
Smith

Shelve in
Web Development /JavaScript

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning JSON
Beginning JSON is the definitive guide to JSON - JavaScript Object Notation -
today’s standard in data formatting for the web. The book covers all areas of
JSON from the basics of data formats to creating your own server to store and
retrieve persistent data. Beginning JSON provides you with the skill set required
for reading and writing properly validated JSON data.

The book begins by discussing the foundations of JavaScript for those who
need it, and provides the necessary understandings for later chapters. The core
chapters uncover what data is, how to convert that data into a transmittable/storable
format, how to use Ajax to send and receive JSON, and, lastly, how to reassemble
that data back into a proper JavaScript value to be used by your program. The final
chapters put everything you learned into practice.

Here’s are just some of the highlights:

• Further your understanding of the JavaScript language
• Learn the composition of JSON
• Perform data transmission via Ajax
• Understand Cross Origin Resource Sharing (aka CORS)
• Incorporate Handlebars templates into your development
• Get up and running with NodeJS
• Perform HTTP requests to both local and remote Web Servers
• Implement a NoSQL database for JSON retrieval and

persistent storage
• Stream real-time tweets from the Twitter API

9 781484 202036

54999
ISBN 978-1-4842-0203-6

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Chapter 1: JavaScript Basics■■ ��� 1

Chapter 2: Special Objects■■ ��� 17

Chapter 3: String Manipulation■■ �� 27

Chapter 4: Introducing JSON■■ �� 37

Chapter 5: Creating JSON■■ ��� 49

Chapter 6: Parsing JSON■■ �� 69

Chapter 7: Persisting JSON: I■■ ��� 81

Chapter 8: Data Interchange■■ ��� 101

Chapter 9: X-Origin Resources■■ ��� 133

Chapter 10: Serving JSON■■ �� 159

Chapter 11: Posting JSON■■ ��� 191

Chapter 12: Persisting JSON: II■■ �� 213

Chapter 13: Working with Templates■■ ��� 243

Chapter 14: Putting It All Together■■ ��� 269

Index�� 295

xxi

Introduction

Programming is not at all a linear path. Often, you find yourself facing a fork in the road. In choosing one
path, you are likely to find, after a period of time, that you go back and travel down the other. While it is
assumed that you are familiar with HTML, CSS, and JavaScript, this book makes no further assumptions
regarding your experience. Therefore, it attempts to provide a thorough explanation for everything you will
read in it.

While JSON is the essence of this book, it is not the sole topic discussed. While that may sound
counterproductive, it is a much-needed requirement. JSON can be devised in isolation, but it would serve
little purpose. What makes JSON so impactful is that it interacts with the many tools of the developer. For
this reason, this book covers a wide range of implementations—from libraries to software.

1

Chapter 1

JavaScript Basics

JavaScript is a scripting language that has been known to be a finicky beast. Many well-known developers
have forged their names in the annals of the web-development community, having discovered special
techniques and hidden gems to tame said beast. The topic of this book, JSON, is one such gem. You will
learn more about that in Chapter 4.

JSON is simply a data-interchange format and, therefore, does not directly require immediate
knowledge of the JavaScript language. However, this book does not only discuss the composition of
JSON. It also discusses how to incorporate it within an application. For this reason, this book employs
JavaScript extensively to demonstrate the many ways to work with JSON. There are plenty of great
books that reveal the ins and outs of the JavaScript language. This chapter solely acts as a primer to the
upcoming chapters.

JavaScript History
The year is 1995, and Netscape seeks to add dynamic behavior as well as the capability to automate parts
of a web page within its browser. It was at this point in time that Brendan Eich was hired to incorporate the
functional scripting language Scheme into the Netscape Navigator browser.1 However, Netscape had also
been in discussion with other software/hardware companies. In a mad dash for the finish line, Eich had
prototyped the scripting language that would soon become what is known today as JavaScript.

The incorporation of this new dynamic behavior within the browser became a game-changer.
This had a direct impact on how developers programmed for the Web. Furthermore, this incorporation, as
an innovation, encouraged Internet users to adopt Navigator as the preferred browser. In order to compete
with the new dynamic, and with the browser wars on the rise, Microsoft was quick to incorporate a scripting
language of its own into Internet Explorer.

Microsoft’s scripting dialect was developed to be compatible with the scripting language of
Netscape. However, to ensure the language remained uniform, Netscape submitted its dialect to the
Ecma International for standardization. Thus were the beginnings of the ECMA-262 specification.
ECMA-262 is the name for this scripting language’s specification. The name ECMAScript is the union
of Ecma International and JavaScript. To reference ECMAScript is to reference the specification rather
than the language itself.

1Wikipedia, “JavaScript,” http://en.wikipedia.org/wiki/JavaScript, modified January 2015.

http://en.wikipedia.org/wiki/JavaScript

Chapter 1 ■ JavaScript Basics

2

JavaScript Essentials
At its core, JavaScript is a text-based scripting language, whereby sequences of Unicode characters are strung
together. That said, what makes JavaScript more than a sequence of characters is its adherence to the rules
that govern how the JavaScript engine interprets said sequence into a particular application. The set of rules
that defines the valid sequencing of characters is known as Syntax. Listing 1-1 reveals a syntactically correct,
albeit simple, JavaScript application.

Listing 1-1.  A Valid JavaScript Program

 1 var welcomeMessage = "Hello World";
 2 //Lines denoted with '//' are used to leave comments
 3 console.log(welcomeMessage); //prints to the console Hello World
 4 console.log("A"); //prints the character A
 5 console.log(2+5); //prints the number 7
 6
 7 console.log("goodbye" + " " + "all"); //prints goodbye all.
 

Listing 1-1 reveals seven lines composed of a sequence of Unicode-encoded characters. However,
as the characters of Listing 1-1 adhere to the ECMAScript specification, what Listing 1-1 reveals is technically
a JavaScript application.

Values
Because many languages heavily influenced JavaScript, the values used by JavaScript may appear familiar.
While there are many values used by the JavaScript language, there are two categories for which these values
are distinguished. Those two categories are the primitive and non-primitive types. Non-primitive types are
otherwise known as Objects and are the topic of Chapter 2.

Primitive Types
A primitive type represents the set of all basic building blocks for which data can be represented. These are
referred to as primitive because they are rudimentary. This is, of course, in contrast to non-primitive types.

There are five primitive types in JavaScript, as depicted in Figure 1-1. These five types are number,
string, Boolean, undefined, and null.

Primitive Type

Number Type String Type Boolean Type Undefined Type Null Type

Figure 1-1.  The five primitive types in JavaScript

Chapter 1 ■ JavaScript Basics

3

The Number Type
The number type represents the set of all possible numeric values recognized by the JavaScript language.
Such representations are shown in Figure 1-2. Possible number values include fractions as well as whole
numbers, and each can possess a negative or positive value. Additionally, fractions can be written using
scientific notation. Listing 1-2 reveals a variety of valid JavaScript numeric values.

Listing 1-2.  Valid Number Values

4
16
3.402823669209385e+38
-1

The String Type
The string type represents the set of all possible string values whereby a string value is a finite
representation that includes 0 or more Unicode characters. As outlined in Figure 1-3, while the character
encoding is strictly regarded as that of Unicode, string values can also be representative of ASCII character
encoding. This is because ASCII is a subset of the Unicode character set. Examples of possible string
values can be found in Listing 1-3.

Number Type

± Fractions ± Whole Numbers ± Infinity ± Exponents

Figure 1-2.  Valid representations of the number type

Listing 1-3.  Valid String Values

"this is a string value";
"string";
"s";
""; //An empty String
 

String Type

ASCII UNICODE

Figure 1-3.  Valid encodings of the string type

Chapter 1 ■ JavaScript Basics

4

Because a program is made up of text, a string value is differentiated from our program by delimiting its
value with quotations. In Listing 1-3, I have wrapped each string value within double quotes. However, it is
entirely valid to utilize singular quotes as well.

Because quotations mark the beginning and end of a string value, it will be imperative that your string
does not employ the same outer quotes to nest quotes such as the following: “Mike said and I quote, “let
me tell you a secret””. Nesting quotations with the same characters used to signify a string will confuse the
engine, resulting in the likelihood of an error. Because the engine reads in a left-to-right, top-to-bottom
manner, the first nested quotation encountered will be interpreted as the terminating quotation. This means
that what was expected to be a quote by Mike is instead treated as an invalid statement.

Nesting quotations within string values are perfectly acceptable, providing they do not cause the
engine to believe the string ends prematurely, as in the preceding example. There are two possible ways to
accomplish this.

Alternate Quotations

Because you can alternate between singular and double quotes, whichever you use to delimit a string value,
you can use the alternate variation to add grammar to your string. Listing 1-4 revisits the preceding example
with the use of alternating quotations.

Listing 1-4.  Alternating Use of Quotes

'Mike said and I quote, "let me tell you a secret".'; // ' is used to delimit a string
"Mike said and I quote, 'let me tell you a secret'."; // " is used to delimit a string
 

As you can see from Listing 1-4, you can use one pair of quotes to signify a string and an alternate
form to establish proper English grammar within. The engine will interpret this as a string within a string
and move on.

Escaped Quotations

The second method of incorporating quotes within a string is to ensure that the engine does not treat our
inner quotations as string delimiters. In order to accomplish this, we must escape our inner quotation marks.

The escape character instructs the engine to interpret the subsequent character differently from how it
would otherwise be viewed. This is opposed to being interpreted as a delimiter that would otherwise be used
to mark the end or beginning of a string value. Escaping a character is easily accomplished by prefixing the
character you wish to escape with a backslash (\).

The use of the escaped quotation allows our strings to employ quotations indiscriminately. Examples
can be seen in Listing 1-5.

Listing 1-5.  Nested Escaped Quotations

"Mike said and I quote, \"let me tell you a secret\".";
'Mike said and I quote, \'let me tell you a secret\'.'; 

Note■■  T he escape character informs the engine to interpret a character differently.

Chapter 1 ■ JavaScript Basics

5

The Boolean Type
A Boolean type represents a logical value consisting of only two possible values. Those values, as illustrated
in Figure 1-4, are either true or false. While these are two possible values that can be assigned, a Boolean
type is commonly returned as the evaluation of a condition. Such an evaluation may be the comparison
between two numbers, as seen in Listing 1-6.

Boolean Type

True False

Figure 1-4.  Valid values of the Boolean type

Listing 1-6.  Boolean Expressions

var bol = false; //assigns bol a false value
(10<9); //evaluates to false;
(10>9); //evaluates to true;
 

Boolean values are great for incorporating decision making within your application. Determining
whether an expression evaluates to true or false allows an application to react accordingly. We will revisit
this when I discuss conditional statements.

undefined Type
The undefined type is the value used to represent when an identifier has not yet been assigned a value.
When a reference to a variable is evaluated, if it has yet to be assigned a value, the value of undefined
is returned.

Listing 1-7 reveals two lines of code. The first line is used to declare a variable labeled name (line 1).
The declaration of our variable informs the JavaScript engine to allocate a portion of memory that our
application can use to store data. The variable’s identifier name provides us a textual means to refer to said
allocation. As we have not yet assigned any data to our variable, the subsequent line returns the value of
undefined (line 2).

Listing 1-7.  An Undefined Variable

1 var name;
2 console.log(name) //returns undefined;

null Type
The null type represents the intentional absence of a value. This is contrary to the undefined value, which
represents no value as having been set. The null type is a value used explicitly to represent an empty or
nonexistent reference.

Listing 1-8, assigns the value of null to the name identifier, to explicitly denote the intentional absence
of a value.

Chapter 1 ■ JavaScript Basics

6

Listing 1-8.  null Assignment

var name = null;
console.log(name) //returns null;

Expressions
Simply stated by the Mozilla Developer Network, “An expression is any valid unit of code that resolves
to a value.”2 The value to which an expression resolves is either that of a primitive type or that of an object.
Two possible forms of expressions can be viewed in Listing 1-9.

Listing 1-9.  Contrasting Expressions

1 var name = "ben";
2 2+5;
 

Listing 1-9 demonstrates two different types of expressions. The first represents the assignment of
a literal value to a variable (line 1) where name represents the identifier to which the string literal ben is
assigned. The second regards the operation of two operands (line 2).

Note■■  T he operand is the datum being operated on.

An expression either returns a value, causes a side effect, or both. The determining factor is the
operator employed.

Operators
There are a variety of operators within the JavaScript language that can be used to fashion an expression.
The operator utilized directly impacts the outcome of the value. I will take this opportunity to discuss the
various operators utilized throughout this book.

Assignment Operator
The assignment operator is used to set the value of an expression to that of an identifier. In order to devise an
assignment, the JavaScript language relies on the use of the equal (=) operator. Listing 1-10 makes use of the
assignment operator to assign a primitive value to a variable.

Listing 1-10.  Assigning Values to Variables

1 var bolValue = true;
2 var name = "ben";
 

Once a value is assigned, it can be obtained by referencing the appropriate identifier. It’s important to
note that identifiers are case-sensitive, meaning that if you use all lowercase characters to label a variable,
it must always be referred to in lowercase. To do otherwise would cause an error.

2MDN: Mozilla Developer Network, “Expressions and operators,” https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Guide/Expressions_and_Operators, last updated November 27, 2014.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators

Chapter 1 ■ JavaScript Basics

7

Arithmetic Operators
The arithmetic operators are operators that are concerned with mathematical operations. The operators that
make up this category can be viewed in Table 1-1.

Table 1-1.  Arithmetic Operators

Arithmetic Operator Operator

Addition Operator +

Subtraction Operator -

Division Operator /

Multiplication Operator *

As you may suspect, arithmetic operators are used to perform mathematical operations on numerical
values, as shown in Listing 1-11.

Listing 1-11.  Arithmetic Operations

4+9; // evaluates to 13
8-2; // evaluates to 6
3*7; // evaluates to 21
2/1; // evaluates to 2
 

However, what might not be expected is that the addition operator serves two purposes. The first
purpose concerns the summation of numbers; the second is used to join two string values together. As long
as the two operands used in conjunction with the additional operator are of numeric value, they will be
added together. However, if at least one operand is a string value, both operands will be coerced into their
string representations and joined end-to-end, as demonstrated in Listing 1-12.

Listing 1-12.  String Concatenation

1 'Hello' + 'World'; // evaluates to "Hello World"
2 "" + 'Welcome'; // evaluates to "Welcome"
3 true + ''; // evaluates to "true"
4 3 + '3'; // evaluates to "33"
 

Listing 1-12 demonstrates the union of strings when used with the addition operator. While lines
1 and 2 may be easily accepted, lines 3 and 4 may not be. As previously stated, the addition operator can
only be used on numbers or strings. If both operands are numbers, then it’s easy for the engine to know
which operation to perform. However, if at least one operand is a string value, then no matter what data type
the other operand is, it will always be converted into a string.

Line 3 seeks to add a Boolean value with an empty string, which results in the coercion of true into
that of a string. Then, as both operands are viewed as strings, they are joined together and returned as the
singular string value. Similarly, line 4 seeks to add the number 3 with that of the string '3', resulting in the
string value "33".

Chapter 1 ■ JavaScript Basics

8

Comparison Operators
Comparison operators are used to compare two operands (see Table 1-2). The evaluated value, which will
always be that of a Boolean value, is a direct reflection as to whether or not the comparison is true. It is
important to point out that few comparison operators compare operands without implicit type coercion.

Table 1-2.  Comparison Operators

Comparison Operator Operator Description

Less Than < Used to determine whether the left operand is less than the right

Greater Than > Used to determine whether the left operand is greater than the right

Less Than or Equal <= Used to determine whether the left operand is less than or
equal to the right

Greater Than or Equal >= Used to determine whether the left operand is greater than or
equal to the right

Equals == Used to determine whether the left operand is equal to the right

Does Not Equal != Used to determine whether the left operand does not equal the right

Strictly Equals === Compares the equality of two operands without allowing type
coercion to occur

Does Not Strictly Equal !== Compares the inequality of two operands without allowing type
coercion to occur

Listing 1-13 reflects the evaluation between two operands. As demonstrated by Listing 1-13, the
comparison operators have two modes: one is the strict comparison between two operands; the other is a
more lax comparison.

Listing 1-13.  Comparing Operands

3<=3; // evaluates to true: after type coercion, 3 is less than or equal to 3
3=='3'; // evaluates to true: after type coercion, '3' and '3' are found to be equal
3==3; // evaluates to true: after type coercion, 3 and 3 are found to be equal
3===3; // evaluates to true: 3 and 3 are the same
3==='3'; // evaluates to false: 3 does not equal '3'
3!='3'; // evaluates to false: 3 and '3' are equal
3!=='3'; // evaluates to true: 3 does not equal '3'
 

When the comparison is lax, the two operands are coerced behind the scenes to the same type.
Regardless of whether the operand is that of a string or a number, both will be coerced into the same data
type before they are compared.

However, the use of a strict comparison operator ensures that both operands are compared without the
use of type conversion. This is essential for determining whether two operands are similar in both value as
well as type.

Chapter 1 ■ JavaScript Basics

9

The typeof Operator
The typeof operator evaluates the type of any datum. The value returned reflects one of the six data types
(see Listing 1-14) used by the JavaScript language.

Listing 1-14.  Determining Data Types

1 typeof 3; //outputs number
2 typeof "hello world"; //outputs string
3 typeof true; //outputs boolean
4 typeof (new Object()); //outputs object
5 var emptyVariable;
6 typeof emptyVariable; //outputs undefined
 

Listing 1-14 demonstrates how the typeof operator can be used to identify to which data type the value
in question belongs.

The instanceof Operator
While the typeof operator is used to determine the type of some value, instanceof is used to test whether
an instance is a subclass for a given object type. The instanceof operator returns a Boolean value, indicating
whether or not the instance is the descendant, directly or otherwise, of a particular object. Use of the
instanceof operator is demonstrated in Listing 1-15.

Listing 1-15.  Classifying Instances

1 var array = new Array();
2 var xhr = new XMLHttpRequest();
3
4 console.log(xhr instanceof Array); //outputs false
5 console.log(array instanceof XMLHttpRequest); //outputs false
6 console.log(array instanceof Array); //outputs true
7 console.log(xhr instanceof XMLHttpRequest); //outputs true
8 console.log(xhr instanceof Object); //outputs true
9 console.log(array instanceof Object); //outputs true
 

Listing 1-15 employs the instanceof operator to determine whether two instances, array and xhr,
evaluate as members of each other’s object type. Because xhr is an instance of the XMLHttpRequest Object,
and array is an instance of the Array Object type, they both output false when compared against each
other’s object type.

From there, each instance is compared against its own object type, which evaluates to that of true.
This is because our array is an instance of the Array Object type, while xhr is indeed a member of the
XMLHttpRequest Object type.

One final thing to point out is that both our xhr and array instances are in fact members of the Object
type. This is because both the Array and XMLHttpRequest Objects are direct descendants of the Object itself.
This will be discussed in more detail in Chapter 2.

Chapter 1 ■ JavaScript Basics

10

The ! Operator
The NOT operator, signified by the exclamation (!) token, is used to invert a Boolean value, as seen
in Listing 1-16.

Listing 1-16.  Inversing a Boolean Value

console.log(!true); // outputs false
var someVal = !false; // assigns the value true;

Statements
While expressions are concerned with the evaluation of values, statements are concerned with the actions
of an application. A statement can be as simple as displaying the sum of two numbers or as complex as
generating the histogram of a photograph.

A statement may exist on a line of its own or be composed of multiple statements. A general rule of
thumb is that each new line of code represents a statement. However, what truly distinguishes a statement is
the explicit use of line terminators.

Note■■   While expressions and statements are two separate categories in the JavaScript syntax, the reality is
that the two will often be intertwined. In other words, the two do not always occur independently.

Line Terminators
The use of a semicolon (;) explicitly signifies the end of a statement. This ensures that if multiple statements
are found on a single line, they are interpreted as entirely separate statements. If a semicolon is not found at
the end of a valid statement, the engine will instead interpret carriage returns and line breaks as statement
terminators. When these implicit line terminators are encountered, the engine inserts semicolons behind
the scenes to comply with the syntax.

Listing 1-17 reveals four lines of code. The first two lines represent two separate statements. While they
do not explicitly end with a semicolon, they do employ line breaks, which is seen by the engine as a line
terminator. When the JavaScript interpreter reads these two lines, it will automatically add semicolons to the
end of both lines 1 and 2, making them valid statements.

Listing 1-17.  Statements Require Terminators

1 console.log('a') //valid statement
2 console.log('b') //valid statement
3 console.log('a'); console.log('b'); //2 valid statements on 1 line
4 console.log('a') console.log('b'); //1 invalid statement
 

Line 3, on the other hand, is a condensed way of writing the preceding two statements. Rather than
occupy two lines of code, the explicit use of semicolons after each statement informs the interpreter that
multiple statements occur on the same line.

Chapter 1 ■ JavaScript Basics

11

Line 4, on the other hand, possesses two statements without explicit use of the ; delimiter. This results
in the engine executing an invalid statement leading to a syntax error.

Tip■■   It’s best to clearly identify your statements by ending them with a ;.

Control Statements
Control statements are used to add decision making to an application. Depending on the evaluation of an
expression, an application can determine whether or not to execute a particular statement. Table 1-3 reveals
two keywords that are used by this book to devise control statements.

Table 1-3.  Control Statements

Control Statements Description

if Executes a statement if a logical condition is true

else An optional clause to execute a statement if a logical condition is true

The if statement is used to execute a statement if and when an expression evaluates to true.
On the other hand, if the expression evaluates to false, the indicated statement will be skipped, as
seen in Listing 1-18.

Listing 1-18.  Controlling Flow with if

1 var bol = false;
2 if(bol) console.log('condition is met');
 

Listing 1-18 demonstrates a typical use of the if statement. Listing 1-18 begins by assigning false to
a variable labeled bol (Line 1). The subsequent line represents our control, which outlines the following
condition: if bol evaluates as true, then perform the subsequent statement (Line 2). Unfortunately, as bol
evaluates to false, the condition is not met, and, therefore, the statement does not execute.

Whereas the statement in Listing 1-18 will cease to be executed, the else clause can be paired with that
of the if statement. As you may have anticipated, the else clause will execute a statement in the case that a
condition is not met. Listing 1-19 appends the else statement to our earlier demonstration.

Listing 1-19.  Controlling Flow with if/else

1 var bol=false;
2 if(bol) console.log('condition is met');
3 else console.log('condition is not met'); // condition is not met
 

Running Listing 1-19 results in the execution of line 3.

Chapter 1 ■ JavaScript Basics

12

Block Statements
Although a statement can only ever comprise one task, it is quite possible to group a series of statements to
be performed. A grouping of statements is known as a block statement. A block statement is delimited with
the pair of curly brackets, as seen in Listing 1-20.

Listing 1-20.  Grouping Statements Within a Block

{
 statement1;
 statement2;
 statement3;
}
 

As revealed by Listing 1-20, a statement block can hold any number of statements within. You may
notice that while each enclosed statement within the block is concluded with a semicolon, the block
statement itself does not require them. The statement block is an extremely important aspect of the
language, because it can be inserted wherever a statement is considered valid. Listing 1-21 revisits our
control statements from Listing 1-19 and incorporates the use of a block statement.

Listing 1-21.  Substituting Block Statements for Statements

1 var bol=false;
2 if(bol) { console.log('condition is met'); alert('condition is met'); }
3 else { console.log('condition is not met'); alert('condition is not met'); }

Truthy/Falsy
Any valid JavaScript value will evaluate to that of a Boolean value when used as the expression of a control
statement. While the evaluation returns either true or false, the values that evaluate to true or false are
not as cut and dry. Those that evaluate to true are referred to as truthy values. While those that evaluate to
false are referred to as falsy values.

The simplest way to contrast the truthy values from those that are falsy is to recognize which values are
falsy. Listing 1-22 reveals the falsy values of the JavaScript language.

Listing 1-22.  Demonstrates All Falsy Values

if(''); // An empty string
if(0); // the number 0
if(null); // a value of null
if(false) // a value of false
if(undefined); // a value of undefined
if(NaN); // a value of NaN
 

Any value not displayed in Listing 1-22 represents a truthy value.

Chapter 1 ■ JavaScript Basics

13

Loop Statements
The JavaScript language does possess a few loop statements, which enable a statement to occur as long as a
particular condition is met.

The for loop
One loop that is used extensively throughout this book is the for loop. The for loop is commonly used to
execute a statement for as long as a condition remains true. The syntax for the for loop can be seen
in Listing 1-23.

Listing 1-23.  The Syntax of a for Loop

for(initialization ; condition ; operation) statement;
 

As revealed in Listing 1-23, a for loop requires an initialization, a condition, and, last, an operation that
either increments or decrements the initialized value.

As long as the condition remains true, the provided statement will be executed. However, the moment
the condition is no longer met, the loop will terminate and the engine will move on to the next statement in the
application. Listing 1-24 employs a for loop to execute a statement, as long as the variable i remains less than 10.

Listing 1-24.  An Iterative Statement Can Reference the Current Index

1 for(var i=0; i<10 ; i++) console.log(i); // logs out 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The for/in loop
The second form of a loop that will be used by this book is the for/in loop. The for/in loop is used to
enumerate the members possessed by an object instance (see Listing 1-25).

Listing 1-25.  Iterating All Owned Enumerable Keys of an object

1 var carA = new Object();
2 carA.wheels=4;
3 carA.color="blue"
4 carA.make="Volvo";
5 for(var member in carA) console.log(member);
 

Listing 1-25 possesses a variable labeled carA, which is assigned a non-primitive value. To be more
specific, carA is assigned the value of an object. An object can be thought of as a container used to group
common variables together. In this case, the particular variables are grouped together to represent a vehicle.
As revealed in Listing 1-25, the variables used in the collection are the following: wheels, color, and make.
These properties are used to add specifics to our vehicle.

The for/in loop is used to iterate all identifiers contained within the chosen instance. Executing the
preceding listing results in the following output:
 
wheels
color
make

Chapter 1 ■ JavaScript Basics

14

Declarations
JavaScript declarations are used to register text identifiers that can be referenced throughout a program.

Variables
For all intents and purposes, JavaScript variables can be thought of as a named pointer that remains a
symbolic link to a particular location in memory. The name for which the pointer is provided is known as
an identifier. An identifier is a case-sensitive label used as a means to refer to its particular storage location.
Only by declaring a variable can a value be assigned, retained, and later referenced.

In the JavaScript language, variables are declared via the keyword var, as demonstrated in Listing 1-26.

Listing 1-26.  Declaring Three Variables

1 var name = "ben";
2 var age = 36;
3 var sayName = function(){ return this.name }; //function expression
 

Listing 1-26 declares three variables and provides each with a concise yet meaningful identifier.
Identifiers should reflect something meaningful and befit the data for which they are assigned.

Functions
Technically, functions are not statements but are used to perform specific actions. Functions are a special
form of object, which allows functions to be treated as values. Listing 1-27 reveals the syntax of a function.

Listing 1-27.  The Syntax of the Function Declaration

function Identifier (FormalParameterListopt) { //statements; }
 

As outlined in Listing 1-27, a function is defined by using the function keyword. The identifier, which
follows the declaration, registers the function with the provided label. This ensures that an application can
refer to the function at any point in time throughout the application.

Following the identifier is a pair of parentheses, which are used to hold any number of optional
identifiers separated with the use of a comma. These identifiers are used as labels for the parameters that
you may wish to provide to the body of a function.

The final component of the function declaration is the statement block to be executed when the
function is executed. Listing 1-28 declares a function labeled sayName.

Listing 1-28.  Invoking the sayName Function with a Parameter

1 function sayName (name){
2 return "Hello " + name;
3 };
4 console.log(sayName("Ben")); // Hello Ben
 

Listing 1-28 employs a function declaration to devise a function that is capable of accepting an arbitrary
value whose identifier reflects that of name. This identifier represents the identity for the parameterized
value provided by the caller of the function. The body of the function can then reference this value and use it
within its operation.

Chapter 1 ■ JavaScript Basics

15

In the case of sayName, the function body references the identifier name and uses the addition operator
to join its value and the word Hello together. Utilizing the keyword return, the evaluation is then provided
back to the caller of the function. This results in the output of Hello Ben to the console.

Summary
This chapter has sought to provide an overview of the many upcoming chapters, in which the JavaScript
language will be relied on extensively to employ, explain, and devise JSON. While much of this chapter has
focused on statements, operators, and primitive types that will be used in this book, the next chapter focuses
on the non-primitive types of the language, otherwise known as objects.

Key Points from This Chapter
JavaScript is a text-based language made up of Unicode and ASCII characters.•	

ECMAScript refers to the specification of the language.•	

JavaScript possesses two categories of data types: primitive and non-primitive.•	

Primitive values can be numbers, strings, Boolean, •	 undefined, and null.

•	 undefined represents the lack of value.

•	 null is used to denote intentional absence of value.

Expressions resolve to a value.•	

Operators are used to fashion expressions.•	

The addition operator serves two purposes.•	

Strict comparison operators prevent the occurrence of type coercion.•	

Non-strict comparison operators rely on type coercion before comparing •	
two operands.

The •	 typeof operator is used to determine the type of datum.

The •	 instanceof operator is used to determine the Object type of an instance.

Statements should be terminated explicitly.•	

Statement blocks can group multiple statements.•	

Identifiers are case-sensitive text-based labels.•	

Functions are named blocks of code that can be provided parameters.•	

17

Chapter 2

Special Objects

JavaScript is an object-oriented language, which is a programming paradigm that acknowledges the
compartmentalization of data encapsulated within an “object.” But what exactly is an object? To put it
plainly, it is a classification used to represent a generalized/generic form. This lack of specificity makes it
possible to classify an object as anything that exists. This affords an object-oriented language a means to
address any and all non-primitive types.

This is extremely beneficial to an object-oriented language, which employs the Object—due to its
general classification—thereby encompassing everything within a singular classification. The object is the
singular classification that unifies any and all more specific objects within the language, thereby devising
a hierarchical system. No matter how unique or specific the possessed behaviors of an object may be
considered, they can always be regarded as an object.

Objects
Absolutely everything is an object. It’s true that an object can be grouped into a particular category with
regard to its particular attributes. This categorization is considered the classification of an object. The greater
the emphasis on the particular set of behaviors an object possesses, the further its classification from that
of the generalized object. Simultaneously, the emphasis placed on the specific traits, attributes, and/or
behaviors of an object can be used to place it within a subclassification. However, the inverse will always
hold true. In JavaScript, all classifications, in their most generalized form, are objects.

Before we go any further, it is worth noting the repeated use of the words Object and object(s). These two
terms are not being used interchangeably. Throughout this book, I have done my best to ensure that Object
and object remain properly distinguished in the sentences in which I refer to them. Object and object refer
to two separate concepts, as you will, I hope, come to learn. The term Object regards a built-in type of the
JavaScript language, whereas the term object refers to an instance of a said Object type.

Objects Are Collections
What classifies all objects in the JavaScript language is that at their most atomic unit, they are simply
collections of string value pairs. Technically speaking, all objects are associative arrays. Simply, what
this means is that an object has the capability to retain a value for any given identifier. Furthermore, as a
collection of strings, it can hold many identifiers.

Quite commonly, these identifiers are referred to as properties, members, and even keys. Regardless
of how they are referred to, these identifiers, much like variables, will map to a value. Such values can
be primitive or non-primitive. Because a member can only be paired to a singular value, a member and
its value are often referred to as a key/value pair. Precisely like a variable, the keys of an object can be
referenced, invoked (if it’s assigned value is that of a function), and even assigned a value. Unlike a variable,

Chapter 2 ■ Special Objects

18

which can be referenced simply by the name of the identifier, a key must be accessed through the instance.
This is achieved with access notation. You will learn more about how to access, assign, and invoke properties
within the section “Access Notation.”

Note■■  T his book uses the terms properties, members, and keys interchangeably.

What is so powerful about the object-oriented paradigm is its ability to devise collections of like-
minded behaviors whose sole faculties are dedicated toward a specific task. The more specific the behaviors,
the more specialized these objects become. Furthermore, because an object-oriented language relies on
a hierarchical structure to establish relationships among all objects, any object spawned from an existing
object can and will inherit its ancestor’s behaviors. This helps to ensure that every descendant possesses
its ancestor’s behaviors. This provides all objects the ability to be classified as any of the classifications that
make up their lineage. This, of course, includes their topmost ancestor, the Object.

Built-in Objects
The JavaScript language has plenty of built-in objects, many of which are used throughout this book.
Because they all share a common ancestor, the Object, each of these objects, at its core, will continue to
remain collections of key/value pairs. Furthermore, as direct descendants, they will indirectly possess the
behaviors of their ancestor. What makes these objects specialized are the collective behaviors each possesses
to facilitate the fulfillment of a specific goal. For each object, the collections of behaviors and attributes
uniquely classify it as highly specialized. The Object and Array are just two of the specialized objects this
book will make extensive use of.

Object
As mentioned earlier, an Object is a built-in type that defines an unordered collection of key/value pairs.
The defined properties and behaviors possessed by the built-in Object facilitate this behavior. In addition
to the aforementioned behavior, the Object also possesses other behaviors, which will be inherited by every
descendant. One such behavior possessed and passed on by the Object is the toString behavior.

The toString identifier represents the key that directly accesses the value of a function. Because the
key is paired to a function, we can follow up the reference with the parentheses (()) operator, to invoke the
function. This results in the return of the string representation of the object.

Note■■   When an identifier is mapped to a function, it is referred to as a method of the object.

Beyond its default behaviors, the Object acts as a template from which our application can clone and
supply to it a collection of behaviors required by our application.

Chapter 2 ■ Special Objects

19

Creating Objects
While the Object is extremely beneficial within an object-oriented language, its sole use to a developer is the
ability to provide to it a collection of behaviors. Fortunately, for this reason, the JavaScript language allows us
to create instances of the Object by way of the keyword new, as demonstrated in Listing 2-1.

Listing 2-1.  Creation of an object

var aCollection = new Object();
 

Listing 2-1 leverages the keyword new to inform the JavaScript engine to create an instance of the
Object type. Upon the instantiation, an object is created, returned, and assigned to a variable, so that
our application can maintain a reference to the instance. By referencing the aCollection identifier, our
application can directly refer to our instance and take advantage of its possessed behaviors.

At any point in time, a reference to aCollection allows our application to access any of the key/value
pairs retained by it. At this moment, the only behaviors possessed by our aCollection instance are those
that are built in to the Object type. One such behavior is the toString method.

Access Notation
The JavaScript language offers two ways in which one can assign or retrieve a value from an instance.
The two varieties of manner are known as dot notation and bracket notation.

Dot Notation
Dot notation represents the particular syntax for which a key/value pair can be accessed or assigned to a
specified instance. Dot refers to the use of the operator employed to access a property of an instance. That
operator is the period (.) symbol. The period itself acts as the delimiter between our instance and the key we
wish to get, set, or invoke, as seen in Listing 2-2.

Listing 2-2.  Dot Notation Is Used to Access a Member from an Instance

1 var aCollection = new Object();
2 console.log(aCollection.firstProperty); // undefined
3 aCollection.firstProperty= "hello world";
4 console.log(aCollection.firstProperty); // hello world
5 console.log(aCollection.toString()); // [object Object]
 

Listing 2-2 instantiates an object and assigns it to aCollection (line 1). Utilizing dot notation,
Listing 2-2 attempts to read a property value from our aCollection instance. The name of the property is
appropriately labeled firstProperty. As the collection lacks a value for the requested property, the value
undefined is returned. This value is then logged to the developer’s console (line 2).

In order to get a value for a particular key, it must be assigned a value, lest it returns undefined. To
keep things simple, Listing 2-2 assigns the string value "hello world" to the key firstProperty (line 3).
On assignment of a value to the identified property, our aCollection instance will reflect a value for each
query of firstProperty until the value is reassigned or deleted. A subsequent lookup of the firstProperty
utilizing dot notation outputs the value of "hello world" to the console (line 4).

Chapter 2 ■ Special Objects

20

Last, as every object possesses the toString method, we can invoke its behavior by succeeding the key
identifier with a parenthesis (line 5). Doing so outputs a string that represents the current object. As you
can see, the output, while not all that insightful, does indeed provide a value to the console. This output is
the default behavior of the built-in Object. However, because all objects are collections of key/value pairs,
the toString member of aCollection can be reassigned with a function that more accurately represents
our instance. Each object-type of the JavaScript language overrides the default functionality of the toString
method.

Bracket Notation
The second mechanism used to assign, obtain, or invoke a key/value pair is bracket notation. Bracket
notation is similar to dot notation in that it is used to query or assign a value for a given property of an
instance. The most noticeable difference between bracket notation and dot notation is that bracket
notation requires all keys to be referenced as string values rather than as an identifier. The reference to
bracket notation regards the delimiter between the key, represented as a string value, and the instance from
which it’s being accessed. The string value is enclosed within an opening ([) and closing (]) bracket and
immediately succeeds the instance identifier from which the key is being queried. Listing 2-3 revisits the
firstProperty, only this time, it employs bracket notation to do so.

Listing 2-3.  Bracket Notation Is Used to Access a Member from an Instance

var aCollection = new Object();
 console.log(aCollection['firstProperty']); // undefined
 aCollection['firstProperty']= "hello world";
 console.log(aCollection['firstProperty']); // hello world
 console.log(aCollection['toString']()); // [object Object]
 

If you were to execute the preceding listing, you would arrive at precisely the same results as those of
Listing 2-2. Aside from the obvious differences in syntax, you may wonder why you would use one notation
over the other.

Bracket Notation vs. Dot Notation
While dot notation is certainly cleaner than bracket notation, bracket notation has a particular advantage.
Bracket notation relies on string values, whereas dot notation utilizes identifiers. The key difference is that
identifiers must adhere to language constraints. For example, identifiers can’t start with numbers, use
whitespace, or be a reserved word in the language. On the other hand, because bracket notation utilizes
string values, it allows for the use of characters that otherwise would be a violation of the syntax. One such
example is shown in Listing 2-4.

Listing 2-4.  Comparing Notations

var aBracketNotationCollectionA = new Object();
 aBracketNotationCollectionA['1']="1"; // �creates a key of "1" and assigns it the

string value '1'
var aDotNotationCollectionB = new Object();
 aDotNotationCollectionB.1="1"; // throws a SyntaxError

Chapter 2 ■ Special Objects

21

Array
Because a collection retains a value for a given key, a value is obtained directly by referencing its key. Thus,
the key is the sole conduit through which a value is reached. For this reason, the Object is known as an
unordered collection. The Array is a specialized descendant of the JavaScript Object, which, on the other
hand, seeks to provide an order among values.

What makes the Array special is that its collective behaviors allow for cataloging of data as an ordered
list. In order to accomplish this, the Array employs the use of numbers to stand in as the key for any
key/value pair. As you may have already surmised, because numbers are involved, rather than relying on dot
notation, an Array requires none other than bracket notation. Listing 2-5 demonstrates the use of the array
to devise an ordered collection set.

Listing 2-5.  An Ordered List of the Days of the Week

var orderedCollection = new Array(); //instantiate an array instance
 orderedCollection[0] = 'Sunday';
 orderedCollection[1] = 'Monday';
 orderedCollection[2] = 'Tuesday';
 orderedCollection[3] = 'Wednesday';
 orderedCollection[4] = 'Thursday';
 orderedCollection[5] = 'Friday';
 orderedCollection[6] = 'Saturday';
 

As revealed by Listing 2-5, the days of the week are assigned as the value to a key, similar to an object.
The difference in this case is that an Array employs bracket notation to allow for its properties to be specified
as integers. With each key identified as a sequence of integers, values can be obtained in the precise order in
which they are cataloged. The simplest way to obtain each value sequentially is with a for loop, as shown in
Listing 2-6.

Listing 2-6.  A for Loop Is Used to Read from an Ordered List

var daysOfTheWeek = 7;
for(var i=0; i<daysOfTheWeek; i++) console.log(orderedCollection[i]);
 

If you were to run Listing 2-6, you would undoubtedly see the days of the week printed to the console
tab within the developer’s toolbar. Furthermore, they would be output in the order they are assigned.

As was stated earlier, JavaScript objects are collections of string/value pairs. Although the keys of an
array are numerical, behind the scenes each integer is coerced into its string representation.

As a descendant of the Object, all instances of the array possess an inherit toString method. Unlike the
default value output earlier, our array instance provides a more appropriate value upon invocation, as seen
in Listing 2-7.

Listing 2-7.  Demonstrating the String Representation of an array

var orderedCollection = new Array(); //instantiate an array instance
 orderedCollection[0] = 'Sunday';
 orderedCollection[1] = 'Monday';
 orderedCollection[2] = 'Tuesday';
console.log(orderedCollection.toString()); // "Sunday,Monday,Tuesday"
 

Chapter 2 ■ Special Objects

22

As demonstrated in Listing 2-7, the toString implementation results in the joining of all user-defined
values possessed by the collection in a comma-delimited string. Because our collection is ordered, the
values within the returned string reflect their index within the collection.

Object Literals
Both the Array and the Object can be instantiated via the keyword new. Once either instance is created, key/
value pairs can be assigned accordingly. That being said, both the Array and Object are capable of being
configured without this syntactical overhead. To better illustrate this point, take a look at Listing 2-8.

Listing 2-8.  Object Literals Can Be Designed with Members

var array= ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"];
 console.log(array[0]); //outputs "Sunday"
 
var object= { firstProperty: "hello world" };
 console.log(object.firstProperty); //outputs "hello world"
 

Listing 2-8 creates two object literals. The first represents the instance of the Array, while the latter
represents an instance of the Object. For all intents and purposes, an object literal is just another way to
arrive at an instantiated object.

While it may not appear to be the case, the instantiation of an object literal and the instantiation of an
object via the keyword new create objects similarly. The most significant difference is that literals can be
instantiated with a preconfigured collection of key/values pairs. Literals are referred to as such because they
are instantiated as they are designed.

Utilizing this technique, we can assign key/value pairs to the object prior to its instantiation. One
immediate benefit is that key/value pairs are more identifiable without the added dot/bracket notation.
A second benefit is that complex collections and their structures can be defined prior to the existence of
other instances. To better understand the preceding statement, consider the following complex collection in
Listing 2-9.

Listing 2-9.  undefined Assignment of internalObject

 1 var externalObject = new Object();
 2 externalObject.child = internalObject;
 3 var internalObject = new Array();
 4 internalObject[0] = 'Sunday';
 5 internalObject[1] = 'Monday';
 6 internalObject[2] = 'Tuesday';
 7 internalObject[3] = 'Wednesday';
 8 internalObject[4] = 'Thursday';
 9 internalObject[5] = 'Friday';
10 internalObject[6] = 'Saturday';
11
12 console.log(externalObject.child); // outputs undefined
 

Chapter 2 ■ Special Objects

23

Listing 2-9 instantiates an instance of the Object and Array. As you can see, the object instance is
assigned as the value to externalObject (line 1). Conversely, the array instance is assigned to the variable
labeled internalObject (line 3). Because a property can be assigned any valid type in JavaScript, we will
devise a complex structure where our object instance possesses a direct reference to our array instance.
Used to represent this relationship is the identifier labeled child (line 2).

As it currently stands, externalObject.child does not possess a reference to internalObject. This
is made evident by the undefined value that is printed in the console (line 12). The reason the value is
not assigned is simply due to the fact that internalObject was undefined at the time of its assignment to
externalObject.child (line 2). Correcting the matter in this particular example is as simple as moving the
code within line 2 down to line 11, as seen in Listing 2-10.

Listing 2-10.  Moved Assignment of Instance Creation

 1 var externalObject = new Object();
 2
 3 var internalObject = new Array();
 4 internalObject[0] = 'Sunday';
 5 internalObject[1] = 'Monday';
 6 internalObject[2] = 'Tuesday';
 7 internalObject[3] = 'Wednesday';
 8 internalObject[4] = 'Thursday';
 9 internalObject[5] = 'Friday';
10 internalObject[6] = 'Saturday';
11 externalObject.child = internalObject;
12 console.log(externalObject.child); // outputs our array as expected
 

Listing 2-10 reflects in bold our changes. Moving the order in which our child property is assigned
does, in fact, solve our issue. Unfortunately, this reorganization of code actually decreases the continuity of
keeping code organized and can soon become a maintenance nightmare. In this case, our code was subject
to function vs. form, not the other way around.

A second alternative is to swap altogether the order in which both instances are created, as seen in
Listing 2-11.

Listing 2-11.  Reordering of Instantiations

 1 var internalObject = new Array();
 2 internalObject[0] = 'Sunday';
 3 internalObject[1] = 'Monday';
 4 internalObject[2] = 'Tuesday';
 5 internalObject[3] = 'Wednesday';
 6 internalObject[4] = 'Thursday';
 7 internalObject[5] = 'Friday';
 8 internalObject[6] = 'Saturday';
 9 var externalObject = new Object();
10 externalObject.child = internalObject;
11
12 console.log(externalObject.child); // outputs our array as expected
 

Listing 2-11 has solved our dilemma in the most ideal way that the new keyword can provide. Because
new instantiates bare objects, you may find yourself having to resort to reordering code simply to assign
key/value pairs. This is where object literals can truly shine.

Chapter 2 ■ Special Objects

24

Because collections can be preconfigured using literal syntax, creating nested collections is as simple
as designing them. When the engine evaluates the literal, each nested collection is instantiated on demand.
The end result is the same, as made evident by the output on line 4 of Listing 2-12.

Listing 2-12.  Object Literals Are Created As They Are Evaluated

1 var externalObject = {
2 �child: ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday"]
3 };
4 console.log(externalObject.child); // outputs our array as expected
5 console.log(externalObject.toString()); // [object Object]
 

Listing 2-12 employs the literal syntax of the object and array to configure the key/value pairs for two
individual collections. Furthermore, because all literals are instantiated into objects, they are bestowed
with any and all inherited behaviors. This accounts for the ability to reference the toString method of
externalObject.

Note■■  A ll literals in the JavaScript language are instantiated behind the scenes.

Designing Literals
Because both Array and Object are collections of key/value pairs, the term designing literals simply refers to
the incorporation of key/value pairs at author time. Depending on whether the literal is that of an object vs.
an array, the syntax used to design a literal will vary.

The Object Literal
The syntax used to delimit an object literal is the use of the opening and closing brace ({, }) symbols. When
the JavaScript engine encounters an assignment of a variable that employs the aforementioned delimiters,
behind the scenes, an instance of the Object type is instantiated and returned. Listing 2-13 employs the
object literal syntax to create an object instance.

Listing 2-13.  Syntactical Representation of an Object Literal

1 var emptyObject = { };
 console.log(emptyObject.toString()); // [object Object]
 

What is important to note is that the assignment operation informs the engine to evaluate the brackets
as an object literal rather than that of a statement. This is necessary as a block statement employs the use of
the same tokens to delimit a block of statements.

Currently our object literal remains absent of any key/value pairs and thus will be instantiated at
runtime without any custom behaviors. However this can be easily changed, as seen in Listing 2-14.

Chapter 2 ■ Special Objects

25

Listing 2-14.  Object Literal with a Key/Value Pair

var literalObject = {
 firstProperty:"hello world"
 };
console.log(literalObject.firstProperty); // "hello world"
 

As revealed by Listing 2-14, a key/value pair is configured by specifying an identifier along with its value
separated by a colon (:) token. Listing 2-14 demonstrates how firstProperty is assigned the value
"hello world" with literal syntax. Additionally, literals can be designed with multiple key/value pairs.
Each key/value pair must remain separate from one another. This is achieved by separating each key/value
pair with a comma (,). Listing 2-15 outlines an object literal that possesses three key/value pairs.

Listing 2-15.  Object Literal Designed with Multiple Key/Value Pairs

var literalObject = {
 firstProperty : "hello world",
 name : "iObjectA",
 toString : function(){ return this.name; }
 };
console.log(literalObject.toString()); // "iObjectA"
 

Listing 2-15 revisits our previous object literal from Listing 2-14. This time instead of configuring a
singular key/value pair, it defines three. Note the use of the commas to separate each key/value pair. Lastly,
one thing to note is that the toString method is assigned with a function that explicitly returns the name
property. The use of this ensures that the identifier being referenced remains scoped to the context of our
instance. Use of this is necessary because the built-in Object does not possess a name property, only our
literalObject. Therefore, we must ensure the scope remains relevant to the instance invoking the behavior.

The Array Literal
The syntax used to delimit an array literal is the use of the opening and closing bracket ([,]) symbols. When
the JavaScript engine encounters an assignment of a variable that employs the aforementioned delimiters,
behind the scenes an instance of the Array type is instantiated and returned. Listing 2-16 employs the array
literal syntax to create an empty instance of the Array type.

Listing 2-16.  Syntactical Representation of an array Literal

var literalArray = [];
 

Currently, our literal remains absent of any key/value pairs and, thus, will be instantiated at runtime
without any custom behaviors. However, this can be easily changed, as seen in Listing 2-17.

Listing 2-17.  array Literal Designed with a Key/Value Pair

var literalArray = ["hello world"];
 

Listing 2-17 reveals an array literal that’s in possession of a singular string value. You may notice that the
key for which this string value is assigned appears to be missing. In fact, it is not missing at all. As you may
recall, the Array represents an ordered collection. This means that each value supplied is implicitly provided
an index key. In other words, when our literalArray is instantiated as an object at runtime, we can use the
0 integer and bracket notation to access "hello world", as shown in Listing 2-18.

Chapter 2 ■ Special Objects

26

Listing 2-18.  Array Literal Value Obtainable via Bracket Notation

var literalArray = ["hello world"];
console.log(literalArray[0]); // hello world
 

As with the object literal syntax, multiple values can be supplied to an ordered collection by separating
multiple values with a comma, as shown in Listing 2-19. Each value is implicitly provided the next available
index as its key.

Listing 2-19.  Array Literal Designed with Multiple Key/Value Pairs

var literalArray = ["hello world","goodbye world"];
console.log(literalArray[0]); // hello world
console.log(literalArray[1]); // goodbye world

Summary
This chapter provided the fundamentals for working with JavaScript objects. Objects are of great importance
not only to the language itself, but to JSON as well.

Key Points from This Chapter
Absolutely everything is an object.•	

All classifications in their most generalized form are objects.•	

•	 Object and object have two different meanings.

•	 Object (with an initial capital letter) refers to the JavaScript Object type.

An object refers to an instance.•	

objects are collections.•	

Special Objects are collections of like-minded behaviors.•	

All instances implicitly possess their ancestors’ behaviors.•	

•	 toString returns the string representation of an object.

•	 new is used to create instances of a non-primitive value.

Dot notation relies on identifiers.•	

Bracket notation relies on strings.•	

Objects are unordered collections.•	

Arrays are ordered collections.•	

Literals can be instantiated with predefined key/value pairs.•	

All literals are instantiated via objects behind the scenes.•	

•	 this is used to maintain the scope of the property being accessed.

27

Chapter 3

String Manipulation

As I mentioned in Chapter 1, a JavaScript application is written entirely as a sequence of Unicode characters.
This is not at all a feature exclusive to the JavaScript language. Other examples are HTML and CSS, to
name just a few. Even the underlying protocol used by the World Wide Web is an entirely text-based
communications protocol.

Data is often transmitted in the form of text, as it’s highly interoperable. This is due to the fact that all
computers have the ability to work with Unicode. One attribute that makes JSON highly interoperable is that
it’s composed of, and transmitted simply as, Unicode. For this reason, this book will work extensively with the
creation, formation, and general manipulation of strings designed for both inbound and outbound traffic.

String Concatenation
The incorporation of the string literal makes creating strings an absolute cinch. As you may recall from
Chapter 1, a string value represents a sequence of 0 or more finite Unicode characters. The reason why the
definition of a string contains the word finite is due to the fact that JavaScript strings are immutable. In other
words, a string’s value is a constant. While strings themselves are immutable, entirely new strings can be
created simply by joining two strings together end-to-end, using the addition operator, as shown in Listing 3-1.

Listing 3-1.  Joining Strings

1 var str = "Hello" + " World";
2 console.log(str); //Hello World
 

Listing 3-1 demonstrates the union between the two string literals, Hello and World, via the addition
operator (line 1). The result of the union will be that of Hello World. This joining of strings, known as string
concatenation, is the language’s simplest means of string manipulation. It is the concatenation of strings,
which invites our application to build strings on the fly.

While concatenation is solely limited to strings, we can use the addition operator to coerce primitive
values into their string representations. This offers our application the ability to capture its state as a singular
string value, which can later be transmitted across the Internet. Consider the demonstration in Listing 3-2.

Listing 3-2.  Formatting Data

1 var userName = "Ben";
2 var clickedButton = false;
3 var stringRepresentation = "username="+userName +"&clickedButton=" + clickedButton;
4 console.log(stringRepresentation); // "username=Ben&clickedButton=false"
 

Chapter 3 ■ String Manipulation

28

Listing 3-2 employs the use of the addition operator to convert and append the existing state of an
application into that of a string value. This results in the production of a string containing the Unicode
characters that read as "username=Ben&clickedButton=false".

The way in which our data is represented is referred to as a data format. It is the purpose of the data
format to provide a structure that infers the meaning of all concatenated values. Relying on a lesser-known
data format makes it difficult for the recipient to extract or analyze the individual values. This book will
regard a variety of data formats similar to the preceding one, as well as JSON.

The String Object
The String object is a specialized object whose collective behaviors facilitate the manipulation of a string
value. We will learn more of its behaviors in the upcoming sections.

Creating String Objects
Like all objects, a String object, is created using the keyword new followed by the constructor function of the
object-type. As revealed by the syntax of the String’s constructor, String(string);, each instance must
be provided with a string value at the time of its instantiation. Listing 3-3 demonstrates the provision of the
string literal “test”.

Listing 3-3.  Instantiating a String object

1 var strObject = new String("test");
2 console.log(strObject) ; //String { 0="t", 1="e", 2="s", 3="t" }
 

To keep things succinct, the string object in Listing 3-3 is provided with a string literal. However, it could
have just as easily been supplied an identifier that evaluates to a string value. Upon the instance’s creation,
the string object is returned and assigned to the strObject variable (line 1). As the assignment to a variable,
we can continue to reference it and its many behaviors.

As revealed by the subsequent line (line 2), logging out the reference to our instance shows that the
provided string is no longer retained in its original form. Instead, each character of the provided string has
been separated and cataloged within our collection. Exploding the string into the individual characters of
which it was composed becomes the foundation from which all manipulation occurs.

The Interface of the String Object
As outlined in Table 3-1, the interface of the String object offers a wide range of utility. Furthermore, it is
inheritied by each instance to allow for the manipulation and formatting of the string value for which it
is provided.

Chapter 3 ■ String Manipulation

29

Note■■  A substring can be a singular character or a sequence of characters.

length
The length member is the only behavior that is not a method. The sole purpose of the length property is to
obtain an accurate count of how many characters are retained within the collection. Both forms of access
notation can access the length member, as well as those outlined in Table 3-1. Listing 3-4 makes use of
dot notation.

Listing 3-4.  Obtaining a String’s Length

1 var str = "test";
2 var strObject = new String(str);
3 console.log(strObject) ; //String { 0="t", 1="e", 2="s", 3="t" }
4 console.log(strObject.length); // 4
 

Listing 3-4 begins by assigning the string literal "test" to the str variable (line 1). Next, we instantiate a
string object and provide our str variable as the argument. The instance is then assigned as the reference to
strObject (line 2). Utilizing our reference, we print its contents to the console (line 3). Last, utilizing the dot
notation, we access the length property and print the resulting value to the console (line 4).

As you can see in Listing 3-4, the access of length results in the return of the amount of characters
used to devise the original string. Understanding the total character count will be a great benefit when
manipulating an ordered sequence of characters.

Table 3-1.  String object’s Interface

Properties Type Description

length Property Returns the length of the string

toString Method Returns a string representation of the collection

charAt Method Returns the character at the specified index

indexOf Method Returns the position of the first occurrence of a substring

lastIndexOf Method Returns the last occurrence of a substring

match Method Matches a string with a pattern and returns all matches as an array

replace Method Replaces text in a string

slice Method Returns a section of a string, as indicated by a range

substr Method Returns a substring, as indicated by a start index, through a specified length

split Method Splits a string into substrings, using the specified separator, and returns
them as an array

toUpperCase Method Converts all characters in the string to uppercase

toLowerCase Method Converts all characters in the string to lowercase

Chapter 3 ■ String Manipulation

30

toString
The toString method, whose signature is that of toString();, is used to return the string representation of
the value possessed by our collection. It is worth noting that the toString method does not return a string
object, but rather the primitive-type string.

charAt
The charAt method, whose signature is that of charAt(index);, is used to return the cataloged character
whose key matches the specified index. As the string object represents an ordered collection of characters,
the first character’s index is always 0. Obtaining a character is as simple as providing an index to the method,
as seen in Listing 3-5.

Listing 3-5.  Obtaining Unicode Characters

var str = "Hello World";
var strObject = new String(str);
console.log(strObject.charAt(0)); // H
console.log(strObject.charAt(1)); // e
console.log(strObject.charAt(2)); // l 

Note■■  A s an ordered collection, the returned value of length -1 will always be the index to the last
character in the collection.

By pairing the charAt and the length property, we can automate our efforts by way of a for loop, as
seen in Listing 3-6.

Listing 3-6.  Iterating Through a String’s Characters

1 var str = "Hello World";
2 var strObject = new String(str);
3 var length = strObject.length;
4 for(var i=0; i<length; i++) console.log(strObject.charAt(i));
 

Listing 3-6 uses a for loop to print each sequential character (line 3). The loop begins with an initial
variable, i, which is assigned the value of 0. In order to ensure that all characters are evaluated, the condition
for the loop determines whether the current value of i is less than the total length of characters in the
collection. As long as this condition evaluates to true, our statement is executed, and the post-operation
increments i by a value of 1.

indexOf
While the charAt method aims to return a character at the specified index, the indexOf method
provides the inverse behavior. Instead of supplying an index to obtain its corresponding character, the
indexOf enables you to obtain the index whereby the first use of a specified subset occurs. Its signature,
indexOf(subString[, startIndex]);, reveals that the method anticipates a possible two arguments. The
first represents the subString, whose index we seek, while the second parameter, startIndex, represents

Chapter 3 ■ String Manipulation

31

an offset from which the search should begin. Because the startIndex is optional, we will only focus on the
required parameter. (See Listing 3-7).

Listing 3-7.  Obtaining the First Location for a Substring

1 var str = "Hello World";
2 var strObject = new String(str);
3 console.log(strObject.indexOf("H")); // 0
 

Listing 3-7 relies on indexOf to obtain the location for the first determined substring, "H", within our
string value (line 3). As you may have expected, the result returned and output to the console is 0. It’s worth
stressing that indexOf only returns the index of the first determined substring. Therefore, if the substring
used happens to occur more than once in the collection, only the location of the first occurrence will be
returned, as shown in Listing 3-8.

Listing 3-8.  The Index of the First Matched Character ‘l’ is Returned

1 var str = "Hello World";
2 var strObject = new String(str);
3 console.log(strObject.indexOf("l")); // 2
 

If a sought substring does not exist within the collection, the resulting index will be that of -1. Because
our ordered list can only possess a positive sequence of numbers, the evaluation of -1 offers our application
the ability to determine whether or not an operation should take place via a control statement, as seen in
Listing 3-9.

Listing 3-9.  If the Index of -1 is Returned, the Substring is Not Present

1 var str = "Hello World";
2 var strObject = new String(str);
3 var index = strObject.indexOf(";");
4 if(index>-1) //perform operation
5 else console.log("substring does not occur");
 

As shown in Listing 3-9, we can incorporate the value returned by indexOf to control the flow of our
application. Listing 3-9 uses a conditional operation to determine whether the index returned is greater than -1.
This signifies to our application that our collection possesses the substring being sought after, resulting in
some unknown operation being performed. However, if the condition is not met, the application prints to
the console "substring does not occur".

It’s worth stressing that indexOf accepts multiple characters. The preceding listings have only supplied
a singular character. In addition to working with individual characters, indexOf can determine the starting
index for a sequence of characters. This will be very beneficial when attempting to obtain the location of a
substring that has multiple occurrences. Consider an example in which we are required to find a particular
occurrence in a phrase that relies on repetition. (See Listing 3-10.)

Listing 3-10.  The Index of the First Matched Substring is Returned

1 var str = "side beside besides the ocean";
2 var strObject = new String(str);
3 var index = strObject.indexOf("side");
4 if(index>-1) console.log(index); // 0
5 else console.log("substring does not occur");

Chapter 3 ■ String Manipulation

32

lastIndexOf
While the indexOf method returns the index of the first found occurrence, lastIndexOf returns the index of
the last found occurrence of a substring. Similarly, if the string does not possess the provided substring, -1 is
returned as the result.

The method’s signature, lastIndexOf(subString[, startIndex]);, is equal to that of indexOf. It
expects at most two arguments; however, this book only employs the first. Listing 3-11 demonstrates how we
can obtain the starting index for the last occurrence of "side" in our previous string.

Listing 3-11.  Locating the Index of the Last Matched Substring

1 var str = "side beside besides the ocean";
2 var strObject = new String(str);
3 var index = strObject.lastIndexOf("side");
4 if(index>-1) console.log(index); //14
5 else console.log("substring does not occur");

match
The match method, whose signature is match(pattern);, is used to locate character patterns within
a string. An invocation of the match accepts a string value or a regular expression and returns an array
containing all matched substrings of said search. Listing 3-12 demonstrates the provision of both parameters
to the method.

Listing 3-12.  Obtaining Matched Substrings

1 var str = "username=Ben&clickedButton=false";
2 var strObject = new String(str);
3 var stringMatches = strObject.match("username");
4 console.log(stringMatches); // ["username"]
5 var patternMatches = strObject.match(/[^&]+/g);
6 console.log(patternMatches); // ["username=Ben", "clickedButton=false"]
 

Listing 3-12 begins by assigning a formatted string to the str variable (line 1). From there, we provide it
as the value to initialize our instance (line 2).

From there, the string "username" is provided as the pattern to locate within our string (line 3). This
results in the return of an array containing all found matches. The array returned reveals that it has, in fact,
located a match (line 4). Alternatively, we employ a regular expression pattern to locate any and all series of
characters that do not possess the & token (line 5). The array returned reveals that is has, in fact, located two
matches (line 6).

replace
The replace method, whose signature is replace(pattern, replaceText);, can be used to exchange a
matching substring with that of another. Whether or not a match is found, the method will result in the
return of a string value. Listing 3-13 utilizes the replace method to substitute all found occurrences of the
substring "Hello" with that of "Goodbye".

Chapter 3 ■ String Manipulation

33

Listing 3-13.  Replacing Matched Substrings

1 var str = "Hello World";
2 var strObject = new String(str);
3 var result = strObject.replace("Hello", "Goodbye");
4 console.log(result); //Goodbye World
5 �console.log(strObject); //String { 0="H", 1="e", 2="l", 3="l", 4="o", 5=" ",
...//truncated }

 
Listing 3-13 employs the replace method in order to substitute the substring "Goodbye" for all

determined occurrences of the substring "Hello". You may note that I assign the resulting string to a
variable labeled result (line 3). Because strings are immutable, meaning they cannot be altered, the result
of the behavior produces an entirely new string. It does not attempt to alter the variable it was initially
supplied. Furthermore, as illustrated on line 5, use of the behaviors possessed by our string object will not
alter the initial characters cataloged by the collection.

Note■■  A ll strings returned by the methods of a string object are the creation of a new string.

slice
The slice method is used to return a substring of the collection determined by a range of indexes. The
method, as revealed by its signature, replace(start, [end]);, requires a starting index and an optional
ending index. All characters located at the starting index and up to, but not including, the ending index
will be returned to the caller of the method. If the end index is not specified, the substring reflects every
subsequent character beyond the starting index. Listing 3-14 demonstrates how we can extract the word
Hello from our string literal by utilizing the slice method.

Listing 3-14.  Extracting Substrings with slice

1 var str = 'Hello World';
2 var strObject = new String(str);
3 var index = strObject.indexOf('o'); //4;
4 var result = strObject.slice(0, index);
5 console.log(result); //Hell
6 console.log(strObject.slice(0, index + 1)); //Hello
 

Listing 3-14 demonstrates the extraction of the word Hello from our string with the use of the slice
method. Because we know that Hello begins at index 0, we simply have to determine which index is used to
signify the boundary of our substring. It is important to note that slice returns the sequence of characters from
the start index up to, but not including, the ending index. This is why line 4 outputs Hell rather than Hello.

Because the returned substring will always be one character less than that specified, the supplied index
must always reflect one position more than we seek to obtain. The solution is to add 1 to the determined
index (line 6).

Chapter 3 ■ String Manipulation

34

substr
The substr method is used to return a substring within a specific range. The substr method is similar to
the slice method in that it can be used to obtain a substring within a given boundary. As depicted by the
signature substr(start [, length]);, the substr method can accept two parameters; however, only the
first is required.

The required parameter, start, signifies where the substring to extract begins. This value can be
followed by an optional number of characters to include in the returned substring. The key difference
between substr and slice is that the length does not indicate an index. Instead, it indicates the total
number of characters (including the character at the specified start) to return in the substring. Listing 3-15
demonstrates how we can extract the word World from the string, utilizing the substr method.

Listing 3-15.   Extracting Substrings with substr

1 var str = 'Hello World';
2 var strObject = new String(str);
3 var startIndex = strObject.indexOf('W'); //6;
4 var length = (new String('World')).length; //4
5 var result = strObject.substr(startIndex, length);
6 console.log(result); //World
 

Listing 3-15 begins by obtaining the starting index for our substring, 'World' (line 3). Once we have
obtained its index, we can supply it to our substr method as the starting index. Additionally, we can provide
an optional number of characters, which will determine how many subsequent characters beyond the
starting point to be returned.

In this case, I have opted to supply the length of characters possessed by the substring 'World'. This is
achieved by creating a second string object, supplying it with the string 'World', and obtaining its character
count by way of the length attribute (line 4). This value is then supplied as the argument that identifies the
total length of characters to include in the substring (line 5).

Note■■  I f the optional parameter length is omitted, all characters, from the start index to the end of the string,
will be returned.

split
The split method is used to split a string into substrings and return them as the values of an array. As
revealed by the method’s signature split(separator[, limit]);, the method expects to receive at most
two arguments. The first argument, labeled separator, is required, while the latter argument, limit,
remains optional. This book will only make use of the separator parameter. The separator argument is
used to define the delimiters that define the boundaries of substrings captured within the provided string.
Listing 3-16 contains one such string, whereby substrings are delimited by way of an ordinary comma.

Listing 3-16.  Separating a Comma-Delimited String

1 var strObject = new String('ben,mike,ivan,kyle');
2 console.log(strObject.split(',')); // ['ben','mike','ivan','kyle']
 

Chapter 3 ■ String Manipulation

35

Listing 3-16 instantiates a string object and supplies it with a comma-delimited list of names
(line 1). Next, we invoke the split method and supply it with the substring used to separate each name.
In this particular case, that substring is a comma, resulting in the return of an ordered collection of all
names (line 2).

toUpperCase
The toUpperCase method is used to convert all characters within a string to uppercase. The method does not
accept any parameters, and it will be applied to an entire string, as seen in Listing 3-17.

Listing 3-17.  Capitalizing All Alphabetic Characters

1 var strObject = new String('Hello World');
2 console.log(strObject.toUpperCase()); // HELLO WORLD

toLowerCase
Conversely, unlike the toUpperCase method, the toLowerCase method is used to convert all alphabetic
characters within a string to lowercase, as seen in Listing 3-18.

Listing 3-18.  Applying Lowercase to All Alphabetic Characters

1 var strObject = new String('Hello World');
2 console.log(strObject.toLowerCase()); // hello world
 

Aside from the obvious use for the toUpperCase and toLowerCase methods, there is yet another reason
they will be used throughout this book. When working with text, the use of capitalization or lack thereof is to
be expected. However, this makes it difficult to compare two strings within a language that is case-sensitive.
Listing 3-19 compares strings that will always fail, due to the inconsistent use of letter casing.

Listing 3-19.  Comparisons Are Case-Sensitive

1 console.log('Hello World' === 'hello world'); //false
2 console.log('Hello world' === 'hello world'); //false
3 console.log('HELLO WORLD' === 'Hello World'); //false
 

While the characters used in both words may appear equal to us, they are definitely not viewed as the
same by a computer. This is because computers view uppercase and lowercase letters as different Unicode
values. Therefore, to ensure that casing is not an issue during the comparison of strings, we will often use
toUpperCase and toLowerCase before comparing them.

The Implicit String Object
The preceding listings make explicit use of the string object, in order to tap into its many behaviors. While
a string object adds great value, it comes at the cost of its syntactical overhead. Consider Listing 3-4, which
required the instantiation of a string object simply to obtain the length of characters used to devise a string.
To ease this burden for developers, the JavaScript language does, in fact, offer us the best of both worlds.

As mentioned in Chapter 1, primitive values are not objects and, therefore, cannot possibly possess
key/value pairs. Any attempt to access a property of a string, or any primitive type for that matter, would
ordinarily throw a SyntaxError. However, JavaScript seeks to reduce the syntactical overhead by allowing

Chapter 3 ■ String Manipulation

36

the behaviors of the string object to be accessed through a primitive string via access notation. Doing so
prompts the engine to instantiate a string object on our behalf, using the target string as its argument. Once
the instance is created, the accessed behavior is fulfilled by the instance itself. Listing 3-20 demonstrates
how the interface of the string object can be accessed indirectly through a string value.

Listing 3-20.  Implicit Use of the String object

1 var strLiteral = 'Hello World';
2 console.log(strLiteral.toLowerCase()); // hello world
3 console.log(strLiteral.length); // 11
4 console.log(strLiteral.substr(0 , 5)); // Hello
 

Listing 3-20 begins by assigning the string literal 'Hello World' to the variable strLiteral (line 1).
From there, each subsequent line of code relies on dot notation to reference a behavior of the string object.
Because the engine recognizes that a string does not possess any attributes, behind the scenes, it instantiates
a string object, supplies it with the value of strLiteral, and returns the resulting value. The result is
precisely the same as if we instantiated the string object ourselves, only without the syntactical overhead.
For this reason, you should never have to instantiate a string object directly.

Summary
This chapter has introduced you to the behaviors of the String object, which will be employed extensively
in the upcoming chapters. Each behavior covered offers our applications the necessary ability to work
extensively with strings.

When it comes to string manipulation, you will find that there is no right way or wrong way to get
something done. It’s as the old adage goes, “There is more than one way to skin a cat.”

Key Points from This Chapter
There is a corresponding object for each primitive type.•	

A data format refers to the way data is assembled.•	

The addition operator is used to capture application logic within a string.•	

The string primitive has pseudo members that can be accessed with access notation.•	

The behaviors of the string object can be used indirectly.•	

The HTTP protocol transmits text.•	

The comparison between strings does not ignore case.•	

Manipulating a string does not alter the original.•	

37

Chapter 4

Introducing JSON

The JavaScript Object Notation data format, or JSON for short, is derived from the literals of the JavaScript
programming language. This makes JSON a subset of the JavaScript language. As a subset, JSON does
not possess any additional features that the JavaScript language itself does not already possess. Although
JSON is a subset of a programming language, it itself is not a programming language but, in fact, a data
interchange format.

