
1CHAPTER
Introduction to Programming and the
Java Language

Introduction
1.1 Basic Computer Concepts

1.1.1 Hardware
1.1.2 Operating Systems
1.1.3 Application Software
1.1.4 Computer Networks and the Internet

1.2 Practice Activity: Displaying System Con-
figuration

1.2.1 Displaying Windows Configuration
Information

1.2.2 Displaying Unix/Linux Configura-
tion Information

1.3 Data Representation
1.3.1 Binary Numbers
1.3.2 Using Hexadecimal Numbers to

Represent Binary Numbers
1.3.3 Representing Characters with the

Unicode Character Set

1.4 Programming Languages
1.4.1 High- and Low-Level Languages
1.4.2 An Introduction to Object-

Oriented Programming
1.4.3 The Java Language

1.5 An Introduction to Programming
1.5.1 Programming Basics
1.5.2 Program Design with Pseudocode
1.5.3 Developing a Java Application
1.5.4 Programming Activity 1: Writing

a First Java Application
1.6 Chapter Summary
1.7 Exercises, Problems, and Projects

1.7.1 Multiple Choice Exercises
1.7.2 Converting Numbers
1.7.3 General Questions
1.7.4 Technical Writing
1.7.5 Group Project

CHAPTER CONTENTS

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 1

2 CHAPTER 1 Introduction to Programming and the Java Language

Introduction

Computer applications touch almost every aspect of our lives. They run
automated teller machines, the grocery store’s checkout register, the
appointment calendar at your doctor’s office, airport kiosks for flight
check-in, a restaurant’s meal-ordering system, and online auctions, just to
name a few applications. On your personal computer, you may run a word
processor, virus detection software, a spreadsheet, computer games, and an
image processing system.

Someone, usually a team of programmers, wrote those applications. If
you’re reading this book, you’re probably curious about what’s involved in
writing applications, and you would like to write a few yourself. Perhaps
you have an idea for the world’s next great application or computer game.

In this book, we’ll cover the basics of writing applications. Specifically, we’ll
use the Java programming language. Keep in mind, however, that becoming
a good programmer requires more than mastering the rules, or syntax, of a
programming language. You also must master basic programming tech-
niques. These are established methods for performing common program-
ming operations, such as calculating a total, finding an average, or
arranging a group of items in order.

You also must master good software engineering principles, so that you
design code that is readable, easily maintained, and reusable. By readable,
we mean that someone else should be able to read your program and figure
out what it does and how it does it. Writing readable code is especially
important for programmers who want to advance in their careers, because
it allows someone else to take over the maintenance of your program while
you move on to bigger and better responsibilities. Ease of maintenance is
also an important aspect of programming, because the specifications for
any program are continually changing. How many programs can you name
that have had only one version? Not many. Well-designed code allows you
and others to incorporate prewritten and pretested modules into your pro-
gram, thus reducing the time to develop a program and yielding code that
is more robust and has fewer bugs. One useful feature of the Java program-
ming language is the large supply of prewritten code that you are free to use
in your programs.

Programming is an exciting activity. It’s very satisfying to decompose a
complex task into computer instructions and watch your program come

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 2

1.1 Basic Computer Concepts 3

alive. It can be frustrating, however, when your program either doesn’t run
at all or produces the wrong output.

Writing correct programs is critical. Someone’s life or life savings may
depend on the correctness of your program. Reusing code helps in devel-
oping correct programs, but you must also master effective testing tech-
niques to verify that the output of your program is correct.

In this book, we’ll concentrate not only on the syntax of the Java language,
but also on basic programming techniques, good software engineering
principles, and effective testing techniques.

Before you can write programs, however, it’s important to understand the
platform on which your program will run. A platform refers to the com-
puter hardware and the operating system. Your program will use the hard-
ware for inputting data, for performing calculations, and for outputting
results. The operating system will start your program running and will pro-
vide your program with essential resources, such as memory, and services,
such as reading and writing files.

1.1 Basic Computer Concepts

1.1.1 Hardware

As shown in Figure 1.1, a computer typically includes the following
components:

� a CPU, or central processing unit, which executes the instructions
of a program

� a memory unit, which holds the instructions and data of a pro-
gram while it is executing

� a hard disk, used to store programs and data so that they can be
loaded into memory and accessed by the CPU

� a keyboard and mouse, used for input of data

� a monitor, used to display output from a program

� an Ethernet port and wireless networking transceiver for connect-
ing to the Internet or a Local Area Network (LAN)

� other components (not shown) such as a graphics card and a DVD
drive

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 3

4 CHAPTER 1 Introduction to Programming and the Java Language

Figure 1.1
A Typical Design of a
Personal Computer

For example, if you were to go to a computer store in search of the latest per-
sonal computer, you might be shown a computer with this set of specifications:

� a 2.7-GHz Intel Pentium™ dual-core E5400

� 8 MB of L2 cache memory

� 8 GB of RAM (Random Access Memory)

� a 1 TB (Terabyte) hard disk

In these specifications, the Intel Pentium dual-core E5400 is the CPU.
Other processors used as CPUs in desktop computers and servers include
the AMD Athlon, the Oracle Sun SPARC, the Hewlett-Packard PA-RISC
processor, and the IBM POWER processor.

CPUs consist of an Arithmetic Logic Unit (ALU) [also called an Integer
Unit (IU)], which performs basic integer arithmetic and logical operations;
a Floating Point Unit (FPU), which performs floating-point arithmetic; a
set of hardware registers for holding data and memory addresses; and other
supporting hardware, including a control unit to sequence the instructions.
Each CPU comes with its own set of instructions, which are the operations
that it can perform. The instructions typically perform arithmetic and logic

 Motherboard

CPU
with L1 cache

 L2 cache

 Main memory

Secondary
storage

(hard disk)

 Input
(keyboard, LAN)

 Output
(monitor, printer, LAN)

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 4

1.1 Basic Computer Concepts 5

operations, move data from one location to another, and change the flow of
the program (that is, determine which instruction is to be executed next).

The first step in executing a program is loading it into memory. The CPU
then fetches the program instructions from memory one at a time and exe-
cutes them. A program consists of many instructions. An Instruction
Pointer register (also called a Program Counter) keeps track of the current
instruction being executed.

The speed of a CPU is related to its clock cycle, typically rated in GHz
(Gigahertz); at the time of this edition, a high-end CPU speed would be
rated at 3.4 GHz. It takes one clock cycle for a processor to fetch an instruc-
tion from memory, decode an instruction, or execute it. Current RISC
processors feature pipelining, which allows the CPU to process several
instructions at once, so that while one instruction is executing, the proces-
sor can decode the next instruction, and fetch the next instruction after
that. This greatly improves performance of applications.

A CPU rated at 2 GHz is capable of executing 2 billion instructions per sec-
ond. That translates into executing one instruction every 0.5 � 10�9 sec-
onds (or half a nanosecond).

Memory or storage devices, such as L2 cache, memory, or hard disk, are
typically rated in terms of their capacity, expressed in bytes. A byte is
eight binary digits, or bits. A single bit’s value is 0 or 1. Depending on the
type of memory or storage device, the capacity will be stated in Kilo-
bytes, Megabytes, Gigabytes, or even Terabytes. The sizes of these units
are shown in Table 1.1.

