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Foreword

Can machines think? This question has fascinated scientists and researchers around the 
world. In the 1950s, Alan Turing shifted the paradigm from "Can machines think?" to 
"Can machines do what humans (as thinking entities) can do?". Since then, the field  
of Machine learning/Artificial Intelligence continues to be an exciting topic and 
considerable progress has been made.

The advances in various computing technologies, the pervasive use of computing 
devices, and resultant Information/Data glut has shifted the focus of Machine learning 
from an exciting esoteric field to prime time. Today, organizations around the world 
have understood the value of Machine learning in the crucial role of knowledge 
discovery from data, and have started to invest in these capabilities.

Most developers around the world have heard of Machine learning; the "learning" 
seems daunting since this field needs a multidisciplinary thinking—Big Data, Statistics, 
Mathematics, and Computer Science. Sunila has stepped in to fill this void. She takes 
a fresh approach to mastering Machine learning, addressing the computing side of the 
equation-handling scale, complexity of data sets, and rapid response times.

Practical Machine Learning is aimed at being a guidebook for both established and 
aspiring data scientists/analysts. She presents, herewith, an enriching journey for 
the readers to understand the fundamentals of Machine learning, and manages to 
handhold them at every step leading to practical implementation path.

She progressively uncovers three key learning blocks. The foundation block focuses 
on conceptual clarity with a detailed review of the theoretical nuances of the disciple. 
This is followed by the next stage of connecting these concepts to the real-world 
problems and establishing an ability to rationalize an optimal application. Finally, 
exploring the implementation aspects of latest and best tools in the market to 
demonstrate the value to the business users.

V. Laxmikanth
Managing Director, Broadridge Financial Solutions (India) Pvt Ltd
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Preface
Finding something meaningful in increasingly larger and more complex datasets is 
a growing demand of the modern world. Machine learning and predictive analytics 
have become the most important approaches to uncover data gold mines. Machine 
learning uses complex algorithms to make improved predictions of outcomes based 
on historical patterns and the behavior of datasets. Machine learning can deliver 
dynamic insights into trends, patterns, and relationships within data, which is 
immensely valuable to the growth and development of business.

With this book, you will not only learn the fundamentals of Machine learning, but 
you will also dive deep into the complexities of the real-world data before moving 
onto using Hadoop and its wider ecosystem of tools to process and manage your 
structured and unstructured data.

What this book covers
Chapter 1, Introduction to Machine learning, will cover the basics of Machine learning 
and the landscape of Machine learning semantics. It will also define Machine 
learning in simple terms and introduce Machine learning jargon or commonly  
used terms. This chapter will form the base for the rest of the chapters.

Chapter 2, Machine learning and Large-scale datasets, will explore qualifiers of large 
datasets, common characteristics, problems of repetition, the reasons for the  
hyper-growth in the volumes, and approaches to handle the big data.

Chapter 3, An Introduction to Hadoop's Architecture and Ecosystem, will cover all  
about Hadoop, starting from its core frameworks to its ecosystem components. 
At the end of this chapter, readers will be able to set up Hadoop and run some 
MapReduce functions; they will be able to use one or more ecosystem components. 
They will also be able to run and manage Hadoop environment and understand  
the command-line usage.
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Chapter 4, Machine Learning Tools, Libraries, and Frameworks, will explain open source 
options to implement Machine learning and cover installation, implementation, and 
execution of libraries, tools, and frameworks, such as Apache Mahout, Python, R, 
Julia, and Apache Spark's MLlib. Very importantly, we will cover the integration of 
these frameworks with the big data platform—Apache Hadoop

Chapter 5, Decision Tree based learning, will explore a supervised learning technique 
with Decision trees to solve classification and regression problems. We will cover 
methods to select attributes and split and prune the tree. Among all the other 
Decision tree algorithms, we will explore the CART, C4.5, Random forests, and 
advanced decision tree techniques.

Chapter 6, Instance and Kernel methods based learning, will explore two learning 
algorithms: instance-based and kernel methods; and we will discover how they 
address the classification and prediction requirements. In instance-based learning 
methods, we will explore the Nearest Neighbor algorithm in detail. Similarly in 
kernel-based methods, we will explore Support Vector Machines using real-world 
examples.

Chapter 7, Association Rules based learning, will explore association rule based learning 
methods and algorithms: Apriori and FP-growth. With a common example, you will 
learn how to do frequent pattern mining using the Apriori and FP-growth algorithms 
with a step-by-step debugging of the algorithm.

Chapter 8, Clustering based learning, will cover clustering based learning methods 
in the context of unsupervised learning. We will take a deep dive into k-means 
clustering algorithm using an example and learn to implement it using Mahout,  
R, Python, Julia, and Spark.

Chapter 9, Bayesian learning, will explore Bayesian Machine learning. Additionally, 
we will cover all the core concepts of statistics starting from basic nomenclature 
to various distributions. We will cover Bayes theorem in depth with examples to 
understand how to apply it to the real-world problems.

Chapter 10, Regression based learning, will cover regression analysis-based Machine 
learning and in specific, how to implement linear and logistic regression models 
using Mahout, R, Python, Julia, and Spark. Additionally, we will cover other related 
concepts of statistics such as variance, covariance, ANOVA, among others. We will 
also cover regression models in depth with examples to understand how to apply it 
to the real-world problems.
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Chapter 11, Deep learning, will cover the model for a biological neuron and will 
explain how an artificial neuron is related to its function. You will learn the core 
concepts of neural networks and understand how fully-connected layers work.  
We will also explore some key activation functions that are used in conjunction  
with matrix multiplication.

Chapter 12, Reinforcement learning, will explore a new learning technique called 
reinforcement learning. We will see how this is different from the traditional 
supervised and unsupervised learning techniques. We will also explore the  
elements of MDP and learn about it using an example.

Chapter 13, Ensemble learning, will cover the ensemble learning methods of Machine 
learning. In specific, we will look at some supervised ensemble learning techniques 
with some real-world examples. Finally, this chapter will have source-code examples 
for gradient boosting algorithm using R, Python (scikit-learn), Julia, and Spark 
machine learning tools and recommendation engines using Mahout libraries.

Chapter 14, New generation data architectures for Machine learning, will be on the 
implementation aspects of Machine learning. We will understand what the 
traditional analytics platforms are and how they cannot fit in modern data 
requirements. You will also learn about the architecture drivers that promote new 
data architecture paradigms, such as Lambda architectures polyglot persistence 
(Multi-model database architecture); you will learn how Semantic architectures  
help in a seamless data integration.

What you need for this book
You'll need the following softwares for this book:

•	 R (2.15.1)
•	 Apache Mahout (0.9)
•	 Python(sckit-learn)
•	 Julia(0.3.4) 
•	 Apache Spark (with Scala 2.10.4)
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Who this book is for
This book has been created for data scientists who want to see Machine learning 
in action and explore its real-world application. With guidance on everything 
from the fundamentals of Machine learning and predictive analytics to the latest 
innovations set to lead the big data revolution into the future, this is an unmissable 
resource for anyone dedicated to tackling current big data challenges. Knowledge 
of programming (Python and R) and mathematics is advisable, if you want to get 
started immediately.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The Map() function works on the distributed data and runs the required 
functionality in parallel."

A block of code is set as follows:

public static class VowelMapper extends Mapper<Object, Text, Text, 
IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws 
IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
word.set(itr.nextToken());
context.write(word, one);
}
}
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Any command-line input or output is written as follows:

$ hadoop-daemon.sh start namenode

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
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Introduction to  
Machine learning

The goal of this chapter is to take you through the Machine learning landscape and 
lay out the basic concepts upfront for the chapters that follow. More importantly, the 
focus is to help you explore various learning strategies and take a deep dive into the 
different subfields of Machine learning. The techniques and algorithms under each 
subfield, and the overall architecture that forms the core for any Machine learning 
project implementation, are covered in depth.

There are many publications on Machine learning, and a lot of work has been done 
in past in this field. Further to the concepts of Machine learning, the focus will be 
primarily on specific practical implementation aspects through real-world examples. 
It is important that you already have a relatively high degree of knowledge in 
basic programming techniques and algorithmic paradigms; although for every 
programming section, the required primers are in place.

The following topics listed are covered in depth in this chapter:

•	 Introduction to Machine learning
•	 A basic definition and the usage context
•	 The differences and similarities between Machine learning and data mining, 

Artificial Intelligence (AI), statistics, and data science
•	 The relationship with big data
•	 The terminology and mechanics: model, accuracy, data, features, complexity, 

and evaluation measures
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•	 Machine learning subfields: supervised learning, unsupervised learning, 
semi-supervised learning, reinforcement learning, and deep learning.  
Specific Machine learning techniques and algorithms are also covered  
under each of the machine learning subfields

•	 Machine learning problem categories: Classification, Regression, Forecasting, 
and Optimization

•	 Machine learning architecture, process lifecycle, and practical problems
•	 Machine learning technologies, tools, and frameworks

Machine learning
Machine learning has been around for many years now and all social media users, 
at some point in time, have been consumers of Machine learning technology. One of 
the common examples is face recognition software, which is the capability to identify 
whether a digital photograph includes a given person. Today, Facebook users can 
see automatic suggestions to tag their friends in the digital photographs that are 
uploaded. Some cameras and software such as iPhoto also have this capability.  
There are many examples and use cases that will be discussed in more detail later  
in this chapter.

The following concept map represents the key aspects and semantics of Machine 
learning that will be covered throughout this chapter:
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Definition
Let's start with defining what Machine learning is. There are many technical and 
functional definitions for Machine learning, and some of them are as follows:

"A computer program is said to learn from experience E with respect to some class 
of tasks T and performance measure P, if its performance at tasks in T, as measured 
by P, improves with experience E."

                                                                                            – Tom M. Mitchell

"Machine learning is the training of a model from data that generalizes a decision 
against a performance measure."

                                                                                                   – Jason Brownlee

"A branch of artificial intelligence in which a computer generates rules underlying 
or based on raw data that has been fed into it."

                                                                                                    – Dictionary.com

"Machine learning is a scientific discipline that is concerned with the design and 
development of algorithms that allow computers to evolve behaviors based on 
empirical data, such as from sensor data or databases."

                                                                                                             – Wikipedia

The preceding definitions are fascinating and relevant. They either have an algorithmic, 
statistical, or mathematical perspective.

Beyond these definitions, a single term or definition for Machine learning is the key 
to facilitating the definition of a problem-solving platform. Basically, it is a mechanism 
for pattern search and building intelligence into a machine to be able to learn, implying 
that it will be able to do better in the future from its own experience.

Drilling down a little more into what a pattern typically is, pattern search or pattern 
recognition is essentially the study of how machines perceive the environment, learn 
to discriminate behavior of interest from the rest, and be able to take reasonable 
decisions about categorizing the behavior. This is more often performed by humans. 
The goal is to foster accuracy, speed, and avoid the possibility of inappropriate use  
of the system.

Machine learning algorithms that are constructed this way handle building intelligence. 
Essentially, machines make sense of data in much the same way that humans do.
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The primary goal of a Machine learning implementation is to develop a general 
purpose algorithm that solves a practical and focused problem. Some of the aspects 
that are important and need to be considered in this process include data, time, and 
space requirements. Most importantly, with the ability to be applied to a broad class 
of learning problems, the goal of a learning algorithm is to produce a result that is a 
rule and is as accurate as possible.

Another important aspect is the big data context; that is, Machine learning methods 
are known to be effective even in cases where insights need to be uncovered from 
datasets that are large, diverse, and rapidly changing. More on the large scale  
data aspect of Machine learning will be covered in Chapter 2, Machine Learning  
and Large-scale Datasets.

Core Concepts and Terminology
At the heart of Machine learning is knowing and using the data appropriately.  
This includes collecting the right data, cleansing the data, and processing the data 
using learning algorithms iteratively to build models using certain key features  
of data, and based on the hypotheses from these models, making predictions.

In this section, we will cover the standard nomenclature or terminology used 
in machine learning, starting from how to describe data, learning, modeling, 
algorithms, and specific machine learning tasks.

What is learning?
Now, let us look at the definition of "learning" in the context of Machine learning.  
In simple terms, historical data or observations are used to predict or derive 
actionable tasks. Very clearly, one mandate for an intelligent system is its ability  
to learn. The following are some considerations to define a learning problem:

1.	 Provide a definition of what the learner should learn and the need  
for learning.

2.	 Define the data requirements and the sources of the data.
3.	 Define if the learner should operate on the dataset in entirety or a subset  

will do.

Before we plunge into understanding the internals of each learning type in the 
following sections, you need to understand the simple process that is followed  
to solve a learning problem, which involves building and validating models that 
solve a problem with maximum accuracy.
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A model is nothing but an output from applying an algorithm to 
a dataset, and it is usually a representation of the data. We cover 
more on models in the later sections.

In general, for performing Machine learning, there are primarily two types of 
datasets required. The first dataset is usually manually prepared, where the input 
data and the expected output data are available and prepared. It is important that 
every piece of input data has an expected output data point available as this will be 
used in a supervised manner to build the rule. The second dataset is where we have 
the input data, and we are interested in predicting the expected output.

As a first step, the given data is segregated into three datasets: training, validation, 
and testing. There is no one hard rule on what percentage of data should be training, 
validation, and testing datasets. It can be 70-10-20, 60-30-10, 50-25-25, or any other 
values.

The training dataset refers to the data examples that are used to learn or build a 
classifier, for example. The validation dataset refers to the data examples that are  
verified against the built classifier and can help tune the accuracy of the output.  
The testing dataset refers to the data examples that help assess the performance  
of the classifier.

There are typically three phases for performing Machine learning:

•	 Phase 1—Training Phase: This is the phase where training data is used  
to train the model by pairing the given input with the expected output.  
The output of this phase is the learning model itself.

•	 Phase 2—Validation and Test Phase: This phase is to measure how good the 
learning model that has been trained is and estimate the model properties, 
such as error measures, recall, precision, and others. This phase uses a 
validation dataset, and the output is a sophisticated learning model.

•	 Phase 3—Application Phase: In this phase, the model is subject to the  
real-world data for which the results need to be derived.
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The following figure depicts how learning can be applied to predict the behavior:

Data
Data forms the main source of learning in Machine learning. The data that is being 
referenced here can be in any format, can be received at any frequency, and can be of 
any size. When it comes to handling large datasets in the Machine learning context, 
there are some new techniques that have evolved and are being experimented with. 
There are also more big data aspects, including parallel processing, distributed 
storage, and execution. More on the large-scale aspects of data will be covered  
in the next chapter, including some unique differentiators.

When we think of data, dimensions come to mind. To start with, we have rows and 
columns when it comes to structured and unstructured data. This book will cover 
handling both structured and unstructured data in the machine learning context. 
In this section, we will cover the terminology related to data within the Machine 
learning context.
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Term Purpose or meaning in the context of Machine learning

Feature, attribute, field, or 
variable

This is a single column of data being referenced by the 
learning algorithms. Some features can be input to the 
learning algorithm, and some can be the outputs.

Instance This is a single row of data in the dataset.

Feature vector or tuple This is a list of features.

Dimension This is a subset of attributes used to describe a property 
of data. For example, a date dimension consists of three 
attributes: day, month, and year.

Dataset A collection of rows or instances is called a dataset.  
In the context of Machine learning, there are different 
types of datasets that are meant to be used for different 
purposes. An algorithm is run on different datasets at 
different stages to measure the accuracy of the model. 
There are three types of dataset: training, testing, and 
evaluation datasets. Any given comprehensive dataset  
is split into three categories of datasets and is usually  
in the following proportions: 60% training, 30% testing, 
and 10% evaluation.

a. Training Dataset The training dataset is the dataset that is the base dataset 
against which the model is built or trained.

b. Testing Dataset The testing dataset is the dataset that is used to validate 
the model built. This dataset is also referred to as a 
validating dataset.

c. Evaluation Dataset The evaluation dataset is the dataset that is used for final 
verification of the model (and can be treated more as user 
acceptance testing).

Data Types Attributes or features can have different data types. Some 
of the data types are listed here:

•	 Categorical (for example: young, old).
•	 Ordinal (for example: 0, 1).
•	 Numeric (for example: 1.3, 2.1, 3.2, and so on).

Coverage The percentage of a dataset for which a prediction is made 
or the model is covered. This determines the confidence of 
the prediction model.
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Labeled and unlabeled data
Data in the Machine learning context can either be labeled or unlabeled. Before we go 
deeper into the Machine learning basics, you need to understand this categorization, 
and what data is used when, as this terminology will be used throughout this book.

Unlabeled data is usually the raw form of the data. It consists of samples of natural 
or human-created artifacts. This category of data is easily available in abundance.  
For example, video streams, audio, photos, and tweets among others. This form of 
data usually has no explanation of the meaning attached.

The unlabeled data becomes labeled data the moment a meaning is attached. Here, 
we are talking about attaching a "tag" or "label" that is required, and is mandatory, to 
interpret and define the relevance. For example, labels for a photo can be the details 
of what it contains, such as animal, tree, college, and so on, or, in the context of an 
audio file, a political meeting, a farewell party, and so on. More often, the labels are 
mapped or defined by humans and are significantly more expensive to obtain than 
the unlabeled raw data.

The learning models can be applied to both labeled and unlabeled data. We can 
derive more accurate models using a combination of labeled and unlabeled datasets. 
The following diagram represents labeled and unlabeled data. Both triangles and 
bigger circles represent labeled data and small circles represent unlabeled data.

The application of labeled and unlabeled data is discussed in more detail in the 
following sections. You will see that supervised learning adopts labeled data and 
unsupervised learning adopts unlabeled data. Semi-supervised learning and deep 
learning techniques apply a combination of labeled and unlabeled data in a variety 
of ways to build accurate models.
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Tasks
A task is a problem that the Machine learning algorithm is built to solve. It is important 
that we measure the performance on a task. The term "performance" in this context 
is nothing but the extent or confidence with which the problem is solved. Different 
algorithms when run on different datasets produce a different model. It is important 
that the models thus generated are not compared, and instead, the consistency of the 
results with different datasets and different models is measured.

Algorithms
After getting a clear understanding of the Machine learning problem at hand, the 
focus is on what data and algorithms are relevant or applicable. There are several 
algorithms available. These algorithms are either grouped by the learning subfields 
(such as supervised, unsupervised, reinforcement, semi-supervised, or deep) or the 
problem categories (such as Classification, Regression, Clustering or Optimization). 
These algorithms are applied iteratively on different datasets, and output models 
that evolve with new data are captured.

Models
Models are central to any Machine learning implementation. A model describes 
data that is observed in a system. Models are the output of algorithms applied to 
a dataset. In many cases, these models are applied to new datasets that help the 
models learn new behavior and also predict them. There is a vast range of machine 
learning algorithms that can be applied to a given problem. At a very high level, 
models are categorized as the following:

•	 Logical models
•	 Geometric models
•	 Probabilistic models
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Logical models
Logical models are more algorithmic in nature and help us derive a set of rules by 
running the algorithms iteratively. A Decision tree is one such example:
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Geometric models
Geometric models use geometric concepts such as lines, planes, and distances.  
These models usually operate, or can operate, on high volumes of data. Usually,  
linear transformations help compare different Machine learning methods:
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Probabilistic models
Probabilistic models are statistical models that employ statistical techniques. These 
models are based on a strategy that defines the relationship between two variables. 
This relationship can be derived for sure as this involves using a random background 
process. In most cases, a subset of the overall data can be considered for processing:

Viagra Lottery P(Y= Spam 
(Viagra, lottery))

P(Y= ham 
(Viagra, lottery))

0  0  0.31 0.69

0  1  0.65 0.35

1  0  0.80 0.20

1  1  0.40 0.60
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Data and inconsistencies in Machine learning
This section details all the possible data inconsistencies that may be encountered 
while implementing Machine learning projects, such as:

•	 Under-fitting
•	 Over-fitting
•	 Data instability
•	 Unpredictable future

Fortunately, there are some established processes in place today to address these 
inconsistencies. The following sections cover these inconsistencies.

Under-fitting
A model is said to be under-fitting when it doesn't take into consideration enough 
information to accurately model the actual data. For example, if only two points on 
an exponential curve are mapped, this possibly becomes a linear representation, but 
there could be a case where a pattern does not exist. In cases like these, we will see 
increasing errors and subsequently an inaccurate model. Also, in cases where the 
classifier is too rigid or is not complex enough, under-fitting is caused not just due to 
a lack of data, but can also be a result of incorrect modeling. For example, if the two 
classes form concentric circles and we try to fit a linear model, assuming they were 
linearly separable, this could potentially result in under-fitting.

The accuracy of the model is determined by a measure called "power" in the statistical 
world. If the dataset size is too small, we can never target an optimal solution.

Over-fitting
This case is just the opposite of the under-fitting case explained before. While too 
small a sample is not appropriate to define an optimal solution, a large dataset 
also runs the risk of having the model over-fit the data. Over-fitting usually occurs 
when the statistical model describes noise instead of describing the relationships. 
Elaborating on the preceding example in this context, let's say we have 500,000 data 
points. If the model ends up catering to accommodate all 500,000 data points, this 
becomes over-fitting. This will in effect mean that the model is memorizing the data. 
This model works well as long as the dataset does not have points outside the curve. 
A model that is over-fit demonstrates poor performance as minor fluctuations in 
data tend to be exaggerated. The primary reason for over-fitting also could be that 
the criterion used to train the model is different from the criterion used to judge 
the efficacy of the model. In simple terms, if the model memorizes the training data 
rather than learning, this situation is seen to occur more often.
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Now, in the process of mitigating the problem of under-fitting the data, by giving 
it more data, this can in itself be a risk and end up in over-fitting. Considering that 
more data can mean more complexity and noise, we could potentially end up with 
a solution model that fits the current data at hand and nothing else, which makes it 
unusable. In the following graph, with the increasing model complexity and errors, 
the conditions for over-fit and under-fit are pointed out:

Data instability
Machine learning algorithms are usually robust to noise within the data. A problem 
will occur if the outliers are due to manual error or misinterpretation of the relevant 
data. This will result in a skewing of the data, which will ultimately end up in an 
incorrect model.

Therefore, there is a strong need to have a process to correct or handle human errors 
that can result in building an incorrect model.

Unpredictable data formats
Machine learning is meant to work with new data constantly coming into the system 
and learning from that data. Complexity will creep in when the new data entering the 
system comes in formats that are not supported by the machine learning system. It is 
now difficult to say if our models work well for the new data given the instability in 
the formats that we receive the data, unless there is a mechanism built to handle this.
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Practical Machine learning examples
In this section, let's explore some real-world machine learning applications.  
We covered various examples within the introductory section of this chapter  
and we will now cover some domain-specific examples with a brief description  
of each problem.

For online and offline applications, some of the following examples can easily  
be guessed. In the chapters to follow, a subset of these examples will be picked  
to demonstrate the practical implementation aspects using suitable Machine  
learning algorithms.

Problem / problem Domain Description

Spam detection The problem statement here is to identify which 
e-mails are "spam". A Machine learning algorithm can 
categorize an e-mail to be marked as spam based on 
some rules that it builds using some key features of 
e-mail data. Once an e-mail is marked as spam, that 
e-mail is then moved to the spam folder and the rest  
are left in the inbox.

Credit card fraud detection This is one of the recent problems that credit card firms 
need a solution for. Based on the usage patterns of the 
credit card by the consumer and the purchase behavior 
of the customer, the need is to identify any transaction 
that is not potentially made by the customer and mark 
them as fraudulent for necessary action to be taken.

Digit recognition This is a very simple use case that requires the ability 
to group posts based on the zip code. This includes the 
need to interpret a handwritten numeric accurately 
and bucket the posts based on the zip code for faster 
processing.

Speech recognition Automated call centers need this capability where a 
user's request on the phone is interpreted and mapped 
to one of the tasks for execution. The moment the user 
request can be mapped to a task, its execution can 
be automated. A model of this problem will allow a 
program to understand and make an attempt to fulfill 
that request. The iPhone with Siri has this capability.
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Problem / problem Domain Description

Face detection This is one of the key features that today's social media 
websites provide. This feature provides an ability to tag 
a person across many digital photographs. This gives 
aptitude to a group or categorizes the photographs by a 
person. Some cameras and software such as iPhoto have 
this capability.

Product recommendation or 
customer segmentation

This capability is found in almost all of the top online 
shopping websites today. Given a purchase history 
for a customer and a large inventory of products, the 
idea is to identify those products that the customer will 
most likely be interested in buying, thus motivating 
more product purchases. There are many online 
shopping and social websites that support this feature 
(for example: Amazon, Facebook, Google+, and many 
others).
There are other cases like the ability to predict whether 
a trial version customer opts for the paid version of the 
product.

Stock trading This means predicting stock performance based on  
the current past stock movement. This task is critical to 
financial analysts and helps provide decision support 
when buying and selling stocks.

Sentiment analysis Many times, we find that the customers make decisions 
based on opinions shared by others. For example, we 
buy a product because it has received positive feedback 
from the majority of its users. Not only in commercial 
businesses as detailed earlier, but sentiment analysis 
is also being used by political strategists to gauge 
public opinion on policy announcements or campaign 
messages.
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Types of learning problems
This section focuses on elaborating different learning problem categories. Machine 
learning algorithms are also classified under these learning problems. The following 
figure depicts various types of learning problems:

Classification
Classification is a way to identify a grouping technique for a given dataset in such a 
way that depending on a value of the target or output attribute, the entire dataset can 
be qualified to belong to a class. This technique helps in identifying the data behavior 
patterns. This is, in short, a discrimination mechanism.

For example, a sales manager needs help in identifying a prospective customer and 
wants to determine whether it is worth spending the effort and time the customer 
demands. The key input for the manager is the customer's data, and this case is 
commonly referred to as Total Lifetime Value (TLV).
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We take the data and start plotting blindly on a graph (as shown in the following 
graph) with the x axis representing the total items purchased and the y axis 
representing the total money spent (in multiples of hundreds of dollars). Now we 
define the criteria to determine, for example, whether a customer is good or bad.  
In the following graph, all the customers who spend more than 800 dollars in a  
single purchase are categorized as good customers (note that this is a hypothetical 
example or analysis).

Now when new customer data comes in, the sales manager can plot the new 
customers on this graph and based on which side they fall, predict whether the 
customer is likely to be good or bad.

Note that classification need not always be binary (yes or no, male 
or female, good or bad, and so on) and any number of classifications 
can be defined (poor, below average, average, above average, good) 
based on the problem definition.

Clustering
In many cases, the data analyst is just given some data and is expected to unearth 
interesting patterns that may help derive intelligence. The main difference between 
this task and that of a classification is that in the classification problem, the business 
user specifies what he/she is looking for (a good customer or a bad customer, a 
success or a failure, and so on).
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Let's now expand on the same example considered in the classification section.  
Here the patterns to classify the customers are identified without any target in  
mind or any prior classification, and unlike running a classification, the results  
may always not be the same (for example, depending on how the initial centroids  
are picked). An example modeling method for clustering is k-means clustering.  
More details on k-means clustering is covered in the next section and in detail in  
the following chapters.

In short, clustering is a classification analysis that does not start with a specific target 
in mind (good/bad, will buy/will not buy).

Forecasting, prediction or regression
Similar to classification, forecasting or prediction is also about identifying the way 
things would happen in the future. This information is derived from past experience 
or knowledge. In some cases, there is not enough data, and there is a need to define 
the future through regression. Forecasting and prediction results are always presented 
along with the degree of uncertainty or probability. This classification of the problem 
type is also called rule extraction.

Let's take an example here, an agricultural scientist working on a new crop that she 
developed. As a trial, this seed was planted at various altitudes and the yield was 
computed. The requirement here is to predict the yield of the crop given the altitude 
details (and some more related data points). The relationship between yield gained 
and the altitude is determined by plotting a graph between the parameters. An 
equation is noted that fits most of the data points, and in cases where data does  
not fit the curve, we can get rid of the data. This technique is called regression.
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Simulation
In addition to all the techniques we defined until now, there might be situations 
where the data in context itself has many uncertainty. For example, an outsourcing 
manager is given a task and can estimate with experience that the task can be done 
by an identified team with certain skills in 2-4 hours.

Let's say the cost of input material may vary between $100-120 and the number of 
employees who come to work on any given day may be between 6 and 9. An analyst 
then estimates how much time the project might take. Solving such problems requires 
the simulation of a vast amount of alternatives.

Typically in forecasting, classification, and unsupervised learning, we are given data 
and we really do not know how the data is interconnected. There is no equation to 
describe one variable as a function of others.

Essentially, data scientists combine one or more of the preceding techniques to solve 
challenging problems, which are:

•	 Web search and information extraction
•	 Drug design
•	 Predicting capital market behavior
•	 Understanding customer behavior
•	 Designing robots

Optimization
Optimization, in simple terms, is a mechanism to make something better or define a 
context for a solution that makes it the best.

Considering a production scenario, let's assume there are two machines that  
produce the desired product but one machine requires more energy for high speed 
in production and lower raw materials while the other requires higher raw materials 
and less energy to produce the same output in the same time. It is important to 
understand the patterns in the output based on the variation in inputs; a combination 
that gives the highest profits would probably be the one the production manager 
would want to know. You, as an analyst, need to identify the best possible way to 
distribute the production between the machines that gives him the highest profit.
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The following image shows the point of highest profit when a graph was plotted for 
various distribution options between the two machines. Identifying this point is the 
goal of this technique.

Unlike the case of simulations where there is uncertainty associated with the input 
data, in optimization we not only have access to data, but also have the information 
on the dependencies and relationships between data attributes.

One of the key concepts in Machine learning is a process called induction. The 
following learning subfields use the induction process to build models. Inductive 
learning is a reasoning process that uses the results of one experiment to run the  
next set of experiments and iteratively evolve a model from specific information.
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The following figure depicts various subfields of Machine learning. These subfields 
are one of the ways the machine learning algorithms are classified.

Supervised learning
Supervised learning is all about operating to a known expectation and in this case, 
what needs to be analyzed from the data being defined. The input datasets in this 
context are also referred to as "labeled" datasets. Algorithms classified under this 
category focus on establishing a relationship between the input and output attributes, 
and use this relationship speculatively to generate an output for new input data points. 
In the preceding section, the example defined for the classification problem is also an 
example of supervised learning. Labeled data helps build reliable models but is usually 
expensive and limited.

When the input and output attributes of the data are known, the key in supervised 
learning is the mapping between the inputs to outputs. There are quite a few 
examples of these mappings, but the complicated function that links up the input 
and output attributes is not known. A supervised learning algorithm takes care of 
this linking, and given a large dataset of input/output pairs, these functions help 
predict the output for any new input value.
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Unsupervised learning
In some of the learning problems, we do not have any specific target in mind to 
solve. In the earlier section, we discussed clustering, which is a classification analyses 
where we do not start with a specific target in mind (good/bad, will buy/will not 
buy) and is hence referred to as unsupervised analyses or learning. The goal in this 
case is to decipher the structure in the data against the build mapping between input 
and output attributes of data and, in fact, the output attributes are not defined. These 
learning algorithms operate on an "unlabeled" dataset for this reason.

Semi-supervised learning
Semi-supervised learning is about using both labeled and unlabeled data to learn 
models better. It is important that there are appropriate assumptions for the 
unlabeled data and any inappropriate assumptions can invalidate the model.  
Semi-supervised learning gets its motivation from the human way of learning.

Reinforcement learning
Reinforcement learning is learning that focuses on maximizing the rewards from 
the result. For example, while teaching toddlers new habits, rewarding them every 
time they follow instructions works very well. In fact, they figure out what behavior 
helps them earn rewards. This is reinforcement learning, and it is also called credit 
assessment learning.

The most important thing is that in reinforcement learning the model is additionally 
responsible for making decisions for which a periodic reward is received. The results in 
this case, unlike supervised learning, are not immediate and may require a sequence of 
steps to be executed before the final result is seen. Ideally, the algorithm will generate a 
sequence of decisions that helps achieve the highest reward or utility.

The goal in this learning technique is to measure the trade-offs effectively by 
exploring and exploiting the data. For example, when a person has to travel from a 
point A to point B, there will be many ways that include travelling by air, water, road 
or by walking, and there is significant value in considering this data by measuring 
the trade-offs for each of these options. Another important aspect is the significance 
of a delay in the rewards. How would this affect learning? For example, in games 
like chess, any delay in reward identification may change the result.



Chapter 1

[ 23 ]

Deep learning
Deep learning is an area of Machine learning that focuses on unifying Machine 
learning with artificial intelligence. In terms of the relationship with artificial neural 
networks, this field is more of an advancement to artificial neural networks that work 
on large amounts of common data to derive practical insights. It deals with building 
more complex neural networks to solve problems classified under semi-supervised 
learning and operates on datasets that have little labeled data. Some Deep learning 
techniques are listed as follows:

•	 Convolutional Networks
•	 Restricted Boltzmann Machine (RBM)
•	 Deep Belief Networks (DBN)
•	 Stacked Autoencoders

Performance measures
Performance measures are used to evaluate learning algorithms and form an 
important aspect of machine learning. In some cases, these measures are also  
used as heuristics to build learning models.

Now let's explore the concept of the Probably Approximately Correct (PAC) theory. 
While we describe the accuracy of hypothesis, we usually talk about two types of 
uncertainties as per the PAC theory:

•	 Approximate: This measures the extent to which an error is accepted for  
a hypothesis

•	 Probability: This measure is the percentage certainty of the hypothesis  
being correct
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The following graph shows how the number of samples grow with error, probability, 
and hypothesis:

Is the solution good?
The error measures for a classification and prediction problem are different.  
In this section, we will cover some of these error measures followed by how  
they can be addressed.

In a classification problem, you can have two different types of errors, which can be 
elegantly represented using the "confusion matrix". Let's say in our target marketing 
problem, we work on 10,000 customer records to predict which customers are likely 
to respond to our marketing effort.

After analyzing the campaign, you can construct the following table, where the 
columns are your predictions and the rows are the real observations:

Action Predicted (that there will be a buy) Predicted (that there 
will be no buy)

Actually bought  TP: 500 FN: 400

Actually did not buy  FP: 100 TN: 9000



Chapter 1

[ 25 ]

In the principal diagonal, we have buyers and non-buyers for whom the prediction 
matched with reality. These are correct predictions. They are called true positive 
and true negative respectively. In the upper right-hand side, we have those who we 
predicted are non-buyers, but in reality are buyers. This is an error known as a false 
negative error. In the lower left-hand side, we have those we predicted as buyers,  
but are non-buyers. This is another error known as false positive.

Are both errors equally expensive for the customers? Actually no! If we predict that 
someone is a buyer and they turn out to be a non-buyer, the company at most would 
have lost money spent on a mail or a call. However, if we predicted that someone 
would not buy and they were in fact buyers, the company would not have called them 
based on this prediction and lost a customer. So, in this case, a false negative is much 
more expensive than a false positive error.

The Machine learning community uses three different error measures for 
classification problems:

•	 Measure 1: Accuracy is the percent of predictions that were correct.
Example: The "accuracy" was (9,000+500) out of 10,000 = 95%

•	 Measure 2: Recall is the percent of positives cases that you were able to 
catch. If false positives are low, recall will be high.
Example: The "recall" was 500 out of 600 = 83.33%

•	 Measure 3: Precision is the percent of positive predictions that were correct. 
If false negatives are low, precision is high.
Example: The "precision" was 500 out of 900 = 55.55%

In forecasting, you are predicting a continuous variable. So, the error measures 
are fairly different here. As usual, the error metrics are obtained by comparing the 
predictions of the models with the real values of the target variables and calculating 
the average error. Here are a few metrics.
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Mean squared error (MSE)
To compute the MSE, we first take the square of the difference between the actual and 
predicted values of every record. We then take the average value of these squared 
errors. If the predicted value of the ith record is Pi and the actual value is Ai, then the 
MSE is:
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It is also common to use the square root of this quantity called root mean square 
error (RMSE).

Mean absolute error (MAE)
To compute the MAE, we take the absolute difference between the predicted and 
actual values of every record. We then take the average of those absolute differences. 
The choice of performance metric depends on the application. The MSE is a good 
performance metric for many applications as it has more statistical grounding 
with variance. On the other hand, the MAE is more intuitive and less sensitive to 
outliers. Looking at the MAE and RMSE gives us additional information about the 
distribution of the errors. In regression, if the RMSE is close to the MAE, the model 
makes many relatively small errors. If the RMSE is close to the MAE2, the model 
makes a few but large errors.
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Normalized MSE and MAE (NMSE and NMAE)
Both the MSE and MAE do not indicate how big the error is as they are 
numeric values depending on the scale of the target variable. Comparing with 
a benchmarking index provides a better insight. The common practice is to take 
the mean of the primary attribute we are predicting and assume that our naïve 
prediction model is just the mean. Then we compute the MSE based on the naïve 
model and the original model. The ratio provides an insight into how good or bad 
our model is compared to the naïve model.
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MSEof developed modelNMSE
MSE of naivemodel

=

A similar definition can also be used for the MAE.

Solving the errors: bias and variance
This trap of building highly customized higher order models is called over-fitting 
and is a critical concept. The resulting error is known as the variance of the model. 
Essentially, if we had taken a different training set, we would have obtained a very 
different model. Variance is a measure of the dependency of model on the training set. 
By the way, the model you see on the right most side (linear fit) is called under-fitting 
and the error caused due to under-fitting is called bias. In an under-fitting or high bias 
situation, the model does not explain the relationship between the data. Essentially, 
we're trying to fit an overly simplistic hypothesis, for example, linear where we should 
be looking for a higher order polynomial.

To avoid the trap of over-fitting and under-fitting, data scientists build the model 
on a training set and then find the error on a test set. They refine the model until 
the error in the test set comes down. As the model starts getting customized to the 
training data, the error on the test set starts going up. They stop refining the model 
after that point.

Let's analyze bias and variance a bit more in this chapter and learn a few practical 
ways of dealing with them. The error in any model can be represented as a 
combination of bias, variance, and random error. With Err(x)=Bias2+Variance+Irred
ucible Error in less complex models, the bias term is high, and in models with higher 
complexity, the variance term is high, as shown in the following figure:
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To reduce bias or variance, let's first ask this question. If a model has a high bias, 
how does its error vary as a function of the amount of data?

At a very low data size, any model can fit the data well (any model fits a single point, 
any linear model can fit two points, a quadratic can fit three points, and so on). So, 
the error of a high bias model on a training set starts minuscule and goes up with 
increasing data points. However, on the test set, the error remains high initially  
as the model is highly customized to the training set. As the model gets more and 
more refined, the error reduces and becomes equal to that of the training set.

 The following graph depicts the situation clearly:

The remedy for this situation could be one of the following:

•	 Most likely, you are working with very few features, so you must find  
more features

•	 Increase the complexity of the model by increasing polynomials and depth
•	 Increasing the data size will not be of much help if the model has a high bias
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When you face such situations, you can try the following remedies (the reverse of the 
previous ones):

•	 Most likely, you are working with too many features, so, you must reduce 
the features

•	 Decrease the complexity of the model
•	 Increasing the data size will be some help

Some complementing fields of Machine 
learning
Machine learning has a close relationship to many related fields including artificial 
intelligence, data mining, statistics, data science, and others listed shortly. In fact, 
Machine learning is in that way a multi-disciplinary field, and in some ways is linked 
to all of these fields.

In this section, we will define some of these fields, draw parallels to how they 
correlate to Machine learning, and understand the similarities and dissimilarities, 
if any. Overall, we will start with the core Machine learning definition as a field of 
science that includes developing self-learning algorithms. Most of the fields we are 
going to discuss now either use machine learning techniques or a superset or subset 
of machine learning techniques.



Introduction to Machine learning

[ 30 ]

Data mining
Data mining is a process of analyzing data and deriving insights from a (large) 
dataset by applying business rules to it. The focus here is on the data and the  
domain of the data. Machine learning techniques are adopted in the process of 
identifying which rules are relevant and which aren't.

Machine learning versus Data mining

Similarities with  
Machine learning

Dissimilarities with 
Machine learning

Relationship with  
Machine learning

Both Machine learning and 
data mining look at data 
with the goal of extracting 
value from it.
Most of the tools used 
for Machine learning and 
data mining are common. 
For example, R and Weka 
among others.

While Machine learning 
focuses on using known 
knowledge or experience, 
data mining focuses on 
discovering unknown 
knowledge, like the 
existence of a specific 
structure in data that will 
be of help in analyzing the 
data.
Intelligence derived is meant 
to be consumed by machines 
in Machine learning 
compared to data mining 
where the target consumers 
are humans.

The fields of Machine 
learning and data mining 
are intertwined, and there 
is a significant overlap in 
the underlying principles 
and methodologies.

Artificial intelligence (AI)
Artificial intelligence focuses on building systems that can mimic human behavior.  
It has been around for a while now and the modern AI has been continuously 
evolving, now includes specialized data requirements. Among many other 
capabilities, AI should demonstrate the following:

•	 Knowledge storage and representation to hold all the data that is subject to 
interrogation and investigation

•	 Natural Language Processing (NLP) capabilities to be able to process text
•	 Reasoning capabilities to be able to answer questions and facilitate conclusions
•	 The ability to plan, schedule, and automate
•	 Machine learning to be able to build self-learning algorithms
•	 Robotics and more
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Machine learning is a subfield of artificial intelligence.

Machine learning versus Artificial Intelligence

Similarities with Machine 
learning

Dissimilarities with 
Machine learning

Relationship with 
Machine learning

Both machine learning 
and artificial intelligence 
employ learning algorithms 
and focus on automation 
when reasoning or decision-
making.

Though Machine learning 
is considered to be in the 
AI's range of interests, 
Machine learning's 
primary focus is to 
improve on a machine's 
performance of a task, 
and the experience built 
need not always be human 
behavior. In the case of 
artificial intelligence, 
human inspired algorithms 
are employed.

Machine learning is often 
considered as a subfield of 
artificial intelligence.

Statistical learning
In statistical learning, the predictive functions are arrived at and primarily derived 
from samples of data. It is of great importance how the data is collected, cleansed, 
and managed in this process. Statistics is pretty close to mathematics, as it is about 
quantifying data and operating on numbers.

Machine learning versus Statistical learning

Similarities with 
Machine learning

Dissimilarities with Machine 
learning

Relationship with 
Machine learning

Just like Machine 
learning, statistical 
learning is also about 
building the ability to 
infer from the data that 
in some cases represents 
experience.

Statistical learning focuses on 
coming up with valid conclusions 
while Machine learning is about 
predictions. Statistical learning 
works on and allows assumptions 
as against Machine learning. 
Machine learning and statistics 
are practiced by different groups. 
Machine learning is a relatively 
new field when compared to 
statistics.

The Machine learning 
technology implements 
statistical techniques.
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Data science
Data science is all about turning data into products. It is analytics and machine 
learning put into action to draw inferences and insights out of data. Data science is 
perceived to be a first step from traditional data analysis and knowledge systems, 
such as Data Warehouses (DW) and Business Intelligence (BI), which considers  
all aspects of big data.

The data science lifecycle includes steps from data availability/loading to deriving 
and communicating data insights up to operationalizing the process, and Machine 
learning often forms a subset of this process.

Machine learning versus Data science

Similarities with  
Machine learning

Dissimilarities with 
Machine learning

Relationship with  
Machine learning

Machine learning and data 
science have prediction as a 
common binding outcome 
given the problem's context.

One of the important 
differences between 
Machine learning and 
data science is the need 
for domain expertise. Data 
science focuses on solving 
domain-specific problems, 
while Machine learning 
focuses on building models 
that can generically fit a 
problem context.

Data science is a superset 
of Machine learning, data 
mining, and related subjects. 
It extensively covers the 
complete process starting 
from data loading until 
production.

Machine learning process lifecycle and 
solution architecture
In this section, we will discuss the machine learning implementation process and 
solution architecture:

4.	 The first step toward defining the solution architecture is defining the problem 
statement, which includes defining the goal, process, and assumptions.

5.	 Determine what problem type is this problem classified under? Whether it is 
a classification, regression, or optimization problem?

6.	 Choose a metric that will be used to measure the accuracy of the model.
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7.	 In order to ensure the model works well with the unseen data:
1.	 Build the model using training data.
2.	 Tweak the model using test data.
3.	 Declare an accuracy based on the final version.

The following figure explains the flow and architecture of the underlying system:

Machine learning algorithms
Now, let's look at the important machine learning algorithms and some brief details 
about each of them. In-depth implementation aspects for each of the algorithms will 
be covered in later chapters. These algorithms are either classified under the problem 
type or the learning type. There is a simple classification of the algorithms given but 
it is intuitive and not necessarily exhaustive.
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There are many ways of classifying or grouping machine learning algorithms, and 
in this book we will use the learning model based grouping. In each chapter, starting 
from Chapter 5, Decision Tree based learning, we will cover one or more learning 
models and associated algorithms. The following concept model depicts a listing  
of learning models:

Decision tree based algorithms
Decision tree based algorithms define models that are iteratively or recursively 
constructed based on the data provided. The goal of Decision tree based algorithms 
is to predict the value of a target variable given a set of input variables. Decision 
trees help solve classification and regression problems using tree based methods. 
Decisions fork in tree structures until a prediction decision is made for a given 
record. Some of the algorithms are as follows:

•	 Random forest
•	 Classification and Regression Tree (CART)
•	 C4.5 and C5.0
•	 Chi-square
•	 Gradient boosting machines (GBM)
•	 Chi-Squared Automatic Interaction Detection (CHAID)
•	 Decision stump
•	 Multivariate adaptive regression splines (MARS)
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Bayesian method based algorithms
Bayesian methods are those that explicitly apply the Bayesian inference theorem 
and again solve classification and regression problems. Bayesian methods facilitate 
subjective probability in modeling. The following are some of the Bayesian based 
algorithms:

•	 Naïve Bayes
•	 Averaged one-dependence estimators (AODE)
•	 Bayesian belief network (BBN)

Kernel method based algorithms
When we hear about kernel methods, the first thing that comes to mind is Support 
Vector Machines (SVM). These methods are usually a group of methods in 
themselves. kernel methods are concerned with pattern analysis and as explained 
in the preceding sections, that crux of pattern analysis includes various mapping 
techniques. Here, the mapping datasets include vector spaces. Some examples of 
kernel method based learning algorithms are listed as follows:

•	 SVM
•	 Linear discriminant analysis (LDA)

Clustering methods
Clustering, like regression, describes a class of problems and a class of methods. 
Clustering methods are typically organized by the modeling approaches such  
as centroid-based and hierarchical. These methods organize data into groups  
by assessing the similarity in the structure of input data:

•	 K-means
•	 Expectation maximization (EM) and Gaussian mixture models (GMM)

Artificial neural networks (ANN)
Similar to kernel methods, artificial neural networks are again a class of pattern 
matching techniques, but these models are inspired by the structure of biological 
neural networks. These methods are again used to solve classifications and 
regression problems. They relate to Deep learning modeling and have many 
subfields of algorithms that help solve specific problems in context.
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Some of the methods in this category include:

•	 Learning vector quantization (LVQ)
•	 Self-organizing maps (SOM)
•	 Hopfield network
•	 Perceptron
•	 Backpropagation

Dimensionality reduction
Like clustering methods, dimensionality reduction methods work iteratively and on 
the data structure in an unsupervised manner. Given the dataset and the dimensions, 
more dimensions would mean more work in the Machine learning implementation. 
The idea is to iteratively reduce the dimensions and bring more relevant dimensions 
forward. This technique is usually used to simplify high-dimensional data and then 
apply a supervised learning technique. Some example dimensionality reduction 
methods are listed as follows:

•	 Multidimensional scaling (MDS)
•	 Principal component analysis (PCA)
•	 Projection pursuit (PP)
•	 Partial least squares (PLS) regression
•	 Sammon mapping

Ensemble methods
As the name suggests, ensemble methods encompass multiple models that are 
built independently and the results of these models are combined and responsible 
for overall predictions. It is critical to identify what independent models are to be 
combined or included, how the results need to be combined, and in what way to 
achieve the required result. The subset of models that are combined is sometimes 
referred to as weaker models as the results of these models need not completely 
fulfill the expected outcome in isolation. This is a very powerful and widely adopted 
class of techniques. The following are some of the Ensemble method algorithms:

•	 Random forest
•	 Bagging
•	 AdaBoost
•	 Bootstrapped Aggregation (Boosting)
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•	 Stacked generalization (blending)
•	 Gradient boosting machines (GBM)

Instance based learning algorithms
Instances are nothing but subsets of datasets, and instance based learning models work 
on an identified instance or groups of instances that are critical to the problem. The 
results across instances are compared, which can include an instance of new data as 
well. This comparison uses a particular similarity measure to find the best match and 
predict. Instance based methods are also called case-based or memory-based learning. 
Here the focus is on the representation of the instances and similarity measures for 
comparison between instances. Some of the instance based learning algorithms are 
listed as follows:

•	 k-Nearest Neighbour (k-NN)
•	 Self-Organizing
•	 Learning vector quantization (LVQ)
•	 Self-organizing maps (SOM)

Regression analysis based algorithms
Regression is a process of refining the model iteratively based on the error generated 
by the model. Regression also is used to define a machine learning problem type. 
Some example algorithms in regression are:

•	 Ordinary least squares linear regression
•	 Logistic regression
•	 Multivariate adaptive regression splines (MARS)
•	 Stepwise regression

Association rule based learning algorithms
Given the variables, association rule based learning algorithms extract and define 
rules that can be applied on a dataset and demonstrate experienced-based learning, 
and thus prediction. These rules when associated in a multi-dimensional data context 
can be useful in a commercial context as well. Some of the examples of Association 
rule based algorithms are given as follows:

•	 The Apriori algorithm
•	 The Eclat algorithm
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Machine learning tools and frameworks
Machine learning adoption is rapidly increasing among technology and business 
organizations. Every organization is actively strategizing on how to capitalize on their 
data and use it to augment their client's experiences and build new businesses. When 
it comes to tools or frameworks for Machine learning, there are many open source and 
commercial options on the market. The new age tools are all built to support big data, 
distributed storage, and parallel processing. In the next chapter, we will cover some 
aspects of handling large scale data in the context of Machine learning.