JSON is known as the data interchange standard, which subtextually implies that it can be used as the
data format wherever the exchange of data occurs. A data exchange can occur between both browser and
server and even server to server, for that matter. Of course, these are not the only possible means to exchange
JSON, and to leave it at those two would be rather limiting.

History
JSON is attributed to being the creation of Douglas Crockford. While Crockford admits that he is not the first
to have realized the data format,1 he did provide it with a name and a formalized grammar within RFC 4627.
The RFC 4627 formalization, written in 2006, introduced the world to the registered Internet media type
application/json, the file extension .json, and defines JSON’s composition. In December 2009, JSON was
officially recognized as an ECMA standard, ECMA-404, and is now a built-in aspect of the standardization of
ECMAScript-262, 5th edition.

Controversially, another Internet working group, the Internet Engineering Task Force (IETF), has also
recently published its own JSON standard, RFC 7159, which strives to clean up the original specification.
The major difference between the two standards is that RFC 7159 states that a valid JSON text must encompass
any valid JSON values within an initial object or an array, whereas the ECMA standard suggests that a valid
JSON text can appear in the form of any recognized JSON value. You will learn more about the valid JSON
values when we explore the structure of JSON.

It is important to remember, as we get further into the structure of JSON, that as a subset of
JavaScript, it remains subject to the same set of governing rules defined by the ECMA-262 standardization.
You can feel free to read about the latest specification at the following URL:
www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf. At the time of writing,
the current edition of the ECMA-262 standard is 5.1; however, 6 is just around the corner.

Note■■   While edition 5.1 is today’s current standard, at the time of JSON’s formalization, the ECMA-262
standard was only in edition 3.

1http://yuiblog.com/yuitheater/crockford-json.m4v.

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://yuiblog.com/yuitheater/crockford-json.m4v

Chapter 4 ■ Introducing JSON

38

Crockford documented JSON’s grammar on http://json.org in 2001, and soon word began to spread
that there was an alternative to the XML data format. With the widespread adoption of Ajax (Asynchronous
JavaScript and XML), JSON’s popularity began to soar, as people began to note its ease of implementation
and how it rivaled that of XML. You would think that Ajax would have enforced the adoption of XML, as the
x within the acronym strictly refers to XML. However, being modeled after SGML, a document format, XML
possesses qualities that make it very verbose, which is not ideal for data transmission. One of the reasons
JSON has become the de facto data format of the Web, as you will shortly see in the upcoming section, is due
to its grammatical simplicity, which allows for JSON to be highly interoperable.

JSON Grammar
JSON, in a nutshell, is a textual representation defined by a small set of governing rules in which data
is structured. The JSON specification states that data can be structured in either of the two following
compositions:

	 1.	 A collection of name/value pairs

	 2.	 An ordered list of values

Composite Structures
As the origins of JSON stem from the ECMAScript standardization, the implementations of the two
structures are represented in the forms of the object and array. Crockford outlines the two structural
representations of JSON through a series of syntax diagrams. As I am sure you will agree, these diagrams
resemble train tracks from a bird’s-eye view and thus are also referred to as railroad diagrams. Figure 4-1
illustrates the grammatical representation for a collection of string/value pairs.

object

string value }{ :

,

Figure 4-1.  Syntax diagram of a string/value pair collection

As the diagram outlines, a collection begins with the use of the opening brace ({), and ends with the use
of the closing brace (}). The content of the collection can be composed of any of the following possible three
designated paths:

The top path illustrates that the collection can remain devoid of any string/value pairs.•	

The middle path illustrates that our collection can be that of a single string/value pair.•	

The bottom path illustrates that after a single string/value pair is supplied, the •	
collection needn’t end but, rather, allow for any number of string/value pairs,
before reaching the end. Each string/value pair possessed by the collection must be
delimited or separated from one another by way of a comma (,).

http://json.org/

Chapter 4 ■ Introducing JSON

39

Note■■   String/value is equivalent to key/value pairs, with the exception that said keys must be provided
as strings.

An example of each railroad path for a collection of string/value can be viewed within Listing 4-1. The
structural characters that identify a valid JSON collection of name/value pairs have been provided emphasis.

Listing 4-1.  Examples of Valid Representations of a Collection of Key/Value Pairs, per JSON Grammar

//Empty Collection Set
{};
//Single string/value pair
{"abc":"123"};
//Multiple string/value pairs
{"captainsLog":"starDate 9522.6","message":"I've never trusted Klingons, and I never
will."};
 

Figure 4-2 illustrates the grammatical representation for that of an ordered list of values. Here we
can witness that an ordered list begins with the use of the open bracket ([) and ends with the use of the
close bracket (]).

array

value][

,

Figure 4-2.  Syntax diagram of an ordered list

The values that can be held within each index are outlined by the following three “railroad” paths:

The top path illustrates that our list can remain devoid of any value(s).•	

The middle path illustrates that our ordered list can possess a singular value.•	

The bottom path illustrates that the length of our list can possess any number of •	
values, which must be delimited, that is, separated, with the use of a comma (,).

An example of each railroad path for the ordered list can be viewed within Listing 4-2. The structural
tokens that identify a valid JSON ordered list have been emphasized.

Listing 4-2.  Examples of Valid Representations of an Ordered List, per JSON Grammar

//Empty Ordered List
[];
//Ordered List of multiple values
["abc"];
//Ordered List of multiple values
["0",1,2,3,4,100];
 

Chapter 4 ■ Introducing JSON

40

You may have found yourself wondering how it came to be that the characters [,], {, and } represent
an array and an object, as illustrated in Listing 4-1 and Listing 4-2. The answer is quite simple. These come
directly from the JavaScript language itself. These characters represent the Object and Array quite literally.

As was stated in Chapter 2, both an object and an array can be created in one of two distinct fashions.
The first invokes the creation of either, through the use of the constructor function defined by the built-in
data type we wish to create. This style of object invocation can be seen in Listing 4-3.

Listing 4-3.  Using the new Keyword to Instantiate an object and array

var objectInstantion = new Object(); //invoking the constructor returns a new Object
var arrayInstantiation = new Array(); //invoking the constructor returns a new Array
 

The alternative manner, which we can use to create either object or array, is by literally defining the
composition of either, as demonstrated in Listing 4-4.

Listing 4-4.  Creation of an object and an array via Literal Notation

var objectInstantion = {}; //creation of an empty object
var arrayInstantiation = []; //creation of an empty array
 

Listing 4-4 demonstrates how to create both an array and an object, explicitly using JavaScript’s literal
notation. However, both instances are absent of any values. While it is perfectly acceptable for an array or
object to exist without content, it will be more likely that we will be working with ones that possess values.

Because object literals can be used to design the composition of objects within source code, they can
also be provisioned with properties as they are authored. Listing 4-5 should begin to resemble the syntax
diagrams we just reviewed.

Listing 4-5.  Designing an object and array via Literal Notation with the Provision of Properties

var objectInstantion = {name:"ben",age:36};
var arrayInstantiation = ["ben",36]; 

Note■■   While Listing 4-4 and Listing 4-5 illustrate the creation of objects through the use of literals, JSON
uses literals to capture the composition of data.

The JSON data format expresses both objects and arrays in the form of their literal. In fact, JSON uses
literals to capture all JavaScript values, except for the Date object, as it lacks a literal form.

What you may not have noticed, due to its subtlety, is that JavaScript object literals do not require its key
identifiers to be explicitly defined as strings. Take, for example, the literal declaration of {name:"ben", age:36};
from Listing 4-5. It could have equally been declared as {"name":"ben", age:36};. Both declarations will
create the same object, allowing our program to reference the same name property equally. Consider the code
within Listing 4-6.

Listing 4-6.  Object Keys Can Be Defined Explicitly or Implicitly As Strings

var objectInstantionA = {name:"ben",age:36};
var objectInstantionB = {"name":"ben",age:36};
console.log(objectInstantionA.name); // "ben"
console.log(objectInstantionB.name); // "ben"
 

Chapter 4 ■ Introducing JSON

41

The reason the preceding example works is because, behind the scenes, JavaScript turns every key
identifier into a string. That said, it is imperative that the key of every value pair be wrapped in double quotes
to be considered valid JSON. This is due to the many reserved keywords in JSON’s superset and the fact that
ECMA 3.0 grammar prohibits the use of keywords as the properties held by an object. The ECMA 3.0 grammar
does not allow reserved words (such as true and false) to be used as a key identifier or to the right of the period
in a member expression.2 Listing 4-7 demonstrates the first JSON text used to interchange data.3

Listing 4-7.  The Very First JSON Message Used by Douglas Crockford

var firstJSON = {to:"session",do:"test","message":"Hello World"}; //Syntax Error in ECMA 3
 

However, this JSON text produced an error instantly, due to the use of the reserved keyword do as the
property name of a string/value pair. Rather than outlining all words that would then cause such syntax errors,
Crockford found it simpler to formalize that all property names must be explicitly expressed as strings.

Note■■   If you were to reference the exact preceding code expecting to arrive at a syntax error, you’ll likely
be confused why none is thrown. The ECMAScript, 5th edition allows for keywords to now be used with dot
notation. However the JSON spec continues to account for legacy.

JSON Values
As mentioned earlier, JSON is a subset of JavaScript and does not add anything that the JavaScript language
does not possess. So, naturally, the values that can be utilized within our JSON structures are represented by
types, as outlined within the 3rd edition of the ECMA standard. JSON makes use of four primitive types and
two structured types.

The next figure in succession, Figure 4-3, defines the possible values that can be substituted where
the term value appears in Figures 4-1 and 4-2. A JSON value can only be a representative of string, number,
object, array, true, false, and null. The latter three must remain lowercased, lest you invoke a parsing
error. While Figure 4-3 does not clearly demonstrate it, all JSON values can be preceded and succeeded by
whitespace, which greatly assists in the readability of the language.

2Allen Wirfs-Brock, “ES 3.1 ‘true’ as absolute or relative?” https://mail.mozilla.org/pipermail/es-discuss/2009-
April/009119.html, April 9, 2009.
3http://yuiblog.com/assets/crockford-json.zip.

https://mail.mozilla.org/pipermail/es-discuss/2009-April/009119.html
https://mail.mozilla.org/pipermail/es-discuss/2009-April/009119.html
http://yuiblog.com/assets/crockford-json.zip

Chapter 4 ■ Introducing JSON

42

String literals in the JavaScript language can possess any number of Unicode characters enclosed within
either single or double quotes. However, it will be important to note, as outlined in Figure 4-4, that a JSON
string must always begin and end with the use of double quotes. While Crockford does not justify this, it is
for interoperable reasons. The C programming grammar states that single quotes identify a single character,
such as a or z. A double quote, on the other hand, represents a string literal. While Figure 4-4 appears
verbose, there are only four possible paths.

string

number

object

array

false

null

true

value

Figure 4-3.  Syntax diagram illustrating the possible values in JSON

string

Any UNICODE character except
“ or \ or control character

quotation mark

reserve solidus

solidus

backspace

formfeed

newline

carriage return

horizontal tab

4 hexadecimal digits

\ ”

\

/

b

f

n

r

t

u

“ ”

Figure 4-4.  Syntax diagram of the JSON string value

The topmost path illustrates that our string literal can be absent of any Unicode •	
characters.

The middle path illustrates that our string can possess any Unicode characters •	
(represented in literal form), except for the following: the quotation mark, the
backslash (solidus).

Chapter 4 ■ Introducing JSON

43

The last several paths illustrate that we can insert into our string control characters •	
with the use of a solidus (\)character preceding it. Additionally, the bottommost
rung specifies that any character can be defined in its Unicode representation. To
indicate that the preceding u character is used to identify a Unicode value, it, too,
must be escaped.

The second topmost path represents our loop, which allows the addition of any of •	
the outlined characters.

Listing 4-8 demonstrates a variety of valid string values.

Listing 4-8.  Examples of Valid String Values As Defined by the JSON Grammar

//absent of unicode
"";
//random unicode characters
"∑"; or "∢";
//use of escaped character to display double quotes;
" \" \" ";
//use of \u denotes a unicode value
"\u22A0"; // outputs ⊠
//a series of valid unicode as defined by the grammar
"\u22A0 ⊠ \" ∑ \n";
 

A solidus, better known as a backslash, is used to demarcate characters as having an alternate
meaning. Without the use of the \, the lexer might interpret as a token what is intended to be used as a
string, or vice versa. Escaping characters offers us the ability to inform the lexer to handle a character in a
manner that is different from its “normal” behavior. Table 4-1 illustrates the use of the escaped literals for
the prohibited characters.

Table 4-1.  Escaped Literals

Unicode Representation Literal Escaped Literal Name

u0022 " \" Quotation Mark

u005c \ \\ Reverse Solidus

u002F / \/ Solidus

u0008 b \b Backspace

u000C f \f Form Feed

u000A n \n Line Feed

u000D r \r Carriage Return

u0009 t \t Tab

uXXXX uXXXX \uXXXX Unicode Character

The last value to discuss is that of the number. A number in JSON is the arrangement of base10
literals, in combination with mathematical notation to define a real number literal. Figure 4-5
addresses the syntactical grammar of the JSON number in great detail; however, it’s rather simple
when we view it step-by-step.

Chapter 4 ■ Introducing JSON

44

The first thing to note is that the numbers grammar does not begin or end with any particular symbolic
representation, as our earlier object, array, and string examples did.

As illustrated in Figure 4-5, a JSON number must adhere to the following rules:

	 1.	 The number literal will be implicitly positive, unless explicitly indicated as a
negative value.

	 2.	 Numbers cannot possess superfluous 0’s.

	 3.	 Can be in the form of a whole number

a.	 made up of a single BASE10 numeric literal (0-9)

b.	 made. any number of BASE10 numeric literals (0-9)

	 4.	 Can be in the form of a fraction

4.1.	 Made up of a singular base10 numerical literal at the 10s placement

4.2.	 Made up of any base10 numerical literal per placement beyond the decimal

	 5.	 Can possess the exponential demarcation literal

5.1.	 E notation can be expressed in the form of a uppercase “E” or lowercase “e”

5.2.	 Immediately followed by a signed sequence of 1 or more base10 numeric
literals (0-9)

Listing 4-9 reveals valid numerical values as defined by the JSON grammar.

Listing 4-9.  Valid Numerical Values

-0.01 //valid use of 0's
 00.1 //superfluous 0 produces a SyntaxError
 1/3 //fraction form
 .3333333333333333 //decimal form
 1.2e-1 //scientific notation
 

Any of the values discussed in this chapter can be used in any combination when contained within a
composite structure. Listing 4-10 illustrates how they can be mixed and matched. What is necessary is that
the JSON grammar covered is followed. The examples in Listing 4-10 demonstrate proper adherence of the
JSON grammar to portray data.

number

digit
1-9

digit

digit

+

-

e

e

.

-

0

digit

Figure 4-5.  Syntax diagram of a JSON number

Chapter 4 ■ Introducing JSON

45

Listing 4-10.  Examples of JSON Text Containing a Variety of Valid JSON Values

// JSON text of an array with primitives
[
 null, true, 8
]
// JSON text of an object with two members
{
 "first": "Ben",
 "last": "Smith",
}
// JSON text of an array with nested composites
[
 { "abc": "123" },
 ["0", 1, 2, 3, 4, 100]
]
//JSON text of an object with nested composites
{
 "object": {
 "array": [true]
 }
}

JSON Tokens
While the Object and Array are conventions used in JavaScript, JavaScript, like many programming languages,
borrowed from the C language in one form or another. While not every language explicitly implements Arrays
and Objects akin to JavaScript, they do often possess the means to model collections of key/value pairs and
ordered lists. These may take on the form of Hash maps, dictionaries, Hash tables, vectors, collections, and lists.
Furthermore, most languages will be capable of working with text, which is precisely what JSON is based on.

At the end of the day, JSON is nothing more than a sequence of Unicode characters. However, the JSON
grammar standardizes which Unicode characters or “tokens” define valid JSON, in addition to demarcating
the values contained within.

Therefore, when regarding the interchange of JSON and the many languages that do not natively
possess Objects and Arrays, the tokens that make up the JSON text are all that is required to interpret if
any collections or ordered lists exist and apply all values in a manner required of that language. This is
accomplished with six structural characters, as listed in Table 4-2.

Table 4-2.  Six Structural Character Tokens

Token Escaped Value Unicode Value Literal Name

Array Opening %5b \u005b [Left Square Bracket

Array Closing %5d \u005d] Right Square Bracket

Object Opening %7b \u007b { Left Curly Bracket

Object Closing %7d \u007d } Right Curly Bracket

Name/Value Separator %3a \u003a : Colon

Value Separator %2c \u002c , Comma

Chapter 4 ■ Introducing JSON

46

One point to note is that JSON will ignore all insignificant whitespace before or after the preceding six
structural tokens. Table 4-3 illustrates the four whitespace character tokens.

Table 4-3.  Four Whitespace Character Tokens

Token Name Escaped Value Unicode Value

Control Character Space %20 \u0020

Control Character Horizontal Tab %09 \u0009

Control Character Line Feed/New Line %0A \u000A

Control Character Carriage Return %0D \u000D

Because JSON is nothing more than text, you may find it rather difficult to determine whether your
JSON is properly formatted or not. Furthermore, if the syntax is inaccurate to the grammar specified,
then you will find that your malformed JSON causes code to come to a halt. This would be due to the
syntax error that would be uncovered at the time of trying to parse said JSON. You will learn about
parsing in Chapter 6.

For this reason, any attempt to devise JSON by hand should be performed with the aid of an editor. The
following list of JSON editors understand the JSON grammar and are able to offer some much needed and
immediate validation.

•	 http://jsoneditoronline.org/

•	 http://jsonlint.com/

The first editor, http://jsoneditoronline.org/, adheres to the ECMA-262 standardization and,
therefore, allows your JSON text to represent a singular primitive value. Whereas the ladder follows
the RFC 7159 standardization, thus requiring a JSON text to represent a structural value, i.e., array or
object literal. It should be made known that the two editors mentioned previously are not the only
two in existence. There are many online and offline editors, each with its own nuances. I favor the two
mentioned, for their convenience.

Summary
In this chapter, I covered the history of JSON and the specifications of the JSON data format that defines the
grammar of a valid JSON text. You learned that JSON is a highly interoperable format for data interchange.
This is achieved via the standardization of a simplistic grammar that can be translated into any language
simply by understanding the grammar.

As was demonstrated in this chapter, we can use the JSON grammar in conjunction with predetermined
data to create JSON. Because we are simply working with text, it will be helpful to rely on an editor that
understands JSON’s grammar, for validation purposes. However, JSON can be written with a basic text editor
and saved as a JSON document, using the file extension .json. Furthermore, as a subset of JavaScript, JSON
can even be hard-coded within a JavaScript file directly. Both methods are ideal for devising configuration
files for an application.

The next chapter will reveal how we can use the JavaScript language to produce JSON at runtime.

http://jsoneditoronline.org/
http://jsonlint.com/
http://jsoneditoronline.org/

Chapter 4 ■ Introducing JSON

47

Key Points from This Chapter
The array represents an ordered list of values, whereas the object represents a •	
collection of key/value pairs.

Unordered collections of key/value pairs are contained within the following •	
opening ({) and closing (}) brace tokens.

Ordered lists are encapsulated within opening (•	 [) and closing (]) square
bracket tokens.

The key of a member must be contained in double quotes.•	

The key of a member and its possessed value must be separated by the •	
colon (:) token.

Multiple values within an object or array must be separated by the •	
comma (,) token.

Boolean values are represented using lowercase true/false literals.•	

Number values are represented using double-precision floating number •	
point format.

Number values can be specified with scientific notation.•	

Control characters must be escaped via the reverse solidus (•	 \) token.

Null values are represented as the literal: •	 null.

49

Chapter 5

Creating JSON

Serialization is the process of taking a snapshot of a data structure in a manner that allows it to be stored,
transmitted, and reconstructed back into a data structure at a later point in time. As serialization is merely
a process rather than the utilization, its applications are mainly limited by your application’s needs. This
chapter will explore the serialization methods utilized by the JavaScript language and required of the
JSON subset.

While serialization may seem like a mystical concept, the result of the snapshot, at the most atomic
level, is nothing more than a string. The serialization process is simply the construction of said string,
which often occurs behind the scenes. What is important to note is that in JavaScript, the produced string
incorporates the representations of data in their literal forms. By capturing data in their literal form, each
literal can be evaluated back into its respective JavaScript values.

Note■■   A serialized value could result in a simple-looking string, such as "\"Hello-World\"" or "false".

You learned in Chapter 4 that any C language can easily work with JSON. The most prominent reason
is that all C languages possess a means to represent collections of name/value pairs, ordered lists, Booleans,
and strings. Nevertheless, in the few cases in which the literals that make up the JSON subset are not
inherently understood by a specific language, a translation among grammars can take place. This occurs
by simply deconstructing the JSON text into a series of tokens and deriving meaningful structures that are
possible within the grammar of that particular language.

Note■■   Grammar translation is the process of converting the syntax of one language equivalently into that
of another.

Conversely, one can construct JSON from any data structure, simply by following the grammar defined
by the JSON specification. In Chapter 6, you will learn more about such reconstruction. This chapter will
focus on how to create a JSON text from JavaScript values.

Chapter 5 ■ Creating JSON

50

The Serialization Process—Demystified
As was discussed in Chapter 3, all JavaScript values can be converted into their string equivalent form by
adding it, via the addition operator, with another string, as seen in Listing 5-1.

Listing 5-1.  Concatenating Primitive Values with Strings

""+1; //produces "1"
""+true; //produces "true"
""+null; //produces "null"
""+undefined; //produces "undefined"
""+"Hello"; //produces "Hello"
 

While the string representations for all primitive values are captured as expected, as displayed in Listing 5-2,
the same cannot be said of non-primitive values.

Listing 5-2.  Concatenating Non-Primitive Values with Strings

""+{identifier:"Hello"}; //produces "[object Object]"
""+["Hello",["hello","World"]]; //produces "Hello,hello,World"
 

As revealed in Listing 5-2, while the JavaScript language possesses the ability to create objects out of
literal forms, there is no easy way to perform the contrary. In order to deconstruct an object into that of its
literal form, the members of an instance must be traversed, analyzed, and assembled piece by piece into its
corresponding literal form.

To accomplish this undertaking, we must rely on the use of loops, string manipulation, and the
appropriate sequencing of the necessary structural tokens, listed in Table 5-1.

Table 5-1.  The Six Structural Character Tokens

Token Literal Name

Array Opening [Left Square Bracket

Array Closing] Right Square Bracket

Object Opening { Left Curly Bracket

Object Closing } Right Curly Bracket

Name/Value Separator : Colon

Value Separator , Comma

The following code in Listing 5-3 demonstrates, as succinctly as possible, a method that transforms a
supplied object into that of its literal form counterpart.

Chapter 5 ■ Creating JSON

51

Listing 5-3.  Converting an object and Its Property into an object literal

 1 var author = new Object();
 2 author.name = "Ben";
 
 3 var literal = stringify(author);
 
 4 function stringify(structure){
 //if the structure supplied possesses the string data type
 5 if(typeof structure=="string"){
 6 return '"'+String(structure)+'"';
 7 }
 //if the structure supplied possess the object data type
 8 if(typeof structure=="object"){
 9 var partial=[];
 //for each property held by our structure
10 for(var k in structure){
11 var v= structure[k];
12 v = stringify(v);
13 partial.push(k+" : "+v);
14 }
 //if partial does not possess children capture opening/closing brackets;
15 v = (partial.length === 0)? '{}'
16 //otherwise, comma delimit all values within opening/closing brackets
17 : ' { ' + partial.join(' , ') + ' } '
18 return v;
19 }
20 }
21 console.log(literal); // "{ name : "Ben" }"
22 console.log(typeof literal); // "string"
 

Our demonstration begins (line 1) with the creation of an object author who is assigned a singular
property name. We next supply author to the stringify function as the object we wish to transform into its
literal representation. The stringify function then analyzes the data type of the structure supplied, in order
to determine the appropriate course of action.

When stringify ascertains that the supplied structure is an object (line 8), the function then proceeds
to traverse all members in its possession. The value of each key enumerated this way is in turn supplied to
the stringify method, to be transformed into its literal form. Alas, this time, the data type is found to be
that of a string. In order to capture said string as its literal counterpart, the function surrounds it with double
quotes and returns it back to the caller of the invocation (line 12). From here, the current key, k, and its
value, v, are sequenced together, separated by a colon (:) and stored within the array partial, so that any
remaining properties can be enumerated similarly.

To keep this example short, author is in possession of one property. However, were there more
properties possessed by our structure, the preceding process would be repeated until every single one is
deconstructed and converted into its literal counterpart and appended to the final string representation.
When there are no further properties to analyze, we determine if the length of partial is greater or equal to
that of zero. If partial’s length is 0, it does not possess any values, and, therefore, a string consisting of a pair
of opening/closing braces is devised.

Otherwise, we create a string that joins each value with a comma separator (,) and insert it within
a pair of opening/closing brace tokens. The serialized literal is then returned to the invoker (line 3). The
demonstration ends by outputting the final representation, revealing our reverse-engineered object
literal (line 21).

Chapter 5 ■ Creating JSON

52

Note■■  I n the preceding example, stringify is only capable of converting strings and objects into their
literal counterparts. Crafted for that purpose only, it is not capable of recognizing all types.

We’re very close to our goal. However, this literal isn’t able to be considered valid JSON, as it does not
fully adhere to the JSON grammar. The key name in our key/value pair must be surrounded by double quotes.
Fortunately, this is easy to remedy with strings: partial.push('"'+ k+'"' + ": " +v);. If we were to log
our result once again, we would see the following: "{"name":"Ben"}".

While the demonstration in Listing 5-1 possessed a singular member, it will not be unlikely that the data
requiring serialization possesses the makeup of objects nested within objects. Four objects are used in total
to represent our author object, as seen in Listing 5-4, and each is used to organize data. One object is used as
a list, which includes the pets owned by yours truly. Another two are used to capture the names and ages of
each pet. While both pets are contained within the ordered list, the ordered list itself is held as just another
property on our author instance.

Listing 5-4.  A Nested Data Structure

var author = new Object();
 author.name = "Ben";
 author.age = 36;
 author.pets = [
 { name : "Waverly" , age : 3.5 },
 { name : "Westley" , age : 4 }
]
 

If we were to serialize author from Listing 5-4 using the stringify function outlined in Listing 5-3,
each property possessed by the top-level element would be enumerated. Similarly, the value held by each
key would be supplied to its own invocation of the stringify function as the top-level element to have
its composition serialized. This process continues until all values of all structures have been analyzed,
serialized, and concatenated as a valid JSON text.

Note■■   Object properties and Array indexes represent a key.

As the stringify function demonstrates, transforming a JavaScript object into a valid JSON
representation requires the use of identifying data types, recursion, and a heavy amount of string
manipulation. Fortunately for us, the formalizer of JSON, Douglas Crockford, devised a JSON library that
would conveniently produce JSON text from that of a specified datum. The JSON library is a convenient
JavaScript file, which can be downloaded from the following GitHub URL: https://github.com/
douglascrockford/JSON-js/blob/master/json2.js.

The JSON Object
As a JavaScript file, the json2.js library can be included in any existing application, by referencing the
downloaded library within the <head></head> tags on each HTML page that seeks use of it. Listing 5-5
incorporates the JSON library by referencing the location of the library, relative to the top directory, within
the script tag in the head of the following HTML file. In this example, the json2.js file has been downloaded
within the js/libs/ directory of the working directory of a project.

https://github.com/douglascrockford/JSON-js/blob/master/json2.js
https://github.com/douglascrockford/JSON-js/blob/master/json2.js

Chapter 5 ■ Creating JSON

53

Listing 5-5.  HTML Markup Referencing the Inclusion of the json2.js JavaScript Library

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="css/style.css">
 <script src="js/libs/json2.js"></script>
 </head>
 <body>
 </body>
</html>
 

When the page is viewed in a browser, and as soon as the json2.js file is loaded, the JSON Object
declared by json2.js is added to the global namespace, so that the serialization method can be accessed
from within any scope. Unlike the built-in objects, such as Object or Array, whose global methods can
be used as a constructor to create instances of these objects via the keyword new, the JSON Object does
not possess a constructor at all. Instead, the JSON Object possesses two methods, parse and stringify.
However, this chapter will only discuss one of them: stringify.

stringify
As the name suggests, stringify is used for serializing JavaScript values into that of a valid JSON. The
method itself accepts three parameters, value, replacer, and space, as defined by the signature in Listing 5-6.
As I mentioned, the JSON Object is a global object that does not offer the ability to create any instances of
the JSON Object. Any attempt to do so will cause a JavaScript error. Therefore, one must simply access the
stringify method via the global JSON Object.

Listing 5-6.  Syntax of the JSON stringify Method

JSON.stringify(value[, replacer [, space]]);
 

Note■■  T he brackets surrounding the two parameters, replacer and space, is just a way to illustrate in a
method definition what is optional. However, while an argument supplied to the method may be optional, you
must follow the proper parameter order, as outlined by the method. In other words, to specify an argument for
space but not replacer, you must supply null as the second argument to the stringify method.

value
The value parameter of the stringify method is the only required parameter of the three outlined by the
signature in Listing 5-6. The argument supplied to the method represents the JavaScript value intended to
be serialized. This can be that of any object, primitive, or even a composite of the two. As both Objects and
Arrays are composite structures, the argument supplied can be in possession of any combination of objects
and primitives nested within, much like our author object from Listing 5-4. Let’s jump right in and serialize
our author object as shown in Listing 5-7.

Chapter 5 ■ Creating JSON

54

Listing 5-7.  HTML Markup Demonstrating the Output of JSON.stringify

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <link rel="stylesheet" href="css/style.css">
 <script src="js/libs/json2.js"></script>
 </head>
 <body>
 <script>
 //obtain a reference to the body tag
 var body = document.getElementsByTagName("body")[0];
 
 //function log will append a value to the body for output
 function log(jsonText) {
 //surround supplied jsonText with double quotes and append a new line
 body.innerHTML += '"' + jsonText + '"
';
 }
 var author = new Object();
 author.name = "Ben";
 author.age = 36;
 author.pets = [
 { name : "Waverly" , age : 3.5 },
 { name : "Westley" , age : 4 }
];
 
 var JSONtext = JSON.stringify(author)
 log(JSONtext);
 </script>
 </body>
</html>
 

Listing 5-7 leverages the markup from Listing 5-5 and inserts within the body a script defining our
author object. Immediately following, we supply author into that of JSON.stringify, which returns the
following JSON text:
 
"{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}"
 

The produced JSON captures the data precisely as it was housed within the author object. The great
thing about the serialization process is that all of the work is encapsulated behind the scenes. This allows us
to remain unconcerned as to how the encoding logic works, in order to be able to use it as we just have.

Serializing structures equivalent to author will work out marvelously, as it possesses only the values
that are formalized as valid values of the JSON grammar. On the other hand, as the needs of an application
become more complex than that of author, you may encounter a few oddities in the way that your data is
outputted.

Your program being written in JavaScript will surely take advantage of all the language has to offer, as
well it should. Yet, as JSON is a subset of the JavaScript language, many objects and primitives employed by
your application may not be serialized as expected. You may come to find that this is both a blessing and
a curse. However, either way you see it, it will be an undeniable fact. Therefore, short of learning the inner
workings of the stringify method, it will be important to understand how the serializer handles particular
values it comes across, in order to be able to anticipate arriving at the expected or even necessary results.

Chapter 5 ■ Creating JSON

55

Tip■■  T he serialization process occurs in a synchronous manner. In other words, the moment you call the
stringify method, all remaining code that has to be executed must wait for the serialization to conclude
before it can proceed. Therefore, it will be wise to keep your objects as concise as necessary during the
serialization process.

EXERCISE 5-1. STRINGIFY

Let’s now experiment with a few types of data structures and see what JSON text is outputted. Create
an HTML file within the top root of a working directory, and within it, copy the code from Listing 5-5.
Within that same directory, create a js/ directory and a libs/ directory within it. If you have not already
downloaded json2.js, do so and save it within js/libs/. Revisit the created .html file and within the
body tag, include the following lines of code:
 
01. <script>
02. //obtain a reference to the body tag
03. var body = document.getElementsByTagName("body")[0];
04. //function log will append a value to the body as a string value for output
05. function log(jsonText) {
06. //wrap all strings with double quotes and append a new line
07. body.innerHTML += '"' + jsonText + '"
';
08. }
09.
10. log(JSON.stringify(false));
11. log(JSON.stringify(undefined));
12. log(JSON.stringify([undefined]));
13. log(JSON.stringify(["undefined", false]));
14. log(JSON.stringify({prop : undefined }));
15. log(JSON.stringify(new Date("Jan 1 2015")));
16.
17. var obj = new Object();
18. obj.name = "name-test";
19. obj.f = function() { return "function-test" };
20.
21. log(JSON.stringify(obj));
22. log(JSON.stringify("this example \u000A\u000D has control characters"));
23. log(JSON.stringify("true"));
24. log(JSON.stringify(1/0));
25. log(JSON.stringify(Infinity));
26. log(JSON.stringify([function(){ return "A"}]));
27.

Chapter 5 ■ Creating JSON

56

28. var selfReference= new Array();
29. selfReference[0]=selfReference;
30. �//because line 31 will throw an error, we must wrap it with a try catch to

view the error
31. try{ JSON.stringify(selfReference) } catch(e){ log(e) };
32. </script>
 
Once you’ve added the following script to your HTML file, open that .html file in your favorite browser
and observe the output for each data serialized. Your results should be comparable to the results shown
in the following table.

Results of the Code Produced

Exercises Outputs

JSON.stringify(false); "false"

JSON.stringify([undefined]); "[null]"

JSON.stringify(["undefined" , false]); "[\"undefined\",false]"

JSON.stringify({ prop:undefined }); "{}"

JSON.stringify(new Date("Jan 1 2015")); "\"2015-01-01T05:00:00.000Z\""

var obj= new Object();

obj.name="name-test";

obj.f=function(){

return "function-test"

};

JSON.stringify(obj);

"{\"name\":\"name-test\"}"

JSON.stringify("this example \u000A\u000D
has control characters");

"\"this example \n\r has control
characters\""

JSON.stringify("true"); "\"true\""

JSON.stringify(1/0); "null"

JSON.stringify(Infinity); "null"

JSON.stringify([function(){ return "A"}]
);

"[null]"

var selfReference= new Array();

selfReference[0]=selfReference;

JSON.stringify(selfReference);

TypeError: cyclic object value

As you can see from the results of our exercise, the stringify method doesn’t acknowledge a few
values. First and foremost, you may have realized that an undefined value is handled in one of two possible
manners. If the value undefined is found on a property, the property is removed entirely from the JSON text.
If, however, the value undefined is found within an ordered list, the value is converted to 'null'.

Chapter 5 ■ Creating JSON

57

Functions are also disregarded by the stringify method, even functions that would return a string
to the key holding it. The stringify method only analyzes and encodes values; it does not evaluate them.
Therefore, functions when encountered by stringify are replaced with the undefined value. The rules
I covered previously regarding an undefined value will apply to the key that now references the assigned
undefined primitive. There is one method that will be invoked, if found to have that of a particular method
name. I will talk more about this later in the toJSON section.

As JavaScript does not possess a date literal, Dates are automatically serialized as string literals, based
on the (UTC) ISO encoding format.

All number values must be finite. If the number is evaluated to that of an Infinity or NaN, the number
will return as the literal 'null' value.

When the sole value serialized is that of a string value, its literal form is escaped and nested within
another set of quotes.

The last takeaway from the preceding exercises is that JSON cannot handle cyclic object values,
meaning that neither an array nor object can possess a value that is a reference to itself. Should you attempt
to define a cyclic structure, an immediate error is thrown.

toJSON

Because dates do not possess a literal form, the stringify method captures all dates it encounters as string
literals. It captures not only the date but time as well. Because stringify converts a date instance into a
string, you might rationalize that it’s produced by calling the toString method possessed by the Date object.
However, Date.toString(), does not produce a standardized value, but, rather, a string representation
whose format depends on the locale of the browser that the program is running.1 With this output lacking a
standard, it would be less than ideal to serialize this value for data interchange.

What would be ideal is to transform the contents into that of the ISO 8601 grammar, which is the
standard for handling date and time interchange.

Note■■   A JavaScript Date Object can be instantiated with the provision of an ISO formatted string.

To enable this feature, Crockford’s library also includes the toJSON method, which is appended to the
prototype of the Date Object so that it will exist on any date. Listing 5-8 reveals the default toJSON function
that will be inherited by any and all dates.

Listing 5-8.  Default toJSON Implementation

Date.prototype.toJSON = function(key) {
 function f(n) {
 // Format integers to have at least two digits.
 return n < 10 ? '0' + n : n;
 }
 
 return this.getUTCFullYear() + '-' +
 f(this.getUTCMonth() + 1) + '-' +

1Microsoft, Internet Explorer Dev Center, “toString Method (Date),” http://msdn.microsoft.com/en-us/
library/ie/jj155294%28v=vs.94%29.aspx.

http://msdn.microsoft.com/en-us/library/ie/jj155294%28v=vs.94%29.aspx
http://msdn.microsoft.com/en-us/library/ie/jj155294%28v=vs.94%29.aspx

Chapter 5 ■ Creating JSON

58

 f(this.getUTCDate()) + 'T' +
 f(this.getUTCHours()) + ':' +
 f(this.getUTCMinutes()) + ':' +
 f(this.getUTCSeconds()) + 'Z';
};
 

When stringify invokes the toJSON method, it expects to be provided a return value. In Listing 5-8,
the value being returned is a string that is devised from the concatenation of the methods possessed by
the instance being analyzed. The return value can be of any value that is defined in the JSON subset. Upon
returning a value, the logic within stringify will continue to ensure that your value is analyzed. It will do
so iteratively if returned in the form of an object or, more simply, if the value returned is a primitive, it’s
converted into a string and sanitized. Because stringify continues to analyze the retuned value, the rules
of Table 5-1 continue to apply.

Note■■   Because toJSON exists as a method of a Date Object, the this keyword remains scoped to the
particular instance being analyzed. This allows the serialization logic to be statically defined, yet each instance
at runtime will reference its own values.

If you are curious as to the purpose of function f, function f wraps each method and prefixes each
result with 0, if the returned number is less than 10, in order to maintain a fixed number of digits. Last, each
number is arranged in a sequence combined with various tokens and joined into a string, resulting in a valid
grammar, according to the IS0 8601 specification.

What is important to know about the toJSON method is that it can be used on more than dates. For each
object analyzed, the internal logic of the stringify method invokes said toJSON method, if it is in possession
of one. This means we can add toJSON to any built-in JavaScript Object, and even to custom classes, which,
in turn, will be inherited by their instances. Furthermore, we can add it to individual instances. This inherit
ability to add a toJSON method enables each application to provide the necessary encoding that might not
otherwise be possible by default, such as that of our date.

Note■■   Custom classes, when serialized, are indistinguishable from the built-in objects types.

Each call to the toJSON method is supplied with a key as an argument. This key references the holder of
the value that stringify is currently examining. If the key is a property on an object, that properties label is
supplied as the key to the method. If the key is the index of an array, the argument supplied will be an index.
The former provides useful insight when devising conditional logic that must remain flexible or dependent
on the instances context, whereas the latter is less indicative. Our author object possesses both a collection
of key/value pairs and an ordered collection. By adding a toJSON method to all object instances, we can
easily log the key that is provided to each toJSON invocation, as achieved in Listing 5-9.

Chapter 5 ■ Creating JSON

59

Listing 5-9.  Attaching the toJSON Function to the Object Will Cause All JavaScript objects to Possess It

Object.prototype.toJSON=function(key){
 //log the key being analyzed
 console.log(key); //outputs the key for the current context (shown below)
 //log the scope of the method
 console.log(this); //outputs the current context (shown below)
 //return the object as is back to the serializer
 return this;
}
var author = new Object();
 author.name = "Ben";
 author.age = 36;
 author.pets = [
 { name : "Waverly" , age : 3.5 },
 { name : "Westley" , age : 4 }
];
 
 JSON.stringify(author);
 
/* captured output from the above Listing */
//the author object being analyzed
//(key) ""
//(context) Object { name="Ben", age=36, pets=[2], more...} //truncated
//the pets object being analyzed
//(key) pets
//(context) [Object { name="Waverly", age=3.5, toJSON=function()},
  Object { name="Westley", age=4, toJSON=function()}]
//index 0 of array being analyzed
//(key) 0
//(context) Object { name="Waverly", age=3.5, toJSON=function()}
//index 1 of array being analyzed
//(key) 1
//(context) Object { name="Westley", age=4, toJSON=function()}
 
"{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}"
 

Listing 5-9 demonstrates that each object that possesses the toJSON method is supplied with the key
by which it is held. These values are logged in the order in which the properties are enumerated by the
JavaScript engine. The first key that is logged from our toJSON method is that of an empty string. This is
because the stringify implementation regards key/value pairs. As you can see, the immediate logging of
this reveals the author object. With the return of the invoked method, stringify continues onto the next
object it encounters.

Note■■  T he key of the initial value is always that of an empty string.

Chapter 5 ■ Creating JSON

60

The next object the stringify method encounters happens to be that of an array. An array, as a subtype
of Object, inherits and exposes the toJSON method and is, therefore, invoked. The key it is passed is the
identifier pets. Respectively, both objects contained within are invoked and provided the index to which
they are ordered, those keys being 0 and 1.

The toJSON method provides a convenient way to define the necessary logic wherein the default
behavior may fall short. While this is not always ideal, it is often necessary. However, the toJSON method is
not the only means of augmenting the default behavior of the stringify method.

replacer
The second parameter, replacer, is optional, and when supplied, it can augment the default behavior of the
serialization that would otherwise occur. There are two possible forms of argument that can be supplied. As
explained within the ECMA-262 standardization, the optional replacer parameter is either a function that
alters the way objects and arrays are stringified or an array of strings and numbers that acts as a white list for
selecting the object properties that will be stringified.2

replacer Array

Suppose I had the following JavaScript data structure (see Listing 5-10) and decided to serialize it using the
built-in JSON Object and its stringify method. By supplying the author instance as the value into the JSON.
stringify method, I would be provided with the result displayed in Listing 5-10.

Listing 5-10.  Replaced Pets Property with E-mail

var author = new Object();
 author.name="ben";
 author.age=35;
 author.email="iben@spilled-milk.com";
  
 JSON.stringify(author);
 // "{"name":"ben","age":35,"email":"iben@spilled-milk.com"}"
 

As expected, the produced JSON text reflects all of the possessed properties of the author object.
However, suppose that e-mail addresses were not intended to be serialized by our application. We could
easily delete the e-mail property and then pass author through stringify. While that would prevent the
e-mail address from being serialized, this method could prove problematic if our application continued
to require use of the e-mail address. Rather than delete the value from the author object, we could take
advantage of the replacer method.

Were we to supply the replacer parameter with an array whose values outline the properties we desire
stringify to serialize, the JSON text would only capture those key/value pairs. Listing 5-11 white lists the
two properties, name and age, that our application is permitted to serialize.

Listing 5-11.  Supplying a replacer array Can Specify What Keys to Output

//... continuation of Listing 5-10
JSON.stringify(author, ["name","age"]); // "{" name":"ben","age":35"}"
 

2ECMA International, ECMAScript Language Specification, Standard ECMA-262, Edition 5.1,
www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf, June 2011.

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Chapter 5 ■ Creating JSON

61

Providing an ordered list as the replacer argument filters the properties that are output during
serialization. Any identifiers that are not specified within the replacer array will not become a part of the
JSON text. As an additional point, the order of our white-listed properties affects the way in which they
respectively occur in the serialized output. Listings 5-11 and 5-12 vary by the order of the white-listed
properties supplied in the replacer. The results reflect the specified order in each JSON text produced.

Listing 5-12.  The Order of the White-Listed Properties Determines the Order in Which They Are Captured

//... continuation of Listing 5-10
JSON.stringify(author, ["age","name"]); // "{"age":35","name":"ben"}"
 

Listing 5-11 displays name in the JSON text first, whereas in Listing 5-12, name appears last. This has to
do with the fact that our replacer argument is an array, and an array is simply an ordered list. In this case,
the ordered list just so happens to expresses our white-listed properties. The serialization process then
iterates over each white-listed identifier in ascending order for each collection of name/value pairs it may
come across.

White-listed properties mustn’t be provided in string literal form. They can also be represented as a
primitive number. However, any number the method encounters is converted into its string equivalent.
This is due to the fact that keys are always stored as strings behind the scenes. This is demonstrated in
Listing 5-13.

Listing 5-13.  Numbers Used As Keys Are Converted to Strings

var yankeesLineup = new Object();
 yankeesLineup['1'] ="Jacoby Ellsbury";
 yankeesLineup['2'] ="Derek Jeter";
 yankeesLineup['3'] ="Carlos Beltran";
 yankeesLineup['4'] ="Alfonso Soriano";
 //...etc
JSON.stringify(yankeesLineup, [1,2]);
 // "{"1":"Jacoby Ellsbury","2":"Derek Jeter"}" 

Note■■  E ven array indexes are converted into strings behind the scenes.

Tip■■   While numbers are allowed as white-listed values, it will always be best to supply a string representation,
as it will convey meaning to those who may not know that numbers are converted to strings behind the
scenes when used as keys. Furthermore, using numbers as a property identifier is not the best choice for a
meaningful label.

Chapter 5 ■ Creating JSON

62

replacer Function

The alternate form that can be supplied as the replacer is that of a function. Supplying a function to the
replacer property allows the application to insert the necessary logic that determines how objects within
the stringify method are serialized, much like that of the toJSON method. In fact, the replacer function
and the toJSON method are nearly identical, apart from three distinguishable characteristics. The first is that
one is a function and the other is a method. The second is that the replacer function is provided iteratively,
the key for every property encountered. Last, the replacer function is provided the value held by each key.
As you can see from the method definition in Listing 5-14, the replacer function expects to be provided with
two arguments, k and v.

Note■■   Only properties whose values are both owned by the object being traversed, in addition to being
enumerable, are discovered during the iterative process.

Listing 5-14.  Signature of the replacer Function

var replacerFunction = function(k, v);
 

The k argument will always represent the identifier (key) per object the method seeks to encode,
whereas the v parameter represents the value held by said key.

Note■■  I f the replacer method is used in conjunction with an object that possesses a toJSON method, the
value of v will be that of the result provided by the toJSON method.

The context of the toJSON method will always be that of the object for which it’s defined. A method’s
scope is always tied to the object for which it exists. Contrary to methods, a function’s scope is tied to that of
where it was declared. However, within the stringify method, the scope of the replacer function supplied
is continuously set to the context of each object whose key and value are being supplied as arguments.
This means that the implicit this possessed by all functions will always point to the object whose keys are
currently being analyzed within the stringify method.

Let’s revisit our example from Listing 5-9. However, this time, rather than define a toJSON that is
inherited by all objects, we will supply stringify with a replacer function. As we are not concerned with
customizing the default serialization of any values for the purpose of this illustration, Listing 5-15 returns
back to stringify the value, v, it has supplied to us.

Listing 5-15.  Logging All Keys, Values, and Context with the replacer Function

var author = new Object();
 author.name = "Ben";
 author.age = 36;
 author.pets = [
 { name : "Waverly" , age : 3.5 },
 { name : "Westley" , age : 4 }
];
 

Chapter 5 ■ Creating JSON

63

 JSON.stringify(author,
 function(k,v){
 console.log(this);
 console.log(k);
 console.log(v);
 return v;
 });
 
//the initial object wrapper being analyzed
//(context) Object {{...}} //truncated
//(key) (an empty string)
//(value) Object { name="Ben", age=36, pets=[...]} //truncated
//the author object ben property being analyzed
//(context) Object { name="Ben", age=36, pets=[...]} //truncated
//(key) name
//(value) Ben
//the author object age property being analyzed
//(context) Object { name="Ben", age=36, pets=[...]} //truncated
//(key) age
//(value) 36
//the author object pets property being analyzed
//(context) Object { name="Ben", age=36, pets=[...]} //truncated
//(key) pets
//(value) [Object { name="Waverly", age=3.5}, Object { name="Westley", age=4}]
//the pets object 0 index being analyzed
//(context) [Object { name="Waverly", age=3.5}, Object { name="Westley", age=4}]
//(key) 0
//(value) Object { name="Waverly", age=3.5}
//the 0 index name property being analyzed
//(context) Object { name="Waverly", age=3.5}
//(key) name
//(value) Waverly
//the 0 index age property being analyzed
//(context) Object { name="Waverly", age=3.5}
//(key) age
//(value) 3.5
//the pets object 1 index being analyzed
//(context) [Object { name="Waverly", age=3.5}, Object { name="Westley", age=4}]
//(key) 1
//(value) Object { name="Westley", age=4}
//the 1 index name property being analyzed
//(context) Object { name="Westley", age=4}
//(key) name
//(value) Westley
//the 1 index age property being analyzed
//(context) Object { name="Westley", age=4}
//(key) age
//(value) 4
 
//JSON text "{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},{"name":"Westley",
"age":4}]}"
 

Chapter 5 ■ Creating JSON

64

While Listing 5-15 utilizes the same data structure from our toJSON example, in Listing 5-9, you will
most certainly be able to perceive that the results logged in Listing 5-15 are far more plentiful. This is due
to the fact that, unlike toJSON, the replacer function is triggered for each property encountered on every
object.

The benefit of the keys provided to both the replacer function and toJSON is that they offer your
application a means to flag a property whose value requires custom serializing. Listing 5-16 demonstrates
how we can leverage a supplied key to prevent a value or values from being captured in the produced
JSON text.

Listing 5-16.  replacer Function Can Be Used to Provide Custom Serializing

var author = new Object();
 author.name = "Ben";
 author.age = 36;
 author.pets = [
 { name : "Waverly" , age : 3.5 },
 { name : "Westley" , age : 4 }
];
 
var replacer= function(k,v){
 //if the key matches the string 'age'
 if(k==="age"){
 //remove it from the final JSON text
 return undefined;
 } //else
 return v;
 }
JSON.stringify(author,replacer);
➥// "{"name":"Ben","pets":[{"name":"Waverly"},{"name":"Westley"}]}"
 

Listing 5-16 leverages the uniqueness of the age identifier so that it can determine when to remove
it from the final JSON text, by returning the value of undefined. While this is a valid example, it could
have been equally satisfied by the replacer array. The takeaway is that the identifier can be extremely
instrumental in the orchestration of custom serialization.

The return value, much like in the case of toJSON, can be that of any value outlined in the JSON subset.
The serializer will continue to ensure that your value is iteratively analyzed if returned in the form of an
object, or converted into a string and sanitized, if returned as a primitive. Furthermore, the rules of Table 5-1
will always apply to any and all returned values.

space
The third parameter, space, is also optional and allows you to specify the amount of padding that separates
each value from one another within the produced JSON text. This padding provides an added layer of
readability to the produced string.

The argument supplied to the parameter must be that of a whole number equal or greater to 1.
Supplying a number less than 1 will have no effect on the produced JSON text. However, if the number
supplied is 1 or greater, the final representation of the JSON text will display each value indented by the
specified amount of whitespace from the left-hand margin. A margin is established by the inclusion of new
line characters after each of the following tokens: {, }, [, and].

Chapter 5 ■ Creating JSON

65

In other words, new line-control characters are inserted into the produced JSON after each
opening/closing token, for both an array or object. Additionally, a new line character is added after each
separator token. Listing 5-17 contrasts the produced JSON text with and without padding.

Listing 5-17.  JSON Text with Added Padding

var obj={ primitive:"string", array:["a","b"] };
 
JSON.stringify(obj,null,0);
//(no padding)
 // "{"primitive":"string","array":["a","b"]}"
 
JSON.stringify(obj,null,8);
/* (8 spaces of added padding)
"{
 "primitive": "string",
 "array": [
 "a",
 "b"
]
}"
*/
 

The provision of the space parameter will have no effect on a JSON text if it does not possess either
an array or object, regardless of the value specified. Listing 5-18 indicates that eight spaces should be
applied to the produced JSON. However, because it is not in possession of either an object or array, no
padding is applied.

Listing 5-18.  Space Only Works on objects and arrays

var primitive="string";
var JSONtext= JSON.stringify(primitive , null ,8);
console.log(JSONtext);
// ""string""
 

The added padding appended to the final JSON text will have zero impact on its conversion back into
that of a JavaScript object. Additionally, the inclusion of whitespace and new line characters will not add
significant weight that would slow its transmission across the Internet.

Summary
In this chapter, we covered the JSON library, which enables JavaScript structures to become serialized for
storage and data interchange. This was accomplished via downloading the JSON library and referencing the
JSON global object and its stringify method. What you may not know is that even though we downloaded
the JSON library and referenced it within our .html files for this chapter, the odds are you did not require it.

As I mentioned in Chapter 4, JSON is incorporated within the ECMA-262, 5th edition. What this means
is that any browser that aligns with ECMA 5th edition standards or greater possesses the native JSON Object
as the means for both serializing and deserializing JSON. Table 5-2 lists the versions of each browser that
possess the JSON Object.

Chapter 5 ■ Creating JSON

66

In any browser whose version is greater or equal to what is listed, you would be successful in referring
to the native JSON Object. There is absolutely zero harm in incorporating the JSON library as we have, in
addition to working with a browser mentioned in the preceding table. The reason for this is because the
library first checks to see if a JSON Object currently exists before creating one and attaches it to the global
namespace. If one is found to exist when the library is loaded into the script, it does not take any action.
Listing 5-19 demonstrates how if there isn’t already a global JSON Object, one is created.

Listing 5-19.  JSON Object is Instantiated Only if One Does Not Exist

if (typeof JSON !== 'object') {
 JSON = {};
}
 

What this means is that the library will only have an impact on browsers whose versions are below
that of Table 5-2. While it’s becoming increasingly less likely you will continue to cater to browsers before
Internet Explorer 8, some clients continue to require it.

The benefit of having you download the JSON library rather than reference the native JSON Object is
that at any point during our discussion, you possess the ability to open the JSON library and review the code
within, whereas you would not be as fortunate to do so with the alternative, because, being native, it’s built
into the browser. Therefore, there is no code to review.

What is important to remember about this chapter is that much like in the Matrix, knowing the rules
allows you to bend the rules in your favor.

Key Points from This Chapter
Numbers must be finite, or they are treated as •	 null.

A value that is not recognized as a valid JSON value produces the undefined value.•	

A function whose name is •	 not toJSON is ignored.

Properties whose values are undefined are stripped.•	

If the value of an array is that of •	 undefined, it is treated as null.

The primitive •	 null is treated as the string null.

A TypeError Exception is thrown when a structure is cyclic.•	

•	 toJSON and the replacer parameter allow applications to supply necessary logic for
serialization.

Table 5-2.  Minimal Browser Versions That Possess the JSON Object

Browser Version

FireFox 3.5+

Chrome 5+

Safari 4.0.5+

Opera 10.5+

Internet Explorer 8+

Chapter 5 ■ Creating JSON

67

•	 toJSON can be defined on any built-in object and even overridden.

A •	 replacer array identifies the properties that should be serialized.

A •	 replacer function is invoked with every property in the data structure.

•	 toJSON this explicitly refers to the object it’s defined on.

A •	 replacer function’s this implicitly refers to the object that is currently being
analyzed.

A key is either a property possessed by an object or the index of an array.•	

Custom classes are captured as ordinary objects.•	

In the next chapter, you will continue to learn how we can use the JSON Object’s second method, parse,
to convert JSON back into a usable JavaScript value.

69

Chapter 6

Parsing JSON

In the last chapter, I discussed how to convert a JavaScript value into a valid JSON text using JSON.stringify.
In Chapter 4, you learned how JSON utilizes JavaScript’s literal notation as a way to capture the structure of
a JavaScript value. Additionally, you learned in that same chapter that JavaScript values can be created from
their literal forms. The process by which this transformation occurs is due to the parsing component within
the JavaScript engine. This brings us full circle, regarding the serializing and deserializing process.

Parsing is the process of analyzing a string of symbols, either in natural language or in computer
languages, according to the rules of a formal grammar. As the grammar of JSON is a subset of JavaScript, the
analysis of its tokens by the parser occurs indifferently from how the Engine parses source code. Because
of this, the data produced from the analysis of the JSON grammar will be that of objects, arrays, strings, and
numbers. Additionally, the three literals—true, false, and null—are produced as well.

Within our program, we will be able to refer to any of these data structures as we would any other
JavaScript value. In this chapter, you will learn of the manners by which we can convert valid JSON into
usable JavaScript values within our program.

JSON.parse
In our investigation of the JSON Object, I discussed how the JSON Object possesses two methods. On one
hand, there is the stringify method, which produces serialized JSON from a datum. And on the other hand,
there is a method that is the antithesis of stringify. This method is known as parse. In a nutshell,
JSON.parse converts serialized JSON into usable JavaScript values. The method JSON.parse, whose
signature can be observed in Listing 6-1, is available from the json2.js library, in addition to browsers that
adhere to ECMA 5th edition specifications.

Listing 6-1.  Syntax of the JSON.parse Method

JSON.parse(text [, reviver]);
 

Until Internet Explorer 7 becomes a faded memory only to be kept alive as a myth when whispered
around a campfire as a horror story, it will continue to be wise to include the json2.js library into your
projects that work with JSON. Furthermore, json2.js is a fantastic way to gain insight into the inner
workings of the method, short of interpreting ECMA specifications.

As outlined in the preceding, JSON.parse can accept two parameters, text and reviver. The name of
the parameter text is indicative of the value it expects to receive. The parameter reviver is used similarly
to the replacer parameter of stringify, in that it offers the ability for custom logic to be supplied for
necessary parsing that would otherwise not be possible by default. As indicated in the method’s signature,
only the provision of text is required.

Chapter 6 ■ Parsing JSON

70

You will learn about the optional reviver parameter a bit later. First, we will begin an exploration of the
text parameter. The aptly named parameter text implies the JavaScript value, which should be supplied.
Of course, this is a string. However, more specifically, this parameter requires serialized JSON. This is a
rather important aspect, because any invalid argument will automatically result in a parse error, such as that
shown in Listing 6-2.

Listing 6-2.  Invalid JSON Grammar Throws a Syntax Error

var str = JSON.parse("abc123"); //SyntaxError: JSON.parse: unexpected character
 

Listing 6-2 throws an error because it was provided a string literal and not serialized JSON. As you may
recall from Chapter 4, when the sole value of a string value is serialized, its literal form is captured within
an additional pair of quotes. Therefore, "abc123" must be escaped and wrapped with an additional set of
quotation marks, as demonstrated in Listing 6-3.

Listing 6-3.  Valid JSON Grammer Is Successfully Parsed

var str = JSON.parse("\"abc123\""); //valid JSON string value
console.log(str) //abc123;
console.log(typeof str) //string;
 

The JavaScript value of a parsed JSON text is returned to the caller of the method, so that it can be
assigned to an identifier, as demonstrated in Listing 6-3. This allows the result of the transformation to be
referenced later throughout your program.

While the preceding example was supplied with a simple JSON text, it could have been a composite,
such as a collection of key/value pairs or that of an ordered list. When a JSON text represents nested data
structures, the transformed JavaScript value will continue to retain each nested element within a data
structure commonly referred to as a tree. A simple explanation of a data tree can be attributed to a Wikipedia
entry, which defines a tree as a nonlinear data structure that consists of a root node and, potentially, many
levels of additional nodes that form a hierarchy.1

Let’s witness this with a more complex serialized structure. Listing 6-4 revisits our serialized author
object from the previous chapter and renders it into JSON.parse. Using Firebug in conjunction with
console.log, we can easily view the rendered tree structure of our author object.

Listing 6-4.  Composite Structures Create a Data Tree

var JSONtext= '{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},{"name":"Westley",
"age":4}]}';
var author = JSON.parse(JSONtext);
console.log(author);
 
/*Firebug Illustrates the parsed Data Tree of our serialized JSON text below
 age 36
 name "Ben"
▼ pets [Object { name="Waverly", age=3.5 }, Object { name="Westley", age=4 }]
 ► 0 Object { name="Waverly", age=3.5 }
 ► 1 Object { name="Westley", age=4 }
*/
 

1Wikipedia, “Tree (data structure),” http://en.wikipedia.org/wiki/Tree_%28data_structure%29#Terminology,
modified January 2015.

http://en.wikipedia.org/wiki/Tree_%28data_structure%29#Terminology

Chapter 6 ■ Parsing JSON

71

Once a JSON text is converted into that of a data tree, keys, also called members, belonging to any level
of node structure are able to be referenced via the appropriate notion (i.e., dot notation/array notation).
Listing 6-5 references various members existing on the author object.

Listing 6-5.  Members Can Be Accessed with the Appropriate Notation

var JSONtext= '{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},{"name":"Westley",
"age":4}]}';
var author = JSON.parse(JSONtext);
console.log(typeof author) //object;
console.log(author.name) // Ben
console.log(author.pets.length) // 2;
console.log(author.pets[0].name) // Waverly;
 

The magic of JSON.parse is twofold. The first proponent that allows for the transformation of JSON text
into that of a JavaScript value is JSON’s use of literals. As we previously discussed, the literal is how JavaScript
data types can be “literally” typed within source code.

The second aspect is that of the JavaScript interpreter. It is the role of the interpreter to possess
absolute understanding over the JavaScript grammar and determine how to evaluate syntax, declarations,
expressions, and statements. This, of course, includes JavaScript literals. It is here that literals are read,
along with any other provided source code, evaluated by the interpreter of the JavaScript language and
transformed from Unicode characters into JavaScript values. The JavaScript interpreter is safely tucked away
and encapsulated within the browser itself. However, the JavaScript language provides us with a not-so-
secret door to the interpreter, via the global function eval.

eval
The eval function is a property of the global object and accepts an argument in the form of a string.
The string supplied can represent an expression, statement, or both and will be evaluated as JavaScript code
(see Listing 6-6).

Listing 6-6.  eval Evaluates a String As JavaScript Code

eval("alert(\"hello world\")");
 

Albeit a simple example, Listing 6-6 illustrates the use of eval to transform a string into a valid
JavaScript program. In this case, our string represents a statement and is evaluated as a statement. If you
were to run this program, you would see the dialog prompt appear with the text hello world. While this
is a rather innocent program, and one created to be innocuous, you must take great caution with what you
supply to eval, as this may not always be the case. Listing 6-7 reveals that eval will also evaluate expressions.

Listing 6-7.  eval Returns the Result of an Evaluation

var answer = eval("1+5");
console.log(answer) //6;
 

The eval function not only evaluates the string provided, but it can also return the result of an
evaluated expression so that it can be assigned to a variable and referenced by your application. Expressions
needn’t be mere calculations either, as demonstrated in Listing 6-8. If we were to supply eval with a string
referencing an object literal, it, too, would be evaluated as an expression and returned as a JavaScript
instance that corresponds to the represented object literal.

Chapter 6 ■ Parsing JSON

72

Listing 6-8.  object Literals Can Be Evaluated by the eval Function

var array = eval("['Waverly','Westley','Ben']");
console.log(array[1]) //Westley;
 

Because JSON is a subset of JavaScript and possesses its own specification, it is important to always
ensure that the supplied text is indeed a sequence of valid JSON grammar. Otherwise, we could be unaware
of welcoming malicious code into our program. This will become more apparent when we invite JSON text
into our program via Ajax. For this reason, while eval possesses the means to handle the transformation of
JSON into JavaScript, you should never use eval directly. Rather, you should always rely on the either the
JSON2.js library or the built-in native JSON Object to parse your JSON text.

If you were to open the json2.js library and review the code within the parse function, you would find
that the JSON.parse method occurs in four stages.

The first thing the method aims to accomplish, before it supplies the received string to the eval
function, is to ensure that all necessary characters are properly escaped, preventing Unicode characters from
being interpreted as line terminators, causing syntax errors. For example, Listing 6-9 demonstrates that you
cannot evaluate a string possessing a carriage return, as it will be viewed as an unterminated string literal.

Listing 6-9.  String Literals Cannot Possess Line Breaks

var str="this is a sentence with a new line
... here is my new line";
// SyntaxError: unterminated string literal
 
// Similarly
eval("\"this is a sentence with a new line \u000a... here is my new line\"");
// SyntaxError: unterminated string literal
 

However, as stated by EMCA-262, section 7.3, line terminator characters that are preceded by an escape
sequence are now allowed within a string literal token.2 By escaping particular Unicode values, a line break
can be evaluated within a string literal, as demonstrated in Listing 6-10.

Listing 6-10.   String Literals Can Only Possess Line Breaks If They Are Escaped

eval("\"this is a sentence with a new line \\u000a... here is my new line\""); //will succeed
 

The JSON library does not just ensure that Unicode characters are properly escaped before they are
evaluated into JavaScript code. It also works to ensure that JSON grammar is strictly adhered to. Because
JSON is simply text, its grammar can be overlooked, if it is not created via JSON.stringify or a similar
library. Furthermore, because a string can possess any combination of Unicode characters, JavaScript
operators could be easily inserted into a JSON text. If these operators were evaluated, they could be
detrimental to our application, whether or not they were intended to be malicious. Consider an innocent call
that has an impact on our system, as shown in Listing 6-11.

Listing 6-11.  Assignments Can Impact Your Existing JavaScript Values

var foo=123
eval("var foo = \"abc\"");
console.log(foo); // abc
 

2ECMA International, ECMAScript Language Specification, Standard ECMA-262, Edition 5.1, Section 7.3,
www.ecma-international.org/ecma-262/5.1/#sec-7.3, June 2011.

http://www.ecma-international.org/ecma-262/5.1/#sec-7.3

Chapter 6 ■ Parsing JSON

73

Because JavaScript values can easily be overwritten, as demonstrated in Listing 6-11, it is imperative
that only valid JSON text is supplied to eval.

The second stage of the parse method is to ensure the validity of the grammar. With the use of regular
expressions, stage two seeks out tokens that do not properly represent valid JSON grammar. It especially
seeks out JavaScript tokens that could nefariously cause our application harm. Such tokens represent
method invocations, denoted by an open parenthesis (() and close parenthesis ()); object creation,
indicated by the keyword new; and left-handed assignments, indicated by the use of the equal (=) operator,
which could lead to the mutation of existing values. While these are explicitly searched for, if any tokens are
found to be invalid, the text will not be further evaluated. Instead, the parse method will throw a syntax error.

However, should the provided text in fact appear to be a valid JSON, the parser will commence stage
three, which is the provision of the sanitized text to the eval function. It is during stage three that the
captured literals of each JSON value are reconstructed into their original form. Well, at least as close to their
original form as JSON’s grammar allows for. Remember: JSON’s grammar prohibits a variety of JavaScript
values, such as the literal undefined, functions and methods, any nonfinite number, custom objects, and
dates. That said, the parse method offers the ability for us to further analyze the produced JavaScript
values in a fourth and final stage, so that we can control what JavaScript values are returned for use by our
application. If, however, the reviver parameter is not supplied, the produced JavaScript value of the eval
function is returned as is.

The final stage of the parse operation occurs only if we supply an argument to the method, in addition
to the JSON text we seek to be transformed. The benefit of the optional parameter is that it allows us to
provide the necessary logic that determines what JavaScript values are returned to our application, which
otherwise would be impossible to achieve by the default behavior.

reviver
The reviver parameter, unlike the replacer parameter of the stringify method, can only be supplied a
function. As outlined in Listing 6-12, the reviver function will be provided with two arguments, which will
assist our supplied logic in determining how to handle the appropriate JavaScript values for return. The first
parameter, k, represents the key or index of the value being analyzed. Complementarily, the v parameter
represents the value of said key/index.

Listing 6-12.  Signature of reviver Function

var reviver = function(k,v);
 

If a reviver function is supplied, the JavaScript value that is returned from the global eval method
is “walked” over, or traversed, in an iterative manner. This loop will discover each of the current object’s
“own” properties and will continue to traverse any and all nested structures it possesses as values. If a
value is found to be a composite object, such as array or object, each key that object is in possession of will
be iterated over for review. This process continues until all enumerable keys and their values have been
addressed. The order in which the properties are uncovered is not indicative of how they are captured within
the object literals. Instead, the order is determined by the JavaScript engine.

With each property traversed, the scope of the reviver function supplied is continuously set to the
context of each object, whose key and value are supplied as arguments. In other words, each object whose
properties are being supplied as arguments will remain the context of the implicit this within the reviver
function. Last, it will be imperative for our reviver method to return a value for every invocation; otherwise,
the JavaScript value returned will be that of undefined, as shown in Listing 6-13.

Chapter 6 ■ Parsing JSON

74

Listing 6-13.  Members Are Deleted If the Returned Value from reviver Is undefined

var JSONtext='{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},{"name":"Westley",
"age":4}]}';
var reviver= function(k,v){};
var author = JSON.parse(JSONtext,reviver);
console.log(author) //undefined
console.log(typeof author) //undefined
 

If the return value from the reviver function is found to be undefined, the current key for that value
is deleted from the object. Specifying the supplied v value as the return object will have no impact on the
outcome of the object structure. Therefore, if a value does not require any alterations from the default
behavior, just return the supplied value, v, as shown in Listing 6-14.

Listing 6-14.  Returning the Value Supplied to the reviver Function Maintains the Original Value

var JSONtext='{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},{"name":"Westley",
"age":4}]}';
var reviver= function(k,v){ return v };
var author = JSON.parse(JSONtext,reviver);
console.log(author);
/* the result as show in firebug below
 age 36
 name "Ben"
▼ pets [Object { name="Waverly", age=3.5 }, Object { name="Westley", age=4 }]
 ► 0 Object { name="Waverly", age=3.5 }
 ► 1 Object { name="Westley", age=4 }
*/
console.log(typeof author); //object
 

As was stated earlier, a well-defined set of object keys is not only useful for your application to target
appropriate data but can also provide the necessary blueprint to our reviver logic for clues leading to how
and when to alter a provided value. The reviver function can use these labels as the necessary conditions to
further convert the returned values of the eval, in order to arrive at the JavaScript structures we require for
our application’s purposes.

As you should be well aware at this point, JSON grammar does not capture dates as a literal but, instead,
as a string literal in the UTC ISO format. As a string literal, the built-in eval function is unable to handle the
conversion of said string into that of a JavaScript date. However, if we are able to determine that the value
supplied to our reviver function is a string of ISO format, we could instantiate a date, supply it with our
ISO-formatted string, and return a valid JavaScript date back to our application. Consider the example
in Listing 6-15.

Listing 6-15.  With the reviver Function, ISO Date-Formatted Strings Can Be Transformed into date objects

var date= new Date("Jan 1 2015");
var stringifiedData = JSON.stringify(date);
console.log(stringifiedData); // "2015-01-01T05:00:00.000Z"
var dateReviver=function(k,v){
 return new Date(v);
}
var revivedDate = JSON.parse(stringifiedData , dateReviver);
console.log(revivedDate); //Date {Thu Jan 01 2015 00:00:00 GMT-0500 (EST)}
 

Chapter 6 ■ Parsing JSON

75

Because the ISO date format is recognized as a standard, JavaScript dates can be initiated with the
provision of an ISO-formatted string as an argument. Listing 6-15 shows a program that begins with a known
JavaScript date set to January 1, 2015. Upon its conversion to a JSON text, our date is transformed into a
string made up of the ISO 8601 grammar. By supplying a reviver function, which possesses the necessary
logic, JSON.parse is able to return a date to our application.