For the CPU to execute at its rated speed, however, instructions and data
must be available to the CPU at that speed as well. Instructions and data

TABLE 1.1 Memory Units and Their Sizes

Memory Unit Size

KB, or Kbytes, or Kilobytes About 1,000 bytes (exactly 210 or 1,024 bytes)

MB, or Mbytes, or Megabytes About 1 million bytes (exactly 220 or 1,048,576 bytes)

GB, or Gbytes, or Gigabytes About 1 billion bytes (exactly 230 or 1,073,741,824 bytes)

TB, or Tbytes, or Terabytes About 1 trillion bytes (exactly 240 or 1.09951 � 1012 bytes)

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 5

6 CHAPTER 1 Introduction to Programming and the Java Language

come directly from the L1 cache, which is memory directly located on the
CPU chip. Since the L1 cache is located on the CPU chip, it runs at the
same speed as the CPU. However, the L1 cache typically is small, for exam-
ple, 32 Kbytes, and eventually the CPU will need to process more instruc-
tions and data than can be held in the L1 cache at one time.

At that point, the CPU typically brings data from what is called the L2
cache, which is located on separate memory chips connected to the CPU.
A typical speed for the L2 cache would be 10 nanoseconds access time, and
this will considerably slow down the rate at which the CPU can execute
instructions. L2 cache size today is typically 3 to 8 Mbytes, and again, the
CPU will eventually need more space for instructions and data than the L2
cache can hold at one time.

At that point, the CPU will bring data and instructions from main mem-
ory, also located outside, but connected to, the CPU chip. This will slow
down the CPU even more, because main memory typically has an access
time of about 50 nanoseconds. Main memory, though, is significantly
larger in size than the L1 and L2 caches, typically anywhere between 3 and
8 Gbytes. When the CPU runs out of space again, it will have to get its data
from the hard disk, which is typically between 250 Gbytes and 1 Tbyte, but
with an access time in the milliseconds range.

As you can see from these numbers, a considerable amount of speed is
lost when the CPU goes from main memory to disk, which is why having
sufficient memory is very important for the overall performance of
applications.

Another factor that should be taken into consideration is cost per Kilobyte.
Typically the cost per Kilobyte decreases significantly stepping down from
L1 cache to hard disk, so high performance is often traded for low price.

Main memory (also called RAM) uses DRAM, or Dynamic Random Access
Memory technology, which maintains data only when power is applied to
the memory and needs to be refreshed regularly in order to retain data. The
L1 and L2 caches use SRAM, or Static Random Access Memory technology,
which also needs power but does not need to be refreshed in order to retain
data. Memory capacities are typically stated in powers of 2. For instance,
256 Kbytes of memory is 218 bytes, or 262,144 bytes.

Memory chips contain cells, each cell containing a bit, which can store
either a 0 or a 1. Cells can be accessed individually or as a group of typically

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 6

1.1 Basic Computer Concepts 7

TABLE 1.2 A Comparison of Memory Types

Device Location Type Speed Capacity (MB) Cost/KB

L1 cache On-chip SRAM Very fast Very small Very high

L2 cache Off-chip SRAM Fast Small High

Memory Off-chip DRAM Moderate Moderate Moderate

Hard disk Separate Disk media Slow Large Small

4, 8, or 16 cells. For instance, a 32-Kbit RAM chip organized as 8K � 4 is
composed of exactly 213, or 8,192 units, each unit containing four cells.
This RAM chip will have four data output pins (or lines) and 13 access pins
(or lines), enabling access to all 8,192 cells because each access pin can have
a value of 0 or 1. Table 1.2 compares the features of various memory types.

1.1.2 Operating Systems

An operating system (OS) is a software program that

� controls the peripheral devices (for instance, it manages the file
system)

� supports multitasking, by scheduling multiple programs to execute
during the same interval

� allocates memory to each program, so that there is no conflict
among the memory of any programs running at the same time

� prevents the user from damaging the system. For instance, it pre-
vents user programs from overwriting the operating system or
another program’s memory

The operating system loads, or boots, when the computer system is turned
on and is intended to run as long as the computer is running.

Examples of operating systems are MacOS for the Macintosh computers,
Microsoft Windows, Unix, and Linux. Windows has evolved from a single-
user, single-task DOS operating system to the multiuser, multitasking
Windows 7. Unix and Linux, on the other hand, were designed from the
beginning to be multiuser, multitasking operating systems.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 7

8 CHAPTER 1 Introduction to Programming and the Java Language

1.1.3 Application Software

Application software consists of the programs written to perform specific
tasks. These programs are run by the operating system, or as is typically
said, they are run “on top of” the operating system. Examples of applica-
tions are word processors, such as Microsoft Word or Corel WordPerfect;
spreadsheets, such as Microsoft Excel; database management systems, such
as Oracle or Microsoft SQL Server; Internet browsers, such as Mozilla Fire-
fox and Microsoft Internet Explorer; and most of the programs you will
write during your study of Computer Science.

1.1.4 Computer Networks and the Internet

Computer Networks

Computer networks connect two or more computers. A common network
used by many corporations and universities is a LAN, or Local Area Net-
work. A typical LAN connects several computers that are geographically
close to one another, often in the same building, and allows them to share
resources, such as a printer, a database, or a file system. In a LAN, most user
computers are called clients, and one or more computers act as a server.
The server controls access to resources on the network and can supply serv-
ices to the clients, such as answering database requests, storing and serving
files, or managing email.

The Internet

The Internet is a network of networks, connecting millions of computers
around the world. The Internet evolved from ARPANET, a 1969 U.S. mili-
tary research project whose goal was to design a method for computers to
communicate. Most computers on the Internet are clients, typically
requesting resources, such as web pages, through an Internet browser.
These resources are provided by web servers, which store web pages and
respond to these requests.

For example, when you, acting as a client, type www.yahoo.com/index.html
into your web browser, you are requesting a resource. Here that resource is
a web page (index.html), from the web server located at www.yahoo.com.
That request will make its way to the server with the help of routers—
special computers that find a path through the Internet networks from
your computer to the correct destination.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 8

1.2 Practice Activity: Displaying System Configuration 9

Every machine on the Internet has a unique ID, called its IP address (IP
stands for Internet Protocol). A computer can have a static IP address,
which is dedicated to that machine, or a dynamic IP address, which is
assigned to the computer when it connects to the Internet. An IP address is
made up of four octets, whose values in decimal notation are between 0
and 255. For instance, 58.203.151.103 could represent such an IP address.
In binary notation, this IP address is 111010.11001011.10010111.1100111.
Later in this chapter, we will learn how to convert a decimal number, such
as 103, to its binary equivalent, 1100111.

Most people are familiar with URL (Uniform Resource Locator) addresses
that look like http://java.sun.com/javase/reference/api.jsp. URLs are actually
Internet domain names and the path on that domain to a specific web page.
Domain name resolution servers, which implement the Domain Name Sys-
tem (DNS), convert domain names to IP addresses, so that Internet users
don’t need to know the IP addresses of websites they want to visit. The World
Wide Web Consortium (W3C), an international group developing standards
for Internet access, prefers the term Uniform Resource Identifier (URI) rather
than URL, because URI covers future Internet addressing schemes.

1.2 Practice Activity: Displaying System Configuration
We have explored hardware and operating systems in general. Now, let’s dis-
cover some information about the hardware and operating system on your
computer. Depending on whether you’re using a Windows operating system
or a Linux operating system, choose the appropriate directions that follow to
display the operating system’s name, the CPU type, how much memory the
computer has, and your home directory (for Unix/Linux users).