At a very high level, there are three generations of Machine learning tools.

The first generation of Machine learning tools is focused on providing a richness of 
the Machine learning algorithms and supporting deep analytics. These tools haven't 
been built to focus on handling large scale data or for supporting distributed storage 
and parallel processing. Some of them still handle volumes as a result of their support 
for vertical scalability. Some of the tools that come under this category are SAS, SPSS, 
Weka, R, and more. Having said that, most of these tools are now being upgraded to 
support big data requirements too.

The second generation tools are focused on supporting big data requirements, 
most of them work on the Hadoop platform, and they provide capabilities to run 
machine learning algorithms in a MapReduce paradigm. Some of the tools that are 
categorized here are Mahout, RapidMiner, Pentaho, and MADlib. Some of these  
tools do not support all the machine learning algorithms.

The third generations tools are the smart kids on the road, breaking the traditional 
norms of operating in batch mode, supporting real-time analytics, providing support 
for advanced data types of big data, and at the same time supporting deeper analytics. 
Some of the tools that are categorized under this are Spark, HaLoop, and Pregel.

In Chapter 4, Machine Learning Tools, Libraries, and Frameworks, we will cover some of 
the key machine learning tools and demonstrate how they can be used based on the 
problem's context. Implementation details for tools such as R, Julia, Python, Mahout, 
and Spark will be covered in depth. Required technology primers and installation or 
setup-related guidance will be provided.
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Summary
In this chapter, which forms the basis for the rest of the chapters of this book,  
we covered the basics of Machine learning and the landscape of Machine learning 
semantics. We started by defining Machine learning in simple terms and introduced 
Machine learning jargon or the commonly used terms.

There are many competing and complementing fields of Machine learning. We  
have thoroughly explained the similarities, dissimilarities, and the relationship of 
Machine learning with fields such as artificial intelligence, data mining, data science, 
and statistics. Overall, all these fields are very similar and have overlapping goals.  
In most cases, the practitioners of these fields were different. Even in terms of the 
tools being used, there were many common points.

We have also looked at some of the latest and best-of-breed tools that can be employed 
in Machine learning. Some of these tools will be demonstrated in the chapters using 
practical examples.

In the next chapter, we will cover a unique aspect of Machine learning that has pretty 
much changed the way Machine learning implementations have been looked at. 
We will explore how the big data, or large dataset, aspect of Machine learning has 
impacted the choice of tools and implementation approaches.





Machine learning and  
Large-scale datasets

We have seen a dramatic change in the way data has been handled in the recent 
past with the advent of big data. The field of Machine learning has seen the need to 
include scaling up strategies to handle the new age data requirements. This actually 
means that some of the traditional Machine learning implementations will not all be 
relevant in the context of big data now. Infrastructure and tuning requirements are 
now the challenges with the need to store and process large scale data complimented 
by the data format complexities.

With the evolution of hardware architectures, accessibility of cheaper hardware  
with distributed architectures and new programming paradigms for simplified 
parallel processing options, which can now be applied to many learning algorithms, 
we see a rising interest in scaling up the Machine learning systems.

The topics listed next are covered in-depth in this chapter:

•	 An introduction to big data and typical challenges of large-scale  
Machine learning

•	 The motivation behind scaling up and scaling out Machine learning, and  
an overview of parallel and distributed processing for huge datasets

•	 An overview of Concurrent Algorithm design, Big O notations, and task 
decomposition techniques for achieving parallelism

•	 The advent of cloud frameworks to provide cloud clustering, distributed 
data storage, fault tolerance, and high availability coupled with effective 
utilization of computational resources

•	 Frameworks and platform options for implementing large-scale Machine 
learning (Parallel Processing Frameworks such as MapReduce in Massive 
Parallel Processing (MPP), MRI, platforms as GPU, FPGA, and Multicore)
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Big data and the context of large-scale 
Machine learning
I have covered some of the core aspects of big data in my previous Packt book titled 
Getting Started with Greenplum for Big Data Analytics. In this section, we will quickly 
recap some of the core aspects of big data and its impact in the field of Machine 
learning:

•	 The definition of large-scale is a scale of terabytes, petabytes, exabytes, or 
higher. This is typically the volume that cannot be handled by traditional 
database engines. The following chart lists the orders of magnitude that 
represents data volumes:

Multiples of bytes
SI decimal prefixes Binary Usage
Name(Symbol) Value
Kilobyte (KB) 103 210
Megabyte (MB) 106 220
Gigabyte (GB) 109 230
Terabyte (TB) 1012 240
Petabyte (PB) 1015 250
Exabyte (EB) 1018 260
Zettabyte (ZB) 1021 270
Yottabyte (YB) 1024 280

•	 Data formats that are referred to in this context are distinct; they are 
generated and consumed, and need not be structured (for example, DBMS 
and relational data stores). Now, there are new sources of data; this data can 
be generated by social networking sites, equipment, and more. This can be 
streaming data that is heterogeneous in nature (for example, videos, emails, 
tweets, and so on). Again, none of the traditional data marts / data stores 
and data mining applications support these formats today.

•	 Additionally, all the large-scale processing always happened in batches,  
but we are now seeing the need to support real-time processing capabilities. 
The new Lambda Architectures (LA) address the need to support both  
batch and real-time data ingestion and processing.

•	 Overall, the response time windows are shrinking and this adds to  
the challenge.



Chapter 2

[ 43 ]

Let's recap the four key characteristics of big data. All of these need special tools, 
frameworks, infrastructure, and capabilities:

•	 Higher volumes (to the degree of petabytes )
•	 The need for availability/accessibility of data (more real-time)
•	 Diversified data formats
•	 The increase in unlabeled data, and thus the Noise

Functional versus Structural – A 
methodological mismatch
We could never have imagined even five years ago that Relational Databases or  
non-relational databases like object databases will become only a single kind of 
database technology, and not the database technology in itself. Internet-scale  
data processing has changed the way we process data.

The new generation architectures, such as Facebook, Wikipedia, Salesforce, and 
more, are founded on principles and paradigms, which are radically different from 
the well-established theoretical foundations on which the current data management 
technologies are developed.

Commoditizing information
The Apple App Store, SaaS, Ubiquitous Computing, Mobility, Cloud-Based  
Multi-Tenant architectures have unleashed, in business terms, an ability to 
commoditize information delivery. This model changes almost all the architecture 
decision making—as we now need to think in terms of what is the "units of 
information" that can be offered and billed as services, instead of thinking in  
terms of the Total Cost of Ownership (TCO) of the solution.
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Theoretical limitations of RDBMS
As Michael Stonebreaker, the influential database theorist, has been writing in recent 
times, at the heart of the Internet-Scale Architectures is a new theoretical model of 
data processing and management. The theories of database management are now 
more than three decades old, and they were designed for mainframe-type computing 
environments and unreliable electronic components. Nature and the capabilities of 
systems and applications have since evolved significantly. With reliability becoming 
a quality attribute of the underlying environment, systems are composed of parallel 
processing cores, and the nature of data creation and usage has undergone tremendous 
change. In order to conceptualize solutions for these new environments, we need to 
approach the designing of solution architectures from a computing perspective and 
not only from an engineering perspective.

Six major forces that are driving the data revolution today are:

•	 Massive Parallel Processing
•	 Commoditized Information Delivery
•	 Ubiquitous Computing and Mobile Devices
•	 Non-RDBMS and Semantic Databases
•	 Community Computing
•	 Cloud Computing

Hadoop and MapReduce have unleashed massive parallel processing of data on a 
colossal scale, and have made the complex computing algorithms in a programmatic 
platform. This has changed analytics and Business Intelligence forever. Similarly, 
the web services and API-driven architectures have made information delivery 
commoditized on an enormous scale.

Today, it is possible to build very large systems in such a way that each subsystem  
or component is a complete platform in itself, hosted and managed by a different 
entity altogether.

Dijkstra once made an insightful remark that:

"Computer Science is no more about computers than astronomy is about telescopes"

He would perhaps be a happy man today, as computing has liberated itself from  
the clutches of a personal computer, also known as workstations and servers.  
Most of our information consumption today is from the devices that we hardly  
call computers. Mobile devices, wearable devices, and information everywhere  
are changing the way data is created, assembled, consumed, and analyzed.
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As the limitations of the traditional databases have been exposed, in recent years, 
many special purpose databases have emerged—in-memory, columnar, graph-DB, 
and semantic stores are all now commercially available.

The previously mentioned innovations have changed the traditional data 
architecture completely. Especially, the semantic computing, ontology-driven 
modelling of information has turned data design over its head. Philosophically, 
data architecture is going through an factual underpinning. In the traditional data 
models, we first design the "data model"—a fixed, design time understanding of the 
world and its future. A data model fixes the meaning of data forever into a fixed 
structure. A table is nothing but a category, a set of something. As a result, data has 
to mean if we understand the set/category to which it belongs. For example, if we 
design an automobile processing system into some categories, such as four-wheelers, 
two-wheelers, commercial vehicles, and so on, then this division itself has a relevant 
meaning embedded into it. The data that is stored in each of these categories does 
not reveal the purpose of the design that is embedded in the way the categories 
are designed. For example, another system might view the world of automobiles 
regarding of its drivetrain—electric, petroleum powered, nuclear powered, and  
so on.

This categorization itself reveals the purpose of the system in some manner, which 
is impossible to obtain the attributes of any single record. Semantic and Metadata-
Driven architectures can turn such a data model over its head. In a metadata model, 
it is the object that exists first.

Some of the core characteristics of how data is stored and managed in an RDBMS-
based storage system are as follows:

•	 Data is stored in a table that is typically characterized by rows and columns
•	 Tables are linked using relationships between data attributes
•	 It is known for efficiency and flexibility
•	 This supports normalization techniques that reduce data duplication

On the other hand:

•	 The metadata driven / NoSQL / Semantic data architectures are free from 
relationships that tie down the purpose of the usage of data

•	 The focus is more on accommodating constant changes in business 
requirements that results in least changes in the software system being built

•	 Support for large datasets with distributed storage techniques, with lowered 
storage costs is of great importance in the metadata driven / NoSQL /semantic 
data architecture
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Scaling-up versus Scaling-out storage
With the advent of big data, there is now a need to scale data storage equipment to be 
able to store the petabyte-scale data. There are two ways of scaling storage equipment:

•	 Scaling-up (vertical scalability)
•	 Scaling-out (horizontal scalability)

Scaling up or vertical scalability is about adding more resources to the existing 
system that in turn increases the ability to hold more data. Here, resources can  
mean RAM, computation power, hard drive, and more.

Scaling out or horizontal scalability is about adding new components to the system. 
This requires the data to be stored and distributed, and there are tasks that can 
be parallelized. This usually adds complexity to the system, and most of the time 
requires a redesign of the system.

All the big data technologies work on and support the scaling out of the infrastructure.

Scaling up (Vertical Scalability) Scaling out (Horizontal Scalability)

Lesser and high capacity server More and moderate, or low capacity 
server

There could be a threshold beyond which an 
infrastructure can cease to scale vertically

There is no limit, the infrastructure can 
be scaled on a need basis without any 
impact on the design

Can accommodate larger VMs Runs with lower VMs and can be affected 
by failure in the host

Shared everything data architecture Shared nothing data architecture
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Scaling up (Vertical Scalability) Scaling out (Horizontal Scalability)

Higher TCO Relatively lower and variable costs

Lower network equipment Needs relatively larger number  
of equipments (routers, switches,  
and more…)

Distributed and parallel computing strategies
Though distributed and parallel processing have been around for several years now, 
but with the advent of usability priorities needed for cost-effective solutions, these 
strategies have become critical for the Machine learning tasks.

The following diagram depicts Flynn's taxonomy for computing. The categorization is 
done based on the number of data streams versus the number of instruction streams.
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•	 Single Instruction Single Data (SISD): This is a case of a single processor 
with no parallelism in data or instruction. A single instruction is executed  
on a single data in a sequential manner, for example, a uniprocessor.

•	 Multiple Instruction Single Data (MISD): Here, multiple instructions 
operate on a single data stream; a typical example can be fault tolerance.

•	 Single Instruction Multiple Data (SIMD): This is a case of natural parallelism; 
a single instruction triggers operation on multiple data streams.

•	 Multiple Instructions Multiple Data (MIMD): This is a case where multiple 
independent instructions operate on multiple and independent data streams. 
Since the data streams are multiple, the memory can either be shared or 
distributed. Distributed processing can be categorized here. The previous 
figure depicts MIMD and a variation in a "distributed" context.

The following diagram explains parallel processor architectures and categorization:
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One of the critical requirements of parallel/distributed processing systems is High 
Availability and fault tolerance. There are several programming paradigms to 
implement parallelism. The following list details the important ones:

•	 The Master/Workers Model: Master model is the driver where the work is 
held and then disseminated to the workers. Pivotal Greenplum Database  
and HD (Pivotal's Hadoop's distribution) modules implement this pattern.

•	 The Producer/Consumer Model: Here, there is no owner who triggers  
the work. Producer generates work items and consumer subscribes and 
executes asynchronously. The Enterprise Service Bus (ESB) based data 
integration systems implement this pattern.

In theory, there are two types of parallelization; one is data parallelization, the other 
one is execution or task parallelization:

•	 Data parallelization: It deals with running the same computations with 
multiple inputs in parallel. In the Machine learning world, this is a case 
where we consider running the same algorithm across different data samples 
without really worrying about how the data samples are distributed.

•	 Execution or Task parallelization: Unlike data parallelization, this is  
about breaking the functionality into multiple pieces and running them 
in a parallel manner. These pieces of work may work on the same dataset, 
but this is possible only for the tasks that can be parallelized and have no 
dependencies between the sub tasks.

Task parallelization can be fine grained or coarse grained.
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There are many distributed platform options to bring efficiency and scale to Machine 
learning algorithms and can process large datasets. Some of the options include:

•	 Field-Programmable Gate Arrays (FPGAs)
•	 Graphics Processing Units (GPUs)
•	 High-Performance Computing (HPC)
•	 Multicore and multi-processor parallel systems
•	 Cloud Infrastructures for virtual-large scale clusters

Besides the multiple platform options available, there are other highly adopted 
frameworks available that have out-of-box APIs for building Machine learning 
algorithms. The choice of this framework depends on the choice of hardware  
in particular.

It is important that we take an option that can take maximum advantage of the existing 
architecture, and suits the choice of learning algorithm and the data structure.

Machine learning: Scalability and 
Performance
There are two important ways in which Machine learning algorithms can be scaled:

•	 Sampling
•	 Distributed systems with parallel processing

It is possible to concurrently execute a given learning algorithm as separate 
chunks of work and consolidate the results. This sounds like a fairly simple way 
of parallelizing and being able to scale and perform well on a bigger dataset. 
This comes with an assumption that the datasets are discrete and there isn't any 
dependency between these distributed sets of data.

By the virtue of the proliferation of data sources, we now have access to large sets 
that are already distributed, and this brings in a need for the ability to have the 
learning algorithms running in a distributed mode.

There are now a variety of options for distributed and parallel framework for Machine 
learning. Let's look at some key differentiating factors between these platforms:

•	 The degree of granularity in parallelization is a critical aspect. Support for 
fine-grained versus coarse-grained parallelization is what it refers to. A lower 
degree of granularity defines a fine-grained task parallelization, while a 
higher level of granularity defines coarse-grained task parallelization.
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•	 The degree to which algorithm customization is supported.
•	 Support for mixing a variety of programming paradigms.
•	 The ease with which datasets can be scaled-out.
•	 The degree to which batch and real-time processing is supported.

Given a problem context, the choice of the platform and programming framework 
should be guided by the previous criteria.

Following are some key metrics to measure the computational performance of 
parallel algorithms:

•	 Performance is the ratio of solution time for the sequential algorithms  
versus parallel process

•	 Efficiency or Throughput measures the ratio of performance across  
multiple processors

•	 Scalability is the percentage improvement in efficiency with the growing 
number of processors

The next section covers some key characteristics of the Machine learning problem 
that motivate scaling-up the Machine learning algorithms.

Too many data points or instances
We now see that in most of the Machine learning problems, there is an abundance 
of datasets and in many cases, all these data points are relevant in model building 
and refining. These data points can potentially run into terabyte scale with all their 
relevance.

This brings in a need to support distributed storage and a bandwidth to process 
these data points in the cluster. High-capacity storage systems with the ability to run 
parallel programming language paradigms like MapReduce and LINQ are used here.

Too many attributes or features
The datasets that form an input to a building model can come with too many features, 
attributes, or dimensions. In this case, the Machine learning algorithms group the 
dependent or more relevant attributes and run the algorithms in iteration. These 
kind of datasets can be seen in case of Text mining and Natural language processing 
(NLP), where the number of features can run into multiples of millions. In this case, 
parallelizing the computation across features can get us to solve the problem effectively 
by the way of eliminating irrelevant features. Random forest and Decision trees are 
some of the examples. Also, some specific feature selection techniques such as the 
regularization methods will be covered in the chapters to come.
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Shrinking response time windows – need for  
real-time responses
There are certain Machine learning requirements such as speech recognition that 
will demand a real-time response from the systems. In these applications, response 
time from a Machine learning implementation is critical, and the response itself will 
become irrelevant otherwise. Parallelization can bring in this efficiency.

Latency and performance of the model are more important a problem to deal with 
than the throughput. There are many use cases where this latency in inference can 
invalidate the model itself, as the response becomes obsolete.

For these kinds of problems, highly parallelized hardware architectures such as 
GPUs or FPGAs will be very effective.

Highly complex algorithm
This is a case where the algorithm of choice itself is complex, for example, a 
computational intensive function or any non-linear models. Let's take an example 
of a text or image content; it is inherently non-linear in nature. This complexity can 
easily be addressed using distributed computing.

There are many ways we can solve these problems and one way is to prioritize 
features and still target for higher accuracies. However this will remove the 
automation part in the learning. There always needs to be a step that engineers  
the features before running the algorithm.

The cases where there is more data complexity, there is a computational complexity. 
Unless the platform is scaled, there is no way to get the learning process run faster.

Multicore and GPU systems are apt for this kind of requirement. They bring in both; 
storage scale and computational efficiency.

Feed forward, iterative prediction cycles
There are some unique use cases in the Machine learning space that do not stop at one 
level of execution of the algorithm. The algorithm runs iteratively and sequentially 
where the output from an iteration feeds into another iteration. This is critical for the 
outcome of the model. There can also be a need to consolidate the inferences across 
all the iterations that are run sequentially. This can make the model execution process 
quite complex. We can deal with inference process as a one-shot process, which will 
bring up the computational costs, or there can be stages of parallelization of individual 
tasks.
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Some real-world examples are:

•	 Speech recognition
•	 Machine translation

Model selection process
In some cases, we will need to run multiple models in parameters on the same training 
and test sets with the different priority of features, and compare the accuracy to choose 
an appropriate model for the given problem domain. These trials can run in parallel as 
there will not be any dependencies between these models. The complexity increases 
when we will have to tune the parameters of learning algorithms and evaluate across 
multiple executions to infer from the learning.

The very fact that there is no dependency between the executions makes it highly 
parallelizable and requires no intercommunication. One of the examples of this 
use case is statistical significance testing. The usefulness of the parallel platforms is 
obvious for these tasks, as they can be easily performed concurrently without the 
need to parallelize actual learning and inference algorithms.

Potential issues in large-scale Machine 
learning
Let's now look at some potential issues encountered in the large-scale Machine 
learning implementations:

•	 Parallel execution: Managing the accuracy of the parallel execution requires 
special care and a different design paradigm.

•	 Load balancing and managing skews: With data and execution now 
distributed and running parallel, it is very imperative to manage the data 
and compute skews. No single node will need to take relatively more data 
storage or computations.

•	 Monitoring: With a variety of hardware, effective monitoring and automatic 
recovery systems need to be placed.

•	 Fault tolerance: A foolproof failover and recovery system is a mandate.
•	 Auto scaling: The scaling out and scaling up process is automatic.
•	 Job scheduling: Batch jobs will need to be scheduled.
•	 Workflow Management: Choreography and Orchestration process to 

coordinate and monitor work execution among the nodes of the cluster.
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Algorithms and Concurrency
Let's now look at some basics of algorithms in general, the time complexity; and the 
order of magnitude measurements, before we start talking about building concurrency 
in executing algorithms, then explore the approaches to parallelizing algorithms.

An algorithm can be defined as a sequence of steps that takes an input to produce the 
desired output. They are agnostic technology representations; let's look at a sorting 
algorithm example:

Input: A sequence of n number—a1, a2, …,an
Output: A permutation (reordering)—a1', a2', …,an' such that a1'<=a2'<=… 
<=an'

The following algorithm is an insertion-sort algorithm:

INSERTION-SORT(A)
1. for j = 2 to length[A]
2. dokey<-A[j]
3. //insert A[j] to sorted sequence A[1..j-1]
4. i<-j-1
5. while i>0 and A[i]>key
6. do A[i+1] <- A[i] //move A[i] one position right
7. i<-i-1
8. A[i+1]<-key

For measuring the time and space complexity of algorithms, one of the elements is 
the input size. The time complexity is a measure of how "fast enough" the algorithm 
is for the defined needs; more importantly, how the algorithm would react when the 
volume of the data is increased.

Frequency count is one of the key measures for an algorithm. It is a prediction of how 
many times each instruction of the algorithm will run for an execution. For example:

Instruction Code  Frequency count (FC)
1 for (int i=0; i< n ; i++)  n+1
2 count << i  N
3 p = p + 1  N
4  3n +1
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The FC measure is relatively meaningless unless it considers the relative performance 
to volume. There is another measure called "order of magnitude" that is an estimate 
of performance versus data volume. The Big-O is a measure of the rate at which the 
algorithm performance degrades as the function of the amount of data that it requires 
to process.

For example, O(n) represents linear performance degradation and O(n2) represents 
quadratic performance degradation.

Developing concurrent algorithms
The first step in developing a parallel algorithm is to decompose the problem into 
tasks that can be executed concurrently. A given problem may be decomposed into 
tasks in many different ways. Tasks may be of same or different sizes:

Task dependency graph is a directed graph with nodes corresponding to tasks and 
edges indicating that the result of one task is required for processing the next task.

Example: This is the database query processing.

Consider the following execution of the query:

MODEL = ``CIVIC'' AND YEAR = 2001 AND (COLOR = ``GREEN'' OR COLOR = 
``WHITE)

on the following database:

ID#

4523

3476

7623

9834

6734

5342

3845

8354

4395

7352

Model Year

2002

1999

2001

2001

2001

2001

2001

2000

2001

2002

Civic

Corolla
Camry

Prius

Civic

Altima

Maxima

Accord

Civic

Civic

Color Dealer Price

MN

IL

NY

CA

OR

FL

NY

VT

CA

WA

Blue

White

Green

Green

Green

Green

White

Blue

Red

Red

$18,000

$15,000

$21,000

$18,000

$17,000

$19,000

$22,000

$18,000

$17,000

$18,000
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There can be fine-grained and coarse-grained task decomposition. The degree of 
concurrency increases as the decomposition becomes finer.

There are many decomposition techniques and there is no single best way of doing it. 
Following are some techniques:

•	 Recursive decomposition
•	 Data decomposition
•	 Exploratory decomposition
•	 Speculative decomposition

Decomposition results in several tasks and some characteristics of these tasks 
critically affect the performance of the parallel algorithms. Some of these features  
are task interactions (inter-task communication), the size of data that each task 
handles, and the task size. Some important aspects that need to be kept in mind 
while designing parallel execution algorithms include decoupling tasks in such  
a way that there is minimal interaction and handling granularity trade-offs.

Technology and implementation options 
for scaling-up Machine learning
In this section, we will explore some parallel programming techniques and 
distributed platform options that Machine learning implementations can adopt.  
The Hadoop platform will be introduced in the next chapter, and we will look 
into some practical examples starting from Chapter 3, An Introduction to Hadoop's 
Architecture and Ecosystem with some real-world examples.

MapReduce programming paradigm
MapReduce is a parallel programming paradigm that abstracts the parallelizing 
computing and data complexities in a distributed computing environment. It works 
on the concept of taking the compute function to the data rather than taking the data 
to the compute function.

MapReduce is more of a programming framework that comes with many built-
in functions that the developer need not worry about building, and can alleviate 
many implementation complexities like data partitioning, scheduling, managing 
exceptions, and intersystem communications.
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The following figure depicts a typical composition of the MapReduce function:

MapReduce was originally designed and adopted by Google as a programming 
model for processing large data sets on a cluster with parallel processing over 
distributed storage.

The MapReduce paradigm now has become an industry standard and many platforms 
are internally built on this paradigm and support MapReduce implementation. For 
example, Hadoop is an open source implementation that can be run either in-house  
or on cloud computing services such as, Amazon EC2 with elastic MapReduce.

This has, at the core, the Map() and Reduce() functions that are capable of running in 
parallel across the nodes in the cluster. The Map() function works on the distributed 
data and runs the required functionality in parallel, and the Reduce() function runs  
a summary operation of the data.
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High Performance Computing (HPC) with 
Message Passing Interface (MPI)
MPI is designed to provide access to advanced parallel hardware, and is meant to 
work with heterogeneous networks and clusters. It is an impressive specification  
and provides a portable way to implement the parallel programs.

Message passing is a process of data transfer and synchronization between the 
sender and the receiver. The following figure demonstrates the message passing 
between sender and receiver:

The processes can be grouped; the message sharing between the sender and the 
receiver needs to happen in the same context. Communicator thus is a combination 
of a group and the context. The data in a message is sent or received as triples.

MPI can be used to achieve portability and can improve performance through 
parallel processing. It can support unique data structures, and libraries can be  
built for reuse. MPI does not support liberal fault tolerance.

Language Integrated Queries (LINQ) 
framework
The LINQ framework is a general-purpose system for large-scale data and parallel 
computing. Similar to the MapReduce paradigm, it comes with a high level of 
abstraction that comes with base implementations, and helps developers reduce  
the development complexities of the parallel and distributed execution.
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With the Machine learning functions moving out of general data handling and 
operating on diverse data types including documents, images, and graphs, the need 
for generic implementation paradigms is increasing. This framework pertains to the 
.NET languages only.

Manipulating datasets with LINQ
LINQ is shipped with a set of functions that operate on collections of .NET objects. 
These collections are modified by the LINQ functions that contain the .NET datatypes.

Graphics Processing Unit (GPU)
GPUs are electronic circuits designed to handle the memory requirements and 
rapidly create images in the frame buffers for visual display.

GPUs have been consistently supporting growing computational capabilities. They 
were initially meant to handle image processing and rendering, but the advanced 
GPUs are now positioned as self-contained, general purpose computing platforms.
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While CPUs are designed to perform well on heterogeneous workloads, GPUs are 
built for tasks that are meant to ensure the availability of massive datasets and run  
in a parallel manner.

GPUs are mainly used in deep learning and training neural networks that can 
potentially need larger training datasets, lesser computational power, and storage 
space optimization. They are being employed in solving both classification and 
prediction problems in the cloud. Most of the social media companies have been  
in the list of early adopters for GPUs.

With GPUs, pre-recorded speech or multimedia content can be 
transcribed much more quickly. Compared to a CPU implementation 
we are able to perform recognition up to 33x faster.
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Field Programmable Gate Array (FPGA)
FPGAs are emerging in many areas of HPC. FPGAs can be used in the context of 
massive parallel processing. In this section, we will look at understanding some of 
the architecture and implementation aspects of FPGA.

FPGAs are known to provide high performance. They support different parallel 
computation applications. They have an on-chip memory to facilitate easy memory 
access to the processor. Above all, the memory is coupled to the algorithm logic and 
this means that we will not need any additional high-speed memory.

FPGA contains an enormous number of Configurable Logical Blocks (CLB); each of 
these CLBs are connected using programmable interfaces that pass signals among 
them. The I/O blocks are the connections points for CLBs to the outside world.

FPGAs offer a variety of paradigms that help speed up computations in a hardware 
and software design. FPGAs are cost effective and the hardware resources are used 
in an optimal way. IBM Netezza leverages FPGA architecture.
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Multicore or multiprocessor systems
Multiprocessor systems usually have multiple CPUs that need not necessarily be on 
the same chip. The new age multiprocessors are on the same physical board, and the 
communication happens via high-speed connection interfaces.

Multicore processors represent a family of processors that may contain many CPUs 
on one chip (such as two, four, and eight. In case of multicore systems, the efficiency 
of the multi-threading implementation is determined by how well-parallel the code 
is written).

Further to all the hardware and infrastructure advancements, we have just seen that 
the cloud frameworks for Machine learning are picking up considerable traction 
based on their ability to scale Machine learning processes at an optimal cost.

With the emergence of cloud computing, infrastructure service providers, such 
as Amazon Web Services, offer access to virtually unlimited computing power on 
demand that can be paid for, based on the usage.

Summary
In this chapter we have explored the qualifiers of large datasets, their common 
characteristics, the problems of repetition, and the reasons for the hyper-growth  
in volumes; in fact, the big data context.

The need for applying conventional Machine learning algorithms to large datasets has 
given rise to new challenges for Machine learning practitioners. Traditional Machine 
learning libraries do not quite support, processing huge datasets. Parallelization using 
modern parallel computing frameworks, such as MapReduce, have gained popularity 
and adoption; this has resulted in the birth of new libraries that are built over these 
frameworks.
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The concentration was on methods that are suitable for massive data, and have 
potential for the parallel implementation. The landscape of Machine learning 
applications has changed dramatically in the last decade. Throwing more machines 
doesn't always prove to be a solution. There is a need to revisit traditional algorithms 
and models in the way they are being executed as now an another dimension in 
the study of Machine learning techniques is the scalability, parallel execution, load 
balancing, fault tolerance, and dynamic scheduling.

We have also taken a look at the emerging parallelization and distribution 
architectures and frameworks in the context of large datasets, and understood 
the need for scaling up and scaling out Machine learning. Furthermore, we have 
recapped the internals of some parallel and distributed platform techniques for 
Machine learning such as MapReduce, GPUs, FGPA, and more.

In the next chapter, we will look at how Hadoop is the best platform for large-scale 
Machine learning.
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An Introduction to Hadoop's 
Architecture and Ecosystem

From this chapter onwards, we start with the implementation aspects of Machine 
learning. Let's start learning the platform of choice—a platform that can scale to 
Advanced Enterprise Data needs (big data needs of Machine learning in specific)—
Hadoop.

In this chapter, we cover Hadoop platform and its capabilities in addressing  
large-scale loading, storage, and processing challenges for Machine learning.  
In addition to an overview of Hadoop Architecture, its core frameworks, and  
the other supporting ecosystem components, also included here is a detailed 
installation process with an example deployment approach. Though there are  
many commercial distributions of Hadoop, our focus in this chapter is to cover  
the open source, Apache distribution of Hadoop (latest version 2.x).

In this chapter, the following topics are covered in-depth:

•	 An introduction to Apache Hadoop, its evolution history, the core concepts, 
and the ecosystem frameworks that comprise Hadoop

•	 Hadoop distributions and specific offerings
•	 Installation and set up of the Hadoop environment
•	 Hadoop 2.0—HDFS and MapReduce (also YARN (Yet Another Resource 

Negotiator)) architectures with example implementation scenarios, using 
different components of the architecture
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•	 Understanding the purpose of the core ecosystem components, setting up 
and learning to build and run the programs using examples

•	 Exploring Machine learning specific ecosystem extensions such as Mahout 
and R Connectors (Chapter 4, Machine Learning Tools, Libraries, and Frameworks, 
covers the implementation details)

Introduction to Apache Hadoop
Apache Hadoop is an open source, Java-based project from the Apache Software 
Foundation. The core purpose of this software has been to provide a platform that is 
scalable, extensible, and fault tolerant for the distributed storage and processing of 
big data. Please refer to Chapter 2, Machine learning and Large-scale Datasets for more 
information on what data qualifies as big data. The following image is the standard 
logo of Hadoop:

At the heart of it, it leverages clusters of nodes that can be commodity servers and 
facilitates parallel processing. The name Hadoop was given by its creator Doug 
Cutting, naming it after his child's yellow stuffed toy elephant. Till date, Yahoo!  
has been the largest contributor and an extensive user of Hadoop. More details  
of Hadoop, its architecture, and download links are accessible at http://hadoop.
apache.org/.

Hadoop is an industry standard platform for big data, and it comes with extensive 
support for all the popular Machine learning tools in the market. This platform is 
now used by several big firms such as Microsoft, Google, Yahoo!, and IBM. It is also 
used to address specific Machine learning requirements like sentiment analysis, 
search engines, and so on.

http://hadoop.apache.org/
http://hadoop.apache.org/
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The following sections cover some key characteristics of the Hadoop platform that 
make it ideal for facilitating efficiency in large-scale data storage and processing 
capabilities.

Evolution of Hadoop (the platform of choice)
The following figure (Source Cloudera Inc.) explains the evolution of the Hadoop 
platform. With Doug Cutting and Mike Cafarella starting it all in 2002 to build a 
greatly scalable search engine that is open source and hence extensible and running 
over a bunch of machines. Some important milestones in this evolution phase 
have been by Google that released the Google File System (GFS) in October 2003, 
followed by the MapReduce framework in December 2004 that evolved to form the 
core frameworks HDFS and MapReduce/YARN respectively.

The other significant milestone had been Yahoo's contribution and adoption around 
February 2008 when Yahoo implemented a production version that had indexing of 
searches implemented over 10,000 Hadoop cluster nodes. The following table depicts 
the evolution of Hadoop:
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Hadoop and its core elements
The following concept map depicts the core elements and aspects of the  
Hadoop platform:

Machine learning solution architecture 
for big data (employing Hadoop)
In this section, let us look at the essential architecture components for implementing 
a Machine learning solution considering big data requirements.

The proposed solution architecture should support the consumption of a variety of 
data sources in an efficient and cost-effective way. The following figure summarizes 
the core architecture components that should potentially be a part of the Machine 
learning solution technology stack. The choice of frameworks can either be open source 
or packaged license options. In the context of this book, we consider the latest version 
of open source (Apache) distribution of Hadoop and its ecosystem components.

Vendor specific frameworks and extensions are out of scope 
for this chapter.
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In the next sections, we'll discuss in detail each of these Reference Architecture layers 
and the required frameworks in each layer.

The Data Source layer
The Data Source layer forms a critical part of the Machine learning Reference 
Architecture. There are many internal and external data feeds that form an input to 
solving a Machine learning problem. These feeds can be structured, unstructured, 
or semi-structured in nature. Moreover, in real-time, batch, or near real time mode, 
they need to be seamlessly integrated and consolidated for analytics engines and 
visualization tools.

Before ingesting this data into the system for further processing, it is important 
to remove the irrelevance or the noise in the data. Some unique techniques can be 
applied to clean and filter the data.

These consolidated datasets are also called data lakes in big data and the data 
aggregation context. Hadoop is one of the storage options of choice for Data Lakes.
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The following diagram shows the variety of data sources that form a primary source 
of input.

Data architectures have always been designed to support some of the protocols such 
as JMS, HTTP, XML, and so on. However, now, the recent advancements in the field 
of big data have brought about significant changes. So now, the new age data sources 
include data streams from social networking sites, GPS data, machine-generated data 
such as user access logs, and other proprietary data formats.

The Ingestion layer
The Data Ingestion layer is responsible for bringing data in from multiple data 
sources into the system, with a primary responsibility to ensure data quality. 
This layer has the capability to filter, transform, integrate, and validate data. It is 
important that the choice of technology to implement this layer should be able to 
support high volumes and other characteristics of data. The following meta model 
shows the composition and flow of functions of the Ingestion Layer. An ingestion 
layer could potentially be an ETL short for (Extract, Transform, and Load) capability 
in the architecture.

Listed below are a set of basic requirements for an ingestion layer:

•	 High-speed transformation of data from any source system in any manner
•	 Processing large volumes of records in minimal time
•	 Producing output in a semantically rich format so that any target system can 

query for smart data
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The architecture framework for ingestion layer needs to provide the following 
capabilities; the upcoming model depicts various layers and compositions:

•	 An Adapter Framework—any product group or application should be able 
to use the Adapter Framework to quickly, reliably, and programmatically 
develop connectors to different data sources (Files, CSV format, and DB)

•	 A high speed, parallel transformation execution engine
•	 A job execution framework
•	 Semantified output generator framework

The Ingestion layer loads the relevant data into the storage layer, which in our current 
context is the Hadoop Storage Layer that is primarily a file-based storage layer.
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The concept map below lists ingestion core patterns (these patterns address 
performance and scalability needs of a Machine learning architecture):

•	 Parallel Processing and Partitioning Patterns: The fundamental architecture 
for handling large volume ingestion requirements is to parallelize the 
execution. Running transformations on different input data in parallel and 
partitioning a single, large volume input into smaller batches for processing 
in parallel helps achieve parallelization.

•	 Pipeline design patterns: When designing the workflows for ingestion jobs, 
there are specific issues that need to be addressed, such as avoiding large 
sequential pipelines that enable parallel processing. Similarly, from the data 
reliability point of view, creating appropriate audit and execution logs is 
important to manage the entire ingestion execution.

•	 Transformation patterns: There are different categories of transformation. 
One of the main aspects of the transformation designs is to handle 
dependency. The patterns mentioned in the first category (parallelization) 
also handle dependency requirements. Other issues relate to the dependency 
on the past and historical data, which is especially significant when 
processing additional loads.

•	 Storage Design: When loading data into the target data store, there are issues 
such as recovering from failed transformations or reloading data for specific 
feeds (for example, when there should be a fixed transformation rule).

•	 Data Load patterns: One of the biggest performance bottlenecks in data 
ingestion is the speed of loading data into the target data mart. Especially 
when the target is an RDBMS, parallelization strategies lead to concurrency 
issues while loading the data, limiting the throughput of the ingestion that is 
possible. The patterns present certain techniques of how to realize the data 
load and address performance and concurrency issues while loading data.
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The Hadoop Storage layer
Machine learning architecture has a distributed storage layer that supports parallel 
processing for running analytics or heavy computations over big data. The usage of 
distributed storage and processing large volumes in parallel is a fundamental change 
in the way an enterprise handles big data.

A typical distributed storage facilitates high performance by parallel processing the 
algorithms that run over petabyte scale data with fault-tolerance, reliability, and 
parallel processing capabilities.

In the current context of Hadoop architecture, Hadoop Distributed File System 
(HDFS) is the core storage mechanism. In this section, let us have a brief look at 
HDFS and NoSQL (Not-only-SQL) storage options. The following sections cover 
HDFS and its architecture in more detail.

HDFS is one of the core components and acts as a database for Hadoop. It is a 
distributed file system that stores large-scale data across a cluster of nodes. It comes 
with a framework to ensure data reliability and fault tolerance. Applications can 
store files in parts or whole depending on the size, and it facilitates the write once 
read many times.

Since HDFS is a file system, access to data for consumption or manipulation is not 
simple and requires some complex file operation programs. Another way of bringing 
in easier data management is by using non-relational stores called NoSQL stores.

The following model represents various NoSQL data store categories that are 
available with examples for each of the categories. Every data store category 
caters to a particular business requirement, and it is important to understand the 
purpose of each of these categories of NoSQL store to make the right choice for 
a given requirement. The CAP theorem (that stands for consistency, availability, 
and partition tolerance) attributes are satisfied to a varying degree for each of the 
NoSQL stores, resulting in support for optimized storage systems that are expected 
to work for combinations of these attributes. In reality, these NoSQL stores may 
have to coexist with relational stores as they would need a system of record to sync 
up on a need basis, or a better case is where we would need to use a combination of 
relational and non-relational data.
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The following figure depicts types of NoSQL databases and some of the products in 
the market:

Hadoop was originally meant for \batch processing where the data into HDFS is 
loaded in batch or a scheduled manner. Usually, the storage layer has data loaded 
in batch. Some of the core and ecosystem components that facilitate data loading 
or ingestion into HDFS are Sqoop, HIHO (Hadoop-in Hadoop-out) MapReduce 
function, and ETL functions among others.

The Hadoop (Physical) Infrastructure layer – 
supporting appliance
The difference between the traditional architectures and big data (for Machine 
learning) architecture is the importance that the underlying infrastructure grabs. 
Performance, Scalability, Reliability, Fault Tolerance, High Availability, and Disaster 
Recovery are some of the important quality attributes that this architecture is required 
to support. The underlying infrastructure of the platform handles these requirements.
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The Hadoop Infrastructure is a distributed architecture or model where data is not 
stored in one place, but is distributed across multiple or a cluster of nodes. The data 
distribution strategy can be intelligent (as in the case of Greenplum) or can be simply 
mathematical (as in the case of Hadoop). The distributed file system nodes are linked 
over a network. This is referred to as Shared Nothing Architecture (SNA), and the 
big data solutions work on this reference architecture. Along with the data being 
distributed across multiple nodes, the processes run locally to the data nodes.

This is first cited in Michael Stonebraker's paper that can be accessed at  
http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf.

Nodes that have data stored are called data nodes and those where processing 
happens are called compute nodes. The data and compute nodes can be collocated 
or decoupled. The following figure represents an SNA context that has data and 
compute nodes collocated:

Shared nothing data architecture supports parallel processing. Redundancy is  
a default expectation as it deals with a variety of data from diverse sources.

Hadoop and HDFS, over a grid infrastructure connected, over a fast gigabit  
network, or a virtual cloud infrastructure, forms the infrastructure layer that  
supports large-scale Machine learning architecture.

http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf
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The following figure illustrates big data infrastructure setup using commodity servers:

Hadoop platform / Processing layer
The platform or processing layer for Hadoop is the core data processing layer of the 
Machine learning architecture tools. This layer facilitates querying or accessing data 
stored in Hadoop's storage layer (NoSQL databases that use the HDFS storage file 
system typically), sitting at the top of the Hadoop infrastructure layer.

As learned in Chapter 2, Machine learning, and Large-scale datasets, technological 
advancements in the field of computing now facilitate handling large volumes  
of distributed computing and parallel processing.

The MapReduce framework of Hadoop helps to store and analyze large volumes  
of data efficiently and in an inexpensive way.

The key components of the Hadoop platform or processing layer are listed next; 
these components are a part of the ecosystem and are discussed in detail in the 
sections that follow in this chapter:

•	 MapReduce: MapReduce is a programming paradigm that is used to 
efficiently execute a function over a larger volume of data, typically in a 
batch mode. The map function is responsible for distributing the tasks across 
multiple systems, distributing the load equally and managing the processing 
in parallel. Post processing; the reduce function assimilates and combines the 
elements to provide a result. A step-by-step implementation on Hadoop's 
native MapReduce architecture, MapReduce v2, and YARN is covered in the 
Hadoop ecosystem components section.
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•	 Hive: Hive is a data warehouse framework for Hadoop and is responsible for 
aggregating high volumes of data with SQL-like functions. Hive facilitates an 
efficient way of storing data that uses resources optimally. The configuration 
and implementation aspects of Hive are covered in the Hadoop ecosystem 
components section.

•	 Pig: Pig is a simple scripting language that facilitates querying and 
manipulating data held on HDFS. It internally runs the functions in 
a MapReduce paradigm and is often perceived to simplify building 
MapReduce functions. A detailed step-by-step guide to configuring,  
learning the syntax, and building essential functions is covered in the  
Hadoop ecosystem components section.

•	 Sqoop: Sqoop is a data import tool for Hadoop that has inbuilt functions  
to import data from specific tables, columns, or complete database onto  
the file system. Post processing, Sqoop supports extracting data from  
several Relational databases and NoSQL data stores.

•	 HBase: HBase is a Hadoop compliant NoSQL data store (a columnar  
NoSQL data store) that uses HDFS as the underlying file system.  
It supports distributed storage and automatic linear scalability.

•	 ZooKeeper: ZooKeeper is a monitoring and coordinating service that 
helps keep a check on the Hadoop instances and nodes. It is responsible 
for keeping the infrastructure synchronized and protects the distributed 
system from partial failures and ensures data consistency. The ZooKeeper 
framework can work standalone or outside Hadoop.

More of these ecosystem components are discussed in depth in the following sections.

The Analytics layer
More often, enterprises have some real Business Intelligence (BI) tools that are 
responsible for running some analytical queries and producing some MIS reports 
or dashboards. There is a need for modern Machine learning or analytics tools and 
frameworks to coexist with them. There is now a need for the analytics to run either 
in a traditional way on the data warehouses or big data stores as well that can handle 
structured, semi-structured, and unstructured data.

In this case, we can expect the data flow between the traditional data stores and the 
big data stores using tools such as Sqoop.
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NoSQL stores are known for low latency; they facilitate real-time analytics. Many 
open source analytics frameworks have simplified building models, and run complex 
statistical and mathematical algorithms using simple out-of-box functions. All that is 
required now is to understand the relevance of each of the algorithms and the ability 
to choose a suitable algorithm or approach, given a specific problem.

Let us look into the below listed open source Analytics and Machine learning 
frameworks in the chapters to follow.

•	 R
•	 Apache Mahout
•	 Python (scikit-learn distribution)
•	 Julia
•	 Apache Spark

An introduction to one of the upcoming Spring projects called Spring XD is covered, 
as it looked like a comprehensive Machine learning solution that can run on Hadoop.

The Consumption layer
The insights generated from the analytics layer or the results of data processing are 
consumed in many ways by the end clients. Some of the ways this data can be  
made available for consumption are:

•	 Service APIs (for example, Web Service Interfaces (SOAP based or REST))
•	 Web applications
•	 Reporting engines and data marts
•	 Dashboard and Visualization tools

Of all the options, Visualization is core and not only an important way of 
distributing or communicating the results of Machine learning but also a good way 
of representing data in a way that helps in decision making. Very evidently data 
visualization is gaining traction in the field of big data and analytics. A visualization 
that best represents the data and the underlying patterns and the relationships is 
what is the key to decision making.
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There are two types of visualizations; one is those that explain the data, and second 
is those that explore data and the underlying patterns. Visualization is now being 
looked at as a new language to communicate.

