LIBRARY

205

Figure 14-5. The VMD graph classes offer additional features, such as hiding pins or adding icons.

Summary
The Visual Library is a powerful framework for creating graph-oriented user interfaces. This chapter
discussed the basic structure of the Visual Library API. You looked at all widget classes in detail. You
learned all about events and actions as well as the Scene class, which is the root element. Another
important part of this chapter covered the model-view relation. Finally, you saw how you can use the
preexisting classes from the Visual Mobile Designer.

C H A P T E R 15

207

Tips and Tricks

In this chapter, you will learn about some helpful features concerning the user interface of the NetBeans
Platform. This chapter deals with desktop integration, asynchronous initializing of GUI components,
and the implementation of an undo and redo functionality.

Desktop Features
The Desktop class of the Java Platform allows execution of standard applications like an Internet browser
or an e-mail client. Pass a File or URI object to the methods provided by the Desktop class. On the basis
of these objects, an associated standard application can be launched. For example, if Desktop.open(new
File("myfile.pdf")) is executed, Acrobat Reader is launched (if this is the standard application for .pdf
files). Table 15-1 shows all methods of the Desktop class.

Table 15-1. Methods in the Desktop Class

Method Function

isDesktopSupported() First you should check with this method if the Desktop is
supported by the current operating system.

isSupported(Desktop.Action a) Checks if actions like BROWSE, OPEN, EDIT, PRINT, and MAIL are
available.

getDesktop() Used to get an instance of the Desktop class. This method
throws an UnsupportedOperationException if the Desktop
class is not supported.

browse(URI uri) Opens the given URI in the file browser.

open(File file) Opens the file in the associated program (or in a file
browser, if it is a folder).

edit(File file) Opens the file in the standard editor for this file type.

print(File file) Sends the file directly to the printer using the standard file
application print functionality.

CHAPTER 15 TIPS AND TRICKS

208

Method Function

mail() Opens the e-mail edit window.

mail(URI uri) Opens the e-mail edit window where the address field is
filled with the e-mail address from URI.

System Tray Integration
The Java Platform includes enhanced desktop integration and provides access to the system tray of the
underlying operating system. You can add one or more icons which can be equipped with a context
menu as well as with a double-click action. A good way to do this for a NetBeans Platform application is
with the restored() method of the module installer. First, check whether the operating system has a
system tray. If so, you get access to it with the getSystemTray() method. To add a context menu, create a
PopupMenu whose actions are defined via an extension point in the layer file (thus, you are able to add
actions to the tray icon from different modules). Call this extension point TrayMenu and read out its
content by a Lookup. The actions only need to implement the Action corresponding to the
ActionListener interface and are registered in the usual way. For example, an action might look like
Listing 15-1.

Listing 15-1. Add an Action to the Extension Point of the Tray Menu.

@ActionID(
 category = "TrayMenu",
 id = "com.galileo.netbeans.module.FirstTrayAction")
@ActionRegistration(
 displayName = "#CTL_FirstTrayAction")
@ActionReferences({
 @ActionReference(path = "TrayMenu", position = 100)
})
public final class FirstTrayAction implements ActionListener {
 @Override
 public void actionPerformed(ActionEvent e) {
 System.out.println("My First Tray Action");
 }
}

You build the context menu out of the registered actions, provided by the Lookup. After creating the
context menu, create a TrayIcon object, pass the menu, an icon, and a tooltip to this object and add it to
the system tray, as shown in Listing 15-2.

Listing 15-2. Adding a System Tray Icon Whose Content Is Built out of the Data from Layer File

import org.openide.modules.ModuleInstall;
import org.openide.util.ImageUtilities;
import org.openide.util.lookup.Lookups;
import java.awt.SystemTray;
import java.awt.TrayIcon;
...
public class Installer extends ModuleInstall {

CHAPTER 15 TIPS AND TRICKS

209

 @Override
 public void restored() {
 if (SystemTray.isSupported()) {
 SystemTray tray = SystemTray.getSystemTray();
 PopupMenu popup = new PopupMenu();
 popup.setFont(new Font("Arial", Font.PLAIN, 11));

 for(Action a : Utilities.actionsForPath("TrayMenu")) {
 MenuItem item = new MenuItem((String)a.getValue(Action.NAME));
 item.addActionListener(a);
 popup.add(item);
 }

 Image image = ImageUtilities.loadImage("com/galileo/netbeans/module/icon.gif");
 TrayIcon trayIcon = new TrayIcon(image, "My Tray Menu", popup);

 trayIcon.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 System.out.println("double click on tray icon");
 }
 });

 try {
 tray.add(trayIcon);
 } catch (AWTException e) {
 System.err.println(e);
 }
 }
 }
}

Asynchronous Initialization of Graphical Components
When developing graphical user interfaces, it is important to achieve a fast response time. This is
especially true for the initialization phase of components, which need to be initialized in a dialog with
the user. A good example of this is wizards, discussed in Chapter 13. If the user starts a wizard, the wizard
should open and be available immediately. But often data for components (such as a combo box) needs
to load from a relatively slow data source or must be calculated and composed from dependent data. In
this case, initialize your components in a separate thread asynchronously to the remaining initialization
of the user interface. When doing so, take care not to access GUI components from outside the event
dispatch thread (EDT).

The NetBeans Utilities API provides an easy way to meet this requirement with the service provider
interface AsyncGUIJob. This interface specifies two methods to help initialize components
asynchronously. The construct() method is executed automatically in a separate thread, so the EDT is
not blocked. This lets you load data or perform other long-running initializations without performance
being affected. Do not access GUI components in the construct() method, however. As soon as the
construct() method has returned, the finished() method is called. As it is called from the Event
Dispatch Thread you can add data previously loaded in the construct() method to the GUI
components. In the example in Listing 15-3, data is added (loaded in construct()) to a

CHAPTER 15 TIPS AND TRICKS

210

DefaultComboBoxModel. After loading, you add the created data model to the JComboBox within the
finished() method. This asynchronous process is started and connected to the component using the
method Utilities.attachInitJob(). This way, independent jobs can be defined and started for various
components.

Listing 15-3. Asynchronously Initializing Graphical Components Using the AsyncGUIJob Interface

public final class AsynchTopComponent extends TopComponent {
 private JComboBox items = new JComboBox(new String[] { "Loading..." });
 private DefaultComboBoxModel m = new DefaultComboBoxModel();

 private AsynchTopComponent() {
 initComponents();
 Utilities.attachInitJob(items, new AsyncGUIJob(){
 public void construct() {
 // long lasting loading of data
 for(int i = 0; i < 20; i++) {
 Thread.sleep(200);
 m.addElement("Item " + i);
 }
 }

 public void finished() {
 items.setModel(m);
 }
 });
 }
}

Another possibility for asynchronously initializing GUI components is the SwingWorker class of the
Java Platform. It is an abstract class, initializing components in almost the same way as via the
AsyncGUIJob interface. Using the SwingWorker class, the previous example with AsyncGUIJob looks like
Listing 15-4.

Listing 15-4. Asynchronously Initializing Graphic Components Using the SwingWorker Class

SwingWorker<DefaultComboBoxModel, String> worker =
 new SwingWorker<DefaultComboBoxModel, String>() {

 @Override
 protected DefaultComboBoxModel doInBackground() throws Exception {
 // long lasting loading of data
 for(int i = 0; i < 20; i++) {
 Thread.sleep(200);
 m.addElement(new String("Item " + i));
 }
 return m;
 }

 @Override
 protected void done() {
 try {

CHAPTER 15 TIPS AND TRICKS

211

 items.setModel(get());
 } catch (Exception ignore) {}
 }
};

worker.execute();

Similar to the construct() method, data is created (or loaded) within the method doInBackground().
In contrast to the construct() method we deliver the created data as the return value of the function (see
Listing 15-5). The return type is defined by the first template of the SwingWorker class—in this example,
DefaultComboBoxModel. This method is also executed outside the EDT. The done() method is the
counterpart to the finished() method, which is called from within the EDT as soon as the
doInBackground() method has finished. Using the get() method, you receive data prepared by
doInBackground().

Other very useful features of the SwingWorker class are the publish() and process() methods. By
using publish(), data can be sent from the asynchronously executed doInBackground() method to the
EDT that is processed by calling process().

Listing 15-5. Adding Data Directly During the Initialization Phase with the SwingWorker Class

items.setModel(m);
SwingWorker<DefaultComboBoxModel, String> worker =
 new SwingWorker<DefaultComboBoxModel, String>() {

 @Override
 protected DefaultComboBoxModel doInBackground() throws Exception {
 for(int i = 0; i < 20; i++) {
 Thread.sleep(200);
 publish("Item " + i);
 }
 return m;
 }

 @Override
 protected void process(List<String> chunks) {
 m.addElement(chunks.iterator().next());
 }
};

worker.execute();

Rather than setting the data model in the done() method, the elements are added immediately. In
the doInBackground() method, single entries are immediately sent to the EDT using publish(). Those
entries are received with the process() method and inserted into the combo box, so they appear right
away. The parameter type of publish() and process() is defined in the second template of the
SwingWorker class.

Undo/Redo
You can equip any component (and provide the user) with undo/redo support using the context
interface UndoRedo.Provider. If a component is located in the global proxy Lookup (which implements

CHAPTER 15 TIPS AND TRICKS

212

the UndoRedo.Provider interface), the undo/redo buttons (in the toolbar and in the Edit menu) are
automatically activated by default.

The undo and the redo functionality is specified by the UndoRedo interface. This interface is
implemented by the UndoRedo.Manager class. This manager derives from the UndoManager class of the Java
Platform. This class is responsible for managing changes, which can be undone or rebuilt. An instance of
this manager returns your component via the getUndoRedo() method specified by the UndoRedo.Provider
interface.

The events, which will be added to the manager, are strongly dependent on context. The interface
for those events is specified by UndoableEdit. Java already offers some abstract implementations for this
interface, such as the AbstractUndoableEdit class. This class provides all methods with a standard
implementation. Thus, you just have to overwrite the methods you need. The StateEdit class and the
corresponding StateEditable interface are very helpful, too. The StateEditable interface must be
implemented by objects, whose data may be changed by users. An example of this would be a
DataObject class representing an MP3 file whose ID3 information can be changed by the user.

Listing 15-6 demonstrates this principle on the basis of a very simple class that just has one feature
that can be changed by the user via a text field. You keep the undo/redo manager (which you can deliver
via the getUndoRedo() method) as a private data element. The TopComponent has two buttons: one to read
the attribute of the data object, the other to save the changes made in the text field. If a change is made,
first create a StateEdit object that implements the UndoableEdit interface. You have to pass an instance
of the StateEditable instances to this object. Of course, this is your data object. Then, pass the
UndoableEdit instance, created like this, to the manager (which notifies all listeners) via the
undoableEditHappened() method. That way, all Platform undo and redo action buttons are activated or
deactivated automatically. Now, you can make all changes in the data object and afterward finish the
event via the end() method.

Listing 15-6. Providing an Undo/Redo Manager and Adding an Element When Data Is Changed by the

User

import javax.swing.event.UndoableEditEvent;
import javax.swing.undo.StateEdit;
import org.openide.awt.UndoRedo;
...
public class MyTopComponent extends TopComponent implements UndoRedo.Provider {
 private UndoRedo.Manager manager = new UndoRedo.Manager();
 private MyObject obj = new MyObject();

 @Override
 public UndoRedo getUndoRedo() {
 return manager;
 }

 private void loadActionPerformed(ActionEvent evt) {
 textField.setText(obj.getProp());
 }

 private void saveActionPerformed(ActionEvent evt) {
 StateEdit edit = new StateEdit(obj);
 manager.undoableEditHappened(new UndoableEditEvent(obj, edit));
 obj.setProp(textField.getText());
 edit.end();

CHAPTER 15 TIPS AND TRICKS

213

 }
}

The data object (whose changes will be undone or restored) must implement the StateEditable
interface. This interface specifies the two methods storeState() and restoreState(). The principle of
the StateEdit class is based on storing the features of a data object in a Hashtable. Then, this Hashtable
is managed by the StateEdit object; the storeState() method is called when the StateEdit object is
created. Features are stored to the hashtable (that is, passed) before changes are applied. In case the user
wants to undo some changes again, the StateEdit object calls the restoreState() method. This method
delivers a Hashtable which contains the original values. You just need to read these values and apply
them. (See Listing 15-7.)

Listing 15-7. Data Object Whose Changed Features Need to Be Restored

public class MyObject implements StateEditable {
 private String prop = new String("init value");

 public void storeState(Hashtable<Object, Object> props) {
 props.put("prop", prop); // save original state
 }

 public void restoreState(Hashtable<?, ?> props) {
 prop = (String)props.get("prop"); // read original state
 }

 public void setProp(String value) {
 prop = value;
 }

 public String getProp() {
 return prop;
 }
}

Finally, I will illustrate how easy it is to add undo/redo functionality to a text component; this
feature is especially helpful for text. All subclasses of JTextComponent—by default these are JEditorPane,
JTextArea, and JTextField—own a Document as data model. You can add an UndoableEditListener to a
Document instance via the addUndoableEditListener() method. This listener interface is also
implemented by the NetBeans UndoRedo.Manager. You can add this manager, previously stored in the
TopComponent and returned by the getUndoRedo() method, to a Document instance as listener. This means,
by appending a single line of code, you can add the undo/redo functionality to a text component:

textField.getDocument().addUndoableEditListener(manager);

Now the text component itself is able to report its events to the manager, while the undo and redo
buttons in turn become activated or deactivated automatically. Of course, this way, you can add undo
support to a text component, as well as any component whose data model implements the Document
interface or uses an implementation of Document, as the HTMLDocument and PlainDocument classes do, for
example.

CHAPTER 15 TIPS AND TRICKS

214

Summary
In this chapter you got to know helpful interfaces, classes, and concepts of the NetBeans Platform
concerning the development of graphic user interfaces. You looked at the Java Platform desktop
integration functionality and at how to initialize GUI components asynchronously. Finally you learned
how to implement an undo and redo functionality.

PART 3

Ready & Go: Using the
NetBeans Platform
Standard Modules

C H A P T E R 16

217

Help System

The NetBeans Platform help system is based on JavaHelp. The NetBeans Platform provides a module
containing the JavaHelp library and provides a class to get access to the help system (see Figure 16-1). To
use the help system, you must set a dependency on the JavaHelp Integration module in your module via
Properties ➤ Libraries; the menu item Help ➤ Help Contents will be automatically provided in your
application. The user can open the help window via this menu item.

Figure 16-1. Window of the integrated help system

CHAPTER 16 HELP SYSTEM

218

Creating and Integrating a Help Set
The NetBeans IDE provides a wizard to set up a help set. This makes an otherwise tricky process child’s
play. For this purpose call the menu item File ➤ New File…, choose the file type JavaHelp Help Set in the
Module Development category, and click Next. On the next (and last) page, you will already see a list of
files that are created or changed by the wizard. Click Finish to constitute the help set.

A help set is added to a module via the HelpSetRegistration annotation. The created help set files
are stored in a separate package docs by the wizard. Since a help set does not have a Java file, a Java file is
created (package-info.java) and the annotation is added, as in Listing 16-1.

Listing 16-1. Registration of a Help Set via an Annotation

@HelpSetRegistration(helpSet = "module-hs.xml", position = 3672)
package com.galileo.netbeans.module.docs;
import org.netbeans.api.javahelp.HelpSetRegistration;

The HelpSetRegistration annotation with the helpSet attribute refers to the actual help set XML file
module-hs.xml. This annotation leads to an entry in the layer file in the standard folder
Services/JavaHelp. This also means that if you want to consciously avoid annotations, you can register
your help set by the following entry in the layer file yourself, as shown in Listing 16-2.

Listing 16-2. Direct Registration of a Help Set in the Layer File

<folder name="Services">
 <folder name="JavaHelp">
 <file name="module-helpset.xml" url="module-helpset.xml"/>
 </folder>
</folder>

So, you register the module-helpset.xml file, which contains a reference on the help set, in the layer
file. The layer file then looks like Listing 16-3.

Listing 16-3. Help Set Reference File for the Registration via the Layer File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE helpsetref PUBLIC
 "-//NetBeans//DTD JavaHelp Help Set Reference 1.0//EN"
 "http://www.netbeans.org/dtds/helpsetref-1_0.dtd">
<helpsetref url="nbdocs:/com/galileo/netbeans/module/docs/module-hs.xml"/>

In this first step you learned how to create a help set with the NetBeans wizard, and how to register a
help set either by a separate annotation or by a layer entry and an additional XML file. In the subsequent
sections, we will take a closer look at the separate files.

module-hs.xml
This is the central file which describes and configures the help set. Use the title element to give the
help set a name. In the map element, you refer to map files. In these map files are the HTML help pages
with your IDs; the content of a help set is defined by these map files. With the view elements, you add the
content of our help set to the table of contents and to the index (see Listing 16-4). Additionally, you
define the search engine to be used.

CHAPTER 16 HELP SYSTEM

219

Listing 16-4. Help Set Description

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE helpset PUBLIC
 "-//Sun Microsys Inc.//DTD JavaHelp HelpSet Version 2.0//EN"
 "http://java.sun.com/products/javahelp/helpset_2_0.dtd">
<helpset version="2.0">
 <title>My Module Help</title>
 <maps>
 <homeID>com.galileo.netbeans.module.about</homeID>
 <mapref location="module-map.xml"/>
 </maps>
 <view mergetype="javax.help.AppendMerge">
 <name>TOC</name>
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>module-toc.xml</data>
 </view>
 <view mergetype="javax.help.AppendMerge">
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>module-idx.xml</data>
 </view>
 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.DefaultSearchEngine">JavaHelpSearch</data>
 </view>
</helpset>

module-map.xml
The actual HTML help pages are registered in the map file and a unique ID is given to them by the
target attribute. The unique ID is then used for the table of contents and for the index. Additionally,
those exact IDs are also used for a HelpCtx object, namely for realizing context-sensitive help. (See
Listing 16-5.)

Listing 16-5. Mapping of Help Topics IDs on HTML Pages

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE map PUBLIC
 "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 2.0//EN"
 "http://java.sun.com/products/javahelp/map_2_0.dtd">
<map version="2.0">
 <mapID target="com.galileo.netbeans.module.about" url="module-about.html"/>
</map>

CHAPTER 16 HELP SYSTEM

220

module-toc.xml
With this file you can determine the content of the table of contents. Here, you register the ID of the
corresponding help page (which you want to add to the table of contents) by the tocitem element. Doing
so, the tocitem element can be arbitrarily nested so the help pages can be grouped. (See Listing 16-6.)

Listing 16-6. Table of Contents of a Help Set

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE toc PUBLIC
 "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 2.0//EN"
 "http://java.sun.com/products/javahelp/toc_2_0.dtd">
<toc version="2.0">
 <tocitem text="My Module">
 <tocitem text="About My Module" target="com.galileo.netbeans.module.about"/>
 </tocitem>
</toc>

module-idx.xml
In this file, you list the IDs of the help pages, which you want to include in the index, with the indexitem
element. (See Listing 16-7.)

Listing 16-7. Index of a Help Set

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE index PUBLIC
 "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 2.0//EN"
 "http://java.sun.com/products/javahelp/index_2_0.dtd">
<index version="2.0">
 <indexitem text="About My Module" target="com.galileo.netbeans.module.about"/>
</index>

Help Pages
The previously presented XML files are only of use for the configuration of the help set and the help
system. You can create the help pages themselves as a standard HTML page. The wizard has already
created a first example page when creating the help set. This is the module-about.html file. It has also
already been attached to the help set via the file module-map.xml. So, you can add your own help pages
exactly the same way.

Inserting Links into Help Pages
Within a help page, you can define links both to external sites and to other help pages, even though they
belong to another module.

CHAPTER 16 HELP SYSTEM

221

Links to External Web Sites
Typically, external web sites are called in an external browser, since the help window is inadequate for
that purpose. So, the BrowserDisplayer class, which you refer to with the object HTML element, is
responsible for this. You define the link itself via the content parameter (see Listing 16-8).

Listing 16-8. Link Embedded in Help Pages

<object
 classid="java:org.netbeans.modules.javahelp.BrowserDisplayer">
 <param name="content" value="http://www.netbeans.org">
 <param name="text" value="http://www.netbeans.org">
 <param name="textFontSize" value="medium">
 <param name="textColor" value="blue">
</object>

The BrowserDisplayer class passes the link to the URLDisplayer service. The default implementation
of this service provided by the NetBeans Platform opens the link in the internal web browser of the
NetBeans Platform, though. Since this browser mostly displays web sites insufficiently, it would be the
best for us to call the standard browser of the operating system. Since the URLDisplayer class is designed
as a service and the Java Platform provides a method for calling the standard browser (via the Desktop
class), you can realize this by a specific service provider. To do so, you create the ExternalURLDisplayer
class which derives from the service class HtmlBrowser.URLDisplayer. This interface is located in the UI
Utilities module to which you must consequently define a dependency under Properties ➤ Libraries.
This interface specifies the showURL() method which gets the link to open as URL object. Then, you just
have to pass this link to the browse() method of the Java Desktop class in the form of a URI object. Then,
the Java Desktop class opens the corresponding web site in its standard browser. (See Listing 16-9.)

Listing 16-9. Service Provider for Opening Links in Help Pages Externally

@ServiceProvider (service = HtmlBrowser.URLDisplayer.class, position = 0)
public class ExternalURLDisplayer extends HtmlBrowser.URLDisplayer{
 public void showURL(URL link) {
 try {
 Desktop.getDesktop().browse(link.toURI());
 } catch(Exception ex) {
 Logger.getLogger("global").log(Level.SEVERE, null, ex);
 // show the user a message dialog
 }
 }
}

This service provider is registered and thus published via the ServiceProvider annotation (see
Chapter 5).

Links to Other Help Pages
You can easily add links to help pages of other modules via the nbdocs protocol with the href element, as
shown in Listing 16-10.

CHAPTER 16 HELP SYSTEM

222

Listing 16-10. Links on Help Pages of Other Modules

<a href="nbdocs://org.netbeans.modules.usersguide/org/netbeans/
 modules/usersguide/configure/configure_options.html">Using the Options Dialog

It is important that you first indicate the code name base of the module. In this example, it is
org.netbeans.modules.usersguide. Subsequently, you define the path to the help page. In case the
module and the help page are not available, the help system is able to display relevant information to the
user because of the specification of the code name base. You link on your own module-internal help
pages the same way.

Context-Sensitive Help
Context-sensitive help enables the user to directly access help and the corresponding topic relating to
the current context, in which the user actually is. Therefore, the user does not have to search for the
desired topic, but the respective page is directly displayed. A context-sensitive help is realized by the
connection of separate components with the ID of a corresponding help page. The NetBeans Platform
defines the HelpCtx.Provider interface, so a component can announce the help ID to the help system in
a simple manner. This interface specifies the getHelpCtx() method which must be implemented by the
corresponding component and thus delivers a HelpCtx object containing an ID.

Numerous frequently-used classes of the NetBeans Platform API already implement the
HelpCtx.Provider interface. Among these are, for example, the classes Node, DataObject, TopComponent,
SystemAction, WizardDescriptor.Panel, and DialogDescriptor. Then, you only have to overwrite the
getHelpCtx() method in their subclasses. Typically, the context help is called by the user with (F1). An
additional key for calling help is displayed on a dialog or a wizard which delivers an ID via the
getHelpCtx() method.

A shortcut definition must be available, so the help can be called with (F1). If it was not already
made by the NetBeans Platform—so you cannot open the help window with (F1)—you can define this
shortcut yourself in the layer file with the following entry, as shown in Listing 16-11.

Listing 16-11. Make the Help System Accessible by F1.

<folder name="Shortcuts">
 <file name="F1.shadow">
 <attr name="originalFile"
 stringvalue="Actions/Help/org-netbeans-modules-javahelp-HelpAction.instance"/>
 </file>
</folder>

If the user presses (F1), the HelpAction is executed. The HelpAction automatically searches the
component that is currently focused. If the focused component implements the HelpCtx.Provider
interface, the ID of the help page is determined by the getHelpCtx() method. Furthermore, you also
have the possibility to provide a JComponent subclass with a help ID using the setHelpIDString()
method:

JComponent c = ...
HelpCtx.setHelpIDString(c, "com.galileo.netbeans.module.about");

Remember, your component must be focusable, so it can be found by HelpAction. By default, the
TopComponent class is not focusable, (you can find that out with the isFocusable() method). You can

CHAPTER 16 HELP SYSTEM

223

achieve this simply by calling setFocusable(). So, a TopComponent subclass, which delivers its help ID via
getHelpCtx(), would then look like Listing 16-12.

Listing 16-12. Context-Sensitive Help for Components

public final class MyTopComponent extends TopComponent {
 public MyTopComponent() {
 setFocusable(true);
 }
 public HelpCtx getHelpCtx() {
 return new HelpCtx("com.galileo.netbeans.module.about");
 }
}

If MyTopComponent is focused and the user presses (F1), the help system and the help page are called.
The help page has the ID com.galileo.netbeans.module.about. You can define this ID in connection with
the desired page in the map file of the help set (see the section “Creating and Integrating a Helpset”). If
you only want the help window without a special page to be called, you can return
HelpCtx.DEFAULT_HELP. Beyond that, you can also pass a Class object to the HelpCtx constructor, instead
of passing the ID in the form of a String. Then, the HelpCtx object detects the ID by means of the
complete class name. So, if you used new HelpCtx(getClass()) in the MyTopComponent example, the help
ID would be com.galileo.netbeans.module.MyTopComponent.

Opening the Help System
If you want to call the help system yourself, you can get access via the Lookup. There, an
implementation of the Help class is registered (see Listing 16-13).

Listing 16-13. Calling the Help System Concerning a Certain Topic

Help h = Lookup.getDefault().lookup(Help.class);
if(h != null)
 h.showHelp(new HelpCtx("com.galileo.netbeans.module.about"));
 // h.showHelp(HelpCtx.DEFAULT_HELP);

You pass a HelpCtx instance, which represents a help page, to the showHelp() method. You pass the
ID of the desired help page, which you determined in the map file, to the constructor. If you want to
open the help window with the default help page, you can use HelpCtx.DEFAULT_HELP.

CHAPTER 16 HELP SYSTEM

224

Summary
In this chapter, you learned how to use the NetBeans Platform help system, which is based on the
standard JavaHelp framework. We looked at how to create your own help sets and how to insert links
into help pages. One important thing you learned in this chapter was how to create context-sensitive
help.

C H A P T E R 17

225

Output Window

The NetBeans Platform provides the Output Window module as a comfortable and practical display area
for showing messages to the user. Multiple different outputs can be output parallel in different tabs. The
output window and the I/O API of the NetBeans Platform are closely connected. So, the standard I/O
provider implementation redirects its output to the output window. (See Figure 17-1.)

Figure 17-1. Output Window

Producing Output
First, ensure in the properties of your NetBeans Platform application under Properties ➤ Libraries that
the two modules Output Window and I/O APIs are activated in the cluster platform, so this module is
available for you since you can only define a dependency on the modules when they are activated here.
Now, you must define a dependency on the I/O API module in the module that wants to use the output
window. To do so, open the Properties of your modules and add the I/O API module as dependency
under Libraries with the Add Dependency… button. Then, your output could look like Listing 17-1.

Listing 17-1. Using the Output Window Module

InputOutput io = IOProvider.getDefault().getIO("Task", true);
io.getOut().println("Info message");
io.getErr().println("error message");
io.getOut().close();
io.getErr().close();

CHAPTER 17 OUTPUT WINDOW

226

You get the service provider of the IOProvider service, which is located in the output window, by the
IOProvider.getDefault() method over the Lookup. If the output window module, and thus the service
provider, does not exist, the getDefault() method would provide a standard implementation which
would write the outputs on the standard output. So, the output window is implemented as a global
service. (For more information see Chapter 5.) Consequently, the output window could be easily
substituted by your own window without having to adapt the source code. The getIO() method delivers
an InputOutput object with which you can access the window. You can define a name which is displayed
on the tab or in the headline. With the boolean parameter you determine whether a new tab is created or
whether an already existing tab with the same name will be reused. With the methods getOut() and
getErr() you get an object of the OutputWriter class. This class is a subclass of the Java PrintWriter
class. Thus, you can output messages by println(), as usual. The text output by getErr() is displayed
red in the output window. It is important that you close the streams again with the close() method
when you finish all your output. So, the name of the tab, which is displayed in bold, is displayed as usual
again, signaling to the user that the task is completed. If multiple tasks are displayed you can ensure that
the corresponding one is active via the InputOutput.select() method.

You can open the output window in your application with the menu item Window ➤ Output ➤
Output. This menu item is added by the output window module. The output window offers you a
context menu with which you can search in the output, for example, or delete output in a tab,.

Adding Actions
The output window contains a toolbar on which you can place your own actions. For example, in Figure
17-1 are four Ant-specific actions. For this purpose, there is a variant of the getIO() method, which
expects an array of the type Action as second parameter. So, very simple action classes, which just have
to implement the Java Action interface, can be passed. It is important that your action class defines an
icon, which can be displayed in the toolbar, by the property Action.SMALL_ICON. Subsequently, you will
see an example class for such an action which derives from the AbstractAction class that already
implements the Action interface. You create an ImageIcon in the constructor and set this for the property
SMALL_ICON.

public class StopTask extends AbstractAction {
 public StopTask() {
 putValue(SMALL_ICON, ImageUtilities.loadImageIcon("icon.gif", true));
 }
 public void actionPerformed(ActionEvent evt) {
 // stop the task
 }
}

Now, you pass an array with an instance of the StopTask class to the getIO() method as second
parameter.

InputOutput io = IOProvider.getDefault().getIO("Task", new Action[]{new StopTask()});

Inserting/Displaying Hyperlinks
You gain access to the output window by the previously described methods getOut() and getErr(). For
this purpose, those methods return an OutputWriter instance. This class represents an extension of the
PrintWriter class of the Java Platform. It specifies two additional println() methods with which
hyperlinks can be displayed in the output window. For this purpose, indicate the text as String object

CHAPTER 17 OUTPUT WINDOW

227

and an OutputListener instance. This listener is responsible for executing the action which will be
carried out by clicking on the link.

In Listing 17-2 you gain access to the corresponding OutputWriter instance via the getOut() method.
As previously mentioned, the println() method gets the name of the link and it gets a listener.

Listing 17-2. Creating a Hyperlink in the Output Window

InputOutput io = IOProvider.getDefault().getIO("Task", true);
OutputWriter ow = io.getOut();
try {
 ow.println("My Link", new MyHyperlinkListener());
} catch (IOException ex) {
 Exceptions.printStackTrace(ex);
}

You can implement a corresponding listener with an OutputListener interface, as shown in
Listing 17-3.

Listing 17-3. Listener for the Reaction on Hyperlinks in the Output Window

import org.openide.windows.OutputEvent;
import org.openide.windows.OutputListener;

public class MyHyperlinkListener implements OutputListener {

 @Override
 public void outputLineSelected(OutputEvent ev) {
 // Action for selection of the link/line
 }

 @Override
 public void outputLineAction(OutputEvent ev) {
 // Action for click on the link
 }

 @Override
 public void outputLineCleared(OutputEvent ev) {
 // Action for deletion of the link/line
 }
}

As you see in Listing 17-3, you must implement three methods. You cannot only react on clicks, but
must also react on selecting and deleting a link. If you need access to a certain object within the listener,
you can just create an according constructor and pass the desired object to it when adding the link or the
listener.

Summary
You can use the output window for your own purposes. Thus, you can create output in a simple way
when developing, or you can display helpful information to the user, later. In this chapter you learned

CHAPTER 17 OUTPUT WINDOW

228

how to access the output window, how to add your own actions, and how to insert and display
hyperlinks.

C H A P T E R 18

229

Navigator

You can display context-dependent panels with the Navigator window and the Navigator API. Typically,
these panels are used by the NetBeans IDE editor for navigation in a document, for example,. Here, the
constructors, methods, and additional elements of a Java class are displayed (see Figure 18-1). As a
result, the user can navigate within the document. However, this is just one application case; the panels
displayed in the navigator can be used for any purpose.

Figure 18-1. Navigator panel for a .java file

The Navigator API specifies the interfaces of a panel, which can be displayed in the navigator, by the
interface NavigatorPanel. Panels are added declaratively via the layer file of your module. Doing so, a
panel is linked to a certain MIME type. If a file with the corresponding MIME type is opened, the
accordingly-registered panel is displayed. If no FileObject, DataObject, or Node with a certain MIME type
is provided (with which the corresponding navigator panel can be found) the NavigatorLookupHint
interface can be implemented by the component which displays the context. The interface can then be
provided via the local Lookup. This interface just specifies a method with which a MIME type can be
returned. Thus, the navigator module is able to find a panel if no file with a MIME type exists.

CHAPTER 18 NAVIGATOR

230

Creating Panels
I will continue with the example from Chapter 5 (extending it with an additional module), in order to
show you the usage of the Navigator API. This example involved a search list that is able to display the
entries of the type Mp3FileObject. The currently selected element is provided via a local Lookup. This
element provides information about the music title. You want to use this element in your new module,
and display all available albums of the current artist in a navigator panel. This process is illustrated in
the following steps and in Figure 18-2. This example makes it even clearer how easy and flexible it is to
extend an application that is based on the NetBeans Platform with additional modules and components.

Figure 18-2. Context-dependent navigator panel

First you must activate the Navigator API module (located in the ide cluster) in your NetBeans
Platform application under Properties ➤ Libraries, since the Navigator API does not belong to the
standard distribution of the Platform, but to the IDE distribution. Then, you apply a new module named
MP3 Navigator and add this to your application project. Add a dependency to the modules MP3 Object,
Navigator API, and Utilities API under Properties ➤ Libraries. Listing 18-1 shows classes out of these
modules. Afterward, you create a new JPanel Form by the wizard. Then, you change the base class from
JPanel to JComponent in the newly created class and implement the two interfaces NavigatorPanel and
LookupListener. Then, you can arbitrarily create the content of the panel with the Form Editor. In this
example, I only added two labels and a list to the panel for displaying the albums. Subsequently, the
most important parts of the class are shown. The complete and runnable example can be downloaded
from the Source Code/Download area of the Apress web site at www.apress.com for this book.

CHAPTER 18 NAVIGATOR

231

Listing 18-1. The Most Important Parts of the Navigator Panel Implementation

public class Mp3AlbumNavigatorPanel extends JComponent
 implements NavigatorPanel, LookupListener {
 private Lookup.Result<Mp3FileObject> result = null;

 public Mp3AlbumNavigatorPanel() {
 initComponents();
 }

 @Override
 public JComponent getComponent() {
 return this;
 }

 @Override
 public void panelActivated(Lookup context) {
 result = Utilities.actionsGlobalContext().lookupResult(Mp3FileObject.class);
 result.addLookupListener(this);
 }

 @Override
 public void panelDeactivated() {
 result.removeLookupListener(this);
 result = null;
 }

 @Override
 public void resultChanged(LookupEvent event) {
 Collection<? extends Mp3FileObject> mp3s = result.allInstances();
 if(!mp3s.isEmpty()) {
 Mp3FileObject mp3 = mp3s.iterator().next();
 //search for albums of selected artist and display it
 albumsOf.setText(mp3.getArtist());
 DefaultListModel model = new DefaultListModel();
 model.addElement("Album 1 of " + mp3.getArtist());
 model.addElement("Album 2 of " + mp3.getArtist());
 albums.setModel(model);
 }
 }
}

The navigator module gets the panel to display via the getComponent() method which specifies the
NavigatorPanel interface. The methods panelActivated() and panelDeactivated() are called when the
panel is displayed or hidden. When activating the panel, you create a Lookup.Result for the class type
Mp3FileObject via the global proxy Lookup. The global proxy Lookup delivers the local Lookup of the
search list with the activated Mp3FileObject. You register a LookupListener for the Lookup.Result in order
to be able to react in case another entry was chosen in the search list. When something changes, the
resultChanged() method is called. In this method you can then display the desired content on the
navigator panel. For simplicity’s sake, this example only presents two entries. Usually, you would search
for albums of this artist in a database at that position.

CHAPTER 18 NAVIGATOR

232

Registering Panels
You must register the panel in the layer file of your module, so the navigator module can find and create
the panel. For this purpose the navigator module defines the folder Navigator/Panels. Below this folder,
assign your panel to a MIME type for which the panel will be displayed. Select audio/mpeg here. (See
Listing 18-2.) However, any other type would be conceivable.

Listing 18-2. Registration of the Navigator Panel in the Layer File

<folder name="Navigator">
 <folder name="Panels">
 <folder name="audio">
 <folder name="mpeg">
 <file name="com-galileo-netbeans-module-mp3navigator-
 Mp3AlbumNavigatorPanel.instance"/>
 </folder>
 </folder>
 </folder>
</folder>

Now, you should ask yourself how the navigator module knows when to display which panel.
Usually, the navigator module reads the MIME type of the currently active node. In case no nodes exist,
as in this example, the Navigator API provides the interface NavigatorLookupHint. This interface specifies
the getContentType() method with which the context component—in this case the Mp3SearchList
class—delivers the MIME type, to which a navigator panel will be displayed. You implement this
interface in the class Mp3SearchList and return the MIME type audio/mpeg exactly as you registered the
panel in the layer file; see Listing 18-3.

Listing 18-3. Implementation of the NavigatorLookupHint Interface, Which Determines the Panel to Be

Displayed

import org.netbeans.spi.navigator.NavigatorLookupHint;
...
public final class Mp3SearchList extends TopComponent implements ListSelectionListener {

 public Mp3SearchList() {
 ...
 associateLookup(new ProxyLookup(new AbstractLookup(content),
 Lookups.singleton(new Mp3AlbumNavigatorLookupHint())));
 }

 private static final class Mp3AlbumNavigatorLookupHint implements NavigatorLookupHint {
 public String getContentType() {
 return "audio/mpeg";
 }
 }
}

You create the inner class Mp3AlbumNavigatorLookupHint which implements the
NavigatorLookupHint interface. You must now add an instance of this class to your local Lookup. Since
you already determined an AbstractLookup as local Lookup, which contains the currently selected entry

CHAPTER 18 NAVIGATOR

233

of the search list, you cannot directly add this instance. So, you must create a ProxyLookup to which you
can pass the AbstractLookup and a Lookup (which you create via the factory Lookups). Then, define this
proxy Lookup as local Lookup by the method associateLookup(). As soon as the top component
Mp3SearchList is focused, the navigator module is informed by the global Lookup about the existence of
a NavigatorLookupHint instance. As a result, the navigator can call the getContentType() method, and
thus open the appropriate navigator panel according to the return value.

Of course, when multiple different panels exist, the navigator component becomes interesting. You
can create any number of navigator panels and assign the corresponding MIME type in the
Navigator/Panels folder. The navigator module then automatically switches the panels, depending on
which component is currently active. Finally, the Navigator API also provides the NavigatorHandler
class. This class contains the static activatePanel() method to which you can pass a NavigatorPanel
instance. This way, you can also programmatically open a panel.

Summary
The navigator module is a universal component for displaying context-dependent data structures. This
chapter discussed how to create panels which can be displayed by the navigator module. You also
learned both methods by which the navigator module locates panels.

C H A P T E R 19

235

Properties

With the Properties window you can display the properties of a node in a simple way. This means you
can display the properties of the data or of the action which is represented by this node (for more
information see Chapter 12). Thus, you give the user the possibility to change it. A set of properties is
managed by the Sheet class of the Nodes API. The AbstractNode class (usually the basis of a node)
provides such a Sheet via the method getSheet(). To provide such a Sheet, you just have to overwrite the
createSheet() method. Then, you can add your specific properties to this Sheet. I will provide an
example to demonstrate how this works. You want to display the ID3 information of the just selected or
activated MP3 file. However, you do not read the ID3 information for simplicity’s sake, but just use fixed
exemplified values; one condition is that you at least have your own node class which derives from
AbstractNode. Creating the MP3 file type in Chapter 7, you saw that the DataNode class is used by default.
So let’s look at the MP3 file type example once again (you can also just create an MP3 file type with the
NetBeans wizard) and implement your own node class. The properties, shown in the properties window,
will look like those shown in Figure 19-1.

CHAPTER 19 PROPERTIES

236

Figure 19-1. Presentation of the properties of the just selected node in the properties window

Providing Properties
As already mentioned, you must overwrite the createSheet() method in the corresponding node class;
in this example the newly created Mp3DataNode class that represents the files of the type .mp3. At the
beginning, you need a Sheet instance which you can simply create via the method of the base class and
which already adds a Set of basic properties to the instance (this is the first area named Properties in
Figure 19-1). If you do not want this information you can of course create an instance yourself via the
standard constructor of Sheet. So, you already learned that the properties shown can be organized in
areas that can be hidden or displayed by the user depending on their needs. The properties of such an
area are managed by the Sheet.Set class. You create two Sheet.Set objects via the factory method
createPropertiesSet(), in order to apply the two areas ID3v1 and ID3v2. It is important that you give a
Sheet.Set a unique name (used for internal management) via the setName() method, otherwise only the
last added Sheet.Set will be displayed. With the setDisplayName() method you determine the name
which will be used for the area as title.

CHAPTER 19 PROPERTIES

237

Listing 19-1. Via the Method createSheet() You Can Create a Sheet Instance Containing the Desired

Properties, Which Will Be Displayed in the Properties Window.

public class Mp3DataNode extends DataNode {
 protected Sheet createSheet() {
 Sheet s = super.createSheet();
 Sheet.Set id3v1 = Sheet.createPropertiesSet();
 Sheet.Set id3v2 = Sheet.createPropertiesSet();
 id3v1.setName("ID3v1");
 id3v1.setDisplayName("ID3v1");
 id3v2.setName("ID3v2");
 id3v2.setDisplayName("ID3v2");
 Mp3DataObject mp3 =getLookup().lookup(Mp3DataObject.class);

 try {
 Property artistProp =
 new PropertySupport.Reflection<String>(mp3, String.class, "artist");
 Property titleProp =
 new PropertySupport.Reflection<String>(mp3, String.class, "title");
 PropertySupport.Reflection<String> genreProp =
 new PropertySupport.Reflection<String>(mp3, String.class, "genre");
 Property trackProp =
 new PropertySupport.Reflection<Integer>(mp3, Integer.class, "getTrack", null);

 artistProp.setName("Artist");
 titleProp.setName("Title");
 genreProp.setName("Genre");
 trackProp.setName("Track");
 id3v1.put(artistProp);
 id3v1.put(titleProp);
 id3v1.put(genreProp);
 id3v2.put(trackProp);
 } catch (NoSuchMethodException ex) {
 ex.printStackTrace();
 }
 s.put(id3v1);
 s.put(id3v2);
 return s;
 }
}

You gain access to the data object, meaning the MP3 file, which provides the features, via the
Lookup. Then you create an object for each property, making sure to distinguish between properties that
can be changed by the user and read-only properties. For the features that the user will be able to
change in the Properties window, you create a PropertySupport.Reflection instance with the
corresponding type, in this case String. As first parameter you pass the data object; as second
parameter, pass the data type of the property; and as third parameter, you pass the name of the get and
set method of the corresponding property. For the first property you pass artist, for example. This
means that the Mp3DataObject class must provide both the setArtist() method and getArtist().
Otherwise, a NoSuchMethodException occurs. For properties the user must not or will not change, use a

CHAPTER 19 PROPERTIES

238

variant of the constructor. In fact, you can separately pass the get and set method to the constructor. You
only pass null as set method so a property cannot be changed now. Listing 19-3 shows an excerpt of the
Mp3DataObject class.

Listing 19-2. The Data Object Must Provide Its Properties via get Methods. If These Properties Will Be

Changable Too You Also Need the Corresponding set Methods.

public class Mp3DataObject extends MultiDataObject {
 public String getArtist() {
 return this.artist;
 }
 public void setArtist(String artist) {
 this.artist = artist;
 }
 ...
 public int getTrack() {
 return this.track;
 }
}

We give a name to the created instances which represent the separate properties via the setName()
method and then add the instance to the desired Sheet.Set via the put() method. In turn, you add the
put method to the Sheet with put() which you then return.

User-Defined Properties Editor
You can use a self-defined editor for a property value to support the user entering, changing properties,
checking (date), or restricting (fixed defined selection of values). In Figure 19-1 you may have noticed
that the genre can be selected via a combo box. You can set this via the call

genreProp.setPropertyEditorClass(GenrePropertyEditor.class);

for each single property, while GenrePropertyEditor is a user-defined editor with a combo box. Next
we will look at how such an editor is buil, referring to the relevant classes and methods. Please find the
complete code of the example as a complete project on this book’s web page, available in the Source
Code/Download area of the Apress web site at www.apress.com.

First, you derive the GenrePropertyEditor class from the Java class PropertyEditorSupport. This is a
basis-implementation of the PropertyEditor interface which must be implemented by all user-defined
editors. Additionally, you implement the two interfaces ExPropertyEditor and InplaceEditor.Factory,
too. Via the attachEnv() method of ExPropertyEditor we get delivered a PropertyEnv object by which we
can contact the properties window in a way. You register an InplaceEditor.Factory instance on it (so,
your class itself) which is responsible for creating the editor. Actually, the getInplaceEditor() method
does that. This method only creates and delivers the editor when requested. You provide the
implementation of the graphic editor component as private inner class which derives from
InplaceEditor, as you probably guessed because of the return value of getInplaceEditor(). Since you
want to use a combo box as editor, you define it as private data element and initialize it with the desired
values. (See Listing 19-3.) Then, this component must be delivered before the getComponent() method.
The other important methods of the InplaceEditor are setValue() and getValue(). With those, the value
of the combo box can be set on the basis of the property and the other way around. Additionally, there is
the reset() method with which changes can be taken back (typically when pressing Esc).

CHAPTER 19 PROPERTIES

239

Listing 19-3. User-Defined Editor with Which the Genre Property Can Be Selected via a Combo Box

public class GenrePropertyEditor extends PropertyEditorSupport
 implements ExPropertyEditor, InplaceEditor.Factory {
 private InplaceEditor ed = null;

 public void attachEnv(PropertyEnv propertyEnv) {
 propertyEnv.registerInplaceEditorFactory(this);
 }

 public InplaceEditor getInplaceEditor() {
 if(ed == null)
 ed = new Inplace();
 return ed;
 }

 private static class Inplace implements InplaceEditor {
 private PropertyEditor editor = null;
 private PropertyModel model = null;
 private JComboBox genres = new JComboBox(
 new String[] {"Techno", "Trance", "Rock", "Pop"});

 public JComponent getComponent() {
 return this.genres;
 }

 public Object getValue() {
 return this.genres.getSelectedItem();
 }

 public void setValue(Object object) {
 this.genres.setSelectedItem(object);
 }

 public void reset() {
 String genre = (String) editor.getValue();
 if(genre != null)
 this.genres.setSelectedItem(genre);
 }
 }
}

Summary
The properties window is a simple and common way to display and change the properties of arbitrary
objects. In this chapter you learned how to provide your properties to be displayed in the properties
window. You also learned how you can implement a user-specific property editor.

C H A P T E R 20

241

Options and Settings

With the Options Dialog API and SPI, you can easily create option panels with which the user can
comfortably manage the settings and options of your application. This module provides the basic
structure of an option dialog into which you can integrate your panels, as shown in Figure 20-1. There
are two or three possible variants of panels. There are primary and secondary panels. A secondary panel
is a subcategory of a primary panel in form of a tab. There are two kinds of primary panels: primary
panels that manage options themselves, and primary panels that only function as containers and
contain secondary panels. Preferably the settings are saved and loaded using the Preferences API. The
NetBeans Platform provides a specific implementation which will be explained in more detail in the
“Managing Settings” section.

Figure 20-1. Standard options dialog within which you can integrate your panels

CHAPTER 20 OPTIONS AND SETTINGS

242

Creating Options Panels
The NetBeans IDE provides a wizard for creating an options panel (for all three kinds), shown in
Figure 20-2. This wizard can be found under File ➤ New File… in the category Module Development ➤
Options Panel. Depending on your purpose, choose either a Primary Panel (with or without secondary
panels) or a Secondary Panel and indicate the data the wizard needs. Finally, the wizard creates the
panel and registers it via an annotation.

Figure 20-2. NetBeans wizard for creating options panels

A panel consists of a view and a controller. The view is responsible for providing the GUI and for
loading and saving the data. The controller creates the view and at the same time is a broker between the
options dialog and the view. The panel, meaning the view, is derived from the JPanel class. You can
arbitrarily place your components, with which the options are displayed and set, on this panel.
Listing 20-1 uses two text fields. You save and load the value of these fields via the Preferences API (see
the “Managing Settings” section) in the methods store() and load(), which are called by the controller
when opening and closing the panel.

The options dialog can only be closed by the user when the appropriate settings haven been
selected. Therefore, a panel must inform the option dialog about its state, either valid or invalid.
Implement validation via the valid() method. In this example, for example, you want to make sure the
user enters a value in the first field, so you add a DocumentListener to the option1 text field. Now, each
time the user makes an entry in the first text field, the controller is informed via Controller.changed(),
which in turn calls the valid() method, only returning true when at least one character is entered into
the text field.

CHAPTER 20 OPTIONS AND SETTINGS

243

Listing 20-1. View of the Options Panel, Only Deriving from JPanel

public final class ModuleOptions1Panel extends JPanel implements DocumentListener {
 private JTextField option1;
 private JTextField option2;
 private final ModuleOptions1PanelController controller;

 public ModuleOptionsPanel(ModuleOptions1PanelController ctl) {
 this.controller = ctl;
 initComponents();
 option1.getDocument().addDocumentListener(this);
 }

 public void insertUpdate(DocumentEvent event) {
 controller.changed();
 }

 public void removeUpdate(DocumentEvent event) {
 controller.changed();
 }

 public void changedUpdate(DocumentEvent event) {
 controller.changed();
 }

 public void load() {
 option1.setText(
 NbPreferences.forModule(ModuleOptions1Panel.class).
 get("option1", "default"));
 }

 public void store() {
 NbPreferences.forModule(ModuleOptions1Panel.class).
 put("option1", option1.getText());
 }

 public boolean valid() {
 if(option1.getText().length() == 0) {
 return false;
 } else {
 return true;
 }
 }
}

Now let us look at the responsibilities of the controller. Since the controller needs to interact with
the options dialog, its interfaces are determined by the abstract class OptionsPanelController. The
controller’s most important task is the creation of the view, using getPanel(), which you provide via the
method getComponent(). As you can see, the method getComponent() receives a Lookup. This is a proxy
Lookup, containing the Lookups of all controllers available in the options dialog. The controller uses the
getLookup() method to make a Lookup available, which is already implemented by the abstract class

CHAPTER 20 OPTIONS AND SETTINGS

244

OptionsPanelController. However, this default implementation just provides an empty Lookup. So, in
order to provide certain objects in the Lookup, you have to overwrite the getLookup() method.
Consequently, you can communicate with other option panels via this so-called master Lookup, which
you get via getComponent(). You already learned in Chapter 5 how communication can be realized using
local Lookups and a global proxy Lookup (in this case, the master Lookup).

The update() method is called when the panel is loaded the first time. Here, you call the load()
method of the panel in order to load the data, so to initialize the fields. If the user clicks the OK button,
the applyChanges() method of the options dialog is called. So here you save the data via the store()
method. However, if the user cancels the dialog, the cancel() method is called, in which you obviously
do not save the data. Should the situation arise, you can roll back the changes you already made. Using
the isValid() method, you inform the options dialog whether the data of the panels is okay. If this is not
the case, the OK button is automatically deactivated. Moreover, you must inform the options dialog
whether the data has changed. You do this using the isChanged() method. With getHelpCtx(), you can
provide a HelpCtx object that contains a reference to a help page, which will be displayed when the user
clicks the options dialog’s Help button.

To inform the options dialog about changes in data, you must give it the possibility of registering
(see Listing 20-2). You achieve this via the methods addPropertyChangeListener() and
removePropertyChangeListener(). You already know the changed() method from the view class
ModuleOptions1Panel. This method is called by the view when data is changed, and thus informs the
options dialog about the changes. The options dialog is registered as a listener. As a result, the options
dialog in turn checks whether the data is valid.

Listing 20-2. Options Panel Controller

import org.netbeans.spi.options.OptionsPanelController;
...
@OptionsPanelController.SubRegistration(
 location = "Advanced",
 displayName = "#AdvancedOption_DisplayName_ModuleOptions1",
 keywords = "#AdvancedOption_Keywords_ModuleOptions1",
 keywordsCategory = "Advanced/ModuleOptions1")
public final class ModuleOptions1PanelController extends OptionsPanelController {

 private ModuleOptions1Panel panel;
 private final PropertyChangeSupport pcs = new PropertyChangeSupport(this);
 private boolean changed;

 public JComponent getComponent(Lookup masterLookup) {
 return getPanel();
 }

 private ModuleOptionsPanel getPanel() {
 if (panel == null) {
 panel = new ModuleOptions1Panel(this);
 }
 return panel;
 }

 public void update() {
 getPanel().load();

CHAPTER 20 OPTIONS AND SETTINGS

245

 changed = false;
 }

 public void applyChanges() {
 getPanel().store();
 changed = false;
 }

 public void cancel() {
 }

 public boolean isValid() {
 return getPanel().valid();
 }

 public boolean isChanged() {
 return changed;
 }

 public HelpCtx getHelpCtx() {
 return null;
 }

 public void addPropertyChangeListener(
 PropertyChangeListener l) {
 pcs.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(
 PropertyChangeListener l) {
 pcs.removePropertyChangeListener(l);
 }

 public void changed() {
 if (!changed) {
 changed = true;
 pcs.firePropertyChange(OptionsPanelController.PROP_CHANGED, false, true);
 }
 pcs.firePropertyChange(OptionsPanelController.PROP_VALID, null, null);
 }
}

Option panels are registered by annotations and thus added to the option dialog. A primary panel
that does not contain secondary panels is provided with the
@OptionsPanelController.TopLevelRegistration annotation. A primary panel functioning as container
for secondary panels is provided with the @OptionsPanelController.ContainerRegistration annotation.
A secondary panel is registered via the @OptionsPanelController.SubRegistration annotation. The
annotation is added to the controller, which is itself responsible for creating the corresponding panel.

CHAPTER 20 OPTIONS AND SETTINGS

246

Primary Panel
Using the annotation for the registration of a primary panel, you must assign a name via the
categoryName attribute and an icon via the iconBase attribute (see Listing 20-3). The icon and the name
are located in the top bar of the option dialog (see Figure 20-1). Optionally, you can add the attributes
keywords and keywordsCategory with the appropriate values, so the option panel can be found by
QuickSearch. Furthermore, you can assign an identifier via the id attribute. With this identifier, a panel
can directly be opened via the OptionsDisplayer.open() method. Ideally, you use a constant string of
your controller class for this purpose. You can influence the order in which the panels in the options
dialog are displayed, via the position attribute. bear in mind that you can also read values from a
Bundle.properties file via the # sign concerning the currently displayed annotations.

Listing 20-3. Registration of a Primary Panel with Your Own Options via Annotations

@OptionsPanelController.TopLevelRegistration(
 categoryName = "#OptionsCategory_Name_ModuleOptions2",
 iconBase = "com/galileo/netbeans/module/icon.png",
 keywords = "#OptionsCategory_Keywords_ModuleOptions2",
 keywordsCategory = "ModuleOptions2",
 id = ModuleOptions2PanelController.ID)

If you do not want to use annotations, you can alternatively create the layer entry (which is
displayed in Listing 20-4) in the standard folder OptionsDialog. Such an entry is actually created
automatically by the annotation shown in Listing 20-3.

Listing 20-4. Registration of a Primary Panel with Your Own Options via Layer Entry

<folder name="OptionsDialog">
 <file name="ModuleOptions2OptionsCategory.instance">
 <attr name="controller" newvalue=
 "com.galileo.netbeans.module.ModuleOptions2PanelController"/>
 <attr name="instanceCreate" methodvalue=
 "org.netbeans.spi.options.OptionsCategory.createCategory"/>
 <attr name="categoryName" bundlevalue=
 "com.galileo.netbeans.module.Bundle#OptionsCategory_Name_ModuleOptions2"/>
 <attr name="iconBase" stringvalue=
 "com/galileo/netbeans/module/icon.png"/>
 <attr name="keywords" bundlevalue=
 "com.galileo.netbeans.module.Bundle#OptionsCategory_Keywords_ModuleOptions2"/>
 <attr name="keywordsCategory"stringvalue="ModuleOptions2"/>
 <attr name="title" bundlevalue=
 "com.galileo.netbeans.module.Bundle#OptionsCategory_Title_ModuleOptions2"/>
 </file>
</folder>

Secondary Panel
A secondary panel is registered in a similar way. The annotation
@OptionsPanelController.SubRegistration distinguishes two attributes for this. In contrast to a primary
panel, a secondary panel does not have an icon (see Figure 20-1, again). Instead, you specify the category

CHAPTER 20 OPTIONS AND SETTINGS

247

(meaning the primary panel container) to which your panel will be added via the location attribute (see
Listing 20-5).

Listing 20-5. Registration of a Secondary Panel via Annotation

@OptionsPanelController.SubRegistration(
 location = "Advanced",
 displayName = "#AdvancedOption_DisplayName_ModuleOptions1",
 keywords = "#AdvancedOption_Keywords_ModuleOptions1",
 keywordsCategory = "Advanced/ModuleOptions1",
 id = ModuleOptions1PanelController.ID)

The corresponding layer entry mainly differs from the entry of a primary panel in one respect:
another factory method is assigned via the instanceCreate attribute which is used for creating the
secondary panel. Furthermore, it is important that the assignment to the primary panel occurs via a
subfolder. In Listing 20-6 this is the folder Advanced in the standard folder OptionsDialog.

Listing 20-6. Registration of a Secondary Panel with Your Own Options via Layer Entry

<folder name="OptionsDialog">
 <folder name="Advanced">
 <file name="com-galileo-netbeans-module-ModuleOptions1PanelController.instance">
 <attr name="controller" newvalue=
 "com.galileo.netbeans.module.ModuleOptions1PanelController"/>
 <attr name="instanceCreate" methodvalue=
 "org.netbeans.spi.options.AdvancedOption.createSubCategory"/>
 <attr name="displayName" bundlevalue=
 "com.galileo.netbeans.module.Bundle#AdvancedOption_DisplayName_ModuleOptions1"/>
 <attr name="keywords" bundlevalue=
 "com.galileo.netbeans.module.Bundle#AdvancedOption_Keywords_ModuleOptions1"/>
 <attr name="keywordsCategory"
 stringvalue="Advanced/ModuleOptions1"/>
 <attr name="toolTip" bundlevalue=
 "com.galileo.netbeans.module.Bundle#AdvancedOption_Tooltip_ModuleOptions1"/>
 </file>
 </folder>
</folder>

Secondary Panel Container
Previously, you learned how to implement and register primary and secondary panels. A primary panel
that will contain the secondary panel (a so-called secondary panel container) only consists of the
registration of such a container. For this use the annotation
@OptionsPanelController.ContainerRegistration. The attributes used for this correspond to those
already discussed in the sections “Primary Panel” and “Secondary Panel.” You must indicate
categoryName, iconBase, and id. You define a folder via id which the secondary panels can use for its
assignment via the location attribute. (See Listing 20-7.)

CHAPTER 20 OPTIONS AND SETTINGS

248

Listing 20-7. Registration of a Secondary Panel Container via Annotation

@OptionsPanelController.ContainerRegistration(
 id = "ModuleOptions3",
 categoryName = "#OptionsCategory_Name_ModuleOptions3",
 iconBase = "com/galileo/netbeans/module/info32.png",
 keywords = "#OptionsCategory_Keywords_ModuleOptions3",
 keywordsCategory = "ModuleOptions3")

Remember that the annotation, shown in Listing 20-7, is used in conjunction with a package and
not with a class. You can also register a container with a self-created layer entry instead of an annotation,
as shown in Listing 20-8.

Listing 20-8. Registration of a Secondary Panel Container via Layer Entry

<folder name="OptionsDialog">
 <file name="ModuleOptions3.instance">
 <attr name="instanceCreate" methodvalue=
 "org.netbeans.spi.options.OptionsCategory.createCategory"/>
 <attr name="advancedOptionsFolder" stringvalue="OptionsDialog/ModuleOptions3"/>
 <attr name="categoryName" bundlevalue=
 "com.galileo.netbeans.module.Bundle#OptionsCategory_Name_ModuleOptions3"/>
 <attr name="iconBase" stringvalue=
 "com/galileo/netbeans/module/info32.png"/>
 <attr name="keywords" bundlevalue=
 "com.galileo.netbeans.module.Bundle#OptionsCategory_Keywords_ModuleOptions3" />
 <attr name="keywordsCategory" stringvalue="ModuleOptions3"/>
 </file>
 <folder name="ModuleOptions3">
 <attr intvalue="0" name="position"/>
 </folder>
</folder>

In Listing 20-8 you can see that first a file with some attributes is created in the standard folder
OptionsDialog. Via the instanceCreate attribute, the factory method is specified which then creates the
container. The advancedOptionsFolder attribute indicates the folder to which the secondary panels must
be assigned in order to be displayed in this container. If you want to determine the position of the just
registered container within the options dialog, you can already create the folder (as in Listing 20-8) and
add the position attribute with the wished value.

Via the OptionsDisplayer class you gain access to the options dialog, so you can directly open the
dialog from your context with a certain panel:

OptionsDisplayer.getDefault().open(ModuleOptions2PanelController.ID);

Use the identifier (id attribute) previously defined via the annotations.

Managing Settings
Settings and configuration data inside a NetBeans Platform application is preferably saved and loaded
via the Java Preferences API. The Java Platform specifies an interface via the Preferences class. With this
interface, settings and configuration data can be saved and loaded independent of their physical

CHAPTER 20 OPTIONS AND SETTINGS

249

location. Different implementations can be provided with which the data, for example, in a file, in a
system registry or even in a database can be saved. The data is saved in a hierarchic structure in form of
key value pairs. An instance of the Preferences class represents a node in this hierarchy. You can
imagine a node like a directory in a file system below which the data can be saved.

With the NbPreferences class the Utilities API makes available an implementation of the Java
Preferences specification for the NetBeans Platform. This implementation ensures that the settings are
stored in the central configuration directory of the application, which is located in the user directory.
The settings are stored as normal .properties files. Thus, the settings, which you save via Preferences, like
all other settings in a NetBeans Platform application, are managed user-specifically. The NbPreferences
class provides two static methods. With the forModule() method a Preferences node is delivered whose
data are saved in a separate .properties file in the config/Preferences directory for each module (see Figure
20-3). With the root() method an application global Preferences node which manages its data in the
config/Preferences.properties file is delivered.

Figure 20-3. With the NetBeans Preferences implementation, settings can be saved either module-

specifically in the Preferences directory or application-globally in the Preferences.properties file

Then, you can easily save and read your settings with the methods specified by the Preferences
class. If you want to save the name and port of a server, for example, we use the call shown in
Listing 20-9.

Listing 20-9. Saving and Loading of Settings via the Preferences API

Preferences node = NbPreferences.forModule(this.getClass());
String name = node.get("server.name", "localhost");
int port = node.getInt("server.port", 8080);
node.put("server.name", name);
node.putInt("server.port", port);

Besides the methods for accessing data, shown here, further methods are available with which you
can easily save arrays or boolean values, too, for example. Furthermore, with the Java Preferences API

CHAPTER 20 OPTIONS AND SETTINGS

250

you can register a NodeChangeListener and a PropertyChangeListener on a Preferences instance
(meaning a node), in order to add and delete of child nodes as well as to react on changes of data.

Summary
With the Options Dialog API and SPI, the NetBeans Platform provides a precast options dialog. In this
options dialog you can quickly and easily integrate your own (private) panels. You already learned how
settings can be managed centrally and in a homogenous way by the user. You also learned how the
NetBeans Preferences API facilitates simply saving the settings.

C H A P T E R 21

251

Palette

The Form Editor is a very good example for using the palette module. The Form Editor places its AWT
and Swing components on the palette (see Figure 21-1). These components can then be moved via
drag-and-drop. You can also add components to the palette during runtime. The content of the palette
window is managed and provided by a PaletteController. Such a PaletteController can be made
available by a top component via the Lookup. This means that as soon as a top component, in whose
Lookup is located a PaletteController instance, becomes active, the palette window is opened and its
content is displayed. A PaletteController is created via the PaletteFactory class. There are two ways to
provide the components. You can either register the components, which will be displayed on the palette,
with XML files in the layer file, or you can use a two-stage or three-stage node hierarchy. We will look at
both approaches here.

Note that you are not limited to providing a palette to your own top components, but you can also
register a palette for a certain file type in the layer file which is just displayed when a file of this type is
opened in the NetBeans editor. This is especially helpful if you want to extend the functionality of the
NetBeans IDE. This topic will be explored in Chapter 22.

CHAPTER 21 PALETTE

252

Figure 21-1. Palette of the NetBeans GUI editor

Palette Entries via the Layer File
A component, which will be placed on the palette, is defined via the XML file shown in Listing 21-1.