1.7.1 Multiple Choice Exercises

Questions 1, 2, 3, 4

1.7.3 General Questions

Questions 21, 22, 23

1.7.4 Technical Writing

Questions 31, 32, 33

Skill Practice
with these end-of-chapter questions

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 9

10 CHAPTER 1 Introduction to Programming and the Java Language

1.2.1 Displaying Windows Configuration Information

To display system configuration information on a Windows computer, run
msinfo32.exe from the command line. From the Start menu, select Run and
type msinfo32 into the text box. You will get a display similar to the one in
Figure 1.2, although the information displayed varies, depending on your
hardware and the version of Windows you are running.

As you can see in Figure 1.2, this computer is running Windows Vista. The
CPU is an Intel™ Core™ 2 Duo CPU T6400 processor running at 2.0 GHz,
and the computer has 3 GB of memory, 1.5 GB of which is not being used
at the time of the display.

1.2.2 Displaying Unix/Linux Configuration Information

1. To retrieve the name of the operating system, at the $ prompt, type
echo $OSTYPE.

$ echo $OSTYPE

linux-gnu

This tells you that the machine is running the GNU version of the
Linux operating system.

Figure 1.2
System Information

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 10

1.2 Practice Activity: Displaying System Configuration 11

2. To retrieve the name of your home directory, at the prompt, type
echo $HOME.

$ echo $HOME
/home/username

3. To retrieve information about your computer’s main memory, at the
prompt, type cat /proc/meminfo. This will display the contents of the
file meminfo in the proc directory.

$ cat /proc/meminfo
MemTotal: 2075540 kB
MemFree: 1255172 kB
Buffers: 164512 kB
Cached: 443788 kB
SwapCached: 0 kB
Active: 459444 kB
Inactive: 260328 kB
HighTotal: 1179584 kB
HighFree: 619484 kB
LowTotal: 895956 kB
LowFree: 635688 kB
SwapTotal: 915664 kB
SwapFree: 915664 kB

From this display, we see that the computer has 200 Mbytes of mem-
ory, 12 Mbytes of which is not being used at the time of the display.
Other types of memory are also shown here, but discussion of these
types of memory is beyond the scope of this course.

4. To retrieve information on your computer’s CPU, type cat
/proc/cpuinfo. This will display the contents of the file cpuinfo in the
proc directory.

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Xeon(TM) MP CPU 2.20GHz
stepping : 8
cpu MHz : 2189.034
cache size : 2048 KB
fdiv_bug : no

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 11

12 CHAPTER 1 Introduction to Programming and the Java Language

DISCUSSION QUESTIONS
1. Compare the system information on several computers. Is it the same or different

from computer to computer? Explain why the information is the same or different.

2. In the sample display for Windows Vista, the computer has 3 GB of memory, but only
1.5 GB of memory is available.Why do you think some memory is not available?

3. Compare your computer to the ones on the previous pages shown here.Which do you
think would have better performance? Explain your answer.

?

hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss pebs
bts

bogomips : 4395.42

From this display, we see that the computer’s CPU is an Intel Xeon™ MP,
running at 2.2 GHz. Again, discussion of the other information displayed is
beyond the scope of this course.

1.3 Data Representation

1.3.1 Binary Numbers

As mentioned earlier, a CPU understands only binary numbers, whose dig-
its consist of either 0 or 1. All data is stored in a computer’s memory as
binary digits. A bit holds one binary digit. A byte holds eight binary digits.

Binary numbers are expressed in the base 2 system, because there are only 2
values in that system, 0 and 1. By contrast, most people are used to the dec-
imal, or base 10, system, which uses the values 0 through 9.

There are other number systems, such as the octal, or base 8, system, which
uses the digits from 0 to 7, and the hexadecimal, or base 16, system, which uses
the digits 0 to 9 and the letters A to F.

As we know it in the decimal system, the number 359 is composed of the
following three digits:

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 12

1.3 Data Representation 13

TABLE 1.3 Binary Equivalents of Decimal Numbers 0 Through 8

Decimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

3, representing the hundreds, or 102

5, representing the tens, or 101

9, representing the ones, or 100

Therefore, we can write 359 as

359 = 3*102 + 5*101 + 9*100

Thus, the decimal number 359 is written as a linear combination of powers of
10 with coefficients from the base 10 alphabet, that is, the digits from 0 to 9.
Similarly, the binary number 11011 is written as a linear combination of pow-
ers of 2 with coefficients from the base 2 alphabet, that is, the digits 0 and 1.

For example, the binary number 11011 can be written as

11011 = 1*24 + 1*23 + 0*22 + 1*21 + 1*20

Table 1.3 lists the binary equivalents for the decimal numbers 0 through 8,
while Table 1.4 lists the decimal equivalents of the first 15 powers of 2.

TABLE 1.4 Powers of 2 and Their Decimal Equivalents

214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

16,384 8,192 4,096 2,048 1,024 512 256 128 64 32 16 8 4 2 1

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 13

14 CHAPTER 1 Introduction to Programming and the Java Language

Note that in Table 1.3, as we count in increments of 1, the last digit alter-
nates between 0 and 1. In fact, we can see that for even numbers, the last
digit is always 0 and for odd numbers, the last digit is always 1.

Because computers store numbers as binary, and people recognize num-
bers as decimal values, conversion between the decimal and binary number
systems often takes place inside a computer.

Let’s try a few conversions. To convert a binary number to a decimal num-
ber, multiply each digit in the binary number by 2position�1, counting the
rightmost position as position 1 and moving left through the binary num-
ber. Then add the products together.

Using this method, let’s calculate the equivalent of the binary number 11010
in our decimal system.

11010 = 1*24 + 1*23 + 0*22 + 1*21 + 0*20

= 16 + 8 + 0 + 2 + 0
= 26

Now let’s examine how to convert a decimal number to a binary number.
Let’s convert the decimal number 359 into its binary number equivalent. As
we can see from the way we rewrote 11011, a binary number can be written
as a sum of powers of 2 with coefficients 0 and 1.

The strategy to decompose a decimal number into a sum of powers of 2 is
simple: first find the largest power of 2 that is smaller than or equal to the
decimal number, subtract that number from the decimal number, then do
the same with the remainder, and so on, until you reach 0.

The largest power of 2 that is smaller than 359 is 256, or 28 (the next larger
power of 2 would be 512, which is larger than 359). Subtracting 256 from
359 gives us 103 (359 � 256 = 103), so we now have

359 = 28*1 + 103

Now we apply the same procedure to 103. The largest power of 2 that is
smaller than 103 is 64, or 26. That means that there is no factor for 27, so
that digit’s value is 0. Subtracting 64 from 103 gives us 39.

Now we have

359 = 28*1 + 27*0 + 26*1 + 39

Repeating the procedure for 39, we find that the largest power of 2 smaller
than 39 is 32 or 25. Subtracting 32 from 39 gives us 7.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 14

1.3 Data Representation 15

So we now have

359 = 28*1 + 27*0 + 26*1 + 25*1 + 7

Repeating the procedure for 7, the largest power of 2 smaller than 7 is 22, or
4. That means that there are no factors for 24 or 23, so the value for each of
those digits is 0. Subtracting 4 from 7 gives us 3, so we have

359 = 28*1 + 27*0 + 26*1 + 25*1 + 24*0 + 23*0 + 22*1 + 3

Repeating the procedure for 3, the largest power of 2 smaller than 3 is 2, or
21, and we have:

359 = 28*1 + 27*0 + 26*1 + 25*1 + 24*0 + 23*0 + 22*1 + 21*1 + 1

1 is a power of 2; it is 20, so we finally have

359 = 28*1 + 27*0 + 26*1 + 25*1 + 24*0 + 23*0 + 22*1 + 21*1 + 20*1

Removing the power of 2 multipliers, 359 can be represented in the
binary system as

359 = 28*1 + 27*0 + 26*1 + 25*1 + 24*0 + 23*0 + 22*1 + 21*1 + 20*1
= 1 0 1 1 0 0 1 1 1

or

1 0110 0111

In a computer program, we will use both positive and negative numbers.
Appendix D explains how negative numbers, such as –34, are represented
in the binary system. In a computer program, we also use floating-point
numbers, such as 3.75. Appendix E explains how floating-point numbers
are represented using the binary system.