Explaining and exploring data with Visualizations
Visualizations for explaining and exploring data are unique and are used for 
different purposes.

The Visualizations for explaining are the typical ones we see in marketing and sales 
presentations. This is the case where data on the hand is clean to the maximum 
extent. The meaning of the data is clear, and communication is done by the final 
decision makers.

On the other hand, Visualizations for exploring help to correct data and link the 
related and useful attributes of data in the quest for understanding the data as such. 
Visualization for exploring sometimes can be inaccurate. The exploration usually 
happens iteratively, and there might be several rounds of refining the Visualizations 
before some sense is made out of the data on hand. There is a need to get rid of some 
irrelevant attributes in data or even the data itself (the one identified to be noise). This 
step of data exploration using Visualization sometimes replaces running complex 
algorithms and often requires statistical acumen.

Some popular visualization tools in the market (both open source and commercial) 
are Highcharts JS, D3, Tableau, and others. Although we use some of these 
frameworks to demonstrate how to depict and communicate insights, we are not 
explicitly covering any of the visualization options in depth.
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Another important aspect is that these visualization tools usually need to leverage, 
traditional data warehousing tools and big data analysis tools. The following figure 
depicts how the proposed Machine learning architecture can support having existing 
data warehouses or BI tools coexist with big data analysis tools. As explained in 
Chapter 1, Introduction to Machine learning, the aggregated data and the data lakes 
become the core input to any big data analysis tools that run the Machine learning 
tools. The new age data storage mantra is semantic data structures. More on semantic 
data architectures are covered as a part of emerging data architectures in Chapter 14, 
New generation data architectures for Machine learning. The following figure depicts a 
high-level view of visualization in the context of data lakes and data warehouses:
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Security and Monitoring layer
When large volumes of data are being processed and consolidated across a variety 
of sources, security becomes of utmost importance and, in the case of sensitive data, 
the need for protecting data privacy is critical and sometimes the key compliance 
requirement too. The required authentication and authorization checks need to be 
implemented as a part of executing Machine learning algorithms. This is more of a 
prerequisite and cannot be an afterthought in the Machine learning architecture.

Data Ingestion and the processing function are the main areas that require strict 
security implementation, given the criticality of controlling data access.

By the virtue of distributed architecture, big data applications are inherently prone 
to security vulnerabilities; it is necessary that security implementation is taken care 
of, and it does not impact performance, scalability, or functionality with the ease of 
execution and maintenance of these applications.

The Machine learning architecture as such should support the following as a basic 
necessity for security:

•	 Authentication for each node in the cluster with the support for standard 
protocols like Kerberos

•	 Since it is a file system, there needs to be a minimum support for encryption
•	 Communication with the nodes should always use SSL (Secure Socket 

Layer), TLS, or others that include NameNode
•	 Secure keys and tokens and usage of standard key management systems
•	 The implementation of distributed logging for tracking to trace any issues 

across layers easily

The next significant requirement is monitoring. The distributed data architecture 
comes with robust monitoring and support tools that can handle large clusters of 
nodes that are connected in a federated model.

There are always SLAs for the downtime of an application, and it is important that 
the recovery mechanism adheres to these SLAs while ensuring the availability of  
the application.

It is important that these nodes and clusters communicate with the monitoring 
system in a machine independent way, and the usage of XML-like formats is key. 
The data storage needs for the monitoring systems should not impact the overall 
performance of the application.

Usually, every big data stack comes with an in-built monitoring framework or tool. 
Also, there are open source tools such as Ganglia and Nagios that can be integrated 
and used for monitoring the big data applications.
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Hadoop core components framework
Apache Hadoop has two core components:

•	 Hadoop Distributed File System also called HDFS
•	 MapReduce (in the version 2.x of Hadoop, this is called YARN)

The rest of the Hadoop components are represented in the Machine learning solution 
architecture. Using Hadoop we work around these two core components and form 
the eco-system components for Hadoop.

The focus of this chapter is Apache Hadoop 2.x distribution. There have been few 
architectural changes to HDFS and MapReduce in this version. We first cover the core 
architecture, and then the changes that have come in as a part of the 2.x architecture.

Hadoop Distributed File System (HDFS)
HDFS is inspired and built from GFS (Google File System). It is a distributed file 
system that is elastically scalable, with support load balancing and fault tolerance to 
ensure high availability. It has data redundancy built in to demonstrate reliability 
and consistency in data.

HDFS implements the Master-slave architecture. Here, the master node is called 
NameNode, and the slave nodes are called DataNodes. NameNode is the entry point 
for all client applications, and the distribution of data across the DataNodes happens 
via the NameNode. The actual data is not passed through NameNode server to 
ensure that NameNode does not become a bottleneck for any data distribution. Only 
the metadata is communicated to the client, and the actual data movement happens 
directly between the clients and DataNodes.

Both NameNode and DataNode are referred to as daemons in the Hadoop 
architecture. NameNode requires a high-end machine and is expected to run only  
the NameNode daemon. The following points justify the need for a high-end 
machine for NameNode:

•	 The entire cluster's metadata is held in the memory for quicker access, and 
there is a need for more memory

•	 NameNode is both the single point of entry and failure for the Hadoop cluster
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•	 The NameNode coordinates with several hundreds or thousands of 
DataNodes and manages batch jobs

HDFS is built on the traditional hierarchical file system where the creation of new 
directories, adding new files, deletion directories or subdirectories, removal of 
files, renaming, and moving or updating a file are common tasks. Details of the 
directories, files, data nodes, and blocks created and stored in each of the DataNodes 
are stored as metadata in the NameNode.

There is another node in this architecture that NameNode communicates with, called 
secondary Namenode. The secondary Namenode is not a backup for NameNode and 
hence, does not failover to the secondary Namenode. Instead, it is used to store a 
copy of the metadata and log files from NameNode. NameNode holds the metadata 
for the data blocks and related distribution details in a file called fsimage. This 
image file is not updated for every data operation in the file system and is tracked 
periodically by logging them in separate log files. This ensures faster I/O and thus 
the efficiency of the data import or export operations.

The secondary Namenode has a specific function with this regard. It periodically 
downloads the image and log files, and creates a new image by appending the 
current operations from the log file into the fsimage, then uploading the new image 
file back to NameNode. This eliminates any overhead on NameNode. Any restart on 
NameNode happens very quickly, and the efficiency of the system is ensured. The 
following figure depicts the communication workflow between the client application 
and HDFS:
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HDFS is built for reading and writing large volumes of data between DataNodes. 
These large files are split into blocks of smaller files, usually of a fixed size such  
as 64 MB or 128 MB, and these blocks are distributed across DataNodes. For each  
of these blocks, overall three copies are stored to ensure redundancy and support  
fault tolerance. The number of copies can be changed, which is a configuration of  
the system. More information on the HDFS architecture and specific functions is 
covered in the following section.

Secondary Namenode and Checkpoint process
While defining the purpose and function of the secondary Namenode, we have 
learned one important function that takes care of updating or preparing the metadata 
for NameNode that is stored in a file called fsimage. This process of generating a 
new fsimage by merging the existing fsimage and the log file is called Checkpoint. 
The following figure depicts the checkpoint process:

Some configurations changes are to be done to the cross-site.XML file related to 
checkpoint process.

Property Purpose

dfs.namenode.checkpoint.
dir 

This is the directory path where the 
temporary fsimage files are held to run 
the merge process.

dfs.namenode.checkpoint.
edits.dir 

This is the directory path where the 
temporary edits are held to run the 
merge process. The default value 
for this parameter is same as dfs.
namenode.checkpoint.dir

dfs.namenode.checkpoint.
period

The time gap between two checkpoint 
runs (in seconds).
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Property Purpose

dfs.namenode.checkpoint.
txns

Irrespective of the time gap 
configurations, this property defines 
after how many transactions a 
checkpoint process needs to be 
triggered.

dfs.namenode.checkpoint.
check.period

This property defines the frequency (in 
seconds)  
in which the NameNode is polled to 
check the  
un-checkpointed transactions.

dfs.namenode.checkpoint.
max-retries

In the case of failure, the secondary 
Namenode retry is checkpointing. This 
property defines the number of times a 
secondary Namenode attempts a retry 
for checkpointing before it gives up.

dfs.namenode.num.
checkpoints.retained

This property represents the number 
of checkpoint files retained by both 
the NameNode and the secondary 
Namenode. 

The checkpoint process can be triggered by both NameNode and the secondary 
Namenode. Secondary Namenode is also responsible for taking backup of the 
fsimage files periodically, which will further help in recovery.

Splitting large data files
HDFS stores smaller chunks of huge files across the data nodes distributed over the 
cluster. Before the files are stored, HDFS internally splits the entire file content into 
multiple data blocks each of a fixed size (default 64 MB). This size is configurable. 
There is no specific business logic followed to split the files and build the data 
blocks; it is purely driven by the file size. These data blocks are then stored on the 
DataNodes for the data read and write to happen in parallel. Each data block is  
again a file in itself in the local file system.
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The following figure depicts how a large file is split into smaller chunks or blocks of 
fixed size:

The size of each block can be controlled by the following configuration parameter 
in hdfs-site.xml. The cluster-wide block size is controlled by the dfs.blocksize 
configuration property in hdfs-site.XML The default value in Hadoop 1.0 is 64 
MB and in Hadoop 2.x is 128 MB. The block size is determined by the effectiveness  
of the infrastructure and can get bigger with higher transfer speeds and the usage  
of the new age drives:

Property Purpose

dfs.blocksize The value is 134217728.
The previous value in bytes represents 128 MB, 
alternatively any value suffixed by a measure can 
be defined. For example, 512m, 1g, 128k, and so on.

Any update to the value in the block size will not be applied to the existing blocks; 
only new blocks are eligible.
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Block loading to the cluster and replication
Once the file is split, the data blocks are formed of a fixed block size and are 
configured for the environment.

By virtue of the distributed architecture, there is a strong need to store replicas of the 
data blocks to handle data reliability. By default, three copies of each data block are 
stored. The number of the copies configuration property is called replication factor. 
The following table lists all the configurations related to data loading and replication:

Property Purpose

dfs.replication The value is 3.
This defines the number of replicas that 
need to be stored in each block.

dfs.replication.max Maximal block replication.

dfs.namenode.replication.
min

Minimal block replication.

The NameNode is responsible for ensuring the block placement and replication as 
per the configuration is done. With these data blocks placed onto DataNodes, each 
DataNode in the cluster sends block status periodically to the NameNode. The fact  
that NameNode receives a signal from the DataNode implies that the DataNode  
is active and functioning properly.

HDFS uses a default block placement policy that is targeted to achieve load 
balancing across the available nodes. Following is the scope of this policy:

•	 First, the copy or replica is written to the DataNode that is creating the file; 
this facilitates a higher write performance

•	 Second, the copy or replica is written to another DataNode from the same 
rack; this minimizes network traffic

•	 Third, the replica is written to a DataNode in a different rack; this way even 
if a switch fails, there still is a copy of the data block available
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A default block placement policy is applied that uses all the nodes on the rack without 
compromising on the performance, data reliability, and availability. The following 
image depicts how three blocks of data are placed across four nodes with a replication 
strategy of two extra copies. Some of these nodes are located in the racks for optimal 
fault tolerance.

Overall, the flow of loading data into HDFS is shown in the following flow diagram:

Writing to and reading from HDFS
While writing a file to HDFS, the client first contacts NameNode and passes the 
details of the file that needs to be written to HDFS. NameNode provides details  
on the replication configurations and other metadata details that specify where to 
place the data blocks. The following figure explains this flow:
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Handling failures
When the Hadoop cluster starts up, the NameNode gets into a safe-mode state and 
receives a heartbeat signal from all the data nodes. The fact that the NameNode 
receives a block report from DataNodes indicates that the DataNodes are up  
and functioning.

Let's now say that Data Node 4 goes down; this would mean that Name Node 
does not receive any heartbeat signals from Data Node 4. Name Node registers 
the unavailability of Name Node and hence, whatever Data Node 4 does is load 
balanced to the other nodes that have the replicas. This data is then updated in  
the metadata register by Name Node. The following figure illustrates the same:
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HDFS command line
HDFS has a command line interface called FS Shell. This facilitates the usage of 
shell commands to manage HDFS. The following screenshot shows the Hadoop fs 
command, and its usage/syntax:
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RESTFul HDFS
To have external applications, especially web applications or similar applications, 
have easy access to the data in HDFS over HTTP. HDFS supports an additional 
protocol called WebHDFS that is based on the RESTful standards that facilitate 
giving access to HDFS data over HTTP, without any need for Java binding or the 
availability of a complete Hadoop environment. Clients can use common tools such 
as curl/wget to access the HDFS. While providing web services-based access to data 
stored in HDFS, WebHDFS the built-in security and parallel processing capabilities 
of the platform, are well retained.

To enable WebHDFS, make the following configuration changes in hdfs-site.xml:

<property>
          <name>dfs.webhdfs.enabled</name>
          <value>true</value>
</property>

More details on WebHDFS REST API can be found at http://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-hdfs/WebHDFS.html.

MapReduce
MapReduce is similar to HDFS. The Hadoop MapReduce framework is inspired and 
built on Google's MapReduce framework. It is a distributed computing framework 
that facilitates processing gigantic amounts of data in parallel across clusters and  
has built-in fault tolerance mechanisms. It works on operating and processing the 
local data paradigm, where the processing logic is moved to the data instead of  
data moved to the processing logic.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
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MapReduce architecture
The MapReduce framework is also based on Master-slave architecture. The master job 
is called JobTracker, and the slave jobs are called TaskTrackers. Unlike NameNode 
and DataNodes, these are not physical nodes, but are daemon processors that are 
responsible for running the processing logic across the DataNodes:

•	 JobTracker: JobTracker schedules the execution of a job that comprises  
of multiple tasks. It is responsible for running the tasks or jobs on the task 
trackers and in parallel, monitors the status of processing. In the case of any 
failures, it is responsible for rerunning the failed tasks on the task tracker.

•	 TaskTracker: TaskTracker executes the tasks scheduled by the JobTracker 
and constantly communicates with JobTracker, working in cohesion.

Now, let's draw the analogy between the Master-slave architecture on the HDFS and 
MapReduce. The NameNode runs the JobTracker and DataNodes run TaskTrackers.

In a typical multi-node cluster, the NameNode and DataNodes are separate physical 
nodes, but in the case of a single node cluster, where the NameNode and DataNode 
are infrastructure wise the same, JobTracker and TaskTracker functions run on the 
same node. Single node clusters are used in the development environment.

There are two functions in a MapReduce process—Map and Reduce.

•	 Mapper: Mapper job splits the file into multiple chunks in parallel, and runs 
some basic functions such as sorting, filtering, and any other specific business 
or analytics functions as needed. The output of the Mapper function is input 
to the Reducer function.



Chapter 3

[ 93 ]

•	 Reducer: Reducer job is used to consolidate the results across Mappers, and  
is additionally used to perform any business or analytics function as needed. 
The intermediate output from the Mapper and Reducer jobs are stored on 
the file system as key-value pairs. Both the input and output of the map and 
reduce jobs are stored in HDFS. Overall, the MapReduce framework takes care 
of scheduling the tasks, monitoring the status, and handling failures (if any). 
The following diagram depicts how the Map and the Reduce functions work 
and operate on the data held in HDFS:

What makes MapReduce cater to the needs of  
large datasets?
Some of the advantages of MapReduce programming framework are listed as follows:

•	 Parallel execution: MapReduce programs are, by default, meant to be 
executed in parallel that can be executed on a cluster of nodes. Development 
teams need not focus on the internals of distributed computing and can just 
use the framework directly.

•	 Fault Tolerance: MapReduce framework works on Master-slave Architecture 
where, in case any node goes down, corrective actions are taken automatically 
by the framework.
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•	 Scalability: MapReduce framework, having the ability to work distributed 
and with the ability to scale-out (horizontal scalability), with growing 
volumes new nodes, can be added to the cluster whenever needed.

•	 Data Locality: One of the core premises that the MapReduce framework 
does is to take the program to the data as opposed to the traditional way of 
bringing data to the code. So to be precise, MapReduce always has local data 
to it, and this is one of the most important reasons for the performance.

MapReduce execution flow and components
In this section, we will a take a deep dive into the execution flow of MapReduce and 
how each of the components function:

1.	 A new job is submitted by the client to JobTracker (a MapReduce job)  
along with the input and the output file paths and required configurations. 
The job gets queued for execution and gets picked by the job scheduler.

2.	 JobTracker gets the data at the place where the required data in context resides, 
and creates an execution plan that triggers TaskTrackers for the execution.

3.	 JobTracker submits the job to the identified TaskTrackers.
4.	 TaskTrackers execute the task using the data that is local to them. If the data is 

not available on the local Data Node, it communicates with other DataNodes.
5.	 TaskTrackers reports the status back to JobTracker by the means of heartbeat 

signals. JobTracker is capable of handling any failure cases inherently.
6.	 Finally, JobTracker reports the output to the Job client on the completion of 

the job.

The steps just described are depicted in the following figure. There are two parts to the 
flow: the HDFS and the MapReduce with the Nodes and the Trackers respectively.
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Let us focus on some core components of the MapReduce program and learn how to 
code it up. The following flow diagram details how the flow starts from the input data 
to the output data, and how each component or function of MapReduce framework 
kicks in to execute. The blocks in dotted red boxes are the components, and the blue 
boxes represent data being transitioned through the process.
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Developing MapReduce components
The MapReduce framework of Hadoop comprises a set of Java APIs that need 
to be extended or implemented to incorporate a specific function that is targeted 
to be executed in parallel over the Hadoop cluster. Following are some API 
implementations that need to be done:

•	 Input and output data format interfaces
•	 Mapper implementation
•	 Reducer implementation
•	 Partitioner
•	 Combiner
•	 Driver
•	 Context

InputFormat
The InputFormat class is responsible for reading data from a file and making it 
available as input to the map function. Two core functions are performed by this 
process; one is splitting the input data into logical fragments called InputSplits,  
and the second is the reading of these splits as key value pairs to feed into the  
map function. There are two distinct interfaces to perform these two functions:

•	 InputSplit
•	 RecordReader

Splitting of the input file is not an essential function. In case we need to consider a 
complete file for processing, we will need to override the isSplittable() function 
and set the flag to false.

OutputFormat
The OutputFormat API is responsible for validating that Hadoop has output data 
formats against output specification of the job. The RecordWriter implementation 
is responsible for writing the final output key value pairs to the file system. Every 
InputFormat API has a corresponding OutputFormat API. The following table lists 
some of the input and output format APIs of the MapReduce framework:

Input Format API Corresponding Output Format API

TextInputFormat TextOutputFormat

SequenceFileInputFormat SequenceFileOutputFormat
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Input Format API Corresponding Output Format API

DBInputFormat DBOutputFormat

Mapper implementation
All the Mapper implementations need to extend the Mapper<KeyIn, ValueIn, 
KeyOut, ValueOut> base class and importantly override the map() method to 
implement the specific business function. The Mapper implementation class takes 
key-value pairs as input and returns a set of key-value pairs as output. Any other 
interim output subsequently is taken by the shuffle and sort function.

There is one Mapper instance for each InputSplit generated by the InputFormat  
for a given MapReduce job.

Overall, there are four methods that the Mapper implementation class needs to 
extend from the base class. Following are the methods that are briefly described, 
along with the purpose of each method:

Method name and Syntax  Purpose

setup(Context) This is the first method that is called back when 
a mapper is initiated for execution. It is not 
mandatory to override this method unless any 
specific initializations need to be done or any specific 
configuration setup needs to be done.

map(Object, Object, 
Context)

Overriding this method is the key to mapper 
implementation as this method would be invoked 
as a part of executing the mapper logic. It takes 
key-value pairs as input, and the response can be a 
collection of key-value pairs 

clean (Context) This method is called at the end of the mapper 
function execution in the lifecycle and facilitates 
clearing any resources utilized by the mapper.

run (Context) Overriding this method provides additional 
capability to run multi-threaded mappers.

Let's take an example from a given file; we want to find out how many times a 
word is repeated. In this case, TextInputFormat is used. In fact, this is the default 
InputFormat. The following diagram shows what the InputSplit function does.  
It splits every row and builds a key-value pair.
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The diagram shows how the text is stored in multiple blocks on DataNode. 
TextInputFormat then reads these blocks and multiple InputSplits (we can see that 
there are two InputSplits, and hence there are two mappers). Each mapper picks an 
InputSplit and generates a key value pair for each occurrence of the word followed 
by the number 1.

The output of the mapper function is written onto the disk at the end of the processing, 
and none of the intermediate results are written to the file system. They are held in the 
memory. This helps in optimizing performance. It's possible because the key space is 
partitioned and each mapper only gets a fragment of the total dataset. Now, in terms 
of how much memory should be assigned for this purpose, by default, 100 MB is 
allocated and for any changes to this value, the io.sort.mb property will have to be 
set. There is usually a threshold set to this limit and, in case it exceeds this, there is a 
background process that starts writing onto the disk. The following program snippet 
demonstrates how to implement a mapper class.

public static class VowelMapper extends Mapper<Object, Text, Text, 
IntWritable>
{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws 
IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())
{
word.set(itr.nextToken());
context.write(word, one);
}
}
}
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Hadoop 2.x
Until Hadoop 2.x, all the distributions were focused on addressing the limitations 
in Hadoop 1.x but did not deviate from the core architecture. Hadoop 2.x really 
changed the underlying architecture assumptions and turned out to be a real 
breakthrough; most importantly, the introduction of YARN. YARN was a new 
framework for managing Hadoop cluster, which introduced the ability to handle 
real-time processing needs in addition to the batch. Some important issues that  
were addressed are listed as follows:

•	 Single NameNode issues
•	 Dramatic increase in the number of nodes in the cluster
•	 Extension to the number of tasks that can be successfully addressed  

with Hadoop

The following figure depicts the difference between the Hadoop 1.x and 2.x 
architectures and how YARN wires MapReduce and HDFS:
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Hadoop ecosystem components
Hadoop has spawned a bunch of auxiliary and supporting frameworks. The following 
figure depicts the gamut of supporting frameworks contributed by the open source 
developer groups:

The following table lists all the frameworks and purposes of each framework. 
These frameworks work with the Apache distribution of Hadoop. There are many 
frameworks built by Vendors, who are commercially positioned and are not in the 
scope of this book:

Framework URL Purpose (in brief)
HDFS 
(Hadoop 
Distributed 
File System)

http://hadoop.
apache.org/docs/
current/hadoop-
project-dist/hadoop-
hdfs/HdfsUserGuide.
html

Hadoop File storage system is a 
core component of Hadoop, which 
has a built-in fault tolerance (refer 
to HDFS section for more details on 
the architecture and implementation 
specifics).

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
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Framework URL Purpose (in brief)
MapReduce http://hadoop.

apache.org/docs/
current/hadoop-
mapreduce-client/
hadoop-mapreduce-
client-core/
MapReduceTutorial.
html

MapReduce is a programming model 
and framework for processing large 
volumes of data on a distributed 
platform such as Hadoop. The latest 
version of Apache MapReduce extends 
another framework Apache YARN.
YARN: MapReduce has gone through 
a complete overhaul in Hadoop 2.0 
and now it is called MapReduce 2. 
but the MapReduce programming 
model has not changed. YARN 
provides a new resource management 
and job scheduling model, along 
with its implementation to execute 
MapReduce jobs. In most cases, your 
existing MapReduce jobs run without 
any changes. In some instances, minor 
updates and recompilation might be 
needed.

Pig https://pig.apache.
org/

Pig is a framework to execute data 
flows in parallel. It comes with a 
scripting language, Pig Latin, that 
helps in developing the data flows. 
Pig Latin comes with a bunch of 
internal operations for data such as 
join, split, sort, and so on. Pig runs on 
Hadoop and utilizes both HDFS and 
MapReduce. The compiled Pig Latin 
scripts run their functions in parallel 
and internally.

Hive https://hive.apache.
org/

Hive is a data warehouse framework 
for Hadoop. It supports querying 
and handling big datasets held in 
distributed stores. An SQL-like 
querying language called HiveQL can 
be used that allows plugging in the 
mapper and reducer programs.

Flume http://flume.apache.
org/

The Flume framework is more of an 
efficient transport framework that 
facilitates aggregating, analyzing, 
processing, and moving huge volumes 
of log data. It comes with an extensible 
data model and supports online 
analytics.

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://pig.apache.org/
https://pig.apache.org/
https://hive.apache.org/
https://hive.apache.org/
http://flume.apache.org/
http://flume.apache.org/
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Framework URL Purpose (in brief)
Chukwa https://chukwa.

apache.org/
The Chukwa framework comes with 
an API that helps in easily collecting, 
analyzing, and monitoring prominent 
collections of data. Chukwa runs at 
the top of the HDFS and MapReduce 
framework, thus inheriting Hadoop's 
ability to scale.

HBase http://hbase.apache.
org/

HBase is inspired from Google 
BigTable. It is a NoSQL, columnar  
data store built to complement the 
Hadoop platform, and supports  
real-time operations on the data. 
HBase is a Hadoop database that is 
responsible for backing MapReduce 
job  outputs.

HCatalog https://cwiki.
apache.org/
confluence/display/
Hive/HCatalog

HCatalog is like a relational view of 
the data in HDFS. It doesn't matter 
where and how or what format 
the underlying data is stored. It is 
currently a part of Hive, and there 
are no separate distributions for the 
current distributions.

Avro http://avro.apache.
org/

The Apache Avro framework is more 
of an interface to data. It supports 
modeling, serializing, and making 
Remote Procedure Calls (RPC). Every 
schema representation in Avro, also 
called the metadata definition, resides 
close to the data and on the same file, 
thus making the file self-describing.

HIHO https://github.com/
sonalgoyal/hiho/
wiki/About-HIHO

HIHO stands for Hadoop-in  
Hadoop-out. This framework helps 
connecting multiple data stores with 
the Hadoop system and facilitate 
interoperability. HIHO supports 
several RDBMS and file systems, 
providing internal functions to load 
and off-load data between RDBMS  
and HDFS in parallel.

https://chukwa.apache.org/
https://chukwa.apache.org/
http://hbase.apache.org/
http://hbase.apache.org/
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog
http://avro.apache.org/
http://avro.apache.org/
https://github.com/sonalgoyal/hiho/wiki/About-HIHO
https://github.com/sonalgoyal/hiho/wiki/About-HIHO
https://github.com/sonalgoyal/hiho/wiki/About-HIHO
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Framework URL Purpose (in brief)
Sqoop http://sqoop.apache.

org/
Sqoop is a widely adopted framework 
for data transfer between HDFS and 
RDBMS in bulk or batch. It is very 
similar to Flume but operates with 
RDBMS. Sqoop is one of the ETL 
(Extract-Transform-Load) tools for 
Hadoop.

Tajo http://tajo.apache.
org/

Tajo is a distributed data warehouse 
system for Apache Hadoop that is 
relational in nature. Tajo supports  
ad-hoc querying and online 
integration, and extract-transform-load 
functions on large datasets stored in 
HDFS or other data stores.

Oozie http://oozie.apache.
org/

Oozie is a framework that facilitates 
workflow management. It acts as a 
scheduler system for MapReduce jobs 
using DAG (Direct Acyclical Graph). 
Oozie can either be data aware or  
time aware while it schedules and 
executes jobs.

ZooKeeper http://zookeeper.
apache.org/

Zookeeper, as the name says it all, 
is more like an orchestration and 
coordination service for Hadoop. 
It provides tools to build, manage, 
and provide high availability for 
distributed applications.

Ambari http://ambari.
apache.org/

Ambari is an intuitive web UI 
for Hadoop management with 
RESTful APIs. Apache Ambari was 
a contribution from Hortonworks. It 
serves as an interface to many other 
Hadoop frameworks in the ecosystem. 

Mahout http://mahout.
apache.org/

Apache Mahout is an open source 
library for Machine learning 
algorithms. The design focus for 
Mahout is to provide a scalable library 
for huge data sets distributed across 
multiple systems. Apache Mahout is a 
tool to derive useful information from 
raw data.

http://sqoop.apache.org/
http://sqoop.apache.org/
http://tajo.apache.org/
http://tajo.apache.org/
http://oozie.apache.org/
http://oozie.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://ambari.apache.org/
http://ambari.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
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Hadoop installation and setup
There are three different ways to setup Hadoop:

•	 Standalone operation: In this operation, Hadoop runs in a non-distributed 
mode. All the daemons run within a single Java process and help in easy 
debugging. This setup is also called single node installation.

•	 Pseudo-Distributed Operation: In this operation, Hadoop is configured to 
run on a single node, but in a pseudo-distributed mode that can run different 
daemon processes on different JVMs.

•	 Fully-Distributed Operation: In this operation, Hadoop is configured to run 
on multiple nodes in a fully-distributed mode, and all Hadoop daemons such 
as NameNode, Secondary Namenode, and JobTracker in the Master node; 
and DataNode and TaskTracker in slave nodes (in short, run on a cluster  
of nodes).

The Ubuntu-based Hadoop Installation prerequisites are as follows:

•	 Java v1.7
•	 Creating dedicated Hadoop user
•	 Configuring SSH access
•	 Disable IPv6

Installing Jdk 1.7
1.	 Download Java using this command:

wget https://edelivery.oracle.com/otn-pub/java/jdk/7u45-b18/jdk-
7u45-linux-x64.tar.gz
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2.	 Unpack the binaries using this:
sudo tar xvzf jdk-7u45-linux-x64.tar.gz

3.	 Create a directory to install Java with the help of the following command:
mkdir -P /usr/local/Java

cd /usr/local/Java

4.	 Copy the binaries into the newly created directory:
sudo cp -r jdk-1.7.0_45 /usr/local/java

5.	 Configure the PATH parameters:
sudo nano /etc/profile

Or else, use this command:

sudo gedit /etc/profile

6.	 Include the following content at the end of the file:
JAVA_HOME=/usr/local/Java/jdk1.7.0_45

PATH=$PATH:$HOME/bin:$JAVA_HOME/bin

export JAVA_HOME

export PATH

7.	 In Ubuntu, configure the path for Java:
sudo update-alternatives --install "/usr/bin/javac" "javac" "/usr/
local/java/jdk1.7.0_45/bin/javac" 1

sudo update-alternatives --set javac /usr/local/Java/jdk1.7.0_45/
bin/javac

8.	 Check for installation completion:
java -version
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Creating a system user for Hadoop (dedicated)
1.	 Create/add a new group:

sudo addgroup hadoop

2.	 Create/add a new user and attach it to the group:
sudo adduser –ingroup hadoop hduser

3.	 Create/configure the SSH key access:
ssh-keygen -t rsa -P ""

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

4.	 Verify the SSH setup:
ssh hduser@localhost

Disable IPv6
Open sysctl.conf using the following command:

sudo gedit /etc/sysctl.conf

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Add the following lines at the end of the file. Reboot the machine to update the 
configurations correctly:

#disable ipv6

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv6.conf.lo.disable_ipv6 = 1

Steps for installing Hadoop 2.6.0
1.	 Download Hadoop 2.6.0 using this:

wget  http://apache.claz.org/hadoop/common/hadoop-2.6.0/hadoop-
2.6.0.tar.gz

2.	 Unpack compressed Hadoop file using this:
tar –xvzf hadoop-2.6.0.tar.gz

3.	 Move hadoop-2.6.0 directory (a new directory):
mv hadoop-2.6.0 hadoop

4.	 Move Hadoop to a local folder (for convenience) with this command:
sudo mv hadoop /usr/local/

5.	 Change the owner of the folder:
sudo chown -R hduser:hadoop Hadoop

6.	 Next, update the configuration files.
There are three site-specific configuration files and one environment setup 
configuration file to communicate with the Master node (NameNode) and 
slave nodes (DataNodes):

°° core-site.xml

°° hdfs-site.xml

°° mapred-site.xml

°° yarn-site.xml
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Navigate to the path that has the configuration files:
cd /usr/local/Hadoop/etc/Hadoop

yarn-site.xml

Th core-site.XML file has the details of the Master node IP or the hostname, 
Hadoop temporary directory path, and so on.

core-site.xml

The hdfs-site.xml file has the details of the following:

•	 Local file system path where NameNode stores namespace and  
transactions logs

•	 A list of local file system paths to store the blocks
•	 Block size
•	 Number of replications
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hdfs-site.xml

The mapred-site.xml file has the details of the following:

•	 The host or IP and port where the JobTracker runs
•	 The path on the HDFS where Map/Reduce stores the files
•	 A list of paths on the local file system to store the intermediate  

MapReduce data
•	 The maximum limit of Map/Reduce tasks for every task tracker
•	 A list of DataNodes that need to be included or excluded
•	 A list of TaskTrackers that need to be included or excluded

 mapred-site.xml

Edit the .bashrc file as shown in the following screenshot:
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Starting Hadoop
•	 To start the NameNode:

$ Hadoop-daemon.sh start namenode

$ jps

•	 To start the DataNode:
$ Hadoop-daemon.sh start datanode

$ jps

•	 To start ResourceManager, use the following command:
$ yarn-daemon.sh start resourcemanager

$ jps

•	 To start NodeManager:
$ yarn-daemon.sh start nodemanager

•	 Check Hadoop Web interfaces:
NameNode: http://localhost:50070
Secondary Namenode: http://localhost:50090

•	 To stop Hadoop, use this:
stop-dfs.sh

stop-yarn.sh
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Hadoop distributions and vendors
With the Apache distribution for Hadoop being the open source and core version  
that the big data community is adopting, several vendors have their distributions 
of the open source adoption of Apache Hadoop. Some of them have purely added 
support while others have wrapped and extended the capabilities of Apache Hadoop 
and its ecosystem components. In many cases, they have their frameworks or libraries 
built over the core frameworks to add new functionality or features to the underlying 
core component.

In this section, let us cover some of the distributions of Apache Hadoop and some 
differentiating data facts that help the development teams or organizations to take  
a decision about the distribution that works best for their requirements.

Let us now consider the following vendors:

•	 Cloudera
•	 Hortonworks
•	 MapR
•	 Pivotal / EMC
•	 IBM

Category Function/
Framework

Cloudera Hortonworks MapR Pivotal IBM

Performance 
and Scalability

Data 
Ingestion

Batch Batch Batch and 
Streaming

Batch and 
Streaming

Batch and 
Streaming

Metadata 
architecture

Centralized Centralized Distributed Centralized Centralized

HBase 
performance

Spikes in 
latency

Spikes in 
latency

Low 
latency

Low 
latency

Spikes in 
latency

NoSQL 
Support

Mainly 
batch 
applications

Mainly 
batch 
applications

Batch and 
online 
systems

Batch and 
online 
systems

Batch and 
online 
systems

Reliability High 
Availability

Single 
failure 
recovery

Single 
failure 
recovery

Self-healing 
across 
multiple 
failures

Self-healing 
across 
multiple 
failures

Single 
failure 
recovery

Disaster 
Recovery

File copy N/A Mirroring Mirroring File copy

Replication Data Data Data and 
metadata

Data and 
metadata

Data

Snapshots Consistent 
with closed 
files

Consistent 
with closed 
files

Point 
in time 
consistency

Consistent 
with closed 
files

Consistent 
with closed 
files
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Category Function/
Framework

Cloudera Hortonworks MapR Pivotal IBM

Upgrading Rolling 
upgrades

Planned Rolling 
upgrades

Planned Planned

Manageability Volume 
Support

No No Yes Yes Yes

Management 
Tools

Cloudera 
Manager

Ambari MapR 
Control 
system

Proprietary 
console

Proprietary 
console

Integration 
with REST API

Yes Yes Yes Yes Yes

Job 
replacement 
control

No No Yes Yes No

Data Access & 
Processing

File System HDFS,  
Read-only 
NFS

HDFS, read-
only NFS

HDFS, 
read/write 
NFS and 
POSIX

HDFS, 
read/write 
NFS

HDFS,  
read-only 
NFS

File I/O Append-
only

Append-only Read/write Append-
only

Append-
only

Security ACLs Yes Yes Yes Yes Yes

Authentication Kerberos Kerberos Kerberos 
and Native

Kerberos 
and Native

Kerberos 
and Native

Summary
In this chapter, we covered all about Hadoop, starting from core frameworks  
to ecosystem components. At the end of this chapter, readers should be able to  
set up Hadoop and run some MapReduce functions. Users should be able to run  
and manage a Hadoop environment and understand the command line usage  
using one or more ecosystem component.

In the next chapter, our focus is on the key Machine learning frameworks such 
as Mahout, Python, R, Spark, and Julia; these either have inherent support on 
the Hadoop platform, or need direct integration with the Hadoop platform for 
supporting large datasets.
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Machine Learning Tools, 
Libraries, and Frameworks

In the previous chapter, we covered the Machine learning solution architecture and 
the implementation aspects of a technology platform—Hadoop. In this chapter, 
we will look at some of the highly adopted and upcoming Machine learning tools, 
libraries, and frameworks. This chapter is a primer for the following chapters as it 
covers how to implement a specific Machine learning algorithm using out-of-box 
functions of an identified Machine learning framework.

We will first cover the landscape of open source and commercial Machine learning 
libraries or tools that are available in the market, and pick the top five open source 
options. For each of the identified options, starting from installation steps, learning  
the syntax, implementing a complex Machine learning algorithm, to plotting graphs, 
we will cover it all. This chapter is mandatory for the readers in the order of occurrence 
as it is a foundation for all the example implementations in the chapters that follow.

Each of the identified frameworks can operate as standalone libraries and can run on 
Hadoop as well. In addition to learning how to program and implement a Machine 
learning algorithm, we will also cover how each of the identified frameworks integrate 
and run on Hadoop; this is what differentiates these tutorials from the mainstream 
ones found on the web.

The topics listed here are covered in depth in this chapter:

•	 A brief list of commercial and open source Machine learning libraries.
•	 Top libraries or frameworks covered are R, Mahout, Julia, Python  

(Machine learning libraries, in particular), and Spark.
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•	 Apache Mahout is a framework used for running Machine learning algorithms 
built over Hadoop and is a Java-based open source Machine learning option. 
This framework can also work standalone. It is known for running Machine 
learning algorithms to heavy volumes of data. This framework is a part of 
Hadoop ecosystem components and has its distribution.

•	 R is an open source Machine learning and a data mining tool that is adopted 
very widely in the Machine learning community. This framework library can 
either work standalone or can be run on Hadoop using the Hadoop runtime 
R extensions.

•	 Julia is an open source high-performance programming language that supports 
running numeric and statistical computing functions in a distributed and 
parallel way.

•	 Python is an interpreted, high-level programming language that is designed 
to try out different things and it is something that does not fall into the 
traditional waterfall way of development. We will explore the basic Python 
libraries—NumPy and SciPy and use scikit-learn to execute our first Machine 
learning program. Also, we will explore how to write a Hadoop MapReduce 
program in Python.

•	 Apache Spark and its Machine learning core libraries: Spark is a cluster 
computing system with API for Java, Python, and Scala. We will explore  
the MLlib API for Machine learning and use a version for Apache Hadoop. 
The focus will be to explore the Spark Java APIs.

•	 A brief introduction to Spring XD and the related Machine learning libraries.
•	 For each of the identified Machine learning frameworks, integration with 

Hadoop will be a primary focus.

Machine learning tools – A landscape
There are several open source and commercial Machine learning frameworks and 
tools in the market that have evolved over the last few decades. While the field 
of Machine learning itself is evolving in building powerful algorithms for diverse 
requirements across domains, we now see a surge of open source options for  
large-scale Machine learning that have reached a significant level of maturity and  
are being widely adopted by the data science and Machine learning communities.

The model has changed significantly in the recent past, and researchers are 
encouraged to publish their software under an open source model. Since there 
are problems that authors face while publishing their work in using algorithmic 
implementations for Machine learning, any work that is reviewed and improvised 
through usage by the data science community is considered to be of more value.
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The following figure shows a concept model of some important commercial and 
open source Machine learning frameworks and tools in the market. The highlighted 
ones will be covered in depth in this chapter.

Some of these libraries are around specific programming languages such as Java, 
Python, C++, Scala, and so on. Some of these libraries, like Julia, Spark, and Mahout 
already support distributed, and parallel processing and others such as R and 
Python can run as MapReduce functions on Hadoop.

In the following sections, for each of the highlighted Machine learning libraries,  
the following will be covered:

•	 An overview of the library or tool with the details of out-of-box Machine 
learning functions supported

•	 Installation, setup, and configuration guide
•	 Introduction to syntax and basic data processing functions, and then the 

Advanced Machine learning functions example implementations
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•	 Samples for visualizations and plotting (wherever applicable)
•	 Integration and execution on the Hadoop platform

Apache Mahout
Apache Mahout is a Machine learning library that comes packaged with Apache 
Hadoop and forms an important part of the Hadoop ecosystem.

Mahout came into existence in 2008 as a subproject of Apache Lucene (an open 
source search engine). Lucene is an API that has an implementation of search, text 
mining, and information-retrieval techniques. Most of these search and text analytics 
internally apply Machine learning techniques. The recommendation engines that 
were built for the search engines started off under a new subproject called Mahout. 
Mahout means the rider of an elephant, signifying the running of Machine learning 
algorithms over Hadoop. It is a scalable Machine learning implementation that can 
run in a standalone mode (does not tightly integrate with Hadoop) as well.

Mahout is a set of some basic Machine learning Java libraries used for classification, 
clustering, pattern mining, and so on. Though Mahout today provides support 
for a subset of Machine learning algorithms, it still ranks among the most adopted 
frameworks as it inherently supports analytics on large datasets to the degree of 
hundreds of millions of rows, which can be unstructured in nature as well.

How does Mahout work?
Mahout implements Hadoop MapReduce, and the most important aspect is that it 
works on top of Hadoop and applies a distributed computing paradigm.
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Following are some of the specific Machine learning tasks that Mahout  
currently implements:

•	 Collaborative Filtering / Recommendation: This takes a user input and  
finds items that the users might like

•	 Clustering: This takes a bunch of documents as input and groups them  
based on the topics they refer/belong to

•	 Classification: This takes a bunch of documents and, based on the existing 
categorization of the documents, learns what category a given document 
might belong to, and maps the document to that category

•	 Frequent itemset mining: This takes a bunch of items as input and, based  
on the learning from the real occurrences, identifies which items occur or 
appear together

There are certain algorithms, for example, logistic regression and SVM (more  
about these algorithms will be covered in the chapters to follow), which cannot  
be parallelized and run in a standalone mode.
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Installing and setting up Apache Mahout
In this chapter, we will look at how to run Mahout in a standalone mode and on 
Hadoop. Though there was the new 1.0 version of Apache Mahout available at the 
time of writing this book, we will use version 0.9 (the latest stable version) in all the 
examples. The operating system used is Ubuntu 12.04 desktop 32-bit version.

Following are the dependencies and key requirements for installing Apache Mahout:

•	 JDK (1.6 or above; we will use 1.7 u9 version for the examples throughout 
this book)

•	 Maven (2.2 or above; we will use 3.0.4 for the examples throughout this book)
•	 Apache Hadoop (2.0; not mandatory as Mahout can be run locally)
•	 Apache Mahout (0.9 distribution)
•	 Development environment—Eclipse IDE (Luna)

In Chapter 3, An Introduction to Hadoop's Architecture and Ecosystem, we have seen 
how Apache Hadoop 2.0 single node installation is done along with the required 
prerequisites like Java.

In this chapter, we will cover the setting up of Maven, Eclipse for the development 
environment, and configuring Apache Mahout to run on and off Hadoop. As the 
considered platform and related frameworks are open sources, we will use the 
VirtualBox machine emulator hosted by the Windows 7 Professional edition.

As you may recollect, Hadoop cannot run as a root user, and hence we have a user 
created for this purpose—practical-ml to install and run everything.

Setting up Maven
It is recommended that Maven is used to get the required Mahout jars, and  
it gets easy to switch to any newer versions easily with Mahout. In the absence  
of Maven, downloading the dependencies will get more complicated. For more 
details on specific features of Maven and its utility in application development,  
refer to https://www.packtpub.com/application-development/apache-maven-
3-cookbook.

Maven version 3.0.4 can be downloaded from one of the mirrors of the Apache 
website. The following command can be used for this purpose:

wget http://it.apache.contactlab.it/maven/maven-3/3.0.4/binaries/
apachemaven-3.0.4-bin.tar.gz

https://www.packtpub.com/application-development/apache-maven-3-cookbook
https://www.packtpub.com/application-development/apache-maven-3-cookbook
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To manually install Maven, perform the following instructions:

1.	 Extract the distribution archive that is, apache-maven-3.0.4-bin.tar.gz to 
the directory you wish to install Maven 3.0.4.

2.	 With these instructions, the /usr/local/apache-maven path will be chosen. 
An apache-maven-3.0.4 subdirectory will be created from the archive.

3.	 The following lines need to be appended to the .bashrc file:
export M2_HOME=/usr/local/apache-maven-3.0.4
export M2=$M2_HOME/bin
export PATH=$M2:$PATH
export JAVA_HOME=$HOME/programs/jdk

JAVA_HOME should point to a location where the JDK is installed. For example, export 
JAVA_HOME=/usr/java/jdk1.7. $JAVA_HOME/bin is in your PATH environment 
variable. The PATH variable is set during the Java installation. This should be verified.

We can now check for the successful installation of Maven by running the  
following command:

mvn –version

In case there are any proxy settings, we will have to explicitly update the proxy 
settings in the settings.xml file, which is in the conf folder of Maven installation.

Setting-up Apache Mahout using Eclipse IDE
The procedure detailed next covers the steps to set up the Mahout environment,  
code base, accessing of examples, running, debugging, and testing them using 
Eclipse IDE. This is the recommended way to set up and is the simplest way to  
set up Apache Mahout for the development teams.

Execute the following steps to get the Apache Mahout tar, untar it and navigate to 
the installation.

1.	 Set up Eclipse IDE.
The latest version of Eclipse can be downloaded from the following link:
https://www.eclipse.org/downloads/

2.	 Download Mahout Distribution from the direct link using the command here:
$ wget -c http://archive.apache.org/dist/mahout/0.9/mahout-
distribution-0.9.tar.gz

3.	 Extract the archive from it using the following command:
$ tar zxf mahout-distribution-0.9.tar.gz

https://www.eclipse.org/downloads/
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4.	 Convert the project into an Eclipse project:
$ cd mahout-distribution-0.9

$ mvn eclipse: eclipse

The earlier command builds the Eclipse project.

5.	 Set the M2_REPO classpath variable to point to the local repository path.  
The following command adds all the Maven jars to the Eclipse classpath:
mvn -Declipse.workspace= eclipse:add-maven-repo

6.	 Now, let's import the Eclipse Mahout projects.
Navigate from the menu, File | Import | General | Existing Projects  
into Workspace.
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Setting up Apache Mahout without Eclipse
1.	 Download Mahout Distribution from the direct link using the command here:

$ wget -c http://archive.apache.org/dist/mahout/0.9/mahout-
distribution-0.9.tar.gz

2.	 Extract the Mahout distribution to the /usr/local folder:
$ cd /usr/local

$ sudo tar xzf mahout-distribution-0.9.tar.gz

$ sudo mv mahout-distribution-0.9.tar.gz mahout

$ sudo chown –R practical-ml:hadoop mahout

3.	 Set the Java, Maven, and Mahout paths in the .bashrc file.
Open the .bashrc file using the command here:
gedit ~/.bashrc

Add the following content to the file:
export MAHOUT_HOME = /usr/local/mahout
path=$path:$MAHOUT_HOME/bin
export M2_HOME=/usr/local/maven
export PATH=$M2:$PATH
export M2=$M2_HOME/bin
PATH=$PATH:$JAVA_HOME/bin;$M2_HOME/bin

4.	 To run Mahout in the local mode (this means in the standalone mode where 
there is no need for Hadoop, and the algorithms will not run in parallel or 
MapReduce mode).
Set the local mode to true using the following command:
$MAHOUT_LOCAL=true

This will force Mahout to not look for the Hadoop configurations in 
$HADOOP_CONF_DIR.
MAHOUT_LOCAL is set, so we don't add HADOOP_CONF_DIR to the classpath.

