
Introduction to Applets and Graphics

CHAP
.Introduction

4.1 Applet Structure

4.2 Executing an Applet

4.3 Drawing Shapes with Graphics Methods

4.4 Using Color

4.5 Programming Activity 1: Writing an

Applet with Graphics

4.6 Chapter Summary

4.7 Exercises, Problems, and Projects

4.7.1 Multiple Choice Exercises

4.7.2 Reading and Understanding Code

4.7.3 Fill In the Code

4.7.4 Identifying Errors in Code

4.7.5 Debugging Area—Using Messages

from the Java Compiler and Java

JVM

4.7.6 Write a Short Program

4.7.7 Programming Projects

4.7.8 Technical Writing

4.7.9 Group Project

178 Introduction to Applets and Graphic

Introduction

To this point, we've written Java applications, which run as standalone pro

grams. Now we'll write a few Java applets, which are run by an Internet

browser or an applet viewer.

As we discussed in Chapter 1, applets were originally designed to add inter

activity to a web page. For example, a computer chess game on the Web can

be run as an applet.

Another advantage to applets is the ease with which you can add graphics

to a program. Up to this point, the input and output of our applications

have been text—words and numbers. There was one exception, however:

Programming Activity 1 in Chapter 3. That application opened a window

and drew figures along with the text. How did we do that? We used

graphics.

Graphical output is an integral part of many programs today. One com

pelling reason for using graphics in a program is the ability to present data

in a format that is easy to comprehend. For example, our application could

output average monthly temperatures as text, like this:

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

31

24

45

56

69

76

88

87

75

65

43

23

Or we could produce the bar chart shown in Figure 4.1.

The bar chart presents the same information as the text output, but it adds

a visual component that makes it easier to compare the monthly tempera

tures—for example, to find the highest or lowest temperature or to spot

temperature trends throughout the year. The colors also add information,

4.1 Applet Structure 179

Applet

Jul

88
Jun ^^

May

69

Apr

Mar 56
45

Jan

31 Feb

■_

II ■

76

Aug

87 .
^_ Sep

1
75 Oct

65

Nov

43

1 Dec

li
Applet started.

Figure 4.1

Bar Chart of Monthly

Temperatures

with the low temperatures shown in blue, the moderate temperatures

shown in yellow, and the high temperatures shown in red.

In this chapter, we begin by adding graphical output to applets.

4.1 Applet Structure

The JApplet class, an existing Java class of the javaxswing package, provides

the basic functionality of an applet. An applet class that we write is an

extension of the JApplet class. In Java, the extends keyword specifies that

one class is an extension of another and inherits the properties of the other

class. Inheritance is one of the ways to reuse classes.

An applet automatically opens a window where your program can draw

shapes and text. The main method is not used in applets. Instead, we will

use the paint method for our drawing code. The paint method is called

automatically when the browser or applet viewer launches the applet, as

well as any time the applet window needs to redraw itself. An applet might

need to redraw itself if the user resizes the applet window or after another

window, which was covering all or part of the applet window, is closed or is

moved away from the applet window.

180 CHAPTER 4 Introduction to Applets and Graphics

There is more to learn about applets than what is covered in this chapter.

We will keep our description of applets simple so that you can concentrate

on the graphical aspects. In subsequent chapters, we will cover additional

concepts related to applets.

Example 4.1 shows a minimal pattern for an applet. This applet shell is

available to you on the CD-ROM accompanying this book.

1 /* An applet shell

2 Anderson, Franceschi

3 7

4

5 import javax.swing.JApplet;

6 import Java.awt.Graphics;

7

8 public class ShellApplet extends JApplet

9 {

10 public void paint(Graphics g)

11 {

12 super.paint(g);

13 // include graphics code here

14 }

15 }

Lines 5 and 6 import the two classes that are used in this example: JApplet,

used at line 8, and Graphics, used at line 10. The Graphics class is part of the

awt (Abstract Window Toolkit) package.

Line 8 looks similar to the class header in our Java applications, but it

includes two additional words: extends JApplet. In this case, we are inherit

ing from the JApplet class. Among other things, our ShellApplet class inher

its the methods of the JApplet class. This means that we don't need to start

from scratch to create an applet, so we can write applets that much faster.

The JApplet class is called the superclass, and the ShellApplet is called the

subclass.

The paint method, at lines 10-14, is where you put code to display words

and graphics that should appear in the applet window. The first statement

4.2 Executing an Applet 181

in the paint method is super.paint(g). This statement calls the paint

method of our superclass, the JApplet class, so that it can perform its ini

tialization of the applet window.

The paint method's only parameter is a Graphics object. This object is auto

matically generated by the browser or applet viewer, which sends it to the

paint method. The Graphics object represents the graphics context, which,

among other things, includes the applet window. The Graphics class con

tains the methods we will need to make text and shapes appear in the

applet window.