1.3.2 Using Hexadecimal Numbers to Represent Binary Numbers

As you can see, binary numbers can become rather long. With only two
possible values, 0 and 1, it takes 16 binary digits to represent the decimal
value +32,768. For that reason, the hexadecimal, or base 16, system is often
used as a shorthand representation of binary numbers. The hexadecimal

To see a step-by-step demonstration of converting between decimal and binary numbers, look for
the Flash movie on the CD-ROM included with this book. Click on the link for Chapter 1 to start the
movie.

CODE IN ACTION

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 15

16 CHAPTER 1 Introduction to Programming and the Java Language

TABLE 1.5 Hexadecimal Digits and Equivalent Binary Values

Hex Digit Binary Value

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

system uses 16 digits: 0 to 9 and A to F. The letters A to F represent the val-
ues 10, 11, 12, 13, 14, and 15.

The maximum value that can be represented in four binary digits is 24 � 1,
or 15. The maximum value of a hexadecimal digit is also 15, which is repre-
sented by the letter F. So you can reduce the size of a binary number by
using hexadecimal digits to represent each group of four binary digits.

Table 1.5 displays the hexadecimal digits along with their binary equivalents.

To represent the following binary number in hexadecimal, you simply sub-
stitute the appropriate hex digit for each set of four binary digits.

0001 1010 1111 1001 1011 0011 1011 1110
1 A F 9 B 3 B E

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 16

1.3 Data Representation 17

Here’s an interesting sequence of hexadecimal numbers. The first 32 bits of
every Java applet are:

1100 1010 1111 1110 1011 1010 1011 1110

Translated into hexadecimal, that binary number becomes:

CAFE BABE

1.3.3 Representing Characters with the Unicode Character Set

Java represents characters using the Unicode Worldwide Character Standard,
or simply Unicode. Each Unicode character is represented as 16 bits, or two
bytes. This means that the Unicode character set can encode 65,536 characters.

The Unicode character set was developed by the Unicode Consortium,
which consists of computer manufacturers, software vendors, the govern-
ments of several nations, and others. The consortium’s goal was to support
an international character set, including the printable characters on the stan-
dard QWERTY keyboard, as well as international characters such as é or λ.

Many programming languages store characters using the ASCII (American
Standard Code for Information Interchange) character set, which uses 7
bits to encode each character, and thus, can represent only 128 characters.
For compatibility with the ASCII character set, the first 128 characters in
the Unicode character set are the same as the ASCII character set.

Table 1.6 shows a few examples of Unicode characters and their decimal
equivalents.

For more information on the Unicode character set, see Appendix C or visit
the Unicode Consortium’s website at http://www.Unicode.org.

1.7.1 Multiple Choice Exercises

Questions 5, 6, 7, 8

1.7.2 Converting Numbers

Questions 15, 16, 17, 18, 19, 20

1.7.3 General Questions

Questions 24, 25, 26

Skill Practice
with these end-of-chapter questions

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 17

18 CHAPTER 1 Introduction to Programming and the Java Language

TABLE 1.6 Selected Unicode Characters and Their Decimal Equivalents

Unicode Character Decimal Value

NUL, the null character (a nonprintable character) 0

* 42

1 49

2 50

A 65

B 66

a 97

b 98

} 125

delete (a nonprintable character) 127

1.4 Programming Languages

1.4.1 High- and Low-Level Languages

Programming languages can be categorized into three types:

� machine language

� assembly language

� high-level language

In the early days of computing, programmers often used machine language
or assembly language. Machine language uses binary codes, or strings of 0s
and 1s, to execute the instruction set of the CPU and to refer to memory
addresses. This method of programming is extremely challenging and time
consuming. Also, the code written in machine language is not portable to
other computer architectures. Machine language’s early popularity can be
attributed largely to the fact that programmers had no other choices. How-
ever, programmers rarely use machine language today.

Assembly languages are one step above machine language, using symbolic
names for memory addresses and mnemonics for processor instructions—

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 18

1.4 Programming Languages 19

for example: BEQ (branch if equal), SW (store), or LW (load). An Assem-
bler program converts the code to machine language before it is executed.
Like machine language, assembly languages are also CPU-dependent and
are not portable among computers with different processors (for instance,
between Intel and SPARC). Assembly language is easier to write than
machine language, but still requires a significant effort, and thus is usually
used only when the program requires features, such as direct hardware
access, that are not supported by a high-level language.

High-level languages, such as Fortran, Pascal, Perl, Objective C, PHP, C++,
Python, and Java, are closer to the English language than they are to machine
language, making them a lot easier to use for software development and
more portable among CPU architectures. For this reason, programmers have
embraced high-level languages for more and more applications.

Characteristics of high-level languages, such as Java, are

� The languages are highly symbolic. Programmers write instruc-
tions using keywords and special characters and use symbolic
names for data.

� The languages are somewhat portable (some more portable than
others) among different CPUs.

� Programming languages can be specialized; for instance:

� C++ and Java are used for general-purpose applications.
� Perl, PHP, and Python are used for Internet applications.
� Fortran is used for scientific applications.
� COBOL is used for business applications and reports.
� Lisp and Prolog are used for artificial intelligence applications.

High-level languages are compiled, interpreted, or a combination of both.
A program written in a compiled language, such as C++, is converted by a
compiler into machine code, then the machine code is executed.

By contrast, a program written using an interpreted language, such as Perl,
is read and converted to machine code, line by line, at execution time. Typ-
ically, a program written in an interpreted language will run more slowly
than its equivalent written in a compiled language.

Java uses a combination of a compiler and an interpreter. A Java program is
first compiled into processor-independent byte codes, then the byte code file
is interpreted at run time by software called the Java Virtual Machine (JVM).

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 19

20 CHAPTER 1 Introduction to Programming and the Java Language

1.4.2 An Introduction to Object-Oriented Programming

Initial high-level languages, such as Fortran or Pascal, were procedural.
Typically, programmers wrote task-specific code in separate procedures, or
functions, and invoked these procedures from other sections of the pro-
gram in order to perform various tasks. The program’s data was generally
shared among the procedures.

In the mid-1970s, the first object-oriented programming language,
Smalltalk, was introduced, enabling programmers to write code with a dif-
ferent approach. Whereas procedures or functions dealt mainly with basic
data types such as integers, real numbers, or single characters, Smalltalk pro-
vided the programmer with a new tool: classes and objects of those classes.

A class enables the programmer to encapsulate data and the functions
needed to manipulate that data into one package. A class essentially defines
a template, or model, from which objects are created. Creating an object is
called instantiation. Thus, objects are created—instantiated—according to
the design of the class.

A class could represent something in real life, such as a person. The class
could have various attributes such as, in the example of a “person” class, a
first name, a last name, and an age. The class would also provide code,
called methods, that allow the creator of the object to set and retrieve the
values of the attributes.