Listing 21-1. XML File That Defines a Palette Entry

<!DOCTYPE editor_palette_item PUBLIC
 "-//NetBeans//Editor Palette Item 1.1//EN"
 "http://www.netbeans.org/dtds/editor-palette-item-1_1.dtd">
<editor_palette_item version="1.1">
 <body></body>
 <icon16 urlvalue="file:/E:/icon16.jpg"/>
 <icon32 urlvalue="file:/E:/icon32.jpg"/>
 <inline-description>
 <display-name>My Palette Item</display-name>
 <tooltip>My Palette Item</tooltip>
 </inline-description>
</editor_palette_item>

CHAPTER 21 PALETTE

253

With the elements icon16 and icon32 you define each an icon that will be displayed for this entry,
depending on the user’s settings. Typically, they are the size 16 and 32 pixels, but they can also be bigger.
However, it makes sense to assign a 16 pixels-sized icon even for the icon16 attribute because this
attribute is also used for the display in the palette manager which can be called via the context menu of
the Palette window, since only 16-pixel icons can be displayed there. Interestingly, you can also use
absolute paths, as shown in this section’s example. Thus, not only icons of the module can be used, but
also icons from a user-defined directory. This can be especially useful if you want the user to have the
ability to add entries to the palette during runtime.

With the inline-description element and its both subelements display-name and tooltip you can
determine the text with which the entry will be displayed in the palette. Alternatively, you can use the
element description instead of inline-description. With its attribute localizing-bundle you can
indicate a resource bundle which provides the values for display-name and tooltip. By the attributes
display-name-key and tooltip-key you indicate the keys for these values. This way, you can also
internationalize palette entries; it can be very helpful to look at the DTD of this XML file (DTDs are found
in the Appendix).

You can now define any number of components. Those components must be registered in the layer
file of your module in order to add it to a palette. For this purpose you can define an arbitrary folder.
Below this folder, create a subfolder for each category which will be displayed on the palette. Then, the
XML files are entered into this subfolder. The result is the following entry, for example:

<folder name="MyPaletteItems">
 <folder name="My Category">
 <file name="myitem1.xml" url="myitem1.xml"/>
 <file name="myitem2.xml" url="myitem2.xml"/>
 </folder>
</folder>

Now, just a PaletteController instance is missing, which you then add to the top component, for
which the palette entries will be displayed (see Listing 21-2). As already mentioned at the beginning of
this chapter, you use the PaletteFactory class for this purpose. This class provides a factory method,
namely createPalette(). To this method you just have to pass the MyPaletteItems folder you defined in
the layer file. Then, the classes PaletteFactory and PaletteController do the rest. You must provide an
implementation of the PaletteActions class as second parameter. This class provides actions for certain
events. In the simplest case, you create an empty implementation of this abstract class and return an
empty array in the methods null.

Listing 21-2. Creating a Palette Instance and Connecting It with a Top Component

public MyTopComponent() {
 ...
 try {
 associateLookup(Lookups.fixed(
 PaletteFactory.createPalette("MyPaletteItems", new MyActions())));
 } catch(IOException e) {
 // MyPaletteItems cannot be found
 }
}

CHAPTER 21 PALETTE

254

Creating a Palette via Your Own Nodes
Entries of a palette are represented by a node. In the previous section you defined each entry via an XML
file. For each of these entries a standard node is provided automatically. You can also provide palette
components via your own node implementation instead of an XML definition. These nodes must be
present in a three-stage hierarchy. The top layer is only a root node, which you can pass to the
createPalette() method in order to create the elements. The nodes on the second level, meaning all
child nodes of the root node, are one category. In turn, its child nodes are then used as palette entries.
For example, let’s say you want to create a palette for managing music albums, which can be added to a
playlist via drag-and-drop (as you can see in Figure 21-2).

Figure 21-2. Using the palette for managing music albums, which can be added to a playlist via

drag-and-drop

Node Classes
As you already learned in Chapter 12, child nodes are created by a ChildFactory class. You create such a
class for managing the categories, which will be displayed on the palette, in this case as genre. For this
purpose, you derive from the ChildFactory<String> class. The nodes are created by the
createNodesForKey() method. For this example (see Listing 21-3), you just create three GenreNode
instances directly.

As you might imagine, you read the genres from a database and then create the GenreNode objects
for it. (In Chapter 26, which deals with embedding and using the Java DB, we will use and extend this

CHAPTER 21 PALETTE

255

example.) The GenreNode class itself is explicitly easy. The genre is passed to its constructor as parameter
which is directly passed to the AlbumNodeFactory class. Thus, you are in the second (respectively third)
level of the node hierarchy (see Listing 21-4).

Listing 21-3. All Genres, Which Will Be Displayed on the Palette, Are Created by GenreNodeFactory.

import org.openide.nodes.ChildFactory;
import org.openide.nodes.Node;
...
public class GenreNodeFactory extends ChildFactory<String> {

 @Override
 protected boolean createKeys(List<String> toPopulate) {
 toPopulate.add("root");
 return true;
 }

 @Override
 protected Node[] createNodesForKey(String key) {
 return new Node[]{
 new GenreNode("Techno, Trance and Dance"),
 new GenreNode("Rock and Pop"),
 new GenreNode("Country and Classic")};
 }
}

Listing 21-4. A Genre Represented by the GenreNode Class

import org.openide.nodes.AbstractNode;
import org.openide.nodes.Children;

public class GenreNode extends AbstractNode {
 public GenreNode(String genre) {
 super(Children.create(new AlbumNodeFactory(genre), false));
 this.setDisplayName(genre);
 }
}

The AlbumNodeFactory class, which is responsible for creating the albums of a certain genre, is
basically built like the GenreNodeFactory class. First you create three node instances of the type
AlbumNode in the createNodesForKey() method directly and pass the genre to this method. With this
parameter, for example, you were able to search in a database for albums belonging to this genre. The
data of an album is managed by the Album class (see Listing 21-5).

Listing 21-5. The AlbumNodeFactory Class Creates the Nodes of the Albums for a Certain Genre.

import org.openide.nodes.ChildFactory;
import org.openide.nodes.Node;
...
public class AlbumNodeFactory extends ChildFactory<String> {
 private String genre;

CHAPTER 21 PALETTE

256

 public AlbumNodeFactory(String genre) {
 this.genre = genre;
 }

 @Override
 protected boolean createKeys(List<String> toPopulate) {
 toPopulate.add(genre);
 return true;
 }

 @Override
 protected Node[] createNodesForKey(String key) {
 return new Node[] {
 new AlbumNode(
 new Album("Tunnel Trance Force 39", "42", "2","2007",
 "com/galileo/netbeans/module/cover_small.jpg",
 "com/galileo/netbeans/module/cover_big.jpg")),
 new AlbumNode(
 new Album("Dream Dance 43", "39", "3", "2007",
 "com/galileo/netbeans/module/cover2_small.jpg",
 "com/galileo/netbeans/module/cover2_big.jpg")),
 new AlbumNode(
 new Album("DJ Networx 31", "45", "2", "2006",
 "com/galileo/netbeans/module/cover3_small.jpg",
 "com/galileo/netbeans/module/cover3_big.jpg"))
 };
 }
}

At last, the AlbumNode class is responsible for displaying the albums on the palette (as you can see in
Figure 21-2). Since an AlbumNode does not own additional child nodes, you pass an empty container to
the constructor of the base class via Children.LEAF. You determine the name via setDisplayName(),
which will be displayed on the palette. You can use HTML here for an attractive presentation (see Listing
21-6). For this purpose, I created the getLabel() method, which puts together an HTML string, which
displays the data of the album in a table. The value of the getHtmlDisplayName() is used in the palette
manager, which you can open via the context menu of the palette. You provide the icon of the
corresponding entry with the getIcon(), method. In this example, the icon is a cover of an album. Thus
the user can choose between big and small icons. So you should deliver a small icon (typically 16 pixels)
and a bigger icon, depending on the type parameter.

Listing 21-6. The AlbumNode Class Is Responsible for Displaying a Palette Entry.

import org.openide.nodes.AbstractNode;
import org.openide.nodes.Children;
...
public class AlbumNode extends AbstractNode {
 private Album album = null;

 public AlbumNode(Album album) {
 super(Children.LEAF);
 this.album = album;

CHAPTER 21 PALETTE

257

 this.setDisplayName(getLabel());
 }

 public String getHtmlDisplayName() {
 return "" + album.getTitle() + " (" + album.getTracks() + " Tracks)";
 }

 public Image getIcon(int type) {
 return album.getIcon(type);
 }

 private String getLabel() {
 String label = "<html>" +
 "<table cellspacing=\"0\" cellpadding=\"1\">" +
 "<tr>" +
 "<td>Title </td>" +
 "<td>" + album.getTitle() + "</td>" +
 ...
 }
}

Creating and Adding a Palette
After creating this node hierarchy, which provides the data for the palette, you can now create a palette
and add it to the Lookup of the playlist top component. Thus, the palette is always displayed as soon as a
playlist is active. So first, create a root node in the constructor of the PlaylistTopComponent class. Your
palette data comes from this root node. You pass a children container, which is created by the factory
method Children.create(), to this root node. This children container cares about the management of
the data. At the same time, you pass a GenreNodeFactory instance which is responsible for creating the
data. Then, you just need a PaletteActions instance which has no further significance at the moment.
Later you can create a PaletteController instance out of it via createPalette(). You can pack this
instance into a Lookup, which you define as a local Lookup of the top component via associateLookup().

import org.netbeans.spi.palette.PaletteActions;
import org.netbeans.spi.palette.PaletteController;
import org.netbeans.spi.palette.PaletteFactory;
...
public PlaylistTopComponent() {
 ...
 Node root = new AbstractNode(Children.create(new GenreNodeFactory(), false));
 PaletteActions a = new MyPaletteActions();
 PaletteController p = PaletteFactory.createPalette(root, a);
 associateLookup(Lookups.fixed(p));
}

Drag-and-Drop Functionality
The drag-and-drop functionality is still missing for dragging the albums from the palette to the playlist
window. For this purpose, two supplements are necessary. One for the Album and AlbumNode classes and
one for the top component or the table, which will receive instances of the Album class.

CHAPTER 21 PALETTE

258

The data you want to pass is located in the Album class. You implement the Transferable interface
on the Album class, in order to be able to directly pass them to the playlist top component via
drag-and-drop (see Listing 21-7). A DataFlavor (which you create as a static instance in Album) is needed
for identifying the data. With the getTransferDataFlavors() method you return your special DataFlavor.
The getTransferData() method is called by the playlist window. Return the album instance to this
method via this, if the requested DataFlavor is of the type DATA_FLAVOR. If another DataFlavor is
requested, you trigger an exception.

Listing 21-7. The Album Class Contains the Data and Implements the Interface Transferable, So It Can Be

Passed Via Drag and Drop.

import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.UnsupportedFlavorException;
...
public class Album implements Transferable {
 public static final DataFlavor DATA_FLAVOR = new DataFlavor(Album.class, "album");
 ...

 public DataFlavor[] getTransferDataFlavors() {
 return new DataFlavor[] {DATA_FLAVOR};
 }

 public boolean isDataFlavorSupported(DataFlavor flavor) {
 return flavor == DATA_FLAVOR;
 }

 public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException {
 if(flavor == DATA_FLAVOR) {
 return this;
 } else {
 throw new UnsupportedFlavorException(flavor);
 }
 }
}

Actually, the user does not move the Album object itself, but an AlbumNode instance. This means the
drag event is triggered on the node. Therefore, you overwrite the drag() method which was already
specified by the Node class. This method delivers a Transferable instance—in this case the album
instance, which is represented by the AlbumNode (see Listing 21-8).

Listing 21-8. Making the AlbumNode Drag-Suitable

import java.awt.datatransfer.Transferable;
...
public class AlbumNode extends AbstractNode {
 private Album album = null;
 ...
 public Transferable drag() throws IOException {
 return album;

CHAPTER 21 PALETTE

259

 }
}

Finally, you still have to extend the PlaylistTopComponent so it can receive a palette entry. For this
you need a TransferHandler, which is registered on the object. This object will be able to receive the
data; here, it is the albums table and its scroll area scrollPane. You implement a specific transfer handler
named AlbumTransferHandler, in order to determine which data you want to accept and to process the
data. To do so you just overwrite two methods. First, the canImport() method, which is always called
when an object is dragged on or above the component. In this component, you decide whether that
object will be accepted. This check is done by the DataFlavor which was previously determined in Album.
If this method returns true, the user receives a (mouse symbol) signal that the component is able to
receive the object. The other method to overwrite is the importData() method. This method is called
when the drop event is triggered. Via the TransferSupport object (which is passed), you receive exactly
that Transferable instance delivered to the AlbumNode class by the previously implemented drag()
method. With the getTransferData() method and with your DataFlavor object, you are then able to
determine the corresponding Album object. Finally, you add the object’s data to the table. (See Listing 21-
9.)

Listing 21-9. Receiving an Album Object Passed via Drag and Drop

import javax.swing.TransferHandler;
import javax.swing.TransferHandler.TransferSupport;
...
public final class PlaylistTopComponent extends TopComponent {

 private TransferHandler th = new AlbumTransferHandler();

 public PlaylistTopComponent() {
 ...
 albums.setTransferHandler(th);
 scrollPane.setTransferHandler(th);
 }

 private final class AlbumTransferHandler extends TransferHandler {

 public boolean canImport(TransferSupport support) {
 return support.isDataFlavorSupported(Album.DATA_FLAVOR);
 }

 public boolean importData(TransferSupport support) {
 try {
 Album a = (Album)support.getTransferable().getTransferData(Album.DATA_FLAVOR);
 DefaultTableModel model = (DefaultTableModel)albums.getModel();
 model.addRow(new Object[]{a.getTitle(),
 a.getTracks(),
 a.getCDs(),
 a.getYear()});
 return true;
 } catch(Exception e) {
 Exceptions.printStackTrace(e);
 return false;

CHAPTER 21 PALETTE

260

 }
 }
 }
}

Summary
The palette module of the NetBeans IDE is concerned with the management and graphic display of
components, in order to facilitate quick access. In this chapter you learned how to define palette entries
in the layer file. Additionally you implemented an example to create a specific node class that represents
palette items. In this example you also saw how easy it is to implement drag-and-drop support for your
own palette items.

PART 4

Use & Extend:
Advanced APIs of the
NetBeans Platform & ID

C H A P T E R 22

263

Palette API

In Chapter 21, you created a palette. From this palette you could drag music albums on the top
component (which you implemented yourself) via drag-and-drop. As indicated, it is also possible to
register a palette for a certain file type. This means that when a file of this type is opened in the NetBeans
editor, the palette registered for this type is automatically opened. The following example will show how
this actually works.

Let’s assume you want to provide a palette for manifest files (.mf) (see Figure 22-1). First you define
the items, which will be provided on the palette, each with an XML file and a class. Then you register this
item in the layer file. Afterwards, you implement a class that creates a palette for the already defined and
registered items. Finally, you register this class in the layer file for the manifest file type.

Figure 22-1. Palette for manifest files

CHAPTER 22 PALETTE API

264

Defining and Registering Palette Items
A single palette item is defined by an XML file of the type editor-palette-item (see DTD in the Appendix).
In such a file you can assign the class called by drag-and-drop which is responsible for inserting. You
define two icons in different sizes and assign the text and a tooltip for these items. As a result, the palette
item Module Name looks like that shown in Listing 22-1.

Listing 22-1. Definition of a Palette Item by an XML File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE editor_palette_item PUBLIC
 "-//NetBeans//Editor Palette Item 1.1//EN"
 "http://www.netbeans.org/dtds/editor-palette-item-1_1.dtd">
<editor_palette_item version="1.1">
 <class name="com.galileo.netbeans.module.items.ModuleName"/>
 <icon16 urlvalue="com/galileo/netbeans/ModuleName16.png"/>
 <icon32 urlvalue="com/galileo/netbeans/ModuleName32.png"/>
 <inline-description>
 <display-name>Module Name</display-name>
 <tooltip>Module Name</tooltip>
 </inline-description>
</editor_palette_item>

 Note You can also outsource the values of the two text elements display-name and tooltip into a resource
bundle, in order to internationalize palette items. For this purpose, the element inline-description is
substituted by description. Instead of these two values you then assign the keys under which they can be found
in the resource bundle. Furthermore, you assign which resource bundle is to be used, of course:

 <description
 localizing-bundle="com.galileo.netbeans.module.Bundle"
 display-name-key="DISPLAY"
 tooltip-key="TOOLTIP"/>

You defined the ModuleName class by the class element. This class is called when you drag the entry
from the palette into a manifest file. For this purpose, the class implements the interface
ActiveEditorDrop. This interface is part of the Text API, on which you must define a dependency. The
handleTransfer() method of the ActiveEditorDrop interface is automatically called by the drop event.
With it, a JTextComponent is delivered as a parameter. With this component, you can access the current
document, meaning the manifest file, in which you want to insert the palette entry. Since in this case the
process repeats for each palette entry and only differs according to the text to insert, you implement an
abstract ManifestItem class. This class does the inserting of the entry in the manifest document. The
corresponding text is delivered by the getItem() method. This method must be implemented by the
subclasses. (See Listing 22-2.)

CHAPTER 22 PALETTE API

265

Listing 22-2. Abstract Class That Cares About Inserting the Manifest File.

import org.openide.text.ActiveEditorDrop;
...
public abstract class ManifestItem implements ActiveEditorDrop {
 public abstract String getItem();

 public boolean handleTransfer(JTextComponent editor) {
 try {
 Document doc = editor.getDocument();
 int pos = editor.getCaretPosition();
 doc.insertString(pos, getItem() + "\n", null);
 } catch (BadLocationException ex) {
 Logger.getLogger(ManifestItem.class.getName()).log(Level.SEVERE, null, ex);
 }
 return(true);
 }
}

The structure of the classes of the concrete palette items are trivial.

public class ModuleName extends ManifestItem {
 public String getItem() {
 return("OpenIDE-Module-Name: My Module");
 }
}

For an additional entry:

public class ModuleSpecVersion extends ManifestItem {
 public String getItem() {
 return("OpenIDE-Module-Specification-Version: 1.0");
 }
}

Of course, you could still extend these classes, so a dialog is displayed to the user. In such a dialog,
the user can directly assign the concrete values, such as the name or the version of the module. You just
have to register it in the layer file in a folder (which you create), in order to complete the first step of
defining the separate items. In this case, it makes sense to call the folder ManifestPalette. Below this
folder you can create additional folders. Each of those folders then represents a category in the palette,
into which the entries can be grouped. (See Listing 22-3.)

Listing 22-3. Registration of the Palette Entries in Your Own Folder

<folder name="ManifestPalette">
 <folder name="Basic">
 <file name="ModuleName.xml" url="items/ModuleName.xml"/>
 </folder>
 <folder name="Versioning">
 <file name="ModuleSpecVersion.xml" url="items/ModuleSpecVersion.xml"/>
 <file name="ModuleImplVersion.xml" url="items/ModuleImplVersion.xml"/>
 </folder>
</folder>

CHAPTER 22 PALETTE API

266

Creating and Registering the Palette Controller
You already implemented and registered the items for the palette in the layer file in the ManifestPalette
folder. Now, your task is to create a PaletteController instance for this folder, which manages these
entries. To do this create a class named ManifestPalette. Add the method createPalette() to this class.
This method assisted by the PaletteFactory class of the Palette API creates a PaletteController
instance, as shown in Listing 22-4.

Listing 22-4. Palette Controller Class Responsible for Managing Your Entries

import org.netbeans.spi.palette.PaletteActions;
import org.netbeans.spi.palette.PaletteController;
import org.netbeans.spi.palette.PaletteFactory;
...
public class ManifestPalette {
 private static PaletteController palette;

 public static PaletteController createPalette() {
 try {
 if (palette == null) {
 palette = PaletteFactory.createPalette("ManifestPalette", new MyPaletteActions());
 }
 return(palette);
 } catch (Exception ex) {
 Logger.getLogger(ManifestPalette.class.getName()).log(Level.SEVERE, null, ex);
 }
 return null;
 }

 private static final class MyPaletteActions
 extends PaletteActions {
 ...
 }
}

We now come to the crucial part, which is the registration of this controller for the manifest file type.
First, you have to determine the registered MIME type for the manifest files. You can easily find out this
type by means of the layer tree of the Projects view under Important Files ➤ XML Layer ➤ <this layer in
context>. There, you can find the MIME type text/x-mainfest under Editors. So, you register the
controller in the folder Editors/text/x-manifest in your layer file as follows:

<folder name="Editors">
 <folder name="text">
 <folder name="x-manifest">
 <file name="ManifestPalette.instance">
 <attr name="instanceOf" stringvalue="org.netbeans.spi.palette.PaletteController"/>
 <attr name="instanceCreate"
 methodvalue="com.galileo.netbeans.module.ManifestPalette.createPalette"/>
 </file>

CHAPTER 22 PALETTE API

267

 </folder>
 </folder>
</folder>

Thus, the controller for your manifest palette items is automatically created when opening a
manifest file in the editor via the createPalette() method. This controller is provided to the palette
module via the Lookup. Then, the palette module can display the corresponding entries as shown in
Figure 22-1.

Extending an Existing Palette
Besides creating your own palette for a file type, for which there is no palette so far, you can add entries
to an already existing palette. To do this you just have to know the name of the folder in the layer file.
You can easily search for already existing palette folders in the layer tree (Important Files ➤ XML Layer).
For example, the folder for HTML files is called HTMLPalette. You can also add your entries to the already
existing folder HTMLPalette the same way as with your own folder ManifestPalette. For example, this
could then look like Listing 22-5.

Listing 22-5. Adding Entries of an Already Existing Palette

<folder name="HTMLPalette">
 <folder name="My HTML Items">
 <file name="item1.xml" url="items/item1.xml"/>
 <file name="item2.xml" url="items/item2.xml"/>
 </folder>
</folder>

Summary
With the Palette API you can not only extend your NetBeans Platform application but also the NetBeans
IDE. You can create file-specific palettes or extend already existing ones. In this chapter you learned how
to create and register palette items as well as palette controllers. In the last part of this chapter we looked
at how to extend preexisting palettes.

C H A P T E R 23

269

Task List API

The Task List module of the NetBeans IDE enables you to display tasks, notifications, or error messages
as shown in Figure 23-1. The entries of the Task List can be arranged in groups, giving the user a better
overview; the user can also determine from what sections entries will be shown. By default, three
sections, called scopes, are defined within the Task List module. One scope corresponds to the currently
opened file, another scope corresponds to the main project and its opened dependent projects, and the
third to all opened projects. The entries are supplied by scanners working with the fixed scope.

Figure 23-1. Task List module of the NetBeans IDE

CHAPTER 23 TASK LIST API

270

For the Task List module there is the Task List API with which you can flexibly expand the scope of
operation of the module. It is essentially about providing additional scanner. The expansions are
integrated via extension points in the layer file. How this works is best shown in an example. Let’s say
you want to implement a scanner which displays all positions at which a direct output of information is
used, such as with System.out.println(). Before delivering a product, for example, you can ensure that
all important positions were substituted by logging outputs or just removed.

Implementing Scanner
You derive your own scanner implementation from the abstract FileTaskScanner class. A scanner has a
name and a description of what it can achieve. Optionally, you can connect a scanner to an options
panel. With this options panel the user can individually configure the scanner. For example, you can use
the ToDo scanner of the NetBeans IDE to configure the tokens, which will become identified as a ToDo
task within a file. For simplicity’s sake, you define these tokens directly in the scanner. Then the three
parameters name, description and path to the options panel (null, if no options panel is used) are
passed to the base class constructor. Since the scanner is later declaratively registered in the layer file
and afterward initialized by the Task List framework, you provide the factory method create(). Via this
method, a LoggingTaskScanner instance can be created.

The most important part of the scanner is the scan() method, as you could probably already guess.
With this method you get passed the file which is to be searched. You go though this file with a Pattern
(for recognizing the tokens) and with a Matcher. Create a Task instance for each position found.
Afterward, you add this instance to a list which is returned. The TodoTaskScanner class was used as a
template for the implementation in Listing 23-1. A Task instance is created via the static method
Task.create(). You pass the searched file, the group to which the entry shall be added, a description
(typically the line in which the token was found), and the number of the line to this method.

Listing 23-1. Scanner Implementation

import org.netbeans.spi.tasklist.FileTaskScanner;
import org.netbeans.spi.tasklist.Task;
import org.openide.filesystems.FileObject;
...
public class LoggingTaskScanner extends FileTaskScanner {

 private static final String GROUP_NAME = "logging-tasklist";
 private static final String[] TOKENS = {
 "System.out.println",
 "System.err.println",
 "printStackTrace"};
 private Pattern regexp = null;
 private Callback callback = null;

 public LoggingTaskScanner(String name, String desc) {
 super(name, desc, null);
 }

 public static LoggingTaskScanner create() {
 String name = NbBundle.getBundle(LoggingTaskScanner.class).
 getString("LBL_loggingtask");

CHAPTER 23 TASK LIST API

271

 String desc = NbBundle.getBundle(LoggingTaskScanner.class).
 getString("HINT_loggingtask");
 return new LoggingTaskScanner(name, desc);
 }

 public List<? extends Task> scan(FileObject file) {
 List<Task> tasks = new LinkedList<Task>();
 int lineno = 0;
 try {
 for (String line : file.asLines()) {
 lineno++;
 Matcher matcher = getScanRegexp().matcher(line);
 if (matcher.find()) {
 String description =
 line.subSequence(matcher.start()+1, line.length()).toString();
 Task task = Task.create(file, GROUP_NAME, description, lineno);
 tasks.add(task);
 }
 }
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 return tasks;
 }

 private Pattern getScanRegexp() {
 if (regexp == null) {
 // create Pattern for the Tokens
 }
 return regexp;
 }

 public void attach(Callback callback) {
 if(callback == null && this.callback != null) {
 regexp = null;
 }
 this.callback = callback;
 }

 @Override
 public void notifyPrepare() {
 getScanRegexp();
 }

 @Override
 public void notifyFinish() {
 regexp = null;
 }
}

The user can activate or deactivate scanners via the context menu of the Task List window. You are
informed about whether the scanner is active or not by the attach() method. If the callback parameter

CHAPTER 23 TASK LIST API

272

has the value null, the scanner has been deactivated. You can access the Task List framework via the
Callback instance. Finally, there are still the two methods notifyPrepare() and notifyFinish(). The
notifyPrepare() method is called before initiation of a scan by the Task List framework in which you can
do preparations for the following call of the method scan(). Finally, the notifyFinish() method is called.

Registering Scanner and Group
The Task List framework defines three extension points in the layer file with which extensions can be
registered. These are

TaskList/Groups
TaskList/Scanners
TaskList/ScanningScopes

First, you create a new group in which the logging tasks will be grouped. You already determined an
ID in the scanner with logging-tasklist. With it the tasks, created in the scanner, can be assigned to the
group. A group can easily be created via the createGroup() method of the Task class; you just need to
specify some other attributes with which the group is configured. In addition to the ID, you determine
keys for the corresponding values of the resource bundle. For registering the scanner, you assign the
base class, and you assign the factory method for creating the scanner (see Listing 23-2).

Listing 23-2. Creating a Task Group and Registering the Scanner via the Extension Points of the Task List

Framework

<filesystem>
 <folder name="TaskList">
 <folder name="Groups">
 <file name="LoggingTaskGroup.instance">
 <attr name="instanceCreate" methodvalue="org.netbeans.spi.tasklist.Task.createGroup"/>
 <attr name="localizingBundle" stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="groupName" stringvalue="logging-tasklist"/>
 <attr name="diplayNameKey" stringvalue="LBL_loggroup"/>
 <attr name="descriptionKey" stringvalue="HINT_loggroup"/>
 <attr name="iconKey" stringvalue="ICON_logging"/>
 <attr name="position" intvalue="400"/>
 </file>
 </folder>
 <folder name="Scanners">
 <file name="LoggingTaskScanner.instance">
 <attr name="instanceOf" stringvalue="org.netbeans.spi.tasklist.FileTaskScanner"/>
 <attr name="instanceCreate" methodvalue=
 "com.galileo.netbeans.module.LoggingTaskScanner.create"/>
 </file>
 </folder>
 </folder>
</filesystem>

CHAPTER 23 TASK LIST API

273

Summary
The Task List API is part of the NetBeans IDE and you can use it to extend the standard Task List module
in any way. In this chapter you learned how to create your own scanner implementation.You also saw
how to register the Task List scanner and groups.

C H A P T E R 24

275

Quick Search API

The Quick Search feature of the NetBeans Platform is an infrastructure for easily searching various files
in different sources (shown in Figure 24-1). The Quick Search module has a simple API for providing so-
called search provider implementations.

Figure 24-1. Quick Search feature

The search box of the Quick Search module can be added to a toolbar or to the menu bar. Then the
user can type in the desired term there. The registered search providers are already asynchronously
queried for corresponding results when typing in. An action can be triggered by clicking a result.
Listing 24-1 shows how to implement a search provider combined with the Favorites module. You
search for MP3 files in its folders. Clicking a found file should add it to the playlist.

CHAPTER 24 QUICK SEARCH API

276

Implementing Quick Search Provider
The NetBeans IDE provides a wizard for creating the basic structure and the registration of a search
provider. Call this wizard with File ➤ New File ➤ Module Development ➤ Quick Search Provider. First,
we name the provider class and define the package in which the class shall be created. Additionally, we
define the category with which the results are grouped in the Quick Search popup (see Figure 24-1). You
are able to influence the order of these categories, too. A small number means that the referring category
is listed at the top. Finally, you have to choose a command prefix. If this prefix is separated from the
search term by a space, it is only searched in the referring category.

Listing 24-1. Quick Search Provider Implementation

import org.netbeans.spi.quicksearch.SearchProvider;
import org.netbeans.spi.quicksearch.SearchRequest;
import org.netbeans.spi.quicksearch.SearchResponse;
...
public class MyMusicQSProvider implements SearchProvider {
 private DataFolder f;

 public MyMusicQSProvider() {
 FileObject fo = FileUtil.getConfigFile("Favorites");
 f = DataFolder.findFolder(fo);
 }

 @Override
 public void evaluate(SearchRequest req, SearchResponse resp) {
 for (DataObject data : f.getChildren()) {
 if (data instanceof DataShadow) {
 DataShadow obj = (DataShadow) data;
 for (final FileObject child : obj.getOriginal().getPrimaryFile().getChildren()) {
 if (child.getName().toLowerCase().contains(req.getText().toLowerCase())
 && child.getExt().toLowerCase().equals("mp3")) {
 if(!resp.addResult(new AddToPlaylist(child),child.getName())) {
 return;
 }
 }
 }
 }
 }
 }

 private static final class AddToPlaylist implements Runnable {
 private FileObject fo;

 public AddToPlaylist(FileObject fo) {
 this.fo = fo;
 }

 @Override
 public void run() {
 try {

CHAPTER 24 QUICK SEARCH API

277

 PlaylistTopComponent.addFile(DataObject.find(fo).getNodeDelegate());
 } catch (DataObjectNotFoundException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }
}

First, you want to get access to the folders which are shown in the Favorites window. You do so in
the constructor of the search provider. The only method you have to overwrite is the evaluate()
method. It gets transferred the text that had been typed in in the Quick Search search box in form of a
SearchRequest object. Let’s look at all folders which had been added to the Favorites window and detect
those MP3 files whose file name contains the search string. Add the search results to the SearchResponse
object by the addResult() method. Doing so you transfer a Runnable instance and the name to be
displayed in the list of results of the search (which can be formatted with HTML). This instance is
executed when clicking the referring entry in the list of results. In this example you implement the
AddToPlaylist class. You transfer the constructor to the found file. In the run() method (which is
executed on the click event) you determine a Node instance which represents the file. Then you add it to
the playlist.

Registering Quick Search Provider
A search provider implementation has to be made public to the Quick Search module with an entry in
the layer file; the extension point QuickSearch is provided there. The entry is automatically created when
you create the provider with the NetBeans IDE wizard. Search providers are assigned to a category. This
way, the search results can be shown categorized in the list of results (see Figure 24-1). You decide the
position of the category in the list of results with the position attribute. With the command attribute, you
can indicate a prefix with which a search can be limited on this category. In this example, that means the
search can be limited on the shown search provider by the entry MP3 <search string>.

It is possible to add multiple search provider implementations to one category. The name of a
search provider is specified by the displayName attribute. (See Listing 24-2.)

Listing 24-2. Registration of a Search Provider

<folder name="QuickSearch">
 <folder name="Music">
 <attr name="command" stringvalue="MP3"/>
 <attr name="position" intvalue="100"/>
 <file name="com-galileo-netbeans-module-MyMusicQSProvider.instance">
 <attr name="displayName"
 bundlevalue="com.galileo.netbeans.module.Bundle#MyMusicQSProvider.instance"/>
 </file>
 </folder>
</folder>

Integrating Quick Search UI
The Quick Search search box is not provided in your application by default. It can be added to a toolbar
by the dialog Customize Toolbars. By a layer entry you can also permanently assign the Quick Search UI
to a toolbar. This way you ensure that it already exists when starting the application. You can determine

CHAPTER 24 QUICK SEARCH API

278

the name of the Quick Search action with the layer tree and then create a link. As shown in Listing 24-3
you add the action to the newly created toolbar QuickSearch.

Listing 24-3. Adding the Quick Search UI

<folder name="Toolbars">
 <folder name="QuickSearch">
 <file name="org-netbeans-modules-quicksearch-QuickSearchAction.shadow">
 <attr name="originalFile" stringvalue="
 Actions/Edit/org-netbeans-modules-quicksearch-QuickSearchAction.instance"/>
 <attr name="position" intvalue="400"/>
 </file>
 </folder>
</folder>

Hiding Existing Search Provider Categories
Search providers for actions and operations, among others, belong to the NetBeans Platform, by default.
These are each assigned to a category. You can hide categories by means of the standard System
Filesystem functionality (i.e., in the same way as you hide menu entries). You can exclude the referring
search providers from the search. To do so you only need to add the suffix _hidden to the category’s
name. Add the following entry in Listing 24-4 to the layer file, for example, in order to delete both first
stated search provider categories:

Listing 24-4. Deleting Search Provider Categories

<folder name="QuickSearch">
 <folder name="Actions_hidden"/>
 <folder name="Options_hidden"/>
</folder>

Summary
It is possible to add providers to the Quick Search function of the NetBeans Platform by means of the
Quick Search API. These providers search for any data and objects at any place. In this chapter you
learned how to implement and register Quick Search providers. You also looked at how to integrate the
Quick Search UI and how to hide existing search provider categories.

C H A P T E R 25

279

Auto Update Services API

With its plugin manager the NetBeans Platform provides a useful tool to the user. With this tool,
individual parts of applications (single modules or several related modules) can be installed, uninstalled,
activated, deactivated, or updated. It is possible to directly access these functionalities by means of the
Auto Update Services A PIand create really different applications.

It is possible to access all existing modules because of the class UpdateManager. One module (unit) is
represented by the class UpdateUnit; this class is a kind of wrapper for different elements. Such elements
could be

• The installed module itself

• The module which had been installed for the current locale setting

• The predecessor of an installed update (backup)

• A list of available updates (in update centers)

• A list of available localizations (in update centers)

The named elements are each represented by the class UpdateElement. This class provides the name,
the category, the author, or the icon of the module, among other things. Actions such as installing or
uninstalling are managed by an OperationContainer instance. To create such an instance a factory
method is provided for each action.

The following sections demonstrate the usage of the Auto Update Services API by means of typical
applications.

Automatic Update in the Background
Business applications often require that updates are automatically installed on the clients without user
interaction. This ensures that all users work with the same and the latest version of the application.

Search Updates
The first step is to search the modules that must be installed. The search takes place in all registered
update centers. That means in the first delivery of your application, at least one update center should be
registered. Via this update center the new modules should be included. You can register an update
center quite easily by means of the NetBeans IDE. To do so, just call File ➤ New File ➤ Module
Development ➤ Update Center. You can find more information on this in Chapter 36.

Search for both the latest and the updated modules by the method shown in Listing 25-1. It is
important to make the desired (or all) update provider(s) load information from the update centers

CHAPTER 25 AUTO UPDATE SERVICES API

280

about the provided modules. In this example you determine all providers via the
UpdateUnitProviderFactory and execute its refresh() method. After that, you determine all provided
modules that can be updated or reinstalled via the UpdateManager, which also takes all providers into
account. To do so, filter with !unit.getAvailableUpdates().isEmpty() all modules which are already
installed and which are not updated. Now you just have to distinguish between a new module and an
updated module using the method getInstalled(). If it says null, a version of this module is not yet
installed; that means it is a new module. According to this query you add the modules to the appropriate
list.

Listing 25-1. Searching New and Updated Modules

private List<UpdateElement> install = new ArrayList<UpdateElement>();
private List<UpdateElement> update = new ArrayList<UpdateElement>();

public void searchNewAndUpdatedModules() {
 for (UpdateUnitProvider provider : UpdateUnitProviderFactory.
 getDefault().getUpdateUnitProviders(false)) {
 try {
 provider.refresh(null, true);
 } catch (IOException ex) {
 LOG.severe(ex.getMessage());
 }
 }
 for (UpdateUnit unit : UpdateManager.getDefault().getUpdateUnits()) {
 if (!unit.getAvailableUpdates().isEmpty()) {
 if (unit.getInstalled() == null) {
 install.add(unit.getAvailableUpdates().get(0));
 } else {
 update.add(unit.getAvailableUpdates().get(0));
 }
 }
 }
}

In the approach shown in Listing 25-1, all update centers are queried by the UpdateManager. You can
also restrict the search to a separate provider to ensure that the modules are automatically installed out
of a dedicated update center, as shown in Listing 25-2. You determine the desired update provider by the
UpdateUnitProviderFactory via name (according to the definition in the layer file). In contrast to the
previous approach, you do not search for the update manager then, but determine it directly on the
provider.

Listing 25-2. Searching Modules in a Special Update Center

private static final String UC_NAME = "com_galileo_netbeans_module_update_center";

public void searchNewAndUpdatedModulesInDedicatedUC() {
 for (UpdateUnitProvider provider : UpdateUnitProviderFactory.
 getDefault().getUpdateUnitProviders(false)) {
 try {
 if (provider.getName().equals(UC_NAME)) {
 provider.refresh(null, true);

CHAPTER 25 AUTO UPDATE SERVICES API

281

 for (UpdateUnit u : provider.getUpdateUnits()) {
 if (!u.getAvailableUpdates().isEmpty()) {
 if (u.getInstalled() == null) {
 install.add(u.getAvailableUpdates().get(0));
 } else {
 update.add(u.getAvailableUpdates().get(0));
 }
 }
 }
 }
 } catch (IOException ex) {
 LOG.severe(ex.getMessage());
 }
 }
}

Installing and Restarting Updates
Operations on modules are executed via an OperationContainer. It is possible to add any amount of
UpdateElement instances to this container. Please note that each operation container is responsible for
one certain action. That means in this case that two different containers are needed. These are created
via the referring factory methods OperationContainer.createForInstall() and
OperationContainer.createForUpdate(). Adding the elements does not depend on the type. This is why
you create a helper method for your purposes. (See Listing 25-3.)

Listing 25-3. Adding the Update Elements to an Operation Container

public OperationContainer<InstallSupport> addToContainer(
 OperationContainer<InstallSupport> c,
 List<UpdateElement> modules) {
 for (UpdateElement e : modules) {
 if (container.canBeAdded(e.getUpdateUnit (), e)) {
 OperationInfo<InstallSupport> operationInfo = c.add(e);
 if (operationInfo != null) {
 c.add(operationInfo.getRequiredElements());
 }
 }
 }
 return container;
}

The helper method shown in Listing 25-3 first checks whether a module is compatible with the
container. For each module this is checked by the method canBeAdded(). In that case you add the
module; an OperationInfo instance is delivered when the module has not been found in the container
yet. This instance helps adding the needed dependencies from the current module by means of the
method getRequiredElements(). In this example, this call could be skipped, because all available
modules are added anyway. However, with the method getBrokenDependencies() you could check
whether a dependency cannot be fulfilled.

In addition to filling the container with elements, downloading and installing modules works the
same way; a helper method is useful for this step. An OperationContainer is passed to this method.

CHAPTER 25 AUTO UPDATE SERVICES API

282

Through this operation container the modules can then be installed. After that you download, check,
and finally install the modules by the methods doDownload(), doValidate(), and doInstall() of the
InstallSupport instance. If the method doInstall() returns an OperationSupport.Restarter, a reboot is
necessary to finish the installation. However, you do not want to reboot at this time, and instead leave
the decision about when to reboot to the user and so use the method doRestartLater(). (See Listing 25-
4.)

Listing 25-4. Downloading and Installing the Module and Afterward Notifying the User

public void installModules(OperationContainer<InstallSupport> container) {
 try {
 InstallSupport support = container.getSupport();

 if (support != null) {
 Validator vali = support.doDownload (null, true);
 Installer inst = support.doValidate(vali, null);
 Restarter restarter = support.doInstall(inst, null);

 if (restarter != null) {
 support.doRestartLater(restarter);
 if (!isRestartRequested) {
 NotificationDisplayer.getDefault().notify(
 "Die Anwendung wurde aktualisiert",
 ImageUtilities.loadImageIcon("com/galileo/netbeans/module/rs.png", false),
 "Click here to restart",
 new RestartAction(support, restarter));
 isRestartRequested = true;
 }
 }
 }
 } catch (OperationException ex) {
 LOG.severe(ex.getMessage());
 }
}

The user still needs to be informed about the necessary reboot of the application; for this the
notification displayer, which is integrated in the status bar of the NetBeans Platform, works well. The
hint is displayed to the user in a balloon. The practical advantage of this is that you can add an action
which is displayed as a link. That way the user can directly reboot. You need the InstallSupport and the
Restarter instance for the reboot. You give both to the RestartAction which then executes the reboot (as
shown in Listing 25-5).

Listing 25-5. Action Class to Execute a Reboot

private static final class RestartAction implements ActionListener {
 private InstallSupport support;
 private OperationSupport.Restarter restarter;

 public RestartAction(
 InstallSupport support,
 OperationSupport.Restarter restarter) {

CHAPTER 25 AUTO UPDATE SERVICES API

283

 this.support = support;
 this.restarter = restarter;
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 try {
 support.doRestart(restarter, null);
 } catch (OperationException ex) {
 LOG.severe(ex.getMessage());
 }
 }
}

Automatically Starting Installation
Finally you have to start the automatic execution of the process in the background. One possibility is to
install the updates when starting the application. You can do this in a simple way by a warm-up task.
This would look like the methods which were implemented into the whole as shown in Listing 25-6.

Listing 25-6. Executing the Automatic Update Installation by a Warm-Up Task

import org.netbeans.api.autoupdate.InstallSupport;
import org.netbeans.api.autoupdate.OperationContainer;
import org.netbeans.api.autoupdate.OperationException;
import org.netbeans.api.autoupdate.OperationSupport;
import org.netbeans.api.autoupdate.UpdateElement;
import org.netbeans.api.autoupdate.UpdateManager;
import org.netbeans.api.autoupdate.UpdateUnit;
import org.netbeans.api.autoupdate.UpdateUnitProvider;
import org.netbeans.api.autoupdate.UpdateUnitProviderFactory;
import org.openide.awt.NotificationDisplayer;
import org.openide.util.RequestProcessor;
...
public class AutoInstaller implements Runnable {
 private static final Logger LOG = Logger.getLogger(AutoInstaller.class.getName());

 @Override
 public void run() {
 RequestProcessor.getDefault().post(
 new AutoInstallerImpl(), 1000);
 }

 private static final class AutoInstallerImpl implements Runnable {
 private List<UpdateElement> install = new ArrayList<UpdateElement>();
 private List<UpdateElement> update = new ArrayList<UpdateElement>();
 private boolean isRestartRequested = false;

 @Override
 public void run() {
 searchNewAndUpdatedModules();

CHAPTER 25 AUTO UPDATE SERVICES API

284

 OperationContainer<InstallSupport> installContainer =
 addToContainer(OperationContainer.createForInstall(), install);
 installModules(installContainer);

 OperationContainer<InstallSupport> updateContainer =
 addToContainer(OperationContainer.createForUpdate(), update);
 installModules(updateContainer);
 }

 public OperationContainer<InstallSupport> addToContainer(
 OperationContainer<InstallSupport> container,
 List<UpdateElement> modules) { ... }

 public void installModules(
 OperationContainer<InstallSupport> container) { ...}

 public void searchNewAndUpdatedModules() { ... }
 }

 private static final class RestartAction
 implements ActionListener { ... }
}

A warm-up task is executed asynchronously when starting the application. Only the Runnable
interface has to be implemented. It is also possible to hold back the start for a certain time by the
RequestProcessor class. The warm-up task only has to be registered in the layer file as follows:

<folder name="WarmUp">
 <file name="com-galileo-netbeans-module-AutoInstaller.instance"/>
</folder>

Deactivating Modules Automatically
In the example showing how to automatically update an application in the previous section you got to
know the Auto Update Services API for finding, downloading, installing, and updating modules.
Furthermore, the API makes it possible to activate or deactivate certain modules. There are very
interesting applications for this. For example, you can switch off certain modules or functionalities for
certain user groups (by the login information). The method is quite similar to that described in the
previous section. First, you determine all available modules (including the already installed modules) via
the UpdateManager. By the additional filter UpdateManager.TYPE.MODULE you ensure that only application
modules and not localization modules are delivered. Via the getInstalled() method you check whether
you are dealing with an installed module. This way new modules are filtered. Search for modules to
deactivate in the remaining modules that are activated. Deactivating works via the unique code name
base. (See Listing 25-7.)

Listing 25-7. Searching for Certain Active Application Modules

List<String> modules = Collections.singletonList("com.galileo.netbeans.module3");
OperationContainer<OperationSupport> cont = OperationContainer.createForDirectDisable();
for (UpdateUnit unit : UpdateManager.getDefault().getUpdateUnits(UpdateManager.TYPE.MODULE)) {

CHAPTER 25 AUTO UPDATE SERVICES API

285

 if (unit.getInstalled() != null) {
 UpdateElement elem = unit.getInstalled();
 if (elem.isEnabled()) {
 if (modules.contains(elem.getCodeName())) {
 if (cont.canBeAdded(unit, elem)) {
 OperationInfo<OperationSupport> operationInfo = cont.add(elem);
 if (operationInfo != null) {
 cont.add(operationInfo.getRequiredElements());
 }
 }
 }
 }
 }
}

For deactivating modules you create a referring container with the factory method
OperationContainer.createForDirectDisable(). Add the desired modules to it. Before doing so, check
again whether the modules are compatible with the container. If the module is successfully added you
can add all modules that are dependent of the module to deactivate via the OperationInfo instance.
Finally, ensure that the container is not empty. Then deactivate the modules via the method
doOperation() (see Listing 25-8.)

Listing 25-8. Deactivating Application Modules

if (!cont.listAll().isEmpty()) {
 try {
 Restarter restarter = cont.getSupport().doOperation(null);
 } catch (OperationException ex) {
 LOG.severe(ex.getMessage());
 }
}

Summary
You can access all functions, which your plugin manager provides, using the Auto Update Services API,
making it possible to realize quite interesting applications. In this chapter you learned how you can
execute an application-specific automatic update in the background and how you can disable modules
programmatically.

PART 5

Server & Database:
Enterprise Applications and
the NetBeans Platform

C H A P T E R 26

289

Java DB

Apache Derby is a relational database management system (RDBMS) hidden behind Java DB. This
database system is implemented 100% in Java and can therefore be used as a platform-independent
system. The Java DB is very small for a complete database management system; it can be delivered
directly with its application because no special installation and no further actions for operating a
database are necessary. Java DB is therefore predestined for use in a rich client application. Since Java
Platform 6, Oracle delivers the client database Java DB by default; the NetBeans IDE naturally supports
the Java DB in terms of management and server action.

Integrating the Java DB
You can get the Java DB with your Java Platform installation or you can download the latest version at
http://www.oracle.com/technetwork/java/javadb. You will find the file derby.jar, which is the actual
database system that also provides the driver, in the subdirectory lib. There is also the file derbyclient.jar,
which is used when the Java DB is executed on a server and when you do not want to deliver the
database system with your application. However, this discussion will mainly deal with the client-side use
and therefore with embedding the Java DB in its application. Using the terminology of a NetBeans
Platform application, you want to add the Java DB as an independent and separate module to your
application; that is, you create a library wrapper module. First, call File ➤ New Project...and choose
NetBeans Modules ➤ Library Wrapper Module. The next step is to select the file derby.jar and the
additional file derbyLocale_de_DE.jar, which contains the German versions of all reports of the database
system. Alternatively you can of course add a different language package or additional packages. In this
example use org.apache.derby as code name base and Java DB Embedded as name. Now you just have to
define a dependency on this module which was just created in your application module that wants to
access the database. The database system is then automatically booted when the JDBC driver is called
for the first time.

Registering Drivers
If you have worked with the JDBC API already you are probably more or less familiar with the call
Class.forName(). The referring database driver for the database system you use is indirectly loaded, so
the driver manager is able to establish a connection to its database. The DriverManager class has been
extended by the JDBC API 4.0, which is part of the Java Platform 6, so it can load the database drivers
which were registered over the META-INF/services directory. Ideally you or the driver itself can
declaratively register the implementation of the java.sql.Driver interface. The advantage of this is that
the call Class.forName() can be completely omitted and the driver is only loaded when it is needed the

CHAPTER 26 JAVA DB

290

first time. This way, Java DB registers its needed drivers, too. For us that means we are able to directly
establish a connection via the DriverManager and we do not have to worry about the driver.

Creating and Using a Database
After packing the Java DB in a wrapper module and adding it to your NetBeans Platform application, and
after you defined a dependency to the NetBeans Platform application, you can directly access the
database system and create your first database. Each database is managed by Java DB in a separate
directory which has the same name as the database, as shown in Figure 26-1. These directories are
created in a system directory which you have to define first. An ideal location would be the user
directory, for example, in which the NetBeans platform and its application-specific settings are also
saved. You can get the path over the system properties so you do not need to think about independent
platform paths.

This base directory becomes registered with the name derby.system.home.

System.setProperty("derby.system.home",
 System.getProperty("netbeans.user",
 System.getProperty("user.home")) + "/databases");

You get to the path of the application-specific directory by the feature netbeans.user. If this feature
is not set, use the standard value of the user directory, which you get via user.home. Within the detected
directory, the database should be located in the directory databases. If you have not set the feature
derby.system.home, Java DB uses the current directory of the application.

Figure 26-1. Integrating Java DB as library wrapper module in your own application. The physical

location of the databases is set by the feature derby.system.home.

The feature of the Java DB that the database system must not be started explicitly is very practical.
The databases each are started up separately when first accessing the database; you do not have to worry

CHAPTER 26 JAVA DB

291

about managing the operation of the local database, which you can use and call in exactly the same way
as you may already know from using a server database.

After setting the system directory as described above, you can establish a connection to the
database through the driver manager:

Connection connection = DriverManager.getConnection(
 "jdbc:derby:MyDB;create=true", "user", "password");

So now, how do you create a database? This is done by defining the attribute create=true which is
added to the connection URL. If the database MyDB does not exist it is created first. Subsequently a
connection to this database is established. If the database exists, only the connection is established. This
attribute is very important, especially in the embedded local usage of the Java DB, because the
application of the database is automatically created installing or starting the first time. Java DB defines a
number of additional attributes which are not very important now, though. You can find information
about these attributes in the Java DB reference manual, which is located in the directory of the Java DB
distribution, together with additional documents. Instead of attaching the attributes to the URL, you can
also save them in a Properties object and transfer it as a second parameter to the getConnection()
method:

Properties props = new Properties();
props.put("user", "user");
props.put("password", "password");
props.put("create", "true");
Connection connection = DriverManager.getConnection("jdbc:derby:MyDB", props);

Shutting Down a Database
A database automatically starts up when a connection to a database is established. Shutting down is
different. The database system cannot recognize when an application is finished (and would thus shut
down abruptly) so you should explicitly shut down the database system when finishing the application; a
consistent condition is then guaranteed. Shutting down the system means all active databases are
implicitly shut down. Optionally, you can separately finish databases, too.

The best way to accomplish this task is to do it with a module installer or in a lifecycle manager
implementation (see Chapter 8). In a module installer use the close() method as shown in Listing 26-1.

Listing 26-1. Shutting Down the Database System Finishing an Application

import java.sql.DriverManager;
import java.sql.SQLException;
import org.openide.modules.ModuleInstall;

public class Installer extends ModuleInstall {
 @Override
 public void close() {
 try {
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException ex) {}
 }
}

CHAPTER 26 JAVA DB

292

With that the whole Java DB system is shut down finishing your application. If you want to shut
down an individual database you just have to add jdbc:derby: behind the referring database name. If,
for example, you want to finish the database MyDB, the call would be as follows:

DriverManager.getConnection("jdbc:derby:MyDB;shutdown=true");

Bear in mind that shutting down, meaning the parameter shutdown=true, always triggers an
exception which provides a report about the shutdown.

Developing a Database by Means of the NetBeans IDE
In an effort to simplify the development of database-supported applications a Java DB support is
integrated into the NetBeans IDE. By means of the IDE you can start and stop the database system,
create databases, and establish a connection to the databases. The graphic support for creating and
configuring tables especially simplifies development. This allows you to define and change the
individual table colums and data types in a very simple way.

Installing and Starting the Java DB System
To use this support you first have to define the installation path of the Java DB. Call the Services window
with Window ➤ Services and then choose Properties from the context menu of the Java DB node. The
path should already point to the Java DB directory of the Java Platform installation. If you downloaded
the Java DB yourself or if you have a separate installation, you can of course set the path on it, too. You
also have to set another path in which the database will be created and set.

After you have completed these settings, you can start the database server through the context
menu with Start Server. This is necessary because now the database system is no longer integrated in an
application, but is operated as an independent server. The server usually accepts connections on port
1527, which is displayed in the output window.

Integrating a Java DB Server Driver into Your Application
Since the Java DB database system is not integrated in its applications, but is operated as a server, it is
necessary to add another driver to your application. This driver, which is necessary to establish the
connection to a Java DB server, is located in the file derbyclient.jar (introduced in the section
“Integrating the Java DB.”) . Add this to your application by means of a library wrapper module and
define in your module that a database connection wants to connect with its dependency.

Creating and Configuring a Database
Your application is now ready for accessing a deleted Java DB server. You can create a new database in
the NetBeans IDE with Create Database... out of the context menu of the node Databases ➤ Java DB in
the Services window, which is shown in Figure 26-2. When doing so, you have to insert a name, a
username, and a password for the database. After inserting these data, the database is created and a
connection is established. You can establish a connection via the context menu item Connect... of the
referring connection. If a connection is established successfully, the tables, indices, and the foreign keys
of the database are displayed. Using the context menu you can create new entries to each.

For example, you can create a new table over the context menu of Tables with Create Table..., look at
the content of a table with View Data..., or give an SQL order with Execute Command.

CHAPTER 26 JAVA DB

293

Figure 26-2. You get access to the Java DB databases in the Services window in which you can also

configure it.

Accessing the Database out of Your Application
Now you will deal with the application that wants to use the database. The definition of the feature
derby.system.home, which was needed when using the integrated application of the Java DB system, is
no longer necessary. To successfully create a connection to the Java DB server out of your application
you have to adapt the connection URL, since you need to specify the name (or the IP address) and the
port on which the database server accepts connections:

Connection connection = DriverManager.getConnection(
 "jdbc:derby://localhost:1527/MyDB;", "user", "password");

Since the database server in this case is located on the same computer as the application, use the
specification localhost or the IP address 127.0.0.1 and define the port as 1527. You can also get this
URL from the already established connection in the services window of the NetBeans IDE.

CHAPTER 26 JAVA DB

294

Retrieving and Importing Structures of Tables
Next I will show you a very helpful feature of the database explorer in the services window. It is possible
to display the SQL source code with which your table was created in order to copy it as is into your
application for the initial creation of the database tables or in an SQL script file. Call the context menu of
the wanted table, where you will find the point Grab Structure...; call it to save the structure in a file.
Then just choose Recreate Table... in the context menu, and choose the just created file. The SQL source
code, which is necessary to create the table, will then be displayed in a window. You can also supply this
functionality to its original purpose and so import tables out of a foreign database in your database.

Example Application
I want to finish this chapter with a really simple example to explain some idiosyncrasies of the Java DB
around creating table structures and show you how to cleverly integrate the Java DB in the lifecycle of
your application. In this example, you will manage music albums that can be assigned to a certain genre.

Configuration, Access, and Shutdown
You want to configure the Java DB database system, centrally manage access to it, and, when the time
comes, shut down the system again by a module installer. First, you set the path in which the database
will be stored in the restored() method, which is called when starting the application, or the module
with the feature derby.system.home (see Listing 26-2). The database will be created in the subdirectory
databases in the user-specific user directory. In addition, you call the method initTables() in which you
first want to check by means of a SELECT query whether the needed tables were already created. If the
application is started the first time (the tables do not exist yet), this triggers an SQLException which we
catch and then create the two tables albums and genres.

Create the table genres first, because the table albums will depend on it. Each entry in the table will
get a unique ID which will be assigned by the database in ascending order. You achieve this by assigning
GENERATED ALWAYS AS IDENTITY for the column id. So even if you define a value for the column id, adding
an entry to the table, the automatically-created value is used. Alternatively, you can use BY DEFAULT
instead of ALWAYS; then only a value is created when you do not explicitly assign an ID. With PRIMARY KEY
you finally define the column id as the primary key through which the connection to the entries in the
albums table will be established. You create this directly afterward and define the key column id in the
same way. Additional columns are title, tracks, cds, years, and genre. However, you do not directly
write in the genre in the column genre, but the ID of a genre entry out of the table genre. So, the column
genre in albums is a foreign key. You define it by FOREIGN KEY (genre) and define the relation to the
column id in genres by REFERENCES genres (id). Add three example entries in the table genres, so that
when creating an album a genre can be chosen.

Listing 26-2. Installing the Database System and the Database at the Start

import java.sql.Statement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import org.openide.modules.ModuleInstall;
import org.openide.util.Exceptions;

public class Installer extends ModuleInstall {
 private static Connection conn = null;

CHAPTER 26 JAVA DB

295

 @Override
 public void restored() {
 System.setProperty("derby.system.home",
 System.getProperty("netbeans.user",
 System.getProperty("user.home")) + "/databases");
 initTables();
 }
 private void initTables() {
 try {
 Statement stmt = getConnection().createStatement();
 stmt.executeQuery("SELECT id FROM genres");
 stmt.close();
 } catch(SQLException e) {
 try {
 Statement stmt = getConnection().createStatement();
 stmt.execute("CREATE TABLE genres (" +
 "id INTEGER GENERATED ALWAYS AS IDENTITY, " +
 "genre VARCHAR(100), " +
 "PRIMARY KEY(id))");
 stmt.execute("CREATE TABLE albums (" +
 "id INTEGER GENERATED ALWAYS AS IDENTITY, " +
 "title VARCHAR(100), " +
 "tracks VARCHAR(10), " +
 "cds VARCHAR(10), " +
 "years VARCHAR(10), " +
 "genre INTEGER, " +
 "PRIMARY KEY(id), " +
 "FOREIGN KEY(genre) REFERENCES genres (id))");
 stmt.execute("INSERT INTO genres (genre) " +
 "VALUES('Techno, Trance & Dance')");
 stmt.execute("INSERT INTO genres (genre) " +
 "VALUES('Rock & Pop')");
 stmt.execute("INSERT INTO genres (genre) " +
 "VALUES('Country & Classic')");
 stmt.close();
 } catch(SQLException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }

You provide central access to the database with the static method getConnection(). This way, the
users in particular do not have to worry about the connection URL. Furthermore, the Connection object
(which is to say, the connection to the database) is held centrally and does not have to be established
anew and finished each time. The method getConnection() is also a factory method, which establishes a
connection if there is not one yet, or brings the Connection object back, if it has been established. You are
informed about the application finishing by the method close(). This is where you eventually add the
still-established connection to the database and then you shut down the complete Java DB system, (and
automatically your database MyDB, too) by jdbc:derby:;shutdown=true. (See Listing 26-3.)

CHAPTER 26 JAVA DB

296

Listing 26-3. Centrally Providing the Connection and Shutting Down the Database

 public static Connection getConnection() throws SQLException {
 if(conn == null || conn.isClosed()) {
 conn = DriverManager.getConnection(
 "jdbc:derby:MyDB;create=true", "user", "password");
 }
 return conn;
 }
 @Override
 public void close() {
 try {
 conn.close();
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException ex) {}
 }
}

Data Models and Data Accessing Module
As you already saw when you created the tables, you want to manage data for two different classes:
albums, whose information is managed in the table albums, and genres, which are located in the table
genres. To do this you create for each a data model, as shown in Listing 26-4. These are the classes Album
and Genre which provide certain set and get methods. Please bear in mind that there is no persistence
logic in these classes. You want to manage those in a separate class.

Listing 26-4. Data Model for an Album

public class Album {
 private Integer id;
 private String title;
 private String tracks;
 private String cds;
 private String year;
 private Genre genre;
 public Album(Integer id, String title, String tracks, String cds, String year) {
 this.id = id;
 this.title = title;
 this.tracks = tracks;
 this.cds = cds;
 this.year = year;
 }
 public Integer getId() {
 return id;
 }
 public String getTitle() {
 return title;
 }
 ...
}

CHAPTER 26 JAVA DB

297

You overwrite both methods toString() and equals(), which are necessary for a correct
representation and choice of a genre or in the dialog for creating an album in the class Genre, as shown
in Listing 26-5.

Listing 26-5. Data Model for a Genre

public class Genre {
 private Integer id;
 private String genre;
 public Genre(Integer id, String genre) {
 this.id = id;
 this.genre = genre;
 }
 public Integer getId() {
 return id;
 }
 public String getGenre() {
 return genre;
 }
 public String toString() {
 return genre;
 }
 public boolean equals(Object obj) {
 if(obj instanceof Genre) {
 if(((Genre)obj).getId() == id) {
 return true;
 }
 }
 return false;
 }
}

To implement the data model and the business logic,—meaning the user interface with which the
file should be managed, independent of the underlying persistence layer—you encapsulate the term on
the database and all SQL instructions in a separate data access class DataModel, which executed the
desired changes and queries on the database and which provides the data with the data models Album
and Genre.

The methods to implement into the class DataModel are getAlbums() and getGenres(), which
provide all available albums and genres in the form of a list (see Listing 26-6). The methods
insertAlbum(), updateAlbum(), and deleteAlbum() also enable you to insert, change, or delete the albums
in the database.

Listing 26-6. The Class Data Model Encapsulates the Access to the Java DB and Provides Data by Means of

the Referring Data Models Album and Genre.

import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;

CHAPTER 26 JAVA DB

298

import java.util.List;
import org.openide.util.Exceptions;

public class DataModel {
 public static List<Album> getAlbums() {
 List<Album> albums = new ArrayList<Album>();
 try {
 Statement stmt = Installer.getConnection().createStatement();
 ResultSet rs = stmt.executeQuery(
 "SELECT * FROM albums INNER JOIN genres ON albums.genre = genres.id");
 while(rs.next()) {
 Album album = new Album(rs.getInt(1),
 rs.getString(2), rs.getString(3),
 rs.getString(4), rs.getString(5));
 album.setGenre(new Genre(rs.getInt(7), rs.getString(8)));
 albums.add(album);
 }
 rs.close();
 stmt.close();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 return albums;
 }

 public static List<Genre> getGenres() {
 List<Genre> genres = new ArrayList<Genre>();
 try {
 Statement stmt = Installer.getConnection().createStatement();
 ResultSet rs =stmt.executeQuery("SELECT * FROM genres");
 while(rs.next()) {
 genres.add(new Genre(rs.getInt(1), rs.getString(2)));
 }
 rs.close();
 stmt.close();
 } catch(Exception e) {
 Exceptions.printStackTrace(e);
 }
 return genres;
 }

 public static void updateAlbum(Album a) throws SQLException {
 PreparedStatement stmt =
 Installer.getConnection().prepareStatement(
 "UPDATE albums SET title=?, tracks=?, cds=?, years=?, genre=? WHERE id=?");
 stmt.setString(1, a.getTitle());
 stmt.setString(2, a.getTracks());
 stmt.setString(3, a.getCds());
 stmt.setString(4, a.getYear());
 stmt.setInt(5, a.getGenre().getId());
 stmt.setInt(6, a.getId());

CHAPTER 26 JAVA DB

299

 stmt.execute();
 }

 public static void insertAlbum(Album a) throws SQLException {
 PreparedStatement stmt = Installer.getConnection().prepareStatement(
 "INSERT INTO albums (title, tracks, cds, years, genre) VALUES(?, ?, ?, ?, ?)",
 Statement.RETURN_GENERATED_KEYS);
 stmt.setString(1, a.getTitle());
 stmt.setString(2, a.getTracks());
 stmt.setString(3, a.getCds());
 stmt.setString(4, a.getYear());
 stmt.setInt(5, a.getGenre().getId());
 stmt.execute();
 // Auto Increment Wert auslesen und setzen
 ResultSet rs = stmt.getGeneratedKeys(); rs.next();
 album.setId(rs.getInt(1));
 }
 public static void deleteAlbum(Album a) throws SQLException {
 PreparedStatement stmt =
 Installer.getConnection().prepareStatement("DELETE FROM albums WHERE id = ?");
 stmt.setInt(1, a.getId());
 stmt.execute();
 }
}

Representing and Editing Data
Let us now look at the components that enable the representation of the data and allow the user to
manage and edit music albums. You want to list albums in a table within a top component (see Figure
26-3). First you create a class AlbumsTopComponent which contains a table of the type JTable. You need a
model for the table, so this table can represent and manage the albums in terms of the already-created
data model Album. Since this data model is only necessary at this point you implement it as private inner
class AlbumsTableModel. So the data is stored in a List of the type Album. Since you need access to this
model later, start it as a private data element. The data model is connected to the table by the method
setModel(). Typically, table entries can be edited or looked at closely by double clicking. To realize this
functionality, register a MouseListener or MouseAdapter at the JTable-instance albums. The MouseListener
or MouseAdapter call the method editAlbumActionPerformed() when double clicking. I will cover the
functionality of this method later in this section.