There is an alternative to run Mahout on Hadoop. Firstly, ensure Hadoop 2.x is 
installed and configured successfully. Then, follow these instructions:

1.	 Set $HADOOP_HOME, $HADOOP_CONF_DIR are set and added to $PATH.
export HADOOP_CONF_DIR=$HADOOP_HOME/conf

The above sets the mode in which Hadoop is run (for example, in core-
site.xml, hdfs-site.xml, mapred-site.xml, and so on.)
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2.	 Now, launch the Hadoop instance using the command here:
$HADOOP_HOME/bin/start-all.sh

3.	 Check http://localhost:50030, and http://localhost:50070 URLs to 
confirm whether Hadoop is up and running.

4.	 Build Apache Mahout using Maven by running the following Maven 
command from the Mahout directory:
/usr/local/mahout$ mvn install

The following output is seen on a successful install:
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Mahout Packages
The following figure depicts different packages in Mahout that provide some out-of-
box support for several Machine learning algorithms. At the core, the modules are 
the utilities, math vectors, collections, and Hadoop with MapReduce for the parallel 
processing and the file system for distributed storage.

Moreover, over the core modules are the Machine learning packages as listed here:

•	 Classification
•	 Clustering
•	 Evolutionary Algorithms
•	 Recommenders
•	 Regression
•	 FPM
•	 Dimension Reduction

More details are covered on the previous packages in detail in the chapters to follow, 
with example implementations using each of the packages for an identified problem.
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Implementing vectors in Mahout
As we understand, to demonstrate most of the Machine learning algorithm 
implementations in Mahout, we need the data in classic Mahout dataset format.  
At the core, the code for this is primary to use some Mahout ready-to-use scripts 
with some minor changes in the settings. Given below is the standard process:

1.	 Create sequence files from the raw text files.
Sequence files are predominantly a binary encoding of the key/value pair 
representation of data. The attributes given next are the key header elements 
that represent metadata details:

°° Version
°° Key name
°° Value name
°° Compression

2.	 Generate vectors from the sequence files. More on the actual commands 
to generate sequence files is covered in the following chapters while 
demonstrating the implementation for each of the identified Machine 
learning algorithms.

3.	 Running functions on these working vectors

There are different types of vector implementations in Mahout, and the definitions 
hold good in general as well.
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•	 Dense Vectors: These vectors are usually an array of doubles, and the size of 
this vector is the same as the number of features in the dataset. Since all the 
entries are preallocated irrespective of a zero value, these vectors are called 
dense vectors.

•	 Sparse Vectors: These vectors are arrays of vectors and are represented 
only with non-zero or null values. With sparse vectors, there are two 
subcategories: the random-access and sequential-access sparse vectors.

°° Random Access Sparse Vectors: Random access sparse vectors are 
the HashMap representations where the key is an integer value, and 
the value is a double value. At any given point in time, a value can  
be accessed by passing in the given key.

°° Sequential Access Sparse Vectors: These vectors are nothing but a set 
of two arrays where the first array is the array of keys (the integers), 
and the second array is an array of values (the doubles). These vectors 
are optimized for linear reads, unlike the random access sparse vectors. 
Again, the storage is done for only non-zero values.

For a detailed understanding of working with Apache 
Mahout, refer to the Packt Publication for Apache Mahout 
titled Apache Mahout Cookbook.

While this section covers a framework that is built to work with Hadoop with small 
configuration changes, in the next section, we cover the powerful and highly adopted 
option in the market—R. Hadoop provides explicit adapters to have the R programs 
work in the MapReduce model, which is covered next.

R
R is a language for data analysis and is used as an environment that is a primary  
driver in the field of Machine learning, statistical computing, and data mining and 
provides a comprehensive platform for basic and advanced visualizations or graphics. 
Today, R is a basic skill that almost all data scientists or would-be data scientists have 
or must learn.

R is primarily a GNU project known to be similar to the S language that was  
initially developed at Bell Laboratories (formerly known as AT&T and now,  
Lucent Technologies) by John Chambers and team. The initial goal for S was to 
support all statistical functions and was widely used by hard-core statisticians.
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R comes with a wide range of open source packages that can be downloaded 
and configured free of cost, and are installed or loaded on a need basis into the 
R environment. These packages provide out-of-box support for a wide variety 
of statistical techniques that include linear and non-linear modeling, time-series 
analysis, classification, clustering, and so on.

Along with these, the highly extensible graphical functions are available. The 
support for these advanced graphical functions has been a primary differentiator  
for R as the output is known for its publication quality plots. In addition to these,  
R also supports many open source graphical libraries and visualization tools that  
are both open source and commercial in nature.

Though, at the core, R is not meant to work in a distributed environment or run 
the algorithms in a parallel mode, there are several extensions available (both open 
source and commercial) that make R more scalable and support large dataset. In this 
chapter, we will cover how R can be integrated with Apache Hadoop, and thus can 
run and leverage the MapReduce capabilities.

Most importantly, R is free software that is widely adopted and has many committers 
and support groups constantly working on retaining its high relevance in the field of 
data science.

Some of the key capabilities that R supports today are listed here:

•	 The ability to effectively manage and store data that the models operate on
•	 Facilitating some core suite of functions for calculations on arrays, vectors, 

and matrices among others
•	 Several out-of-box Machine learning functions that can be loaded on demand 

and help implement data science projects with ease
•	 Advanced and sophisticated graphical functions that can be used with ease 

and help to produce valuable dashboards for business owners
•	 A wide and active community of adopters and committers that has 

developed rapidly with extensions via a large collection of packages
•	 R is considered as a platform that supports newly developing methods of 

interactive data analysis
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Installing and setting up R
For all the examples in this book, we will use the stable version 2.15.1 of R and the 
CRAN references for all the latest R packages.

Refer to the https://cran.r-project.org/bin/windows/base/old/2.15.1/ link 
to download R for Windows.

A detailed installation process is covered at https://cran.r-project.org/doc/
manuals/R-admin.html#Top.

We can use R with the R GUI or the IDE RStudio. Following are the screenshots of 
the R interface that the users can see post a successful installation of the R GUI and R 
IDE, and the RStudio.

We will need to set the CRAN mirror path to be able to access and load the required 
R packages by navigating from the menu path Packages | Set CRAN mirror

https://cran.r-project.org/bin/windows/base/old/2.15.1/
https://cran.r-project.org/doc/manuals/R-admin.html#Top
https://cran.r-project.org/doc/manuals/R-admin.html#Top
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The following screenshot shows a list of mirror sites from which the developer can 
choose the most appropriate one:

The R Editor can be used to write any advanced operations, and the results can be 
seen on the console as shown here:
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Following is a screenshot of a graphical plot:

Integrating R with Apache Hadoop
So far, we have seen Apache Hadoop and its core components, HDFS and YARN 
(MapReduce 2.0), and R. There are three different ways in which we can look at 
integrating R with Hadoop, and hence the support for large-scale Machine learning.

Approach 1 – Using R and Streaming APIs in 
Hadoop
To integrate an R function with Hadoop and see it running in a MapReduce mode, 
Hadoop supports Streaming APIs for R. These Streaming APIs primarily help in 
running any script that can access and operate with standard I/O in a MapReduce 
mode. So in the case of R, there wouldn't be any explicit client side integration done  
with R. The following is an example of R and streaming:

$ ${HADOOP_HOME}/bin/Hadoop jar
${HADOOP_HOME}/contrib/streaming/*.jar \
-inputformat
org.apache.hadoop.mapred.TextInputFormat \
-input input_data.txt \
-output \
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-mapper /home/tst/src/map.R \
-reducer /home/tst/src/reduce.R \
-file /home/tst/src/map.R \
-file /home/tst/src/reduce.R

Approach 2 – Using the Rhipe package of R
There is a package in R called Rhipe that allows running a MapReduce job within R. 
To use this way of implementing R on Hadoop; there are some prerequisites:

•	 R needs to be installed on each DataNode in the Hadoop Cluster
•	 Protocol Buffers will be installed and available on each DataNode (for more 

information on Protocol Buffers refer to http://wiki.apache.org/hadoop/
ProtocolBuffers)

•	 Rhipe should be available on each data node

The following is a sample format for using the Rhipe library in R to implement 
MapReduce:

library(Rhipe)
rhinit(TRUE, TRUE);
map<-expression ( {lapply (map.values, function(mapper)…)})
reduce<-expression(
pre = {…},
reduce = {…},
post = {…},
)
x <- rhmr(map=map, reduce=reduce,
 ifolder=inputPath,
 ofolder=outputPath,
 inout=c('text', 'text'),
 jobname='test name'))
rhex(x)

Approach 3 – Using RHadoop
RHadoop, very similar to Rhipe, facilitates running R functions in a MapReduce 
mode. It is an open source library built by Revolution Analytics. Following are  
some packages, which are a part of the RHadoop library:

•	 plyrmr: This is a package that provides functions for common data 
manipulation requirements for large datasets running on Hadoop

http://wiki.apache.org/hadoop/ProtocolBuffers
http://wiki.apache.org/hadoop/ProtocolBuffers
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•	 rmr: This is a package that has a collection of functions that integrate R  
and Hadoop

•	 rdfs: This is a package with functions that help interface R and HDFS
•	 rhbase: This is a package with functions that help interface R and HBase

The following is an example that uses the rmr package and demonstrates steps to 
integrate R and Hadoop using the functions from this package:

library(rmr)
maplogic<-function(k,v) { …}
reducelogic<-function(k,vv) { …}
mapreduce( input ="data.txt",
output="output",
textinputformat =rawtextinputformat,
map = maplogic,
reduce=reducelogic
)

Summary of R/Hadoop integration approaches
In summary, all of the previous three approaches yield results and facilitate 
integrating R and Hadoop. They help in scaling R to operate on the large-scale data 
that will help with HDFS. Each of these approaches has pros and cons. Here is a 
summary of conclusions:

•	 Hadoop Streaming API is the simplest of all the approaches as there are no 
complications regarding installation and setup requirements

•	 Both Rhipe and RHadoop require some effort to setup R and related 
packages on the Hadoop cluster

•	 Regarding implementation approach, Streaming API is more of a command 
line map, and reduce functions are inputs to the function, whereas both 
Rhipe and RHadoop allow developers to define and call custom MapReduce 
functions within R

•	 In case of Hadoop Streaming API, there is no client side integration required, 
whereas both Rhipe and RHadoop require the client side integration

•	 The alternatives to scaling Machine learning are Apache Mahout, Apache 
Hive, and some commercial versions of R from Revolution Analytics,  
Segue framework, and others
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Implementing in R (using examples)
In this section, we will briefly cover some implementation aspects of R, and focus  
on learning the syntax and understanding some core functions and its usage.

R Expressions
R can be used as a simple math calculator; here are some basic ways of using it.  
Here is a trace of what is seen on the R console:

> 1+1
[1] 2
> "Welcome to R!"
[1] "Welcome to R!"
> 6*7
[1] 42
> 10<22
[1] TRUE
> 2+7==5
[1] FALSE

Assignments
This is used to assign value to a variable and apply some operations to this variable:

Case 1: Assigning a numeric value:

> x<-24
> x/2
[1] 12

Case 2: Assigning a string literal:

> x <- "Try R!"
[1] "Try R!"
> x
[1] " Try R!"

Case 3: Assigning a logical value:

> x <- TRUE
[1] TRUE
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Functions
There are many out-of-box functions and to invoke a function in R, we should 
provide the function name and pass required arguments. Here are some examples  
of functions and the results, as seen in the R Console:

> sum(4,3,5,7)
[1] 19
> rep("Fun!", times=3)
[1] " Fun!" "Fun!" "Fun!"
> sqrt(81)
[1] 9

Here is the command to get help for a function in R:

> help(sum)
sum package: base R Documentation

Sum of Vector Elements

Description:

     'sum' returns the sum of all the values present in its arguments.

Usage:

     sum(..., na.rm = FALSE)

R Vectors
A vector is a simple list of values by definition that forms the core of R data types. 
Many of the Machine learning functions leverage these.

Here are some key functions with their usage context:

Function/Syntax Purpose Example Output on R Console
m:n Outputs numbers 

from m to n increment 
by 1

 > 5:9 [1] 5 6 7 8 9

seq(m,n) Outputs numbers 
from m to n increment 
by 1

 > seq(5,9) [1] 5 6 7 8 9

seq(m,n, i) Outputs numbers 
from m to n increment 
by i

 > 
seq(1,3,0.5)

[1] 1 1.5 2 2.5 3
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Assigning, accessing, and manipulating vectors
The following table has examples for creating, accessing, and manipulating matrices 
in R:

Purpose Example
Creating a vector of literals > sentence <- c('practical', 

'machine', 'learning')

Accessing the third value of the 
vectors

> sentence[3]

[1] "learning."

Updating a value in the vector > sentence[1] <- "implementing"

Adding a new value to the vector > sentence[4] <- "algorithms"

Getting values for the given indices > sentence[c(1,3)]

[1] "implementing" "learning"

Getting values for range of indices > sentence[2:4]

[1] "machine" "learning" 
"algorithms"

Adding a range of new values > sentence[5:7] <- 
c('for','large','datasets')

Incrementing vector values by 1 > a <- c(1, 2, 3)

> a + 1

[1] 2 3 4

Dividing each value in vector by a 
value

> a / 2

[1] 0.5 1.0 1.5

Multiplying each value of the vector 
by a value

> a*2

[1] 2 4 6

Adding two vectors > b <- c(4, 5, 6)

> a + b

[1] 5 7 9

Comparing two vectors > a == c(1, 99, 3)

[1]  TRUE FALSE  TRUE

Applying a function on each value of 
the vector

> sqrt(a)

[1] 1.000000 1.414214 1.732051
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R Matrices
Matrices are two-dimensional vectors that have rows and columns. The following 
table has examples for creating, accessing, and manipulating matrices in R:

Purpose Example
Creating a 3 X 4 matrix with values 
defaulted to zero

> matrix(0, 3, 4)

     [,1] [,2] [,3] [,4]

[1,]    0    0    0    0

[2,]    0    0    0    0

[3,]    0    0    0    0

Initializing a matrix with a range of values > a <- 1:12

> m <- matrix(a, 3, 4)

     [,1] [,2] [,3] [,4]

[1,]    1    4    7   10

[2,]    2    5    8   11

[3,]    3    6    9   12

Accessing a value from the matrix > m[2, 3]

[1] 8

Assigning a value to a position of choice in 
a matrix

> m[1, 4] <- 0

Retrieving an array of the entire row or a 
column of choice

> m[2,]

[1] 2 5 8 11

> m[3,]

[1] 7 8 9

Retrieving a subset of the bigger matrix > m[, 2:4]

     [,1] [,2] [,3]

[1,]    4    7    10

[2,]    5    8    11

R Factors
In data analytics and Machine learning, it is common to group or categorize data. 
For example, a good or a bad customer. R's factor data type is used to track the 
categorized data. All that needs to be done is defining a vector of categories and 
passing it as a parameter to the factor function.
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The following example demonstrates creation and assignment of categories using 
factors:

> ornaments <- c('ring', 'chain', 'bangle', 'anklet', 'nosepin', 
'earring', 'ring', 'anklet')
> ornamenttypes <- factor(ornaments)
> print(ornamenttypes)
[1] ring chain bangle anklet nosepin earring
Levels: anklet bangle chain earring nosepin ring

Each of the defined categories usually has an integer value associated with the literal. 
Passing the factor to the as.integer function will give the integer equivalents, as 
shown here:

> as.integer(ornamenttypes)
[1] 6 3 2 1 5 4 6 1

R Data Frames
Data frames relate to the concept of database tables. This data type is very powerful 
in R, and it helps tie different related attributes of a dataset together. For example, 
the number of items purchased has a relationship with the total bill value and the 
overall applicable discount. There should be a way to link these attributes, and data 
frames help to do so:

Purpose Example
Creating a data frame and checking 
the values

> purchase <- data.frame(totalbill, 
noitems, discount

> print(purchase)

  totalbill noitems discount

1     300    5      10

2     200    3       7.5

3     100    1       5

)

Accessing the data of the data frame 
using indexes or labels

> purchase[[2]]

[1]  5 3 1

> purchase[["totalbill"]]

[1] 300 200 100

> purchase$discount

[1]  10 7.5 5
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Purpose Example
Loading data frames with the data 
from CSV files

> list.files()

[1] "monthlypurchases.csv"

> read.csv("monthlypurchases.csv")

         Amount    Items Discount

1 2500             35    15

2 5464             42    25

3 1245             8     6

R Statistical frameworks
R supports a bunch of statistical out-of-box functions that help statisticians explain 
the data. Some of the functions with examples are shown in the following table:

Function Example
Mean limbs <- c(4, 3, 4, 3, 2, 4, 4, 4)

names(limbs) <- c('One-Eye', 'Peg-
Leg', 'Smitty', 'Hook', 'Scooter', 
'Dan', 'Mikey', 'Blackbeard')

> mean(limbs)

[1] 3.5

Median > median(limbs)

[1] 4

Standard deviation > pounds <- c(45000, 50000, 35000, 
40000, 35000, 45000, 10000, 15000)

> deviation <- sd(pounds)

Each piece of the contained R code is saved for a run in a file with the .R extension.

In this section, we have seen how R can be set up and how some basic functions and 
data types can be used. There are many Machine learning specific packages that we 
will be exploring in the following chapters.

For a detailed understanding of working with R for Machine learning, 
refer to the Packt Publication for R titled Machine learning with R.
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Julia
Julia, in recent times, has gained much popularity and adoption in the Machine 
learning and data science fields as a high-performance alternative to Python. Julia is 
a dynamic programming language that is built to support distributed and parallel 
computing, thus known to be convenient and fast.

Performance in Julia is a result of the JIT compiler and type interfacing feature. Also, 
unlike other numeric programming languages, Julia does not enforce vectorization of 
values. Similar to R, MATLAB, and Python, Julia provides ease and expressiveness 
for high-level numerical computing.

Following are some key characteristics of Julia:

•	 The core APIs and mathematical primitive operations are written in Julia
•	 It consists rich types for constructing and describing objects
•	 Julia supports for multiple dispatch that enable using functions across many 

combinations of arguments
•	 It facilitates the automation of specialized code generation for different 

argument types
•	 Proven performance is on par with statically compiled languages like C
•	 It is a free and open source programming language (MIT licensed)
•	 User-defined types are as fast and compact as built-ins
•	 It does not enforce or require vectorization code for performance
•	 It is designed for distributed and parallel computation
•	 Julia comes with co-routines and lightweight threading
•	 Julia supports the ability to invoke the C functions directly
•	 Shell-like capabilities for managing processes
•	 It provides Lisp-like macros

Installing and setting up Julia
We will be using Julia's latest version that was available at the time of writing this 
book—v 0.3.4.

Julia programs can be built and executed by:

•	 Using Julia command line
•	 Using Juno—an IDE for Julia
•	 Using a ready-to-use environment at https://juliabox.org/, where the 

Julia environment can be accessed using a browser
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Downloading and using the command line version 
of Julia
Use the link http://julialang.org/downloads/ to download the required  
Julia version.

1.	 Download the appropriate executable and run it.

2.	 After the successful installation, open the Julia console and Julia is ready to use.
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Using Juno IDE for running Julia
Juno IDE makes developing Julia code easy. Download the latest Juno IDE version 
from http://junolab.org/docs/install.html.

Juno has Julia's core APIs and functions that help in simplifying the development 
process. Following is a screenshot of how Juno can be used:

Using Julia via the browser
Using this option does not require any installation of Julia. Follow these steps to 
access the Julia environment online:

1.	 Access https://juliabox.org/ from the browser
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2.	 Log in using the Google account. This will create a unique instance of  
Julia for the logged-in user. This will give access to the Julia console  
and the IJulia instances.

With one of the three approaches that we have seen previously, we have access to the 
Julia console from where the Julia code can be executed. Each piece of the contained 
Julia code is built in a file with a .jl extension.

Running the Julia code from the command line
Julia compiles the code at runtime and translates each method into a machine code 
using just-in-time (JIT) compilers. Internally, it utilizes Low-Level Virtual Machine 
(LLVM) for optimization and code generation. LLVM is a full-fledged project that is 
a collection of standard compiler technologies. This is used as a part of iOS.

From the shell of choice, run the following:

<</path/to/Julia>>/myjuliascript.jl

Alternatively, open the Julia console from the Julia command line installation and 
run the following command:

julia> include("<<path/to/juliascript>>/myjuliascript.jl")

Implementing in Julia (with examples)
In this section, we will cover some basic topics under coding Julia and understanding 
the syntax. At the end of this section, readers should be able to easily write their Julia 
script and run the same. Regarding syntax, Julia programming language is very similar 
to MATLAB.

Using variables and assignments
Variables in Julia, like any other programming language, are used for storing and 
manipulating data. Following is an example of defining, assigning, and manipulating 
variables and values:

# Assign a numeric value to a variable
julia> x = 10
10

# Perform a simple mathematical manipulation of variables
julia> x + 1
11
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# Assigning or reassigning values to variables.
julia> x = 1 + 1
2

# Assigning a string literal to a variable
julia> x = "Hello World!"
"Hello, World!"

Julia, being a mathematical programming language, provides several fundamental 
constants. Here is an example that can be directly used in the code. Additionally,  
we can define our constants and reassign values:

julia> pi
π = 3.1415926535897...

Numeric primitives
For any mathematical programming language that supports numeric-based 
computing, Integers and floating-point values form the basic building blocks  
and are called numeric primitives.

Julia comes with a support for large set numeric primitives that are extensive  
and very well-complimented mathematical functions.

Data structures
Julia supports several data structures in addition to all the primitive data types  
such as Vectors, Matrices, Tuples, Dictionaries, Sets and so on. Following are  
some example representations with the usage:

# Vector
b = [4, 5, 6]
b[1] # => 4
b[end] # => 6

# Matrix
matrix = [1 2; 3 4]

# Tuple
tup = (1, 2, 3)
tup[1] # => 1
tup[1] = 3 # => ERROR #since tuples are immutable, assigning a value 
results in an error

# Dictionary
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dict = ["one"=> 1, "two"=> 2, "three"=> 3]
dict["one"] # => 1

# Set
filled_set = Set(1,2,2,3,4)

Working with Strings and String manipulations
Here are some examples of operating with Strings in Julia:

split("I love learning Julia ! ")
# => 5-element Array{SubString{ASCIIString},1}:
"I"
"love."
"learning."
"Julia"
"!"

join(["It seems to be interesting", "to see",
"how it works"], ", ")
# => "It seems interesting, to see, how it works."

Packages
Julia comes with several packages that have inbuilt functions and support many  
out-of-box features for implementing Machine learning algorithms as well. 
Following is the list:

•	 Images.jl

•	 Graphs.jl

•	 DataFrames.jl

•	 DimensionalityReduction.jl

•	 Distributions.jl

•	 NLOpt.jl

•	 ArgParse.jl

•	 Logging.jl

•	 FactCheck.jl

•	 METADATA.jl

More details on Julia packages can be accessed at https://github.com/
JuliaLang/.
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Interoperability
This following section covers the integration aspects of Julia with various other 
programming languages.

Integrating with C
Julia is flexible and without any wrappers, supports invoking C functions directly. 
Following is an example that demonstrates how this is done:

julia> ccall(:clock, Int32, ())
2292761
julia> ccall(:getenv, Ptr{Uint8int8}, (Ptr{Uint8},), "SHELL")
Ptr{Uint8} @0x00007fff5fbffc45
julia> bytestring(ans)
"/bin/bash"

Integrating with Python
Similar to the C function calls, Julia supports invoking Python functions directly. It is 
important that we have the PyCall package installed to be able to do so. PyCall.jl 
offers automatic type conversion between Julia and Python. For example, Julia arrays 
are converted to NumPy arrays.

Following is an example that demonstrates invoking Python functions from the  
Julia code:

julia> using PyCall # Installed with Pkg.add("PyCall")
julia> @pyimport math
julia> math.sin(math.pi / 4) - sin(pi / 4)
0.0
julia> @pyimport pylab
julia> x = linspace(0,2*pi,1000); y = sin(3*x + 4*cos(2*x));
julia> pylab.plot(x, y; color="red", linewidth=2.0, linestyle="--")
julia> pylab.show()

Integrating with MATLAB
Following example demonstrates integrating Julia to invoke MATLAB functions:

using MATLAB

function sampleFunction(bmap::BitMatrix)
@mput bmap
@matlab bmapthin = bwmorph(bmap, "thin", inf)
convert(BitArray, @mget bmapthin)
end
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Graphics and plotting
Julia has several packages that help produce graphs and plots. Some of them are 
listed here:

•	 Gadfly.jl: This is very similar to ggplot2
•	 Winston.jl: This is very similar to Matplotlib
•	 Gaston.jl: This interfaces with gnuplot

The example here demonstrates using PyPlot:

using PyPlot
x = linspace(-2pi, 2pi)
y = sin(x)
plot(x, y, "--b")
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Benefits of adopting Julia
Here are some of the direct benefits that one can look forward to for adopting Julia in 
the Machine learning implementations:

•	 Julia facilitates fast prototyping without compromising on performance
•	 It inherently supports the parallelization of code
•	 It provides a simpler way of expressing algorithms with special Julia types
•	 Julia can easily invoke or integrate with C, Python, MATLAB, and C++
•	 Julia is facilitated by an enthusiastic, friendly, and supportive community
•	 It works with Hadoop and leverages Hive-based querying

Integrating Julia and Hadoop
Integrating any programming language with Hadoop typically means the data stored 
in Hadoop should be accessible, and the program should be able to execute a specific 
logic on the data. This can happen either by retrieving the data from Hadoop and 
bringing it closer to the program or by moving the program to the data and to execute 
in a MapReduce or parallel processing mode. Obviously, in the first case where the 
data is fetched from Hadoop and brought to the code for executing the logic, there 
needs to be sufficient RAM to be able to hold and process this data in the memory, and 
this could restrict the ability to run on really large volumes. In the second case, where 
the code is taken to the data that is distributed across the data nodes, the logic should 
be parallelizable, and the Map and Reduce logics should be built.

The Julia integration with the Hadoop platform is slightly in its initial stages, and the 
current approach that is detailed is the first approach described previously where  
the connection to Hadoop/HDFS is made from the Julia code using a standard 
ODBC connectivity. The data is fetched into the RAM for further processing.  
Now, this code can run directly on the DataNode and can update the HDFS data.

We will use ODBC.jl that can be obtained from GitHub using the following link:

https://github.com/quinnj/ODBC.jl

This is a simple low-level ODBC interface for Julia. It can be installed through the 
Julia package manager using the following commands:

Following command creates a Julia package repository (only runs once for  
all packages)

julia> Pkg.init()
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Following command creates the ODBC repo folder and downloads the ODBC package 
and dependency (if needed)

julia> Pkg.add("ODBC")

Following command loads the ODBC module for use (needs to be run with each new 
Julia instance)

julia> using ODBC

Following are some important functions that can be used to work with Hadoop/
HDFS:

•	 To connect using an ODBC datasource, user and password use—co = ODBC.
connect("mydatasource",usr="johndoe",pwd="12345").

•	 To disconnect use disconnect(connection::Connection=conn).
•	 To connect using a connection string use advancedconnect(conn_

string::String).
•	 To ask a query and fetch a subset of data on the datasource, this query 

string is a Hive query that will be run on HDFS—query(connecti on 
Connection=conn, querystring; fi le=: DataFrame,delim='\t').

An example implementation is given here:

Use following command to load ODBC module:

using ODBC

To connect to Hadoop cluster via Hive use this:

hiveconn = ODBC.connect("servername"; usr="your-user-name", pwd="your-
password-here")

To write a Hive query and store it as a Julia string, use the following command:

hive_query_string = "select …;"

To run a query, save results directly to file use the following command:

query(hive_query_string, hiveconn;output="C:\\sample.csv",delim=',')

The Julia program can now access the data from this file to execute Machine  
learning algorithms.
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Python
Python is one of the highly adopted programming or scripting languages in the  
field of Machine learning and data science. Python is always known for its ease  
of learning, implementation, and maintenance. Python is highly portable and can run 
on the Unix-based, Windows and Mac platforms. With the availability of libraries 
such as Pydoop and SciPy, its relevance in the world of big data analytics has 
tremendously increased.

Some of the key reasons for the popularity of Python in solving Machine learning 
problems are listed here:

•	 Python is known to be well suited for data analysis
•	 It is a versatile scripting language that can be used for writing some basic 

quick and dirty scripts for testing some basic functions, or it can be used in 
real-time applications leveraging its full-featured toolkits

•	 Python comes with complete Machine learning packages (refer to http://
mloss.org/software/) and can be used in a plug-and-play manner

Toolkit options in Python
Before we go deeper into what toolkit options we have in Python, let's first understand 
the toolkit options trade-offs that should be considered before choosing one.

Some of the questions that we should evaluate for the appropriate toolkit can be  
as follows:

•	 What are my performance priorities? Do I need offline or real-time 
processing implementations?

•	 How transparent are the toolkits? Can I customize the library myself?
•	 What is the community status? How fast are bugs fixed and how is the 

community support and expert communication availability?

There are three options in Python:

•	 Use Python external bindings. These are the interfaces to popular packages  
in markets such as Matlab, R, Octave, and so on. This option will work  
well, in case we already have some implementations existing in the 
previously mentioned frameworks that we are looking at seamlessly 
migrating into Python.
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•	 Use Python-based toolkits. There are some toolkits written in Python that 
come with a bunch algorithms. Some of the Python toolkits will be covered  
in the next section.

•	 Write your logic/toolkit.

Implementation of Python (using examples)
Python has two core toolkits, which are more of building blocks and almost all the 
specialized toolkits that are listed here use these core toolkits. These are as follows:

•	 NumPy: NumPy is about fast and efficient arrays built in Python
•	 SciPy: This is a bunch of algorithms for standard operations built in NumPy

There are a bunch of C/C++ based implementations such as LIBLINEAR, LIBSVM, 
OpenCV, and others

Let's now see some of the popular Python toolkits and also those that have been 
updated within a span of a year of writing this book:

•	 NLTK: This stands for natural language toolkit. This focuses on the Natural 
language processing (NLP).

•	 mlpy: This is Machine learning algorithms toolkit that comes with support 
for some key Machine learning algorithms such as classifications, regression, 
and clustering among others.

•	 PyML: This toolkit focuses on Support Vector Machine (SVM). We will 
cover more on this in the coming chapters.

•	 PyBrain: This toolkit focuses on Neural networks and related functions.
•	 mdp-toolkit: The focus of this toolkit is data processing and it supports 

scheduling and parallelizing the processing.
•	 scikit-learn: This is one of the most popular toolkits and is being highly 

adopted by data scientists in the recent past. It has support for supervised, 
and unsupervised learning, some special support for feature selection, and 
visualizations as well. There is a large team that is actively building this 
toolkit and is known for its excellent documentation.

•	 Pydoop: This is the Python integration with the Hadoop platform.

Pydoop and SciPy are heavily deployed in big data analytics.

In this chapter, we will explore the scikit-learn toolkit, and demonstrate all our 
examples in the upcoming chapters using this toolkit.

For a Python programmer, using scikit-learn can help bring Machine learning into a 
production system very easily.



Machine Learning Tools, Libraries, and Frameworks

[ 150 ]

Installing Python and setting up scikit-learn
Following are the core Python toolkit versions and dependencies for installing 
Python and scikit-learn:

•	 Python (>= 2.6 or >= 3.3)
•	 NumPy (>= 1.6.1)
•	 SciPy (>= 0.9).
•	 A working C++ compiler

We will be using the wheel packages (.whl files) for scikit-learn from PyPI,  
and install it using the pip utility.

To install in your home directory, use the following:

python setup.py install --home

For using the git repo directly from the GitHub to install scikit-learn on the local 
disk, use the following command:

% git clone git://github.com/scikit-learn/scikit-learn/

% cd scikit-learn

Loading data
Scikit-learn comes with a few standard datasets, for instance, the iris and digits 
datasets that can be used for building and running Machine learning algorithms.

Here are some steps to follow to load the standard datasets shipped with scikit-learn:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits() 
>>> print digits.data
[[ 0. 0. 5. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 10. 0. 0.]
[ 0. 0. 0. ..., 16. 9. 0.]
...,
[ 0. 0. 1. ..., 6. 0. 0.]
[ 0. 0. 2. ..., 12. 0. 0.]
[ 0. 0. 10. ..., 12. 1. 0.]] 
>>> digits.target
array([0, 1, 2, ..., 8, 9, 8])
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Apache Spark
Apache Spark is an open-source framework for fast, big data or large-scale 
processing with the support for streaming, SQL, Machine learning, and graph 
processing. This framework is implemented in Scala and supports programming 
languages such as Java, Scala, and Python. The magnitude of performance is up to 
10X to 20X is the traditional Hadoop stack. Spark is a general purpose framework 
and allows interactive programming along with the support for streaming. Spark can 
work with Hadoop supporting Hadoop formats like SequenceFiles or InputFormats 
in a standalone mode. It includes local file systems, Hive, HBase, Cassandra, and 
Amazon S3 among others.

We will use Spark 1.2.0 for all the examples throughout this book.

The following figure depicts the core modules of Apache Spark:

Some of the basic functions of Spark framework include task scheduling, interaction 
with storage systems, fault tolerance, and memory management. Spark follows a 
programming paradigm called Resilient Distributed Dataset (RDD). This is primarily 
related to managing distributed data storage and parallel computing.

•	 Spark SQL is Spark's package for querying and processing structured and 
unstructured data. The core functions of this package are:

°° To facilitate loading the data from varied structured sources such as 
Hive, JSON, and others

°° To provide integration between SQL and regular Python or Java or 
Scala code, and provide the capability to build custom functions that 
can execute on distributed data and in parallel

°° To support the SQL-based querying from external tools through 
standard database connections (JDBC/ODBC) including Tableau

•	 Spark Streaming module is used for processing real-time, large-scale streams 
of data. This API is different from the Streaming I/O API of Hadoop.
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•	 MLib module provides out-of-box Machine learning algorithm functions that 
are scalable and can run on a cluster.

•	 GraphX module provides functions for graph manipulations.

In this chapter, we will learn how to use Spark in conjunction with the Scala 
programming language. Let's now have a quick overview of Scala and learn how to 
code in Scala.

Scala
Scala is a strongly typed programming language that requires JVM (Java Virtual 
Machine) to run. It is an independent platform and can leverage Java APIs. We will 
use interpretive prompt to run Scala with Spark. The command prompt here shows 
how Scala can be run with Spark using the interpretive prompt.
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Let's look at some Scala examples.

The following code can be pasted directly into the command prompt:

//Default variables are assigned to any expressions
scala>8 * 5 + 2
Res0: Int = 42
Scala>0.5 * res0
Res1= Double = 21.0
//All simple data types are objects
scala>"Hello, " + res0
Res2: java.lang.String = Hello, 42
scala>10.toString()
Res2: String = 10
scala>a.+(b)
Res1: Int = 200            //So you can consider , the operator as a 
method
A method b as a shorthand for a.method(b)
scala>val myVal: String = "Foo"
keyword "val" this means that a variable cannot change value  
(immutable variable)
scala>var myVar:String = "Foo"
the keyword var means that it is a variable that can be changed 
(mutable variable)
scala> def cube(a: Int): Int = a * a * a
cube: (a: Int)Int
scala> myNumbers.map(x => cube(x))
res8: List[Int] = List(1, 8, 27, 64, 125, 64, 27)
scala> myNumbers.map(x => x * x * x)
res9: List[Int] = List(1, 8, 27, 64, 125, 64, 27)
scala> val myNumbers = List(1,2,3,4,5,4,3)
myNumbers: List[Int] = List(1, 2, 3, 4, 5, 4, 3)
scala> def factorial(n:Int):Int = if (n==0) 1 else n * factorial(n-1)
factorial: (n: Int)Int
scala> myNumbers.map(factorial)
res18: List[Int] = List(1, 2, 6, 24, 120, 24, 6)
scala> myNumbers.map(factorial).sum
res19: Int = 183
scala> var factor = 3
factor: Int = 3
scala> val multiplier = (i:Int) => i * factor
multiplier: Int => Int = <function1>
scala> val l1 = List(1,2,3,4,5) map multiplier
l1: List[Int] = List(3, 6, 9, 12, 15)
scala> factor = 5
factor: Int = 5
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Programming with Resilient Distributed 
Datasets (RDD)
RDDs are Spark's core abstraction for working with data. They are immutable 
distributed collections of elements. All functions in Spark only work on RDDs.

Spark automatically distributes the data contained in RDDs across the nodes within 
a cluster as partitions and supports parallel processing to be performed on them. 
RDDs can be created by importing from external datasets or distributing collections  
in the driver program. The following command demonstrates this function:

scala> val c = file.filter(line => line.contains("and"))

The collect() method will write the output to the console:

scala>c.collect()

The output of the results is usually saved to the external storage system. The count() 
function gives the number of output lines. The following will print out the lines:

scala>println("input had " + c.count() + " lines")

The take() function will fetch n records from the result:

scala>c.take(10).foreach(println)

RDDs process in a lazy manner by Spark to bring in the efficiency while handling 
large datasets.

To reuse RDD in multiple actions, you can ask Spark to persist it using RDD.persist().

We can ask Spark to persist our data in some different places. After computing it the 
first time, Spark will store the RDD contents in the memory (partitioned across the 
machines in your cluster) and reuse them for future actions.

Hence, following are the basic steps to process RDDs:

1.	 Create input RDDs from external data.
2.	 Transforming them to define new RDDs using transformations, for example 

filter().
3.	 Storing intermediate RDDs for reuse using persist().
4.	 Invoking any required function (for example, count()) to start a parallel 

computation process.
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Following is an example of RDD using Pi Estimation with Scala:

scala>var NUM_SAMPLES=5
scala> val count = sc.parallelize(1 to NUM_SAMPLES).map{i =>
     | val x = Math.random()
     | val y = Math.random()
     |  if (x*x + y*y < 1) 1 else 0
     | }.reduce(_ + _)
scala>println("Pi is roughly " + 4.0 * count / NUM_SAMPLES)

Spring XD
Though this book does not include Spring XD framework to demonstrate the 
Machine learning algorithm, a small introduction is given here as this is found  
to be fast emerging for adoption in the Machine learning world.

XD stands for eXtreme Data. This open source framework is built by the Pivotal  
team (earlier the SpringSource) as the one-stop-shop for developing and deploying 
big data applications.

Spring XD is a distributed and extensible framework that unifies data ingestion, 
analytics functions in real-time, batch, and supports data export. Spring XD is built 
on Spring Integration and Spring Batch frameworks.

Following are some key features:

•	 Spring XD is a unified platform for batch and stream workloads. It is an open 
and extensible runtime.

•	 Scalable and high-performance, it is a distributed data ingestion framework 
that can ingest data from a variety of sources that include HDFS, NOSQL,  
or Splunk.

•	 It supports for real-time analytics at ingestion time, for example, gathering 
metrics and counting values.

•	 It has workflow management through batch jobs that include interactions 
with standard RDBMS and Hadoop systems.

•	 It is a scalable and high-performance data export, for example, from HDFS to 
an RDBMS or NoSQL database.

Spring XD is known to implement Lambda Architecture that in theory is defined 
to support both batch and real-time processing. More information on evolutionary 
architectures such as Lambda Architecture is covered in Chapter 14, New generation 
data architectures for Machine learning.
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Spring XD architecture primarily has three architecture layers to help facilitate the 
previous features:

1.	 Speed Layer: This is about accessing and processing data in real time. This 
process keeps the system more up-to-date.

2.	 Batch Layer: The Batch layer has access to the complete master dataset also 
called the data lake meaning source of truth.

3.	 Serving Layer: The Service layer is more of a query layer that is responsible 
for exposing the data post processing to an unsubscribed consumer. This 
layer makes batch data queryable and is usually known for high throughput 
driven responses.
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Spring XD Runtime architecture is shown here (source Pivotal):

Summary
In this chapter, we learned about the open source options for implementing 
Machine learning, and covered installation, implementation, and execution of 
libraries, tools, and frameworks such as Apache Mahout, Python, R, Julia, and 
Apache Spark's MLib. Importantly, we covered the integration of these frameworks 
with the big data platform—Apache Hadoop. This chapter is more of a foundation 
for the coming chapters where we will learn how to use these frameworks in 
implementing specific Machine learning algorithms.
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Decision Tree based learning
Starting this chapter, we will take a deep dive into each of the Machine learning 
algorithms. We begin with a non-parametric supervised learning method, Decision 
trees, and advanced techniques, used for classification and regression. We will 
outline a business problem that can be addressed by building a Decision tree-based 
model and learn how it can be implemented in Apache Mahout, R, Julia, Apache 
Spark, and Python.

The following topics are covered in depth in this chapter:

•	 Decision trees: definition, terminology, the need, advantages, and limitations.
•	 The basics of constructing and understanding Decision trees and some key 

aspects such as Information gain and Entropy. You will also learn to build 
regression, the classification of trees and measuring errors.

•	 Understanding some common problems with Decision trees, need for 
pruning Decision trees, and techniques for pruning.

•	 You will learn Decision tree algorithms such as CART, C4.5, C5.0 and so on; 
and specialized trees such as Random forests, Oblique trees, Evolutionary 
and Hellinger trees.

•	 Understanding a business use case for classification and regression trees,  
and an implementation of the same using Apache Mahout, R, Apache Spark, 
and Julia and Python (scikit-learn) libraries and modules.
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Decision trees
Decision trees are known to be one of the most powerful and widely used modeling 
techniques in the field of Machine learning.

Decision trees naturally induce rules that can be used in data classification and 
prediction. Following is an example of a rule definition derived from building  
a Decision tree:

If (laptop model is x) and (manufactured by y) and (is z years old) and (with some 
owners being k) then (the battery life is n hours).

When closely observed, these rules are expressed in simple, human readable, and 
comprehensible formats. Additionally, these rules can be stored for later reference in 
a data store. The following concept map depicts various characteristics and attributes 
of Decision trees that will be covered in the following sections.

Terminology
Decision trees classify instances by representing in a tree structure starting from the 
root to a leaf. Most importantly, at a high level, there are two representations of a 
Decision tree—a node and an arc that connects nodes. To make a decision, the flow 
starts at the root nodes, navigates to the arcs until it has reached a leaf node, and 
then makes a decision. Each node of the tree denotes testing of an attribute, and the 
branches denote the possible values that the attribute can take.
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Following are some of the characteristics of a Decision tree representation:

•	 Every non-leaf node (for example, a decision node) denotes a representation 
of the attribute value

•	 Every branch denotes the rest of the value representation
•	 Every leaf (or terminal) node represents the value of the target attribute
•	 The starting node is called the root node

The following figure is a representation of the same:

Purpose and uses
Decision trees are used for classification and regression. Two types of trees are used 
in this context:

•	 Classification trees
•	 Regression trees

Classification trees are used to classify the given data set into categories. To use 
classification trees, the response of the target variable needs to be a categorical value 
such as yes/no, true/false. On the other hand, regression trees are used to address 
prediction requirements and are always used when the target or response variable is 
a numeric or discrete value such as stock value, commodity price, and so on.
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The next figure depicts the purpose of the Decision tree and relevant tree category as 
the classification or regression tree:

Constructing a Decision tree
Decision trees can be learned best by taking a simple example and constructing a 
Decision tree by hand. In this section, let's look at a simple example; the following 
table shows the dataset on hand. Our target is to predict whether a customer will 
accept a loan or not, given their demographics. Clearly, it will be most useful for the 
business user if we can come out with a rule as a model for this dataset.
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From the previous table, since age and experience are highly correlated, we can 
choose to ignore one of the attributes. This aids the feature selection implicitly.

Case 1: Let's start building the Decision tree. To start with, we will choose to split by 
CCAvg (the average credit card balance).

With this Decision tree, we now have two very explicit rules:

If CCAvg is medium then loan = accept or if CCAvg is high then loan = accept

For more clarity in the rules, let's add the income attribute. We have two more rules:

If CCAvg is low and income is low, then loan is not accept

If CCAvg is low and income is high, then loan is accept
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By combining the second rule here and the first two rules, we can derive the 
following rule:

If (CCAvg is medium) or (CCAvg is high) or (CCAvg is low, and income is high) then loan = 
accept

Case 2: Let's start building the Decision tree using Family:

In this case, there is just one rule that it is not giving an accurate result as it has only 
two data points.

So, choosing a valid attribute to start the tree makes a difference to the accuracy of 
the model. From the previous example, let's list out some core rules for building 
Decision trees:

•	 We usually start building Decision trees with one attribute, split the data based 
on the attribute, and continue with the same process for other attributes.

•	 There can be many Decision trees for the given problem.
•	 The depth of the tree is directly proportional to the number of attributes 

chosen.
•	 There needs to be a Termination Criteria that will determine when to stop 

further building the tree. In the case of no termination criteria, the model  
will result in the over-fitting of the data.

•	 Finally, the output is always in the form of simple rule(s) that can be stored 
and applied to different datasets for classification and/or prediction.
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One of the reasons why Decision trees are preferred in the field of Machine learning 
is because of their robustness to errors; they can be used when there are some 
unknown values in the training datasets too (for example, the data for income  
is not available for all the records).

Handling missing values
One of the interesting ways of assigning values to some unknowns is to see that the 
most common value in terms of occurrence is assigned and in some cases they can 
belong to the same class, if possible we should bring it closer to accuracy.

There is another probabilistic way of doing this where the prediction is distributed 
proportionately:

Assign a probability pi for every value vi of x.

Now, assign the fraction pi of x to each of the descendants. These probabilities can 
be estimated again based on the observed frequencies of the various values for A, 
among the examples at node n.

For example, let's consider a Boolean attribute A. Let there be 10 values for A out 
of which three have a value of True and the rest 7 have a value of False. So, the 
probability of A(x) = True is 0.3, and the probability that A(x) = False is 0.7.

A fractional 0.3 of this is distributed down the branch for A = True, and a fractional 
0.7 is distributed down the other. These probability values are used for computing 
the information gain, and can be used if a second missing attribute value needs to be 
tested. The same methodology can be applied in the case of learning when we need 
to fill any unknowns for the new branches. The C4.5 algorithm uses this mechanism 
for filling the missing values.

Considerations for constructing Decision trees
The key to constructing Decision trees is knowing where to split them. To do this,  
we need to be clear on the following:

•	 Which attribute to start and which attribute to apply subsequently?
•	 When do we stop building the Decision tree (that is avoid over-fitting)?
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Choosing the appropriate attribute(s)
There are three different ways to identify the best-suited attributes:

•	 Information Gain and Entropy
•	 Gini index
•	 Gain ratio

Information gain and Entropy
This entity is used in an algorithm known as C4.5. Entropy is a measure of 
uncertainty in the data. Let us take an intuitive approach to understand the concepts 
of Information gain and Entropy.

For example, consider a coin is being tossed, and there are five coins with a 
probability for heads as 0, 0.25, 0.5, 0.75, and 1 respectively. So, if we think which one 
has the highest and which one has the lowest uncertainty, then the case of 0 or 1 will 
be the lowest certain one and highest would be when it is 0.5. The following figure 
depicts the representation of the same:

A mathematical representation is shown here:

H = -∑pilog2pi
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Here, pi is the probability of a specific state.