One big advantage to object-oriented programming is that well-written classes
can be reused by new programs, thereby reducing future development time.

Smalltalk was somewhat successful, but had a major deficiency: its syntax was
unlike any syntax already known by most programmers. Most programmers
who knew C, were attracted by the object-oriented features of Smalltalk, but
were reluctant to use it because its syntax was so different from C’s syntax.
C++ added object-oriented features to C, but also added complexity.

Meanwhile, the Internet was growing by leaps and bounds and gaining popu-
larity daily. Web developers used HTML to develop web pages and soon felt
the need to incorporate programming features not only on the server side,
but also directly on the client side. Fortunately, Java appeared on the scene.

1.4.3 The Java Language

On May 23, 1995, Sun Microsystems introduced Java, originally named
Oak, as a free, object-oriented language targeted at embedded applications
for consumer devices. A Java Virtual Machine was incorporated immedi-

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 20

1.4 Programming Languages 21

ately into the Netscape Navigator Internet browser, and as the Internet
grew, small Java programs, known as applets, began to appear on web pages
in increasing numbers. Java syntax is basically identical (with some minor
exceptions) to that of C++, and soon programmers all over the world
started to realize the benefits of using Java. Those benefits include

� syntax identical to that of C++, except that Java eliminates some of
C++’s more complex features

� object orientation

� Internet-related features, such as applets, which are run by the
browser, and servlets, which are run by the web server

� an extensive library of classes that can be reused readily, including
Swing classes for providing a Graphical User Interface and Java
Database Connectivity (JDBC) for communicating with a database

� portability among every platform that supports a Java Virtual
Machine

� built-in networking

� open source availability of the Java Development Kit

As we mentioned earlier, a Java program is first compiled into processor-
independent byte codes, then the byte codes are interpreted at run time by
the Java Virtual Machine (JVM). As its name implies, the JVM simulates a
virtual processor with its own instruction set, registers, and instruction
pointer. Thus, to run a Java program, you only need a JVM. Fortunately,
JVMs are available on every major computing platform.

Because Java programs are interpreted at run time, they typically run more
slowly than their C++ counterparts. However, many platforms provide Java
compilers that convert source code directly to machine code. This results in
greater execution speed, but with an accompanying loss of portability. Just-
in-Time (JIT) compilers are also available. These JITs compile code at run
time so that subsequent execution of the same code runs much faster.

Java programs can be written as applets, servlets, or applications.

Java applets are small programs designed to add interactivity to a web page.
Applets are launched by an Internet browser; they cannot run standalone.
As the user requests a web page that uses an applet, the applet is down-
loaded to the user’s computer and run by the JVM in the browser. Due to
browser incompatibilities, limitations imposed by security features, and
slow download times, however, applets have fallen out of favor.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 21

22 CHAPTER 1 Introduction to Programming and the Java Language

Java servlets are invoked by the web server and run on the server, without
being downloaded to the client. Typically, servlets dynamically generate
web content by reading and writing to a database using JDBC (Java Data-
base Connectivity).

Java applications run standalone on a client computer. In this book, we will
write a few applets, but mainly we will write Java applications.

Oracle Corporation, which acquired Sun Microsystems in January 2010,
provides a valuable Java website (www.oracle.com/technetwork/java), which
has information on using the prewritten classes, a tutorial on Java, and
many more resources for the Java programmer. We will refer you to that site
often in this book.

1.5 An Introduction to Programming

1.5.1 Programming Basics

In many ways, programming is like solving a puzzle. You have a task to per-
form and you know the operations that a computer can perform (input,
calculations, comparisons, rearranging of items, and output). As a pro-
grammer, your job is to decompose a task into individual, ordered steps of
inputting, calculating, comparing, rearranging, and outputting.

For example, suppose your task is to find the sum of two numbers. First, your
program needs to read (input) the numbers into the computer. Next,
your program needs to add the two numbers together (calculate). Finally, your
program needs to write (output) the sum.

Notice that this program consists of steps, called instructions, which are
performed in order (“First,” “Next,” “Finally”). Performing operations in
order, one after another, is called sequential processing.

The order in which instructions are executed by the computer is critical in
programming. You can’t calculate the sum of two numbers before you have
read the two numbers, and you can’t output a sum before you have calcu-
lated it. Programming, therefore, requires the programmer to specify the
ordering of instructions, which is called the flow of control of the pro-
gram. There are four different ways that the flow of control can progress
through a program: sequential execution, method call, selection, and loop-
ing. We’ve just seen sequential execution, and we’ll discuss the other types
of flow of control in the next section.

Because getting the flow of control correct is essential to getting a program
to produce correct output, programmers use a tool called pseudocode

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 22

1.5 An Introduction to Programming 23

(pronounced sue dough code) to help them design the flow of control
before writing the code.

1.5.2 Program Design with Pseudocode

Pseudocode, from pseudo, which means “appearing like,” is a method for
expressing a program’s order of instructions in English language, rather
than a programming language. In this way, the programmer can concen-
trate on designing a program without also being bogged down in the syn-
tax of the particular programming language.

The pseudocode for calculating the sum of two numbers would look like
Example 1.1.

read first number
read second number
set total to (first number + second number)
output total

EXAMPLE 1.1 Pseudocode for Summing Two Numbers

Fortunately, the rules for writing pseudocode are not rigid. Essentially, you
can use any wording that works for you.

Let’s look at another example. Suppose your program needs to calculate the
square root of an integer. The instructions for calculating a square root are
rather complex; fortunately, Java provides prewritten code that computes
the square root of any integer. The prewritten code is called a method, and
your program can execute that code by calling the method. As part of the
method call, you tell the method which integer’s square root you want to
calculate. This is called passing an argument to the method. When the
method finishes executing its instructions, control is passed back to your
program just after the method call. Another way of looking at method calls
is to consider what happens when you’re reading a book and find a word
you don’t understand. You mark your place in the book and look up the
word in a dictionary. When you’re finished looking up the word, you go
back to the book and continue reading.

Example 1.2 shows the pseudocode for calculating the square root of an
integer.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 23

24 CHAPTER 1 Introduction to Programming and the Java Language

read an integer
call the square root method, passing the integer and receiving the square root
output the square root of the integer

EXAMPLE 1.2 Using a Method Call to Calculate a Square Root

The order of operations is still input, calculate, and output, but we’re call-
ing a method to perform the calculation for us.

Now suppose your task is to determine whether a number is positive or
negative. First, your program should input the number into the computer.
Next, you need to determine whether the number is positive or negative.
You know that numbers greater than or equal to 0 are positive and numbers
less than 0 are negative, so your program should compare the number to 0.
Finally, your program should write a message indicating whether the num-
ber is positive or negative.

Like Examples 1.1 and 1.2, the operations are input, calculate, and output,
in that order. However, depending on whether the number is positive or
negative, your program should write a different message. If the number is
greater than or equal to 0, the program should write a message that the
number is positive, but if the number is less than 0, the program should
write a message that the number is negative. Code used to handle this situ-
ation is called selection; the program selects which code to execute based
on the value of the data.

The pseudocode for this program could be written as that shown in Exam-
ple 1.3.

read a number
if the number is greater than or equal to 0

write “Number is positive.”
else

write “Number is negative.”