CHAPTER 26 JAVA DB

300

Figure 26-3. Listing the database entries in a table

import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import javax.swing.table.AbstractTableModel;
import org.openide.util.Exceptions;
...
public final class AlbumsTopComponent extends TopComponent {
 private JTable albums;
 private AlbumTableModel model = new AlbumTableModel();
 public AlbumsTopComponent() {
 initComponents();
 albums.setModel(model);
 albums.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent event) {
 if(event.getClickCount() == 2) {
 editAlbumActionPerformed(null);
 }
 }
 });
 }

 private static final class AlbumTableModel
 extends AbstractTableModel {

CHAPTER 26 JAVA DB

301

 private String[] columns = {"Title","Tracks","CDs","Year"};
 private List<Album> data = new ArrayList<Album>();
 public Album getRow(int row) {
 return data.get(row);
 }
 @Override
 public int getRowCount() {
 return data.size();
 }
 @Override
 public int getColumnCount() {
 return columns.length;
 }
 @Override
 public String getColumnName(int col) {
 return columns[col];
 }
 @Override
 public Object getValueAt(int row, int col) {
 Album album = data.get(row);
 switch(col) {
 case 0: return album.getTitle();
 case 1: return album.getTracks();
 case 2: return album.getCds();
 case 3: return album.getYear();
 }
 return "";
 }
 public List<Album> getData() {
 return data;
 }
 }

Of course when you open the top component, all current entries will be read and represented. This
is why you overwrite the method componentOpened(), in which we query all entries of the database by
means of the method getAlbums() via our DataModel which abstractly manages the access to the
database. You add this model to the data model of the table and inform the view, meaning the JTable
instance, about the changed data by the method fireTableDataChanged(). Finally, you implement three
other action methods with which the user should be able to add, edit, and delete entries. To create a new
album this would be the method newAlbumActionPerformed(). In this method you call a dialog in which
the user can insert the needed data by means of a static method. You create this dialog in the next and
last step. If this method gives back an Album instance, so the dialog was finished successfully, you add the
data in the database. If this step could be executed without exception, you add the album to the table.

 public void componentOpened() {
 model.getData().clear();
 model.getData().addAll(DataModel.getAlbums());
 model.fireTableDataChanged();
 }

 private void newAlbumActionPerformed(ActionEvent evt) {
 Album album = AlbumEditDialog.newAlbum();

CHAPTER 26 JAVA DB

302

 if(album != null) {
 try {
 DataModel.insertAlbum(album);
 model.getData().add(album);
 model.fireTableDataChanged();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 }
 }

The method editAlbumActionPerformed() is executed by a double click or by Edit. Similar to creating
a new entry, you call a dialog again. However, to do so you use the method editAlbum() to which you can
transfer an Album instance. The data of the instance will be edited in the dialog. The just-selected line of
the table provides the method getSelectedRow(); with its output you are then able to read the referring
data out of the data model of the table. The user has the option of changing data in the dialog that
appears. Pressing the button afterwards, the editAlbum() method gives back the changed Album
instance. You see the changes in the database by the updateAlbum() method of the data access module.
It is still possible to delete an existing entry in a database: the method deleteAlbumActionPerformed()
will do this.

First, ask the user if he or she actually wants to delete the data to prevent the deletion of
unintentional entries. The query dialog needed for this is realized by means of the NetBeans Dialogs API.
You create a NotifyDescriptor.Confirmation instance for it and enable the dialog to display by the
notify() method. When the user agrees to delete, you remove the entry from the database by the
deleteAlbum() method and, when this operation has finished successfully, finally delete the album from
the table and refresh the table. (See Listing 26-7.)

Listing 26-7. Top Component to Display and Edit Existing Albums in the Database

 private void editAlbumActionPerformed(ActionEvent evt) {
 if (albums.getSelectedRowCount() > 0) {
 Album album = AlbumEditDialog.editAlbum(model.getRow(albums.getSelectedRow()));
 if(album != null) {
 try {
 DataModel.updateAlbum(album);
 model.fireTableDataChanged();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 }
 }
 }

 private void deleteAlbumActionPerformed(ActionEvent evt) {
 if (albums.getSelectedRowCount() > 0) {
 Album album = model.getRow(albums.getSelectedRow());
 NotifyDescriptor d = new NotifyDescriptor.Confirmation(
 "Are you sure you want delete the album " +
 album.getTitle(),
 "Confirm Album Deletion");

CHAPTER 26 JAVA DB

303

 if (DialogDisplayer.getDefault().notify(d) == NotifyDescriptor.YES_OPTION) {
 try {
 DataModel.deleteAlbum(album);
 model.getData().remove(album);
 model.fireTableDataChanged();
 } catch(SQLException e) {
 Exceptions.printStackTrace(e);
 }
 }
 }
 }
}

The last task is to set the dialog with which the data can be recorded and edited. You want to use the
advantages of the Dialogs API again and do not construct a complete dialog yourself, but just the panel
with the referring fields to capture the data (see Figure 26-4). Thus you create a simple JPanel class. This
is best achieved with File ➤ New File... ➤ Swing GUI Forms ➤ JPanel Form.

Figure 26-4. Dialog panel for editing and creating entries

You load all genres out of the database in the constructor of this panel and then add it to the
combobox; you just need the methods newAlbum() and editAlbum(), which you are familiar with from
the previous step. For an easy use of the dialogs you implement them as static methods; these methods
are factories which care themselves about creating the dialogs. This is why you first create an instance of
our own class AlbumEditDialog. You create a dialog by means of a DialogDescriptor to which pass the
just created panel, and the dialog is already done. As usual, we show the dialog with the method
notify(). As soon as the user pressed OK you create an album object out of the data and return it. If not,
you just deliver null and signal that the user cancelled. In the case of the editAlbum() method, you just
proceed the same way setting the dialog. You just preset the fields with the values of the transferred
albums. After finishing the dialog no new Album object is created,though; you just update the data with
the referring set methods and redeliver those updated instances. (See Listing 26-8.)

3

CHAPTER 26 JAVA DB

304

Listing 26-8. Dialog for Editing and Creating New Albums

import javax.swing.JPanel;
import org.openide.DialogDescriptor;
import org.openide.DialogDisplayer;

public class AlbumEditDialog extends JPanel {
 private AlbumEditDialog() {
 initComponents();
 for(Genre g : DataModel.getGenres()) {
 genre.addItem(g);
 }
 }

 public static Album newAlbum() {
 AlbumEditDialog d = new AlbumEditDialog();
 DialogDescriptor desc = new DialogDescriptor(d, "New...");
 if(DialogDisplayer.getDefault().notify(desc) == DialogDescriptor.OK_OPTION) {
 Album album = new Album(0,
 d.title.getText(), d.tracks.getText(),
 d.cds.getText(), d.year.getText());
 album.setGenre((Genre)d.genre.getModel().getSelectedItem());
 return album;
 } else {
 return null;
 }
 }

 public static Album editAlbum(Album album) {
 AlbumEditDialog d = new AlbumEditDialog();
 d.title.setText(album.getTitle());
 d.tracks.setText(album.getTracks());
 d.cds.setText(album.getCds());
 d.year.setText(album.getYear());
 d.genre.getModel().setSelectedItem(album.getGenre());
 DialogDescriptor desc = new DialogDescriptor(d, "Edit...");

 if(DialogDisplayer.getDefault().notify(desc) == DialogDescriptor.OK_OPTION) {
 album.setTitle(d.title.getText());
 album.setTracks(d.tracks.getText());
 album.setCds(d.cds.getText());
 album.setYear(d.year.getText());
 album.setGenre((Genre)d.genre.getModel().getSelectedItem());
 return album;
 } else {
 return null;
 }
 }
}

CHAPTER 26 JAVA DB

305

So now you have created all the necessary classes for accessing the database and for managing and
representing the data. This is the end of the example application for Java DB usage.

Summary
Databases are usually located on a server. However, Java DB offers a client database solution. In this
chapter we looked at how such a database can be integrated in your NetBeans Platform application.

C H A P T E R 27

307

Hibernate

In Chapter 26 you learned about using the client database solution Java DB within a rich client
application. You had to disassemble the files to save them in the relational database system and you also
had to extract the data of the database in a conventional way via SQL over the JDBC interface. You then
had to assemble your objects—in this example, Album and Genre. You encapsulated this functionality in
the class DataModel—you may have noticed that this can become quite complicated and error-prone.
This is one of the reasons database creators put such an effort into developing and standardizing object-
oriented databases, although they cannnot establish and enforce against the relational systems, yet. This
is mainly because of the widespread use of the RDBMS: new applications have to access data that is
saved in relations.

This is why so-called object relational bridges have been developed; they take care of saving and
loading object data in and out of rational databases and thus form an abstraction layer for the
underlying database system. Probably the most popular and widely used implementation of such a
bridge is Hibernate. Hibernate does the mapping of the object data on relations, which should be as
transparent as possible. Ideally, that means you do not need to worry about where and how your data is
saved.

This chapter will show how Hibernate can be usefully integrated in a rich client application on the
basis of the NetBeans Platform. I will only cover the basic concepts of using Hibernate here, however;
this chapter will not discuss all the details of the wide functionalities of Hibernate.

Integrating the Hibernate Libraries
At first, you should download the current Hibernate distribution (here version 3.6.1) from
http://hibernate.org. This distribution brings along all the necessary third-party libraries, examples,
and comprehensive documentation in addition to the Hibernate library itself. You want to encapsulate
these libraries as a separate module again, as you did with the Java DB; this will provide Hibernate
functionality to the application. To do so, call in File ➤ New Project... and then NetBeans Modules ➤
Library Wrapper Module. Add the following libraries to the distribution:

• hibernate3.jarlib/jpa/hibernate-jpa-2.0-api-1.0.0.Final.jar

• lib/required/antlr-2.7.6.jar

• lib/required/commons-collections-3.1.jar

• lib/required/dom4j-1.6.1.jar

• lib/required/javassist-3.12.0.GA.jar

• lib/required/jta-1.1.jar

CHAPTER 27 HIBERNATE

308

• lib/required/slf4j-api-1.6.1.jar

Hibernate uses the Simple Logging Facade for Java (SLF4J) API to create the log output. As the name
suggests, this API provides a façade for different logging frameworks, including Log4J or the Java
Platform Logging Framework. A framework does not need to be “compulsively” present for the façade; it
does make sense, however, to provide such a framework, especially for the development of an
application, because Hibernate gives out numerous helpful reports. SLF4J provides its own simple
logging implementation, too. This implementation is part of the SLF4J package, which you can
download at http://slf4j.org. So, now add this JAR file to the Hibernate module, too:

slf4j-simple-1.6.1.jar

If problems occur using libraries within the NetBeans platform, they will most likely be classloader
problems. Hibernate itself uses the system classloader and can thus access the entities without explicitly
defined dependencies. The Proxy Factory of the Javassist library—which is responsible for the proxy
production of objects to the runtime (necessary for the lazy loading)—uses a different classloader and
consequently does not find classes out of the Hibernate libraries or classes out of your application
modules. Advantageously, you can provide your own classloader provider implementation to the class
javassist.util.proxy.ProxyFactory by the ProxyFactory.ClassLoaderProvider interface and create a
module installer for the Hibernate module. Use the restored() method to provide the system
classloader to the application of the ProxyFactory at the start (see Listing 27-1).

Listing 27-1. Providing a Classloader Provider Implementation

import javassist.util.proxy.ProxyFactory;
import org.openide.modules.ModuleInstall;

public class Installer extends ModuleInstall {
 @Override
 public void restored() {
 ProxyFactory.classLoaderProvider = new ProxyFactory.ClassLoaderProvider() {
 @Override
 public ClassLoader get(ProxyFactory pf) {
 return Thread.currentThread().getContextClassLoader();
 }
 };
 }
}

Usually, the context classloader of the current thread is the system classloader (if no other was
used). Transfer this to the ProxyFactory object via the get() method.

Structure of the Exemplified Application
Now I will show you how to use Hibernate with the albums example from Chapter 26, so you can
appreciate the advantages of an object relational bridge. In addition, you can use the already integrated
database system Java DB again now. Add the library wrapper module with the Hibernate libraries to the
already created Platform application. Each module that wants to use the Hibernate functionality is able
to define a dependency to the application. In this example, it is only the application module (My
Module). Open the Properties window over the context menu and add the Hibernate module under
Libraries. You have to add a dependency on the Java DB module to the Hibernate module in the same
way so Hibernate can access the Java DB database driver.

CHAPTER 27 HIBERNATE

309

So far you have managed the classes for your entities, genre and album, in the application module.
Since Hibernate needs access to these classes, you should define another dependency from Hibernate to
the application module. That would lead to a cyclic dependency; the module system of the NetBeans
Platform would quickly report an error and the application would not even start. This is why you
outsource your entity classes in a separate module, so the cyclic dependency is solved. This constellation
with the additional module is graphically illustrated in Figure 27-1.

Figure 27-1. The application components and their dependencies

 Tip When developing your application,using the embedded version of the Java DB (in this case, the module
Java DB Embedded) is not recommended; instead, use the server variant that is already integrated in the NetBeans
IDE. Integrate the Java DB driver as module in your application as described in Chapter 27, adjust it in the
hibernate.cfg.xml file to the connection URL, and start the database server in the NetBeans IDE with Start Server in
the context menu of the node Databases ➤ Java DB in the service window. This way it is possible to look at the
database schema produced by Hibernate.

Configuring Hibernate
After integrating Hibernate you now have to provide some configuration information. You define this
information by an XML file which is called hibernate.cfg.xml by default. You definitively need to specify
the database driver, the URL to connect with the database, the necessary authentication data, and the
SQL dialect which should be used. This configuration file then looks as follows in Listing 27-2.

CHAPTER 27 HIBERNATE

310

Listing 27-2. Hibernate Configuration File

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="connection.driver_class">org.apache.derby.jdbc.EmbeddedDriver</property>
 <property name="connection.url">jdbc:derby:hibernate-db;create=true</property>
 <property name="connection.username">user</property>
 <property name="connection.password">password</property>
 <property name="dialect">org.hibernate.dialect.DerbyDialect</property>
 </session-factory>
</hibernate-configuration>

First, you define the database class, which in this case is org.apache.derby.jdbc.EmbeddedDriver for
the Java DB database system. Add the URL so Hibernate can establish a connection to your database;
you already know that this is composed for the Java DB. Along with the username and the password,
which will eventually be necessary, you have to define the SQL dialect. Hibernate provides
corresponding classes for all major database systems in the package org.hibernate.dialect. You can
find more information about additional configuration options from the Hibernate reference
documentation.

All this begs the question, where to put this file. Because the data is in a separate file, you have the
option of using several Hibernate modules with different configurations. You can then either save the
file in the src directory of an application module or directly save it in the Hibernate module. It is
important that it is on the referring class path, because this is where it is searched for. Optionally,as you
will see later, you can define an alternative URL to the configuration file when producing an
Configuration object.

Mapping Objects on Relations
Now that Hibernate is ready, the question arises as to how Hibernate saves your objects in the database.
How is the referring object structure mapped on a relation? You create a so-called mapping file for each
object which persists precisely this mapping information. This involves, among other things,
information with which name and with which type object attributes in a relation are saved, but more
important, how associations between different objects are handled. Much detailed information is
possible and needed, depending on the complexity of the object structure and the purpose of the
application. In this setting you cannot go into detail, so restrict the application on the mapping
information which is necessary for your exemplified classes.

Let’s look at such a mapping first for our example class Genre. You remember that in it you managed
a number as a unique ID and a string for the genre name itself. (See Listing 27-3.)

Listing 27-3. Object Relational Mapping for the Class Genre: Genre.hbm.xml

<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="com.galileo.netbeans.myentities">
 <class name="Genre" table="Genre" lazy="true">

CHAPTER 27 HIBERNATE

311

 <id name="id">
 <generator class="increment"/>
 </id>
 <property name="genre"
 not-null="true"
 length="30"
 column="genre"/>
 </class>
</hibernate-mapping>

By the class element you define the class name and the name of the table in which the files of an
object of the type Genre are saved. With the element id you define your object attribute with the same
name as primary key for the table which will be assigned in ascending order. At last, you only need to
define the second and last attribute genre with the property element. If you look at an excerpt of the
mapping for the class Album, it gets a little more interesting, because a genre can be assigned to an
album; there can be multiple albums of the same genre, however. Therefore you have a many-to-one
relation. You define this with the element which has the same name and set its lazy attribute to false,
as shown in Listing 27-4. This way the Genre object is loaded together with the Album and not just when it
is needed. By determining fetch="join" you induce Hibernate to detect the genre at the same time as
querying the album data by a JOIN query. This is a query optimization: only one instead of two queries is
needed to load a class completely out of a database.

Listing 27-4. Define the Association on the Genre with Many-to-One

<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="com.galileo.netbeans.myentities">
 <class name="Album" table="Album" lazy="true">
 <id name="id">
 <generator class="increment"/>
 </id>
 <many-to-one name="genre" lazy="false" fetch="join"/>
 <property name="title"
 not-null="true"
 length="30"
 column="title"/>

Now you have to make these mappings, which typically end with hbm.xml and which are in the
same package as the classes, known in Hibernate. This is done by an entry in the configuration file
hibernate.cfg.xml in which you already did the database settings. You list all files by the element mapping.
Furthermore, you define the feature hbm2ddl with the value update. So, if it is not there yet, Hibernate
automatically creates the database schema for us out of the information of the mapping files when the
application starts, as shown in Listing 27-5.

Listing 27-5. Making the Mapping Files Public in the Configuration File

<hibernate-configuration>
 <session-factory>
 ...
 <property name="hbm2ddl.auto">update</property>
 <mapping resource="com/galileo/netbeans/myentities/Genre.hbm.xml"/>

CHAPTER 27 HIBERNATE

312

 <mapping resource="com/galileo/netbeans/myentities/Album.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

SessionFactory and Sessions
Now the configuration work is completed and you can get in touch with Hibernate for the first time. To
do this, first create an object of the class Configuration which manages the configuration you created
before in the file hibernate.cfg.xml. This class wants to get its information from the hibernate.properties
file by default. However, you organized your information in an XML document, which is why you induce
the Configuration instance to search for this file with the configure() method. This method is also
available in some parameterized variants, which you can transfer a File or a URL in the configuration file
to. We use the parameter-less version which directly expects the configuration with the name
hibernate.cfg.xml on the class path. Usually, such a Configuration is only created once. Based on this
configuration we create a SessionFactory with the method buildSessionFactory(). A SessionFactory is
also held throughout the duration of the complete runtime of the application.

In other words, you manage the Configuration and the SessionFactory instance in your module at a
central place. A module installer class would be good for that purpose; you would create a static instance
of a SessionFactory there (see Listing 27-6).

Listing 27-6. Central Management and Providing the SessionFactory

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
import org.openide.modules.ModuleInstall;

public class Installer extends ModuleInstall {
 private static final SessionFactory sessionFactory;
 static {
 try {
 sessionFactory = new Configuration().configure().buildSessionFactory();
 } catch (Throwable ex) {
 throw new ExceptionInInitializerError(ex);
 }
 }
 public static Session createSession() {
 return sessionFactory.openSession();
 }
 public static Session currentSession() {
 return sessionFactory.getCurrentSession();
 }
 @Override
 public void close() {
 sessionFactory.close();
 }
}

The database is accessed through sessions. A Session is a relative short-lived object which is
responsible for the interaction between application and database. So there is a JDBC connection hidden
behind a Session. A session is thus also responsible for the creation of a transaction and contains a

CHAPTER 27 HIBERNATE

313

cache. You create each a new Session with the method openSession(). An even more current session is
delivered with the method getCurrentSession(). If there is none, a new one is created and bound to the
current thread. If a transaction is finished (by commit() or rollback()), which was created by this
Session, it is automatically closed. This way of using sessions is the easiest and the most comfortable
and is therefore preferred.

Saving and Loading Objects
With the Installer class you created a helper for easy saving and loading of objects. You want to use it
directly. You remember that we created the class DataModel. This class was responsible for the
interaction with the database and so was a mapper between SQL and your objects. Hibernate now does
all these tasks for us. You still want to use the class, however, because then you do not have to change
your remaining application and at the same time you encapsulate the Hibernate interaction. This is
probably the most interesting part of this chapter, because this is where the greatest simplification arises
(see Listing 27-7).

Listing 27-7. The Class DataModel Interacts with the Database over Hibernate

import com.galileo.netbeans.myentities.Genre;
import com.galileo.netbeans.myentities.Album;
import java.util.List;
import org.hibernate.Session;
import org.hibernate.Transaction;

public class DataModel {
 public static List<Album> getAlbums() {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 List<Album> list = (List<Album>)s.createCriteria(Album.class).list();
 t.commit();
 return list;
 }
 public static List<Genre> getGenres() {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 List<Genre> list = (List<Genre>)s.createCriteria(Genre.class).list();
 t.commit();
 return list;
 }
 public static void updateAlbum(Album album) {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 s.update(album);
 t.commit();
 }
 public static void insertAlbum(Album album) {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 s.save(album);

CHAPTER 27 HIBERNATE

314

 t.commit();
 }
 public static void deleteAlbum(Album album) {
 Session s = Installer.currentSession();
 Transaction t = s.beginTransaction();
 s.delete(album);
 t.commit();
 }
}

For each action we use a current—or possibly new—Session for each action, with which you create
a transaction. Then you are able to save, update, and execute the wanted action on the Session and you
can successfully close the transaction with commit(). As already mentioned, it is not necessary to
explicitly close the Session, because it is automatically closed finishing the transaction.

This example naturally deals with very simple application cases. For this reason you have one
transaction for each action during a session which has the same lifetime. (You can get information about
the granularity of sessions and transactions that should be used from the Hibernate documentation.) So
now you have completely migrated our example, which first transferred its data via SQL over the JDBC
interface quasi “rough draft” between application and database. Thus the application runs entirely
abstracted from the underlying persistence system and you can save and query objects comfortably and
transparently.

Summary
Hibernate is an object relational bridge. This allows you to create a transparent interface between
application and database. In this chapter you learned how to integrate Hibernate in a NetBeans Platform
application. You saw how to configure Hibernate and how the mapping between objects and relations is
done. The chapter dealt with sessions and session factories as well as with the saving and loading of
objects.

C H A P T E R 28

315

Java Persistence API

The target of the Java Persistence API (JPA) is to specify a standardized, simple to use persistence model
that can be used with both Java SE and Java EE.The best features and ideas flowed in, mainly from
Hibernate, TopLink, and JDO. Consequently, an application that uses the interfaces of the JPA is
completely independent of a special framework such as Hibernate. Its application keeps the same
independence as it had before it was used with the Java Database Connectivity (JDBC) interface.

The JPA is mainly characterized by its lightness and its slimness. One of the main features of the JPA
is the specification of the object relational mapping by the Java annotations directly in the persistence
object. A separate mapping file as used with Hibernate in Chapter 27 is not necessary anymore (it should
be mentioned that no explicit mapping of the object structures on relations is necessary). It is possible,
though, to influence the standard mapping strategy by annotations. This makes the specification of
entities much easier. Still, the JPA specifies the SQL-related query language Java Persistence Query
Language (JPQL) for both static and dynamic queries, which makes it independent of a proprietary query
language as HQL. The persistence layer can be classified in three areas: the API itself in the package
javax.persistence, the query language, JPQL and the annotations to define the mapping information.

Meanwhile, a set of projects and frameworks provides a JPA implementation, to which Hibernate
and EclipseLink or OpenJPA belong. We take a look at the JPA interface now, because you already got to
know the native interface of Hibernate. By the way, the JPA interface of Hibernate does not look very
different from the native interface. You will see quite clearly that Hibernate was a model when JPA was
specified.

Hibernate and the Java Persistence API
Since Hibernate 3.5, the Hibernate implementation of the JPA is a built-in feature and is located in the
hibernate3.jar. Together with the used libraries and the JPA itself you create a module called Hibernate,
exactly as described in Chapter 27. Pay attention to the hints on the classloader and to the logging.

Java Persistence Configuration
The configuration of the persistence layer occurs in a very similar way to the native Hibernate interface
(see Listing 28-1). The configuration is provided in the file persistence.xml in the directory META-INF.
The files are bundled in persistence units.

s

CHAPTER 28 JAVA PERSISTENCE API

316

Listing 28-1. Configuration of the Persistence Layer: META-INF/persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 version="1.0">
 <persistence-unit name="HibernateJPA" transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <class>com.galileo.netbeans.myentities.Genre</class>
 <class>com.galileo.netbeans.myentities.Album</class>
 <properties>
 <property name="hibernate.connection.driver_class"
 value="org.apache.derby.jdbc.EmbeddedDriver"/>
 <property name="hibernate.connection.url"
 value="jdbc:derby:hibernatejpa-db;create=true"/>
 <property name="hibernate.connection.username"
 value="user"/>
 <property name="hibernate.connection.password"
 value="password"/>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.DerbyDialect"/>
 <property name="hibernate.hbm2ddl.auto"
 value="update"/>
 </properties>
 </persistence-unit>
</persistence>

We open a persistence-unit called HibernateJPA, which you will use later when producing an
EntityManagerFactory. There you will list all classes which should be managed by the EntityManager of
this factory. You have to define the same features again as in hibernate.cfg.xml, whereas the prefix
hibernate has to be prefixed to the features. You discard the created file persistence.xml in the module
My Entities in the directory src/META-INF.

The advantage of implementing the entities in JPA is that, due to the attribute accessor methods
(not for each attribute), which should be kept persistent, access methods have to be provided (that is, get
and set methods) or attributes have to be made publicly, since JPA can also read and write private
attributes. In addition, a special interface does not need to be implemented or derived from a given
class. Entities that are to be administered persistently by the JPA are ordinary Java objects. Only a few
annotations are necessary within the class. These are essentially the identification of the class as entity
with the annotation @Entity, the definition of an identity with @Id, and the declaration of the attributes.
So the classes’ possibilities for expression are not limited in any way. A hierarchy of objects is managed
by default by JPA as in a relation. This mapping strategy can be adjusted via annotations in order to
adapt newly implemented objects to an existing database schema, for example. (See Listing 28-2.)

Taking the entity’s definition into consideration, let’s look at the classes Genre and Album again. You
only need to insert the annotation @Entity in front of the class definition. Additionally, set the class
attribute id as identity of the class by the annotation @Id. At the same time, instruct the persistence layer
(in this case, Hibernate) to create a value for this attribute. The attribute genre is an ordinary attribute, so
it does not need to be labeled separately. It is automatically included if it is not marked as transient.
Optionally, common attributes can be marked with the annotation @Basic. Bear in mind that it is not
mandatory to provide get and set methods for your attributes. In the class Genre, for example, you can
omit the methods getId() and setId() if you do not need them.

CHAPTER 28 JAVA PERSISTENCE API

317

Listing 28-2. You Define Your Class As an Entity That Can Be Saved in a Relational Databank System with

Only a Few Annotations. The Previous Mapping Files Can Be Dropped Completely.

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
@Entity
public class Genre {
 @Id
 @GeneratedValue
 private Integer id;
 private String genre;
 public Genre() {
 }
 ...
}

There is only thing more to do in the class Album. You need to explicitly define a column name for
the attribute year, since by default the column is named as the attribute itself. However, this results in an
error in the case of year at the first query, because year is part of SQL. This is why you define a user-
specific name with the annotation @Column. Finally, you just have to define the association of the Genre
class as @ManyToOne and both your entities are ready. (See Listing 28-3.)

Listing 28-3. Definition of the Entity Albums with the Association on the Class Genre

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.ManyToOne;

@Entity
public class Album {
 @Id
 @GeneratedValue
 private Integer id;
 private String title;
 private String tracks;
 private String cds;
 @Column(name = "years")
 private String year;
 @ManyToOne
 private Genre genre;

 public Album() {
 }
 ...
}

To get your entities access to the annotations you have to add a dependency on the module
Hibernate to the module My Entities. The Hibernate EntityManager uses the system classloader, so you

CHAPTER 28 JAVA PERSISTENCE API

318

do not need to add dependencies on your entities to the Hibernate module which would have led to a
cyclical dependency. If that was the case, you would have had to pack the annotation in a separate
module and you would get a more complicated constellation. This way, you end up with the layout and
dependencies shown in Figure 28-1.

Figure 28-1. Dependencies between the modules using the JPA interface of Hibernate

EntityManagerFactory and EntityManager
Similar to the SessionFactory in the native Hibernate interface, an EntityManagerFactory is available
with the Java Persistence API. This factory is created for a certain persistence unit. So EntityManagers,
which were produced by this factory, are able to save and manage the objects in the defined database
which are defined in the referring persistence unit. Normally, an EntityManagerFactory is created only
once and held during the whole application runtime like the SessionFactory. You get an instance of such
a factory over the bootstrap class Persistence by calling the following:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("HibernateJPA");

The transferred parameter HibernateJPA defines the name of one persistence unit defined in the file
persistence.xml. The factory is produced for the persistence unit.

The equivalent of a session—which to some extent represents a wrapper of a JDBC link—is up to the
JPA in the class EntityManager. Through this manager you can access the database and save, delete, find,
and query objects there. Usually, one EntityManager is used for a certain process. However, it is a bad
practice if you create a new EntityManager for each query or action. Hence it is important to choose an
adequate runtime of an EntityManager depending on the application context. Since there are only a few
trivial database actions in this example, for simplicity’s sake let’s only use one EntityManager for the
whole runtime. In practice it does not make sense to use an EntityManager for each and every action.

As with the SessionFactory, it makes sense to manage the EntityManagerFactory in one module
installer class (see Listing 28-4). This way you can also easily and properly finish having the factory shut
down the application.

CHAPTER 28 JAVA PERSISTENCE API

319

Listing 28-4. Central Management of and Providing the Entity Manager Factory

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
public class Installer extends ModuleInstall {
 public static final EntityManagerFactory EMF;
 public static final EntityManager EM;
 static {
 try {
 EMF = Persistence.createEntityManagerFactory("HibernateJPA");
 EM = EMF.createEntityManager();
 } catch (Throwable ex) {
 throw new ExceptionInInitializerError(ex);
 }
 }
 @Override
 public void close() {
 EM.close();
 EMF.close();
 }
}

Saving and Loading Objects
Finally, it remains to be clarified how to access your objects over an EntityManager. Take the class
DataModel, in which you implemented the interaction with the native Hibernate interface, again. You
want to substitute it now with the JPA. Let’s take a look at the methods getAlbums() and getGenres(), for
example. As usual, you first create a transaction in which you want to execute your query or action. With
the method getTransaction() you get an instance of an EntityTransaction by the EntityManager. Start
the transaction with begin() and then create a Query instance for the JPQL query SELECT a FROM Album a.
This query provides all objects of the table Album. You get this result in the form of a List by the
getResultList() method. Finish the transaction successfully with commit(). (See Listing 28-5.)

Listing 28-5. Interaction with the Database with the EntityManager

import javax.persistence.Query;

public class DataModel {

 public static List<Album> getAlbums() {
 Installer.EM.getTransaction().begin();
 Query q = Installer.EM.createQuery("SELECT a FROM Album a");
 List<Album> list = q.getResultList();
 Installer.EM.getTransaction().commit();
 return list;
 }

 public static List<Genre> getGenres() {

CHAPTER 28 JAVA PERSISTENCE API

320

 Installer.EM.getTransaction().begin();
 Query q = Installer.EM.createQuery("SELECT g FROM Genre g");
 List<Genre> list = q.getResultList();
 Installer.EM.getTransaction().commit();
 return list;
 }

 public static void updateAlbum(Album album) {
 Installer.EM.getTransaction().begin();
 Installer.EM.persist(album);
 Installer.EM.getTransaction().commit();
 }

 public static void insertAlbum(Album album) {
 updateAlbum(album);
 }

 public static void deleteAlbum(Album album) {
 Installer.EM.getTransaction().begin();
 Installer.EM.remove(album);
 Installer.EM.getTransaction().commit();
 }
}

Summary
The Java Persistence API (JPA) is a uniform interface for object-relational bridges such as Hibernate. JPA
enables transparent usage and easy compatibility between persistence systems. In this chapter you used
the JPA compliant interface of Hibernate.

C H A P T E R 29

321

MySQL and EclipseLink

In Chapter 26, you created an application with which you saved music albums in a Java DB database. In
this first step, you split the objects to be saved in SQL statements and assembled them from SQL results
again. An object-relational mapping (ORM) framework like Hibernate does this work for you. Chapter 27
dealt with how to integrate Hibernate into a NetBeans Platform application and how to use the native
interface of Hibernate. In Chapter 28 you got to know the Java Persistence API (JPA) that specify the
interface of an ORM framework. Using the JPA, you could make the application independent of a special
implementation, in this case Hibernate.

In the following sections, EclipseLink will be substituted for Hibernate and you will use a MySQL
server instead of the Java DB database system (see Figure 29-1). Beyond the integration of these two
components you will also learn how to let create entities out of relations with the NetBeans IDE. The
application logic which is in My Module remains unchanged.

Figure 29-1. Structure of the application for the integration of EclipseLink and MySQL

CHAPTER 29 MYSQL AND ECLIPSELINK

322

Installing MySQL Database
First, create a MySQL database. This chapter assumes you have already installed a MySQL server or have
access to one. You can download the free-to-use community edition at
http://dev.mysql.com/downloads. Then open the Services window in the NetBeans IDE. There you will
find the node Databases. Choose Register MySQL Server… out of its context menu (see Figure 29-2).

Figure 29-2. Registering MySQL Server in the NetBeans IDE

Type in the name of the server, the port, the username and the password (in this example localhost)
into the dialog that appears. You get a MySQL Server node as shown in Figure 29-3. Now you can create a
database out of this node with Create Database… in the context menu. Name it eclipselink-db.

CHAPTER 29 MYSQL AND ECLIPSELINK

323

Figure 29-3. Installing and managing MySQL Server in the service window

The approach in this chapter is different from that of previous chapters: the entity classes are
created out of the relations of the database. Hence, in the next step you create the necessary tables. Both
tables album and genre should have the structure shown in Listing 29-1. Open the connection which you
created before in the Services window and select the action Execute Command... in the context menu of
the node eclipselink-db ➤ Tables to create the table (see Figure 29-3). You can directly type in the
schema as an SQL statement (see Listing 29-1). Alternatively, you can also select the action Create
Table… and create both tables manually.

Listing 29-1. Schema of Both Tables album and genre

CREATE TABLE genre (
 id INT NOT NULL,
 genre VARCHAR(30) NOT NULL,
 PRIMARY KEY(id)
)
CREATE TABLE album (

CHAPTER 29 MYSQL AND ECLIPSELINK

324

 id INT NOT NULL AUTO_INCREMENT,
 title VARCHAR(30) NOT NULL,
 tracks VARCHAR(30) NOT NULL,
 cds VARCHAR(30) NOT NULL,
 year VARCHAR(30) NOT NULL,
 genre INT NOT NULL,
 PRIMARY KEY(id),
 FOREIGN KEY(genre) REFERENCES genre(id)
)

Finally, register the MySQL server within the NetBeans IDE. You have now created a database and
the necessary tables.

Integrating MySQL Driver
Integrate the MySQL JDBC driver (Connector/J) so the NetBeans Platform application can connect itself
to the MySQL server and the NetBeans Platform gets access to the database. Do this with a new library
wrapper module with File ➤ New Project… ➤ NetBeans Modules ➤ Library Wrapper Module. You can
download the driver directly from http://dev.mysql.com/downloads or get it from the NetBeans IDE in
the ide/modules/ext directory.

The module is called MySQL Connector here and you add it to the NetBeans Platform application
(see Figure 29-4).

Figure 29-4. Integrate the MySQL JDBC driver in your application.

Integrate EclipseLink
You do not want to get access directly to the database through the JDBC interface, but through the ORM
framework EclipseLink (JPA 2.0). Hence you have to make sure that the necessary libraries are available.
Create a library wrapper module and add the Java Persistence API as well as the EclipseLink library as a
special implementation of the JPA. You can get both libraries out of the NetBeans IDE from the directory
java/modules/ext/eclipselink:

eclipselink-2.2.0.jar

CHAPTER 29 MYSQL AND ECLIPSELINK

325

eclipselink-javax.persistence-2.0.jar

Name this wrapper module EclipseLink and add it to your NetBeans Platform application.

Creating Entities out of Database Schema
In the preceding chapters you created the entity classes yourself. Based on its structures, the tables were
automatically created by the ORM framework. Now you want to reverse the process. You already created
the necessary tables for your application at the beginning of the chapter. The NetBeans IDE can now
create the referring entity classes automatically. This process becomes interesting when you have to
implement an application on an existing database.

Unfortunately, the NetBeans IDE wizard to create the entity classes on the base of tables is only
provided for Java projects, not for module projects. Therefore you have to take a small detour. First,
create a Java project with File ➤ New Project… ➤ Java ➤ Java Class Library. Then you can start the actual
wizard with File ➤ New File… ➤ Persistence ➤ Entity Classes From Database. Choose the referring
database connection (eclipselink-db) first and then add the tables album and genre with Add >. On the
subsequent page, the classes to create are listed. Define the package (com.galileo.netbeans.myentities)
and choose the option Create Persistence Unit. Meanwhile, the necessary JPA configuration
(persistence.xml) is created as shown in Figure 29-5 (see also Chapter 28).

Figure 29-5. Creating the entity classes on the base of existing databank tables

On the last page of the wizard use java.util.List as Collection Type and deactivate all options. After
the entity classes have been created, you can create a library. To do so, call Build from the project’s
context menu. Add the JAR file to a library wrapper module of your NetBeans Platform application in the
next step. Call it My Entities and use com.galileo.netbeans.myentities as the code name base.

CHAPTER 29 MYSQL AND ECLIPSELINK

326

Build Up and Test Application
Now you have created a module for the MySQL driver and the EclipseLink implementation of the Java
Persistence API. You did not create the entity classes Album and Genre yourself but let the NetBeans IDE
create and annotate them. Out of that you created a NetBeans module. You can take the application
module My Module as it is, because the advantage of using JPA is that you can change the underlying
ORM framework. You only have to designate the new persistence unit name when creating the Entity
Manager Factory in the Installer class. If you define the dependencies as in Figure 29-1 you can start
and test the application.

Summary
In this chapter you used the widespread database MySQL to store your objects using the JPA
implementation EclipseLink. You learned how to create classes out of relations and you also saw the
great advantage of using the Java Persistence API, when you changed the persistence provider without
impacting applications code and logic.

C H A P T E R 30

327

Web Services

The Amazon Product Advertising API allows you to search for products or information about several
products, and even execute operations in the shopping cart. This chapter will show you how to create
the necessary classes with the NetBeans IDE and how to use those classes within a NetBeans Platform
application.

Creating a Web Service Client
In the first step, you do not open a NetBeans module, but a Java class library that can be created by a
wizard. Call File ➤ New Project, in the category Java choose the project type Java Class Library. Call the
project Amazon Web Services and close the wizard with Finish. Then choose File ➤ New File ➤ Web
Services ➤ Web Service Client. You directly specify the file to use by the URL
http://webservices.amazon.com/AWSECommerceService/DE/AWSECommerceService.wsdl. (this only
works when you are online). If you want to work offline, you can download the WSDL file and specify it
as a local file in the wizard (see Figure 30-1). Call the package in which the web service classes are
produced com.amazon.advertising.api.

CHAPTER 30 WEB SERVICES

328

Figure 30-1. Creating a web service client for the Amazon Product Advertising API

Keep JAX-WS Style as the client style. Press Finish so all classes, which are necessary to use the web
service, can be created by means of the description in the WSDL file. You deactivate the default set
Wrapper Style for a better arranged usage of the web service operations, as you will see later. Open the
newly added Web Services References folder in the project’s view; there should be an entry
AWSECommerceService in it. Open the context menu of this entry and choose Edit Web Service
Attributes. Expand the node AWSECommerceServicePortType beneath Port Types on the WSDL
Customization tab and deactivate the option Enable Wrapper Style (see Figure 30-2). This setting is then
applied to all operations of this port type.

CHAPTER 30 WEB SERVICES

329

Figure 30-2. Deactivating wrapper style for the Amazon Web service

If you apply the settings with OK the web service client classes should become updated. Now you
can execute a Build and get the web service client as a JAR file dist/Amazon_Web_Services.jar in the
project folder. In the next step you can use this file within a NetBeans module as Amazon Web Services
API.

Using the Web Service
In the last paragraph, a Java interface for the usage of the Amazon Web service has been created. You
can proceed in the exact same way with other web services. To call a web service out of a NetBeans
Platform application you first create a NetBeans Platform application with File ➤ New Project... ➤
NetBeans Modules ➤ NetBeans Platform Application. You can give the application any name. In the next
step you add the web service client to the application. To do so, you create a library wrapper module

CHAPTER 30 WEB SERVICES

330

with File ➤ New Project... ➤ NetBeans Modules ➤ Library Wrapper Module. Add the JAR file
Amazon_Web_Services.jar to the library wrapper module and call it Amazon Web Services, too.

The web service client is now available within your NetBeans Platform application. Now you can
create an application module in which to use the web service. With File ➤ New Project... ➤ NetBeans
Modules ➤ Module you add a further module to the Platform application. Add a dependency to the
Amazon Web service module that the module can also use the web service client. To demonstrate a call
of a web service operation, create a top component. With that you want to search the available pictures
of a product by means of the ASIN (Amazon Standard Identification Number). Thinking about the MP3
Manager (developed in Chapter 44) the following usage is imaginable: save the ASIN in the ID3 tag of an
MP3 file and then you can display the available cover of the currently playing MP3 file—or you can
search for and display albums of the currently played artist.

In the exemplified application, as shown in Figure 30-3, you want to search for a product by means
of the typed-in ASIN and display its preview as used on the Amazon web site. To do so, take a closer look
at the necessary query with which you can call the Amazon web service. This query should be executed
asynchronously to avoid an obstruction of the complete application. Keep in mind that accessing the
GUI components only works from the Event Dispatch Thread. You have to be informed as soon as the
query is executed and you can display the picture. The easiest way to achieve this is with a SwingWorker
class. Create your own class that derives from SwingWorker<String, Object>.

Figure 30-3. Query product information over the Amazon Product Advertising API

The method doInBackgroud(), which you have to overwrite, is automatically executed
asynchronously. This is where you place your web service query. If that is executed the method is
queried by the SwingWorker class (see Listing 30-1). You can detect the value of the method
doInBackground() by the method get() quite easily—in this example, the URL of the product picture.

CHAPTER 30 WEB SERVICES

331

Listing 30-1. Executing a Web Service Query and Displaying the Results by Means of a SwingWorker Class

import com.amazon.advertising.api.AWSECommerceService;
import com.amazon.advertising.api.AWSECommerceServicePortType;
import com.amazon.advertising.api.ImageSet;
import com.amazon.advertising.api.Item;
import com.amazon.advertising.api.ItemLookup;
import com.amazon.advertising.api.ItemLookupRequest;
import com.amazon.advertising.api.ItemLookupResponse;
...
final class AWSTopComponent extends TopComponent {
 private static final String AWS_KEY = <your access key>;
 private static final String SEC_KEY = <your secret key>;

 private final class ImageLookupByASIN extends SwingWorker<String, Object> {
 private String asin = "";

 public ImageLookupByASIN(String asin) {
 this.asin = asin;
 }

 @Override
 public String doInBackground() {
 String url = "";
 try {
 AWSECommerceService service = new AWSECommerceService();
 service.setHandlerResolver(new AWSHandlerResolver(SEC_KEY));
 AWSECommerceServicePortType port = service.getAWSECommerceServicePort();

 ItemLookupRequest request = new ItemLookupRequest();
 request.setIdType("ASIN");
 request.getItemId().add(asin);
 request.getResponseGroup().add("Images");

 ItemLookup il = new ItemLookup();
 il.setAWSAccessKeyId(AWS_KEY);
 il.getRequest().add(request);

 ItemLookupResponse response = port.itemLookup(il);
 Item i = response.getItems().get(0).getItem().get(0);

 ImageSet is = i.getImageSets().get(0).getImageSet().get(0);
 url = is.getThumbnailImage().getURL();
 } catch (Exception e) {
 Exceptions.printStackTrace(e);
 }
 return url;
 }

 @Override
 protected void done() {

CHAPTER 30 WEB SERVICES

332

 try {
 cover.add(new JLabel(new ImageIcon(new URL(get()))));
 cover.updateUI();
 } catch (Exception e) {
 Exceptions.printStackTrace(e);
 }
 }
 }

 private void searchActionPerformed(ActionEvent evt) {
 new ImageLookupByASIN(asin.getText()).execute();
 }
}

First, you determine the port of the Amazon web service in the asynchronously executed
doInBackground() method. You want to execute the ItemLookup operation which you configure by an
ItemLookup and an ItemLookupRequest object. With the request object you determine that you want to
search for a product by means of the ASIN. You add the ASIN, which was passed to the
ImageLookupByASIN object as parameter, to the item ID list. You can determine and narrow the
information delivered by the web service by the Reponse Group. As you are only interested in the URLs of
the pictures and the other product information is not important, you use the group type Images.

For the usage of the Amazon Web Service (AWS) you need a so-called AWS Access Key and an AWS
Secret Key. Both are assigned to you by a free login at http://aws.amazon.com. Queries to the Amazon
web services have to be signed. The signature is produced and determined by a secret key of the class
AWSHandlerResolver. (You can find this class in the example project which is available from the Source
Code/Download Page for this book at www.apress.com).) You transfer the access key to the ItemLookup
object by the setAWSAccessKeyId() method. You also add the ItemLookupRequest object. By doing so you
compose the parameters necessary for the query. Now you can execute the operation itemLookup() on
the web service port you determined before. You get the result of the query in an ItemLookupResponse
object which contains a list of found products in terms of Item objects. As there is only one product for
an ASIN you can take the first item from the list directly. One item contains an ImageSet out of which you
extract and to which you return the preview.

Now the whole query is completed and the SwingWorker class calls the method done(). In this
method you can get the URL by means of the get() method. Finally, you can directly create an ImageIcon
object out of it which you are able to display afterwards (see Figure 30-3).

Summary
This chapter dealt with the topic of web services. You created a Web Service API (a web service client) for
AWS from the corresponding WSDL file. To this end, you made use of the related NetBeans IDE tooling
support. Next, you learned how to integrate the web service client into your own NetBeans Platform
application. All in all, the example showed how easy it is to use a web service in your own application.

C H A P T E R 31

333

Java Enterprise Edition and the
NetBeans Platform

Java Enterprise Edition (Java EE) provides the basis for developing distributed multilayered business
applications out of modular components. Particularly with business applications, the NetBeans Platform
is used in connection with large quantities of data which often must be edited in a complex way. The
question of how to usefully merge these two worlds, Java Enterprise Edition and the NetBeans Platform,
naturally arises.

By default in Java EE, an application client is provided for the client-side usage of Java EE
applications. This application client is executed in an Application Client Container (ACC).
Unfortunately, such a container is not qualified for integration in a NetBeans Platform application.
Another possibility is to forego the advantages of an ACC and directly address Java EE applications—
specifically, Enterprise Java Beans (EJBs). But the ACC creates wrapper classes automatically at runtime.
These wrapper classes, together with a special classloading strategy, forbid integration into the NetBeans
Platform; an unmanageable number of libraries is another problem. The origin of this problem is the
communication of the components spread through RMI-IIOP (Java Remote Method Invocation over the
Internet Inter-Orb Protocol), among others.

Now, a Java EE application can contain web services besides Enterprise Java Beans. These web
services are even treated as EJBs. The communication works with the simple SOAP protocol over the
HTTP protocol (see Figure 31-1). You already learned in Chapter 30 how easy it is to call web services out
of a NetBeans Platform application. The reason for this is that the protocol needs little implementation
effort; from this it follows that there is only a small number of libraries needed. Besides, just two
necessary APIs—JAX-WS and JAXB— have been part of the Java Platform since Java 6. No external
libraries are necessary.

From this point of view, I suggest you use web services as a sort of façade or rather as middleware
for Enterprise Java Beans. This way, it is possible to easily call EJBs from a NetBeans Platform
application. An already existing structure of EJBs can remain unchanged because the web service layer is
only put in front of it, so to speak. Moreover, such a façade facilitates aggregation and orchestration of
different beans.

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

334

Figure 31-1. Architecture of a Java EE application with web services as communication interface with EJBs

The following sections will illustrate the implementation of such an architecture by means of a
simple example. In that example, the user of the NetBeans Platform should be able to query products
from the server and put several products in a shopping cart which is managed on server side.

Persistent Entities
The first step is to implement a persistent entity class that represents a product. Since you implement
the class as a persistent entity, you are able to directly manage the products in a database via the entity
manager; instances can just be put in or removed from a database. You must implement the persistent
entity and later on the EJBs and the web service interface in an EJB module. For simplicity’s sake this
example uses only one module. You create this project in the NetBeans IDE with File ➤ New Project... ➤
Java EE ➤ EJB Module and call the project OrderSystem. Please use the GlassFish Server 3.1 and
Java EE 6.

Before starting the implementation it is advisable to first create a database; next it is possible to
create a persistence unit for it. In the simplest case, use the integrated Java DB as database. Find this
database under Databases in the Services window. Click Create Database... in the context menu and you
can create a new database. Call it ProductDatabase. (See Figure 31-2.)

Next you can add a new persistent entity class to the EJB module project with File ➤ New File... ➤
Persistence ➤ Entity Class. Call it Product and add it to the package com.galileo.netbeans.entities. For
the primary key use the datatype Long. If no persistence unit has been created yet, you can create one at
the end. Call the persistence unit OrderSystemPU. Use the preset EclipseLink implementation of the
JPA 2.0 as persistence provider. With Data Source you define the JNDI title jdbc/ProductDatabase for the
database you just created. As Table Generation Strategy you choose Create. Tables necessary for the
persistent entities will be created automatically if they do not exist yet.

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

335

Figure 31-2. Selecting persistence provider and database

After creating the entity class you can add the desired attributes. This works very well with the
NetBeans IDE if you choose Insert Code... in the editor’s context menu or use the key combination
Alt+Insert. In the context menu that opens up you can choose the option Add Property. By doing so the
getter and setter methods are automatically created for the appropriate features. Add the features
outlined in Listing 31-1 to the Product class.

Listing 31-1. Persistent Entity for the Management of Products

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Product implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 protected String orderId;
 protected String name;
 protected Double price;

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

336

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }
 ...
}

Enterprise Java Beans
To manage the available products and the products in a shopping cart, implement an EJB in each case.
You can add a bean class to the project which is already created by clicking File ➤ New File... ➤
Enterprise JavaBeans ➤ Session Bean. Call the EJB class for the product management ProductBean and
add it to the package com.galileo.netbeans.beans. The session type should be Stateless. (See Figure 31-
3.) You have to use this class locally (the web service will be located in the same module, which is why it
is possible to access it locally); since EJB 3.1 it is no longer necessary to specify an interface.

Figure 31-3. Creating the ProductBean class to manage the products

Now, equip the bean class ProductBean with two methods; one to add products and one to get a
complete list of all saved products. You get access to the products on the database by means of an entity
manager of the Java Persistence API (JPA). For this purpose you can use the code wizard of the NetBeans

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

337

IDE again. Press Alt+Insert inside your class and choose the option Use Entity Manager.... in the context
menu. The entity manager will be created as a private data element. Annotate the entity manager with
the annotation @PersistenceContext, and define with it the name of the persistence unit (according to
the configuration in the persistence.xml file). The instance of the entity manager is injected by the EJB
container at runtime. (See Listing 31-2.)

Listing 31-2. Stateless Session Bean to Manage the Products

@Stateless
@LocalBean
public class ProductBean {

 @PersistenceContext(unitName = "OrderSystemPU")
 private EntityManager em;

 public void addProduct(Product product) {
 em.persist(product);
 }
 public List<Product> getProducts() {
 return em.createQuery(
 em.getCriteriaBuilder().createQuery(Product.class)).getResultList();
 }
}

You need a bean class for the implementation of the shopping cart next. For this purpose select File
➤ New File... ➤ Enterprise JavaBeans ➤ Session Bean again and create an EJB named CartBean with the
wizard. Add the EJB to the package com.galileo.netbeans.beans. The session type should be Stateful and
an interface is again not needed in this case because it can only be accessed locally by the web service.
(See Listing 31-3.)

Listing 31-3. CartBean Class to Manage the Shopping Cart

import com.galileo.netbeans.entities.Product;
import java.util.ArrayList;
import java.util.List;
import javax.ejb.LocalBean;
import javax.ejb.Stateful;

@Stateful
@LocalBean
public class CartBean {
 private List<Product> products = new ArrayList<Product>();

 public void addProduct(Product product) {
 products.add(product);
 }

 public List<Product> getProducts() {
 return products;
 }

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

338

 public Double getSum() {
 Double sum = 0.0;
 for (Product p : products) {
 sum += p.getPrice();
 }
 return sum;
 }

 public Integer getAmount() {
 return products.size();
 }
}

Now you have implemented two simple session beans and one persistent entity. Surely, the
application could be extended with many more Java EE features, but this chapter is mainly about calling
EJBs via a web service interface.

Web Service
This section will deal with creating a web service interface that functions to some extent as a
communication layer to call the EJBs. There are two ways to create a web service. It can either be
implemented in a EJB module so it represents a session bean or, if implemented in a web application,
you can implement the web service as a session bean with a web service interface or as a plain web
service.

In this example the web service will be integrated into the already existing EJB module. Surely, you
could also create a new EJB module for this purpose. However, in that case it is necessary to create a
local interface for both ProductBean and CartBean. That way, the web service can refer to the EJBs. Add a
web service to the EJB module with File ➤ New File... ➤ Web Services ➤ Web Service. Call it OrderService
and add it to the package com.galileo.netbeans.service. As you can see, the web service must be
created as a stateless session bean in this kind of container, which is just an additional annotation in the
implementation. (See Figure 31-4.)

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

339

Figure 31-4. Creating a web service class as a stateless session bean

Now add references of both beans to the basic structure of the web service. Because of Dependency
Injection this is quite simple, but you can use the advantages of the code wizard. Thus, press Alt+Insert
and choose Call Enterprise Bean. Then you can choose the desired EJB in the selection dialog. This way
you create references to a ProductBean as well as to a CartBean object, as depicted in Listing 31-4. In the
same easy way, with the code wizard (with Add Web Service Operation...) you add the desired web service
methods, which will finally be available in your NetBeans Platform application. (See Figure 31-5.)

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

340

Figure 31-5. Adding web service methods with the code wizard

Add the annotation @WebService to the web service and give the annotation a name. Both EJB
references will automatically be initialized by the EJB container at runtime.

Listing 31-4. Implementation of Web Services As Façade for EJBs

import com.galileo.netbeans.beans.CartBean;
import com.galileo.netbeans.beans.ProductBean;
import com.galileo.netbeans.entities.Product;
import java.util.List;
import javax.ejb.EJB;
import javax.jws.Oneway;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.ejb.Stateless;

@WebService(serviceName = "OrderService")
@Stateless
public class OrderService {

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

341

 @EJB
 private ProductBean productBean;
 @EJB
 private CartBean cartBean;

 @WebMethod(operationName = "addProductToCart")
 @Oneway
 public void addProductToCart(
 @WebParam(name = "product") Product product) {
 cartBean.addProduct(product);
 }

 @WebMethod(operationName = "getSumOfCart")
 public Double getSumOfCart() {
 return cartBean.getSum();
 }

 @WebMethod(operationName = "getAmountOfCart")
 public Integer getAmountOfCart() {
 return cartBean.getAmount();
 }

 @WebMethod(operationName = "getProducts")
 public List<Product> getProducts() {
 return productBean.getProducts();
 }

 @WebMethod(operationName = "addProduct")
 @Oneway
 public void addProduct(
 @WebParam(name = "product") Product product) {
 productBean.addProduct(product);
 }
}

Now you have equipped two enterprise beans with a web service interface. A web service is
described by a WSDL file, and on the basis of a WSDL file a web service client is created. However, you
do not have to create the WSDL file, because the GlassFish server creates it on demand. So you just have
to deploy the EJB module with the web service on the server. Choose Deploy in the context menu of the
referring project. Make sure the database server is started besides the GlassFish server so that the web
service calls can be executed successfully.

Web Service Client
You cannot create a web service client directly in a NetBeans Platform application if you want to use it
instead of a Java EE application client. For this a normal Java project is needed. In the simplest case, just
create a Java class library project with File ➤ New Project... ➤ Java ➤ Java Class Library. Add a web
service client to it with File ➤ New File... ➤ Web Services ➤ Web Service Client as shown in Figure 31-6.

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

342

Figure 31-6. Creating a web service client

Pass the URL of the WSDL file to the wizard (see Figure 31-6). You can do that by simply choosing
Browse... in the web service projects menu. Specify a package name and finish the wizard so the web
service client classes are automatically created out of the information of the WSDL file. Create a JAR file
out of this client with Build. In the next section, you will see that the JAR file will be integrated in the
NetBeans Platform application.

NetBeans Platform Application
Assuming you have already created a NetBeans Platform application, add a library wrapper module to
which you add the already created JAR file with the web service client. In addition, create an application
module with a dependency on the integrated web service client module. First, add an action, which adds
products to the database as test, to the application module (see Listing 31-5).

Listing 31-5. Adding Test Products

import com.galileo.netbeans.client.OrderService;
import com.galileo.netbeans.client.OrderService_Service;
import com.galileo.netbeans.client.Product;
...
public final class CreateProducts implements ActionListener {
 @Override

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

343

 public void actionPerformed(ActionEvent e) {
 OrderService_Service service = new OrderService_Service();
 OrderService port = service.getOrderServicePort();
 Product p1 = new Product();
 p1.setName("Product 1");
 p1.setOrderId("P1");
 p1.setPrice(2.99);
 Product p2 = new Product();
 p2.setName("Product 2");
 p2.setOrderId("P2");
 p2.setPrice(3.99);
 ...
 port.addProduct(p1);
 port.addProduct(p2);
 }
}

Now you need a top component that contains a table in which all available products can be listed
(see Figure 31-7).

Figure 31-7. NetBeans Platform application for the demonstration of accessing the EJBs by web services

You do not have to create the OrderService object yourself. Instead the already created
OrderService_Service class gives you an instance with the method getOrderServicePort() (see Listing
31-6). Then you can execute the server side–implemented methods as completely transparent on this
instance. By clicking the Reload button all products should be selected and added to the table. With Add

CHAPTER 31 JAVA ENTERPRISE EDITION AND THE NETBEANS PLATFORM

344

to Cart all selected products will be transferred to the CartBean. Simultaneously, the current sum and the
quantity of products will be requested from the CartBean.

Listing 31-6. Read Data with the Web Service from the Server and Restore It

import com.galileo.netbeans.client.OrderService;
import com.galileo.netbeans.client.OrderService_Service;
import com.galileo.netbeans.client.Product;
...
public final class OrderTopComponent extends TopComponent {
 private OrderService_Service service = new OrderService_Service();
 private OrderService port;

 public OrderTopComponent() {
 ...
 port = service.getOrderServicePort();
 }

 private void addToCartActionPerformed(ActionEvent evt) {
 if (tableView.getSelectedRowCount() > 0) {
 port.addProductToCart(tableModel.getRow(tableView.getSelectedRow()));
 cartSum.setText(port.getSumOfCart() + " ");
 cartAmount.setText("" + port.getAmountOfCart());
 }
 }

 private void reloadProductsActionPerformed(ActionEvent evt) {
 tableModel.getList().clear();
 tableModel.getList().addAll(port.getProducts());
 tableModel.fireTableDataChanged();
 }
}

So now an application example has been created with which EJBs can be addressed out of the
context of a NetBeans Platform application. In this approach no typical application client (with RMI-
IIOP) went into action, but rather a much easier web service interface (with SOAP over HTTP).
Renouncing consciously one or the other functionality of the application container, you have a huge
advantage in terms of “simple integration” and flexibility.

Summary
The NetBeans Platform is often used when the Java Enterprise Edition is used, too. What has not been
taken into account so far is the interaction of these two “worlds.” In this chapter you learned how you
can easily access EJBs out of your NetBeans Platform application. To demonstrate this you created a
simple server-side shopping system which you deployed to a GlassFish application server and accessed
this Java EE application from a NetBeans Platform–based application.

C H A P T E R 32

345

RESTful Web Services

This chapter is about providing and consuming server-side data by RESTful web services. Similar to web
services over SOAP, it is possible to access a Java EE server application by a NetBeans Platform
application. This chapter will show you which steps are necessary to create and integrate a RESTful web
service client. You will create a simple product database with a persistent entity class and a RESTful web
service class that gives access to the data. The server picks the data directly over the entity manager. But
it is also possible to access Enterprise Java Beans (EJBs) which provide the needed data.

Creating a Web Application
Whereas it is possible to provide a SOAP-based web service within an EJB module, a Web Application
project (WAR file) is necessary for a RESTful web service. Then, this application will be executed within a
web container of the Java EE server. Use the NetBeans IDE wizard and create a web application project
with File ➤ New Project... ➤ Java Web ➤ Web Application. Call the project OrderSystem and assign it to a
Java EE server. Finally, complete the wizard with Finish. (See Figure 32-1.)

Figure 32-1. Creating a web application project and assigning it to a server

CHAPTER 32 RESTFUL WEB SERVICES

346

Creating Persistent Entity
First, you create a persistent entity class that will represent the data to be managed. This way, you are
able to read, change, save, and delete products in a database. The NetBeans IDE provides a wizard as
well. It is possible to directly create a persistence unit, too; however, you should configure a database in
advance. You can use the integrated Java DB, which you can configure in the Services window under
Databases, over the context menu (see Chapter 26).

Call File ➤ New File... ➤ Persistence ➤ Entity Class to create a persistent entity class. Call it Product
and assign it to the package com.galileo.netbeans.order.entities. Activate the option Create
Persistence Unit to let the wizard create it (you will need to enter more information on the following
wizard page). Name the persistence unit OrderSystemPU and choose EclipseLink as persistence provider.
To use the previously created database, use jdbc/ProductDatabase as data source. Choose Create as table
generation strategy so the necessary tables in the database are automatically generated when the first
product is added. (See Figure 32-2.)

Figure 32-2. Creating a persistence entity class and a persistence unit

The class is created with the attribute id which uniquely identifies an entry in a database. The value
of this ID is automatically given by the database. You add further attributes as an example (orderId,
name, price) with referring getter and setter methods. (See Listing 32-1.)

Listing 32-1. Persistent Entity Class Product with JPA Annotation for Saving the Object in the Database

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

CHAPTER 32 RESTFUL WEB SERVICES

347

@Entity
public class Product implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String orderId;
 private String name;
 private Double price;

 public Long getId() {
 return id;
 }
 public void setId(Long id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 ...
}

Creating a RESTful Web Service
There are several wizards available for creating a RESTful web service. Besides creating a simple service
you can directly create a web service for your use case, too. Meanwhile, the referring methods to
manipulate and query the data are automatically created. Call File ➤ New File... ➤ Web Services ➤
RESTful Web Services from Entity Classes and add the class Product which you have created before. Add
the service class to the package com.galileo.netbeans.order.service.

The created service is split in two classes: AbstractFacade and ProductFacadeREST. The
AbstractFacade class is an abstract implementation of methods for getting access to databases over the
entity manager. Those methods that should be provided as services are implemented in
ProductFacadeREST; the entity manager is managed in this class. (See Listing 32-2.)

Listing 32-2. RESTful Web Service Class to Manipulate and Get Data of the Type Product

import com.galileo.netbeans.order.entities.Product;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;

@Stateless
@Path("com.galileo.netbeans.order.entities.product")
public class ProductFacadeREST extends AbstractFacade<Product> {

CHAPTER 32 RESTFUL WEB SERVICES

348

 @PersistenceContext(unitName = "OrderServicePU")
 private EntityManager em;

 public ProductFacadeREST() {
 super(Product.class);
 }

 @POST
 @Override
 @Consumes({"application/xml"})
 public void create(Product entity) {
 super.create(entity);
 }

 @PUT
 @Override
 @Consumes({"application/xml"})
 public void edit(Product entity) {
 super.edit(entity);
 }

 @DELETE
 @Path("{id}")
 public void remove(@PathParam("id") Long id) {
 super.remove(super.find(id));
 }

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }
 ...
}

The methods have annotations to identify which HTTP operations are used. Besides, the format in
which the data is transferred is defined with @Consumes and @Produces. In addition to the type
application/xml you can also choose application/json.