Skill Practice
with these end-of-chapter questions

4.7.1 Multiple Choice Exercises

Questions 1,2,3,4

4.7.4 Identifying Errors in Code

Questions 26,27

4.7.5 Debugging Area

Question 28

4.7.8 Technical Writing

Question 38

4.2 Executinq an Applet

Like applications, applets need to be compiled before they are run. Once

compiled, however, applets are unlike applications in that they do not run

standalone. Applets are designed to be run by an Internet browser or an

applet viewer. We tell the browser to launch an applet by opening a web

page that includes an APPLET tag as part of the HTML code. We tell the

applet viewer to run the applet by specifying a minimum web page that

contains an APPLET tag.

If you are not familiar with HTML coding, the language consists of pairs of

tags that specify formatting for the web page. The opening tag begins the

182 CHAPTER 4 Introduction to Applets and Graphics

HTMLTaqs Meanin

<TITLEx/TITLE>

<B0DYx/B0DY>

<HTMLx/HTML> Marks the beginning and end of the web page.

<HEADx/HEAD> Marks the beginning and end of the header portion of the web page.

The header contains general descriptive information about the page.

Marks the beginning and end of the text that will be displayed on the

title bar of the browser or applet viewer window.

Marks the beginning and end of the body of the web page.The body

contains the content of the web page.

<APPLETx/APPLET> Identifies the applet to launch in the browser or applet viewer win

dow. The <APPLET> tag supports attributes for specifying the applet

name, location of the class file, and size of the applet window. Each

attribute consists of the attribute's name followed by an equals sign

(=) and the value assigned to that attribute.

CODE = the class name of the applet

CODEBASE = the directory in which to search for the class file

WIDTH = the width of the applet's window in pixels

HEIGHT = the height of the applet's window in pixels

specific formatting; the closing tag, which is identical to the opening tag

except for a leading forward slash (/), ends that formatting. The basic

HTML tags used with applets are described in Table 4.1.

Example 4.2 shows a minimal HTML file that you can modify to launch

an applet.

<HTML>

<HEAD>

<TITLE>TitleName</TITLE>

</HEAD>

<B0DY>

<APPLET CODE="ClassName.class" C0DEBASE="." WIDTH=w

HEIGHT=h></APPLET>

</BODY>

</HTML>

EXAMPLE 4.2 Minimal HTML Page for Launching an Applet

4.2 Executing an Applet 183

The CODE attribute of the APPLET tag is the name of the applet class. The

CODEBASE attribute is the directory in which the JVM should look for the

class file. In Example 4.2, the dot (.) for the CODEBASE value means that

the class file is in the same directory as the HTML page. The WIDTH and

HEIGHT attributes specify in pixels (or picture elements) the width and

height of the applet window.

For example, if we had a class called FirstApplet, we could use a simple text

editor to create the HTML file shown in Example 4.3. In this case, the

applet window will be 400 pixels wide and 300 pixels high.

<HTML>

<HEAD>

<TITLE>My First Applet</TITLE>

</HEAD>

<B0DY>

<APPLET CODE="FirstApplet, class" CODEBASE=\" WIDTH=400

HEIGHT=300></APPLET>

</BODY>

</HTML>

EXAMPLE 4.3 HTML Page for Launching an Applet Named FirstApplet

An applet viewer is provided as part of Sun Microsystems' Java SE Develop

ment Kit (JDK). The applet viewer is a minimal browser that enables us to

view the applet without needing to open a web browser.

If the name of the web page is FirstApplet.html, we can run the applet

viewer from the command line as follows:

appletviewer FirstApplet.html

If you are using an Integrated Development Environment (IDE) such as

TextPad, JGrasp, or Eclipse, you can run the applet viewer directly without

opening a command line window. In addition, IDEs typically create a min

imum web page that contains an APPLET tag so that you don't need to

create an HTML file for each applet you write.

184 CHAPTER 4 Introduction to Applets and Graphics

4.3 Drawinq Shapes with Graphics Methods

Java's Graphics class, in the java.awt package, provides methods to draw fig

ures such as rectangles, circles, and lines; to set the colors for drawing; and

to write text in a window.

Each drawing method requires you to specify the location in the window to

start drawing. Locations are expressed using an (x,y) coordinate system.

Each coordinate corresponds to a pixel. The x coordinate specifies the hori

zontal position, beginning at 0 and increasing as you move across the win

dow to the right. The y coordinate specifies the vertical position, starting at

0 and increasing as you move down the window. Thus for a window that is

400 pixels wide and 300 pixels high, the coordinate (0, 0) corresponds to

the upper-left corner; (399, 0) is the upper-right corner; (0, 299) is the

lower-left corner, and (399, 299) is the lower-right corner. Figure 4.2 shows

a window with a few sample pixels and their (x,y) coordinates.

Table 4.2 shows some useful methods of the Graphics class for drawing

shapes and displaying text in a window.

As you can see, all these methods have a void return type, so they do not

return a value. Method calls to these methods should be standalone state

ments; that is, the method call should be terminated by a semicolon.

The pattern for the method names is simple. The draw methods render the

outline of the figure, while the fill methods render solid figures. The clear-

Red method draws a rectangle in the background color, which effectively

erases anything drawn within that rectangle.