For purely illustrative purposes, Listing 6-15 does not have to determine if the value supplied is in fact
an ISO-formatted string. This is simply because we know the value being supplied is solely that. However,
it will almost always be necessary for a reviver function to possess the necessary conditional logic that
controls how and when to treat each supplied value.

That said, we could test any string values supplied to our reviver function against the ISO 8601
grammar. If the string is determined to be a successful match, it can be distinguished from an ordinary string
and thus transformed into a date. Consider the example in Listing 6-16.

Listing 6-16.  RegExp Can Match ISO-Formatted Strings

var book={};
 book.title = "Beginning JSON"
 book.publishDate= new Date("Jan 1 2015");
 book.publisher= "Apress";
 book.topic="JSON Data Interchange Format"
 
var stringifiedData = JSON.stringify(book);
console.log(stringifiedData);
// ["value held by index 0","2015-01-01T05:00:00.000Z","value held by index 2","value held
by index 3"]
 
var dateReviver=function(k,v){
 var ISOregExp=/^([\+-]?\d{4}(?!\d{2}\b))((-?)((0[1-9]|1[0-2])(\3([12]\d|0[1-
9]|3[01]))?|W([0-4]\d|5[0-2])(-?[1-7])?|(00[1-9]|0[1-9]\d|[12]\d{2}|3([0-5]\d|6[1-6])))
([T\s]((([01]\d|2[0-3])((:?)[0-5]\d)?|24\:?00)([\.,]\d+(?!:))?)?(\17[0-5]\d([\.,]
\d+)?)?([zZ]|([\+-])([01]\d|2[0-3]):?([0-5]\d)?)?)?)?$/;
 if(typeof v==="string"){
 if(ISOregExp.test(v)){
 return new Date(v);
 }
 }
 return v;
}
var revivedValues = JSON.parse(stringifiedData , dateReviver);
console.log(revivedValues);
/* the result as show in firebug below
▼ publishDate Date {Thu Jan 01 2015 00:00:00 GMT-0500 (EST)} ,
 publisher "Apress",
 title "Beginning JSON"
 topic "JSON Data Interchange Format"
*/
 

In the preceding example, our application parses a composite structure, which is simply an array.
The value of each key is in the form of a string, one of which, however, represents a date. Within the reviver
function, we first determine if each value supplied is that of a string, via the operator typeof. If the value
is determined to be of the string type, it is further compared against the ISO grammar by way of a regular
expression. The variable ISOregExp references the pattern that matches a possible ISO-formatted string.

Chapter 6 ■ Parsing JSON

76

If the pattern matches the value supplied, we know it is a string representation of a date, and, therefore,
we can transform our string into a date. While the preceding example produces the desired effect, a regular
expression may not prove most efficient in determining which strings should be converted and which
should not.

This is where we can rely on a well-defined identifier. The k value, when supplied as a clearly defined
label, as shown in Listing 6-17, can be incredibly useful for coordinating the return of the desired object.

Listing 6-17.  Well-Defined Label Identifiers Can Be Used to Establish Which objects Require Added Revival

var book={};
 book.title = "Beginning JSON"
 book.publishDate= new Date("Jan 1 2015");
 book.publisher= "Apress";
 book.topic="JSON Data Interchange Format"
  
var bookAsJSONtext = JSON.stringify(book);
console.log(bookAsJSONtext);
// "{"title":"Beginning JSON",
 "publishDate":"2015-01-01T05:00:00.000Z",
 "publisher":"Apress",
 "topic":"JSON Data Interchange Format"}"
 
var reviver = function(k , v){
 console.log(k);
 
/* logged keys as they were supplied to the reviver function */
// title
// publisher
// date
// publishedInfo
// topic
//(an empty string)
 
 if(k ==="publishDate"){
 return new Date(v);
 }
 return v;
}
 
var parsedJSON = JSON.parse(bookAsJSONtext , reviver);
console.log(parsedJSON);
 
/* the result as show in firebug below
▼ publishDate Date {Thu Jan 01 2015 00:00:00 GMT-0500 (EST)} ,
 publisher "Apress",
 title "Beginning JSON"
 topic "JSON Data Interchange Format"
*/
 

Listing 6-17 achieves the same results as Listing 6-16; however, it does not rely on a regular expression
to seek out ISO-formatted dates. Instead, the reviver logic is programmed to revive only strings whose key
explicitly matches publishDate.

Chapter 6 ■ Parsing JSON

77

Not only do labels offer more possibility when determining whether the value should or should not be
converted, their use is also more expedient than the former method. Depending on the browser, the speeds
can range from 29% to 49% slower when the determining factor is based on RegExp. The results can be
viewed for yourself in the performance test available at http://jsperf.com/regexp-vs-label.

It was briefly mentioned in Chapter 5 that custom classes, when serialized, are captured
indistinguishably from the built-in objects of JavaScript. While this is indeed a hindrance, it is not impossible
to transform your object into a custom object, by way of the reviver function.

Listing 6-18 makes use of a custom data type labeled Person, which possesses three properties: name,
age, and gender. Additionally, our Person data type possesses three methods to read those properties. An
instance of Person is instantiated using the new keyword and assigned to the variable p. Once assigned to p,
the three properties are supplied with valid values. Using the built-in instanceof operator, we determine
whether our instance, p, is of the Person data type, which we soon learn it is. However, once we serialize our
p instance, and parse it back into that of a JavaScript object, we soon discover via instanceof that our
p instance no longer possesses the Person data type.

Listing 6-18.  Custom Classes Are Serialized As an Ordinary object

function Person(){
 this.name;
 this.age;
 this.gender;
}
Person.prototype.getName=function(){
 return this.name;
};
Person.prototype.getAge=function(){
 return this.age;
};
Person.prototype.getGender=function(){
 return this.gender;
};
 
var p=new Person();
 p.name="ben";
 p.age="36";
 p.gender="male";
 
console.log(p instanceof Person); // true
var serializedPerson=JSON.stringify(p);
 
var parsedJSON = JSON.parse(serializedPerson);
console.log(parsedJSON instanceof Person); // false;
 

Because the reviver function is invoked after a JSON text is converted back into JavaScript form, the
reviver can be used for JavaScript alterations. This means that you can use it as a prepping station for the
final object to be returned. What this means for us is that, using the reviver function, we can cleverly apply
inheritance back to objects that we know are intended to be of a distinct data type. Let’s revisit the preceding
code in Listing 6-19, only this time, with the knowledge that our parsed object is intended to become a Person.

http://jsperf.com/regexp-vs-label

Chapter 6 ■ Parsing JSON

78

Listing 6-19.  Reviving an object’s Custom Data Type with the reviver Function

function Person(){
 this.name;
 this.age;
 this.gender;
};
 
Person.prototype.getName=function(){
 return this.name;
};
Person.prototype.getAge=function(){
 return this.age;
};
Person.prototype.getGender=function(){
 return this.gender;
};
//instantiate new Person
var p=new Person();
 p.name="ben";
 p.age="36";
 p.gender="male";
 
//test that p possesses the Person Data Type
console.log(p instanceof Person); // true
 
var serializedPerson=JSON.stringify(p);
 
var reviver = function(k,v){
// if the key is an empty string we know its our top level object
 if(k===""){
 //set object’s inheritance chain to that of a Person instance
 v.__proto__ = new Person();
 }
 return v;
}
 
var parsedJSON = JSON.parse(serializedPerson , reviver);
 
//test that parsedJSON possesses the Person Data Type
console.log(parsedJSON instanceof Person); // true
console.log(parsedJSON.getName()); // "Ben"
 

The __proto__ property used in the preceding example forges the hierarchical relationship between
two objects and informs JavaScript where to further look for properties when local values are unable to be
found. The __proto__ was originally implemented by Mozilla and has slowly become adopted by other
modern browsers. Currently, it is only available in Internet Explorer version 11 and, therefore, shouldn’t
be used in daily applications. This demonstration is intended for illustrative purposes, to demonstrate
succinctly how the reviver function offers you the ability to be as clever as you wish, in order to get the
parsed values to conform to your application’s requirements.

Chapter 6 ■ Parsing JSON

79

Summary
JSON.parse is the available mechanism for converting JSON text into a JavaScript value. As part of the JSON
global object, it is available in modern browsers as well as older browsers, by way of including the json2.js
library into your application. In order to convert the literals captured, json2.js relies on the built-in global
eval function to access the JavaScript interpreter. While you learned that using the eval function is highly
insecure, the JSON Object seeks out non-matching patterns of the JSON grammar throughout the supplied
text, which minimizes the risk of inviting possibly malicious code into your application. If the parse method
uncovers any tokens that seek to instantiate, mutate, or operate, a parse error is thrown. In addition, the
parse method is exited, preventing the JSON text from being supplied to the eval function.

If the supplied text to the parse method is deemed suitable for eval, the captured literals will be
interpreted by the engine and transformed into JavaScript values. However, not all objects, such as dates or
custom classes, can be transformed natively. Therefore, parse can take an optional function that can be used
to manually alter JavaScript values, as required by your application.

When you design the replacer, toJSON, and reviver functions, using clearly defined label identifiers
will allow your application the ability to better orchestrate the revival of serialized data.

Key Points from This Chapter
•	 JSON.parse throws a parse error if the supplied JSON text is not valid JSON

grammar.

•	 parse occurs in four stages.

•	 eval is an insecure function.

Supply only valid JSON to •	 eval.

A •	 reviver function can return any valid JavaScript value.

If the •	 reviver function returns the argument supplied for parameter v, the existing
member remains unchanged.

If •	 reviver returns undefined as the new value for a member, said member is deleted.

•	 reviver manipulates JavaScript values, not JSON grammar.

81

Chapter 7

Persisting JSON: I

In Chapter 5, you learned how JSON.stringify captures the data possessed by an identified JavaScript
value. This occurs by reverse engineering the specified target into its literal form, in accordance with the
JSON grammar, thus capturing the current state of a model for a particular application as JSON text. You
further learned that JSON.parse taps into the innate ability of the JavaScript engine to “parse” the literals that
make up a valid JSON text. This revives the state from a previous model for use within the existing session.

To illustrate how to use JSON.parse, each example in Chapter 6 was preceded by the stringify
method, in order to provide something to be parsed. Furthermore, this was meant to illustrate the lifecycle of
how one method gives rise to the other.

While this is sufficient for the purposes of a demonstration, it will be rare to parse data immediately
after it has been serialized by our application. This would result in a very linear and limited use case. These
two methods really shine, however, when they are paired with data persistence. It is the persistence of data
that enables both methods, stringify and parse, to be used independently of each other. This offers an
application many more use-case scenarios. This contrast is illustrated in Figure 7-1.

Figure 7-1.  Contrast between use-case scenarios

Computer science defines the persistence of data as a state that continues to exist after the process from
which it was created.1 Much like the phrase, “you can’t step in the same spot of a moving river twice,” the
process that serializes data will cease to exist the moment the JSON text is produced and the function that
ran the process is exited. Therefore, in order to utilize the produced JSON beyond the given process that
created it, it must be stored for later retrieval.

1Wikipedia, “Persistence (computer science),” http://en.wikipedia.org/wiki/Persistence_%28computer_science%29,
2014.

http://en.wikipedia.org/wiki/Persistence_%28computer_science%29

Chapter 7 ■ Persisting JSON: I

82

Believe it or not, in the examples in Chapter 5, we were using a slight form of data persistence,
according to the aforementioned definition. When the stringify method exited, the produced JSON
returned by each example was able to continue to be referenced by the application. This is because we had
assigned it as the value to a variable, which was often labeled JSONtext. Therefore, we managed to persist
JSON by definition. However, if we were to navigate away from the application at any point in the course
of running the Chapter 5 examples within a browser, the variable JSONtext would cease to persist, and the
JSON it was assigned would be lost as well.

Because the Internet was founded atop a request-and-response protocol, each request made of a
server, regardless of whether it’s for .html, .jpg, .js, etc., occurs without consideration of any previous
or subsequent requests by the same visitor. This is even if requests made are to the same domain. What
is returned from the server is simply the fulfillment of the resource requested. Over the years, many a
developer has needed to be able to string together the isolated requests of a common server, in order to
facilitate things such as shopping carts for e-commerce. One of the technologies that was forged from this
requirement brought forth a technique that we will leverage in order to achieve the persistence of JSON.
That technology is the HTTP cookie.

HTTP Cookie
As was previously mentioned, the HTTP/1.1 protocol is incapable of persisting state; therefore, it becomes
the duty of the user-agent to manage this undertaking. The HTTP cookie, or cookie for short, was created as
a means to string together the actions taken by the user per “isolated” request and provide a convenient way
to persist the state of one page into that of another. The cookie is simply a chunk of data that the browser has
been notified to retain. Furthermore, the browser will have to supply, per subsequent request, the retained
cookie to the server for the domain that set it, thereby providing state to a stateless protocol.

The cookie can be utilized on the client side of an application with JavaScript. Additionally, it is
available to the server, supplied within the header of each request made by the browser. The header can be
parsed for any cookies and made available to server-side code. Cookies provide both front-end and back-end
technologies the ability to collaborate and reflect the captured state, in order to properly handle each page
view or request accordingly. The ability to continue to progress the state from one page to another allows
each action to no longer be isolated and, instead, occur within the entirety of the user’s interaction with a
web site.2

Like JSON, cookies possess a specification and protocol all their own. By understanding its syntax,
we can tap into the persistence of the HTTP cookie and, by extension, persist JSON for later use with an
application. The great news is that HTTP cookies are extremely simple, in addition to being recognized by all
major browsers dating back to Internet Explorer 3.

Syntax
At its most atomic unit, the cookie is simply a string of ASCII encoded characters composed of one or more
attribute-value pairs, separated by a semicolon (;) token. Listing 7-1 outlines the syntax for the HTTP cookie.

Note■■  AS CII is short for “American Standard Code for Information Interchange” and is composed of
128 characters, which are letters from the English alphabet, digits 0–9, basic punctuation, and a few
control characters.

2Wikipedia, “Stateless protocol,” http://en.wikipedia.org/wiki/Stateless_protocol, 2014.

http://en.wikipedia.org/wiki/Stateless_protocol

Chapter 7 ■ Persisting JSON: I

83

Listing 7-1.  Set-Cookie Syntax as Defined by RFC 6265

set-cookie = "Set-Cookie:" cookies
cookies = 1#cookie
cookie = NAME "=" VALUE *(";" cookie-av)
NAME = attr
VALUE = value
cookie-av = "expires" "=" value
 | "max-age" "=" value
 | "domain" "=" value
 | "path" "=" value
 | "secure"
 | "httponly"
 

Listing 7-1 uses the grammar defined by the HTTP/1.1 specification to outline the syntax of the HTTP
cookie. In order to understand the syntax, I would like to direct your focus to the line cookie = NAME "="
VALUE *(";" cookie-av). This line outlines the entire syntax of the cookie. We will dissect this line in two
passes. The first half will regard only cookie = NAME "=" VALUE. This portion of the syntax outlines the
following: “Set some cookie specified by the indicated NAME, to possess the assigned VALUE.” A cookie, in
short, is nothing more than a key/value pair.

As with all key/value pairs, it will be the purpose of the “key” represented by NAME to both identify as
well as provide the means to access an assigned value. VALUE, on the other hand, represents the data or
state that’s intended to be persisted for the application. To ensure a cookie is stored uniformly among all
browsers, it will be imperative that both NAME and VALUE be made up of valid ASCII characters, such as those
shown in Listing 7-2.

Listing 7-2.  Key/Value Pairs Intended to Be Persisted As a Cookie Must Both Be Valid ASCII Characters

"greetings=Hello World!";
"greetingJSON=[\"Hello World!\"]"; 

Note■■  S afari as well as Internet Explorer do not correctly handle cookies that contain non-ASCII characters.

While the tokens that make up JSON text are valid ASCII characters, the values held within are not
limited to ASCII but, rather, UTF-8. Therefore, if the characters that are represented in your application fall
outside of the ASCII range, it will be necessary to encode your UTF-8 characters with Base64 encoding.
Two libraries you can use for this purpose are https://jsbase64.codeplex.com/releases/view/89265 and
https://code.google.com/p/javascriptbase64/. While both utilize different namespaces, Base64 and
B64, they both rely on the same methods to encode and decode. Either of these libraries will be capable of
converting your non-ASCII values into ASCII-encoded values. Listing 7-3 demonstrates the use of one of the
aforementioned Base64 libraries by converting the characters of our string of UTF-8 characters into those of
ASCII, in order to be compliant with the HTTP cookie syntax.

Listing 7-3.  UTF-8 Characters Being Converted into ASCII Using a Base64 Library

var unicodeValue = "привет мир!"; // Hello World! in Russian;
var asciiString = Base64.encode(JSON.stringify(unicodeValue));
console.log(asciiString); // "ItC/0YDQuNCy0LXRgiDQvNC40YAhIg=="
var decodedValue = Base64.decode(asciiString);
console.log(decodedValue); // "привет мир!"
 

https://jsbase64.codeplex.com/releases/view/89265
https://code.google.com/p/javascriptbase64/

Chapter 7 ■ Persisting JSON: I

84

The second half of the line in review, *(";" cookie-av), explains that our cookie can be supplied a
sequence of any of the six optional cookie attribute-value pairs, as required by an application. The token that
must separate them from their successor in the string is the semicolon (;). While it is not necessary to supply
whitespace characters between the semicolon and the attribute value, it will aid to keep your code clean and
legible. The possible cookie-av values are listed in Listing 7-1 as "expires", "max-age", "domain", "path",
"secure", and "httponly". Each attribute value defines a specific scope to the defined cookie.

expires
The expires attribute is quite literally the “key,” pun intended, to the duration over the persistence of the
specified cookie. Should the expires attribute be specified, its value counterpart will inform the browser of
the date and time it is no longer necessary to further store said cookie. The value supplied is required to be
in UTC Greenwich Mean Time format. Being that UTC GMT is a standard, we can achieve this value with
ease, by way of the built-in methods of the Date object as demonstrated in Listing 7-4.

Listing 7-4.  toUTCString Produces a UTC Greenwich Mean Time Value

var date= new Date("Jan 1 2015 12:00 AM");
var UTCdate= date.toUTCString() ;
console.log(UTCdate); // "Thu, 01 Jan 2015 06:00:00 GMT"
 

Listing 7-4 initiates a date instance with the supplied string of January 1, 2015. Furthermore, the time
is set to exactly 12 AM. Utilizing date’s built-in method, toUTCString, the date and time it represents is
translated into its GMT equivalent and then returned to the caller of the method. When we log that value, we
can clearly note that the date has been converted, as it is signified by the appended abbreviation GMT. If you
were to run the code from Listing 7-4, you might receive a different value. That is because the JavaScript Date
Object correlates to your location and time zone. Nevertheless, the date and time that you specify will be
equal to the difference in time zone between your location and Greenwich.

If we were to assign the date from Listing 7-4 to our author cookie in Listing 7-5, the cookie would be
available until exactly Thursday, 12:00 AM January 1, 2015, or Thursday, 01 Jan 2015 06:00:00 Greenwich
Mean Time.

Listing 7-5.  Appending Date to the Key/Value Pair to Provide an Expiration

var date= new Date("Jan 1 2015 12:00 AM");
"author=test; expires="+ date.toUTCString();
 

If the value supplied to the expires attribute occurs in the past, the cookie is immediately purged
from memory. On the other hand, if the expires attribute is omitted, then the cookie will be discarded the
moment the session has ended. Essentially, the browser would continue to persist the cookie only as long as
the session remained open.

It used to be that the moment you exited the browser, all sessions were immediately closed. Today,
however, it’s worth noting that sessions may persist well after the browser is exited. This is due to the specific
features that vendors have incorporated into their browsers, such as restoring previously viewed pages/tabs
if the browser crashes. Additionally, they provide us the ability to restore pages/tabs from History. Therefore,
session cookies may continue to persist in memory longer than expected.

As we will be looking to persist our JSON indefinitely, we will almost always supply an expires attribute
value to our cookies.

Chapter 7 ■ Persisting JSON: I

85

max-age
The max-age attribute, like the expires attribute, specifies how long a cookie should persist. The difference
between the two is that max-age specifies the life span of the cookie in seconds. While the max-age
attribute is defined by the original specification and continues to exist today, it is not an attribute that is
acknowledged by Internet Explorer 6 through 8. That said, it will be wise to favor the expires attribute and
ignore max-age.

domain
The domain attribute explicitly defines the domain(s) to which the cookie is to be made available. However,
the domain specified must somehow possess a relationship to the origin setting the cookie. In other words,
if www.sandboxed.guru is setting a cookie, it cannot supply apress.com as the domain. This would prove to
be a huge security concern, if it were possible to set cookies for other domains.

It is the responsibility of the browser to make available, to both JavaScript and the server, all cookies
whose supplied domain attribute matches that of the domain of the visited URL. To ensure that the domains
match, the browser will compare the two. This comparison can be illustrated with a regular expression
(see Listing 7-6).

Listing 7-6.  Using a Regular Expression to Demonstrate Matching Origins

var regExp=(/www.sandboxed.guru$/i).test('www.sandboxed.guru'); //true
 

Listing 7-6 defines a pattern that matches against the tail end of a host domain. The pattern
www.sandboxed.guru represents the cookie’s assigned domain attribute. The $ token further specifies that the
pattern explicitly ends with .guru. This is necessary to prevent the cookies of sandboxed.guru from being
available to another domain that might just so happen to possess our origin within its subdomain. This
would be quite the security risk. Note the difference between the URLs sandboxed.guru and guru.com. They
are two entirely different domains. Now consider what might occur if guru.com were to use the following
subdomain: sandboxed.guru.com (see Listing 7-7).

Listing 7-7.  Matching URLs are Determined Through the Top Level Domain (.com)

(/sandboxed.guru/i).test('sandboxed.guru.com'); //true
(/sandboxed.guru$/i).test('sandboxed.guru.com'); //false
 

Listing 7-7 demonstrates that without specifying the $ to force a tail-end match, two completely
different properties could potentially be considered a match.

Note■■  T o prevent possible matches that could exist within subdomains, browsers explicitly check that a
match must end with the appropriate top-level domain.

The i simply informs the pattern to remain case-insensitive during the match. If the domain attribute
and the server domain are determined to be a match, then for each HTTP request, any and all cookies will be
sent to the server and made available to the JavaScript application of each page.

The domain attribute is optional, but for security purposes, one must be set. By default, the domain
attribute will be set to the absolute origin that the cookie is set from. This can be slightly limiting if you have
subdomains that require visibility of these cookies, or vice versa. Consider a domain attribute that is defaulted

http://www.sandboxed.guru/
http://apress.com/
http://www.sandboxed.guru/
http://guru.com/
http://guru.com/
http://sandboxed.guru.com/

Chapter 7 ■ Persisting JSON: I

86

to www.sandboxed.guru for a particular cookie. That cookie will never be available to sandboxed.guru because
of the preceding www. Similarly, if the domain attribute is defaulted to sandboxed.guru, that cookie will not be
visible to json.sandboxed.guru.

However, by assigning the domain attribute value, we have the ability to broaden the scope of our
cookies. For instance, if we specify a domain attribute as the top-level domain, preceded by the . token
(.sandboxed.guru), the domain attribute would match not only a top-level domain (sandboxed.guru) but
any and all subdomains as well (json.sandboxed.guru). This is demonstrated in Table 7-1.

Table 7-1.  Illustrating Which Origins Are Considered Matches Against the Value
Possessed by the domain Attribute

domain Attribute Origin Match

www.sandboxed.guru sandboxed.guru false

sandboxed.guru www.sandboxed.guru false

.sandboxed.guru sandboxed.guru true

.sandboxed.guru www.sandboxed.guru true

.sandboxed.guru json.sandboxed.guru true

It is not necessary to apply the . token. As long as we explicitly specify a hostname for the domain
attribute, the . token will automatically be prepended to all non-fully-qualified domains by the user agent.

path
While the domain attribute specifies to which domain(s) a set cookie is scoped, the path attribute further
enforces to which subdirectories a cookie is available. If a path attribute is not explicitly specified, the value
is defaulted to the current directory that set the cookie. Furthermore, every subdirectory of the defaulted
directory will be provided access. However, explicitly defining the path attribute allows us to narrow or
broaden the scope of the cookie to that of a particular directory and all of its subdirectories. Listing 7-8
demonstrates how cookies can further scope a cookie to that of a particular URL for any domain that is
deemed a potential match.

Listing 7-8.  Demonstrating Path Scoping with Cookies Set from
http://json.sandboxed.guru/chapter7/ficticious.html

"cookieDefault=test; domain=.sandboxed.guru";
 http://json.sandboxed.guru/chapter7/ //cookieDefault is provided for this request
 http://json.sandboxed.guru/chapter7/css/ //cookieDefault is provided for this request
 https://www.sandboxed.guru/ //cookieDefault is NOT provided for this request
 http://json.sandboxed.guru/chapter3/js/ //cookieDefault is NOT provided for this request
 https://json.sandboxed.guru/chapter3/img/ //cookieDefault is NOT provided for this request
 
"cookieA=test; domain=.sandboxed.guru; path=/";
 http://json.sandboxed.guru/chapter7/ //cookieA is provided for this request
 https://www.sandboxed.guru/ //cookieA is provided for this request
 http://json.sandboxed.guru/chapter3/js/ //cookieA is provided for this request
 https://json.sandboxed.guru/chapter3/img/ //cookieA is provided for this request
 

http://www.sandboxed.guru/
www.sandboxed.guru
www.sandboxed.guru
www.sandboxed.guru
http://json.sandboxed.guru/chapter7/ficticious.html

Chapter 7 ■ Persisting JSON: I

87

"cookieB=test; domain=.sandboxed.guru; path=chapter3/js/";
 http://json.sandboxed.guru/chapter7/ //cookieB is NOT provided for this request
 http://json.sandboxed.guru/ //cookieB is NOT provided for this request
 https://json.sandboxed.guru/chapter3/js/ //cookieB is provided for this request
 https://json.sandboxed.guru/chapter3/ //cookieB is NOT provided for this request 

Note■■   Cookies that are scoped to a particular domain and/or path are able to be used indistinguishably by
HTTP and HTTPS protocols.

secure
The secure attribute is slightly misleading, as it does not provide security. Rather, this attribute, which
does not require being assigned a variable, informs the browser to send the cookie to the server only if
the connection over which it is to be sent is a secure connection, such as HTTPS. Transmitting data over a
secure transport reduces the ability for any network hijackers to view the contents being transported. This
helps to ensure that the cookie remains concealed from possible snoopers. While this flag ensures that a
cookie’s value remains hidden from an attacker, it does not prevent the cookie from being overwritten or
even deleted by an attacker.

httponly
The httponly attribute, when specified, limits the availability of the cookie to the server and the server
alone. This means the cookie will not be available to the client side, thereby preventing client-side JavaScript
from referencing, deleting, or updating the cookie. This httponly flag, when used in conjunction with the
secure flag, helps to reduce cross-site scripting from exploiting the cookie. As this chapter is focused on the
persistence of JSON data from a client-side perspective, we will be avoiding this attribute.

Note■■   Cookies set with the httponly flag can only be set by the server.

When specifying any of the preceding attribute-value pairs, there is no particular order in which they
must be specified. Furthermore, each is case-insensitive and can appear in lowercase or uppercase form.

document.cookie
A cookie can be created by a server, server-side code, HTML meta tags, and even JavaScript. In this chapter,
we will solely be focused on the creation and the retrieval of cookies by way of the JavaScript language.
Up until now, we have been equating a particular syntax of string as the representative for a cookie.
The reality is that it is not a cookie until we supply it to our document.

The Document Object Model, or DOM for short, can be referenced via the document object in
JavaScript. This document object possesses a variety of interfaces that allows us to manipulate HTML
elements and more. One interface on which we will be focusing is the appropriately named document.
cookie interface. The cookie attribute of the document object is responsible for supplying the browser with

Chapter 7 ■ Persisting JSON: I

88

a provided string of name/value pairs, enabling the persistence of said key/value pairs. Additionally, this
property acts as the interface for their retrieval from the document. Listing 7-9 uses document.cookie to
create our first cookie.

Listing 7-9.  Supplying Our First Key/Value Pair to document.cookie in Order to Become a Cookie

document.cookie= "ourFirstCookie=abc123";
 

While it appears in Listing 7-9 that we are assigning a string to the cookie property, in actuality we are
providing a string as the argument to a setter method. A setter method is a method that is used to control
changes to a variable.3 Behind the scenes, the document receives the value being assigned and treats it as an
argument to an internal method, which immediately sets the assignment as the value to be stored within an
internal collection. This collection, which has come to be referred to as the cookie jar, is stored in a file that
is available only to the browser that stores it. Because each browser sets cookies within its cookie jar, cookies
are only available to the browser that is used at the time they are set.

As we are not truly assigning a value to the document.cookie property, we can add any number of
name/value pairs to document.cookie, without fear that we will overwrite what we had previously set as a
cookie, as seen in Listing 7-10.

Listing 7-10.  Subsequent Assignments to document.cookie

document.cookie= "ourFirstCookie=abc123";
document.cookie= "ourSecondCookie=doeRayMe";
document.cookie= "ourThirdCookie=faSoLaTeaDoe";
 

As I stated earlier, the name/value pairs are not being overridden with each new assignment.
All name/value pairs assigned to document.cookie are not held as the value of cookie but, rather, stored
safely within the cookie jar. The cookie jar is simply a resource located on the file system of the user’s
computer, which is why cookies have the ability to persist.

In order to view all cookies on your machine, follow the outlined steps for the modern browser of
your choice.

For Chrome:

	 1.	 Open Chrome.

	 2.	 Navigate your browser to chrome://settings/cookies.

	 3.	 Click any site to view all cookies for that particular site.

For Firefox:

	 1.	 Open Firefox.

	 2.	 From the Firefox menu, select Preferences.

	 3.	 Click the Privacy tab.

	 4.	 Click the linked words “remove individual cookies.”

	 5.	 Click any site to view all cookies for that particular site.

3Wikipedia, “Mutator method,” http://en.wikipedia.org/wiki/Mutator_method, 2014.

http://en.wikipedia.org/wiki/Mutator_method

Chapter 7 ■ Persisting JSON: I

89

For Safari:

	 1.	 From the Safari menu, select Preferences.

	 2.	 In the preferences window, select Privacy.

	 3.	 In the Privacy window, click Details. (Unfortunately, with Safari, you can only see
what sites have set cookies. You won’t be able to view full details.)

For Internet Explorer:

	 1.	 Open Internet Explorer.

	 2.	 From the Tools menu (the gear icon), select Internet Options.

	 3.	 On the General tab, within the section “Browser History,” select Settings.

	 4.	 From the Settings panel, click “View objects” or “View Files.”

If you only care to view the cookies that are available to the sites you are currently viewing, this can
easily be achieved by way of the developer console. Utilizing the developer’s tools provided by a modern
browser, we can easily witness the cookies we have created thus far. Figure 7-2 displays the stored cookies of
Listing 7-10, by way of the developer tools provided by Chrome Version 35.0.1916.114.

Figure 7-2.  Chrome’s Developer Tools Console displays the cookies for the currently visited URL
json.sandboxed.guru/chapter7/

As you can note from the Name column in Figure 7-2, each cookie has, in fact, been stored rather than
overwritten. Furthermore, you can see what values are set for each optional cookie-av, as follows:
 
Domain: json.sandboxed.guru
Path: /chapter7
Expires: Session
 

As you may recall, Listing 7-10 merely supplied the name/value pair and did not append any optional
cookie attribute values. However, the domain, path, and expires attributes are required of the cookie.
Therefore, the values supplied, as shown in Figure 7-2, have been set to their defaulted values.

As discussed earlier, both the domain and path attribute values are defaulted to the respective aspects
of the URL from which a cookie is set. The domain attribute, which is set to json.sandboxed.guru, clearly
identifies the domain name from which the application ran. Furthermore, the path set to /chapter7 is a
reflection of the directory from which the resource set the preceding cookies.

Note■■  T he preceding results reflect the cookies set from the following URL:
 http://json.sandboxed.guru/chapter7/7-7.html.

http://json.sandboxed.guru/chapter7/7-7.html

Chapter 7 ■ Persisting JSON: I

90

Last, the expires attribute is defaulted to a session, which means that the moment the session ends, the
browser is no longer required to store the cookie further. In order to provide a level of control over the cookie
attribute values, we must append them as required by the syntax of the HTTP cookie. This can be done easily
by devising a function to handle this, as portrayed in Listing 7-11.

Listing 7-11.  The setCookie Function Simplifies the Creation of HTTP Cookie Values

function setCookie(name, value, expires, path, domain, secure, httpOnly) {
 document.cookie = name + "=" + value
 //if expires is not null append the specified GMT date
 + ((expires)? "; expires=" + expires.toUTCString() : "")
 //if path is not null append the specified path
 + ((path) ? "; path=" + path : "")
 //if domain is not null append the specified domain
 + ((domain) ? "; domain=" + domain : "")
 //if secure is not null provide the secure Flag to the cookie
 + ((secure) ? "; secure" : "");
};
 

The function setCookie within Listing 7-11 provides us with a simple means to create a cookie, by
supplying the necessary arguments for each cookie-av parameter. For each value that you wish to override,
the function setCookie may be supplied with the appropriate string value. That is, except for the expires
attribute, which requires a date. For any optional cookie attribute value that you wish to omit, you can
simply provide the null primitive. This is demonstrated in Listing 7-12.

Each line within the setCookie function relies on what is known as a tertiary operator to determine
whether an empty string or a supplied value is to be appended to the cookie. A tertiary operator, which
is simply a condensed if . . . else statement determines if a parameter has been provided an argument to
append. If the parameter has not been supplied an argument, an empty string is assigned as the value for the
specified cookie attribute.

Note■■  I t is the responsibility of the user-agent to set values for any attribute value that is not valid. Attributes
that possess empty strings will be replaced with a default value.

Listing 7-12.  The Function setCookie Has Been Created to Help in the Provision of Cookie Attribute Values

setCookie("ourFourthCookie", //name
 "That would bring us back to Doe", //value
 new Date("Jan 1 2016 12:00 AM"), //expires
 "/", //path
 null); //secure
 

Listing 7-12 utilizes the setCookie function to create a cookie that will persist until January 1, 2016. The
attribute’s values can be viewed within the cookie jar, as demonstrated within the Developer Tools Console,
as shown in Figure 7-3.

Chapter 7 ■ Persisting JSON: I

91

While document.cookie is the entry point to the method that controls the storage of cookies, it can also
be used to obtain the many name/value pairs that have been stored, provided their domain attribute matches
the domain from which they are being requested. In order to read from the cookie jar, we simply reference
the cookie property of the document, without providing it an assignment, as demonstrated in Listing 7-13.

Listing 7-13.  Retrieving All Persisted Cookies for the Scoped Origin and Path via document.cookie

console.log(document.cookie); // "ourFourthCookie=That would bring us back to Doe"
 

The code within Listing 7-13 simply logs out the returned value from document.cookie and sends it
to the console for inspection. What is outputted is the name/value pair that has continued to persist. This
is assuming you are running this code prior to January 1, 2016. Otherwise, because the expires attribute
would be explicitly set to a date that occurred in the past, it would be removed from memory, and nothing
would appear.

Note■■  R unning the preceding code after January 1, 2016,12:00 AM would inform the browser that it no
longer is required to store the cookie.

What you may recognize immediately is that the product returned from document remains unaltered
from what we initially supplied in Listing 7-12. Unfortunately, document neither separates the supplied key
from its assigned value for ease of use, nor does the document possess a method that can separate them for
us. Therefore, in order to extract the value from the string returned, we will have to separate the value from
the key ourselves. Listing 7-14 accomplishes this with simple string manipulation.

Listing 7-14.  Separating the Value from the Supplied Key from a Singularly Returned Cookie

 1 var returnedCookie = "ourFourthCookie=That would bring us back to Doe";
 2 //15 characters in is the = sign
 3 var seperatorIndex = returnedCookie.indexOf("=");
 4
 5 //extract the first 15 characters
 6 var cookieName = returnedCookie.substring(0,seperatorIndex);
 7
 8 //extract all characters after the '=' 15th character
 9 var cookieValue = returnedCookie.substring(seperatorIndex+1, returnedCookie.length);
10
11 console.log(cookieName); //"ourFourthCookie"
12 console.log(cookieValue); //"That would bring us back to Doe"
 

Figure 7-3.  Developer Tools Console displaying the configured cookie attribute values for the currently
viewed URL

Chapter 7 ■ Persisting JSON: I

92

Listing 7-14 begins by searching for the first occurrence of the equal (=) token (line 3), as that is the
token that separates the key from its value. Once this index is made known, we can consider everything up to
that index the “key” and everything beyond it the “value.” Utilizing the implicit method of the String Object,
we can extract a sequence of characters within a numeric range. We begin with the range of characters from
0 up to the 15th character being the = token for Name (line 6). The next set of characters, which begins at the
16th character, ranges through the remaining characters of the string, thus successfully extracting the value.

You may also notice that the string returned does not supply us with any of the attribute-value pairs that
it was initially assigned. This is strictly due to the fact that the cookie-av values are intended to be utilized by
the browser alone. It is the browser’s job to ensure that cookies are being supplied to the necessary domain,
path, and over the proper transport protocol. Our application merely requires informing the browser, at the
moment the cookie is set, how it is necessary to handle the storage and access to the cookie.

While Listing 7-14 outputted only one cookie, this will not always be the case. In the event that
numerous cookies are stored and requested from that of a matching origin/path, each persistently stored
cookie will be concatonated and returned by the document. Each name/value pair is separated from
another by way of the semicolon (;) token, as demonstrated in Listing 7-15.

Listing 7-15.  Multiple Cookies Are Concatenated and Delimited by a Semicolon (;)

setCookie("ourFourthCookie",
 "That would bring us back to Doe",
 new Date("Jan 1 2016 12:00 AM"),"/",null,null);
 
setCookie("ourFifthCookie",
 "Doe a dear a female dear”,
 new Date("Jan 1 2016 12:00 AM”),"/",null,null);
 
console.log(document.cookie);
//"ourFifthCookie=Doe a dear a female dear; ourFourthCookie=That would bring us back to Doe"
 

By identifying the tokens of the grammar that make up the cookie syntax, we can separate the name/
value pairs from one another. Additionally, we can separate the value from the specified name. This can be
achieved by searching the provided string for the semicolon (;) and equal sign (=) tokens.

Listing 7-16.  Extracting the Value from a Specified Key Among Many

 1 function getCookie(name) {
 2 var regExp = new RegExp(name + "=[^\;]*", "mgi");
 3 var matchingValue = (document.cookie).match(regExp);
 4 console.log(matchingValue) // "ourFourthCookie=That would bring us back to Doe"
 5 for(var key in matchingValue){
 6 var replacedValue=matchingValue[key].replace(name+"=","");
 7 matchingValue[key]=replacedValue;
 8 }
 9 return matchingValue;
10 };
11 getCookie("ourFourthCookie"); // ["That would bring us back to Doe"]
 

The function getCookie within Listing 7-16 utilizes a regular expression to seek out any name/value
pairs from the string returned by document.cookie. The pattern name+"=[^\;]*", as highlighted on
line 2, defines a pattern to match all sequences of characters within a string that is found to possess a
specified name immediately followed by the = token. From there, any valid ASCII character is considered
to be a match, as long as that character is not a semicolon (;) token. Should the string returned by
the document.cookie possess any sequences of characters that match this pattern, they are captured,
respectively, within an array and returned for reference (line 3).

Chapter 7 ■ Persisting JSON: I

93

At this point, if a match has been made, what will be indexed within the returned array are the name/
value pairs that match the cookie name supplied to the method. If we were to log out the results found
within the array at this point, we should view the following: "ourFourthCookie=That would bring us
back to Doe" (line 4). In order to separate the value from Name and the equal sign, we iterate over all
matched occurrences and replace the found name and = token with those of an empty string (line 6),
thereby exposing the value. The value is then reassigned back to the key to which it is referenced within the
matchingValue array (line 7). Last, the getCookie function returns the array of all found values (line 9).

Thus far, you have learned how to successfully write and store persistent values by way of HTTP cookies.
Utilizing our new functions, setCookie and getCookie, let’s revisit the Person object from the previous
chapter and store its serialized JSON text within a cookie (see Listing 7-17).

Listing 7-17.  Pairing the JSON Object and the Cookie to Store objects

 1 function Person() {
 2 this.name;
 3 this.age;
 4 this.gender;
 5 };
 6 Person.prototype.getName = function() {
 7 return this.name;
 8 };
 9 Person.prototype.getAge = function() {
10 return this.age;
11 };
12 Person.prototype.getGender = function() {
13 return this.gender;
14 };
15
16 //instantiate new Person
17 var p = new Person();
18 p.name = "ben";
19 p.age = "36";
20 p.gender = "male";
21
22 var serializedPerson = JSON.stringify(p);
23 setCookie("person", serializedPerson, new Date("Jan 1 2016"),"/","sandboxed.guru",null);
24 console.log(getCookie("person")); "{"name":"ben","age":"36","gender":"male"}"
 

Running the preceding code within a browser will create a cookie, as previously, only this time, the
cookie created possesses JSON as the supplied value. Also as before, by opening up the developer consoles
provided by modern browsers, we can view all stored cookies within the cookie jar for the current origin.

As you can clearly see from Figure 7-4, our person cookie, like the others, has been added to the cookie
jar. It will remain available to all JavaScript code from within any directory of the scoped domain sandboxed.
guru, as well as any and all subdomains.

Figure 7-4.  Developer console exhibiting the persistence of our person cookie and its JSON value

Chapter 7 ■ Persisting JSON: I

94

To further illustrate this point, simply navigate to http://json.sandboxed.guru/chapter7/
cookie-test.html and create your own person cookie to store. After you submit your cookie to the
document, either refresh the page to find the person column populated or navigate to
http://sandboxed.guru/cookie-test.html to find that this top-level domain has access to your new
person cookie. Now hit Delete, to remove the persisted cookie, and generate another, this time with
different data. Once more, visit the subdomain http://json.sandboxed.guru/chapter7/cookie-test.html,
and you will see that new cookie pre-populated.

For all of its benefits, the cookie does come with a few limitations. Sadly, the cookie can only store
a maximum amount of bytes. In fact, it can only store roughly 4KB, which would be roughly 4,000 ASCII
characters. While 4,000 characters is a lot, it can add up quickly, depending on what you are storing.
Furthermore, Base64 characters can require up to three times more bytes per character than ASCII.

You learned that document.cookie does not provide any information beyond the stored name/value
pair. This is problematic, because there is no way to truly know how many bytes are available to us. Another
issue that cookies face is that they are scoped to the browser, which means that the preserved state is only
available to the specific browser that preserves it. Last, because the cookie was originally crafted to help
maintain a visitation between a server and a browser, cookies are automatically sent with every request made
to the server that possesses the allowed origin by the cookie. The issue here is that the more cookies that are
used, each occupying x number of bytes is sent to the server with every single request. Essentially, unless your
server is utilizing the cookie, you are needlessly transmitting 4KB for each cookie stored for every request.

While the cookie has its advantages, it is also archaic. It was just a matter of time before another front-end
technology came along. That tool is HTML 5’s Web Storage.

Web Storage
HTML5 introduced the concept of Web Storage to pick up where the cookie had left off. While Web Storage
may be considered to be the HTTP cookie successor, it would simply be a matter of the context in which you
can make that statement. A better way to view Web Storage is simply to look at it as cookies’ counterpart. Its
creation is not necessarily to replace the cookie. The cookie itself serves a very important purpose, which
is to maintain the session between a browser and a server. This is something that Web Storage does not
intend to replace, because it exists to meet the growing needs of the times in a way that the cookie is simply
incapable of fulfilling, when it comes to the persistence of client-side data.4

It strives to reduce the overhead of HTTP requests and offers an incredibly large amount of storage
per origin. In fact, the allowed capacity ranges about 5MB. Similar to its predecessor, the Web Storage API
enables state to be stored via JavaScript, either indefinitely or solely for the duration of a session. Much
like the cookie, Web Storage concerns itself with the persistence of name/value pairs. Because each value
supplied to the storage object must be in string form, it can quickly become cumbersome to deal with a
plethora of string values, thereby making JSON data the ideal candidate.

Web Storage is accessible to JavaScript, by way of Window Object and can be accessed as
Window.localStorage and Window.sessionStorage. Because the window object is global and can always be
reached from within any scope, each storage object can be referenced without the explicit reference of the
window object, shortening each reference to localStorage and sessionStorage.

4W3C, W3C Recommendation, “Web Storage,” http://www.w3.org/TR/webstorage/#introduction,
July 30, 2013.

http://json.sandboxed.guru/chapter7/cookie-test.html
http://json.sandboxed.guru/chapter7/cookie-test.html
http://sandboxed.guru/cookie-test.html
http://json.sandboxed.guru/chapter7/cookie-test.html
http://www.w3.org/TR/webstorage/#introduction

Chapter 7 ■ Persisting JSON: I

95

Both forms of the aforementioned storage objects, whether they be local or session, allow for the storage
of state through a similar API. However, as you may have already surmised, the difference between the
two regards the contrast among the durations for which the state of data is retained. The sessionStorage,
as the name implies, allows data to persist only as long as the session exists. Whereas the data stored via
localStorage will persist indefinitely, either until the state is deleted by the application or user, by way of
the browser’s interface. Unlike the cookie, all data stored within localStorage will not be set to expire.

Web Storage Interface
Web Storage allows for the storing of data, the retrieval of data, and the removal of data. The means by which
we will be working with data and the storage object is via the Web Storage API. As Table 7-2 outlines, there
are six members that make up the Web Storage API, and each provides a specific need for working with
data persistence.

Table 7-2.  Six Members of the Web Storage API

Members Parameter Return

setItem string (key), string (value) void

getItem string (key) string (value)

removeItem string (key) void

clear void

key Number (index) string (value)

length Number

Unlike the singular interface of the HTTP cookie, which is used to store, retrieve, and delete data, Web
Storage possesses an API to make working with the persistence of data all the more practical. Furthermore,
regardless of the storage object you intend to use, whether it’s local or session, the API remains uniform.

setItem
The Storage Object method setItem possesses the signature of Listing 7-18 and is the method that we will
use to persist data. As was mentioned previously, much like the HTTP cookie, Web Storage persists data
in the form of name/value pairs. However, while the cookie itself did not distinguish the name from the
value it retained, Web Storage does. Therefore, setItem does not merely accept a singular string but, rather,
requires two strings to be provided. The first string represents the name of the key, and the second string will
represent the value to be held.

Listing 7-18.  Signature of the setItem Method

setItem(key , value)
 

When a value is set, it will occur without providing a response back to the invoker of the method.
However, if a value is unable to be set, either because the user has disabled the storage or because the
maximum capacity for storage has been reached, an Error will be thrown. It’s as they say, “no news is good
news.” In other words, if an error does not occur on setItem, you can rest assured the data has been set
successfully.

Chapter 7 ■ Persisting JSON: I

96

Because a runtime error can cause your script to come to a halt, it will be imperative to wrap your call to
setItem with a try/catch block. Then, you can catch the error and handle exceptions gracefully.

Listing 7-19.  Storing Our First Item

localStorage.setItem("ourFirstItem,"abc123");
 

As with the key/value pairs of a JavaScript object, each key must possess a unique label. If you were to
store a value with the name of a key that currently exists, that value would effectively replace the previously
stored value.

Listing 7-20.  Replacing the Value Possessed by the ourFirstItem Key

localStorage.setItem("ourFirstItem","abc123");
localStorage.setItem("ourFirstItem","sunday Monday happy-days");
 

At this point in time, if we were to retrieve the value set for ourFirstItem, we would witness that the
previous value of "abc123" had been replaced with the theme song from the television sitcom Happy Days.

Tip■■   Because an error will be thrown if the user has disabled Web Storage, it would be wise to wrap every
call to the Storage Object API within a try/catch block.

getItem
The Storage Object method getItem (see Listing 7-21) is the counterpart to the setItem method. It, like our
getCookie method from Listing 7-16, allows us to retrieve the persisted state that corresponds to the key
provided to the method (see Listing 7-22).

Listing 7-21.  Signature of getItem

getItem(key) 

Listing 7-22.  Obtaining a Value for a Specified Key

console.log(localStorage.getItem("ourFirstItem")); //sunday Monday happy-days
console.log(localStorage.getItem("ourSecondItem")); //null
 

The key is the only expected parameter, as indicated in Listing 7-22, and will return the corresponding
state for the supplied key. If, however, the name of the key supplied does not exist on the Storage Object,
a value of null will be returned.

removeItem
The Storage Object method removeItem is the sole means of expiring the persistence of an individual key/value
pair. Its signature is similar to that of getItem, in that it accepts one parameter, as shown in Listing 7-23.
This parameter is the key that pertains to the data that you no longer wish to persist (see Listing 7-24).

Listing 7-23.  Signature of removeItem

removeItem(key) 

Chapter 7 ■ Persisting JSON: I

97

Listing 7-24.  Utilizing removeItem to Expire a Persisted State

console.log(localStorage.getItem("ourFirstItem")); //sunday Monday happy-days
 localStorage.removeItem("ourFirstItem");
console.log(localStorage.getItem("ourFirstItem")); //null

clear
As indicated in Listing 7-25, the method clear does not require any parameters. This is because this method
is simply used to instantly purge each and every key/value pair retained by the targeted Storage Object.

Listing 7-25.  Signature of the clear Method

clear()

key
The Storage Object method key is used to obtain the identities of all stored keys that possess accompanying
data retained by the given Storage Object. As the signature outlined in Listing 7-26 demonstrates, the
method can be provided with that of an index, which will return in kind with the member at the supplied
index. If a value does not exist for the provided index, the method will return a value of null.

Listing 7-26.  Signature of the key Method

key(index)

length
As it will not be beneficial to supply indexes that are beyond the boundaries of stored keys, the Storage
Object provides us with access to the length of all values stored by the Storage Object in question. This total
can be obtained via the length property. The length property, when used in conjunction with a loop, as
demonstrated in Listing 7-27, provides us with the ability to remain within the boundaries of the values stored.

Listing 7-27.  Obtaining the Stored Keys from a Storage Object Is Simple with a Loop

var maxIndex= localStorage.length;
for(var i=0; i<maxIndex; i++){
 var foundKey = localStorage.key(i);
}
 

Reusing the key/value pair used by our first cookie, we will demonstrate the ease of the Web Storage API.

Listing 7-28.  Utilizing Web Storage to Persist the Value Supplied to Our Person Instance

 1 function setItem(key , value){
 2 try{
 3 localStorage.setItem(key , value);
 4 }catch(e){
 5 //WebStorage is either disabled or has exceeded the Storage Capacity
 6 }
 7 }

Chapter 7 ■ Persisting JSON: I

98

 8 function getItem(key){
 9 var storageValue;
10 try{
11 storageValue= localStorage.getItem(key);
12 }catch(e){
13 //WebStorage is disabled
14 }
15 return storageValue;
16 }
17
18 function Person() {
19 this.name;
20 this.age;
21 this.gender;
22 };
23 Person.prototype.getName = function() {
24 return this.name;
25 };
26 Person.prototype.getAge = function() {
27 return this.age;
28 };
29 Person.prototype.getGender = function() {
30 return this.gender;
31 };
32
33 //instantiate new Person
34 var p = new Person();
35 p.name = "ben";
36 p.age = "36";
37 p.gender = "male";
38
39 var serializedPerson = JSON.stringify(p);
40 setItem("person" , serializedPerson);
41 console.log(getItem("person")); // "{"name":"ben","age":"36","gender":"male"}" ||
 "undefined"
 

Listing 7-28 revisits our person example from Listing 7-17 to point out how the Web Storage API and
cookie interface vary. The examples similarly use their component to store and retrieve the same value.
However, the use of the API provided by Web Storage simplifies things greatly. Unlike in our cookie example,
Web Storage requires less work for setting—and especially retrieving—data. Line 41 of Listing 7-28 simply
requests the data of the supplied key and logs it for inspection to the developer console. The reason why the
value returned may be either what is stored or (signified by the || operator) "undefined", is due to the fact
that Web Storage may be disabled, which will prevent the variable storageValue (line 9) from being set.
Unlike its cookie counterpart, getItem handles the management of key/value pairs for us, so that we don’t
have to manipulate the returned string. Could you imagine performing a JavaScript search over 5MB worth
of ASCII characters? The application would become nonresponsive.

What you may have also noticed is that we never specified a domain or path at any point in time during our
review of Web Storage. This is because, unlike the cookie, the Storage Object strictly adheres to the same-origin
policy, meaning that resources can only be shared/accessed from the same document origin, if the two share
the same protocol, hostname, and port. You will learn more about the same-origin policy in Chapter 9.

Chapter 7 ■ Persisting JSON: I

99

Summary
The HTTP cookie and Web Storage are extremely useful client-side tools for storing and persisting JSON
data. They can be utilized to retain the state of a user’s engagement with a web site, web app, or even a
game. As cookies and Web Storage are stored on the user’s browser, each visitor can potentially possess
different information, which can further add to the benefit of local persistence. Such benefit would be
personalization/optimization. However, for all their benefits, the cookie and Web Storage are not
without their limitations.

The first and foremost concern surrounds security. As both the cookie and a Storage Object can be set
and retrieved with JavaScript, it’s best practice to store information that is not particularly sensitive. While it
may not be understood by the average visitor of your site how data is being utilized between your application
and their browser, those who are seeking to exploit these technologies do understand. As this data is
accessible to JavaScript, by utilizing the same techniques covered in this chapter, a user or a site hijacker can
manipulate or alter persisted state at any point in time, for malicious or benign intent. This, of course, will
vary, based on the data as well as the nature of the application that makes use of it.

As I previously indicated, the HTTP cookie and Web Storage are scoped to a visitor’s browser. Data that
may have been set to persist, whether by cookie or Storage Object, is dependent on the browser the visitor
previously used to interact/view your application. This means the persistence of state has the potential to
vary from one browser to the other, each time a user visits your application. This inconsistency may prove
to be problematic, depending on your application’s needs. Last, as the data that is being retained will persist
on the visitor’s file system and not the server’s, it can easily be removed by the visitor at any point he or she
chooses, through the interface provided by the browser.

These aforementioned issues can be avoided when used in conjunction with a server-side database,
which will be the topic of discussion in Chapter 12. In the next chapter, I will discuss how to transmit JSON to
and from our applications via JavaScript.

Key Points from This Chapter
Data persistence is the continued existence of state after the process that created it.•	

HTTP/1.1 is a stateless protocol.•	

Cookies and Web Storage are used to retain state.•	

Cookies are sent with every HTTP/1.1 request.•	

Session data will cease to exist after the session exits.•	

Sessions do not necessarily end when a browser is closed.•	

Cookies are exchanged via HTTP and HTTPS, unless flagged as secure.•	

Cookies can only store 4KB worth of ASCII characters.•	

Cookies can be shared among subdomains.•	

Web Storage can store 5MB of data.•	

Each origin possesses its own Storage Object.•	

Web Storage strictly adheres to a same-origin policy.•	

101

Chapter 8

Data Interchange

Thus far, you have been learning how to work with JSON data that has been stringified, parsed, persisted,
and retrieved—all from within the scope of a running application. However, as JSON is a data-interchange
format, it is capable of being transmitted across the Internet, which offers our applications much more
possibility than we have currently been allowing them.

With the use of data interchange, we can send JSON across the Internet into a database that is
owned/controlled by us. The visitor cannot as easily delete data this way, as it could be with Web Storage
and the HTTP cookie. Furthermore, the ability to transmit data allows our application the ability not only
to push out JSON but also to load it into our applications. In other words, not only can we load into our
application the data that we’ve stored, but we can also tap into the data that others are willing to share as
well. This may be data that is available to the general public free of charge or by a paid service. Consider the
vast array of social sites out there that offer to the public free of charge the data that they capture. Twitter,
Facebook, and Instagram are prime examples of social properties that are willing to offer aspects of their
data via an API. Because of the many positive attributes that JSON possesses, it is the favored data format of
nearly every social API.

In upcoming discussions, you will learn how to load JSON into our application, transmit JSON from
our application, and persist JSON into a database over which we have control. Then, we will look at how to
incorporate the data from the API of the social property Twitter. However, before we jump into those topics,
it will be of great benefit to understand the communication that takes place under the hood of our browser
during the request for a resource and the response from a server, as well as the underlying technologies that
we will utilize to enable both.

Hypertext Transfer Protocol
The Hypertext Transfer Protocol, or simply HTTP, is the underlying mechanism responsible for our daily
interactions with the Internet. It is used in conjunction with many underlying networks of protocols, in order
to facilitate the appropriate request/response between a client and a server. Typically, the client utilized in
the request/response exchange is that of a web browser, such as Chrome, Firefox, Internet Explorer, or Safari.
However, it can also be that of another server. Regardless of whether the client is a browser or a server, the
request/response can only take place upon the initiation of a request. Furthermore, a response can only be
provided from a web server.

Anytime a resource is requested from a server, whether it’s a document, an image, a style sheet, etc.,
a request must be initiated.

Chapter 8 ■ Data Interchange

102

HTTP-Request
It is the role of the request to outline the specifics that detail the required resource from the server. It will be
these details that help to ensure that the server provides the appropriate response. A request can be thought
of as your order at a restaurant. When you provide a waiter with your order, you are outlining what you are
expecting from the kitchen. Additionally, it may include your preferences of how you would like it to be
cooked or served. In the preceding analogy, the HTTP protocol is the waiter, the order is the HTTP request,
and the food provided represents the HTTP response.

The HTTP request consists of three general components, each with a particular use for detailing what
resource is required from a server. These three components can be viewed in Table 8-1.

Table 8-1.  Structure of the HTTP Request

Parts Required

1 Request Line Yes

2 Headers No

3 Entity Body No

Request Line
The first component, known as the request line, is absolutely mandatory for any request. It alone is
responsible for the type of request, the resource of the request, and, last, which version of the HTTP protocol
the client is making use of. The request line itself is composed of three parts, separated from one another by
whitespace. These three components are Method, Request-URI, and HTTP-Version.

Method represents the action to be performed on the specified resource and can be one of the
following: GET, POST, HEAD, PUT, LINK, UNLINK, DELETE, OPTIONS, and TRACE. For the purposes of this chapter,
I will only discuss the first two.

The method GET is used to inform the server that it possesses a resource that we wish to obtain. GET is
most commonly used when navigating to a particular URL in a browser, whereas the POST method is used
to inform the server that you are providing data along with your request. The POST method is commonly
used with HTML forms. The response that is supplied upon a form’s submission often reflects content that
accounts for the form submission.

Because the GET method does not concern itself with any alterations to a server, it is commonly referred
to as a safe method. The POST method, on the other hand, is referred to as an unsafe method, as it concerns
working with data.

The URI of the request line simply identifies the resource, which the request method applies.
The specified URI may be that of a static resource, such as a CSS file, or that of a dynamic script whose
content is produced at the moment of a request.

Last, the request line must indicate the HTTP-Version utilized by the client. Since 1999, the Request-
Version of browsers has been HTTP/1.1. Examples of a request line are shown in Listing 8-1.

Listing 8-1.  Syntactic Structure of a Request Line

GET http://json.sandboxed.guru/chapter8/css/style.css HTTP/1.1
GET http://json.sandboxed.guru/chapter8/img/physics.jpg HTTP/1.1
POST http://json.sandboxed.guru/chapter8/post.php HTTP/1.1

Chapter 8 ■ Data Interchange

103

Headers
The second component of the request concerns the manner by which the request is able to provide
supplemental meta-information. The meta-information is supplied within the request in the form of a
header, whereas a header, at its most atomic unit, is simply a key/value pair separated by the colon (:) and
made up of ASCII characters. The server can utilize this information in order to best determine how to
respond to the request.

The HTTP protocol has formalized a plethora of headers that can be utilized to relay a variety of detail to the
server. These headers fall under one of three categories: general headers, request headers, and entity headers.

General Headers

The first category of header is that of the general headers. The headers that apply to this category identify
general information pertaining to the request. Such general information may regard the date of the request,
whether or not to cache the request, etc. The following are general headers:

Cache-Control•	

Connection•	

Date•	

Pragma•	

Trailer•	

Transfer-Encoding•	

Upgrade•	

Via•	

Warning•	

Request Headers

The second category of headers is that of the request headers. These headers can be supplied with the
request to provide the server with preferential information that will assist in the request. Additionally, they
outline the configurations of the client making the request. Such headers may reveal information about the
user-agent making the request or the preferred data type that the response should provide. By utilizing the
headers within this category, we can potentially influence the response from the server. For this reason,
the request headers are the most commonly configured headers.

One very useful header is the Accept header. It can be used to inform the server as to what MIME
type or data type the client can properly handle. This can often be set to a particular MIME type, such as
application/json, or text/plain. It can even be set to */*, which informs the server that the client can accept
all MIME types. The response provided by the server is expected to reflect one of the MIME types the client
can handle. The following are request headers:

Accept•	

Accept-Charset•	

Accept-Encoding•	

Accept-Language•	

Authorization•	

Chapter 8 ■ Data Interchange

104

Expect•	

From•	

Host•	

If-Match•	

If-Modified-Since•	

If-None-Match•	

If-Range•	

If-Unmodified-Since•	

Max-Forwards•	

Proxy-Authorization•	

Range•	

Referer•	

TE•	

User-Agent•	

At this point, feel free to navigate the browser of your choice to the following URL: http://json.
sandboxed.guru/chapter8/headers.php. The content that is displayed is the response to that of an HTTP
request. Ironically, the content displayed presents the HTTP request for the requested URI. Here, you can
view the combination of general headers and the request headers submitted with the request. Generally
speaking, as we navigate the Internet, the browser supplies the various headers with each request on our
behalf. Therefore, some of the request headers supplied possess values that reflect those configured within
our browser settings. Because each browser may vary in its values supplied to the reflected headers, your
results may not reflect mine, shown in Listing 8-2.

Listing 8-2.  The Composition of an HTTP GET Request

GET /chapter8/headers.php HTTP/1.1
Host: json.sandboxed.guru
Cache-Control: max-age=0
Connection: close
X-Insight: activate
Cookie: person={"age":"36","name":"ben","gender":"male"}
Dnt: 1
Accept-Encoding: gzip, deflate
Accept-Language: en-us,en;q=0.7,fr;q=0.3
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:30.0) Gecko/20100101 Firefox/
30.0 FirePHP/0.7.4 

Note■■  T he Referer header is the result of a spelling mistake that was not caught before it was incorporated
within the HTTP specification.

http://json.sandboxed.guru/chapter8/headers.php
http://json.sandboxed.guru/chapter8/headers.php

Chapter 8 ■ Data Interchange

105

Figure 8-1.  The request headers exhibited by the Chrome developer console

As you can clearly see, the first line, the request line, details the method to apply to the indicated URI of
/chapter8/headers.php. While the URI is that of a dynamic page, the request line states: GET the resource
provided by headers.php. That resource, of course, generates its content upon receipt of the HTTP request,
in order to reveal the headers as your browser configures them.

While this information will only be present for the particular URI utilizing our developer console,
we will be able to view any and all HTTP requests and their responses for any resource. This can be
accomplished by profiling the network activity from within the developer’s console of your favorite modern
browser. Feel free to refresh the page once you have your developer console open and the network tab in view.
Figure 8-1 displays the HTTP request and its headers for the request URI http://json.sandboxed.guru/
chapter8/headers.php.

Entity Headers

The third category of headers is that of the entity headers. These headers are used to supply meta-information
regarding any data that is being sent to the server along with the request. The provision of data that
accompanies a request is always tied to the unsafe HTTP methods, such as PUT and POST. Safe methods, on
the other hand, will never possess an entity body. However, when data is supplied, it will be these headers
that describe the data type being sent, the character encoding it possesses, and the amount of bytes of data
being transferred. The following are entity headers:

Allow•	

Content-Encoding•	

Content-Languages•	

Content-Length•	

Content-Location•	

Content-MD5•	

Content-Range•	

http://json.sandboxed.guru/chapter8/headers.php
http://json.sandboxed.guru/chapter8/headers.php

Chapter 8 ■ Data Interchange

106

Content-Type•	

Expires•	

Last-Modified•	

Entity Body
The final component of the request is the entity body. While the entity headers carry the meta-information, the
entity body is strictly the nomenclature for the data being sent to the server. The syntax of the entity can reflect
that of HTML, XML, or even JSON. However, if the Content-Type entity header is not supplied, the server, being
the receiving party of the request, will have to guess the appropriate MIME type of the data provided.

I will now review the request of an unsafe method, so that you can observe a request that is in possession
of an entity body. Feel free to navigate your browser to the following URL: http://json.sandboxed.guru/
chapter8/post.php. By filling out the two form fields and clicking submit, the form post will automatically
trigger an HTTP request that will supply the filled-in fields as data. The response that will be outputted to
the screen will reflect the captured headers of the POST request. Listing 8-3 reveals the HTTP request and
the entity it possesses. Feel free to utilize your developer’s console, to compare the request with the results
shown below.

Listing 8-3.  The Composition of an HTTP POST Request

POST /chapter8/headers.php HTTP/1.1
Host: json.sandboxed.guru
Cache-Control: max-age=0
Connection: close
X-Insight: activate
Referer: http://json.sandboxed.guru/chapter8/post.php
Dnt: 1
Accept-Encoding: gzip, deflate
Accept-Language: en-us,en;q=0.7,fr;q=0.3
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:30.0) Gecko/20100101
Firefox/30.0 FirePHP/0.7.4
Content-Length: 37
Content-Type: application/x-www-form-urlencoded
 
fname=ben&lname=smith&mySubmit=submit
 

As you can see from Listing 8-3, an empty line following the other two request components separates
the entity body. Furthermore, the two supplied entity headers, Content-Length and Content-Type, provide
the server with an understanding of what is being supplied, relieving the server from having to guess how to
properly parse the data.

HTTP Response
For every HTTP request there is an HTTP response. Additionally, the structural composition of the HTTP
response, as displayed in Table 8-2, is identical to that of the HTTP request with one major exception: the
request line is replaced with a status line.

http://json.sandboxed.guru/chapter8/post.php
http://json.sandboxed.guru/chapter8/post.php

Chapter 8 ■ Data Interchange

107

Status Line
The first component of the HTTP response is the status line, which details the result of the request.
The composition of the status line is composed of three parts: the version of the HTTP protocol utilized by
the server, a numeric status code, and an associated textual phrase that describes the status of the request.
Each component is separated from the other with whitespace.

The HTTP version simply reflects the version of the HTTP protocol used by the server.
The status code represents a three-digit number that reflects the status of the request. It is the duty of

the status code to inform the client whether the request was understood, if it resulted in an error, and/or if
the client must take further action. There are five categories of statuses, and each three-digit status code is a
member of an appropriate status class.

The status classes, as illustrated in Table 8-3, are divided into groups of hundreds, meaning that the
indicated classes can possess 100 different unique status codes. While this is not currently the case, by
providing each class with ample padding, additional statuses can be incorporated in the future.

Table 8-2.  Structure of the HTTP Response

Parts Required

1 Status Line Yes

2 Headers No

3 Entity Body No

Table 8-3.  Response Status Classes of the HTTP-Request

Status Class Reason Phrase

100–199 This class of status code indicates a provisional response, consisting only of the status line
and optional headers.

200–299 This class of status code indicates that the client’s request was successfully received,
understood, and accepted.

300–399 This class of status code indicates that further action needs to be taken by the user-agent,
in order to fulfill the request.

400–499 This class of status code is intended for cases in which the client seems to have erred.

500–599 This class of status code indicates cases in which the server is aware that it has erred or is
incapable of performing the request.

The most common classes that will be used by the average user will be among the following: 200’s,
400’s, and 500’s. These represent the response messages from the server that will help to indicate if the
resource requested has been satisfied or if there were errors along the way. The most common status codes
encountered by front-end developers are the following: 200, 204, 404, and 500.

200 OK: The server has successfully recognized the request.

204 No Content: The server has successfully recognized the request; however,
there is no new entity body to return.

404 Page Not Found: The indicated resource is unable to be located by the server.

500 Internal Server Error: The server has encountered an issue preventing the
request from being fulfilled.

Chapter 8 ■ Data Interchange

108

The textual phrase of the status line is utilized, so that it can be easily read and interpreted by humans.
Each phrase details the meaning of its associated status code.

Note■■   You can read more on the existing status codes here:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

Headers
The second component of the response concerns the mechanism by which the response is able to provide
the client with supporting meta-information. As with requests, response headers are grouped into three
categories: general headers, request headers, and entity headers.

General Headers

The first category of headers is the general headers. The headers that apply to this category identify general
information. Such general information may regard the date of the response or whether the connection
should remain open or closed. The following are general headers:

Cache-Control•	

Connection•	

Date•	

Pragma•	

Trailer•	

Transfer-Encoding•	

Upgrade•	

Via•	

Warning•	

Response Headers

The second category of headers is the response headers. These headers provide the client of the request with
information pertaining to the configurations of the server, as well as the requested URI. For example, the
server can provide response headers to inform the request of what HTTP methods are accepted, as well as
whether authorization is required in order to access the specified URI. These headers can even inform the
request whether it should occur at a later point in time. The following are response headers:

Accept-Ranges•	

Age•	

ETag•	

Location•	

Proxy-Authentication•	

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Chapter 8 ■ Data Interchange

109

Retry-After•	

Server•	

Vary•	

WWW-Authenticate•	

Entity Headers

The third category of headers is the entity headers. These headers are used to supply meta-information
regarding the data being sent along with the response. As with entity headers for a request, the most
beneficial entity headers for a response will be those that describe the MIME type of the entity provided, so
that it may be parsed/read properly. This is achieved via the Content-Type header. The configured value of
the Content-Type will often reflect a MIME type that was indicated as the value of the Accept header within
the request. The following are entity headers:

Allow•	

Content-Encoding•	

Content-Languages•	

Content-Length•	

Content-Location•	

Content-MD5•	

Content-Range•	

Content-Type•	

Expires•	

Last-Modified•	

Entity Body
The final component of the response is that of the entity body. Whereas entity headers outline the meta-
information, the entity body is the data provided by the server.

Let’s now revisit our earlier HTTP request from Figure 8-1, only this time, let’s focus on the response
captured in Figure 8-2. Figure 8-2 reveals the response that is returned by the server for the following URL:
http://json.sandboxed.guru/chapter8/headers.php. The first thing to note is the status line located
below the response headers heading. It begins by revealing the HTTP version and is immediately followed
by the status of the request.

http://json.sandboxed.guru/chapter8/headers.php

Chapter 8 ■ Data Interchange

110

Figure 8-2.  The response headers exhibited by the Chrome developer console

In this particular case, the response is successfully fulfilled, as indicated by the status code of 200.
Furthermore, from the textual phrase that follows the status code, we can read that the messaging is that of
OK. Below the status line, we are able to observe a variety of headers, which belong to the general headers
and entity headers categories. I want to draw your attention to the final header in the listing. This particular
entity header is configured to define the MIME type of the entity body being returned. This enables the
browser to parse it accordingly and display it upon its arrival. In this particular case, the data being provided
is HTML and, therefore, possesses the Content-Type of text/HTML.

The actual data that is returned can be viewed in the response tab, which is none other than the markup
that is being presented upon arrival of the URL.