So, you have created a simple RESTful web service you can now provide on the server with Deploy.
The interface of the service is defined by a WADL file which is also published by the Java EE server. You
can test the service with a web interface: Test RESTful Web Services in the context menu of the
application project.

Install NetBeans Platform Application
After creating a web service you now come back to the NetBeans Platform. First, create a NetBeans
Platform application project which you will call OrderApplication. Before creating an application
module, you have to add accessory modules from the extended NetBeans IDE to the application. To do
so, go into the Properties of the project on the category Libraries. There you add the following modules:

• enterprise/RESTful Web Service Libraries

CHAPTER 32 RESTFUL WEB SERVICES

349

• ide/JAXB 2.2 Library

• ide/JAXB API

The Jersey libraries, which represent the reference implementation of the Java API for RESTful web
services (JAX-RS), are hidden behind the module RESTful Web Service Libraries.

RESTful Web Service Client
Now you will create a service client class for the web services. To do so, you first create an application
module which you name OrderModule. Call File ➤ New File... ➤ Web Services ➤ RESTful Java Client on
this new module. Call the service class OrderServiceClient, add it to the package
com.galileo.netbeans.order.module, and then choose the web service for which a client class will be
created with the option From Project over the Browse... button. (See Figure 32-3.)

Figure 32-3. Creating a service client for a RESTful web service

Now let’s take a look at the created class. All methods provided by the service are implemented with
the JAX-RS implementation; signatures that allow a completely transparent calling-in of the service are
used. (See Listing 32-3.)

CHAPTER 32 RESTFUL WEB SERVICES

350

Listing 32-3. RESTful Web Service Client with the Completely Transparent Object Which Can Be

Transferred to and from the Java EE Server

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.UniformInterfaceException;
import com.sun.jersey.api.client.WebResource;
...
public class OrderServiceClient {
 private WebResource webResource;
 private Client client;
 private static final String BASE_URI = "http://localhost:8080/OrderSystem/resources";

 public OrderServiceClient() {
 ClientConfig config = new DefaultClientConfig();
 client = Client.create(config);
 webResource = client.resource(BASE_URI).
 path("com.galileo.netbeans.order.entities.product");
 }

 public void create(Object requestEntity) throws UniformInterfaceException {
 webResource.type(MediaType.APPLICATION_XML).post(requestEntity);
 }

 public <T> T findAll(Class<T> responseType) throws UniformInterfaceException {
 WebResource resource = webResource;
 return resource.accept(MediaType.APPLICATION_XML).get(responseType);
 }
 ...
}

If you look at the created class in Listing 32-3, you see that the type of data a method returns is
defined by the type of the passed class object. To get the raw data in XML format you could just use the
type String. However, you want to create an entity class (similar to the server-side class) for the data.
Out of the XML data the desired entity class instance is automatically created by JAXB along with the
referring annotations. If the getter and setter methods match the names of the referring XML elements
(and so the attributes of the server-side class), you do not need to do anything beyond annotating the
class with @XmlRootElement. (See Listing 32-4.)

Listing 32-4. Entity Class Which Is Created Automatically by the JAXB Framework and Which Staffs the

Attributes with the XML Data

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Product {
 private Long id;
 private String orderId;
 private String name;
 private Double price;

CHAPTER 32 RESTFUL WEB SERVICES

351

 ...
}

Now, you can use this class in all cases in which you transfer objects or get a single object. In case a
list of objects is delivered to you by a service method (see the method in Listing 32-3), you have to create
a helper class. A list of objects is embraced in XML by an additional tag (<Products>). So that this tag and
the subordinate objects can be created correctly, the helper class shown in Listing 32-5 is necessary.

Listing 32-5. Helper Class for Automatically Creating a Product List

import java.util.ArrayList;
import java.util.List;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Products {
 private List<Product> product = new ArrayList<Product>();

 public List<Product> getProduct() {
 return product;
 }

 public void setProduct(List<Product> product) {
 this.product = product;
 }
}

The usage of the web service client is really simple. As a test, you can add several products to the
database and then query certain or all objects and deliver their data, as shown in Listing 32-6.

Listing 32-6. Testing the Service Client of the RESTful Web Service

public final class TestRESTAction implements ActionListener {

 @Override
 public void actionPerformed(ActionEvent e) {
 OrderServiceClient client = new OrderServiceClient();

 Product p = new Product();
 p.setName("Test Product");
 p.setOrderId("P1");
 p.setPrice(3.99);
 client.create(p);

 Product p1 = client.find(Product.class, "1");
 System.out.println("P1: " + p1);

 Products pro = client.findAll(Products.class);
 System.out.println("Products: " + pro.getProduct().size());
 }
}

CHAPTER 32 RESTFUL WEB SERVICES

352

Summary
RESTful web services provide a very simple possibility to access server-side resources out of a NetBeans
Platform application. In this chapter, you learned how to create a RESTful web service and the
corresponding client module. You used the client module to access a simple product database from a
NetBeans Platform application.

C H A P T E R 33

353

Authentication and
Multi-User Login

To begin this discussion of authentication and logging in multiple users, let’s go back to the login dialog
you created in Chapter 13. With this dialog you can retrieve the user’s login data. Here we will check this
data on the server side. There are numerous possibilities for checking login data. In this context, two
Java built-in functions are focused on doing so. As soon as a user registered successfully, it is important
to adapt the application referring to his or her rights or group membership.

Login Dialog
In Chapter 13, which was about creating application-specific dialogs, you created a login dialog. The
focus in that case was on the UI component, not on the login process. You directly implemented the
handler’s logic within an installer, which was used to show the start of the dialog, even before the
application is started. Now that the authentication process and the subsequent adaptation will be
added, you want to externalize the logic in a separate LoginHandler class. (See Listing 33-1.)

Listing 33-1. First Part of the Login Handler for Managing the Login Dialog

import org.openide.DialogDescriptor;
import org.openide.DialogDisplayer;
import org.openide.LifecycleManager;
...
public class LoginHandler implements ActionListener {
 private static final LoginHandler instance = new LoginHandler();
 private LoginPanel panel = new LoginPanel();
 private DialogDescriptor dialog = null;

 private LoginHandler() {
 }

 public static LoginHandler getDefault() {
 return instance;
 }

 public void showLoginDialog() {
 panel.reset();
 dialog = new DialogDescriptor(panel, "Login", true, this);

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

354

 dialog.setClosingOptions(new Object[]{});
 dialog.addPropertyChangeListener(new PropertyChangeListener() {
 @Override
 public void propertyChange(PropertyChangeEvent evt) {
 if(evt.getPropertyName().equals(DialogDescriptor.PROP_VALUE)
 && evt.getNewValue().equals(DialogDescriptor.CLOSED_OPTION)) {
 LifecycleManager.getDefault().exit();
 }
 }
 });

 DialogDisplayer.getDefault().notifyLater(dialog);
 }

 @Override
 public void actionPerformed(ActionEvent evt) {
 if(evt.getSource() == DialogDescriptor.CANCEL_OPTION) {
 LifecycleManager.getDefault().exit();
 } else {
 login();
 }
 }

 private void login() { ... }
}

It makes sense to implement the class which should create and display the dialog as a singleton
class. First, the method showLoginDialog() creates a DialogDescriptor instance which both the UI panel
(with the text field) and a reference to the LoginHandler instance are transferred to. You implement the
ActionListener interface with its method actionPerformed() by using the LoginHandler class. The
method becomes activated as soon as a button is pressed. We cover two cases in this context: if the user
presses Cancel or the Esc key, or closes the dialog, the application finishes. If the user presses OK, the
login process starts with the input data. Furthermore, you have to install a PropertyChangeListener to be
able to react in case the integrated close button in the upper-right corner is pressed.

You are now able to use this LoginHandler class within an installer in the restored() method to
display the dialog (see Listing 33-2). You may also want to register an action in the menu with which a
change of the user is realized, as shown in Listing 33-3.

Listing 33-2. Executing the Login Handler at Application Start

import org.openide.modules.ModuleInstall;
public class Installer extends ModuleInstall {
 @Override
 public void restored() {
 LoginHandler.getDefault().showLoginDialog();
 }
}

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

355

Listing 33-3. Executing the Login Handler with an Action Which Can Be Assigned to a Menu

public final class SwitchUser implements ActionListener {
 @Override
 public void actionPerformed(ActionEvent e) {
 LoginHandler.getDefault().showLoginDialog();
 }
}

Directory Server
The data necessary for the authentication of a user are usually managed by a directory server. With the
directory server you can swap the necessary information by the Lightweight Directory Access Protocol
(LDAP). To implement the example and for the sake of demonstration you want to install a local
directory server. You can create and change the necessary structure of the data for its usage.

Installing the Test Environment
The Apache Directory project will be used as server. One part of it is ApacheDS, which is an LDAP
conform directory server written in Java. The other part of the project is the Apache Directory Studio,
which is a tooling platform you will use as GUI for the directory server ApacheDS. You just need to
download and install the directory studio in which ApacheDS is embedded. After installing the software,
you can start the studio and install the server. But before installing the server you have to add it. Open
the assistant with File ➤ New... and choose the entry Apache DS Server in the category Apache DS. On the
following page you just need to give it a name before you finish the assistant with Finish. After that you
can provide the server. (See Figure 33-1.)

Figure 33-1. Installing the Apache Directory server instance

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

356

The created instance is added to the window Server with the standard settings. In this window, first
start the server. After, you will be able to create a connection with LDAP Browser ➤ Create a Connection
in the context menu. This connection will be added to the Connections window. Switch to this window
and establish a connection to the server with Open Connection in the context menu. If this connection is
established, a Directory Information Tree (DIT) is displayed in the LDAP Browser window. (See Figure
33-2.) Next you will add the necessary user data to the LDAP browser window.

Figure 33-2. Apache Directory Studio

Setting Up User Data
After starting up the directory server, now that you have access, you want to set up the user data with
which you should be able to log in later. In Figure 33-2 you already see the entry users beneath system in
the DIT. Add two user entries to this entry now. To do so, open New ➤ New Entry from the context menu
of the entry. You want to set up the entry from scratch. On the following page add the object class
inetOrgPerson. Linked with that, further elements are added. Press Next to set the relative distinguished
name (RDN) with uid=<username> on the next page (where username is your username). The next step
is setting the common name (cn) and the surname (sn). (See Figure 33-3.) There you can use random
values.

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

357

Figure 33-3. Completing the attribute for the new user entry

Now, you can set up the new user with Finish. What is missing is a password which you can add by
an extra attribute. For this purpose activate New Attribute... in the list of attributes of the directory studio
in the context menu. The type of attribute is userPassword. Close the assistant directly with Finish. As a
result, the password editor will automatically be displayed. You can define the actual password and
choose a hash algorithm with it.

Now you can already authenticate the application users. However, in this chapter we want to go one
step further and activate or deactivate certain functions within the NetBeans Platform application in
dependency of a certain group membership of the user. How such a group membership is displayed in
the directory depends on the use case (whether a user belongs to one or more groups). In this example,
add the group membership directly to the user entry. Using a multi-value attribute it is possible to assign
one user to multiple groups. The main process of this action is the same as adding the password. Use
employeeType as attribute type. Finish the wizard and directly define the value in the attribute list (for
example, User). To assign the user to multiple groups just add multiple employeeType attributes.

Go on the same way to assign a second user whom you will assign to the Admin group. In the
following chapters different application configurations for both user groups will be realized.

Authentication
In the preceding paragraphs you made the first steps to query the user’s login data when starting the
application and let these data checks be performed by a server. What is still missing is the link to the
application (client) and the directory (server). As mentioned at the beginning of the chapter, you want to
use the LDAP protocol for this. The Java platform even provides multiple ways out-of-the-box for a
simple LDAP communication. Obviously, it is best to use the Java Naming and Directory Interface

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

358

(JNDI); however, the Java Authentication and Authorization Service (JAAS) can be very helpful, too. You
will use JNDI in this example, as it provides more flexibility.

Java Naming and Directory Interface (JNDI)
You often find JNDI connected with Java EE. JNDI is flexible because of factories that can be configured
differently. There is also a factory for the directory server and for the LDAP protocol, so those can be
used flexibly as well. The login process, meaning the usage of JNDI, is separated in the SecurityManager
class. In this singleton class you manage the groups of the users which are currently logged in. Now you
turn your attention to the login() method. At first, you have to combine the following features in a
Properties instance:

• INITIAL_CONTEXT_FACTORY: This feature defines the factory which you should
use. For this application use com.sun.jndi.ldap.LdapCtxFactory.

• PROVIDER_URL: Defines the URL for the directory server. You have to define the
Idap protocol before server name, port, and DN, e.g.
ldap://localhost:10389/ou=system.

• SECURITY_AUTHENTICATION: Indicates the authentication mechanism of the
Simple Authentication and the Security Layer (SASL) frameworks. SIMPLE,
DIGEST-MD5, GSSAPI, NTLM, GSS-SPNEGO, and CRAM-MD5 are provided.

• SECURITY_PRINCIPAL: Indicates the username as complete path in the directory.
The path is already given. You insert the username dynamically out of the login
dialog.

• SECURITY_CREDENTIALS: Transfers the password which belongs to the
authenticated user.

Transfer the Properties object which was created with these features to the InitialDirContext class
which tries to establish the connection with the details given. If this trial fails because of typing in a
wrong password, for example, a NamingException is thrown. You can also use the subclass
InitialLdapContext instead of InitialDirContext dealing with LDAP queries for an advanced control.
(See Listing 33-4.)

Listing 33-4. Implementation of Accessing the Directory Server with the JNDI

import javax.naming.NamingException;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;
...
public class SecurityManager {
 private static final SecurityManager inst = new SecurityManager();
 private String user;
 private List<UserGroup> groups = new ArrayList<UserGroup>();

 private SecurityManager() {
 }

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

359

 public static SecurityManager getDefault() {
 return inst;
 }

 public boolean login(String user, String password) {
 this.user = "";
 this.groups.clear();
 Properties props = new Properties();

 props.put(DirContext.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
 props.put(DirContext.PROVIDER_URL, "ldap://localhost:10389/ou=system");
 props.put(DirContext.SECURITY_AUTHENTICATION, "simple");
 props.put(DirContext.SECURITY_PRINCIPAL, "uid=" + user + ", ou=users, ou=system");
 props.put(DirContext.SECURITY_CREDENTIALS, password);

 try {
 InitialDirContext ctx = new InitialDirContext(props);
 this.user = user;
 Attributes attr = ctx.getAttributes("uid=" + user + ", ou=users");
 Attribute a = attr.get("employeeType");

 if (a != null) {
 for (String groupName : Collections.list((Enumeration<String>) a.getAll())) {
 UserGroup group = UserGroup.get(groupName);
 if (group != null) {
 groups.add(group);
 }
 }
 }
 return true;
 } catch (NamingException ex) {
 return false;
 }
 }

 public List<UserGroup> getUserGroups() {
 return this.groups;
 }
}

If the connection is successfully established, no exception was thrown. You can query the user’s
attributes of the InitialDirContext instance this way. Get the attribute employeeType, which assigned
users to groups. Since it is a multi-value attribute, you can get all values of this attribute with the
getAll() method. Create an object for each attribute value. (See Adapting the Application later in this
chapter.) Add all identified groups to a list and provide it with the getUserGroups() method.

Java Authentication and Authorization (JAAS)
The Java Authentication and Authorization (JAAS) API is an alternative to the JNDI. As you can surmise
from the name, the focus is on authentication rather than querying attributes in the directory. As a

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

360

result, it is not as easy to create the example in Listing 33-4. However, this section will show you how to
use and integrate the JAAS API and its configuration in your NetBeans Platform application.

Similar to the JNDI concept, you first need a configuration. JAAS provides such a configuration in a
certain file structure. This file is typically defined by a command-line parameter. It makes sense to pack
this file in the module in a NetBeans Platform application. Use a variation of the LoginContext
constructors, to which a ConfigFile instance can be passed; the configuration file is passed to this
instance. You can get that URI or URL with the getResource() method.

The JAAS API provides different login modules for different authentication mechanisms, as it does
for the LDAP protocol with which you can communicate with your directory server. In the configuration
file shown in Listing 33-5 which login module is used in which configuration is assigned.

Listing 33-5. JAAS Configuration File

LoginJaas {
 com.sun.security.auth.module.LdapLoginModule REQUIRED
 userProvider="ldap://localhost:10389"
 authIdentity="uid={USERNAME},ou=users,ou=system"
 useSSL=false
 debug=true;
};

Different configurations can be managed in one file. Each is given one name. You indicate the URL
to the directory server as with JNDI and specify the path to the user’s entry. The user name and the
password are queried or set separately, as you can see in Listing 33-6.

Listing 33-6. Authentication with the JAAS API

import com.sun.security.auth.login.ConfigFile;
import java.security.Principal;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginContext;
...
public class SecurityManager implements CallbackHandler {
 private static SecurityManager inst = new SecurityManager();
 private String user;
 private String password;

 private SecurityManager() {
 }

 public static SecurityManager getDefault() {
 return inst;
 }

 public boolean login(String user, String password) {
 this.user = user;
 this.password = password;
 LoginContext loginContext = null;

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

361

 try {
 URL url = SecurityManager.class. getResource("config.jaas");
 loginContext = new LoginContext("LoginJaas",
 null, this, new ConfigFile(url.toURI()));
 loginContext.login();
 for (Principal p : loginContext.getSubject().getPrincipals()) {
 System.out.println("Principal: <" + p.getClass() + "> " + p.getName());
 }
 return true;
 } catch (LoginException e) {
 return false;
 }
 }

 @Override
 public void handle(Callback[] callbacks) throws IOException, UnsupportedCallbackException {
 for (Callback cb : callbacks) {
 if (cb instanceof NameCallback) {
 NameCallback nc = (NameCallback) cb;
 nc.setName(this.user);
 } else if (cb instanceof PasswordCallback) {
 PasswordCallback pc = (PasswordCallback) cb;
 pc.setPassword(this.password.toCharArray());
 }
 }
 }
}

Transfer a CallbackHandler object to the LoginContext constructor. Implement the CallbackHandler
interface directly in the SecurityManager class. The method handle() is provided an array with Callback
instances. Check the type of instances and referring actions. This is mainly setting the user name and the
password which can be queried during the login process by the login() method. If the authentication is
carried out completely, you can query the user’s features by different Principal instances.

Adapting the Application
This section will deal with the functionalities of the NetBeans Platform for adapting the application to a
specific user. On the one hand, it is about how to dynamically adapt the System Filesystem, which
contains the configuration of the menu. On the other hand, it is about how to switch on and off certain
functions on the module layer.

You need the login() method of the LoginHandler class from the beginning of this chapter which
was withheld until now. This method transfers the data typed in by the user to the security manager (see
the previous section Authentication). The security manager is concerned with the authentication on the
server. If the user is logged in successfully, get the referring user groups with the method
getUserGroups(). If the list is empty, the user is not assigned to any group, so the user has no authority.
Otherwise, give the list to the UserGroupFileSystem class (discussed in the following section System
Filesystem) certain modules become activated or deactivated. Implement this functionality in the class
UserGroupModuleSystem (discussed later in this chapter in the section Module System). See Listing 33-7.

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

362

Listing 33-7. Adaptation of the Application After Successful Login

public class LoginHandler implements ActionListener {
 ...
 private void login() {
 if(!SecurityManager.getDefault().login(panel.getUsername(), panel.getPassword())) {
 panel.setInfo("Wrong password or username");
 } else {
 List<UserGroup> groups = SecurityManager.getDefault().getUserGroups();
 if (groups.isEmpty()) {
 panel.setInfo("You have no access rights");
 } else {
 try {
 UserGroupFileSystem.getDefault().setUserGroups(groups);
 UserGroupModuleSystem.handleModules(MOD2DISABLE, false);
 UserGroupModuleSystem.handleModules(MOD2ENABLE, true);
 dialog.setClosingOptions(null);
 } catch (Exception ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }
 }
}

The following sections explain how both the UserGroupFileSystem and UserGroupModuleSystem
classes are implemented and which configurations are necessary for the adaptation.

System Filesystem
System Filesystem has been more or less important in nearly every chapter of this book. It is important
in the dynamic adaptation of certain user groups as the central registry of, for eaxmple, actions, menu
entries, windows, or option panels. Anyway, System Filesystem is the concept which makes a dynamic
adaptation possible in general. There are two features which you want to take advantage of. One is the
possibility of hiding certain entries by the suffix _hidden. The other is the possibility of adding additional
configurations at runtime.

You will implement the class UserGroupFileSystem. However, first you need to think about how to
manage a user group (see Listing 33-8). The enum type UserGroup will help with this.

Listing 33-8. Management of the Information of a User Group

public enum UserGroup {
 ADMIN("Admin", "configs/admin.xml"),
 USER("User", "configs/user.xml");
 private String groupName;
 private String configPath;

 UserGroup(String groupName, String configPath) {
 this.groupName = groupName;

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

363

 this.configPath = configPath;
 }

 public URL getConfig() {
 return UserGroup.class.getResource(configPath);
 }

 public String getGroup() {
 return this.groupName;
 }

 public boolean equals(String groupName) {
 return this.groupName.equals(groupName);
 }

 @Override
 public String toString() {
 return this.groupName;
 }

 public static UserGroup get(String groupName) {
 for (UserGroup group : UserGroup.values()) {
 if (group.groupName.equals(groupName)) {
 return group;
 }
 }
 return null;
 }
}

Define the name of the group and the path of the referring configuration in this enum type with the
elements USER and ADMIN. Doing so, the method getConfig() directly delivers a URL on the XML file.

Earlier, you defined the two user groups Admin and User. Now you want to create a small test
configuration for each with which certain menus can be displayed or hidden. So, a menu will be
provided to the user group User which is not provided to the group Admin, and the other way around.
(See Listing 33-9.)

Listing 33-9. Configuration of the User Group User

<filesystem>
 <folder name="Menu">
 <folder name="Tools_hidden"/>
 <folder name="Admin_hidden"/>
 </folder>
</filesystem>

With the configuration shown in Listing 33-9, the menu Tools and Admin of users of the group User
will be hidden.

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

364

Listing 33-10. Configuration of the User Group Admin

<filesystem>
 <folder name="Menu">
 <folder name="Edit_hidden"/>
 <folder name="User_hidden"/>
 </folder>
</filesystem>

In contrast with the configuration shown in Listing 33-10, the menu Edit and User are hidden for
Admin group members.

One or more such configurations which exist as XML files can be managed by an XMLFileSystem
together in a MultiFileSystem which acts as proxy. A MultiFileSystem implementation can be registered
as a service provider while adding it to the System Filesystem during the startup. Since the System
Filesystem is able to react on changes, it is possible to set the actual configuration subsequently, in other
words, after the login. To do so, create a UserGroupFileSystem class which deduces from MultiFileSystem
(see Listing 33-11). Register the class with the @ServiceProvider annotation in order to find and load it.

Listing 33-11. MultiFileSystem Implementation with Which Dynamic Configurations Can Be Set

import org.openide.filesystems.FileSystem;
import org.openide.filesystems.MultiFileSystem;
import org.openide.filesystems.XMLFileSystem;
import org.openide.util.Lookup;
import org.openide.util.lookup.ServiceProvider;

@ServiceProvider(service = FileSystem.class)
@ServiceProvider(service = UserGroupFileSystem.class)
public class UserGroupFileSystem extends MultiFileSystem {

 public UserGroupFileSystem() {
 setPropagateMasks(true);
 }

 public static UserGroupFileSystem getDefault() {
 return Lookup.getDefault().lookup(UserGroupFileSystem.class);
 }

 public void setUserGroups(List<UserGroup> groups) throws Exception {
 FileSystem[] fileSystems = new FileSystem[groups.size()];
 for (int idx = 0; idx < fileSystems.length; idx++) {
 fileSystems[idx] = new XMLFileSystem(groups.get(idx).getConfig());
 }
 setDelegates(fileSystems);
 }
}

The registered class becomes automatically initialized during the startup. However, there is no
configuration set so far. so it is a virtually empty file system. It is necessary to call in the method
setPropagateMasks(true) in the constructor, so the entries with suffix _hidden have an effect. The global

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

365

lookup provides the instance which has been added to the System Filesystem already. So this instance
makes it possible for you to inject dynamic entries into the System Filesystem afterward.

The setUserGroups() method, to which you transfer a list with UserGroup objects out of the login
handler, sets the configuration in the end. For this purpose create an XMLFileSystem instance and create
an array out of it for the XML file of each group. Then, transfer this array to the setDelegates() method
so the changes become propagated.

Module System
First, you want to define declaratively which modules should become explicitly activated or deactivated
for which user group. To do this, just extend both XML files which already exist. In the newly defined
folders any number of modules can be listed, but only those modules that are attributed with
codeNameBase. This way, you can indicate a unique identification of the module (see Listing 33-12).

Listing 33-12. Configuration of the Modules for the User Group User

<filesystem>
 <folder name="Modules2Disable">
 <file name="AdminModule">
 <attr name="codeNameBase" stringvalue="com.galileo.netbeans.module.admin"/>
 </file>
 </folder>
 <folder name="Modules2Enable">
 <file name="UserModule">
 <attr name="codeNameBase" stringvalue="com.galileo.netbeans.module.user"/>
 </file>
 </folder>
</filesystem>

For users of the group User the module AdminModule should be deactivated and the module
UserModule should be activated. For the user group Admin it is set the other way around, as shown in
Listing 33-13.

Listing 33-13. Configuration of the Modules for the User Group Admin

<filesystem>
 <folder name="Modules2Disable">
 <file name="UserModule">
 <attr name="codeNameBase" stringvalue="com.galileo.netbeans.module.user"/>
 </file>
 </folder>
 <folder name="Modules2Enable">
 <file name="AdminModule">
 <attr name="codeNameBase" stringvalue="com.galileo.netbeans.module.admin"/>
 </file>
 </folder>
</filesystem>

These configurations will be read and interpreted by the class UserGroupModuleSystem. Implement
the method handleModules() which is parameterized. Like this the method can be used for the
activation as well as for the deactivation. You can pass the folder in the configuration file to the method.

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

366

In this folder you search for all file elements and read its attribute codeNameBase so you can add the
unique identification of the module to the list. Detect the module instances for all modules of this list
with the update manager, which can access all modules. Then add those to the referring operation
container. Finally, with this container activation or deactivation can take place (see Listing 33-14).

Listing 33-14. Activation and Deactivation of Modules Depending on the Configuration Provided

import org.netbeans.api.autoupdate.OperationContainer;
import org.netbeans.api.autoupdate.OperationSupport;
import org.netbeans.api.autoupdate.UpdateManager;
import org.netbeans.api.autoupdate.UpdateUnit;
import org.openide.filesystems.FileObject;
import org.openide.filesystems.FileUtil;
import org.openide.util.Exceptions;

public class UserGroupModuleSystem {

 public static void handleModules(String folder, boolean en) {
 FileObject fo = FileUtil.getConfigFile(folder);
 List<String> modules = new ArrayList<String>();
 for (FileObject fi : fo.getChildren()) {
 modules.add((String)fi.getAttribute("codeNameBase"));
 }
 try {
 OperationContainer<OperationSupport> cont;
 if (en) {
 cont = OperationContainer.createForEnable();
 } else {
 cont = OperationContainer.createForDirectDisable();
 }
 for (UpdateUnit uu : UpdateManager.getDefault().getUpdateUnits()) {
 if (uu.getInstalled() != null
 && modules.contains(uu.getInstalled().getCodeName())
 && uu.getInstalled().isEnabled() == !en) {
 cont.add(uu.getInstalled());
 }
 }
 if (!cont.listAll().isEmpty()) {
 cont.getSupport().doOperation(null);
 }
 } catch (Exception ex) {
 Exceptions.printStackTrace(ex);
 }
 }
}

Once more, the advantage of the module-based NetBeans Platform becomes clear with the
activation or deactivation of modules. Deactivating a module, all components, such as menu entries or
windows, are automatically deleted at runtime. Activating the module, all components are simply added
again.

CHAPTER 33 AUTHENTICATION AND MULTI-USER LOGIN

367

Summary
Enterprise applications must often be adapted dynamically to different groups of users. This chapter
showed you the possibilities available with the NetBeans Platform. You used JNDI and JAAS in
combination with an Apache directory server to manage user data. You learned how you can adapt the
user interface for a specific user group and how to load and disable predefined modules.

PART 6

Pack & Ship: Adapting,
Delivering, and Actualizing
Applications

C H A P T E R 34

371

Internationalization and
Localization

Professional applications—especially flexible ones—should be designed to adapt as easily as possible to
other countries and languages. For this reason, the Java and NetBeans Platform and the NetBeans IDE
provide a great deal of support for internationalization, making it easy to internationalize and localize
your application. It is worth preparing even very small applications and applications that were initially
designed for only one language for localization.

String Literals in Source Code
String literals in source code are outsourced in .properties files. Therefore, the language-dependent
literals can be separated and easily changed into other languages. This is possible even after the release
of an application. The constants are saved as key-value pairs in a simple .properties file:

CTL_MyTopComponent = My Window
HINT_MyTopComponent = This is My Window

Such a resource file is managed by the Java class ResourceBundle. A ResourceBundle is responsible
for the resources of a particular Locale setting that specifies both the country and the language. For easy
handling of .properties files and for access to a ResourceBundle instance, the NetBeans Platform provides
the class NbBundle. The resource file must be named Bundle.properties; however, such a file is typically
created for each package. The easiest way to create ResourceBundle objects is with the following call:

ResourceBundle bundle = NbBundle.getBundle(MyTopComponent.class);

Thus, the class NbBundle creates a ResourceBundle object for the Bundle.properties file, provided in
the package of the class MyTopComponent. The required string literal is easily read via the ResourceBundle
method getString():

String msg = bundle.getString("CTL_MyTopComponent");

If you just want to read few literals inside your class, you can use the method getMessage() to read a
literal directly without creating a ResourceBundle instance before the following:

String msg = NbBundle.getMessage(MyTopComponent.class, "CTL_MyTopComponent");

Furthermore, it is possible to add a placeholder to your string literals. This is most often required if
numbers or a file name/path will be inserted. A pair of braces is used as a placeholder, which includes
the number of the parameter:

Result = {0} MP3-Files found for {1}

CHAPTER 34 INTERNATIONALIZATION AND LOCALIZATION

372

You can directly pass these parameters to the getMessage() method, which then replaces the
placeholder with the parameter. Alternatively, you can pass up to three parameters or an array with an
unlimited number of parameters:

String label = NbBundle.getMessage(MyTopComponent.class, "Result",
 new Integer(results.size()), search.getText());

Within a .properties file, literals are just saved in one language. To add another language to your
application, provide the literals—with the same keys—in a file named
Bundle_<language>_<country>.properties in the same folder. The class NbBundle returns the
ResourceBundle for this file using the method getBundle(). This file is equivalent to the Locale setting,
which returns Locale.getDefault(). The Bundle.properties file that does not contain a language and
country identifier is the default bundle. This bundle is always used if there is no special bundle for the
Locale setting available. A specific bundle can also be requested by passing a Locale object to the
getBundle() method. To know in which order the bundles are searched, the method
NbBundle.getLocalizingSuffixes() lists all suffixes in the order used.

The method Locale.getDefault() returns the Locale setting of the virtual machine by default. To
run and execute the whole application with a specific Locale setting, set the command-line parameter
locale. With this parameter you can pass a language and country identifier to the application. You can
find more information on this in Chapter 35.

The NetBeans IDE provides a wizard for the internationalization of string literals for your source
files. With this wizard you can scan your files for strings which can then be moved to a .properties file.
You can edit the key, the value, and the code that will be pasted instead of the literal. You can find the
wizard in the menu under Tools ➤ Internationalization ➤ Internationalization Wizard, as shown in
Figure 34-1.

Figure 34-1. You can automatically move string literals to a bundle and paste the necessary source code

with the internationalization wizard.

CHAPTER 34 INTERNATIONALIZATION AND LOCALIZATION

373

String Literals in the Manifest File
In addition to the string literals of the source files, you can also internationalize the textual information
of the manifest file. There are two options for doing so. The first option is to append a language identifier
to the manifest attributes and thus use the same attribute several times:

Manifest-Version: 1.0
OpenIDE-Module: com.galileo.netbeans.module
OpenIDE-Module-Name: My Module
OpenIDE-Module-Name_de: Mein Modul

The second (preferred) option is to outsource the attributes you intend to internationalize into a
.properties file. Then, the attribute names are used as keys and are provided in bundles for each
language. Define the bundle with the OpenIDE-Module-Localizing-Bundle attribute as shown in
Listing 34-1 (see also Chapter 3), so the attributes are read out of the bundle (see Listings 34-2 and 34-3).

Listing 34-1. Manifest.mf

Manifest-Version: 1.0
OpenIDE-Module: com.galileo.netbeans.module
OpenIDE-Module-Localizing-Bundle: com/galileo/netbeans/module/Bundle.properties

Listing 34-2. Bundle.Properties

OpenIDE-Module-Name = My Module

Listing 34-3. Bundle_de.Properties

OpenIDE-Module-Name = Mein Modul

Internationalization of Help Pages
Generally, help pages, including the help set configuration files, are internationalized like .properties
files by appending country and/or language identifiers. Since a help set typically consists of a large
number of files, this would result in a very confusing structure. Therefore, it is also possible to store the
files intended for internationalization in a subfolder, as shown in Figure 34-2. Language and country
identification is no longer necessary, because that information is already represented by the subfolder.

CHAPTER 34 INTERNATIONALIZATION AND LOCALIZATION

374

Figure 34-2. Help sets for specific languages are stored in a separate directory.

Only the help set file module-hs.xml remains in the root directory, and has not attached an identifier.
In this file, you delegate to the corresponding folders. The help set file without an identifier is always
used when the current Locale setting does not match the existing files. The help set file points to the
English version of the help pages (see Listing 34-4).

Listing 34-4. Help Set File Which Refers to a Language-Specific Package

<maps>
 <homeID>com.galileo.netbeans.module.about</homeID>
 <mapref location="en/module-map.xml"/>
</maps>

CHAPTER 34 INTERNATIONALIZATION AND LOCALIZATION

375

<view mergetype="javax.help.AppendMerge">
 <name>TOC</name>
 <label>Contents</label>
 <type>javax.help.TOCView</type>
 <data>en/module-toc.xml</data>
</view>
<view mergetype="javax.help.AppendMerge">
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>en/module-idx.xml</data>
</view>

You should also consider that the registration of the help set only occurs once for the module-hs.xml
file by the HelpSetRegistration annotation in the package-info.java file. Then the help sets containing a
country/language identification are automatically found.

Internationalizing Other Resources
The NetBeans Platform provides additional possibilities for internationalizing other application
components besides the areas of internationalization already described.

Graphics
Not only texts can be adapted by language and country; graphics, such as icons, can also be adapted.
The ImageUtilities class provides a variant of the loadImage() method that is usually used for loading
graphics, in order to simplify it. You can set a boolean parameter whether an available
language/country-specific version of the graphic will be loaded depending on the current Locale setting.
The method NbBundle.getLocalizingSuffixes() lists possible identifications which are searched for.

Image img = ImageUtilities.loadImage("resources/icon.gif", true);

If the current Locale setting, for example, is de_DE, it is first searched for icon_de_DE.gif and
icon_de.gif.

Arbitrary Files
The NetBeans Platform defines a special protocol for loading other arbitrary internationalized resources.
This is the nbresloc protocol, an extension of the nbres protocol, with which you can load resources from
all available modules. You can easily create a URL object for a resource addressed by this protocol:

URL u = new URL("nbresloc:/com/galileo/netbeans/icon.png");
ImageIcon icon = new ImageIcon(u);

If the Locale setting is de_DE and a file named icon_de_DE.png or icon_de.png exists, this icon is
loaded instead of icon.png.

Folders, Files, and Attributes in the Layer File
The System Filesystem provides two special attributes to internationalize names and icons of folders and
files. This is very helpful, for example, for menus whose names are only declared in the layer file and thus

CHAPTER 34 INTERNATIONALIZATION AND LOCALIZATION

376

cannot be read via the NbBundle class (as is the case for actions). These two attributes are
SystemFileSystem.localizingBundle and SystemFileSystem.icon. With the first attribute, you can refer
to your resource bundle, leaving out the .properties extension. In this resource bundle, a key is
automatically searched that matches the complete path of the folder or of the file which contains the
SystemFileSystem.localizingBundle attribute. For this example, this is Menu/MyMenu and
Menu/MyMenu/MySubMenu. With the SystemFileSystem.icon attribute, you can additionally set an icon for
the folder or for the file. Use the nbresloc protocol so it can also be loaded as an internationalized
version. (See Listings 34-5, 34-6, and 34-7.)

Listing 34-5. Layer.xml

<folder name="Menu">
 <folder name="MyMenu">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <folder name="MySubMenu">
 <attr name="SystemFileSystem.localizingBundle"
 stringvalue="com.galileo.netbeans.module.Bundle"/>
 <attr name="SystemFileSystem.icon"
 urlvalue="nbresloc:/com/galileo/netbeans/module/icon.png"/>
 </folder>
 </folder>
</folder>

Listing 34-6. Bundle.properties

Menu/MyMenu=Extras
Menu/MyMenu/MySubMenu=My Tools

Listing 34-7. Bundle_de.properties

Menu/MyMenu=Extras
Menu/MyMenu/MySubMenu=Meine Tools

The System Filesystem provides the bundlevalue attribute type in order to internationalize
attributes within the layer file. Thus, you can outsource, for example, the name of an action, which is
determined by an attribute in the layer file, in a properties bundle.

<file name="com-galileo-netbeans-MyFirstAction.instance">
 <attr name="displayName" bundlevalue="com.galileo.netbeans.module.Bundle#CTL_MyAction"/>
</file>

Thus, the name of the action is determined by the CTL_MyAction key. For this purpose, indicate the
name of the package and of the bundle. Which bundle is finally used depends on the locale settings and
is automatically determined.

Administration and Preparation of Localized Resources
Up to this point, this discussion has assumed that the localized resources have been stored in the same
folder as the module, whether the Bundle.properties files or graphics. However, how do you ensure that
the resources for each language are separately managed, and how can you later extend an already-

CHAPTER 34 INTERNATIONALIZATION AND LOCALIZATION

377

provided module with an additional translation? For this purpose the NetBeans Platform makes it
possible to separate the resources to localize from the remaining parts (which are mainly the classes) of
a module. Figure 34-3 shows the locale directory which is located below the directory in which the
module is stored. The resources for a language in a JAR archive in this folder are extended with a
language/country identifier. The archive has the same name as the module JAR archive. In this Locale
Extension Archive, all language/country-specific resources are managed. They have the same package
structure as the module. This way, the resources are separated and can be updated individually. For
example, translations of the NetBeans Platform modules are provided in the same manner.

Figure 34-3. Preparation of language-specific resources in a separate JAR archive in the directory locale

Note that the individual localized resources still need the language/country identifier. The Locale
Extension Archive needs no manifest file, because the archive is exclusively identified by the name of the
localized package and is added to the class path of the module classloader.

In this example, the resources for German are in the locale folder as a locale extension archive. The
English resources that have no identifier are the default resources and are located in the JAR archive of

CHAPTER 34 INTERNATIONALIZATION AND LOCALIZATION

378

the module. Now, it is interesting that you can put the default resources into a locale extension archive,
because it has no identifier and can be made available in the locale directory; the resources you plan to
localize are completely separated from the module itself. This is particularly the case when adding
another language is done by a third person because it is obvious which resources must be localized.

Summary
This chapter showed how to internationalize an application, adapting it to several languages. You
learned the specifics of internationalizing source code and the manifest file, as well as adapting help
pages and other resources, such as graphics.

C H A P T E R 35

379

Branding and Packaging
Application

As described in Chapter 3, there are two different types of containers used by the NetBeans Platform: a
Module Suite and a NetBeans Platform Application. While a module suite represents a pure collection of
connected related modules, a NetBeans Platform application provides the basic structure for an
independent application. This means you can user-specifically adapt a NetBeans Platform application
and then create an installable package out of it. The following sections will explain how this works.

Branding
A Platform application provides a separate dialog for the so-called branding, or product-specific
adaptation, of your application. There are numerous settings in this dialog, including the adaptation of
the name and the different icons as well as for determining a splash screen and the window system’s
behavior. Interestingly, you can arbitrarily change all texts defined by the Platform, such as the names of
certain windows. In the following sections we will take a closer look at this; to get started, click on
Branding… in the context menu of your Platform application. An example of branding in a NetBeans
Platform application is shown in Figure 35-1.

Name, Icons, and Splash Screen
You can determine the name of your application and assign icons for the sizes 16 × 16, 32 × 32, and 48 ×
48 on the first tab (Basics) of the branding dialog. Those icons are used for different purposes. For
example, the icon sized 16 × 16 is used for the title bar of your application. The icon sized 32 × 32 is used
for the taskbar. However, you can also indicate a different icon for each.

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

380

Figure 35-1. Branding of a NetBeans Platform application

On the Splash Screen tab you can select a splash screen which is displayed when starting your
application. This splash screen is also used for the About dialog. Furthermore, a progress bar can be
displayed on the splash screen. You can display or hide the progress bar and determine its color. You can
easily determine the position of the progress bar on the splash screen via drag-and-drop. There, you can
also determine the position of the text field in which status information is displayed when loading the
application. You can also determine the text’s color yourself.

Window System Behavior
In Chapter 10 you already learned how to individually determine the window’s behaviour within the
NetBeans window system. On the Window System tab, you can apply these settings globally for the
whole window system, meaning for all windows. (See Figure 35-2.)

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

381

Figure 35-2. Configuring the window system’s behavior

In addition to the already known parameters, you can also determine whether the size of the
windows within the window system can or cannot be changed. Moreover, you can determine whether a
window can be closed or not in an editor mode (document) or in a view mode (non-document).

Resource Bundles
You can change all text constants of the NetBeans Platform and comfortably adapt them to your needs
on the Resource Bundles tab (see Figure 35-3). In the upper-right corner, a search field is provided to
filter text constants for keys and values. This way you keep track of these numerous bundles.

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

382

Figure 35-3. Adapting text constants of the NetBeans Platform

If you want to delete the version number, for example (which is displayed behind the title of your
application by default), first search for application to get a range of key value pairs. This way, you also
find the text constant with the key CTL_MainWindow which determines the name of your application.
Double-clicking this entry, you can change the value. You delete the part {0} after the title. Thus, you
make it so that the version number is no longer displayed. All altered texts are displayed in bold in order
to keep the overview of all changes.

If you change something concerning the text constants, they are not changed in the original files.
Instead, the NetBeans IDE creates new .properties files with the changed texts in the branding directory
of your Platform application in the original folder hierarchy of the corresponding module. (See Figure
35-4.) When creating the application a so-called branding module with the Branding Name as suffix in
its name is created. Define the branding name in the Properties of your Platform application under
Application. This way, you can deliver your application with different brandings parallel. You can define
which branding is chosen when starting the application by a command-line parameter; this is covered in
the “Command Line Parameters” section.

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

383

Figure 35-4. Administration of the changed text constants in branding modules

You can switch to the original values any time, because the changed text constants are managed
separately. Open the Files view if you want to reset single or multiple changed values when developing.
In the Files view you find the branding folder in the directory of your Platform application. In this folder
you find the corresponding properties files (see Figure 35-4). There, you can either delete separate values
or whole files.

Command-Line Parameters
Start your finished application by a operating system-specific launcher which is provided by the
NetBeans Platform. This launcher is an .exe file for the Windows operating system, for example. You can
influence this launcher and thus the start and the execution of the application by a series of parameters.
Note that you either use a double back slash or a single slash for all paths. Command-line parameters
are listed in Table 35-1.

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

384

Overview of Parameters

Table 35-1. Command-Line Parameter and Its Meaning

Parameter Description

--clusters <path> Paths to the clusters in which the modules are located. The path
separator “;” is used for Windows and “:” is used for UNIX.

--branding <name> Determining the branding name.

--jdkhome <path> Path to a Java Platform base directory.

-J<JVM Option> With this, parameters can be passed to the virtual machine. It is often
used for defining properties, for example:
-J-Dorg.netbeans.core.level=100

--cp:p <classpath> With this parameter, you can prepend resources to the class path of
the application. Those resources are also accessible via the Java
System Classloader

ClassLoader.getSystemResource().

--cp:a <classpath> With it you can add resources to the class path of the application.
These resources can then be accessed by the Java System Classloader

ClassLoader.getSystemResource().

--laf <L&F classname> Definition of a specific look and feel class. Add the following line, in
order to use the L&F which is integrated in the Java Platform, for
example:
--laf com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

--fontsize <size> With this parameter you can determine the font size of the whole
application.

--locale
<language[:country]>

Current locale setting, for example, de:DE. Note that the language and
country identifier are separated by a colon instead of an underscore.

--userdir <path> With it you can determine an alternative path in which the user-
defined application settings are saved. This way, for example, even
multiple instances of the application (which read their data from a
separate directory) can be executed.

You can define and pass those parameters either directly to the launcher or via the etc/<branding

name>.conf file which is located in the distribution of the application. There you can determine any

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

385

options via the default_options attribute. Furthermore, you can separately assign the path of the Java
Platform, the user directory, and additional clusters in this file.

Determining Parameters While Developing
With the run.args.extra attribute you can determine parameters in the project.properties file of your
Platform application or module (if the module does not belong to another application). You can use this
attribute to define command-line parameters while developing the application within the
NetBeans IDE. For example, if you test another locale setting and you want to switch on the output of a
logger, you enter the following into the project.properties file:

run.args.extra = --locale fr:FR \
 -J-Dcom.galileo.netbeans.module.level=100

Creating Distribution
The NetBeans IDE provides different types for creating a distribution of your application. For the end
user, an installer package is the most interesting form of distribution because the user only has to click
the installer to automatically install the complete software.

Installer Package
The NetBeans IDE is able to create a operating system-specific installer package from your application,
as shown in Figure 35-5. To do so, just define which package you want to create in the Properties of your
Platform application under Installer. Optionally, you can add a software license and choose whether the
installer package will be compressed.

Figure 35-5. Creating Platform-specific installer packages

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

386

You can create installer packages for Windows, Linux, Max OS X, and Solaris. If you now select
Package as… ➤ Installers from the application context menu, the NetBeans IDE creates the desired
installer packages in the dist directory.

ZIP Distribution
Packing the application as a ZIP distribution is a very common form of delivery. All parts necessary for
executing the application are packed up, as for an installer package. This includes the modules of the
NetBeans Platform, your own application modules, a launcher for starting the application, and some
configuration files. (See Figure 35-6.) You start the creation of this complete package with Package as…
➤ ZIP Distribution in the context menu of your application project. The finished distribution is saved in
the dist directory in the corresponding project folder.

Figure 35-6. Parts of a ZIP distribution

• The Platform-specific launchers are located in the bin directory. Among these,
there is also an .exe file.

• The etc directory contains configuration files which are used by the launcher. This
includes the <branding id>.conf file in which you can define command-line
parameters or a path to a JDK (see the “Creating Distribution” section).

CHAPTER 35 BRANDING AND PACKAGING APPLICATION

387

• The directories my_application and platform are clusters. In the my_application
cluster your application modules are located with your configuration files and the
adapted Platform modules. Consequently, all modules of the NetBeans Platform,
including the modules of the NetBeans Runtime Container (see Chapter 2), are in
the platform cluster.

Java Web Start Package
With Java Web Start, your application can be started directly and executed from the Internet. For this
purpose, call the menu item JNLP ➤ Build from the context menu of your Platform application. As a
result of this call, you will receive a .war file in the dist distribution. This file can then be directly copied
to the deploy directory of a servlet container. The WEB-INF/web.xml file is the deployment descriptor
which defines the JNLP servlet that is located in the WEB-INF/lib directory.

Mac OS X Application
A fourth and last possibility for a distribution, the creation of a Mac OS X application, is also available.
For this purpose call the context menu Package as… ➤ Mac OS X Application of the corresponding
Platform application. Bear in mind that you cannot execute this on the Windows Platform, because the
ln command, among others, is accessed but not provided in Windows.

Summary
In this chapter, you learned how to create and configure your stand-alone NetBeans Platform
application. You also looked at the customization of NetBeans Platform modules, where you adapted
out-of-the-box modules to your application-specific needs.

The launcher of your created application can be influenced in various ways. Therefore, you had a
look at each of the command-line parameters and how they are used. Finally, this chapter dealt with the
creation of deployment-ready application distributions.

C H A P T E R 36

389

Updating a NetBeans Platform
Application

During software lifecycles, it nearly always happens that you want to provide updates for your
application because of fixed errors, new functionalities, or to implement new requirements. It would be
very cumbersome if you needed to redistribute the entire application when you just needed to provide a
patch or a new feature. This is one of the advantages of a modular architecture of the application: you
can offer updates on the module layer. For the user, installing updates must be as simple and intuitive as
possible. To that end, the NetBeans Platform in conjunction with the Plugin Manager provides an Auto
Update service. This module is able to automatically search for updated or new modules in a set of
predefined update centers, and to dynamically load them at runtime. Beyond that, users are able to
manually install downloaded updates or new modules via the Plugin Manager.

The Auto Update Service
Updates are made available as NBM files. These update packages must be offered via an update center.
Within a NetBeans Platform application, update centers can be defined in which the Auto Update
service searches for updates. Update center definitions can be made manually or they can be delivered
with an application module. The user can configure the application so that updates are automatically
searched at a certain time. Of course updates can also be initiated manually. Figure 36-1 shows the
components of the Auto Update service.

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

390

Figure 36-1. Components that make up the Auto Update functionality and their dependencies

The NBM File
Modules that you want to make available as an update are distributed in the form of NBM files. These
consist of a JAR archive containing the actual module together with its configuration data and update
information required by the Plugin Manager (see Figure 36-2). An NBM file may also contain the
libraries required by the module. The content of the module JAR file and its related configuration files
have already been described in Chapter 3.

One file I have not yet discussed is the info.xml file. This file contains information displayed to the
user when choosing existing modules or modules to be installed in the Plugin Manager (see Listing 36-
1). The manifest element contains information from the module’s manifest file. For example, the
defined dependencies are very important. If the user chooses a module in the Plugin Manager that is
dependent on another module, the latter is automatically activated so it can be downloaded
simultaneously with the selected module. If dependencies cannot be satisfied, the user can install the
module without being able to activate it, though. Finally, you can also add license information via the
license element, which was displayed to the user before installation of the module began. This forces
the user to confirm that licensing requirements have been satisfied so the module can be installed.

Figure 36-2. Parts of an NBM file

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

391

Listing 36-1. Information File of an NBM File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC
 "-//NetBeans//DTD Autoupdate Module Info 2.5//EN"
 "http://www.netbeans.org/dtds/autoupdate-info-2_5.dtd">
<module codenamebase="com.galileo.netbeans.module"
 distribution="./com-galileo-netbeans-module.nbm"
 downloadsize="7123"
 homepage="http://heikoboeck.de"
 license="AD9FBBC9"
 moduleauthor="Heiko Boeck"
 needsrestart="false"
 releasedate="2007/10/16">
 <manifest AutoUpdate-Show-In-Client="true"
 OpenIDE-Module="com.galileo.netbeans.module"
 OpenIDE-Module-Name="My Module"
 OpenIDE-Module-Implementation-Version="071016"
 ...
 OpenIDE-Module-Specification-Version="1.0"/>
 <license name="AD9FBBC9">Place your license information here</license>
</module>

An NBM file is created automatically by the NetBeans IDE by just calling Create NBM in the context
menu of the desired module. When you choose Create NBM, the IDE attempts to sign the NBM file. To
make this possible, a so-called keystore must be prepared and generated (see Figure 36-3). Use the
Keystores Manager of the NetBeans IDE, which is only available after installation of the Mobility plugin.
This mobility plugin is part of the complete NetBeans IDE installation package. However, you can also
install this plugin via the Plugin Manager (Tools ➤ Plugins ➤ Available Plugins), later. Open the
Keystores Manager via Tools ➤ Keystores. Next, create a keystore file via Add Keystore..., including a file
name and a directory where the keystore will be located. A recommended location is the nbproject folder
of your module. After entering a password of at least six characters, click OK to create the keystore.

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

392

Figure 36-3. Creating a keystore

Now, a key pair has to be added. With this key pair the NBM file can then be signed. Choose the
keystore (on the left) in the Keystores Manager for this purpose, and then click the New... button (on the
right). In the following dialog (shown in Figure 36-4) you must assign an alias and you provide personal
information. Make sure to provide the same password as when creating the keystore. Next, click OK to
close the dialog and create the key pair in the keystore.

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

393

Figure 36-4. Creating a key pair

Alternatively, you can create a keystore and a key pair even without the NetBeans IDE. Instead, you
can use the keytool tool which is part of the JDK. The call would than look like this:

<JDK path>/bin/keytool –genkey
 –storepass mypassword
 –alias mymodule
 –keystore <module path>/nbproject/keystore.ks

To enable the IDE to find the keystore and key pair, define the following two properties in the
nbproject/project.properties file (found within the Projects window, under Important Files ➤ Project
Properties). If this file does not exist, you can create it yourself. Use keystore to define the path to your
keystore relative to the module project folder. Use the nbm_alias key to set the alias for the key pair to be
used, since one keystore may contain multiple key pairs.

keystore=nbproject/keystore.ks
nbm_alias=mymodule

Now invoke the Create NBM order again, which lets the IDE sign the NBM file. Doing so, a dialog is
shown for entering the password assigned to the keystore. Enter the correct password in order to enable
the successful signature. If you do not want to enter this password each time, you can add the storepass
feature to the properties file:

storepass=mypassword

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

394

Then, in the Plugin Manager, the user can see the module certificate, after downloading the selected
module is completed, but before the final installation process begins. Be aware that a warning will be
shown that the module is not to be trusted. To prevent this, provide a certificate from an official
certificate vendor such as VeriSign.

Update Centers
NBM files—that is, updates for a distributed application—are put into an update center, from which
they can be downloaded. Such an update center is nothing other than a storage place where the modules
are placed, generally on a server accessible via the Internet. Use an Update Center Descriptor, in the form
of an XML file, to describe the module location and other details (see Listing 36-2). This way, the Auto
Update service finds the module, while determining whether the module is updated or new. The update
center descriptor lists the content of the info.xml file (explained in the previous section) for each of the
NBM files in the update center. As a result, the Auto Update service of the application is able to
determine which updated or which new modules are provided in which version, without having to open
or download the NBM files. The license element is just defined outside the module element, not inside.
Therefore, you are able to use one license for multiple modules at the same time. Thus, only one license
is displayed to the user. Multiple usage of the license element is possible, too, in order to provide a
separate license for each module.

Listing 36-2. Update Center Descriptor: updates.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE module_updates PUBLIC
 "-//NetBeans//DTD Autoupdate Catalog 2.5//EN"
 "http://www.netbeans.org/dtds/autoupdate-catalog-2_5.dtd">
<module_updates timestamp="08/54/21/17/04/2007">
 <module codenamebase="com.galileo.netbeans.module"
 distribution="./com-galileo-netbeans-module.nbm"
 ...
 </module>
 <module codenamebase="com.galileo.netbeans.module2"
 distribution="./com-galileo-netbeans-module2.nbm"
 ...
 </module>
 <license name="AD9FBBC9">Place your license information here</license>
</module_updates>

The root element of the update center descriptor is the module_updates element. The
module_updates element just contains the timestamp attribute, whose timestamp is compared to the
previous timestamp by the Auto Update service. This means that the Auto Update service reads an
update center only when the timestamp date is more recent than the date of the last connection.
Optionally, modules can be grouped in the update center descriptor, via the module_group element. This
allows modules to be displayed as a group (semantically or context-orientated) in the Plugin Manager;
you can encapsulate the element in any way. In the module element, the distribution attribute is very
important, because it defines the location from which the module will be downloaded. Rather than a
relative location, as shown in this example,an absolute URL can be provided, pointing to the location of
the module.

The address of such an update center descriptor is used as a server URL in the update center
configuration. You do not have to create the update center descriptor yourself, though. If you right-click

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

395

the context menu of a NetBeans Platform application, you will find the menu item Package as ➤ NBMs
there. Click it and the update center descriptor with the file name updates.xml is created along with the
separate NBM files of all modules belonging to this Platform application. You will find these files in the
build/updates directory.

Providing a Language Pack
In Chapter 34, you already learned how to provide the language-specific content of your module in
another language. You got to know two variants: on the one hand, directly placing the localized
resources in the module; on the other, providing it by a separate JAR file in the locale directory. So far,
this example has assumed that you can access the module or respectively the application. But how can
you provide an additional language pack for users of your already-provided application?

You can easily provide additional language packs for an already delivered module just as you would
provide an updated or new module via an update center. The only difference is that the manifest
element is substituted by the l10n element in the update descriptor (info.xml) and in the update center
descriptor (updates.xml). This has the following structure:

<l10n langcode="de"
 module_major_version="1"
 module_spec_version="1.0"
 OpenIDE-Module-Name="Mein Modul"
 OpenIDE-Module-Long-Description="German localization of My Module."
/>

First, indicate the language with the langcode attribute which contains this pack. With the version
attributes you can determine for which version this language pack is meant. The language pack is
activated only if this matches the version of the installed module.

Configuring and Installing on the Client-Side
The desired update centers must be installed in the Plugin Manager, which you can open via Tools ➤
Plugins. Your rich client application is then able to get new or updated modules from an update center.
In the Settings tab you can install any update center (see Figure 36-5). The URL of an update center must
refer to the update center descriptor (see the “Update Centers” section). In this view you can also
deactivate certain update centers and thus exclude them from the update process.

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

396

Figure 36-5. Configuration of the update centers to be searched for new modules

When switching to the Updates tab, use the Reload Catalog button to allow the Auto Update service
to look for updates in the defined update centers. Updated versions of modules are searched for those
modules that are already installed in the application. For searching new modules, use the same
approach in the Available Plugins tab. The found modules are displayed immediately in a list, from
which you can select those you need. Use the Update or Install button to add selected modules to the
application. Modules that are also locally available—that is, those that are personally downloaded—can
be installed as well. To do so, switch to the Downloaded tab, and then click Add Plugins… to add the
desired NBM files. Finally, click Install to install the selected plugins.

The last tab to be discussed is the Installed tab (see Figure 36-6). All currently installed modules are
listed there, organized by categories. You can deactivate modules in this view, as well as completely
uninstall them.

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

397

Figure 36-6. The Installed tab lists all installed modules. Here, you can deactivate and uninstall modules.

New Update Center
As already mentioned, users of your application may register additional update centers in the Plugin
Manager. However, you can also add update center information to one of your modules. Once this
module is loaded in an application, the registered update center is also automatically provided there. So,
you are able to add an additional update center to an already delivered application. For adding such
update center information to your module, a wizard is provided under File ➤ New File... ➤ Module
Development ➤ Update Center. The wizard registers the entered update center information, consisting
of the name and URL in the standard folder Services/AutoupdateType in the layer file. Such an entry then
looks like that shown in Listing 36-3.

Listing 36-3. Update Center Definition in the Layer File

<folder name="Services">
 <folder name="AutoupdateType">
 <file name="my_module_update_center.instance">
 <attr name="displayName"
 bundlevalue="com.galileo.netbeans.module.Bundle
 #Services/AutoupdateType/my_module_update_center.instance"/>
 <attr name="enabled" boolvalue="true"/>

w

CHAPTER 36 UPDATING A NETBEANS PLATFORM APPLICATION

398

 <attr name="instanceCreate" methodvalue=
 "org.netbeans.modules.autoupdate.updateprovider.
 AutoupdateCatalogFactory.createUpdateProvider"/>
 <attr name="instanceOf" stringvalue="org.netbeans.spi.autoupdate.UpdateProvider"/>
 <attr name="url" bundlevalue=
 "com.galileo.netbeans.module.Bundle#my_module_update_center"/>
 </file>
 </folder>
</folder>

The actual files have been outsourced in a resource bundle:

my_module_update_center=http://heikoboeck.de/updates.xml
Services/AutoupdateType/my_module_update_center.instance=My Update Center

This example assumed that the update center is publicly accessible via the Internet address per http.
However, you can also use the file protocol to install an update center with it, for example, on a
company-internal server.

file:/D:/NetBeans/MyUpdateCenter/updates/updates.xml

Automatically Installing Updates
An NBM file can also be installed without user interaction. To do this, just put the NBM file in the
update/download directory of a cluster. The update is then automatically installed when the application
is next started. After, the NBM file is removed and the application is started anew. Backups of original
versions of the actualized modules are found in the update/backup/netbeans directory. Bear in mind that
the update is always installed in this cluster where the update is stored, even if the module that should
be updated is installed in a different cluster.

The Auto Update Services API offers further possibilities for management, automatic installation,
uninstallation, or deactivation of modules. Chapter 25 will cover the functionalities of the Auto Update
Services API.

Summary
This chapter introduced you to the update facilities of the NetBeans Platform. First, you saw how the
Auto Update service works. An NBM file is an update package and can be created from your module by
the NetBeans IDE. Next, you learned how to provide and configure update centers. You also saw how a
module is configured to provide a localized version of an existing module. Finally, this chapter dealt with
the configuration of update centers on the client-side and how updates can be installed automatically.

PART 7

Test & Tooling: Developing
and Testing NetBeans
Platform Applications

C H A P T E R 37

401

Maven and the NetBeans Platform

The NetBeans Platform uses the build tool Ant by default. Maven,an alternative to Ant, has until now
only been provided as an additional plugin, with limited support from the IDE. But this has changed;
Maven is now an integral part of the NetBeans IDE. The NetBeans IDE involves the Maven distribution
and numerous wizards to create different project types. This chapter will focus on Maven support when
developing NetBeans Platform applications.

The configuration for a Maven project is hierarchical and modular, so it is quite suitable as a build
system for NetBeans Platform applications. In Maven projects the complete build process is carried out
by Maven, which means it is easy to work even without the NetBeans IDE. The functionality of Maven
itself is organized into separate plugins; due to Maven’s widespread use, plugins are available for
numerous tasks. The necessary configuration files remain small and clearly organized.

Basics and Structure of a Maven Project
In Maven, all the necessary information for a software project is defined in a so-called POM (project
object model) file. Each module (such as a JAR file) contains its own file. A project can consist of several
modules. A parent POM file which aggregates these modules can be created so these modules can be
collectively created. At the same time, subordinate modules can inherit features of the parent POM file.
In this way a hierarchic structure arise, and this structure can be extended further down. (See
Figure 37-1.)

Figure 37-1. File structure of a multi-module project with parent POM file to inherit features and

aggregation of several modules

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

402

Parent POM File
One of the most important features of Maven is the possibility of inheritance. This means that a parent
POM can be referenced from a POM file. Elements which are defined there can be inherited or
overridden. At the same time, it is possible to aggregate modules. All modules that will belong to this
project are defined in a parent POM file. This way, a software project, which consists of several modules,
can be created as a unit.

The basic structure of a parent POM file is shown in Listing 37-1. There the file, or rather the project,
is identified in principle by the elements groupId, artifactId, and version. As it is no module (e.g., JAR
file), but a parent POM file, the packaging type pom is used. Below the element dependencies you can
define dependencies on other modules. This is especially important for single modules which use
classes out of other modules. At that place you can define the version of a dependency in advance in the
parent POM file to ensure that all modules, which define the referring dependency, use the same
version. You can already preconfigure plugins, which are used in the build process, with the element
build. The actual aggregation of several modules belonging together occurs by the element modules. So if
a build process is started with this parent POM file, the modules Module1 and Module2 are built. If the
build process fails at one module, the whole process is cancelled.

Listing 37-1. Example of a Parent POM file with Which Several Modules Are Summarized

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.galileo.netbeans</groupId>
 <artifactId>MyApplication</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>MyApplication</name>
 <repositories>...</repositories>
 <build>...</build>
 <modules>
 <module>Module1</module>
 <module>Module2</module>
 </modules>
 <properties>...</properties>
</project>

Module POM File
The POM file for a module consists of exactly the same basic structure. Obviously, the element parent is
used instead of the element modules at this point. So you refer to the POM file to use, whose settings will
be inherited. The name, which was given by artifactId, must be the same as the name indicated in the
parent POM file under modules. Now you define that you are dealing with a module. You do this with the
packaging element; this can be jar or nbm for a NetBeans Platform, module, for example. (See
Listing 37-2.)

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

403

Listing 37-2. Example of a Module POM File Which Inherits from a Parent POM File

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>MyApplication</artifactId>
 <groupId>com.galileo.netbeans</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>Module1</artifactId>
 <packaging>nbm</packaging>
 <name>MyModule</name>
 <properties>...</properties>
 <dependencies>
 <dependency>
 <groupId>com.galileo.netbeans</groupId>
 <artifactId>Module5</artifactId>
 <version>1.3</version>
 </dependency>
 </dependencies>
 <build>...</build>
</project>

One of the most important features of Maven is dependency management, especially compared to
Ant. There, dependencies on other modules (JAR files) or projects are declared for each project or
module in the referring POM file. However, the actual and main advantage is the resolution of transitive
dependencies by Maven, since Maven even resolves and integrates dependencies of the dependencies.
Hence, you do not have to care about the whole class path, which ensures a simple reproducibility of a
build any time.