EXAMPLE 1.3 Using Selection

Notice the indentation for the code that will be selected based on the com-
parison of the number with 0. Programmers use indentation to make it
easier to see the flow of control of the program.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 24

1.5 An Introduction to Programming 25

Now let’s get a little more complicated. Suppose your program needs to
find the sum of a group of numbers. This is called accumulating. To
accomplish this, we can take the same approach as if we were adding a
group of numbers using a calculator. We start with a total of 0 and add each
number, one at a time, to the running total. When we have no more num-
bers to add, the running total is the total of all the numbers.

Translating this into pseudocode, we get the code shown in Example 1.4.

set total to 0
read a number
while there was a number to read, repeat next two instructions
add number to total
read the next number

write total

EXAMPLE 1.4 Accumulating a Total

The indented code will be repeated for each number read until there are no
more numbers. This repeated execution of the same code is called looping,
or iteration, and is used extensively in programming whenever the same
processing needs to be performed on each item in a set.

Accumulating a total and determining whether a number is positive or
negative are just two of many commonly performed operations. In pro-
gramming, you will often perform tasks for which there are standard meth-
ods of processing, called algorithms. For example, the algorithm for
accumulation is to set a total to 0, use looping to add each item to the total,
then output the total. More generally, you can think of an algorithm as a
strategy to solve a problem. Earlier in the chapter, we used an algorithm to
convert a decimal number to its binary representation.

Other common programming tasks are counting items, calculating an
average, sorting items into order, and finding the minimum and maximum
values. In this book, you will learn the standard algorithms for performing
these common operations. Once you learn these algorithms, your pro-
gramming job will become easier. When you recognize that a program
requires these tasks, you can simply plug in the appropriate algorithm with
some minor modifications.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 25

�

Looking for patterns will
help you determine the
appropriate algorithms for
your programs.

SOFTWARE
ENGINEERING TIP

26 CHAPTER 1 Introduction to Programming and the Java Language

Programming, in large part, is simply reducing a complex task to a set of
subtasks that can be implemented by combining standard algorithms that
use sequential processing, method calls, selection, and looping.

The most difficult part of programming, however, is recognizing which
algorithms to apply to the problem at hand. This requires analytical skills
and the ability to see patterns. Throughout this book, we will point out
common patterns wherever possible.

1.5.3 Developing a Java Application

Writing a Java application consists of several steps: writing the code,
compiling the code, and executing the application. Java source code is
stored in a text file with the extension .java. Compiling the code creates
one or more .class files, which contain processor-independent byte codes.
The Java Virtual Machine (JVM) translates the byte codes into machine-
level instructions for the processor on which the Java application is run-
ning. Thus, if a Java application is running on an Intel Pentium 4
processor, the JVM translates the byte codes into the Pentium 4’s instruc-
tion set.

Oracle provides a Java SE Development Toolkit (JDK) on its website
(www.oracle.com/technetwork/java), which is downloadable free of charge.
The JDK contains a compiler, JVM, and an applet viewer, which is a mini-
mal browser. In addition, the JDK contains a broad range of prewritten Java
classes that programmers can use in their Java applications.

If you are downloading and installing Java yourself, be sure to follow the
directions on the Sun Microsystems website, including the directions for
setting the path for javac, the Java compiler. You need to set the path cor-
rectly so that you can run the Java compiler from any directory on your
computer.

To develop an application using the JDK, write the source code using any
text editor, such as Notepad, Wordpad, or the vi editor. To compile the
code, invoke the compiler from the command line:

javac ClassName.java

where ClassName.java is the name of the source file.

If your program, written in the file ClassName.java, compiles correctly, a
new file, ClassName.class, will be created in your current directory.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 26

1.5 An Introduction to Programming 27

To run the application, you invoke the JVM from the command line:

java ClassName

Typically, programmers use an Integrated Development Environment (IDE)
to develop applications. An IDE consists of a program editor, a compiler, and a
run-time environment, integrated via a Graphical User Interface. The advan-
tage to using an IDE is that errors in the Java code that are found by the com-
piler or the JVM can be linked directly to the program editor at the line in the
source file that caused the error. Additionally, the Graphical User Interface
enables the programmer to switch among the editor, compiler, and execution
of the program without launching separate applications.

Some of the many available IDEs include Eclipse from the Eclipse Founda-
tion, Inc.; JGrasp, developed at Auburn University; NetBeans, download-
able from Sun Microsystems; and TextPad from Helios Software Solutions.
Some IDEs are freely available, while others require a software license fee.
We include several IDEs on the CD-ROM included with this book.

1.5.4 Programming Activity 1: Writing a First Java Application

Let’s create our first Java program. This program prints the message, “Pro-
gramming is not a spectator sport!” on the screen.

Start by launching your IDE and open a new editor window. This is where
you will write the code for the program.

1.7.1 Multiple Choice Exercises

Questions 9, 10, 11, 12, 13, 14

1.7.3 General Questions

Questions 27, 28, 29, 30

1.7.4 Technical Writing

Question 34

Skill Practice
with these end-of-chapter questions

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 27

28 CHAPTER 1 Introduction to Programming and the Java Language

�

Java is case-sensitive.The
class name and the file
name must match exactly,
including capitalization.

COMMON ERROR
TRAP

Before we type any code, however, let’s name the document. We do this by
saving the document as FirstProgram.java. Be sure to capitalize the F and
the P and keep the other letters lowercase. Java is case-sensitive, so Java
considers firstprogram.java or even Firstprogram.java to be a different
name.

Keeping case sensitivity in mind, type in the program shown in Example 1.5.

1 // First program in Java
2 // Anderson, Franceschi
3
4 public class FirstProgram
5 {
6 public static void main(String [] args)
7 {
8 System.out.println("Programming is not a spectator sport!");
9
10 System.exit(0);
11 }
12 }

EXAMPLE 1.5 A First Program in Java

At this point, we ask that you just type the program as you see it here,
except for the line numbers, which are not part of the program. Line num-
bers are displayed in this example to allow easy reference to a particular line
in the code. We’ll explain a little about the program now; additional details
will become clear as the semester progresses.

The first two lines, which start with two forward slashes, are comments.
They will not be compiled or executed; they are simply information for the
programmer and are used to increase the readability of the program.

Line 4 defines the class name as FirstProgram. Notice that the class name
must be spelled exactly the same way—including capitalization—as the file
name, FirstProgram.java.

The curly braces in lines 5 and 12 mark the beginning and ending of the
FirstProgram class, and the curly braces in lines 7 and 11 mark the begin-
ning and ending of main. Every Java application must define a class and

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 28

1.5 An Introduction to Programming 29

a main method. Execution of a Java application always begins with the
code inside main. So when this application begins, it will execute line 8,
which writes the message “Programming is not a spectator sport!” to the
system console. Next, it executes line 10, System.exit(0), which exits the
program. Including this line is optional; if you omit this line, the applica-
tion will exit normally.

As you type the program, notice that your IDE automatically colors your
text to help you distinguish comments, String literals (“Programming is not
a spectator sport!”), Java class names (String, System), and keywords (pub-
lic, class, static), which are reserved for specific uses in Java. Curly braces,
brackets, and parentheses, which have syntactical meaning in Java, are usu-
ally displayed in color as well. Your IDE may use different colors than those
shown in Example 1.5.

When you have completed typing the code in Example 1.5, compile it. If
everything is typed correctly, the compiler will create a FirstProgram.class
file, which contains the byte codes for the program.

If you received any compiler errors, check that you have entered the code
exactly as it is written in Example 1.5. We give you tips on finding and fix-
ing the errors in the next section.