If the preceding content is new to you, don’t worry, for you are not alone. In fact, typically, only those
who are server-side developers know the preceding information. This is because they generally write the
code to analyze the request headers and, in turn, configure the appropriate response. Typically, HTTP
requests are made behind the scenes and handled by the browser, allowing front-end developers like us to
remain ignorant of the communications taking place. However, in the upcoming section, I will discuss the
technique that enables us to initiate and configure our own HTTP requests, allowing us to send and receive
JSON via JavaScript.

Ajax
Ajax itself is not a technology but, rather, a term coined by Jesse James Garrett in 2005. Ajax stands for
Asynchronous JavaScript and XML (a.k.a. Ajax) and has become synonymous with modern-day front-end
development, and for great reason. It offers the ability to initiate HTTP-Requests such as GET and POST on
demand and without having to navigate away from the current web page, as shown in Figure 8-3.

Chapter 8 ■ Data Interchange

111

Figure 8-3 demonstrates the process by which data is integrated into a web page when solely handled
by the server. The demo begins with a user landing on a web page and being invited to sign in to the site
experience via a simple form. Upon clicking submit, the browser initiates a new request to the server, in
order to retrieve the appropriate response that reflects the data that has been provided by the user. The
headers within that request detail the necessary information for the server to respond accordingly. Once
the server receives the request, it fetches the resource being requested, retrieves some information from the
database, and inserts it within the content to be returned, thereby revealing an updated page for the visited
URL: json.sandboxed.guru/chapter8/8-1.php.

The terms Asynchronous JavaScript and XML refer to the various web technologies that are used to
incorporate the exchange of data between the current web page and a server in the background. You might
be thinking that if the x in Ajax stands for XML, and this is a book on the use of JSON, why then should we
care about Ajax? While the x does stand for XML, the request/response initiated via Ajax continues to remain
bound to the rules of the HTTP protocol. Therefore, the server can return any and all valid data types, such
as HTML, Text, XML, JSON, etc. We, of course, will be working with JSON. The x in Ajax came to be simply
because the original XMLHttpRequest only supported XML parsing.1

The XMLHttpRequest object provides the interface by which JavaScript can initiate an HTTP-Request
directly from within a running application, enabling communication with a server. This allows for data
to be pushed out or consumed. Furthermore, as the A in Ajax suggests, this communication occurs
asynchronously, implying non-blocking. This allows the executing application and the user to continue,
without requiring either to stop what they’re doing, until the request has been fulfilled by the server. The
HTTP request occurs outside of the process used to run our JavaScript application. More specifically, it
occurs in a separate process that is used only by the browser. When the server has fulfilled the request, the
browser will alert our application to its availability, by notifying our application via an event. By listening in
on this event, we can obtain the response from the server to parse and use, as our application requires.

The XMLHttpRequest object, which is the ECMAScript HTTP API,2 originated as a proprietary feature
within Internet Explorer 5, as a part of the Active X framework. Its practicality and implications became
immediately recognized and were quickly implemented by competing browsers. Anticipating the possible

Figure 8-3.  The full life cycle of an HTTP GET request

1MDN: Mozilla Developer Network, “HTML in XMLHttpRequest,” https://developer.mozilla.org/en-US/docs/
Web/API/XMLHttpRequest/HTML_in_XMLHttpRequest, May 26, 2014.
2World Wide Consortium (W3C), “XMLHttpRequest,” www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/
#introduction, December 6, 2012.

http://json.sandboxed.guru/chapter8/8-1.php
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/HTML_in_XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/HTML_in_XMLHttpRequest
www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/
#introduction
www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/
#introduction

Chapter 8 ■ Data Interchange

112

variations and problems that could soon arise among vendor implementations, the W3C urged to formalize
the standard of the syntax, which can be read at the following URL: www.w3.org/TR/2014/
WD-XMLHttpRequest-20140130/. This standard outlines the API that developers can leverage to invoke an
HTTP request that will facilitate the invocation of an HTTP request.

XMLHttpRequest Interface
The HTTP API, as exposed by the XMLHttpRequest object, consists of a variety of methods, event handlers,
properties, and states, all of which provide our JavaScript application the ability to successfully facilitate an
HTTP request, in addition to obtaining the response from a server. For this reason, each method, property,
handler, and state will be integral in a particular aspect of the request or the response.

Global Aspects
The sole global method of the XMLHttpRequest interface is that of the constructor (see Table 8-4), which,
when invoked, will return to our application a new instance of the XMLHttpRequest object. It will be through
the interface inherited by this object that we will initiate and manage our requests. Furthermore, by
instantiating multiple instance of the XMLHttpRequest object, we can manage simultaneous requests.

Table 8-4.  XMLHttpRequest Constructor

Method/Property Parameter Returned Value

constructor N/A XMLHttpRequest (object)

Listing 8-4 demonstrates the instantiation of an XMLHttpRequest object and assigns the instance to a
variable labeled xhr. It will be fairly common to see xhr as the reference, as this is simply the acronym for the
XMLHttpRequest object.

Listing 8-4.  Creating an Instance of the XMLHttpRequest Object

var xhr = new XMLHttpRequest();
 

Whether you are working with one xhr or many, as the HTTP request occurs asynchronously, it
is necessary for our application to be notified of any change in state, for the duration of the request.
Such notifications may be whether the response has been fulfilled or the connection has timed out. The
XMLHttpRequest Level 2 standard outlines the event handlers possessed by each xhr instance, so that we
may remain aware of the status of the request. These event handlers can be viewed in Table 8-5.

http://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/
http://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/

Chapter 8 ■ Data Interchange

113

Note■■  T he progress events that do not appear with an asterisk (*)beside them are implemented by all
modern browsers, in addition to Internet Explorer 8. However, those beside an asterisk require IE 10 or greater.

The event handlers in Table 8-5 will alert our application to a variety of notifications pertaining to the
state of the request. Furthermore, they can be utilized in one of two possible implementations.

The first is that we can remain object-oriented and register the event of the state to which we choose
to listen. For each event to which we listen, we can assign a particular function to be triggered upon
notification, such as that in Listing 8-5. As different browsers implement various ways to register an event,
it is necessary to make use of a cross-browser solution, as I have on line 11.

Listing 8-5.  The Registration for Event Listeners Belonging to the xhr object for Each Notification of State

 1 var xhr = new XMLHttpRequest();
 2 addListener(xhr, 'loadstart', function() { alert("load-start"); });
 3 addListener(xhr, 'progress', function() { alert("progress"); });
 4 addListener(xhr, 'load', function() { alert("load"); });
 5 addListener(xhr, 'loadended', function() { alert("loadended"); });
 6 addListener(xhr, 'timeout', function() { alert("timeout");});
 7 addListener(xhr, 'abort', function() { alert("abort"); });
 8 addListener(xhr, 'readystatechange', function() { alert("readystatechange");});
 9
10 //cross browser addListener
11 function addListener(elem, eventName, handler) {
12 if (elem) {
13 elem.addEventListener(eventName, handler, false);
14 } else if (elem.attachEvent) {
15 elem.attachEvent('on' + eventName, handler);
16 } else {
17 elem['on' + eventName] = handler;
18 }
19 }
 

Table 8-5.  The xhr Event Handlers for Monitoring the Progress of the HTTP Request

Event Handlers Event Handler Event Type

onloadstart * loadstart *

onprogress progress

onload load

onloadend * loadended *

onerror error

ontimeout timeout

onabort * abort *

onreadystatechange readystatechange

Chapter 8 ■ Data Interchange

114

The alternative to being notified of a change in a particular state is to assign a function as the callback
to the event handler, which exists as a property of the object itself. This manner of implementation is
demonstrated in Listing 8-6.

Listing 8-6.  Assigning Callback Functions to Each of the xhr Status Event Handlers

 1 var xhr = new XMLHttpRequest();
 2 xhr.onloadstart = function() { alert("onloadstart"); };
 3 xhr.onprogress = function() { alert("onprogress"); };
 4 xhr.onload = function() { alert("onload"); };
 5 xhr.onloadend = function() { alert("onloadend"); };
 6 xhr.ontimeout = function() { alert("ontimeout"); };
 7 xhr.onabort = function() { alert("onabort"); };
 8 xhr.onreadystatechange = function() { alert("onreadystatechange"); };
 

Whether the implementation you choose to be made aware, regarding state notifications of the HTTP
request, reflects that of Listing 8-5 or that of Listing 8-6, both will produce the equivalent results. The
result produced is the invocation of the corresponding function that has been assigned as the receiver of a
particular notification, when that event is dispatched.

There are eight progress notifications in total that will inform an application as to the particular state of
the HTTP request. These notifications are the following: loadstart, progress, error, load, timeout, abort,
loadend, and onreadystatechange.

The loadstart event is dispatched the moment the HTTP request begins. This is not to be confused
with the moment communication occurs between the client and the server. As the loadstart event reflects
the start of a request, it should be expected to be dispatched a total of one time for each request initiated.

The progress event is dispatched the moment the HTTP connection is established and the request/
response is effectively relaying data. During the course of the transmission, the progress event will continue
to fire until there is no further data to transmit. This, however, does not always indicate that a successful
request has been fulfilled.

The error event will be dispatched exactly once, or not at all, during the course of each HTTP request
initiated by the xhr object. Should the request result in an error, the error event will immediately be
dispatched. This event is useful for being informed that the request was unsuccessful.

The load event will be dispatched exactly once, or not at all, during the course of each HTTP request
initiated by the xhr object. Should the request be successfully fulfilled, the load event will be immediately
dispatched. This event is useful for being informed that the request has been completed. It should be
mentioned that just because a load is considered completed by the xhr object does not necessarily mean
that the request was successfully satisfied. Therefore, it will be imperative to provide your callback method
with the logic to determine the status code, in order to ensure that it was truly successful. The status code, in
addition to the status text, can be obtained by the status and statusText properties of the xhr. I will discuss
these two properties a bit later in the chapter.

The timeout event will be dispatched exactly once, or not at all, during the course of each HTTP request
initiated by the xhr object. Should the duration of the request be determined to have surpassed a particular
interval, the connection will have been deemed to be timed out, notifying our application of the matter.

The abort event is dispatched exactly once, or not at all, during the course of each HTTP request initiated
by the xhr object. Should the request at any time be aborted, the abort event will be immediately dispatched.

The loadend event is dispatched exactly once during the course of each HTTP request initiated by the
xhr object. The loadend notification is dispatched the moment the HTTP request is no longer active in its
attempt to fulfill a request. This event is dispatched after the following possible notifications: error, abort,
load, and timeout.

The onreadystatechange is the original, and at one time the only, event handler of the XMLHttpRequest
implemented by earlier browsers. This event is used to notify a supplied function of the progress of the
initiated HTTP request. The onreadystatechange event is dispatched multiple times during the course of

Chapter 8 ■ Data Interchange

115

each HTTP request initiated by the xhr instance. In fact, the event is dispatched each time the readyState
property of the xhr instance is assigned a new state. The possible states that can be assigned to the
readyState property are those outlined in Table 8-6.

Table 8-6.  The Possible States of the xhr object and Numeric Representation

States Numeric Representation

UNSENT 0

OPENED 1

HEADERS_RECEIVED 2

LOADING 3

DONE 4

The states outlined in Table 8-6 are assigned to that of the readyState property that exists on each xhr
instance. The assigned state reflects the progress of the HTTP request itself. There are five possible states that
can be assigned to the readyState property, and each infers the given state of the request.

The state UNSENT is the default state of the readyState property. This state is used to inform our
application that the xhr object, while instantiated, is not yet initialized. The readyState property during this
state returns a value of 0.

The state OPENED replaces the UNSENT state the moment the request method, open, has been invoked,
initializing our xhr instance. The readyState property during this state returns a value of 1.

The state HEADERS_RECEIVED is assigned as the value of the readyState property upon receiving
the headers that accompany the response that will ultimately be received from a server. The readyState
property during this state returns a value of 2.

The state LOADING is assigned as the value of the readyState property as the transmission of data
pertaining to the response entity body is received. The readyState property during this state returns a
value of 3.

The state DONE is assigned as the value of the readyState property upon the conclusion of the HTTP
request. This state reflects only the closure of the request. As with the load event, the done state does not
identify if the request resulted in an error, a time-out, or a successful fulfillment of a request. Therefore, it will
be imperative to determine the statusCode when determining how to process the request. The readyState
property during this state returns a value of 4. Listing 8-7 demonstrates an event handler that monitors all
states of the readyState property.

Listing 8-7.  Determining the State of the xhr object for Each Change in State

 1 var xhr = new XMLHttpRequest();
 2 xhr.onreadystatechange = handlStateChange;
 3
 4 function handleStateChange() {
 5 if (xhr.readyState === 0) {
 6 alert("XHR is now instantiated");
 7 } else if (xhr.readyState === 1) {
 8 alert("XHR is now Initialized");
 9 } else if (xhr.readyState === 2) {
10 alert("Headers are now Available");

Chapter 8 ■ Data Interchange

116

11 } else if (xhr.readyState === 3) {
12 alert("Receiving Data");
13 } else if (xhr.readyState === 4) {
14 alert("HTTP Request ended");
15 }
 

As an older implementation, the onreadystatechange does not offer an application as accurate a
notification system as the other seven progress events. Furthermore, the processing that is required by our
JavaScript to determine the state of the HTTP request, if extensive, has the ability to block the thread, thereby
delaying the events from being triggered.

The Request Aspect
The methods and properties that are outlined within this section make up the facade that enables one to
correctly configure the metadata of the HTTP request. (See Table 8-7.)

Table 8-7.  The Request Methods of the xhr object

Method Parameters Returned Value

open String (method), String (URI), Boolean (async),
String (user), String (password)

N/A

setRequestHeader String (field),

String (value)

N/A

send String (entity body) N/A

abort N/A N/A

open
The open method, whose signature can be viewed in Listing 8-8, acts as the starting point that will be used to
configure the HTTP request.

Listing 8-8.  The Signature of the open Method of the xhr object

open(HTTP-Method, request-URI [, async [, user [, password]]]);
 

As revealed by Listing 8-8, the open method accepts five arguments. Three are optional, and two
are required.

The first parameter, HTTP-Method, indicates to the server what method it requires to be performed on
the specified request URI. A resource may be the target of a “safe” or “unsafe” method. As discussed in the
earlier sections of the chapter, the two types of methods this chapter will focus on are GET and POST.

The second parameter, request-URI, identifies the target of our request. The argument supplied
to the request-URI can be specified either as a relative URL or, alternatively, an absolute URL. As the
XMLHttpRequest object is subject to the same-origin policy, the URI supplied must possess the same origin
as the application configuring the request. If, however, the URL provided is that of another host outside of
the current origin, the server of the URL being targeted must allow for cross-origin resource sharing. I will
discuss cross-origin resource sharing in the next chapter.

Chapter 8 ■ Data Interchange

117

Note■■  T he XMLHttpRequest object is subject to the same-origin policy.

The required parameters will be appended together, along with the HTTP protocol version, which is
typically 1.1, to form the very first line of the request, which is the request line, as shown in Listing 8-9.

Listing 8-9.  A GET Request for the URI xFile.php via the HTTP/1.1 Protocol

GET /xFile.php HTTP/1.1
 

The third parameter of the open method does not supply metadata to the request but, rather, indicates if
the request will occur asynchronously or synchronously. When this parameter is left undefined, it defaults to
true, thereby processing the HTTP request in another thread.

The final two optional parameters, user and password, are used to supply credentials that may be
required of a resource whose access requires basic authentication. These values will add to the metadata of
the request only if the server responds with a 401 Unauthorized status code.

setRequestHeader
The next method, setRequestHeader, offers our application the opportunity to specify particular headers
that will complement the request by providing supplemental information. These can be any of the
recognized standard HTTP/1.1 attribute-value fields. As indicated by the signature of the setRequestHeader
defined in Listing 8-10, the field and value are to be supplied as individual strings. Behind the scenes, the
xhr object will append them together, separated by a colon (:) token. Furthermore, any number of request
headers can be supplied to the request in question.

Listing 8-10.  Signature of the setRequestHeader Method of the xhr object

setRequestHeader(field , value);
 

Via setRequestHeader, our application can supply any attribute value that aids in the fulfillment of
the response from the server. Such headers, as illustrated in Listing 8-11, are the Accept headers, which
outline the preferred media types that our application recognizes. As the content we will be requesting most
commonly from the server will be that of JSON, we will be using the application/json media type.

Additionally, if the HTTP-Method is specified to be that of an “unsafe” method, we can assign the
Content-Type as a request header, to outline the encoding and MIME type of the supplied entity body
provided with the request. I will discuss how to append an entity body in the send method later in this section.

The headers supplied can also represent custom attribute values, which can be useful for supporting
custom requests. It’s common practice to precede all custom headers with an X.

Listing 8-11.  The Provision of the Accept Header and a Custom Header via the setRequestHeader Method

setRequestHeader("Accept" , "application/json"); //requesting JSON as the response
setRequestHeader("X-Custom-Attribute" , "Hello-World"); //custom header
 

For the most part, all standard HTTP/1.1 headers can be supplied. However, there are a few particular
headers that cannot be overridden, due to security measures as well as maintaining the integrity of data.3
These values are listed in Table 8-8. If your application attempts to supply values for any of the listed headers
in Table 8-8, they will be overridden to their default values.

3A. van Kesteren et al., “XMLHttpRequest,” dvcs.w3.org/hg/xhr/raw-file/tip/Overview.html, May 2014.

http://dvcs.w3.org/hg/xhr/raw-file/tip/Overview.html

Chapter 8 ■ Data Interchange

118

send
The send method of the xhr object is what prompts the submission of the request. As indicated by its
signature in Listing 8-12, the send method can be invoked with an argument supplied. This argument
represents the entity body of the request and is typically used if the request method is specified as one of the
“unsafe” methods, such as POST.

Listing 8-12.  The Signature of the send Method of the xhr object

send (data);
 

The data supplied can consist of nearly anything; however, it must be supplied in the form of a string.
Data can be as simple as a word or a series of key/value pairs strung together to resemble a form post, or
even that of JSON text. Listing 8-13, Listing 8-14 and Listing 8-15 demonstrate three different Content-Types
being submitted via a form post.

Listing 8-13.  Data Sent As the Entity Body of the Request with the Content-Type Defaulted to text/plain

var xhr = new XMLHttpRequest();
 xhr.open("POST", "http://json.sandboxed.guru/chapter8/xss-post.php");
 xhr.send("fname=ben&lname=smith");
 //content-type will be defaulted to text/plain; charset=UTF-8. 

Listing 8-14.  Data Sent As the Entity Body of the Request with the Content-Type Specified As
x-www-form-urlencoded

<form action="8-1.php" method="post" onsubmit="return formSubmit();">
 First-Name:<input name="fname" type="text" size="25" />
 Last-Name:<input name="lname" type="text" size="25" />
</form>
<script>
function formSubmit(){
 var xhr = new XMLHttpRequest();
 xhr.open("POST", "http://json.sandboxed.guru/chapter8/xss-post.php");
 xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 xhr.send("fname=ben&lname=smith&mySubmit=submit") ;
 return false;
}
</script>
 

Table 8-8.  The Assorted HTTP Headers That Cannot Be Set Programmatically via JavaScript

Accept-Charset Cookie Keep-Alive Trailer

Accept-Encoding Cookie2 Origin Transfer-Encoding

Access-Control-Request-Headers Date Referer Via

Access-Control-Request-Method DNT Upgrade

Connection Expect User-Agent

Content-Length Host TE

Chapter 8 ■ Data Interchange

119

Listing 8-15.  Data Sent As the Entity Body of the Request with the Content-Type Specified As JSON

var person={name:"ben", gender:"male"};
var xhr = new XMLHttpRequest();
 xhr.open("POST", "http://json.sandboxed.guru/chapter8/xss-post.php");
 xhr.setRequestHeader("Content-Type", "application/json");
 xhr.send(JSON.stringify(person));
 

Whatever the supplied data, if you do not define the MIME type of the data by way of the Content-Type
header, the type for the data provided will be defaulted to text/plain; charset=UTF-8, as in Listing 8-13.
At this point, if you were to run the preceding listings (8-13 through 8-15) from your local machine, the
request would fail. This is due to the fact that xhr strictly adheres to the same-origin policy. Requests can
only be to a server if the request is initiated from the same origin. There is a way around this, which I will
discuss further in the next chapter. In the meantime, feel free to run these listings and monitor the HTTP
request via the developer console. Each listing can be viewed at the following URLs:

http://json.sandboxed.guru/chapter8/8-12.html

http://json.sandboxed.guru/chapter8/8-13.html

http://json.sandboxed.guru/chapter8/8-14.html

Note■■   If you have been following along with the supplied URLs and have yet to clear your cookies, you may
have witnessed some of the cookies from the previous chapter sent within the above requests.

abort
The final method of the request, abort, informs the HTTP request to discontinue/cancel the request. This
method effectively closes any connection that has been made to a server or prevents one from occurring if a
connection has not yet been made.

In addition to methods, the xhr object provides a few attributes that can help us with configuring our
request. These properties can be found in Table 8-9.

Table 8-9.  The Request Attributes of the xhr object

Properties Returned Value

Timeout Number (duration)

withCredentials * Boolean (credentials)

upload * XMLHttpRequestUpload (object)

Note■■  T he request properties that are not distinguished by an asterisk (*) are implemented by all modern
browsers, in addition to Internet Explorer 8. Those marked by an asterisk require IE 10 or greater.

http://json.sandboxed.guru/chapter8/8-12.html

Chapter 8 ■ Data Interchange

120

timeout
The timeout property can be set in milliseconds to that of any duration. The value supplied will be the
maximum allotted time for a request to complete. If a request surpasses the provided time, the time-out
event is dispatched to notify our application.

withCredentials
The withCredentials property can be set to that of either true or false. The value supplied is used to
inform the server that credentials have been supplied with a cross-origin resource request.

upload
The upload property, when read, provides our application with a reference to an XMLHttpRequestUpload
object. This object provides our application with the ability to monitor the transmission progress for the
entity body of a supplied request. This will be useful for any entity body that contains an excessive amount of
data, such as when allowing users to post various file attachments, such as images, or media.

At this point in time, you should possess the necessary understanding of the various methods and
properties possessed by the xhr object that will allow for devising and configuring an HTTP request from
a JavaScript application. The xhr provides us the vehicle we can leverage to transmit JSON to and from our
application.

EXERCISE 8-1. AJAX FORM POST

With this newfound knowledge, you should be able to convert the HTML <form> element of the
following code into an Ajax call.
 
<body>
 <div class="content">
 <form action="http://json.sandboxed.guru/chapter8/exercise.php"
 method="post" onsubmit="return ajax();">
 First-Name:<input name="fname" type="text" size="25" />
 Last-Name: <input name="lname" type="text" size="25" />
 <input name="mySubmit" type="submit" value="submit" />
 </form>
 </div>
 <script>
 function ajax() {
 //... insert HTTP Request here
 }
 </script>
</body>
 
As we will be controlling the request via JavaScript, and because our favored Content-Type is JSON,
make sure that the data of the entity body is provided as JSON. You can compare your answer to that of
the preceding code.

Chapter 8 ■ Data Interchange

121

Normally, the XMLHttpRequest object is incapable of making successful requests to servers that do not
possess the same origin as the document from which the request it initiated. However, I have employed a
technique, which you will learn about in Chapter 9, that will allow your xhr instances to successfully make
requests to the following request URI: http://json.sandboxed.guru/chapter8/exercise.php.

Unfortunately, if you are authoring your code using Internet Explorer 8 or 9 to make requests
against varying origins, you cannot utilize the XMLHttpRequest object. Instead, you must initialize the
XDomainRequest object. Furthermore, while the XMLHttpRequest enables you to specify the Content-Type via
the setRequestHeader, the XDomainRequest does not possess this capability.

The Response Aspect
While the xhr object enables us to configure the request, it will serve no purpose without the understanding
of how to extract the response provided. Therefore, the xhr object also incorporates various methods and
properties that are concerned solely with working with the response provided by the server.

As you learned earlier in the chapter, both the HTTP request and the response of said request are
broken into three components. These represent the request-line/status-line, headers, and the payload.
While both the headers and the payload are used in collaboration to arrive at a parsed response, they are
obtained separately via the xhr interface. The methods listed in Table 8-10 reflect the three methods of the
xhr interface that are utilized for working with the headers of the HTTP response, which will ultimately
inform our application of any details pertaining to the response.

Table 8-10.  Response Methods of the xhr object

Method Parameters Returned Value

getAllResponseHeaders N/A String (value)

getResponseHeader String (key) String (value)

overrideMimeType String (Content-Type) N/A

getAllResponseHeaders
The getAllResponseHeaders method of the xhr interface is used to return the various headers that have
been configured by the server to accompany the supplied response. When invoked, xhr returns a string of
all headers of the response as key/value pairs, each of which remains separated from another by a carriage
return and new line control characters. These control characters are represented by the following Unicode
values respectively: \u000D and \u000A. Furthermore, each key/value pair is separated from another via the
colon (:) token.

Knowing the syntax of the value returned, we can parse the string and simply extract each header into
an array, with the help of some minor string manipulation, as revealed in Listing 8-16.

Listing 8-16.  Extracting All Values That Are Configured to the Provided Response Headers

 ...truncated code
 5 //when the xhr load event is triggerd parse all headers
 6 xhr.onload = parseHeaders;
 7
 8 //parseHeaders will manipulate the string
 9 function parseHeaders() {
10 var headers = new Object();

http://json.sandboxed.guru/chapter8/exercise.php

Chapter 8 ■ Data Interchange

122

11 var responseHeaders = (this.getAllResponseHeaders());
12 //match sequences of characters that preceded control characters into an array
13 var headerArray = (responseHeaders.match(/[^\u000D\u000A].*/gi));
14 for (var i = 0; i < headerArray.length; i++) {
15 var akeyValuePair = headerArray[i];
16 var colonIndex = akeyValuePair.indexOf(":");
17 var headerKey = akeyValuePair.substring(0, colonIndex);
18 var headerValue = akeyValuePair.substring(colonIndex + 1);
19 headerValue = (headerValue.charAt(0) == " ") ? headerValue(1) : headerValue;
20 headers[headerKey] = headerValue;
21 }
22 }
 

Listing 8-16 demonstrates how all headers can be extracted with a simple function labeled
parseHeaders. Once the xhr load event notification is dispatched, parseHeaders is invoked (line 6). Once
the parseHeaders function runs, we initialize an object, which will be used to retain any and all found
headers and their values.

As parseHeaders is invoked by xhr, references to this remain implicitly set to the context of the xhr
object. Therefore, referencing this enables our function to invoke the getAllResponseHeaders method,
obtaining the string of all header-value pairs (line 11). The returned string is assigned as the value to the
variable labeled responseHeaders.

Utilizing a regular expression, we can extract any sequence of characters that precede the two control
characters, thereby separating one header-value pair from another. All found matches are then appended to
an array in the order they are encountered. Once the entire string has been compared against the pattern,
an array is returned, containing all matches respectively. In order to manipulate these matches further, we
assign the array as the value to variable headerArray (line 13). From there, we iterate over each indexed
value, so that we can separate the key from its value. Knowing that a colon (:) token is used to separate the
two, we can determine the location of said token (line 16), allowing us to extract everything up to the token
(line 17) and everything after the token (line 18). The two substrings, respectively, reflect the header and
its value. While the HTTP protocol states that headers and values are separated via the colon (:) token, they
are also separated by an additional space. Therefore, if the first character of the substring that represents our
value is that of a space, it is effectively removed (line 19). From there, we apply each key and its correlating
value to the headers object.

While it may not be immediately apparent why you would have to analyze all supplied headers, it will
simply come down to the use case. The getAllResponseHeaders is essential when your actions rely on the
metadata of the response. Such a use case would be when you pair an HTTP request with that of the request
method HEAD, which is used to solely fetch header information from a server.

getResponseHeader
The getResponseHeader method, whose signature can be viewed in Listing 8-17, can be utilized to obtain
the value for the specified response header, as configured by the server. The key supplied can be either
uppercase or lowercase, but the format of the argument must be that of a string.

Listing 8-17.  The Signature of the getResponseHeader Method of the xhr object

getResponseHeader(key);
 

If the key supplied is not a configured header among those possessed by the response, the value returned
will be that of null. Much like getAllResponseHeaders, being able to analyze the meta-information supplied
within the response can be vital in coordinating how you display, update, or even utilize the data provided.

Chapter 8 ■ Data Interchange

123

As was explained earlier, the X in Ajax represents XML, because, at the time, XML was the only data
type outside of plain/text able to be parsed by the xhr object. While many browsers have been making great
strides to offer a variety of natively returned data types, ranging from plain text to JSON, Internet Explorer 8
and 9 continue to provide us only with the original two flavors. This makes for a particularly strong case as
to why one would require the use of getResponseHeaders. If the data type supplied from the server is not in
fact XML, with the use of the getResponseHeaders method, one is able to obtain the correct Content-Type of
the supplied entity body and correctly parse the string per the syntax of said data format, as demonstrated in
Listing 8-18.

Listing 8-18.  HTTP POST to exercise.php with Configured Content-Type and Accept Headers

 1 var xhr = new XMLHttpRequest();
 2 xhr.open("POST", "http://json.sandboxed.guru/chapter8/exercise.php");
 3 xhr.setRequestHeader("Content-Type", "application/json");
 4 xhr.setRequestHeader("Accept", "application/json");
 5 xhr.onreadystatechange = changeInState;
 6 xhr.send('{"fname":"ben","lname":"smith"}');
 7
 8 function changeInState() {
 9 var data;
10 if (this.readyState === 4 && this.status === 200) {
11 var mime = this.getResponseHeader("content-type").toLowerCase();
12 if (mime.indexOf('json'))) {
13 data = JSON.parse(this.responseText);
14 } else if (mime.indexOf('xml'))) {
15 data = this.responseXML;
16 }
17 }
18 }
 

Listing 8-18 leverages our earlier exercise to help demonstrate the benefit of the getResponseHeader
method. Thus far, I have not discussed what data type the earlier exercise returns as the response entity.
I also have not yet discussed any of the properties that enable you to read the obtained request. Unless you
looked at the headers provided by the response via the developer console, you may not have known whether
the entity body returned was that of XML, HTML, plain text, or JSON. Odds are you cleverly deduced it
was JSON, as you realized the context of this book. However, the point is that you may not have known for
certain. Therefore, rather than assuming, it’s best to account for the varying possibilities, so that you are able
to work with the supplied data accordingly.

Listing 8-18 begins with the initialization of our xhr object and supplies it with the necessary HTTP-Method
and request-URI (line 2). As our request method is specified as POST and will be supplying data to the server,
we continue to configure the Content-Type of the provided data (line 3), informing the server how to parse
it correctly. As this book concerns working with JSON, we inform the server that our application accepts the
Content-Type of application/json (line 4). In order to monitor the state of the request, the changeInState
function is assigned as the callback (line 5). While I chose to make use of the onreadystatechange to monitor
the state of the request, I could have just as easily used the onload event handler. However, as the event
handlers are only available in Internet Explorer 8, I wanted to demonstrate how to achieve the results of the
onload notification, for those who must continue to work with older browsers.

Last, we use the send method of the xhr object to invoke the HTTP request and, in doing so, provide it
with the necessary JSON data to POST (line 6).

The function changeInState (line 8) supplied as the callback to the onreadystatechange is not only
used to determine the change in state but also the Content-Type, if the request is successful (line 11).
If you relied on the onload event handler, you would not have to determine the state, as the event suggests

Chapter 8 ■ Data Interchange

124

it’s done. However, because the onreadystatechange is triggered each time the readyState property of the
xhr object is updated, it’s imperative to query the status of the request.

In order to distinguish among the five various states of the xhr object, it is necessary to determine the
value of the readyState property. If the readyState value is 4, we know the current state of the xhr object is
DONE. However, in order to determine if the response has successfully provided us with an entity body, the
status code is also analyzed (line 10). If the status code is found to be 200, which signifies that a response is
successful, we can begin to determine how to parse the data of the response.

We begin by utilizing the getResponseHeader to obtain the lowercase value of the specified
Content-Type for the response, as configured by the server (line 11). Once we have obtained the value, we
determine if it matches the JSON MIME type (line 12) or that of XML (line 14). Depending on the outcome
of the determined type, the appropriate value is assigned to the data variable. If the Content-Type is found
to be that of XML, the value is obtained via the responseXML property of the xhr object (line 15). However,
should it be determined that the response has been provided in the JSON data format, we must obtain
the raw string from the responseText and supply it to the native JSON Object to be parsed (line 13). I will
discuss the responseXML and responseText properties in the next section.

overrideMimeType
The overrideMimeType method enables our application to override the configured Content-Type of the
response body when obtained. FireFox, Chrome, and Safari have implemented this method, which was
added in the XMLHttpRequest Level 2 draft standard. However, at the time of this writing, it is currently
unavailable in Internet Explorer 11.

Obtaining the Response
The variety of properties of the xhr object listed in Table 8-11 provides us with the necessary means to obtain
the provided response of the HTTP request. It will be with the help of these attributes that we will come full
circle in our ability to initiate a request and, ultimately, obtain the response of that request.

Table 8-11.  The Response Properties of the xhr object

Properties Access type Returned Value

readyState Read Integer (state)

status Read Integer (HTTP status Code)

statusText Read string (HTTP status)

responseXML Read XML (value)

responseText Read string (value)

responseType Read/Write XMLHttpRequestResponseType (object)

response Read * (value)

readyState
The readyState property of the xhr object exhibits the current state of the HTTP request. Throughout the
asynchronous process of the HTTP request, the readyState attribute will be updated regularly to reflect
the status of the request. The values for which it can be assigned are the integers discussed previously
in Table 8-6.

Chapter 8 ■ Data Interchange

125

Note■■  A s the states reflected are rather broad, the readyState property will often be paired with other
properties, such as the status or statusText properties, in order to arrive at the necessary outcome.

status
The status property of the xhr object supplies an application with the ability to obtain the HTTP status code
of the response. Currently, there are five classes for the status codes. These classes are those outlined earlier
in the chapter in Table 8-3.

Listing 8-18 relied on both the readyState and the status property to determine if the load had
completed successfully. As shown on line 10, if(this.readyState === 4 && this.status === 200), we
determined via the readyState if the xhr request had ended, in addition to determining whether the status
of the response is that of 200. A status code of 200 indicates that the request has been acknowledged.

statusText
statusText, like the status, is yet another property of the xhr object that is concerned with providing us the
appropriate status regarding the fulfillment of the response. Each status code is accompanied by a textual
phrase that provides additional information regarding the status. Via statusText, the description that
accompanies the status code can be obtained and read by our application.

Using our 200 status code as an example, it is accompanied with the textual phrase OK. This is very
helpful when obtaining descriptive issues that can be relayed back to the user, or even a developer, during
the course of debugging.

Note■■  T he textual phrase that accompanies the status code is intended more for debugging than for
controlling the flow of an application.

responseXML
responseXML is the attribute of the xhr object that enables an application to obtain an XML response
provided by the server. As the data supplied within the response will not always be configured as one of the
XML Content-Types, application/xml or text/xml, the responseXML attribute will not always provide a
value. In the case of a server providing a response with the Content-Type that is not indicative of XML,
a value of null will be returned when read from our application.

It should be made known that responseXML is not solely for an XML document. Due to the resemblance,
the responseXML attribute can also be used to retrieve HTML documents identified by the text/html
Content-Type.

responseText
responseText is a property of the xhr object that provides our applications with the ability to obtain the raw
text of the entity body, as provided by the response. While responseXML may often possess a value of null,
responseText will always possess a value.

Chapter 8 ■ Data Interchange

126

Because the responseText attribute provides our application with the raw entity body received as a
string, we must obtain the value of the Content-Type header. The configured Content-Type header will give
us insight as to the syntax required for parsing the string. Once this is obtained, we can parse the string into
the intended format, as demonstrated on line 13 of Listing 8-18.

responseType
The responseType property of the xhr object is concerned with the parsing of data types natively, beyond
that of mere XML. As has been previously stated, the xhr object has the ability to parse a response as XML
data. However, as XML is not today’s data interchange standard, and has not been for quite some time,
much of the parsing that occurs is forced to take place on the client side. Unfortunately, this puts the onus
on the application to parse a string. Essentially, this increases the odds of blocking the single thread of the
JavaScript engine. By allowing the browser to parse the request, the JavaScript thread is less likely to
become blocked.

The responseType property has been added to the XMLHttpRequest Level 2 draft standard in an
attempt to offload the parsing from the client side for five particular Content-Types. These are the following:
arraybuffer, blob, document, text, and json. This is great news for JSON because, as you may recall,
JSON.parse is a blocking method. In order to offload the parsing of our response entity to the process
handling the request, we must configure the responseType before we invoke the send method. Any one of
five aforementioned data types can be assigned as the value for the responseType attribute.

By configuring our request with a responseType attribute, we are able to inform the xhr process to parse
the entity body against the indicated syntax. In Listing 8-19, I’ve indicated that the syntax is that of JSON.

Listing 8-19.  HTTP Request Configured to Parse JSON

1 var xhr = new XMLHttpRequest();
2 xhr.open("POST", "http://json.sandboxed.guru/chapter8/exercise.php");
3 xhr.setRequestHeader("Content-Type", "application/json");
4 xhr.setRequestHeader("Accept", "application/json");
5 xhr.onreadystatechange = changeInState;
6 xhr.responseType = "json";
7 xhr.send('{"fname":"ben","lname":"smith"}');

response
The response property of the xhr object, like responseXML and responseText, provides our application with
a way to obtain the entity body of the fulfilled request. However, the major difference is that the value read
will be parsed, that is, if we have configured the HTTP request with responseType. Otherwise, the value
returned is an empty string.

Listing 8-20 revisits the previous listing and configures the request to utilize the responseType of JSON
(line 6). As the parsing will now occur within a separate process from our application, we no longer need to
parse the JSON ourselves. Therefore, we can replace line 14 with that of the response attribute, which should
now hold a JavaScript object.

Listing 8-20.  HTTP Request Obtaining the Parsed JSON from the xhr Response Property

 1 var xhr = new XMLHttpRequest();
 2 xhr.open("POST", "http://json.sandboxed.guru/chapter8/exercise.php");
 3 xhr.setRequestHeader("Content-Type", "application/json");
 4 xhr.setRequestHeader("Accept", "application/json");
 5 xhr.onreadystatechange = changeInState;

Chapter 8 ■ Data Interchange

127

 6 xhr.responseType = "json";
 7 xhr.send('{"fname":"ben","lname":"smith"}');
 8
 9 function changeInState() {
10 var data;
11 if (this.readyState === 4 && this.status === 200) {
12 var mime = this.getResponseHeader("content-type").toLowerCase();
13 if (mime.indexOf('json'))) {
14 data = this.response;
15 } else if (mime.indexOf('xml'))) {
16 data = this.responseXML;
17 }
18 }
19 }
 

While the responseType and response properties have been implemented in most browsers, Internet
Explorer continues to remain behind the times. XMLHttpRequest Level 2 methods and attributes are only
available in IE 10 or greater.

The preceding examples relied on the provision of dynamic data from a database on my server.
However, Ajax does not necessarily have to work with dynamic data. In fact, Ajax is fantastic at loading static
files as well. Listing 8-21 exposes the content body of a file labeled images.json, which reveals the following
JSON within.

Listing 8-21.  JSON Content Within /data/imagesA.json

{
 "images": [
 {
 "title": "Image One",
 "url": "img/AndroidDevelopment.jpg"
 }, {
 "title": "Image Two",
 "url": "img/php.jpg"
 }, {
 "title": "Image Three",
 "url": "img/Rails.jpg"
 }, {
 "title": "Image Three",
 "url": "img/Android.jpg"
 }
]
}
 

Listing 8-21 reveals an object that possesses a singular member labeled “images”. Images, as a key,
reference the value of an ordered list, where each index of said ordered list references an object. These
objects represent the necessary details pertaining to various images that will be added dynamically to our
page. The key url reflects the location from which the image is supplied, while the title is used to populate
the alt tag of the dynamically inserted image. Listing 8-22 reveleals the code that will load, parse and insert
data/imagesA.json into an HTML document.

Chapter 8 ■ Data Interchange

128

Listing 8-22.  The Body of an HTML File That Utilizes Ajax to Load the JSON Document data/imagesA.json

 1 <body>
 2 <input type="submit" value="load images" onclick="loadImages('data/imagesA.json')"/>
 3 <script>
 4 function loadImages(url) {
 5 var body = document.getElementsByTagName("body")[0];
 6 var xhr = (window.XDomainRequest) ? new XDomainRequest() : new XMLHttpRequest();
 7 xhr.open("GET", url);
 8 xhr.onload = function() {
 9 var data = JSON.parse(this.responseText);
10 var list = data.images;
11 for (var i = 0; i < list.length; i++) {
12 var image = list[i];
13 var listItem = document.createElement("li");
14 var img = document.createElement("img");
15 img.src = image.url;
16 img.alt = image.title;
17 listItem.appendChild(img);
18 body.appendChild(listItem);
19 }
20 };
21 xhr.onerror = function() {
22 alert(this.status + " " + this.statusText);
23 };
24 xhr.send();
25 };
26 </script>
27 </body>
 

Listing 8-22 demonstrates the use of Ajax to load the static file from Listing 8-21, populating a variety
of images within the page. The document reveals nothing but a submit button within the page (line 2). This
button, when clicked, will trigger the JavaScript code that will both load the image.json file and dynamically
insert each found image into the body of our page. This will allow users to load our image set at a time of
their choosing, rather than adding to the initial file size of the web page. When the button is clicked, the
function loadImages (line 4) initiates the HTTP request. Because only modern browses and later versions
of Internet Explorer possess the XMLHttpRequest object, we must first determine what object must be
instantiated, to make the proper request. We do so by determining whether the window object possesses
the XDomainRequest object (line 6). If the XDomainRequest object is available, we use our tertiary operator
as a condensed if/else block, to instantiate an XDomainRequest instance. If, however, the evaluation
to determine whether the XDomainRequest is available fails, our code will instantiate the more modern
XMLHttpRequest. Once our xhr object is instantiated, we configure it with the appropriate request method
and URL (line 7).

Because we are working with static content, rather than making a POST request, we will rely on the GET
HTTP-Method to obtain the provided URI. Using the onload and onerror event handlers of the xhr object,
we will monitor the state of the request. If the request is successful, the onload event handler will initiate the
body of code that will obtain the request body from responseText. Knowing that the content provided within
is JSON, we will obtain the plain/text from responsetText and parse it utilizing the JSON Object (line 9).
Once we obtain our data tree, we can reference the ordered list of images via the images key (line 10).
From there, using a for loop, we iterate over each and every index possessed by our ordered list (line 11).
By regarding each image object individually, we can obtain the values held within to construct the necessary
markup that will be used to present our images.

Chapter 8 ■ Data Interchange

129

Figure 8-4.  Use of Ajax to load and display images

In order to have our images display as a vertical list, we create a list item for each image. By using the
document.createElement method, we are able to create HTML elements simply by providing the method
with a string representing the tag we wish to create. In this case, as we wish to create a list item, we supply
the document.createElement method with the string li and retrain the reference to the HTMLobject
returned (line 13); Next we create another HTMLobject (line 14), only this time it will be an element that
represents the img tag. Using the reference to the image, we supply its attributes src and alt with the details
that were extracted from the image objects (line 15 and line 16). Next, we use the appendChild method to
append the image as a child of our list item (line 17). Additionally, we add the list item as a child of the body
of the page, so that it will be visible to the document (line 18). This process is repeated until all images have
been account for.

If the request fails, our application will alert us to the status code and the status description of the failure
(line 22). Last, we invoke the request to begin by calling the send method on the instantiated xhr object
(line 24). The preceding code should result as shown in Figure 8-4.

It should be mentioned that the object that enables HTTP requests are strictly for making requests from
a web server. Therefore, attempting to load files via Ajax locally will not work, unless they are run from a web
server. Many web editors, such as WebStorm, Aptana, and VisualStudio, will run your local code within a
temporary server, in which case, you would have no trouble following along with the provided source code.

Despite earlier discussions surrounding Content-Type and how the server should always configure it,
you may have recognized that we did not have to configure the Content-Type, even though we were being
provided JSON. Yet, if by some chance you were to have inspected the response header of Listing 8-22
with the developer console, you would have witnessed that the Content-Type of the response read
“application/json,” as indicated in Figure 8-5.

Chapter 8 ■ Data Interchange

130

Figure 8-5.  The response header for imagesA.json exhibits the configured Content-Type as application/json

As was mentioned in the history of JSON in Chapter 4, Douglas Crockford’s formalization of JSON
included the registered Internet media type application/json, in addition to the file extension .json. While
a file extension doesn’t explicitly define the encoding of the content contained within, servers are able to
infer Content-Types for commonly recognized file extensions. As JSON is the preferred interchange format,
it should come as no surprise that most servers can equate the .json extension with the Content-Type of
application/json. Therefore, the response is configured with the inferred Content-Type: application/json.

EXERCISE 8-2. LOAD MORE IMAGES

If you haven’t done so already, click the “load images” button from the previous listing two more times
and take note of what’s occurring. With each click, a new xhr object is instantiated, initiating a new
HTTP request. Providing the request is being fulfilled, the page should now display duplicates of the
images loaded. As it serves little use to display duplicate content, rewrite the code from Listing 8-22,
so that each subsequent request will load a new JSON file containing no more than four different images.

You will find more images within the img folder that accompanies the source code for this chapter.
(You can find the code samples for this chapter in the Source Code/Download area of the Apress web
site [www.apress.com]). Reference these images within two more static JSON documents to be loaded
in and displayed via Ajax. Feel free to duplicate the images.json file located within the data folder and
simply replace the titles and URLs. Or, you can devise the JSON with the assistance of one of the editors
discussed in Chapter 4.

Summary
This chapter covered the essentials of the Hypertext Transfer Protocol (HTTP), which is necessary to
comprehend when working with the interchange of data. By applying this knowledge, combined with the
built-in objects that enable HTTP requests via JavaScript, we have been able to send, as well as receive,
JSON in the background of our applications. Furthermore, using the techniques that make up Ajax, we were
able to incorporate data without the need for full-page refreshes.

Ajax has surely broadened the scope of possibility for modern-day front-end development. Conversely,
its popularity has also resulted in an increase of security concerns. As browsers continue to improve
measures to thwart malicious behavior, the ease of data interchange across origins has often been a difficult
task to circumvent. In the upcoming chapters, you will not only learn how to overcome these issues from a
server-side implementation, you will also set up a local server, so that you can employ these techniques.

http://www.apress.com/

Chapter 8 ■ Data Interchange

131

Key Points from This Chapter
A request/response possesses three components.•	

A request is initiated by a client.•	

A response can only be provided from a web server.•	

The •	 GET method is a safe method.

The •	 POST method is an unsafe method.

The request URI identifies the resource that the request method applies.•	

The current HTTP version is 1.1.•	

General headers pertain to general information.•	

Request headers communicate preferential information.•	

Entity headers supply informative information regarding the supplied entity body.•	

General headers and entity headers can be configured by both client and server.•	

Response status codes are used to indicate the status of the request.•	

The Content-Type header regards the MIME type of an entity.•	

The Accept header is used to inform the server of the data types it can work with.•	

The •	 XMLHttpRequest Object enables HTTP requests from JavaScript.

The •	 XMLHttpRequest Object is available in all modern browsers as well as IE 8.

•	 XMLHttpRequest cannot be used for cross-origin requests in IE 8/9.

•	 XDomainRequest can be used for cross-origin requests in IE 8/9.

•	 XDomainRequest lacks the setRequestHeader method.

•	 XMLHttpRequest and XDomainRequest expose event handlers to notify of state.

The •	 .json extension is recognized by servers and will default the Content-Type to
application/json.

Custom headers begin with an •	 X.

Status code 200 represents a successful request.•	

Prior to IE 10, •	 XMLHttpRequest could only parse XML/HTML documents.

133

Chapter 9

X-Origin Resources

The browser’s inclusion of the XMLHttpRequest object offers front-end developers a means of interchanging
data simply, with the use of JavaScript. Prior to Ajax becoming a highly recognized term, the exchange
of data was primarily made possible through a series of full-page requests. Only through front-end hacks
could data appear to be loaded-in dynamically. Therefore, when it became possible to make HTTP requests
from within JavaScript, it instantly became a hot topic.

Such a prevalence of network access has much cause for concern, however. As Ajax became regular
practice, web sites were becoming more and more exposed to the possible injection of malicious code.
Needless to say, this is a serious matter for sites transmitting data, let alone sensitive data such as credit
cards, bank accounts, or even personally identifiable information. In order to reduce web sites’ being
exposed to malicious requests, the XMLHttpRequest restricts network access only to resources that can
be considered trusted. However, therein lies part of the problem: How do you define what resources are
considered trustworthy?

The policy that prevents data from being usable from varying origins is the same-origin policy (or SOP).
This chapter will discuss the impact of the SOP when regarding the interchange of resources between two
varying origins. Additionally within this chapter, I will discuss the techniques that can be used to combat
said limitations.

Same-Origin Policy
The same-origin policy (SOP) has been in effect since the introduction of JavaScript and continues to
remain an important aspect of web security. The SOP is the security model commonly adhered to by all
user-agents. While the policy has been revisited many times since its genesis (largely in an ad hoc fashion),
today, the SOP governs a variety of front-end securities, such as matters surrounding DOM access, cookies,
Web Storage, and network access. The SOP even applies to web plug-ins, such as Flash, Java, and Silverlight.
While the latter list is not complete, it’s certainly more than enough to demonstrate how the SOP can be a
major obstacle for modern-day web development.

In the previous chapter, I presented you with an exercise that required the use of an HTTP request that
would POST data to the specified resource exercise.php, residing at the address http://json.sandboxed.
guru/chapter8/. Upon a successful reception of the request, the server would respond in kind with an
entity body, which could be used by any application. However, you may recall that I mentioned that this
is behavior not typically allowed by the user-agent. In that particular example, I employed a technique for
that particular resource that enables an Ajax request to be successful. Ordinarily, the user-agent wouldn’t
allow the request to succeed, as the origin from which your request initiated did not reflect the same origin
as the resource.

http://json.sandboxed.guru/chapter8/
http://json.sandboxed.guru/chapter8/

Chapter 9 ■ X-Origin Resources

134

Generally speaking, the SOP restricts which network messages one origin can send to another. The
purpose of this policy is to prevent a resource such as a JavaScript application from origin-A from obtaining
the resources provided by origin-B, as the intent may be malicious. This policy is, of course, enforced by the
user-agents that are being used to make such network requests.

Note■■   Due to legacy purposes, SOP policies vary to the degree by which they are enforced between the
various web technologies.

At this point in time, I’d like for you to attempt to load another static file from my server. Only this time, I
have not employed the same techniques as the exercise in Chapter 8.

EXERCISE 9-1. XHR AND SOP

Open your preferred browser and navigate to http://sandboxed.guru/xss-exercise.html. Next,
open the developer tools provided by your browser and ensure that the console tab is in view. Using
the free-form field within the console, construct an HTTP request that makes use of the GET method to
enact on the following resource: http://json.sandboxed.guru/chapter9/data/images.json.

Be sure to use the log method of the console, console.log(string);, to print to the console
the raw text of the response (responseText), in order to witness the returned data once the load is
complete. Last, be sure to log out an error message if the onerror event handler is dispatched, should
anything go wrong with our request.

If you are using Internet Explorer 8 or 9, it will be essential to instantiate the XDomainRequest over the
XMLHttpRequest object, as we will be making a cross-origin request. A convenient way of determining
whether your script must instantiate the XDomainRequest object over the XMLHttpRequest object
for cross-origin requests is to test whether the browser executing the request possesses a particular
attribute that belongs to the XMLHttpRequest Level 2 interface. This attribute is particular to cross-
origin requests and exists in modern browsers as well as Internet Explorer 10 and up. The attribute is
the withCredentials attribute. Utilizing the JavaScript in operator, we can test whether or not the
withCredentials attribute exists on an XMLHttpRequest instance. If the attribute does not exist, we
must instantiate an XDomainRequest instance. This technique eases our efforts to determine if the
browser should rely on XDomainRequest, or not, for these types of requests. If you were to incorporate
this conditional logic along with the necessary code required by the exercise, your code should
resemble that of Listing 9-1.

Listing 9-1.  Determining Whether to Use the XDomainRequest or the XMLHttpRequest Level 2
Interface for a Cross-Origin Request

 1 var xhr= new XMLHttpRequest();
 2 if(!"withCredentials" in xhr){
 3 xhr= new XDomainRequest();
 4 }
 5 xhr.open("GET","http://json.sandboxed.guru/chapter9/data/images.json");
 6 xhr.onload=function(){
 7 console.log(this.responseText);
 8 };

http://sandboxed.guru/xss-exercise.html
http://json.sandboxed.guru/chapter9/data/images.json

Chapter 9 ■ X-Origin Resources

135

 9 xhr.onerror=function(){
10 console.error("Error Occurred");
11 }
12 xhr.send();
 

Listing 9-1 begins by creating an instance of the XMLHttpRequest and assigns the instance as the
reference to a variable labeled xhr (line 1). Utilizing the in operator, along with the instance held
by xhr, we can determine if the withCredentials attribute is exposed by the object (line 2). If the
value returned by the expression is false, the instance is incapable of fulfilling cross-origin requests;
therefore, we replace the existing xhr reference with an instance of the XDomainRequest (line 3).

Once you have coded the request within the console of the developer’s tools, such as in Figure 9-1,
execute the code and observe the result.

Figure 9-1.  Cross-origin request being made to json.sandboxed.guru from sandboxed.guru

Next navigate your browser to http://json.sandboxed.guru/chapter9/xss-exercise.html; run the
preceding code once more; and observe the results.

If you followed along with the exercise, you should have witnessed the alert box containing the raw
JSON data during the execution of the latter request, as seen in Figure 9-2. However, while executing the
same request from the initial origin, sandboxed.guru, the alert box was not presented. Instead, messaging
was output to the console, alerting us to the fact that the request cannot occur (see Figure 9-3).

Chapter 9 ■ X-Origin Resources

136

Figure 9-2.  Same-origin request being made to json.sandboxed.guru from json.sandboxed.guru,
resulting in response

Figure 9-3.  Chrome developer tools indicating that the request is not allowed access

Chapter 9 ■ X-Origin Resources

137

As shown in Figure 9-3, Chrome’s developer console reveals the following error messaging:

XMLHttpRequest cannot load http://json.sandboxed.guru/chapter9/data/images.json.
No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin
'http://sandboxed.guru' is therefore not allowed access.

From the preceding message, we can ascertain that the request cannot be completed, because the
response for the resource exercise.php is not configured to possess the Access-Control-Allow-Origin
header. Depending on the browser used to make the request, you will most assuredly receive a different
message. For example, Firefox, as shown in Figure 9-4, sends the following error messaging:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote
resource at http://json.sandboxed.guru/chapter9/data/images.json. This can be fixed by
moving the resource to the same domain or enabling CORS.

Figure 9-4.  Firefox alert stating that the request is not allowed access

Unfortunately, Internet Explorer’s implementation of the XDomainRequest will not alert us to any
error messaging, other than the one provided by us to be output upon a possible dispatch of the onerror
notification. On the other hand, if you were using Internet Explorer 10 or greater, as those versions
implement a vast majority of the XMLHttpRequest Level 2 standardization, they would inform you of the
failed incident. Furthermore, the error message reveals that incorporating Cross-Origin Resource
Sharing (CORS), similar to Chrome and Firefox, can resolve the problem. Before I begin to discuss CORS,
I will continue to discuss our findings further.

Depending on the browser you are using to make the request, you may not witness any HTTP response
headers from within the network panel of the developer console. This, unfortunately, might lead you to
believe that the request is prevented from even taking place. While the response may not appear in the
network tab of the developer toolbar, I can assure you that the request has, in fact, been submitted to the
requested resource. However, being that the request is not considered trusted or authorized, the user-agent
shields us from being able to witness a response from the server.

http://sandboxed.guru
http://json.sandboxed.guru/chapter9/data/images.json

Chapter 9 ■ X-Origin Resources

138

If you were to make the same request with the popular Firebug add-on for Firefox, you would continue
to receive the same error message as with the other browsers. Yet, upon navigating to the network panel, you
would be able to see a series of response headers for the request. Furthermore, the Content-Length entity
header, as configured by the response, suggests there is an entity body of precisely 270 bytes, and that the
MIME type of the data, as configured by the Content-Type header, is that of application/json. Last, the
status line reveals that the request was understood as it is configured, with the status code 200 and the text
phrase of OK (see Figure 9-5). These aspects should demonstrate unquestionably that the request is being
received. However, if you were to view the Response tab from within the navigation view, you will find the
data to be missing.

Figure 9-5.  Firebug developer tool revealing the response status line as successful

Based on the outcome of the earlier exercise, it should be evident that resources are limited in their
ability to be requested from varying origins, regardless of whether the two origins involved are owned by the
same individual. It should be evident that a domain and its subdomain are not considered trusted by default
and, therefore, cannot make resource requests of one another. Resource requests are inherently trusted only
from resources that have the same origin. This is why the subsequent request of our exercise alerted us to
JSON data, while the former attempt did not.

In short, the following resource http://json.sandboxed.guru/chapter9/data/images.json is
available only to another resource that has the same origin, i.e., http://json.sandboxed.guru. While these
two URLs are considered to have the same origin, it is for reasons that may not be as obvious as you might
think. Origins aren’t considered to be of the same origin solely because they possess the same hostname.
Specifically, a resource is considered authorized to obtain/retrieve content from another resource only if the
two resources possess the exact same scheme, domain, and port.

I hope that Listing 9-2 looks familiar, as this is the general schema for a web URL. If you are thrown by
the :port/ component, that is okay, as it’s not always required to incorporate the port into a URL. However,
that does not detract from the fact that it’s always accounted for behind the scenes.

http://json.sandboxed.guru/chapter9/data/images.json
http://json.sandboxed.guru/

Chapter 9 ■ X-Origin Resources

139

Listing 9-2.  Syntax of an HTTP URL

scheme://domain:port/path/?key=value
 

Scheme: The scheme, sometimes referred to as the protocol, defines how an
indicated resource will be obtained. There are a variety of protocols that can be
specified, such as ftp, http, and even https. Typically, the scheme that is used
when viewing web sites will be that of http. However, it can also be that of https,
where the s means that the transmission occurs securely. This is commonly used
when you log in to a site such as a bank or web mail.

Domain: As you may have guessed, the domain is the human-friendly means of
referring to a specific destination. However, this domain name itself is actually
converted behind the scenes to a static IP address.

Port: The port number is an optional endpoint that can be used to specify a
specific application running on a common IP address. When a port is not defined,
it falls back to the default port for the supplied scheme. In the case of an HTTP
scheme the default port is 80. In the case of HTTPS, the default port is 443.

These three distinct aspects of the HTTP-URL scheme are used by the user-agent to determine
whether it must enforce the SOP. Table 9-1 demonstrates which requests will be considered authorized
and which won’t.

Table 9-1.  The Same-Origin Policy in Effect, Demonstrating Whether a Source Origin Is Authorized to a Request

Request Origin Resource Origin Allowed Reason

http://json.sandboxed.guru/a.html http://json.sandboxed.guru/b.php True

http://json.sandboxed.guru/a.html http://json.sandboxed.guru/chapter8/b.php True

http://json.sandboxed.guru/a.html https://json.sandboxed.guru/b.php False Scheme

http://json.sandboxed.guru/a.html http://json.sandboxed.guru:81/b.php False Port

http://json.sandboxed.guru/a.html http://json.sandboxed.guru:80/b.php True

http://json.sandboxed.guru/a.html http://sandboxed.guru/b.php False Domain

To further prevent any script from forging the request, certain headers are unable to be defined via
the setRequestHeader method of the XMLHttpRequest object. Instead, they are explicitly defined by the
user-agent. Any attempt to provide a value for these headers via the setRequestHeader will be overridden
by the user-agent. These headers are the following:

Host•	

Origin•	

Referer•	

Via•	

http://json.sandboxed.guru/a.html
http://json.sandboxed.guru/b.php
http://json.sandboxed.guru/a.html
http://json.sandboxed.guru/chapter8/b.php
http://json.sandboxed.guru/a.html
https://json.sandboxed.guru/b.php
http://json.sandboxed.guru/a.html
http://json.sandboxed.guru:81/b.php
http://json.sandboxed.guru/a.html
http://json.sandboxed.guru:80/b.php
http://json.sandboxed.guru/a.html
http://sandboxed.guru/b.php

Chapter 9 ■ X-Origin Resources

140

The requests made by browsers work on our behalf, hence the term user-agent.1 It is they who enforce
the SOP, to ensure that our daily Internet interactions remain as safe as possible. The SOP is an extremely
important concept to understand, which is why this chapter is important to a subject that looks to network
access to exchange JSON data. The fact that the user-agent acts on our behalf is an important concept for a
front-end developer to grasp. The reason, as you will soon see, is because the power to bypass the limitations
of the SOP lies on the back-end side of programming, rather than the front end. Unfortunately, not all
back-end developers are aware of these SOP requirements, simply because server-side programing does not
involve a user-agent that governs HTTP requests. To put it plainly, they don’t have to deal with these issues.
As the adage goes “there’s more than one way to skin a cat,” and there is an exuberant amount of server-side
languages. In this chapter, all back-end programming will be demonstrated with the use of the highly popular
PHP language. However, the programming language could just as easily be Java, .NET, etc.

If you are a Chrome user, such as myself, there is a fantastic HTTP request plug-in that I use to
conveniently test web services. This plug-in is known as Postman and can be obtained from the browser
via the extensions URL https://chrome.google.com/webstore/search/postman%20rest%20client.
Alternatively, the browser extension can be obtained from the developer’s web site: www.getpostman.com/.
Once the extension is installed, navigate to the following URL: chrome://apps/, within your Chrome
browser, and launch Postman by clicking the visible shortcut. Upon launch of the application, you should
witness an interface that is not unlike that shown in Figure 9-6.

1What’s My User Agent, “What’s a User Agent String,” www.whatsmyuseragent.com/WhatsAUserAgent, 2015.

Figure 9-6.  Interface of Postman

https://chrome.google.com/webstore/search/postman%20rest%20client
www.getpostman.com/
chrome://apps/
http://www.whatsmyuseragent.com/WhatsAUserAgent

Chapter 9 ■ X-Origin Resources

141

Figure 9-6 reveals the interface of the Postman HTTP request builder. As an extension to the browser,
Postman doesn’t rely on the XMLHttpRequest or XDomainRequest objects to fulfill network requests.
Therefore, any request from Postman occurs unencumbered by the SOP. Utilizing the applications interface,
we will re-create the request from our earlier exercise, to obtain the following resource:
http://json.sandboxed.guru/chapter9/data/images.json.

Within the form field that states “Enter request URL here,” supply the aforementioned URL. To the
right-hand side of this field, you can witness a combo-box. This input field represents the request method.
By giving focus to this field, we are able to select the necessary method to enact on the supplied resource.
Fortunately for us, GET is the default selection, so we will leave that as is. To the right of the combo-box is the
button labeled “Headers,” which, when clicked, will reveal a pair of input fields below the URL field of the
request. Utilizing the Header and Value fields, respectively, we can configure specific headers of the request.
Figure 9-7 illustrates the provision of two familiar headers, Accept-Language and Accept.

Figure 9-7.  Configuring a GET request with Postman

At this point, locate the Send button at the lower left of the screen, to initiate the request. Upon sending
the request, depending on your Internet connection, you should be provided with a status line of 200,
revealing that the request was successful. Following the status, you should see the JSON content for the
requested resource. The results should reflect those captured in Figure 9-8.

http://json.sandboxed.guru/chapter9/data/images.json

Chapter 9 ■ X-Origin Resources

142

Circumventing Same-Origin Policy
As has been revealed, the browser limits the network access occurring between two varying origins, in order
to enforce the same-origin policy. However, as the SOP has been adjusted in an ad hoc fashion over time, a
couple of loopholes do exist, which we will leverage, in order to facilitate cross-origin requests.

Figure 9-8.  A successful response is provided

Chapter 9 ■ X-Origin Resources

143

CORS
The first technique that I will discuss, which sidesteps the same-origin policy (SOP), is that of CORS. CORS,
as mentioned previously, is an acronym that stands for Cross-Origin Resource Sharing. CORS, which is the
W3C-approved technique to handle cross-origin requests, does not eliminate the SOP. It elaborates upon
the model in a way that enables servers to opt in to requests that may not be trusted, thus, informing the
user-agent that it should not prevent the response from being obtained from Ajax requests of varying origins.
The CORS specification defines how a server, as well as a user-agent, is to coordinate the authorization of a
request by a web application from a varying origin.

The overview of how CORS works is simple. For every Ajax request, the user-agent is notified that a
request is to be initiated via the send method of the xhr object. As a result of this invocation, the request
begins. However, during the request, the user-agent and the server communicate via the inclusion of special
HTTP headers, in order to determine if the request should be facilitated.

In our earlier exercise, we received notice from the browser that our request was unable to be carried
out, due to the fact that the received response lacked the Access-Control-Allow-Origin header. Access to our
origin was refused. The fact that the response did not possess a particular response header was all it took
to inform the user-agent that the provided data was not intended for the origin that initiated the request.
Therefore, whether or not the server successfully received the request was moot, as the user-agent denied
our application access.

Access-Control-Allow-Origin is just one header among a handful that is defined by the CORS
specification. In fact, there are fewer than ten in total. Three are configured by the user-agent to accompany
the request, and six can be configured by the server to accompany the response. However, not all nine must
be used to coordinate the authorization of an HTTP-Request. In fact, most of the time, a maximum of four
headers will be exchanged. However, for the purposes of this chapter, we will consider two:

Access-Control-Allow-Origin•	

Origin•	

What determines which of the nine CORS headers are necessary to authorize the request depends on
whether the request is deemed “simple” or requiring “preflight.” What distinguishes a request as being the
former or the latter ultimately boils down to the request method chosen to enact on the indicated resource,
in addition to the configured request headers.

A simple request, as defined by the specification, is one that identifies GET, POST, or HEAD as its request
method. Additionally, a simple request cannot specify headers that are not among those white-listed. Those
headers are the following:

Accept•	

Accept-Language•	

Content-Language•	

Content-Type•	

While you may initially find the preceding headers reasonable for GET requests, I think you will
find them rather limiting for POST, after you realize that Content-Type can only be configured as
application/x-www-form-urlencoded, multipart/form-data, or text/plain. What this means is
that when a POST request is accompanied by an entity body whose Content-Type is configured as
application/json, a preflight request must occur prior to the actual request.

Chapter 9 ■ X-Origin Resources

144

A preflight request is simply an initial HTTP request submitted by the user-agent to the requested
server, using the OPTIONS request method to obtain the necessary server information and configured
headers that might suggest the Ajax request is authorized. In other words, before attempting to make
a request that is not considered simple, and, therefore, may be considered malicious, the user-agent
determines if the remote server indicates any interest in receiving such a request. As indicated earlier, this
is accomplished via the OPTIONS method, which simply informs the remote server to provide a list of all
acceptable headers and methods that can accompany a request to the indicated resource. If the response is
not configured to handle the headers/methods as they are explicitly outlined by the user-agent, the actual
request will be canceled.

I will discuss how to configure a server’s response to accommodate preflight requests in more detail in
Chapter 11. In the meantime, feel free to review the CORS headers required of preflight requests, in Table 9-2.

For every “simple” cross-origin request, the user-agent, in addition to configuring any default headers,
must configure a header that is essential to the CORS specification. This header, which is simply labeled
“Origin,” indicates, as its configured value, the source origin of the request. On receiving the request, the
server can use the configured value possessed by the Origin header to configure the fulfillment of the
request. As briefly discussed, an origin is considered authorized by a user-agent if, and only if, the fulfillment
of the request possesses the Access-Control-Allow-Origin header and is configured to indicate as trusted
the origin that initiated the request. If the Access-Control-Allow-Origin header is not present, access to
the response will not be permitted. However, if the header is present, the user-agent will determine via an
algorithm whether the configured value matches the source origin. This algorithm makes up Section 7.2 of
the CORS specification, Resource Sharing Check.

Resource Sharing Check
The configured headers provided by the server are merely the mechanism by which to communicate with
the user-agent. They do not guarantee that a source origin can bypass the same-origin policy (SOP). As the
user agent governs the SOP, it is the user-agent’s responsibility to determine whether the source origin and
the value accompanying the Access-Control-Allow-Origin header meet the authorization requirements.
The user-agent accomplishes this via the following steps of an algorithm:2

	 1.	 If the response includes zero or more than one Access-Control-Allow-Origin
header value, return fail and terminate this algorithm.

	 2.	 If the Access-Control-Allow-Origin header value is the * character and the omit
credentials flag is set, return pass and terminate this algorithm.

	 3.	 If the value of Access-Control-Allow-Origin is not a case-sensitive match for
the value of the Origin header as defined by its specification, return fail and
terminate this algorithm.

	 4.	 If the omit credentials flag is unset and the response includes zero or more than
one Access-Control-Allow-Credentials header value, return fail and terminate
this algorithm.

	 5.	 If the omit credentials flag is unset and the Access-Control-Allow-Credentials
header value is not a case-sensitive match for true, return fail and terminate this
algorithm.

	 6.	 Return pass.

2World Wide Consortium (W3C), “Cross-Origin Resource Sharing,” www.w3.org/TR/cors/#resource-sharing-check,
January 16, 2014.

http://www.w3.org/TR/cors/#resource-sharing-check

Chapter 9 ■ X-Origin Resources

145

In short, the value of the Access-Control-Allow-Origin header, as configured by the server, must satisfy
all origins via the provision of the wild card token * or be provided as a case-sensitive match for the indicated
origin, as supplied within the request. On the other hand, if the resource-sharing check determines that
authorization should not be allowed, we are provided with the aforementioned network error indicating that
the origin lacks sufficient authorization. As the SOP specifies trust per URI,3 the preceding outlined steps
occur for each requested cross-origin resource. Listing 9-3 demonstrates how a resource can grant proper
authorization to all source origins, utilizing PHP.

Listing 9-3.  Authorizing All Source Origins per the Current Resource

1 <?php
2 header('Access-Control-Allow-Origin: *');
3 $headers=getallheaders();
4 $origin =$headers["Origin"];
3 echo '{"message":"congratulations '.$origin .', your origin has been successfully
authorized by your
 user-agent"}';
4 ?>
 

The most minimal configuration required on the server’s behalf, as demonstrated in the preceding
listing, is to configure the Access-Control-Allow-Origin header with the value of the wild-card * token. With
the preceding Access-Control-Allow-Origin header in place, any simple request made via XMLHttpRequest
or XDomainRequest and occurring from any origin will be provided the appropriate authorization. If you
were to run the following code from Listing 9-4, the source origin of your request would be entitled access to
the JSON provided.

Listing 9-4.  A GET Request Being Made of cors.php

 1 <script>
 2 var xhr= new XMLHttpRequest();
 3 if(!"withCredentials" in xhr){
 4 xhr= new XDomainRequest();
 5 }
 6 xhr.open("GET", "http://json.sandboxed.guru/chapter9/cors.php");
 7 xhr.onload = function() {
 8 alert(this.responseText);
 9 };
10 xhr.send();
11 </script>
 

No matter the source origin of the request, executing the request from the preceding listing will result in
an alert box prominently appearing to inform the user that the source origin of the request has been granted
authorization to the JSON response, as revealed in Figure 9-9.