Figure 4.3 shows the relationship among the method arguments and the

figures drawn.

Figure 4.2

The Graphics Coordinate

System

(0,0)

xincreases

(75, 60)

(80, 190)

(399,0)

(200,150)

(350,95)

(300,215)

(0,299) (399,299)

4.3 Drawing Shapes with Graphics Methods 185

TABLE 4.2 Methods of the Graphics Class

Return value

void

void

void

void

void

void

void

void

void

Useful Methods of the Graphics Class

Method name and argument list

drawLine(int xStart, int yStart, int xEnd, int yEnd)

draws a line starting at (xStart,yStart) and ending at (xEnd,yEnd)

drawRect(int x, int y, int width, int height)

draws the outline of a rectangle with its top-left corner at (x,y), with

the specified width and height in pixels

fillRect(int x, int y, int width, int height)

draws a solid rectangle with its top-left corner at (x,y), with the speci

fied width and height in pixels

clearRect(int x, int y, int width, int height)

draws a solid rectangle in the current background color with its top-

left corner at [x,y), with the specified width and height in pixels

drawOval(int x, int y, int width, int height)

draws the outline of an oval inside an invisible, bounding rectangle

with the specified width and height in pixels.The top-left corner of the

rectangle is (x,y)

fi1lOval(int x, int y, int width, int height)

draws a solid oval inside an invisible, bounding rectangle with the

specified width and height in pixels.The top-left corner of the rectan

gle is (x,y)

drawString(String s, int x, int y)

displays the Strings. If you were to draw an invisible, bounding rectan

gle around the first letter of the String, [x,y) would be the lower-left

corner of that rectangle

drawPolygon(Polygon p)

draws the outline of Polygonp

fi11 Polygon(Polygon p)

draws the Polygon p and fills its area with the current color

186 Introduction to Applets and Graphics

Figure 4.3

The Arguments for

Drawing Lines,

Rectangles, Ovals,

and Text

drawLine(xStart, yStart, xEnd, yEnd)

(xStart, yStart) (xEnd.yEnd)

L, «_l

drawRect(x, y, width, height)

ter)

width

drawOval(x, y, width, height)

Uy)

width

drawString(string, x, y)

■ a string is written here

Uy)

Example 4.4 shows how to use the drawString method. The coordinate

you specify is the lower-left corner of the first character in the String. If

you want to display more than one line of text in the default font, add 15

to the y value for each new line. For example, the statements at lines 13

and 14 print the message "Programming is not a spectator sport!" on

two lines.

4.3 Drawing Shapes with Graphics Methods 187

Applet Viewer: DrawingTextApplet.class

Applet

Programming is not

a spectator sport

Applet started.

Figure 4.4

An Applet Displaying

Two Lines of Text

Figure 4.4 shows the output of the applet.

1 /* Drawing Text

2 Anderson, Franceschi

3 */

4

5 import javax.swing.JApplet;

6 import Java.awt.Graphics;

7

8 public class DrawingTextApplet extends JApplet

9 {

10 public void paint(Graphics g)

11 {

12 super.paint(g);

13 g.drawString("Programming is not", 140, 100);

14 g.drawString("a spectator sport!", 140, 115);

15 }

16 }

EXAMPLE 4.4 An Applet That Displays Text

To draw a line, you call the drawLine method with the coordinates of the

beginning of the line and the end of the line. Lines can be vertical, horizon

tal, or at any angle. In vertical lines, the startX and endX values are the

188 CHAPTER 4 Introduction to Applets and Graphics

same, while in horizontal lines, the startY and endY values are the same.

Statements at lines 14-16 in Example 4.5 draw a few lines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

/* A Line Drawing Applet

Anderson, Franceschi

V

import javax.swing.JApplet;

import java.awt.Graphics;

public class LineDrawingApplet extends JApplet

public void paint(Graphics g)

super.paint(g);

g.drawLine(100, 150, 100, 250); // a vertical line

g.drawLine(150, 75, 275, 75); // a horizontal line

g.drawLine(0, 0, 399, 299); //a diagonal line from

// the upper-left corner

// to the lower-right corner

EXAMPLE 4.5 An Applet That Draws Lines

Figure 4.5 shows these lines drawn in an applet window.

Figure 4.5

Vertical, Horizontal,

and Diagonal Lines

1 i Applet Viewer: LineDrawingApplet.class

\

Applet started.

4.3 Drawing Shapes with Graphics Methods 189

Example 4.6 shows how to use the methods for drawing shapes in an applet.

To draw a rectangle, call the drawRect or fillRect methods with the (x,y) coor

dinate of the upper-left corner, as well as the width in pixels and the height in

pixels. Obviously, to draw a square, you specify equal values for the width and

height. Line 14 draws a rectangle 40 pixels wide and 100 pixels high; line 15

draws a solid square with sides that are 80 pixels in length.

Drawing an oval or a circle is a little more complex. As you can see in Figure

4.3, you need to imagine a rectangle bounding all sides of the oval or circle.