If you got a clean compile with no errors, congratulations! You’re ready to
execute the application. This will invoke the JVM and pass it the First-
Program.class file created by the compiler. If all is well, you will see the mes-
sage, Programming is not a spectator sport!, displayed on the Java console,
which is the text window that opens automatically. Figure 1.3 shows the
correct output of the program.

Figure 1.3
Output from Example 1.5Programming is not a spectator sport!

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 29

30 CHAPTER 1 Introduction to Programming and the Java Language

Debugging Techniques

If the compiler found syntax errors in the code, these are called compiler
errors, not because the compiler caused them, but because the compiler
found them. When the compiler detects errors in the code, it writes diag-
nostic information about the errors.

For example, try typing println with a capital P (as Println), and recompil-
ing. The compiler displays the following message:

FirstProgram.java:8: cannot find symbol
System.out.Println("Programming is not a spectator sport!");

^
symbol: method Println(String)
location: class PrintStream

1 error

The first line identifies the file name that contains the Java source code, as
well as the line number in the source code where the error occurred. In this
case, the error occurred on line 8. The second line identifies the symbol
Println as being the cause of the error. As further help, the location informa-
tion in the third and fourth lines display line 8 from the source code, using a
caret (^) to point to Println. All these messages point you to line 8, especially
emphasizing the spelling of Println. With most IDEs, double-clicking on the
first line in the error message transfers you to the source code window with
your cursor positioned on line 8 so you can correct the error.

Many times, the compiler will find more than one error in the source code.
When that happens, don’t panic. Often, a single problem, such as a missing
semicolon or curly brace, can cause multiple compiler errors.

For example, after correcting the preceding error, try deleting the left curly
brace in line 7, then recompiling. The compiler reports four errors:

FirstProgram.java:6: ‘;’ expected
public static void main(String [] args)

^
FirstProgram.java:10: <identifier> expected

System.exit(0);
^

FirstProgram.java:10: illegal start of type
System.exit(0);

^
FirstProgram.java:12: class, interface or enum expected
}
^
4 errors

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 30

�

Because one syntax error
can cause multiple com-
piler errors, correct only the
obvious errors and recom-
pile after each correction.

Software
Engineering Tip

1.5 An Introduction to Programming 31

As you can see, the compiler messages do not always report the problem
exactly. When you receive a compiler message, looking at the surrounding
lines will often help you find the error. Depending on your IDE, you might
see messages other than those shown here because some IDEs attempt to
interpret the error messages from the compiler to provide more relevant
information on the errors.

It is sometimes easier to fix one error at a time and recompile after each fix,
because the first fix might eliminate many of the reported errors.

When all the compiler errors are corrected, you’re ready to execute the pro-
gram.

It is possible to get a clean bill of health from the compiler, yet the program
still won’t run. To demonstrate this, try eliminating the brackets in line 6
after the word String. If you then compile the program, no errors are
reported. But when you try to run the program, you get a run-time error.

Instead of Programming is not a spectator sport!, the following message is
displayed on the Java console:

Error: Main method not found in class FirstProgram, please define the main
method as:

public static void main(String[] args)
Exception in thread "main" java.lang.RuntimeException: Main method not
found in FirstProgram

at sun.launcher.LauncherHelper.signatureDiagnostic(
LauncherHelper.java:214)

at sun.launcher.LauncherHelper.checkAndLoadMain(
LauncherHelper.java:202)

This means that the main method header (line 6) was not typed correctly.

Thus, we’ve seen that two types of errors can occur while you are develop-
ing a Java program: compiler errors, which are usually caused by language
syntax errors or misspellings, and run-time errors, which are often caused
by problems using the prewritten classes. Run-time errors can also be
caused by exceptions that the JVM detects as it is running, such as an
attempt to divide by zero.

Testing Techniques

Once your program compiles cleanly and executes without run-time
errors, you may be tempted to conclude that your job is finished. Far from
it—you must also verify the results, or output, of the program.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 31

32 CHAPTER 1 Introduction to Programming and the Java Language

TABLE 1.7 Types of Program Errors and Their Causes

Type of Error Usual Causes

Compiler errors Incorrect language syntax or misspellings

Run-time errors Incorrect use of classes

Logic errors Incorrect program design or incorrect implementation of the design

DISCUSSION QUESTIONS
1. In the Debugging Techniques section, we saw that making one typo could generate

several compiler errors.Why do you think that happens?

2. Explain why testing boundary conditions is an efficient way to verify a program’s cor-
rectness.

3. Did any errors occur while you were developing the first application? If so, explain
whether they were compiler or run-time errors and what you did to fix them.

?

In the sample program, it’s difficult to get incorrect results—other than
misspelling the message or omitting the spaces between the words. But
any nontrivial program should be tested thoroughly before declaring it
production-ready.

To test a program, consider all the possible inputs and the corresponding
correct outputs. It often isn’t feasible to test every possible input, so pro-
grammers usually test boundary conditions, which are the values that sit
on the boundaries of producing different output for a program.

For example, to test the code that determines whether an integer is negative
or nonnegative, you would feed the program �1 and 0. These are the
boundaries of negative and nonnegative integers. In other words, the
boundary between negative and nonnegative integers is between �1 and 0.

When a program does not produce the correct output, we say the program
contains logic errors. By testing your program thoroughly, you can dis-
cover and correct most logic errors. Table 1.7 shows types of program
errors and their usual causes.

We’ll talk more about testing techniques throughout the book.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 32

1.6 Chapter Summary 33

CHAPTER SUM
M

ARY
1.6 Chapter Summary

� Basic components of a computer include the CPU, memory, a hard
disk, keyboard, monitor, and mouse.

� Each type of CPU has its own set of instructions for performing
arithmetic and logical operations, moving data, and changing the
order of execution of instructions.

� An operating system controls peripheral devices, supports multi-
tasking, allocates memory to programs, and prevents the user from
damaging the system.

� Computer networks link two or more computers so that they can
share resources, such as files or printers.

� The Internet connects millions of computers around the world.
Web servers deliver web pages to clients running Internet browsers.

� Binary numbers are composed of 0s and 1s. A bit holds one binary
digit. A byte holds eight binary digits.

� To convert a binary number to a decimal number, multiply each
digit in the binary number by 2position�1, counting the rightmost
position as position 1 and moving left through the number. Then
add the products together.

� To convert a decimal number into a binary number, first find the
largest power of 2 that is smaller than or equal to the decimal num-
ber, subtract that number from the decimal number, then do the
same with the remainder, and so on, until you reach 0.

� Hexadecimal digits can be used to represent groups of four binary
digits.

� The Unicode character set, which Java uses, can encode up to
65,536 characters using 16 bits per character.

� Machine language and assembly language are early forms of pro-
gramming languages that require the programmer to write to the
CPU’s instruction set. Because this low-level programming is time
consuming and difficult, and the programs are not portable to

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 33

34 CHAPTER 1 Introduction to Programming and the Java Language

CH
AP

TE
R

SU
M

M
AR

Y
other CPU architectures, machine language and assembly language
are rarely used.

� High-level languages are highly symbolic and somewhat portable.
They can be compiled, interpreted, or as in the case of Java, con-
verted to byte codes, which are interpreted at run time.

� A good program is readable, easily maintained, and reusable.

� Object-oriented programming uses classes to encapsulate data and
the functions needed to manipulate that data. Objects are instanti-
ated according to the class design. An advantage to object-oriented
programming is reuse of the classes.