If a system has four events with probabilities 1/2, 1/4, 1/5, and 1/8 indicate the total 
Entropy of the system as shown here:

H = -1/2 log2(1/2)-1/4log2(1/4)-1/5log2(1/5)-1/8log2(1/8)

In the original version of the C5.0 and C4.5 algorithms (ID3), a root node was chosen 
on the basis of how much of the total Entropy was reduced if this node was chosen. 
This is called information gain.

Information gain = Entropy of the system before split -  
Entropy of the system after split

Entropy in the system before split is shown as follows:

Entropy after using A to split D into v partitions to classify D:

Information gained by branching on an attribute is:
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Let's now compute the information gained from our data:

Class P accepts the loan = yes/ 1. Class N accepts the loan = no / 0

Entropy before split is as follows:

This is obvious and expected as we have almost a fifty-fifty split of the data. Let's 
now see which attribute gives the best information gain.

In case the split is based on CCAvg and Family, the Entropy computations can be 
shown as follows. The total Entropy is weighted as the sum of the Entropies of each 
of the nodes that were created.

The Entropy after its split is shown here:
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The information gain is as follows:

This methodology is applied to compute the information gain for all other attributes. 
It chooses the one with the highest information gain. This is tested at each node to 
select the best node.

Gini index
Gini index is a general splitting criterion. It is named after an Italian statistician 
and economist—Corrado Gini. Gini Index is used to measure the probability of 
two random items belonging to the same class. In the case of a real dataset, this 
probability value is 1. The Gini measure of a node is the sum of the squares of the 
proportions of the classes. A node with two classes each has a score of 0.52 + 0.52 = 
0.5. This is because the probability of picking the same class at random is 1 out of 2. 
Now, if we apply Gini index for the data set we get the following:

The original Gini Index =  = 0.502959

When split with CCAvg and Family, the Gini Index changes to the following:
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Gain ratio
Another improvement in C4.5 compared to ID3 is that the factor that decides 
the attribute is the gain ratio. The gain ratio is the ratio of information gain and 
information content. The attribute that gives the maximum amount of gain ratio  
is the attribute that is used to split it.

Let's do some calculations with an extremely simple example to highlight why the 
gain ratio is a better attribute than the information gain:

The dependent variable is whether they are married under a specific circumstance. 
Let's assume that in this case, no man is married. Whereas all women, except the last 
one (60 women), are married.

So, intuitively the rule has to be as follows:

•	 If it is a man, then he is unmarried
•	 If it is a woman then she is married (the only isolated case where she is not 

married must be noise).

Let's systematically solve this problem to gain insights into various parameters. First 
let's split the data into two halves as training and testing data. So, our training set 
consists of the last 20 males (all insensible and aged between 21-40), and the last 30 
females (all married and aged between 71-99, except the last one). Testing contains 
the other half where all the women are married.

The gain ratio requires measure for Information content.

Information content is defined as -fi log2 fi. Note that here, we do not take the value 
of the dependent variable into account. We only want to know the fraction of the 
members in a state divided by the total members.

The information content of gender is that it has only two states; males are 20 
and females are 30. So, the information content for the gender is 2/5*LOG(2/5,2)-
3/5*LOG(3/5,2)=0.9709.
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The information content of age is that there is a total of 49 states for the age. For  
the states that have only one data point, the information content is -(1/50)*log(1/50,2) 
= 0.1129.

There are 48 such states with a single data point. So, their information content is 
(0.1129*48), 5.4192. In the last state, there are two data points. So, its information 
content is -(2/50 * LOG(2/50,2)) = 0.1857. The total information content for the age  
is 5.6039.

The gain ratio for the gender = Information gain for gender /  
Information content for gender = 0.8549/0.9709 = 0.8805.

The gain ratio for the age = 0.1680

So, if we consider the gain ratio, we get that the gender is a more suitable measure. 
This aligns with the intuition. Let's now say that we used the gain ratio and built  
the tree. Our rule is if the gender is male, the person is unmarried and if it is female, 
the person is married.

Termination Criteria / Pruning Decision trees
Each branch is grown deeply enough to classify the training examples perfectly by 
the Decision tree algorithm. This can turn out to be an acceptable approach and most 
of the times results in problems when there is some noise in the data. In case the 
training dataset is too small and cannot represent the true picture of the actual data 
set the Decision tree might end up over-fitting the training examples.

There are many ways of avoiding over-fitting in Decision tree learning. Following 
are the two different cases:

•	 One case where the Decision tree is terminated for growth way before a 
perfect classification of the training data is done

•	 Another case where the over-fitting of data is done and then the tree is 
pruned to recover

Though the first case might seem to be more direct, the second case of post-pruning 
the over-fitting trees is more successful in reality. The reason is the difficulty to know 
when to stop growing the tree. Irrespective of the approach taken, it is more important 
to identify the criterion to determine the final, appropriate tree size.
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Following are a couple of approaches to find the correct tree size:

1.	 Identify a separate and different dataset to that of the target training data  
set to be used, and evaluate the correctness of post-pruning nodes in the  
tree. This is a common approach and is called training and validation  
set approach.

2.	 Instead of having a subset of data in the training set, use up all the data in the 
training set, and apply probabilistic methods to check if pruning a particular 
node has any likelihood to produce any improvement over and above the 
training dataset. Use all the available data for training. For example, the  
chi-square test can be used to check this probability.

Reduced-Error-Pruning (D): We prune at a node by removing the subtree that is 
rooted at the node. We make that node a leaf (with the majority label of associated 
examples); algorithm is shown as follows:

Rule post-pruning is a more commonly used method and is a highly accurate 
hypotheses technique. A variation of this pruning method is used in C4.5.

Following are the steps of the Rule Post-Pruning process:

1.	 Construct a Decision tree from the training set by growing it until there is an 
obvious over-fitting seen.

2.	 Generate rules from the constructed Decision tree with every path, starting 
from the root node to a particular leaf node mapping to a rule.
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3.	 Apply pruning to each rule for removing identified preconditions and help 
improve the probabilistic accuracy.

4.	 Next, use the pruned rules in the order of their increased accuracy on the 
subsequent instances.

Following are the advantages of rule-based pruning and its need for converting  
into rules:

•	 Improving the readability of the rules
•	 A consistent testing can be done at both the root and leaf level nodes
•	 There is a clear decision that can be made of either removing the decision 

node or retaining it

Decision trees in a graphical representation
Until now, we have seen how Decision trees are described by dividing the data at 
the node and comparing the value with a constant. Another way of representing 
Decision trees is to visualize and have graphical representation. For example, we 
can choose two input attributes in two dimensions, then compare the value of one 
attribute with constant and show the split on the data to a parallel axis. We can 
also compare two attributes with one another along with a linear combination of 
attributes, instead of a hyperplane that is not parallel to an axis.
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Constructing multiple Decision trees for the given data is possible. The process of 
identifying the smallest and a perfect tree is called a minimum consistent hypothesis. 
Let's use two arguments to see why this is the best Decision tree:

Occam's Razor is simple; when there are two ways to solve a problem and both give 
the same result, the simplest of them prevails.

In data mining analysis, one is likely to fall into the trap of complex methods and 
large computations. So, it is essential to internalize the line of reasoning adopted  
by Occam. Always choose a Decision tree that has an optimum combination of size 
and errors.

Inducing Decision trees – Decision tree algorithms
There are many Decision tree inducing methods. Among all the methods, C4.5 and 
CART are the most adopted or popular ones. In this section, we will cover these 
methods in depth and list a brief on other methods.

CART
CART stands for Classification and Regression Trees (Breiman et al., 1984). CART 
creates binary trees. This means there are always two branches that can emerge from 
a given node. The philosophy of the CART algorithm is to follow a goodness criterion, 
which is all about choosing the best possible partition. Moreover, as the tree grows, a 
cost-complexity pruning mechanism is adopted. CART uses the Gini index to select 
appropriate attributes or the splitting criteria.

Using CART, the prior probability distribution can be provided. We can generate 
Regression trees using CART that in turn help in predicting real numbers against 
a class. The prediction is done by applying the weighted mean for the node. CART 
identifies splits that minimize the prediction squared error (that is, the least-squared 
deviation).
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The depiction in the following figure of CART is for the same example referred in the 
previous section, where Decision tree construction is demonstrated:

C4.5
Similar to CART, C4.5 is a Decision tree algorithm with a primary difference that 
it can generate more than binary trees, which means support for multiway splits. 
For attribute selection, C4.5 uses the information gain measure. As explained in 
the previous section, an attribute with the largest information gain (or the lowest 
Entropy reduction) value helps to achieve closer to accurate classification with the 
least quantity of data. One of the key drawbacks of C4.5 is the need for large memory 
and CPU capacity for generating rules. The C5.0 algorithm is a commercial version  
of C4.5 that was presented in 1997.

C4.5 is an evolution of the ID3 algorithm. The gain ratio measure is used for 
identifying the splitting criteria. The splitting process stops when the number of splits 
reaches a boundary condition definition that acts as a threshold. Post this growing 
phase of the tree, pruning is done, and an error-based pruning method is followed.
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Here is a representation of the C4.5 way of constructing the Decision tree for the 
same example used in the previous section:

Tree Induction 
method

How does it work?

ID3 The ID3 (Iterative Dichotomiser 3) algorithm is considered the simplest 
among the Decision tree algorithms. The information gain method is 
used as splitting criteria; the splitting is done until the best information 
gain is not greater than zero. There is no specific pruning done with ID3. 
It cannot handle numeric attributes and missing values.

CHAID CHAID (Chi-squared Automatic Interaction Detection) was built to 
support only nominal attributes. For every attribute, a value is chosen 
in such a way that it is the closest to the target attribute. There is an 
additional statistical measure, depending on the type of the target 
attribute that differentiates this algorithm.
F test for a continuous target attribute, Pearson chi-squared test for 
nominal target attribute, and likelihood–ratio test for an ordinal target 
attribute is used. CHAID checks a condition to merge that can have 
a threshold and moves for a next check for merging. This process is 
repeated until no matching pairs are found.
CHAID addresses missing values in a simple way, and it operates on the 
assumption that all values belong to a single valid category. No pruning 
is done in this process.
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Tree Induction 
method

How does it work?

QUEST The acronym QUEST stands for Quick, Unbiased, Efficient, and  
Statistical Tree.
This algorithm supports univariate and linear combination splits. 
ANOVA F-test or Pearson's chi-square or two-means clustering methods 
are used to compute the relationship between each input attribute and 
the target attribute, depending on the type of the attribute. Splitting 
is applied on attributes that have stronger association with the target 
attribute. To ensure that there is an optimal splitting point achieved, 
Quadratic Discriminant Analysis (QDA) is applied. Again, QUEST 
achieves binary trees and for pruning 10-fold cross-validation is used.

CAL5 This works with numerical attributes.

FACT This algorithm is an earlier version of QUEST that uses statistical 
methods followed by discriminant analysis for attribute selection.

LMDT This uses a multivariate testing mechanism to build Decision trees.

MARS A multiple regression function is approximated using linear splines and 
their tensor products.

Greedy Decision trees
A vital characteristic of Decision trees is that they are Greedy! A greedy algorithm 
targets achieving optimal solutions globally by achieving local optimums at every 
stage. Though the global optimum is not always guaranteed, the local optimums 
help in achieving global optimum to a maximum extent.

Every node is greedily searched to reach the local optimum, and the possibility 
of getting stuck at achieving local optima is high. Most of the time, targeting local 
optima might help in providing a good enough solution.

Benefits of Decision trees
Some of the advantages of using Decision trees are listed here:

•	 Decision trees are fast and easy to build and require little experimentation
•	 They are robust
•	 They are easy to understand and interpret
•	 Decision trees do not require complex data preparation
•	 They can handle both categorical and numerical data
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•	 They are supported using statistical models for validation
•	 They can handle highly dimensional data and also operate large datasets

Specialized trees
In this section, we will explore some important special situations we face and  
special types of Decision trees. These become handy while solving special kinds  
of problems.

Oblique trees
Oblique trees are used in cases where the data is extremely complex. If the attributes 
are x1, x2, AND x3…xn, then the C4.5 and CART tests the criteria as x1>some value or 
x2< some other value, and so on. The goal in such cases is to find an attribute to test at 
each node. These are graphically parallel axis splits as shown in the following figure:

Clearly, we need to construct enormous trees. At this point, let's learn a data mining 
jargon called hyperplanes.

In a 1 D problem, a point classifies the space. In 2 D, a line (straight or curved) 
classifies the space. In a 3 D problem, a plane (linear or curved) classifies the space. 
In higher dimensional space, we imagine a plane like a thing splitting and classifying 
the space, calling it hyperplane. This is shown in the following figure:
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So, the traditional Decision tree algorithms produce axis parallel hyperplanes that 
split the data. These can be cumbersome if the data is complex. If we can construct 
oblique planes, the explicability may come down, but we might reduce the tree size 
substantially. So, the idea is to change the testing conditions from the following:

xi > K or < K to a1x1+ a2x2+ … + c > K or < K

These oblique hyperplanes can at times drastically reduce the length of the tree. The 
same data shown in figure 2 is classified using oblique planes in the figure here:
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Random forests
These specialized trees are used when there are too many dimensions. We have 
learned about curse of dimensionality in the Machine learning introduction chapter. 
The basic premise of the curse of dimensionality is that high dimensional data  
brings in complexity. With more dimensions and features, the possibility of errors 
is also high. Before we take a deep dive into Random forests, let's understand 
the concept of Boosting. More details on boosting methods are covered as a part 
of Chapter 13, Ensemble learning. In the case of Random forests, the application of 
boosting is about how single tree methods are brought together to see a boost in  
the result regarding accuracy.

A Random forest extends Decision trees by including more number of Decision trees. 
These Decision trees are built by a combination of random selection of data (samples) 
and a random selection of a subset of attributes. The following diagram depicts the 
random selection of datasets to build each of the Decision trees:
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Another variable input required for the making of multiple Decision trees are 
random subsets of the attributes, which is represented in the diagram here:

Since each tree is built using random dataset and random variable set, these trees are 
called Random trees. Moreover, many such Random trees define a Random forest.

The result of a Random tree is based on two radical beliefs. One is that each of the 
trees make an accurate prediction for maximum part of the data. Second, mistakes 
are encountered at different places. So, on an average, a poll of results is taken across 
the Decision trees to conclude a result.

There are not enough observations to get good estimates, which leads to sparsity 
issues. There are two important causes for exponential increase on spatial density, 
one, is increase in dimensionality and the other is increase in the equidistant points 
in data. Most of the data is in the tails. 
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To estimate the density of a given accuracy, the following table shows how the 
sample size increases with dimensionality. The subsequent computations table 
shows how the mean square error of an estimate of multivariate normal distribution 
increases with an increase in dimensionality (as demonstrated by Silverman and 
computed by the formula given here):

Random forests are a vital extension of the Decision trees that are very simple to 
understand and are extremely efficient, particularly when one is dealing with high 
dimensional spaces. When the original data has many dimensions, we randomly pick 
a small subset of the dimensions (columns) and construct a tree. We let it grow all the 
way without pruning. Now, we iterate this process and construct hundreds of trees 
with a different set of attributes each time.

For prediction, a new sample is pushed down the tree. A new label of the training 
sample is assigned to the terminal node, where it ends up. This procedure is iterated 
over all the trees in the group, and the average vote of all trees is reported as the 
Random forest prediction.

Evolutionary trees
When achieving the global optima seems almost impossible, Evolutionary trees 
are used. As you learned, Decision trees are greedy. So sometimes, we may be 
constructing much bigger trees just because we are stuck in local optima. So,  
if your tree length is just too much, try oblique trees or evolutionary trees.

The concept of evolutionary trees is originated from a very exciting concept called 
genetic algorithms. You will learn about it in detail in a different course. Let us only 
look at the essence.



Chapter 5

[ 183 ]

Instead of mathematically computing the best attribute at every node, an 
Evolutionary tree randomly picks a node at each point and creates a tree. It then 
iterates and creates a collection of trees (forest). Now, it identifies the best trees in  
the forest for the data. It then creates the next generation of the forest by combining 
these trees randomly.

Evolutionary trees, on the other hand, choose a radically different top node  
and produce a much shorter tree, which has the same efficiency. Evolutionary 
algorithms take more time to compute.

Hellinger trees
There have been attempts to identify impurity measures that are less sensitive to the 
distribution of dependent variable values than Entropy or Gini index. A very recent 
paper suggested Hellinger distance as a measure of impurity that does not depend 
on the distribution of the target variable.

Essentially, P(Y+|X) is the probability of finding Y+ for each attribute and similarly, 
P(Y-|X) for each attribute is computed.

From the previous image, for a High value of the first attribute, only a High value of 
the second attribute results in a probability value of 1. This brings the total distance 
value to sqrt(2).

Implementing Decision trees
Refer to the source code provided for this chapter for implementing Decision Trees 
and Random Forests (source code path .../chapter5/... under each of the folder 
for the technology).
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Using Mahout
Refer to the folder .../mahout/chapter5/decisiontreeexample/.

Refer to the folder.../mahout/chapter5/randomforestexample/.

Using R
Refer to the  folder .../r/chapter5/decisiontreeexample/.

Refer to the folder .../r/chapter5/randomforestexample/.

Using Spark
Refer to the folder .../spark/chapter5/decisiontreeexample/.

Refer to the folder .../spark/chapter5/randomforestexample/.

Using Python (scikit-learn)
Refer to the folder .../python scikit-learn/chapter5/decisiontreeexample/.

Refer to the folder .../python scikit-learn/chapter5/randomforestexample/.

Using Julia
Refer to the folder .../julia/chapter5/decisiontreeexample/.

Refer to the folder .../julia/chapter5/randomforestexample/.

Summary
In this chapter, you learned a supervised learning technique with Decision trees 
to solve classification and regression problems. We also covered methods to select 
attributes, split the tree, and prune the tree. Among all other Decision tree algorithms, 
we have explored the CART and C4.5 algorithms. For a special requirement or a 
problem, you have also learned how to implement Decision tree-based models using 
MLib of Spark, R, and Julia. In the next chapter, we will cover Nearest Neighbour  
and SVM (Support Vector Machines) to solve supervised and unsupervised  
learning problems.
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Instance and Kernel Methods 
Based Learning

We have covered Decision tree models for solving classification and regression 
problems in the previous chapter. In this chapter, we will cover two important models 
of supervised and unsupervised learning techniques which are the Nearest Neighbors 
method, which uses the instance-based learning model, and the Support Vector 
Machines (SVM) model, which uses kernel methods based learning model. For both 
methods, we will learn the basics of the technique and see how it can be implemented 
in Apache Mahout, R, Julia, Apache Spark, and Python. The following figure depicts 
different learning models covered in this book and the techniques highlighted will be 
dealt in covered in this chapter.
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The following topics are covered in-depth in this chapter:

•	 Instance-based learning models
•	 Introduction to instance-based learning
•	 Lazy and eager learning
•	 A brief look at different algorithms/approaches of instance-based learning 

techniques Nearest Neighbor method, Case-based reasoning, Locally 
weighed regression, and Radial basis functions

•	 A deep dive into KNN (k-Nearest Neighbor) algorithm with a real-world  
use case example; mechanisms to speed up KNN

•	 Sample implementation of Apache Mahout, R, Apache Spark, Julia and 
Python (scikit-learn) libraries and modules

•	 Kernel-based learning models
°° Introduction to kernel-based learning
°° A brief look at different algorithms/approaches of Kernel-based 

learning techniques, Support Vector Machines (SVM), Linear 
Discriminate Analysis (LDA), and more

°° A deep dive into SVM algorithm with a real-world use case example

Instance-based learning (IBL)
The IBL technique approaches learning by simply storing the provided training 
data and using it as a reference for predicting/determining the behavior of a new 
query. As learned in Chapter 1, Introduction to Machine learning, instances are nothing 
but subsets of datasets. The instance-based learning model works on an identified 
instance or groups of instances that are critical to the problem. The results across 
instances are compared and can include an instance of new data as well. This 
comparison uses a particular similarity measure to find the best match and predict. 
Since it uses historical data stored in memory, this learning technique is also called 
memory-based or case-based learning. Here, the focus is on the representation of  
the instances and similarity measures for comparison between them.
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Every time a new query instance is received for processing, a set of similar, related 
instances are retrieved from memory, and then this data is used to classify the new 
query instance.

Instance-based learners are also called lazy learners. Overall, the entire database is 
used to predict behavior. A set of data points referred to as neighbors are identified, 
having a history of agreeing with the target attribute. Once a neighborhood of data 
points is formed, the preferences of neighbors are combined to produce a prediction 
or top-K recommendation for the active target attribute.

These methods are applicable for complex target functions that can be expressed 
using less complex local approximations. Unfortunately, with these methods, the 
cost of classifying a new instance is always high and in cases where there is a curse 
of dimensionality, these methods might end up with a bigger footprint as all the 
attributes of all the instances are considered. Classifiers and regressions are what we 
will cover in this and the next chapters that are to come. With classifiers, we try to 
predict a category and, with regression, we predict a real number. We will first look at 
the Nearest Neighbor algorithm that can be used both for classification and regression 
problems.

Rote Learner is one of the instance-based classifiers and focuses on memorizing the 
entire training data. Classification is primarily done only if the target attribute value 
exactly matches with the attribute value in the training example. The other classifier 
is the Nearest Neighbor, which classifies based on the closest neighbor(s). In the next 
section, let's dive deeply into the Nearest Neighbor algorithm.
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Nearest Neighbors
Before we start understanding what the Nearest Neighbor algorithm is all about,  
let's start with an example; the following graph shows the plotting of data points X  
and Y that have two classes: stars and triangles. Let's not really worry about what  
is the exact data representation or the data points. If we had to solve intuitively  
the problem of finding what that particular red square box data point is, then  
the answer would obviously be a green triangle. This is an intuition and, without 
actually understanding or analyzing the data points, we can arrive at this conclusion. 
But what actually happened here is that we have seen the traits of the neighbors of 
the data point in context and have predicted the class to which the new data point 
could possibly belong to. Overall, the basis for the learning algorithm is actually the 
behavior of the nearby or neighboring points.

Nearest Neighbor is an algorithm that uses this basic technique of intuition.  
This algorithm finds the Nearest Neighbor using some distance measurement 
techniques that will be discussed in the following sections. Let's now extend  
this to another example data set; and again, the new data point with a question  
mark (?) will be needed for classification.
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Let's now assume that the class the new data point belongs to is the yellow star.  
An important aspect of the distance measure is that the Nearest Neighbor is never 
just a single point but is usually a region. The following figure shows a region and 
all the data points that fall in this region belong to the class yellow star. This region 
is called the Voronoi cell. This region is usually a polygon with straight lines in case 
the distance measure used is the Euclidean distance measure.
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For each training example if the Voronoi cells are computed, we can see the Voronoi 
tessellation as shown next. This tessellation represents the partition of space into the 
non-overlapping region and typically each region has one example.

The size of the cell is determined by the number of examples available. The more the 
examples, the less the size of the regions. Another interesting aspect of the Voronoi 
tessellation is that there can be boundaries carved that form a separation for the classes, 
as shown in the following figure. The right side of the bold line belongs to the triangle 
class, and the left side belongs to the star class.
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One of the major complications with the Nearest Neighbor approach is its insensitivity 
to the outliers, thus really messing up the boundaries, and one way of solving this 
problem is to consider more than one neighbor, which this would make the model 
more stable and smooth. Hence, a consideration of k-Neighbors signifies the k-Nearest 
Neighbor algorithm.

Let's now look at how the KNN classification algorithm works:

Given the {xi, yi} training examples, where xi represents attribute values, yi represents 
class labels, and there is a new test point X that needs to be classified, the following 
steps are performed in a KNN classification algorithm:

1.	 Distance is computed between x and xi for every given value of xi.
2.	 Choose k nearest neighbors xi1, … xik and the respective class labels  

yi1, … yik.
3.	 Return a y that is the most frequent in the list of labels yi1, … yik.

Let's now see how different the KNN regression algorithm is among the important 
differences. Instead of outputting a class, we will output real numbers like ratings 
or age, and so on. The algorithm is identical, but the only variation is in the return 
value, Step 3, and instead of a most frequent value, we take the mean of y's.
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Value of k in KNN
The value of k has a tremendous effect on the KNN performance. If the value of k 
is too large, the KNN algorithm uses the previous value and thus might result in 
inaccuracies. And in the case where the k value is too small, the model would become 
too sensitive to outliers as we saw in the previous section. Hence, an accurate k value 
usually lies midway through the smallest and largest value. The approach is to choose 
a value in this range and measure the error on the training data and pick a k that gives 
the best generalization performance.

The following figure depicts 1, 2, and 3 Nearest Neighbors for the point x:

k-Nearest Neighbors for the point x are all the data points that have the k smallest 
distance from x.

Distance measures in KNN
This is one of the attributes of the Nearest Neighbor algorithm and possibly the 
only area that one can experiment or try alternatives in. There are many distance 
measurement options and in this section, we will discuss some of the commonly 
used measures. The primary purpose of distance measure is to identify the examples 
that are similar or dissimilar. Similar to the k value, distance measure determines the 
performance of KNN.



Chapter 6

[ 193 ]

Euclidean distance
The Euclidean distance is the default option for numeric attributes. The distance 
measure formula is given here:

( ) 2, d dD x x x x′ ′= −∑

The Euclidean distance measure is symmetrical and spherical and treats all the 
dimensions equally. One of the drawbacks of this measure is its sensitivity to the 
extreme values within a single attribute. This is similar to the mean squared error.

Hamming distance
The Hamming distance measure is a default option if we need to deal with 
categorical attributes. The primary function of a Hamming distance measure is to 
check whether the two attributes are equal or not. When they are equal, the distance 
is 0, otherwise it is 1; in effect, we check the number of attributes between two 
instances. The formula for the Hamming distance measure is as given here:

( ), 1
d dx xd

D x x ′≠′ = ∑
Different attributes are measured on different scales, and there is a need to normalize 
the attributes.

Minkowski distance
We will now look at the p-norm distance measures family that is a generalization of 
the Euclidean distance measures. These measures are relatively quite flexible.

The Minkowski distance formula looks similar to Euclidean and is as follows:

( ), pp
d dD x x x x′ ′= −∑

If p=0, the distance measure is the Hamming measure.

If p=1, the distance measure is the Manhattan measure.
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If p=2, the distance measure is the Euclidean measure.

Case-based reasoning (CBR)
CBR is an advanced instance-based learning method used with more complex instance 
objects. In addition to having a fixed database of past cases, CBR accumulates and 
stores the new data that is classified. Like all other instance-based learning methods, 
CBR matches new cases to find similar past cases. Semantic nets-based distance 
measures for matching the data is applied in this case. This is a diagrammatic matching 
method unlike other methods such as the Euclidean distance measure.

Similar to the other instance-based learning methods, CBR is a lazy learner, and the 
power comes from the organization and content of the cases.

Reusing past cases is one of the key factors in the way human problem solving 
and reasoning works. Since CBR is modeled on human problem solving, it is more 
understandable to humans. This means the way CBR works can be altered by experts 
or with the consultation of experts.

By the virtue of its ability to handle very complex instances, CBR is often used in 
medical diagnosis for detecting heart diseases, hearing defects, and other relatively 
complex conditions. The following figure depicts a typical CBR learning flow and is 
famously called the R4 Model.
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Lazy learning in Machine learning is all about delaying the process of generalization 
beyond the training data until the time of the query. The advantage is that we can  
now perform parallel processing while the downside is higher memory requirements. 
The following diagram presents a process flow for a CBR function:

1.	 First, a New Case is received.
2.	 Then, a matching process is triggered where the received case is matched to 

the Case Base that has existing cases and already classified cases. This is the 
retrieval process.

3.	 Check if the Matched Cases perfectly fits the new case.
4.	 If yes, Reuse it, otherwise Revise it.
5.	 Output the final recommended solution.
6.	 At a later point in time, based on the facts, if the recommendation is in 

agreement, retain the learning and add to the case base. The learning phase 
may also add rules to the knowledge base that the eventual facts suggest.
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Locally weighed regression (LWR)
LWR is a particular case of linear regression where, due to noise, the dataset is  
no more linear, and linear regression underfits the training data. The problem of 
non-linearity is solved by assigning weights to the Nearest Neighbors. The assigned 
weights are usually bigger for data points that are closer to the data that needs  
a prediction.

Implementing KNN
Refer to the source code provided for this chapter for implementing the k-Nearest 
Neighbor algorithm (source code path .../chapter6/... under each of the folders 
for the technology).

Using Mahout
Refer to the folder .../mahout/chapter6/knnexample/.

Using R
Refer to the folder .../r/chapter6/knnexample/.

Using Spark
Refer to the folder .../spark/chapter6/knnexample/.

Using Python (scikit-learn)
Refer to the folder .../python scikit learn/ chapter6/knnexample/.

Using Julia
Refer to the folder .../julia/chapter6/knnexample/.



Chapter 6

[ 197 ]

Kernel methods-based learning
We have just seen what instance-based learning methods are, and we have taken a 
deep dive into the Nearest Neighbor algorithm and covered specific implementation 
aspects. In this section, we will look into kernels and the kernel-based Machine 
learning algorithms.

A kernel, in simple terms, is a similarity function that is fed into a Machine learning 
algorithm. It takes two inputs and suggests how similar they are. For example, 
if we are dawned with a task of classifying images, the input data is a key-value 
pair (image, label). So, in terms of the flow, the image data is taken, features are 
computed, and a vector of features are fed into the Machine learning algorithm.  
But, in the case of similarity functions, we can define a kernel function that internally 
computes the similarity between images, and feed this into the learning algorithm 
along with the images and label data. The outcome of this is a classifier.

The standard regression or SVM or Perceptron frameworks work with kernels and 
only use vectors. To address this requirement, we will have the Machine learning 
algorithms expressed as dot products so that kernel functions can be used.

Kernels are preferable to feature vectors. There are many advantages; one of the key 
reasons being the ease of computing. Also, feature vectors need more storage space 
in comparison to dot products. It is possible to write Machine learning algorithms to 
use dot products and later map them to use kernels. This way, the usage of feature 
vectors can be completely avoided. This will support us in working with highly 
complex, efficient-to-compute, and yet high performing kernels effortlessly, without 
really developing multi-dimensional vectors.

Kernel functions
Let's understand what exactly kernel functions are; the following figure represents  
a 1D function using a simple 1-Dimensional example. Assume that given points are 
as follows:
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A general 1-Dimensional hyperplane, as depicted previously, will be a vertical line 
and no other vertical lines will separate the dataset. If we look at the 2-Dimensional 
representation, as shown next, there is a hyperplane (an arbitrary line in 2-Dimensions) 
that separates red and blue points, thus eligible for a separation using SVMs.

With the growing dimensional space, the need to be able to separate data increases. 
This mapping, x -> (x, x2), is called the kernel function.

In case of growing dimensional space, the computations become more complex and 
kernel trick needs to be applied to address these computations cheaply.

Support Vector Machines (SVM)
SVMs are used in solving classification problems. Overall, as an approach, the 
goal is to find that hyperplane effectively divides the class representation of data. 
Hyperplane can be defined as a generalization of a line in 2-Dimensions and a 
plane in 3-Dimensions. Let's now take an example to understand how SVM works 
for linearly separable binary datasets. We will use the same example as we have in 
the Nearest Neighbor algorithms. The following diagram represents data with two 
features X and Y and available classes being triangles and stars.
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The goal of SVM is to find the hyperplane that separates these two classes.  
The following diagram depicts some of the possible hyperplanes that can divide 
the datasets. The choice of the best hyperplane is defined by the extent to which a 
maximum margin is left for both classes. The margin is the distance between  
the hyperplane and the closest point in the classification.

Let's take two hyperplanes among others and check the margins represented by M1 
and M2. It is very clear that margin M1 > M2, so the choice of the hyperplane that 
separates best is the new plane between the green and blue planes.
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The new plane can be represented by a linear equation as:

f(x) = ax + b

Let's assume that this equation delivers all values ≥ 1 from the triangle class and ≤ -1 
for the star class. The distance of this plane from the closest points in both the classes 
is at least one; the modulus is one.

f(x) ≥ 1 for triangles and f(x) ≤ 1 or |f(x)| = 1 for star

The distance between the hyperplane and the point can be computed using the 
following equation.

M1 = |f(x)| / ||a|| = 1 / ||a||

The total margin is 1 / ||a|| + 1 / ||a|| = 2 / ||a|.

To maximize the separability, which is the goal of SVM, we will need to maximize the 
||a|| value. This value is referred to as a weight vector. This process of minimizing 
the a weight value is a non-linear optimization task. One method is to use the  
Karush-Kuhn-Tucker (KKT) condition, using the Lagrange multiplier λi.
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Let's take an example of two points between the two attributes X and Y. We need to 
find a point between these two points that has a maximum distance between these 
points. This requirement is represented in the graph depicted next. The optimal point 
is depicted using the red circle.

The maximum margin weight vector is parallel to the line from (1, 1) to (2, 3).  
The weight vector is at (1,2), and this becomes a decision boundary that is halfway 
between and in perpendicular, that passes through (1.5, 2).

So, y = x1 +2x2 − 5.5 and the geometric margin is computed as √5.

Following are the steps to compute SVMs:

With w = (a, 2a) for a the functions of the points (1,1) and (2,3) can be represented as 
shown here:

a + 2a + ω0 = -1 for the point (1,1)

2a + 6a + ω0 = 1 for the point (2,3)

The weights can be computed as follows:
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Lastly, the final equation is as follows:
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Inseparable Data
SVMs can probably help you to find out a separating hyperplane if it exists.  
There might be cases where there is no possibility to define a hyperplane, which  
can happen due to noise in the data. In fact, another reason can be a non-linear 
boundary as well. The following first graph depicts noise and the second one  
shows a non-linear boundary.



Chapter 6

[ 203 ]

In the case of problems that arise due to noise in the data, the best way to look at it is 
to reduce the margin itself and introduce slack.

The non-linear boundary problem can be solved by introducing a kernel. Some of the 
kernel functions that can be introduced are depicted in the following diagram:
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Implementing SVM
Refer to the source code provided for this chapter to implement the SVM algorithm 
(source code path .../chapter6/... under each of the folders for the technology).

Using Mahout
Refer to the folder .../mahout/chapter6/svmexample/.

Using R
Refer to the folder .../r/chapter6/svmexample/.

Using Spark
Refer to the folder .../spark/chapter6/svmexample/.

Using Python (Scikit-learn)
Refer to the folder .../python-scikit-learn/chapter6/svmexample/.

Using Julia
Refer to the folder .../julia/chapter6/svmexample/.

Summary
In this chapter, we have explored two learning algorithms, instance-based and 
kernel methods, and we have seen how they address the classification and prediction 
requirements. In the instance-based learning methods, we explored the Nearest 
Neighbor algorithm in detail and have seen how to implement this using our 
technology stack, Mahout, Spark, R, Julia, and Python. Similarly, in the kernel-based 
methods, we have explored SVM. In the next chapter, we will cover the Association 
Rule-based learning methods with a focus on Apriori and FP-growth algorithms.
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Association Rules  
based learning

We have covered Decision tree, instance and kernel-based supervised and 
unsupervised learning methods in the previous chapters. We also explored the most 
commonly used algorithms across these learning algorithms in the previous chapters. 
In this chapter, we will cover association rule based learning and, in specific, Apriori 
and FP-Growth algorithms among others. We will learn the basics of this technique 
and get hands-on implementation guidance using Apache Mahout, R, Julia, Apache 
Spark, and Python. The following figure depicts different learning models covered  
in this book. The techniques highlighted in orange will be dealt with in detail in  
this chapter.
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The following topics are covered in depth in this chapter:

•	 Understanding the basics and core principles of association rules based 
learning models

•	 Core use cases for association rule such as the Market Basket problem
•	 Key terms such as itemsets, lift, support, confidence and frequent itemsets, 

and rule generation techniques
•	 A deep dive into association rule based algorithms such as Apriori and FP-

Growth; comparing and contrasting Apriori and FP-Growth in the context of  
large datasets

•	 Overview and purpose of some advanced association rules concepts such  
as correlation and sequential rules

•	 A sample implementation for Apache Mahout, R, Apache Spark, Julia and 
Python (scikit-learn) libraries and modules.

Association rules based learning
Association rule-based Machine learning deals with finding frequent patterns, 
associations, and transactions that can be used for classification and prediction 
requirements. The association rule based learning process is as follows: given a set 
of transactions, finding rules and using these rules to predict the occurrence of an 
item based on the occurrences of other items in the transaction is Association rule 
based learning. The following diagram represents the scope of Machine learning:
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Association rule – a definition
An association rule is a representation of a pattern that describes the probability with 
which an event occurs, given the occurrence of another event. Usually, the syntax for 
association rules follows the if...then statements that relate two sets of unrelated data 
from the repository. In short, it helps find the relationship between objects that are 
frequently used together. The goal of association rules is to find all the sets of items 
that have greater support than minimum support using the large dataset to predict 
the rules that have confidence greater than the minimum confidence. One of the most 
common examples where association rule is used is the Market Basket example. To 
elaborate the Market basket example, if a customer buys an iPad, he or she is likely 
to buy an iPad case as well.

Two important criteria are used in association rules, Support and Confidence.  
Every association rule should have a minimum Confidence and minimum Support  
at the same time. This is usually user-defined.

Now, let's look at what Support, Confidence, and lift measures are. Let's consider  
the same example as explained previously, If X then Y. where X is buying an iPad 
and Y is buying an iPad case.

Then Support is defined as the frequency with which X and Y are purchased together 
over the total number of purchases or transactions.

( ),frq X Y
Support

N
=

Confidence can be defined as the frequency with which X and Y are purchased 
together over the frequency with which X is purchased in isolation.

( )
( )
,frq X Y

Confidence
frq X

=

Lift is defined as the Support over the Support for X times the Support for Y.

( ) ( )
SupportLift

Supp X Supp Y
=

×
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Before understanding the significance of these measures, let's look at the terms used 
in this context as an example. A collection of items in a warehouse called itemset 
are represented as I = { i1, i2, …. in}, a set of all transactions where each transaction 
consists of a subset of itemset is represented as T = { t1, t2, …. tn}, where tx is a subset  
of I with a Unique Transaction Identifier (UTI).

Let's represent items, transactions, and measures using an example now.

Consider five items and five transactions as depicted here:

I = {iPad(A), iPad case(B), iPad scratch guard(C), Apple care (D), iPhone (E)}
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T = {{ iPad, iPad case, iPad scratch guard }, { iPad, iPad scratch guard, Apple care }, { iPad 
case, iPad scratch guard, Apple care }, { iPad, Apple care, iPhone }, { iPad case, iPad scratch 
guard, iPhone }}

The table below shows the support, confidence and lift values for each of the 
identified rules.

# Rule Support Confidence Lift
1 If iPad (A) is purchased, iPhone (D) is 

also purchased
2/5 2/3 10/9

2 If iPad scratch guard(C) is purchased, 
iPad (A) is also purchased

2/5 2/4 5/6

3 If iPad (A) is purchased, iPad scratch 
guard (C) is also purchased

2/5 2/3 5/6

4 If iPad case(B) and iPad scratch guard 
(C) are purchased, then apple care (D) 
is also purchased

1/5 1/3 5/9

From these itemsets, based on the support and confidence computations, frequent 
itemset(s) can be determined. The goal of association rule mining is to find the rules 
that satisfy the criteria given here:

•	 support ≥ minsup (minimum support) threshold
•	 confidence ≥ minconf (minimum confidence) threshold

The following are the steps involved in frequent itemset generation and mining 
association rules:

1.	 List all the possible association rules.
2.	 Compute the support and confidence for each rule.
3.	 Prune the rules that fail to satisfy the minsup and minconf threshold values.

This approach is called the brute force approach and is usually known to be 
computationally prohibitive.

Rules originating from the same itemset usually have the 
same support, but vary with confidence. The minimum 
support (minsup) and the minimum confidence (minconf) are 
the values that are agreed upon during the problem definition 
statement. For example, minimum support and confidence 
can take percentage values like 75% and 85% respectively.
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To avoid all expensive computations, we can simplify this process into two steps:

•	 Frequent itemset generation: This requires generating all the itemsets with 
support ≥ minsup

•	 Rule generation: From the identified frequent itemsets, generate rules with 
the highest confidence

When there are five items, there are 32 candidate itemsets. The following figure 
depicts the itemset combination for five items: A, B, C, D, and E:

The possible number of itemsets and rules, given the number of items is defined here:

Given d unique items:

Total number of possible itemsets = 2d
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The standard formula for computing total possible association rules is defined here:

1

1 1

13 2 1

d d k

k j

d d

d d k
k j

− −

= =

+

 −    
×    

    
= − +

∑ ∑

For example, if d is equivalent to 6, then the total number of possible itemsets = 2d = 64

Thus, the total number of possible association rules = 602 rules

The following graph shows the relationship between the number of items and 
possible association rules.

Efficient ways of generating frequent itemsets and association rules determine the 
efficiency of the association rule algorithms. In the next sections, we will cover the 
Apriori and FP-Growth algorithms in detail.
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Apriori algorithm
In this section, we will cover the Apriori algorithm step-by-step using an example. 
The Apriori algorithm is as stated here:

Apriori principle—for all the frequent itemsets, the subsets 
must also be frequent.

Consider the five items (from the example in the previous section)

I = {iPad(A), iPad case(B), iPad scratch guard(C), Apple care (D), iPhone (E)}, and the 
following nine transactions. Let's assume that the minimum Support count is two:

TID The purpose or meaning in the context 
of Machine learning

1 iPad(A), iPad case(B), and iPhone(E)

2 iPad case(B) and Apple care(D)

3 iPad case(B) and iPad scratch guard(C)

4 iPad(A), iPad case(B), and Apple care(D)

5 iPad(A) and Apple care(D)

6 iPad case(B) and iPad scratch guard(C)
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TID The purpose or meaning in the context 
of Machine learning

7 iPad(A) and Apple care(D)

8 iPad(A), iPad case(B), iPad scratch 
guard(C), and iPhone (E)

9 iPad(A), iPad case(B), and iPad scratch 
guard(C)

Let's debug the previous algorithm using the previous datasets:

1.	 Get the number of occurrences for each item from the previous  
transactions (C1):

Itemset Support count
{iPad(A)} 6

{iPad case(B)} 7
{iPad scratch guard(C)} 6
{Apple care(D)} 2

{iPhone(E)} 2

Determine Frequent 1—Itemsets (L1) from C1:

Itemset Support count

{iPad(A)} 6

{iPad case(B)} 7

{iPad scratch guard(C)} 6

{Apple care(D)} 2

{iPhone(E)} 2

2.	 Generate 2—Itemset candidates (C2) and scan the dataset for Support count:

Itemset Support count

{iPad(A), iPad case(B)} 4

{iPad(A), iPad scratch guard(C)} 4

{iPad(A), Apple care(D)} 1

{iPad(A), iPhone(E)} 2
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Itemset Support count

{iPad case(B), iPad scratch guard(C)} 4

{iPad case(B), Apple care(D)} 2

{iPad case(B), iPhone(E)} 2

{iPad scratch guard(C), Apple care(D)} 0

{iPad scratch guard(C), iPhone(E)} 1

{Apple care(D), iPhone(E)} 0

3.	 Determine Frequent 2—Itemsets (L2) from C2:

Itemset Support count

{iPad(A), iPad case(B)} 4

{iPad(A), iPad scratch guard(C)} 4

{iPad(A), Apple care(D)} 2

{iPad case(B), iPad scratch guard(C)} 4
{iPad case(B), Apple care(D)} 2
{iPad case(B), iPhone(E)} 2

4.	 Generate 3—Itemset candidates (C3).
5.	 Finally, scan the dataset for Support count and frequent 3—Itemset 

identification.

This is similar to the previously followed steps, but we will demonstrate how 
pruning can be applied to identify the frequent itemset, based on the Apriori 
principle effectively. First, we identify the possible subset itemsets. We then check 
whether there are any of the subset itemsets that do not belong to the frequent 
itemset list. If not found, we eliminate that 3—Itemset possibility.

C3 Itemset Possible subset itemsets

1✓ {A,B,C} {A,B}✓  {A,C}✓  {B,C}✓

2✓ {A,B,D} {A,B}✓ {A,D}✓ {B,D}✓
3✕ {A,C,D} {A,C}✓ {A,D}✓ {C,D}✕

4✕ {B,C,D} {B,C}✓ {B,D}✓ {C,D}✕
5✕ {B,C,E} {B,C}✓ {B,E}✕ {C,E}✕

6✕ {B,D,E} {B,D}✓ {B,E}✕ {D,E}✕
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In the previous table, the ✕ itemsets are pruned using the Apriori technique, and the 
data from step 4 (L2) is used. The itemsets are represented using the item codes A, 
B, C, D, and E instead of the actual names for ease of understanding. The 3—itemset 
candidates can be identified as follows:

C3 Itemset Support Count

1 {iPad(A), iPad case (B), 
iPad scratch guard(C)}

2

2 {iPad(A), iPad case (B), 
Apple care(C)}

2

Thus, the Frequent 3—Itemsets are:

L3 Itemset Support Count 

1 {iPad(A), iPad case (B), 
iPad scratch guard(C)}

2

2 {iPad(A), iPad case (B), 
Apple care(C)}

2

1.	 Generate 4— Itemset candidates (C4).
2.	 Finally, scan the dataset for the Support count and frequent 3—Itemset 

identification (L4).

As we can see, the pruning stops here, as there are no further C3 options available.

The Apriori algorithm is not efficient as it requires multiple dataset scans. However, 
there are some techniques to improve the efficiency. Some of them are as follows:

•	 If a transaction does not contain any frequent item-sets, it is not useful and 
need not participate in the subsequent scans

•	 Any itemset that is frequent in the dataset should be frequent in at least one 
partition of the dataset

•	 Application of sampling, to include a subset of the whole data set with  
a lower support threshold, will yield more efficiency
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Rule generation strategy
Let's say we have a frequent itemset {A, B, C, D}, and the possible candidate rules are:

ABC  D

ABD  C

ACD  B

BCD  A

AB  CD

AC  BD

AD  BC

BC  AD

BD  AC

CD  AB

A  BCD

B  ACD

C  ABD

D  ABC

The standard formula is, for every k items in the frequent itemset, 2k-2 possible 
candidate rules can be defined. Only the rules with high confidence can be retained. 
The following figure depicts marking the low confidence rules and knocking them off:
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Rules for defining appropriate minsup
Some important guidelines to be followed for defining the minsup threshold for the 
association rule based mining are as follows:

•	 Too high minsup: This will lead to missing itemsets with rare items
•	 Too low minsup: This will result in computational expense as more scans 

will be needed

Apriori – the downside
It is now clear that in Apriori algorithm, for every k itemsets we will need to use 
(k-1) frequent itemsets and when the database scans are done, the pattern matching 
approach is used. The primary bottlenecks are two huge candidate sets and multiple 
database scans. Let's see an example—if there are 104 frequent 1-itemsets, then this 
will result in 107 candidate 2-itemsets. And for every n itemsets, the longest pattern 
length, n + 1 scans are required.

The solution for this would be to avoid the candidate itemset generation completely, 
and one way of solving this is to compress a large dataset or database into a compact 
frequent pattern tree (FP-tree) that will avoid expensive scans.
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There are several ways of optimizing the Apriori implementation and here are some 
of the important ones:

•	 Approach 1—Has-based itemset counting: There is a threshold value set 
for every k itemset bucket, and if the count of the itemset for that itemset 
is lower than the threshold, this bucket will not be processed. This in-turn 
reduces the itemset buckets that are to be considered for processing, thus 
improving the efficiency.

•	 Approach 2—Transaction elimination / counting: In case a transaction  
does not contain the target k itemset, this transaction does not add value  
or make sense for being processed. So, this approach is about identifying 
these transactions and eliminating them from being processed.