Then the (x,y) coordinate you specify in the drawOval or fillOval method is

the location ofthe upper-left corner ofthe bounding rectangle. The width and

height are the width and height of the bounding rectangle. Line 17 in Example

4.6 draws a filled oval whose upper-left corner is at coordinate (100,50) and is

40 pixels wide and 100 pixels high; this filled oval is drawn exactly inside the

rectangle drawn at line 14. Line 18 draws an oval 100 pixels wide and 40 pixels

high, the same dimensions as the oval drawn at line 17, but rotated 90 degrees.

You draw a circle by calling the drawOval or fillOval methods, specifying

equal values for the width and height. If it seems more natural to you to

identify circles by giving a center point and a radius, you can convert the

center point and radius into the arguments for Java's drawOval or fillOval

methods as done in lines 21-25.

1 /* A Shape Drawing Applet

2 Anderson, Franceschi

3 */

4

5 import javax.swing.JApplet;

6 import java.awt.Graphics;

7

8 public class ShapeDrawingApplet extends JApplet

9 {

10

11

12

13

14

15

16

17

18

19

public void paint(Graphics g)

{

super.paint(g);

g.drawRect(100, 50,

g.fillRect(200, 70,

g.fill Oval(100, 50,

g.drawOval(100, 200

40, 100);

80, 80);

40, 100);

, 100, 40);

// rectangle

// solid square

// oval inside the rectangle

// same-size oval

// rotated 90 degrees

190 CHAPTER 4 Introduction to Applets and Graphics

Geometric Shapes

and Fills

Applet Viewer: ShapeDrawingApplet.cIaSS

Applet

Applet started.

20

21 int centerX = 250, centerY = 225;

22 int radius = 25;

23 g.drawOval(centerX - radius, centerY - radius,

24 radius * 2, radius * 2); //circle using radius

25 // and center

26 }

27 }

EXAMPLE 4.6 An Applet That Draws Shapes

Figure 4.6 shows the ovals and rectangles drawn in Example 4.6.

E IN ACTION

To see a demonstration of the Graphics drawing methods, look for the Chapter 4 Flash movie on the

CO-ROM accompanying this book. Click on the link for Chapter 4 to view the movie.

The Polygon class, which is in the java.awt package, allows us to draw cus

tom shapes. The Polygon class represents a polygon as an ordered set of

(x,y) coordinates; each (x,y) coordinate defines a vertex in the polygon. A

line, called an edge, connects each (x,y) coordinate to the next one in the

4.3 Drawing Shapes with Graphics Methods 191

TABLE 4.3 A Constructor and Method of the Polygon Class

Polvaon Constru

Polygon()

creates an empty Polygon

Return value

void

A Useful Method of the Polvaon Class

Method name and argument list

addPoint(int x, int y)

appends the coordinate to the polygon

set. Finally, there is a line connecting the last (x,y) coordinate to the first

one. Table 4.3 describes a constructor for the Polygon class, as well as a

method for adding (x,y) coordinates to the polygon. To draw the polygon,

we call the drawPolygon or fillPolygon methods of the Graphics class, shown

in Table 4.2.

Example 4.7 demonstrates creating and drawing polygons. On line 7 we

import the Polygon class from the java.awt package. On lines 15-18, we

instantiate an empty Polygon named triangle and add three coordinates to

it. Then we draw the triangle as an outlined polygon on line 19. On lines

21-27, we instantiate another Polygon, hexagon, and add six points to it. We

draw this polygon as a solid figure on line 28. The output of this applet is

shown in Figure 4.7.

1 /* An applet that draws polygons

2 Anderson, Franceschi

3 7
4

5 import javax.swing.JApplet;

6 import java.awt.Graphics;

7 import java.awt.Polygon;

8

9 public class DrawingPolygons extends JApplet

10 {

11 public void paint(Graphics g)

12 {

192 CHAPTER 4 Introduction to Applets and Graphics

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

super.paint(g);

Polygon triangle = new Polygon();

triangle.addPoint(75, 50);

triangle.addPoint(25, 150);

triangle.addPoint(125, 150);

g.drawPolygon (triangle);

Polygon hexagon = new Polygon();

hexagon.addPoint(150, 100);

hexagon.addPoint(200, 13);

hexagon.addPoint(300, 13);

hexagon.addPoint(350, 100);

hexagon.addPoint(300, 187);

hexagon.addPoint(200, 187);

g.fi11 Polygon (hexagon);

EXAMPLE 4.7 Drawing Polygons

Output of Example 4.7

ps common error

'"'trap
Do not call thepa/nf

method. It is called auto

matically when the applet

starts and every time the

window contents need to

be updated.

What happens if the (x,y) coordinate you specify for a figure isn't inside the

window? If a figure's coordinates are outside the bounds of the window, no

error will be generated, but the figure won't be visible. If the user resizes the

window so that the coordinates are now within the newly sized window,

then the figure will become visible.

Now we can write an applet that draws a picture. We've decided to draw an

astronaut. Example 4.8 shows the code to do that. Notice that we never call

4.3 Drawing Shapes with Graphics Methods 193

the paint method; it is called automatically by the applet viewer or web

browser.