Maven Repositories
Embedding and managing repositories is an integral part of Maven. A repository, in this context, is the
location for artifacts (mostly JAR files). Besides the actual artifact, the POM file is also located there.
Thus, the POM file allows the resolution of transitive dependencies. The storage structure goes along
with a certain convention. For example, the module with the group ID com.galileo.netbeans, artifact ID
MyModule, and version 1.0 would be located at
<Repository>/com/galileo/netbeans/MyModule/1.0/MyModule-1.0.jar if needed in another project.

You can define any number of other specific repositories for your project, besides the central Maven
repository (http://repo1.maven.org/maven2), which is integrated by default. Add the entry in Listing 37-3
to your POM file to be able to use artifacts out of the repository with the NetBeans modules, for example.

Listing 37-3. Definition of a Maven Repository

<repositories>
 <repository>
 <id>netbeans</id>

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

404

 <name>NetBeans</name>
 <url>http://bits.netbeans.org/maven2/</url>
 </repository>
</repositories>

Of course, this definition can be added to the parent POM file, so that not every corresponding
module has to be configured separately.

Maven manages a local repository; you do not have to download the necessary artifacts from the
online repository for each and every build. All downloaded artifacts are located in this local repository,
which is searched first to accelerate the build process. Then the process can also be executed offline. You
define where your local repository is located in the settings.xml file, which usually is located in the user
directory at <user directory>/.m2/settings.xml. The definition looks like Listing 37-4.

Listing 37-4. Definition of the Local Maven Repository

<settings>
 <localRepository>D:\MyLocalRepository</localRepository>
 ...
</settings>

Maven Projects in the NetBeans IDE
The NetBeans IDE provides different wizards for creating a NetBeans Platform application and its
modules for Maven and Ant, by default. Additionally, useful features are provided as the Maven
repository browser, for example.

Creating a NetBeans Platform Application
First of all, you can create a NetBeans Platform application with File ➤New Project… ➤ Maven ➤
NetBeans Application. Please note that the project name must not contain spaces, because it is used as
artifactId in the POM file. Spaces are not allowed for the artifactId, because of the located artifacts in a
repository, but you can give an alternate display name in <name>. Furthermore, you assign a groupId
(reverse DNS format like Java packages) and a version. The final step of the wizard is to choose the
NetBeans version which your application will be based on. A dependency is automatically set in the
POM file on the referring cluster so that the Platform modules are included. Furthermore, it is possible to
set whether OSGi bundles will be added as dependencies and whether a first module project will be set
directly with the Platform application. Finish the following wizard and you will get the application
structure shown in Figure 37-2.

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

405

Figure 37-2. Maven-based NetBeans Platform application project in the NetBeans IDE project’s view

What is striking at first sight is that the actual NetBeans Platform application project does not just
consist of one, but three (or four, if you select the option to add a sample module) parts. These are
named NB App, NB App Branding, and NB App Branding. These parts have the following tasks:

• NB App: This project determines which components belong to the application,
which means dependencies on the NetBeans Platform cluster, on the branding
module, and on the application module MyModule are defined in the file
pom.xml. Start your application with Run in the context menu of this project.

• NB App Branding: With this part of the project, branding resources, meaning the
adapted texts and icons, are managed and created as branding modules. You can
open the branding dialog with the context menu of this project.

• NB App Parent: This is the actual container project for the whole application. That
means the POM file of this project is the parent POM file for both the two modules
which were described before, and for all further application modules. This is
where the aggregation of all modules occurs by the modules attribute. Call Build in
the context menu of this project for creating the whole application. This way, all
affiliated modules are created.

Creating NetBeans Platform Modules
You can create a new Maven application module analogous with File ➤ New Project… ➤ Maven ➤
NetBeans Module. To add a new module from an existing Platform application, just choose the basic
directory of the desired application creating the module. This is the level on which the parent POM file is

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

406

located. The module is automatically added to the parent POM file. A referring parent entry is added to
the module POM file, too. This way, it also inherits the configuration of the Platform application.

Adding Dependencies
Finally, I will show you how to add a dependency to a module. To do this, call the entry Add Dependency
in the context menu of the Dependencies node. You can add the dependency in the referring dialog
either directly by defining the artifact ID, group ID, and version, or by choosing an open project (see
Figure 37-3). The search function includes the defined Maven repositories. This way you can add a
dependency on a module of the NetBeans Platform, for example. However, that also means that you can
only search for modules that are already installed in a repository. So, if you want to define a dependency
on a module that is part of your application but not yet created, you have to take the way over Open
Projects.

Figure 37-3. Adding a dependency to a Maven-based NetBeans Platform module

It is even easier to find modules over the Maven repository browser (see Figure 37-4). Open it with
Window ➤ Other ➤ Maven Repository Browser. This is where you can add repositories. In those
repositories you can search and browse. You can add a module as a dependency (in a special version)
with Add as Dependency in the context menu of a module.

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

407

Figure 37-4. Maven Repository Browser

Maven Projects Without NetBeans IDE
In the previous section you used the NetBeans IDE to create NetBeans Platform Maven projects. Since
the NetBeans IDE actually just transfers parameters of the GUI to Maven you can also use Maven
directly. Next, I will show you in detail how to use the NetBeans Maven plugins creating a NetBeans
Platform application.

Some preconditions have to be fulfilled before starting with setting a first Maven project:

1. In case you have not yet installed Maven, you can download the latest version
from http://maven.apache.org. You just have to unpack the downloaded
package and store it in a suitable directory.

2. Then create the environment variable M2_HOME, which should point to the
basic directory of the Maven distribution. (C:\Program Files\apache-maven-
3.0.3 , for example).

3. Furthermore, the environment variable JAVA_HOME should be set, which
points to the JRE directory (C:\Program Files\Java\jdk1.6.0_24\, for example).

4. Finally, add the directory to the path variable.This way, Maven can be called in
without indicating a path in the command line.

Now you are ready to start and create a Maven-based NetBeans Platform application, as described
next.

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

408

Creating a NetBeans Platform Application
The NetBeans Maven plugin is complemented by the archetype netbeans-platform-app. This archetype
creates the complete structure of a NetBeans Platform application project. To find the archetype you
need the artifact ID, group ID, and a referring version.

Next, you define the data for the project to create by groupId, artifactId, and version. Use
netbeansVersion to define which NetBeans Platform version you want to use. You can see all available
versions in the NetBeans Maven repository at
http://bits.netbeans.org/maven2/org/netbeans/cluster/platform/maven-metadata.xml.

You can define the package used for the branding module optionally by the parameter package. If
you do not define the parameter, the group ID is used as valid value. To make Maven go into the non-
interactive mode use the parameter --batch-mode. So, Maven creates the project without manual
intervention. You trigger the creation of the project structure with the archetype:generate as goal (see
Listing 37-5).

Listing 37-5. Maven Parameters for Creating a NetBeans Platform Application Project with the Command

Line

>mvn
-DarchetypeArtifactId=netbeans-platform-app-archetype
-DarchetypeGroupId=org.codehaus.mojo.archetypes
-DarchetypeVersion=1.10
-DgroupId=com.galileo.netbeans
-DartifactId=MyApplication
-Dversion=1.0-SNAPSHOT
-DnetbeansVersion=RELEASE70
-Dpackage=com.galileo.netbeans.myapplication
--batch-mode
archetype:generate

If you execute the command-line call shown in Listing 37-5 in the desired directory in which the
project will be created you will get the structure depicted in Figure 37-5.

Figure 37-5. Structure of a Maven-based NetBeans Platform application project

The meaning of the parts of the project described in Figure 37-5 is explained in the section Maven
Projects in the NetBeans IDE. At this point you want to look behind the scenes of the configuration again.

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

409

To get an overview of the created POM files and the structure of the project, first look at the parent POM
file, meaning the pom.xml file on the top level (see Listing 37-6).

Listing 37-6. Parent POM File of a NetBeans Platform Application Project

<project xmlns="http://maven.apache.org/POM/4.0.0" ... >
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.galileo.netbeans</groupId>
 <artifactId>MyApplication</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>MyApplication - NB App Parent</name>
 <repositories>
 <repository>
 <id>netbeans</id>
 <name>NetBeans</name>
 <url>http://bits.netbeans.org/maven2/</url>
 </repository>
 </repositories>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.2</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>nbm-maven-plugin</artifactId>
 <version>3.5</version>
 <extensions>true</extensions>
 <configuration>
 <brandingToken>${brandingToken}</brandingToken>
 <cluster>${brandingToken}</cluster>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

410

 <modules>
 <module>branding</module>
 <module>application</module>
 </modules>
 <properties>
 <netbeans.version>RELEASE70</netbeans.version>
 <brandingToken>myapplication</brandingToken>
 </properties>
</project>

Next the repository is defined. The NetBeans Platform or the NetBeans IDE modules can be loaded
from this repository, so it is provided globally to the project. The dependencies defined in this file under
dependencies are provided to all modules (which inherit from the parent POM file). Consequently, you
do not have to add dependencies on JUnit any more. Maven plugins, which are later used for the build
process, can be preconfigured below the element pluginManagement. So at this point, you define the
cluster to use and the branding token for the NetBeans Maven plugin, for example. Furthermore, you
can give the information to the compiler plugin that the project is created on a Java base. At the
beginning, only the two modules of the project (the branding and the application module) are added
below the modules element. All modules you create that will belong to this application will be executed
there by your artifact ID. Finally, the properties, which will be provided globally and centrally, are
defined. You can access their values with ${...}.

Both POM files of the branding and the application module have the structure of a normal NetBeans
Platform module POM file. Let’s take a closer look at this next.

Creating NetBeans Platform Modules
After creating a Maven-based NetBeans Platform application project with the command line without
any development environment in the section Creating a NetBeans Platform Application, you now want
to add an application module to it. An archetype is provided for creating a module; the good thing about
this is that the relationship is made automatically. That means the module is automatically added to the
NetBeans Platform application project when creating it in its basic directory (see Listing 37-7).

Listing 37-7. Maven Parameter for Creating a NetBeans Platform Module Project with the Command Line

>mvn
-DarchetypeArtifactId=nbm-archetype
-DarchetypeGroupId=org.codehaus.mojo.archetypes
-DarchetypeVersion=1.7-DartifactId=MyModule
-DgroupId=com.galileo.netbeans
-Dversion=1.0-SNAPSHOT
-DnetbeansVersion=RELEASE70
-Dpackage=com.galileo.netbeans.mymodule
--batch-mode
archetype:generate

In contrast to creating a Platform application project, in this case you use the nbm archetype. The
parameters match the parameters already described in Listing 37-5. Just indicate the artifact ID, the
group ID, and the version for the module to create. You can optionally define the NetBeans version to
use and the package to be set as base for this module.

Now let’s take a look at the POM file that was produced for this module. At the beginning, the link to
the parent POM file is established by the parent element. Consequently, this file inherits the settings of

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

411

the parent POM file, so it is no longer necessary to define the NetBeans Maven repository or a special
Java version, for example. Thus, the configuration file remains small and is easy to maintain. nbm is used
as packaging type, so when the module is created, a NetBeans module is created. In this module POM
file, the JAR plugin is furthermore instructed by the useDefaultManifestFile element to use the already
existing manifest.

<project xmlns="http://maven.apache.org/POM/4.0.0" ... >
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>MyApplication</artifactId>
 <groupId>com.galileo.netbeans</groupId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <groupId>com.galileo.netbeans</groupId>
 <artifactId>MyModule</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>nbm</packaging>
 <name>MyModule NetBeans Module</name>
 <properties> ... </properties>
 <dependencies>
 <dependency>
 <groupId>org.netbeans.api</groupId>
 <artifactId>org-netbeans-api-annotations-common</artifactId>
 <version>${netbeans.version}</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.3.1</version>
 <configuration>
 <useDefaultManifestFile>true</useDefaultManifestFile>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

The module was automatically added to the parent POM file, so the module belongs to the whole
NetBeans Platform application project. For this purpose, the parent POM file was adapted as follows:

<modules>
 <module>branding</module>
 <module>application</module>
 <module>MyModule</module>
</modules>

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

412

Make Packages Public
As already mentioned, a NetBeans module must explicitly define packages as public whose classes are to
be made available to other modules. You have to configure the NetBeans Maven Plugin to make
packages of a Maven-based NetBeans module public. For this purpose the plugin provides the element
publicPackages.

In Listing 37-8 the package com.galileo.netbeans.api is made public for other modules.
Consequently, another module can now define a dependency and use classes out of this public package.
Further packages can be defined with any number of publicPackage elements.

Listing 37-8. Definining the Public Packages of a NetBeans Module

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>nbm-maven-plugin</artifactId>
 <version>3.5</version>
 <extensions>true</extensions>
 <configuration>
 <publicPackages>
 <publicPackage>com.galileo.netbeans.api</publicPackage>
 </publicPackages>
 </configuration>
</plugin>

Adding Dependencies
Dependencies between different modules are defined in Maven in the POM file under dependencies. If
you want to define a dependency on a certain version of a module, define the artifact ID, the group ID,
and a version (optionally). If no version is indicated, the most recently used version is found by meta
data in the Maven repository. To add a dependency on the module MyModule2 to the NetBeans module
MyModule extend the entry shown in Listing 37-9 in the POM file.

Listing 37-9. Definition of a Dependency Between MyModule and MyModule2

<dependencies>
 <dependency>
 <groupId>com.galileo.netbeans</groupId>
 <artifactId>MyModule2</artifactId>
 <version>2.0</version>
 </dependency>
</dependencies>

Creating and Executing the Application
Finally, the question remains how to create the application as a whole and how to execute it as a
NetBeans Platform application. For creating the whole application, use the standard Maven build phase
install. All sources are compiled, tests are executed (if existing), the modules are packed and, finally, the
whole application is copied in the local repository. Execute this build phase on the parent POM file:

D:\NetBeans\Maven\MyApplication>mvn install

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

413

The goals of the NetBeans Maven plugin, which are listed in Table 37-1, are automatically
connected by this build phase (or with the build phase package). To this end, a look on the web site of
the plugin will be very helpful: http://mojo.codehaus.org/nbm-maven-plugin/plugin-info.html. There,
you find the parameters of the separate goals that are provided. This way you can adapt the build
process to your special needs.

Table 37-1. Goals of the NetBeans Maven Plugin That Are Automatically Executed When Creating an

Application

Goal Description

nbm:autoupdate Creates the auto update information.

nbm:branding Creates the branding module. Branding contents are stored under
src/main/nbm-branding in the usual structure.

nbm:cluster-app Creates the module cluster of a NetBeans Platform application.

nbm:manifest Produces the manifest file of a module.

nbm:nbm Creates a module distribution file (NBM).

nbm:standalone-zip Creates a running distribution with executable as zip file.

After creating the application with mvn install you can now start the application with mvn nbm:run-

platform. Please note that this goal can only be used on POM files with the packaging type nbm-
application. That means you have to change into the directory of the standard application modules to
execute the application:

D:\NetBeans\Maven\MyApplication\application>mvn nbm:run-platform

Additionally, the goals listed in Table 37-2 are provided. They can be called in explicitly.

Table 37-2. Goals of the NetBeans Maven Plugin That Can Be Explicitly Executed

Goal Description

nbm:run-platform Starts a NetBeans Platform application. This goal is executed on the
standard application module.

nbm:standalone-zip Creates a running distribution with executable as zip file.

nbm:cluster Creates a cluster out of all modules which belong to the parent POM.

nbm:populate-repository Creates Maven meta data from the modules and loads all resources
(JAR file, NBM file, Javadoc, etc.) in a local or remote Maven
repository.

CHAPTER 37 MAVEN AND THE NETBEANS PLATFORM

414

nbm:webstart-app Creates a webstart (JNLP) application in the form of a WAR file.

This goal is executed on the standard application module.

With all this you have now installed, created, and executed a NetBeans Platform application without

the NetBeans IDE. This mainly shows that the NetBeans IDE is not necessary for developing a NetBeans
Platform-based application. Using alternative development environments is enormously simplified by
Maven. Chapters 38 and 40 will look at developing a NetBeans Platform application within the Eclipse
and IntellJ IDEA IDE.

Summary
Maven is now an integral part of the NetBeans Platform. So besides Ant, not only an alternative build
system is provided, but also a perfect opportunity to work independently of the NetBeans IDE. In this
chapter you learned how to work with Maven projects within the NetBeans IDE. You also learned how
you can you use Maven to create and build NetBeans Platform applications from the command line
without the NetBeans IDE.

C H A P T E R 38

415

Eclipse IDE and the NetBeans
Platform

In Chapter 37 you learned how easy it is to create applications based on the NetBeans Platform even
without the NetBeans IDE. This is possible now because NetBeans Platform applications can be
developed with Maven (with the NetBeans Maven plugins). A Maven Repository with all NetBeans
modules as Maven modules is available at http://bits.netbeans.org/maven2, so dependencies on
NetBeans Platform modules can easily be defined by an XML entry.

Besides Maven, numerous annotations contribute to the independence of a given IDE, since by
now, many declarative configuration entries have been created by corresponding wizards. But to
compile them manually is complex and error-prone. The corresponding configuration entries and
configuration files are created automatically.

Because of the Maven support available for the Eclipse IDE, the way has been cleared for using the
NetBeans Platform.

Installing Eclipse IDE
This chapter assumes you have a current version of Eclipse installed. You can get a distribution at
http://www.eclipse.org/downloads, though this does not contain support for Maven projects yet. You
can install the support for Maven projects with the M2Eclipse feature.

The easiest way to receive the M2Eclipse feature is through the Eclipse Marketplace. In order to do
this just activate Help ➤ Eclipse Marketplace. Choose the Eclipse Marketplace catalog. All available
features will be displayed on the following page. After that you can install Maven Integration for Eclipse
on the Install button. Now that the necessary plugins are determined (see Figure 38-1) close the wizard
with Finish.

CHAPTER 38 ECLIPSE IDE AND THE NETBEANS PLATFORM

416

Figure 38-1. Installation of the M2Eclipse feature

After you have installed the Maven feature the next step is to take care that the Eclipse IDE gets
started with the Virtual Machine of the JDK, because the Maven plugin uses libraries out of the JDK. You
can adapt the eclipse.ini file which you can find in the root directory of the Eclipse distribution. In this
file you can indicate the Virtual Machine you want to use with the vm parameter as follows:

-vm
C:\Program Files\Java\jdk1.6.0_23\bin\javaw.exe

This parameter must be indicated in front of the vmargs parameter.

Creating a NetBeans Platform Application
Now that your Eclipse IDE can deal with Maven projects, you can create your NetBeans Platform-based
application in Eclipse. To do this call up File ➤ New ➤ Other... then choose Maven in the category Maven
Project wizard. Leave the option Create a simple project deactivated as you want to choose a special
Maven archetype on the subsequent page. This archetype creates the basic structure for a NetBeans
Platform application. You get the required netbeans-platform-app archetype by filtering in the Nexus
Indexer catalog for platform, as shown in Figure 38-2.

CHAPTER 38 ECLIPSE IDE AND THE NETBEANS PLATFORM

417

Figure 38-2. Choice of the NetBeans Platform application archetype

Choose this archetype. On the subsequent page you have to choose the group ID, artifact ID, and
the version for the application to apply. This package is only used for the branding module. Finally, you
determine the NetBeans Platform version to use with the feature netbeansVersion. Under
http://bits.netbeans.org/maven2/org/netbeans/cluster/platform you can check which versions are
available through the standard repository. Press Finish to create the NetBeans Platform Maven project.
(See Figure 38-3.)

CHAPTER 38 ECLIPSE IDE AND THE NETBEANS PLATFORM

418

Figure 38-3. Defining the parameters for the NetBeans Platform application project

As described in Chapter 37, three projects will be created by Maven. One project (in the example
here named MyApplication) represents the parent POM file. Additionally, two Maven module projects
which refer to the parent project will be created. One represents the NetBeans Platform with its modules
(application), the other represents the branding modules (branding).

Creating NetBeans Platform Modules
Now you can add a first application module to the base for the NetBeans Platform application that was
created above. In order to do so, you can again draw on a wizard. Call the context menu of the parent
project in the package explorer (e.g., MyApplication) and choose Maven ➤ New Maven Module Project
(note: if you use the menu instead of the context menu the parent POM file can get overwritten).

On the first page you define a name for the module you want to create. It should be automatically
referred to the parent project. Leave the option Create a simple project deactivated, because you want to
choose a specific NetBeans module archetype on the following wizard page.

CHAPTER 38 ECLIPSE IDE AND THE NETBEANS PLATFORM

419

You can find the nbm-archetype in the Nexus Indexer catalog—you can filter the listed items for
nbm. Choose the nbm-archetype now (see Figure 38-4).

Figure 38-4. Choose the nbm-archetype to create a NetBeans module

On the last wizard page, the group ID should already be preoccupied by the parent project’s value.
Please define the version of the currently valid module and the base package used. There are no
properties listed for this project type, though you must define the property netbeansVersion. This way
you specify an existing NetBeans version (see Figure 38-5).

CHAPTER 38 ECLIPSE IDE AND THE NETBEANS PLATFORM

420

Figure 38-5. Defining the parameters for the NetBeans Platform module project

Finally, the application module is created and automatically added to the parent POM file when you
press the Finish button. So the whole application can later be automatically created as a unit. The parent
POM file refers to the module POM file; the parent POM file inherits the settings and features of the
module POM file.

Add Dependencies
In order to be able to get access to classes of other modules, you must define a dependency in the POM
file. This is also valid for the usage of classes of the NetBeans Platform modules. If you indicate group ID,
artifact ID, and version it is possible to define the dependency in the POM file manually. Alternatively,
you can click Maven ➤ Add Dependency from the context menu of the module concerned. There you can
search for modules and, by pressing OK, you can add the chosen dependency. (See Figure 38-6.)

CHAPTER 38 ECLIPSE IDE AND THE NETBEANS PLATFORM

421

Figure 38-6. Adding a dependency

Starting and Executing an Application
Next I will show you how you can create and start the application as a whole. You can use the standard
Maven build phase install to create the application. To execute it, choose Run As ➤ Maven install on the
parent project.

To start the application out of the Eclipse IDE, you can use the goal nbm:run-platform of the
NetBeans Maven plugin. You establish a Run Configuration by pressing Run ➤ Run Configurations.
Double-click Maven Build and a new configuration will be created. Give it a name (such as Start
Platform) and define the root directory. The root directory is the application project which is
automatically created and which represents the NetBeans Platform itself. You can choose the project by
pressing the Browse Workspace... button. Enter nbm:run-platform at Goals, accept the settings with
Apply. Click Run to start the application. (See Figure 38-7).

CHAPTER 38 ECLIPSE IDE AND THE NETBEANS PLATFORM

422

Figure 38-7. Creating a run configuration to start a NetBeans Platform Application

The NetBeans Maven plugin achieves many other goals. Among them, it enables you to create a ZIP
distribution. In the section Creating and Executing the Application in Chapter 37 you can read which
goals are provided. Analogous to these goals you can install a run configuration which you can
comfortably use out of the Eclipse IDE.

Summary
Developing NetBeans Platform applications is not just reserved for NetBeans IDE users anymore. Maven
support makes the use of NetBeans Platform in the Eclipse IDE very simple. You saw in this chapter how
to set up your Eclipse IDE to create, develop and start Maven-based NetBeans Platform applications.

C H A P T E R 39

423

From Eclipse to NetBeans

This chapter describes the basic properties and functions of the NetBeans IDE. The chapter should help
facilitate the migration from the Eclipse IDE to the Net Beans IDE, and make it easier to start working
with the NetBeans Platform.

The NetBeans IDE
This section introduces techniques, fundamental characteristics, and functions of the NetBeans IDE. It
helps smooth the transition from the Eclipse IDE to the NetBeans IDE, and provides an introduction to
the NetBeans Platform.

Where Can I find What?
Table 39-1 provides a basic overview of where you can find the windows and functions you know from
the Eclipse IDE, within the NetBeans IDE.

Table 39-1. The NetBeans IDE Equivalents for Eclipse Components

Eclipse Component NetBeans Menu Item

Project Explorer/Package Explorer Window ➤ Projects

Projects/Navigator Window ➤ Files

Outline Window ➤ Navigating ➤ Navigator

Properties Window ➤ Properties

Console Window ➤ Output ➤ Output

Problems/Task List Window ➤ Tasks

Javadoc Window ➤ Other ➤ Javadoc

Error Log View ➤ IDE Log

CHAPTER 39 FROM ECLIPSE TO NETBEANS

424

Plug-in Registry Tools ➤ Plugins

Preferences Tools ➤ Options

Handling Projects
In the NetBeans IDE, mapping keyboard shortcuts to provided functionalities is done via a keymap. This
keymap is viewed and edited under Tools ➤ Options ➤ Keymap. That means you can adapt the actions
to your own needs. Better yet, is that several keymaps can be managed in parallel. The NetBeans IDE
provides an Eclipse keymap out of the box, making it possible to switch to Eclipse profile (also under
Tools ➤ Options ➤ Keymap) and use the well-known shortcuts further on. Surely, this makes it much
easier, especially for advanced Eclipse users.

Something often missed by Eclipse users in the NetBeans IDE is the Perspectives feature. However, a
module providing the perspective feature is available at http://plugins.netbeans.org. Thus, you can use
perspectives in the NetBeans IDE. This module can be downloaded and installed through the Plugin
Manager (Tools ➤ Plugins).

From Eclipse Plugin to NetBeans Module
The concept of a plugin in the Eclipse world is equivalent to a NetBeans module. As in the Eclipse IDE,
the NetBeans IDE offers a wizard providing the basic structure for a module in a few clicks. Perform this
via File ➤ New Project… ➤ NetBeans Modules ➤ Module.

While creating a plugin with the Eclipse IDE, several parameters must be declared from the
beginning. Among them is the activator, the GUI, and if you want to create a rich client application with
the new plugin. The NetBeans IDE Module wizard takes a more general approach. In all three points
specified before, decisions can be made later on whether the functionality is needed. An activator -
called a NetBeans module installer (more on this later on) - can be added anytime via a separate wizard.
This wizard is found under File ➤ New File... ➤ Module Development ➤ Installer / Activator. Also, there is
no need to bother about whether the module will come with a graphic interface. On this point, separate
wizards are available, and you can use them later as needed. One of the most important wizards is the
Window wizard, for the construction of windows, which are docked and administered in the NetBeans
window system. Start this wizard via File ➤ New File... ➤ Module Development ➤ Window. You can
decide whether to provide a rich client application that the module will be a part of, or whether this
module is to become an extension of an already existing application. Although the module wizard asks
whether a standalone module or an application module is needed, this is easily changed in the
Properties dialog of a module, or simply through adding and removing the module from a NetBeans
Platform application.

For modules to become self-contained rich client applications, a NetBeans Platform Application
project is needed. This project is a container for your modules, and is responsible for branding your
application. To create a NetBeans Platform application, a wizard is also provided. Find it under File ➤
New Project... ➤ NetBeans Modules ➤ NetBeans Platform Application. Both new and existing modules
can be added to the new application. The range of NetBeans modules used by your application, and
hence used by your modules, is determined under Properties ➤ Libraries. Your application (or your
modules) is by no means limited to NetBeans Platform modules. Arbitrary NetBeans IDE modules can
be added to your application.

CHAPTER 39 FROM ECLIPSE TO NETBEANS

425

Plugin Lifecycle and Events
An Eclipse plugin may contain an activator. This class extends the abstract class Plugin or
AbstractUIPlugin, depending on whether the plugin contains graphic elements or not. This optional
class serves as the conceptual representation of the plugin. Containing no application logic, it mainly
reacts to distinguished events; for instance, the methods start() and stop() specified by the interface
BundleActivator and implemented by the classes Plugin and AbstractUIPlugin. The methods are called
by the Eclipse Platform when the plugin is loaded or closed. By overwriting these methods, special
platform-specific tasks can be executed at these times. An Activator in its simplest form looks like that
shown in Listing 39-1.

Listing 39-1. Activator Class of an Eclipse Plugin

import org.eclipse.core.runtime.Plugin;
import org.osgi.framework.BundleContext;

public class Activator extends Plugin {
 private static Activator plugin;

 public void start(BundleContext context) throws Exception {
 super.start(context);
 plugin = this;
 }

 public void stop(BundleContext context) throws Exception {
 plugin = null;
 super.stop(context);
 }

 public static Activator getDefault() {
 return plugin;
 }
}

The counterpart to the Eclipse plugin activator is the module installer of a NetBeans module. This
module installer is optional. The NetBeans platform instantiates an installer during module startup. The
installer extends the class ModuleInstall (see Listing 39-2).

This class specifies the methods restored() and close(), which are equivalent to methods in the
BundleActivator interface. Also available are validate(), for the examination of the starting conditions;
closing(), for the examination of stop conditions; and uninstalled(), for uninstallation of the module.
As with an activator, these methods can be overwritten and used as required.

CHAPTER 39 FROM ECLIPSE TO NETBEANS

426

Listing 39-2. The Counterpart to the Activator Is a NetBeans Module Installer.

import org.openide.modules.ModuleInstall;

public class Installer extends ModuleInstall {

 @Override
 public void restored() {
 // module started
 }

 @Override
 public void close() {
 // module stopped
 }

 public static Installer getDefault() {
 return findObject(Installer.class, true);
 }
}

While the activator of an Eclipse plugin is automatically created by a new plugin project, the
installer can be created anytime with the Module Installer wizard, found under File ➤ New File... ➤
Module Development ➤ Installer / Activator. Thus, the installer is also registered in the manifest file. You
can find more detailed information on this in Chapter 3.

Plugin Information
In addition to to starting and stopping plugins, the activator class has other functionalities. It can, for
example, provide plugin and manifest information via a Bundle object. Information on NetBeans
modules is offered by the NetBeans Platform with a ModuleInfo object. Instances for all modules within
the application are available on the Lookup. Out of this set you can retrieve the ModuleInfo instance of
your own module. You can provide this instance to the module users over the installer class with the
help of the getModule() method, as shown in Listing 39-3.

Listing 39-3. Providing the ModuleInfo Instance, Which Contains Information on the Module

import org.openide.modules.ModuleInfo;
import org.openide.modules.ModuleInstall;
import org.openide.util.Lookup;

public class Installer extends ModuleInstall {
 public static final String MODULE_ID = "com.galileo.netbeans.module";
 private ModuleInfo info = null;
 ...
 public ModuleInfo getModuleInfo() {
 if (info == null) {
 Collection<? extends ModuleInfo> all =
 Lookup.getDefault().lookupAll(ModuleInfo.class);
 for (ModuleInfo mi : all) {

CHAPTER 39 FROM ECLIPSE TO NETBEANS

427

 if (mi.getCodeNameBase().equals(MODULE_ID)) {
 info = mi; break;
 }
 }
 }
 return info;
 }
}

Alternatively, you can use the Auto Update Services API (see Chapter 25), which has access to all
installed modules and their properties.

The class UpdateElement provides all module information such as name, version, category, or
author. (See Listing 39-4.)

Listing 39-4, Determine Module Information via the Update Manager.

import org.netbeans.api.autoupdate.UpdateElement;
import org.netbeans.api.autoupdate.UpdateManager;
import org.netbeans.api.autoupdate.UpdateUnit;
...
public class Installer extends ModuleInstall {
 public static final String MODULE_ID = "com.galileo.netbeans.module";
 private static UpdateElement moduleInfo;
 ...
 public static UpdateElement getModuleInfo() {
 if (moduleInfo == null) {
 for (UpdateUnit unit : UpdateManager.getDefault().getUpdateUnits(
 UpdateManager.TYPE.MODULE)) {
 if (unit.getInstalled() != null
 && unit.getInstalled().getCodeName().equals(MODULE_ID)) {
 moduleInfo = unit.getInstalled();
 break;
 }
 }
 }
 return moduleInfo;
 }
}

Images
Pictures and icons used within an application are not loaded over the installer, but over a central
ImageUtilities class in the NetBeans Platform. This class provides the methods loadImage() and
loadImageIcon() which should (preferably) be used. Behind them is an icon manager which manages
the loaded images and icons and prevents a repeated loading of resources. Use it to load icons from all
available modules. It is also possible to load localized resources, as in the following example. If the
second parameter is set to true and there is an icon named icon_de_DE.png available, then it is loaded (if
the locale setting of application is de_DE):

Image img = ImageUtilities.loadImage("resources/icon.png", true);

CHAPTER 39 FROM ECLIPSE TO NETBEANS

428

Resources
Any plugin resource can be accessed by using the FileLocator class in Eclipse. To simply load resources
from a NetBeans module, you extend the Installer class by the method getModuleResource() (see
Listing 39-5). Use the module classloader that has access to all module resources. This returns a URL
which, using the URLMapper class, maps to the FileObject instance.

Listing 39-5. The getModuleResource() Method Helps Load Arbitrary Module Resources.

import java.net.URL;
import org.openide.filesystems.FileObject;
import org.openide.filesystems.URLMapper;
import org.openide.modules.ModuleInstall;

public class Installer extends ModuleInstall {
 ...
 public FileObject getModuleResource(String path) {
 URL url = getClass().getClassLoader().getResource(path);
 FileObject resource = URLMapper.findFileObject(url);
 return resource;
 }
}

The FileObject class provides extensive methods for working with the resource. The following
example demonstrates this by loading content of the myprops.properties file out of the resources
directory of the module into the Properties object.

public final class TestAction implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 FileObject res = Installer.getDefault().getModuleResource(
 "resources/myprops.properties");
 Properties props = new Properties();
 try {
 props.load(res.getInputStream());
 System.out.println("Value:" + props.getProperty("key"));
 } catch(Exception ex) {}
 }
}

Settings
Plugin-specific settings, used internally as well as by the user, are managed via a Preferences object or a
IPreferenceStore object in Eclipse RCP, which is provided by the Activator class. The NetBeans Platform
takes a slightly different approach. For managing settings it contains an implementation of the Java
Preferences API. Access to a Preferences instance is obtained via the NbPreferences class. An advantage
of this implementation is that data is stored in the NetBeans Platform user directory. A distinction is
made between module-specific data and application-specific data. The root() method gives access to
settings saved in the config/Preferences.properties file. The forModule() method, on the other hand,
handles access to data found in a module-specific properties file. For example, if the code name base is
com.galileo.netbeans.module, settings will be stored in the
config/Preferences/com/galileo/netbeans/module.properties file.

CHAPTER 39 FROM ECLIPSE TO NETBEANS

429

 NbPreferences.forModule(MyClass.class).put("key", "value");
 NbPreferences.root().put("key", "value");

You can find more detailed information on this topic in Chapter 20.

Application Lifecycle
The lifecycle of Eclipse RCP applications is handled by an IApplication instance. It implements the
start() and stop() methods. The first is responsible for starting the application, typically used for
creating and opening the main window. The stop() method handles the shutting down of the
application, where the workbench is closed and other application-specific tasks are carried out.
NetBeans Platform applications unfortunately do not have such a comfortable lifecycle management—
although, on the other hand, that considerably simplifies development. For example, the main window
opens and closes on its own, without coding. Most aspects relating to the lifecycle of an application are
handled within individual modules and dealt with via a module installer. Another possibility is to react
to the closing of the whole application, rather than the shutdown of individual modules; this is done via
the abstract class LifecycleManager. The default implementation of the LifecycleManager class, provided
by the NetBeans Platform, is responsible for the proper shutdown of the application. You can insert your
own implementation of this class before the default implementation, so application-specific tasks are
handled as the application shuts down. It is important not to forget to call the default implementation
from your own implementation. What such a class can look like and how you explicitly shut down your
application with the LifecycleManager is described in Chapter 8.

Views and Editors
While the Eclipse workbench displays and docks windows of two types—views and editors—the
NetBeans Platform handles these types with one window type. A window displayed within the NetBeans
window system is a Top Component; the implementation of a window is derived from the TopComponent
class. This superclass integrates itself as a window into the NetBeans window system and makes a great
deal of information available, giving access to its current state as well as its lifecycle. Similar to how views
and editors in an Eclipse application are organized, via the relevant extension points, top components
are declaratively made available, via the layer file, within the Mode folder. A mode is a container for top
components. Here, let’s return to the view and editor distinction, since modes can be one of these types.
Top components are created within one of these modes (see Figure 9-5). A mode’s size, position, and
type are described in an XML file. In this way you also have the opportunity to register your own modes
in the layer file with the corresponding extension point (see Chapter 10 for further information).
However, top components are not required to be registered within a mode, where they are displayed in
default mode. As with the Eclipse workbench, the user places top components in various positions while
the application is running.

For the easy creation and registration of top components, the NetBeans IDE once again provides a
very useful wizard. Choose File ➤ New File... ➤ Module Development ➤ Window and start using it. The
wizard offers you the possibility of configuring a top component and assigning it to a mode. Detailed
information about this and other topics relating to the design of the user interface can be found in Part 2.

Summary
This chapter assumed you were an Eclipse user and introduced you to the NetBeans IDE as a tool, and to
the NetBeans Platform as a desktop framework. The chapter started by looking at the most commonly
used functions and windows in Eclipse and showing where they can be used in the NetBeans IDE. You
learned how to adapt the keymap to Eclipse settings. Next, we compared Eclipse plugins to NetBeans

CHAPTER 39 FROM ECLIPSE TO NETBEANS

430

modules and compared the terminology of the two platforms, describing the major similarities and
differences between them.

C H A P T E R 40

431

IntelliJ IDEA and the NetBeans
Platform

The Java development environment IntelliJ IDEA of JetBrains (http://jetbrains.com/idea) is now freely
available with the community edition. It provides another alternative for developing NetBeans Platform
applications thanks to the integrated Maven project support. In this chapter, I will give both beginners
and professionals some tips for using IntelliJ IDEA to successfully set up of a NetBeans Platform-based
application.

Presettings
Maven is not part of IntelliJ IDEA. So before you can create a Maven project you have to provide a Maven
distribution. You can download the current version at http://maven.apache.org as a zip file. Just unpack
it at the desired location. This directory with the Maven distribution has to be made available to IntelliJ
IDEA. You can do this either directly in the settings of the IDE under Settings ➤ Maven or through the
environment variable M2_HOME which is usually in Maven. By default, IntelliJ IDEA uses the path that
has been defined with this variable. Expect to find the Maven settings file (settings.xml) in the user
directory by default under .m2/settings.xml. Additionally, .m2/repository is used in the user directory as
local repository.

Creating a NetBeans Platform Application
If Maven is installed and the installation is made known to IntelliJ IDEA you can directly start and set up
a NetBeans Platform application project. To do so, call File ➤ New Project... and choose the option
Create project from scratch. On the following page you can give a name to the project to be created and
you can define the storage location. Activate the option Create module and choose the type Maven
Module (See Figure 40-1).

CHAPTER 40 INTELLIJ IDEA AND THE NETBEANS PLATFORM

432

Figure 40-1. Create Maven Project

Go to the next page by clicking Next. There you can assign the group ID, artifact ID, and the version
for the new project. Because you do not just want to create an empty standard Maven project, but a
NetBeans Platform application project, activate the option Create from archetype. Choose the latest
version of the archetype netbeans-platform-app-archetype which belongs to the group
org.codehaus.mojo.archetypes from the list (See Figure 40-2). If it is not listed you can manually add this
archetype with the button Add archetype..., the named artifact, and group ID. You can see which
versions are provided in the official Maven repository under
http://search.maven.org/#search|ga|1|netbeans-platform-app-archetype.

CHAPTER 40 INTELLIJ IDEA AND THE NETBEANS PLATFORM

433

Figure 40-2. Choosing Maven archetype for a NetBeans Platform application project

Complete the wizard with Finish and Maven creates the basic structure of a NetBeans Platform
application. Initially, that can take quite some time, because several Maven plugins have to be
downloaded into the local repository. As already mentioned in Chapter 37, three Maven projects are
created in practice: a superordinate parent project which is supposed to bundle the whole NetBeans
Platform application, a project for the NetBeans Platform module, and another one for the branding
module. These are subordinate to the parent project and thus inherit the features of the POM file. This
results in the project structure shown in Figure 40-3.

CHAPTER 40 INTELLIJ IDEA AND THE NETBEANS PLATFORM

434

Figure 40-3. Project structure of a Maven NetBeans Platform application

In another step, you can now add one or more Maven NetBeans modules to this Maven project. Do
this with File ➤ New Module... in the menu or with New ➤ Module out of the context menu of the already
created NetBeans Platform application project. Choose the option Create project from scratch and on the
following page choose the type Maven Module. Give a name to the module and ensure that the module is
created in the directory of the parent project. In the next step you will see that the module is added to
the parent project and that the module itself inherits from the parent project. You will also see that the
group ID and the version are already taken from the parent POM file. You can also define other values
optionally; to do so, deactivate the option Inherit. There is also a special Maven archetype for creating a
NetBeans module. This is the nbm-archetype archetype out of the group org.codehaus.mojo.archetypes.
Choose it from the list or add it manually with Add archetype (See Figure 40-4).

CHAPTER 40 INTELLIJ IDEA AND THE NETBEANS PLATFORM

435

Figure 40-4. Choosing Maven archetype for a NetBeans module project

Complete the wizard with Finish. The module is automatically created by Maven and added as a
module to the NetBeans Platform project. Within this and other modules you can implement your
application logic. There are several classes and APIs available that are described this book; you just need
to add the referring NetBeans Platform module as dependency to your application module. In the
following section you will learn how to easily search for Platform modules and how to add them as
dependencies.

Defining Dependencies
As you already know from the preceding chapters, you can use classes of a NetBeans module only after
setting a dependency on the referring module. Do this for a Maven project by adding a Maven
dependency to the POM file. IntelliJ IDEA provides a searching assistant for adding a dependency entry.
To get there, open the referring POM file and call Code ➤ Generate. Then choose Dependency out of the
popup menu to open the assistant. You can search for netbeans, for example, choose a special NetBeans
module, and add it as dependency. (See Figure 40-5).

CHAPTER 40 INTELLIJ IDEA AND THE NETBEANS PLATFORM

436

Figure 40-5. Searching for NetBeans modules and adding them as a dependency

You can directly add a dependency entry into the POM file. Besides you can also implement a
dependency when implementing your classes out of the editor. Use a class of a module on which no
dependency was defined before. This way, an error is displayed in the editor. Then using Alt+Enter
choose out of the popup menu and add the necessary dependency with the artifact searching assistant.

Building and Executing an Application
Now that you know how to create the basic structure of a NetBeans Platform application, add
application modules to it, and add dependencies for using the APIs of the NetBeans Platform modules,
you just need to be able to build and execute the NetBeans Platform application and create a
distribution.

The Maven Projects explorer (Window ➤ Tool Windows ➤ Maven Projects) is quite helpful here.
First, the whole application with the Maven build phase install has to be installed and copied into the
local repository. To do this, open the folder Lifecycle of the parent project (in the example MyApplication
- NB App Parent) and start the process with the context menu or by a double-click.

A NetBeans Platform application is executed by means of the Maven plugin nbm-maven-plugin. For
this the plugin provides the goal nbm:run-platform. Please note that you cannot start the application
with the parent project; you must do so over the automatically created NB App module, which
represents the NetBeans Platform itself. You find all the goals provided by the plugin in the Maven
Projects explorer (see Figure 40-6). You will also find the goal nbm:standalone-zip, with which you can
finally create your application as a ZIP distribution.

CHAPTER 40 INTELLIJ IDEA AND THE NETBEANS PLATFORM

437

Figure 40-6. Creating and executing the application by means of the Maven project explorer

Alternatively, you can set a run configuration with Run ➤ Edit Configurations and directly start a
build from the toolbar. With a run configuration, you can also automatically execute the build phase
install before the goal nbm:run-platform. This way you can create and execute your application with one
button.

Summary
The IntelliJ IDEA Java development environment of JetBrains is now available freely as a community
edition. In this chapter you learned how to use this IDE for developing NetBeans Platform applications.

C H A P T E R 41

439

NetBeans Swing GUI Builder

Probably the most obvious feature of a rich client application is the user interface, which determines the
quality of an application based on an intuitive and user-friendly structure of functions and data. It can
be a challenge to create a user interface with only a source code editor, however. Not only do you
constantly have to imagine the structure of the components, but the result often looks completely
different than expected.

In this respect the NetBeans IDE, which contains a powerful Swing GUI Builder, proves to be very
innovative. You can create a whole user interface with drag-and-drop and a choice of given parameters.
In other words, you do not need to write even a single line of code.

For example, the GUI Builder is automatically used for creating a top component, an options panel,
or a wizard for a NetBeans Platform application; you can also create completely generic components.
Add them to the palette and you can use them in any other components again. This chapter will first
explain a few details about the structure of the GUI Builder; later we will take a more detailed look at the
most important features.

Structure of the GUI Builder
When editing GUI components, the GUI Builder supports you with a lot of information and functions in
different windows. The next section will give you an overview of those windows and their use.

Editor
The Editor (Window ➤ Editor) is a central part of the GUI Builder. It provides two different views. You
can alternate between the Design view and the Source view. In the Design view, the actual creation of
GUI components takes place. You can drag components from the Palette into your Design view on your
component where you can individually edit it. In the Source view, you can implement the action of
buttons, for example (see Figure 41-1).

CHAPTER 41 NETBEANS SWING GUI BUILDER

440

Figure 41-1. Editor of the GUI Builder with Design and Source view

Changing to the Source view you will see areas with code that is automatically produced by the GUI
Builder. These so-called Guarded Blocks are marked grey and cannot be edited; changes can only be
made on the user interface of the GUI Builder. At some places it is possible to insert custom code.

Palette
As soon as you are in the Design view implementing a GUI component in the Editor, the Palette window
(Window ➤ Palette) provides all available Swing and AWT components structured in categories (see
Figure 41-2). You can drag-and-drop it into the editor on your own component.

CHAPTER 41 NETBEANS SWING GUI BUILDER

441

Figure 41-2. Palette window with all Swing and AWT components

 Note With the Palette you can not only use the components that are available by default, but you can add your
own components and drag-and-drop them in your own application. Right-clicking in the Palette window calls the
Palette Manager, in which you can import new components from JAR files, registered libraries, or a project. You
can also create new categories, structure them differently, or delete categories with the Palette Manager. That
way you always keep track.

Inspector
All visible and even invisible components are shown in the Inspector window (Window ➤ Navigating ➤
Inspector) in a hierarchic tree structure (see Figure 41-3). When choosing an entry, the referring
component in the Editor is selected as well. The Inspector helps you keep track even in complex GUI
components. The Inspector is especially helpful when editing a JPanel component which is used as an
invisible container.

CHAPTER 41 NETBEANS SWING GUI BUILDER

442

Figure 41-3. Inspector window for navigating and accessing single components

Properties
Each and every Swing or AWT component offers a multiplicity of possible settings which are all
displayed in the Properties window (Window ➤ Properties). A great advantage of this is that for a lot of
features with set values, the desired value can be chosen from a list. Special editors are provided for a lot
more features, such as the configuration of the border of a container. Furthermore, the Properties
window provides additional views about bindings of features (Binding), their actions (Events), and user-
specific code (Code). You do not just get an extensive overview, but a very easy edit functionality at the
same time. (See Figure 41-4). We will come back to the separate views later.

CHAPTER 41 NETBEANS SWING GUI BUILDER

443

Figure 41-4. Overview of the features of a selected AWT or Swing component with a lot of possibilities for

editing

Components and Layout
This section will describe how a GUI Builder component is structured and how you can place and
structure additional components on it.

Forms
Components created with the GUI Builder are called Forms. There are certain wizards provided for
creating a Form under File ➤ New File ➤ Swing GUI Forms and AWT GUI Forms. Surely, for you as a
NetBeans Platform application developer, the JPanel Form wizard is the most common for
implementing sub-components. For developing top-level components, a special Form wizard is
provided under File ➤ New File ➤ Module Development ➤ Window (see Chapter 10).

A Form is marked by a .form file besides a .java file with reserved code blocks. It has the same name
and the same directory as the .java file. The GUI Builder saves all information about layout and
components used and the Java source code that is generated out of it or changes in this XML file.

CHAPTER 41 NETBEANS SWING GUI BUILDER

444

Design Strategy
The GUI Builder follows a so-called Free Design strategy. Whereas you are used to placing the
components in a certain set area of a layout manager, in the Design view of the NetBeans GUI Builder
you can place your components anywhere. Then it automatically detects the necessary layout attributes
and automatically creates the code. The GroupLayout manager is the basis for that. You can arrange your
components as they will be displayed in the application. Furthermore, you have the ability to preview
them with the Preview Design button in the toolbar of the Design view. This way you can test how your
component reacts to a change of size.

After a short time working with the enormously intuitive Free Design of the GUI Builder you will
hardly miss other layout managers, although you can set alternative layout managers for special
purposes. You can choose from the following popular layout managers with a right-click in the Form on
Set Layout:

• Free Design

• Absolute Layout

• Border Layout

• Box Layout

• Card Layout

• Flow Layout

• Grid Bag Layout

• Grid Layout

• Null Layout

Alignment and Anchoring
One great advantage of the GUI Builder is the support for placing components.Reference lines are
displayed (depending on the components already added to the form) to enable the arrangement of new
components. A component is automatically arranged according to the reference lines when brought
closer to them; you can quickly create an exactly arranged and structured user interface. (See Figure 41-
5).

CHAPTER 41 NETBEANS SWING GUI BUILDER

445

Figure 41-5. Automatic alignment and anchoring of components

So-called anchoring points are defined for determining the layout manager behavior when changing
the size of a window. Components are either anchored to components next to them or to margins of the
form. In Figure 41-5 you see how the button jButton1 is anchored to the margin of the form and to the
text field jTextField1. The text field itself is anchored to the upper margin of the form; that is, the size of
the form is changed below and thus the button’s position is not changed. If the Form is made bigger on
the right side, the button “sticks” to the right border. The GUI Builder suggests anchoring points
depending on the location (marked visibly in a half-round shape). You can change them with Anchor in
the context menu, though.

Adapting Components
You have learned how to place and change the place of different components within a Form. Now you
also want to adapt these components.

Text and Variable Name
The components which you drag from the Palette to its Form get a default caption referring to the types’
name. The variables are named the same way. You can adapt the caption either with F2 or with Edit Text
out of the context menu. You can also adapt the variable name in the context menu with Change
Variable Name.

Application-Specific Code
In the section Palette I wrote that there is at first no possibility of editing the code produced by the GUI
Builder. However, the Code Customize, shown in Figure 41-6, makes this possible. You can call the Code
Customizer for each component out of the context menu with Customize Code. Doing this, you can add
your user-specific code at different locations of the initializing and of the declaration code. Furthermore,
it is possible to let the component create either locally or as a field. In that last case you can define
additional attributes referring to the access or the storage.

CHAPTER 41 NETBEANS SWING GUI BUILDER

446

Figure 41-6. Code Customizer for adapting the initialization and declaration of a component

Earlier I mentioned that the Properties window provides a special Code view (Code). This offers
additional opportunities to intervene besides those options shown in Figure 41-6. Doing this, you can
not only easily edit the code, but at the same time you also get a complete overview of all user-specific
extensions of the code.

Actions
Actions are an elementary part of a user interface. Actions shall be executed in reaction to an event
triggered by the user. Such an event can be a mouse click or pressing a key, for example. You can define
an individual action for each event of a component. The GUI Builder connects event and action for you.
You can choose from all available events in the context menu (Events). Clicking a certain event, a listener
is automatically registered for it. This listener calls the method. Then you can implement its body in the
Source view.

An example will illustrate this. An action will be implemented for the actionPerformed event (so
clicking on the button) for the button shown in Figure 41-5. This is why you call the following entry out
of the context menu of the button jButton1: Events ➤ Action ➤ actionPerformed. The editor
automatically changes into the Source view and jumps into the referring method which is called with
this event. In Listing 41-1 it is the method jButton1ActionPerformed().

CHAPTER 41 NETBEANS SWING GUI BUILDER

447

Listing 41-1. Implementation of an Action. Only the Methods Body Can Be Edited.

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
 jTextField1.setText("Hello World");
}

If you look at the automatically generated code block in the Source view, you will find the
registration of a listener (as shown in Listing 41-2) which calls the method with the actual action.

Listing 41-2. Automatic Registration of an Event Listener by the GUI Builder

jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
});

You can easily get an overview about which events are registered and which other events are
provided. Get this overview in the event view (Events) of the Properties window. Furthermore, you can
also register, delete, or rename multiple handlers or jump to their position in the source code. (See
Figure 41-7).

Figure 41-7. Events view for managing the actions handler of a certain component

Beans Binding
On the one hand, you can bind GUI components to a data source with the Beans Binding Framework
(JSR 295). On the other hand, you can keep features of different GUI components synchronous with each
other. These are tasks which have to be implemented in nearly every rich-client application. The Beans

CHAPTER 41 NETBEANS SWING GUI BUILDER

448

Binding Framework together with the NetBeans IDE or the GUI Builder ensure that you only have to
write a few lines of code.

I will demonstrate the advantages of the Beans Binding Framework and of the support by the GUI
Builder with a typical example (shown in Figure 41-8) in which you take an already existing database and
create entity classes for its tables. Then you bind the data from the database to a table in a NetBeans
Platform application. Furthermore, you bind a detail view to a table. Doing so, some changes both in the
table and in the detail view should be possible.

Figure 41-8. Beans Binding example application

Binding Table and Data Source
The first step is to create (or use an already existing) Java DB database. In the Service window you can
easily create a new database over the context menu of the Databases ➤ Java DB node with Create
Database. This is called ProductDatabase in this example. You add a table with the structure shown in
Listing 41-3 to the database and then you create two more test data sets—you can add any number of
entries later.

Listing 41-3. Table Structure and Test Data Sets

CREATE TABLE product (
 id INT NOT NULL PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
 title VARCHAR(50) NOT NULL,
 orderId VARCHAR(10) NOT NULL,
 price DOUBLE NOT NULL
);

INSERT INTO product (title, orderId, price) VALUES ('Product 1', 'P1', 1.49);
INSERT INTO product (title, orderId, price) VALUES ('Product 2', 'P2', 5.99);

Now you need an entity class for this table. However, you do not need to implement this entity class
yourself, but can let it be created automatically by a wizard of the NetBeans IDE. For this, a Java class

CHAPTER 41 NETBEANS SWING GUI BUILDER

449

library project is necessary, though. Create it with File ➤ New Project... ➤ Java ➤ Java Class Library. You
can then use the wizard in this project with File ➤ New File... ➤ Persistence ➤ Entity Classes From
Database for implementing the necessary entity class. In the first step, select the database connection
and after that the table PRODUCT. In the following step you deactivate the option for creating named
queries and JAXB annotations. However, a persistence unit should be created. On the last page of the
wizard, select java.util.List as Collection Type and deactivate the option Attributes for Regenerating
Tables, because you build on an already existing table. Then, you create the class Product with Finish.
This has getter and setter methods in addition to attributes which have JPA annotations. It will later be
necessary to implement a listener logic for propagating a change of a Product instance to the table. The
listeners have to be informed at all set methods with the firePropertyChange() method. (See
Listing 41-4.)

Listing 41-4. Entity Class for the Table PRODUCT with Change Listener Logic with Which Changes in the

Table Can Be Directly Shown

import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;
import javax.persistence.Basic;
import javax.persistence.Column;
...
@Entity
@Table(name = "PRODUCT")
public class Product implements Serializable {
 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic(optional = false)
 @Column(name = "ID")
 private Integer id;

 @Basic(optional = false)
 @Column(name = "TITLE")
 private String title;

 @Basic(optional = false)
 @Column(name = "ORDERID")
 private String orderid;

 @Basic(optional = false)
 @Column(name = "PRICE")
 private double price;

 private transient PropertyChangeSupport changeSupport = new PropertyChangeSupport(this);

 public Product() {
 }

 public Product(Integer id) {
 this.id = id;
 }

CHAPTER 41 NETBEANS SWING GUI BUILDER

450

 public Product(
 Integer id, String title, String orderid, double price) {
 this.id = id;
 this.title = title;
 this.orderid = orderid;
 this.price = price;
 }

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 Integer oldId = this.id;
 this.id = id;
 changeSupport.firePropertyChange("id", oldId, id);
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 String oldTitle = this.title;
 this.title = title;
 changeSupport.firePropertyChange("title", oldTitle, title);
 }

 public String getOrderid() {
 return orderid;
 }

 public void setOrderid(String orderid) {
 String oldOrderid = this.orderid;
 this.orderid = orderid;
 changeSupport.firePropertyChange("orderid", oldOrderid, orderid);
 }

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {
 double oldPrice = this.price;
 this.price = price;
 changeSupport.firePropertyChange("price", oldPrice, price);
 }

 public void addPropertyChangeListener(PropertyChangeListener listener) {
 changeSupport.addPropertyChangeListener(listener);
 }

CHAPTER 41 NETBEANS SWING GUI BUILDER

451

 public void removePropertyChangeListener(
 PropertyChangeListener listener) {
 changeSupport.removePropertyChangeListener(listener);
 }
}

The file persistence.xml was generated along with the entity class. The persistence unit is configured
by this file. So this is where you can edit the connection parameters of the database when necessary. The
name of the persistence unit is important; you will need it later to access the data. (See Listing 41-5.)

Listing 41-5. Configuration of the Persistence Unit in persistence.xml

<persistence ...>
 <persistence-unit name="MyEntitiesLibraryPU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.galileo.netbeans.myentities.Product</class>
 <properties>
 <property name="javax.persistence.jdbc.url"
 value="jdbc:derby://localhost:1527/ProductDatabase"/>
 <property name="javax.persistence.jdbc.password"
 value="password"/>
 <property name="javax.persistence.jdbc.driver"
 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="javax.persistence.jdbc.user"
 value="admin"/>
 </properties>
 </persistence-unit>
</persistence>

You can create the library project with Build. Then you come back to the NetBeans Platform. Create
an application with File ➤ New Project ➤ NetBeans Modules ➤ NetBeans Platform Application. For this
Platform application you have to include two additional modules. To do this, open the cluster java in
Properties ➤ Libraries and add the two modules Beans Binding integration and TopLink Essentials. After
that you can add a library wrapper module with the JAR file of the entity class which had been created
before. This module will be called My Entities.

You need two more library wrapper modules for the connection to the database and for saving the
objects. Add one for the database driver; this is the file derbyclient.jar which you find in the directory of
the Java DB installation. Call this module Java DB Driver. You need another library wrapper module for
EclipseLink as persistence provider. Add the two files eclipselink-2.2.0.jar and eclipselink-
javax.persistence-2.0.jar out of the directory java/modules/ext/eclipselink of the NetBeans IDE
installation to this module.

Now, there is just one more module missing: the actual application module. Call this My Module.
You have to define the following dependencies first, so the interaction between those different modules
can work:

• The module My Entities contains a dependency on the modules EclipseLink and
Java DB Driver.

• The module My Module contains a dependency on the module EclipseLink, My
Entities, and Beans Binding integration.

CHAPTER 41 NETBEANS SWING GUI BUILDER

452

So far, you have installed the application so you can now add a top component to the module My
Module with File ➤ New File ➤ Module Development ➤ Window. This top component should finally look
like Figure 41-8. However, before adding the table and the text fields, you need a data source to which
you can later bind the table.

To do this, open the context menu of the node Other Components in the Inspector window and then
select Add From Palette ➤ Java Persistence ➤ Entity Manager. Then add a Query and a Query Result
object out of the same category.

Figure 41-9. Adding and configuring data sources

Please keep the given order (it can be changed after adding over the context menu), because these
objects are based on each other. Consequently, the objects have to be created in this order. These
objects still have to be configured in the Properties window. Then select the referring object in the
Inspector window to be able to adapt the following features:

• You have to define the value for the persistenceUnit for the EntityManager object.
The name of the persistence unit had been determined by the wizard in the
persistence.xml file before (see Listing 41-5). Use this name.

• You define the JPA query for the parameter query for the Query object with which
the data is detected out of the database. For this example it is SELECT p FROM
Product p. Select the name of the already created entity manager, entityManager1,
for the parameter entityManager.

• For the List object (Query Result) select for the parameter query the query1 object
which had been created before. Then in the Properties window change to the Code
view; you can parameterize the list <Product> by indicating the Type Parameters.

Now, you can add a table, three labels, and text fields, as well as a button to the Form from the
Palette as shown in Figure 41-8. You now come to the part accomplished by the Beans Binding
Framework: filling the table (usually, you had to implement a data model first) and synchronously
changing data between tables and text fields.

Call the context menu of the table and select Bind ➤ elements. Choose the list object list1 which
had been created and parameterized before as Binding Source. Since you want to display all attributes
you can finish the dialog (unchanged) with OK. This way, a data model for the table is automatically
created, which you can adapt to your needs. To do so, call Table Contents in the context menu. In this
dialog you can set numerous things individually under Columns. Among others, you can change the title
or the order of separate columns. (See Figure 41-10.)

CHAPTER 41 NETBEANS SWING GUI BUILDER

453

Figure 41-10. Adapting the automatically created data model for a table

Thus, the data source and the table which will create the data are connected. You can already start
the application now and you will see that all the entries from the referring table are listed. Plus, you did
not have to write a single line of code yourself. The Beans Binding Framework does a lot of work for you,
including routine implementation tasks.

Bind Detail View to Table
You want to keep the data between the table and the text fields synchronous. If the entry is selected in
the table, its data will be displayed in the text fields. If you now edit a value in the text fields, the value
should also change in the table and in the data model. The other way around, if the table is changed, it
should be shown in the text fields, too.

Starting from the single fields of the detail view you bind the referring value of the selected entry out
of the table. To do this, call the context menu of the first text field, which will contain the title of the
product, and choose Bind ➤ text. You now use the table which is named in the example as jTable1 as

CHAPTER 41 NETBEANS SWING GUI BUILDER

454

Binding Source. Choose the desired attribute in the folder selectedElement as Binding Expression. (See
Figure 41-11.)

Figure 41-11. Binding text field to source

You can define the update features in the tab Advanced. This means with Always sync you can
determine that the changes are accepted in both directions. You can also determine at which event
(such as typing in text) the updating will take place.

You can now analogously repeat this step of binding text fields to a data source for all remaining text
fields. Then you can start the application. At the same time you can select table entries and edit them in
the detail view. Looking into the database or restarting the application, you will quickly recognize that
the changes have not been made persistent; you have to determine when the changes will be restored in
the database. You now add the first line of code to the application.

You need a transaction to put the changes into the database. You directly create such a transaction
in the constructor with the entity manager. To do this, change to the Source view and add the line in
Listing 41-6 to the constructor:

Listing 41-6. Starting a Transaction

public MyTopComponent() {
 ...
 entityManager1.getTransaction().begin();
}

Finally, you want to restore the changes in the database with the already added button, Save. This
means you close the transaction and then start a new transaction for the upcoming changes. An action
method for the actionPerformed event is directly registered by double-clicking the button. So now you
only need to implement the two lines shown in Listing 41-7 as the body of the method.

CHAPTER 41 NETBEANS SWING GUI BUILDER

455

Listing 41-7. Saving the Changes in the Database

private void jButton1ActionPerformed(ActionEvent evt) {
 entityManager1.getTransaction().commit();
 entityManager1.getTransaction().begin();
}

Binding Listener
You can register a listener on it to react on changes of the source or of the target of a binding. All
bindings that you applied with the GUI Builder are added to a BindingGroup. This binding group is
applied as a field in the top component, so you can register a listener on this BindingGroup instance.
Then the Binding that triggered the change as argument will be delivered. (See Listing 41-8.)

Listing 41-8. Registering a Listener for Changes of Bindings

private org.jdesktop.beansbinding.BindingGroup bindingGroup;
...
bindingGroup.addBindingListener(new AbstractBindingListener() {

 @Override
 public void targetChanged(Binding b, PropertyStateEvent evt) {
 binding.getName();
 }

 @Override
 public void sourceChanged(Binding b, PropertyStateEvent evt) {
 }
});

To be able to differentiate between different bindings you can give a name to a binding in the bind
dialog (see Figure 41-11) in the tab Advanced.

Validator
A validator can be used for checking the data inserted by the user. The desired limits for a value can be
checked, for example. You can create a validator class for the example application which was created
before. Then you can limit the order ID on 10 characters. Name the class OrderIDValidator and derive it
from the class Validator. Use String as type parameter. Then you have to implement the validate()
method so you can check the desired range of the value after. If the value is invalid you create a Result
instance with which you can deliver an error message. If the value is okay, you just send back null. (See
Listing 41-9.)

Listing 41-9. Implementation of a kalidator Class to Ensure Valid Values

import org.jdesktop.beansbinding.Validator;
import org.jdesktop.beansbinding.Validator.Result;

public class OrderIDValidator extends Validator<String> {

CHAPTER 41 NETBEANS SWING GUI BUILDER

456

 @Override
 public Result validate(String value) {
 if (value.length() > 10) {
 return new Result(null, "Max length of Order ID is 10");
 }
 return null;
 }
}

Now, you assign these validator classes to the binding. In order to do this, you first have to compile
the class. The easiest way to do this is via Compile in the context menu of the class in the project view.
After that, open the context menu of the node Other Components in the inspector window (the editor
must be in the Design view) and call Add From Palette ➤ Beans ➤ Choose Bean. Type in the complete
class name including the code name base in the dialog that appears. In this example, use
com.galileo.netbeans.module.OrderIDValidator. Thus, the validator is provided in the desired form and
you can assign it to the binding. For this purpose, open the bind dialog of the according text field via
Bind ➤ text. Switch to the Advanced tab. There, you can select the added instance (orderIDValidator1).