3Adam Barth, Internet Engineering Task Force (IETF), “The Web Origin Concept,” www.ietf.org/rfc/rfc6454.txt, 2011.

http://www.ietf.org/rfc/rfc6454.txt

Chapter 9 ■ X-Origin Resources

146

As you can clearly witness from the URL in Figure 9-9, our local request, signified by the IP address
127.0.0.1, is able to receive access to the JSON body provided by the resource, whose origin is
http://json.sandboxed.guru. By reviewing the headers of the request, as captured by the developer’s
console, we can witness the inclusion of the Origin and Access-Control-Allow-Origin headers used to
coordinate the source origin’s authorization, as shown in Figure 9-10.

Figure 9-9.  Successful attempt at Cross Origin Resource Sharing

Figure 9-10.  CORS response exhibiting the configuration of the Options and Access-Control-Allow-Origin headers

Chapter 9 ■ X-Origin Resources

147

With the use of the two aforementioned CORS headers, we can successfully bypass the SOP and
successfully enable cross-origin requests. However, this does not entitle a cross-origin request to be treated
similarly to that of an SOP. Although the server has authorized the request, the user-agent continues to
refrain from providing information that may reduce the security of either the client or response. For this
reason, cookies, basic-authorization, and custom headers are prevented from reaching their destination,
unless otherwise coordinated between the user-agent and server via two more headers. Furthermore, the
user-agent will limit the application’s exposure to any headers provided by the server that are not considered
to be among the following six white-listed simple response headers:

Cache-Control•	

Content-Language•	

Content-Type•	

Expires•	

Last-Modified•	

Pragma•	

To further broaden the scope of the authorization, to enable these aspects as required by your
application, the server must coordinate with the user-agent by configuring any necessary header as supplied
by the CORS specification. Following are two tables that outline the various CORS headers, as utilized by the
two request categories simple and preflight.

The headers in Table 9-2 are concerned with all aspects of simple requests.

Table 9-2.  CORS Simple Headers

Header Role Configured by

Origin Indicates where the cross-origin request
originates

User-Agent

Access-Control-Allow-Origin Indicates whether a resource can be shared by
returning the value configured for the Origin
request header, *, or null

Server

Access-Control-Allow-Credentials Indicates whether the response to the request
can be exposed when the omit credentials
flag is unused

Server

Access-Control-Expose-Headers Indicates which headers are safe to expose
to the API XMLHttpRequest object via the
getResponseHeaders method

Server

The headers within Table 9-3 are concerned with the more complex requests, which require an initial
request, in order to determine if the server acknowledges the configured aspects of the request that are not
recognized as simple. If the server indicates that it is willing to handle said aspects, only then will the actual
request be sent to the server. If, however, the server does not indicate that it can handle those aspects, the
user-agent will cancel the request altogether, once again resulting in the same network error indicating
insufficient authorization.

Chapter 9 ■ X-Origin Resources

148

Although CORS is the official W3C technique to abide by when working with cross-origin requests, the
CORS headers can only be used by the user-agent that conforms to the algorithms of the CORS specification.
This is to say that only those browsers that implement the XMLHttpRequest Level 2 specification can fully
support CORS. As you learned in Chapter 8, modern browsers, in addition to Internet Explorer 10 and
greater, support the XMLHttpRequest Level 2 specification. For this reason, this chapter will continue to
outline two other techniques that enable cross-origin requests.

The Proxy
While the same-origin policy (SOP) is enforced by the browser, I did recently discuss that the SOP is not at
all a component of the HTTP protocol. Rather, it’s a security model that is strictly adhered to by the browsers
of which we make use. As demonstrated by our earlier use of Postman, when we use tools that do not
rely on the browser, we are able to make requests indiscriminately. This is because the foundations of the
HTTP protocol rely on the ability for any server to fulfill a request. However, it is up to the targeted server to
determine whether or not that request should be allowed.

As the name suggests, the concept of a server proxy is to forward an authorized request to a local server
to a remote server. (Remember: An authorized request comes from the same origin.) The process begins
with an HTTP request being made to a same-origin web server. From there, either the same request, or a
new request, is provided to a remote server by the local web server, unhindered by the user-agent. Provided
the request is successful, the response is returned up the chain from the remote server to the local server that
made the request and back to the client who invoked the request, our Ajax call. The forwarding of requests
can be observed from the diagram in Figure 9-11.

Table 9-3.  CORS Preflight Headers

Header Role Configured by

Access-Control-Request-Headers Indicates which headers will be used in the
actual request

User-Agent

Access-Control-Request-Method Indicates which method will be used in the
actual request

User-Agent

Access-Control-Allow-Methods Indicates which methods can be used during
the request for a targeted resource

Server

Access-Control-Allow-Headers Indicates which header field names can be used
during the request of the targeted resource

Server

Access-Control-Max-Age Indicates how long the results of a preflight
request can be cached

Server

Chapter 9 ■ X-Origin Resources

149

Because the communications that take place via the user-agent remain between the same origin, all
proxy requests are considered trusted and, therefore, authorized to view the response. We will begin with a
review of the xhr code, as seen in Listing 9-5.

Listing 9-5.  HTTP Request to the Authorized /proxy.php Resource

1 var xhr= new XMLHttpRequest();
2 xhr.open("GET","http://sandboxed.guru/proxy.php");
3 xhr.onload=function(){
4 console.log(this.responseText);
5 };
6 xhr.onerror=function(){
7 console.log("Error Occurred");
8 }
9 xhr.send();
 

Listing 9-5 should not appear new, as we have been using the same code from both the previous chapter
as well as this chapter. Ultimately, we initiate a GET request to http://sanboxed.guru/proxy.php. The only
thing to point out is that Listing 9-5 does not make use of the XDomainRequest. This is strictly because the
XDomainRequest is only required in Internet Explorer versions 8 and 9, to make requests to varying origins.
However, as the proxy technique utilizes a server program that runs on the same server from which the
request will occur, we can utilize the XMLHttpRequest from IE 8+. This will provide us with more control
over the request as well. Remember: The XDomainRequest object does not possess the setRequestHeader,
whereas the XMLHttpRequest object does.

Upon the submission of the request, the target of the request, local resource /proxy.php, whose code
can be observed in Listing 9-6, will be executed.

Figure 9-11.  Proxy diagram from sandboxed.guru to json.sandboxed.guru and back

http://sanboxed.guru/proxy.php

Chapter 9 ■ X-Origin Resources

150

Listing 9-6.  PHP Server-Side Proxy Implementation

1 <?php
2 if ($_SERVER['REQUEST_METHOD'] === 'GET') {
3 $ch = curl_init();
4 curl_setopt($ch, CURLOPT_URL,'http://json.sandboxed.guru/chapter9/data/images.json');
5 curl_setopt($ch, CURLOPT_RETURNTRANSFER, false);
6 $output = curl_exec($ch);
7 curl_close($ch);
8 }
9 ?>
 

Listing 9-6 demonstrates the minimal PHP code required to create a request using a library known as
cURL, which is simply a command-line utility that enables the interchange of data. Let’s walk through the
preceding code to understand what is taking place.

The script begins by ensuring that the request method to be enacted on proxy.php is a GET (line 1).
This is necessary to ensure that extraneous use of the proxy is prevented from occurring from requests other
than GET requests.

Once we have determined that the request method is in fact GET, we proceed with initializing our
cURL object (line 3). The cURL object, when initialized, returns an instance, which is stored on
a variable labeled $ch. As with the xhr object, we configure our instance of the cURL object with the
necessary headers and values to initiate the request. Our first line provides the URL of our resource,
http://json.sandboxed.guru/chapter9/data/images.json (line 4). The next configuration is used to
obtain the response as a string, rather than outputting the response directly (line 5). In this particular
case, we set the value to false, as we will have no need to further modify the response from the remote
server. The next line (line 6) executes the request. Once the response is obtained, we close the cURL
resource (line 7).

It should be noted that the use of cURL is code blocking, and, therefore, the response awaited by our xhr
object continues, until either the connection times out or a response is finally provided. However, once the
cURL request is provided a response from the remote server, the response provided is sent back to the client
request, which was prompted by Ajax, whereby either the onload or onerror event handler will be triggered.

While the preceding code successfully demonstrates how a proxy can be used to successfully bypass the
SOP, the proxy is rather limited. As the indicated resource on line 4 of Listing 9-6 is hard-coded, we would
require multiple proxies, if there were multiple files that our application required. While this can get quite
cumbersome, we can eliminate that issue with relative ease, either by appending a query string parameter to
the end of our resource or by providing the URI as a value belonging to a custom header.

In order to make this something that can be witnessed from a browser, in addition to an Ajax request,
the code that follows (Listing 9-7) makes use of the former option (the query string parameter).

Listing 9-7.  An xhr object Whose Target Resource Possesses a Query String Parameter Indicating the URI
for the Proxy to Obtain

1 var xhr= new XMLHttpRequest();
2 xhr.open("GET","http://sandboxed.guru/proxy.php?uri=images.json");
3 xhr.onload=function(){
4 console.log(this.responseText);
5 };
6 xhr.onerror=function(){
7 console.log("Error Occurred");
8 }
9 xhr.send();
 

http://json.sandboxed.guru/chapter9/data/images.json

Chapter 9 ■ X-Origin Resources

151

Listing 9-7 remains unchanged from that of Listing 9-5, with the minor appendage to the indicated
resource (line 2). We have supplied the resource with a key/value pair, which, when supplied in a URL, is a
query string parameter. In this case, the key is that of uri, and its value represents the desired resource to be
obtained by our proxy. Our proxy must then be modified slightly to anticipate the use of a query string value.
These changes that account for the new query string parameter are outlined in bold in Listing 9-8.

Listing 9-8.  PHP Code Accounting for the Added jsonp URL Parameter

 1 <?php
 2 if (strtolower($_SERVER['REQUEST_METHOD']) === 'get') {
 3 $uri = (isset($_GET[uri]));
 4 if ($uri) {
 5 $uri = htmlentities($_GET[uri]);
 6 $ch = curl_init();
 7 curl_setopt($ch, CURLOPT_URL, 'http://json.sandboxed.guru/chapter9/data/' . $uri);
 8 curl_setopt($ch, CURLOPT_RETURNTRANSFER, false);
 9 $output = curl_exec($ch);
10 curl_close($ch);
11 } else {
12 header('HTTP/1.1 400 Bad Request');
13 echo 'Append ?uri=xxxx to the target resource where xxxx is the value of the URI on
 json.sandboxed.guru/chapter9/data/xxxx';
14 }
15 }
16 ?>
 

Listing 9-8 revisits our proxy from Listing 9-6, with the new query string parameter being taken into
account. We begin by determining if the uri key has been provided with the request and assign the returned
Boolean value produced by the evaluation onto a variable labeled $uri (line 3). From there, we determine
what block of code should be executed, depending on whether the $uri value is set (line 4). If the $uri
variable is evaluated to be true, we continue to execute the code block that initiates the proxy. At this point,
we have only determined if the uri parameter has been provided with the request. Now, we must obtain
the value that it possesses. Repurposing the $uri variable, we reassign it with the obtained value held by the
key (line 5). The period (.) token, in PHP, is used to concatenate strings, thereby joining the URL with the
dynamic resource. Being that our Ajax request provided the uri as images.json, line 7 will result in the final
URL of http://json.sandboxed.guru/chapter9/data/images.json. While this is precisely the same URL
we previously targeted, the required resource is specified dynamically and, therefore, can request a variety of
resources stored within the preceding path.

Should the uri parameter not be present for the provided request, the proxy will not be triggered to
provide a response from the remote source. Instead, the request will be fulfilled with that of a response from
our proxy server. As the request is not properly formed, the server configures the status line to possess a
status code of 400 (line 12). It further specifies the textual phrase that accompanies the status code, which is
Bad Request. This status code is utilized to inform the client that he/she should not continue to repeat the
request without further modification. Last, in order to further clarify how to correct the request, we output a
message stating that a query string must be provided (line 13).

At this point, feel free to navigate your browser to http://sandboxed.guru/proxy.php to see the results
of the proxy for yourself. Upon reception of the provided messaging, append the uri parameter to the URL,
whose value can be any of the following resources: images.json, string.json, or script.json.

http://json.sandboxed.guru/chapter9/data/images.json
http://sandboxed.guru/proxy.php

Chapter 9 ■ X-Origin Resources

152

JSONP
The final technique that enables us to interchange JSON between two varying origins is that of JSON with
padding. JSON with padding, or JSONP, as Bob Ippolito coined it in 2005, regards a particular technique in
which a client can obtain JSON simply by leveraging the HTML <script> element.

The same-origin policy (SOP) does not govern the requests of externally referenced content via specific
HTML tags. Such tags are those of , <style>, <iframe>, and <script>. As you may recall from your
past experiences in web development, script tags are able to embed externally referenced JavaScript files,
regardless of whether the requesting origin matches the origin of the targeted resource. Such an example
that may be familiar is shown in Listing 9-9.

Listing 9-9.  Script Tag Targeting the Externally Hosted jQuery Script from a CDN

<script src="//code.jquery.com/jquery-1.11.0.min.js"></script>
 

Listing 9-9 utilizes the script tag to retrieve the jQuery library from the jQuery CDN, regardless of the
origin of the request. Furthermore, once the resource is obtained, the external script gains total access to our
document, and vice versa, making this ideal transport for JSON. Unfortunately, as you will shortly see, not all
JSON values can be properly parsed when obtained via the HTML <script> element.

Listing 9-10 demonstrates grammatically valid JSON, as the content of an indicated resource located at
the URL http://json.sandboxed.guru/chapter8/data/imagesA.json.

Listing 9-10.  JSON Content Within imagesA.json

{
 "images": [
 {
 "title": "Image One",
 "url": "img/AndroidDevelopment.jpg"
 }, {
 "title": "Image Two",
 "url": "img/php.jpg"
 }, {
 "title": "Image Three",
 "url": "img/Rails.jpg"
 }, {
 "title": "Image Three",
 "url": "img/TSQL.jpg"
 }
]
}
 

As with our earlier jQuery inclusion, we should be able to load imagesA.json into an application as an
external reference, via the script tag, as shown in Listing 9-11.

Listing 9-11.  Script Tag Referencing imagesA.json

<script src="http://json.sandboxed.guru/chapter8/data/imagesA.json"></script>
 

http://json.sandboxed.guru/chapter8/data/imagesA.json

Chapter 9 ■ X-Origin Resources

153

The preceding error is not the result of our HTML Document loading a JSON document as an external
reference but, rather, how the script engine evaluates JavaScript. Consider the more succinct JSON example
being supplied to the eval function in Listing 9-12. When the following JSON is provided to the JavaScript
engine, it, too, results in an error.

Listing 9-12.  Supplying a JSON Collection to the Script Engine via eval

eval('{ "test":"abc" }'); //fails
 

This error occurs for no other reason than the fact that the provided content is not considered
syntactically valid JavaScript. However, as explained earlier, the error is not due to the fact that we are
supplying JSON. As you should recall, JSON is a subset of JavaScript. The issue simply lies in the fact that
the engine favors the evaluation of statements, rather than those of expressions. According to Section 12.4,
Expression Statements, of the ECMA-262 standardization:

An ExpressionStatement cannot start with an opening curly brace because that might
make it ambiguous with a Block.

While this can be viewed as a setback, it is certainly not a roadblock. We simply require a way to coax
the parser into seeing the provided script as an expression. Fortunately, JavaScript provides us with the
operator that can manage this. That operator, of course, is the grouping operator signified by the open and
closed parenthetical (()) tokens.

Note■■   Only the initial ({ }) braces cause the parser to throw a syntax error. No other object literal suffers
the same fate.

By wrapping our script with the grouping operator, we can inform the parser to handle the
evaluation in the context of an expression. It is the padding of the parentheses for which the phrase
JSON with padding refers.

By padding our object literal within the grouping operator, as seen in Listing 9-13, the script engine no
longer alerts us to a syntax error. However, having crossed one hurdle, we find ourselves facing yet another.

Figure 9-12.  Loading /data/imagesA.json via the <script> tag results in a syntax error

Unfortunately, if we were to incorporate the code from Listing 9-11 into an HTML document and view
that document in a browser, we would arrive at the following syntax error, as shown in Figure 9-12.

Chapter 9 ■ X-Origin Resources

154

Listing 9-13.  Wrapping JSON with the Grouping Operator

eval('({ "test":"abc" })'); //Successfully parsed
 

Once the script engine properly parses the provided JSONP, we find ourselves without a means of
obtaining the parsed data. However, this can be easily overcome using the JSONP model. By preceding our
JSONP with a function name, that function will be invoked upon the script’s evaluation, essentially acting as
an event handler. Furthermore, the evaluated object literal, wrapped within parentheses, will be parsed into
a valid JavaScript object and provide as the argument the indicated function, allowing our function to obtain
the parsed JSON. The structural composition of JSONP is CALLBACK_IDENTIFIER(JSONtext);. Listing 9-14
is an example of this.

Listing 9-14.  Example of the JSONP Model

someMethod({ "test" : "abc" });
 

As you might expect, this requires our HTML document to be in possession of a function whose
identifier is equal to that of the function name prepended to our JSONP, lest the parser throw a
ReferenceError, as indicated in Figure 9-13.

Figure 9-13.  Reference error, can’t find someMethod

In Listing 9-15, the object literal, padded by the parentheses on both sides, is properly recognized by the
engine as an expression and, therefore, parsed into a proper JavaScript object. From there, the evaluation is
provided to the indicated function as the argument. Upon the invocation of someMethods, the statement(s)
within the body of the function are able to reference the parsed data (line 3). In this case, the statement
simply logs out the test key, resulting in abc being sent to the developer console.

Listing 9-15.  Invocation of the Method Evaluated, and the Provision of a JSON Argument

1 eval('someMethod(({ "test" : "abc" }))');
2 function someMethod(data){
3 console.log(data.test); //abc;
4 }
 

It is the function name that forges the contract between the provider of the JSONP and the client
that seeks to make use of it. This is an important fact, because if the name is defined statically, it reduces
the interoperability among applications. Therefore, to keep the method name from conflicting with any
application, the JSONP model requires that the resource allow the client of the request to define the name of
the function that will precede the JSONP.

Chapter 9 ■ X-Origin Resources

155

The manner by which the client informs the server to the preferred callback is quite simple. The client
appends a jsonp query string parameter to the targeted URL and assigns its value the name of the function
to invoke (see Listing 9-16).

Listing 9-16.  JSONP Request

1 <script>
2 var test=function(data){
3 //do something with data here.
4 }
5 </script>
6 <script src='http://json.sandboxed.guru/chapter9/data/jsonp.php?jsonp=test'></script>
 

Listing 9-16 declares a function, which will operate on a supplied piece of data and assigns it to the
variable test (line 1), where it can be referenced later. Next, utilizing the script tag (line 6), we make a
request to our JSONP resource and append to it the jsonp parameter, whose value is that of the preferred
function to invoke upon the evaluation of the received script.

Now, while Listing 9-16 accounts for the front end, the resource must account for the supplied
parameter. Once again, any server-side language can manage this easily enough. I, however, will
demonstrate the code as it appears in PHP (see Listing 9-17).

Listing 9-17.  Fulfillment of JSON or JSONP, Pending the Provision of the jsonp Parameter

1 <?php
2 header('Content-Type: application/javascript');
3 $callback = (isset($_GET["jsonp"])) ? $_GET["jsonp"] : "";
4 $JSONtext = ’{
 "images": [
 {
 "title": "Image One",
 "url": "img/AndroidDevelopment.jpg"
 }, {
 "title": "Image Two",
 "url": "img/php.jpg"
 }, {
 "title": "Image Three",
 "url": "img/Rails.jpg"
 }, {
 "title": "Image Three",
 "url": "img/Android.jpg"
 }
]
 }’
5 echo $callback . '(' .$JSONtext. ');';
6 ?>
 

Chapter 9 ■ X-Origin Resources

156

Listing 9-17 reveals the PHP code for the requested URI: http://json.sandboxed.guru/chapter9/
data/jsonp.php. For the most part, the content within can be recognized as the imagesA.json from
Listing 9-10. However, the lines that appear in bold have been added to serve JSONP. The script begins
by properly indicating the header of the response. As the body of the response is no longer JSON, but
rather JavaScript, we must ensure that clients treat the body as JavaScript. Therefore, we set the Content-
Type to application/javascript (line 2). Next, utilizing the parameters of the URL, we determine if the
key labeled jsonp has been provided. If it has indeed been set, we assign its value to a variable labeled
$callback. If the jsonp parameter is not present with the GET request, we assign an empty string to said
variable (line 3). Next, to keep the code clean for review, I assign the intended JSON text to a variable
labeled $JSONtext (line 4). This value will later be padded with parentheses and a possible callback
identifier. Last, using PHP’s concatenation operator ., we join the provided callback with that of our
padded JSON and output the final representation as the response of the request (line 5).

While Listing 9-16 demonstrates the implementation of a <script> element, along with a collaborating
function to receive JSONP, the fact that they were defined at design time results in the immediate request,
upon the execution of the HTML document. However, this may not always be the desired effect. Utilizing
JavaScript, we can resort to script tag injection, thereby obtaining the results at a time of our choosing.

Dynamic Script Tag Injection
When an HTML document is opened within the browser, the parser scans from the top down the markup
of the document for any tags that reference external content. For each , <style>, or <script>
encountered that may reference an external resource, an HTTP request is initiated. This, however, is not
always the desired effect.

Dynamic script tag injection is a technique that relies on JavaScript to configure an HTML <script>
element at runtime. By creating said tag on the fly, the tag remains absent from the markup, which prevents
a resource from being fetched prematurely. Yet, at a point of our choosing, we can insert the configured tag
into the body of the document, thereby initiating a request for the indicated JSONP resource. The necessary
code to achieve this on demand behavior can be viewed in Listing 9-18.

Listing 9-18.  Dynamic Script Tag Injection

1 function getScript(url){
2 var script = document.createElement("script");
3 script.src=url;
4 document.getElementsByTagName('head')[0].appendChild(script);
5 }
6 getScript('http://json.sandboxed.guru/chapter9/data/jsonp.php?jsonp=someMethod');
 

Listing 9-18 reveals a function that, when invoked, is responsible for the creation, configuration, and the
injection of a script tag within the document of the application being run. The code solely responsible for the
dynamic script tag injection has been encapsulated within the getScript function, so that we can generate
any number of scripts through a single endpoint (line 1). Furthermore, to account for any possible URL to be
supplied as the resource of the request, the getScript function accepts a URL as a parameter.

Upon an invocation, we utilize the createElement method of the document object to create an HTML
element of our choosing. As the tag we require is that of a script element, we provide script as the parameter
and assign the returned element to a variable labeled script (line 2). Utilizing the script reference, we supply
the URL argument as the referenced source via the src attribute (line 3). From there, we utilize the document
object to obtain a reference to the HTML <head> element, whereby we will insert our newly crafted HTML
<script> element. Last, to generate a dynamic tag and trigger our resource to be loaded, we invoke getScript
and supply to it our JSONP URL. By using JavaScript to inject a script tag into our markup, we have more
control over when the resource is loaded. The invocation can be the result of an event, such as a button click.

http://json.sandboxed.guru/chapter9/data/jsonp.php
http://json.sandboxed.guru/chapter9/data/jsonp.php

Chapter 9 ■ X-Origin Resources

157

While getScript makes loading JSONP resources on demand a simple task, there are many available
libraries, such as jQuery, that extend the code even further, so that it’s possible to provide anonymous
functions for invocation upon the evaluation of the indicated JSONP request. Such a function that enables
this type of behavior can be viewed in Listing 9-19.

Listing 9-19.  Dynamic Script Tag Injection with Anonymous Callback Behavior

 1 var getJSONP = (function () {
 2 jsonp_callbacks={};
 3 return function(url, fName, callback) {
 4 scriptNode = document.createElement('script');
 5 scriptNode.setAttribute('type', 'text/javascript');
 6 scriptNode.src = url + '?jsonp=' + encodeURIComponent('jsonp_callbacks["' + fName +
 '"]');
 7 jsonp_callbacks[fName] = function (data) {
 8 delete jsonp_callbacks[fName];
 9 callback(data);
10 };
11 document.body.appendChild(scriptNode);
12 };
13 }());
14 getJSONP('http://json.sandboxed.guru/chapter9/data/jsonp.php', 'callback', function
 (data) {
15 console.log(data);
16 });

Summary
This chapter pointed out three techniques that can be used to initiate cross-origin requests that fulfill the
interchange of JSON. As was indicated, the majority of front-end code remains unchanged. However, it does
require a slight amount of modification, with regard to requesting a JSONP resource. In contrast, it will be
the onus of the server administrator to configure a resource to be made available to a cross-origin request.

With the conclusion of this chapter, you should find yourself one step closer toward being able to
harness the full power of JSON. In the next chapter, we will install and work with Node.js, a platform built on
Chrome’s JavaScript runtime, so that you can host your own local web server, which can be used to receive,
store, retrieve, and transmit JSON, utilizing the configurations required of each of the tactics discussed in
this chapter.

The wonderful news is that because Node.js works entirely on the V8 JavaScript engine, you won’t be
asked to follow along with a language that you might not be used to.

Key Points from This Chapter
The same-origin policy (SOP) is the security model adhered to by all user-agents.•	

The SOP governs a variety of front-end securities.•	

The SOP restricts network messages between varying origins.•	

SOPs vary according to the degree by which they are enforced between different •	
technologies.

Chapter 9 ■ X-Origin Resources

158

Use the •	 in operator to test whether the widthCredentials attribute exists on the
xhr instance.

Cross-network errors can be corrected by moving the resource to the same domain •	
as the source origin, or by enabling Cross-Origin Resource Sharing (CORS).

A domain and its subdomain are not considered authorized by default.•	

Origins are considered similar if they possess the same scheme, port, and domain.•	

The port address for HTTP is 80, while that for HTTPS is 443•	

Certain headers are unable to be altered via •	 setRequestHeader.

SOPs can be circumvented via server-side programming.•	

The Access-Control-Allow-Origin header is required to fulfill “simple” requests from •	
varying origins.

If a request is not simple, it requires “preflight.”•	

Simple requests use •	 GET, POST, or Head and are limited to four white-listed headers.

The simple header Content-Type can only be configured as •	
application/x-www-form-urlencoded, multipart/form-data, or text/plain.

CORS headers can only be used with user-agents that conform to the algorithms of •	
the CORS specification.

JSONP is JSON wrapped in parentheses and preceded by a function name.•	

The client request specifies the function name via the •	 jsonp query parameter.

The SOP does not govern requests of externally referenced content via •	 <script>.

An •	 ExpressionStatement cannot start with an opening curly brace.

A server proxy forwards an authorized request to a remote server.•	

159

Chapter 10

Serving JSON

Up until this point, we have been focusing on JSON primarily from a front-end perspective. However,
as a data interchange format, JSON plays an important role on the back end of our applications as well.
Therefore, in order to further empower ourselves in the ways of JSON, we will explore how to set up our very
own web server, utilizing an open source technology known as Node.js.

Once we have our own server up and running, you will learn how to utilize said server to provide JSON,
receive JSON, and even store/persist JSON.

Node.JS
Node.js, commonly referred to as Node, is a runtime environment created by Ryan Dahl that allows us to
devise a web server using nothing other than JavaScript. That’s right, JavaScript. Now before you begin to
presume that this can’t be considered a true server, let me assure you that Node is incredibly powerful and
extremely efficient. So much so, that it’s used by many popular brands, such as Walmart, PayPal, and eBay,
to name a few.

Node is built on top of Chrome’s V8 JavaScript engine, making JavaScript the ideal language of
our server. Furthermore, because Node makes use of the latest V8 code base, our server can utilize the
cutting-edge inclusions of the JavaScript API, such as File-System, Web Workers, etc. The benefits don’t
just stop there either. Because JavaScript is an event-driven language, the functions within Node remain
asynchronous and are capable of handling data-intensive applications. Last, Node can run without
additional software, such as Apache, being installed, making it simple and convenient to install on either
Windows or Mac.

Windows Installation
Upon navigating to nodejs.org/download/, we are immediately presented with the tools that will get us
up and running. As there is no reason to take anything but the path of least resistance, we will download
and install the Windows Installer (.msi). Whether you chose the 32-bit vs. the 64-bit version is dependent
on your current operating system. While most programs designed for the 32-bit versions of Windows are
compatible with 64-bit versions, the same cannot be stated for 64-bit software on 32-bit Windows.

To find out if your computer is running a 32-bit or 64-bit version of Windows, in Windows 8 or
Windows 8.1, do the following:

	 1.	 Open System by right-clicking the Windows button and selecting System from
the list.

	 2.	 Within the System pane, you can view the system type.

Chapter 10 ■ Serving JSON

160

To find out if your computer is running a 32-bit or 64-bit version of Windows, in Windows 7 or Windows
Vista, do the following:

	 1.	 Open System by clicking the Start button, right-clicking Computer, and then
clicking Properties.

	 2.	 Under System, you can view the system type.

If your computer is running Windows XP, do the following:

	 1.	 Click Start.

	 2.	 Right-click My Computer and then click Properties.

a.	 If you don’t see “x64 Edition” listed, then you’re running the 32-bit version
of Windows XP.

b.	 If “x64 Edition” is listed under System, you’re running the 64-bit version of
Windows XP.

Once you determine which bit operating system your machine is running, click the corresponding
Windows Installer. As I am running a 32-bit version of Windows, as shown in Figure 10-1, I will be installing
the 32-bit Node Windows Installer.

Figure 10-1.  Determining Windows operating system type: 32-bit vs. 64-bit

By clicking either the 32-bit or 64-bit button, depending on your browser, the .msi should begin
downloading. Depending on the browser, you may have to acknowledge that you wish the file to be saved.
Once the file has been downloaded successfully, navigate to the directory in which it has been downloaded
and double-click the installer, to initiate the installation wizard. At this point, the Node setup wizard will
walk you through the installation step-by-step. To begin the processes, click Next.

Chapter 10 ■ Serving JSON

161

The second screen of the wizard presents us with the license agreement of Node. Before continuing on
to the next screen, you must accept the terms in the license agreement. Take this opportunity to read and
accept the End-User License Agreement and then click Next to configure the installation.

The following few screens enable you to change the default configurations of the installation. Such
configurations determine in which directory to install Node, or how corresponding features should be
installed. Unless you feel comfortable enough to modify these settings, you should leave them as they are
and continue to the installation screen shown in Figure 10-2.

Figure 10-2.  Node setup wizard

Once you reach this screen, simply click Install, and then sit back and relax for a short moment. You will be
presented with confirmation that the Node setup wizard has completed. At this point, feel free to click Finish to
exit the wizard. By default, Node and its features are installed globally, and often, system-wide variable changes
may not always be recognized until after a reboot. Therefore, before we verify that the installation of Node was
successful, it will be wise to reboot.

Once Windows loads, we can verify the installation of Node. We will achieve this with the assistance
of the command-line interpreter, also known as the command prompt. To access the command prompt
application, right-click your desktop’s Start button and choose Run from the list of options. Within the input
field, simply type cmd.exe, then click the button labeled “OK.”

Figure 10-3 reveals the command terminal in which we can enter commands. The terminal will open
to a defaulted folder that exists on the hard drive. Which folder depends on whether you run cmd.exe as
an administrator or as a user. If you run it as an administrator, the default folder will be that of a system
folder, whereas if you open it as a user, it will reflect your user’s folder. Figure 10-3 reveals my directory as
C:\Users\UrZA>, which simply reflects the directory that corresponds to the account that I logged in to on
the machine. Of course, that account user is named UrZA.

Chapter 10 ■ Serving JSON

162

In order to ensure that Node was installed and configured successfully, type node --version within
the terminal, then hit Enter. If Node has successfully been configured for your user account, you should be
provided with the numerical version of Node that has been installed.

If you are presented with something that reflects the vX.XX.XX format, as shown in Figure 10-4, then
congratulations; you can begin work with Node right away. Feel free to fast-forward to the “Building an
HTTP Server” section.

Figure 10-3.  Command prompt interface

Figure 10-4.  The Node --version command outputs the installed version of Node.js

If, on the other hand, the terminal outputs the message that Node is not recognized as an internal or
external command, operable program, or batch file, it’s evident that Node has not been correctly installed.
In order to correct this, there are a few steps that can be taken.

Chapter 10 ■ Serving JSON

163

The Node installation will install node.exe within the C:\Program Files\nodejs\ directory by default.
Take a moment to verify that this executable is indeed present within this folder. If you have altered the
destination during the setup process, please navigate to that directory instead. If you do not witness the
node.exe executable within the determined directory, the installation may not have successfully completed.
Please run the installation wizard once again to rerun the setup process followed by a system reboot.

If you are able to verify the presence of node.exe within the chosen directory, the failure of the
command prompt to execute the command node --version may be due to the fact that the directory to
which it is installed lies outside the directories utilized by the shell. To be certain as to whether this is the
case, type the command PATH within the command prompt. The output shown in Figure 10-5 lists the default
directories used by the shell.

Figure 10-5.  Output of the PATH variable

As you can see, C:\Program Files\nodejs\ is not among the outputted directories. In this case, we may
have to include the installed directory as one of the directories to be used by the shell. This can be achieved
by adding the nodejs directory to that of the PATH environment variable. In order to add the necessary
directory to our PATH environment, we must navigate to the Control Panel window and type “environment
variables” within the input field that reads “Search Control Panel” and hit Enter. This will filter the results
in the panel, revealing a result labeled “Edit the system environment variables.” Click this result and, on the
window that opens thereafter, click the button labeled “Environment Variables....” At this point, you should
be presented with a window displaying both User and System variables, as shown in Figure 10-6.

Chapter 10 ■ Serving JSON

164

Next, click the New... button immediately below the System variables box. Where it asks for the
“Variable name:”, supply “PATH.” Additionally, for the “Variable value:”, supply “C:\Users\UrZA \AppData\
Roaming\npm.” (Do not use quotations, and replace UrZA with your user name.) Once those fields are
supplied, click OK.

Next, within the System variables section, locate a variable labeled “Path,” select it, and click the button
labeled “Edit...”, located directly below the System variables section. As the Path already exists, we simply
have to append our nodejs directory to the list. This is accomplished by typing ;C:\Program Files\nodejs\
to the end of the Variable value field. Note the use of the semicolon (;) before the actual directory. This is
used to delimit one path from another.

Note■■  I f you changed the default installation directory, you would have to supply that directory to the PATH
environment variable instead.

Once the nodejs directory has been added to our PATH environment variable, accept the changes by
hitting OK on all remaining windows. Next, reopen the Command Prompt window and run the following
command: node --version.

Figure 10-6.  Add environment variables to Windows

Chapter 10 ■ Serving JSON

165

Mac Installation
Upon navigating to nodejs.org/download/, we are immediately presented with the tools that will get us up
and running. As there is no reason to take anything but the path of least resistance, we will download and
install the Mac OS X Installer (.pkg). Unlike the installers for Windows/Linux, the Mac Installer provides
a universal installer. Go ahead and click the button labeled “Universal,” to begin the download of the Mac
Installer. Depending on which browser you are currently using, such as Chrome or Firefox, you may receive
some form of notification that requires you to confirm that you wish to download the indicated file.

Once the download has completed, locate the Node installer on your system. Ordinarily, files are
downloaded to your Downloads folder. Once you locate the installer, double-click the installer, to initiate
the installation wizard. At this point, the Node setup wizard will walk us through the installation step-by-
step. The initial screen simply informs us of where the package will install node and npm. Feel free to click the
button labeled “Continue.”

The second screen of the wizard presents us with the Node license agreement. Before continuing to the
next screen, you must accept the terms in the agreement. Take this opportunity to read the software license
agreement, then click Continue, to agree to the terms of the agreement. Upon agreeing to the terms, we will
continue into the configuration portion of the installation.

The next screen enables us to configure the default destination of the installation. Unless you have
multiple hard drives, you may only have one option available, as reflected in Figure 10-7. Select the
appropriate destination and continue to the installation screen.

Figure 10-7.  Node Mac setup wizard

Once you reach this screen, simply click Install, then sit back and relax for a short moment. You will be
presented with confirmation that the Node setup wizard has completed successfully. You might note that the
Summary screen displays the paths to where both node and the Node Package Manager, or npm, binaries are
located. Additionally, it recommends that we ensure that /usr/local/bin is specified as a directory within
our $PATH environment variable.

Chapter 10 ■ Serving JSON

166

The $PATH environment variable is a colon-delimited list of directories that your shell searches through
when you enter a command. The shell searches through each of these directories, one by one, until it finds
a directory in which the executable exists. If the path is not configured with the directory that holds our two
bin files, they will not be found and, therefore, never executed.

In order to verify that our $PATH variable possesses the /usr/local/bin directory, we must utilize the
built-in command line of the Unix OS known as Terminal. There are a few ways to access Terminal, but we
will rely on Spotlight. Simply clicking the magnifying glass in the top-right corner, or pressing Command and
Space at the same time, will provide access to Spotlight. Within the input field to the right of where it states
Spotlight, type in “Terminal,” without the quotations. This will begin the search and display access to the
Terminal application. Select the result shown as the Top Hit, to bring up the Terminal interface.

Within the terminal, type echo $PATH, then hit the Enter key on your keyboard to execute the statement.
The list of directories that are configured for your environment should be outputted to the terminal. The
directories that are listed within my environment can be viewed in Figure 10-8.

Figure 10-8.  Exported $PATH configuration

Among the directories listed, if you are able to verify /usr/local/bin, it should be safe to presume
that the node and npm binaries are accessible. If, however, the preceding path is not found within the $PATH
environment variable, we will have to configure it. Utilizing the terminal, type nano ~/.bash_profile, then
hit Enter. This will bring up the personal initialization file. It is here that we will configure our $PATH variable.

If your .bash_profile is empty, as shown in Figure 10-9, simply add the line export PATH=$PATH:
/usr/local/bin, then, on your keyboard, hold down the Control key and press the X key to exit. Before the
application terminates, you will be promoted to save the changes, as shown in Figure 10-10. Simply hit Y to
save, and proceed to exit .bash_profile. 

Figure 10-9.  Empty .bash_profile content

Chapter 10 ■ Serving JSON

167

Note■■  T he preceding code (shown in Figure 10-10) will not impair your existing environment variables. It will
merely append the /usr/local/bin directory to the existing list.

As the code within the .bash_profile is only run prior to a terminal session, close the existing Terminal
application and open the application once again. This time, when you type echo $PATH and then hit the
Enter key on your keyboard to execute the statement, you should see /usr/local/bin among the list of
directories shown.

In order to know whether or not Node was installed and configured successfully, type the command
node –-version within the console, then hit Enter. If Node has successfully been configured, you should be
provided with the version of Node that has been installed.

If you are presented with output that reflects the format vX.XX.XX, such as that shown in Figure 10-11,
then congratulations; we can begin working with Node right away. Feel free to click Close, to exit the Node
installation wizard and proceed to the section “Building an HTTP Server.”

Figure 10-10.  Configuring the $PATH environment variable to include /usr/local/bin

Figure 10-11.  node --version resulting in the output of the installed version of Node.js

Chapter 10 ■ Serving JSON

168

Building an HTTP Server
With Node installed and configured properly, it is high time to begin building an HTTP server that we can
continue to build on in the upcoming chapters. As it was stated at the beginning of this chapter, Node is a
platform that utilizes the JavaScript language. Therefore, much of the code that we will be working with will
be simply vanilla JavaScript.

Node HTTP Web Server
In this chapter, I will be discussing the components and methods that make up a Node server. While all
code will be utilizing pure JavaScript, some of these concepts may seem new to you. With that in mind, I
will attempt to keeps things as simple as possible. However, I wish to provide you with an example of what
we will be working with. This will, I hope, provide you with a concrete example that you can keep in mind
throughout this chapter. Listing 10-1 illustrates an introductory Node server that acts as our foundation for
this chapter.

Listing 10-1.  Extremely Basic Node Server

 1 var http = require('http');
 2 var server = http.createServer();
 3 server.addListener('request', requestHandler);
 4 server.listen(1337, '127.0.0.1');
 5
 6 function requestHandler(request, response) {
 7 console.log(request.url);
 8 console.log(request.headers);
 9 var body="Hello World";
10 response.statusCode = 200;
11 response.setHeader("Content-Type", "text/plain");
12 response.setHeader("Content-Length", Buffer.byteLength(body, 'utf8'));
13 response.end(body);
14 };
15 console.log('Server running at http://127.0.0.1:1337/');
 

Listing 10-1, displays 15 lines of code that make up the content of a simple Node server. The first four
lines are all that are required to devise a Node Web Server. The latter nine lines of code demonstrate how
to configure a simple response for any and all incoming HTTP requests. Let’s walk through the code and
discuss each statement.

We begin by loading the built-in HTTP module of the Node platform via the require function. As each
module is simply a JavaScript object, we assign the loaded module and then assign it to a well-labeled
variable. In this case, that variable is labeled “http” (line 1). Utilizing the createServer method exposed
by the HTTP object, we establish a new instance of a web server. Next, we assign it to the variable labeled
“server,” in order to configure the web server (line 2). From there, we begin with our first configuration,
which is to provide a function to the server as the default handler for all incoming requests to this server
instance. When the server receives an incoming request, it dispatches a “request” event notification, to
which the associated handler is invoked, thereby handling the request (line 3). Last, we configure the
server to monitor any incoming transmissions to the specified domain (127.0.0.1), along with the specified
port (1337) (line 4).

The final portion of code (lines 6–15) represents the business logic of the response. The handler that
is provided to the server will consistently be provided two arguments for every incoming request. The first
argument, the request, represents an object that retains the configurations of the client’s request. This object

Chapter 10 ■ Serving JSON

169

can be used to obtain the method, URL, and the headers of the request, as seen in lines 2–3. The second
argument is the response, which, as an object, exposes the necessary properties to configure an HTTP
response, as seen in lines 10–13.

Within the body of the request handler, we obtain the reference to the response object and begin to
provide it with a status code. We will set this to 200, to reflect the acknowledgment of the request provided
(line 10). Next, we configure the headers of the response. As we will be providing back the text “Hello World,”
we use the setHeader method to inform the client of the Content-Type (line 11).

Last, we invoke the response object’s end method, which not only enables us to provide the response
with an entity body, it also signifies the response has been fully crafted, fulfilling the request and providing
the response back to the client. The very last line of code serves only to output to the Terminal console that
the server has been initiated (line 13).

If at this point, if you were to navigate to http://127.0.0.1:1337, you would not be provided with
any response from our server. That is because, at this point, we haven’t started our Node application. We
must inform the Node engine to parse the preceding JavaScript, in order for our server to be operational. To
accomplish this, it will be necessary to save the base_server.js within a directory that you will be able to
easily navigate to via the command-line utility. You can obtain the location of a file simply by right-clicking
the document and selecting “Get Info” for Mac or “Properties” for a PC. To obtain the location of the file in
question, you will have to look in the General tab. I have mine saved in the following directory:
 
//PC
C:\Users\UrZA\Desktop\BeginningJSON\chapter10\server
 
//Mac
/Users/FeZEC/Desktop/BeginningJSON/chapter10/server
 

At this point, if you have closed the Terminal or Command Prompt window, open it once more and type
the following:
 
//For PC:
cd C:\Users\UrZA\Desktop\BeginningJSON\chapter10\server
 
//For Mac:
cd /Users/FeZEC/Desktop/BeginningJSON/chapter10/server
 

However, rather than referencing the location of my file, replace the preceding path with the
directory that holds your file. Note that I did not add the name of the file. At this point, within the Terminal
application, type node 10-1.js and then hit Return on your keyboard. If you have successfully navigated
to the proper directory and provided Node with the proper file name, you should see the statement Server
running at http://127.0.0.1:1337/ outputted to the terminal. If, however, you are provided with an error,
Error: Cannot find module, you may have accidentally misspelled the file name or navigated into the
incorrect directory.

If the problem persists, and the error continues to state that it is unable to find the module provided,
simply move base_server.js directly to your desktop. Then, open the console window and type:
node ~/Desktop/10-1.js (Mac) or node C:\Users\YourUserNameHere\Desktop\10-1.js (PC), then hit
Enter. This time, rather than navigating into the desktop directory before informing Node of the file name to
run, execute the Node shell and explicitly specify the full path of the script.

We could have just as easily navigated to the desktop directory first, then typed node 10-1.js. The
difference is that when you are within the directory that holds the file, you do not require specifying the path.

Now that we have our server up and running, let’s open our preferred browser and navigate to
http://127.0.0.1:1337. Upon your arrival, you should see “Hello World” outputted to the screen, as in
Figure 10-12.

Chapter 10 ■ Serving JSON

170

If you were to open your developer console, bring the network pane into view, and refresh the page, you
would be able to view the headers of our response, however minimal they may be. What you should see are
the following headers:
 
HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 11
Date: Mon, 14 Jul 2014 00:19:09 GMT
 

Over the course of this chapter, we will continue to modify the body of code that exists within
requestHandler, so that we can serve JSON to our web applications.

Now, exit out of the browser and locate the console window that was used to start up our server and
give it focus. While holding the Control key on the keyboard, press the letter C, to shut down the application.
A running server will not reflect changes to the JavaScript code. It will be necessary to shut down the server
instance and start it back up, for any changes to be present.

Node API
The great thing about the Node API is that it’s relatively small, given how powerful it is. You can view the
entire documentation from the Node web site located at http://nodejs.org/api/. If you find yourself
feeling a bit overwhelmed from looking at the table of contents, let me assure you that I am only going to talk
about a few aspects of the API. Those aspects are the following modules: HTTP, Path, URL, and File System.
Furthermore, for the purpose of this chapter, we will only be regarding a subset of said modules.

Modules
Modules, for all intents and purposes, are nothing more than JavaScript objects. By referencing a specific
module, we are able to utilize the interface to which the object exposes. Additionally, as they are broken out
into their own context, we can choose to load in only the objects that our server requires, thereby lowering
the amount of overhead on the server. While it is possible to create your own modules (following the
CommonJS architecture), we will only be considering built-in modules of Node.

Figure 10-12.  Our first “Hello World” Node Server

http://nodejs.org/api/

Chapter 10 ■ Serving JSON

171

Each module in Node (built-in or custom) can be imported into an application via a simple function
call. That function is simply require. As demonstrated by the signature in Listing 10-2, the require function
simply expects a singular argument, which represents the module to load in.

Listing 10-2.  Signature of the require Method

require('module');
 

For all built-in modules, we can simply specify the name of the module. The aforementioned modules
HTTP, Path, URL, and File System can be imported using their respective names: http, path, url, and fs.

For each module specified, a corresponding object is loaded into the application and evaluated. It will be
necessary to assign the object returned to an appropriately labeled variable, so that its interface can be utilized
at a later point in time. Listing 10-3 demonstrates how we can load and reference the preceding modules.

Listing 10-3.  Imported Modules via the require Method

var http = require('http');
var path = require('path');
var url = require('url');
var fileSystem = require('fs');
 

The first module referenced is that of http, and it is essential for any Node server. It is responsible, with
the help of several internal objects, for facilitating the mechanisms of an HTTP server.

The HTTP Module
The HTTP module is responsible for devising a server instance and initiating server-side HTTP requests
(which will be used for our proxy). It concerns the handling of streams, as well as parsing messages into
headers and, possibly, an entity body. In order to remain flexible for any and all possible applications, the
HTTP module possesses an extremely low-level API. What this means is that, much like a box of LEGOs, all
the individual parts required to build a server have been packaged within Node. However, it will be up to us
to connect the individual pieces as we see fit.

The parts that have shipped within the HTTP module box that we will be exploring for the duration of
this chapter are http.IncomingRequest, http.ServerResponse, http.Server, http.ClientRequest, and
http.Streams. The two methods outlined in Table 10-1 will be the two methods of the HTTP module that we
will use throughout this chapter.

Table 10-1.  Methods of the HTTP Module

Methods Description

createServer([requestListener]) Returns a new web server object

request(options, [callback]) Enables the ability to issue server requests. *Returns an instance
ClientRequest

Chapter 10 ■ Serving JSON

172

http.createServer
The HTTP method createServer is solely responsible for instantiating a server instance that will be used for
monitoring connections to our server. I will discuss the server shortly. As you can see from the signature in
Table 10-1, an optional callback can be supplied as an argument of the method. This will be the method that
will be invoked the moment a request is made of our server. Any provided requestListener must possess
the following signature: function (request, response);.

http.IncomingMessage
The first argument provided, request, is an instance of the IncomingMessage Object. IncomingMessage
exposes an API that is instrumental in obtaining all parts of the request. Through it, we can obtain the
requested URL, the request method, the supplied headers of the request, and the entity body, if one was
supplied.

Table 10-2 outlines the interface of the IncomingMessage object that makes it simple for our application
to obtain key aspects of the request. However, you may notice there is no attribute for obtaining the entity
body. As this is a slightly more complex task, I will discuss how to obtain the entity body in the “The Proxy
Server” section.

Table 10-2.  Methods of the IncomingMessage Object

Methods Description

url Returns as a string the URL that is present in the actual HTTP request

Method Returns the HTTP request method as a string

Headers Returns an object containing the request headers and values. *Header names are lowercased.

http.ServerResponse
The second argument, the response, is an instance of an object member of the HTTP module known as
ServerResponse. It will be through the interface of the response instance that we can provide a response
back to the client of the request. The exposed interface of the ServerResponse Object that we will make use
of can be viewed in Table 10-3.

Table 10-3.  Methods of the ServerResponse Object

Methods Description

response.setHeader(name, value) Sets a single header value for the response

response.write(chunk, [encoding]) Sends a chunk of the response body. *Can be called multiple
times. Possible encodings are binary or utf8.

response.statusCode Setter method used to generate the status-line of the response.
*Expected assignment is a valid HTTP status code.

response.end([data], [encoding]) Signals the end of the response. It can be called with an entity
body. *Data must be in string form.

Chapter 10 ■ Serving JSON

173

http.Server
The request and response instances supplied to the requestListener method are always supplied by our
server instance and for any incoming request. In short, the server instance is an event dispatcher or event
emitter, notifying any event listeners to the incoming event via the “request” notification (See Table 10-5).
Because the server is an event dispatcher, it’s a matter of preference if you wish to designate requestListener
at the time of creating the server instance. As an alternative, if you prefer the more object-oriented route, you
can choose to listen for the “request” notification, via the server’s addListener method (See Table 10-4).
The two possible manners, as shown in Listing 10-4, are equivalent.

Table 10-5.  Events of the Server object

Event Description

request Emitted each time there is a request. The event handler will receive a request and
response instance.

Table 10-4.  Methods of the Server object

Members Description

addListener(event , callback); Assigns an event handler for a particular event

listen(port, [hostname]) Begins accepting connection on the specified port and hostname

Listing 10-4.  Providing a Callback as the Function to Trigger, per Incoming Request

var serverA= http.createServer(requestListener);
//or
var serverB=http.createServer();
 serverB.addListener("request", requestListener);
  

In order for our server to monitor the request, we must first establish which connections it is
responsible for. In order to do this, we will use the listen method of our server instance. The listen
method, as shown in Listing 10-5, can be supplied with two arguments. The first parameter, port, is
required, while the second parameter, hostname, remains optional. For the purposes of this book, both will
be used.

Listing 10-5.  Signature of the listen Method

listen(port, [hostname]);
 

Where hostname is required, we will always use the IP address 127.0.0.1, which is simply a way to access
one’s own computer’s network services. The value of the port, on the other hand, is used to afford multiple
servers the ability to listen to the same IP. However, by specifying a port, all running servers on 127.0.0.1 will
be able to distinguish their incoming requests from the others.

At this point, you should have an understanding of the basic components that are used to craft a
rudimentary Node server. Before we continue to learn the remaining parts, let’s review, in a simple exercise,
what we have learned.

Chapter 10 ■ Serving JSON

174

EXERCISE 10-1. YOUR FIRST JSON SERVER

Use the HTTP module and its members to create a server that monitors all incoming traffic on port 1337.
Furthermore, utilizing the interface of both the response and request objects, provide the necessary
implementation that results in the response headers shown following. The response should satisfy only
the target resource of the request (shown following).

Request Headers
GET /message.json HTTP/1.1
Host: 127.0.0.1:1337
Accept: application/json
 
Response Headers
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 25
 
{"message":"hello-world"} 

Hint■■  I n order to arrive at the correct Content-Length for the entity body, you must supply the body to the
following method: Buffer.byteLength(data , 'utf8'));.

Test if you are correct by navigating your browser to your server. Be sure to append a few paths after
the URL and port to ensure that only the request is satisfied: http://127.0.0.1:1337/[paths-here].

Listing 10-6 reveals the answer to the previous exercise. We begin by importing our HTTP module (line 1).
We then invoke its createServer method to initialize our server (line 2). Additionally, using the optional
parameter, we supply the callback method that will be triggered for each incoming request. Utilizing the
listen method, inform the server to monitor our localhost, with a focus on port 1337 (line 3).

Listing 10-6.  Answer to Our JSON Exercise

 1 var http = require('http');
 2 var server = http.createServer(requestHandler);
 3 server.listen(1337);
 4 function requestHandler(request, response) {
 5 if (request.url === "/message.json") {
 6 var body = JSON.stringify({
 7 message : "hello-world"
 8 });
 9 response.statusCode = 200;
10 response.setHeader("Content-Type", "application/json");
11 response.setHeader("Content-Length", Buffer.byteLength(body, 'utf8'));
12 response.end(body);
13 }
14 };
15 console.log('Server running at http://127.0.0.1:1337/');
 

Chapter 10 ■ Serving JSON

175

When an incoming request notification occurs, our requestHandler function will be invoked and
supplied two objects: request and response (line 4). Per the exercise, our task was to ensure that the
response was provided only for the requested /message.json resource. To ensure that we respond only
to that resource, we must obtain the requested URL and compare it before we handle it (line 5). This is
accomplished with strict equality. If, and only if, the requested resource matches /message.json do we
configure a response.

Utilizing the JSON.stringify method (remember: Node runs on JavaScript), we convert an object
into a string (line 6). From there, utilizing the setter method of the statusCode attribute of the response
object, we assign it a value of 200. This will inform the client that the request was understood (line 9).
Next, utilizing the setHeader method, we supply the Content-Type, which, of course, is application/json
(line 10). In order to calculate the Content-Length, we supply the body variable, which is currently assigned
our JSON text, to the Buffer.byteLength method. Utilizing the proper encoding, we can arrive at the proper
Character-Length (line 11).

Remember that Character-Length is not simply the character length but, rather, the length in bytes. While
ASCII characters require 1 byte per character, you should remember that JSON is UTF8. Therefore, it is simply
safer to rely on the Buffer.byteLength method to determine the length of our UTF8-encoded JSON values.

Last, we use the end method of our response object to signify that our response has been configured at
last. Additionally, we supply our body variable as an argument to the optional parameter.

If we were to run this server and navigate to http://127.0.0.1:1337/, we should not be provided with
anything. In fact, the request should never be fulfilled. A response is only completed with the invocation of
response.end(). However, this method will only be triggered if we navigate to http://127.0.0.1:1337/
message.json. Upon arriving at this URL, we will also be faced with our JSON message outputted to the
viewport, as shown in Figure 10-13.

Figure 10-13.  message.json outputs the expected JSON

To keep things simple, the previous exercise only required that you configure a response for a particular
request. However, it should be known that all requests be provided a proper response. Failure to use the end
method of the response object will result in the client waiting until a time-out occurs. You can experience a
time-out simply by navigating to 127.0.0.1:1337/.

A request can be handled in any manner you see fit. The preceding exercise created an object on the
fly, but we could just as easily have provided the contents of a JSON document, by tapping into the File
System module.

Nevertheless, by monitoring the interface of the IncomingRequest instance, whether it’s by the exposed
URL or any of its configured headers, we can determine how to best satisfy the request. This takeaway will be
essential for the remainder of this chapter.

Chapter 10 ■ Serving JSON

176

CORS-Enabled Server
If you are following along with the source code provided, take a moment to locate the file labeled
“xss-server.js” within Chapter 10. Right-click the file and select “Get-Info,” if you’re on Mac, or “Properties,”
for a PC. Within the General tab, locate the absolute path for the file and copy it.

Now, open up a second window of the Command Prompt (PC) or Terminal.app (Mac). Within this
second command window, we are going to start our xss-server. At this point, type “node” and then paste
the location to the aforementioned xss-server.js. If the address is found, you should see a message
informing you that a server is running at http://127.0.0.1:8080.

Ensure that your previous server is still running, by navigating to http://127.0.0.1:1337/message.json.
I hope {"message":"hello-world"} is outputted to the screen. If so, the server is ready to receive our
request; otherwise, we must start up our exercise server once again.

Now, with both servers running, proceed to http://127.0.0.1:8080. If you are not following along with
the source code, navigate your browser to http://json.sandboxed.guru/chapter10/xss-exercise.html.
Upon arriving at either of the two destinations, you will be presented with the code for an xhr object
configured to make a request to http://127.0.0.1:1337/message.json. Now, open the developer’s
console, copy and paste the code provided for the request, and execute the code to observe the results.
As in our previous chapter, you should be confronted with the infamous network error, as shown in
Figure 10-14.

Figure 10-14.  Cross-origin network error

However, as we are in control of the server and can configure the headers for message.json, we can
resolve this in one of three manners. The first is to incorporate the necessary headers, as outlined by the
W3C CORS standard. Second, we can utilize a proxy to make authorized requests on our client’s behalf.
Third, we can exchange JSON as valid JavaScript via JSONP.

At this point in the chapter, we have everything we require to fulfill a request via the first and third
option; however, we have yet to discuss a few particulars that would enable us to devise a proxy. That
being said, let’s resolve the matter by way of incorporating the CORS header Access-Control-Allow-Origin
(see Listing 10-7).

http://json.sandboxed.guru/chapter10/xss-exercise.html
http://127.0.0.1:1337/message.json

Chapter 10 ■ Serving JSON

177

Listing 10-7.  message.json with CORS Enabled

 1 var http = require('http');
 2 var server = http.createServer(requestHandler);
 3 server.listen(1337, '127.0.0.1');
 4 function requestHandler(request, response) {
 5 if (request.url === "/message.json") {
 6 var body = JSON.stringify({
 7 message : "hello-world"
 8 });
 9 response.statusCode = 200;
10 response.setHeader("Access-Control-Allow-Origin", '*');
11 response.setHeader("Content-Type", "application/json");
12 response.setHeader("Content-Length", Buffer.byteLength(body, 'utf8'));
13 response.end(body);
14 }
15 };
16 console.log('Server running at http://127.0.0.1:1337/');
 

Listing 10-7 reveals in bold the inclusion of the CORS header and configures its value to that of the
wildcard * token. This will provide authorization to all requests from any origin. However, we could
have determined whether the source origin via the origin header was exposed via request.headers, to
determine if the indicated source origin should be authorized to access the resource. If we determine the
source origin to be authorized, we can simply configure the value for the header with the source origin of the
incoming message, as seen in Listing 10-8.

Listing 10-8.  message.json CORS Enabled for json.andboxed.guru Only

 8 //.. code truncated
 9 var sourceOrigin = request.headers.origin;
10 �var originAllowed = (sourceOrigin === "http://json.sandboxed.guru") ?

sourceOrigin : null;
11 response.setHeader("Access-Control-Allow-Origin", originAllowed);
12 //.. code truncated
 

The preceding code in Listing 10-8 obtains the origin header from the incoming message via the
request object. (In Node, all exposed headers are lowercase.) Utilizing the value returned from this header,
we can determine if it is a source origin we are expecting, such as that of json.sandboxed.guru. We can
match the value against more values; however, as this is simply for demonstrative purposes, I chose just the
one. Utilizing a tertiary operator (a succinct, if else, evaluation), we determine if the source origin should be
provided as the value to the Access-Control-Allow-Origin header. If it is a match, we will provide the origin.
However, if it is not a match, we will supply the value with null.

With the new line in place, let’s restart our server. First, we must shut down the server by pressing
Control+C, then we can initialize our server by typing node, followed by the name of the exercise.js file.
Alternatively, you could hit the up key on your keyboard within the console to use a previous command.
Either way, hit Enter, once the proper command is in place, to run the server.

At this point, an attempt to obtain the message.json resource from either http://127.0.0.1:8080 or
http://json.sandboxed.guru/chapter10/xss-exercise.html will be successful. Congratulations, you
have just configured your first CORS-enabled resource to handle simple requests. At this point, feel free to
shut down both servers, as we will shortly modify our code to provide JSONP also.

http://json.sandboxed.guru/chapter10/xss-exercise.html

Chapter 10 ■ Serving JSON

178

JSONP Server
A JSONP server, as you recall from Chapter 9, requires us to pad our JSON entity, so that the script engine
views it as valid JavaScript. In other words, we cannot return JSON as an entity body whose structural
composition is that of a collection (signified by the beginning and ending of the { and } tokens).

While this will not prohibit us from returning JSON, whose structural composition is that of an ordered
list, we will still be confronted with the dilemma of obtaining the data upon being evaluated by the script
engine. In order to combat this, our JSON must be wrapped or padded by the grouping operator and
prepended with a function name supplied by the requesting client. The JSONP model establishes that this
identifier should be provided as the value to a query string parameter labeled “jsonp.”

Let’s leverage our existing JSON server to support the JSONP format also, so that if a request for the
resource message.json arrives, we can continue to supply it with JSON. However, should the URL possess
the jsonp parameter, we can manipulate the JSON to reflect the JSONP model. Because the request.url
provides us with a string reflecting the entire URL as it pertains to the request, it will be necessary to use
string manipulation to mask the various components that could possibly be reflected in the string. In other
words, we will have to isolate any and all query strings from the path of our resource from the provided
string. Furthermore, for any query string key provided, it will be necessary to obtain its corresponding value.
Only by taking this route can we be certain our conditions for a particular URL will be a match. Additionally,
it will allow our server to determine whether to respond with JSON or JSONP. We can validate the conditions
accordingly, utilizing some vanilla JavaScript, as demonstrated in Listing 10-9.

Listing 10-9.  Skeletal Body of a requestHandler to Extract the Possible jsonp Key-Value from the request.url

 1 function requestHandler(request , response){
 3 if(request.url === '/message.json') {
 4 // return JSON entity
 5 } else if(request.url.toLowerCase().indexOf('/message.json?jsonp=') > - 1) {
 6 // return JSONP entity;
 7 } else {
 8 // 404 file not found;
 9 }
10 }
11 function getParamKey(key, str) {
12 var regExp = new RegExp(key.toLowerCase() + '=[^&]*');
13 var matchingValue = (str.toLowerCase()).match(regExp);
14 for (var i = 0; i < matchingValue.length; i++) {
15 var replacedValue = matchingValue[i].replace(key + '=', '');
16 matchingValue[i] = replacedValue;
17 }
18 return decodeURIComponent(matchingValue[0]);
19 };
 

Listing 10-9 reflects the skeletal structure to assess whether the requested /message.json resource should
be returned as JSON or JSONP. The code begins by assessing whether the request.url matches exactly that
of the /messages.json (line 3). If this is the case, we will continue to provide the response in JSON form.
If, however, the URL requested does not explicitly match that of /messages.json, we further analyze it to
determine if the URL in question contains the following substring: /message.json?jsonp= (line 5). This is
accomplished through the inherited indexOf method possessed by all strings. If the substring is found within the
request URI, the character index, as to the beginning of the match, will be supplied as the value of the evaluation.
However, if the substring is not found, it returns the integer -1. Therefore, should the value be greater than -1, we
can be sure that the request is for message.json and that the client wishes to receive the response as JSONP. If
the URL does not reflect any of these conditions, we shall supply the status code of 404 (File Not Found).

Chapter 10 ■ Serving JSON

179

Last, in order to extract the value possessed by the jsonp parameter, we will utilize a modified version
of our getCookie function, discussed in Chapter 7. This time, however, rather than extracting a particular
key from a cookie, we will be extracting the value of a particular parameter. As we will no longer be
“getting-cookies” but, rather, obtaining a “parameter-key,” we will name this method getParamKey.

The function getParamKey is called with two arguments. The first represents the key to extract, while the
second represents the string that is in possession of the key we seek to obtain (line 11). Utilizing a regular
expression, we analyze the provided string for a possible pattern match (line 12). That pattern, of course, is
the name of the key, followed by the = token and any subsequent characters, providing that character is not
the & token (which would denote the beginning of another key). From there, if the pattern is matched, we
store those matches in the matchingValue variable (line 13). Next, as our match will reflect the key = value
format, we must isolate the value (line 15). We can achieve this easily by replacing our key= with and empty
string '', essentially deleting that portion of our string. Last, we decode the value, in case it is URL-encoded,
and then return it to the caller of the function (line 18).

Note■■   When dealing with JSONP, it will be beneficial to ensure that the returned value is not URL encoded,
lest we wrap our JSON with a label such as %20someMethod%20.

Let’s now revisit our previous code from Listing 10-7 and begin serving up our JSON/JSONP server
(see Listing 10-10).

Listing 10-10.  Simple JSON and JSONP Server

 1 var http = require('http');
 2 var server = http.createServer();
 3 server.addListener("request", requestHandler);
 4 server.listen(1337, '127.0.0.1');
 5 function requestHandler(request, response) {
 6 var body;
 7 if (request.url === '/message.json') {
 8 // return JSON entity;
 9 response.statusCode = 200;
10 response.setHeader("Access-Control-Allow-Origin", "*");
 
11 response.setHeader("Content-Type", "application/javascript");
12 body = JSON.stringify({ message : "hello-world" });
13 } else if (request.url.toLowerCase().indexOf('/message.json?jsonp=') > -1) {
14 // return JSONP entity;
15 response.statusCode = 200;
16 response.setHeader("Content-Type", "application/javascript");
17 var jsonText = JSON.stringify({ message : "hello-world" });
18 body = getParamKey("jsonp", request.url) + "(" + jsonText + ");";
19 } else {
20 // 404 file not found;
21 response.statusCode = 404;
22 response.setHeader("Content-Type", "text/html");
23 body = "<h1>404<h1> page not found";
24 }
25 (body) ? response.end(body) : response.end();
26 };

Chapter 10 ■ Serving JSON

180

27 function getParamKey(key,str) {
28 var regExp = new RegExp(key.toLowerCase() + '=[^&]*');
29 var matchingValue = (str.toLowerCase()).match(regExp);
30 for (var i = 0; i < matchingValue.length; i++) {
31 var replacedValue = matchingValue[i].replace(key + '=', '');
32 matchingValue[i] = replacedValue;
33 }
34 return decodeURIComponent(matchingValue[0]);
35 };
36 console.log('Server running at http://127.0.0.1:1337/');
 

Listing 10-10 reflects in bold the latest code changes inserted into our earlier json.server, in order
to fulfill a request for JSONP. At this point in time, let’s run Listing 10-10 and navigate your browser to
http://127.0.0.1:1337/message.json. You should find that your browser continues to output the previous
message, as shown in Figure 10-13. Now, if you were to append ?jsonp=someMethod to the current URL
(http://127.0.0.1:1337/message.json?jsonp=someMethod), you should be presented with the same JSON
text, only now it should reflect the JSONP model, as seen in Figure 10-15.

Figure 10-15.  Output of JSONP, demonstrating the client-supplied value as the prepended function name

Any value you provide for the jsonp key will continue to be prepended to the padded JSON. As our
server is now serving JSONP, let’s test its acquisition from another origin. For those following along with the
source code, feel free to run the jsonp.html from within the BeginingJSON/chapter10/ directory; otherwise,
navigate your browser to http://json.sandboxed.guru/chapter10/jsonp.html. What you should be
witnessing is a button labeled “load jsonp,” such as that in Figure 10-16.

http://127.0.0.1:1337/message.json
http://127.0.0.1:1337/message.json?jsonp=someMethod
http://json.sandboxed.guru/chapter10/jsonp.html

Chapter 10 ■ Serving JSON

181

By clicking this button, we will dynamically inject a script tag into our document. As you may have
already guessed, the resource that is specified as the external resource to obtain is none other than that of
your server. With that being said, and with our server up and running, let’s do as the button suggests and
load some JSONP.

Much as is illustrated in Figure 10-17, no matter how many times you click the button, the result will
always be the same. That result is the reception of JSONP from your server. Congratulations! At this point,
you have successfully configured a server to fulfill a JSONP request.

Figure 10-16.  jsonp.html from y, configured to load in JSONP from your local server

Figure 10-17.  json.sandboxed.guru successfully receiving JSONP from your server

The Proxy Server
Before we delve into the proxy server, we must revisit our previous discussion pertaining to the members
of the HTTP module. As you may recall, I had previously mentioned that the HTTP module possesses the
ability to make client requests directly from the server. This is achieved via the request method belonging to
the HTTP module.

Chapter 10 ■ Serving JSON

182

http.request
The request method, the second method of the HTTP module shown in Table 10-2, whose signature is the
request(options, [callback]);, provides the server with the ability to configure a client request. This
method, as witnessed in the signature, is able to receive two parameters. The first parameter, options, must
be provided with an object whose member’s make up the request line, in addition to the headers of the
request. Such members can be seen in Table 10-6.

Table 10-6.  Possible Keys That Can Belong to the Argument of the options Parameter

Properties Description

host A domain name or IP address of the server that issues the request

port Port of the provided host

method A string specifying the HTTP request method

path Requested resource. *Defaults to /

headers An object containing request headers

The second parameter, callback, represents the function to be triggered as the handler on receiving a
response from the remote server. In order to obtain the response, the function indicated as the callback must
possess the signature shown in Listing 10-11.

Listing 10-11.  Signature of the Request callback Parameter

callback(response);
 

As in the case of our earlier review of the requestHandler, the callback function supplied to the method
will receive an instance of the IncomingMessage object, from which it will be able to reference the headers
and status code of the response. At this point, let’s take a moment to put all of this information together into
code and walk through it.

Listing 10-12 demonstrates the minimal amount of code to configure a server-side request. We begin by
devising an object that will be used to represent the request line of our request. It is supplied with necessary
values for the properties host, path, and method (line 2). We then provide our configured object as our first
argument to the http.request method. Next, we provide an argument as the callback. This function will
be used to handle the IncomingMessage object provided by the remote server (line 3). Once the request is
fulfilled, and a response has been provided, it will be made available to our called function, from which our
application can extract the headers and status of the response (line 5–line 6).

Listing 10-12.  Minimal Code Required to Handle a Server-Side Request Using the http.request Method

 1 var http = require('http');
 2 var options = { host:"json.sandboxed.guru",
 path:'/chapter10/data/imagedata.txt',
 method:"GET"
 };
 3 http.request(options, callback);
 4 function callback(response){
 5 console.log(response.statusCode);
 6 console.log(response.headers);
 7 };
 

Chapter 10 ■ Serving JSON

183

What should, I hope, be apparent is that our code is missing a means of extracting the entity body of the
response. In order to receive the entity body for our IncomingMessage object, we must learn how to consume
the data directly from the stream.

http.Stream
The IncomingMessage object, and all of its instances, is a subclass of a stream. What this simply means is that
the interface possessed by a stream is also possessed by any IncomingMessage instance.

Note■■   Obtaining data from IncomingMessage applies to any IncomingMessage object that possesses an
entity body, even for all incoming requests to our server.