•	 Approach 3—Partitioning: Any itemset that is potentially frequent in  
the dataset will need to be frequent in the partitions of the dataset as well;  
in the absence of which, the itemset could potentially be excluded from  
being processed.

•	 Approach 4—Sampling: This is a simpler way to consider a sample  
or a subset of the bigger universe of data and run the mining process.  
This would reduce the k, and thus the frequent k-itemsets.

•	 Approach 5—Dynamic itemset counting: This is one of the most effective 
methods, and involves including a new itemset only if it is frequent in all  
its subset itemsets.

Although, there are optimization techniques for Apriori; it poses inefficiency as a 
result of expensive scans that are inherent, which will need to be addressed. This 
brings us to the next algorithm of association rule based learning, the FP-growth 
algorithm.

FP-growth algorithm
The FP-growth algorithm is an efficient and scalable alternative to mining frequent 
patterns, and thus association rule mining. It addresses most of the performance 
bottlenecks that an Apriori algorithm would undergo. It allows frequent itemset 
generation without having to actually generate the candidate itemsets. This algorithm 
has two steps primarily:

•	 Building a compact data structure from the database called FP-tree
•	 Extracting frequent itemsets directly from the FP-tree

Let's consider the same example we used in the Apriori algorithm. There is a total of 
five items (from the example in the previous section):
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I is {iPad(A), iPad case(B), iPad scratch guard(C), Apple care (D), iPhone (E)}, and the 
following nine transactions. Let's assume that the minimum support count is two:

TID Transaction Itemsets

1 iPad(A), iPad case(B), and iPhone(E)

2 iPad case(B), Apple care(D)

3 iPad case(B), iPad scratch guard(C)

4 iPad(A), iPad case(B), and Apple care(D)
5 iPad(A), Apple care(D)
6 iPad case(B), iPad scratch guard(C)
7 iPad(A), Apple care(D)
8 iPad(A), iPad case(B), iPad scratch guard(C), and iPhone (E)

9 iPad(A), iPad case(B), and iPad scratch guard(C)

We will now look at building an FP-tree for this database:

1.	 Identify/calculate the minimum support count. Since it needs to be 30%,  
the minimum support count is calculated as follows:

Minimum support count = 30/100 * 9 = 2.7 ~ 3

2.	 Calculate the frequency of occurrence for 1-itemset. Additionally, based on 
the support count, add priority:

Itemset Support count Priority

{iPad(A)} 6 2

{iPad case(B)} 7 1

{iPad scratch guard(C)} 6 3

{Apple care(D)} 2 4
{iPhone(E)} 2 5
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3.	 Order the items for each transaction as per the priority:

TID Transaction Itemsets Re-ordered Itemsets based  
on priority

1 iPad(A), iPad case(B), and iPhone(E) iPad case(B), iPad(A), and iPhone(E)

2 iPad case(B), Apple care(D) iPad case(B), Apple care(D)

3 iPad case(B), iPad scratch guard(C) iPad case(B), iPad scratch guard(C)
4 iPad(A), iPad case(B), and Apple care(D) iPad case(B), iPad(A), and Apple 

care(D)
5 iPad(A), Apple care(D) iPad(A), Apple care(D)

6 iPad case(B), iPad scratch guard(C) iPad case(B), iPad scratch guard(C)

7 iPad(A), Apple care(D) iPad(A), Apple care(D)

8 iPad(A), iPad case(B), iPad scratch 
guard(C), and iPhone (E)

iPad case(B), iPad(A), iPad scratch 
guard(C), and iPhone (E)

9 iPad(A), iPad case(B), and iPad scratch 
guard(C)

iPad case(B), iPad(A), and iPad 
scratch guard(C)

4.	 Create FP-tree for transaction for TID = 1, and the ordered itemset is iPad 
case(B), iPad(A), and iPhone(E).

5.	 Now, scan the database for TID = 2, iPad case (B) and Apple care(D).  
The updated FP-tree will look like this:
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6.	 Scan all the transactions in the order of L and update the FP-tree 
accordingly. The final FP-tree will be as shown next. Note that every  
time an item is encountered again in the transaction, the count value  
on the node is incremented.

7.	 Generate a conditional FP-tree for each of the transactions and define the 
conditional pattern base.

8.	 Finally, generate the frequent patterns. The result for the given dataset is 
shown here:
E: {B, E: 2}, {A, E: 2}, {B, A, E: 2}
D: {B, D: 2}
C: {B, C: 4}, {A, C: 4}, {B, A, C: 2}
A: {B, A: 4}
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Apriori versus FP-growth
The following graph shows the relationship between the algorithms with different 
minsup threshold values:

Image source: An article by Prof. Pier Luca Lanzi

The advantages of the FP-growth algorithm are detailed here:

•	 The complete information for frequent pattern mining is preserved, without 
breaking the pattern in a long transaction

•	 Data is compacted by eliminating irrelevant information as infrequent 
itemsets are avoided upfront

•	 The FP-growth algorithm works in a divide-and-conquer mode, where the 
dataset is decomposed as per the frequent itemset patterns uncovered so 
far. This reduces searches to the subset of datasets as against the complete 
database

•	 The candidate itemsets are not generated in this case and hence, will not need 
to be tested
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Implementing Apriori and FP-growth
Refer to the source code provided for this chapter for implementing the Apriori 
classifier (source code path .../chapter7/... under each of the folders for  
the technology.)

Using Mahout
Refer to the code files folder .../mahout/chapter7/aprioriexample/.

Refer to the code files folder .../mahout/chapter7/fpgrowthexample/.

Using R
Refer to the code files folder .../r/chapter7/aprioriexample/.

Refer to the code files folder .../r/chapter7/fpgrowthexample/.

Using Spark
Refer to the code files folder .../spark/chapter7/aprioriexample/.

Refer to the code files folder .../spark/chapter7/fpgrowthexample/.

Using Python (Scikit-learn)
Refer to the code files folder .../python-scikit-learn/ chapter7/
aprioriexample/.

Refer to the code files folder .../python-scikit-learn/chapter7/
fpgrowthexample/.

Using Julia
Refer to the code files folder .../julia/chapter7/aprioriexample/.

Refer to the code files folder .../julia/chapter7/fpgrowthexample/.
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Summary
In this chapter, you have learned the association rule based learning methods and, 
Apriori and FP-growth algorithms. With a common example, you learned how to do 
frequent pattern mining using Apriori and FP-growth algorithms with a step-by-step 
debugging of the algorithm. We also compared and contrasted the algorithms and 
their performance. We have example implementations for Apriori using Mahout, R, 
Python, Julia, and Spark. In the next chapter, we will cover the Bayesian methods 
and specifically, the Naïve-Bayes algorithm.
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Clustering based learning
In this chapter, we will cover the clustering-based learning methods, and in specific 
the k-means clustering algorithm among others. Clustering-based learning is an 
unsupervised learning technique and thus works without a concrete definition of the 
target attribute. You will learn basics and the advanced concepts of this technique, 
and get hands-on implementation guidance in using Apache Mahout, R, Julia, 
Apache Spark, and Python to implement the k-means clustering algorithm.

The following figure depicts different learning models covered in this book, and the 
techniques highlighted in orange will be dealt in detail in this chapter:

The topics listed next are covered in depth in this chapter:

•	 The core principles and objectives of the clustering-based learning methods
•	 How to represent clusters and understand the required distance  

measurement techniques
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•	 Learning in depth, the k-means clustering and choosing the right clustering 
algorithm and the rules of cluster evaluation. More importantly, choosing the 
right number of clusters.

•	 An overview of hierarchical clustering, data standardization, discovering 
holes, and data regions.

•	 Sample implementation using the Apache Mahout, R, Apache Spark, Julia, 
and Python (scikit-learn) libraries and modules.

Clustering-based learning
The clustering-based learning method is identified as an unsupervised learning task 
wherein the learning starts from no specific target attribute in mind, and the data is 
explored with a goal of finding intrinsic structures in them.

The following diagram represents the scope of the clustering-based learning method 
that will be covered in this chapter:

The primary goal of the clustering technique is finding similar or homogenous 
groups in data that are called clusters. The way this is done is—data instances 
that are similar or, in short, are near to each other are grouped in one cluster, and 
the instances that are different are grouped into a different cluster. The following 
diagram shows a depiction of data points on a graph, and how the clusters are 
marked (in here, it is by pure intuition) by the three natural clusters:
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Thus, a cluster can be defined as a collection of objects that are similar to each other 
and dissimilar from the objects of another cluster. The following diagram depicts the 
clustering process:

Some simple examples of clustering can be as follows:

•	 Shirts are grouped based on the sizes small (S), medium (M), large (L),  
extra large (XL), and so on

•	 Target Marketing: grouping customers according to their similarities
•	 Grouping text documents: The requirement here is to organize documents, 

and build a topic hierarchy based on their content similarities

In fact, clustering techniques are very heavily used in many domains such  
as archeology, biology, marketing, insurance, libraries, financial services,  
and many others.
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Types of clustering
Cluster analysis is all about the kind of algorithms that can be used to find clusters 
automatically given the data. There are primarily two classes of clustering algorithm; 
they are as follows:

•	 The Hierarchical Clustering algorithms
•	 The Partitional Clustering algorithms

The Hierarchical clustering algorithms define clusters that have a hierarchy, while 
the partitional clustering algorithms define clusters that divide the dataset into 
mutually disjoint partitions.

Hierarchical clustering
The Hierarchical clustering is about defining clusters that have a hierarchy, and this 
is done either by iteratively merging smaller clusters into a larger cluster, or dividing 
a larger cluster into smaller clusters. This hierarchy of clusters that are produced by 
a clustering algorithm is called a dendogram. A dendogram is one of the ways in 
which the hierarchical clusters can be represented, and the user can realize different 
clustering based on the level at which the dendogram is defined. It uses a similarity 
scale that represents the distance between the clusters that were grouped from the 
larger cluster. The following diagram depicts a dendogram representation for the 
Hierarchical clusters:
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There is another simple way of representing the Hierarchical clusters; that is, the 
Venn diagram. In this representation, we circle the data points that are a part of the 
cluster. The following diagram depicts a Venn representation for five data points:

There are two clustering algorithms in the Hierarchical clustering: the Agglomerative 
and Divisive clustering algorithms.

The Agglomerative clustering algorithm uses the bottom-up approach and merges  
a set of clusters into a larger cluster. The Divisive clustering algorithm uses the  
top-down approach and splits a cluster into subclusters. The identification of which 
cluster will be considered for merging or splitting is decided using greedy methods, 
and distance measurement becomes critical here. Let's have a quick recap of the 
instance-based learning methods from Chapter 6, Instance and Kernel Methods Based 
Learning. We have covered the Euclidean distance, Manhattan distance, and cosine 
similarity as some of the most commonly used metrics of similarity for numeric data, 
and hamming distance for non-numeric data. For the Hierarchical clustering, the 
actual data points are not required? only the distance measure matrix is sufficient,  
as the grouping is done based on the distances.
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The Hierarchical clustering algorithm steps can be defined as follows:

1.	 Start with clusters such as S1={X1}, S2={X2} … Sm= {Xm}.
2.	 Find a set of the nearest clusters and merge them into a single cluster.
3.	 Repeat the step 2 until the number of clusters formed is equal to a  

number defined.

Partitional clustering
Partitional clustering algorithms are different in comparison to the Hierarchical 
clustering algorithms as the clusters or partitions are generated and evaluated using 
a specific predefined criterion that is domain specific. Since each cluster formed 
is mutually exclusive, there can never be a hierarchical relationship between the 
clusters. In fact, every instance can be placed in one and only one of the k clusters. 
The number of clusters (k) to be formed is input to this algorithm, and this one 
set of k clusters is the output of the partitional cluster algorithms. One of the most 
commonly used partitional clustering algorithms that we will be covering in this 
chapter is the k-means clustering algorithm.

Before we take a deep dive into the k-means clustering algorithm, let's have a  
quick definition stated here. With an input of k, which denotes the number of 
expected clusters, k centers or centroids will be defined that will facilitate defining 
the k partitions. Based on these centers (centroids), the algorithm identifies the 
members and thus builds a partition followed by the recomputation of the new 
centers based on the identified members. This process is iterated until the clear,  
and optimal dissimilarities that make the partition really unique are exposed.  
Hence, the accuracy of the centroids is the key for the partition-based clustering 
algorithm to be successful. The following are the steps involved in the centroid-based 
partitional clustering algorithm:

Input: k (the number of clusters) and d (the data set with n objects)

Output: Set of k clusters that minimize the sum of dissimilarities of all the objects to 
the identified mediod (centroid)

1.	 Identify the k objects as the first set of centroids.
2.	 Assign the remaining objects that are nearest to the centroid.
3.	 Randomly select a non-centroid object and recompute the total points  

that will be swapped to form a new set of centroids, until you need  
no more swapping.
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The Hierarchical and partitional clustering techniques inherently have key 
differences in many aspects, and some of them include some basic assumptions; 
execution time assumptions, input parameters, and resultant clusters. Typically, 
partitional clustering is faster than Hierarchical clustering. While the hierarchical 
clustering can work with similarity measure alone, partitional clustering requires 
number of clusters and details around the initial centers. The Hierarchical clustering 
does not require any input parameters while the partitional clustering algorithms 
require an input value that indicates the number of clusters required to start running. 
The cluster definition for hierarchical clustering technique is more subjective as 
against the partitional clustering results in a exact and precise "k" cluster.

The quality of clustering depends on the chosen algorithm, distance 
function, and the application. A cluster quality is said to be the best 
when the inter-cluster distance is maximized, and the intra-cluster 
distance is minimized.

The k-means clustering algorithm
In this section, we will cover the k-means clustering algorithm in depth. The k-means 
is a partitional clustering algorithm.

Let the set of data points (or instances) be as follows:

D = {x1, x2, …, xn}, where

xi = (xi1, xi2, …, xir), is a vector in a real-valued space X ⊆ Rr, and r is the number of 
attributes in the data.

The k-means algorithm partitions the given data into k clusters with each cluster 
having a center called a centroid.

k is specified by the user.

Given k, the k-means algorithm works as follows:

Algorithm k-means (k, D)

1.	 Identify the k data points as the initial centroids (cluster centers).
2.	 Repeat step 1.
3.	 For each data point x ϵ D do.
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4.	 Compute the distance from x to the centroid.
5.	 Assign x to the closest centroid (a centroid represents a cluster).
6.	 endfor
7.	 Re-compute the centroids using the current cluster memberships until the 

stopping criterion is met.

Convergence or stopping criteria for the 
k-means clustering
The following list describes the convergence criteria for the k-means  
clustering algorithm:

•	 There are zero or minimum number of reassignments for the data points  
to different clusters

•	 There are zero or minimum changes of centroids
•	 Otherwise, the decrease in the sum of squared error of prediction (SSE)  

is minimum

If Cj is the jth cluster, then mj is the centroid of cluster Cj (the mean vector of all the 
data points in Cj), and if dist(x, mj) is the distance between the data point x and 
centroid mj then the following example demonstrated using graphical representation 
explains the convergence criteria.

For example:

1.	 Identification of random k centers:
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2.	 Iteration 1: Compute centroids and assign the clusters:

3.	 Iteration 2: Recompute centroids and reassign the clusters:

4.	 Iteration 3: Recompute centroids and reassign the clusters:

5.	 Terminate the process due to minimal changes to centroids or  
cluster reassignments.



Clustering based learning

[ 234 ]

K-means clustering on disk
The k-means clustering algorithm can also be implemented with data on disk.  
This approach is used with large datasets that cannot be accommodated in memory. 
The strategy used here is to compute centroids incrementally by scanning the dataset 
only once for each iteration. The performance of this algorithm is determined by how 
well the number of iterations can be controlled. It is recommended that a limited set 
of iterations, less than 50 should be run. Although this version helps scaling, it is not 
the best algorithm for scaling up; there are other alternative clustering algorithms 
that scale-up, for example, BIRCH is one of them. The following algorithm describes 
the steps in disk the k-means algorithm:

Algorithm disk k-means (k, D)

1.	 Choose the k data points as the initial centroids (cluster centers) mj, where j = 
1,2,3….k.

2.	 Repeat
3.	 Initialize sj=0, where j=1,2,3….k; (a vector with all the zero values).
4.	 Initialize nj=0, where j=1,2,3….k; (nj is number points in the cluster),
5.	 For each data point x ϵ D do.
6.	 j = arg min dist(x, mj).
7.	 Assign x to the cluster j.
8.	 sj = sj + x.
9.	 nj = nj + 1.
10.	 endfor.
11.	 mi = sj/nj, where i=1,2,…k.
12.	 Until the stopping, the criterion is met.

Advantages of the k-means approach
The k-means way of unsupervised learning has many benefits; some of them are  
as follows:

•	 The k-means clustering is popular and widely adopted due to its simplicity 
and ease of implementation.

It is efficient and has optimal time complexity defined by O(ikn), where n is the 
number of data points, k is the number of clusters, and i is the number of iterations. 
Since the l and k values are kept small, the k-means clustering can represent a linear 
expression too.
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Disadvantages of the k-means algorithm
The following are the downsides or disadvantages of the k-means algorithm:

•	 The value of k is always a user input and is as good as the identified  
number k.

•	 This algorithm is applicable only when the means are available, and in the 
case of categorical data the centroids are none other than the frequent values.

•	 Clusters can never be elliptical and are always hyperspherical.
•	 The clusters identified are very sensitive to the initially identified seeds, and 

can be different when to run multiple times with different random seeds 
involved. The following figure depicts how two different centroids can 
change the clusters. This can be achieved by iterative processing:

•	 Again, k-means is very sensitive to outliers. Outliers can be the errors in  
the data recording or some special data points with very different values.  
The following diagram depicts the skew that an outlier can bring into the 
cluster formation. The first representation shows the ideal cluster, and the 
second one shows the undesirable cluster:
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Many of the algorithms and learning techniques that we have seen until now are 
sensitive to outliers. There are some standard techniques that can be employed.

One way is to get the outliers filtered from evaluation, and this requires us to apply 
some techniques to handle the noise in the data. The noise reduction techniques will 
be covered in the next chapters. In the case of k-means clustering, the removal of 
outliers can be done after a few iterations just to make sure the identified data points 
are really the outliers. Or, another way is to stick to a smaller sample of data on 
which the algorithm will be run. This way, the possibility of choosing an outlier  
will be minimal.

Distance measures
The distance measure is important in clustering algorithms. Reassigning data  
points to the clusters is determined by redefining the centroids. The following are  
some ways of measuring distance between two clusters:

•	 Single link: This method refers to measuring the distance between the two 
closest data points that belong to two different clusters. There can be noise  
in the data that might be considered with seriousness too.

•	 Complete link: This method refers to measuring the distance between two 
farthest data points that belong to two different clusters. This method can 
make the clusters more sensitive to outliers.

•	 Average link: This method uses the average distance measure of all the pairs 
of distances between the two clusters.

•	 Centroids: This method refers to measuring the distance between the two 
clusters by measuring the distance between their centroids.
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Complexity measures
Choosing the best clustering algorithm has always been a challenge. There are many 
algorithms available and both, accuracy and complexity measures are important 
for choosing the right algorithm. The single link method can help achieve O(n2); 
complete and average links can be done in O(n2logn). There are both advantages and 
limitations for each of the algorithms, and they work well in certain contexts of data 
distribution; no standard patterns in the data distribution make it a complex problem 
to solve. Hence, data preparation and standardization becomes an important aspect 
in Machine learning. Which distance measure would be an ideal choice can only 
be determined by implementing the different distance measures iteratively, and 
comparing the results across iterations. The clustering methods overall are highly 
dependent on the initial choices and can be subjective.

Implementing k-means clustering
Refer to the source code provided for this chapter for implementing the k-means 
clustering methods (only supervised learning techniques - source code path .../
chapter08/... under each of the folders for the technology).

Using Mahout
Refer to the folder .../mahout/chapter8/k-meansexample/.

Using R
Refer to the folder .../r/chapter8/k-meansexample/.

Using Spark
Refer to the folder .../spark/chapter8/k-meansexample/.

Using Python (scikit-learn)
Refer to the folder .../python-scikit-learn/chapter8/k-meansexample/.

Using Julia
Refer to the folder .../julia/chapter8/k-meansexample/.



Clustering based learning

[ 238 ]

Summary
In this chapter, we have covered the clustering-based learning methods. We have 
taken a deep dive into the k-means clustering algorithm using an example. You have 
learned to implement k-means clustering using Mahout, R, Python, Julia, and Spark. In 
the next chapter, we will cover the Bayesian methods and in specific, the Naïve-Bayes 
algorithm.
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Bayesian learning
In this chapter, we will go back to covering an important, statistical-based method 
of learning called the Bayesian method learning, and in particular, the Naïve Bayes 
algorithm among others. The statistical models generally have an explicit probability 
model, which reveals the probability of an instance belonging to a particular class 
rather than just classification while solving a classification problem. Before taking a 
deep dive into the Bayesian learning, you will learn some important concepts under 
statistics such as probability distribution and the Bayes theorem which is the heart of 
Bayesian learning.

Bayesian learning is a supervised learning technique where the goal is to build 
a model of the distribution of class labels that have a concrete definition of the 
target attribute. Naïve Bayes is based on applying Bayes' theorem with the naïve 
assumption of independence between each and every pair of features.

You will learn the basics and advanced concepts of this technique and get hands-on  
implementation guidance in using Apache Mahout, R, Julia, Apache Spark, and 
Python to implement the means - clustering algorithm.
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The following figure depicts different learning models covered in this book, and the 
technique highlighted will be dealt with in detail in this chapter:

The topics listed here are covered in depth in this chapter:

•	 An overview of Bayesian statistics and core principles or concepts of 
probability, distribution, and other relevant statistical measures

•	 Bayes' theorem and its mechanics
•	 Deep dive into the Naïve Bayes algorithm and variations of Naïve Bayes 

classifiers like multinomial and Bernoulli classifiers
•	 A detailed explanation of some real-world problems or use cases that the 

Bayesian learning technique can address
•	 Sample implementation using Apache Mahout, R, Apache Spark, Julia,  

and Python (scikit-learn) libraries and modules

Bayesian learning
Under supervised learning techniques, the learning models that are categorized 
under statistical methods are instance-based learning methods and the Bayesian 
learning method. Before we understand the Bayesian learning method, we will first 
cover an overview of concepts of probabilistic modeling and Bayesian statistics that 
are relevant in the context of Machine learning. The core concepts of statistics are 
very deep, and what will be covered in the next few sections is primarily focused 
on equipping you with a basic understanding of the dynamic and diverse field of 
probabilistic Machine learning, which is sufficient to interpret the functioning of the 
Bayesian learning methods.
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Statistician's thinking
The objective of statisticians is to answer questions asked by people from various 
domains using data. The typical engineering methods use some subjective/objective 
methods that do not require data to answer the questions. But, statisticians always look 
at the data to answer questions. They also incorporate variability (the probability that 
measurements taken on the exact quantity at two different times will slightly differ) in 
all their models.

Let's take an example: was M.F. Hussain a good painter? One method of answering 
this question measures the paintings based on some accepted norms (by the person 
or community) of the quality of paintings. The answer in such a case may be based 
on creative expression, color usage, form, and shape. I believe M.F. Hussain is a good 
painter. In this case, this response can be fairly subjective (which means that the 
response you get from one person can be very different from the response you get 
from another). The statistician's method of answering this is very different. They 
first collect the data from a sample of people who are considered experts in assessing 
the quality of paintings (university professors of art, other artists, art collectors, and 
more). Then, after analyzing the data, they will come up with a conclusion such as: 
"75% of the university professors of arts, 83% of the professional artists, and 96% of 
the art collectors from the data of 3000 participants of the survey (with equal number 
of participants from each category) opined that Mr. M.F. Hussain is a good painter". 
Hence, it can be stated that he is considered a good painter by most. Very obviously, 
this is a very objective measure.

Important terms and definitions
The following are the essential parameters and concepts that are used to assess  
and understand the data. They are explained as definitions in some cases and  
with examples and formulae in others. They are classified as "vocabulary" and 
"statistical quantities". You will come across some of these terms in the next  
sections of this chapter:

Term Definition
Population This is the universe of data. Typically, statisticians 

want to make a prediction about a group of objects 
(Indians, galaxies, countries, and more). All the 
members of the group are called the population.
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Term Definition
Sample Most of the times, it is not feasible to work on 

the entire population. So, statisticians collect a 
representative sample from the population and 
do all their calculations on them. The subset of the 
population that is chosen for the analysis is called a 
sample. It is always cheaper to compile the sample 
compared to the population or census. There are 
several techniques to collect samples:

•	 Stratified sampling: This is defined as the 
process of dividing the members of the 
population into homogeneous subgroups 
before sampling. Each subgroup should be 
mutually exclusive, and every element of the 
population should be assigned to a subgroup.

•	 Cluster sampling: This method of sampling 
ensure n unique clusters where each cluster 
has elements with no repetition.

Sample size This is an obvious dilemma that every statistician 
has been through. How big should be the size of the 
sample? The bigger the sample, the higher will be 
the accuracy. However, the cost of collection and 
analysis also rise accordingly. So, the challenge is  
to find an optimum sample size where the results 
are accurate, and the costs are lower.

Sampling Bias Bias is a systematic error that impacts the outcome 
in some way. Sampling bias is a consistent error that 
arises due to the sample selection.

Variable It is one of the measurements of the sample or 
population. If we are taking all the members of a 
class, then their age, academic background, gender, 
height, and so on, become the variables. Some 
variables are independent. This means they do not 
depend on any other variable. Some are dependent.

Randomness An event is called random if its outcome is uncertain 
before it happens. An example of a random event is 
the value of the price of gold tomorrow afternoon at 
1 P.M.

Mean It is equal to the sum of all the values in the sample 
divided by the total number of observations in the 
sample.
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Term Definition
Median Median is a midpoint value between the lowest and 

highest value of a data set. This is also called the 
second quartile (designated Q2) = cuts data set in 
half = 50th percentile. If there is no exact midpoint 
(that is, the observations in the sample are even), 
then the median is the average of the two points in 
the middle.

Mode This is the most frequently occurring value of the 
variable. A data can be unimodal (single mode), 
or multimodal (frequent multiple values). If the 
data obeys normal distribution (about which you 
will learn later), the mode is obtained using the 
empirical formula:
mean – mode = 3 x (mean - median)

Standard 
deviation

It is an average measure of how much each 
measurement in the sample deviates from the  
mean. Standard deviation is also called the  
standard deviation of the mean.
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Probability
Before we start understanding the probability, let's first look at why we need to 
consider uncertainty in the first place. Any real-life action is always associated with 
the uncertainty of the result or the outcome. Let's take some examples; will I be able 
to catch the train on time today? Will the sales of our top-selling product continue to 
be in the top position this quarter? If I toss a coin, will I get a heads or tails? Will I be 
able to go to the airport in t minutes?

There can be many sources of uncertainty:

•	 Uncertainty due to lack of knowledge, as a result of insufficient data, 
incomplete analysis, and inaccurate measurements

•	 Otherwise, uncertainty can also be due to complexity, as a result of 
incomplete processing conditions
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In the real world, we need to use probabilities and uncertainties to summarize our 
lack of knowledge and ability to predict an outcome.

Let's elaborate on the last previous example.

Can I go to the airport in 25 minutes? There could be many problems, such as 
incomplete observations on the road conditions, noisy sensors (traffic reports), or 
uncertainty in action, say a flat tire or complexity in modeling the traffic. To predict 
the outcome, there should definitely be some assumptions made, and we need 
to deal with uncertainty in a principled way; this is called probability. In short, 
probability is a study of randomness and uncertainty.

In probability, an experiment is something that can be repeated and has uncertainty 
in the result. A single outcome of an experiment is referred to as a single event, and 
an event is a collection of outcomes. A sample space probability is a list of all the 
possible outcomes of an experiment.

The probability of the event E is represented as P(E) and is defined as the likelihood 
of this event occurring.

The Probability of an Event P(E) = the number of ways an 
event can happen / the number of possible outcomes

For example, for a coin that is tossed, there are two possibilities: heads or tails.

The probability of heads is P(H) = ½ = 0.5

When a dice is thrown, there are six possibilities, which are 1, 2, 3, 4, 5, and 6.

The probability of 1 is P(1) = 1/6 = 0.16667

The probability of rolling any event, E, P(E), must be between 0 and 1 (inclusive).

0 ≤ P(E) ≤ 1

The value of 0 for probability indicates that an event is impossible, and the value of 
1 indicates the certainty of the event. If there are n events, then the summation of the 
probability of each event is 1. This can be represented as:

If S = {e1, e2, ….en} then P(e1) +P(e2)+…P(en) = 1
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There are many ways to determine the probability:

•	 Classical method: This is the method that we used to define probability in 
the previous section. This method requires equally likely outcomes. So, if an 
experiment has equally likely n events and there are m possibilities, the event 
E can then occur.

P(E) = the number of ways the event E can occur / the number of possible 
outcomes = m/n.

For example, a bag of chocolates contains five brown covered chocolates, six 
yellow covered chocolates, two red covered chocolates, eight orange covered 
chocolates, two blue covered chocolates, and seven green covered chocolates. 
Suppose that a candy is randomly selected. What is the probability of a candy 
being brown?
P (B) = 5/30

•	 Empirical method: The empirical method of probability computation is also 
called relative frequency, as this formula requires the number of times an 
experiment is repeated. This method defines the probability of the event E, 
which is the number of times an event is observed over the total number 
of times the experiment is repeated. The basis on which the probability is 
computed in this case is either observations or experiences.

P(E) = Frequency of E / the number of trials of the experiment.
For example, we want to compute the probability of a grad student to pick 
medicine as their major. We pick, let's say, a sample of 200 students and  
55 of them pick medicine as majors, then:
P(someone picking medicine) = 55/200 = 0.275

•	 Subjective method: This method of probability uses some fair and computed, 
or educated assumptions. It usually describes an individual's perception of the 
likelihood of an event to occur. This means the individual's degree of belief in 
the event is considered, and thus can be biased. For example, there is a 40% 
probability that the physics professor would not turn up to take the class.
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Types of events
Events can be mutually exclusive, independent, or dependent in nature.

Mutually exclusive or disjoint events
Mutually exclusive events are the events that cannot happen at the same time. In 
short, the probability of the two events occurring at the same time is 0. P(1) and 
P(5). When a dice is rolled, there are mutually exclusive events. A Venn diagram 
representation of mutually exclusive events is depicted here:

For mutually exclusive events A and B the Addition rule is:

P(A or B) = P(A) + P(B)

For mutually exclusive events A and B the Multiplication rule is:

P(A and B) = P(A) x P(B)

Independent events
If the outcome of one event does not impact the outcome of another event, the  
two events are called independent events. For example, event A is that it rained  
on Sunday, and event B is the car having a flat tire. These two events are not related 
and the probability of one does not impact the other. An independent event can be 
mutually exclusive but not vice versa.

Multiplication rule in the case of independent events A and B is:

P(A and B) = P(A) x P(B)

Dependent events
Dependent events are the events where the occurrence of one event can influence  
the occurrence of another event. For example, a student who takes English as their  
first major can take political science as the second major. The Venn representation  
of dependent events is depicted here:
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Addition rule for dependent event A and B is:

P(A or B) = P(A) + P(B) – P(A and B)

Multiplication rule for dependent event A and B is:

P(A and B) = P(A) x P(B)

Types of probability
In this section, we will take a look at the different types of probabilities, which are 
listed as follows:

•	 Prior and posterior probability: Prior probability is the probability that 
an event E occurs without any prior information or knowledge of any 
assumptions in the problem context.
Let's take an example. If your friend was travelling by air and you were 
asked if they have a man or a woman as their neighbor, as the basis formula 
of probability works, there is a 0.5 (50%) probability that it can be a man and 
a 0.5 (50%) probability that it can be a woman. These values can change when 
more information is provided, and the probability that is measured then is 
called the posterior probability.

•	 Conditional probability: Conditional probability is defined as the 
probability that an event occurs, given another event already occurred. 
P(B|A) is interpreted as the probability of event B, given event A.
For example, let's compute the probability that a person will be hit by a car 
while walking on the road. Let H be a discrete random variable describing 
the probability of a person being hit by a car, taking the hit as 1 and not as 0.
Let L be a discrete random variable describing the probability of the  
cross traffic's traffic light state at a given moment, taking one from  
{red, yellow, green}:
P(L=red) = 0.7,
P(L=yellow) = 0.1,



Bayesian learning

[ 248 ]

P(L=green) = 0.2.
P(H=1|L=R) = 0.99,
P(H|L=Y) = 0.9 and
P(H|L=G) = 0.2.
Using the conditional probability formulae, we get the following:
P(H=1 and L=R) = P(L=R)*P(H|L=R) = 0.693;
P(H=1 and L=Y) = 0.1*0.9 = 0.09
Similarly, if the probability of getting hit while red is on is 0.99, the probability 
of not getting hit is 0.01. So, P(H=0|L=R) = 0.01. From these, we can compute 
the probability of H=0 and L=R.

•	 Joint probability: Joint probability is the probability of two or more things 
happening together. In a two variable case, f(x,y|θ) is the joint probability 
distribution, where f is the probability of x and y together as a pair, given 
the distribution parameters—θ. For discrete random variables, the joint 
probability mass function is:

P(X and Y) = P(X).P(Y|X) =P(Y).P(X|Y)
You already saw this while studying the conditional probability. Since these 
are probabilities, we have the following:

( ) 1
x y

P X x and Y y= = =∑∑

•	 Marginal probability: Marginal probability is represented by f(x|θ) where 
f is the probability density of x for all the possible values of y, given the 
distribution parameters—θ. The marginal probability in a random distribution 
is determined from the joint distribution of x and y by summing over all the 
values of y. In a continuous distribution, it is determined by integrating over 
all the values of y. This is called integrating out the variable y. For discrete 
random variables, the marginal probability mass function can be written as 
P(X = x). This is as follows:

( ) ( ) ( ) ( ), |
y y
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From the above equation, P(X = x,Y = y) is the joint distribution of X and Y, 
and P(X = x|Y = y) is the conditional distribution of X, given Y. The variable 
Y is marginalized out. These bivariate marginal and joint probabilities 
for discrete random variables are often displayed as two-way tables (as 
illustrated next). We will show the computations in a worked out problem in 
the next section.
For example, suppose two dices are rolled, and the sequence of scores (X1, 
X2) is recorded. Let Y=X1+X2 and Z=X1−X2 denote the sum and difference 
of the scores respectively. Find the probability density function of (Y, Z). Find 
the probability density function of Y. Find the probability density function of 
Z. Are Y and Z independent?
Assuming that X1 and X2 are independent, they can take 36 possibilities,  
as shown in the table here:
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Let's now construct the joint, marginal, and conditional table. In this, we will have 
values of Z as rows and Y as columns. Y varies from 2 to 12 and Z varies from -5 to 5. 
We can fill all the conditional distributions just by counting. For example, take Z=-1; 
we see that this happens when Y=3, 5, 7, 9, 11. We also note that the probability of 
each one of them (say, the conditional probability that Z=-1, given Y=3) is 1/36. We 
can fill the table like this for all the values:

So, the bottom row is the marginal distribution of Y. The right-most column is the 
marginal distribution of Z. The total table is the joint distribution. Clearly, they are 
dependent.

Distribution
Distributions are either discrete or continuous probability distributions, depending 
on whether they define probabilities associated with discrete variables or continuous 
variables:
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We will cover a few of the previously mentioned distributions here.

In this section, our major emphasis is on modeling and describing a given property 
of the data. To understand how crucial this skill is, let's look at a few examples:

•	 A bank wants to look at the amount of cash withdrawn per transaction in an 
ATM machine over a period of time to determine the limits of transaction

•	 A retailer wants to understand the number of broken toys that he is getting 
in every shipment

•	 A manufacturer wants to understand how the diameter of a probe is varying 
between various manufacturing cycles

•	 A pharmaceutical company wants to understand how the blood pressures of 
millions of patients are impacted by its new drug

In all these cases, we need to come up with some precise quantitative description 
of how the observed quantity is behaving. This section is all about this. Anyway, 
intuitively, what do you think are the qualities that you would like to measure to 
gain an understanding?

•	 What are all the values that a given variable is taking?
•	 What is the probability of taking a given value and what values have  

the highest probability?
•	 What is the mean/median, and how much is the variance?
•	 Given a value, can we tell how many observations fall into it and how  

many fall away from it?
•	 Can we give a range of values where we can tell 90% of the data lies?

Actually, if we can answer these questions, and more importantly if we develop  
a technique to describe such quantities, we are more or less unstoppable as far as  
this property is considered!

There are two prime observations to be made here. First, a property when distributed 
the way it is has all the qualities it takes to be a random variable (knowing one 
value of the quantity does not help us know the next value). Then, if we know the 
probability mass function or the distribution function of this random variable, we 
can compute all the previous matter. This is why it is so important to understand 
mathematics. In general, we follow (for that matter, almost anybody interested in 
analyzing the data that follows) a systematic process in describing a quantity:

1.	 We will first understand the random variable.
2.	 Next, we will compute the probability mass (or distribution) function.
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3.	 Then, we will predict the all-important parameters (mean and variance).
4.	 Then, we will check with experimental data to see how good our 

approximations are.

For example, the number of vans that have been requested for rental at a car rental 
agency during a 50-day period is identified in the following table. The observed 
frequencies have been converted into probabilities for this 50-day period in the last 
column of the table:

The expected value is 5.66 vans, as shown here:
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Similarly, variance computation is given next:

The standard deviation is a square root of variance and is equal to 1.32 vans.  
Let's systematically analyze various distributions.

Bernoulli distribution
This is the simplest distribution that one can think of. Many a times, a property 
takes only discrete values; like a coin toss, a roll of the dice, the gender of people, 
and so on. Even if they are not exactly discrete, we can transform them by binning 
in some cases. For example, when we look at the net worth of individuals, we can 
redivide them as rich and poor (discrete quantity) based on the exact wealth they 
have (continuous quantity). Let's say that the probability of the property taking a 
given value is p (of course, the probability of it not taking is (1-p)). If we collect the 
large sample sufficiently, then how does the dataset look? Well, there will be some 
positives (where the variable took the value) and negatives (where the variable does 
not take the value). Assume that we denote positive with 1 and negative with 0.

Then, we have the following:

The mean = weighted average of probabilities = 1*p +0*(1-p) = p
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Binomial distribution
This is an extension of the Bernoulli idea. Let's take a specific example. You are 
working in a population bureau and have the data of all the families in a state.  
Let's say you want to identify the probability of having two male children in  
families that have exactly two children. As you can see, a family can have two 
children in only four different ways: MM, MF, FM, and FF. As we consider having 
a male child as the event of interest, then the probability that there are only male 
children is 0.25 (1/4). The probability of there being one male child is 0.5 (0.25+0.25) 
(1/4+1/4), and no male child is 0.25 (1/4).

So, if you look at 100 families, what is the probability that 20 families have exactly 
two male children? We will come to the solution later. Let's extend the argument to 
find the probability of having all the males in families with three children: The total 
possibilities are FFF, FFM, FMF, FMM, MFM, MMF, MFF, and MMM (eight total 
possibilities). The probability for all three to be male is 1/8. The probability for two  
of the three being male is 3/8. The probability for one of the three to be male is 3/8. 
The probability for none to be male is 1/8. Note that the total probability of all the 
events is always equal to 1.

Poisson probability distribution
Now, let's try to extend the Binomial theorem to infinite trials, but with a catch.  
The examples that we have taken (coin toss and more) have an interesting property. 
The probability of the event occurring in a trial does not change even if we increase 
the number of trials. However, there are a great number of examples, whereas the 
number of trials (or its equivalent) increases, the corresponding probability of the 
event decreases. So, we need to reduce the time interval to zero, or the number of 
observations to infinity to ensure that we see only a single success or failure in any 
trial. In this limiting case, the probability that we see r successes in n observations 
can be computed as follows:
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The probability distribution of a Poisson random variable X is as given below. This 
considers representing the number of successes occurring in a given time interval:

( )
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Here, r is the rth trial and λ = a mean number of successes in the given time interval 
or the region of space.

Exponential distribution
Let's now look at the Poisson example and ask ourselves a different question. What is 
the probability that the inspector does not see the first car until t hours? In this case, 
it may not be relevant, but when we work on the failure of a component, it makes 
sense to understand what time the probability of not seeing the failure is high. So, 
let's say the sighting of the car (or first failure) follows the Poisson process. Then, let's 
define L, a random variable that is the probability that the inspector will not see the 
first car until time t as the time before the first sighting of the car. From the Poisson 
distribution, the probability that she will not see the first car in 1 hour is as follows:
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The probability that that she will not see a car in the second hour also is the same, 
and the probability that she will not see the car in t hours is e−λt (e−λ * e−λ *…times). The 
probability that she will see the car in the first t hours then is 1-e-λt.

The applications of exponential distribution are as follows:

•	 Time to the first failure in a Poisson process
•	 Distance of the dispersion of seeds from the parent plant
•	 The expected lifetime of an organism, ignoring the aging process  

(where the end occurs due to accidents, infections, and more)
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Normal distribution
Normal distribution is a very widely used class of continuous distribution. It is also 
often called the bell curve because the graph of its probability density resembles a 
bell. Most of the real-life data such as weights, heights, and more (particularly when 
there are large collections) can be well approximated by a normal distribution.

Once we know the values of the heights, the number of samples that have this value 
can be mathematically described as follows:
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Here, σ is the standard deviation and µ is the mean. To describe a normal 
distribution, we just need to know two concepts (average and SD).

Every normal curve adheres to the following rule:

•	 About 68% of the area under the curve falls within one standard deviation  
of the mean

•	 About 95% of the area under the curve falls within two standard deviations 
of the mean

•	 About 99.7% of the area under the curve falls within three standard 
deviations of the mean

Collectively, these points are known as the empirical rule or the 68-95-99.7 rule.
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Relationship between the distributions
While we know that more or less everything converges to a normal distribution, it is 
best to understand where each one fits. The following chart helps in this:

Bayes' theorem
Before we go into the Bayes' theorem, we mentioned at the beginning of this chapter 
what is at the Bayesian learning is the Bayes theorem.

Let's start with an example. Assume that there are two bowls of nuts; the first bowl 
contains 30 cashew nuts and 10 pistachios and the second bowl contains 20 of 
each. Let's choose one bowl randomly and pick a nut with eyes closed. The nut is 
cashew. Now, what is the probability that the bowl chosen is the first bowl? This is a 
conditional probability.

So, p(Bowl 1|cashew) or the probability that it is bowl 1, given the nut is cashew,  
is not an easy and obvious one to crack.
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If the question was to put the other way, p(cashew|bowl1) or the probability that the 
nut is cashew, given bowl 1 is easy, p(cashew|Bowl 1) = ¾.

As we know, p(cashew|Bowl 1) is not the same as p(Bowl 1|cashew), but we can use 
one value to get another value, and this is what Bayes' theorem is all about.

The first step of defining the Bayes' theorem conjunction is commutative; following 
are the steps:

p (A and B) =p (B and A),

Further, the probability of A and B is the probability of A and the probability of B, 
given A:

p (A and B) = p (A) p (B|A), similarly

p (B and A) = p (B) p (A|B)

so,

p (A) p (B|A) = p (B) p (A|B) and

And that's Bayes' theorem!

It might not be very obvious, but it is a very powerful definition.

Now, let's apply this to solve the previous nut problem to find p(bowl1 cashew),  
and we can derive it if we can get p(cashew|bowl 1):

p (bowl1 cashew) = (p(bowl1) p(cashew|bowl1)) / p (cashew)

p (bowl1) = ½

p (cashew|bowl1) = ¾

p (cashew) = total cashews / total nuts (between bowl1 and bowl2) = 50/80 = 5/8

Putting it together, we have the following:

p (bowl1 cashew) = ((1/2) (3/4))/(5/8)= 3/5 = 0.6
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The additional aspect that needs to be considered now is how to feature in the 
changes that come over time as the new data comes in. This way, the probability  
of a hypothesis can be measured in the context of the data at a given point in time. 
This is called the diachronic interpretation of the Bayes' theorem.

Following is the restating Bayes' theorem with the hypothesis (H) for the given  
data (D):

p (H) is the probability of the hypothesis H before seeing the data D.

p (D) is the probability of data D under any hypothesis, which is usually constant.

p (H|D) is the probability of the hypothesis H after seeing the data D.

p (D|H) is the probability of data D given the hypothesis H.

p (H) is called prior probability; p (H|D) is posterior probability; p (D|H) 
is the likelihood; and p (D) is the evidence:

Naïve Bayes classifier
In this section, we will look at the Naïve Bayes classifiers and how they are used to 
solve the classification problems. The Naïve Bayes classifier technique is based on 
the Bayes' theorem and assumes the predictors to be independent, which means 
knowing the value of one attribute does influence the value of any other attribute. 
The independence assumption is what makes Naïve Bayes naïve.

Naïve Bayes classifiers are easy to build, do not involve any iterative process, and 
work very well with large datasets. Despite its simplicity, Naïve Bayes is known to 
have often outperformed other classification methods.

We need to compute the probability of an assumption given a class.
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That is, P(x1, x2, ….xn|y). Obviously, there are multiple pieces of evidence represented 
by x1, x2, ….xn.

Hence, we start with an assumption that x1, x2, ….xn are conditionally independent, 
given y. Another simple way of defining this is that we need to predict an outcome 
given multiple evidence as against a single evidence. To simplify, we uncouple these 
multiple pieces of evidence:

P(Outcome|Multiple Evidence) = [P(Evidence1|Outcome) x P(Evidence2|outcome) x ... x 
P(EvidenceN|outcome)] x P(Outcome) / P(Multiple Evidence)

This is also written as follows:

P(Outcome|Evidence) = P(Likelihood of Evidence) x Prior probability of outcome / 
P(Evidence)

In order to apply Naïve Bayes to predict an outcome, the previously mentioned 
formula will need to be run for every outcome. Just run this formula for each 
possible outcome, and in the case of a classification problem, the outcome will be a 
class. We will look at the famous fruit problem to help you understand this easily.

Given any three important characteristics of a fruit, we will need to predict what 
fruit it is. To simplify the case, let's take three attributes—long, sweet, and yellow; 
and three classes of fruit—banana, orange, and others. Let there be 1,000 data points 
in the training set, and this is how the available information looks like:

Type Long Not 
long

Sweet Not 
sweet

Yellow Not 
yellow

Total 

Banana 400 100 350 150 450 50  500

Orange 0 300 150 150 300 0 300
Others 100 100 150 50 50 150 200

Total 500 500 650 350 800 200 1000

Some derived values/prior probabilities from the previous table are as follows:

Probability of Class

p (Banana)= 0.5 (500/1000)

p (Orange)= 0.3

p (Others) = 0.2
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Probability of Evidence

p (Long)= 0.5

p (Sweet)= 0.65

p (Yellow) = 0.8

Probability of Likelihood

p (Long|Banana) = 0.8

p (Long/Orange) = 0 P(Yellow/Other Fruit) =50/200 = 0.25

p (Not Yellow|Other Fruit)= 0.75

Now, given a fruit, let's classify it based on attributes. First, we run probability for 
each of the three outcomes, take the highest probability, and then classify it:

p (Banana|/Long, Sweet and Yellow) = p (Long|Banana) x p (Sweet|Banana) x p 
(Yellow|Banana) x p (banana) /p (Long) xp (Sweet) x. p (Yellow)

p (Banana||Long, Sweet and Yellow) =0.8 x 0.7 x 0.9 x 0.5 / p (evidence)

p (Banana||Long, Sweet and Yellow) =0.252/ p (evidence)

p (Orange||Long, Sweet and Yellow) = 0

p (Other Fruit/Long, Sweet and Yellow) = p (Long/Other fruit) x p (Sweet/Other fruit) x p 
(Yellow/Other fruit) x p (Other Fruit)

 = (100/200 x 150/200 x 50/150 x 200/1000) / p (evidence)

 = 0.01875/ p (evidence)

With the largest margin of 0.252 >> 0.01875, we can now classify this Sweet/Long/
Yellow fruit as likely to be a Banana.