1 /* An applet with graphics

2 that draws an astronaut

3 Anderson, Franceschi

4 */

5

6 import javax.swing.JApplet;

7 import Java.awt.Graphics;

8

9 public class Astronaut extends JApplet

10 {

11

12 public void paint(Graphics g)

13 {

14 super.paint(g);

15

16 int sX = 95, sY = 20; // starting x and y coordinate

17

18 // helmet

19 g.drawOval(sX + 60, sY, 75, 75);

20 g.drawOval(sX + 70, sY + 10, 55, 55);

21

22 // face

23 g.draw0val(sX + 83, sY + 27, 8, 8);

24 g.draw0val(sX + 103, sY + 27, 8, 8);

25 g.drawLine(sX + 97, sY + 35, sX + 99, sY + 43);

26 g.drawLine(sX + 97, sY + 43, sX + 99, sY + 43);

27 g.draw0val(sX + 90, sY + 48, 15, 6);

28

29 // neck

30 g.drawRect(sX + 88, sY + 70, 20, 10);

31

32 // torso

33 g.drawRect(sX + 65, sY + 80, 65, 85);

34

35 // arms

36 g.drawRect(sX, sY + 80, 65, 20);

37 g.drawRect(sX + 130, sY + 80, 65, 20);

38

39 // legs

40 g.drawRect(sX + 75, sY + 165, 20, 80);

41 g.drawRect(sX + 105, sY + 165, 20, 80);

194 CHAPTER 4 Introduction to Applets and Graphics

■ra SOFTWARE

■^ ENGINEERING TIP

When drawing a figure

using graphics, specify

coordinates as offsets from

a starting (x,y) coordinate.

42

43

44

45

46

47

48

49

50

51

52

// flag

g.drawLine(sX + 195, sY + 80, sX + 195 , sY

g.drawRect(sX + 195, sY, 75, 45);

g.drawRect(sX + 195, sY, 30, 25);

// caption

g.drawString("One small step for man. . .",

sX + 25, sY + 270);

EXAMPLE 4.8 An Applet That Draws an Astronaut

When the applet in Example 4.8 runs, our astronaut will look like the one

in Figure 4.8.

To draw our astronaut, we used rectangles for the body, arms, legs, and flag;

lines for the nose and the flag's stick; circles for the helmet and eyes; and an

oval for the mouth. Then we used the drawString method to print "One

small step for man..."

In line 16, we declare and initialize two variables, sX and sY. These are the

starting x and y values for the astronaut. The x and y arguments we send to

the drawRect, drawLine, drawOval, and drawString methods are specified

relative to this starting (sX, sY) coordinate. By specifying these values, such

as sX + 60, we are using offsets. By using offsets from the starting (sX, sY)

coordinate, we can easily change the position of the astronaut on the screen

Figure 4.8

An Astronaut Made from

Rectangles, Ovals, Lines,

and Text

Applet

One small step for man...

Applet started.

4.4 Using Color 195

by simply changing the values of sX and sY. We don't need to change any of

the arguments sent to the Graphics methods. To demonstrate this, try

changing the values of sX and sYand re-running the applet.

Skill Practice
with these end-of-chapter questions

4.7.1 Multiple Choice Exercises

Questions 6,7,8,9

4.7.2 Reading and Understanding Code

Questions 12,13,14,15

4.7.3 Fill In the Code

Questions 17,18,19,20

4.7.4 Identifying Errors in Code

Questions 21,22

4.7.6 Write a Short Program

Questions 31,32,33

4.7.8 Technical Writing

Question 39

4.4 Usina Color

All the figures we have drawn were black. That's because when our applet

starts, the default drawing color is black. We can add color to the drawing by

setting the current color, also called the foreground color, which is part of

the graphics context represented by the Graphics object sent to the paint

method. The draw and fill methods draw the figures in the current color.

The current color remains in effect until it is set to another color. For exam

ple, ifyou set the current color to blue—then call the drawRect, fillOval, and

drawLine methods—the rectangle, oval, and line will all be drawn in blue.

Then if you set the color to yellow and call the drawRect method, that rec

tangle will be drawn in yellow.

To set the current color, use the setColor method of the Graphics class as

shown in Table 4.4. This method takes a Color object as an argument.

196 CHAPTER 4 Introduction to Applets and Graphics

TABLE 4.4 The setColor t

ther Useful Method of the Graphics Class

Return value Method name and argument list

void setColor(Color c)

sets the current foreground color to the Color specified by c

The Color class, which is in the java.awt package, defines colors using an

RGB (Red, Green, Blue) system. Any RGB color is considered to be com

posed of red, green, and blue components. Each component's value can

range from 0 to 255; the higher the value, the higher the concentration of

that component in the color. For example, a color with red = 255, green = 0,

and blue = 0 is red, and a color with red = 0, green = 0, and blue = 255 is blue.