A stream, as defined by Node.org, is an abstract interface implemented by various objects in Node.
I like to equate a stream to a common garden hose. If you can bring to mind a garden hose, the first thing
that you might visualize is a long tube that possesses a relatively small diameter. This small diameter is what
ultimately restricts the flow of water, thereby allowing only a finite volume of water to exit per second. Now,
envision that garden hose as the cable that connects your computer to a server across the Internet. Similarly,
the diameter of this hose represents your bandwidth. The bytes sent from the server are streamed, much
like running water through the restricting tube, and arrive at your computer, where they accumulate, only
instead of water molecules, our stream consists of data-packets.

There are two events that are dispatched by Node streams, as outlined in Table 10-7, that enable us to
consume the streaming data. Those events are data and end.

Table 10-7.  Events of http.Stream

Properties Description

data Enough bytes are available for the stream to consume.

end All bytes from the stream have been consumed.

The data event is fired when enough data becomes available to consume from the stream. Depending
on the amount of bytes that make up an entity body, this event may fire multiple times. Each time the data
event is fired, any callback function will be provided “chunks” of available data. This allows our application
to consume the available bytes as they arrive.

The second event, end, informs our application that the handler reading from the stream has consumed
every bit of data and should not expect anymore.

In order to listen for either of these events, we can attach listeners directly to the provided
IncomingMessage instance. Listing 10-13 reveals the necessary code required to consume an entity body
from our response.

Listing 10-13.  Skeletal Body of Code Required to Consume an Entity Body from an IncomingMessage object

1 var http = require('http');
2 var options = { host:"json.sandboxed.guru",
 path:'/chapter10/data/imagedata.txt',
 method:"GET"
 };

Chapter 10 ■ Serving JSON

184

 3 http.request(options, callback);
 4 function callback(proxy_response){
 5 console.log(response.statusCode);
 6 console.log(response.headers);
 7 proxy_response.addListener('data', function(chunkOfData) {
 8 //do something with a chunk of data
 9 });
10 proxy_response.addListener ('end', function() {
11 //end of stream reached
12 });
13 };
 

Listing 10-13 incorporates (in bold) the necessary listeners for the data and end events to properly work
with incoming data, to receive a possible entity body from a response. While Listing 10-13 does not currently
provide any particular implementation to handle the provided data, we can honestly do anything with it. We
could piece it all back together onto a variable, so that we can read it in its entirety, once the data has been
consumed fully. Or, as it will be in the case of our proxy, we can pipe it directly into our response.

At this point in time, if the preceding code from Listing 10-13 were to be executed on the server, the
request would never be initiated. Calling the request method does not initiate the actual request. Much like
the xhr object in JavaScript, we must trigger the submission of the request. This is accomplished through the
ClientRequest instance.

http.ClientRequest
When the request method is invoked, an instance of the ClientRequest object is created and returned to
the caller of the method. It will be through the interface possessed of this method that we can provide, along
with our request, an entity body.

As shown in Table 10-8, the ClientRequest interface possesses an end method. This method signifies
that our request is fully configured, thereby initiating the actual request. Additionally, the end method can
accept an optional argument, which allows for the submission of an entity body, along with our request.

Table 10-8.  ClientRequest Methods

Properties Description

end([data], [encoding]) Finishes sending the request. *It can be called with an entity body. *Data
must be in string, binary, or UTF-8 form.

abort Aborts a request

Listing 10-14 demonstrates the bare bones of code required when working with a client request. To
better understand the code, let’s walk through it.

Listing 10-14.  Entire Skeletal Structure for Facilitating Proxy Calls

 1 var http = require('http');
 2 �var options = {hostname:"json.sandboxed.guru", path:'/chapter10/data/imagedata.txt',

method:"GET"};
 3 var clientRequest=http.request(options, responseHandler);
 4 clientRequest.end();

Chapter 10 ■ Serving JSON

185

 5 function responseHandler(proxy_response) {
 6 console.log('STATUS: ' + proxy_response.statusCode);
 7 console.log('HEADERS: ' +proxy_response.headers);
 8 proxy_response.addListener('data', function(chunkOfData) {
 9 //do something with a chunk of data
10 });
11 proxy_response.addListener ('end', function() {
12 //end of stream reached
13 });
14 }
 

The code begins with the inclusion of an http instance (line 1). Next, we configure an object with the
particulars of the request and assign it to a variable labeled “options” (line 2). From there, we initialize our
ClientRequest through the http.request method and supply it with the options variable as well as the
handler of the provided response (line 3). Much as with the response object from our earlier discussions, the
ClientRequest has the ability to contain an entity body. For this reason, the request is not invoked immediately.
It will be a requirement to use its exposed end method to signify that the request is ready. That being said, and
with no body to supply for the request, we invoke the end method on the referenced ClientRequest (line 4).

The next block of code pertains to the management of the response from the remote network. Our
callback responseHandler is invoked upon the reception of the IncomingMessage. This IncomingMessage is
supplied as the argument to our proxy_response parameter (line 5), from which we are able to obtain the
existing headers (line 6) and status code (line 7).

From there, we are able to monitor the stream for any incoming data that makes up the entity of the
response. Adding an event listener via the addListener method and specifying which event to listen for, we
can monitor the incoming bytes of data. The data event will supply the event handler with a chunk of data
that can either be used to send back a response with the use of response.write or assembled for internal
processing (line 8). In the preceding listing, I have opted to assemble the incoming transmission. Each
chunk of data provided to the handler is appended onto our existing data variable (line 9).

Last, we attach an event listener to monitor for the end event, so that we can be made aware that we
have read all the bytes on the provided stream (line 11).

EXERCISE 10-2. YOUR FIRST PROXY SERVER

Leveraging the code from Listing 10-14, as well as what you learned earlier in the chapter, building a
proxy server should be no sweat. In this exercise, you are asked to devise the necessary implementation
that would result in the following (proxy) request headers for the resulting incoming request headers.
 
Request Headers (Proxy)
GET /chapter10/data/imagedata.txt HTTP/1.1
Host: json.sandboxed.guru
Accept: *
 
Request Headers (Incoming)
GET /proxy/ HTTP/1.1
Host: 127.0.0.1:1337
Accept: *
 
As this is a proxy, be sure to write all incoming chunkOfData directly to the response. Similarly, don’t
forget about the headers. Once the stream has been exhausted of all data, be sure to end the response.
The answer can be seen in Listing 10-15.

Chapter 10 ■ Serving JSON

186

Listing 10-15.  Answer to the Proxy Exercise

 1 var http = require('http');
 2 var server = http.createServer();
 3 server.addListener('request',requestHandler);
 4 server.listen(1337, '127.0.0.1');
 5 function requestHandler(request, response) {
 6 if (request.url.toLowerCase().indexOf("/proxy/") >-1) {
 7 var options = { host:"json.sandboxed.guru",
 path:'/chapter10/data/imagedata.txt',
 method:"GET" };
 8 var clientRequest=http.request(options, responseHandler);
 9 clientRequest.end();
10 function responseHandler(proxy_response) {
11 response.writeHead(proxy_response.statusCode, proxy_response.headers);
12 proxy_response.addListener('data', function(chunkOfData) {
13 response.write(chunkOfData);
14 });
15 proxy_response.addListener ('end', function() {
16 response.end();
17 });
18 }
19 } else {
20 response.statusCode = 200;
21 body = 'proxy calls occur at /proxy/';
22 response.setHeader("Content-Type", "text/plain");
23 response.setHeader("Content-Length", Buffer.byteLength(body, 'utf8'));
24 (body) ? response.end(body) : response.end();
25 }
26 };
27 console.log('Server running at http://127.0.0.1:1337/');
 

Listing 10-15 reveals, in bold, the necessary code required to fulfill the requirements of the preceding
exercise. As the code builds on Listing 10-14, I will discuss only the lines that are required to satisfy the exercise.

Per the exercise, a proxy should only occur if it has been determined that an incoming request seeks a
resource located within the /proxy/ directory. Utilizing indexOf, we can determine if the /proxy/ substring
exists within request.url. If the substring is found, the index returned will be greater than -1, and, therefore,
the subsequent block of code will be able to run (line 6). Of course, within that subsequent block of code
resides our proxy.

Once we initiate our proxy, the supplied callback is provided a reference to an IncomingMessage object. As
our proxy is merely making a request on behalf of our client in order to circumvent the same-origin policy, we
must simply provide all aspects of the request, unaltered, as the response from our server. Therefore, once we
can obtain the headers and status line of the proxy_response, we simply relay them onto the response that we
will provide back to our client. This is achieved via the expose writeHead method (line 11).

Similarly, we have to route any incoming data chunks to the response of our incoming request. This is
accomplished via the write method (line 13). Last, once all data has been consumed from the stream, we
invoke response.end() to deliver the response back to the requesting client (line 16).

If you were to run this server and navigate to the URL, http://127.0.0.1/proxy/, you should be
presented with similar results, as shown in Figure 10-18.

http://127.0.0.1/proxy/

Chapter 10 ■ Serving JSON

187

Currently, our proxy will always and only request, on our behalf, the preceding Base64 data. However,
as this is rather limiting, let’s modify it to possess the ability to fetch other files as well. On my server,
json.sandboxed.guru, within the /chapter10/data/ directory, I have placed the following files: imagesA.json,
imagesB.json, and imagesC.json. You may remember these from Chapter 8. Utilizing a singular line of
JavaScript, we ensure that these files can be fetched in addition to the existing imagesdata.txt file
(see Listing 10-16).

Listing 10-16.  Altering Our Proxy to Fetch Additional Files from json.sandboxed.guru

 1 var http = require('http');
 2 var server = http.createServer();
 3 server.addListener('request',requestHandler);
 4 server.listen(1337, '127.0.0.1');
 5 function requestHandler(request, response) {
 6 if (request.url.toLowerCase().indexOf("/proxy/") >-1) {
 7 var options = { hostname:"json.sandboxed.guru",
 path:'/chapter10/data/' + request.url.substr(7) ,
 method:"GET" };
 8 var clientRequest=http.request(options, responseHandler);
 9 clientRequest.end();
10 function responseHandler(proxy_response) {
11 response.writeHead(proxy_response.statusCode, proxy_response.headers);
12 proxy_response.addListener('data', function(chunkOfData) {
13 response.write(chunkOfData);
14 });
15 proxy_response.addListener ('end', function() {
16 response.end();
17 });
18 }
19 } else {

Figure 10-18.  A rather large image whose data has been encoded into Base64

Chapter 10 ■ Serving JSON

188

20 response.statusCode = 200;
21 body = 'proxy calls occur at /proxy/';
22 response.setHeader("Content-Type", "text/plain");
23 response.setHeader("Content-Length", Buffer.byteLength(body, 'utf8'));
24 (body) ? response.end(body) : response.end();
25 }
26 };
27 console.log('Server running at http://127.0.0.1:1337/');
 

Listing 10-16 demonstrates how, through simple string manipulation, we can dynamically specify the
resource to be requested from the remote server. Through the request.url, we can extract any resource
that follows the first seven characters, which are precisely how many characters are used to specify /proxy/.
From there, the remaining characters within the string can be appended to the value for our path. At this
point, let’s shut down the currently running server, so that we can insert this amendment. Once it’s in place,
we can start our server back up and navigate to the following:
 
http://127.0.0.1:1337/proxy/imagedata.txt
http://127.0.0.1:1337/proxy/imagesA.json
http://127.0.0.1:1337/proxy/imagesB.json
http://127.0.0.1:1337/proxy/imagesC.json
 

When navigating to any of the preceding destinations, you should be provided with the exact response,
as if you directly obtained them from http://json.sandboxed.guru/chapter10/data/. The reason why is
because we did obtain them directly from the preceding URL, via our proxy.

Congratulations! You have constructed a functioning proxy server.

Summary
This chapter contained a lot of advanced concepts, and you should be truly proud of yourself for making
it through. A server is an integral component when it comes to the Internet, and not just for fetching static
resources, as you have surely observed. A server, while capable of fetching static files, can in concert with
server-side programming, generate the content of the response, evaluate the request, and even initiate
requests of its own.

With the ease of the JavaScript language, and Chrome’s V8 engine, we were able to conveniently run and
manage our own server. With it, we learned how to handle incoming requests, as well as how to configure a
response. This chapter also provided a hands-on approach toward circumventing the same-origin policy of
the browser. Additionally, you had a glimpse into the concepts of server-side programming, which will serve
you well in the future or, at the very least, the next chapter.

In the upcoming chapter, we will continue to leverage the Node platform to create a simple JSON
database. This database will allow incoming JSON data to be captured and stored locally on the file system,
so that it can be retrieved by later requests.

Key Points from This Chapter
A Node server can be programmed entirely in JavaScript via the Node’s •	
HTTP module.

•	 end must be invoked on the response instance for a request to be completed.

Neglecting to invoke •	 end will result in the client’s request to time out.

http://127.0.0.1:1337/proxy/imagedata.txt
http://127.0.0.1:1337/proxy/imagesA.json
http://127.0.0.1:1337/proxy/imagesB.json
http://127.0.0.1:1337/proxy/imagesC.json
http://json.sandboxed.guru/chapter10/data/

Chapter 10 ■ Serving JSON

189

You must restart your server anytime a change is introduced to the code.•	

Node possesses an extremely low-level API.•	

Node is non-blocking/event-driven.•	

•	 IncomingMessages instances represent request/response arguments.

You can obtain the headers, URLs, and request/status lines from •	 IncomingMessages.

To obtain an entity body from •	 IncomingMessages, you must consume data from their
stream.

127.0.0.1 is a way to access one’s own computer’s network services.•	

Content-Length must specify bytes not character length.•	

Ensure that the value supplied with the •	 jsonp parameter is not URL-encoded when
appending it to the padded JSON.

With string manipulation, you can respond accordingly to any request.•	

191

Chapter 11

Posting JSON

As should be evident by now, a server has the ability to provide a tailored response to best match the
indicated method, resource, and the configured headers of an incoming request. This protocol, when paired
with static content, can be utilized by the server software to translate an incoming request into a location
for said resource located on its file system. The specified path of the resource is translated via the server
software into that of a determined directory, for which a file is thought to exist. The response is either the
content of the file or a 404 page.

Similarly, the very same protocol, when paired with a dynamic programming language (such as PHP,
.NET, or Java), provides cooperating developers a means of incorporating web services. Such services can be
used to persist, update, and retrieve existing data. The difference, per the HTTP/1.1 Specification,1 lies with
the particular method of the request. In this chapter, I will focus on the use of the POST method to provide an
entity body to our Node application.

Request Entity Body
There are two sets of HTTP request methods: those that are considered safe, and those that are considered
unsafe. Generally speaking, safe methods merely retrieve a resource, whereas unsafe methods seek to
provide data with an HTTP request. This resource is referred to as a payload. The payload itself may be as
complex as a file or as simple as an e-mail address. However, once this information is received, it is often
written to a database for later retrieval.

While the preceding sentence may make immediate sense, what might not be so obvious is that without
the use of a server-side code to receive and process the incoming payload, the entity provided to a server
would serve little to no use. However, once that data is received and handled appropriately, its usefulness is
limited to our imaginations and business goals or, as seen in the case of Twitter or Facebook, your fan base.

With the proxy example from the previous chapter, you learned that in order to obtain the payload
of an IncomingMessage object, we must consume it via the inherited interface of the stream object. This
is accomplished, as demonstrated in Listing 11-1, by attaching an event listener to the incoming request
instance, in order to monitor the stream for a data payload. Furthermore, by pairing the listener with a
callback capable of receiving incremental chunks of data as an argument, we can consume data from the
stream as it is received.

1R. Fielding et al., Hypertext Transfer Protocol—HTTP/1.1, http://tools.ietf.org/html/rfc2616, 1999.

http://tools.ietf.org/html/rfc2616

Chapter 11 ■ Posting JSON

192

Listing 11-1.  Monitoring the Stream for Data

1 function requestHandler(request, response) {
2 request.addListener('data', function(chunk) {
3 //do something with data chunk
4 });
 //...truncated
8 }
 

Depending on the format of the payload, whether it’s in binary or ASCII, our application may begin
to utilize the individual chunks as they enter it. Additionally, by monitoring the stream for the end event,
our application can be made aware of when there is no further data to be consumed from the stream, as
demonstrated in Listing 11-2.

Listing 11-2.  Monitoring the Stream for the end of Data

1 function requestHandler(request, response) {
 //...truncated
5 request.addListener(end, function() {
6 //stream no longer has data
7 });
8 }
 

The preceding lines of code, outlined in bold in both Listing 11-1 and 11-2, are essential for obtaining
an entity body from an incoming request. However, the actual implementation of code that is utilized within
the body is dependent on the needs of the application. Whether the incoming data chunks are immediately
parsed or amassed until the stream is drained is a matter of your application’s needs and data expectancies.
Furthermore, how the data is parsed is absolutely dependent on the Content-Type of the incoming payload.
While GET requests can only provide data in the URL-encoded format, POST requests can supply data in
a variety of formats. Such formats are the following: multipart/form-data, application/x-www-form-
urlencoded, application/xml, text/xml, application/json, and more.

Note■■  I n order to recognize how to parse the incoming information accordingly, it will be helpful to utilize the
Content-Type header held by the incoming request via the following snippet: if(request.headers['content-
type'].indexOf(substring-to-match-here)>-1){ //condition block }.

HTML Form POST
As a front-end developer, it is likely that you have previously used the standard HTML <form> element to
POST data to a server. The <form> element provides a convenient and standard way for a user to supply data
via a series of semantic components, such as input fields, check boxes, radio buttons, etc., to a web service
that is capable of processing the supplied information on the server.

In order to demonstrate a form POST, we must first devise the HTML markup that can be returned as
a resource by our Node application. Listing 11-3 demonstrates the markup that will be provided to any
incoming requests for the following resource /index.html.

Chapter 11 ■ Posting JSON

193

Listing 11-3.  An HTML Form POST

 1 <!doctype html>
 2 <html lang="en">
 3 <head>
 4 <meta charset="utf-8">
 5 </head>s
 6 <body>
 7 <form action="formPost" method="POST" content="application/x-www-form-urlencoded">
 8 First-Name: <input name="fname" type="text" size="25"/>
 9 Last-Name: <input name="lname" type="text" size="25"/>
10 <input type="submit"/>
11 </form>
12 </body>
13 </html>
 

The preceding code should not come as a surprise to you, as this is standard HTML markup. The only
five lines that we should discuss are those that make up our form. We use the HTML <form> element not
only to declare the container, which will hold relevant form elements, but also to configure key aspects of the
request (line 7). The attribute labeled “action” defines the target resource for which the method is enacted.
In this case, I have set the resource to that of formPost. The second attribute, labeled “method,” defines the
method to be used on the request. This can be a method such as GET or POST, but in this case, we will specify
POST. These two attributes will be used in conjunction to make up the request line of our HTTP request.

Last, utilizing the attribute labeled “content,” we specify the Content-Type of the data accompanying
the request. While there are many possible Content-Types in existence, only three possible values can
be applied to an HTML form. These three Content-Types are the following: application/x-www-form-
urlencoded, multipart/form-data, and text/plain.

Note■■  I f a form is not configured with the content attribute, the Content-Type that will be used will be that
of application/x-www-form-urlencoded.

The next two lines (line 8 and line 9) simply define the input fields that will be used to capture an
individual aspect of data. Utilizing the attribute labeled “name,” we can establish the key that is used to
transport the supplied value. As this form will capture a user’s first and last name, I have used fname and
lname as the respective keys. Next, we assign the value text to the type attribute. This will identify the input
field as requiring user input, so that the browser renders it accordingly.

Last, in order to invoke the submission of the data, we must include a Submit button (line 10). This
is simply achieved by utilizing yet another input field. However, as you may expect, this input field’s type
attribute is supplied with that of submit. This will inform the browser to render this input field as a button.
Upon the user’s click of the button, it will prompt the form to initiate the request.

Chapter 11 ■ Posting JSON

194

EXERCISE 11-1. YOUR FIRST NODE FORM POST

ExerciseA.js has begun to incorporate the HTML document from Listing 11-3 into the appropriate
conditional block. Continue to supply the remaining ten lines of markup to the following code (Listing 11-4)
to complete our index.html resource.

Listing 11-4.  ExerciseA.js, a Local Form POST Application

 1 var http = require('http');
 2 var server = http.createServer();
 3 server.addListener('request', requestHandler);
 4 server.listen(1337, '127.0.0.1');
 
 5 function requestHandler(request, response) {
 6 console.log(request.url);
 7 request.addListener('data', function(chunk) {
 8 console.log(chunk);
 9 });
10 request.addListener("end", function() {
11 console.log("end of stream \n");
12 });
13 if(request.url==="/index.html"){
14 response.statusCode = 200;
15 response.setHeader("Content-type", "text/html");
16 response.write('<!doctype html>');
17 response.write('<html lang="en">');
18 response.write('<body>');
 //... add code here;
28 }else{
29 response.statusCode=204;
30 }
31 response.end();
32 };
33 console.log('Server running at http://127.0.0.1:1337/index.html');
 
Once the document has been incorporated into exerciseA.js, use the command-line interface to
initiate our server. With the server running, navigate to http://127.0.0.1:1337/index.html, fill in the
form with your first and last name, hit Submit, and take note of the data outputted to the command-line
window.

If your name coincidently happens to be Ben Smith, then you should have witnessed the following
output as shown following:
 
Server running at http://127.0.0.1:1337/index.html
 
/index.html
end of stream
 

Chapter 11 ■ Posting JSON

195

/favicon.ico
end of stream
 
/formPost
<Buffer 66 6e 61 6d 65 3d 42 65 6e 26 6c 6e 61 6d 65 3d 53 6d 69 74 68>
end of stream
 

For those whose names are not the equivalent, you should witness something very close to what has
been shown in the preceding code. In fact, the data shown in bold is present in your output as well. Let’s
examine the output in detail, to gain a better understanding of what is occurring.

The moment our server is initialized, our console first outputs a reminder of the URL and PORT, for
which our server is running. Additionally, to remind ourselves that we must request the index.html to be
presented with our form, I have chosen to include it within the initial output.

By navigating to the URL that is outputted, we arrive at our HTML form. Because the exerciseA
application logs each requested resource, the line that immediately follows is /index.html. While that
should make sense, what might not be clear are the next three lines.

Following the output of our /index.html request, a message informs us that we have reached the
end of our stream. This might be confusing, as you may have expected the end event to fire only after we
had submitted our form. However, the reality is that our Node application has been written to monitor for
incoming data with each incoming request. As the request for our index.html page was not accompanied by
any data what so ever, as the stream is empty, the end event naturally fires. This check happens needlessly for
every single incoming request and is made evident with each subsequent request.

The next line is one I wanted to discuss because it often confuses a lot of Node newcomers. Often, when
debugging code, newcomers are curious as to why their code appears to fire multiple times after receiving an
HTML document. The reason is that user-agents initiate a request that is not apparent to the end user. That
request is for the icon that appears in the browser’s window tab for the displayed HTML Document. This is
known as the favicon and is a 16×16 image that can be used as the icon that will identify your page should
someone choose to bookmark it. An example of a favicon can be seen in Figure 11-1. As this is yet another
incoming request on our server, the messaging end of stream follows. Lastly, as initiated by the submission
of our form, an incoming request for /formPost is outputted to our console. 

Note■■  S o as not to cause added throughput on our server, an application should only attempt to consume
data from the stream of a client the requested method has determined to be an unsafe method, such as POST.

Following the output of said resource appears to be a sequence of alphanumeric characters. To keep
things as simple as possible, I can assure you this is not gibberish but, rather, hexadecimal format. I won’t go
into too much detail, but, ultimately, each grouping of characters represents an alphanumeric character. In
the preceding output, 66 represents f, 6e represents n, 61 represents a, etc. If I were to continue to explain
the next three values, you would be able to recognize the gibberish is actually spelling out “fname=.”

Figure 11-1.  Microsoft favicon

Chapter 11 ■ Posting JSON

196

While reading hexadecimal is far better than reading binary, it is absolutely no substitute for plain text.
Therefore, let’s shut down our current server and modify the buffer to output plain text. This is accomplished
by defining the encoding via the setEncoding method exposed on our request instance. The code, request.
setEncoding('utf8');, defaults all incoming data as UTF-8. At this point in time, let’s shut down our server
and incorporate this line of code just before our data event listener. Once this code is in place, restart our
exerciseA application and perform a form POST once again. This time, you should observe the following
output:
 
//..truncated output
fname=Ben&lname=Smith
end of stream
 

Congratulations! You have received your first HTML form POST. As you can clearly read from the output,
the entity body is provided in the form of a key/value pair, similar to that of a GET. The notable difference
is that the data is not preceded by the ? token. As we have been working rather extensively with key/value
pairs, it should be a cinch to extract our data values from their keys, utilizing our getParamKey function from
the previous chapter. Once again, let’s shut down our server and incorporate the getParamKey function,
shown in Listing 11-5, into our existing server.

Listing 11-5.  The getParamKey Function

function getParamKey(key, str) {
 var regExp = new RegExp(key.toLowerCase() + '=[^&]*');
 var matchingValue = (str.toLowerCase()).match(regExp);
 for (var i = 0; i < matchingValue.length; i++) {
 var replacedValue = matchingValue[i].replace(key + '=', '');
 matchingValue[i] = replacedValue;
 }
 return decodeURIComponent(matchingValue[0]);
};
 

The incorporation of getParamKey will enable us to extract the values for the supplied keys that make up
the entity body. For the form POST we have been working with, those keys are fname and lname. By providing
these identifiers along with the received data chunk to getParamKey, we can easily obtain their values. At this
point in time, let’s shut down our currently running server and insert the necessary code required to log out
the value for our two variables, by tapping into the getParamkey function. Once you have implemented the
code that would result in Listing 11-6, restart the server, use the form to submit your name once again, and
observe the results.

Listing 11-6.  Parsing x-www-form-urlencoded Data

var http = require('http');
var server = http.createServer();
server.addListener('request', requestHandler);
server.listen(1337, '127.0.0.1');
 
function requestHandler(request, response) {
 console.log(request.url);
 request.setEncoding('utf8');
 request.addListener('data', function(chunk) {
 console.log(getParamKey("fname", chunk));
 console.log(getParamKey("lname", chunk));
 });

Chapter 11 ■ Posting JSON

197

 request.addListener("end", function() {
 console.log("end of stream \n\r");
 });
 
 if(request.url === "/index.html") {
 response.statusCode = 200;
 response.setHeader("Content-Type", "text/html");
 response.write('<!doctype html>');
 response.write('<html lang="en">');
 response.write('<body>');
 response.write('<form action="formPost" method="POST" content="application/x-www-form-
urlencode">');
 response.write('First-Name:');
 response.write('<input name="fname" type="text" size="25"/>');
 response.write('Last-Name:');
 response.write('<input name="lname" type="text" size="25"/>');
 response.write('<input type="submit"/>');
 response.write(' </form>');
 response.write(' </body>');
 response.write('</html>');
 } else {
 response.statusCode = 204;
 }
 response.end();
};
 
function getParamKey(key, str) {
 var regExp = new RegExp(key.toLowerCase() + '=[^&]*');
 var matchingValue = (str.toLowerCase()).match(regExp);
 for (var i = 0; i < matchingValue.length; i++) {
 var replacedValue = matchingValue[i].replace(key + '=', '');
 matchingValue[i] = replacedValue;
 }
 return decodeURIComponent(matchingValue[0]);
};
console.log('Server running at http://127.0.0.1:1337/index.html');
 

Running the preceding code, should no errors be present, will have undoubtedly outputted the
values that had been supplied to both input fields. Now that we have this extracted information, we could
potentially alter the data of the response or even store the supplied information within a database. You will
learn more about persisting data via back-end programming in the next chapter.

While forms are a convenient way for a visitor to supply a few fields of basic information, such as first
name and last name, the possible Content-Types that can be used with a form lack the ability to maintain
the structure of data such as that of JSON. However, in order to transmit the JSON data type, we will have to
leverage an XMLHttpRequest object.

Processing a JSON POST
As has been stated throughout this book, JSON is a highly interoperable data format with many advantages.
It can easily be read by humans; it is succinct, thereby keeping file size to a minimum; it can group as well as
retain the structure of data; and, as a text-based format, JSON can be stored/retrieved and parsed without

Chapter 11 ■ Posting JSON

198

degrading its integrity. Of course, to utilize this functionality, our server-side application must possess the
ability not only to obtain any and all incoming JSON but to parse it as well. In order to keep things backward
compatible, we will build upon our code base from exerciseA. This way, if a visitor has JavaScript enabled,
the data contents will be provided to our server via Ajax as JSON. However, if the user does not have
JavaScript enabled, our form will continue to work as intended in the URL-encoded data format, via a
full-page load.

As was stated earlier, an HTML form element can only send one of three Content-Types, and JSON is not
one of them. Therefore, in order to send JSON, we must leverage our acquired knowledge of Ajax. Listing 11-7
reveals the ajax function that was discussed in Chapter 8. For the most part, the ajax function remains
unchanged, with the exception that the request line has been updated to reflect the new formPost resource.

Listing 11-7.  Progressively Enhancing Our HTML Form with Ajax

<script>
 function ajax() {
 var xhr = new XMLHttpRequest();
 xhr.open("POST", "formPost");
 xhr.setRequestHeader("Content-Type", "application/json");
 var input = document.getElementsByTagName("input");
 var obj = {
 fname : input[0].value,
 lname : input[1].value
 };
 xhr.send(JSON.stringify(obj));
 return false;
 }
</script>
 

If you recall from Chapter 8, we used the preceding function to POST two HTML form fields, First Name
and Last Name, to a server, using the application/json Content-Type. Obtaining the values directly from
the input fields, and then adding them as the members of an object, which was immediately serialized,
accomplished this. The form, with the use of its onsubmit attribute, invoked the ajax function when its
Submit button was clicked.

If you are following along with the source code provided for Chapter 11, locate the json-form.js
file. This file incorporates the ajax function, shown in Listing 11-7, along with a few additional code
amendments. One such amendment is the assignment of our function as the value of the form’s onsubmit
attribute: <form action="formPost" method="POST" onsubmit="return ajax();">.

Furthermore, as this application will be used to demonstrate the reception of JSON, rather than our
previous key/value pairs, I have incorporated a means to isolate the values for fname and lname in a manner
befitting of JSON. Because our Node application is written entirely in JavaScript, I have merely incorporated the
use of JSON.parse, as shown in Listing 11-8. In order to distinguish the x-www-form-urlencoded format from
that of incoming JSON, we will incorporate conditions that determine whether a particular Content-Type
exists as a substring of request.headers['content-type'].

Note■■  T he implementation of the ajax function progressively enhances the capability of our form to
transmit the captured data of a user via Ajax, without impairing the experience for those visitors who may have
JavaScript turned off.

Chapter 11 ■ Posting JSON

199

Listing 11-8.  Determining the Content-Type of Incoming Data

request.addListener('data', function(chunk) {
 if(request.headers['content-type']].indexOf('application/json')>-1){
 var json=JSON.parse(chunk);
 console.log(json.fname);
 console.log(json.lname);
 }else if(request.headers['content-type'].indexOf('application/x-www-form-urlencoded)>-1){
 }
});
 

Be sure to shut down any Node applications that you may have running, and start up json-form. When
you navigate to http://127.0.0.1:1337/index.html, you should not witness any visual differences, as we
have not altered our form, only the format for which it is supplied. This time, when you submit the form, the
output displayed in the command-line interface should resemble that of Figure 11-2.

Figure 11-2.  Logging out end of stream when all data has been consumed

As clearly illustrated in Figure 11-2, the fields of our data have been successfully parsed and individually
outputted. Congratulations, you have parsed your first, albeit simple, JSON POST! Before you begin your
celebration dance, I do wish to point out one thing. In our json-form application, in addition to our exercise
application, we were attempting to parse the incoming data before we had reached the end of the stream, as
illustrated in Figure 11-2. While this is not a problem for these two simple examples, we could easily run into
issues when the incommoding data is extremely large. As you witnessed in the previous chapter, the data
event is capable of firing multiple times, each time supplying more data to our application. In that particular
example, the file that was being transferred was 1.5MB in size.

As the data being transmitted to our application within this chapter is minimal, there is no need to
expect the data event to fire multiple times. However, this might not always be the case. Therefore, in order
to ensure that we have received every last chunk of incoming data before attempting to parse it, we should
accumulate all incoming data onto a variable (see Listing 11-9). Only once the end event has fired should our
application attempt to parse our data.

Listing 11-9.  Retaining All Incoming Data onto a Variable

1 function requestHandler(request, response) {
2 console.log(request.url);
3 console.log(request.headers);
 

http://127.0.0.1:1337/index.html

Chapter 11 ■ Posting JSON

200

4 var incomingEntity = '';
5 request.setEncoding(‘utf8’);
6 request.addListener('data', function(chunk) {
7 incomingEntity += chunk;
8 });
 
9 request.addListener("end", function() {
10 console.log("end of stream \n");
11 console.log(incomingEntity);
12 if (request.headers['content-type'].indexOf("application/json") > -1){
13 //handle JSON payload
14 }else if(request.headers['content-type'].indexOf("application/x-www-form-
urlencoded")> -1){
15 //handle x-www-form-urlencoded payload
16 }
17 });
18 if (request.url === "/index.html") {
19 response.statusCode = 200;
20 response.setHeader("Content-type", "text/html");
21 //...truncated code
22 } else {
72 response.statusCode = 204;
73 response.end();
74 }
75 }
76 console.log("response-end");
 

Listing 11-9 demonstrates the use of a variable labeled “incomingEntity,” which will be used to retain
all incoming chunks of data. Because UTF-8 is a text-based format, we can use string manipulation to join
incoming chunks of data together. However, we will not attempt to read said data until we are certain we
have received it all. Once the end event is dispatched, we can safely log, parse, or inspect the accumulated
data retained by an incoming entity.

EXERCISE 11-2. INCOMING ENTITY BODY

In order to minimize the amount of code used within the preceding sections, our server has neglected to
respond to any request for /formPost. Instead, we have been informing the browser, via the 204-status
code, that the resource being requested is without content. However, now that we have the ability to
parse the information as it enters, let’s output, as the response, the full name received.

Because our existing form has been enhanced utilizing JavaScript, it is certain that visitors who do
not have JavaScript enabled will require a proper response to be provided in the HTML format. This, of
course, will result in a full-page load. However, for those individuals who do have JavaScript enabled,
we should continue to provide them with JSON.

Be sure to check the responses from the application via the Network tab of the developer console, with
JavaScript both turned on as well as off. Compare your results with Listing 11-10.

Chapter 11 ■ Posting JSON

201

Regardless of whether JavaScript is enabled or disabled, our exercise application, whose code
should reflect that of Listing 11-10, is capable of properly parsing the payload provided. Furthermore, the
application responds with a corresponding Content-Type, which enables the results to be viewed by our
visitor, regardless of whether JavaScript is on or off.

Listing 11-10.  Answer to Exercise/Incoming Entity Body

 1 var http = require('http');
 2 var server = http.createServer();
 3 server.addListener('request', requestHandler);
 4 server.listen(1337, '127.0.0.1');
 
 5 function requestHandler(request, response) {
 6 console.log(request.url);
 
 7 if (request.method === "POST") {
 8 var incomingEntity = '';
 9 var data;
 
10 request.addListener('data', function(chunk) {
11 incomingEntity += chunk;
12 });
 
13 request.addListener("end", function() {
14 console.log("end of stream \n");
15 console.log("Raw entity: " + incomingEntity);
 
16 if (request.headers['content-type'].indexOf("application/json") > -1){
17 data = JSON.parse(incomingEntity);
18 if (request.url === "/formPost") {
19 response.statusCode = 200;
20 response.setHeader("Content-Type", "application/json");
21 response.end(incomingEntity);
22 }
23 �}else if(request.headers['content-type'].indexOf("application/x-www-form-

urlencoded")>-1){
24 if (request.url === "/formPost") {
25 response.statusCode = 200;
26 response.setHeader("Content-Type", "text/html");
27 var fname = getParamKey("fname", incomingEntity);
28 var lname = getParamKey("lname", incomingEntity);
29 response.write('<!doctype html>');
30 response.write('<html lang="en">');
31 response.write('<body>');
32 response.write('' + fname+ ’ ‘ +lname +'');
33 response.write('</body>');
34 response.end();
35 return;
36 }
37 }
38 });
 

Chapter 11 ■ Posting JSON

202

39 } else if (request.method === "GET") {
40 if (request.url === "/index.html") {
41 response.statusCode = 200;
42 response.setHeader("Content-Type", "text/html");
43 response.write('<!doctype html>');
44 response.write('<html lang="en">');
45 response.write('<body>');
46 �response.write('<form action="formPost" method="POST" onsubmit="return ajax();"

 content="application/x-www-form-urlencoded">');
47 response.write('First-Name:');
48 response.write('<input name="fname" type="text" size="25"/>');
49 response.write('Last-Name:');
50 response.write('<input name="lname" type="text" size="25"/>');
51 response.write('<input type="submit"/>');
52 response.write('</form>');
53 response.write('<script>');
54 response.write('function ajax(){');
55 response.write('var xhr = new XMLHttpRequest();');
56 response.write('xhr.open("POST", "formPost");');
57 response.write('xhr.setRequestHeader("Content-Type", "application/json");');
58 response.write('xhr.setRequestHeader("Accept", "application/json");');
59 response.write('var input = document.getElementsByTagName("input");');
60 response.write('var obj = {');
61 response.write('fname : input[0].value,');
62 response.write('lname : input[1].value');
63 response.write('};');
64 response.write('xhr.send(JSON.stringify(obj));');
65 response.write('return false;');
66 response.write('}');
67 response.write('</script>');
68 response.write(' </body>');
69 response.write('</html>');
70 response.end();
71 } else {
72 response.statusCode = 204;
73 response.end();
74 }
75 console.log("response-end");
76 };
77 function getParamKey(key, str) {
78 var regExp = new RegExp(key.toLowerCase() + '=[^&]*');
79 var matchingValue = (str.toLowerCase()).match(regExp);
80 for (var i = 0; i < matchingValue.length; i++) {
81 var replacedValue = matchingValue[i].replace(key + '=', '');
82 matchingValue[i] = replacedValue;
83 }
84 return decodeURIComponent(matchingValue[0]);
85 };
86 console.log('Server running at http://127.0.0.1:1337/index.html');
 

Chapter 11 ■ Posting JSON

203

As it stands now, our application possesses the ability to handle two varieties of incoming payloads.
This, of course, can always be enhanced to further handle even more. The code, as it stands now, can only
satisfy incoming payloads from the same origin, and not simply because our code neglects to configure the
Access-Control-Allow-Origin header. Rather, our code neglects to satisfy a user-agent’s preflight request.

Preflight Request
As you may recall from Chapter 9, while our application is able to receive communications from other
servers, the user-agents of modern browsers will interfere with most client requests when they are made
from varying source origins. Previously, we discussed how user-agents prohibit our applications from
receiving a response provided by a server located at originA from being obtained by a client request from
originB, due to the same-origin policy (SOP).

In Chapters 9 and 10, you learned how to circumvent the SOP so that we could obtain the response.
We learned of three ways in which we could successfully do so, with the simplest of all techniques being
the inclusion of the Access-Control-Allow-Origin header. While the aforementioned header has the ability
to authorize the source origin, thereby allowing the client to obtain a proper response, the Access-Control-
Allow-Origin header alone is not responsible for authorizing an HTTP POST from varying origins.

As explained earlier, GET requests are considered safe methods because they generally fetch a resource.
I state generally because, as you have seen earlier, an application can be programmed to do as it sees
fit. However, per the specification, GET requests do not incur side effects such as that of a POST method.
Therefore, the only matter at hand is whether or not the source origin is authorized to receive the resource
provided, which, of course, is determined with the Access-Control-Allow-Origin header.

On the other hand, a method such as POST is considered an unsafe method. This means that it can
cause side effects on the server and even the response. Therefore, the user-agent can’t shoot first and then
ask for authentication later. In other words, the user-agent can’t simply allow the request to occur and then
determine if the source origin has proper authorization before returning the response. Instead, it must first
proceed with what is referred to as a preflight request.

Preflight is a term that is defined by Webster as “preparing for or preliminary to flight.”2 As you may have
guessed, preflighting is a term that originated in the aviation industry and represents a series of checks and
tests that are conducted by the pilot preflight, to ensure that it will be a safe and successful one. Generally
speaking, the use of preflight is to determine the risks, if any exist. While the term certainly better suits
aircrafts than Ajax, the process of preflighting reduces the likelihood of irreparable damage that could
otherwise take place by blindly allowing an unsafe request to occur.

In order to preflight our request, the user-agent acts sort of like a bouncer at a club—checking
everybody’s identification and comparing them against the club’s rules and regulations. Such rules may be
the maximum number of total occupants, in addition to minimum age restrictions. Should all club criteria
be met, the bouncer allows a patron to enter the premises. Otherwise, the bouncer turns them away, forcibly,
if need be.

As discussed previously, HTTP headers are used to facilitate the request/response between the client
and the server. However, in the case of preflight, our bouncer, the user-agent, utilizes headers to determine
if the server has any rules that may prevent an unsafe request from entering, by preceding our actual request
with that of another, as depicted in Figure 11-3.

2Merriam Webster Online Dictionary, “preflight,” http://www.merriam-webster.com/dictionary/preflight, 2015.

http://www.merriam-webster.com/dictionary/preflight

Chapter 11 ■ Posting JSON

204

Figure 11-3 demonstrates the necessary preflight request and its use of the OPTIONS request method.

OPTIONS Request Method
The request method OPTIONS, as outlined in the original 1999 HTTP/1.1 specifications, can be used to
determine the options and/or requirements associated with a given resource. Additionally, it can be used to
reveal the capabilities of a server. Furthermore, the request receives such information without implying any
action to be performed on the specified resource. Therefore, it will not initiate the retrieval of said resource.
For this reason, OPTIONS is considered a safe method.

Generally speaking, a request for a resource utilizing the OPTIONS method reveals, by way of the
configured headers, which request headers and possible request methods are capable of being used with
incoming requests for the indicated resource.

As this point in time, if you are following along with the source code that accompanies this chapter,
locate and run, within your browser, out-bound-entity.html. If you are not following along with this
chapter’s source code, you can navigate the browser of your choice to the following URL: http://json.
sandboxed.guru/chapter11/out-bound-entity.html. Upon your arrival to either the local or online version
of the out-bound-entity.html resource, you will view the form shown in Figure 11-4.

Figure 11-3.  An unauthorized preflight request

Figure 11-4.  Form that makes cross-origin requests to http://127.0.0.1:1337/formPost

http://json.sandboxed.guru/chapter11/out-bound-entity.html
http://json.sandboxed.guru/chapter11/out-bound-entity.html

Chapter 11 ■ Posting JSON

205

You may note that it’s not unlike the one used by our incomingEntityBody application. The most
notable difference between this form and the previous form is the inclusion of a check box located to the
right of the Submit button. In the previous exercise, I had you disable JavaScript, which caused the form post
to be submitted in a different format from when JavaScript was turned on. The result is that when JavaScript
was turned off, the browser parsed the response rather than the xhr object. This resulted in a new page being
presented on the screen. As the source origin of the request and the response occurred from the same origin,
the response appeared natural. However, this would not be the case if the form from exampleA.com resulted
in a full-page reload from exampleB.com, as this would be rather apparent to the end user. Therefore, I have
included this check box, which uses JavaScript to toggle between the application/x-www-form-urlencoded
format and the application/json format. We will keep it checked to send as JSON for the meantime.

If you no longer have the incomingEntityBody application running, start the server once again, so
that we can attempt to submit our form from a varying origin. Additionally, open the Network tab on your
developer toolbar, to observe the HTTP request. Upon the submission of your form, the results, as shown in
your developer toolbar, should reflect those shown in Figure 11-3. Rather than a POST occurring, an OPTIONS
request takes place. In fact, our POST does not even appear in the list at all. The reason why is because the
user-agent has not yet received the proper preflight authorization from the server regarding the formPost
resource that would result in our request taking place. Let’s inspect the headers of the OPTIONS request that
occurred.

By navigating to the “Headers” aspect within the Network tab, you should be able to review the
configured headers of the preflight request. Those headers should reflect the ones that I have listed below,
with the exception of the headers outlined in bold.
 
Access-Control-Request-Headers: accept, content-type
Access-Control-Request-Method: POST
Cache-Control: no-cache
Origin: http://json.sandboxed.guru
Pragma: no-cache
Referer: http://json.sandboxed.guru/chapter11/out-bound-entity.html
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/36.0.1985.143 Safari/537.36
 

Of the headers listed, there are three that you might recognize from Chapter 9, which defined the
headers of the CORS specifications. Those headers are Access-Control-Request-Headers, Access-Control-
Request-Method, and Origin.

As you may recall, the Origin header is added by the user-agent to inform the server as to the source
origin of the request, of which the server can determine whether or not to authorize the source origin, via
the Access-Control-Allow-Origin header. What you may not know is that the other two headers are intended
for similar use. However, rather than communicate the need for authorization among origins, they require
authorization for the configured headers of our request, as well as the specified method to be enacted on the
target resource.

To ensure the safety of the request, the user-agent, as per the CORS specification, extracts all headers
from the actual Ajax request and configures them as a comma-delimited value for the preflight CORS-
supported header Access-Control-Allow-Headers. Likewise, the request method specified in the request line
of our actual request is extracted and configured as the value to yet another preflight CORS header labeled
“Access-Control-Request-Method.”

Once the server receives these three headers, it is able to authorize or deny the request simply by
configuring the request with the corresponding preflight CORS response headers. Those headers, as shown
in Table 11-1, are the following: Access-Control-Allow-Headers and Access-Control-Allow-Methods.

Chapter 11 ■ Posting JSON

206

If, and only if, all values configured by the user-agent, are reflected in the configured values of the
response will the actual request take place. Unlike the Access-Control-Allow-Origin header, which can
be configured with the wildcard * token, the Access-Control-Allow-Methods and Access-Control-Allows-
Headers headers must explicitly declare, in a comma-delimited fashion, all accepted header fields and
methods for the identified resource.

As it stands now, we are unable to review the response within the network tab, and for good reason.
Up until this moment, our incomingEntityBody application has only required the ability to respond to
incoming requests that utilize GET and POST. Until we implement a response for the OPTIONS request method,
the request will continue to wait for one.

Currently, the requestHandler within our incomingEntityBody application distinguishes between
GET and POST methods. Depending on which request method is being used, the appropriate code block is
run, resulting in the fulfillment of the request. Monitoring for the OPTIONS request is as simple as adding yet
another condition, as seen in Listing 11-11.

Listing 11-11.  Including the Ability to Respond to Preflight Requests

 1 //... code is truncated
 6 function requestHandler(request, response) {
 7 console.log(request.url);
 8 if (request.method === "POST") {
 9 //... code is truncated
51 } else if (request.method === "GET") {
52 //... code is truncated
88 } else if(request.method==="OPTIONS"){
89 }
90 console.log("response-end");
91 };
 

To keep things simple, Listing 11-11 reveals the code as it stands within incomingEntityBody, only I
have condensed the areas that are not relevant to the current discussion. As you can see on lines 88 and 89,
a new code block has been added to respond to any incoming OPTIONS request. Within this block, we can
properly configure a response to reflect which headers and methods are allowed on either a global level or
for an individual resource. For the purpose of this demonstration, we will be configuring the headers on a
per-resource basis.

Table 11-1.  CORS Preflight Headers

Header Role Configures

Access-Control-
Request-Headers

Indicates which headers will be
used in the actual request

User-Agent

Access-Control-
Request-Method

Indicates which method will be
used in the actual request

User-Agent

Access-Control-
Allow-Methods

Indicates, which methods can
be used during the request for a
targeted resource

Server

Access-Control-
Allow-Headers

Indicates which header field
names can be used during the
request of the targeted resource

Server

Chapter 11 ■ Posting JSON

207

Listing 11-12 begins by configuring the appropriate status code that acknowledges the request was
properly received (line 89). From there, we determine if the resource being requested by the client is for
that of /formPost (line 90). If this is, in fact, the resource being requested, the response will be configured
utilizing the appropriate CORS headers.

Listing 11-12.  Demonstrating the Configuration of the Preflight CORS Headers

 88 } else if(request.method==="OPTIONS"){
 89 response.statusCode = 200;
 90 if (request.url === "/formPost") {
 91 response.setHeader('Access-Control-Allow-Origin', '*');
 92 �response.setHeader('Access-Control-Allow-Headers', 'Content-Type, Accept,

 Accept-Language, Accept-Encoding, User-Agent, Host,
 Content-Length, Connection, Cache-Control');

 93 response.setHeader("Access-Control-Allow-Methods", 'GET, POST, OPTIONS');
 94 }
 95 response.end();
 96 }
 

The first configured header is used to authorize the source origin. The second configured header is
used to inform the user-agent of any and all headers that are authorized for the following resource. As you
can see, each header field that our resource requires must be added to the Access-Control-Allow-Headers
header. These configured values may regard valid HTTP/1.1 headers in addition to custom headers. In this
case, I have configured the values with typical fields (line 92). These configured fields for the Access-Allow-
Request-Headers header can certainly possess more that what I have listed. The third configured header
regards the authorized methods that can enact upon the targeted resource. As this book only considers three
HTTP/1.1 methods, GET, OPTIONS, and POST, I have provided all three (line 93).

Last, regardless of which resource is requested, we submit the response, as it is currently configured,
and conclude the incoming request (line 95). Upon the reception of the response, the user-agent will
compare and contrast its configured headers with those returned by the server.
 
CORS Preflight Request Headers
Access-Control-Request-Headers: accept, content-type
Access-Control-Request-Method: POST
Origin: http://json.sandboxed.guru
 
CORS Preflight Response Headers
Access-Control-Allow-Headers: Content-Type, Accept, Accept-Language,Accept-
 Encoding, User-Agent, Host, Content-Length, Connection, Cache-Control
Access-Control-Allow-Methods: GET, POST, OPTIONS
Access-Control-Allow-Origin: *
 

If the configured values of the CORS preflight request headers can be matched (case-insensitive)
against the corresponding CORS preflight response headers, only then will the actual request be initiated.
Otherwise, the actual request will be canceled.

With our new configured headers in place, let’s run the application that possesses the code, as shown
in Listing 11-12, and perform another form submission once again. Upon the submission of the form, you
should see that the preflight request has been performed and succeeds and, therefore, is followed by our
actual request, as shown in Figure 11-5.

Chapter 11 ■ Posting JSON

208

As depicted by Figure 11-5, the preflight request has been approved and follows up with our actual
request. However, due to a network error, our request for the /formPost resource is canceled. The reason
for the network error is outputted within the console tab. While the network error will vary depending on
the browser being used to make the request, it should be immediately apparent as to why the request was
canceled.
 
XMLHttpRequest cannot load http://127.0.0.1:1337/formPost. No 'Access-Control-Allow-Origin'
header is present on the requested resource. Origin 'http://127.0.0.1:8020' is therefore not
allowed access.
 

As explained via the preceding messaging provided by Chrome, the request resulted in a network error.
This is due to the fact that the source origin has not been provided sufficient authorization to receive the
response. However, this is simple enough to resolve by including the Access-Control-Allow-Origin header as
a configured header of the response. At this point in time, let’s make this proper amendment, shown in bold
in Listing 11-13, and then initiate the request once more.

Listing 11-13.  Authorizing formPost for All Source Origins

 1 ...//truncated code
13 request.addListener("end", function() {
14 console.log("end of stream \n");
15 console.log("Raw entity: " + incomingEntity);
 
16 if (request.headers['content-type'].indexOf("application/json")>-1) {
17 data = JSON.parse(incomingEntity);
18 if (request.url === "/formPost") {
19 response.setHeader("Access-Control-Allow-Origin","*");
20 response.statusCode = 200;
21 response.setHeader("Content-Type", "application/json");
22 response.end(incomingEntity);
23 }

Figure 11-5.  Authorized preflight request followed by an unauthorized source origin request for formPost

Chapter 11 ■ Posting JSON

209

24 �}else if(request.headers['content-type'].indexOf("application/x-www-form-
urlencoded")>-1) {

25 if (request.url === "/formPost") {
26 response.statusCode = 200;
27 response.setHeader("Access-Control-Allow-Origin","*");
28 response.setHeader("Content-Type", "text/html");
29 var fname = getParamKey("fname", incomingEntity);
30 var lname = getParamKey("lname", incomingEntity);
31 response.write('<!doctype html>');
32 response.write('<html lang="en">');
33 response.write('<body>');
34 response.write('' + fname+ ’ ‘ +lname +'');
35 response.write('</body>');
36 response.end();
37 return;
38 }
39 }
40 });
41 ...//truncated code
 

If we were to run the application with the inclusion of the bold code from Listing 11-13 and resubmit
our form, the results this time would be authorized, resulting in the output above our form, as shown in
Figure 11-6.

Figure 11-6.  Successful Ajax POST from a remote origin

Additionally, if you were to uncheck the check box beside the Submit button, we could alter the
Content-Type of the payload from application/json to application/x-www-form-urlencoded. Because our
server is implemented to respond with an appropriate Content-Type that reflects the format of an incoming
payload, the transmission of the two Content-Types can be clearly identified via the response, as shown in
Figure 11-7.

Chapter 11 ■ Posting JSON

210

Congratulations! You have just created a server that can accept incoming JSON payloads from both local
and remote origins.

What Determines Preflight
It should be made known that the real reason I had incorporated the check box into the preceding form
was not truly to demonstrate the ability for our form to alternate between two Content-Types. Rather, I
incorporated it to emphasize the conditions under which the user-agent determines if a preflight request is
deemed necessary.

If you were to monitor the network traffic that occurred in Figure 11-7, you would notice that the
there was only one preflight request, as signified by the OPTIONS request method. This can be observed in
Figure 11-8.

Figure 11-7.  Successful form POST

Figure 11-8.  One reflight request, two POST requests

Chapter 11 ■ Posting JSON

211

As clearly shown in Figure 11-8, the form received two responses of varying Content-Types. One
response was supplied as application/json, while the other was supplied as text/html. Both responses
are output as they are received in the upper-left corner of the document. However, as seen in the Network
tab, three requests were made, of which only one is a preflight request.

As was stated in Chapter 9, for legacy purposes, HTTP requests that are only configured with simple
request headers and simple request methods do not require the use of preflight. However, if the requests are
made from varying origins, they will require proper authorization to obtain the response. This is achieved
by configuring the Access-Control-Allow-Origin header. While simple request methods refer to requests that
utilize either GET, POST, or HEAD as their request methods, what constitutes simple request headers is slightly
more elaborate, as quoted by the CORS specification.3

A header is said to be simple, if the header field name is an ASCII case-insensitive match
for Accept, Accept-Language, or Content-Language or if it is an ASCII case-insensitive
match for Content-Type and the header field value media type (excluding parameters)
is an ASCII case-insensitive match for application/x-www-form-urlencoded, multipart/
form-data, or text/plain.

What this means for varying origins is that if your server is expecting an incoming payload whose
Content-Type is not among the three that can be configured with an HTML form element, such as JSON, it
will be mandatory for your application to anticipate a browser’s need for preflight. Conversely, your Ajax
request may be denied if the server does not utilize these headers.

Summary
Typically, when we use APIs belonging to Twitter or Facebook, we tend to overlook what might be required
of a server to make these interactions possible. Generally, we take a lot of what is taking place behind the
scenes for granted. This chapter has attempted to shed some light on this matter.

We regarded what it takes to receive and process incoming data. As it turns out, POSTing JSON data can
be slightly more intricate than you may have previously believed, especially when dealing with cross-origin
requests.

When considering a request from a varying origin, any attempt to use an unsafe method immediately
results in what is regarded as a preflight request. Only requests that use simple methods and simple headers
are able to make a request without the use of preflight. Furthermore, as you have learned, any attempt to
transmit the Content-Type application/json results in a preflight request. Preflight, of course, is only
required when the request occurs from a source origin that varies from the origin of the server being posted
to. In either case, this chapter has now prepared you to account for both.

Now that you have learned to process data, you will be able to apply this knowledge in the next chapter.

Key Points from This Chapter
•	 GET requests only have one MIME type, whereas POST requests have many.

Incoming payloads can be both simple and complex.•	

One must consume incoming data by monitoring the stream for the •	 data event.

When all data has been consumed from the stream, the •	 end event is fired.

3World Wide Web Consortium (W3C), Anne van Kesteren, ed. “Cross-Origin Resource Sharing,” www.w3.org/TR/cors/,
January 16, 2014.

http://www.w3.org/TR/cors/

Chapter 11 ■ Posting JSON

212

The HTML •	 <form> element can only transmit three Content-Types.

Determining the Content-Type for incoming data is beneficial with regard to •	
processing the received data.

Buffers are used to read bytes from the stream.•	

Preflight reduces the likelihood of malicious behavior.•	

Preflight makes use of the •	 OPTIONS request method.

There are two preflight headers that must be properly configured by the server in •	
order to authorize a source origin.

213

Chapter 12

Persisting JSON: II

The last time I discussed the persistence of JSON, it was strictly from a front-end perspective. However, as
promised, this chapter will consider the persistence of JSON from a back-end perspective.

You may be familiar with the terms SQL and MySQL, as they are both rather popular databases. These
databases store data in rows, within a table. With the assistance of the SQL, Structured Query Language,
data can be extracted from the table and returned to the requesting client. However, what you may not be so
familiar with is the term NoSQL databases, which, as you may surmise, refers to a category of databases that
do not rely on the SQL query language (or at least not heavily).

NoSQL databases, such as CouchDB and MongoDB, store their data as JSON within individual
documents, rather than as rows within a table. Storing data in this fashion has been shown to provide a great
amount of scalability, as well as flexibility, compared to traditional SQL databases.

CouchDB
As prominently stated on the CouchDB web site, located at http://couchdb.apache.org, Apache
CouchDB™ is a database that uses JSON for documents, JavaScript for MapReduce indexes, and regular
HTTP for its API. Because CouchDB leverages the open source technologies of the Web, it itself is an entirely
open source project.

Installing CouchDB, as with Node, requires very little effort and is as easy as downloading the
appropriate installation package. CouchDB is available for Mac, Windows, and Ubuntu Linux, but this book
will only cover the installation on Mac and Windows.

Windows Installation
Open your browser to http://couchdb.apache.org/ and scroll down until you find the red Windows (x86)
download button. At the time of this writing, the version of CouchDB that will be downloaded is 1.6.1. This
will direct you to the Apache Download Mirrors site, which makes a few suggestions pertaining to where
you should download the CouchDB setup executable. Unless you have a preference for which mirror you
make use of, click the mirror link directly below the words “We suggest the following mirror site for your
download.” This will initiate the download. Depending on the browser being used, you may be prompted to
run, save, or cancel the download.

When the download has completed, and you are ready to begin the installation, locate the directory for
which the download was saved and run the executable. Once the application runs, you’ll be presented with
the initial screen of the setup wizard. At this point, feel free to click Continue and accept the Apache license
agreement.

http://couchdb.apache.org/
http://couchdb.apache.org/

Chapter 12 ■ Persisting JSON: II

214

The third screen of the installation presents you with the default location for the installation. Unless you
have a reason for this to change, continue with the defaulted location by clicking Next. Unless you would like
to place the program’s shortcut within a folder other than Apache CouchDB, click Next.

The final screen presents you with two check boxes that have already been checked off. Keep these both
active and continue once again by clicking Next, to proceed to the installation screen. The installation screen
reflects the chosen configurations for one final review before the installation begins. If you are satisfied with
the present settings, click Install.

When the installation has concluded, and you receive the “Completing the Apache CouchDB Setup
Wizard” message, you can click Finish. At this point, and only if you left both check boxes selected, CouchDB
will already be running. To ensure that the installation has been successful, navigate your browser to the
following address: http://127.0.0.1:5984/. You should be presented with similar JSON output shown in
Figure 12-1.

Figure 12-1.  Successfully running CouchDB

If you are seeing this message, congratulations; CouchDB has been successfully installed.

Mac Installation
Open your browser to http://couchdb.apache.org/ and scroll down until you find the red Mac OS X
(10.6+) download button. At the time of this writing, the version of CouchDB that will be downloaded is
1.6.1. This will direct you to the Apache Download Mirrors site, which makes a few suggestions pertaining to
where you should download the CouchDB setup executable. Unless you have a preference for which mirror
you make use of, click the mirror link directly below the words “We suggest the following mirror site for your
download.” This will initiate the download. Depending on the browser being used, you may be prompted to
run, save, or cancel the download. Feel free to hit Save.

Once the download has completed, and you are ready to begin the installation, locate the directory for
which the download was saved. Locate the Apache-CouchDB file and double-click it to unzip the contents
of the archive, to reveal the Apache CouchDB application. The beauty of the Mac installation is that the
application is self-contained and ready to run simply by double-clicking the app. As the file is an app, feel
free to move the file into the Applications directory before running.

At this point, if you are ready to launch the CouchDB application, go ahead and double-click
the Apache CouchDB.app. Now you should have CouchDB running in the background. To ensure
that you have successfully launched CouchDB, simply navigate your browser to the following URL:
http://127.0.0.1:5984/.

http://127.0.0.1:5984/
http://couchdb.apache.org/
http://127.0.0.1:5984/

Chapter 12 ■ Persisting JSON: II

215

If you are seeing this message, congratulations; CouchDB has been successfully installed.

Working with CouchDB
What makes CouchDB unique as a database, other than storing data within individual documents, is the
fact that its API is nothing more simple than HTTP requests. Whether we’re taking about databases or the
documents within them, our ability to receive, update, add, and delete are all made possible via the eight
standard HTTP request methods to http://127.0.0.1:5984. As with our Node applications, CouchDB
is running a server that monitors all incoming requests on the port 5984. For each incoming request, an
appropriate response is provided.

Because the API is nothing more than standard requests, incorporating CouchDB with Node is a piece
of cake. Before we begin to incorporate CouchDB with our Node application, let’s first take a look at the
interface that accompanies CouchDB.

Futon
As was stated earlier, the API of CouchDB is made up entirely of HTTP requests. Rather than requiring new
adopters of CouchBD to create an interface of their own to monitor and work with databases instantly, the
developers at CouchDB have provided us with a local interface that wraps all HTTP requests for us within a
series of visual elements. This interface has been dubbed “Futon.”

Futon is a simple HTML interface that leverages HTTP requests to provide us with an easy way to work
with our data. At this point, navigate your browser to http://127.0.0.1:5984/_utils/. Upon your arrival
you will be presented with the view shown in Figure 12-3.

Figure 12-2.  Successfully running CouchDB

You should be presented with similar JSON output to that shown in Figure 12-2.

http://127.0.0.1:5984/
http://127.0.0.1:5984/_utils/

Chapter 12 ■ Persisting JSON: II

216

Each Futon interface is divided into two halves. The left-hand portion of the view is the prominent view
and is used to easily work with and create data. The second component, toward the right-hand side of the
screen, provides us with an easy way to access a variety of utilities provided by the CouchDB application.
From within this column of the Futon interface, you can access documentation, update the configurations
for the application, and even run diagnostics.

The view reflected in Figure 12-3 represents the overview interface. Within this view, we are presented
with a table of currently existing databases. By default, CouchDB comes preinstalled with two. These are
the following: _replicator and _users. While it’s nice that Couch provides us with these, it will be more
interesting to work with our own. New databases can be easily created directly from this interface via the
Create Database button located just above the table of existing databases.

Constructing Your First Database
Creating our first database via Futon is as easy as can be. Simply click the Create Database button to
begin the process. Upon clicking, Futon provides us with a prompt asking for us to label our database. As
this chapter will work toward the creation of a guestbook for our Node applications, we will provide the
label “guestbook.” Clicking Create will create the database and results in the updated interface shown in
Figure 12-4.

Note■■  A guestbook is a way for visitors who arrive at a site to leave their names and possible comments.

Figure 12-3.  Futon utilities interface

Chapter 12 ■ Persisting JSON: II

217

As identified by the breadcrumbs in the upper-left-hand corner, this interface no longer regards the
overview but, rather, our recently created database. This Futon interface provides us with the necessary tools
to work with a particular database. In this case, that particular database is our guestbook database.

Here, we would be able to see all JSON documents that have been stored within; however, as we have
just created this database, it remains empty for the time being. Let’s add our first piece of content by clicking
the button labeled “New Document.” By clicking this button, we find ourselves viewing yet another interface
that resembles that shown in Figure 12-5.

This interface, as illustrated by the breadcrumb, concerns an individual document. Remember that all data
is saved individually as a JSON document. By default, each document created is provided with a GUID (Globally
Unique Identifier). Because GUIDs are globally unique, the value shown in my figure will undoubtedly be
different from the GUID your document has been provided with. Although this view provides you with an input
field allowing you to adjust this value, you are generally discouraged from doing so. The reason is that this GUID
is the identifier that will be used to locate this file. Depending on how many documents you are expecting to
store, you may find yourself running out of proper names to provide each document.

Because the document _id represents the resource itself, if you were to have visited
http://127.0.0.1:5984/guestbook/03e68a3bac3fd452bf6b136e76001222, replacing my GUID with yours,
you would have made a GET request for the contents of the file we are currently modifying.

Figure 12-4.  No documents within guestbook

Figure 12-5.  Overview of a guestbook document

http://127.0.0.1:5984/guestbook/03e68a3bac3fd452bf6b136e76001222

Chapter 12 ■ Persisting JSON: II

218

As this interface shows, you can see that this view provides us with a few more buttons, such as Save
Document, Add Field, and even Upload Attachment. Just below these buttons within the tab labeled “Fields,”
resides a singular field and value. From this view, we will be able to provide key/value pairs to our JSON
document simply by assigning as many keys and values as we desire.

Utilizing the button labeled “Add Field,” we will add two more fields to this document. Upon clicking
Add Field, a new “unnamed” row will appear. Let’s change the name from “unnamed” to “handle.” Next,
by hitting Tab, the focus will switch from the Field to the Values column. Within the Value field, provide the
string value @CouchDB and hit Enter.

Note■■  I t’s important to note that fields should not be provided with double quotes, as they will be applied
behind the scenes. Furthermore, all strings provided for Values should always have double quotes.

Once again, click Add Field and replace the “unnamed” field with that of “message.” Then once again
hit Tab, to provide the value of “greetings and salutations” and hit Enter. Last, click the button labeled “Save
Document,” to write these changes into the document. CouchDB provides versioning to ensure the ability to
roll back to any previous changes. For this reason, you may note that CouchDB has inserted a field on your
behalf labeled “_rev.” This simply refers to the current document revision.

While we utilized the Add Field button to include key/value pairs to our document, you could have
switched the manner in which we inputted our members by toggling from the Fields view to the Source view.
Once within Source view, by double-clicking the presented source, you would note that the presented JSON
becomes editable, as shown in Figure 12-6. If you are utilizing the Source route, always make sure that you
are providing valid JSON.

Figure 12-6.  JSON Source input field

Congratulations, you have created your very first data entry in the guestbook database. In order to view
the JSON text of this entry, click the icon shown in Figure 12-7.

Figure 12-7.  Performing a quick request for the current view

Chapter 12 ■ Persisting JSON: II

219

Clicking the button shown in Figure 12-7 is simply an easier way to navigate our browser to the current
document similarly, as shown previously. Whether you use the button or physically type in the full URI,
you will be presented with the raw JSON, as revealed in Figure 12-8. Figure 12-8 shows our recently created
document with accompanying handle and message.

At this point, let’s revisit the overview interface by navigating to http://127.0.0.1:5984/_utils/. This
time, arriving at the overview interface lists our guestbook among the default two. From here, we can easily
access our guestbook database by clicking the name “guestbook” within the list.

By selecting the guestbook database, the Futon interface drills down from the overview to our
guestbook database specifically. The last time we were within this interface, the table possessed zero
documents. However, this time, a single document is presented within the table, as shown in Figure 12-9.

Figure 12-9 shows a two-columned table consisting of the labels “Key” and “Value” and, within it, our
recently created document. This can be identified by the GUID we were working with earlier. Furthermore,
by clicking the GUID listed in the column labeled “Key,” we can review the individual content retained by
that document.

As I stated earlier, Futon, similar to a user-agent, initiates a series of HTTP requests on our behalf behind
the scenes. If you were to open up your developer’s toolbar and navigate to the Network tab, you would be
able to find a GET request for the following request: http://127.0.0.1:5984/guestbook/_all_docs.

Figure 12-8.  JSON revealed for @CouchDB signature

Figure 12-9.  All existing documents listed for guestbook

Chapter 12 ■ Persisting JSON: II

220

At any point in time, we can query our database for any and all entries it holds, by navigating to the
aforementioned URL. As the later portion of the URL, _all_docs, suggests, we should expect to view every
saved document pertaining to our guestbook database. Upon your arrival to the preceding URL, you should
be presented with something that resembles the following JSON:
 
{"total_rows":1,"offset":0,"rows":[{"id":"03e68a3bac3fd452bf6b136e76001222","key":"03e68a3b
ac3fd452bf6b136e76001222","value":{"rev":"1-2c422372e71c79db87aca8289dd78827"}}]}
 

The preceding output displays a complex JSON structure providing an overview of all documents
possessed by our guestbook database. Held within the member labeled “rows,” it reveals an array whereby
each reflected document can be easily traversed, and its “id” can be obtained. As you recall, this is the
identifier by which the server refers to a document.

The resource used before, _all_docs, reflects a unique JSON document. What makes this document
unique is that all of its retained data reflects the results for a particular query. That query being the following:
 
Capture the id and current revision for documents affiliated with our guestbook database.
Additionally insert the id as the value of the "key" field.
 

In the CouchDB nomenclature, all documents that are used to reveal the results of a query are referred
to as a view.

Creating Views
Creating a custom JSON representation of the data held by our database is what the CouchDB nomenclature
refers to as a view. A view, in its most atomic form, is a JavaScript map function whose signature and
implementation reflect the following code:
 
function(doc){
 emit(key , value);
} 

Note■■  A map function is applied against all elements within a list, to produce a particular result set.

The initial parameter doc represents the parsed JSON content of a document, which exists within
the database. With a process similar to a JavaScript for loop, each and every document that exists within
our database is supplied to this very function. From within the body of the function, and utilizing pure
JavaScript, we can analyze the provided JavaScript object to extract particular keys and values to construct
a new object that reflects the needs of a particular view. Once we have determined what we wish to provide
as a row within this result, we will supply it as the value argument of the emit method. The emit method is a
global method provided by CouchDB to capture a key and data value as a row within a particular view.

The great thing about the emit method is that it can be called as many or as few times as you like
per document. Additionally, the key provided mustn’t be unique. Unlike a traditional key/value pair,
the parameter labeled “key” is used strictly to sort or filter results that are captured within this view. By
providing taxonomy, we can obtain all rows that exhibit this particular key.

Note■■  E ach call to emit creates a corresponding row in the produced document.

Chapter 12 ■ Persisting JSON: II

221

While this may sound inefficient, depending on the amount of saved documents within the database,
the reality is that it’s only inefficient the very first time this view is queried. Any subsequent request for a
view that has previously been run will only be executed against any documents that may have been updated,
deleted, or added.

Creating Our First Custom View
Let’s begin to devise our first view. If you are not currently within the guestbook view, navigate your browser
to http://127.0.0.1:5984/_utils/ and click the guestbook database. On the right-hand side of the screen,
you will see a drop-down menu labeled “View:”, as seen in Figure 12-10. Be sure to select “Temporary view....”