As Naïve Bayes assumes a gaussian distribution for each of the features, it is also 
called the Gaussian Naïve Bayes classifier.

Naïve Bayes is particularly good when there is missing data. In the next sections,  
let's look at different types of Naïve Bayes classifiers.
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Multinomial Naïve Bayes classifier
As we have seen in the previous section, Naïve Bayes assumes independence of 
the model against the distribution for a feature. In the case of a multinomial Naïve 
Bayes, the p(xi|y) is a multinomial distribution; in short, a multinomial distribution is 
assumed for each of the features. The case that fits this variant is that of a document 
where we need to compute the word count. A simple algorithm of multinomial 
Naïve Bayes is given here:

The Bernoulli Naïve Bayes classifier
The Bernoulli Naïve Bayes classifier attaches a Boolean indicator to a word as one 
if it belongs to a document under examination and zero if it does not. The focus of 
this variation is that it considers the count of occurrence or non-occurrence of a word 
in a specific document under consideration. The non-occurrence of a word is an 
important value as it is used in the computation of the conditional probabilities of 
the occurrence of a word. The Bernoulli Naïve Bayes algorithm is detailed here:
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Multinomial Naïve Bayes Bernoulli Naïve Bayes
Model 
Variable

Here, a token is generated and
checked for occurrence in a position

Here, a document is generated
and checked for occurrence in a 
document

Document
1, , , , ,

dk n kd t t t t V= ∈… …
 1, , , , ,i Md e e e= … …

 
{ }0,1ie ∈

Estimation of 
the parameter  

( )ˆ |P X t c=
 
( )ˆ |iP U e c=

Rule
 
( ) ( )1
ˆ ˆ |

dk n kP c P X t c≤ ≤∏ =
 
( ) ( )ˆ ˆ |

it V i iP c P U e c∈∏ =

Occurrences This considers multiple occurrences This considers single 
occurrences

Size of the 
document

Large documents are handled Good with smaller documents

Features This supports handling more 
features

This is good with lesser features

Estimation of 
a term  

( )ˆ | 0.05P X the c= ≈ ( )ˆ 1| 1.0theP U c= ≈
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Implementing Naïve Bayes algorithm
Refer to the source code provided for this chapter for implementing Naïve Bayes 
classifier (source code path .../chapter9/... under each of the folders for the 
technology).

Using Mahout
Refer to the folder .../mahout/chapter9/naivebayesexample/.

Using R
Refer to the folder .../r/chapter9/naivebayesexample/.

Using Spark
Refer to the folder .../spark/chapter9/naivebayesexample/.

Using scikit-learn
Refer to the folder .../python-scikit-learn/chapter9/naivebayesexample/.

Using Julia
Refer to the folder .../julia/chapter9/naivebayesexample/.

Summary
In this chapter, you have learned Bayesian Machine learning and how to implement 
Naïve Bayes classifiers association rule-based learning with Mahout, R, Python, Julia, 
and Spark. Additionally, we covered all the core concepts of statistics, starting from 
basic nomenclature to various distributions. We have covered the Bayes' theorem in 
depth with examples to understand how to apply it to the real-world problems.

In the next chapter, we will be covering the regression-based learning techniques and 
in specific, the implementation for linear and logistic regression.
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Regression based learning
Regression analysis allows us to mathematically model the relationship between  
two variables using simple algebra. In this chapter, we will focus on covering another 
supervised learning technique: regression analysis or regression-based learning. In the 
previous chapter, we covered the basics of statistics that will be of use in this chapter. 
We will start with understanding how multiple variables can influence the outcome, 
and how statistical adjustment techniques can be used to arbitrate this influence, 
understand correlation and regression analysis using real world examples, and take  
a deep dive into concepts such as confounding and effect modification.

You will learn the basic and advanced concepts of this technique and get hands-on  
implementation guidance in simple, multiple linear regression, polynomial regression 
and logistic regression using Apache Mahout, R, Julia, Apache Spark, and Python.

At the end of this chapter, readers will have understood the uses and limitations 
of regression models, learned how to fit linear and logistic regression models to 
data, statistically inferencing the results and finally, assessing and diagnosing the 
performance of the models.
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The following diagram depicts different learning models covered in this book, and 
the techniques highlighted in orange will be dealt in detail in this chapter:

The topics listed here are covered in depth in this chapter:

•	 Introduction to correlation and regression analysis; revision of additional 
statistical concepts such as covariance and correlation coefficients. We will 
cover the properties of expectation, variance, and covariance in the context  
of regression models and ANOVA model and diagnostics

•	 You will learn simple, linear and multiple linear regressions: linear 
relationships, linear models, basic assumptions (normality, homoscedasticity, 
linearity, and independence), and least squares estimation. Overall, you will 
learn model diagnostics and selection.

•	 You will be presented with an overview of generalized linear models  
(GLMs) and a listing of the regression algorithms under GLM. Also, the 
phenomena of confounding and effect modification will be presented,  
and hence realization and adjustments for the same.

•	 An introduction to logistic regression, understanding odds and risk ratios, 
model building logistic regression models, and assessing the same will  
be covered.

•	 Sample implementation using Apache Mahout, R, Apache Spark, Julia,  
and Python (scikit-learn) libraries and modules will also be covered.
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Regression analysis
Under supervised learning techniques, the learning models that are categorized 
under statistical methods are instance-based learning methods, Bayesian learning 
methods, and regression analysis. In this chapter, we will focus on regression 
analysis and other related regression models. Regression analysis is known to be 
one of the most important statistical techniques. As mentioned, it is a statistical 
methodology that is used to measure the relationship and check the validity and 
strength of the relationship between two or more variables.

Traditionally, researchers, analysts, and traders have been using regression analysis 
to build trading strategies to understand the risk contained in a portfolio. Regression 
methods are used to address both classification and prediction problems.

We have covered some key statistical concepts in the earlier chapter; in this chapter, 
we will cover some more concepts that are quite relevant in the context of regression 
analysis. To name a few concepts, we have the measurement of variability, linearity, 
covariance, coefficients, standard errors, and more.
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Revisiting statistics
In the earlier chapter, where we learned the Bayesian learning methods, we covered 
some core statistical measures such as mean, median, mode, and standard deviation. 
Let's now extend this to some more measures such as variance, covariance, correlation, 
and the first and second moments of the distribution of a random variable.

Variance is the square of standard deviation. If you recollect what standard 
deviation is, it is an average measure of how much each measurement in the sample 
deviates from the mean. It is also called the standard deviation of the mean. We can 
theoretically compute standard deviations for mode and median.

The range is defined as a span of values over which the dataset is spread. Range 
usually is represented as minimum and maximum values.

Quartiles, deciles, and percentiles subdivide a distribution of measurements that are 
similar to the median. The median is known to divide the distribution into half while 
quartile, decile, and percentile divide the distribution into 1/25, 1/10 and 1/100 
respectively.

First quartile (designated Q1) OR lower quartile is the 25th percentile.

Third quartile (designated Q3) OR upper quartile is the 75th percentile.

interquartile range = third quartile – first quartile
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Symmetric and skewed data: Median, mean and mode for symmetric, positively, 
and negatively skewed data is represented here:

Symmetric distribution has equal mean and median values. For 
a positively skewed distribution, the median is greater than the 
mean and for a negatively skewed distribution, the mean value 
is greater than the median's value.

The outlier is an observation that is separated from the main cluster of the data. It 
can impact measures such as mean in a very significant way. Let's take an example to 
understand this better. We want to understand the average wealth of a group of five 
people. Say, the individual assets are valued at USD 1M, USD 1.2M, USD 0.9M, USD 
1.1M, and USD 12M.

1+1.2+0.9+1.1+12=16.2

16.2/5=3.24

The last observation had an unrealistic impact on the measurement. Let's now see 
how the median is impacted. Let's sort the assets in ascending order: 0.9M, 1.0M, 
1.1M, 1.2M, and 12M. The median is 1.1M. There are two important concepts we 
must understand. Outliers influence mean more significantly than the median.

So, you should check the data carefully before choosing the correct statistical quantity.

Mean represents the average value of the variable and median represents the value 
of the average variable.

Covariance is when there are two or more variables of interest (such as stocks of 
companies, physical properties of materials, etc.); it becomes important to understand 
whether there is any relation between them. Precisely, what we want to understand is 
if one of them is varying how does the other variable vary.
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In statistics, two terms explain this behavior:

The first one is known as covariance. For a data set comprising n points of two 
variables x and y, the following equation depicts the computation of covariance:

However, covariance can be a very large number. It is best to express it as a 
normalized number between -1 and 1 to understand the relation between the 
quantities. This is achieved by normalizing covariance with standard deviations  
of both the variables (sx and sy).

This is called correlation coefficient between x and y.

Correlation measures the strength of linear dependence between X and Y and lies 
between -1 and 1. The following graph gives you a visual understanding of how the 
correlation impacts the linear dependence:
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Before we get into the specifics of various regression models, let's first look at the 
steps for implementing a regression model and analyzing the results.

The mean and variances are the first and second moments of the probability 
distribution functions of random variables. They are computed as follows:

After computing the probability distribution for a given random variable, we will 
compute the mean variance through simple integration.

Let's compute all these measures using a real-world example.

Following is the data of the stock prices of three companies (company A, company 
B, and company C) during a period of 14 days. First, compute the returns using the 
next formula:

Returns = (current day's price-yesterday's price)/yesterday's price

From this return, compute mean, median, and pairwise correlation. Do not use the 
built-in libraries. Use the base formulae even if you use Excel.
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First, let's compute the returns using the formula given previously.

If we had to compute the mean, the values would be as follows:
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To find the median, we will first sort the return values in ascending order and then 
mark the mid value.

Finally, let's compute the covariance and then correlations using the formulae given 
in the previous covariance section.
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Properties of expectation, variance, and covariance
Let's combine the understanding of the previous and current chapters and  
conclude them.

This distribution of a variable is the probability of taking a particular value. The 
expectation is the population mean (which is the probability of the weighted average).

We can define a variance and standard deviation of the mean.

Finally, if we are looking at two different variables, we can define covariance and 
correlations. Now, let's understand how the expectations and variance of two groups 
can be computed. This becomes particularly useful in the next sections where we will 
analyze two variables together for linear regression is given here:

E(x+y) = E(x) + E(y)

E(x+a) = E(x) + E(a) = a + E(x)

E(kx) = kE(x)

Here is a very interesting rule:

Essentially, this rule says that if we have a portfolio of properties in a given fraction, 
then the total expectation is the weighted sum of the individual expectations. This is a 
crucial concept in the portfolio of analytics. If there is a portfolio of 30% company A, 
50%, company B, and 20% company C stocks, the expected return of our portfolio is:

E (Portfolio) = 0.3 E(Company A) + 0.5 E(Company A) + 0.2 E (Company A)

Properties of variance
Given X, a random variable:

Var(X+Y) = Var(X)+Var(Y)+2Cov(X,Y)

V(x+a) = V(x) (the variance does not change when a constant is added)

V(ax) = a2 V(x)

Let's prove this as it is not obvious:

Say, Y= aX
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E(Y) = an E(X) (from the previous set of relations)

Y-E(Y) = a(X-E(X))

Squaring both sides and taking expectations:

E(Y-E(Y))2 = a2 E(X-E(x))2

However, the left-hand side is the variance of Y, and the right-hand side is the 
variance of X:

Var (Y) = a2Var(X)

Another couple of interesting properties of variance can be derived from the above. 
It follows directly that

Var (-y) = Var (y)

Let's now look at the variance of the portfolio:

So, if you have a portfolio of three stocks, the variance of your portfolio (or the 
standard deviation that is its square root) varies as shown previously. The standard 
deviation is often called the risk of the portfolio. Ideally, it needs to be as low as 
possible. From the previous formula, this can be done in two ways:

1.	 By selecting the elements whose variance is very low
2.	 By selecting the elements whose covariance is very negative

This is a crucial approach to a successful investment.

Properties of covariance
Following are the properties of covariance:

cov(X, Y) = E[XY] − E[X]E[Y]

cov(x, a) = 0

cov(x, x) = var(x)

cov(y, x) = cov(x, y)

cov(ax, by) =abcov(x, y)
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cov(X+a, Y+b) = cov (X, Y)

cov(aX+bY, cW+dV) = accov(X,W) + adcov(X,V) + bccov(Y,W) + bdcov(Y,V)

Cor(X,Y) = E[XY]/σXσY

Let's now see this using a real-world example.

Example
Two of your best friends, Ana and Daniel, are planning to invest in stock markets. As 
you are the most experienced investor in your friends circle, they approached you for 
advice. You know Daniel can handle a 10% risk whereas Ana wants the least possible 
risk. You obviously want to maximize the returns for both. They both want to invest 
in three items: gold bonds, a top IT company, and a top bank.

SD—Standard Deviation

Correlations can be computed as follows:

Now, let's derive the advice systematically.

Let's first create a list of all the possible weights (assuming you need to compute 
up to a single decimal point) for three assets. There can be approximately 66 values 
possible. This means that our friends must pick from one of these choices to invest. 
Now, calculate the returns for each possible portfolio (a unique combination of 
weights) using the following formula (again use any language you like):

Return from portfolio = Wg X Rg + Wi X Ri + wb X RbWg

Wi, Wb = weights and

Ri, Rg, Rb = returns

This is because the expectation of a portfolio is the summation of the expectations of 
individual portfolio multiplied by individual weights.
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The values for the first five portfolios are:

Compute all the other values.

Calculate the risk of each portfolio using the following formula:

Return = Sqrt ((wg*sdg)2 + (Wi*sdi)2 + (Wb*sdb)2 + (2*Wg*sdg*Wi*sdi*rgi)+ 
(2*Wi*sdi*Wb*sdb*rib) + (2*Wb*sdb*wg*sdg*rbg))

sdg, sdb, sdi = Risks and rij = correlations of i and j

This is exactly the same formula for the variance of a portfolio as given in one of the 
previous sections.

Now lets compute all the other values.

Now, all that is needed is to recommend the balanced portfolios for both Ana and 
Daniel as their risk appetites are known to you. As Ana prefers zero risk, we will 
pick the point that corresponds to 17.2% returns and 0.87 risks. You can look up  
in the table and confirm that this is obtained with the portfolio of 0.7, 0.2, and 0.1 
(Gold, IT, and Bank). As Daniel can take 10% risk, we will see the portfolio that 
corresponds to 10% risk, which has the highest return.

Again, this can be read as 0.2, 0.7, and 0.1.
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ANOVA and F Statistics
In cases like bivariate and multivariate distributions, a good quantity to understand 
is the way the variance is distributed within the populations or groups and between 
the populations or groups. This is the process of grouping data into multiple subsets. 
As you can clearly see, in such situations it really helps to know how variance 
is distributed among them. Such an analysis is called the ANOVA (Analysis of 
Variance). The calculations involved are fairly straightforward.

Let's take three samples that have their own mean and distribution as depicted here:

And in terms of an example, see the following:

Sample 1= {3, 2, 1}

Sample 2= {5, 3, 4}

Sample 3= {5, 6, 7}

Mean for Sample 1 = 2

Mean for Sample 2 = 4

Mean for Sample 3 = 6

Overall grand mean = (3+2+1+5+3+4+5+6+7) / 9 = 4

The grand mean (which will be the population mean if the groups cover the entire 
population) is equal to the mean of means.

Is it possible that the three means come from the same population? If one mean value 
is very different or far from the others, would that mean they are not from the same 
population? Or are they equally far apart?

All the previous samples are about relative distance measures from the grand mean.
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Let's now compute the sum of the squares of the entire sample set:

(3 − 4)2 + (2 − 4)2 + … = 30

We could have calculated the variance by dividing the previously mentioned 
quantity with the degrees of freedom (n*m-1):

n—number of elements in each sample

m—number of samples

The property that we are trying to establish does not change. Hence, let's just stick 
with the sum of squares instead of the variance. Now, let's compute two quantities: 
the sum of squares of the group and between the groups.

•	 The sum of squares of the group: Let's take the first group (3, 2, and 1) 
where the mean is 2. The variation (we are not calling it variance. But, it is 
definitely a measure of variance) within the group is equal to (3-2)2+…=2. 
Similarly, variation within group 2 and group 3 are equal to 2 and 2. So, the 
total variation contributed within the groups is 6. The total number of the 
degrees of freedom within each group is n-1. The total degrees of freedom is 
(n-1)*m. This is 6 in this case.
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•	 The sum of squares between the groups: This is measured as the distances 
between the mean of the group, and the grand mean, which is multiplied by 
the number of elements in the group mean of group 1 is 2, and grand mean 
is 4. So, the variation of this group from the grand mean is (2-4)2 * 3 = 12. The 
variation for the second group is 0 and for the third is 12. So, the variation 
between the groups is 24. The degree of freedom, in this case, is m-1 = 2.

So, let's document this:

So, we see that of the total variation of 30, 6 is contributed by variation within and 
24 is contributed by variation between the groups. So most likely, it makes sense to 
group them separately. Now, let's do some kind of inferential statistics here. Let's 
assume that the previous values are the ranks obtained by three coaching centers.  
We want to know whether putting people in a coaching center actually has an  
impact on their final rank.

Let's start with a hypothetical argument.

Null Hypothesis is that coaching centers do not have an impact on the rank. 
Alternative coaching centers do have an impact on the rank.
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If we observe, this measure is not about the values being equal, but it would be a 
check if the samples come from the same larger population. This measure is called 
the variability among or between the sample means.

So in short, ANOVA is a variability ratio represented as follows:

ANOVA = Variance Between / Variance Within = Distance between the overall 
mean / internal spread

Total Variance = Variance Between + Variance Within

This process of separating total variance into two components is called partitioning:

•	 If the variance between the means is > variance within the means,  
it will mean that the variability ratio is > 1. Hence, we can conclude  
that the samples do not belong to the same population.

•	 If the variance between the means and within the means is similar,  
then the ratio almost becomes 1, and this would indicate an overlap.

•	 If the variance between the means < the variance with the means, it will  
mean that the samples are close to the overall mean or the distributions  
melt together.

So, as we can see while dealing with multiple variables that there can be many 
factors that influence the outcome. Each of these variables will need to be assessed 
for the independent effect on the relationship between variables. In the next section, 
two concepts, confounding and effect modification, will explain the different types 
of influence factors on the outcome.

Confounding
We will start understanding what confounding is using an example. Let's assume we 
are doing a study where we want to determine if the risk of developing heart disease 
has anything to do with smoking. When a study was done on sample data that had 
a mix of smokers and non-smokers and those who were detected to have a heart 
disease over a period of time, a measure of association such as a risk ratio was done, 
and it was found to be 2.0. This can be interpreted as the risk of a smoker developing 
a heart disease being twice as much as that of a non-smoker. Now, when we look 
closely at the data, let's assume that we find the age distribution among the smokers 
and non-smokers is not the same, and it turns out that the age of smokers in the 
sample is much higher than the age of non-smokers. If we had to correlate this piece 
of information, is the outcome of developing heart disease to do with the old age, 
smoking or both?



Regression based learning

[ 282 ]

An ideal way of measuring the quantitative effect of smoking on developing heart 
disease is to take a sample of people, observe them smoke over a period of time, 
collect the data on heart disease development, use the same set of people, and go 
back in time to run the same assessment when they are not smoking. This would 
help measure the counterfactual outcomes. The same group of people represents 
both smokers and non-smokers. Since this is not a possibility, we need to assume 
there is exchangeability. Non-smokers describe smokers if they ever smoke and  
vice-versa. This, in other words, means the two groups are comparable in all 
respects/aspects. In the cases where the data samples are not comparable, the 
condition is termed as confounding, and the property that is responsible for it (in 
this case, age) is called the confounder. If we have to explain this with an example, 
the fact that all non-smokers are younger, the non-smokers will under-estimate the 
outcome of older smokers had they not smoked.

This condition can be represented as shown here:
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What we observe is that there is a backdoor pathway (through the age property). 
Confounding can thus be defined in a much simpler term, that is, the existence  
of a backdoor pathway.

Confounding is a situation in which the effect or association between 
exposure and outcome is distorted by the presence of another variable.

Effect modification
Effect modification is the condition when exposures have different values for 
different groups. This can be observed when the measures of association estimation, 
like odds ratio, rate ratio, and risk ratio values, are very close to a weighted average 
of group-specific estimates from the association.

The effect modifier is the variable that differentially (this can mean positively or 
negatively) modifies the observed effect on the outcome.

Let's look at an example. Breast cancer can occur both in men and women; the ratio 
occurs in both men and women, but the rate at which it occurs in women is 800 times 
more than men, and the gender factor is a differentiating one for obvious reasons.

If the effect modifier is not properly identified, this could result in an incorrect crude 
estimate, and this results in missing the opportunity to understand the relationship 
between the risk factor and the outcome.

The following steps need to be followed to study the effect modification for 
analyzing the data:

1.	 Gather information on potential effect modifiers.
2.	 Study the effect of the effect modifier, measure the difference, and hold on 

from matching the values.
3.	 Stratify the data by potential effect modifiers and calculate estimates of the 

effect of the risk on the outcome. Determine if effect modification is present. 
If so, the estimates can be presented/used.

To review, confounders mask a true effect and effect modifiers mean that there is a 
different effect for different groups.
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Regression methods
As we learned, regression allows us to model the relationship between two or more 
variables, especially when a continuous dependent variable is predicted, based on 
several independent variables. The independent variables used in regression can 
be either continuous or dichotomous. In cases where the dependent variable is 
dichotomous, logistic regression is applied. In cases where the split between the two 
levels of dependent variables is equal, then both linear and logistic regression would 
fetch the same results.

Assumptions of regression (most apply to linear regression model family)

•	 Sample cases size: In order to apply regression models, the cases-to-
Independent Variables (IVs) ratio should ideally be 20:1 (for every IV  
in the model, there need to be 20 cases), the least being 5:1(5 cases for  
every IV in the model).

•	 Data accuracy: Regression assumes the basic validity of data, and it is 
expected to run basic data validations before running regression methods. 
For example, if a variable can have values between 1-5, any value not in  
the range will need to be corrected.

•	 Outliers: As we learned, outliers are those data points that usually have 
extreme values and don't naturally appear to be a part of the population. 
Regression assumes that the outlier values are handled.
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•	 Missing data: It is important to look for missing data and address the same. 
If a specific variable has many missing values, it might be good to eliminate 
the variable unless there are too many variables with many missing values. 
Once the regression process is run, the variable that has no values can be 
a candidate for exclusion. And to avoid the risk of losing data through 
elimination, missing value techniques will need to be applied

•	 Normal distribution: It is necessary for the data to be checked to ensure 
that your data is normally distributed. Plotting data on a histogram is a way 
to check if the data is normally distributed. The following histogram is an 
example of normal distribution:

•	 Linear behavior: Linear behavior is, in simple terms, seeing a straight  
line relationship between the dependent and independent variables. Any 
non-linear relationship between the IV and DV is ignored. A bivariate 
scatterplot is used to test for linearity.
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•	 Homoscedasticity: Homoscedasticity refers to the constant changes to an 
independent variable for a change in the dependent variable. The following 
scatter plot is an example of data being homoscedastic, and we can see the 
concentration of plottings in the center:

Similar to the assumption of linearity, violation of the assumption of homoscedasticity 
does not invalidate regression but weakens it.

•	 Multicollinearity and singularity: Multicollinearity is a case where 
independent variables are highly correlated. In the case of singularity,  
the independent variables are perfectly correlated and, usually, one IV  
is a combination of one or more other IVs. Both multicollinearity and 
singularity can be easily identified using the correlation between IVs.
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From the following section onwards, we will cover each of the regression methods in 
depth as listed in the concept map here:

Simple regression or simple linear regression
In this case, we will be working with just two variables; one dependent variable and 
another independent variable. Simple linear regression is all about comparing two 
models; one where there is no independent variable and the best fit line is formed 
using the dependent variable, and the other that uses the best-fit regression line. Now 
let's look at an example to understand the best fit line and regression line definitions.

We will start with a real-world example. Let's assume there is a real-estate dealer and 
for every real-estate transaction that he does, he gets a commission. Very obviously, 
the commission amount dependents on the value of the transaction; the higher the 
value of the transaction, the higher the commission. So in this case, the commission 
becomes a dependent variable, and the transaction amount becomes an independent 
variable. In order to predict what could possibly be the next commission amount, let's 
consider the sample data of the last six transactions as follows:
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Let's assume that we do not have data for the overall transaction amount. If we were 
to predict the next commission given in the previous data, we start by plotting it on a 
graph as shown here:

One of the options we have to identify the next commission amount that is given in 
the data is to compute the mean, which is the best prediction for the sample.
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Let's plot this point on the graph and this would become the best fit. Plotting the 
mean value on the previous graph:

Computing the distance for each point from the mean gives the values that are 
shown in the next graph. This distance measure is called error or residual. The sum 
of the error for all the points is always found to be zero, and this is the measure of 
the goodness of the fit.
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Plotting the distance on the graph.

We have learned in our earlier chapters about the SSE (Sum Squared Error) value. 
The error is squared because it makes the value positive and also emphasizes larger 
deviations. The following table shows the SSE values computed for the sample data:

The overall goal of a simple linear regression is to build a model that minimizes SSE 
to a maximum extent. Until now, we have seen the best fit using a single variable, 
which is the dependent variable. Now, let's assume we get the data for another 
independent variable in our example. This, in fact, gets us a new regression line that 
is different from the best fit line that we arrived at previously. It is expected that the 
new independent variable should significantly reduce the SSE value. In other words, 
this new regression line should be a better fit for the given data.
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If there is no difference in the earlier best-fit line and the regression line, this would 
mean that the identified independent variable has no influence on the outcome. 
Overall, simple linear regression is designed to find the best fitting line using  
the data that would have the least amount of SSE value.

Let's now add the independent variable data into our analysis—the real-estate 
transaction value, as shown in the table here:

We will plot a scatter plot between the dependent and the independent variable.

There could be multiple lines/equations possible in this context as shown in the  
next graph. In case the data seems to be falling in line, we can proceed. If the data 
points are scattered all over the place, this is an indication that there is no linearity  
in data, and we could choose to stop deriving the regression line. We could choose  
to compute the correlation coefficient here as follows:

r = 0.866
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This indicates that the relationship between the two variables is strong, and we can 
proceed to build the regression model.

Let's now compute the mean for the x and y-axis; here are the values:
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These mean values are to then be plotted as a centroid onto the scattered plot, as 
shown here:

The best-fit regression line has to go through the centroid that comprises the mean of 
the x and y variables. The calculations are as follows:
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The final regression line equation looks like this:

Plotting the previous equation on the scatter plot looks like this:

Multiple regression
Multiple regression is an extension of simple linear regression with one important 
difference, that there can be two or more independent variables used for predicting 
or explaining the variance in one dependent variable. Adding more independent 
variables does not necessarily make the regression better. There could potentially be 
two problems that could arise, one of which is over-fitting. We have covered this in 
the earlier chapters. Too many independent variables can add to the variance but in 
reality, they add nothing to the model thus causing over-fitting. Also, adding more 
independent variables adds more relationships. It is not only that the independent 
variables are potentially related to the dependent variables, but also there could 
be a dependency between the independent variables themselves. This condition is 
called multicollinearity. The ideal expectation is that the independent variables are 
correlated with the dependent variables, but not with each other.
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As a result of over-fitting and multicollinearity issues, there is a need for preparatory 
work before a multiple regression analysis work is to be started. The preparatory 
work can include computing correlations, mapping scatter plots, and running simple 
linear regression among others.

Let's say, we have one dependent variable and four independent variables, and there 
is a multicollinearity risk. This means there are four relationships between the four 
independent variables and one dependent variable, and among the independent 
variables, there could be six more. So, there are 10 relationships to consider as shown 
here. DV stands for dependent variable and IV stands for independent variable.

Some independent variables are better than others for predicting the dependent 
variable, and some might not contribute anything to the prediction. There is a need 
to decide which one of the dependent variables to consider.

In multiple regression, each coefficient is interpreted as the estimated change in y 
corresponding to a one-unit change in the variable, while the rest of the variables  
are assumed constant.

The following are the multiple regression equations.
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Let's say we want to fit an independent variable as a function of a lot of variables 
(x, y, and x2). We can follow a simple procedure to get the coefficients of all the 
variables. This is applicable for linear, quadratic, and cubic functions.

The following is the step-by-step process:

1.	 Order all the points of each variable in a separate column.
2.	 Combine all the columns of the independent variables to be represented  

as a matrix.
3.	 Add a column to the 1's at the beginning of the matrix.
4.	 Name this matrix as X Matrix.
5.	 Make a separate column matrix of all independent variables and call it Y 

Matrix.
6.	 Compute the coefficients using the formula here (this is the least  

square regression):
B = (XTX)-1XTY

This is a matrix operation, and the resulting vector is the coefficient.

In multiple regression, a lot of preparatory work needs to be done before running 
the regression model. It is necessary to step back and perform some analysis on 
the variables in consideration. Some basic scatter plots can be plotted to check for 
any correlations and to analyze the relationships between the dependent variables. 
Techniques like scatter plots, correlation analysis, and individual or group regressions 
can be used. In case there are any qualitative or categorical variables, we will need to 
use dummy variables to build the regression model.

Polynomial (non-linear) regression
While the linear regression model y = Xβ + ε is a general model that will fit any linear 
relationship in the unknown parameter β, polynomial models are applicable in cases 
where the analyst knows that curvilinear effects are present in the true response 
function. Polynomial models are also used as approximating functions to the unknown 
and possibly very complex nonlinear relationship. The polynomial model is the Taylor 
series expansion of the unknown function.
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If the two variables are linearly related, the scatterplot looks like the following:

From the previous bivariate scatterplot, it is clear that there is a linear relationship 
between friends and happiness. The graph says more friends, more happiness. What if 
we talk about a curvilinear relationship between the variables, the number of friends 
and happiness? This means as the number of friends grows, the happiness grows but 
only to a certain point. The following graph shows this behavior in data:
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If the data is not linear, then the process is to make it linear by transforming IVs or 
the DV so that there is a linear relationship between them. This transformation will 
not always work as there might be a genuine non-linearity in data and behavior. 
In this case, we will need to include the square of the independent variables in the 
regression. This is also known as a polynomial/quadratic regression. The least 
squares method is used to fit a polynomial regression model as it minimizes the 
variance in the estimation of the coefficients.

Generalized Linear Models (GLM)
Let's look at the reasons why a linear regression model does not work.

Simple linear regression is a quantitative variable predicting another, multiple 
regression. It is an extended simple linear regression, but with more independent 
variables and finally, a nonlinear or polynomial regression is the case where there  
are two quantitative variables, but the data is curvilinear.

Now, running a typical linear regression, in the same way, has some problems. Binary 
data does not have a normal distribution. This is where the need for other regression 
models comes in. Secondly, the predicted values of the dependent variable can be 
beyond 0 and 1, which is against the concept of probability. Finally, probabilities are 
often non-linear and can take majorly low or high values at the extremes.

GLM is a generalization of linear regression that supports cases where the 
independent variables can have distribution error models other than normal 
distribution. GLM generalizes linear regression as it allows the linear model to be 
related to the independent variable through a link function, and it also allows the 
degree of the variance of each measure is a function of its predicted value.

In short, GLM generalizes linear, logistic, and Poisson regression models.

Logistic regression (logit link)
Logistic regression is an extension of linear regression where the dependent variable 
is a categorical variable that is responsible for the classification of the observations.

For example, if Y denotes whether a particular customer is likely to purchase a product 
(1) or unlikely to purchase (0), we have a categorical variable with two categories or 
classes (0 and 1). Logistic regression can solve a classification problem where the class 
is unknown. This is done using the predictor values classifying a new observation, 
where the class is unknown, into one of the classes, based on the variable.
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The examples are as follows:

•	 Classifying customers as returning (1) or non-returning (0)
•	 Predicting if a loan would be approved or rejected, given the credit score

One of the important uses can be to find similarities between predictor values.

Before we start taking a deep dive into logistic regression, let's revisit the concept of 
probability and the odds that were covered in the earlier chapter.

Probability = outcomes of interest / all possible outcomes.

For example, when a fair coin is tossed, P(heads) = ½ = 0.5. When a dice is rolled,  
P(1 or 2) = 2/6 = 1/3 = 0.33. In a deck of cards, P(diamond card) = 13/52 = ¼ = 0.25.

Odds = P(something happening)/P(something not happening) = p/1-p

For example, when a coin is tossed, odds(heads = 0.5/0.5= 1). When a dice is rolled, 
odds(1 or 2) = 0.333/0.666 = ½ = 0.5. In a deck of cards, odds(diamond card) = 0.25/0.75 = 
1/3 = 0.333.

The odds ratio is the ratio of two odds.

For example, when a coin is tossed, in case of a fair flip:

P(heads) = ½= 0.5 and odds(heads) = 0.5/0.5 = 1 = 1:1

In case of a loaded coin flip:

P(heads) = 0.7 and odds(heads) = 0.7/0.3 = 2.333

Odds ratio= odds1/odds0 = 2.333/1 = 2.333

This means the odds of getting a heads when a loaded coin is flipped is 2.333 times 
greater than a fair coin.

Overall, logistic regression seeks to:

•	 Model the probability of the event occurring depending on the values of  
the independent variables, which can be categorical or numerical

•	 Estimate the probability of an event occurring versus not occurring
•	 Predict the effect of a set of variables on a binary response variable
•	 Classify the observations to belong to a particular category based on the 

probability estimation
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Odds ratio in logistic regression
The odds ratio for a variable in logistic regression denotes how the odds for one 
variable changes with the increase of a unit in that variable, keeping the rest of the 
variables constant.

Let's take an example to understand this—whether the body weight is dependent on 
sleep apnea or not. Let's assume that the body weight variable has an odds ratio of 
1.07. This means one pound increased in weight could potentially increase the odds 
of having slept apnea by 1.07 times. This might not be significant. In the case of a 
10-pound increase in weight, the odds increase to 1.98, which doubles the odds of the 
person having slept apnea. It is important that we separate the probability and the 
odds measures. For example, though the increase in weight by 20 pounds increases 
the odds of the person having slept by 4 times, the probability that the person's 
weight has increased by 20 pounds could potentially be very low.

In logistic regression, there are two important steps:

1.	 Finding the probability of belonging to a particular class. So, if Y = 0 or 1,  
the probability of belonging to class 1 is P(Y=1).

2.	 We will need to use the cut-off values of the probabilities to ensure that each 
case gets into one of the classes. In case of binary cut-off, a P(Y=1) > 0.5 will 
be categorized as 1 and P(Y=0) < 0.5 will be categorized as 0.

Model
yi is normally distributed and takes the value of either 0 or 1 for i = 0,1,…,n.

yi is equal to {0, 1} where P(yi = 1) = p and P(yi = 0) = 1-p

Y = a + bx for P(yi= 1)

pi = a + bxi

Note that pi will not take values between (0, 1). This is fixed by using a non-linear 
function of predictors such as:
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Clearly, this takes a value between 0 and 1 as x varies from -∞ to ∞. From this, a+bxi 
can be obtained as follows:

The following curve shows how the function varies:

Poisson regression
Poisson regression, in the context of GLM, is a count of data with the independent 
variable having Poisson distribution and the link function applied is a logarithm of the 
response that can be modeled using a linear combination of unknown parameters.

Implementing linear and logistic 
regression
Refer to the source code provided for this chapter for implementing linear regression. 
(source code path .../chapter10/... under each of the folders for the technology)
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Using Mahout
Refer to the folder .../mahout/chapter10/linearregressionexample/.

Refer to the folder .../mahout/chapter10/logisticregressionexample/.

Using R
Refer to the folder .../r/chapter10/linearregressionexample/.

Refer to the folder .../r/chapter10/logisticregressionexample/.

Using Spark
Refer to the folder .../spark/chapter10/linearregressionexample/.

Refer to the folder .../spark/chapter10/logisticregressionexample/.

Using scikit-learn
Refer to the folder .../python-scikit-learn/chapter10/
linearregressionexample/

Refer to the folder .../python-scikit-learn/chapter10/
logisticregressionexample/

Using Julia
Refer to the folder .../julia/chapter10/linearregressionexample/.

Refer to the folder .../julia/chapter10/logisticregressionexample/.

Summary
In this chapter, you learned regression analysis-based machine learning and, in 
particular, how to implement linear and logistic regression models using Mahout, R, 
Python, Julia, and Spark. Additionally, we covered other related concepts of statistics 
such as variance, covariance, and ANOVA among others. We covered regression 
models in depth with examples to understand how to apply them to real-world 
problems. In the next chapter, we will cover deep learning methods.
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Deep learning
Until now, we covered a few supervised, semi-supervised, unsupervised, and 
reinforcement learning techniques and algorithms. In this chapter, we will cover 
neural networks and its relationship with the deep learning practices. The traditional 
learning approach was about writing programs that tell the computer what to do, 
but neural networks are about learning and finding solutions using observational 
data that forms a primary source of input. This technique's success depends on how 
the neural networks are trained (that is, the quality of the observational data). Deep 
learning refers to methods of learning the previously referenced neural networks.

The advancement in technology has taken these techniques to new heights where 
these techniques demonstrate superior performance, and are used to solve some 
key non-trivial requirements in computer vision, speech recognition, and Natural 
Language Processing (NLP). Large companies such as Facebook and Google,  
among many others, have adopted deep learning practices on a substantial basis.
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The primary aim of this chapter is to enforce mastering the neural networks and 
related deep learning techniques conceptually. With the aid of a complex pattern 
recognition problem, this chapter covers the procedure to develop a typical neural 
network, which you will be able to use to solve a problem of a similar complexity. 
The following representation shows all the learning methods covered in this book, 
highlighting the primary subject of learning in this chapter—Deep learning.

The chapter covers the following topics in depth:

•	 A quick revisit of the purpose of Machine learning, types of learning, and the 
context of deep learning with details on a particular problem that it solves.

•	 An overview of neural networks:
°° Human brain as the primary inspiration for neural networks
°° The types of neural network architectures and some basic models  

of neurons
°° A simple learning example (digit recognition)
°° An overview of perceptrons, the first generation of neural networks 

and what they are capable of doing and what they are not capable  
of doing

•	 An overview of linear and logistic output neurons. An introduction to back 
the propagation algorithm and applying the derivatives of back propagation 
algorithm for solving some real-world problems

•	 The concepts of cognitive science, the softmax output function, and handling 
multi-output scenarios
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•	 Applying convolution nets and the problem of object or digit recognition
•	 Recurrent neural networks (RNN) and Gradient descent method
•	 Signal processing as the principle of component analysis and autoencoders; 

the types of autoencoders which are deep and shallow autoencoders
•	 A hands-on implementation of exercises using Apache Mahout, R, Julia, 

Python (scikit-learn), and Apache Spark

Background
Let's first recap the premise of Machine learning and reinforce the purpose and 
context of learning methods. As we learned, Machine learning is about training 
machines by building models using observational data, against directly writing 
specific instructions that define the model for the data to address a particular 
classification or a prediction problem. The word model is nothing but a system in  
this context.

The program or system is built using data and hence, looks as though it's very 
different from a hand-written one. If the data changes, the program also adapts  
to it for the next level of training on the new data. So all it needs is the ability to 
process large-scale as opposed to getting a skilled programmer to write for all  
the conditions that could still prove to be heavily erroneous.

We have an example of a Machine learning system called spam detector. The primary 
purpose of this system is to identify which mail is spam and which is not. In this case, 
the spam detector is not coded to handle every type of mail; instead, it learns from 
the data. Hence, it is always true that the precision of these models depends on how 
good the observational data is. In other words, the features extracted from the raw 
data should typically cover all the states of data for the model to be accurate. Feature 
extractors are built to extract standard features from the given sample of data that the 
classifier or a predictor uses.

Some more examples include recognizing patterns such as speech recognition, object 
recognition, face detection, and more.

Deep learning is a type of Machine learning that attempts to learn prominent features 
from the given data, and thus tries to reduce the task of building a feature extractor 
for every category of data (for example, image, voice, and so on.). For a face detection 
requirement, a deep learning algorithm records or learns features such as the length 
of the nose, the distance between the eyes, the color of the eyeballs, and so on. This 
data is used to address a classification or a prediction problem and is evidently very 
different from the traditional shallow learning algorithm.
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The human brain
The human brain is known to be one of the most implausible organs in the human 
body. The brain is essentially what makes us, humans, intelligent. It is responsible 
for building our perceptions based on what we experience regarding our senses of 
touch, smell, sight, vision, and sound. These experiences are collected and stored as 
memories and emotions. Inherently, the brain is what makes us intelligent without 
which, we probably are just primitive organisms in the world.

The brain of a newborn infant is capable of solving problems that any complex and 
powerful machine cannot solve. In fact, just within a few days of birth, the baby 
starts recognizing the face and voice of his/her parents and starts showing the 
expressions of longing to see them when they are not around. Over a period, they 
begin associating sounds with objects and can even recognize an object given a sight. 
Now, how do they do this? If they come across a dog, how do they recognize it to be 
a dog; also, do they associate a barking sound with it and mimic the same sound?

It is simple. Every time the infant comes across a dog, his/her parents qualify it to 
be a dog, and this reinforces the child's model. In case they qualify the child to be 
wrong, the child's model would incorporate this information. So, a dog has long ears, 
long nose, four legs, a long tail, and can be of different colors such as black, white or 
brown, making a barking sound. These characteristics are recognized through sight 
and sound that an infant's brain records. The observational data thus collected drives 
the recognition of any new object henceforth.

Now, let's say the infant sees a wolf for the first time; he/she would identify a wolf to 
be a dog by looking at the similarity of its characteristics s. Now, if the parent feeds 
in the definite differences on the first sighting, for example, a difference in the sound 
that it makes, then it becomes a new experience and is stored in memory, which is 
applied to the next sighting. With the assimilation of more and more such examples, 
the child's model becomes more and more accurate; this process is very subconscious.

For several years, we have been working toward building machines that can be 
intelligent with brains as those of humans. We are talking about robots that can 
behave as humans do and can perform a particular job with similar efficiency to 
humans beings, such as driving a car, cleaning a house, and so on. Now, what does 
it take to build machines as robots? We probably need to build some super-complex 
computational systems that solve the problems our brain can solve in no time. This 
field that works on building artificially intelligent systems is called deep learning.

Following are some formal definitions of deep learning:

According to Wikipedia, Deep learning is a set of algorithms for machine learning 
that attempts to model high-level abstractions in data by using model architectures 
composed of multiple non-linear transformations.
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According to http://deeplearning.net/, Deep learning is the new area of 
Machine learning research that has been introduced with the objective of moving 
Machine learning closer to one of its original goals—Artificial Intelligence.

This subject has evolved over several years; the following table lists research areas 
across the years:

Research Area Year
Neural networks 1960
Multilayer Perceptrons 1985
Restricted Boltzmann Machine 1986
Support Vector Machine 1995
Hinton presents the Deep Belief Network (DBN)
New interests in deep learning and RBM
State of the art MNIST

2005

Deep Recurrent Neural Network 2009
Convolutional DBN 2010
Max-Pooling CDBN 2011

Among many others, some key contributors to this field are Geoffrey Hinton, Yann 
LeCun, Honglak Lee, Andrew Y. Ng, and Yoshua Bengio.

The following concept model covers different areas of Deep learning and the scope 
of topics covered in this chapter:

http://deeplearning.net/
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Let's look at a simple problem on hand; the requirement is to recognize the digits 
from the handwritten script given here:

For a human brain, this is very simple as we can recognize the digits as 287635. The 
simplicity with which our brain interprets the digits is perceptive that it undermines 
the complexity involved in this process. Our brain is trained to intercept different 
visuals progressively due to the presence of visual cortices, with each cortex 
containing more than 140 million neurons that have billions of connections between 
them. In short, our brain is no less than a supercomputer that has evolved over 
several millions of years and is known to adapt well to the visual world.

If a computer program has to crack the recognition of the digits, what should be the 
rules to identify and differentiate a digit from another?

Neural networks are one such field being researched for several years and is known 
to address the need for multilayered learning. The overall idea is to feed a large 
number of handwritten digits; an example of this data (training) is shown in the 
following image, and that can learn from these examples. This means the rules are 
automatically inferred from the provided training data. So, the larger the training 
dataset, the more accurate would be the prediction. If we are posed with a problem 
to differentiate the digit 1 from the digit 7 or the digit 6 from the digit 0, some minor 
differences will need to be learned. For a zero, the distance between the starting and 
ending point is minimal or nothing.
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The difference is basically because these learning methods have been targeted to 
mimic a human brain. Let's see what makes this a difficult problem to solve.

In summary, with deep learning being a subset of Machine learning, we know that 
this involves the technique of feeding examples and a model that can evaluate the 
pattern to evolve it in case it makes a mistake. Thus, over a period of time, this model 
would solve the problem with the best possible accuracy.

If this needs to be represented mathematically, let's define our model to be a function 
f(x,θ).

Here, x is the input that is provided as a vector of values and θ is a reference vector 
that the model uses to predict or classify x. So, it is θ that we need to expose to a 
maximum set of examples in order to improve the accuracy.

Let's take an example; if we were to predict whether a visitor to a restaurant would 
come back based on two factors—one is the amount of bill (x1) and the other is his/
her age(x2). When we collect data for a specific duration of time and analyze it for an 
output value that can be 1(in case the visitor came back) or -1(if the visitor has not 
come back). The data, when plotted, can take any form—from a linear relationship  
or any other complex form, as shown here:

Something like a linear relationship looks straight forward and more complex 
relationships complicate the dynamics of the model. Can parameter θ have an 
optimal value at all? We might have to apply optimization techniques and in the  
next sections to follow, we will cover these techniques such as perceptrons and 
gradient descent methods among others. If we want to develop a program to do  
this, we need to know what our brain does to recognize these digits, and even if  
we knew, these programs might be very complex in nature.
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Neural networks
Neural computations have been a primary interest of the study to understand 
how parallel computations work in neurons (the concept of flexible connections) 
and solve practical problems like a human brain does. Let's now look at the core 
fundamental unit of the human brain, the neuron:

Neuron
The human brain is all about neurons and connections. A neuron is the smallest part 
of the brain, and if we take a small rice grain sized piece of the brain, it is known 
to contain at least 10000 neurons. Every neuron on an average has around 6000 
connections with other neurons. If we look at the general structure of a neuron, it 
looks as follows.

Every feeling that we humans go through, be it thought or emotion, is because 
of these millions of cells in our brain called neurons. As a result of these neurons 
communicating with each other by passing messages, humans feel, act, and form 
perceptions. The diagram here depicts the biological neural structure and its parts:
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Every neuron has a central cell body; as any cell, in general, it has an axon and a 
dendritic tree that are responsible for sending and receiving messages respectively 
with other neurons. The place where axons connect to the dendritic tree is called 
a synapse. The synapses themselves have an interesting structure. They contain 
transmitter molecules that trigger transmission, which can either be positive or 
negative in nature.

The inputs to the neurons are aggregated, and when they exceed the threshold,  
an electrical spike is transmitted to the next neuron.

Synapses
The following diagram depicts the model of a synapse depicting the flow of messages 
from axon to dendrite. The job of the synapse is not just the transmission of messages, 
but in fact, adapt themselves to the flow of signals and have the ability to learn from 
past activities.
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As an analogy in the field of Machine learning, the strength of the incoming 
connection is determined on the basis of how often it is used, and thus its impact on 
the neuron output is determined. This is how new concepts are learned by humans 
subconsciously.

There can additionally be external factors such as medication or body chemistry that 
might impact this learning process.