However, we did not think about what will happen if the entered value is invalid, yet. The Beans
Binding Framework cares about the fact that the invalid value is not applied. However, typically, you
want to respond to the user about it. You already generated a corresponding message in the validator
class. You register a BindingListener and implement the method syncFailed(), in order to omit an
invalid input and return the message (see the section Binding Listener). Check whether you are dealing
with a validator error and return the corresponding message. (See Listing 41-10.)

Listing 41-10. Reacting on an Invalid Change of Value

bindingGroup.addBindingListener(new AbstractBindingListener() {
 @Override
 public void syncFailed(Binding binding, SyncFailure fail) {
 if ((fail != null) && (fail.getType() == Binding.SyncFailureType.VALIDATION_FAILED)) {
 statusLabel.setText(fail.getValidationResult().getDescription());
 }
 }
});

Converter
It is possible to convert between types of data with a converter class. For example, it is possible to show
values as text in the GUI while they are saved as number in the database. This conversion occurs in both
directions. One converter class derives from the class Converter and doing so, decides the source and
target type of data by means of the type parameter. In Listing 41-11, you want to convert between a
number and a string.

Listing 41-11. Converter Class for Changing Different Types of Data

import org.jdesktop.beansbinding.Converter;

public class ProductCategoryConverter extends Converter<Integer, String> {

 @Override
 public String convertForward(Integer arg) {

CHAPTER 41 NETBEANS SWING GUI BUILDER

457

 String value = null;
 switch (arg) {
 case 1:
 value = "Category 1";
 break;
 case 2:
 value = "Category 2";
 break;
 }
 return value;
 }

 @Override
 public Integer convertReverse(String arg) {
 int value = 0;
 if ("Category 1".equals(arg)) {
 value = 1;
 } else if ("Category 2".equals(arg)) {
 value = 2;
 }
 return value;
 }
}

Adding a converter to a binding takes place the same way as with a validator (see the section
Validator).

Summary
With the Swing GUI Builder the NetBeans IDE provides the user with a powerful tool for implementing
user interfaces. You can also take advantage of the Swing GUI Builder when developing NetBeans
Platform applications. In this chapter, you learned about the basic functions of the GUI Builder, its
components, and the Layout Manager. Furthermore, you used the Beans Binding Framework and got to
know the support that the GUI Builder provides.

C H A P T E R 42

459

Testing NetBeans Platform
Applications

Two different kinds of tests can be identified for implementing and running tests with NetBeans
Platform applications: unit tests and functional tests. This chapter will address both kinds of tests and
the support NetBeans provides for them.

Unit Tests
Unit tests for NetBeans Platform applications are implemented based on the popular test framework
JUnit. NetBeans provides an extension of JUnit with the library NB JUnit. This library provides
numerous helper classes, which make testing classes and methods within the NetBeans Platform a lot
easier.

 Caution JUnit is no longer part of the NetBeans IDE. Now, at installation you will be asked whether you want to
install JUnit or not. The following description presumes that you have agreed to the installation. The JUnit module
is installed when starting the IDE the first time. Watch out: for this installation you need writing permission which
usually is not available in the standard program directory of Windows 7. It is the same for the Cobertura module,
which you will use in the section Checking Test Coverage. You can solve this problem by installing the IDE in
another directory (with writing permission).

First, I will describe the general process of creating and running tests by means of a simple class.
The subsequent sections will address how to successfully test special resources of a NetBeans Platform
application, such as services out of the Lookup or files out of the System Filesystem.

General Tests
Let’s assume the class Math, shown in Listing 42-1, is the first simple JUnit test class. You want to check
its methods for correctness by a unit test. You create this in a module of a NetBeans Platform
application.

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

460

Listing 42-1. Simple Class with Methods to Be Checked by a Unit Test

public class Math {
 public int add(int a, int b) {
 return a + b;
 }
 public int subtract(int a, int b) {
 return a - b;
 }
}

The NetBeans IDE provides various wizards for creating the basic structure of a unit test. In addition
to creating an empty test class, you can create a test for assigned classes, so tests can be created for all
methods. This saves a lot of time and work. You create a test class for the class to check Math the same
way. Call File ➤ New File ➤ JUnit ➤ Test for Existing Class. Select the desired class with Browse. (See
Figure 42-1.)

Figure 42-1. Creating test cases for an existing class automatically

As depicted in Figure 42-1 you can choose the methods for which a test will be created. There is a
distinction between Public, Protected, and Package Private methods. You can also determine whether a
Test Initializer and/or a Finalizer method will be created. By the option Default Method Bodies, the tests
are already implemented based on the signature of the method. You barely need to adapt these
implementations, depending on the complexity of the methods which are tested. So this option can save
a lot of work. After, press Finish to create the test class MathTest, which will be created in a new directory

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

461

test/unit/src. Furthermore, a dependency on the JUnit library is added to the application under Unit Test
Libraries. Thus you get the project structure shown in Figure 42-2.

Figure 42-2. Project structure with separate folders for test cases and with the necessary libraries

 Note If you want to add additional methods with the NetBeans wizard to your class after creating the test class,
you can create tests for those methods automatically. To do so, just execute the wizard of the referring class
again. Then the existing test class is extended with the test cases for the new methods.

Now let’s take a look at the created test class MathTest. You see at the beginning that in this simple
case no support by the NB JUnit module is necessary; only JUnit classes are used. Furthermore, you
recognize that since JUnit 4 the test class no longer has to derive from a special base class. Despite this,
the test cases (and some helper methods) are now marked with annotations. Using annotations you are
free to give names to the methods. (See Listing 42-2.)

Listing 42-2. Test Class MathTest for Checking the Methods of the Class Math

import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;

public class MathTest {

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

462

 public MathTest() {
 }
 @BeforeClass
 public static void setUpClass() throws Exception {
 }
 @AfterClass
 public static void tearDownClass() throws Exception {
 }
 @Before
 public void setUp() {
 }
 @After
 public void tearDown() {
 }

 @Test
 public void testAdd() {
 System.out.println("add");
 int a = 0;
 int b = 0;
 Math instance = new Math();
 int expResult = 0;
 int result = instance.add(a, b);
 assertEquals(expResult, result);
 // TODO review the generated test code.
 fail("The test case is a prototype.");
 }

 @Test
 public void testSubtract() {
 System.out.println("subtract");
 int a = 0;
 int b = 0;
 Math instance = new Math();
 int expResult = 0;
 int result = instance.subtract(a, b);
 assertEquals(expResult, result);
 // TODO review the generated test code.
 fail("The test case is a prototype.");
 }
}

Both methods marked with the annotations @Before and @After are automatically executed before
running each test of this class. So certain preconditions and resources can be determined and allocated
before running the tests. Afterward, they can eventually be released again. A new instance of the class is
created for running each single test of a class. This means the constructor is suitable to allocate
resources which are for all test cases of a class.

If you need a connection to a database for multiple tests, for example, it makes sense (for
performance reasons) to create the connection only once and then close it after finishing all referring
tests. For this purpose you can mark two methods with the annotations @BeforeClass and @AfterClass,
with which you can do the necessary preparatory work and rework. These methods have to be declared
as static, because they are called in before creating the class. Furthermore, this enforces the fact that

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

463

the resources (such as database connections) that are globally provided by those methods are static as
well. This way they are provided to all instances. An example is shown in Listing 42-3.

Listing 42-3. Providing and Opening Resources Before or After Doing All Tests

public class DatabaseTest {
 private static Connection conn;

 @BeforeClass
 public static void setUpClass() throws Exception {
 conn = DriverManager.getConnection("url");
 }

 @AfterClass
 public static void tearDownClass() throws Exception {
 conn.close();
 }

 @Test
 public void testAdd() throws Exception {
 Statement stmt = conn.createStatement();
 //...
 }

 @Test
 public void testRemove() throws Exception {
 Statement stmt = conn.createStatement();
 //...
 }
}

Let’s come back to the test class MathTest. Now you want to complete and then execute both tests
which so far are just an automatically created basic structure. First, you can delete the setUp and the
tearDown methods, because you do not need them in this case. After that you define useful parameters
with the referring expected return values for both tests. The class looks about like it does in Listing 42-4.

Listing 42-4. MathTest with Test Values and with Expected Result Values

import org.junit.Test;
import static junit.framework.Assert.*;
public class MathTest {

 @Test
 public void testAdd() {
 System.out.println("testAdd");
 int a = 3;
 int b = 4;
 Math instance = new Math();
 int expResult = 7;
 int result = instance.add(a, b);
 assertEquals(expResult, result);
 }

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

464

 @Test
 public void testSubtract() {
 System.out.println("testSubtract");
 int a = 5;
 int b = 3;
 Math instance = new Math();
 int expResult = 2;
 int result = instance.subtract(a, b);
 assertEquals(expResult, result);
 }
}

After filling both tests with reasonable values, you can now execute them. Choose Test All out of the
context menu of the Platform application project or choose Test out of the context menu of the desired
modules to execute the tests of all modules. Alternatively, you can also press Alt+F6 or call Run ➤ Test
Project. Then the tests of the projects that are selected in the project view are executed.

The NetBeans IDE provides the special Test Results window (Window ➤ Output ➤ Test Results) for a
good representation (see Figure 42-3). It is automatically opened when running the test. Outputs, which
are made within the tests on the standard output are displayed on the right side of the window. You can
set different filters with the toolbar on the left side. This way, you can, for example, display the tests with
errors only. Furthermore, you have the option to repeat the test either for all or only for the failed tests.

Figure 42-3. Overview of the results of the test

So far, no special support by the NB JUnit module is necessary for general tests. Using the JUnit
annotations makes the implementation especially easy and clear. Although you will test NetBeans
Platform–specific implementations next, you use the advantages of the NB JUnit module. But before you
can use it, you have to activate it. To do this, open the context menu of the Properties window of your
NetBeans Platform application project. Activate the module NB JUnit in the category Libraries in the
cluster harness. It is then possible to automatically add modules needed by this module with the
eventually displayed Resolve button. After that, you can add the NB JUnit module over the context menu
of the Unit Test Libraries node of your module project with Add Unit Test Dependency. Call the newly
added module Edit out of the context menu and activate the Include Dependencies Recursively option to
get the provided dependencies of these modules when testing (see Figure 42-4).

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

465

Figure 42-4. The dependencies of the NB JUnit module have to be included recursively.

Testing in the NetBeans Runtime Container Environment
The NB JUnit module enables you to run your tests in the NetBeans Runtime Container environment.
Functionalities such as the global Lookup are provided during the test, too, although this requires that
you run the tests for the whole NetBeans Platform application project (Test All).

Use the class NbModuleSuite for this. You can create a wrapper test which you deliver with the static
method suite(), based on a NbModuleSuite.Configuration object.

You see in Listing 42-5 that the test class derives from the class NbTestCase. This is necessary to be
able to add it to the Configuration object. You do not need the annotations anymore, which are no
longer taken into account. Instead, all tests must have the prefix test.

Listing 42-5. Run Tests in the NetBeans Runtime Container Environment.

import junit.framework.Test;
import org.netbeans.junit.NbTestCase;
import org.netbeans.junit.NbModuleSuite;

public class MathTest extends NbTestCase {

 public MathTest() {
 super("MathTest");
 }

 public static Test suite() {
 NbModuleSuite.Configuration config = NbModuleSuite.createConfiguration(MathTest.class);
 return NbModuleSuite.create(config);
 }

 public void testAdd() {
 ...
 }
}

Take care in case you have addtional test classes that contain annotations and which you did not
add to the suite() method in the wrapper test object. These tests are executed too, but they cannot
actually be executed successfully, because they are cancelled by the NetBeans Runtime Container

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

466

shutdown. Thus, it is recommended to add all tests to run to the wrapper to ensure that all tests are run
in the same environment. You can easily mark tests that will not be run with the annotation @Ignore.

You can add any number of test classes or just single tests through the Configuration object with
addTest(). Furthermore, you can define which modules (enableModules()) or which clusters
(clusters()) will be active. The platform cluster is active by default, though. Usually it makes sense for
module tests to avoid starting the user interface (this would only waste time) with gui(false) when
running a test. Calling these methods, make sure that you call the next method on the return value of the
preceding method since the methods of the NbModuleSuite.Configuration class each return a copy of the
instance with referringly changed values. So a call would look like this, for example:

NbModuleSuite.Configuration config = NbModuleSuite
 .createConfiguration(CalculatorTest.class)
 .addTest(MathTest.class)
 .enableModules(".*")
 .clusters(".*");

Lookup and Service Tests
Basically, you can realize tests for modules, which query the services through the global Lookup, as
described in the previous paragraph. However, then you must run the tests for the whole application. If
you want to test a single module, you can implement the so-called mock objects (placeholder objects) to
successfully run the module tests. You can do the same thing if a loosely coupled service provider is not
provided when developing or testing. The classes for mock objects are implemented as part of the test
classes and can then be added to the global Lookup. To do so, you have two options which will be
explored in the following scenario (see Listing 42-6, Listing 42-7, and Listing 42-8.).

The following assumes you have the module My Module which uses the service CalculatorService
(also defined in this example).

Listing 42-6. Class to Check Which Uses a Global Service

import org.openide.util.Lookup;
public class Calculator {
 public int add(int a, int b) {
 CalculatorService calc = Lookup.getDefault().lookup(CalculatorService.class);
 return calc.add(a, b);
 }
}

Listing 42-7. Service Interface

public interface CalculatorService {
 public int add(int a, int b);
}

The module My Module 2 provides a service provider for the CalculatorService.

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

467

Listing 42-8. Service Provider in a Separate Module

import com.galileo.netbeans.module.CalculatorService;
import org.openide.util.lookup.ServiceProvider;

@ServiceProvider(service=CalculatorService.class)
public class CalculatorImpl implements CalculatorService {
 @Override
 public int add(int a, int b) {
 return a + b;
 }
}

Now, you create the test class CalculatorTest for the class Calculator. If you run a test on the
module or on the whole application, later you will receive a NullPointerException, because the lookup()
call cannot deliver a service implementation. To solve this problem, you can now directly provide a
mock service in the test class. You can add this to the global Lookup by means of the class MockServices
out of the NB JUnit modle. Do this before running the test in a method that is marked with the
annotation @BeforeClass. In the example in Listing 42-9 this is the method setUpClass().

Listing 42-9. Test Class with Mock Service Implementation

import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;

public class CalculatorTest {

 @BeforeClass
 public static void setUpClass() throws Exception {
 MockServices.setServices(CalculatorMockInt.class);
 }

 @Test
 public void testAdd() {
 System.out.println("add");
 Calculator calc = new Calculator();
 assertEquals(calc.add(3, 5), 8);
 }

 public static final class CalculatorMockInt implements CalculatorService {
 @Override
 public int add(int a, int b) {
 return a + b;
 }
 }
}

You implement a mock class (it must be public) which you can publish in the global Lookup with
MockServices.setServices(). You implement it with the inner class CalculatorMockInt. This way, you
can now test independently of the other modules.

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

468

An alternative to using the MockServices class is implementing a mock class in a separate class or file
into the Unit Test package. You can then publish this as usual with the @ServiceProvider annotation. A
referring entry is applied in the directory build/test/unit/classes/META-INF/services before the test
execution. (See Listing 42-10.)

Listing 42-10. Implementation and Registration of a Mock System in a Separate File

import org.openide.util.lookup.ServiceProvider;

@ServiceProvider(service = CalculatorService.class)
public class CalculatorMockExt implements CalculatorService {
 @Override
 public int add(int a, int b) {
 return a + b;
 }
}

 Note When deleting the mock class or its @ServiceProvider annotation, the registration still exists in the
META-INF/services directory. Do a ‘clean’ before running a new test.

System Filesystem Tests
When running a test, modules can directly access the content of your layer file over the System
Filesystem (without further configuration of the tests). However, it is not possible to access the contents
of other modules. Anyway, the concerned components should preferably be tested isolated from their
environment when running unit tests. Now, the question arises as to how to provide the needed content
to a software module in the System Filesystem without having to change to layer.xml file itself?

The answer to this question is that your own Filesystem can be added to the System Filesystem
during runtime. You thus create the configuration (which is necessary for the software module to test) in
an XML file. You save it together with the test classes. You implement a Filesystem implementation there
that derives from MultiFileSystem. In the constructor you can then create an XMLFileSystem instance for
each XML file. You can then pass it to the MultiFileSystem that acts as proxy for all XMLFileSystem
instances. This Filesystem implementation is then made public via a @ServiceProvider annotation in the
global Lookup. Thus, the content of this Filesystem is added to the System Filesystem.

Listing 42-11 demonstrates the method described above with a simple example. You extend the
already known class Math with another method multiply(). This method reads its values out of the
System Filesystem.

Listing 42-11. The Method to Test Which Reads Its Values out of the System Filesystem

import org.openide.filesystems.FileObject;
import org.openide.filesystems.FileUtil;

public class Math {
 public int multiply(String aName, String bName) {

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

469

 FileObject file = FileUtil.getConfigFile("MyFolder/MyFile");

 int aVal = (int)file.getAttribute(aName);
 int bVal = (int)file.getAttribute(bName);
 return aVal * bVal;
 }
}

You create the configuration needed for this in an XML file (in the directory of the unit tests). (See
Listing 42-12.) The file is then called test.xml here.

Listing 42-12. Configuration That Will Be Available in the System Filesystem

<filesystem>
 <folder name="MyFolder">
 <file name="MyFile">
 <attr name="a" intvalue="2"/>
 <attr name="b" intvalue="3"/>
 </file>
 </folder>
</filesystem>

Depending on your needs, multiple XML files can be provided. You have to create an XMLFileSystem
instance for each file and add them all to a MultiFileSystem instance via the setDelegates() method.
For this purpose, you create the class TestFileSystem in the directory of the unit tests (see
Listing 42-13).

Listing 42-13. Filesystem Implementation That Adds Different XML Configurations to the System

Filesystem

import org.openide.filesystems.FileSystem;
import org.openide.filesystems.MultiFileSystem;
import org.openide.filesystems.XMLFileSystem;
import org.openide.util.Exceptions;
import org.openide.util.lookup.ServiceProvider;

@ServiceProvider(service=FileSystem.class)
public class TestFileSystem extends MultiFileSystem {
 public TestFileSystem() throws Exception {
 setDelegates(new XMLFileSystem(TestFileSystem.class.getResource("test.xml")));

 }
}

Via the @ServiceProvider annotation you ensure that the TestFileSystem class is instantiated and
added to the System Filesystem when starting. Thus, you can now successfully check the method
Math.multiply() for correctness via the test shown in Listing 42-14.

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

470

Listing 42-14. Testing the Method multiply() Which Gets Data from the System Filesystem

public class MathTest {
 @Test
 public void testMultiply() {
 System.out.println("testMultiply");
 Math instance = new Math();
 int expResult = 6;
 int result = instance.multiply("a", "b");
 assertEquals(expResult, result);
 }
}

You are now able to separately test software modules that read data from other modules via the
System Filesystem during runtime.

Checking Test Coverage
For software quality, it is important that (at best) every line of code is run through in a test. This is called
test coverage. For checking the test coverage, you can use the Cobertura project. Cobertura detects the
coverage and creates clear reports when running the test. In these reports, you can see the results in the
context of the source code for each class. First, you have to install the plugin Cobertura Module Test
Coverage via the Plugin Manager.

Creating this report is easy via an Ant target which is integrated into the module build script. Open
the folder Important Files in the project view and then extend the file Build Script so all available Ant
targets are displayed. For creating the reports, call Run Target in the context menu of the target coverage-
report.

The created report can be displayed in your browser via the Ant target display-coverage-report or
you can directly open the report in the directory build\test\unit\cobertura-report. (See Figure 42-5.)

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

471

Figure 42-5. Report about the test coverage of the module tests

Functional GUI Tests
For creating functional tests, NetBeans provides the module Jelly Tools Platform (based on Jemmy)
besides the already mentioned NB JUnit module. Jemmy itself is a library with which automated tests for
GUI applications can be created. It contains methods that enable actions, which a user can execute via
Swing or AWT components (such as insert text or press button), to be automated. Jemmy provides
numerous operator classes with which all Swing components can be accessed. Based on this, the Jelly
Tools Platform module implements operator classes for accessing special NetBeans Platform GUI
components such as the main application window, the Favorites, the Output window, or different
option panels.

Installing the Test Environment
Before creating a first test class, you have to install the test environment in a few simple steps. The
following assumes that you have already created and opened a NetBeans Platform application project
with at least one module within the NetBeans IDE.

First, create a folder in which the test classes are stored. The easiest way to do this is in the Files
window (Window ➤ Files). You just create the directory test/qa-functional/src in the corresponding
module directory via File ➤ New File ➤ Other ➤ Folder. (See Figure 42-6.)

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

472

Figure 42-6. Structure of the directory for functional test classes

Thus, the two new folders Functional Test Packages and Functional Test Libraries are displayed in
the Project View (after restarting the IDE). Before you can add the libraries necessary for implementing
and executing the functional tests to the folder Functional Test Libraries, you have to add the libraries to
the application itself. Thus, activate the whole cluster harness via Properties ➤ Libraries in the Platform
application project. The (eventually) missing modules can be automatically added with the button
Resolve.

Then you can add the following libraries from the context menu of the Functional Test Libraries
folder with Add Functional Test Depedency:

• JUnit

• Jelly Tools Platform

• Jemmy

• NB JUnit

You just have to ensure that the dependencies are included recursively for the NB JUnit module.
You can activate this option with Edit... in the context menu (see Figure 42-4). Now you have created the
necessary prerequesites and can implement a first test case in the next section.

Implementing a Test Case
This section will explain the basic approach of implementing functional GUI tests with a simple
example. A feature will be saved persistently in a window by pressing a button. Opening the application
or the window, the value will automatically be loaded into the appropriate text field. (See Figure 42-7.)

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

473

Figure 42-7. The functionality of the TopComponent MyWindow will be tested.

So, the window in the form of a top component class could be implemented as shown in
Listing 42-15.

Listing 42-15. The GUI Component to Be Tested and with Which a feature Will Be Saved or Loaded

import org.openide.windows.TopComponent;
import org.openide.awt.ActionID;
import org.openide.awt.ActionReference;
import org.openide.util.NbBundle;
import org.openide.util.NbBundle.Messages;
import org.openide.util.NbPreferences;

@TopComponent.Description(preferredID = "MyTopComponent",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(mode = "editor",
 openAtStartup = true)
@ActionID(category = "Window",
 id = "com.galileo.netbeans.module.MyTopComponent")
@ActionReference(path = "Menu/Window")
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_MyAction",
 preferredID = "MyTopComponent")
@Messages({"CTL_MyTopComponent=MyWindow",
 "CTL_MyAction=MyWindow"})
public final class MyTopComponent extends TopComponent {

 private javax.swing.JButton okButton;
 private javax.swing.JTextField propValue;

 public MyTopComponent() {
 initComponents();
 setName(Bundle.CTL_MyTopComponent());
 }

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

474

 ...

 private void okButtonActionPerformed(ActionEvent evt) {
 NbPreferences.forModule(MyTopComponent.class).put("propKey", propValue.getText());
 }

 @Override
 public void componentOpened() {
 propValue.setText(NbPreferences.forModule(
 MyTopComponent.class).get("propKey", "default"));
 }
}

Now, you want to create a test case for this functionality. Create the class MyTopComponentTest with
File ➤ New File ➤ Java ➤ Java Class under Functional Test Packages. You derive functional tests from the
class JellyTestCase. As in the section Testing in the NetBeans Runtime Container Environment you
provide a wrapper test instance that ensures that all tests run within the NetBeans Runtime Container
environment. You provide it by the method suite() so you can determine which clusters and modules
will be active. You can determine this via a Configuration object. You can also influence which tests are
run. (See Listing 42-16.)

Listing 42-16. Test Class to Test the Functionality of MyTopComponent

import junit.framework.Test;
import org.netbeans.jellytools.JellyTestCase;
import org.netbeans.jellytools.MainWindowOperator;
import org.netbeans.jellytools.TopComponentOperator;
import org.netbeans.jemmy.operators.JButtonOperator;
import org.netbeans.jemmy.operators.JTextFieldOperator;
import org.netbeans.junit.NbModuleSuite;

public class MyTopComponentTest extends JellyTestCase {

 private static final String EXPECTED_RESULT = "testValue";

 public MyTopComponentTest(String name) {
 super(name);
 }

 public static Test suite() {
 return NbModuleSuite.allModules(MyTopComponentTest.class,
 "testSetValue", "testGetValue");
 }

 public void testSetValue() {
 TopComponentOperator op = new TopComponentOperator("MyWindow");
 JTextFieldOperator text = new JTextFieldOperator(op, 0);
 text.setText(EXPECTED_RESULT);
 JButtonOperator button = new JButtonOperator(op, "OK");
 button.press();

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

475

 op.close();
 }

 public void testGetValue() {
 MainWindowOperator main = MainWindowOperator.getDefault();
 main.menuBar().pushMenu("Window|MyWindow");
 TopComponentOperator op = new TopComponentOperator("MyWindow");
 JTextFieldOperator text = new JTextFieldOperator(op, 0);
 String result = text.getText();
 assertEquals(EXPECTED_RESULT, result);
 }
}

In the test class MyTopComponentTest depicted in Listing 42-16 you use the method
NbModuleSuite.allModules() to create a wrapper test instance. A configuration is automatically used, in
which all clusters and modules of the application are active. Additionally, you implement two tests by
testSetValue() and testGetValue() (all methods with the prefix test are executed as test). By the
method allModules() you indicated the two test cases to ensure the order of the execution.

Over an instance of the type TopComponentOperator from the Jelly Tools Platform module you get
access on a TopComponent by name (see also Listing 42-16). You create a JTextFieldOperator instance in
order to be able to input something into the text field. As a container you transfer the
TopComponentOperator. You can set a test value and save the settings via the OK button. The settings can
be made via the class JButtonOperator. Finally, you close the window by the close() method.

In a second test, you must first open the window in the main menu of the application. You can
access it with the MainWindowOperator. The MainWindowOperator is able to call a menu entry by an
indicated path. Bear in mind that, analogous to the previous test, you get access to the text field. This
time you read the text and compare it with the previously set value.

A selection of the available operator classes of the Jelly Tools Platform module is listed in Table 42-1.
The Jemmy library provides an operator class for all standard Swing and AWT components. Developing
individual functional test cases, it is surely helpful to take a look at the corresponding API
documentation.

Table 42-1. Selection of Some Important Operator Classes for Implementing Functional GUI Tests

Operator Class Selection of Methods

FavoritesOperator invoke()

tree()

HelpOperator invoke()

back()

next()

MainWindowOperator getDefault()

get- / setStatusText()

getToolbar()

menuBar()

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

476

NbDialogOperator ok() / yes()

cancel() / no()

OptionsOperator invoke()

selectMiscellaneous()

selectOption

treeTable()

OutputOperator invoke()

getText()

getOutputTab()

PluginsOperator invoke()

install()

addPlugin()

update()

TopComponentOperator attachTo()

close()

WizardOperator back()

next()

finish()

Checking Test Coverage
A report about the test coverage can be created by Cobertura, even for the functional tests (see also the
section Checking Test Coverage). For this purpose, use the Ant target coverage-report-qa-functional. After
executing the tests and creating the reports, you can call the Ant target from the directory build\test\qa-
functional\cobertura-report.

Configuration in Case of Maven Projects
Implementing tests for Maven-based NetBeans Platform applications takes place the same way as
described in the sections Unit Tests and Functional GUI Tests, the only differences concern the
configuration, which we’ll look at next.

Module Tests
Running software tests is an integral part of the build lifecycle in Maven. So, the build phase test is
executed after compile before the actual artifact is created by package. These tests are run by the Maven

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

477

Surefire Plugin. This plugin automatically runs the test cases located under src/test/java. By a
dependency entry it can be defined which JUnit version is used. Thus, applying a Maven-based
NetBeans Platform application project the entry (depicted in Listing 42-17) is already added in the
parent POM file.

Listing 42-17. Determining the JUnit Version

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.2</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Writing this entry into the parent POM file, it is automatically provided to all modules. This means
no further configuration is necessary.

Module tests can be created by a wizard within the NetBeans IDE, as described in the section
General Tests, too. If you want to use the JUnit extension implementing your test cases, add the entry
shown in Listing 42-18 to the POM file of the corresponding module or to the parent POM file, if the
remaining modules also use this module.

Listing 42-18. Adding a Dependency to the NB JUnit Module

<dependency>
 <groupId>org.netbeans.api</groupId>
 <artifactId>org-netbeans-modules-nbjunit</artifactId>
 <version>${netbeans.version}</version>
 <scope>test</scope>
</dependency>

Functional Tests
Functional GUI tests can also be implemented and run in conjunction with the Jelly Tools Platform
module in Maven-based NetBeans Platform applications. For this purpose, add a dependency on the
Jelly Tools Platform module as shown in Listing 42-19 to the application module (the module with the
nbm-application packaging type; see Chapter 37). Add a dependency on the NB JUnit module. Modules
needed by these two modules (that is, the transitive dependencies) are automatically added to the class
path by Maven.

Listing 42-19. Adding Dependencies for Functional Tests

<dependencies>
 <dependency>
 <groupId>org.netbeans.api</groupId>
 <artifactId>org-netbeans-modules-nbjunit</artifactId>
 <version>${netbeans.version}</version>
 <scope>test</scope>
 </dependency>

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

478

 <dependency>
 <groupId>org.netbeans.api</groupId>
 <artifactId>org-netbeans-modules-jellytools-platform</artifactId>
 <version>${netbeans.version}</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Furthermore, you must configure the Maven Surefire plugin by the property cluster.path.final.
Thus, you define your own and the NetBeans Platform cluster. You also do this in the POM file of the
application project as depicted in Listing 42-20.

Listing 42-20. Configuration of the Surefire Plugin for Running Functional Tests

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.7.1</version>
 <configuration>
 <systemProperties>
 <property>
 <name>cluster.path.final</name>
 <value>${project.build.directory}/
 ${brandingToken}/${brandingToken}:
 ${project.build.directory}/
 ${brandingToken}/platform</value>
 </property>
 </systemProperties>
 </configuration>
 </plugin>
 </plugins>
</build>

Thus, you can now implement functional GUI tests even in Maven-based projects, as already
described in the section Implementing a Test Case. Just store it in the directory of the module tests under
src/test/java.

Test Coverage
Cobertura also creates a report about the test coverage for Maven-based NetBeans Platform projects.
Adding the following entry to the POM file, you use the Maven Cobertura Plugin, as shown in
Listing 42-21.

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

479

Listing 42-21. Adding the Coburtera Plugin to the POM file

<reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <version>2.4</version>
 </plugin>
 </plugins>
</reporting>

You can start the report generation from the command line (or another IDE) by the following call:

mvn cobertura:cobertura

Then, the report is stored in the directory target\site\cobertura in HTML format. Moreover, a helpful
plugin is provided for the NetBeans IDE. You can install the Maven Test Coverage plugin with the Plugin
Manager and thus, the report can be displayed with the context menu of a module via Code Coverage ➤
Show Report. (See Figure 42-8.)

Figure 42-8. Integrated report about the test cover within the NetBeans IDE

You can run the tests and execute the following report generation with Run All Tests. You can
directly see which lines of the corrresponding class are run through a test and which are not, and open
single files in the overview (depicted in Figure 42-9).

CHAPTER 42 TESTING NETBEANS PLATFORM APPLICATIONS

480

Figure 42-9. Detailed result of the analysis of the test cover

Summary
Doing software testing is an integral part of software development models. In this chapter you learned
more about how to easily and efficiently test NetBeans Platform applications. In the first part of this
chapter we did module tests with the support of JUnit. In the second part you learned how to test the
GUI of a NetBeans Platform application. This is done with the support of the Jelly Tools Platform.

C H A P T E R 43

481

Debugging with the NetBeans IDE

This chapter is about the functionality of the NetBeans debugging environment. In this environment you
can debug your NetBeans Platform application using numerous supporting info windows and other
useful features.

Debugging Window
The NetBeans debugger uses a series of helpful windows to make debugging as efficient and transparent
as possible. In the following sections you will learn more about those windows in detail. The Debugging
window itself is a combination of different functions. Dedicated windows are provided for each
function. Thus, you have an overview of all threads and, when reaching a breakpoint, you have an
overview of the complete call stack, too. A symbol (on the right side) shows you which threads are
currently paused. You can stop or resume certain threads by means of this symbol. You can also
influence all threads at once with the context menu. By double-clicking an entry of the call stack you can
directly jump in the source file to the position of the corresponding method. (See Figure 43-1.)

Figure 43-1. Debugging window with all current threads and with the current call hierarchy

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

482

Breakpoints
The so-called Breakpoints are the base for debugging an application. With these breakpoints you define
certain positions in the source code where the execution of the application should be stopped.The
support of the IDE offers certain possibilities. For example, you can take a closer look at the current
values of variables or you can look at the return value of a method in closer detail at the place where the
application was stopped. This way you can get information about erratic behavior of the software.

Different types of breakpoints can be distinguished depending on the position in the source code or
on the event. The types of breakpoints provided in the NetBeans IDE are listed in Table 43-1.

Table 43-1. Types of Breakpoints and Their Triggering Events

Type of Breakpoint Stops on…

Class Class Load

Class Unload

Class Load or Unload

Exception Caught

Uncaught

Caught or Uncaught

Field Field Access

Field Modification

Field Access or Modification

Line Reaching the line

Method Method Entry

Method Exit

Method Entry or Exit

Thread Thread Start

Thread Death

Thread Start or Death

Apply breakpoints either by clicking the line number (left margin of the source code editor), via the

menu with Debug ➤ New Breakpoint or with the button in the toolbar of the Breakpoints window
(see Figure 43-2).

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

483

Figure 43-2. Overview of all breakpoints in the breakpoint window

All set breakpoints are displayed in the Breakpoints window. For the purpose of clarity, you can also
arrange them in groups. You can classify the breakpoints as either user-specific (Custom Groups) or you

can group them by default using the button (left margin of the Breakpoints window). The following
standard groups are available:

• Programming language: Language

• Type of the breakpoint: Type

• Project: Project

• Files: Files

• Debug sessions: Debug Session

• Subgroups: Nested

Call the context menu of the breakpoint to assign a user-specific group or to assign a breakpoint to
an existing group. With Move Into Group... you can either directly assign the breakpoint to a group or
you can create a new group with New. As shown in Figure 43-2, you can specifically activate or
deactivate separate breakpoints or groups of breakpoints. The additionally displayed green arrow shows
you at which breakpoint your application is paused at the moment. Breakpoints can also be configured
so that the application is only paused under certain conditions. Thus, for all types of breakpoints, you
can determine that the application is just paused after a certain amount of runs. So you can pause the
application, for example, when the breakpoint on one variable is run for the tenth time.

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

484

Figure 43-3. Configuring breakpoints individually

Additionally, you can define which classes should be excluded for the breakpoint types Class and
Exception. For the remaining types, you can define any conditions when the breakpoint will be valid by a
Boolean expression. By default when reaching a breakpoint, the currently executing thread is paused.
However, you can also configure a breakpoint so that either all threads or none is paused. In the latter
case, the application just resumes.

Variables
The NetBeans IDE provides different windows and tools in order to check the variables when reaching a
breakpoint. In the variables window (Window ➤ Debugging ➤ Variables) all variables of the current
context are displayed (see Figure 43-4). This way, you can observe the values of the instance variables,
the local variables, and the eventually transferred parameters. You can also look at the values of separate
variables directly in the editor by pointing to the variable with your mouse.

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

485

Figure 43-4. Overview of variables

By so-called watches you can also observe variables outside the context of the current breakpoint.
You can add a new watch entry by means of the toolbar on the left side of the Variables window.
Additionally, you can just select variables in the source code editor and then add them via
drag-and-drop so you can concretely and clearly track the values of certain variables. As an alternative to
representing the watches in the Variables window you can use the separate Watches window which you
find under Window ➤ Debugging ➤ Watches.

Remote Debugging
The easiest way is to start your application directly from the NetBeans IDE in the debug mode. However,
the NetBeans IDE also supports debugging applications that had been started outside the NetBeans IDE.
For this purpose, it is necessary that you start the application in the debug mode. In connection with
this, some parameters must be specified so the NetBeans IDE can successfully connect to the
application via the Java Debug Wire Protocol (JDWP). Remote debugging parameters are listed in
Table 43-2.

Table 43-2. Remote Debugging Parameters

Parameter Description

-Xdebug Activates the debug mode of the application.

-Xrunjdwp Loads the reference implementation of the JDWP that
facilitates the remote debugging.

transport Defines the transport channel for JDWP. A connection is
established via sockets by dt_socket. Alternatively you can use a
shared memory. You indicate this by dt_shmem.

server y: Application obeys to a connection at defined address.

n: Application tries to connect a debugger via the indicated

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

486

connection.

address Indicates a port which enables the communication between
debugger and application.

suspend n: Application starts immediately

y: Application starts only when a debugger has been connected.

Start your application, for example, by the following parameters, to debug them by means of the

NetBeans IDE:

-Xdebug -Xrunjdwp: transport=dt_socket,server=y,address=65535,suspend=n

To debug an externally started application call Debug ➤ Attach Debugger. Select the Java Debugger
(JPDA) and use SocketAttach as connector. Additionally, you indicate the host’s name on which the
application runs, the port number on which the application accepts requests, as well as a timeout.

Press OK after doing the settings as shown in Figure 43-5 to directly establish a connection.

Figure 43-5. Connecting remote debugger with application

Controlling Debugging
The NetBeans IDE provides different actions with which you can quickly detect the concerning points of
code for debugging most efficiently. The following list provides a good overview of those actions:

• Debug Main Project (Ctrl + F5): Starts the main project (in the debug mode)
that is currently opened in the IDE. Only when the debugging is started are the
following actions available.

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

487

• Step Over (F8): With it, the complete current code line is executed without
descending in eventually existing calls.

• Step Over Expression (Shift + F8): With this command you can evaluate
expressions, which consist of multiple method calls, in detail. In the Variables
window, the passed values and the return value are displayed as history for each
single method call (see Figure 43-4). If an expression does not contain a further
method call, the action behaves like Step Over.

• Step Into (F7): With this command a code line is executed. If this code line
contains method calls for which the source code exists, you can descend into the
separate calls by this action. If multiple calls exist, you can directly descend into
the corresponding method call by one click.

• Step Into Next Method (Shift + F7): Similar to the Step Into action. However,
with this one descends directly into the next method of the current line.

• Step Out (Ctrl + F7): Executes a line. If it is part of a method, all remaining lines
are executed and the debugger jumps to the called position.

• Run to Cursor (F4): Executes all lines up to that line in which the cursor
currently is.

• Continue (F5): With this action you can resume a paused thread by a
breakpoint. The application is executed up to the eventually existing next
breakpoint.

• Pause: With this action you can pause all threads at once.

• Finish Debugger Session (Shift + F5): This action finishes the current debugger
session and thus the application, too, if it had been started out of the IDE.

Call Stack
If your application has been stopped at a breakpoint you can look at the complete call hierarchy up to
the current line via the Call Stack window (Window ➤ Debugging ➤ Call Stack), as shown in Figure 43-6.
Double-clicking an entry, it jumps directly to the called position in the editor. That way you can check
the variables concerning the called methods.

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

488

Figure 43-6. Call Stack window for tracking the call hierarchy

To jump into the methods of Java and the NetBeans Platform, the source code must be present. You
can see which source directories are available to the debugger in the Sources window (Window ➤
Debugging ➤ Sources), as shown in Figure 43-7. This is where you can also add further directories via the
context menu by Add Source Root. Get the source code of the NetBeans Platform as a separate ZIP file on
the download page at http://netbeans.org.

Figure 43-7. Sources window with all source directories that are available when debugging

Heap Walking
With the heap walking functionality the NetBeans IDE provides a substantial tool for tracking memory
leaks. It is possible to display an overview of all current instances of your application in the Loaded
Classes window, as shown in Figure 43-8. To find the desired instance out of the many instances, you
can filter for names or subclasses. If needed, you can also filter instances using a regular expression.

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

489

Figure 43-8. Loaded Classes window for displaying the amount of all current instances grouped in classes

You can take an individual look at the instances of a certain class by the context menu of an entry
with Show in Instances View (see Figure 43-9). Doing so, you can look at the respective values of a chosen
instance. You can select an instance on the left. Corresponding references are displayed, as well.

Figure 43-9. Instances window for displaying all current instances of a certain class

CHAPTER 43 DEBUGGING WITH THE NETBEANS IDE

490

Summary
Errors and potential problems within an application can be quickly tracked with an efficiently designed
debugging environment. You have such an environment at hand: the NetBeans IDE. In this chapter you
got to know the NetBeans Debugging features and how you can use them for NetBeans Platform
application debugging.

PART 8

Play & More: Developing
an MP3-Manager—An
Example of a NetBeans
Platform Application

C H A P T E R 44

493

Sample Project: MP3 Manager

The purpose of this chapter is to demonstrate the design and the implementation of a completely
executable application, playing MP3 files on the NetBeans Platform. Of course, this application will be as
flexible and modular as possible. Therefore, it will reuse many of the previously implemented and
discussed advantages and features of the NetBeans Platform.

This chapter is useful even if you have not read all the previous chapters, as well as if you are trying
to dive directly into the NetBeans Platform world. Where more detailed knowledge is required , I will
refer you to chapters that deal with the subject in greater detail. The following pages will cover only the
most important parts of the implementation. Like all the other examples in this book, this example can
be downloaded as a complete NetBeans project from the Source Code/Download area for this book on
the Apress web site (www.apress.com).

Design
Essentially, your application should be able to play MP3 files, manage those files in playlists, and display
the relevant ID3 information. Furthermore, you want to enable simple editing and addition of ID3
information via the application. Use the Favorites module of the NetBeans Platform as an MP3 library.
Using the Palette module, you could manage entire MP3 albums, for example. You could also use the
Output module to give feedback to the user while processing ID3 jobs. The great advantage of the
application is its easy extensibility, due to the module-based architecture of the NetBeans Platform.
However, a well-designed architecture and application structure is also required, so you must think
about the functionalities you want to provide as well as the granularity, meaning you must think about
how many modules are required to do the job in advance. To provide proper interfaces and extension
points, you also have to think about where and how the application needs to be most extensible. You
then create the necessary interfaces using the appropriate interfaces and extension points.

In Figure 44-1 you see the structure of the application containing the NetBeans Platform and also
the underlying Java Platform. The actual application part, which is marked in Figure 44-1 with MP3
Manager, can be roughly divided into three layers:

• The lowest layer contains modules which will be integral parts of the application,
containing graphical user-interfaces such as a navigator list, an implementation of
the Java Sound SPI for MP3 files, and the database system Java DB. You want to
use Java DB for different purposes within the application.

• In a middleware layer you encapsulate service interfaces. This layer facilitates
decoupling of the application components, because these components no longer
directly depend on each other’s implementation, but in most cases only on the
provided interfaces.

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

494

• The third layer, based on the second, implements the application’s components,
providing actual functionality using the independent modules.

All modules and their respective responsibilities are listed in the following (later, you will create and
implement some of them, step by step):

• Core: In this module, important and integral components of the application
(which are mandatory for using the application) could be provided.

• Core UI: You encapsulate additional user interfaces in this module.

• JMF-Plugin: In this module, you encapsulate the Java Media Framework and the
MP3 implementation of the Java Sound SPI, which is provided by Sun in the form
of a JAR archive. The Java Sound SPI is required for playing MP3-coded audio
data.

• Java DB: With this module, you integrate the database system Java DB.

• Services: You define service interfaces in this module, so the services provided by
the application can be expanded dynamically.

• Player : This module provides an MP3 player with GUI.

• Playlist: With this module, MP3 files can be managed in different lists and thus be
provided to the player.

• ID3 API : Contains an API for reading and writing the ID3 information of MP3 files.

• Favorites Branding : Adapts the menu entries of the Favorites module.

• Properties Branding: Adapts the menu entries of the Properties module.

• Database Searcher: This is a service provider with which you can search for MP3
files in a database.

• Filesystem Searcher: This is a service provider with which you can search for MP3
files on the hard disk drive.

• Searcher UI: This module provides a user interface for using the service provider
searching MP3s.

• Indexer: This module automatically indicates MP3 files that are located on the
hard disk drive. With it MP3 files can be found quickly using different criteria.

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

495

Figure 44-1. Partitioning of application components into modules

Creating a NetBeans Platform Application
The base of each NetBeans rich client application is a NetBeans Platform Application project. This
project represents the application as a whole and contains the separate modules. Application branding
(meaning naming of the application, splash screen, etc.) also occurs via the NetBeans Platform
Application project. The NetBeans IDE provides a wizard for creating such a project. You can call this
wizard via File ➤ New Project. Then, select the project type NetBeans Platform Application under
NetBeans Modules. Press Next to get to the next page where you can enter a project name. You choose
MP3 Manager this time. By clicking Finish, the Platform application is created. You can specifically
adapt the appearance of your application to the product in the branding dialog which you can call via
Branding… in the context menu of the Platform application. There, you can also adapt the title, different
icons, and the splash screen, among other things.

So now that you have created the basis for your application, you can go on to the separate modules,
meaning the application’s components.

Support for MP3
To support playing MP3 files in your player module, use Java Media Frameworks (JMF) and an MP3
plugin. The MP3 Plugin is an implementation of the Java Sound API (which is part of the Java Platform)
for MP3 files. Basically, this plugin would be sufficient for playing MP3s, but with the assistance of the

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

496

JMF implementation it is much easier. You create a library wrapper module for the two components, the
JMF and the MP3 plugin, in order to integrate those two libraries into your application.

Creating the JMF Module
Download the JMF as a cross-platform edition as well as the MP3 plugin from
http://www.oracle.com/technetwork/java/javase/tech. (You will also find both components in the
Source Code/Download area for this book on the Apress web site at www.apress.com.) Copy both the JAR
archive lib/jmf.jar from the JMF distribution, and lib/ext/mp3plugin.jar from the MP3 plugin
distribution, into a directory. You can add both to a module afterwards. Call File ➤ New Project... ➤
NetBeans Modules ➤ Library Wrapper Module. Add both JAR archives which you copied in a directory
(hold the Ctrl key, to select both archives) with Browse. Enter JMF Plugin as project name on the next
page of the wizard and choose the NetBeans Platform application that had been created. Determine the
Code Name Base of the modules via javax.media on the following page. Finally, press Finish, so the
wrapper module is created and added to the MP3 manager.

Registering the MP3 Plugin
Bear in mind that the MP3 plugin is not immediately provided to the JMF; you must register this plugin
at the PlugInManager of the JMF so it can be used. Pass the task to a Module Installer (you can find more
about this in Chapter 3) in order to ensure that the plugin is always registered. The module installer is
executed when loading the JMF plugin. Create the module installer via File ➤ New File ➤ Module
Development ➤ Installer / Activator. Press Finish in the dialog that appears to create the installer. You
implement the necessary registration for the PlugInManager in the restored() method. You must
indicate the plugin’s class, the input and output formats, and the plugin’s type. Of course, in this case it
is a codec plugin. Next, insert the following lines as shown in Listing 44-1.

Listing 44-1. Registering the MP3 Plugin at the JMF Plugin Manager During Startup

package javax.media;
import javax.media.format.AudioFormat;
import org.openide.modules.ModuleInstall;

public class Installer extends ModuleInstall {
 public void restored() {
 Format input1 = new AudioFormat(AudioFormat.MPEGLAYER3);
 Format input2 = new AudioFormat(AudioFormat.MPEG);
 Format output = new AudioFormat(AudioFormat.LINEAR);
 PlugInManager.addPlugIn(
 "com.sun.media.codec.audio.mp3.JavaDecoder",
 new Format[]{input1, input2},
 new Format[]{output},
 PlugInManager.CODEC);
 }
}

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

497

MP3 File Type
Another important base for easy-to-use and professional management of MP3 files within your
application is a so-called MP3 file type. A file type is a concept of the NetBeans Platform which is used to
manage files of a particular type. It consists of three main parts. First, there is a FileObject, which
basically represents a wrapper for a File. Thus, it represents the concrete physical MP3 file. Based on
this, there is a DataObject, which extends the FileObject by properties and functionalities in a flexible
manner. The third component is a Node object, which is used to graphically represent a DataObject at the
user interface that includes the ability to accept actions. More information related to this can be found
in the Chapters 7 and 12.

Normally, the MP3 file type belongs to the core functionality of your MP3 manager, which means
you could manage the MP3 file type in the Core module. For more flexibility and to avoid cyclic
dependencies, however, you should create a separate module for the MP3 file type. To do this, call File ➤
New Project... ➤ NetBeans Modules ➤ Module. Assign File Type as name and
com.hboeck.mp3manager.filetype as code name base. You can leave the remaining values. Clicking the
Finish button closes the wizard and creates the module.

The components of a file type are created completely by the file type wizard which in turn is
provided by the IDE. Call this wizard via File ➤ New File ➤ Module Development ➤ File Type. You use
audio/mpeg as MIME type for MP3s, and of course, assign mp3 for the extension. On the next page, you
enter Mp3 as the prefix for the class to create, and you can select an icon for this file type. Now all the
required information is collected, and the MP3 file type can be created by clicking Finish.

The wizard registers a data object factory for the MP3 MIME type which is responsible for loading an
Mp3DataObject. (See Listing 44-2.)

Listing 44-2. Each Data Object Factory Is Responsible for a Certain File Type and Is Served by the NetBeans

Platform. This Is Why It Must Be Registered.

<folder name="Loaders">
 <folder name="audio">
 <folder name="mpeg">
 <folder name="Factories">
 <file name="Mp3DataLoader.instance">
 <attr name="SystemFileSystem.icon"
 urlvalue="nbresloc:/com/hboeck/mp3manager/filetype/mp3.png"/>
 <attr name="dataObjectClass"
 stringvalue="com.hboeck.mp3manager.filetype.Mp3DataObject"/>
 <attr name="instanceCreate"
 methodvalue="org.openide.loaders.DataLoaderPool.factory"/>
 <attr name="mimeType" stringvalue="audio/mpeg"/>
 </file>
 </folder>
 </folder>
 </folder>
</folder>

This factory creates an Mp3DataObject for each MP3 FileObject, which consists of the basic structure
shown in Listing 44-3.

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

498

Listing 44-3. Implement the Logic of an MP3 File via the Mp3DataObject Class.

import java.io.IOException;
import org.openide.filesystems.FileObject;
import org.openide.loaders.DataNode;
import org.openide.loaders.DataObjectExistsException;
import org.openide.loaders.MultiDataObject;
import org.openide.loaders.MultiFileLoader;
import org.openide.nodes.Node;
import org.openide.nodes.Children;
import org.openide.util.Lookup;

public class Mp3DataObject extends MultiDataObject {
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 }

 @Override
 protected Node createNodeDelegate() {
 return new DataNode(this, Children.LEAF, getLookup());
 }

 @Override
 public Lookup getLookup() {
 return getCookieSet().getLookup();
 }
}

This class’s task is to assign a common FileObject with logic. Furthermore, the Mp3DataObject
delivers a node to you. By this node, the MP3 file can be simply and comfortably displayed in different
views, such as the Favorites module or, for example, in a playlist. You implement such a playlist later in
this chapter. By default, just the DataNode class is used. In the following section you want to equip the
node with special feature and then create a special node class that derives from DataNode.

 Note When implementing the first module, which uses the MP3 file type and therefore must define a
dependency on the file type, you will see that this is not possible. The reason for this is that all packages of a
module are not public, by default. This means, you must explicitly define which packages can be accessed from
outside. You define this in the Properties of a module under API Versioning. The module is only shown in the list if
at least one package is defined as public and contains modules that another module depends on.

ID3 Support
Inside an MP3 file, information about the file can be saved in an ID3 tag, in which you must distinguish
between two different versions. The ID3v1 tag consists of a fixed number of fields (such as number,

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

499

artist, and title), which each has a fixed size. The most important information, at least, can be stored in
the file with that tag. The ID3v2 tag introduces a much more flexible concept. A much greater number of
standardized fields are defined and furthermore, multiple customized fields can be added (a field is
referred to as frame, as well). Nonetheless, the tag can also be read by applications that do not know
about or interpret this field. The frames of an ID3v2 tag may vary in length. Also, a frame will only exist in
a file if it is required, which means there are no empty frames.

ID3 API
Of course, you will reuse the information stored in this manner in your application. Therefore, you need
an API that adequately supports retrieval and storage of ID3 data, according to the specification. On the
Internet you will find a series of such ID3 APIs for free. Most of them are reasonably useful. For easy
handling and simple integration, I started implementing my own ID3 APIs, though. Doing so, I
consciously avoided the assistance of NetBeans APIs, in order to being able to use it in other
applications, too. Although this library is still under development (only the editing of ID3v1 tags is
possible at the moment), it is sufficient for this example, which merely demonstrates advantages and
strengths of the NetBeans Platform. Of course, you are free to use another library. If you do, however,
you must adapt resulting source locations to the selected API. As with the JMF libraries, you integrate the
ID3 library using a library wrapper module. You can create such a module by clicking File ➤ New
Project... and NetBeans Modules ➤ Library Wrapper Module. On the wizard’s first page, select the library
named com-hboeck-mp3manager-id3.jar (which can also be downloaded from the Source
Code/Download area for this book on the Apress web site). Name the module ID3 API and add it to the
MP3 manager. All other fields can be left with their default values.

You must define a dependency to the ID3 module in order to provide the ID3 API to the file type
module. You can do this in the Properties of the file type module in the category Libraries (see Figure 44-
2). Press the Add Dependency... button and just select the ID3 API module there.

Figure 44-2. Defining dependencies to the ID3 API

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

500

As already mentioned, the class Mp3DataObject is responsible for the information and methods
specific to MP3. As a result, you extend this class which facilitates accessing both the ID3v1 tag and the
ID3v2 tag (see Listing 44-4). It is very important that you create the tags only when accessing the file
itself, and here is why. If you open, for example, a folder containing a lot of MP3 files in the Favorites
window, an Mp3DataObject is created for each file. If you read the ID3 tags of every file, you would
eventually encounter a significant delay—a behavior to be avoided.

Listing 44-4. Extending the MP3 DataObject Class with Support for ID3

import com.hboeck.mp3manager.id3.v1.ID3v1Tag;
import com.hboeck.mp3manager.id3.v2.ID3v2Tag;
...
public class Mp3DataObject extends MultiDataObject {
 private ID3v1Tag id3v1 = null;
 private ID3v2Tag id3v2 = null;
 public Mp3DataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 }
 ...

 public ID3v1Tag getID3v1Tag() {
 if(id3v1 == null) {
 id3v1 = new ID3v1Tag(FileUtil.toFile(getPrimaryFile()));
 }
 return id3v1;
 }

 public ID3v2Tag getID3v2Tag() {
 if(id3v2 == null) {
 id3v2 = new ID3v2Tag(FileUtil.toFile(getPrimaryFile()));
 }
 return id3v2;
 }
}

Using the DataObject method getPrimaryFile() you receive the FileObject of the MP3 file, which is
managed by the Mp3DataObject instance (this is the object that is passed to the constructor by the data
loader). You must pass a FileObject to the ID3 tag constructor. This file is obtained by using the method
FileUtil.toFile(), which determines the file encapsulated by the FileObject.

Another way to obtain instances of the ID3v1Tag and ID3v2Tag classes could be to provide them
using the Lookup of the Mp3DataObject. This enables you to retrieve these instances from a simple Node
or DataObject instance, without special type safety:

Node n = ...
ID3v1Tag id3v1 = n.getLookup().lookup(ID3v1Tag.class);

ID3 Editor
Now you just need a way to display and edit the ID3 data. You can do this with the Properties module of
the NetBeans Platform connected to your MP3 file type. It is the nodes’ job to provide properties to be

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

501

displayed in the user interface. Therefore, you now create the Mp3DataNode class. Connected to this class,
you must change the createNodeDelegate() method of the Mp3DataObject class. An Mp3DataNode instance
is created then.

In the newly created Mp3DataNode class, you overwrite the createSheet() method. This method
provides the properties of the nodes using a Sheet instance; features can occur that can only be read or
written. In this example, the ID3v1 data will be read as well as written, while the ID3v2 data is only read.

First, you invoke the createSheet() method of the DataNode superclass, which already creates a
Sheet and adds some basic properties to it, such as file name, size, or the date of modification. If you do
not want this data displayed, you can also directly create your own sheet using Sheet.createDefault().
Inside a Sheet object, properties are grouped using Set objects. These groups may be purposefully
hidden or shown in the Properties window. A Set is created using the static createPropertiesSet()
method.

You create two of them, in order to manage the ID3v1 and ID3v2 data separately. It is important that
each Set is given a unique name, using the method setName(); otherwise, the sets will be overridden
inside the sheets. (See Listing 44-5).

Listing 44-5. Providing ID3 Information in a Properties Sheet for Display and Editing Purposes

import org.openide.nodes.PropertySupport;
import org.openide.nodes.Sheet;

public class Mp3DataNode extends DataNode {
 ...
 @Override
 protected Sheet createSheet() {
 Sheet sheet = super.createSheet();
 Sheet.Set set1 = Sheet.createPropertiesSet();
 Sheet.Set set2 = Sheet.createPropertiesSet();
 set1.setName("id3v1");
 set1.setDisplayName("ID3 V1");
 set2.setName("id3v2");
 set2.setDisplayName("ID3 V2");

 Mp3DataObject m = getLookup().lookup(Mp3DataObject.class);
 ID3v1Tag id3v1 = m.getID3v1Tag();
 ID3v2Tag id3v2 = m.getID3v2Tag();
 try {
 /* ID3v1 Properties */
 Property title1 =
 new PropertySupport.Reflection<String>(id3v1, String.class, "title");
 ...
 title1.setName("Title");
 set1.put(title1);
 /* ID3v2 Properties */
 Property album2 =
 new PropertySupport.Reflection<String>(id3v2, String.class, "getAlbum", null);
 ...
 album2.setName("Album");
 set2.put(album2);
 } catch (Exception e) { }

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

502

 sheet.put(set1);
 sheet.put(set2);
 return sheet;
 }
}

The Lookup of the Node provides an instance of the Mp3DataObject represented by that node. Using
the previously created methods getID3v1Tag() and getID3v2Tag() you gain access to the ID3
information of the MP3 file. Then, you create an instance of the class PropertySupport.Reflection<T> for
every property. Specify the type of the property (in this example, it is String) using a template. For the
read and write properties you assign the name of the method (with which the properties can be read and
written) without the prefixes get and set. Passing title to the constructor sets the title (for example,
using the methods getTitle() and setTitle()). Properties that are read-only are passed to a special
version of the constructor taking the names of the get and set methods separately. Passing null as set
method will prevent modification of the property. Each property created is named using the method
setName(). This name is displayed in the Properties window. Finally, add each instance to the Sheet
object using the put() method, and return that sheet.

When starting the application and opening the favorites and the properties window via the Window
menu, you get the window shown in Figure 44-3, if you select an MP3 file in the properties window.

Figure 44-3. Using the Properties window as ID3 editor

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

503

In Chapter 19, you will learn how to provide a special editor (such as a combo box to select the
values) for properties, such as the genre which can have a series of predefined values.

Media Library
In the previous section, you made use of the Favorites module provided by the NetBeans Platform. This
module is also very good for the usage within your application, as a Media Library. The reason for this is
that the user can add each file separately or the whole directory in a very simple manner to the Favorites
module. That feature is not restricted to MP3 files only, but can be used to manage any file type. Thus, by
adding the Image module from the idle cluster, for example, you can also manage and display covers of
tracks in JPG format. Since you can bind actions to a particular MIME type via the layer file, you are able
to work with MP3 files directly in the Favorites window. That means, for example, you can directly play
files by merely double-clicking, or using the drag-and-drop feature to drag files to a separate window
(e.g., a playlist). Bear in mind that the Favorites module or window is activated (meaning available) in
your NetBeans Platform, in order to be able to use it. Open the Properties of the MP3 manager via the
context menu and ensure that the Favorites module is activated in the Libraries category under the
platform cluster.

Now you can also change the name and the menus of the Favorites module using a branding
module. The branding module is automatically created by the NetBeans IDE. You just have to adapt the
desired text in the branding dialog, which you can open via Branding… in the context menu of the
Platform application. You can search for the texts to be substituted in the Resource Bundles register. You
want to adapt the name of the window and the different menu entries as shown in Figure 44-4.

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

504

Figure 44-4. Branding of the Favorites module for use as media library

Services
Next, you will implement the main functionality of the application. It is divided into two sections: the
Service Interface and the Service Provider. In conjunction with the registry mechanism of the service
provider and the Lookup, you can implement the functionality that is absolutely decoupled and
independent of specific modules. Therefore, you create a new module to bundle the service interfaces
for a central provision (see Figure 44-1). From this point of view, the module can be seen as a link
between different application modules. Use File ➤ New Project... to create a new module, as usual. For
convenience, name it Services and set the code name base to com.hboeck.mp3manager.services. Even for
this module, you must remember to enable public access for the packages, which you will do under
Properties ➤ API Versioning, because only then can you define a dependency to the Services module and
be able to use its classes.

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

505

MP3 Player
In the previous section, you created the base for your player design by dividing the services module into
two parts: a service interface and a service provider. Now you consider the interfaces and the
functionality the player should provide to other components of your application. You then describe
these interfaces in an abstract class. You should therefore choose an abstract class, and not an interface,
since the player will be a central global service. In other words, the requesting modules are usually only
interested in a single player instance. As you will notice in the following sections, this behavior can be
ensured much more easily using an abstract class.

Service Interface
Inside the services module, you create a new package named player with an abstract class named
Mp3Player. Of course, a player must be able to play back, pause, and stop MP3 files. Additionally, a user
should be able to mute the playback, control the volume, and see the current playback position and total
duration. It should also be possible to influence the current playback position of the file. You specify all
these desired functionalities which the player will provide via the abstract method in this class. (See
Listing 44-6).

Listing 44-6. Defining the Player’s Interfaces and Providing an Implementation Using the getDefault()

Method

package com.hboeck.mp3manager.services.player;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import java.util.ListIterator;
import org.openide.util.Lookup;
...
public abstract class Mp3Player {

 public static Mp3Player getDefault() {
 Mp3Player p = Lookup.getDefault().lookup(Mp3Player.class);
 if (p == null) {
 p = new DefaultMp3Player();
 }
 return p;
 }

 public abstract void play(Mp3DataObject mp3);
 public abstract void play(ListIterator<Mp3DataObject> mp3s);
 public abstract void pause();
 public abstract void stop();
 public abstract void previous();
 public abstract void next();
 public abstract void setMute(boolean mute);
 public abstract void setVolume(int volume);
 public abstract int getDuration();
 public abstract int getMediaTime();
 public abstract void setMediaTime(int seconds);
}

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

506

The most important part for the service requesters—meaning the modules that want to use the
player—is the getDefault() method. This method actually searches for a registered Mp3Player
implementation via the Lookup. If an implementation is found, the Lookup returns an instance of it. If
no implementation is found, you nonetheless want to ensure that a requester never obtains a null
reference, but always an instance of the Mp3Player class. Therefore, you provide a default
implementation inside the abstract Mp3Player class, which is named DefaultMp3Player and will do—in
the simplest case—nothing except tell the user it will do nothing. Another easy and smart solution would
be to forward the MP3 file to an external application. (See Listing 44-7).

Listing 44-7. Providing a Default Implementation Inside the Abstract Class

public abstract class Mp3Player {
 ...
 private static class DefaultMp3Player extends Mp3Player {
 public void play(Mp3DataObject mp3) {
 Logger.getLogger(Mp3Player.class.getName()).info("not supported”);
 }
 public void stop() { }
 ...
 }
}

If we imagine a module using the player, we will quickly notice that a module needs to be notified
about the events that may occur in the player in order to react. Thus, a user interface, for example, needs
to be informed about the end of the playback of an MP3 file. For this purpose, we specify a listener
interface named Mp3PlayerEventListener interface, which might look like this in a simple version:

package com.hboeck.mp3manager.services.player;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import java.util.EventListener;

public interface Mp3PlayerEventListener extends EventListener{
 public void playing(Mp3DataObject mp3);
 public void stopped();
}

The functionality to add and remove Mp3PlayerEventListener to the player is implemented directly
in the abstract class; the concrete implementation does not need to worry about this anymore.
Additionally, you provide two fire methods equivalent to the listener interface with which the concrete
classes are able to notify listeners about events, as shown in Listing 44-8.

Listing 44-8. Methods to Manage Listeners Interested in Events

import com.hboeck.mp3manager.filetype.Mp3DataObject;
import java.util.ListIterator;
import javax.swing.event.EventListenerList;
import org.openide.util.Lookup;

public abstract class Mp3Player {
 ...
 private final EventListenerList listeners = new EventListenerList();

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

507

 public void addEventListener(Mp3PlayerEventListener l) {
 listeners.add(Mp3PlayerEventListener.class, l);
 }

 public void removeEventListener(Mp3PlayerEventListener l) {
 listeners.remove(Mp3PlayerEventListener.class, l);
 }

 protected final void firePlayEvent(Mp3DataObject mp3) {
 for(Mp3PlayerEventListener listener :
 listeners.getListeners(Mp3PlayerEventListener.class)) {
 listener.playing(mp3);
 }
 }

 protected final void fireStopEvent() {
 for(Mp3PlayerEventListener listener :
 listeners.getListeners(Mp3PlayerEventListener.class)) {
 listener.stopped();
 }
 }
}

Service Provider
Your first service has been defined, so now you can start implementing the service provider. This means
you use the JMF module and its functionality for the playback of MP3 files. Already this brings you back
to the usage of your MP3 file type. As indicated previously in Figure 44-1, the MP3 player is implemented
into a separate module. So, you create a new module again which you call Player and to which you will
pass the code name base com.hboeck.mp3manager.player. Using Properties ➤ Libraries, you define the
corresponding dependencies so this module can access the file type, the JMF plugin, and the service
interface.