Gray consists of equal amounts of each component. The higher the value of

the components, the lighter the color of gray. This makes sense because

white is (255, 255, 255), so the closer a color gets to white, the lighter that

color will be. Similarly, the closer the gray value gets to 0, the darker the

color, because (0, 0, 0) is black.

The Color class provides a set of static Color constants representing 13 common

colors. Table 4.5 lists the Color constants for these common colors and their

corresponding red, green, and blue components.

Each color constant is a predefined Color object, so you can simply assign

the constant to your Color object reference.You do not need to instantiate a

new Color object. Color constants can be used wherever a Color object is

expected. For example, this statement assigns the Color constant Color.RED

to the object reference red:

Color red = Color.RED;

And this statement sets the current color to orange:

g.setColor(Color.ORANGE);

4.4 Using Color 197

TABLE 4.5 Color Constants and Their Red, Green, and Blue Components

Color Constant

| Color.BLACK

| Color.BLUE

Color.CYAN

| Color.DARK_GRAY

| Color.GRAY

| Color.GREEN

Color.LIGHT_GRAY

| Color.MAGENTA

| Color.ORANGE

Color.PINK

| Color.RED

CH Color.WHITE

Color.YELLOW

Red

0

0

0

64

128

0

192

255

255

255

255

255

255

Green

0

0

255

64

128

255

192

0

200

175

0

255

255

Blue

0

255

255

64

128

0

192

255

0

175

0

255

0

In addition to using the Color constants, you can instantiate your own cus

tom colors using any of the 16 million possible combinations of the com

ponent values. The Color class has a number of constructors, but for our

purposes, we'll need only the constructor shown in Table 4.6.

TABLE 4.6 A Color Class Constructor

Color Constructor

Color(int rr, int gg, int bb)

allocates a Color object with an rr red component,^ green component, and bb blue com

ponent

198 CHAPTER 4 Introduction to Applets and Graphics

Now let's add color to our astronaut drawing. Example 4.9 shows our modi

fied applet.

1 /* An applet with graphics

2 that draws an astronaut in color

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Anderson, Franceschi

V

import

import

import

import

public

{

javax.swing.JApplet;

j avax.swi ng.JOpti onPane;

Java.awt.Graphics;

Java.awt.Color;

class AstronautWithColor extends JApplet

public void paint(Graphics g)

{

super.paint(g);

// instantiate a custom color

Color spacesuit = new Color(195,

int sX = 100; // the starting

int sY = 25; // the starting

//

g.

g.

g-

g-

//

g.

g-

g.

g.

g-

g.

//

g.

g.

//

helmet

setColor(spacesuit);

X

y

fillOval(sX + 60, sY, 75, 75)

setColor(Color.LIGHT_GRAY)

fillOval(sX + 70, sY + 10,

face

setColor(Color.DARK_GRAY);

draw0val(sX + 83, sY + 27,

draw0val(sX + 103, sY + 27,

drawLine(sX + 97, sY + 35,

drawLine(sX + 97, sY + 43,

drawOval(sX + 90, sY + 48,

neck

setColor(spacesuit);

fillRect(sX + 88, sY + 70,

torso

;

55,

8,

8,

sX

sX

15,

20,

175, 150);

position

position

»

55);

8);

8);

+ 99, sY + 43);

+ 99, sY + 43);

6);

10);

4.4 Using Color 199

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

g.fillRect(sX + 65, sY + 80, 65, 85);

// arms

g.fillRect(sX, sY + 80, 65, 20);

g.fillRect(sX + 130, sY + 80, 65, 20);

// legs

g.fillRect(sX + 75, sY + 165, 20, 80);

g.fi11Rect(sX + 105, sY + 165, 20, 80);

// flag

g.setColor(Color.BLACK);

g.drawl_ine(sX + 195, sY + 80, sX + 195 , sY);

g.setColor(Color.RED);

g.fillRect(sX + 195, sY, 75, 45);

g.setColor(Color.BLUE);

g.fillRect(sX + 195, sY, 30, 25);

// caption

g.setColor(Color.BLACK);

g.drawString("One small step for man...",

sX + 25, sY + 270);

EXAMPLE 4.9 An Applet That Draws an Astronaut in Color

Figure 4.9 shows our astronaut in color.

Applet

AstronautWithColor.class

One small step for man..

Applet started.

Figure 4.9

Our Astronaut in Color

200 CHAPTER 4 Introduction to Applets and Graphics

On line 9, we include an import statement for the Color class in the

java.awt package.

For the space suit, we instantiate a custom Color object named spacesuit on

line 19 using the constructor shown in Table 4.6. To draw the astronaut in

color, we change the draw methods to fill methods, and when we draw any

figure that is part of the space suit, we make sure the current color is our

custom color, spacesuit.

It's important to realize that the rendering of the figures occurs in the order

in which the draw or fill methods are executed. Any new figure that occu

pies the same space as a previously drawn figure will overwrite the previous

figure. In this drawing, we intentionally draw the red rectangle of the flag

before drawing the blue rectangle. If we drew the rectangles in the opposite

order, the blue rectangle would not be visible because the red rectangle,

drawn second, would cover the blue rectangle.