Upon your selection, you will be presented with a screen similar to that shown in Figure 12-11.

The interface illustrated in Figure 12-11 is what we will use to design a custom query, a.k.a. a view. On
the left-hand side of the screen, just below the label “Map Function,” you can see the anonymous function
I was discussing earlier. Utilizing the interface, we can begin reading particular members from the supplied
document and begin the retrieval for the rows of our view.

Figure 12-10.  Creating a temporary view

Figure 12-11.  An anonymous map function

Chapter 12 ■ Persisting JSON: II

222

While we have a view that provides the IDs and revisions to all documents, let’s create a view that will
output all captured handles and their corresponding message, by updating the map function to reflect the
following code (Listing 12-1):

Listing 12-1.  A Specific map Function Implementation

function(doc) {
 if(doc.handle){
 emit(doc.handle, { "handle":doc.handle, "message": doc.message, "_id":doc._id});
 }
}
 

Listing 12-1 demonstrates an implementation that constructs a view, which will reveal the handles,
messages, and the ID of each document within the guestbook database. Furthermore, using a simple
condition to determine if a handle does not exist, we can choose whether or not a particular document
should be present. With this code in place, click the button labeled “Run” to observe the results of our view.

Clicking Run should reveal a singular row reflecting its findings, as seen in Figure 12-12. As we only have
one document in our database, only one document has been supplied to our function. Let’s add a second
entry to our guestbook database, but first, let’s save this temporary view as a permanent one. Any temporary
view can be converted into a permanent one simply by clicking “Save As...” on the right-hand side of the
screen.

Clicking this button will bring up a prompt asking for the name of a design document, as well as the
unique name for our recently created query (a.k.a. view). At this point, provide the name of a document as
_design/guests and provide the view name “signatures,” as shown in Figure 12-13. Once you have entered
the appropriate names, click Save. Because everything is saved as a JSON document, you, too, can access the
raw JSON for the view we just devised.

Figure 12-12.  Results for our custom query

Chapter 12 ■ Persisting JSON: II

223

The design document labeled “guests” is an example of a string id versus a GUID. Because design
documents are more likely to be requested specifically rather than iterated over, it makes more sense to use a
name that is easy to remember. Because the name of the resource, “guests,” is the actual name of the file, we
can always obtain its raw JSON by simply visiting the following URL: http://127.0.0.1:5984/guestbook/
_design/guests.

It is worth noting that all documents pertaining to a view are prefixed with _design/. This denotes a
view from an ordinary document.

Once more, let’s get back to our database by navigating your browser once more to
http://127.0.0.1:5984/_utils/ and clicking the guestbook database. To create another entry into our
database, click New Document. Let’s add a second document, to reflect the handle @apache, and provide it
with the following message: “Hello World.” When this is completed, click Save.

At this point, you should now have two entries within the guestbook database. You can easily navigate
back to our guestbook database by selecting it from the breadcrumb in the header. Upon your arrival, you
should witness the two documents of our database, as revealed in Figure 12-14. You may immediately
recognize that the rows of our view no longer resemble the outputted table as previously shown in Figure 12-9.

Figure 12-13.  Creating a permanent view

Figure 12-14.  Two rows of signatures within the guestbook

Chapter 12 ■ Persisting JSON: II

224

This is because the database currently makes use of the “signature” view we recently created. Feel free
to toggle between any views by using the drop-down menu in the upper-right-hand corner. For whichever
view is selected, choosing the icon shown in Figure 12-14 will initiate an HTTP GET request for the chosen
resource. The response will reveal for the chosen query all matches presented in JSON.

No matter how many entries your guestbook DB is provided, you can always obtain the results of your
signature view by navigating your browser to the following URL: http://127.0.0.1:5984/guestbook/
_design/guests/_view/signatures. Visiting the aforementioned URL reveals the handles, message,
and _id for each document that matched our query. Furthermore, because we utilized the key label when
emitting our values, we can further filter our search to that of a particular key/value simply by appending
a query string parameter to the preceding URL, like so: http://127.0.0.1:5984/guestbook/_design/
guests/_view/signatures?key="apache". Appending the key parameter with a string matching our
@apache handle returns only the results that match the provided key. It’s important to note that all strings
provided to the key parameter must be wrapped in double quotes.

We can even sort our list by providing yet another query parameter. At our disposal for sorting, we can
use either ascending or descending. Regardless of which parameter you choose to use, the value which it
requires is that of a true or false. Visiting the following URL will present our rows, in alphabetical order:
http://127.0.0.1:5984/guestbook/_design/guests/_view/signatures?ascending=true.

Connecting Node and CouchDB
As was stated earlier, CouchDB possesses its own REST API for working with databases, documents, and
views. In fact, it’s 100% possible to add/remove documents, views, and databases with nothing other than
standard HTTP requests. I hope from what you have previously observed that this will not come as a shock
to you.

Because CouchDB’s API is available through the URL, we can both persist and query data from either a
browser or server. If we were to work with CouchDB via the client side, we could rely on Ajax, whereas on the
server side, we can incorporate the use of an instance of the http.ClientRequest.

It must be made known that because CouchDB runs on its own port, any and all client-side requests
beyond those made by Futon will require the incorporation of all appropriate CORS headers. By default,
CouchDB does not have these enabled, but it does offer the ability to activate them via the configuration
view, shown in Figure 12-15, located at http://127.0.0.1:5984/_utils/config.html. We will discuss how
to properly configure CouchDB to enable CORS in Chapter 14.

Figure 12-15.  CouchDB configuration interface

Chapter 12 ■ Persisting JSON: II

225

Simply because the HTTP methods required to work with CouchDB are beyond the scope of this book,
for simplicity, we will incorporate CouchDB with Node and use yet another module to streamline such
HTTP calls into a simple API. The module that we will be working with is known as Cradle.

Cradle for Node
While Node itself includes a variety of modules, one that it does not ship with is Cradle. Cradle is a third-
party, high-level CouchDB client module that has been created to easily and asynchronously work with
CouchDB and Node applications. Due to its extremely high-level API, we will remain shielded from the
HTTP methods that have not been covered in this book. If you wish to learn more about Cradle, feel free to
navigate to its GitHub page: https://github.com/flatiron/cradle.

Installing Cradle is very easy. Simply use the command-line interface to navigate to the top directory,
which contains the chapter12 source code. For me, that would be the following locations:
 
//PC
C:\Users\UrZA\Documents\Aptana Studio 3 Workspace\BeginningJSON\chapter12\
//Mac
/Users/FeZEC/Documents/Aptana Studio 3 Workspace/BeginningJSON/chapter12/
 

Simply type cd, followed by the location of your chapter12 directory, and hit Enter. Next, type in the
following command and hit Return on your keyboard:
 
npm install cradle
 

This will initiate a download of all required packages for the particular module into a folder labeled
node_modules, within the chapter12 directory. If your console outputs a series of lines that all display errors,
as shown in Figure 12-16, you will be required to run the same command as the administrator.

Figure 12-16.  Cradle installation error

https://github.com/flatiron/cradle

Chapter 12 ■ Persisting JSON: II

226

On a Mac, this can be achieved by preceding the aforementioned command with sudo, making
the entire command sudo npm install cradle. Once you press Enter, you will be asked for your login
password.

On a PC, you will have to close the command prompt and open it from the Start menu. Depending on
the version of Windows, you may find within your startup menu two listings for the command prompt; only
one is followed by “Admin.” Choose this particular command prompt and retry the preceding command.

If, on the other hand, you do not see the Admin command prompt within your startup menu, right-click
on the singularly listed command prompt, to reveal the menu option “run as admin.” Go ahead and run as
admin and retry the command.

A successful installation reveals a node_module folder within the specified path, at which point our
module is ready to be used.

Note■■   Due to a bug in the latest Node.js Windows installable, Windows users may be receiving the following
message: “Error: ENOENT, stat 'C:\Users\[USER_NAME]\AppData\Roaming\npm.” If this is the case, to
correct the problem, you will have to type the command mkdir C:\Users\[USER_NAME]\AppData\Roaming\npm,
where [USER_NAME] is replaced with the login name of your user.

Incorporating the Cradle Module
Once the Cradle module has been successfully installed into our top-level directory, we can begin working
with it by incorporating it into a Node application via require(). Furthermore, as long as the CouchDB
server is running, we can use the following snippet of code shown in Listing 12-2 to configure our
http.ClientRequest to connect to it.

Listing 12-2.  Including and Configuring Cradle with CouchDB

1 var cradle = require('../node_modules/cradle');
2 var DBConnection = cradle.Connection;
3 var couchDB = new DBConnection('127.0.0.1', 5984, {
4 cache : true,
5 raw : false,
6 forceSave : true
7 });
 

The code shown in Listing 12-12 simply demonstrates the inclusion of the Cradle module within the
Node application, in addition to opening a connection to our CouchDB server. The path provided to the
require method reflects the path our node_module folder created, relative to the directory holding our Node
application. Once the Cradle object is obtained via the require method, it is assigned to a variable labeled
“cradle” and then used to open a connection to the CouchDB server.

Working with Databases
As you will soon come to learn, Cradle possesses an extremely high-level API that allows us to simply and
conveniently work with databases and CouchDB. Furthermore, the API that we will be working with is
object-oriented. This means that the API is exposed solely as an inherited interface of an initialized object.
In this particular case, that object is a database instance. Listing 12-3 demonstrates how to create such a
reference.

Chapter 12 ■ Persisting JSON: II

227

Listing 12-3.  Creating a DB Reference

var gbDataBase = couchDB.database('guestbook');
 

The code shown in Listing 12-3 leverages the method labeled “database,” exposed by our couchDB
instance, to initialize a Cradle database object. With this object, we will be able to work with documents and
views that pertain to this particular database. What is important to understand is that the preceding code
is not actually connected to CouchDB at the moment. Remember that HTTP is a stateless protocol. The
moment a response is provided, the connection between the client and server are closed. Instead, our gb
reference is nothing more than a wrapper that will be used to concentrate requests for a particular database.
In this particular case, that database is labeled “guestbook.” Once a reference to a particular database is
created, we can reference its exposed API, to begin receiving and sending data between Node and CouchDB.

Cradle Database API
Because CouchDB’s interface is exposed via mere HTTP requests, what will actually occur under the hood
of the Cradle API will be a series of HTTP requests to the CouchDB server. However, as Cradle itself is a
wrapper, it will perform these low-level tasks on our behalf. This allows us to focus on the five key methods
of the API, shown in Table 12-1.

The methods shown in Table 12-1 are the sole methods we will be working with in this chapter. Now, if
that is not simple enough, then consider the following: four out of the five methods outlined above provide
functionality of the sort we have already become familiar with from the previous sections.

create
The first method that we will review is the create method. Use of the create method provides our Node
application with the ability to initialize a database within CouchDB. Use of the method is as simple as
invoking the method upon a database reference, as seen in Listing 12-4.

Listing 12-4.  Invoking the Creation of Our Database Reference

1 //..truncated code
8 var gbDataBase = couchDB.database('guestbook');
9 gbDataBase.create();
 

Table 12-1.  Methods of a Cradle Wrapper

Methods Description

create(); Used to create a database

exists(callback); Used to determine if a database currently exists

get(id[,id] , [object], callback); Used to fetch a particular document

view(id, [object] ,callback); Used to query an existing view

save([id], object , callback); Used to save a document to the current database.
This can be used to save either a view or an entry.

Chapter 12 ■ Persisting JSON: II

228

Listing 12-4 invokes the create method upon our existing gbDataBase instance. The code is equivalent
to us having pressed the “Create Database...” button within the Futon interface.

Apache CouchDB prevents us from creating a database that possesses the same name as a database
that currently exists. Because our CouchDB application is currently in possession of a database labeled
“guestbook,” the code from Listing 12-4 silently fails. This can be considered both a good thing and a bad
thing. On one hand, it’s great to know that you don’t have to be concerned with possibly overwriting an
existing database by mistake. However, on the other hand, you may rather be made aware if a database of
the same name exists, so that you can provide a new name to the DB. For that, our DB instance exposes the
exists method.

exists
The exists method is an asynchronous method used to determine if a database currently exists. The
advantage of such a method is to determine whether a database already exists, lest we insert values to a table
we did not intend to.

As an asynchronous method, the invocation of the exists call must be provided with a callback
function. It is this function, whose signature reflects that of Listing 12-5, that will be triggered once Cradle
has determined whether the database exists or not.

Listing 12-5.  Callback Signature of the exists Method

function(err, exists);
 

As Listing 12-5 reveals, the callback supplied must be capable of receiving two arguments. The first
parameter, err, accounts for any error that may have occurred, such as a network error. If no error has
occurred, the argument provided will be that of null. The second parameter, exists, indicates whether
the given database exists or not. The argument it will be provided if an error is not thrown will be that of a
Boolean value.

Using these two parameters, we can determine the appropriate conditions that determine which code
blocks to execute, as shown in Listing 12-6.

Listing 12-6.  Determining If a Database Exists

 1 //...truncated code
 9 gbDataBase.exists(function(err, exists) {
10 if(err) {
11 console.log('error', err);
12 }else if (exists) {
13 console.log('the guestbook db exists');
14 }else {
15 console.log('database does not exists.');
16 gbDataBase.create();
17 }
18 });
 

Utilizing our gbDataBase reference, Listing 12-6 invokes the exists method exposed by the gbDataBase
instance and supplies an anonymous function as the callback (line 9). Upon the callbacks invocation, it will
be supplied with either an error instance or that of a Boolean. Utilizing both of these parameters, we can
determine whether or not they possess a value to determine what blocks of code should be run.

Chapter 12 ■ Persisting JSON: II

229

If there is an error, our application will be provided with the ability to handle it (line 10). If the file exists,
we can perform the invocation of another database (line 13). Last, if the database does not exist, we can
successfully create it, utilizing the previously discussed create method (line 16).

If you were to execute Listing 12-6 in its totality, you would notice that the following is output in the
command line: the guestbook db exists. Of course, this is expected, as we already had created the
guestbook database. One good thing about this is that we also have a few documents stored within our
guestbook database. This will become helpful when we review the next method in the Cradle interface.

get
The get method, as you may suspect, initiates HTTP requests utilizing the GET request method. The get
method is used to obtain documents that are associated with the targeted database in an asynchronous
fashion. The method’s signature, as outlined in Table 12-1, reveals that the get method expects to be invoked
with a possible three arguments. These arguments represent the document by its ID, an object, and a
callback function.

The first parameter, id, can be provided either as a singular identifier or as an array of multiple
document IDs supplied as an array. If you recall, a document ID is generally a GUID, such as
03e68a3bac3fd452bf6b136e76001222, unless the document you seek is the result of a design document, in
which case, it’s you who must supply the full path to the query you are seeking to utilize, such as _design/
guests/_view/signatures.

Note■■  E very document possessed by a database can be obtained by supplying _all_docs as the string.

The second parameter of our get method is that of an object. The object itself represents the provision
of optional query string parameters that we wish to accompany the request. Such parameters can be
ascending, descending, limit, key, startkey, and, last, endkey, used to manipulate the resulting rows
returned by our views.

The first two keys, ascending and descending, are self-explanatory. These parameters are used to sort
the set of results in either an ascending or descending manner. The factor that determines whether an item
comes before or after depends on the value that established the “key” used with the query. In the case of our
guest/signature, the key was each user handle. The value that can be supplied to either of these keys is 1 or 0,
whereby 1 equals true and 0 is false.

The parameter limit is used to express the maximum amount of desired results to be returned. This
value should be expressed in the form of an integer.

The key parameter, as you may recall, must be provided a value of a string wrapped with double quotes.
Providing this parameter can reduce the entire result set to that of a subset of rows whose keys match the
value supplied. Providing key="@CouchDB" would result in our signature’s query only displaying one result.

The final two parameters, startkey and endkey are used to return a subset of the original set of results
whose keys are determined to exist within the indicated boundaries.

The provision of any query string you choose to apply to the GET request is required to appear as a key/
value member of the object. Listing 12-7 demonstrates the use of the optional parameter to establish the use
of the limit and key parameters. If you do not plan on using any parameters, just provide null as the value.

Listing 12-7.  Query String Parameters Supplied As Members of an object

var queryString = { limit:1, key:"@CouchDB" };
 

The final parameter that must be provided to get is that of a callback. The callback whose signature can
be seen in Listing 12-8 is required to possess two parameters.

Chapter 12 ■ Persisting JSON: II

230

Listing 12-8.  Callback Signature for get

function(err, res);
 

Because get is an asynchronous method, it is necessary to provide a callback, so as to be informed
when the operation has concluded. Furthermore, as outlined in Listing 12-8, our callback will be provided
with an argument for either of the two outlined parameters, err and res. The first parameter, err, will be
provided with an instance in the event that an error has occurred. Such an error may be related to network
traffic or a server error. On the other hand, if everything is successful, our callback function will be provided
with the appropriate JSON response.

Utilizing these two parameters, we can ensure the appropriate body of code is executed, lest we cause
our own errors. Listing 12-9 demonstrates a GET request for our all_docs query.

Listing 12-9.  Obtaining All Documents for the Target DB

 1 var cradle = require('../node_modules/cradle');
 2 var DBConnection = cradle.Connection;
 3 var couchDB = new DBConnection('127.0.0.1', 5984, {
 4 cache : true,
 5 raw : false,
 6 forceSave : true
 7 });
 
 8 var gbDataBase = couchDB.database('guestbook');
 
 9 gbDataBase.exists(function(err, exists) {
10 if (err) {
11 console.log('error', err);
12 } else if (exists) {
13 console.log('the guestbook db exists');
14 } else {
15 console.log('database does not exists.');
16 gbDataBase.create();
17 }
18 });
 /*obtain all documents*/
19 gbDataBase.get('_all_docs', { limit:1 }, function(err, res) {
20 if (err) {
21 console.log('error', err);
22 } else if (res) {
23 console.log(res);
24 } else {
25 //.. do something else
26 }
27 });
 

Chapter 12 ■ Persisting JSON: II

231

Listing 12-9 demonstrates the use of the get method to obtain a particular document from the
guestbook database. In this particular case, that document is a query for all documents. Furthermore, we
have chosen to limit the returned results to a maximum of one document. Running the preceding Node
application results in the following output:
 
[{ id: '03e68a3bac3fd452bf6b136e76001222',
 key: '03e68a3bac3fd452bf6b136e76001222',
 value: { rev: '2-d91c1f744fe10e74dc5a2e8f23c13315' } }]
 

As you can see, we have received a single result from the original set of results. Because we could
potentially be working with a vast amount of results, CouchDB conveniently inserts each JSON result within
an array structure, so that it can be easily traversed. As I hope you may be able to witness, the preceding
output is no longer JSON but, rather, a JavaScript object. You can note this is the case, owing to the missing
double quotes that would otherwise surround the keys if it were JSON. What this means is that we don’t
have to attempt to parse the returned JSON text, as Cradle has already performed this for us. Therefore,
the response provided can immediately be traversed, and its members accessed. Let’s remove the limit
parameter and output only the ID of each row. Listing 12-10 outlines in bold the changes to our get method.

Listing 12-10.  Logging the ID of Each Returned JSON Document

 1 //..truncated code
 /*obtain all documents*/
19 gbDataBase.get('_all_docs', { limit:1 }, function(err, res) {
20 if (err) {
21 console.log('error', err);
22 } else if (res) {
23 var len = res.length;
24 for (var i = 0; i < len; i++) {
25 console.log(res[i].id);
26 }
27 } else {
28 .. do something else
29 }
30 });
 

Listing 12-10 traverses each of the indexes within the provided JavaScript array until all have been
reached. With each value obtained, we log out the corresponding ID, resulting in the following output below:
 
03e68a3bac3fd452bf6b136e76001222
03e68a3bac3fd452bf6b136e76001eec
_design/guests
 

As you can see from the output, our guestbook database is currently in possession of three documents,
two of which possess GUIDs as their identifiers, and one of which utilizes a string. Knowing what is currently
retained within our database and what was outputted, we could easily deduce that these two GUIDs
represent our two guestbook entries, while the latter represents our query. However, now that we have
obtained the resulting identifiers, we could easily obtain the values retained by each ID with subsequent use
of the get method.

Chapter 12 ■ Persisting JSON: II

232

view
While the results of a view can be obtained via get, a simpler method is to use the view method. Because
view actually wraps get, it invites us to provide a more succinct path to our query. As I mentioned within
the section on get, a design document can be obtained by specifying a full path, such as the following:
'_design/guests/_view/signatures'. However, this path can appear rather long and be cumbersome to
work with.

With view, you have the ability to query a view simply by omitting _design and _view from the
preceding path, resulting in the more succinct path guest/signatures. Each design document and its view
can easily be fetched by simply joining the two names together with a forward slash. You may recall “Design
Document” and “View Name” as the titles of fields shown in Figure 12-13.

The view method possesses a few more behaviors that can improve efficiency, but they are beyond the
scope of this book. However, aside from those unmentionables, the view method continues to function in
precisely the same manner as get. It continues to require the object parameter for added query parameters,
and last, because it is an asynchronous function, it requires a callback function whose signature is the
same as that provided to get. At this point, let’s query our guestbook database for any and all signatures left
behind (see Listing 12-11).

Listing 12-11.  Querying Our DB for All Signatures

var cradle = require('../node_modules/cradle');
var DBConnection = cradle.Connection;
var couchDB = new DBConnection('127.0.0.1', 5984, {
 cache : true,
 raw : false,
 forceSave : true
});
 
var gbDataBase = couchDB.database('guestbook');
 
gbDataBase.exists(function(err, exists) {
 if (err) {
 console.log('error', err);
 } else if (exists) {
 console.log('the guestbook db exists');
 } else {
 console.log('database does not exists.');
 gbDataBase.create();
 }
});
 
/*obtain an existing view*/
gbDataBase.view('guests/signatures', null, function(err, res) {
 console.log(res);
});
 

Chapter 12 ■ Persisting JSON: II

233

Listing 12-11 reveals in bold the latest change to our running base code. Rather than using the get
method exposed by our gbDataBase instance, we opt for the more succinct method of defining our path with
view. Running the preceding Node application results in the following output:
 
[{ id: '03e68a3bac3fd452bf6b136e76001eec',
 key: '@apache',
 value:
 { handle: '@apache',
 message: 'Hello World',
 _id: '03e68a3bac3fd452bf6b136e76001eec' } },
 { id: '03e68a3bac3fd452bf6b136e76001222',
 key: '@CouchDB',
 value:
 { handle: '@CouchDB',
 message: 'greetings and salutations',
 _id: '03e68a3bac3fd452bf6b136e76001222' } }]
 

The preceding code outputs the two presently saved signatures and messages provided by both @apache
and @CouchDB. Because view leverages the get method, we can opt to provide our request with the addition
of query string parameters. Listing 12-12 demonstrates a query that filters the preceding results with the use
of the key parameter.

Listing 12-12.  Filtering All Signatures for a Particular Key

//.. truncated code
 
/*obtain an existing view*/
gbDataBase.view('guests/signatures', {key:"@CouchDB"} , function(err, res) {
 console.log(res);
});
 

Listing 12-12 replaces the null primitive with that of an object whose sole member is that of the key
parameter. The preceding code will result in the HTTP GET request for the following URL: 127.0.0.1:5984/
guestbook/_design/guests/_view/signatures?key="@CouchDB". By providing a key, the result set will be
filtered there by returning a subset of results whose keys match those of "@CouchDB". Running the preceding
listing outputs the following:
 
[{ id: '03e68a3bac3fd452bf6b136e76001222',
 key: '@CouchDB',
 value:
 { handle: '@CouchDB',
 message: 'greetings and salutations',
 _id: '03e68a3bac3fd452bf6b136e76001222' } }]
 

As you can see, the output displayed only reveals a signature left by the handle @CouchDB. If it just so
happened that @CouchDB signed our guestbook more times, all of those results would be returned.

With that being said, the next method will provide us with the ability to create more documents.

Chapter 12 ■ Persisting JSON: II

234

save
The save method, as the name suggests, allows us to save documents for the targeted database. As its
signature reveals in Table 12-1, the save method anticipates three parameters: id, object, and callback.

The first parameter, id, is used to provide an identity to the document being created. As you have
undoubtedly witnessed, any and all documents have a corresponding ID. These are usually generated
as GUIDs by CouchDB; however, they can also represent the name of a design document. To keep things
flexible, save enables us to opt in to supplying an ID as the first parameter. If an ID is not provided, CouchDB
will generate it automatically. If, however, an ID is provided, it will replace the ID that will have been
generated by CouchDB.

If the document being created represents a view, you will be required to supply an appropriate ID.
Remember: All views must be prefixed with _design/ in order for CouchDB to differentiate between
ordinary documents and design documents.

The second parameter that will be supplied to save is that of the document’s content. If we were to
re-create our initial document with save, it would be provided with the following object:
 
{
 "handle": "@CouchDB",
 "message": "greetings and salutations"
}
 

Providing ordinary document content is fairly straightforward. On the other hand, if we were to re-
create our “signatures” view, the object that would be required reflects the one following:
 
views: {
 signatures: {
 map:"function(doc) {emit(doc.handle, {handle:doc.handle, message:doc.message, _id:doc.
id}); }";
 }
};
 

Because a design document will be saved as its own JSON document, it is necessary to use the members
that define its content appropriately. While at a glance this might be confusing, the reality is that this will
always be the format for constructing a map function.

Note the complex structure of the preceding object. All design documents begin with a key labeled
views, where views represents the top-level object and is used to reference yet another complex structure.

The complex structure of views consists of any number of object members, in which each member
represents an individual query. In the preceding outline, the member signatures represents a possible
query associated with our view.

Each query references an object whose only allowable members are the following two: map and reduce.
While both map and reduce can be used simultaneously, this chapter does not make use of the reduce
member and, therefore, it has been omitted. We will be working exclusively with map.

The member map holds a string value whereby that string can be evaluated by CouchDB to produce our
actual query.

The final parameter of the save method is that of a callback. As an asynchronous method, save requires
a callback to invoke when the operation has concluded. As outlined in Listing 12-13, the callback provided
should possess the following parameters: err and res.

Listing 12-13.  Callback Signature for save

function(err, res);
 

Chapter 12 ■ Persisting JSON: II

235

Depending on whether an error has occurred, the err parameter will either be supplied with an object
or a null primitive. Furthermore, if an error has not occurred and the response is successful, we will be
able to reference that response via the res parameter. Using these two parameters, we can ensure that the
appropriate body of code is executed, lest we cause our own errors.

Creating Documents via Cradle
Having learned how to work with the save method, let’s attempt to create some new documents, beginning
with yet another guestbook signing, as seen in Listing 12-14.

Listing 12-14.  Creating a Document via Cradle

1 //..truncated code
 
/*signing of our guestbook*/
19 gbDataBase.save({
20 handle : "@CouchDB",
21 message : "welcome and thank you",
22 time : new Date()
23 }, function(err, res) {
24 if (err) {
25 console.log('error', err);
26 } else if (res) {
27 console.log(res);
28 }
29 });
 

Listing 12-14 demonstrates the implementation required by Cradle to create a new document for our
guestbook database. As you can see, we opted out of providing this document with a specific ID. As I have
previously stated, it’s often best to allow this value to be generated by CouchDB.

The body of our document has been devised to possess a user’s name and message, in fields labeled
“handle” and “message.” In addition to the previous fields, this document also possesses a field that reflects
the time of its creation. While our previous documents lack this “time” field, it is one of the benefits of using
NoSQL databases over SQL databases. I will discuss this in more detail shortly.

Note■■   Cradle methods require the provision of an object that will be stringified prior to its transmission to
CouchDB, where it will be encapsulated within a document as JSON.

Last, we have provided a callback to be notified as to whether the document has been successfully
created or not. Running Listing 12-14, should no network issues be present, will result in the following
output:
 
{ ok: true,
 id: '03e68a3bac3fd452bf6b136e760064b4',
 rev: '1-66821f76618071e197e2c3aa79ecf722' }
 

Chapter 12 ■ Persisting JSON: II

236

As you can see, upon the creation of a document, CouchDB responds with the details of that newly
created document. As signified by the ok field and its value of true, we can rest assured that CouchDB has
successfully stored our document, in which case, we would be able to see it through the Futon interface.

Upon navigating your browser to http://127.0.0.1:5984/_utils/database.html?guestbook/
_design/guests/_view/signatures, CouchDB will present you with three signatures. Sure enough, as seen
in Figure 12-17, our most recent document appears within the signature results. Furthermore, the inclusion
of the new field, time, did not have any negative impact on our signature query. Because our query did not
anticipate a field labeled as “time,” that value, whether it exists or not, has no bearing on that particular
function.

The last time we visited the preceding URL, only two documents were presented. Upon this query,
as discussed early on in this chapter, any new changes are resubmitted to the anonymous function and
accounted for as a row within the provided results.

Now that we have more than one result whose key is that of @CouchDB, let’s revisit our ability to filter
results for an identified key simply by appending ?key="@CouchDB" to the preceding URL. Upon receiving
a response to http://127.0.0.1:5984/guestbook/_design/guests/_view/signatures?key="@CouchDB",
you will find yourself presented with two rows.

SQL databases that make use of tables to store data require all fields that will be used for a project to be
made known up front, so that a column can be used to retain that value. This behavior requires that all data
utilize each predetermined field. If a value for those fields is not specified, a default value must be provided,
lest there be an error while running a query.

On the other hand, NoSQL databases do not rely on tables to store data. Instead, they store data in
individual documents, like those we have been working with. Because each document represents its own
body of data, it can possess any variety of fields it chooses.

Creating Design Documents via Cradle
As we have just recently stored a document that makes use of the time in which it was created, we should
devise a query that can map all documents for our guestbook database into their own view. One thing we
will have to keep in mind is that if an object does not possess the time field, we must make certain not to
populate our view with the current document. Such a query is reflected in Listing 12-15.

Figure 12-17.  Cradle document successfully created in CouchDB

Chapter 12 ■ Persisting JSON: II

237

Listing 12-15.  Creating a Design Document to Possess Multiple Views

 1 //..truncated code
 
19 /*saving of a view*/
20 gbDataBase.save('_design/guests', {
21 views : {
22 sigTime : {
23 map : "function(doc){ "+
24 "if(doc.time){" +
25 �"emit(doc.handle,{ handle:doc.handle, time:doc.time,

message:doc.message });" +
26 "}" +
27 "}"
28 },
29 signatures : {
30 map : "function(doc) {" +
31 "emit(doc.handle,{ handle:doc.handle,message:doc.message });" +
32 "}"
33 }
34 }
35 }, function(err, res) {
36 if (err) {
37 console.log('error', err);
38 } else if (res) {
39 console.log(res);
40 }
41 });
 

Listing 12-15 outlines in bold the key elements of our new design document. The first item I will discuss
is that saving a design document with the name of a document that exists will overwrite the original content
of that document. In the preceding listing, I am opting to save the current design document with the name of
an existing one, in order to show you that you can have multiple views within a design document.

Using the save method and the required complex structure for a design document, this view will be
used to provide two queries regarding our guestbook. These two queries are signatures and sigTime. The
view signatures is, in fact, the same query used previously; however, as this update will be overwriting the
existing _design/guests document, we must provide this view in addition to our sigTime, lest it be deleted.
However the view sigTime reflects an entirely new query, which will be used to create a view to reveal only
documents that possess the time field.

As you can see within the lines of 24 and 26, our map function determines if the document supplied does
indeed possess a field labeled time. Only if the field is present will our function emit a new row for this view.
Running, Listing 12-15, should no network issues be present, will result in the following output:
 
{ ok: true,
 id: '_design/guests',
 rev: '2-b0723b44888089eeecf790a1c3e37824' }
 

You may be able to note that the result returned is no different than that we received when saving an
ordinary document. However, what is different, aside from the IDs, is that as this file has been updated, its
revision now reflects version 2.

Chapter 12 ■ Persisting JSON: II

238

Now that we have two views, let’s visit our Futon interface once again and take a moment see the results
it provides. Figure 12-18 reveals our two views within the drop-down menu at the top-right-hand side of the
interface.

As you can see from Figure 12-18, both queries reside under the same document ID, yet either can be
used to provide its own set of results. Feel free to toggle between the two views and note how the results vary.

EXERCISE 12-1. PERSISTING INCOMING DATA

In Chapter 11, you learned how to receive, authorize, and process incoming JSON. Using a form along
with Ajax, we have been posting users’ first and last names to our Node application. Up until now, we
have not been retaining those names. In fact, all we have been doing is returning the extracted values
as the entity body of the request. Using Cradle, create a new database labeled “visitors” and retain all
incoming names.

Last, provide the incoming request with the response supplied by CouchDB with each use of the save
method. You can compare your code with that of Listing 12-16.

Hint: Remember that Cradle provides all response as JavaScript objects. However, a response can only
be supplied as a string.

Listing 12-16 leverages the code in Listing 11-3 from Chapter 11 and incorporates the changes discussed
in this chapter. The additions from this chapter appear in bold.

Listing 12-16.  Incorportaing Cradle with an Existing HTTP Node Application

/*require*/
var cradle = require('../node_modules/cradle');
var http = require('http');
 
/*HTTP*/
var server = http.createServer();
server.addListener('request', requestHandler);
server.listen(1337, '127.0.0.1');
 

Figure 12-18.  sigTime and signatures successfully created as queries of guests

Chapter 12 ■ Persisting JSON: II

239

/*Cradle*/
var DBConnection = cradle.Connection;
var couchDB = new DBConnection('127.0.0.1', 5984, {
 cache : true,
 raw : false,
 forceSave : true
});
/*create visitors database*/
var gbDataBase = couchDB.database('visitors');
 gbDataBase.create();
 
/* handle incoming requests */
function requestHandler(request, response) {
 
 if (request.method === "POST") {
 var incomingEntity = '';
 var data;
  
 request.addListener('data', function(chunk) {
 incomingEntity += chunk;
 });
 
 request.addListener("end", function() {
 if (request.headers['content-type'].indexOf("application/json") > -1) {
 data = JSON.parse(incomingEntity);
 �} else if (request.headers['content-type'].indexOf("application/x-www-form-urlencoded") > -1) {
 data = parseQueryStringToObject(incomingEntity);
 return;
 }
 saveToDB(data, response);
 });
 
 } else if (request.method === "GET") {
 if (request.url === "/index.html") {
 response.statusCode = 200;
 response.setHeader("Content-type", "text/html");
 response.write('<!doctype html>');
 response.write('<html lang="en">');
 response.write('<body>');
 �response.write('<form action="formPost" method="POST" onsubmit="return ajax();"

content="application/x-www-form-urlencoded">');
 response.write('First-Name:');
 response.write('<input name="fname" type="text" size="25"/>');
 response.write('Last-Name:');
 response.write('<input name="lname" type="text" size="25"/>');
 response.write('<input type="submit"/>');
 response.write('</form>');
 response.write('<script>');
 response.write('function ajax(){');
 response.write('var xhr = new XMLHttpRequest();');
 response.write('xhr.open("POST", "formPost");');

Chapter 12 ■ Persisting JSON: II

240

 response.write('xhr.onload=function(){ alert(this.responseText);};');
 response.write('xhr.setRequestHeader("Content-Type", "application/json");');
 response.write('xhr.setRequestHeader("Accept", "application/json");');
 response.write('var input = document.getElementsByTagName("input");');
 response.write('var obj = {');
 response.write('fname : input[0].value,');
 response.write('lname : input[1].value');
 response.write('};');
 response.write('xhr.send(JSON.stringify(obj));');
 response.write('return false;');
 response.write('}');
 response.write('</script>');
 response.write(' </body>');
 response.write('</html>');
 response.end();
 
 } else {
 response.statusCode = 204;
 response.end();
 }
 } else if (request.method === "OPTIONS") {
 response.statusCode = 200;
 if (request.url === "/formPost") {
 response.setHeader("Access-Control-Allow-Origin", '*');
 response.setHeader("Access-Control-Allow-Headers", 'Content-Type, Accept,
 �Accept-Language,Accept-Encoding, User-Agent, Host, Content-Length, Connection,

Cache-Control');
 response.setHeader("Access-Control-Allow-Methods", 'GET, POST, OPTIONS');
 }
 response.end();
 }
 console.log("response=-end");
};
console.log('Server running at http://127.0.0.1:1337/index.html');
 
var saveToDB = function(obj, response) {
 gbDataBase.save(obj, function(err, res) {
 response.setHeader("Access-Control-Allow-Origin", "*");
 if (err) {
 response.statusCode = 500;
 console.log('error', err);
 } else if (res) {
 response.statusCode = 200;
 var stringResponse = JSON.stringify(res);
 response.setHeader("Content-Type", "application/json");
 response.setHeader("Content-Length", Buffer.byteLength(stringResponse, 'utf8'));
 response.write(stringResponse);
 }
 response.end();
 });
};
 

Chapter 12 ■ Persisting JSON: II

241

var parseQueryStringToObject = function(queryString) {
 var params = {}, queries, temp, i, l;
 // Split into key/value pairs
 queries = queryString.split("&");
 // Convert the array of strings into an object
 for (i = 0, l = queries.length; i < l; i++) {
 temp = queries[i].split('=');
 params[temp[0]] = temp[1];
 }
 return params;
};

Summary
This chapter demonstrated the persistence of JSON from the perspective of the server. In contrast to
persisting data via the client, as we achieved in Chapter 7, persisting data on the server can offer a whole lot
more advantages.

For starters, visitors cannot delete their data simply by clearing cache or deleting their cookies. As the
database resides behind HTTP requests, our application can safeguard the data from specific requests,
thereby offloading the control of what is saved/deleted to our application. Additionally, because all data is
being retained in a centralized location rather than on visitors’ browsers, we can perform unique queries to
organize our data and make connections between those using our applications.

CouchDB is a convenient way in which we can construct a document-oriented database. Furthermore,
because the content within each document is JSON, our applications are more flexible than those of
traditional SQL databases.

Key Points from This Chapter
CouchDB is a NoSQL database.•	

NoSQL databases store their data as JSON within individual documents.•	

CouchDB leverages the power of JSON and JavaScript to create a powerful and open •	
source database.

CouchDB’s API is simply HTTP requests.•	

Futon is a wrapper that allows us to get up and running with CouchDB immediately.•	

A query in CouchDB is referred to as a •	 view.

A document that contains a view is referred to as a •	 design document.

The •	 emit function populates a new row.

•	 emit can be called as many or as few times per document as you like.

Cradle is a Node module that can be installed to wrap all HTTP requests.•	

243

Chapter 13

Working with Templates

Generally speaking, a template is a tool that is used to structure as well as provide consistency among
interchangeable parts. The benefit, with regard to interchangeable parts, is that they can be used both
interchangeably and indistinguishably within an existing structure, provided they adhere to a template.
The ability to allow for interchangeability is beneficial in all walks of life. The flexibility that templates offer
has reinforced their utility as dependable tools in the development of modern web sites. The pairing of
templates and web development has been proven to alleviate the tightly coupled architecture concerning
layout and the data that it utilizes.

Owing to their nature, templates have become the backbone of many platforms, resulting in the
prevalence of content management systems (CMS) such as WordPress, Drupal, and more. For the most
part, these platforms use dynamic server-side programming to embed content from a database layout.
However, with the prevalence of Ajax, and the fact that change is constant, it was only a matter of time before
templates were being applied to the front end. Today, there is a variety of templating engines available to
choose from. A few examples are Dust, JSRender, Moustache, and Handlebars, all of which rely on JSON.

Templating Engine
A templating engine, with regard to front-end development, is simply a library that binds data with markup
on the fly or otherwise dynamically. This could occur at runtime or even performed at design time.

Up until now, while we have not been using a templating engine, we have been performing a similar
functionality nonetheless. You may recall that in Chapter 8, we used JavaScript not only to trigger an
XMLHttpRequest but to additionally append the returned JSON result set of book covers to our HTML
document. This was achieved by the code shown in Listing 13-1.

Listing 13-1.  An Ajax Request with the Incorporation of Markup

<!DOCTYPE html>
<html lang="en">
<head></head>
 <body>
 <ul id="image-container">
 <script>
 function loadImages() {
 var ul= document.getElementById("image-container");
 var xhr= new XMLHttpRequest();
 xhr.open("GET", "data/imagesA.json");
 xhr.onload = function() {
 var data= JSON.parse(this.responseText);
 var list = data.images;

Chapter 13 ■ Working with Templates

244

 for (var i = 0; i < list.length; i++) {
 var image = list[i];
 var listItem = document.createElement("li");
 var img = document.createElement("img");
 img.src = image.url;
 img.alt = image.title;
 listItem.appendChild(img);
 ul.appendChild(listItem);
 };
 };
 xhr.send();
 };
 loadImages();
 </script>
 </body>
</html>
 

The preceding listing relies on string manipulation and DOM scripting to augment the returned JSON
data set at runtime into a presentable list of images utilizing HTML elements, as shown in Figure 13-1.

In the preceding example, the HTML elements required to produce the layout have been entangled
with our HTTP request, which makes our application convoluted. Not only is our markup not located where
it ought to be, in an HTML document, but in their object-oriented form, the elements are not instantly
recognizable as HTML elements.
 
var listItem = document.createElement("li");
var img = document.createElement("img");
 img.src = image.url;
 img.alt = image.title;
 listItem.appendChild(img);
 

Figure 13-1.  Revealing the markup of our dynamic inclusion of loaded data

Chapter 13 ■ Working with Templates

245

The preceding isolated code is the presentational style that will be adopted by each item that exists
within our data set, making the JavaScript code our template. While this works, the code itself is not very
optimal or legible, for that matter. Furthermore, as we are integrating HTML within JavaScript, we are
thereby making readability and maintainability all the more challenging. Last, as JavaScript, we lose the
innate ability of most IDE’s to validate our template as proper markup at design time.

Use of a templating engine has the ability to change all of that; however, it requires that we think a bit
more abstractly, as you will soon see.

Handlebars
Handlebars itself is not a programming language but, rather, a JavaScript templating engine. However, it
does, for all intents and purposes, possess its own lingua franca and syntax, to enable the desired templating
behavior.

As stated on the Handlebars web site, located at handlebarsjs.com, “Handlebars provides the power
necessary to let you build semantic templates effectively with no frustration.” What this means is that rather
than using JavaScript to define our templates, as in the preceding example, Handlebars utilizes a more
elegant templating system that employs the semantic tags of HTML. This will manage to keep our code clean
and extensible.

Installation
In order to make use of the Handlebars library, we must first obtain the latest source code to incorporate into
our HTML documents. We can obtain the latest source code by navigating to http://handlebarsjs.com/
and clicking the bright orange button labeled “Download: 2.0.0.” (See Figure 13-2.) This will download the
latest version of the Handlebars source code (currently version 2.0.0).

Figure 13-2.  Handlebars main page

http://handlebarsjs.com/

Chapter 13 ■ Working with Templates

246

As shown in Figure 13-2, you can witness a link just below the orange button. This hyperlink reads
“Download: runtime-2.0.0.” These two items are not one in the same and are used for different purposes, so
be sure to click directly on the button. Clicking this button will begin the download process. Feel free to save
the file to a location of your choosing.

Note■■  T he runtime 2.0.0 library is only to be utilized by templates that have been pre-compiled.

Once the download has completed, navigate to the directory in which it was saved. Once you have
located the handlebars-v2.0.0.js file, move it to a more suitable location for use in our exercises. If you
are following along with the source code for this chapter, you will note that I have already provided this
chapter with the handlebars-v2.0.0 JavaScript file located within the directory structure at BeginningJSON/
chapter13/js/libs/. If you have been working with your own folder structure, feel free to move
handlebars-v2.0.0 to a location relative to your HTML documents.

Once the Handlebars library has been downloaded, all one must do is incorporate it within each HTML
document intended to use the templating engine. This is easily achieved by incorporating an external script
via the HTML <script> element, as seen in Listing 13-2.

Listing 13-2.  Including the Handlebars Library

<!DOCTYPE html>
<html lang="en">
 <head>
 <script src="js/libs/handlebars-v2.0.0.js"></script>
 </head>
 <body>
 <script>
 alert(Handlebars);
 </script>
 </body>
</html>
 

Listing 13-2 incorporates the Handlebars version 2.0.0 templating engine into the head of the page
utilizing the HTML <script> tag. Furthermore, to ensure that the library is properly incorporated, I have
chosen to output the global Handlebars reference. If an alert of [Object, Object] is displayed within the
alert box, then congratulations, you have successfully loaded the Handlebars object. This is a global object
that exposes a few methods that will be used to work with our Handlebars templates. We are now ready to
begin defining templates with Handlebars.

Working with Handlebars
The libraries name, Handlebars, is a nod to the tokens it makes use of to demarcate placeholders within
a template. These tokens are the opening and closing curly braces, ({, }), which, when turned in the
appropriate 90-degree direction, resemble a handlebar moustache, hence the name Handlebars. These
handlebars are then used to demarcate an expression within a template.

Chapter 13 ■ Working with Templates

247

A Basic Expression
A basic expression, or placeholder, as it is commonly referred to, is the building block of the Handlebars
templating engine. Simply enough, the placeholder syntax is none other than the reference to a key,
wrapped within two curly braces, such as the following {{key}}. This placeholder is referred to as an
expression, because, at runtime, it will be replaced by the value of a key/value pair possessed by a collection
with a member that matches the specified key. Furthermore, it is the most basic expression within
Handlebars and is used to replace static elements, such as strings and/or numbers. You will learn about
more complex expressions in a later section. First, however, let’s ease into the immersion of Handlebars by
analyzing the use of a Handlebars basic expression (see Listing 13-3).

Listing 13-3.  Simplest Use of a Handlebars Template

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <script src="js/libs/handlebars-v2.0.0.js"></script>
 </head>
 <body>
 <script type="application/x-handlebars" id="Handlebar-Name-Template">
 {{name}}
 </script>
 <script type="application/javascript">
 var initialTemplateWrapper = document.getElementById("Handlebar-Name-Template");
 var initialTemplateContent = initialTemplateWrapper.innerHTML;
 var dynamicTempate = Handlebars.compile(initialTemplateContent);
 var markupOutput = dynamicTempate({ "name" : "ben" });
 document.getElementsByTagName("body")[0].innerHTML = markupOutput;
 </script>
 </body>
</html>
 

Listing 13-3 reveals in its entirety a succinct Handlebars template and the few lines of JavaScript code
required to make our template functional. Running the preceding listing results in the document revealing
the name ben, surrounded by opening and closing span tags. In order to best understand what is taking
place in Listing 13-3, the upcoming sections will break down the preceding code into four topics.

Defining a Handlebars Template
Defining a Handlebars template is a simple process of designing a semantic layout using ordinary HTML
elements and denoting, inline, any basic expression to be replaced with actual data at a later point in time.
Before we get into the syntax of the language, let’s begin by analyzing the design of a simple template.
The most basic implementation of a template that can be designed in Handlebars is one that uses a single
placeholder, as shown in Listing 13-4.

Listing 13-4.  A Single Expression Template

 1 <!DOCTYPE html>
 2 <html lang="en">
 3 <head>
 4 <meta charset="utf-8">
 5 <script src="js/libs/handlebars-v2.0.0.js"></script>

Chapter 13 ■ Working with Templates

248

 6 </head>
 7 <body>
 8 <script type="text/x-handlebars-template" id="Handlebar-Name-Template">
 9 {{name}}
10 </script>
11 </body>
12 </html>
 

Listing 13-4 demonstrates a simple template that makes use of a single placeholder to be filled in
dynamically once data is provided. The lines in bold define our Handlebars template. Let’s walk through
these lines of code, to better understand what is taking place.

Listing 13-4 begins as any ordinary HTML document. However, what makes this page extraordinary is
the incorporation of the Handlebars library. We utilize the script tag to load into the document the external
Handlebars library, so that we can begin making use of its templating engine (line 5). Of course, along with
a template engine, we require a template. The code highlighted in bold makes up a Handlebars template.
However, the surrounding <script> tag plays a rather important part in the template as well.

It may come as a shock, but our template is not considered JavaScript, as noted in the type attribute of
the script tag. Rather, the script type is assigned the value of text. To be more specific, it’s a particular subset
of text that defines a Handlebars template. I will explain why this is important shortly. The content within
our script tag, as denoted by the type, is that of our Handlebar template.

Within the template, which we have defined, is nothing more than a single placeholder contained
within a element. The two braces that surround our placeholder easily identify a basic expression
within a Handlebars template. An expression, as we have learned in JavaScript, is simply the evaluation
and return of data. In other words, the basic expression, {{name}}, will later be interpolated with the
value retained by a member that matches the expression, within the given context of the data provided.
Furthermore, as the term template implies, every time we reference this particular template, we can expect
to generate an HTML span tag with an arbitrary name within.

If we were to run the preceding listing, I’m afraid we’d be presented with an empty document, as shown
in Figure 13-3. The reason why is simple. Currently, our document lacks any HTML markup to render. If you
were expecting our template to render, the reason why it doesn’t is owing to the use of the <script> tag that
surrounds it.

Figure 13-3.  An empty document

Chapter 13 ■ Working with Templates

249

Note■■   By default, the <script> tag exhibits a CSS display property of none.

The Role of <script>
Wrapping our template within the script element provides several advantages. The first is that it cleverly
removes our template from being rendered by the document, lest we reveal our placeholders to our visitors.
Per the W3C spec, any script tag will forgo rendering, as it will be supplied to the appropriate script engine to
be evaluated. However, as our Handlebars template does not define JavaScript, the last thing we want to do
is supply our Handlebars template to the script engine, where it would be parsed as such. For this reason, we
provision the type attribute with a scripting language that our browser will not be able to recognize. In our
example, we have provided the scripting language of text/x-handlebars-template.

Signifying that our script contains a Handlebars template not only thwarts the user-agent from
supplying it to a script engine but helps to immediately identify it as a Handlebars template to any and all
developers.

Provided we use the script tag as outlined previously, our template provides zero impact to the
document. This is one of the greatest advantages that accompanies our Handlebar templates. This enables
us to define a template inline. While this may not seem to be much at first, there is a lot to be said from a
maintainability standpoint, by associating our template within the markup that will utilize it.

Last, a final benefit of our script element is that, as with all elements, we can refer to it by a particular ID.
In our existing example, our template can be referenced via the identity Handlebar-Name-Template. Having
the ability to reference our template by ID will become necessary, as you will soon see in the upcoming
section.

Compiling a Template
At this point, all we have managed to do is define a template that our template engine will use. However, as
you have just recently discovered, a template alone has no effect on our document. In order for a template
to work, it must be provided to the Handlebars library, so that it can be compiled into a JavaScript function.
For this, we are required to provide the content for the script ID, Handlebar-Name-Template, to the compile
method exposed by the global Handlebars object. Adding five lines of code to our existing markup achieves
this, as shown in Listing 13-5.

Listing 13-5.  Compiling Our Handlebar-Name-Template

 1 <!DOCTYPE html>
 2 <html lang="en">
 3 <head>
 4 <meta charset="utf-8">
 5 <script src="js/libs/handlebars-v2.0.0.js"></script>
 6 </head>
 7 <body>
 8 <script type="text/x-handlebars-template" id="Handlebar-Name-Template">
 9 {{name}}
10 </script>
11 <script type="application/javascript">

Chapter 13 ■ Working with Templates

250

12 var templateWrapper = document.getElementById("Handlebar-Name-Template");
13 var templateContent = templateWrapper.innerHTML;
14 var tempateFunction = Handlebars.compile(templateContent);
16 </script>
17 </body>
18 </html>
 

Listing 13-5 reveals, in bold, the five lines that are used to transform our template into a function that
can be called repeatedly and be provided a JSON argument. As indicated by line 11, the ability to compile a
template requires just a bit of good old-fashioned JavaScript.

The first line of JavaScript code (line 12) is used to target the specific template that we wish to compile.
Leveraging the document method getElementById and supplying the value of Handlebar-Name-Template
easily obtains a reference to the HTML script element containing our template. To keep our code clean and
readable, I assign the returned element to that of a variable labeled templateWrapper.

The next step is to extract the text that occurs between the script element’s opening and closing tag. For
this we use the innerHTML property, and once again, we assign the returned value to another variable. In this
case, that variable is labeled templateContent. Once we have a reference to our template, all that is left is to
provide it as the argument to the compile method exposed by our global Handlebars object.

Giving Context to Our Template
Supplying a template to the compile method results in the return of a JavaScript function, which can be
assigned to a variable so that it can be called over and over again. As revealed by the signature displayed in
Listing 13-6, this function, when invoked, accepts a JSON argument.

Listing 13-6.  Signature of Our Template Function

function(object);
 

The object provided to the function is referred to in Handlebars nomenclature as the context. The
context is named such because it represents the model and/or data set from which all Handlebars
expressions (placeholders) derive their value. (See Listing 13-7.)

Listing 13-7.  A Compiled Template Is Used to Render JSON Data into Markup

10 //..truncated code
11 <script type="application/javascript">
12 var templateWrapper = document.getElementById("Handlebar-Name-Template");
13 var templateContent = templateWrapper.innerHTML;
14 var templateFunction = Handlebars.compile(templateContent);
15 var outputMarkup = templateFunction({ "name":"ben" });
17 alert(outputMarkup);
16 </script>
17 </body>
18 </html>
 

Listing 13-7 adds to our existing code base the two lines shown in bold. The first new line (line 15)
invokes templateFunction and provisions it with a JSON collection consisting of one key/value pair. You
may note that the key which our JSON possesses is equivalent to the label with the placeholder used by our
template. This is not simply a matter of coincidence. I mentioned earlier that interchangeable parts could
be used both interchangeably and indistinguishably within an existing structure, providing they adhere

Chapter 13 ■ Working with Templates

251

to the structure of a template. In other words, the label used to represent our placeholder is replaced, or
interpolated, with the corresponding value of a key of the same name, if it exists as a member on the context
provided. When a template is compiled via Handlebars.compile, it is transformed into a JavaScript function.
When said function is invoked with JSON as an argument, the implementation of the function relies on
string manipulation to assign values from our JSON to our placeholders and returns, upon its conclusion, a
string. This is not unlike our Ajax request in Listing 13-1. The only difference is that the JavaScript function
is not created at design time, but, rather, it is created on the fly at runtime. This takes place the moment the
reference to Handlebars.compile is parsed by the script engine. Once the function has been executed, the
result is provided back to the caller of the function.

The second line of code added to our page simply alerts us to the result, as shown in Figure 13-4.

As revealed by Figure 13-4, the output that results from templateFunction is none other than the
string representation ben . At this point, we can append the resulting string to our HTML
document with some very simple DOM scripting. Furthermore, each invocation of our template function
can be provided with varying contexts, thus allowing the resulting output to vary with each invocation, as
shown in Listing 13-8.

Listing 13-8.  Repeated Use of templateFunction with Varying Contexts

var outputMarkup;
 outputMarkup = templateFunction({ "name":"ben" });
 console.log(outputMarkup); // ben
 outputMarkup = templateFunction({ "name":"ivan" });
 console.log(outputMarkup); // ivan
 outputMarkup = templateFunction({ "name":"michael" });
 console.log(outputMarkup); // michael

Multiple Placeholders
A template needn’t consist of a single placeholder. Because a placeholder is simply a reference to a key
within a provided context, it’s entirely possible to construct templates that reference multiple placeholders.
However, it generally helps to begin with just the one. Listing 13-9 demonstrates how multiple placeholders
can be used to produce a more complex template.

Figure 13-4.  The rendered output of data

Chapter 13 ■ Working with Templates

252

Listing 13-9.  Use of Multiple Placeholders Within a Template

 //..truncated code
 8 <body>
 9 <section id="directory">
10 <script type="application/x-handlebars" id="Handlebar-Employee-Template">
11 <div class="employee">
12 <p> firstName: {{fName}} </p>
13 <p> lastName: {{lName}} </p>
14 <p> contact: {{phone}} </p>
15 </div>
16 </script>
17 </section>
18 <script>
19 </script>
20 </body>
 

The markup used within Listing 13-9 reveals a template, labeled “Handlebar-Employee-Template.” This
particular template is intended to house within an individual <p> element the first and last name, as well as
the contact number, of one of my colleagues. Each of the three paragraphs is, furthermore, contained within
a parenting <div> tag that has been provided employee as the value of the class attribute. By providing a
class identifier to the template, each context, when rendered, will reveal a uniformly styled element upon
its inclusion into the document.

With our template having been defined, all that remains is to provide the implementation that compiles
Handlebar-Employee-Template, as well as supply it a context or two to be rendered. (See Listing 13-10.)

Listing 13-10.  The JavaScript Code Required to Insert Data into a Document, with the Proper Presentation

17 //Truncated code...
18 <script type="application/javascript">
19 var initialTemplateWrapper = document.getElementById("Handlebar-Employee-Template");
20 var initialTemplateContent = initialTemplateWrapper.innerHTML;
21 var templateFunction = Handlebars.compile(initialTemplateContent);
 
22 �var dataA = templateFunction({"fName" : "Ben", "lName" : "Smith", "phone" :

"555-1234"});
23 �var dataB = templateFunction({"fName" : "Ivan", "lName" : "Bravo" , "phone" :

"555-5678"});
24 �var dataC = templateFunction({"fName" : "Michael", "lName" : "Chang" , "phone" :

"555-9090"});
 
24 var directory = document.getElementById("directory");
 directory.innerHTML = dataA;
 directory.innerHTML += dataB;
 directory.innerHTML += dataC;
 
25 </script>
 

Chapter 13 ■ Working with Templates

253

As the code from Listing 13-10 reveals, the implementation and utilization of a template are equivalent,
regardless of the number of placeholders. This is due to the magic of the Handlebars scripting engine.
Executing the preceding code results in the rendering of each context to be included within the directory, as
shown in Figure 13-5.

Note■■  I have not revealed any styling in the listings, to keep code to a minimum. However, I have applied a
minimal amount of styling to the employee class.

One of the features that makes JSON a superior data format is that it is capable of retaining the
hierarchical structure of data. As we have seen in previous chapters, JSON allows us to nest structural
composites, resulting in more complex JSON structures.

Complex JSON Structures
A great templating engine can easily work with complex data, and Handlebars is definitely up to the task.
Because all Handlebars placeholders reference the topmost structure of the provided context, any and all
nested members within a data collection can be referenced with the simple use of dot notation.

Our previous example demonstrated how we could use Handlebars to output an employee directory,
revealing the contact number per colleague. However, in the case of an urgent matter, it’s always best to have
alternate methods of contacting an individual. Let’s revisit our previous Handlebar-Employee-Template, and
reconstruct it to make use of the nested structure shown in Listing 13-11.

Figure 13-5.  Directory listing of my coworkers

Chapter 13 ■ Working with Templates

254

Listing 13-11.  A Complex JSON Structure

var complexJSON =
{
 "fName" : "Ben",
 "lName" : "Smith",
 "contact" : {
 "phone" : "555 - 1234",
 "cell" : "555 - 5678",
 "email" : "ben@example.com"
 }
};
 

Listing 13-11 reveals a JSON structure whose member, labeled “contact”, is that of a nested collection.
Within the aforementioned collection are three possible forms of contact: phone, cell, and email. In order
to incorporate a reference to the nested values into our template, we simply employ the use of dot notation
within our placeholders, as seen in Listing 13-12.

Listing 13-12.  Handlebar Template Relying on Dot Notation to Reference a Nested Collection

<section class="directory">
 <script type="application/x-handlebars" id="Handlebar-Employee-Template">
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 <p> work: {{contact.phone}} </p>
 <p> email: {{contact.cell}} </p>
 <p> cell: {{contact.email}} </p>
 </div>
 </script>
</section>
 

If we were to compile the template from Listing 13-12 and supply as the context complexJSON from
Listing 13-11, our document would render the results shown in Figure 13-6.

While dot notation can be sufficient for working with nested structures, it can become rather
cumbersome and repetitive. Furthermore, when working with many properties or deeply nested structures,
our template can become bloated and unwieldy. For this reason, the Handlebars engine supplies us with
more versatile expressions.

Figure 13-6.  Rendered template utilizing dot notation

Chapter 13 ■ Working with Templates

255

Block Expressions
As stated on the Handlebars web site, “Block expressions allow you to define helpers that will invoke a
section of your template with a different context than the current.” Although I have yet to discuss helpers, the
key takeaway from the previous sentence is that block expressions are special expressions that can be used
to change the working context within our templates. In the upcoming section “Block Helpers,” you will see
how they can be paired with helpers.

As the term block implies, a lock expression is used to define a subset or group of expressions within
a template. In other words, block expressions are used as containers for other expressions, wherein the
expressions residing within a block expression are subject to the context defined by the block itself. This is
similar to the CSS cascading effect, which child HTML elements can inherit from their parents. Furthermore,
because a block expression is a special form of expression, a block expression has the capability to be the
parent for another block expression. Listing 13-13 reveals the syntax of a block expression.

Listing 13-13.  Syntax of a Block Expression

{{#Expression}}
 //anything that happens here is within the context of Expression
{{/Expression}}
 

As shown in Listing 13-13, the syntax of a block expression is much more complex than that of its
counterpart the basic expression. Further examination of the syntax reveals similarities between the two.
It would appear that a block expression is made up of two special basic expressions. The first expression is
prefixed by a hash token (#), while the latter basic expression is simply prefixed by the solidus token (/).
The two tokens that I have mentioned are used to denote the beginning and end of a block.

Any and all expressions contained within said block will inherit the context established by the block
expression. What do I mean by “established by the block expression”? Like any basic expression, the block
references a placeholder that will be replaced with the value for the defined key shown in Listing 13-13 as
“Expression”, thus altering the context for any nested expressions.

Incorporating block expressions within a template is as simple as determining where our template
would benefit from a change in context. Let’s revisit Handlebar-Employee-Template from Listing 13-12 and
establish a new context that will allow us to remove all uses of dot notation. (See Listing 13-14.)

Listing 13-14.  Use of a Block Expression to Alter the Current Context

<section class="directory">
 <script type="application/x-handlebars" id="Handlebar-Employee-Template">
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 {{#contact}}
 <p> work: {{phone}} </p>
 <p> email: {{cell}} </p>
 <p> cell: {{email}} </p>
 {{/contact}}
 </div>
 </script>
</section>
 

Chapter 13 ■ Working with Templates

256

Listing 13-14 employs a block expression in order to reflect, as the new context, contact, exposed
by the current context. Mind you, the item held at contact is a collection of three keys, phone, cell, and
email. From there, all placeholders contained within our block will be replaced with the values possessed
by the matching keys held by the new context, thus eliminating the need for dot notation, in order to obtain
references to phone, cell, and email.

Tip■■  A block expression can be used to work your way down a complex JSON structure.

If we were to compile the template from Listing 13-14 and supply as the context complexJSON from
Listing 13-11, our document would render the same result shown previously in Figure 13-6.

Block Expressions and Arrays
One extremely powerful inclusion of the block expression, aside from being used to establish a new context,
is how it will loop over the indexes of an array, if that is what the expression evaluates to. In other words, if
the key defined by our block expression evaluates to that of an array, each item held by all indexes of said
array are individually set as the new context for any and all expressions within the block. This is especially
important, because the Handlebars engine will assemble, in one shot, several data sets contained within an
ordered list.

With that being said, Listing 13-15 incorporates within our initial Handlebar-Employee-Template from
Listing 13-9 a block expression, shown in bold.

Listing 13-15.  Incorporating a Block Expression

<body>
 <section id="directory">
 <script type="application/x-handlebars" id="Handlebar-Employees-Template">
 {{#employees}}
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 <p> contact: {{phone}} </p>
 </div>
 {{/employees}}
 </script>
 </section>
</body>
 

This very minor inclusion adds an extremely large amount of automation to our template. Up until this
point, the code required to augment multiple individuals into our directory consisted of obtaining computed
data, augmenting it, and inserting this into our DOM three times over. However, the inclusion of the new
block expression can supply an arbitrary number of employees to our template with a single data provision.

Because both our template and data must possess a relationship in order for our template to work, it
requires the provision of JSON that complements our block expression. The JSON provided must possess
at least one key/value pair whose label is that of employees. Furthermore, the value which employees must
retain is that of an array, whose indexes are composed of individual collections pertaining to a particular
employee, as shown in Listing 13-16.

Chapter 13 ■ Working with Templates

257

Listing 13-16.  An Ordered List of Individual Employees

{
 "employees" : [
 {"fName" : "Ben", "lName" : "Smith", "phone" : "555 - 1234" },
 {"fName" : "Ivan", "lName" : "Bravo", "phone" : "555 - 5678" },
 {"fName" : "Michael", "lName" : "Chang", "phone" : "555 - 9090"}
]
};
 

Listing 13-16 reveals a JSON structure that complements the block expression shown in Listing 13-15.
If we were to compile the template from Listing 13-15 and provide the preceding JSON to the resulting
function, the resulting string returned would reflect the following markup:
 
<div class="employee">
 <p> firstName: Ben </p>
 <p> lastName: Smith </p>
 <p> contact: 555 - 1234 </p>
</div>
<div class="employee">
 <p> firstName: Ivan </p>
 <p> lastName: Bravo </p>
 <p> contact: 555 - 5678 </p>
</div>
<div class="employee">
 <p> firstName: Michael </p>
 <p> lastName: Chang </p>
 <p> contact: 555 - 9090 </p>
</div>
 

All that would be left for our code to do would be to append the preceding string into our document so
that it can be rendered. The full source code can be viewed in Listing 13-17.

Listing 13-17.  Utilizing a Block Expression to Render Three Employees from One JSON Argument

<body>
 <section id="directory">
 <script type="application/x-handlebars" id="Handlebar-Employee-Template">
 {{#employees}}
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 <p> contact: {{phone}} </p>
 </div>
 {{/employees}}
 </script>
 </section>
 <script type="application/javascript">
 var initialTemplateWrapper = document.getElementById("Handlebar-Employee-Template");
 var initialTemplateContent = initialTemplateWrapper.innerHTML;
 var templateFunction = Handlebars.compile(initialTemplateContent);
 
 var dataA = templateFunction({
 "employees" : [

Chapter 13 ■ Working with Templates

258

 {"fName" : "Ben", "lName" : "Smith", "phone" : "555 - 1234" },
 { "fName" : "Ivan", "lName" : "Bravo", "phone" : "555 - 5678" },
 {"fName" : "Michael", "lName" : "Chang", "phone" : "555 - 9090"}
]
 });
 
 var directory = document.getElementById("directory");
 directory.innerHTML += dataA;
 </script>
 </body>
 

Executing Listing 13-17 renders the results shown in Figure 13-5. While the results are the same, the
difference in labor speaks for itself.

EXERCISE 13-1. ENHANCING THE DIRECTORY

While our employee directory is making use of the latest Handlebars techniques, thereby reducing
the amount of JavaScript required to add new employees to our directory, we have managed to revert
back to displaying only one form of contact per employee. Using the information learned thus far about
Handlebars expressions, rewrite the directory template to account for the following JSON as its context:
 
{
 "employees" : [
 {
 "fName" : "Ben",
 "lName" : "Smith",
 "contacts" : {
 "phone" : "555 - 1234",
 "cell" : "555 - 5678",
 "email" : "ben@example.com"
 }
 }, {
 "fName" : "Ivan",
 "lName" : "Bravo",
 "contacts" : {
 "phone" : "555 - 9012",
 "cell" : "555 - 9034",
 "email" : "ivan@example.com"
 }
 }, {
 "fName" : "Michael",
 "lName" : "Chang",
 "contacts" : {
 "phone" : "555 - 9035",
 }
 }]
}
 
You may note that Michael does not possess a cell or e-mail for this exercise. Take note of this when
your template is rendered. You can compare your template to Listing 13-18.

Chapter 13 ■ Working with Templates

259

If your template resembles that of Listing 13-18, then, congratulations; you are on your way to mastering
the Handlebars engine.

Listing 13-18.  Answer to the Preceding Exercise

<section id="directory">
 <script type="application/x-handlebars" id="Handlebar-Employee-Template">
 {{#employees}}
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 {{#contacts}}
 <p>phone: {{phone}}</p>
 <p>cell: {{cell}}</p>
 <p>email: {{email}}</p>
 {{/contacts}}
 </div>
 {{/employees}}
 </script>
</section>
 

Rendering the template from Listing 13-18 reveals that a Handlebars template outputs fields, whether
or not an existing member within the provided context can replace the basic expression. As in the case of
Michael, who lacked a cell as well as an e-mail address, Handlebars did not omit these fields, as shown in
Figure 13-7.

Applying Logic to Logic-less Templates
As was stated earlier, Handlebars templates are logic-less, which simply means that they do not incorporate
the use of JavaScript operators. This is extremely beneficial, because it increases the readability, reusability,
and maintainability of our templates, by ensuring the separation of presentation from functionality.
Similarly, it separates our HTML from our JavaScript. However, at times, we will find it quite necessary to
apply logic into our presentation. For this reason Handlebars incorporates helpers.

Figure 13-7.  Rendering of empty fields

Chapter 13 ■ Working with Templates

260

Helpers
In order to decouple logic from presentation, Handlebars does not permit the coupling of logic within a
template—and rightfully so. HTML, CSS, and JavaScript should remain as separate from one another as
possible. However, this is not to say that Handlebars templates cannot reflect the use of logic at all. In fact,
the Handlebars library provides us with the necessary framework in which we can pair logic with templates
in a way that is sure to decouple the logic from our layout.

In order to decouple the two, the Handlebars library relies on what are referred to as helpers. A helper
is merely an expression, which, at runtime, resolves to a function of the same name. Only in the runtime
environment are our template and logic intertwined. This is contrary to design time (our source code),
during which our template will only exhibit what appears to be yet another expression, thus ensuring an
optimal amount of separation from our presentation.

There are two types of helpers: custom and built-in. Because custom helpers are an advanced topic, this
chapter will not discuss them. Rather, I will discuss the variety of remarkably useful helpers that Handlebars
includes, so that we can incorporate them into our templates immediately.

Built-in Helpers
Unlike custom helpers, which, as you may suspect, offer more fine-tuned logic, hence increased complexity,
built-in helpers are included to supply basic logic to Handlebars templates. The helpers that I will be
discussing are each, if, unless, and else.

As you may surmise from their names, the aforementioned built-in helpers facilitate the most basic of
JavaScript faculties. As you will find, the built-in helpers that I will be discussing will all coincide with a block
expression. Helpers that are used with block expressions are referred to in the Handlebars nomenclature as
block helpers.

Block Helpers
The syntax for a block helper, as seen in Listing 13-19, reveals a similar resemblance to that of a block
expression. The sole difference between the two is that it is the name of the helper that defines the block.

Listing 13-19.  Syntax of a Block Helper

{{#helper Expression}}
 // Within the context of Expression
{{/helper}}
 

As you can see from Listing 13-19, a block helper is a block used to apply specific logic to some context,
Expression. In the case of the block helper, it is the name of the helper that succeeds the beginning and
ending tokens of the block. Although the syntax varies from our earlier discussion of a block expression, a
block helper is still a block, and, therefore, for all expressions within, is business as usual. In other words, all
expressions within are subject to the new context brought about by the block helper.

Chapter 13 ■ Working with Templates

261

The each Helper
The each helper is a remarkable helper that traverses all keys for a given context. The difference between
each and the default behavior of the block expression, however, is that each will iterate over both collections
as well as an ordered list. As with a block expression, each item held by the traversed key will be set to the
current context for any and all expressions within the block. Listing 13-20 reveals the syntax for the each
block helper.