First, you create an Mp3PlayerImpl class, which inherits from the previously created service interface
Mp3Player. You implement the abstract methods of the service interface MP3Player here via the Java
Media Framework. Start with the play() method, which an MP3 file is passed to as Mp3DataObject. The
central class of JMF is the Manager class. It is used to obtain system-dependent resources. This manager
creates a Player instance for the MP3 file passed as a URL. Before starting that Player using the start()
method, you register a ControllerListener for it, so that you will be informed of the different states of
the Player. (See Listing 44-9).

Listing 44-9. Implementation of the Service Provider Using the JMF

package com.hboeck.mp3manager.player;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import com.hboeck.mp3manager.services.player.Mp3Player;
import javax.media.ControllerEvent;
import javax.media.ControllerListener;
import javax.media.EndOfMediaEvent;
import javax.media.GainControl;
import javax.media.Manager;
import javax.media.Player;

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

508

import javax.media.RealizeCompleteEvent;
import javax.media.Time;
...
public class Mp3PlayerImpl extends Mp3Player implements ControllerListener {

 private static final Logger LOG = Logger.getLogger(Mp3PlayerImpl.class.getName());
 private Player player = null;
 private GainControl volumeControl = null;
 private int volume = 20;
 private boolean mute = false;
 private Mp3DataObject mp3 = null;
 private ListIterator<Mp3DataObject> list = null;

 public Mp3PlayerImpl() {
 }

 @Override
 public void play(Mp3DataObject mp3) {
 try {
 this.mp3 = mp3;
 if(player != null) {
 player.stop();
 player.close();
 }
 player = Manager.createPlayer(mp3.getPrimaryFile().getURL());
 player.addControllerListener(this);
 player.start();
 } catch(Exception e) {
 LOG.log(Level.SEVERE, e.getMessage(), e);
 }
 }

 @Override
 public void play(ListIterator<Mp3DataObject> mp3s) {
 list = mp3s;
 if(list.hasNext()) {
 play(list.next());
 }
 }

 @Override
 public void pause() {
 if(player != null) {
 player.stop();
 }
 }

 @Override
 public void stop() {
 if(player != null) {
 fireStopEvent();

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

509

 player.stop();
 player.setMediaTime(new Time(0));
 player.close();
 }
 }

 @Override
 public void previous() {
 if (list != null && list.hasPrevious()) {
 play(list.previous());
 }
 }

 @Override
 public void next() {
 if (list != null && list.hasNext()) {
 play(list.next());
 }
 }

The ControllerListener interface defines the controllerUpdate() method, which is used to get the
current state of the Player. We are particularly interested in two states: first, only if the Player is realized
do you get access to the volume control; at the same time, you notify the listeners that the playback of
the MP3 file already started (you do so via the firePlayEvent() method). The second event of interest is
EndOfMediaEvent, which allows you to stop the Player, and then reset the current playback position to
the beginning. If a list of MP3 files was passed to the play() method, you start playback with the next file
in the list. (See Listing 44-10).

Listing 44-10. Reacting on the Events of the JMF Player

 @Override
 public void controllerUpdate(ControllerEvent evt) {
 if (evt instanceof RealizeCompleteEvent) {
 LOG.info("Realized");
 firePlayEvent(mp3);
 volumeControl = player.getGainControl();
 setVolume(volume);
 setMute(mute);
 } else if (evt instanceof EndOfMediaEvent) {
 LOG.info("End of Media");
 stop();
 if(list != null && list.hasNext()) {
 play(list.next());
 } else {
 list = null;
 }
 }
 }

Finally, you also implement the missing control and information methods in your service provider
class. (See Listing 44-11).

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

510

Listing 44-11. Methods to Control Volume and Playback Position

 @Override
 public void setVolume(int volume) {
 this.volume = volume;
 if(volumeControl != null) {
 volumeControl.setLevel((float)(volume/100.0));
 }
 }

 @Override
 public void setMute(boolean mute) {
 this.mute = mute;
 if(volumeControl != null) {
 volumeControl.setMute(mute);
 }
 }

 @Override
 public int getDuration() {
 return (int)player.getDuration().getSeconds();
 }

 @Override
 public int getMediaTime() {
 return (int)player.getMediaTime().getSeconds();
 }

 @Override
 public void setMediaTime(int seconds) {
 player.setMediaTime(new Time((double)seconds));
 }
}

Accessing this implementation of the MP3 player should be done via the Mp3Player.getDefault()
method. You must register the Mp3PlayerImpl class to enable this method to find the implementation
using the Lookup. This is done by a ServiceProvider annotation. (See Listing 44-12).

Listing 44-12. Registering the Mp3Player Service Provider

import org.openide.util.lookup.ServiceProvider;
...
@ServiceProvider(service=Mp3Player.class)
public class Mp3PlayerImpl extends Mp3Player implements ControllerListener {
 ...
}

Playback of MP3 Files
Now that you have implemented the MP3 player service provider, you can register an action for your
MP3 file type. Thus, it is possible to play an MP3 file via the context menu or just by double-clicking in

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

511

the Favorites window, for example. Such an action can easily be created and registered using the
NetBeans Action wizard. Call File ➤ New File... and select Module Development ➤ Action. Choose
Conditionally Enabled as action type and Mp3DataObject as context interface. On the next page, you can
associate this action with a predefined category or create a new one. You continue assigning the action
to a menu. You activate the option File Type Context Menu Item so the action appears in the context
menu of an MP3 file. Select audio/mpeg as content type, which you already defined when you created the
MP3 file type. Finally, you define the class name, a label, and an icon on the last page of the wizard. You
complete the wizard with Finish. Doing so, it becomes clear once more which relief the NetBeans IDE
and the NetBeans Platform bring. You just have to insert one more line in the actionPerformed()
method (see Listing 44-13).

Listing 44-13. Context-Sensitive Action to Play MP3 Files

import com.hboeck.mp3manager.filetype.Mp3DataObject;
import com.hboeck.mp3manager.services.player.Mp3Player;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import org.openide.awt.ActionRegistration;
import org.openide.awt.ActionReference;
import org.openide.awt.ActionReferences;
import org.openide.awt.ActionID;

@ActionID(
 category = "File",
 id = "com.hboeck.mp3manager.player.PlayAction")
@ActionRegistration(
 displayName = "#CTL_PlayAction",
 iconBase= "com/hboeck/mp3manager/player/gui/icons/play16.png")
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 0),
 @ActionReference(path = "Loaders/audio/mpeg/Actions", position = 0)
})
public final class PlayAction implements ActionListener {
 private final Mp3DataObject context;

 public PlayAction(Mp3DataObject context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 Mp3Player.getDefault().play(context);
 }
}

With this action, you can immediately test the MP3 player. Start the application and open the
Favorites window. Add an MP3 file or a folder with MP3 files to the Favorites Window. Now you can start
the playback by double-clicking or using the context menu.

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

512

User Interface
Having only an action is not really satisfying, so in this section you will create a complete user interface
for an MP3 player. This user interface uses the functionality provided by the MP3 player service. You
create a new package in the player module named com.hboeck.mp3manager.player.gui. With the help of
the Window wizard, you create a TopComponent class. You can invoke this wizard like the previous ones
via File ➤ New File... ➤ Module Development. For the window position, you can use explorer, for
example, and for the class name prefix you can use Mp3Player. Then, you build a TopComponent using the
Form Designer as shown in Figure 44-5.

Figure 44-5. MP3 player user interface

Of course, it is not looking all that beautiful, but it is functional and offers all the relevant MP3 player
functionalities. Most of the work required for designing the top component is done by the Form
Designer. You simply have to implement the actions (see Listing 44-14). But first, give yourself access to
an Mp3Player instance delivered by the getDefault() method in the constructor. For this instance,
register an Mp3PlayerEventListener, for which you defined an interface in the “Service Interface”
section, to be notified about the start and stop event of the MP3 file. These events are required to update
information displayed on the user interface.

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

513

Listing 44-14. Most of the Methods Are Really Simple and Only Delegate the Relevant Values to the MP3

Player

import com.hboeck.mp3manager.filetype.Mp3DataObject;
import javax.swing.JFileChooser;
import javax.swing.Timer;
import javax.swing.filechooser.FileNameExtensionFilter;
import org.openide.awt.ActionID;
import org.openide.awt.ActionReference;
...
@TopComponent.Description(preferredID = "Mp3PlayerTopComponent",
 iconBase="com/hboeck/mp3manager/player/gui/player.png",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(mode = "explorer",
 openAtStartup = true)
@ActionID(category = "Window",
 id = "com.hboeck.mp3manager.player.gui.Mp3PlayerTopComponent")
@ActionReference(path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_Mp3PlayerAction",
 preferredID = "Mp3PlayerTopComponent")
public final class Mp3PlayerTopComponent extends TopComponent
 implements Mp3PlayerEventListener {
 private static final SimpleDateFormat SDF = new SimpleDateFormat("mm:ss");
 private JSlider duration;
 private JSlider volume;
 private JToggleButton mute;
 private JButton next;
 private JButton open;
 private JButton pause;
 private JButton play;
 private JButton previous;
 private JButton stop;
 private JLabel time;
 private JLabel title;
 private Timer t = null;
 private Mp3Player player = null;

 public Mp3PlayerTopComponent() {
 initComponents();
 ...
 player = Mp3Player.getDefault();
 player.addEventListener(this);
 }

 private void pauseActionPerformed(ActionEvent evt) {
 player.pause();
 }

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

514

 private void stopActionPerformed(ActionEvent evt) {
 player.stop();
 }

 private void nextActionPerformed(ActionEvent evt) {
 player.next();
 }

 private void previousActionPerformed(ActionEvent evt) {
 player.previous();
 }

 private void muteActionPerformed(ActionEvent evt) {
 player.setMute(mute.isSelected());
 }

 private void volumeStateChanged(ChangeEvent evt) {
 player.setVolume(volume.getValue());
 }

 private void durationMouseReleased(MouseEvent evt) {
 player.setMediaTime(duration.getValue());
 }

Clicking the Play button invokes the playActionPerformed() method, in which you can use the
TopComponent.Registry (see Listing 44-15). This will provide the currently activated nodes independently
of the TopComponent they belong to, that is, if an Mp3DataObject (or rather an Mp3DataNode) is selected in
any top component (regardless of whether that is the Media Library window or, for example, the playlist)
and the Play button is clicked, this file will be played back.

Listing 44-15. Using TopComponent.Registry, the Currently Selected MP3 File Can Be Played.

 private void playActionPerformed(ActionEvent evt) {
 Node n[] = getRegistry().getActivatedNodes();
 if(n != null) {
 Mp3DataObject mp3 = n[0].getLookup().lookup(Mp3DataObject.class);
 if(mp3 != null) {
 player.play(mp3);
 }
 }
 }

 private void openActionPerformed(ActionEvent evt) {
 JFileChooser c = new JFileChooser();
 c.setFileFilter(new FileNameExtensionFilter("MP3 Files", "mp3"));

 if(c.showOpenDialog(this) == JFileChooser.APPROVE_OPTION) {
 try {
 player.play(Mp3DataObject.find(c.getSelectedFile()));
 } catch(Exception e) {
 Exceptions.printStackTrace(e);
 }

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

515

 }
 }

Within the playing() method, called by Mp3Player, you can display title and time information in the
user interface. Thus, you are not restricted to the file name; you can also access the ID3 tag and display
information out of the tag (see Listing 44-16). The timer is used to update playback time. In the
stopped() method (indicating that the playback of the MP3 file was stopped), you reset all displayed
information and stop the timer.

Listing 44-16. Updating the Displayed Information of the Current MP3 File

 public void playing(Mp3DataObject mp3) {
 resetInfos();
 title.setText(mp3.getName());
 duration.setMaximum(player.getDuration());
 ID3v1Tag id3v1 = mp3.getID3v1Tag();
 title.setText(id3v1.getArtist()+" – "+id3v1.getTitle());
 ActionListener updateInfo = new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 duration.setValue(player.getMediaTime());
 time.setText(SDF.format(new Date(player.getMediaTime() * 1000)));
 }
 };

 if (t != null) {
 t.stop();
 }
 t = new Timer(1000, updateInfo);
 t.start();
 }

 public void stopped() {
 resetInfos();
 if(t != null) {
 t.stop();
 }
 }

 private void resetInfos() {
 duration.setValue(0);
 time.setText("00:00");
 title.setText("Title");
 }
}

Playlist
The objective of this section is to create a playlist. The user should be able to manage multiple playlists
in parallel. And of course you want the user to be able to add MP3 files from the Media Library to the
playlist by using drag-and-drop. All this functionality is provided in a separate module. So, you create a

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

516

new module via File ➤ New Project... ➤ NetBeans Modules ➤ Module, name it Playlist, and set the code
name base to com.hboeck.mp3manager.playlist. Add a dependency to the File Type and Services module.

For the playlist, another top component is used, containing a TreeTableView taken from the Explorer
API. Using such a view eases the management of MP3 files with the help of the Mp3DataNode class.

Node View
Let us start with the view for the nodes. You use a TreeTableView and create the subclass PlaylistView.
This class is used to hide the configuration and to have a handier class. The only thing you need to
configure is the default action processor because, by default, a double-click in this view executes the
default action of a node (that is, an Mp3DataNode), which is the PlayAction you created in the “Playback of
MP3 files” section. But this action plays only a single file, while the desired behavior of a playlist is to
play the complete list automatically. Therefore, you implement the setDefaultActionProcessor()
method (see Listing 44-17), which takes an instance of an ActionListener. The actionPerformed()
method of this listener is executed (instead of the node’s default action) when the node is double-clicked
or the Enter key is pressed.

Listing 44-17. This View Is Used to Represent MP3 Files in a List View.

package com.hboeck.mp3manager.playlist;
import org.openide.explorer.view.TreeTableView;

public class PlaylistView extends TreeTableView {

 public PlaylistView() {
 setRootVisible(false);
 }

 public void setDefaultActionProcessor(final ActionListener action) {
 setDefaultActionAllowed(false);
 tree.addMouseListener(new MouseAdapter() {
 @Override
 public void mouseClicked(MouseEvent me) {
 if (me.getClickCount() == 2) {
 action.actionPerformed(null);
 }
 }
 });
 treeTable.registerKeyboardAction(action,
 KeyStroke.getKeyStroke(KeyEvent.VK_ENTER, 0, false),
 JComponent.WHEN_FOCUSED);
 }
}

Node Container
All nodes represented in the PlaylistView are managed by a container. A container is based on the class
Children. There are different variants of this class, which should be chosen depending on the purpose.
You will use the class Index.ArrayChildren as superclass for your node container (see Listing 44-18). The
nodes to be added to a playlist are stored in an object of the type ArrayList. You provide this list with the

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

517

method initCollection(). The list will initially be empty, because the nodes are inserted via
drag-and-drop from the Media Library. Using the getRemaining() method, you return a list of remaining
MP3 files, which can be directly passed to the player to play back the playlist.

Listing 44-18. Container Class to Manage MP3 files Contained in a Playlist

package com.hboeck.mp3manager.playlist;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import org.openide.nodes.Index;
import org.openide.nodes.Node;

public final class NodeContainer extends Index.ArrayChildren {
 private List<Node> list = new ArrayList<Node>();

 @Override
 protected List<Node> initCollection() {
 return list;
 }

 public ListIterator<Mp3DataObject> getRemaining(Node n) {
 List<Mp3DataObject> v = new ArrayList<Mp3DataObject>();
 for (Node n : list.subList(indexOf(n), list.size())) {
 v.add(n.getLookup().lookup(Mp3DataObject.class));
 }
 return v.listIterator();
 }

 public void add(Node n) {
 add(new Node[]{n});
 }
}

Top Component
Now you can begin creating the playlist. To do so, you need a top component again. You will create the
top component using the Window wizard via File ➤ New File... ➤ Module Development ➤ Window. You
assign the top component to the editor mode and assign the prefix Playlist. Thus, you have already
created the basic structure of the playlist. A top component created this way is designed as a singleton
instance by default. This means that only one window of that type can be opened. Since you want to
manage multiple playlists at the same time, though, you must change this. To do so, you just have to
delete the preferredID attribute of the TopComponent.OpenActionRegistration annotation. So, a new
PlaylistTopComponent instance is created by the corresponding action with each invocation. (See Figure
44-6).

package com.hboeck.mp3manager.playlist;
import com.hboeck.mp3manager.filetype.Mp3DataObject;
import com.hboeck.mp3manager.services.player.Mp3Player;
import org.openide.explorer.ExplorerManager;
import org.openide.explorer.ExplorerUtils;
import org.openide.nodes.AbstractNode;

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

518

@TopComponent.Description(preferredID = "PlaylistTopComponent",
 iconBase = "com/hboeck/mp3manager/playlist/playlist.png",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(mode = "editor",
 openAtStartup = false)
@ActionID(category = "Window",
 id = "com.hboeck.mp3manager.playlist.PlaylistTopComponent")
@ActionReference(path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_PlaylistAction")
public final class PlaylistTopComponent extends TopComponent
 implements ExplorerManager.Provider {

 private static final String PREF_CURRENTDIR = "currentdir";
 private Preferences PREF = NbPreferences.forModule(PlaylistTopComponent.class)
 private ExplorerManager manager = new ExplorerManager();
 private NodeContainer container = new NodeContainer();
 private PlaylistView playlist = new PlaylistView();

 public PlaylistTopComponent() {
 initComponents();
 setName(NbBundle.getMessage(PlaylistTopComponent.class, "CTL_Playlist"));
 setToolTipText(NbBundle.getMessage(PlaylistTopComponent.class, "CTL_Playlist"));
 manager.setRootContext(new AbstractNode(container));
 playlist.setDefaultActionProcessor(new Play());
 associateLookup(ExplorerUtils.createLookup(manager, getActionMap()));
 }

 private final class Play implements ActionListener {
 @Override
 public void actionPerformed(ActionEvent e) {
 Mp3Player.getDefault().play(
 container.getRemaining(manager.getSelectedNodes()[0]));
 }
 }

 public ExplorerManager getExplorerManager() {
 return manager;
 }
 ...
}

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

519

Figure 44-6. Playlist top component

You enhance the top component by adding a toolbar with three buttons, using the Form
Designer.These buttons are used to add and remove files, and to name the playlist. Finally, you just add
a panel that uses the BorderLayout and occupies the whole area of the top component. This panel is used
as the container for the node view.

Managing the nodes in your PlaylistView is done by an explorer manager. You implement the
ExplorerManager.Provider interface, create a private instance of the ExplorerManager, and return this
manager in the getExplorerManager() method. Additionally, you create a NodeContainer instance. Every
manager has a root context, which is a node that is used as root for all the other nodes. This context is set
by the method setRootContext(). You will use an AbstractNode as the root context (because you do not
want to display it anyway) and pass it to the container carrying the MP3 files of the playlist.

Finally, you create a PlaylistView instance to which you pass the action to be performed when
double-clicking an MP3 file in the playlist. To pass the action, use the setDefaultActionProcessor()
method. Your default behavior is to play back the complete list starting at the selected file. Therefore, the
method getRemaining() delivers all files still remaining in the list. Finally, the view just needs to be
added to the panel you already created in a previous step using the Form Designer. To do so, call
Customize Code from the context menu of the panel and insert the following lines after the layout
initialization (pre-population):

panel.add(playlist, BorderLayout.CENTER);

Of course, in the end, you should not forget the buttons in the toolbar of the playlist, since they are
used to add and remove MP3 files by invoking a file chooser dialog, as well as to rename the playlist
itself. It should be possible to add files in a way that multiple files and directories can be selected via the
addActionPerformed() method. Therefore, you add the method addAllFiles(), which recursively parses
the selection and adds all files to the node container. Removing files (done by the
removeActionPerformed() method) is very easy, because the ExplorerManager returns all selected entries,
and the remove() method of the container removes an array of nodes in one step. Renaming the playlist

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

520

(invoked by the method renameActionPerformed()) is easy as well, using the Dialogs API. (See
Listing 44-19).

Listing 44-19. Actions to Edit the Playlist

public final class PlaylistTopComponent extends TopComponent
 implements ExplorerManager.Provider {
 ...
 private void addActionPerformed(ActionEvent evt) {
 JFileChooser fc = new JFileChooser(PREF.get(PREF_CURRENTDIR, ""));
 fc.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);
 fc.setFileFilter(new FileNameExtensionFilter("MP3 Files", "mp3"));
 fc.setMultiSelectionEnabled(true);
 if(fc.showOpenDialog(this) ==JFileChooser.APPROVE_OPTION) {
 addAllFiles(fc.getSelectedFiles());
 PREF.put(PREF_CURRENTDIR,
 fc.getCurrentDirectory().getAbsolutePath());
 }
 }

 private void addAllFiles(File[] files) {
 for(File f : files) {
 if(f.isFile()) {
 try {
 container.add(Mp3DataObject.find(f).getNodeDelegate());
 } catch(Exception e) {}
 } else if(f.isDirectory()) {
 addAllFiles(f.listFiles());
 }
 }
 }

 private void removeActionPerformed(ActionEvent evt) {
 container.remove(manager.getSelectedNodes());
 }

 private void renameActionPerformed(ActionEvent evt) {
 NotifyDescriptor.InputLine nf = new NotifyDescriptor.InputLine(
 "New Playlist Name", "Rename");
 nf.setInputText(getName());
 if(DialogDisplayer.getDefault().notify(nf) == NotifyDescriptor.OK_OPTION) {
 setName(nf.getInputText());
 }
 }
}

Now you can start the application, open one or multiple playlists, and add MP3 files via the toolbar
(see Figure 44-7).

v

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

521

Figure 44-7. Using the toolbar playlist, files can be added to the playlist.

If you try to drag files from the Media Library window to the playlist you will quickly recognize that
this is not possible. This is not possible, yet, because your Mp3DataNode class (containing the objects you
want to transfer between windows) and the PlaylistView class are not yet prepared for dragging actions.
We will cover this aspect of simple and intuitive usage in the next section.

Drag and Drop
First, you extend the Mp3DataNode class. The super class, AbstractNode, already implements the drag()
method, which is invoked if a drag event occurs. For example, a drag event will be fired when you drag
files from the Media Library to the playlist. This method must deliver a Transferable instance. So you
will implement the Transferable interface and its methods in the Mp3DataNode class. You overwrite the
drag() method and thus, a reference is returned to its own reference. To access the data, and for
identification purposes, during a drag-and-drop operation you create a DataFlavor object that can be
accessed from outside. (See Listing 44-20.)

Listing 44-20. Extension to the Mp3DataNode Class to Enable Drag and Drop

package com.hboeck.mp3manager.filetype;
import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.UnsupportedFlavorException;
...
public class Mp3DataNode extends DataNode implements Transferable {
 public static final DataFlavor DATA_FLAVOR =
 new DataFlavor(Mp3DataNode.class, "Mp3DataNode");
 ...

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

522

 @Override
 public Transferable drag() {
 return this;
 }

 @Override
 public DataFlavor[] getTransferDataFlavors() {
 return new DataFlavor[]{DATA_FLAVOR};
 }

 @Override
 public boolean isDataFlavorSupported(DataFlavor flavor) {
 return flavor == DATA_FLAVOR;
 }

 @Override
 public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException {
 if(flavor == DATA_FLAVOR) {
 return this;
 } else {
 throw new UnsupportedFlavorException(flavor);
 }
 }
}

However an Mp3DataNode can now be transferred, your playlist is still not able to accept it. Now, you
must add a DropTarget to the PlaylistView. You create a DropTarget object and pass a
DropTargetAdapter to it. Via this DropTargetAdapter you are then notified regarding both drag-and-drop
events. You only implement the methods dragEnter() and drop(). The dragEnter() method is called as
soon as a file is dragged to your playlist. As you only want to allow drops of MP3 files, check the type of
data using the data flavor. In case it is not an Mp3DataNode, you call the rejectDrag() method to prevent a
drop. The drop() method is invoked during the real drop event. So, you extract the Mp3DataNode from the
parameter and add the node to the ExplorerManager, or rather the container responsible for the view.
(See Listing 44-21.)

Listing 44-21. To Enable the Addition of MP3 Files via Drag and Drop, a DropTarget Is Required for the

PlaylistView.

package com.hboeck.mp3manager.playlist;
import java.awt.dnd.DropTarget;
import java.awt.dnd.DropTargetAdapter;
import java.awt.dnd.DropTargetDragEvent;
import java.awt.dnd.DropTargetDropEvent;
...
public class PlaylistView extends TreeTableView {
 public PlaylistView() {
 setRootVisible(false);
 setDropTarget();
 }

 private void setDropTarget() {

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

523

 DropTarget dt = new DropTarget(this, new DropTargetAdapter() {
 @Override
 public void dragEnter(DropTargetDragEvent dtde) {
 if(!dtde.isDataFlavorSupported(Mp3DataNode.DATA_FLAVOR)) {
 dtde.rejectDrag();
 }
 }

 @Override
 public void drop(DropTargetDropEvent dtde) {
 try {
 Mp3DataNode n = (Mp3DataNode)dtde.getTransferable().
 getTransferData(Mp3DataNode.DATA_FLAVOR);
 ExplorerManager.find(getParent()).
 getRootContext().getChildren().add(new Node[]{n});
 } catch(Exception e) {
 Exceptions.printStackTrace(e);
 dtde.rejectDrop();
 }
 }
 });
 setDropTarget(dt);
 }
}

Thus, you are now able to drag MP3 files from the Media Library or other sources directly into a
playlist.

Saving the Playlist
You may have already noticed that the content of the playlist is lost when restarting the application. This
is because the window system stores the playlist itself, but is unable to store the contained data. In other
words, you have to extend the load and store functions for your application. A good approach is to store
the lists in an embedded database (Java DB, for example, works very well for this). This client-side
database system was already used in the “Java DB” section in Chapter 26. You integrate it into your
application using a module, and thus you can use the database (in addition to the use for playlists) for
other purposes.

The module is a library wrapper module, and is created like any other module—via File ➤ New
Project... ➤ NetBeans Modules ➤ Library Wrapper Module. You add the files lib/derby.jar and
lib/derbyLocale_de_DE.jar to it from the Java DB distribution. (Further information on how to integrate
and use Java DB, as well as where to obtain a distribution, can be found in Chapter 26.) Name the
module Java DB and use org.apache.derby for the code name base. After creating the module, add a
module installer, which is used to initialize centralized access. Such an installer can be created via File ➤
New File... ➤ Module Development ➤ Installer / Activator. Afterward, rename it with Refactor ➤
Rename... to Database.

In the restored() method, called while starting the module, you set the system directory of Java DB
and execute the initTables() method. This method will first check whether the table playlist exists by
performing a SELECT query. If the table does not exist yet, a SQLException will be thrown, which you will
catch in order to then create the table. Using the getConnection() method, you obtain a connection to

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

524

the database. The close() method allows the database system to be correctly shut down after the
application is finished. (See Listing 44-22.)

Listing 44-22. The Database Class Initializes the Database and Provides a Central Connection.

package org.apache.derby;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import org.openide.modules.ModuleInstall;
import org.openide.util.Exceptions;

public class Database extends ModuleInstall {
 private static Connection conn = null;

 public void restored() {
 System.setProperty("derby.system.home",
 System.getProperty("netbeans.user",
 System.getProperty("user.home")) + "/databases");
 initTables();
 }

 private void initTables() {
 try {
 Statement stmt = getConnection().createStatement();
 stmt.executeQuery("SELECT id FROM playlist");
 stmt.close();
 } catch(SQLException e) {
 try {
 Statement stmt = getConnection().createStatement();
 stmt.execute("CREATE TABLE playlist (" +
 "id VARCHAR(12)," +
 "filename VARCHAR(100))");
 stmt.close();
 } catch(SQLException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }

 public static Connection getConnection() throws SQLException{
 if(conn == null || conn.isClosed()) {
 conn = DriverManager.getConnection(
 "jdbc:derby:Mp3Manager;create=true",
 "user", "password");
 }
 return conn;
 }

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

525

 public void close() {
 try {
 conn.close();
 DriverManager.getConnection("jdbc:derby:;shutdown=true");
 } catch (SQLException ex) {}
 }
}

Do not forget to make the org.apache.derby package containing the Database class public. To
enable the Playlist module to access the database, specify a dependency to the Java DB module. As you
already know, the nodes for a view have to be provided by the class NodeContainer. Knowing this, it
would be best to just extend this class so it reads the content of the playlist from the database for itself
and can store it when the application closes. To do so, add the methods load() and update() to the
NodeContainer class. The load() method will perform a query to read all entries for a particular playlist.
When the getNodeDelegate() method is used, each entry will result in an Mp3DataObject that delivers its
corresponding node. (See Listing 44-23.)

Listing 44-23. The load() Method Reads All Entries from the Database and Adds Them to the Container.

package com.hboeck.mp3manager.playlist;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.apache.derby.Database;
...
public final class NodeContainer extends Index.ArrayChildren {
 ...
 public void load(String id) {
 try {
 String sql="SELECT filename FROM playlist WHERE id = ?";
 PreparedStatement stmt = Database.getConnection().prepareStatement(sql);
 stmt.setString(1, id);
 ResultSet rs = stmt.executeQuery();
 while (rs.next()) {
 try {
 add(Mp3DataObject.find(rs.getString(1)).getNodeDelegate());
 } catch(Exception e) {}
 }
 rs.close();
 stmt.close();
 } catch(SQLException e) {
 LOG.severe(e.toString());
 }
 }

To store the playlist, use the update() method. First, remove all entries of this specific playlist to
avoid lost entries. Then use the getNodes() method to obtain all nodes of this container and store the
path of the related MP3 file for each node. (See Listing 44-24.)

Listing 44-24. The update() Method Stores the Container’s Entries in the Database.

 public void update(String id) {

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

526

 try {
 String sql = "DELETE FROM playlist WHERE id = ?";
 PreparedStatement stmt = Database.getConnection().prepareStatement(sql);
 stmt.setString(1, id);
 stmt.execute();
 stmt.close();
 sql="INSERT INTO playlist (id, filename) VALUES (?, ?)";
 stmt = Database.getConnection().prepareStatement(sql);
 for(Node n : getNodes()) {
 stmt.setString(1, id);
 stmt.setString(2, n.getLookup().lookup(Mp3DataObject.class).
 getPrimaryFile().getPath());
 stmt.execute();
 }
 stmt.close();
 } catch(Exception e) {
 LOG.severe(e.toString());
 }
 }
}

You might ask who is calling these methods. The answer can be found if you open the Playlist
class, since the base class, TopComponent, defines the componentOpened() method, called while opening
the window. Here, you determine the unique ID of the top component, at first, while in a subsequent
step you call the container’s load() method with this ID. The writeExternal() method of the superclass
is used to store data while the application is closing. Consequently, you will override this method and
invoke the update() method with the ID you stored as a private variable. (See Listing 44-25.)

Listing 44-25. The Playlist Class Is Responsible for Loading and Storing the Container’s Content.

public class PlaylistTopComponent extends TopComponent
 implements ExplorerManager.Provider {
 private String id = "";
 ...
 @Override
 public void componentOpened() {
 id = WindowManager.getDefault().findTopComponentID(this);
 LOG.log(Level.INFO, "Load playlist with ID: {0}", id);
 container.load(id);
 }

 void writeProperties(Properties p) {
 p.setProperty("version", "1.0");
 LOG.log(Level.INFO, "Save playlist with ID: {0}", id);
 container.update(id);
 }
}

CHAPTER 44 SAMPLE PROJECT: MP3 MANAGER

527

Summary
In this chapter, we created a bigger example which enabled you to apply a lot of the concepts you
learned about in previous chapters. First, you defined a modular application structure based on
NetBeans modules. You created a module, enabling your example application to play MP3 files. The
module contains the JMF classes, as well as the MP3 plugin.

To handle MP3 files within the NetBeans Platform, you created an MP3 file type, as explained in
Chapter 7. Next, you included an ID3 library in your NetBeans Platform Application, implementing an
MP3 player service module. In this module, you also implemented a small GUI for the player.

Next, you created playlist functionality. To that end, you created your own node view and node
container. To implement drag-and-drop functionality from the Media Library window, you extended
your Node class.

Finally, this chapter demonstrated how easy it is to incrementally build a modular NetBeans
Platform application and highlighted the extensibility of such an application.

529

Appendix

This Appendix includes a list of important extension points in the NetBeans Platform followed by a list of
Document Type Definitions (DTDs) for some important configuration files such as mode, toolbar, or top
component group configurations.

Important NetBeans Platform Extension Points
Table A-1 lists the most important NetBeans Platform extension points. These are folders in the layer file,
where you register your extensions. The chapters in which you can find more information about each
extension point’s usage are included.

Table A-1. Important Extension Points of the NetBeans Platform

Extension Point Usage

Actions Registers all actions used throughout the application. In other
words, this extension point creates the central action pool,
the content of which can be referenced from other classes.
See Chapter 6.

Loaders Data object factories for special MIME types are registered
with this extension point. See Chapter 7.

Menu Registers all the entries in the application menus. An
application menu is built from the folders and files in this
extension point. See Chapter 9.

Navigator/Panels Registers all the available Navigator panels by MIME type. See
Chapter 18.

OptionsDialog Option panels with their own category are determined here
(see Chapter 20).

 APPENDIX

530

Extension Point Usage

OptionsDialog/Advanced The option panels (registered with this extension point) are
added to the standard category. See Chapter 20.

Services Registers service providers that are available via the default
Lookup. See Chapter 5.

Services/AutoupdateType Registers update center configurations. See Chapter 36.

Services/JavaHelp Registers JavaHelp helpsets, which are then combined with
all helpsets from the other modules, resulting in a single
JavaHelp system for the end user. See Chapter 16.

Services/MIMEResolver Registers specific data types to a data loader, which in turn is
a factory for its DataObject. See Chapter 7.

Shortcuts Registers keyboard shortcuts for an action. Provides a central
overview of all existing shortcuts. See Chapter 9.

TaskList/Groups Registers task groups that are shown in the NetBeans
Platform’s task list. See Chapter 23.

TaskList/Scanners Registers custom scanner implementations that provide tasks
for the NetBeans Platform’s task list. See Chapter 23.

TaskList/Scopes Registers custom scopes for task list searches.

Toolbars Registers new toolbars and their actions. You can also add
actions to pre-existing toolbars with this extension point. See
Chapter 9.

WarmUp Registers instances of the Runnable class, which are executed
automatically and asynchronously as applications start. See
Chapter 8.

Windows2/Components Registers module top components. See Chapter 10.

Windows2/Groups Registers groups of related top components that should
behave in concert with each other. See Chapter 10.

Windows2/Modes Registers custom modes, i.e., areas within the application
where top components can be displayed. See Chapter 10.

 APPENDIX

531

Important Configuration DTDs

Filesystem
<!-- -//NetBeans//DTD Filesystem 1.2//EN -->
<!-- XML representation of a fixed filesystem -->
<!-- as for example a module layer. -->
<!-- See: org.openide.filesystems.XMLFileSystem -->
<!ELEMENT filesystem (file|folder|attr)* >
<!ELEMENT folder (folder|file|attr)* >
<!ELEMENT file (#PCDATA|attr)* >
<!ELEMENT attr EMPTY >
<!ATTLIST filesystem >
<!ATTLIST folder
 name CDATA #REQUIRED >
<!ATTLIST file
 name CDATA #REQUIRED
 url CDATA #IMPLIED >
<!ATTLIST attr
 name CDATA #REQUIRED
 bytevalue CDATA #IMPLIED
 shortvalue CDATA #IMPLIED
 intvalue CDATA #IMPLIED
 longvalue CDATA #IMPLIED
 floatvalue CDATA #IMPLIED
 doublevalue CDATA #IMPLIED
 boolvalue CDATA #IMPLIED
 charvalue CDATA #IMPLIED
 stringvalue CDATA #IMPLIED
 urlvalue CDATA #IMPLIED
 methodvalue CDATA #IMPLIED
 newvalue CDATA #IMPLIED
 serialvalue CDATA #IMPLIED
 bundlevalue CDATA #IMPLIED >

Mode Definitions
<!-- //NetBeans//DTD Mode Properties 2.2//EN -->
<!ELEMENT mode (
 module?,
 name,
 kind,
 state,
 constraints?,
 (bounds | relative-bounds)?,
 frame?,
 active-tc?,
 empty-behavior?,

 APPENDIX

532

 slidingSide?,
 slideInSize*) >
<!ATTLIST mode
 version CDATA #REQUIRED >

<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED
 spec CDATA #IMPLIED >

<!ELEMENT name EMPTY >
<!ATTLIST name
 unique CDATA #REQUIRED >

<!ELEMENT kind EMPTY >
<!ATTLIST kind
 type (editor | view | sliding) #REQUIRED >

<!ELEMENT slidingSide EMPTY >
<!ATTLIST slidingSide
 side (left | right | bottom) #REQUIRED >

<!ELEMENT slideInSize EMPTY >
<!ATTLIST slideInSize
 tc-id CDATA #REQUIRED
 size CDATA #REQUIRED >

<!ELEMENT state EMPTY >
<!ATTLIST state
 type (joined | separated) #REQUIRED >

<!-- This entry is used when a window is moved out of the applcation via the "Undock" function
-->
<!ELEMENT bounds EMPTY >
<!ATTLIST bounds
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 width CDATA #REQUIRED
 height CDATA #REQUIRED >
<!ELEMENT relative-bounds EMPTY >
<!ATTLIST relative-bounds
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 width CDATA #REQUIRED
 height CDATA #REQUIRED >

<!-- The current status of the windows. The value is represented by an integer. Settable
values can be found in the java.awt.Frame class. Default: Frame.NORMAL (0) -->
<!ELEMENT frame EMPTY >
<!ATTLIST frame
 state CDATA #IMPLIED >

 APPENDIX

533

<!ELEMENT constraints (path*) >
<!ATTLIST constraints >

<!ELEMENT path EMPTY >
<!ATTLIST path
 orientation (horizontal | vertical) #REQUIRED
 number CDATA #REQUIRED
 weight CDATA #IMPLIED >

<!ELEMENT active-tc EMPTY >
<!ATTLIST active-tc
 id CDATA #IMPLIED > // ID of the active top component

<!—If set to true permanently, the mode will continue to exist even when no top component is
docked within it -->
<!ELEMENT empty-behavior EMPTY >
<!ATTLIST empty-behavior
 permanent (true | false) #IMPLIED >

Configuration of Top Component in Mode
<!-- //NetBeans//DTD Top Component in Mode Properties 2.2//EN -->
<!ELEMENT tc-ref (
 module?,
 tc-id,
 state,
 previousMode,
 docking-status?,
 slide-in-status?) >
<!ATTLIST tc-ref
 version CDATA #REQUIRED>

<!—- This optional element is used to remove the top component reference when the specified
module is deactivated -->
<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED // Code name base of the module
 spec CDATA #IMPLIED > // Specification version of the module

<!ELEMENT tc-id EMPTY >
<!ATTLIST tc-id
 id CDATA #REQUIRED > // Unique ID of the top component

<!ELEMENT state EMPTY >
<!ATTLIST state
 opened (true | false) #REQUIRED >

<!—- This attribute is used by the sliding views to restore the top component in the previous
mode. -->
<!ELEMENT previousMode EMPTY >

 APPENDIX

534

<!ATTLIST previousMode
 name CDATA
 index CDATA #IMPLIED>
<!ELEMENT docking-status EMPTY >
<!ATTLIST docking-status
 maximized-mode (docked | slided) #IMPLIED
 default-mode (docked | slided) #IMPLIED >

<!ELEMENT slide-in-status EMPTY >
<!ATTLIST slide-in-status
 maximized (true | false) #IMPLIED >

Top Component Group Definition
<!-- //NetBeans//DTD Group Properties 2.0//EN -->
<!ELEMENT group (
 module?,
 name,
 state) >
<!ATTLIST group
 version CDATA #REQUIRED >

<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED
 spec CDATA #IMPLIED >

<!ELEMENT name EMPTY >
<!ATTLIST name
 unique CDATA #REQUIRED >

<!ELEMENT state EMPTY >
<!ATTLIST state
 opened (true | false) #REQUIRED >

Configuration of Top Component in Group
<!--//NetBeans//DTD Top Component in Group Properties 2.0//EN -->
<!ELEMENT tc-group (
 module?,
 tc-id,
 open-close-behavior) >
<!ATTLIST tc-group
 version CDATA #REQUIRED >

<!ELEMENT module EMPTY >
<!ATTLIST module
 name CDATA #REQUIRED
 spec CDATA #IMPLIED >

 APPENDIX

535

<!ELEMENT tc-id EMPTY >
<!ATTLIST tc-id
 id CDATA #REQUIRED > // Unique ID of the top component

<!ELEMENT open-close-behavior EMPTY >
<!ATTLIST open-close-behavior
 open (true | false) #REQUIRED
 close (true | false) #REQUIRED
 was-opened (true | false) #IMPLIED >

Toolbar Definition and Configuration
<!-- //NetBeans//DTD Toolbar Configuration 1.1//EN -->
<!ELEMENT Configuration (Row+) >
<!ELEMENT Row (Toolbar*) >
<!ELEMENT Toolbar EMPTY >
<!ATTLIST Toolbar
 name CDATA #REQUIRED
 visible (true | false) #IMPLIED
 align (left | right) #IMPLIED
 draggable (true | false) #IMPLIED >

Palette Item Definition
<!-- //NetBeans//DTD Editor Palette Item 1.1//EN -->
<!ELEMENT editor_palette_item (
 (class|body),
 icon16,
 icon32,
 (description|inline-description)) >
<!ATTLIST editor_palette_item
 version CDATA #REQUIRED >

<!-- Name of the class that implements the
 org.openide.text.ActiveEditorDrop interface -->
<!ELEMENT class EMPTY>
<!ATTLIST class
 name CDATA #REQUIRED >

<!-- Textual description, which can also contain HTML tags. -->
<!ELEMENT body (#PCDATA)>

<!ELEMENT icon16 EMPTY>
<!ATTLIST icon16
 urlvalue CDATA #REQUIRED >
<!ELEMENT icon32 EMPTY>
<!ATTLIST icon32
 urlvalue CDATA #REQUIRED >

 APPENDIX

536

<!ELEMENT description EMPTY>
<!ATTLIST description
 localizing-bundle CDATA #REQUIRED
 display-name-key CDATA #REQUIRED
 tooltip-key CDATA #REQUIRED >

<!ELEMENT inline-description (display-name, tooltip)>
<!ELEMENT display-name (#PCDATA)>
<!ELEMENT tooltip (#PCDATA)>

537

Index

 A
AbstractAction class, 119–120, 226
AbstractFacade class, 347
AbstractLookup class, 71
AbstractNode class, 83–84, 158, 163–165,

235
AbstractTask class, 152–154
AbstractUndoableEdit class, 212
AcceptAction action, 193
AcceptProvider interface, 193
Action interface, 132, 226
ActionFactory class, 192
ActionID annotation, 77, 79–80, 83, 127–128
ActionListener inferface, 78
ActionListener interface, 75, 119, 208, 354
ActionMap, 79
ActionMapAction action, 193
actionPerformed() method, 78, 83, 95, 173, 184,

354–355, 511, 516
ActionReferences, 109–110, 114–115, 119–120,

128, 132
ActionRegistration annotation, 77, 79–80, 83
actions, 75–85, 446–447

adding to output window, 226
Always Enabled, 76–78
callback, 79–81
context aware, 82–85

Actions folder, 78, 113
actionsForPath() method, 121
activatePanel() method, 233
Activator class, 53, 428
active state, 131
ActiveEditorDrop interface, 264
Add archetype option, 432, 434
Add Property option, 335
addActionPerformed() method, 519
addObject() method, 200
AddRemoveControlPointAction action,

193

address parameter, 486
addResult() method, 277
addTest() method, 466
addToContainer.OperationContainer.createForI

nstall() method, 284
addToContainer.OperationContainer.createFor

Update() method, 284
AddToPlaylist class, 277
addUndoableEditListener() method, 213
AdminModule, 365
AggregateProgressFactory, 152–155
AggregateProgressHandle, 152, 154–155
Album class, 255, 257–259, 303
Album table, 311
AlbumNode class, 256–257, 259
AlbumNodeFactory class, 255
AlbumsTableModel class, 299
AlbumsTopComponent class, 299–300
alignment, and anchoring, 444–445
AlignWithMoveAction action, MoveAction action

and, 193
AlignWithResizeAction action, ResizeAction

action and, 194
allModules() method, 475
Always Enabled actions, 76–78
Amazon Standard Identification Number (ASIN),

330
Amazon Web Service (AWS), 330, 332
anchoring, alignment and, 444–445
annotation, 63
APIs (Application Programming Interfaces)

Auto Update Services API, 279–285
in background, 279–284
deactivating modules automatically, 284–

285
com.galileo.netbeans.api, 412
Data Systems API, 91–92
Dialogs API, dialogs, 169–174
Explorer API, 166–168
File Systems API, 14, 88
ID3, 499–500

 INDEX

538

APIs (Application Programming Interfaces)
(cont.)
JPA, 315–321, 336

EntityManagerFactory in, 318
Hibernate implementation in, 315
loading objects in, 319
persistence layer configuration in, 315–

318
saving objects in, 319

Lookup & Utilities API, 14
Module System API, 14
MultiView, 141–145
MultiViewAPI, 141–145
Navigator API, 229–233
Nodes API, 157–165

containers, 158–159
context menu, 159–160
event handling, 160–161
example of, 161–165
icons, 159
Node class, 157–158

Options Dialog API, 241–250
options panels, 242–248
settings, 248–250

org-netbeans-api-progress, 13
org-netbeans-modules-options-api, 12
Palette API, 263–267

extending existing palette, 267
palette controller, 266–267
palette items, 264–265

Quick Search API, 275–278
hiding existing search provider

categories, 278
integrating UI, 277–278
provider, 276–277

Task List API, 269–273
Visual Library API, 187–205

graphs, 200–202
ObjectScene class, 199–200
Scene class, 197–199
structure of, 187
VMD, 203–204
Widget class, 188–196

application-specific code, 445–446
applications, 379–387

branding, 379–383
name, icons, and splash screen, 379–

380
resource bundles, 381–383
window system behavior, 380–381

command-line parameters, 383–385
determining while developing, 385
overview of, 384–385

distributions of, 385–387
installer package, 385–386
Java Web Start package, 387
Mac OS X application, 387
ZIP, 386–387

with Eclipse IDE
overview, 416–418
starting and executing, 421–422

in IntelliJ IDEA
creating, 431–435
executing, 436–437

JavaDB database
accessing out of application, 293
integrating server driver into application,

292
Maven

in NetBeans IDE, 404–405
without NetBeans IDE, 408–410, 412–414

updating, 389–398
Auto Update service, 389
configuring and installing on client page,

395–398
language packs, 395
NBM file, 390–394
with rich client platforms, 4–5
update centers, 394–395

web, 345
applications, MP3 Manager. See MP3 Manager

application
applyChanges() method, 244
arbitrary files, internationalization of, 375
ASIN (Amazon Standard Identification Number),

330
assign() method, 96
associateLookup() method, 166, 168
AsyncGUIJob interface, 209–210
asynchronous attribute, 79
attach() method, 271
attachEdgeWidget() method, 201
attachEnv() method, 238
attachNodeWidget() method, 201
attachPinWidget() method, 201
attributes

in layer file, internationalization of, 375–376
of manifest files, 19–23

service interfaces and service
implementations, 22

 INDEX

539

versions and dependencies, 20–22
visibility, 23

values of, 28–29
authentication, 353–367

adapting application upon, 361–366
module system for, 365–366
using System Filesystem, 362–365

directory server for, 355–357
JAAS, 359–361
JNDI, 358–359
login dialog for, 353–354

Auto Update Services API, 279–285, 389
in background, 279–284

automatically starting installation, 283–
284

updates, 279–282
deactivating modules automatically, 284–285

AutoInstallerImpl() method, 283
AutoUpdate-Essential-Module, 23
AutoUpdate-Show-In-Client, 23
Available Plugins tab, 396
AWS (Amazon Web Service), 330, 332
AWSECommerceService, 327–328, 331
AWSECommerceServicePortType node, 328, 331
AWSHandlerResolver class, 331–332

 B
batch-mode parameter, 408, 410
Beans Binding Framework, 447–457

binding listener, 455
converter class, 456–457
tables

binding data source and, 448–453
binding detail view to, 453–454

validator class, 455–456
BeanTreeView, 166–167
binding

listener, 455
tables

binding detail view to, 453–454
and data source, 448–453

boolvalue attribute, 29
Bootstrap module, 13–14
BorderFactory class, 191
borders, Widget class, 191
branding, 379–383

name, icons, and splash screen, 379–380
resource bundles, 381–383
window system behavior, 380–381

branding directory, 382
Breakpoints, 482–484
browse() method, 221
BrowserDisplayer class, 221
BufferedImage object, 198
bundle clusters, 54
Bundle object, 426
BundleActivator interface, 425
Bundle.properties file, 44, 77–78, 246, 371–372,

376
bundles

creating new, 51–52
format of, 49–51
integrating existing, 53–54
lifecycle of, 52–53
resource, 381–383

bundlevalue attribute, 29, 376

 C
Calculator class, 466–467
CalculatorTest class, 466–467
Call Enterprise Bean option, 339
call stack, 487–488
callback actions, 79–81
CallbackHandler interface, 361
CallbackHandler object, 361
canBeAdded() method, 281
cancel() method, 244
canCloseElement() method, 144–145
canImport() method, 259
CartBean object, 337–341, 344
CenteredZoomAction action, ZoomAction action

and, 194
central service management, 6
changed() method, 244
changes, monitoring, 90–91
checkValidity() method, 180
ChildFactory class, 163–164, 254
ChildFactoryAction, 165
child.getExt() method, 276
Children class, 158–159, 163–165, 167
ChoiceView, 166
Class method, 103
Class object, 57, 59, 72, 223
Class.forName() method, 289
classloader system, 9–10, 14–16

module, 15
original, 16
system, 16

 INDEX

540

clear() method, 150
clearMessages() method, 172
client pages

configuring and installing update centers on,
395–398

automatically installing updates, 398
new, 397–398

clients
RESTful web service, 349–351
web service, 327–329

close() method, 226, 291, 524
closed state, 130
CloseOperationState object, 144–145
closing() method, 41
CLOSING_DISABLED feature, 130
clusters, 54
cn (common name), 356
codeNameBase attribute, 365–366
com-galileo-netbeans-module.xml, 18
combo boxes, in toolbar, 119–120
com.galileo.netbeans.api, 412
com.galileo.netbeans.beans, 336–337, 340
com.galileo.netbeans.entities, 334, 337, 340
com.galileo.netbeans.order.module, 349
com.galileo.netbeans.order.service, 347
com.galileo.netbeans.service, 338
command-line parameters, 383–385

determining while developing, 385
overview of, 384–385

Command Line Parameters section, 382
common name (cn), 356
communication, inter-module, 66–71
Component object, 172–173
componentActivated() method, 131–132, 143
componentOpened() method, 526
components, integrating progress bar into,

155
CompositeBorder class, 191
config/Windows2Local folder, 125
ConfigFile, 360–361
configuration files, 18–19, 104–105

error reports, 105
service provider, 64–66

order of, 64–65
removal of, 64
Services folder, 65–66

Configuration object, 310
configure() method, 312
ConnectAction action, ExtendedConnectAction

action, 194
Connection object, 296

ConnectionWidget class, 201
construct() method, 209, 211
container.getSupport() method, 282
containers

node, 158–159
for nodes, 516–517
secondary panel, 247–248

context aware actions, 82–85
context interfaces, 95

implementing, 94
providing dynamically, 95–97

context menus, 132–133, 159–160
context-sensitive help, 222–223
ContextAware class, 75, 95, 97
ControllerListener interface, 509
controllers, palette, 266–267
controllerUpdate() method, 509
controlling debugging, 486–487
controls, toolbar, 119–121

combo box in, 119–120
drop-down menu in, 120–121

converter classes, 456–457
CopyAction, 81
Create from archetype option, 432
create() method, 270
Create NBM order, 393
Create Persistence Unit option, 325
createDialog() method, 172, 182
createElement() method, 144
createGroup() method, 272
createHandle() method, 154
createKeys() method, 164–165
createLookup() method, 168
createMultiView() method, 145
createNodeDelegate() method, 501
createNodeForKey() method, 164–165
createNodesForKey() method, 254–255
createNotificationLineSupport() method,

172
createPalette() method, 254, 266–267
createPropertiesSet() method, 501
createSatelliteView() method, 198
createSheet() method, 235–236, 501
create=true attribute, 291, 296
createView() method, 197
CTL_MyFirstAction, 77
customization display, 6
CutAction, 81
CycleFocusAction action, 195
CycleObjectSceneFocusAction action,

195

 INDEX

541

 D
data accessing modules, data models and, 296–

298
data editors, 5
data management, 87–99

Data Systems API, 91–92
DataObject class, 92–99

context interfaces, 94–97
data objects, 97–99

File Systems API, 88
FileObject class, 88–91

deleting, 89
monitoring changes, 90–91
reading and writing data, 90
removing, 90
renaming, 89

and representation, framework for, 6
data models, and data accessing module, 296–

298
data objects

factory, 97–98
manually creating, 99

data sources, tables and, binding, 448–453
data systems, 6
Data Systems API, 91–92
Database class, 525
DataFlavor object, 259, 521
DataFolder object, 115, 117–118
DataModel class, 297–298, 301–304
DataNode class, 158–159, 235, 498
DataObject class, 88, 92–99, 212

context interfaces
implementing, 94
providing dynamically, 95–97

data objects
factory, 97–98
manually creating, 99

DataObject method, 500
DataObjectNotFoundException, 99
DB database, 292–294, 308, 310, 448
DB driver, 309
Debugging window, 481
debugging with NetBeans IDE, 481–490

Breakpoints, 482–484
call stack, 487–488
controlling, 486–487
Debugging window, 481
heap walking, 488–489
remote debugging, 485–486

variables, 484–485
DefaultComboBoxModel, 210–211
default_options attribute, 385
delegate attribute, 78–79, 81–82, 84–85
DeleteAction, 81
deleteAlbum() method, 298–299, 302–303
dependencies

defining, 36–39
Java package dependency, 38
Java version dependency, 38–39
module dependencies, 36–38

with Eclipse IDE, 420
in IntelliJ IDEA, 435–436
Maven

in NetBeans IDE, 406
without NetBeans IDE, 412

versions and, 20–22
Widget class, 191

derby.system.home feature, 290, 293–295
Design strategies, of Swing GUI Builder tool, 444
Desktop class, 207, 221
detail view, binding to tables, 453–454
development time, reduction of with rich client

platforms, 4
Dialog class, 169, 172, 182
DialogDescriptor class, 172–173, 175, 303–304
dialogs

custom, 172–174
displaying notifications, 172
example of, 173–174

standard, 169–172
information dialog, 171
input dialog, 172
question dialog, 171

Dialogs API, dialogs
custom, 172–174
standard, 169–172

direct docking, 137
Directory Information Tree (DIT), 356
directory server, for authentication, 355–357
displayName attribute, 77–78, 80–81, 83–85, 128
displays, customization of, 6
dist/Amazon_Web_Services.jar file, 329
distribution attribute, 394
distributions, 385–387

installer package, 385–386
Java Web Start package, 387
Mac OS X application, 387
of NetBeans platform, 11–13
ZIP, 386–387

DIT (Directory Information Tree), 356

 INDEX

542

dockInto() method, 137
Document interface, 213
doDownload() method, 282
doInBackgroud() method, 330
doInBackground() method, 211, 330–332
doInstall() method, 282
done() method, 211, 331–332
doOperation() method, 285
doRestartLater() method, 282
doValidate() method, 282
Downloaded tab, 396
drag and drop functionality, 257–259
drag and drop operations, 521–523
drag() method, 258–259, 521
dragEnter() method, 522
DRAGGING_DISABLED feature, 130
Driver interface, 289
DriverManager class, 289
drivers

registering, 289–290
server, Java DB database, 292

drop-down menus, in toolbar, 120–121
drop() method, 522
DropTarget object, 522
dynamic Lookup concept, 71–72

 E
Eclipse IDE, 415–422

applications, 416–418, 421–422
dependencies, 420
installing, 415–416
modules, 418–420

Eclipse platform, plugins, 424–429
images, 427
information, 426–427
lifecycle, 425–429
resources, 428
settings, 428–429
views and editors, 429

eclipse.ini file, 416
eclipselink-db node, 322–323, 325
EclipseLink, MySQL with, 322–325

creating entities from database schema, 325
integrating driver, 324
integrating EclipseLink, 324–325
testing app, 326

Edit menu, 109–110
Edit Web Service Attributes option, 328
Editable interface, 82–85

EditAction action, and InplaceEditorAction
action, 195

editAlbum() method, 302–304
editAlbumActionPerformed() method, 299–300,

302
editor-palette-item, 264
editor type, 136
Editor window, of Swing GUI Builder tool, 439–

440
editors

data, 5
ID3, 500–503
user-defined properties, 238
views and, of Eclipse platform plugins, 429

EDT (event dispatch thread), 209
EJB (Enterprise Java Beans), 336–338
employeeType attribute, 357, 359
EmptyBorder class, 191
Enable Wrapper Style option, 328
enabled attribute, 18
end() method, 212
Enterprise Java Beans (EJB), 336–338
entities, persistent, 346
Entity Manager Factory, 326
EntityManager object, 316–319, 452
EntityManagerFactory, 316, 318–319
EntityTransaction, 319
equals() method, 199, 297
error reports, 105
etConnection() method, 291
evaluate() method, 277
event dispatch thread (EDT), 209
event handling, 160–161, 183–184
Execute Command, 323
Explorer API, 166–168
Explorer folder, 162
ExplorerChildFactory, 164–165
ExplorerFolderNode object, 164
ExplorerLeafNode class, 164–165
ExplorerManager class, 166
ExplorerManager.Provider interface, 519
ExplorerUtils class, 168
ExplorerUtils.createLookup method, 168
ExtendedConnectAction action, ConnectAction

action, ReconnectAction action and, 194
extension points, services and, 58–61

defining interface, 58
ensuring availability of, 60–61
loose provisioning of, 58–59
multiple implementations, 60

 INDEX

543

external web sites, inserting links into help pages
to, 221

Externalizable interface, 40
ExternalURLDisplayer class, 221

 F
factories, data objects, 97–98
fallback attribute, 79–82
FavoritesOperator class, 475
f.getChildren() method, 276
File class, 88–89
File System API, 14, 88
file types, 26–28

instance, 27–28
MP3, 497–498
shadow, 28

FileLocator class, 428
FileLock object, 89–90
FileObject class, 88–91

deleting, 89
monitoring changes, 90–91
reading and writing data, 90
removing, 90
renaming, 89

FileObject file, 271
FileObject parameter, 29
files, in layer file, 375–376
FileSystem class, 87, 89
filesystems, System, 30
FileUtil class, 90
FilterNode class, 158
Finalizer method, 460
find() method, 60, 99
findMode() method, 137
findObject() method, 200
findToolbar(String name) method, 117
findWidget() method, 201–202
Finish button, 420
finish() method, 151
finished() method, 209, 211
fireChangeEvent() method, 180–181
firePlayEvent() method, 509
firePropertyChange() method, 177, 449
folder elements, 26, 110
folders, in layer file, 375–376
forModule() method, 249, 428
Forms, with Swing GUI Builder tool, 443
ForwardKeyEventsAction action, 195
frameworks, 6

FreeMoveControlPointAction action,
MoveControlPointAction action,
OrthogonalMoveControlPointAction action
and, 196

functional GUI tests, 471–476
checking test coverage, 476
implementing test case, 472–475
installing test environment, 471–472

functional tests, Maven projects, 477–478

 G
general tests, 459–464
GENERATED ALWAYS AS IDENTITY, 294–295
Genre class, 311, 317
Genre table, 310
GenreNode class, 255
GenreNodeFactory class, 255
GenrePropertyEditor class, 238
get() method, 211, 330, 332
getAction() method, 192–193
getActionMap() method, 80–81, 84
getActions() method, 132, 142, 159, 166
getAlbums() method, 319
getAll() method, 359
getAttribute() method, 42
getAvailableUpdates() method, 281
getBrokenDependencies() method, 281
getBundle() method, 372
getComponent() method, 178, 184, 231, 238
getConfig() method, 363–364
getConfiguration() method, 117
getConfigurations() method, 118
getConnection() method, 291–293, 295–296,

298–299, 523
getContentType() method, 232–233
getCookieSet() method.assign() method, 158
getDefault() method, 27, 72, 102, 147, 170, 226,

280, 506, 510, 512
getErr() method, 226
getExplorerManager() method, 166–167, 519
getGenres() method, 319
getHelp() method, 179
getHelpCtx() method, 222
getId() method, 316
getInplaceEditor() method, 238
getInputText() method, 172
getInstalled() method, 280–281, 284
getIO() method, 226
getItem() method, 264

 INDEX

544

getLabel() method, 256
getLabelWidget() method, 201
getLocalizingSuffixes() method, 372, 375
getLogger() method, 103, 105
getLookup() method, 67, 69, 81, 158, 243
getMessage() method, 280–283, 285, 372
getModes() method, 140
getModule() method, 426
getName() method, 177–179, 283
getNodeDelegate() method, 525
getNodes() method, 525
getNotificationLineSupport() method, 179
getObjectState() method, 200
getOrderServicePort() method, 343–344
getOut() method, 226–227
getPersistenceType() method, 129, 133, 144
getPreferredAction() method, 160, 165
getProperties() method, 182
getPropertySet() method, 160
getRemaining() method, 517
getRequiredElements() method, 281, 285
getResource() method, 360
getSelectedRow() method, 302
getState() method, 200
getString() method, 371
getSystemTray() method, 208
getToolbarPresenter() method, 120
getToolbarRepresentation() method, 142
getToolbars() method, 117
getTransferData() method, 258–259
getTransferDataFlavors() method, 258
getUndoRedo() method, 143, 212–213
getUserGroups() method, 359, 361–362
getValue() method, 182
getVisualRepresentation() method, 142
global services, 61–63
graphical components, asynchronous

initialization of, 209–211
graphical user interface (GUI), 3
graphics, internationalization of, 375
graphs, 200–202
GraphScene class, 202
groups, registering scanners and, 272
GUI (graphical user interface), 3

 H
handleModules() method, 362, 365–366
handleTransfer() method, 264
heap walking, 488–489

Help class, 223
help pages, 220

inserting links into, 220–222
to external web sites, 221
to other help pages, 221–222

internationalization of, 373–375
help sets, 218–220

help pages, 220–222
module-hs.xml file, 218
module-idx.xml file, 220
module-map.xml file, 219
module-toc.xml file, 220

help systems, 6, 217–224
context-sensitive, 222–223
help sets, 218–220

help pages, 220
module-hs.xml file, 218
module-idx.xml file, 220
module-map.xml file, 219
module-toc.xml file, 220

opening, 223
HelpCtx class, 172, 179, 219, 222–223, 244
HelpCtx.Provider interface, 222
HelpOperator class, 475
Hibernate implementation, in JPA, 315
Hibernate library, 307–314

configuring, 309–314
mapping objects on relations, 310–311
saving and loading objects, 313–314
SessionFactory resource and sessions,

312–313
integrating, 307–308
structure of exemplified application, 308–309

hibernate3.jar, 315
hibernate.cfg.xml, 316
hidden menus, 112–113
HoverAction action, 196
hyperlinks, inserting and displaying, 226–227

 I
icon attribute, 163
iconBase attribute, 77–81, 83–85
IconNodeWidget class, 201
icons

names, splash screen and, 379–380
node, 159

ID3 tags, 498–503
API, 499–500
editor, 500–503

 INDEX

545

IDEs (Integrated Development Environments),
423–430
Eclipse platform plugins, 424–429

images, 427
information, 426–427
lifecycle, 425–429
resources, 428
settings, 428–429
views and editors, 429

NetBeans, 423–424
handling projects, 424
navigation within, 423

ImageIcon, 332
ImageIO class, 198
images, plugin, 427
ImageUtilities class, 375, 427
ImageWidget class, 201
importData() method, 259
inactive state, 131
IndexedNode class, 158
information dialogs, 171
initActions() method, 168
initComponents() method, 167
InitialDirContext class, 358–359
initTables() method, 294–295, 523
initTree() method, 167
injectable attribute, 84–85
InplaceEditorAction action, EditAction action

and, 195
input dialogs, 172
InputOutput object, 226
InputOutput.select() method, 226
insertAlbum() method, 298–299, 302
Inspector window, of Swing GUI Builder tool,