Skill Practice
with these end-of-chapter questions

4.7.1 Multiple Choice Exercises

Questions 5,10

4.7.2 Reading and Understanding Code

Question 11

4.7.3 Fill In the Code

Question 16

4.7.4 Identifying Errors in Code

Questions 23,24,25

4.7.5 Debugging Area

Questions 29,30

4.6 Chapter Summary 201

4.5 Proarammina Activity 1: Wntma an Applet with Graphics

In this Programming Activity, you will write an applet that uses graphics.

You will draw a picture of your own design. The objective of this program

ming activity is to gain experience with the window coordinate system, the

draw and fill graphics methods, and using colors.

1. Start with the ShellApplet class, change the name of the class to repre

sent the figure you will draw, and add an import statement for the

Color class.

2. Create a drawing of your own design. It's helpful to sketch the draw

ing on graph paper first, then translate the drawing into the coordi

nates of the applet window. Your drawing should include at least two

each of rectangles, ovals, circles, and lines, plus a polygon. Your draw

ing should also use at least three colors, one of which is a custom

color.

3. Label your drawing using the drawString method.

Be creative with your drawing!

I1. If you define the starting [x,y) coordinate of the drawing as (400,400), you might

not be able to see the drawing. Explain why and what the user can do to make the

drawing visible.

2. What is the advantage to drawing a figure using a starting {x,y) coordinate?

DISCUSSION QUESTIONS

4.6 Chanter Summar

Applets are Java programs that are run from an applet viewer or an

Internet browser. Applets are invoked via the HTML APPLET tag.

When an applet begins executing, the paint method is called. The

paint method is used to display text and graphics on the applet

window.

The Graphics class in the java.awt package provides methods to

draw figures, such as rectangles, circles, polygons, and lines; to set

the colors for drawing; and to write text in a window.

202

w

CHAPTER 4 Introduction to Applets and Graphics

An (x,y) coordinate system is used to specify locations in the win

dow. Each coordinate corresponds to a pixel (or picture element).

The x value specifies the horizontal position, beginning at 0 and

increasing as you move right across the window. The y value speci

fies the vertical position, starting at 0 and increasing as you move

down the window.

All drawing on a graphics window is done in the current color,

which is changed using the setColor method.

Objects of the Color class, in the java.awt package, can be used to

set the current color. The Color class provides static constants for

common colors.

Custom Color objects can be instantiated by using a constructor

and specifying the red, green, and blue components of the color.

o

ILJ

4.7 Exercises, Problems, and Projects

4.7.1 Multiple Choice Exercises

1. What package does the Graphics class belong to?

□ Graphics

□ java.awt

□ swing

□ Applet

2. How does a programmer typically get access to a Graphics object

when coding an applet?

□ One must be created with the Graphics constructor.

□ It is an instance variable of the class]Applet.

□ It is a parameter of the paint method.

3. An applet is a standalone application.

□ true

□ false

4. In an applet, the paint method is called automatically even if the pro

grammer does not code the method call.

□ true

□ false

4.7 Exercises, Problems, and Projects

5. Look at the following code:

Color c = Color.BLUE;

What is BLUE

□ a static field of the class Color

□ an instance variable of the class Color

□ a static method of the class Color

□ an instance method of the class Color

6. What can be stated about the line drawn by the following code?

g.drawLine(100, 200, 300, 200);

□ The line is vertical.

J The line is horizontal.

□ The line is a diagonal.

□ none of the above.

7. What do the arguments 10,20 represent in the following statement?

g.drawRect(10, 20, 100, 200);

□ the (x,y) coordinate of the upper-left corner of the rectangle

we are drawing

□ the width and height of the rectangle we are drawing

□ the (x,y) coordinate of the center of the rectangle we are drawing

□ the (x,y) coordinate of the lower-right corner of the rectangle

we are drawing

8. What do the arguments 100, 200 represent in the following statement?

g.drawRect(10, 20, 100, 200);

□ the (x,y) coordinate of the upper-left corner of the rectangle

we are drawing

□ the width and height of the rectangle we are drawing

□ the height and width of the rectangle we are drawing

□ the (x,y) coordinate of the lower-right corner of the rectangle

we are drawing

HH

204

%■ ■■■:.

I :

y j

X
uu

CHAPTER 4 Introduction to Applets and Graphics

9. How many arguments does the fillOval method take?

□ 0

□ 2

□ 4

□ 5

10. In RGB format, a gray color can be coded as A A A where the first A

represents the amount of red in the color, the second A the amount of

green, and the third A the amount of blue. A can vary from 0 to 255,

including both 0 and 255; how many possible gray colors can we have?