Listing 13-20.  Syntax of the each Helper

{{#each Expression}}
 //evaluate against the current context
{{/each}}
 

As shown in Listing 13-20, the each block helper defines a block that will traverse all keys belonging
to the evaluated context, Expression. The each key provides a tremendous amount of automation that can
be added to our template. It can be used like a block expression to iterate an array, or it can also be used
to iterate over a collection of key/value pairs. Listing 13-21 makes use of both, to reveal the each helper’s
versatility.

Listing 13-21.  Revisiting Our Directory with the Assistance of the each Helper

<script type="application/x-handlebars" id="Handlebar-Employee-Template">
{{#each employees}} //traverse an array
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 {{#each contacts }} //traverse a collection
 <p>{{@key}}: {{this}}</p>
 {{/each}}
 </div>
{{/each}}
</script>
 

Listing 13-21 updates our previous Handlebar-Employee-Template. This time, it reflects the necessary
code that takes advantage of the each helper. As you can see, our template will traverse our array, employees,
and our object, contacts. You may notice that our template no longer explicitly includes the placeholders
phone, cell, and email. In their place is a single line of code: <p>{{@key}}: {{this}}</p>. Because the
use of each sets the value of each traversed key as the current context for all subsequent expressions within
the block, our aforementioned placeholders will not be evaluated. This is because each value of each key
held by our contacts collection is a string. For this particular reason, the Handlebars engine provides special
placeholders that can be used to refer to specific parts of a context.

These special placeholders are {{@key}} and {{this}}. The placeholder {{@key}} refers to the key for
which the current context is held, while, conversely, the placeholder {{this}} refers to the value of said key.
These come in especially handy when iteration is involved.

Utilizing these two special placeholders, we can achieve the original output of our various methods of
contact. Providing the data model shown in Listing 13-22 results in the rendering of Figure 13-8.

Chapter 13 ■ Working with Templates

262

Listing 13-22.  Complex JSON

{
 "employees" : [
 {
 "fName" : "Ben",
 "lName" : "Smith",
 �"contacts" : { "phone" : "555 - 1234", "cell" : "555 - 5678", "email" :

ben@example.com }
 }, {
 "fName" : "Ivan",
 "lName" : "Bravo",
 �"contacts" : { "phone" : "555 - 9012", "cell" : "555 - 9034", "email" :

ivan@example.com }
 }, {
 "fName" : "Michael",
 "lName" : "Chang",
 "contacts" : { "phone" : "555 - 9035", }
 }]
} 

As you can see, the effect is nearly the same as the output from the earlier exercise within this chapter.
What you may recognize, however, is that only phone has been outputted for Michael. This is because the
each helper traverses only the keys that exist.

The if Helper
The if helper is a handy helper that can be used to add conditional logic to a block expression and takes on
the implementation shown in Listing 13-23.

Listing 13-23.  Syntax of the if Helper

{{#if Expression}}
 //evaluate against the current context Expression
{{/if}}
 

Figure 13-8.  Rendering of fields that exist

Chapter 13 ■ Working with Templates

263

Listing 13-23 reveals the syntax of the block helper. Use of the if helper conveniently renders our block,
in addition to any expressions contained within, only if Expression evaluates as truthy. In other words, if
Expression evaluates to null, 0, false, or undefined, the block will be bypassed. Let’s apply our if helper
to the template from our earlier exercise, in order to prevent the output of contact methods that do not exist.
(See Listing 13-24.)

Listing 13-24.  Incorporation of the if Helper

<script type="application/x-handlebars" id="Handlebar-Employee-Template">
 {{#employees}}
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 {{#contacts}}
 {{#if phone}}
 <p>phone: {{phone}}</p>
 {{/if}}
 {{#if cell}}
 <p>cell: {{ cell }}</p>
 {{/if}}
 {{#if email}}
 <p>email: {{email}}</p>
 {{/if}}
 {{/contacts}}
 </div>
 {{/employees}}
</script>
 

As shown in bold, the if helper is used to devise a block that may or may not render. This, of course,
depends on the resulting evaluation of each expression: phone, cell, and email. Remember that if an
expression evaluates to null, 0, false, or undefined, each if block helper will be skipped. Executing the
previous template with the data set from Listing 13-24 results in the same output as that shown in Figure 13-9.

Figure 13-9.  Rendering of a member, if it possesses a value

Chapter 13 ■ Working with Templates

264

The unless Helper
The unless helper is used to render a block only if the expression succeeding it evaluates to falsy. The syntax
for the unless helper can be seen in Listing 13-25.

Listing 13-25.  Syntax of the unless Helper

{{#unless Expression}}
 //evaluate against the current context Expression
{{/unless }}
 

The unless helper is used inversely to that of our if helper, in that it is used to render a block, if and
only if Expression evaluates to null, 0, false, or undefined. You may be asking yourself when might this be
useful. However, such a helper is useful when rendering invalid or empty form fields. Listing 13-26 uses the
unless helper to output into our directory all contacts that have not supplied an e-mail.

Listing 13-26.  Incorporation of the unless Helper

<script type="application/x-handlebars" id="Handlebar-Employee-Template">
 {{#employees}}
 {{#unless contacts.email}}
 <div class="employee">
 <p> firstName: {{fName}} </p>
 <p> lastName: {{lName}} </p>
 {{#contacts}}
 <p>phone: {{phone}}</p>
 <p>cell: {{ cell }}</p>
 <p>email: {{email}}</p>
 {{/contacts}}
 </div>
 {{/unless}}
 {{/employees}}
</script>
 

Listing 13-26 demonstrates how the unless helper can be used to render colleagues that have yet to
supply an e-mail address. Because we know that Michael only possesses a phone number, executing the
preceding template against the data set from Listing 13-22 results in the output shown in Figure 13-10.

Figure 13-10.  Use of the unless block to render a contact whose e-mail is not present

Chapter 13 ■ Working with Templates

265

The else Helper
The else helper is a complementary helper for our two previously discussed helpers, unless and if. This
special helper can be incorporated within the body of either if/unless blocks in order to render content,
provided the conditions for unless/if are unsuccessfully met. The syntax of our else helper for both unless
and if blocks can be seen in Listing 13-27.

Listing 13-27.  Syntax of the else Helper

{{#if Expression}}
 //Evaluate for the current context if truthy
{{else}}
 //Evaluate for the current context if falsy
{{/if}}
 
{{#unless Expression}}
 //Evaluate for the current context if falsy
{{else}}
 //Evaluate for the current context if truthy
{{/unless}}
 

Utilizing the else helper offers our templates the ability to provide presentation to an unmet outcome.
Consider our previous unless example. If we wanted to highlight for Human Resources those colleagues
who currently lack a valid e-mail address, while similarly displaying those that did, utilizing the else helper
would make this possible. (See Listing 13-28.)

Listing 13-28.  Incorporation of the else Helper

<script type="application/x-handlebars" id="Handlebar-Employee-Template">
 {{#employees}}
 {{#unless contacts.email}}
 <div class="lacksEmail">
 <p> requires contact for{{fName}}{{lName}} </p>
 </div>
 {{else}}
 <div class="hasEmail">
 <p> congratulations {{fName}} {{lName}} </p>
 </div>
 {{/unless}}
 {{/employees}}
</script>
 

Listing 13-28 reveals the use of the else helper to render an alternate presentation for when our
condition is not met. Executing the preceding template with the data set from Listing 13-22 results in the
same output as that shown in Figure 13-11.

Chapter 13 ■ Working with Templates

266

EXERCISE 13-2. TEMPLATIZING REMOTE JSON

With the lessons you’ve learned in this chapter, see if you can revise the exercise in Chapter 8 to
incorporate Handlebars. There is no right or wrong answer.

Summary
The Handlebars library makes it easy to combine data with presentation. However, it does so cleanly and
semantically, which makes it highly extensible as well as maintainable. In our industry, in which change
is constant, the ability to isolate data from presentation allows for things to change independently of one
another. Handlebars does this by simply taking advantage of the clear distinctions between design time and
runtime.

Key Points from This Chapter
Handlebars is a templating engine.•	

Handlebars templates are encapsulated as text within script tags.•	

To prevent our templates from being parsed by the JavaScript engine, we mark the •	
type of script as an unidentifiable language.

A placeholder is the atomic unit in Handlebars.•	

All expressions are references to keys held by JSON data.•	

A Handlebars template is converted into a JavaScript function at runtime.•	

The JavaScript function accepts JSON data against which all placeholders are •	
evaluated.

Handlebar templates are logic-less.•	

Basic logic can be added to a template in the form of a helper.•	

The built-in helpers are used within blocks.•	

Block expressions are used to alter the current context.•	

Block expressions can be used to traverse arrays.•	

•	 {{this}} and {{@key}} are special placeholders that refer to current key/value pairs.

Figure 13-11.  Use of the else helper to render an alternate condition

Chapter 13 ■ Working with Templates

267

The •	 each helper can traverse members of an ordered list or collection.

The •	 if helper is used to add conditional logic to a block.

The •	 unless helper is used to add conditional logic to a block.

The •	 else helper can be used when if or unless conditions are unmet.

269

Chapter 14

Putting It All Together

Each previous chapter has aimed to discuss the various components of the Web that circulate around JSON.
Owing to this common thread, they are typically paired, rather than considered in isolation. In this chapter,
I will piece together the various concepts discussed throughout this book as building blocks for an actual
project. Each component will play its own critical role.

Within this chapter, I will use JavaScript, JSON, CORS, Node.js, CouchDB, Handlebars, and, finally, Ajax
to harness the data from the social media powerhouse that is Twitter.

Twitter
For those who live under a rock, Twitter is the latest social trend enabling users to communicate via a
short, 140-character message. For all intents and purposes, Twitter can be thought of as the modern-day
soapbox. Registered users can read and respond to other users’ messages. But even more important is that
unregistered users can still read and search the tweets of all registered users. This is because Twitter stores in
a database every tweet and publicizes them, thereby allowing all the world to view the voices of the many.

Furthermore, Twitter has crafted a simple API that welcomes web developers to harness their database,
to power the simplest or most complex campaign initiatives. While there are many ways to utilize Twitter’s
API, this chapter seeks to extract, at near-real-time, broadcast tweets that contain a specific hashtag or
phrase. At the time of writing, the iPhone 6 had just been released, and the hashtag #bendgate instantly
trended. For this chapter, I will make use of the hashtag #bendgate, but feel free to replace any #bendgate
reference with one that is trending today.

Twitter Apps
Much as with all modern-day social APIs, in order to leverage Twitter’s API, we must register a Twitter app.
This is easily accomplished by visiting http://apps.twitter.com and clicking the Create New App button,
as shown Figure 14-1.

Figure 14-1.  Create New App button

http://apps.twitter.com/

Chapter 14 ■ Putting It All Together

270

If you are not greeted with a page that resembles that in Figure 14-1, it may be that Twitter has either
updated this page or that you have yet to sign in with your Twitter account. Take this opportunity to click
“Sign in to twitter,” if you have an existing account with Twitter, or click “Sign up now” to create one. As a
registered Twitter user, you are allowed to create as many apps as you see fit. Let’s begin by creating an app.
Clicking Create New App will direct us to a page enabling us to create an application, as seen in Figure 14-2.

In the fields shown in Figure 14-2, we will need to provide some required information. First is the
provision of a name for our application. Normally this field is presented to the end user, to approve the
application to use the Twitter account. However, the app we will be creating is strictly for our own purposes.
That being said, you can fill out any name that is not already in use by other Twitter developers. I have
labeled my application “BeginningJSON.”

The second field seeks a description defining the behavior of our application. What is it for? What are
its intentions? Again, this is another user-facing field. However, as it’s an internal project, we can call it
whatever we wish. I have supplied the following description: “crawls the search API.”

The third field is used to provide authority to the source of the application. If your application creates
tweets on behalf of a user who authorized your app, the URL you provide here will be listed as the source
attribute for the tweet. Our app will not be making any tweets on anyone’s behalf; therefore, we can provide
a placeholder, in order to satisfy the requirement of the field. I have listed http://127.0.0.1 as my web site.

Figure 14-2.  Application Details form

Chapter 14 ■ Putting It All Together

271

The final field, which is not required, is mandated by the OAuth authorization protocol. As we will not
be making use of this field, we can leave it blank.

The last step in creating a Twitter app requires that we read and acknowledge the policies surrounding
the use of the Twitter API. If you agree to the rules laid out by Twitter, then click “Yes, I agree,” then click the
button labeled “Create your Twitter application.”

If the form did not possess any errors, upon its submission, you will be navigated to a portal from which
you can manage the particulars of your app. The landing page for your application is the Details page, which
provides the overview of your application. Your details should reflect those shown in Figure 14-3.

Figure 14-3.  Application Details page

Chapter 14 ■ Putting It All Together

272

Figure 14-3 displays the basic details for our recently created application. The major difference
between your app and mine begins with the presented name of the application. In the top left-hand
corner, you can see that my app is labeled “BeginningJSON.” Further below, our application’s settings are
listed. Here is yet another obvious difference between your app and mine. Where it states Consumer Key
(API Key), the number that appears on your Details page is guaranteed to be that of a different value. This
is necessary for your app and my app to be recognized as two separate applications. I’ll talk more about
this shortly.

By default, all applications are enabled to provide “Read-only” status from Twitter. This is evident, as
the first field within the Application Settings section reveals our access level. To the right of “Access level” are
the following words: “Read-only.” This is always the default value, as it is the safest for any user who wants
to use your application. If your application requires write privileges, the existing permissions will require
modification. However, for the purposes of this chapter, we will continue to leave the permission set to Read-
only. At this point, let’s click the Keys and Access Tokens tab within the topmost navigation.

Keys and Access Tokens
This section pertains to our application/user tokens and is integral to a Twitter application. In fact, it’s
integral to nearly every API out there today. You see, the Twitter application for which we are creating strictly
adheres to the OAuth 2.0 protocol. As the topic of OAuth is far beyond the topic of this book, I will simply
explain that OAuth is an industry standard for allowing a third party access to your first-party data, while
ensuring that the service requesting your data remains ignorant of your credentials. In this particular case,
that service would be Twitter. In order to keep all parties isolated, thereby not exposing a user’s password to
the application creator, a series of access tokens are used and exchanged instead.

Every Twitter application is provided a Consumer Key upon its creation. It is this Consumer Key that
distinguishes my application from your application. Furthermore, it is used to establish the identity of my
application with Twitter. Much like a Twitter handle, I have the option of changing my application name at
any point in time. However, the Consumer Key will always remain the same, that is, unless I regenerate them
or change the app permissions, which would provide my app with a brand-new Consumer Key. A change
in Consumer Keys, then, represents a different app and, therefore, requires anyone who has previously
authorized your app to do so once again. This ensures that users who authorize your read-only app today
cannot be taken advantage of tomorrow, without having to authorize any changes made to your app.

While the Consumer Key is intended to be public information, all Public Keys are paired with a secret
key that must be safeguarded at all times. For this reason, I have blurred mine out from Figure 14-4.

Chapter 14 ■ Putting It All Together

273

If anyone ever obtains a secret key, he/she can impersonate your app. These two keys, when paired,
establish the rightful ownership. Therefore, make certain that the Private Key you are provided remains a
secret from anyone.

Tip■■  T he safest way to utilize the Private Key is on the server side.

At this point, we have successfully registered a read-only Twitter application that can be used to begin
interacting with the Twitter API. All that is required is the understanding of the Twitter API. The Twitter API
is bountiful and has loads of methods for us to tap into. To cover them all requires a book in itself; however,
now that we have created an app, you may find it interesting to discover the potential that Twitter can offer.
Feel free to learn about the various API methods from the online documentation at
https://dev.twitter.com/overview/documentation.

The clear and concise documentation outlines the methods we can make use of, the type of
authorization required, whether or not there is a limit to how many times it can be called, and the response
format to be expected. While not every method will provide different answers, what remains a constant is
that all response formats will be provided as JSON.

Figure 14-4.  Application Keys and Access Tokens tab

https://dev.twitter.com/overview/documentation

Chapter 14 ■ Putting It All Together

274

Public Stream
The interaction that this chapter will make use of is the public stream’s statuses/filter, and its resource
information is provided in Figure 14-5.

The pubic stream, as defined on the Twitter web site, provides “developers low latency access to
Twitter’s global stream of tweet data.” This is achieved by devising a socket between our server and Twitter’s,
so they can post to our servers public tweets as they receive them.

As I mentioned earlier, both registered and unregistered users have the same ability to view Tweets.
However, only registered users have the ability to perform more specialized operations. As shown in
Figure 14-5, you can see that the type of authorization required for the public stream is that of a user context.
Unlike the Consumer Keys, which we currently have, in order to use this interface, we will require a User
Key as well. Fortunately for us, in order to create a Twitter application, one must have access to a registered
Twitter account. In other words, we can generate a User Key for our account and pair it to work with our
Twitter application.

Your User Access Token
One thing that Twitter provides us from the Keys and Access Tokens menu is the ability to generate an access
token that can be authorized to work with our application. In order to obtain an access token, simply click
“Create my access token,” just below the CTA “Token Actions,” shown in Figure 14-6. This will generate an
access key for this particular application, thereby satisfying the requirements of the public stream interface.

Figure 14-5.  Public stream’s Resource Information page

Chapter 14 ■ Putting It All Together

275

As shown in Figure 14-6, clicking “Create my access token” will generate an access token as well as
its access token secret counterpart. Never reveal this access token secret to anyone; otherwise, he/she
can use it to access your account via the Twitter API. By clicking “Generate My Access Token,” Twitter will
authorize your account with your Twitter app. If you were to navigate to https://twitter.com/settings/
applications, you would find a list of all the applications that you have authorized. The most recent
application should reflect yours, just as Figure 14-7 reveals mine.

Figure 14-6.  Generated user token

https://twitter.com/settings/applications
https://twitter.com/settings/applications

Chapter 14 ■ Putting It All Together

276

At this point, we have all the credentials we require to monitor in near-real time the Twitter database for
the tweets of our choosing.

#Trending
Now that we have the required keys to consume data from the Twitter stream, all that remains is the
implementation for our application. But what exactly are we building? you ask. We are going to build an
application that monitors, as close to real time as possible, a topic that is currently trending. Furthermore,
because the trend may be gone tomorrow, we will store within a database the data received from the stream.
This will allow us the ability to filter, sort, or search for particular tweets even after the trend subsides.

Last, because the data will be locked away within a database, we will devise a way to extract the data
and incorporate it within an HTML document. In order to present the data as a tweet, we will stylize the
extracted data upon its inclusion within the HTML document. For this, you will have to use your gleanings
from each preceding chapter.

Node.js
The first piece of the puzzle is creating a server from which we can interchange data between our application
and Twitter. In order to make our lives easier, we will leverage a Node module, which will conceal our
application from the nitty-gritties of the Twitter API. For this challenge, we will leverage the npm Twitter
module. You can read more about it at the following site: www.npmjs.org/package/twitter.

Twitter Module
In order to utilize the Twitter module, we must first install it as a module with Node.js. In order to do so, we
will follow the practices similar to those that were employed with Cradle, discussed in Chapter 12.

Simply use the command-line interface to navigate to the top directory, which contains the chapter14
source code. For me, that would be the following locations:
 
//PC
C:\Users\UrZA\Documents\Aptana Studio 3 Workspace\BeginningJSON\chapter14\
//Mac
/Users/FeZEC/Documents/Aptana Studio 3 Workspace/BeginningJSON/chapter14/
 

Open Terminal for Mac or CMD for PC, and simply type cd, followed by the location of your chapter14
directory and hit Enter. Next, type in the following command and hit Return on your keyboard.
 
npm install twitter
 

Figure 14-7.  Authoring our account to make use of our application

http://www.npmjs.org/package/twitter

Chapter 14 ■ Putting It All Together

277

This will initiate the installation process for our Twitter module. Remember that to install a module, you
may require administration rights.

Incorporating the Twitter Module
Once the Twitter module has been successfully installed into our top-level directory, we can begin working
with it, by incorporating it into a Node application via require(). As outlined at www.npmjs.org/package/
twitter, the setup for our Twitter application requires a mere eight lines of code, as shown in Listing 14-1.

Listing 14-1.  Twitter Module Setup

1 var util = require('util');
2 var twitter = require('twitter');
3 var twitr = new twitter({
4 consumer_key : "REPLACE_WITH_YOUR_CONSUMER_KEY",
5 consumer_secret : "REPLACE_WITH_YOUR_CONSUMER_KEY_SECRET",
6 access_token_key : "REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN",
7 access_token_secret : "REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN_SECRET"
8 });
 

As I hinted at earlier, a Twitter application relies on an exchange among keys. This is why the setup
requires us to insert the appropriate keys that reflect the application we are devising. The module then
utilizes these keys to generate the proper calls to Twitter’s API. Because this logic is complex, we are
leveraging our module to perform this labor.

Now, as it currently stands, the code from Listing 14-1 simply configures our application to properly
access the Twitter API with the appropriate credentials. It does not begin to make any requests or receive any
data. For that, we must utilize the relevant methods of the module.

Streaming API (Stable)
The Twitter module has a few methods that we can tap into; however, for the purposes of this chapter,
we will make sole use of the Streaming API. The Streaming API is a wrapper to accessing Twitter’s public
streams. As you can learn from Twitter’s documentation on public streams, https://dev.twitter.com/
streaming/public, there are three possible end points. We will use statuses/filter.

Statuses/Filter
The documentation for the statuses/filter URI states: “Returns public statuses that match one more filter
predicates.” In other words, the end point, stream.twitter.com/1.1/statuses/filter, will monitor for
public tweets that match any of the delimited terms or hashtags that we specify. Furthermore, because our
application will be listening to a stream, Twitter will provide us data in near real time.

In order to specify the terms or tags that our application requires, we will use the track property.
Simply put, track is a parameter that can be provided phrases or keywords. Multiple phrases or keywords
can be separated by the comma (,) token. Listing 14-2 reveals the eight lines of code required to devise a
connection to the status/filter stream.

http://www.npmjs.org/package/twitter
http://www.npmjs.org/package/twitter
https://dev.twitter.com/streaming/public
https://dev.twitter.com/streaming/public

Chapter 14 ■ Putting It All Together

278

Listing 14-2.  Incorporating the Stream API

 8 //..truncated code
 9 var hashTag= "REPLACE_WITH_A_COMMA_DILIMITED_SET_OF_HASHTAG(s)";
 10 twitr.stream('statuses/filter', {
 11 track : hashTag
 12 }, function(stream) {
 13 stream.on('data', function(data) {
 14 console.log(data); //outputs JSON
 15 });
 16 });
 

Listing 14-2 shows all the code we will require for devising a stream for the chosen list of hashtags
or phrases. I, however, have chosen to monitor the single hashtag knows as “#BendGate” (the latest
trend following the iPhone 6). Incorporating Listing 14-2 with Listing 14-1 and replacing all references
appropriately is all that remains to make this Node application fully operational.

If you were to execute the code from the command-line interface, via the node command, depending on
the topic you had chosen to monitor, you would notice JSON being output to the console immediately. If the
topic was truly trending, you might find it impossible to determine one tweet from another. Remember: We
are streaming data, which means that everything is happening in real time or as close to it as it can.

Note■■  T he stream outputs JSON and not raw data, because the Twitter module parses it.

Because it’s coming in at near-real time, we will have to save the incoming data, lest it never reappear in
our application, that is, unless it is re-tweeted by another user. In order to ensure that we retain the incoming
tweets of the stream, we must incorporate a database on which we can persist them.

CouchDB
There is an expression, “You could not step twice into the same river,” that is used to imply that things
change. The tweets provided to our application may wind up being deleted by the originator of the tweet
moments after they are published. This tweet will, for all intents and purposes, no longer be obtainable by
public searches. By applying the preceding expression to our Twitter stream, the incoming tweets will be
lost to our HTML document unless we devise a way to capture and store them for later use. For this, we will
incorporate CouchDB.

Incorporating the Cradle Module
As you should already have CouchDB installed on your machine, the only thing that will be required of our
application is the installation of the Cradle module into our current working directory. This can be achieved
by typing cd, followed by the location of your chapter14 directory, and hitting Enter. Next, type in npm
install twitter. Remember: You may require administration privileges to do so.

Once the Cradle module is installed, all that remains is to incorporate it into our existing Node
application. Listing 14-3 reflects in bold the code required.

Chapter 14 ■ Putting It All Together

279

Listing 14-3.  Incorporation of Cradle into Our Node Application

 1 var util = require('util');
 2 var twitter = require('twitter');
 3 var cradle = require('cradle');
 
 4 var twitr = new twitter({
 consumer_key : "REPLACE_WITH_YOUR_CONSUMER_KEY",
 consumer_secret : "REPLACE_WITH_YOUR_CONSUMER_KEY_SECRET",
 access_token_key : "REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN",
 access_token_secret : "REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN_SECRET"
 });
 
 5 var hashTag= "REPLACE_WITH_A_COMMA_DILIMITED_SET_OF_HASHTAG";
 
 6 var couchDB = new (cradle.Connection)('127.0.0.1', 5984, {
 cache : true,
 raw : false,
 forceSave : true
 });
 7 var twitterDataBase = couchDB.database('twitter');
 8 twitterDataBase.exists(function(err, exists) {
 9 if (err) {
10 console.log('error', err);
11 } else if (exists) {
12 console.log('the twitter db exists');
13 } else {
14 console.log('twitter database does not exists.');
15 twitterDataBase.create();
16 }
17 });
18 twitr.stream('statuses/filter', {
 track : hashTag
 }, function(stream) {
 stream.on('data', function(data) {
 twitterDataBase.save(data, function(err, res) {
 if (!err) {
 console.log(res); //logs out saved couchDB _id
 }
 });
 });
 });
 

Listing 14-3 outlines in bold the inclusion of CouchDB via the Cradle module. As you can see in lines 5
through 16, we establish a connection to our CouchDB service and determine the existence of the database
labeled “twitter.” If a database of that name does not currently exist, we create it via the create method.

Once our database is devised, and with a reference to it, we can pipe the incoming JSON into our
database. Because the Twitter module converts any data read from the stream into JSON, we can simply
provide it as the body to Cradle’s save method.

If you don’t currently have the CouchDB service running on port 5984, take this opportunity to start the
CouchDB application. Once you have verified that CouchDB is running via the Futon interface, go ahead
and restart our Node application. In lieu of Twitter data being outputted to the console, you should now

Chapter 14 ■ Putting It All Together

280

be viewing JSON data returned by CouchDB. This data, as you may remember, represents the individual
documents used to persist the provided JSON. Feel free to allow this application to run for a short while, in
order to fill our twitter database. Before long, you will surely see an abundant amount of tweets that will
have been saved to our database.

When you are satisfied, navigate your browser to the Futon Overview (http://127.0.0.1:5984/_utils)
to bear witness to the fruits of your labor. As revealed in Figure 14-8, I managed to receive a total of
7,173 tweets before deciding to shut down my application. This amounted to nearly 50 megs in saved
documents. While hard-drive space is nearly infinite for the penny these days, my desire to save 50 megs’
worth of people complaining about their bent phone is sadly finite.

Because Twitter does not understand what attributes our app may or may not wish to utilize, each JSON
document saved possesses an exuberant amount of information. Such information addresses whom the
tweet is in reply to or the location from which the tweet originated, etc. Feel free to delve into your Twitter
database and observe at random a single document. As you will undoubtedly find, there is an expansive
amount of information pertaining to the captured tweet. As this will be less than ideal for HTTP transport,
we will have to create a view that reflects the sole aspects required by this chapter.

Creating a View
As was seen in Chapter 12, creating a view entails the creation of a design document, for which the
map function we devise will reflect the rows for this particular view. For the purpose of our application,
we will require a mere fraction of the values held within each JSON document. These values are the
following: message, profile_pic, handle, full_name, created_time, media, and tweet_id. Each of these
aforementioned labels will play an integral role in the presentation of the tweet.

Figure 14-8.  Overview of my Twitter database

Chapter 14 ■ Putting It All Together

281

Last, as the key that will be used to sort our results, our map function will reference the captured
timestamp of the tweet. Referencing this value as the primary key to our view will enable the ability to
sort tweets by their creation time. Currently, the creation time is represented as a string rather than as a
number. However, we can easily convert the timestamp to a number via the built-in JavaScript function
Number(string), as seen in Listing 14-4.

Listing 14-4.  Devising a Tweet map Function

function(doc) {
var mediaURL=undefined;
if(doc.extended_entities){
 mediaURL=doc.extended_entities.media[0].media_url;
};
emit(Number(doc.timestamp_ms), {
 "message" :doc.text,
 "profile_pic" :doc.user.profile_image_url,
 "handle" :doc.user.screen_name,
 "full_name" :doc.user.name,
 "created_time" :doc.created_at,
 "media" : mediaURL,
 "tweet_id" :doc.id_str
 });
}
 

Listing 14-4 reveals the map function that will be used to create the data set that will be used within
our HTML document. As you can see, the emit function obtains the reference to our document and, from
it, captures only the properties our application requires. Because media will not accompany every tweet,
I have also created a condition in which the mediaURL is set to undefined if media does not exist. This will
effectively remove the media key from the returned JSON. This will be important to remember when we
devise our template.

With our map function devised, click the Run button to extract our data set against the entries within our
Twitter database. Once the operation completes, you should witness the results of your query, as shown in
Figure 14-9. The amount of time required to query the existing database will vary. Remember that the initial
render is the slowest, and subsequent rendering of the same query only occurs on recently added/removed
or updated documents.

Chapter 14 ■ Putting It All Together

282

Once your view has successfully resulted in a valid data set, you will want to save it. You may recall that
this is achieved by clicking the Save As... button, which will display the Save View As... dialog box shown in
Figure 14-10.

I have labeled my design document “twitter” and the view’s name “tweets.” Once the fields are properly
filled in, click Save, so that we can now reference our view via the following URL: http://127.0.0.1:5984/
twitter/_design/twitter/_view/tweets. Visiting this URL reveals JSON to be the data set captured by our
query.

Enabling CORS
If we wish our HTML application to obtain and utilize the preceding JSON resource, we will require the
use of Ajax. However, because CouchDB runs on a specific port, any and all Ajax requests that do not get
initiated from within Futon will be denied, per the same-origin policy.

However, as CouchDB invites us to modify its configurations, we can enable CORS with ease. Navigating
to http://127.0.0.1:5984/_utils/config.html reveals, via a Futon interface, the ability for us to modify,
add, and alter the default configurations of CouchDB.

Figure 14-9.  Specialized query

Figure 14-10.  Save dialog for a temporary view

Chapter 14 ■ Putting It All Together

283

By default, CouchDB disables CORS, to ensure that data captured within remains safeguarded.
However, enabling CORS is as simple as scrolling to the httpd section and locating the enable_cors option.
While it may appear that the value is uneditable, double-clicking the value will reveal an input box, thereby
allowing us to replace the current value with that of true. (See Figure 14-11.)

Once we have configured CouchDB to utilize CORS, we will have to include the proper CORS headers
within the CORS section. By default, the CORS section does not possess any CORS headers as an option
and, therefore, will have to be added. This is achieved by locating, at the bottom of the interface, the button
labeled “Add a new section,” as seen in Figure 14-12.

On clicking this button, a dialog box will appear, as shown in Figure 14-13, and to it, we specify a key/
value pair into a given section.

Figure 14-11.  Configuring CouchDB with CORS capability

Figure 14-12.  Adding a new section button

Figure 14-13.  Configuring the origins header

Chapter 14 ■ Putting It All Together

284

For the purposes of this chapter, our application will only initiate a GET request for the Twitter view.
Per the CORS specification, in order to authorize GET requests for data from origin A to a source origin B, we
must use the origins header. As its value, we must configure any and all approved origins. To make things
easy, we can use the wildcard after all the information we are exposing is already public on Twitter. On
clicking Create, we will have successfully configured our data set from being obtained via varying origins.

Ajax
In order to fetch the JSON data from CouchDB, we must configure the Ajax request accordingly. This can be
as simple as configuring an xhr object and defining the request line, as shown in Listing 14-5.

Listing 14-5.  Ajax Request to Obtain Tweets

var ajax = new XMLHttpRequest();
 ajax.open("GET", "http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets");
 ajax.responseType = "json";
 ajax.onload = function() {
 console.log(this.response);
 };
 ajax.send();
 

Listing 14-5 initializes an XMLHttpRequest object and configures the request line to make a GET request
for the Twitter design document. Submission of the request, provided the CORS headers are properly
configured in CouchDB, should result in the output of the received JSON data to the developer’s console.
At this point, all that would remain is to append our JSON to the document.

Note■■  T o keep things simple, Listing 14-5 solely makes use of XMLHttpRequest Level 2.

If you were to open a simple HTML document, make reference to the external Ajax.js file, and run it
within a browser with the developer’s network pane opened, you would be able to witness a successful Ajax
request. If your database is as bountiful as mine, you might have witnessed that your request received an
incredibly large number of tweets. Receiving this many tweets will require the viewer of our document to
wait until the transmission/parsing of JSON has been fulfilled, which is less than ideal.

Requesting Ranges
For our Ajax to be prompt and provide a good user experience, we will incorporate into our URI the
following recognized parameters of CouchDB: descending, limit, startkey, and skip. These parameters
can be used to inform CouchDB to return a subset of data. This will allow us to paginate our data rather than
receive it in one lump sum. Each parameter will provide a specific functionality in defining the range of our
subset. Let’s begin with the descending parameter.
 
var url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true";
ajax.open("GET",url);
 

Chapter 14 ■ Putting It All Together

285

As you can see from the preceding code, I have appended the descending parameter to the end of our
resource URI. Furthermore, I have specified the value of the descending parameter as true. This will ensure
the sorting order of the original data set, from which we will define our subset. Next, we will utilize the
parameter limit.
 
var url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&limit=20;
ajax.open("GET",url);
 

Appending the limit parameter to our resource will allow us to cap the amount of rows returned by the
view. In this particular case, I have specified the value of 20. If you were to navigate to the preceding URI, you
would note that only 20 rows are presented. Furthermore, those 20 rows are sorted in the order they were
extracted, that order being descending order.

By default, the 20 values being returned will simply reflect the first 20 rows that appear, beginning
with the most recent. However, we can manipulate the starting index with the incorporation of our next
parameter, startkey.
 
var url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&limit=20
 &startkey=1412433722297";
ajax.open("GET",url);
 

Use of startkey invites us to specify a known key as the index from which our subset begins. In this
case, I have specified the key 1412433722297. However, as you may or may not have a tweet that reflects this
key, it’s best to make this value dynamic. This, of course, can be obtained easily from each Ajax request. We
simply obtain the key from the very last row of JSON in our data set. I will demonstrate this shortly.

Because we will use the last key to indicate the key from which we begin our subset, we will
undoubtedly obtain in each subset a tweet that has already been provided in our previous subset. Therefore,
the final parameter we will utilize will inform CouchDB to skip over a specified number before beginning
our subset. That parameter is, of course, skip.
 
var url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&limit=20
 &startkey=1412433722297&skip=1";
ajax.open("GET",url);
 

Providing the value of 1 to our skip parameter informs CouchDB to offset our subset by one from the
established startkey. This will effectively skip the row identified by the startkey from being provided in
this data set.

Now that we have a firm understanding of the parameters involved, all that remains are the operations
that can manipulate our URI accordingly. Such operations can be seen in Listing 14-6.

Listing 14-6.  js/mylibs/ajaxRange.js Incorporates the Pagination of Tweets

 1 var url = 'http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets';
 2 var lastKey = null;
  
 3 function render() {
 4 var ajax = new XMLHttpRequest();
 5 ajax.open("GET", incrementRange(lastKey));
 6 ajax.responseType = "json";
 7 ajax.onload = function() {
 8 var data = (this.response);

Chapter 14 ■ Putting It All Together

286

 9 var rows = data.rows;
10 lastKey = rows[rows.length - 1].key;
11 console.log(data);
12 };
13 ajax.send();
14 }
 
15 function incrementRange(lastCount) {
16 var range = "?descending=true";
17 var limit = 20;
18 if (lastCount) {
19 range += "&startkey=" + lastCount.toString()+"&skip=1";
20 };
21 range += "&limit=" + limit;
22 return url + range;
23 };
 

Listing 14-6 incorporates the use of two functions to append the appropriate parameters and their
values that enable the appropriate and linear subset of the original data contained in our twitter database.

The first function, labeled “render,” is the main entry into our Ajax request. This function is responsible
for the actual request that will take place. However, the render function will defer to our second function,
labeled “incrementRange,” which is responsible for appending the appropriate parameters for the Ajax call.
As discussed earlier, three of our four parameters are known constants. We will always work in descending
order; we will limit our data set to 20 rows; and, last, we will always skip one. However, what varies is the key
that will represent our starting index, from which our subset is derived.

In order to satisfy the startkey parameter, we must retain the key value from the last row provided in
each data set to a variable that can be referenced by the incrementRange function. The variable that will be
assigned the key value is that of lastKey (line 10). With each data set returned, we must access the final
collection in the array and obtain the value of key.

With each call to render, lastKey will be provided as an argument to incrementRange, where, if and
only if the value is not null, will it be set as the value to startkey. Next, startkey and the skip parameter
are appended to the current URI, along with limit.

With each invocation to render, the data set will continue to be incremented by the next 20 rows in the
database. To make it easy to request a data set, we could easily bind the render function to that of a button in
our HTML, as shown in Listing 14-7.

Listing 14-7.  HTML Document’s Incorporation of Our ajaxRange Script

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 </head>
 <body>
 <input type="submit" value="load tweets" onclick="return render()"/>
 <script src="js/mylibs/ajaxRange.js"></script>
 </body>
</html>
 

Chapter 14 ■ Putting It All Together

287

Tip■■   Scripts should always be referenced at the end of your document, to increase page load.

If we were to run the document from Listing 14-7, we would only be able to witness on the page a
Submit button that reads “load tweets.” Although clicking the button does initiate the appropriate Ajax
request, we have yet to perform any options that would insert the returned data into our page.

Handlebars
The final piece of the puzzle is the incorporation of our template, which will not only apply presentation to
our data but also insert our data into the document. To assist in our template creation, it will be of great use
to know exactly what the composition of our data is. Listing 14-8 reveals the composition of a data whose
range is limited to the return of two rows.

Listing 14-8.  A Subset of Our Data Context Received from CouchDB

{
 "total_rows":3976,
 "offset":0,
 "rows":[
 {
 "id":"83f4b7105a3aad630fb06e036600176b",
 "key":1412433722297,
 "value":{
 "message":"truncated",
 "profile_pic":"truncated.jpeg",
 "handle":"truncated",
 "full_name":"truncated",
 "created_time":"truncated",
 "media":truncated.jpg",
 "tweet_id":"518410721529307136"
 }
 },{
 "id":"83f4b7105a3aad630fb06e03660016cb",
 "key":1412433721956,
 "value":{
 "message":"truncated",
 "profile_pic":"truncated.jpeg",
 "handle":"truncated",
 "full_name":"truncated",
 "created_time":"truncated",
 "media":truncated.jpg",
 "tweet_id":"518410719986216960"}
 }
]
}
 

Chapter 14 ■ Putting It All Together

288

Listing 14-8 reveals that each tweet is a collection of key/value pairs, held sequentially within the
ordered list labeled rows. Because our context is made up of collections and ordered lists, our template
will have to rely on block expressions and block helpers to traverse the contexts appropriately. Listing 14-9
reflects the template I have chosen to represent our tweets.

Listing 14-9.  index.html Handlebar-Tweet-Template

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
 <link href='css/tweet.css' rel='stylesheet' type='text/css'>
</head>
<body>
<section id="tweets">
 <script type="application/x-handlebars" id="Handlebar-Tweet-Template">
 {{#each rows}} //for each item contained within rows
 {{#value}} //set the current context to value
 <div class="social-article">

 <div class="social-text">
 <p class="socialprofilelink">
 {{full_name}}
 {{handle}}
 </p>
 <a target="_blank" href="https://twitter.com/{{handle}}/status/{{tweet_id}}"
 class="created-time">{{created_time}}
 <p>{{message}}</p>
 </div>
 {{#if media}} //if a media is supplied add it

 {{/if}}
 <div id="twitter-actions">
 <a target="_blank" href="https://twitter.com/intent/tweet?in_reply_to={{tweet_id}}"
 title="Reply" id="intent-reply" class="intent">
 <a target="_blank" href="https://twitter.com/intent/retweet?tweet_id={{tweet_id}}"
 title="Retweet" id="intent-retweet" class="intent">
 <a target="_blank" href="https://twitter.com/intent/favorite?tweet_id={{tweet_id}}"
 title="Favorite" id="intent-fave" class="intent">
 </div>
 </div>
 {{/value}} //return to the original context
 {{/each}}
 </script>
</section>
<input type="submit" value="load tweets" onclick="return render()"/>
<script src="js/libs/handlebars-v2.0.0.js"></script>
<script src="js/mylibs/ajaxRange.js"></script>
</body>
</html>
 

Chapter 14 ■ Putting It All Together

289

If you were to open the HTML document within a browser, all that would be shown at this point is what
appears in Figure 14-14. Furthermore, clicking the “load tweets” button continues to make Ajax requests;
however, it will not insert any tweets into our page.

This is because we have yet to supply our data to our template. However, before we are able to do so, we
must compile our template, so that we can reference it as a function, as seen in Listing 14-10.

Listing 14-10.  js/mylibs/engine.js Incorporates the Template with ajaxRange.js

 1 var initialTemplateWrapper = document.getElementById("Handlebar-Tweet-Template");
 2 var initialTemplateContent = initialTemplateWrapper.innerHTML;
 3 var templateFunction = Handlebars.compile(initialTemplateContent);
  
 4 var url = 'http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets';
 5 var lastKey = null;
 
 6 function render() {
 7 var ajax = new XMLHttpRequest();
 9 ajax.open("GET", incrementRange(lastKey));
10 ajax.responseType = "json";
11 ajax.onload = function() {
12 var data = (this.response);
13 var rows = data.rows;
14 lastKey = rows[rows.length - 1].key;
15 document.getElementById("tweets").innerHTML += templateFunction(data);
16 };
17 ajax.send();
18 }
 
19 function incrementRange(lastCount) {
20 var range = "?descending=true";
21 var limit = 20;
22 if (lastCount) {
23 range += "&startkey=" + lastCount.toString() + "&skip=1";
24 };
25 range += "&limit=" + limit;
26 return url + range;
27 };
 

Figure 14-14.  Only a “load tweets” button is rendered to the page

Chapter 14 ■ Putting It All Together

290

Listing 14-10 begins by prepending into our ajaxRange JavaScript file the necessary lines both to
obtain and compile our Handlebar-Tweet-Template into a JavaScript function. We begin first by obtaining
a reference to the HTML <script> element whose ID is that of Handlebar-Tweet-Template (line 1). From
there, we extract the value within via the element’s innerHTML attribute (line 2). Once we have a reference
to the template markup, we can supply it as the argument to Handlebars.compile (line 3). This will result
in the transformation of our template into a function, which can be assigned for later reference. In this
particular instance, I have labeled that reference templateFunction. The variable templateFunction, when
called, can be provided with our data set to produce the markup that can be added to our document. The
final touch is then to invoke the templateFunction with our returned JSON data (line 15).

At this point, if we were to open our HTML document within a browser and click the “load tweets”
button, our document would render each returned tweet with the appropriate presentation, as seen in
Figure 14-15.

Figure 14-15.  Handlebars automates the presentation

Chapter 14 ■ Putting It All Together

291

As you can see from Figure 14-15, each tweet is clearly added to the document. All that remains is the
incorporation of the appropriate styling. The styling, much like the template, can take on any form. The
styling I have chosen to apply can be seen in Listing 14-11, resulting in the rendering of Figure 14-16.

Listing 14-11.  css/tweet.css Provides Style to Coincide with Our Template

@import url("//fonts.googleapis.com/css?family=Open+Sans+Condensed:300|Open+Sans");
 
#tweets {
 font-family: 'Open Sans' sans-serif;
 width: 30%;
 margin: auto;
 overflow: hidden;
}
.recent-activity img, img {
 border: 0 none;
}
a img.media {
 width: 100%;
 height: auto;
 margin: 10px 0;
 -webkit-border-radius: 7px;
 -moz-border-radius: 7px;
 border-radius: 7px;
}
.social-article {
 border-top: 1px slategray dotted;
 width: 100%;
 padding: 8px 0px 8px 0px;
 margin: 0 0 10px 0;
 position: relative;
 overflow: hidden;
}
.social-article .profile-pic a {
 position: absolute;
 z-index: 99;
 float: left;
}
 
.profile-pic {
 position: absolute;
}
.profile-pic img {
 float: left;
 border: none;
 -webkit-border-radius: 20px;
 -moz-border-radius: 20px;
 border-radius: 20px;
 width: 42px;
 height: 42px;
}

Chapter 14 ■ Putting It All Together

292

.social-article .social-text {
 width: 100%;
 float: left;
 font-size: 11px;
 padding-left: 52px;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
 box-sizing: border-box;
 position: relative;
}
.social-article .social-text p {
 margin: 0px;
 min-height: 1em;
 line-height: 15px;
 -ms-word-break: break-all;
 word-break: break-all;
 /* Non standard for webkit */
 word-break: break-word;
 -webkit-hyphens: auto;
 -moz-hyphens: auto;
 -ms-hyphens: auto;
 hyphens: auto;
}
.social-article .social-text a, .social-article .social-text h1 a {
 color: #00acee;
 text-decoration: none;
}
.social-article .social-text a:hover, .social-article .social-text h1 a:hover {
 text-decoration: underline;
 color: #00acee;
}
 
.created-time {
 font-size: 10px;
 color: #878787;
 clear: both;
 display: block;
 margin: 0 0 5px 0;
}
.created-time a, .created-time a:hover {
 color: #878787;
}
.socialprofilelink a, .socialprofilelink a:hover {
 color: #444;
}
 

Chapter 14 ■ Putting It All Together

293

/* -------- FEED ACTIONS ------*/
#twitter-actions {
 width: 75px;
 float: right;
 position: relative;
 margin-right: 5px;
 display: block;
}
.intent {
 width: 16px;
 height: 16px;
 float: left;
}
.intent a {
 width: 16px;
 height: 16px;
 display: block;
 background-image: url(../img/everything-spritev2.png);
 float: left;
}
 
#intent-retweet a { background-position: 48px 0px; }
#intent-retweet a:hover { background-position: 32px 0px; }
#intent-fave a { background-position: 95px 0px; }
#intent-fave a:hover { background-position: 79px 0px; }
#intent-reply a { background-position: 0px 0px; }
#intent-reply a:hover { background-position: -16px 0px; }
 

Chapter 14 ■ Putting It All Together

294

Summary
As this chapter has shown, JSON is not simply a data format but, rather, the kernel from which modern-day
applications blossom. Owing to its convenience, simplicity, and ability to maintain the hierarchical structure
of data, JSON has become the substance that fuels the Web.

It is true that we could have transmitted XML in lieu of JSON. However, the convenience of working with
JSON far outweighs the tediousness and bloat that comes with XML.

Figure 14-16.  Fully stylized #bendgate tweets

295

A�       �
Arithmetic operators, 7
Assignment operator, 6
Asynchronous JavaScript and XML (Ajax)

requesting ranges
descending parameter, 284
limit parameter, 285
operations, 285–286
render function, 286–287
skip parameter, 285
startkey, 285

XMLHttpRequest object, 284

B�       �
Block statements, 12
Boolean type, 5
Bracket notation, 20
Buffer.byteLength method, 175

C�       �
changeInState function, 123–124
charAt method, 30
Contrasting expression, 6
Control statements, 11
CORS. See Cross-origin resource sharing (CORS)
CouchDB

CORS, 282–283
Cradle module

Node application, 278–279
twitter database, 280

custom view
definition, 220
emit method, 220
guestbook database, 223
map function, 221
output, 222
permanent view, 223
signature view, 224

temporary view, 221
URL, 224

Futon
Add Field button, 218
@CouchDB signature, 219
document list, 219
guestbook, 216–217
GUIDs, 217
HTML interface, 215–216
query, 220
Save Document, 218
Source view, 218
Upload Attachment, 218
URL, 220

Mac installation, 214–215
Node application

configuration interface, 224
Cradle process (see Cradle module)
HTTP methods, 225
REST API, 224

view creation
map function, 281
query, 281–282
temporary view, 282

Windows installation, 213–214
Cradle module

configuration, 226
CouchDB

Node application, 278–279
twitter database, 280

Cradle Wrapper, 227
create method, 227
database instance, 226
design document

creation, 237
existing HTTP Node application, 238
output, 237
save method, 237
sigTime and signatures, 238

exists method, 228
get method

Index

■ index

296

all_docs query, 230
callback function, 229
document ID, 229
key parameter, 229
limit parameter, 229
logging, 231
query string parameters, 229
sorting, 229
startkey and endkey parameters, 229

installation, 225–226
new documents, 235–236
require method, 226
save method, 234
view method, 232–233

Cross-origin resource sharing (CORS)
Access-Control-Allow-Origin, 143
Ajax request, 143
authorization, 145
configuration, 146
CORS-enabled server, 176
GET request, 145
JSON response, 145
preflight headers, 148
response headers, 147
simple headers, 147
specification, 143
user-agent, 143–144

D�       �
Data interchange. See Hypertext Transfer

Protocol (HTTP)
Designing literals

array, 22, 25
object, 22, 24

Dot notation, 19–20

E�       �
ECMAScript, 1
emit method, 220
Escaped literals, 43
eval function

assignments, 72
evaluate expression, 71
object literals, 72
string literals, 72

F�       �
for loop

syntax, 13
array, 21
charAt, 30

Futon
Add Field button, 218
@CouchDB signature, 219
document list, 219
guestbook, 216–217
GUIDs, 217
HTML interface, 215–216
query, 220
Save Document, 218
Source view, 218
Upload Attachment, 218
URL, 220

G�       �
get method

all_docs query, 230
callback function, 229
document ID, 229
key parameter, 229
limit parameter, 229
logging, 231
query string parameters, 229
sorting, 229
startkey and endkey parameters, 229

Globally Unique Identifier (GUID), 217

H�       �
Handlebars

ajaxRange.js, 289
basic expression/placeholder, 247
block expressions, 255–256
compile method, 249
complex JSON structures, 253
CSS style, 291
HTML span tag, 248
implementation, 247
index.html Handlebar-Tweet-Template, 288
installation, 245
JSON structure, 257
load tweets button, 289
multiple placeholders, 251
outputs fields, 259
presentation, 290
script tag, 248–249
source code, 257–258
templateFunction, 250

Hypertext Transfer Protocol (HTTP)
Ajax (see XMLHttpRequest interface)
cookies

ASCII characters, 83
domain attribute, 85
expires attribute, 84
httponly attribute, 87

Cradle module (cont.)

■ Index

297

max-age attribute, 85
path attribute, 86
secure attribute, 87
syntax, 82

modules
addListener method, 173
Buffer.byteLength method, 175
createServer method, 174
http.createServer, 172
http.IncomingMessage, 172
http.ServerResponse, 172
JSON message output, 175
JSON.stringify method, 175
listen method, 173
requestListener method, 173

HTTP-request
entity body, 106
entity headers, 105–106
general headers, 103
request headers, 103–105
request line, 102
structure of, 102

response
entity body, 109–110
entity headers, 109
general headers, 108
response headers, 108–109
status line, 107
structure of, 107

Node API server, 170
Node server, 168
server modules, 170

I�       �
indexOf method, 30
Internet Engineering Task Force (IETF), 37, 145
ISO date-formatted strings, 74

J, K�       �
JavaScript

declarations, 14
expressions

arithmetic operator, 7
assignment operator, 6
comparison operator, 8
contrasting, 6
instanceof operator, 9
NOT operator, 10
statements, 10
typeof operator, 9

functions, 14
line terminators (see Line terminators)

values
non-primitive types, 2
primitive types (see Primitive types)

JavaScript Object Notation (JSON)
grammer, 72–73

composite structures, 38
escaped literals, 43
number values, 44
string value, 42
text, 45

history, 37
object

HTML file, 52–53
stringify (see Stringify method)
serialization process, 50
structural character token, 45
whitespace character token, 46

json2.js JavaScript Library, 53
JSON.parse method

data tree creation, 70
eval function

assignments, 72
evaluate expression, 71
object literals, 72
string literals, 72

notation, 71
parameters, 69
parse error, 70
reviver function

custom data type, 77
ISO date-formatted strings, 74
label identifiers, 76
__proto__, 78
returned values, 74
undefined value, 74

stringify method (see JSON.parse method)
string value, 70

JSONP server
code implementation, 179
getParamKey function, 179
load jsonp, 180
output, 180
requestHandler, 178
server configurations, 181

JSON.stringify method, 175

L, M�       �
Line terminators

block statements, 12
control statements, 11
loop statements, 13
truthy/falsy value, 12

Loop statements, 13

■ index

298

N�       �
Node.JS

Mac installation
empty .bash_profile, 166
node setup wizard, 165
node-version command, 167
$PATH configuration, 166–167
$PATH environment variable, 166
terminal, 166

Windows installation
32-bit vs. 64-bit, 160
command prompt interface, 162
configurations, 161
End-User License Agreement, 161
node setup, 161
node-version command, 162
output, 163
user and system variables, 163–164

Twitter application
module, 276–277
statuses/filter URI states, 277
Streaming API, 277

Non-primitive values, 2, 13, 50
NoSQL databases. See CouchDB
null type, 5

O�       �
Objects

access notation
bracket, 20
dot, 19–20

aCollection, 19
array, 21
built-in objects, 18
designing literals (see Designing literals)
key/value pair, 17
toString, 18
unordered collection, 18

OPTIONS request method
Access-Control-Allow-Headers, 205
Access-Control-Allow-Methods, 205
Access-Control-Request-Headers, 205
Access-Control-Request-Method, 205
Content-Type, 209
cross-origin requests, 204
formPost resource, 205
header configuration, 207
incomingEntityBody application, 205–206
Network tab, 205
output, 209
remote origins, 209
source origins, 208
unauthorized source origin request, 208

P, Q�       �
Persisting JSON

document cookie
assigning value, 88
creation, 88
expires, 90
getCookie function, 92
modern browser, 88
setCookie function, 90
setter method, 88
storing cookies, 93

HTTP cookie
ASCII characters, 83
domain attribute, 85
expires attribute, 84
httponly attribute, 87
max-age attribute, 85
path attribute, 86
secure attribute, 87
syntax, 82

JSONtext, 81
stringify and parse method, 81
web storage

clear method, 97
getItem method, 96
key method, 97
length, 97–98
removeItem method, 96
setItem method, 95–96
Window.localStorage, 94
Window.sessionStorage, 94

POST method, 102
code implementation, 192
HTML Form POST

action attribute, 193
code implemention, 196
Content-Types, 193
exerciseA application logs, 195
getParamKey function, 196
local form POST

application, 194
method attribute, 193
microsoft favicon, 195
Node application, 192
setEncoding method, 196
URL and PORT, 195

JSON POST
ajax function, 198
Content-Types, 198–199
exercise/incoming entity body, 201
incoming entity variable, 199
json-form.js file, 198
output, 199

payload, 191

■ Index

299

preflight request
Access-Control-Allow-Origin header, 203
definition, 203
OPTIONS request (see OPTIONS request

method)
preflight header, 210
safe methods, 203
same-origin policy, 203
unauthorized preflight request, 204
unsafe method, 203
user-agent acts, 203

Primitive values
Boolean type, 5
null type, 5
number, 3
strings, 50

alternate quotations, 4
ASCII character encoding, 3
escaped quotations, 4

undefined type, 5
Proxy server

ClientRequest methods, 184
code implementation, 185
http.request, 182
http.Stream, 183
string manipulation, 187–188

R�       �
render function, 286
reviver function

custom data type, 77
ISO date-formatted strings, 74
label identifiers, 76
returned values, 74
__proto__, 78
undefined value, 74

S�       �
Same-origin policy (SOP)

Chrome developer tools, 136–137
Chrome user, 140
CORS (see Cross-origin resource sharing (CORS))
cross-origin request, 135
definition, 133
domain, 139
effects, 139
Firebug developer tool, 138
Firefox alert, 137
GET request, 141
HTTP URL, 139
JSONP

dynamic script tag injection, 156–157
eval function, 153
Expression Statements, 153

function declaration, 155
grouping operator, 153
imagesA.json, 152
parameter, 155
ReferenceError, 154
script tags targeting, 152
someMethods, 154

output, 141–142
port, 139
Postman HTTP request, 141
proxy

$uri variable, 151
cURL, 150
diagram, 148
GET requests, 150
HTTP protocol, 148
jsonp URL parameter, 151
PHP server-side implementation, 150
query string parameter, 150
xhr code, 149

scheme, 139
setRequestHeader method, 139
user-agent, 140
XDomainRequest, 134–135

Serialization process, 50
split method, 34
Stringify method

replacer
array, 60
function, 62

serializing JavaScript values, 53
space, 64
value parameter

cyclic object, 57
functions, 57
number, 57
serialization process, 54–55
toJSON, 57
undefined value, 56

String object
concatenation, 27
creation, 28
implicit, 36
interface

charAt method, 30
indexOf method, 30
length, 29
match method, 32
replace method, 32
split method, 34
substr method, 34
toLowerCase method, 35
toString method, 30
toUpperCase method, 35

Structural character tokens, 45, 50

■ index

300

T�       �
Templating engine

block helpers, 260
built-in helpers, 260
code implementation, 243
each helper, 261
else helper, 265
Handlebars

basic expression/placeholder, 247
block expressions, 255–256
compile method, 249
complex JSON structures, 253
HTML span tag, 248
implementation, 247
installation, 245
JSON structure, 257
multiple placeholders, 251
outputs fields, 259
script tag, 248–249
source code, 257–258
templateFunction, 250

if helper, 262
string manipulation and DOM script, 244
unless helper, 264

toJSON method, 57
toLowerCase method, 35
toString method, 30
toUpperCase method, 35
Twitter application

description, 270
Details page, 271
keys and access tokens, 273

API methods, 273
authorization, 275–276
Consumer Key, 272
OAuth, 272
user token, 274–275

New App button creation, 269
Node.js

module, 276–277
statuses/filter URI states, 277
Streaming API, 277

OAuth authorization protocol, 271
public stream, 274
Read-only status, 272
registered users, 269
trending, 276
URL, 270

U, V�       �
Undefined type, 5
Unordered collection, 18

W�       �
Web storage

clear method, 97
getItem method, 96
key method, 97
length, 97–98
removeItem method, 96
setItem method, 95–96
Window.localStorage, 94
Window.sessionStorage, 94

Whitespace character tokens, 46

X, Y, Z�       �
XMLHttpRequest (xhr) interface

abort event, 114
callback functions, 114
constructor, 112
cross-browser solution, 113
error event, 114
event handlers, 112–113
HTTP GET request, 110–111
instances, 112
loadend event, 114
load event, 114
loadstart event, 114
onreadystatechange event, 114
progress event, 114
readyState property, 115–116
request method

abort method, 116, 119
open method, 116–117
send method, 116, 118–119
setRequestHeader, 116–118
timeout property, 120
upload property, 120–121
withCredentials property, 120

response method
getAllResponseHeaders

method, 121–122
getResponseHeader

method, 121–124
overrideMimeType

method, 121, 124
readyState property, 124
response property, 126–130
responseText

property, 124–125
responseType property, 124, 126
responseXML property, 124–125
status property, 124–125
statusText property, 124–125

timeout event, 114

Beginning JSON

Ben Smith

Beginning JSON

Copyright © 2015 by Ben Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0203-6

ISBN-13 (electronic): 978-1-4842-0202-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Victor Sumner
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code/

To my wife, for her patience with the late evenings and stay-at-home weekends,
as well as for her constant encouragement

vii

Contents

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Chapter 1: JavaScript Basics■■ ��� 1

JavaScript History��� 1

JavaScript Essentials�� 2

Values�� 2

Primitive Types�� 2

Expressions��� 6

Operators��� 6

Statements�� 10

Line Terminators�� 10

Control Statements�� 11

Block Statements�� 12

Truthy/Falsy��� 12

Loop Statements��� 13

Declarations�� 14

Variables�� 14

Functions��� 14

Summary��� 15

Key Points from This Chapter�� 15

■ Contents

viii

Chapter 2: Special Objects■■ ��� 17

Objects�� 17

Objects Are Collections�� 17

Built-in Objects�� 18

Object�� 18

Creating Objects�� 19

Access Notation�� 19

Array�� 21

Object Literals��� 22

Designing Literals�� 24

The Object Literal�� 24

The Array Literal�� 25

Summary��� 26

Key Points from This Chapter�� 26

Chapter 3: String Manipulation■■ �� 27

String Concatenation��� 27

The String object��� 28

Creating String objects�� 28

The Interface of the String object�� 28

length�� 29

toString�� 30

charAt�� 30

indexOf�� 30

lastIndexOf��� 32

match�� 32

replace��� 32

slice��� 33

substr�� 34

■ Contents

ix

split�� 34

toUpperCase�� 35

toLowerCase�� 35

The Implicit String object�� 35

Summary��� 36

Key Points from This Chapter ��� 36

Chapter 4: Introducing JSON■■ �� 37

History��� 37

JSON Grammar�� 38

Composite Structures�� 38

JSON Values�� 41

JSON Tokens��� 45

Summary��� 46

Key Points from This Chapter�� 47

Chapter 5: Creating JSON■■ ��� 49

The Serialization Process—Demystified��� 50

The JSON Object��� 52

stringify��� 53

Summary��� 65

Key Points from This Chapter�� 66

Chapter 6: Parsing JSON■■ �� 69

JSON.parse�� 69

eval�� 71

reviver�� 73

Summary��� 79

Key Points from This Chapter�� 79

■ Contents

x

Chapter 7: Persisting JSON: I■■ ��� 81

HTTP Cookie�� 82

Syntax�� 82

document.cookie��� 87

Web Storage�� 94

Web Storage Interface��� 95

Summary��� 99

Key Points from This Chapter�� 99

Chapter 8: Data Interchange■■ ��� 101

Hypertext Transfer Protocol��� 101

HTTP-Request�� 102

HTTP Response�� 106

Ajax��� 110

XMLHttpRequest Interface�� 112

Global Aspects��� 112

The Request Aspect��� 116

The Response Aspect�� 121

Obtaining the Response��� 124

Summary��� 130

Key Points from This Chapter�� 131

Chapter 9: X-Origin Resources■■ ��� 133

Same-Origin Policy�� 133

Circumventing Same-Origin Policy�� 142

CORS�� 143

The Proxy��� 148

JSONP�� 152

Summary��� 157

Key Points from This Chapter�� 157

■ Contents

xi

Chapter 10: Serving JSON■■ �� 159

Node.JS��� 159

Windows Installation��� 159

Mac Installation��� 165

Building an HTTP Server��� 168

Node HTTP Web Server�� 168

Node API�� 170

Modules��� 170

The HTTP Module�� 171

http.createServer��� 172

http.IncomingMessage�� 172

http.ServerResponse��� 172

http.Server��� 173

CORS-Enabled Server�� 176

JSONP Server�� 178

The Proxy Server��� 181

http.request��� 182

http.Stream�� 183

http.ClientRequest �� 184

Summary��� 188

Key Points from This Chapter�� 188

Chapter 11: Posting JSON■■ ��� 191

Request Entity Body�� 191

HTML Form POST��� 192

Processing a JSON POST��� 197

Preflight Request��� 203

OPTIONS Request Method��� 204

What Determines Preflight�� 210

Summary��� 211

Key Points from This Chapter�� 211

■ Contents

xii

Chapter 12: Persisting JSON: II■■ �� 213

CouchDB�� 213

Windows Installation��� 213

Mac Installation��� 214

Working with CouchDB�� 215

Futon��� 215

Creating Views��� 220

Creating Our First Custom View��� 221

Connecting Node and CouchDB��� 224

Cradle for Node�� 225

Working with Databases�� 226

Cradle Database API�� 227

Creating Documents via Cradle��� 235

Creating Design Documents via Cradle��� 236

Summary��� 241

Key Points from This Chapter�� 241

Chapter 13: Working with Templates■■ ��� 243

Templating Engine��� 243

Handlebars�� 245

Installation��� 245

Working with Handlebars�� 246

A Basic Expression�� 247

The Role of <script>�� 249

Compiling a Template�� 249

Giving Context to Our Template��� 250

Multiple Placeholders�� 251

Complex JSON Structures��� 253

Block Expressions��� 255

Block Expressions and Arrays��� 256

■ Contents

xiii

Applying Logic to Logic-less Templates�� 259

Helpers�� 260

Summary �� 266

Key Points from This Chapter�� 266

Chapter 14: Putting It All Together■■ ��� 269

Twitter��� 269

Twitter Apps��� 269

Keys and Access Tokens�� 272

Public Stream�� 274

Your User Access Token��� 274

#Trending��� 276

Node.js�� 276

Twitter Module��� 276

Incorporating the Twitter Module��� 277

Streaming API (Stable)��� 277

Statuses/Filter��� 277

CouchDB�� 278

Incorporating the Cradle Module��� 278

Creating a View�� 280

Enabling CORS��� 282

Ajax��� 284

Requesting Ranges�� 284

Handlebars�� 287

Summary��� 294

Index�� 295

xv

About the Author

Ben Smith is an accomplished technical experience director with many
years of experience leading web development for well-known digital
agencies. His list of contributions to the community has earned him a
place as an Adobe Community Professional. It should be apparent from
his background as an author, speaker, and a judge for the Favourite
Website Awards (FWA) that he is passionate about the Web. He attributes
his growth to experimentation and experience.

xvii

About the Technical Reviewer

Victor Sumner is a senior software engineer at D2L Corporation, where
he helps to build and maintain an integrated learning platform. As a
self-taught developer, he is always interested in emerging technologies
and enjoys working on and solving problems that are outside his
comfort zone.

When not at the office, Victor has a number of hobbies, including
photography, horseback riding, and gaming. He lives in Ontario, Canada,
with his wife, Alicia, and their two children.

xix

Acknowledgments

This book could not have been written without a loving and patient wife, an understanding circle of friends,
and a great team of editors and reviewers. My sincerest thanks to them all.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: JavaScript Basics
	JavaScript History
	JavaScript Essentials
	Values
	Primitive Types
	The Number Type
	The String Type
	Alternate Quotations
	Escaped Quotations

	The Boolean Type
	undefined Type
	null Type

	Expressions
	Operators
	Assignment Operator
	Arithmetic Operators
	Comparison Operators
	The typeof Operator
	The instanceof Operator
	The ! Operator

	Statements
	Line Terminators
	Control Statements
	Block Statements
	Truthy/ Falsy
	Loop Statements
	The for loop
	The for/in loop

	Declarations
	Variables

	Functions
	Summary
	Key Points from This Chapter

	Chapter 2: Special Objects
	Objects
	Objects Are Collections
	Built-in Objects
	Object
	Creating Objects
	Access Notation
	Dot Notation
	Bracket Notation
	Bracket Notation vs. Dot Notation

	Array
	Object Literals
	Designing Literals
	The Object Literal
	The Array Literal

	Summary
	Key Points from This Chapter

	Chapter 3: String Manipulation
	String Concatenation
	The String Object
	Creating String Objects
	The Interface of the String Object
	length
	toString
	charAt
	indexOf
	lastIndexOf
	match
	replace
	slice
	substr
	split
	toUpperCase
	toLowerCase

	The Implicit String Object
	Summary
	Key Points from This Chapter

	Chapter 4: Introducing JSON
	History
	JSON Grammar
	Composite Structures
	JSON Values

	JSON Tokens
	Summary
	Key Points from This Chapter

	Chapter 5: Creating JSON
	The Serialization Process —Demystified
	The JSON Object
	stringify
	value
	toJSON

	replacer
	replacer Array
	replacer Function

	space

	Summary
	Key Points from This Chapter

	Chapter 6: Parsing JSON
	JSON.parse
	eval
	reviver

	Summary
	Key Points from This Chapter

	Chapter 7: Persisting JSON: I
	HTTP Cookie
	Syntax
	expires
	max- age
	domain
	path
	secure
	httponly

	document.cookie
	Web Storage
	Web Storage Interface
	setItem
	getItem
	removeItem
	clear
	key
	length

	Summary
	Key Points from This Chapter

	Chapter 8: Data Interchange
	Hypertext Transfer Protocol
	HTTP-Request
	Request Line
	Headers
	General Headers
	Request Headers
	Entity Headers

	Entity Body

	HTTP Response
	Status Line
	Headers
	General Headers
	Response Headers
	Entity Headers

	Entity Body

	Ajax
	XMLHttpRequest Interface
	Global Aspects
	The Request Aspect
	open
	setRequestHeader
	send
	abort
	timeout
	withCredentials
	upload

	The Response Aspect
	getAllResponseHeaders
	getResponseHeader
	overrideMimeType

	Obtaining the Response
	readyState
	status
	statusText
	responseXML
	responseText
	responseType
	response

	Summary
	Key Points from This Chapter

	Chapter 9: X-Origin Resources
	Same-Origin Policy
	Circumventing Same-Origin Policy
	CORS
	Resource Sharing Check

	The Proxy
	JSONP
	Dynamic Script Tag Injection

	Summary
	Key Points from This Chapter

	Chapter 10: Serving JSON
	Node.JS
	Windows Installation
	Mac Installation

	Building an HTTP Server
	Node HTTP Web Server
	Node API
	Modules

	The HTTP Module
	http.createServer
	http.IncomingMessage
	http.ServerResponse
	http.Server

	CORS-Enabled Server
	JSONP Server
	The Proxy Server
	http.request
	http.Stream
	http.ClientRequest

	Summary
	Key Points from This Chapter

	Chapter 11: Posting JSON
	Request Entity Body
	HTML Form POST
	Processing a JSON POST

	Preflight Request
	OPTIONS Request Method
	What Determines Preflight

	Summary
	Key Points from This Chapter

	Chapter 12: Persisting JSON: II
	CouchDB
	Windows Installation
	Mac Installation

	Working with CouchDB
	Futon
	Constructing Your First Database

	Creating Views
	Creating Our First Custom View

	Connecting Node and CouchDB
	Cradle for Node
	Incorporating the Cradle Module

	Working with Databases
	Cradle Database API
	create
	exists
	get
	view
	save

	Creating Documents via Cradle
	Creating Design Documents via Cradle

	Summary
	Key Points from This Chapter

	Chapter 13: Working with Templates
	Templating Engine
	Handlebars
	Installation

	Working with Handlebars
	A Basic Expression
	Defining a Handlebars Template

	The Role of <script>
	Compiling a Template
	Giving Context to Our Template
	Multiple Placeholders
	Complex JSON Structures
	Block Expressions
	Block Expressions and Arrays

	Applying Logic to Logic-less Templates
	Helpers
	Built-in Helpers
	Block Helpers
	The each Helper
	The if Helper
	The unless Helper
	The else Helper

	Summary
	Key Points from This Chapter

	Chapter 14: Putting It All Together
	Twitter
	Twitter Apps
	Keys and Access Tokens
	Public Stream
	Your User Access Token
	# Trending

	Node.js
	Twitter Module
	Incorporating the Twitter Module
	Streaming API (Stable)
	Statuses/Filter

	CouchDB
	Incorporating the Cradle Module
	Creating a View
	Enabling CORS

	Ajax
	Requesting Ranges

	Handlebars
	Summary

	Index