441
Installer class, 313, 326, 428
installer packages, 385–386
installing test environment, functional GUI tests,

471–472
.instance element, 78
instance files, 27–28
InstanceContent object, 69, 71–72
instanceCreate attribute, 78, 81–82, 84–85
instanceOf attribute, 28
instantiate() method, 185
Integrated Development Environments. See IDEs
IntelliJ IDEA, 431–437

applications
creating, 431–435
executing, 436–437

defining dependencies, 435–436

Maven support in, 431
inter-module communication, 66–71
interfaces

context, 95
implementing, 94
providing dynamically, 95–97

service
defining, 58
and service implementations, 22

TopComponentGroup, 138–139
internationalization, 6, 371–378

administration and preparation of localized
resources, 376–378

of arbitrary files, 375
of folders, files, and attributes in layer file,

375–376
of graphics, 375
of help pages, 373–375
string literals

in manifest file, 373
in source code, 371–372

intvalue attribute, 26, 29
invisible state, 131
invokeWhenUIReady() method, 174
io.getErr() method, 225
io.getOut() method, 225, 227
IOProvider.getDefault() method, 225–

227
IPreferenceStore object, 428
isChanged() method, 244
isFocusable() method, 222
isValid() method, 179, 181, 184–185, 244
ItemLookup, 331–332
ItemLookupRequest, 331–332
iterators, 185

 J
JAAS (Java Authentication and Authorization),

359–361
JAR file, 42–43, 87, 308, 390, 395, 402–403, 441,

451
Java Authentication and Authorization (JAAS),

359–361
Java class, 113, 125, 229, 238, 341, 371, 448
Java Database Connectivity (JDBC), 315
Java DB database, 289–305

accessing out of application, 293
configuring, 292

 INDEX

546

Java DB database (cont.)
developing by means of NetBeans IDE, 292–

294
accessing database out of application, 293
configuring database, 292
installing and starting Java DB database

system, 292
integrating Java DB database server driver

into application, 292
retrieving and importing structures of

tables, 294
example application using, 294–305

configuration, access, and shutdown,
294–296

data models and data accessing module,
296–298

representing and editing data, 299–305
integrating, 289
registering drivers, 289–290
retrieving and importing structures of tables,

294
shutting down, 291–292

Java Debug Wire Protocol (JDWP), 485
Java Debugger (JPDA), 486
Java Development Kit (JDK), 17
Java EE (Java Enterprise Edition), 333–344

EJB, 336–338
NetBeans Platform application, 342–344
persistent entities for, 334–335
web service client for, 341–342
web service for, 338–341

Java Enterprise Edition. See Java EE
Java file, 218
Java Media Frameworks (JMF) modules, 496
Java Micro Edition (JME), 187
Java Naming and Directory Interface (JNDI),

358–359
Java object, 27
Java package dependency, 38
Java Persistence API. See JPA
Java Persistence Query Language (JPQL), 315
Java ServiceLoader class, 72–73
Java version dependency, 38–39
Java Web Start packages, 387
javassist.util.proxy.ProxyFactory, 308
java.util.List, 325
java.util.logging.config.class, 104
javax.persistence, 315, 317, 319
JAX-WS Style, 328
JButtonOperator class, 474–475
JComboBox, 210

JComponent class, 150, 188
JDBC driver, 289
JDBC interface, 307, 314
JDBC (Java Database Connectivity), 315
jdbc/ProductDatabase, 346
JDK (Java Development Kit), 17
JDWP (Java Debug Wire Protocol), 485
JellyTestCase class, 474
JME (Java Micro Edition), 187
JMenubar class, 115
JMF (Java Media Frameworks) modules, 496
JNDI (Java Naming and Directory Interface),

358–359
JPA (Java Persistence API), 315–320

EntityManagerFactory in, 318
Hibernate implementation in, 315
loading objects in, 319
persistence layer configuration in, 315–318
saving objects in, 319

JPanel class, 242, 303
JPDA (Java Debugger), 486
JPQL (Java Persistence Query Language), 315
JScrollBar class, 190
JTextComponent, 264–265
JTextFieldOperator, 474–475

 K
KEEP_PREFERRED_SIZE_WHEN_SLIDED_IN

feature, 130
key attribute, 82
key parameter, 79
KeyEvent.VK_M, 113
kind element, 135

 L
langcode attribute, 395
language packs, 395
Layer file, 17, 24
layer files, 24–30

accessing System Filesystem, 30
attribute values, 28–29
entries in palette module via, 252–253
file types, 26–28

instance, 27–28
shadow, 28

folders, files, and attributes in, 375–376
order of folders and files in, 26

layer.xml file, 17, 32

 INDEX

547

LayoutFactory class, 191
LayoutFactory.SerialAlignment type, 192
Level class, 103
libraries, 42–46

adding to module, 45–46
wrapper module, 43–45

license element, 390, 394
LifecycleManager class, 102–103, 173, 429
lifecycles

of application, 429
of bundles, 52–53
of NetBeans Platform, 101–103

restart of, 103
tasks on ending, 101–102
tasks on starting, 101

of plugins, 425–426
List object, 452
listeners, binding, 455
ListSelectionListener interface, 68
literals, string

in manifest file, 373
in source code, 371–372

load() method, 244, 525–526
Loaded Classes window, 488–489
loadImage() method, 375
loading objects, in JPA, 319
loadInstalled() method, 72
Locale object, 372
Locale.getDefault() method, 372
localized resources, administration and

preparation of, 376–378
Logger object, 103
logging, 103–105

configuration files, 104–105
Logger object, 103
LogManager manager, 103–104

LoggingTaskScanner, 270–272
login dialog, for authentication, 353–354
login() method, 358, 361
LoginContext, 360–361
LoginHandler class, 353–355, 361–362
LogManager manager, 103–104
LogManager method, 104
Lookup & Utilities API, 14
Lookup class, 71–72
Lookup concept, 57–73

dynamic, 71–72
functionality of, 57–58
Java ServiceLoader class, 72–73
registering service providers, 63–71

annotation, 63

configuration file, 64–66
inter-module communication, 66–

71
services

and extension points, 58–61
global, 61–63

lookup() method, 60, 95
Lookup, service tests and, 466–468
lookupAll() method, 28
LookupListener interface, 70
Lookup.Provider interface, 67
loose service provisioning, 58–59

 M
Mac OS X applications, 387
MainWindowOperator, 474–475
Manager class, 507
manifest element, 390, 395
manifest files, 19–24

attributes, 19–23
service interfaces and service

implementations, 22
versions and dependencies, 20–22
visibility, 23

example of, 24
string literals in, internationalization of,

373
ManifestItem class, 264
mapping, objects on relations, 310–311
Math class, 459–464, 468–470
MathTest class, 460–463, 465–466, 470
Maven, 401–414

in NetBeans IDE, 404–406
adding dependencies, 406
applications, 404–405
modules, 405–406

POM files
module, 402–403
parent, 402

repositories, 403–404
without NetBeans IDE, 407–414

adding dependencies, 412
applications, 408–410
executing, 412–414
making packages public, 412
modules, 410–411

Maven Build option, 421
Maven Module, 431, 434
MAVEN PROJECT wizard, 416

 INDEX

548

Maven projects, 476–479
functional tests, 477–478
module tests, 476–477
test coverage, 478–479

Maven support, in IntelliJ IDEA, 431
MAXIMIZATION_DISABLED feature, 130
Media Library module, for MP3 Manager

application, 503
menu bar, 109–115

custom, 115
menu entries

creating and positioning menu and, 109–
112

hiding present, 112–113
separators, 112
shortcuts and mnemonics, 113–115

MenuBar class, 115
Menubar class, 118
menus

context, 132–133, 159–160
drop-down, in toolbar, 120–121
and entries in

creating and positioning, 109–112
hiding present, 112–113

MenuView, 166
Metadata file, 45
methodvalue attribute, 27, 29
MIME type, 12, 92, 98, 159, 229, 232–233, 266,

497, 503
mnemonics, shortcuts and, 113–115
MockServices class, 467–468
models, and data accessing module, 296–298
modes, 134–138

direct docking, 137
modifying, 138

module attribute, 135, 139
module classloader, 15
module dependencies, 36–38
module element, 394
module-hs.xml file, 218, 374–375
module-idx.xml file, 220
module-map.xml file, 219
Module System API, 14
module system, for authentication, 365–366
module systems, NetBeans. See Netbeans

Module System
module tests, Maven projects, 476–477
module-toc.xml file, 220
module_group element, 394
ModuleInfo class, 42, 426
ModuleInstall class, 39–40

ModuleName class, 264
modules, 30–34

adding libraries to, 45–46
data accessing, data models and, 296–298
deactivating automatically, 284–285
with Eclipse IDE, 418–420
inter-module communication, 66–71
library wrapper, 43–45
lifecycle of, 39–42
Maven

in NetBeans IDE, 405–406
without NetBeans IDE, 410–411

registry of, 42
reusing, 46–47
structure of, 17–18

modules attribute, 405
module_updates element, 394
MouseAdapter, 299–300
MouseListener, 299
MoveAction action, and AlignWithMoveAction

action, 193
MoveControlPointAction action,

FreeMoveControlPointAction action, 196
moveFile() method, 90
MP3 Manager application, 493–527

design for, 493–494
Media Library module, 503
MP3 player, 505–515

playback, 510–511
service interface, 505–506
service provider, 507–510
UI for, 512–515

playlist, 515–526
drag and drop operations, 521–523
nodes, 516–517
saving, 523–526
top component, 517–521

Services module, 504
support for, 495–498

ID3 tag, 498–503
JMF module, 496
MP3 file type, 497–498
registering MP3 plugin, 496

Mp3DataLoader.instance, 98
Mp3DataObject, 93–98, 158–159
MultiFileLoader object, 93
MultiFileSystem, 468–469
multiply() method, 468–470
MultiViewAPI, 141–145
MultiViewElementCallback object, 142–143
MultiViewFactory class, 144

 INDEX

549

MultiViewFactory.createUnsafeCloseState()
method, 144

MyAction class, 25, 28
MyClass class, 27
MyDB database, 291–293, 296
MyFirstAction, 110–116
MyHyperlinkListener() method, 227
MyInterface interface, 28
MyMusicQSProvider() method, 276
MyNode class, 83–84
MyProgram class, 153
MySQL databases

creating entities from database schema,
325

installing, 322–325
integrating driver, 324
integrating EclipseLink, 324–325

MyTask class, 153–154
MyTask2 class, 153–154
MyToolbar, 116–117, 119
MyToolbarConfig, 131–132
MyTopComponent class, 371–372
MyTopComponentTest class, 474–475

 N
name element, 135
navigation, within NetBeans IDE, 423
Navigator API, panels, 229–233
NavigatorHandler class, 233
NavigatorLookupHint interface, 229, 232
NavigatorPanel interface, 231
NB App Branding, 405
NB App Parent, 405, 409
NbBundle class, 371–372, 375–376
NbDialogOperator class, 476
nbm-archetype, 419
nbm-archetype archetype, 434
NBM file, 389–396, 398, 413
nbm-maven-plugin, 436
NBM (NetBeans module) files, 390–394
NbModuleSuite class, 465–466, 474–475
nbm:run-platform, 436
nbm:standalone-zip, 436
NbPreferences class, 249, 428
nbproject folder, 391
NbTestCase class, 465
NetBeans IDE, 423–424

handling projects, 424

Java DB database
accessing out of application, 293
configuring, 292
developing by means of NetBeans IDE,

292–294
installing and starting, 292
integrating server driver into application,

292
retrieving and importing structures of

tables, 294
navigation within, 423

NetBeans module (NBM) files, 390–394
NetBeans Module System, 17–48

configuration file, 18–19
defining dependencies, 36–39

Java package, 38
Java version, 38–39
module, 36–38

layer file, 24–30
accessing System Filesystem, 30
attribute values, 28–29
file types, 26–28
order of folders and files in, 26

libraries, 42–46
adding to module, 45–46
wrapper module, 43–45

manifest file, 19–24
attributes, 19–23
example of, 24

modules, 30–34
lifecycle of, 39–42
registry of, 42
reusing, 46–47
structure of, 17–18

versioning, 34–36
NetBeans Platform

characteristics of, 5–6
central service management, 6
customization display, 6
data editor, 5
data systems, 6
framework for management and

representation of data, 6
help system, 6
internationalization, 6
UI framework, 5
wizard framework, 6

lifecycle of, 101–103
restart of, 103
tasks on ending, 101–102
tasks on starting, 101

 INDEX

550

NetBeans Platform (cont.)
structure of, 9–16

classloader system, 14–16
NetBeans Runtime Container, 13–14
platform architecture, 9–10
platform distribution, 11–13

netbeans-platform-app archetype, 416
NetBeans Platform application, 342–344, 348–

349
NetBeans Runtime Container, 13–14, 465–466
NetBeans window, 380
NetBeans wizard, 52–53
netbeans.user feature, 290, 295
netbeansVersion property, 417, 419
newAlbum() method, 301, 303–304
newvalue attribute, 29
Nexus Indexer catalog, 416, 419
Node class, 157–158, 254–256, 258, 527
Node object, 497
NodeContainer class, 525
NodeListener interface, 161
nodes

container for, 516–517
custom, creating palette module via, 254–259
view for, 516

Nodes API, 157–165
containers, 158–159
context menu, 159–160
event handling, 160–161
example of, 161–165
icons, 159
Node class, 157–158

noIconInMenu attribute, 79
NotificationDisplayer.getDefault() method, 282
NotificationDisplayer.Priority, 150
notifications

displaying, 172
status bar, 149–150

notify() method, 150, 170, 174, 302–303
NotifyDescriptor class, 171–172
NotifyDescriptor.Confirmation class, 171, 302
NotifyDescriptor.InputLine class, 172
NotifyDescriptor.Message class, 171
notifyFinish() method, 272
notifyLater() method, 172–173
notifyPrepare() method, 272

 O
objects, in JPA, 319

ObjectScene class, 199–200
ObjectState class, 199
obj.getOriginal() method, 276
OM file, 402
One file, 390
open attribute, 138
open() method, 145
OpenActionRegistration, 128
openAtStartup attribute, 128
opened attribute, 129
opened state, 128–131, 133–134, 138–139, 143
OpenIDE-Module attribute, 19
OpenIDE-Module-Build-Version, 21, 35
OpenIDE-Module-Deprecated, 21–22
OpenIDE-Module-Deprecation-Message, 22
OpenIDE-Module-Display-Category, 20
OpenIDE-Module-Friends, 20, 36
OpenIDE-Module-Implementation-Version, 21,

24, 35, 45
OpenIDE-Module-Install, 20, 24, 40
OpenIDE-Module-Java-Dependencies, 21, 24,

38, 45
OpenIDE-Module-Layer, 20, 24
OpenIDE-Module-Localizing-Bundle, 20, 24, 45
OpenIDE-Module-Long-Description, 20
OpenIDE-Module-Module-Dependencies, 21,

24, 37–38
OpenIDE-Module-Module-Dependency-

Message, 21
OpenIDE-Module-Name, 19
OpenIDE-Module-Needs, 22
OpenIDE-Module-Package-Dependencies, 21,

38
OpenIDE-Module-Package-Dependency-

Message, 21
OpenIDE-Module-Provides, 22
OpenIDE-Module-Public-Packages, 20, 24, 35, 45
OpenIDE-Module-Recommends, 22
OpenIDE-Module-Requires, 22–24, 45
OpenIDE-Module-Requires-Message, 22
OpenIDE-Module-Short-Description, 19
OpenIDE-Module-Specification-Version, 21, 24,

35, 45
openSession() method, 312–313
OperationContainer.createForDirectDisable()

method, 284–285
OperationContainer.createForInstall() method,

281
OperationContainer.createForUpdate() method,

281
Options Dialog API, 241–250

 INDEX

551

options panels, 242–248
primary, 246
secondary, 246–247
secondary panel container, 247–248

settings, 248–250
options panels, 242–248

primary, 246
secondary, 246–247
secondary panel container, 247–248

OptionsDisplayer class, 248
OptionsDisplayer.open() method, 246
OptionsOperator class, 476
OrderService object, 343
OrderServiceClient, 349–351
OrderService_Service class, 343
OrderSystemPU, 346
org-netbeans-api-progress, 13
org-netbeans-core-multiview, 11
org-netbeans-modules-autoupdate-services, 12
org-netbeans-modules-autoupdate-ui, 12
org-netbeans-modules-editor-mimelookup, 12
org-netbeans-modules-favorites, 12
org-netbeans-modules-javahelp, 12
org-netbeans-modules-masterfs, 12
org-netbeans-modules-options-api, 12
org-netbeans-modules-queries, 13
org-netbeans-modules-sendopts, 13
org-netbeans-modules-settings, 13
org-netbeans-swing-plaf, 13
org-netbeans-swing-tabcontrol, 13
org-openide-actions, 12
org-openide-awt, 13
org-openide-dialogs, 13
org-openide-execution, 13
org-openide-explorer, 12
org-openide-io, 13
org-openide-loaders, 12
org-openide-nodes, 12
org-openide-text, 13
org-openide-windows, 12
org.apache.derby.jdbc.EmbeddedDriver, 310
org.codehaus.mojo.archetypes, 432, 434
org.hibernate.dialect, 310
org.netbeans.spi.quicksearch, 12
original classloader, 16
OrthogonalMoveControlPointAction action,

MoveControlPointAction action, 196
OSGi Bundle, 49–53
OSGi Framework, 49–55

bundles
creating new, 51–52

format of, 49–51
integrating existing, 53–54
lifecycle of, 52–53

runtime container, 54
Output Window module, 225–228

actions, 226
inserting and displaying hyperlinks, 226–227
producing, 225–226

OutputListener interface, 227
OutputOperator class, 476
OutputWriter class, 226

 P
packages, Maven, making public, 412
paint() method, 198
Palette API, 263–267

extending existing palette, 267
palette controller, creating and registering,

266–267
palette items, defining and registering, 264–

265
palette controllers, creating and registering, 266–

267
palette items, defining and registering, 264–265
palette module, 251–260

creating via custom nodes, 254–259
drag and drop functionality, 257–259
node classes, 254–256

entries in, via layer file, 252–253
Palette window, of Swing GUI Builder tool, 440
PaletteActions class, 253
PaletteController, 266
PaletteFactory class, 251, 253, 266
palettes, extending existing, 267
PanAction action, 196
panels, 176–181

creating wizard from, 181–182
displaying with Navigator API, 230–233
options, 242–248

primary panel, 246
secondary panel, 246–247
secondary panel container, 247–248

persistence layer configuration, in JPA, 315–318
persistence, of TopComponent class, 133
persistence units, 315
PERSISTENCE_ALWAYS, 127, 133
PERSISTENCE_NEVER, 133, 144
PERSISTENCE_ONLY_OPENED, 133
persistence.xml file, 315–316, 318, 337

 INDEX

552

persistent entities, 334–335, 346
Platform class, 36
platforms

NetBeans
architecture of, 9–10
distribution of, 11–13

rich client, 3–4
advantages of, 4–5
independence of, 5

play() method, 95, 507, 509
playActionPerformed() method, 514
playback, of MP3 files, 510–511
playing() method, 95–96, 515
PlayInterface, 94–97
Playlist class, 526
playlists, 515–526

drag and drop operations, 521–523
nodes

container for, 516–517
view for, 516

saving, 523–526
top component, 517–521

PlaylistTopComponent class, 257
PlaylistTopComponent.addFile.DataObject

.find(fo).getNodeDelegate() method, 277
PlaylistView class, 521
PlaylistWizardDescriptor class, 182
PlaySupport class, 95
Plugin Manager, 389–391, 394–395, 397
pluginManagement element, 409–410
plugins, 424–429

images, 427
information, 426–427
lifecycle

of application, 429
and events, 425–426

MP3, registering, 496
resources, 428
settings, 428–429
views and editors, 429

PluginsOperator class, 476
POM files, 402–403, 410–411, 413, 418, 433–436
PopupMenuAction action, 196
position attribute, 110–111, 128
Preferences class, 248–249
Preferences/com/galileo/netbeans/module.pro

perties file, 428
Preferences object, 428
Preferences.properties file, 249, 428
preferredID attribute, 128
preferredID() method, 127–129, 144

prepareValidation() method, 185
Presenter.Toolbar interface, 119
PRIMARY KEY, 294–295
primary panels, 246
println() method, 226–227
PrintWriter class, 226
process() method, 211
processTaskList() method, 153
ProductBean class, 336–341
ProductFacadeREST class, 347–348
progress bar, 150–155

displaying progress
of multiple related tasks, 152–154
of separate tasks, 150–152

integrating into component, 155
ProgressContributor class, 152–155
ProgressHandle, 151–152, 155
ProgressHandleFactory, 151–152, 155
project.properties file, 385
projects, handling with NetBeans IDE, 424
PROP_ACTIVATED, 134
properties

providing, 236–238
user-defined editor for, 238

properties files, 104, 382–383
Properties object, 133, 291, 358
Properties window, 235–239

providing properties, 236–238
of Swing GUI Builder tool, 442
user-defined properties editor, 238

property element, 311
propertyChange() method, 180
PropertyChangeListener, 134, 140, 354
PropertyEditor interface, 238
PropertyEnv object, 238
PROP_TC_CLOSED, 134
PROP_TC_OPENED, 134
protected void componentActivated() method,

131
protected void componentClosed() method,

131
protected void componentDeactivated()

method, 131–132
protected void componentHidden() method,

131
protected void componentOpened() method,

131
protected void componentShowing() method,

131
provider.getUpdateUnits() method, 281

 INDEX

553

providers, Quick Search API
implementing, 276–277
registering, 277

ProxyFactory object, 308
ProxyFactory.ClassLoaderProvider interface, 308
public, making packages public, 412
publicPackages element, 412
put() method, 238

 Q
Query object, 452
question dialogs, 171
Quick Search API, 275–278

hiding existing search provider categories,
278

integrating UI, 277–278
provider

implementing, 276–277
registering, 277

 R
RDBMS (relational database management

system), 289
RDN (relative distinguished name), 356
readConfiguration() method, 104
readProperties() method, 133
readSettings() method, 179–180
ReconnectAction action,

ExtendedConnectAction action, 194
RectangularSelectAction action, 196
redo functionality, undo functionality and, 211–

213
Reference file, 129
refresh() method, 280
RefreshAction class, 79–81
registering

drivers, 289–290
MP3 plugins, 496
palette controllers, 266–267
palette items, 264–265
panels, 232–233
Quick Search API provider, 277
scanners and groups, 272
service providers, 63–71

annotation, 63
configuration file, 64–66
inter-module communication, 66–71

registries
of modules, 42
TopComponent class, 134

rejectDrag() method, 522
relational database management system

(RDBMS), 289
relations, mapping objects on, 310–311
relative distinguished name (RDN), 356
reliability, reusability and, 5
Reload button, 343
Reload Catalog button, 396
remote debugging, 485–486
remove() method, 519
removeActionPerformed() method, 519
removeChild() method, 200
removeObject() method, 200
repositories, for Maven, 403–404
RequestProcessor class, 284
RequestProcessor.getDefault() method, 283
reset() method, 238
ResizeAction action, and AlignWithResizeAction

action, 194
Resolve button, 464
resource bundles, 381–383
Resource Bundles tab, 381
ResourceBundle method, 371
resources

localized, administration and preparation of,
376–378

plugin, 428
restored() method, 173, 208, 294, 308, 354, 496,

523
restoreState() method, 213
REST(Representational State Transfer)ful web

services, 345–352
client, 349–351
installing NetBeans Platform application,

348–349
persistent entities, 346
web applications, 345

Result object, 452
resultChanged() method, 231
reusability, and reliability, 5
revalidate() method, 191
rich clients

description of, 3
platforms, 3–5

root() method, 249, 428
run() method, 153, 276–277, 283
run.args.extra attribute, 385
Runnable instances, 105

 INDEX

554

Runnable interface, 101, 284
runtime container, 9–11, 14, 16
Runtime Container environment, NetBeans,

465–466
runtime containers, OSGi Framework, 54

 S
Satellite View overview, 198
saving objects, in JPA, 319
scan() method, 270
scanners

implementing, 270–272
registering, along with group, 272

Scene class, 192, 197–199, 205
exporting, 198–199
Satellite View overview, 198

screens, splash, names, icons and, 379–380
search providers, hiding existing categories of,

278
searchNewAndUpdatedModules() method, 280,

283–284
searchNewAndUpdatedModulesInDedicatedUC

() method, 280
SearchRequest object, 277
SearchResponse object, 277
secondary panel containers, 247–248
secondary panels, 246–247
SecurityManager class, 358, 361
SELECT query, 294
SelectAction action, and

RectangularSelectAction action, 196
selectionType attribute, 85
separatorAfter attribute, 112
separatorBefore attribute, 112
separators, 112
server drivers, Java DB database, 292
server parameter, 485
service implementations, service interfaces and,

22
service interfaces

for MP3 player, 505–506
and service implementations, 22

service provider interface (SPI), 10
service providers

for MP3 player, 507–510
registering, 63–71

annotation, 63
configuration file, 64–66
inter-module communication, 66–71

ServiceLoader class, 72
ServiceProvider, 148
services

and extension points, 58–61
defining service interface, 58
ensuring service availability, 60–61
loose service provisioning, 58–59
multiple service implementations, 60

global, 61–63
Services folder, 65–66
Services module, for MP3 Manager application,

504
SessionFactory, 312
SessionFactory resource, and sessions, 312–313
sessions, SessionFactory resource and, 312–313
setAction() method, 120
setActiveTool() method, 192
setAdditionalOptions() method, 170
setArtist() method, 237
setAWSAccessKeyId() method, 331–332
setBorder() method, 191
setConfiguration(String c) method, 118
setDefaultActionProcessor() method, 516, 519
setDelegates() method, 365, 469
setDisplayName() method, 236
setHelpIDString() method, 222
setIconBaseWithExtension() method, 159, 163
setId() method, 316
setLayout() method, 191
setMessage() method, 179, 181
setName() method, 236, 238
setOptions() method, 170
setPanelsAndSettings() method, 182
setPreferredIconSize(int s) method, 118
setPropagateMasks() method, 364
setProperties() method, 204
setStatusText() method, 147
settings, 248–250
Settings file, 129
settings.xml file, 404
setUp method, 462–463
setUserGroups() method, 365
setVisible() method, 182
shadow files, 28
Sheet class, 235, 501–502
Sheet.Set class, 236
shortcuts, and mnemonics, 113–115
showHelp() method, 223
showLoginDialog() method, 353–355
showURL() method, 221
shutdown=true parameter, 291–292, 296

 INDEX

555

SLIDING_DISABLED feature, 130
slidingSide element, 136
sn (surname), 356
source code, string literals in, 371–372
SPI (service provider interface), 10
Splash Screen tab, 380
splash screens, names, icons and, 379–380
SQLException, 291, 294–296, 298–299, 302–303
start() method, 148, 151, 154, 507
start(int workunits, long sec) method, 151
start(int workunits) method, 151
Startup module, 13
state element, 129
StateEdit class, 212–213
StateEditable interface, 212–213
states, of TopComponent class, 130–132
status bar, 147–150

extending, 147–148
notifications, 149–150

StatusDisplayer class, 147
StatusLineElementProvider interface, 147–148
stop() method, 429
StopInterface, 96–97
stopped() method, 515
StopTask class, 226
StopTask() method, 226
store() method, 244
storeSettings() method, 179, 182
storeState() method, 213
string literals, internationalization of

string literals in manifest file, 373
string literals in source code, 371–372

stringvalue attribute, 25–29
structure of

classloader system, 14–16
module, 15
original, 16
system, 16

NetBeans Runtime Container, 13–14
suite() method, 465, 474
Support class, 94
surname (sn), 356
surviveFocusChange attribute, 82, 85
suspend parameter, 486
Swing GUI Builder tool, 439–457

actions, 446–447
Beans Binding Framework, 447–457

binding listener, 455
converter class, 456–457
tables, 448–454
validator class, 455–456

components of
application-specific code, 445–446
and layout, 443–445
text and variable name, 445

structure of, 439–442
Editor window, 439–440
Inspector window, 441
Palette window, 440
Properties window, 442

Swing interface, 75
SwingWorker class, 152, 210–211, 330, 332
SwitchCardAction class, 192
switchToIndeterminate() method, 152
system classloader, 16
System Filesystem

accessing, 30
and authentication, 362–365
unit tests, 468–470

system trays, integration of, 208
System.exit() method, 102
SystemFileSystem.icon attribute, 376
SystemFileSystem.localizingBundle attribute,

376
System.out.println() method, 270
System.setProperty() method, 104

 T
tables

binding data source and, 448–453
binding detail view to, 453–454
and data source, binding, 448–453
retrieving and importing structures of, 294

Task List API
overview, 269
scanner

implementing, 270–272
registering, 272

tearDown method, 462–463
test coverage

functional GUI tests, 476
Maven projects, 478–479
unit tests, 470

TestFileSystem class, 469
testGetValue() method, 475
testing applications, 459–480

configuration for Maven projects, 476–479
functional tests, 477–478
module tests, 476–477
test coverage, 478–479

 INDEX

556

testing applications (cont.)
functional GUI tests, 471–476

checking test coverage, 476
implementing test case, 472–475
installing test environment, 471–

472
unit tests, 459–470

checking test coverage, 470
general tests, 459–464
Lookup and service tests, 466–468
NetBeans Runtime Container

environment, 465–466
System Filesystem, 468–470

testSetValue() method, 474–475
text, and variable name, 445
Thread class, 151–153
timestamp attribute, 394
TodoTaskScanner class, 270
toolbar, 115–121

adaptation by user, 118
configurations of, 116–117
controls, 119–121

combo box in toolbar, 119–120
drop-down menu in toolbar, 120–

121
custom, 118–119
and toolbar actions, 115–116

ToolbarPool class, 117–119
Toolbar.Presenter interface, 120
top component, 517–521
TopComponent class, 125–134

behavior of, 129–130
context menu, 132–133
persistence, 133
registry, 134
states of, 130–132

TopComponentGroup, 138, 140
TopComponentGroup interface, 138–

139
TopComponentOperator class, 474–476
TopComponent.Registry interface, 134
TopComponents, 101
toPopulate, 164–165
toString() method, 297
Transferable interface, 258, 521
TransferSupport object, 259
transport parameter, 485
TrayIcon object, 208
type attribute, 85

 U
UIs (User Interfaces), 207–214

asynchronous initialization of graphical
components, 209–211

consistency with rich client platforms, 4
Desktop class, 207
framework, 5
for MP3 player, 512–515
Quick Search API, integrating, 277–278
system tray integration, 208
undo and redo functionality, 211–213

undo functionality, and redo functionality, 211–
213

UndoableEdit interface, 212
undoableEditHappened() method, 212
UNDOCKING_DISABLED feature, 130
UndoManager class, 212
UndoRedo interface, 212
UndoRedo.Provider interface, 212
unit tests, 459–470

checking test coverage, 470
general tests, 459–464
Lookup and service tests, 466–468
NetBeans Runtime Container environment,

465–466
System Filesystem, 468–470

unit.getInstalled() method, 280, 285
update centers, 394–395
update() method, 244, 525–526
updateAlbum() method, 298–299, 302
UpdateManager.getDefault() method, 280, 284
updates

automatically installing, 398
installing and restarting, 281–282
searching, 279–280

Updates tab, 396
updateTitle() method, 143
updating applications, 4–5
URI object, 207, 221
URL object, 221, 375
URLDisplayer class, 221
URLMapper class, 428
urlvalue attribute, 27, 29
Use Entity Manager option, 337
useDefaultManifestFile element, 411
user-defined properties editors, 238
User Interfaces. See UIs

 INDEX

557

UserGroupFileSystem class, 361–362, 364
UserGroupModuleSystem class, 361–362, 365–

366
UserModule, 365
userPassword attribute, 357
Utilities class, 121
Utilities.attachInitJob() method, 210
Utilities.keyToString() method, 114
Utilities.stringToKey() method, 114

 V
valid() method, 242
validate() method, 185, 455
validation, of data, 185
validator classes, 455–456
variable names, text and, 445
variables, NetBeans IDE debugging, 484–485
Variables window, 485, 487
versioning, 34–36
versions, and dependencies, 20–22
views

and editors, of Eclipse platform plugins, 429
for nodes, 516

visibility, of modules, 23
visible state, 131
Visual Library API, 187–205

graphs, 200–202
ObjectScene class, 199–200
Scene class, 197–199

exporting, 198–199
Satellite View overview, 198

structure of, 187
VMD, 203–204
Widget class, 188–196

border, 191
dependencies, 191
layout of, 191

Visual Mobile Designer (VMD), 203–204
vm parameter, 416
VMD (Visual Mobile Designer), 203–204

 W
WAR file, 414
web applications, 345
WEB-INF/web.xml file, 387
web service client, for Java EE, 341–342
web service, for Java EE, 338–341
web services, 327–332

Web Services References folder, 328
web sites, external, 221
Widget class, 188–196

border, 191
dependencies, 191
layout of, 191

AcceptAction action, 193
ActionMapAction action, 193
AddRemoveControlPointAction action,

193
ConnectAction, ExtendedConnectAction

and ReconnectAction actions, 194
CycleFocusAction and

CycleObjectSceneFocusAction actions,
195

EditAction and InplaceEditorAction
actions, 195

ForwardKeyEventsAction action, 195
HoverAction action, 196
MoveAction and AlignWithMoveAction

actions, 193
MoveControlPointAction,

FreeMoveControlPointAction and
OrthogonalMoveControlPointAction
actions, 196

PanAction action, 196
PopupMenuAction action, 196
ResizeAction and AlignWithResizeAction

actions, 194
SelectAction and RectangularSelectAction

actions, 196
ZoomAction and CenteredZoomAction

actions, 194
WidgetAction.Chain class, 192
Window Manager component, 140
Window Position, 126
Window System framework, 123–145

configuration of, 125
modes, 134–138

direct docking, 137
modifying, 138

MultiViewAPI, 141–145
TopComponent class, 125–134

behavior of, 129–130
context menu, 132–133
persistence, 133
registry, 134
states of, 130–132

TopComponentGroup interface, 138–139
behavior of, 138

Window Manager component, 140

 INDEX

558

Window System tab, 380
window systems, behavior of, 380–381
WindowManager class, 124–125, 134, 137, 140,

174
Windows2/Components folder, 128–129, 139
Windows2/Modes folder, 128, 137
Wizard file, 176
wizard framework, 6
WizardDescriptor class, 175, 181–182, 185
WizardDescriptor.ArrayIterator class, 185
WizardDescriptor.AsynchronousValidatingPanel

interface, 185
WizardDescriptor.InstantiatingIterator interface,

185
WizardDescriptor.Iterator class, 185
WizardDescriptor.Iterator interface, 185
WizardDescriptor.Panel interface, 179, 181
WizardDescriptor.ProgressInstantiatingIterator

interface, 185
WizardDescriptor.ValidatingPanel interface, 185
WizardOperator class, 476
wizards, 175–185

additional validation of data, 185
architecture of, 175–176

ending prematurely, 185
event handling, 183–184
iterators, 185
panels, 176–181

wrapper modules, library, 43–45
Wrapper Style, 328
writeExternal() method, 526
writeProperties() method, 133
WSDL file, 341–342

 X, Y
Xdebug parameter, 485
XML file, 6, 10, 87, 135, 220, 254, 264, 363, 365,

429
XMLFileSystem, 364–365, 468–469
Xrunjdwp parameter, 485

 Z
ZIP distributions, 386–387
ZoomAction action, and CenteredZoomAction

action, 194

The Definitive Guide to
NetBeansTM Platform 7

Heiko Böck

The Definitive Guide to NetBeansTM Platform 7

Copyright © 2012 by Heiko Böck

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-4101-0

ISBN-13 (electronic): 978-1-4302-4102-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Acquisitions Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewers: Jesse Glick and David Konecny
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Annie Beck
Copy Editor: Elizabeth Berry
Compositor: Bytheway Publishing Services
Indexer: BIM Indexing & Proofreading Services
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

vi

Contents

 About the Author.. xiv

 About the Translator .. xiv
 About the Technical Reviewers .. xv

 Acknowledgments ... xvi

 Introduction .. xvii

 Part 1: Basics & Concepts: Basics of the NetBeans Platform.................................1

 Chapter 1: Introduction...3

What Is a Rich Client?..3
What Is a Rich Client Platform? ...3

Advantages of a Rich Client Platform ..4
Reduction of Development Time... 4
User Interface Consistency... 4
Updating an Application ... 4
Platform Independence .. 5
Reusability and Reliability .. 5

Characteristics of the NetBeans Platform..5
User Interface Framework.. 5
Data Editor.. 5
Customization Display .. 6
Wizard Framework ... 6
Data Systems.. 6

 CONTENTS

vii

Framework for the Management and Representation of Data ... 6
Central Service Management ... 6
Internationalization... 6
Help System ... 6

Summary ...7

 Chapter 2: Structure of the NetBeans Platform ...9

NetBeans Platform Architecture ..9

NetBeans Platform Distribution ...11
NetBeans Runtime Container...13

NetBeans Classloader System...14
Module Classloader .. 15
System Classloader .. 16
Original Classloader.. 16

Summary ...16

 Chapter 3: The NetBeans Module System...17

Structure of a Module ..17
Configuration File...18

Manifest File ..19
Attributes .. 19
Example.. 24

Layer File ...24
Order of Folders and Files .. 26
File Types ... 26
Attribute Values .. 28
Accessing System Filesystem .. 30

Creating Modules...30
Versioning and Dependencies ...34

 CONTENTS

viii

Versioning. ... 34
Defining Dependencies. ... 36

Lifecycle39

Module Registry. ..42

Using Libraries. ..42
Library Wrapper Module 43
Adding a Library to a Module. .. 45

Reusing Modules . ..46

Summary . ..48

 Chapter 4: The OSGi Framework. ..49

OSGi and the NetBeans Platform . ..49
OSGi Bundle Format. ..49
Creating New OSGi Bundles. ..51
Bundle Lifecycle52
Integrating Existing OSGi Bundles ...53
NetBeans Platform in OSGi Runtime Container . ..54
Summary . ..55

 Chapter 5: Lookup Concept. ..57

Functionality57
Services and Extension Points. ..58

Defining the Service Interface . .. 58
Loose Service Provisioning. ... 58
Providing Multiple Service Implementations . .. 60
Ensuring Service Availability . .. 60

Global Services61
Registering Service Providers. ...63

 CONTENTS

ix

Annotation .. 63
Service Provider Configuration File .. 64
Inter-Module Communication... 66

Dynamic Lookup ..71

Java Service Loader ..72
Summary ...73

 Chapter 6: Actions ..75

Always Enabled Actions...76
Callback Actions ..79

Context Aware Actions...82
Summary ...85

 Chapter 7: Data and Files..87

File Systems API ..88

The File Object ...88
Creating .. 88
Renaming ... 89
Deleting .. 89
Removing.. 90
Reading and Writing Data... 90
Monitoring Changes.. 90

Data Systems API...91

The Data Object ...92
Implementing Context Interfaces ... 94
Using Context Interfaces .. 95
Providing Context Interfaces Dynamically .. 95
Data Object Factory .. 97
Manually Creating Data Object ... 99

 CONTENTS

x

Summary ...99

 Chapter 8: Tips and Tricks..101

Lifecycle of the NetBeans Platform ...101
Tasks on Starting the Platform... 101
Tasks on Ending the Platform... 101
Restart of the Platform ... 103

Logging ..103
Logger .. 103
LogManager.. 103
Configuration .. 104

Summary ...105

 Part 2: Look & Feel: Developing User Interfaces...107

 Chapter 9: Menu Bar and Toolbar ...109

Menu Bar ...109
Creating and Positioning Menu and Menu Entries.. 109
Insert Separator.. 112
Hiding Present Menu Entries .. 112
Shortcuts and Mnemonics.. 113
Creating Your Own Menu Bar ... 115

Toolbar...115
Creating Toolbar and Toolbar Actions .. 115
Toolbar Configurations ... 116
Adaptation by the User ... 118
Creating Your Own Toolbars ... 118
Using Your Own Controls .. 119

Summary ...121

 CONTENTS

xi

 Chapter 10: Window System...123

Configuration ...125
Window: Top Component...125

Creating a Top Component ... 126
Behavior ... 129
States ... 130
Context Menu ... 132
Persistence... 133
Registry .. 134

Docking Container: Mode ..134
Creating a Mode ... 135
Direct Docking .. 137
Modifying a Mode ... 138

Groups of Windows: Top Component Group ..138
Behavior of a Top Component Group.. 138
Creating a Top Component Group... 138

Administration: Window Manager ...140
MultiViews ...141

Summary ...145

 Chapter 11: Status Bar and Progress Bar...147

Status Bar ..147
Using the Status Bar... 147
Extending the Status Bar .. 147
Notifications ... 149

Progress Bar ..150
Displaying the Progress of Separate Tasks .. 150
Displaying the Progress of Multiple Related Tasks .. 152

 CONTENTS

xii

Integrating a Progress Bar into Your Component ... 155
Summary ...155

 Chapter 12: Nodes and Explorer ...157

Nodes API ..157
Node Classes .. 157
Node Container ... 158
Node Icons.. 159
Node Context Menu .. 159
Event Handling.. 160
Example.. 161

Explorer API ...166

Summary ...168

 Chapter 13: Dialogs and Wizards..169

Standard Dialogs ...169
Information Dialog .. 171
Question Dialog .. 171
Input Dialog .. 172

Custom Dialogs..172
Displaying Notifications.. 172
Example.. 173

Wizards ..175
Wizard Architecture .. 175
Creating Panels .. 176
Creating a Wizard from Panels ... 181
Event Handling.. 183
Ending a Wizard Prematurely ... 185
Additional Validation of Data .. 185

 CONTENTS

xiii

Iterators .. 185
Summary ...186

 Chapter 14: Visual Library ..187

Structure of the Visual Library API...187
The Widget Classes ...188

Dependencies ... 191
Border... 191
Layout... 191

The Scene: The Root Element..197
Satellite View.. 198
Exporting a Scene... 198

ObjectScene – Model-View Relation..199
Graphs ...200
VMD: Visual Mobile Designer...203

Summary ...205

 Chapter 15: Tips and Tricks..207

Desktop Features...207

System Tray Integration...208
Asynchronous Initialization of Graphical Components...209
Undo/Redo ...211

Summary ...214

 Part 3: Ready & Go: Using the NetBeans Platform Standard Modules................215

 Chapter 16: Help System ..217

Creating and Integrating a Help Set...218
module-hs.xml.. 218
module-map.xml .. 219

 CONTENTS

xiv

module-toc.xml .. 220
module-idx.xml... 220
Help Pages.. 220

Inserting Links into Help Pages ...220
Links to External Web Sites .. 221
Links to Other Help Pages .. 221

Context-Sensitive Help ..222
Opening the Help System ..223

Summary ...224

 Chapter 17: Output Window..225

Producing Output ...225

Adding Actions...226
Inserting/Displaying Hyperlinks ...226
Summary ...227

 Chapter 18: Navigator...229

Creating Panels..230
Registering Panels...232

Summary ...233

 Chapter 19: Properties..235

Providing Properties ..236
User-Defined Properties Editor ..238

Summary ...239

 Chapter 20: Options and Settings ...241

Creating Options Panels ..242
Primary Panel ... 246
Secondary Panel... 246

 CONTENTS

xv

Secondary Panel Container .. 247
Managing Settings...248

Summary ...250

 Chapter 21: Palette ...251

Palette Entries via the Layer File ...252

Creating a Palette via Your Own Nodes ...254
Node Classes .. 254
Creating and Adding a Palette .. 257
Drag-and-Drop Functionality .. 257

Summary ...260

 Part 4: Use & Extend: Advanced APIs of the NetBeans Platform & ID261

 Chapter 22: Palette API...263

Defining and Registering Palette Items ...264
Creating and Registering the Palette Controller ..266

Extending an Existing Palette ..267
Summary ...267

 Chapter 23: Task List API..269

Implementing Scanner...270
Registering Scanner and Group...272
Summary ...273

 Chapter 24: Quick Search API...275

Implementing Quick Search Provider ..276
Registering Quick Search Provider ..277

Integrating Quick Search UI ...277
Hiding Existing Search Provider Categories ..278
Summary ...278

 CONTENTS

xvi

 Chapter 25: Auto Update Services API..279

Automatic Update in the Background ..279
Search Updates .. 279
Installing and Restarting Updates... 281
Automatically Starting Installation.. 283

Deactivating Modules Automatically ...284
Summary ...285

 Part 5: Server & Database: Enterprise Applications and the NetBeans Platform287

 Chapter 26: Java DB ...289

Integrating the Java DB ...289
Registering Drivers ..289

Creating and Using a Database ...290
Shutting Down a Database ..291
Developing a Database by Means of the NetBeans IDE...292

Installing and Starting the Java DB System ... 292
Integrating a Java DB Server Driver into Your Application ... 292
Creating and Configuring a Database... 292
Accessing the Database out of Your Application.. 293
Retrieving and Importing Structures of Tables... 294

Example Application ..294
Configuration, Access, and Shutdown.. 294
Data Models and Data Accessing Module .. 296
Representing and Editing Data ... 299

Summary ...305

 Chapter 27: Hibernate...307

Integrating the Hibernate Libraries..307

 CONTENTS

xvii

Structure of the Exemplified Application ...308
Configuring Hibernate..309

Mapping Objects on Relations .. 310
SessionFactory and Sessions... 312
Saving and Loading Objects ... 313

Summary ...314

 Chapter 28: Java Persistence API...315

Hibernate and the Java Persistence API..315
Java Persistence Configuration ...315

EntityManagerFactory and EntityManager...318
Saving and Loading Objects ..319
Summary ...320

 Chapter 29: MySQL and EclipseLink ...321

Installing MySQL Database ..322
Integrating MySQL Driver ... 324
Integrate EclipseLink .. 324

Creating Entities out of Database Schema ..325

Build Up and Test Application..326
Summary ...326

 Chapter 30: Web Services...327

Creating a Web Service Client ...327

Using the Web Service...329
Summary ...332

 Chapter 31: Java Enterprise Edition and the NetBeans Platform333

Persistent Entities..334
Enterprise Java Beans ...336

 CONTENTS

xviii

Web Service. ..338
Web Service Client. ..341
NetBeans Platform Application. ...342
Summary . ..344

 Chapter 32: RESTful Web Services. ...345

Creating a Web Application . ..345

Creating Persistent Entity346

Creating a RESTful Web Service347

Install NetBeans Platform Application . ..348

RESTful Web Service Client . ..349

Summary . ..352

 Chapter 33: Authentication and Multi-User Login. ...353

Login Dialog . ..353
Directory Server. ..355

Installing the Test Environment . .. 355
Setting Up User Data . .. 356

Authentication. ...357
Java Naming and Directory Interface (JNDI) . .. 358
Java Authentication and Authorization (JAAS) 359

Adapting the Application. ...361
System Filesystem 362
Module System. ... 365

Summary . ..367

 Part 6: Pack & Ship: Adapting, Delivering, and Actualizing Applications369

 Chapter 34: Internationalization and Localization..371

String Literals in Source Code . ..371

 CONTENTS

xix

String Literals in the Manifest File...373
Internationalization of Help Pages ...373

Internationalizing Other Resources..375
Graphics ... 375
Arbitrary Files ... 375
Folders, Files, and Attributes in the Layer File ... 375

Administration and Preparation of Localized Resources ...376
Summary ...378

 Chapter 35: Branding and Packaging Application ..379

Branding ..379
Name, Icons, and Splash Screen.. 379
Window System Behavior... 380
Resource Bundles... 381

Command-Line Parameters...383
Overview of Parameters ... 384
Determining Parameters While Developing.. 385

Creating Distribution..385
Installer Package .. 385
ZIP Distribution ... 386
Java Web Start Package... 387
Mac OS X Application ... 387

Summary ...387

 Chapter 36: Updating a NetBeans Platform Application389

The Auto Update Service ...389
The NBM File ...390
Update Centers ..394

Providing a Language Pack ...395

 CONTENTS

xx

Configuring and Installing on the Client-Side ..395
New Update Center... 397
Automatically Installing Updates .. 398

Summary ...398

 Part 7: Test & Tooling: Developing and Testing NetBeans Platform Applications399

 Chapter 37: Maven and the NetBeans Platform..401

Basics and Structure of a Maven Project...401
Parent POM File .. 402
Module POM File... 402
Maven Repositories .. 403

Maven Projects in the NetBeans IDE ...404
Creating a NetBeans Platform Application ... 404
Creating NetBeans Platform Modules... 405
Adding Dependencies... 406

Maven Projects Without NetBeans IDE ..407
Creating a NetBeans Platform Application ... 408
Creating NetBeans Platform Modules... 410
Make Packages Public ... 412
Adding Dependencies... 412
Creating and Executing the Application.. 412

Summary ...414

 Chapter 38: Eclipse IDE and the NetBeans Platform...415

Installing Eclipse IDE ...415
Creating a NetBeans Platform Application...416

Creating NetBeans Platform Modules..418
Add Dependencies...420

Starting and Executing an Application...421

 CONTENTS

xxi

Summary ...422

 Chapter 39: From Eclipse to NetBeans ...423

The NetBeans IDE ..423
Where Can I find What? .. 423
Handling Projects ... 424

From Eclipse Plugin to NetBeans Module..424
Plugin Lifecycle and Events.. 425
Plugin Information .. 426
Images.. 427
Resources... 428
Settings .. 428
Application Lifecycle... 429
Views and Editors ... 429

Summary ...429

 Chapter 40: IntelliJ IDEA and the NetBeans Platform...431

Presettings...431
Creating a NetBeans Platform Application...431

Defining Dependencies..435
Building and Executing an Application ..436

Summary ...437

 Chapter 41: NetBeans Swing GUI Builder ...439

Structure of the GUI Builder...439
Editor .. 439
Palette .. 440
Inspector... 441
Properties ... 442

Components and Layout ..443

 CONTENTS

xxii

Forms ... 443
Design Strategy .. 444
Alignment and Anchoring ... 444

Adapting Components ...445
Text and Variable Name.. 445
Application-Specific Code .. 445

Actions...446
Beans Binding..447

Binding Table and Data Source .. 448
Bind Detail View to Table.. 453
Binding Listener.. 455
Validator ... 455
Converter .. 456

Summary ...457

 Chapter 42: Testing NetBeans Platform Applications...459

Unit Tests...459
General Tests.. 459
Testing in the NetBeans Runtime Container Environment.. 465
Lookup and Service Tests .. 466
System Filesystem Tests.. 468
Checking Test Coverage... 470

Functional GUI Tests ..471
Installing the Test Environment .. 471
Implementing a Test Case .. 472
Checking Test Coverage... 476

Configuration in Case of Maven Projects...476
Module Tests .. 476
Functional Tests ... 477

 CONTENTS

xxiii

Test Coverage... 478
Summary ...480

 Chapter 43: Debugging with the NetBeans IDE...481

Debugging Window..481
Breakpoints..482

Variables ..484
Remote Debugging ..485

Controlling Debugging ...486
Call Stack...487
Heap Walking...488

Summary ...490

 Part 8: Play & More: Developing an MP3-Manager ..493

 Chapter 44: Sample Project: MP3 Manager..493

Design..493

Creating a NetBeans Platform Application...495
Support for MP3...495

Creating the JMF Module ... 496
Registering the MP3 Plugin .. 496
MP3 File Type ... 497

ID3 Support ..498
ID3 API .. 499
ID3 Editor .. 500

Media Library...503

Services ...504
MP3 Player...505

Service Interface .. 505

 CONTENTS

xxiv

Service Provider ... 507
Playback of MP3 Files .. 510
User Interface ... 512

Playlist ...515
Node View... 516
Node Container ... 516
Top Component .. 517
Drag and Drop .. 521
Saving the Playlist .. 523

Summary ...527

 Appendix...529

 Index ...537

xxv

About the Author

 Heiko Böck has a Master of Science Degree in Computer Science and is
a professional software development expert using Java. He has been
working with the NetBeans Platform for years, and is a member of the
NetBeans Dream Team. He is the author of the German books NetBeans
Platform 6 and NetBeans Platform 7, which have both been established as
standard works on the subject. These days, he is writing his dissertation at
Robert Bosch GmbH.

xxvi

About the Translator

Anne Böck studied English at the University ofTübingen and has, so to
speak, dealt with the English language every day for years. She spent a
semester studying in the U.S.A. at Indiana University. Additionally, she
lived and worked in Canada for another six months. These days, she
teaches English at a German school, and also works as a professional
translator.

xxvii

About the Technical Reviewers

 Jesse Glick has worked on the NetBeans project since 1999, and saw it
acquired by Sun Microsystems, made open source, and most recently
incorporated into Oracle’s tool portfolio. He has worked on basic components
of the IDE such as the project system, the Ant and Maven integrations, and the
Hudson integration.

Jesse has also contributed to the NetBeans Platform and its in-IDE tooling,
co-authored an O’Reilly book on the subject, and spoken at several
conferences on related topics.

 David Konecny is a principal member of the technical staff at
Oracle. He is technical leader of Java EE support in NetBeans IDE and
has over the years worked on several different areas of the IDE. Prior to
working for Sun and Oracle, he spent a decade in miscellaneous
engineering roles. He is passionate about his work and anything he
does in his life. Born in Czechoslovakia, he currently lives in New
Zealand and works from home.

xxviii

Acknowledgments

At this point I want to particularly thank my wife, Anne. With her tireless will she ensured that the
successful German edition of NetBeans Platform 7 is now available to the English-speaking software
developer, too. In addition to her extraordinary performance (namely, in translating the book), I thank
her for unconditionally backing up all my projects and for completing them together with me.

Furthermore, I want to thank Annie Beck, the coordinating editor, and all the staff of Apress, who
have been involved in the realization of this book. Thanks to their smooth cooperation, it has been
possible to implement this book quickly.

I also appreciate the steady reinforcement of numerous people, especially of my family, who always
completely relied on me.

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Translator
	About the Technical Reviewers
	Acknowledgments
	Introduction
	News of the NetBeans Platform
	How This Book Is Structured
	Downloading the Code

	Introduction
	What Is a Rich Client?
	What Is a Rich Client Platform?
	Advantages of a Rich Client Platform
	Reduction of Development Time
	User Interface Consistency
	Updating an Application
	Platform Independence
	Reusability and Reliability

	Characteristics of the NetBeans Platform
	User Interface Framework
	Data Editor
	Customization Display
	Wizard Framework
	Data Systems
	Framework for the Management and Representation of Data
	Central Service Management
	Internationalization
	Help System

	Summary

	Structure of the NetBeans Platform
	NetBeans Platform Architecture
	NetBeans Platform Distribution
	NetBeans Runtime Container
	NetBeans Classloader System
	Module Classloader
	System Classloader
	Original Classloader

	Summary

	The NetBeans Module System
	Structure of a Module
	Configuration File
	Manifest File
	Attributes
	Example

	Layer File
	Order of Folders and Files
	File Types
	Attribute Values
	Accessing System Filesystem

	Creating Modules
	Versioning and Dependencies
	Versioning
	Defining Dependencies

	Lifecycle
	Module Registry
	Using Libraries
	Library Wrapper Module
	Adding a Library to a Module

	Reusing Modules
	Summary

	The OSGi Framework
	OSGi and the NetBeans Platform
	OSGi Bundle Format
	Creating New OSGi Bundles
	Bundle Lifecycle
	Integrating Existing OSGi Bundles
	NetBeans Platform in OSGi Runtime Container
	Summary

	Lookup Concept
	Functionality
	Services and Extension Points
	Defining the Service Interface
	Loose Service Provisioning
	Providing Multiple Service Implementations
	Ensuring Service Availability

	Global Services
	Registering Service Providers
	Annotation
	Service Provider Configuration File
	Inter-Module Communication

	Dynamic Lookup
	Java Service Loader
	Summary

	Actions
	Always Enabled Actions
	Callback Actions
	Context Aware Actions
	Summary

	Data and Files
	File Systems API
	The File Object
	Creating
	Renaming
	Deleting
	Removing
	Reading and Writing Data
	Monitoring Changes

	Data Systems API
	The Data Object
	Implementing Context Interfaces
	Using Context Interfaces
	Providing Context Interfaces Dynamically
	Data Object Factory
	Manually Creating Data Object

	Summary

	Tips and Tricks
	Lifecycle of the NetBeans Platform
	Tasks on Starting the Platform
	Tasks on Ending the Platform
	Restart of the Platform

	Logging
	Logger
	LogManager
	Configuration

	Summary

	Menu Bar and Toolbar
	Menu Bar
	Creating and Positioning Menu and Menu Entries
	Insert Separator
	Hiding Present Menu Entries
	Shortcuts and Mnemonics
	Creating Your Own Menu Bar

	Toolbar
	Creating Toolbar and Toolbar Actions
	Toolbar Configurations
	Adaptation by the User
	Creating Your Own Toolbars
	Using Your Own Controls

	Summary

	Window System
	Configuration
	Window: Top Component
	Creating a Top Component
	Behavior
	States
	Context Menu
	Persistence
	Registry

	Docking Container: Mode
	Creating a Mode
	Direct Docking
	Modifying a Mode

	Groups of Windows: Top Component Group
	Behavior of a Top Component Group
	Creating a Top Component Group

	Administration: Window Manager
	MultiViews
	Summary

	Status Bar and Progress Bar
	Status Bar
	Using the Status Bar
	Extending the Status Bar
	Notifications

	Progress Bar
	Displaying the Progress of Separate Tasks
	Displaying the Progress of Multiple Related Tasks
	Integrating a Progress Bar into Your Component

	Summary

	Nodes and Explorer
	Nodes API
	Node Classes
	Node Container
	Node Icons
	Node Context Menu
	Event Handling
	Example

	Explorer API
	Summary

	Dialogs and Wizards
	Standard Dialogs
	Information Dialog
	Question Dialog
	Input Dialog

	Custom Dialogs
	Displaying Notifications
	Example

	Wizards
	Wizard Architecture
	Creating Panels
	Creating a Wizard from Panels
	Event Handling
	Ending a Wizard Prematurely
	Additional Validation of Data
	Iterators

	Summary

	Visual Library
	Structure of the Visual Library API
	The Widget Classes
	Dependencies
	Border
	Layout

	The Scene: The Root Element
	Satellite View
	Exporting a Scene

	ObjectScene – Model-View Relation
	Graphs
	VMD: Visual Mobile Designer
	Summary

	Tips and Tricks
	Desktop Features
	System Tray Integration
	Asynchronous Initialization of Graphical Components
	Undo/Redo
	Summary

	Help System
	Creating and Integrating a Help Set
	module-hs.xml
	module-map.xml
	module-toc.xml
	module-idx.xml
	Help Pages

	Inserting Links into Help Pages
	Links to External Web Sites
	Links to Other Help Pages

	Context-Sensitive Help
	Opening the Help System
	Summary

	Output Window
	Producing Output
	Adding Actions
	Inserting/Displaying Hyperlinks
	Summary

	Navigator
	Creating Panels
	Registering Panels
	Summary

	Properties
	Providing Properties
	User-Defined Properties Editor
	Summary

	Options and Settings
	Creating Options Panels
	Primary Panel
	Secondary Panel
	Secondary Panel Container

	Managing Settings
	Summary

	Palette
	Palette Entries via the Layer File
	Creating a Palette via Your Own Nodes
	Node Classes
	Creating and Adding a Palette
	Drag-and-Drop Functionality

	Summary

	Palette API
	Defining and Registering Palette Items
	Creating and Registering the Palette Controller
	Extending an Existing Palette
	Summary

	Task List API
	Implementing Scanner
	Registering Scanner and Group
	Summary

	Quick Search API
	Implementing Quick Search Provider
	Registering Quick Search Provider
	Integrating Quick Search UI
	Hiding Existing Search Provider Categories
	Summary

	Auto Update Services API
	Automatic Update in the Background
	Search Updates
	Installing and Restarting Updates
	Automatically Starting Installation

	Deactivating Modules Automatically
	Summary

	Java DB
	Integrating the Java DB
	Registering Drivers
	Creating and Using a Database
	Shutting Down a Database
	Developing a Database by Means of the NetBeans IDE
	Installing and Starting the Java DB System
	Integrating a Java DB Server Driver into Your Application
	Creating and Configuring a Database
	Accessing the Database out of Your Application
	Retrieving and Importing Structures of Tables

	Example Application
	Configuration, Access, and Shutdown
	Data Models and Data Accessing Module
	Representing and Editing Data

	Summary

	Hibernate
	Integrating the Hibernate Libraries
	Structure of the Exemplified Application
	Configuring Hibernate
	Mapping Objects on Relations
	SessionFactory and Sessions
	Saving and Loading Objects

	Summary

	Java Persistence API
	Hibernate and the Java Persistence API
	Java Persistence Configuration
	EntityManagerFactory and EntityManager
	Saving and Loading Objects
	Summary

	MySQL and EclipseLink
	Installing MySQL Database
	Integrating MySQL Driver
	Integrate EclipseLink

	Creating Entities out of Database Schema
	Build Up and Test Application
	Summary

	Web Services
	Creating a Web Service Client
	Using the Web Service
	Summary

	Java Enterprise Edition and the NetBeans Platform
	Persistent Entities
	Enterprise Java Beans
	Web Service
	Web Service Client
	NetBeans Platform Application
	Summary

	RESTful Web Services
	Creating a Web Application
	Creating Persistent Entity
	Creating a RESTful Web Service
	Install NetBeans Platform Application
	RESTful Web Service Client
	Summary

	Authentication and Multi-User Login
	Login Dialog
	Directory Server
	Installing the Test Environment
	Setting Up User Data

	Authentication
	Java Naming and Directory Interface (JNDI)
	Java Authentication and Authorization (JAAS)

	Adapting the Application
	System Filesystem
	Module System

	Summary

	Internationalization and Localization
	String Literals in Source Code
	String Literals in the Manifest File
	Internationalization of Help Pages
	Internationalizing Other Resources
	Graphics
	Arbitrary Files
	Folders, Files, and Attributes in the Layer File

	Administration and Preparation of Localized Resources
	Summary

	Branding and Packaging Application
	Branding
	Name, Icons, and Splash Screen
	Window System Behavior
	Resource Bundles

	Command-Line Parameters
	Overview of Parameters
	Determining Parameters While Developing

	Creating Distribution
	Installer Package
	ZIP Distribution
	Java Web Start Package
	Mac OS X Application

	Summary

	Updating a NetBeans Platform Application
	The Auto Update Service
	The NBM File
	Update Centers
	Providing a Language Pack
	Configuring and Installing on the Client-Side
	New Update Center
	Automatically Installing Updates

	Summary

	Maven and the NetBeans Platform
	Basics and Structure of a Maven Project
	Parent POM File
	Module POM File
	Maven Repositories

	Maven Projects in the NetBeans IDE
	Creating a NetBeans Platform Application
	Creating NetBeans Platform Modules
	Adding Dependencies

	Maven Projects Without NetBeans IDE
	Creating a NetBeans Platform Application
	Creating NetBeans Platform Modules
	Make Packages Public
	Adding Dependencies
	Creating and Executing the Application

	Summary

	Eclipse IDE and the NetBeans Platform
	Installing Eclipse IDE
	Creating a NetBeans Platform Application
	Creating NetBeans Platform Modules
	Add Dependencies
	Starting and Executing an Application
	Summary

	From Eclipse to NetBeans
	The NetBeans IDE
	Where Can I find What?
	Handling Projects

	From Eclipse Plugin to NetBeans Module
	Plugin Lifecycle and Events
	Plugin Information
	Images
	Resources
	Settings
	Application Lifecycle
	Views and Editors

	Summary

	IntelliJ IDEA and the NetBeans Platform
	Presettings
	Creating a NetBeans Platform Application
	Defining Dependencies
	Building and Executing an Application
	Summary

	NetBeans Swing GUI Builder
	Structure of the GUI Builder
	Editor
	Palette
	Inspector
	Properties

	Components and Layout
	Forms
	Design Strategy
	Alignment and Anchoring

	Adapting Components
	Text and Variable Name
	Application-Specific Code

	Actions
	Beans Binding
	Binding Table and Data Source
	Bind Detail View to Table
	Binding Listener
	Validator
	Converter

	Summary

	Testing NetBeans Platform Applications
	Unit Tests
	General Tests
	Testing in the NetBeans Runtime Container Environment
	Lookup and Service Tests
	System Filesystem Tests
	Checking Test Coverage

	Functional GUI Tests
	Installing the Test Environment
	Implementing a Test Case
	Checking Test Coverage

	Configuration in Case of Maven Projects
	Module Tests
	Functional Tests
	Test Coverage

	Summary

	Debugging with the NetBeans IDE
	Debugging Window
	Breakpoints
	Variables
	Remote Debugging
	Controlling Debugging
	Call Stack
	Heap Walking
	Summary

	Sample Project: MP3 Manager
	Design
	Creating a NetBeans Platform Application
	Support for MP3
	Creating the JMF Module
	Registering the MP3 Plugin
	MP3 File Type

	ID3 Support
	ID3 API
	ID3 Editor

	Media Library
	Services
	MP3 Player
	Service Interface
	Service Provider
	Playback of MP3 Files
	User Interface

	Playlist
	Node View
	Node Container
	Top Component
	Drag and Drop
	Saving the Playlist

	Summary

	Appendix
	Important NetBeans Platform Extension Points
	Important Configuration DTDs
	Filesystem
	Mode Definitions
	Configuration of Top Component in Mode
	Top Component Group Definition
	Configuration of Top Component in Group
	Toolbar Definition and Configuration
	Palette Item Definition

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