□ 1

□ 2

□ 255

□ 256

□ 257

4.7.2 Reading and Understanding Code

11. In what color will the rectangle be drawn?

g.setCo1or(Color.BLUE);

g.drawRect(10, 20, 100, 200);

12. What is the length of the line being drawn?

g.drawLine(50, 20, 50, 350);

13. What is the width of the rectangle being drawn?

g.fillRect(10, 20, 250, 350);

14. What is the (x,y) coordinate of the upper-right corner of the rectangle

being drawn?

g.fillRect(10, 20, 250, 350);

15. What is the (x,y) coordinate of the lower-right corner of the rectangle

being drawn?

g.drawRect(10, 20, 250, 350);

4.7 Exercises, Problems, and Projects

4.7.3 Fill In the Code

16. This code sets the current color to red.

// assume you have a Graphics object named g

// your code goes here

17. This code draws the String "Fill in the Code" with the lower-left

corner of the first character (the F) being at the coordinate (100,250).

// assume you have a Graphics object called g

// your code goes here

18. This code draws a filled rectangle with a width of 100 pixels and a

height of 300 pixels, starting at the coordinate (50, 30).

// assume you have a Graphics object called g

// your code goes here

19. This code draws a filled rectangle starting at (50, 30) for its upper-left

corner with a lower-right corner at (100, 300).

// assume you have a Graphics object called g

// your code goes here

20. This code draws a circle of radius 100 with its center located at (200,200).

// assume you have a Graphics object called g

// your code goes here

4.7.4 Identifying Errors in Code

21. Where is the error in this code sequence?

Graphics g * new Graphics();

22. Where is the error in this code sequence?

// we are inside method paint

g.drawString('Find the bug', 100, 200);

23. Where is the error in this code sequence?

// we are inside method paint

g.setColor(GREEN);

24. Where is the error in this code sequence?

// we are inside method paint

g.setColor(Color.COBALT);

25. Where is the error in this code sequence?

// we are inside method paint

g.color = Color.RED;

.

■

rti

m

206

%S\

a

CHAPTER 4 Introduction to Applets and Graphics

26. Where is the error in this statement?

import Graphics;

27. Where is the error in this statement?

import java.awt.JApplet;

4.7.5 Debugging Area—Using Messages from the Java Compiler and Java JVM

28. You coded the following program in the file MyApplet.java:

import javax.swing.JApplet;

import java.awt.Graphics;

public class MyApplet extends JApplet

public static void paint(Graphics g)

// some code here

// line 6

When you compile, you get the following message:

MyApplet.java:6: paint(Graphics) in MyApplet cannot

override paint(Graphics) in Container;

public static void paint(Graphics g) // line 6
/\

overriding method is static

1 error

Explain what the problem is and how to fix it.

29. You imported the Color class and coded the following on line 10 of

the class MyApplet.java:

Color c = new Color(1.4, 234, 23); // line 10

When you compile, you get the following message:

MyApplet.Java:10: cannot find symbol

Color c = new Color(1.4, 234, 23); // line 10

symbol : constructor Color (double,int.int)

location : class Color

1 error

Explain what the problem is and how to fix it.

4.7 Exercises, Problems, and Projects

30. You coded the following on line 10 of the class MyApplet.java:

Color c = Color.Blue; // line 10

When you compile, you get the following message:

MyApplet.java:10: cannot find symbol

Color c = Color.Blue; // line 10

symbol : variable Blue

location: class Color

1 error

Explain what the problem is and how to fix it.

4.7.6 Write a Short Program

31. Write an applet that displays the five Olympic rings.

32. Write an applet that displays a tic-tac-toe board. Include a few X's and

O's.

33. Write an applet that displays a rhombus (i.e., a parallelogram with

equal sides). Your rhombus should not be a square.

4.7.7 Programming Projects

34. Write an applet that displays two eyes. An eye can be drawn using an

oval, a filled circle, and lines. On the applet, write a word or two about

these eyes.

35. Write an applet that displays the following coins: a quarter, a dime, and

a nickel. These three coins should be drawn as basic circles (of different

diameters) with the currency value inside (for instance, "$.25").

36. Write an applet that displays a basic house, made up of lines (and

possibly rectangles). Your house should have multiple colors. On the

applet, give a title to the house (for instance, "Java House").

37. Write an applet that displays a black and red bull's eye target, typically

made up of several concentric circles.

I PI

30

r

v

208 CHAPTER 4 Introduction to Applets and Graphics

c

DC
fa

i

V

uu

4.7.8 Technical Writing

38. On the World Wide Web, an applet is a program that executes on the

"client side" (a local machine such as your own PC) as opposed to the

"server side" (such as a server at www.yahoo.com). Do you see any

potential problem executing the same program, such as an applet, on

possibly millions of different computers worldwide?

39. If the drawRect method did not exist, but you still had the drawLine

method available, explain how you would be able to draw a rectangle.

4.7.9 Group Project (for a group of 1,2, or 3 students)

40. Write an applet and one HTML file calling the applet.

The applet should include the following:

□ a drawing of a chessboard piece (it can be in a single color)

□ a description of a particular piece of a chessboard (for instance,

a rook) and its main legal moves

In order to make the description visually appealing, you should use

several colors and several fonts. You will need to look up the following

on Sun's Java website:

□ the Font class

□ how the Font class constructors work

□ the method setFont of the Graphics class