� Programs use a combination of sequential processing, method calls,
selection, and iteration to control the order of execution of instruc-
tions. Performing operations in order, one after another, is called
sequential processing. Temporarily executing other code, then
returning, is called a method call. Selecting which code to execute
based on the value of data is called selection. Repeating the same
code on each item in a group of values is called iteration, or looping.

� Pseudocode allows a programmer to design a program without
worrying about the syntax of the language.

� In programming, you will often perform tasks for which there are
standard methods of processing, called algorithms. For example,
accumulating is a common programming operation that finds the
sum of a group of numbers.

� Programming, in large part, is reducing a complex task to a set of
subtasks that can be implemented by combining standard algo-
rithms that use sequential processing, selection, and looping.

� Java source code is stored in a text file with an extension of .java.
Compiling the code produces one or more .class files.

� An Integrated Development Environment (IDE) consists of a pro-
gram editor, a compiler, and a run-time environment, integrated
via a Graphical User Interface.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 34

1.7 Exercises, Problems, and Projects 35

EXERCISES,PROBLEM
S,AND PROJECTS

� Compiler errors are detected by the compiler and are usually
caused by incorrect Java syntax or misspellings. Run-time errors
are detected by the Java Virtual Machine and are usually caused by
exceptions or incorrect use of classes. Logic errors occur during
program execution and are caused by incorrect program design.

1.7 Exercises, Problems, and Projects

1.7.1 Multiple Choice Exercises

1. Which one of these is not an operating system?

❑ Linux

❑ Java

❑ Windows

❑ Unix

2. Which one of these is not an application?

❑ Word

❑ Internet Explorer

❑ Linux

❑ Excel

3. How many bits are in three bytes?

❑ 3

❑ 8

❑ 24

❑ 0

4. In a network, the computers providing services to the other comput-
ers are called

❑ clients.

❑ servers.

❑ laptops.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 35

36 CHAPTER 1 Introduction to Programming and the Java Language

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

5. A binary number ending with a 0

❑ is even.

❑ is odd.

❑ cannot tell.

6. A binary number ending with a 1

❑ is even.

❑ is odd.

❑ cannot tell.

7. A binary number ending with two 0s

❑ is a multiple of 4.

❑ is not a multiple of 4.

❑ cannot tell.

8. Using four bits, the largest positive binary number we can represent
is 1111.

❑ true

❑ false

9. Which one of these is not a programming language?

❑ C++

❑ Java

❑ Windows

❑ Fortran

10. Which one of these is not an object-oriented programming language?

❑ C

❑ Java

❑ C++

❑ Smalltalk

11. What is the file extension for a Java source code file?

❑ .java

❑ .exe

❑ .class

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 36

1.7 Exercises, Problems, and Projects 37

EXERCISES,PROBLEM
S,AND PROJECTS

12. What is the file extension of a compiled Java program?

❑ .java

❑ .exe

❑ .class

13. In order to compile a program named Hello.java, what do you type at
the command line?

❑ java Hello

❑ java Hello.java

❑ javac Hello

❑ javac Hello.java

14. You have successfully compiled Hello.java into Hello.class. What do
you type at the command line in order to run the application?

❑ java Hello.class

❑ java Hello

❑ javac Hello

❑ javac Hello.class

1.7.2 Converting Numbers

15. Convert the decimal number 67 into binary.

16. Convert the decimal number 1,564 into binary.

17. Convert the binary number 0001 0101 into decimal.

18. Convert the binary number 1101 0101 0101 into decimal.

19. Convert the binary number 0001 0101 into hexadecimal.

20. Convert the hexadecimal number D8F into binary.

1.7.3 General Questions

21. A RAM chip is organized as � 8 memory, i.e., each unit contains 8
bits, or a byte. There are 7 address pins on the chip. How many bytes
does that memory chip contain?

22. If a CPU is rated at 1.5 GHz, how many instructions per second can
the CPU execute?

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 37

38 CHAPTER 1 Introduction to Programming and the Java Language

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

23. If a CPU can execute 1.2 billion instructions per second, what is the
rating of the CPU in MHz?

24. Suppose we are using binary encoding to represent colors. For exam-
ple, a black-and-white color system has only two colors and therefore
needs only 1 bit to encode the color system as follows:

Bit Color

0 black

1 white

With 2 bits, we can encode four colors as follows:

Bit pattern Color

00 black

01 red

10 blue

11 white

With 5 bits, how many colors can we encode?

With n bits (n being a positive integer), how many colors can we
encode? (Express your answer as a function of n.)

25. In HTML, a color can be coded in the following hexadecimal nota-
tion: #rrggbb, where

rr represents the amount of red in the color

gg represents the amount of green in the color

bb represents the amount of blue in the color

rr, gg, and bb vary between 00 and FF in hexadecimal notation, i.e., 0
and 255 in decimal equivalent notation. Give the decimal values of
the red, green, and blue values in the color #33AB12.

26. RGB is a color system representing colors: R stands for red, G for
green, and B for blue. A color can be coded as rgb where r is a number
between 0 and 255 representing how much red there is in the color, g
is a number between 0 and 255 representing how much green there is
in the color, and b is a number between 0 and 255 representing how

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 38

1.7 Exercises, Problems, and Projects 39

EXERCISES,PROBLEM
S,AND PROJECTS

much blue there is in the color. The color gray is created by using the
same value for r, g, and b. How many shades of gray are there?

27. List three benefits of the Java programming language.

28. What is the name of the Java compiler?

29. Write the pseudocode for a program that finds the product of two
numbers.

30. Write the pseudocode for a program that finds the sums of the num-
bers input that are greater than or equal to 10 and the numbers input
that are less than 10.

1.7.4 Technical Writing

31. List the benefits of having a Local Area Network versus standalone
computer systems.

32. For one day, keep a diary of the computer applications that you use.
Also note any features of the applications that you think should be
improved or any features you’d like to see added.

33. You are looking at two computers with the following specifications,
everything else being equal:

PC # 1 PC # 2

2.6-GHz CPU 2.5-GHz CPU

2 GB L2 cache 2 GB L2 cache

1 GB RAM 4 GB RAM

500-GB Hard drive 500-GB Hard drive

$699 $699

Which PC would you buy? Explain the reasoning behind your selection.

34. Go to Oracle’s Java site (www.oracle.com/technetwork/java). Explain
what resources are available there for someone who wants to learn Java.

1.7.5 Group Project (for a group of 1, 2, or 3 students)

35. In the octal system, numbers are represented using digits from 0 to 7;
a 0 is placed in front of the octal number to indicate that the octal

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 39

40 CHAPTER 1 Introduction to Programming and the Java Language

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

system is being used. For instance, here are some examples of the
equivalent of some octal numbers in the decimal system:

Octal Decimal

000 0

001 1

007 7

010 8

011 9

In the hexadecimal system, numbers are represented using digits from
0 to 9 and letters A to F; 0x is placed in front of the hexadecimal num-
ber to indicate that the hexadecimal system is being used. For
instance, here are some examples of the decimal equivalents of some
hexadecimal numbers:

Hexadecimal Decimal

0x0 0

0x1 1

0x9 9

0xA 10

0xB 11

0xF 15

0x10 16

0x11 17

0x1C 28

1. Convert 0xC3E (in hexadecimal notation) into an octal number.

2. Convert 0377 (in octal notation) into a hexadecimal number.

3. Discuss how, in general, you would convert a hexadecimal number
into an octal number and an octal number into a hexadecimal
number.

04387_CH01_Anderson.qxd 12/7/10 9:16 AM Page 40