Now we will finally summarize how the learning happens inside the brain with the 
help of the following list:

•	 Neurons communicate with other neurons or sometimes receptors. The cortical 
neurons use spikes for communication.

•	 The strengths of connections between neurons can change. They can take 
positive or negative values by either establishing and removing connections 
between neurons or by strengthening the connection based on the 
influence that a neuron can have over the other. A process called long-term 
potentiation (LTP) occurs that results in this long-term impact.

•	 There are about 1011 neurons having weights that make the computations 
that the human brain can do more efficiently than a workstation.

•	 Finally, the brain is modular; different parts of the cortex are responsible for 
doing different things. Some tasks infuse more blood flow in some regions 
over the other and thus, ensuring different results.

Before schematizing the neuron model into the artificial neural network (ANN),  
let us first look at different types, categories, or aspects of neurons, and in specific the 
Artificial neuron or Perceptron, the deep learning equivalent of a biological neuron. 
This approach is known to have produced extremely efficient results in some of the 
use cases we listed in the previous section. ANNs are also called feed-forward neural 
networks, Multi-Layer Perceptrons (MLP), and, recently, deep networks or learning. 
One of the important characteristics has been the need for feature engineering, whereas 
deep learning represents applications that require minimum feature engineering, 
where learning happens through multiple learned layers of neurons.
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Artificial neurons or perceptrons
It is obvious that artificial neurons draw inspiration from biological neurons,  
as represented previously. The features of an artificial neuron are listed here:

•	 There is a set of inputs received from other neurons that activate the neuron 
in context

•	 There is an output transmitter that transfers signals or an activation of the 
other neurons

•	 Finally, the core processing unit is responsible for producing output 
activations from the input activations

Idealizing for a neuron is a process that is applied to building models. In short, it  
is a simplification process. Once simplified, it is possible to apply mathematics and 
relate analogies. To this case, we can easily add complexities and make the model 
robust under identified conditions. Necessary care needs to be taken in ensuring 
that none of the significantly contributing aspects are removed as a part of the 
simplification process.

Linear neurons
Linear neurons are the simplest form of neurons; they can be represented as follows:

The output y is a summation of the product of the input xi and its weight wi. This is 
mathematically represented as shown here:

( )
1

n

i i
i

y b w x
=

= +∑

Here, b is the bias.
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A graph representation of the previous equation is given as follows:

Rectified linear neurons / linear threshold neurons
Rectified linear neurons are similar to linear neurons, as explained in the preceding 
section, with a minor difference where the output parameter value is set to zero in 
cases where it is less than (<) zero (0), and in case the output value is greater than (>) 
zero (0), it continues to remain as the linear weighted sum of the inputs:

Binary threshold neurons
The binary threshold neurons were introduced by McCulloch and Pitts in 1943. This 
class of neurons first have the weighted sum of the inputs computed, similar to the 
linear neurons. If this value exceeds a defined threshold, a fixed size spike to activity 
is sent out. This spike is called as the truth value of a proposition. Another important 
point is the output. The output at any given point in time is binary (0 or 1).
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The equation that demonstrates this behavior is given here:

( )
1

n

i i
i

z w x
=

=∑

And

y = 1 if z ≥ θ,

y = 0 otherwise

here θ = -b (bias)

(OR)

( )
1

n

i i
i

z b w x
=

= +∑

And

y = 1 if z ≥ 0,

y = 0 otherwise

Moreover, a graphical representation of the previous equation is given here:
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Sigmoid neurons
Sigmoid neurons are highly adopted in artificial neural networks. These neurons are 
known to provide the output that is smooth, real-valued, and therefore a bounded 
function of all the inputs. Unlike the types of the neurons that we have seen until 
now, these neurons use the logistic function.

The logistic function is known to have an easy-to-calculate derivative that makes 
learning easy. This derivative value is used in computing the weights. Following is 
the equation for the sigmoid neuron output:

( )
1

n

i i
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z b w x
=

= +∑

1
1 zy
e−

=
+

The diagrammatic/graphical representation is as follows:

Stochastic binary neurons
Stochastic binary neurons use the same equation as logistic units, with one important 
difference that the output is measured for a probabilistic value, which measures the 
probability of producing a spike in a short window of time. So, the equation looks 
like this:
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Moreover, the graphical representation of this equation is:

Overall, what we can observe is that each neuron takes in a weighted sum of a 
bunch of inputs on which a non-linear activation function is applied. Rectified linear 
function is typically applied for solving regression problems and for classification 
problems, logistic functions are applied. A generic representation of this can be given 
as follows:
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Now, these inputs can be fed into a series of layers of neurons. Let's look at what 
happens next and how this happens. The input layer pushes input values; the hidden 
layers of neurons then take the values as input. It is possible to have multiple layers 
within these hidden layers, where the output from one layer feeds as the input to the 
subsequent layer. Each of these layers can be responsible for the specialized learning. 
Moreover, finally, the last in the hidden layer feeds into the final output layer. This 
typical structure of an ANN is illustrated next. Every circle in the next diagram 
represents a neuron. The concept of the Credit Assignment Path (CAP) refers to the 
path from input to output. In the feed-forward networks, the length of the path is the 
total number of hidden layers along with the output layer. The following diagram 
shows a feed-forward neural network with a single hidden layer and connections 
between layers:

The case of two hidden layers are shown in here:
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Neural Network size
Computing the number of neurons or parameters is shown here:

•	 For the single layer network:
Total number of neurons = 4 + 2 = 6 (inputs are not counted)
Total weights = [3 x 4] + [4 x 2] = 20
Total bias = 4 + 2 = 6, for 26 learnable parameters.

•	 For the two layer network:

Total number of neurons = 4 + 4 + 1 = 9 (inputs are not counted)
Total weights = [3 x 4] + [4 x 4] + [4 x 1] = 12 + 16 + 4 = 32
Total bias = 4 + 4 + 1 = 9 for 41 learnable parameters

So, what is the optimal size of neural networks? It is important to identify the possible 
number of hidden layers along with the size of each layer. These decisions determine 
the capacity of the network. A higher value helps to support a higher capacity.

Let's take an example where we will try three different sizes of the hidden layer by 
obtaining the following classifiers:

Clearly, with more neurons, functions with higher complexity can be expressed, 
which is good, but we need to watch out for the over-fitting case. So, a smaller-sized 
network works well for simpler data. With the increasing data complexity, the need 
for a bigger size arises. The trade-off is always between handling the complexity of 
the model versus. over-fitting. Deep learning addresses this problem as it applies 
complex models to extremely complex problems and handles over-fitting by taking 
additional measures.
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An example
A face recognition case using the multi-layered perceptron approach is shown next:

Multiple layers take this image as input and finally, a classifier definition is created 
and stored.

Given a photograph, each layer focuses on learning a specific part of the photograph 
and finally stores the output pixels.

Some key notes on the weights and error measures are as follows:

•	 The training data is the source of learning the weights of neurons
•	 The error measure or the cost function is different from the regression  

and classification problems. For classification, log functions are applied,  
and for regression, least square measures are used.

•	 These methods help to keep these error measures in check by updating  
the weights using convex optimization techniques such as decent  
gradient methods
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Neural network types
In this section, we will cover some key types of neural networks. The following 
concept map lists a few principal types of neural networks:

Multilayer fully connected feedforward networks or 
Multilayer Perceptrons (MLP)
As covered in the introductory sections about neural networks, an MLP has  
multiple layers where the output of one layer feeds as an input to a subsequent  
layer. A multilayer perceptron is represented as shown in the following diagram:
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Jordan networks
Jordan networks are partially recurrent networks. These networks are the current 
feedforward networks with a difference of having additional context neurons inside 
the input layer. These context neurons are self-imposed and created using the direct 
feedback from input neurons. In Jordon networks, the number of context neurons is 
always equal to the input neurons. The following diagram depicts the difference in 
the input layer:
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Elman networks
Elman networks, just as Jordon networks, are partially recurrent feedforward 
networks. These networks also have context neurons, but in this case, the main 
difference is that the context neurons receive the feed from the output neurons,  
and not from the hidden layers. There is no direct correlation between the number  
of context neurons and input neurons; rather, the number of context neurons is  
the same as the number of hidden neurons. This, in turn, makes this model more 
flexible, just as the number of hidden neurons do on a case-by-case basis:
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Radial Bias Function (RBF) networks
Radial Bias Function networks are also feed-forward neural networks. These 
networks have a special hidden layer of special neurons called radially symmetric 
neurons. These neurons are for converting the distance value between the input 
vector and the center using a Gaussian measure. The advantage of this additional 
layer is that it gives an additional capability to determine the number of layers 
required without a manual intervention. The choice of the linear function determines 
the optimal output layer. Therefore, the learning happens relatively faster in these 
networks even in comparison to back propagation.

The only downside of this method is its ability to handle large input vectors.  
The diagram below depicts the hidden layer of radially symmetric neurons.
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Hopfield networks
Hopfield networks work around a concept called energy of network. This is nothing 
but an optimal local minima of the network that defines an equilibrium state for the 
functionality. Hopfield networks target the state of achieving this equilibrium state. 
An equilibrium state is when the output of one layer becomes equal to the output of 
the previous layer. The following diagram depicts how the input and output states 
are checked and managed in the Hopfield network:

Dynamic Learning Vector Quantization (DLVQ) networks
The Dynamic Learning Vector Quantization (DLVQ) network model is another 
variation of neural networks that starts with a smaller number hidden layers and 
dynamically generates these hidden layers. It is important to have similarities in 
patterns that belong to the same class; hence, this algorithm best suits classification 
problems, such as recognition of patterns, digits, and so on.
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Gradient descent method
In this section, we will look at one of the most popular ways of optimizing the 
neural network, minimizing the cost function, minimizing errors, and improving 
the accuracy of the neural network: the Gradient descent method. The graph here 
shows the actual versus. The predicted value along with the cases of inaccuracy in 
the predictions:

Backpropagation algorithm
Taking forward the topic of training the networks, the Gradient descent algorithm 
helps neural networks to learn the weights and biases. Moreover, to compute 
the gradient of the cost function, we use an algorithm called backpropagation. 
Backpropagation was first discussed in the 1970s and became more prominent 
regarding its application only in the 1980s. It was proven that neural network 
learning was much faster when backpropagation algorithm was employed.

In the earlier sections of this chapter, we saw how a matrix-based algorithm works; 
a similar notation is used for the backpropagations algorithm. For a given weight w 
and bias b, the cost function C has two partial derivatives which are ∂C/∂w and ∂C/∂b.

Some key assumptions regarding the cost function for backpropagation are stated 
here. Let's assume that the cost function is defined by the equation here:
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Where, n = number of training examples

x = sum across the individual training sets

y = y(x) is the expected output

L = total number of layers in the neural network

aL = aL(x) is the output activation vector

Assumption 1: The overall cost function can be an average of the individual cost 
functions. For x individual training sets, the cost function can now be stated as follows:

Moreover, the cost function for an individual training set can be as follows:

With this assumption, since we can compute the partial derivatives for each training 
set x as ∂xC/∂w and ∂xC/∂b, the overall partial derivative functions ∂C/∂w and 
∂C/∂b can be an average of the partial derivatives for each training set.

Assumption 2: This hypothesis is about the cost function C that C can be the function 
of outputs from the neural networks as shown here:
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Extending the previous equation of the cost function, the quadratic cost function for 
each training example set x can now be written as follows. We can see how this acts 
as a function of the output activations as well.

Back propagation is about the impact the weights and bias have on the overall cost 
function value.

First, we compute the error in the jth neuron in the lth layer, δl
j, and then use this value 

to calculate the partial derivatives that relate to this error δl
j:

The error function δl
j of the jth neuron in the lth layer can be defined as:

Thus, the error for the layer L δL can be computed as well. This, in turn, helps to 
compute the gradient of the cost function.

The following equations are used by the back propagation algorithm in sequence,  
as shown here:

Equation 1: The computing error in the layer L, δL, given the neuron at the position j.
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Equation 2: The computing error in the layer L, δL, given the error in the next  
layer δL+1.

The Hadamard product is a matrix multiplication technique that is 
used for element-wise matrix multiplication as shown here:

The notation  is used to represent this method.
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Equation 3: This equation measures the impact on the cost and gives a change in  
the bias:

Moreover, we will get the following from equations 1 and 2:

This is because the error value is the same as the rate of change of the partial 
derivative.

Equation 4: This equation is used to compute the rate of change of the cost as a 
relationship to the weight.

At every stage of these algorithms, there is some kind of learning that impacts the 
overall output from the network.

The final backpropagation algorithm as compiled is explained here:

1.	 The input layer x, and for x =1 Set the activation as a1.
2.	 For each of the other layers L = 2, 3, 4 …. L, compute the activations as:
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3.	 Compute the error δL using equations 1 and 2.
4.	 Backpropagate the error for l = L-1, L-2, … 2, 1 using the equation 3.
5.	 Finally, compute the gradient of the cost function using equation 4.

If we observe the algorithm, the error vectors δl are calculated backwards, starting 
from the output layer. This is the fact that the cost is a function of outputs from the 
network. To understand the impact of earlier weights on the cost, a chain rule needs 
to be applied that works backwards through all the layers.

Softmax regression technique
Softmax regression is also known as multinomial logistic regression. This section 
does not cover the concept of logistic regression in depth as it is covered in the 
chapter related to a regression in this book. Instead, we will specifically look  
at understanding how this technique is employed in digit recognition-related 
problems in deep learning use cases.

This technique is a special case of the logistic regression that works for multiple 
classes. As we learned, the result of logistic regression is a binary value {0,1}.  
Softmax regression facilitates handling y(i)<--{1,…,n}, where n is the number of  
classes against the binary classification. In the MNIST digit recognition case, the 
value n is 10, representing 10 different classes. For example, in the MNIST digit 
recognition task, we would have K=10 different classes.

As a result of its ability to process multiple classes, this technique is used actively  
in neural network-based, problem-solving areas.
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Deep learning taxonomy
The feature learning taxonomy for deep learning cases is depicted here:

Some of the frameworks that are used to implement neural network applications are 
listed here:

•	 Theano is a Python library
•	 Torch a Lua programming language
•	 Deeplearning4J is an open, source Java-based framework that works with 

Spark and Hadoop
•	 Caffe is a C++ based framework
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Convolutional neural networks (CNN/
ConvNets)
CNN, also known as convolution nets (ConvNets), are a variation of the regular 
neural networks.

Let us recap the function of the regular neural network. Regular neural networks have 
a single vector-based input that is transformed through a series of hidden layers where 
the neurons in each layer are connected with the neurons in its neighboring layers.  
The last layer in this series provides the output. This layer is called the output layer.

When the input to the neural network is an image and does not just fit into a single 
vector structure, the complexity grows. CNN have this slight variation where the 
input is assumed as a three-dimensional vector having depth (D), height (H) and 
width (W). This assumption changes the way the neural network is organized and 
the way it functions. The following diagram compares the standard three layers 
neural network with the CNN.

As we see, the convolutional net shown previously arranges neurons in a  
three-dimensional way; every layer in the network transforms this into a  
3D output of neuron activations.

Convolution network architecture comprises a fixed set of layers designated  
for specialized functions. The most critical layers are as follows:

•	 Convolutional layer (CONV)
•	 Pooling layer (POOL)
•	 Full-connected (FC) layer

In some cases, the activation function is written as another layer (RELU); a distinct 
normalization layer for FC layer conversion may exist.
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Convolutional layer (CONV)
The convolutional layer forms the core of convolution nets. This layer is responsible 
for holding the neurons in a three-dimensional format and is therefore responsible 
for a three-dimensional output. The following is an example of an input volume  
with the dimensions 32 x 32 x 3. As shown, each neuron is connected to a particular  
input region. Along the depth, there can be many neurons; we can see five neurons 
in the example.

The diagram here shows how the net convolution function works in the neuron 
function representation:
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That said, the core function of the neuron remains unchanged and is responsible  
for computing the product of weights and the inputs followed by an observation  
of non-linear behavior. The only difference is the restrictions on the connectivity  
to the local regions.

Pooling layer (POOL)
There can be multiple convolution layers and, between these convolution layers,  
there can be a pooling layer. The pooling layer is responsible for reducing the chances 
of over-fitting by reducing the spatial size of the input volume. The reduction of the 
spatial size implies reducing the number of parameters or the amount of computations 
in the network. The MAX functions contribute to reducing the spatial size. The pooling 
layers use the MAX functions and apply it on every slice in the three-dimensional 
representation, sliced depth-wise. Usually, the pooling layers apply filters of size 2 X 2 
applied along both width and height. This can discard around 75% of the activations.

Overall, the pooling layer has the following characteristics:

•	 Always considers a volume size of W1×H1×D1 as an input
•	 Applies stride S and spatial extent F and generates the W2×H2×D2  

output where:

W2=(W1−F)/S+1
H2=(H1−F)/S+1
D2=D1

Fully connected layer (FC)
The fully connected layer is very similar to the regular or traditional neural networks, 
responsible for establishing extensive connections to the previous layer activations. 
The connection activations are computed using matrix multiplication techniques.  
More details on this can be found upon referring to the earlier sections of this chapter.
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Recurrent Neural Networks (RNNs)
RNNs are a special case of neural networks that are known to be very efficient 
in remembering information, because the hidden state is stored in a distributed 
manner, and so it can hold more information about the experiences. These networks 
also apply non-linear functions to update the hidden state. The following diagram 
depicts how the hidden states link in RNNs:

In most of the real world examples, the inputs and outputs are not independent of 
each other. For example, if we had to predict the next word, it would be important for 
us to know the words that came before it. As the word suggests, "Recurrent" Neural 
Networks execute the same task over and over again, where the input of one execution 
is the output of the previous execution. Usually, RNNs are known to go back only a 
few steps in the past and not always through all the iterations. The following diagram 
depicts how RNNs work; it shows how RNNs unfold across iterations:

In the previous example, the requirement was to predict the next word, and if there 
were five words in the input, then RNN unfolds upto five layers.
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Restricted Boltzmann Machines (RBMs)
RBMs came into existence to solve the difficulty in training RNNs. The rise of 
restricted recurrent models to handle these training difficulties simplified the 
problem context, and additionally, learning algorithms are applied to solve the 
problem. The Hopfield Neural Network is an example of a restricted model that 
addresses the previously described problem.

As a first step, Boltzmann machines came into existence. These models were a  
special case of Hopfield Neural Networks with a stochastic element. In this case,  
the neurons were of two categories: the ones that resulted in visible states and the 
others in hidden states. This was also similar to the Hidden Markov's model. A RBM 
is again a special case of Boltzmann machine, where the difference is primarily to do 
with the absence of connections between the neurons in the same layer. So, for the 
given states of the neurons of one group, the states of the neurons in the other group 
are independent. The following diagram depicts a typical RBN structure and the 
previous definition:

Taking this definition further for a deeper interpretation, some visible states of 
neurons are observable, and there are hidden states of neurons that are not visible 
or cannot directly be seen. There are a few probabilistic conclusions made on the 
hidden states based on the available visible states, and this is how the training  
model is formed.
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In an RBM, the connectivity is restricted, and this, in turn, eases the inferencing and 
learning. It typically takes only one step to reach an equilibrium state with the visible 
states clamped. The following formula shows how the probability of the hidden state 
is computed, given that the information about the visible states is provided:

Deep Boltzmann Machines (DBMs)
DBMs are a special case of conventional Boltzmann machines with a lot of missing 
connections, and, unlike the sequential stochastic updates, parallel updates are 
allowed for ensuring efficiency in the model.

DBMs restrict the connections between hidden variables and primarily use unlabeled 
data for training the models. Labeled data is used for fine-tuning the model. The 
following diagram depicts the general structure of a three-layered DBM:
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Autoencoders
Before we understand autoencoders, let's first learn about autoassociators (AAs). 
The goal of AAs is to receive an input to the maximum possible precision.

The purpose of an AA is to receive the output as an image of the input as precisely 
as possible. There are two categories of AAs: one is generating AAs, and the second 
is synthesizing AAs. RBMs covered in the previous section are categorized as 
generating AAs, and autoencoders synthesize AAs.

An autoencoder is a type of neural network that has a single open layer. Applying 
backpropagation and unsupervised learning techniques, autoencoders start with 
an assumption that the target value is equal to the input value, y = x. The following 
diagram depicts an autoencoder that learns the function hW,b (x) ≈ x:
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The layer in the middle is open, and as depicted in the previous diagram, for optimal 
output, it is essential for this layer to have lesser number of neurons than that of 
the input layer. The goal of this model is to learn an approximation to the identity 
function in such a way that the values of Layer L3 are equal to values in Layer L1.

The data is compressed when it passes through the input to output layers. When 
an image of certain pixels, say 100 pixels (10 X 10 pixels), is input to the model for a 
hidden layer with 50 neurons, the expectation is that the network tries to compress 
the image by keeping the pixel configuration intact. This kind of compression 
is possible only if there are hidden interconnections and other characteristic 
correlations that can reduce the input data.

Another variation of an autoencoder is denoising autoencoder (DA). The difference 
in this variation of autoencoder is its additional capability to recover and restore the 
state impacted by the corrupt input data.

Implementing ANNs and Deep learning 
methods
Refer to the source code provided for this chapter for implementing artificial neural 
networks and other deep learning methods covered in this chapters (source code 
path .../chapter11/... under each of the folders for the technologies).

Using Mahout
Refer to the folder .../mahout/chapter11/annexample/.

Refer to the folder .../mahout/chapter11/dlexample/.

Using R
Refer to the folder .../r/chapter11/annexample/.

Refer to the folder .../r/chapter11/dlexample/.

Using Spark
Refer to the folder .../spark/chapter11/annexample/.

Refer to the folder .../spark/chapter11/dlexample/.
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Using Python (Scikit-learn)
Refer to the folder .../python-scikit-learn/chapter11/annexample/.

Refer to the folder .../python-scikit-learn/chapter11/dlexample/.

Using Julia
Refer to the folder .../julia/chapter11/annexample/.

Refer to the folder .../julia/chapter11/dlexample/.

Summary
In this chapter, we covered the model of a biological neuron and how an artificial 
neuron is related to its function. You learned the core concepts of neural networks, 
and how fully connected layers work. We have also explored some key activation 
functions that are used in conjunction with matrix multiplication.





[ 343 ]

Reinforcement learning
We have covered supervised and unsupervised learning methods in-depth in 
Chapter 5, Decision Tree based learning, with various algorithms. In this chapter, we 
will be covering a new learning technique that is different from both supervised and 
unsupervised learning called Reinforcement Learning (RL). Reinforcement Learning 
is a particular type of Machine learning where the learning is driven by the feedback 
from the environment, and the learning technique is iterative and adaptive. RL is 
believed to be closer to human learning. The primary goal of RL is decision making 
and at the heart of it lies Markov's Decision Process (MDP). In this chapter, we 
will cover some basic Reinforcement Learning methods like Temporal Difference 
(TD), certainty equivalence, policy gradient, dynamic programming, and more. The 
following figure depicts different data architecture paradigms that will be covered in 
this chapter:
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The following topics are covered in depth in this chapter:

•	 Recap of supervised, semi-supervised, and unsupervised learning, and the 
context of Reinforcement Learning.

•	 Understanding MDP is key to Reinforcement Learning. Regarding this, the 
following topics are covered in this chapter:

°° What does MDP mean, key attributes, states, reward, actions, and 
transitions (discounts)

°° The underlying process of MDP and how it helps in the decision 
process

°° Policies and value functions (also called utilities, as in a group of 
rewards) and how we assign value to an infinite sequence of rewards

°° Bellman Equation—the value iteration and policy iteration

•	 Regarding Reinforcement Learning, we will cover the following:
°° Planning and learning in MDP
°° Connection planning and functional approximation in RL
°° Different RL methods and approaches to RL, such as simple decision 

theory, the temporal difference (TD), dynamic programming, policy 
gradient, certainty equivalence, and eligibility traces

°° Key algorithms such as Q-learning, Sarsa, and others
°° Reinforcement learning applications

Reinforcement Learning (RL)
Let's do a recap of supervised, semi-supervised, and unsupervised learning, and set 
the context for Reinforcement Learning. In Chapter 1, Introduction to Machine Learning, 
we covered the basic definitions of supervised, semi-supervised, and unsupervised 
learning. Inductive learning is a reasoning process that uses the results of one 
experiment to run the next set of experiments and iteratively evolve a model from 
specific information.
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The following figure depicts various subfields of Machine learning. These subfields 
are one of the ways the Machine learning algorithms are classified:

Supervised learning is all about operating to a known expectation, and in this case, 
what needs to be analyzed from the data being defined. The input datasets in this 
context are also referred to as labeled datasets. Algorithms classified under this 
category focus on establishing a relationship between the input and output attributes 
and uses this relationship speculatively to generate an output for new input data 
points. In the preceding section, the example defined for the classification problem is 
also an example of supervised learning. Labeled data helps build reliable models  
and are usually expensive and limited. The following diagram depicts the workflow 
for supervised learning:

So, this is a function approximation, where given the x, y pairs, our goal is to find the 
function f that maps the new x to a proper y:

y = f(x)
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In some of the learning problems, we do not have any specific target in mind to solve 
for; this kind of learning is specifically called unsupervised analysis or learning. The 
goal, in this case, is to decipher structures in data as against build mapping between 
input and output attributes of data, and in fact, the output attributes are not defined. 
These learning algorithms operate on an unlabelled dataset for this reason.

So, given a bunch of x's, the goal here is to define a function f that can give a concise 
description for a set of x's. Hence, this is called clustering:

f(x)

Semi-supervised learning is about using both labeled and unlabeled data to learn 
better models. It is important that there are appropriate assumptions for the unlabeled 
data as any incorrect assumptions can invalidate the model. Semi-supervised learning 
takes its motivation from the human way of learning.

The context of Reinforcement Learning
Reinforcement Learning is about learning that is focused on maximizing the rewards 
from the result. For example, while teaching toddlers new habits, rewarding toddlers 
every time they follow instructions works very well. In fact, they figure out what 
behavior helps them earn rewards. This is exactly what Reinforcement Learning is it 
is also called as credit assessment learning.

The most important thing in Reinforcement Learning is that, the model is additionally 
responsible for making decisions for which a periodic reward is received. The results, 
in this case, unlike supervised learning, are not immediate and may require a sequence 
of steps to be executed before the final result is seen. Ideally, the algorithm will 
generate a sequence of decisions that will help achieve the highest reward or utility.
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The goal of this learning technique is to measure the trade-offs effectively by 
exploring and exploiting the data. For example, when a person has to travel from 
a point A to point B, there will be many ways that include traveling by air, water, 
road, or on foot, and there is a significant value in considering this data measuring 
the trade-offs for each of these options. Another important aspect is, what would a 
delay in the rewards mean? Moreover, how it would affect learning? For example, in 
games like chess, any delay in reward identification may change or impact the result.

So, the representation is very similar to supervised learning, the difference being that 
the input is not x, y pairs but x, z pairs. The goal is to find a function f that identifies a 
y, given x and z. In the following sections, we will explore more of what the z is. The 
equation for definition of the goal function is as given here:

y = f(x) given z.

A formal definition of Reinforcement Learning is as follows:

"Reinforcement Learning is defined as a way of programming agents by reward 
and punishment without needing to specify how the task is to be achieved."

                                                                           Kaelbling, Littman, & Moore, 96

So, overall, RL is neither a type of neural network nor is an alternative to neural 
networks, but an orthogonal approach for Machine learning with emphasis being 
on learning feedback that is used for evaluating the learner's performance with no 
standard behavioral targets against which the performance is measured, for example, 
learning to ride a bicycle.

Let's now look at the formal or basic RL model and understand different elements in 
action. As a first step, let's understand some basic terms.
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•	 Agent: An agent is an entity that is a learner as well as a decision maker, 
typically an intelligent program in this case.

•	 Environment: An environment is an entity that is responsible for producing 
a new situation given an action performed by the agent. It gives rewards or 
feedback for the action. So, in short, the environment is everything other  
than an agent.

•	 State: A state is a situation that an action lands an entity in.
•	 Action: An action is a step executed by an agent that results in a change  

in state.
•	 Policy: A policy is a definition of how an agent behaves at a given point in 

time. It elaborates the mapping between the states and actions and is usually 
a simple business rule or a function.

•	 Reward: A reward lays down short-term benefit of an action that helps in 
reaching the goal.

•	 Value: There is another important element in Reinforcement Learning, and 
that is a value function. While reward function is all about the short-term or 
immediate benefit of an action, a value function is about the good in long 
run. This value is an accumulation of rewards an agent is expected to get 
from the time the world started.

Examples of Reinforcement Learning
The easiest way to understand Reinforcement Learning is to look at some of the 
practical and real-world applications of it. In this section, we will list down and 
understand some of them.

•	 Chess game: In the game of chess, a player makes a move; this move  
is driven by an informed selection of an action that comes with a set of 
counter moves from the opponent player. The next action of the player  
is determined by what moves the opponent takes.

•	 Elevator Scheduling: Let's take an example of a building with many floors 
and many elevators. The key optimization requirement here is to choose 
which elevator should be sent to which floor and is categorized as a control 
problem. The input here is a set of buttons pressed (inside and outside 
the lift) across the floors, locations of the elevators, and a set of floors. The 
reward, in this case, is the least waiting time of the people wanting to use 
the lift. Here, the system learns how to control the elevators again; through 
learning in a simulation of the building, the system learns to control the 
elevators through the estimates of the value of actions from the past.
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•	 Network packet routing: This is a case of defining a routing policy for 
dynamically changing networks. Q-learning techniques (covered a little  
later in the chapter) are used to identify which adjacent node the packet 
should be routed to. In this case, each node has a queue, and one packet  
is dispatched at a time.

•	 Mobile robot behavior: A mobile robot needs to decide between it reaching 
the recharge point or the next trash point depending on how quickly it has 
been able to find a recharge point in the past.

Evaluative Feedback
One of the key features that differentiates Reinforcement Learning from the other 
learning types is that it uses the information to evaluate the impact of a particular 
action than instructing blindly what action needs to be taken. Evaluative feedback 
on one hand indicates how good the action taken is while instructive feedback 
indicates what the correct action is irrespective of whether the action is taken or not. 
Although these two mechanisms are different in their way, there are some cases 
where techniques are employed in conjunction. In this section, we will explore some 
evaluative feedback methods that will lay the foundation for the rest of the chapter.

n-Armed Bandit problem
A formal definition of this problem with the original gambler analogy is given  
as follows:

According to Wikipedia, n-armed bandit problem is 
an issue where the "gambler" decides which machine 
to play, the order of play and the duration of play, he 
then plays and collects the reward that is unique for a 
machine with a goal to maximize the overall rewards.

Let's consider a case where there are thousands of actions that can be taken. Each 
action fetches a reward, and our goal is to ensure that we take actions in such a way 
that the total of the rewards is maximized over a period. The selection of a particular 
action is called a play.
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An example case that explains the analogy of n-Armed Bandit the problem is that of 
a doctor who needs to choose from a series of options to treat a serious ailment where 
the survival of the patient becomes the reward for the choice of action (in this case, the 
treatment). In this problem, each action is associated with an expected reward for a 
selected action; this is called value. If the value of each action was known to us, solving 
n-armed bandit problem is easy as we will choose those actions that have a maximum 
value. It is only possible that we have the estimates of the values and are not certain 
about the actual values.

Now let us see the difference between exploration and exploitation.

Assuming we maintain the estimates of the values, if we choose an action with 
the greatest value (this action is called a greedy action), this situation is called 
exploitation, as we are best using the current knowledge on hand. Moreover, all the 
cases where any non-greedy action is chosen, it would be more of exploring, and it 
would help improve the estimates of the non-greedy action. While exploitation helps 
maximize the expected reward, exploration helps increase the total reward in the 
longer run. The short-term rewards are lower in the case of exploration while there 
might be better long-term total reward. For every action, exploration or exploitation 
approach can be chosen, and what works is a fine balance between these two 
techniques.

So, with this, we will now look at some techniques to best estimate the values for 
actions and to choose the best-suited actions.

Action-value methods
If value of an action a is Q*(a), then the assessed value of the tth play is Qt(a) I, the mean 
of the rewards given that action is chosen, the following equation represents this:

Qt(a) = (r1+r2+ … rka ) / ka, where r is the reward and ka is the number of times the 
action a is chosen. This is one way of estimating action value and not necessarily  
the best way. Let's live with this and now look at the methods to choose actions.

The easiest action selection rule is to select an action or one of the actions, a, that has 
the highest estimated action value. So, for a given play t, choosing a greedy action a* 
can be shown as follows:

Qt(a*) = maxa Qt(a)

This method by definition exploits the current knowledge with a little focus on 
whether the action is a better option. As an alternative to this method, we can choose 
to be greedy most of the time, and once in a while, select an action independent of the 
value estimation. With a probability of Ɛ, this method is called the Ɛ-greedy method.
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Reinforcement comparison methods
We have been seeing in most of the selection methods that an action that has the 
largest reward has a higher likelihood of being selected than an action with a lesser 
reward. The important question is how to qualify whether a reward is big or small. 
We will always need to have a reference number that qualifies if a reward has a high 
value or a low value. This reference value is called reference reward. A reference 
reward, to start with, can be an average of previously received rewards. Learning 
methods that use this idea are called comparison reinforcement methods. These 
methods are more efficient than actor-value methods and form a basis for an actor-
critic method that we will discuss in the sections to come.

The Reinforcement Learning problem – the world 
grid example
We will try to understand the Reinforcement Learning problem using a famous 
example: the grid world. This particular grid world is a 3X4 grid, as shown in the 
following screenshot, and is an approximation of the complexity of the world:

This example assumes the world is kind of a game where you start with a state called 
start state (from the location 1,1). Let's assume four actions can be taken that include 
moving left, right, up, and down. The goal is to ensure using these actions that we 
move towards the goal that is represented in the location 4,3. We need to avoid the 
red box that is shown in the location 4,2 like it is shown in the next image.

•	 Start state: position (1,1) --> The world starts here.
•	 Success state: position (4,3) --> The world ends here in a success state.
•	 Failure state: position (4,2) --> The world ends here in a failure state.
•	 When the world ends, we need to start over again.
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•	 Wall: There is a roadblock or a wall shown in the position (2,2). This position 
cannot be navigated:

•	 To reach the goal (4,3) from the start point (1,1), steps can be taken in the 
following directions:

•	 Every step in a direction moves you from one position to another (position 
here is nothing but the state). For example, a movement in the UP direction 
from the position (1,1) will take you to the position (1,2) and so on.

•	 All directions cannot be taken from a given position. Let us consider the 
example shown in the following screenshot. From the position (3,2), only 
UP, DOWN, and RIGHT can be taken. LEFT movement will hit the wall and 
hence cannot be taken. That said, only UP and DOWN movements make 
sense, as RIGHT will make a move to the danger position that results in 
failure in reaching the goal.
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•	 Similarly, any of the positions in the boundaries of the grid will have 
limitations, for example, the position (1,3) allows RIGHT and DOWN 
movements and any other movements do not alter the position.

•	 Let's now look at the shortest path the from Start (1,1) to the Goal (4,3). There 
are two solutions:

°° Solution 1: RIGHT --> RIGHT --> UP --> UP --> RIGHT (5 steps)

°° Solution 2: UP --> UP --> RIGHT --> RIGHT --> RIGHT (5 steps)



Reinforcement learning

[ 354 ]

•	 In the real world, not all actions get executed as expected. There is a 
reliability factor that affects the performance, or rather, there is uncertainty. 
If we add a small caveat to the example and say that every time there is 
an action to move from one position to another, the probability that the 
movement is correct is 0.8. This means there is an 80% possibility that a 
movement executes as expected. In this case, if we want to measure the 
probability of Solution 1, (R-->R-->U-->U-->R) is succeeding:
Probability of actions happening as expected + Probability of actions not 
happening as expected
= 0.8 x 0.8 x 0.8 x 0.8 x 0.8 + 0.1 x 0.1 x 0.1 x 0.1 x 0.8
= 0.32768 + 0.00008 = 0.32776

•	 As we see, the element of uncertainty does change the result. In the next 
section, we will discuss the decision process framework that captures  
these uncertainties.

Markov Decision Process (MDP)
Markov's Decision Process is an essential framework or process to make decisions, 
and we will be bringing it up in most of the sections that follow on Reinforcement 
Learning.

Markov property is core to the Markov Decision Process, and it states that what 
matters is the present or current state and that the situation is stationary, which 
means that the rules do not change.

MDP tries to capture the world that we discussed in the preceding section that  
has the following features:
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•	 States: In the preceding example, every grid position denotes a state
•	 Model (Transition function): A Transition function includes three attributes: 

given state, action, and the destination state. It describes the probability of an 
end state s, given the current state s and action a:

T (s, a,s') ~ P(s'/s, a)

•	 Actions: A(s), A In the preceding example, A (1, 2) = UP in the UP, UP 
RIGHT, RIGHT, RIGHT solution

•	 Rewards: R(s), R(s,a), R(s,a,s1) Rewards tell us the usefulness of entering into 
a state
R(s): Reward for entering a state s
R(s, a): Reward for the opening of a state s for an action a
R(s, a,s1): Reward for the opening of a state s1 for an action a given that you 
were in state s

•	 State, Action, Model and Rewards make the problem statement of MDP
•	 Policy: It is a solution for a problem; it says what action should be taken 

given a state:
π(s) --> a

Basic RL model – agent-environment interface
As we have discovered, an RL problem is a straightforward way of learning from 
interaction to achieve a goal. Agent is the learner or decision-maker, and it interacts 
with the environment, and that is everything outside in this environment gives rise 
to rewards. The thing it interacts with, comprising everything outside the agent, is 
called the environment. The complete specification of an environment is defined as  
a task—a single instance of Reinforcement Learning problem.
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The following model depicts the agent-environment interface:

An environment model here means a context where an agent uses anything to predict 
the behavior of the environment for a given action. This environment model produces 
a prediction of the next state and the reward, given the action and the current state. 
There will be multiple next state rewards possible in case the model is stochastic. 
Again, these models can be distributed or sample-based. The distributed models 
identify all the potential probabilities, while a sample model produces the probability 
given that sample.

Finally, the goals of Reinforcement Learning can be defined as follows:

•	 In an environment where every action taken results in a new situation,  
RL is about how to take actions. The following can be the actions:

°° Define a policy that maps the action and the resultant situation
°° Identify the policy that results in highest rewards being given

Steps in Reinforcement Learning are as follows:

1.	 The agent observes the input state.
2.	 By applying the policy that is a decision-making function, an action  

is identified.
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3.	 The action is executed that results in a state change.
4.	 As a consequence of this action, the agent receives a significant reward  

from the environment.
5.	 The details of the reward, given the change in the state, are recorded.

Delayed rewards
One of the aspects that differentiate Reinforcement Learning from supervised learning 
is rewards. In this section, we will explore what delayed rewards mean. As we know, 
every action that results in a particular state change results in a reward. The realization 
of this reward in some cases is not immediate. Let's look at an example a chess game. 
Let's assume it took 65 steps to end a chess game and only at the end of 65 steps or 
moves we get to know if we have won the game or lost it. Which of the 65 steps or 
moves were the cause of the success or failure is what is complex here. So, the reward 
is not known until the end of the game or the sequence of actions. Technically, we are 
looking at identifying which sequence of actions resulted in gaining the reward that 
was seen. This process is called Temporal Credit Assignment.

Now, in this journey of achieving the ultimate reward that is a success (+1) or failure 
(-1), every step or move or action would fetch a reward. Let's assume every step in 
solution 1 of the grid world problem fetches a reward of -0.4. The collective rewards 
that take to success or failure will determine long-term reward.

The policy
An optimal policy is a policy or solution that maximizes the expected long-term 
reward and can be represented by the following formula:

Now, let's measure the utility of a particular state(s) that depends on the policy (π):

A reward to enter a state(s) (this is an immediate benefit) is not equal to the utility of 
that state (this is a long-term benefit of entering the state).
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Now, we can define the optimal policy using the utility of the state value:

Now, if we have to define the utility of being in a state(s), it is equal to the reward for 
getting into that state, discounting the reward that we get from that point on:

This is called Bellman Equation.

V* is a value function for a policy, and the following is the Bellman optimality 
equation that expresses the fact that the value of a state with an optimal policy  
is the same as the best expected return from the best action for that state:
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Reinforcement Learning – key features
Reinforcement Learning is not a set of techniques but is a set of problems that  
focuses on what the task is as, against how the task should be addressed.

Reinforcement Learning is considered as a tool for machines to learn using the 
rewards and punishments that are more trial-and-error driven.

Reinforcement Learning employs evaluative feedback. Evaluative feedback measures 
how effective the action taken is as against measuring the action if it is best or worst. 
(Note that supervised learning is more of an instructive learning and determines the 
correctness of an action irrespective of the action being executed.)

The tasks in Reinforcement Learning are more of related tasks. Associative tasks are 
dependent on the situation where actions that suit best to the given situation are 
identified and executed. Non-associative tasks are those that are independent of the 
particular situation, and the learner finds the best action when the task is stationary.

Reinforcement learning solution methods
In this section, we will discuss in detail some of the methods to solve Reinforcement 
Learning problems. Specifically, dynamic programming (DP), Monte Carlo method, 
and temporal-difference (TD) learning. These methods address the problem of 
delayed rewards as well.

Dynamic Programming (DP)
DP is a set of algorithms that are used to compute optimal policies given a model 
of environment like Markov Decision Process. Dynamic programming models are 
both computationally expensive and assume perfect models; hence, they have low 
adoption or utility. Conceptually, DP is a basis for many algorithms or methods  
used in the following sections:

1.	 Evaluating the policy: A policy can be assessed by computing the value 
function of the policy in an iterative manner. Computing value function for  
a policy helps find better policies.

2.	 Improving the policy: Policy improvement is a process of computing the 
revised policy using its value function information.

3.	 Value iteration and Policy Iteration: Policy evaluation and improvement 
together derive value and policy iteration. These are two of the most popular 
DP methods that are used to compute the optimal policies and value 
functions given complete knowledge of the MDPs.
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The following algorithm depicts the iteration policy process:

Value iteration combines a solid policy improvement and process evaluation. The 
following are the steps involved:



Chapter 12

[ 361 ]

Generalized Policy Iteration (GPI)
GPI is a way of categorizing Dynamic Programming (DP) methods. GPI involves 
interaction between two processes—one around the approximate policy, and the 
other around the approximate value.

In the first case, the process picks the policy as it is and performs policy evaluation to 
identify the true or exact value function associated with the policy. The other process 
picks the value function as the input and uses that to change the policy such that it 
improves the policy, which is its total reward. If you observe, each process changes 
the basis for the other process, and they work in conjunction to find a joint solution 
that results in an optimal policy and value function.

Monte Carlo methods
Monte Carlo methods in Reinforcement Learning learn policies and values from 
experience as samples. Monte Carlo methods have additional advantages over 
Dynamic Programming methods because of the following:

•	 Learning optimal behavior happens directly from the interactions with the 
environment without any model that simulates model dynamics.

•	 These methods can be used on simulated data or sample models; this feature 
becomes paramount in real-world applications.

•	 With Monte Carlo methods, we can easily focus on smaller sets of states,  
and we can explore a region of interest without necessarily going into 
complete state set.

•	 Monte Carlo methods are least impacted for any violation of Markov's 
property because the estimation for the value is not updated using any  
of the successor states. This also means that they do not bootstrap.

Monte Carlo methods are designed by the Generalized Policy Iteration (GPI) 
method. These methods provide an alternative way of evaluating the policies. For 
each state, instead of independently computing the value, an average value of the 
returns for starting at that state is taken, and this can be a good approximation of 
the value of that state. The focus is to apply action-value functions to improve the 
policies as this does not require environment's transition changes. Monte Carlo 
methods mix policy evaluation and improvement methods and can be implemented 
on a step-by-step basis.

How much of exploration is good enough? This is a crucial question to answer  
in Monte Carlo methods. It is not sufficient to select actions that are best based  
on their value; it is also important to know how much of this is contributing to 
ending reward.
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Two methods can be used in this case—on-policy or off-policy methods. In an 
on-policy method, the agent is responsible for finding the optimal policy using 
exploration technique; and in off-policy methods, agent exploration is not central,  
but along with it learns a deterministic optimal policy that need not be related to  
the policy followed. In short, off-policy learning methods are all about learning 
behavior through behavior.

Temporal difference (TD) learning
TD learning is one of the unique techniques of Reinforcement Learning.  
Temporal difference learning is a combination of Monte Carlo methods and  
dynamic programming methods. The most discussed technique in Reinforcement 
Learning is the relationship between temporal difference (TD), dynamic 
programming (DP), and Monte Carlo methods:

1.	 Evaluate a policy that includes estimating the value function Vπ for a given 
policy π.

2.	 Select an optimal policy. For policy selection, all the DP, TD, and Monte 
Carlo methods use a variation of generalized policy iteration (GPI). Hence, 
the difference in these three methods is nothing but these variations in GPI.

TD methods follow bootstrapping technique to derive an estimate; they fall back on 
the successor states and similar estimates.

Let's now look at some advantages of TD over DP and Monte Carlo methods. We 
will cover this in brief and without delving into too much of complexities. Following 
are the key benefits:

•	 TD methods do not require the model of the environment and probability 
distributions of the next states and rewards

•	 TD methods can easily and elegantly run in an online and incremental manner

Sarsa - on-Policy TD
Let's look at using TD methods for the control problems. We will continue to use 
GPI techniques, but now in conjunction with TD methods for the evaluation and 
prediction. While we need to have a balance between exploration and exploitation 
options, we have the option to choose on-policy or off-policy learning methods in 
here. We will stick to the on-policy method:

1.	 Learn the action-value function in relation to the state-value function. We 
will define Qπ(s, a) for the policy π:
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2.	 Learn the value of transition from one state-action pair to another state-action 
pair. This is computed iteratively as follows:

This is defined as a Sarsa prediction method and is on-policy as the agent uses the 
identified policy to do this.

The Sarsa algorithm is stated as follows:

Q-Learning – off-Policy TD
The Q-Learning technique that employs the off-policy learning method is one of the 
groundbreaking strategies of TD. This control algorithm called Q-learning (Watkins, 
1989) in a simple form is defined as follows:

We can see the optimal action-value function Q* is directly approximated using the 
learned action-value function Q irrespective of the policy that it follows. This makes 
it an off-policy method.

There is still a small effect on the policy seen as the policy value functions are used 
and updated. Moreover, updates to all the pairs diligently mark convergence.
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Based on this understanding, the Q-learning algorithm can be depicted as follows:

Actor-critic methods (on-policy)
Actor-critic methods are temporal difference learning methods that ensure policy 
and value independence using a separate memory structure. In this case, the policy 
structure is called as an actor, and the value structure is called as a critic. The name 
critic comes from the fact that it criticizes the value of the policy. Since this critic 
always criticizes the value of the policy, it is also called the TD error. The following 
screenshot shows the actor-critic method flow:
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R Learning (Off-policy)
R-learning is an advanced Reinforcement Learning technique that is used in cases 
where there are no discounts with definitive and finite returns. The algorithm is  
as follows:

Implementing Reinforcement Learning algorithms
Refer to the source code provided for this chapter to implement Reinforcement 
learning algorithms. (Source code path .../chapter12/... under each of the folder 
for the technology.)

Using Mahout
Refer to the folder .../mahout/chapter12/rlexample/.

Using R
Refer to the folder .../r/chapter12/rlexample/.

Using Spark
Refer to the folder .../spark/chapter12/rlexample/.

Using Python (Scikit-learn)
Refer to the folder .../python-scikit-learn/chapter12/rlexample/.

Using Julia
Refer to the folder .../julia/chapter12/rlexample/.
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Summary
In this chapter, we explored a new learning technique called Reinforcement Learning. 
We saw how this was different from traditional supervised and unsupervised learning 
techniques. The goal of Reinforcement Learning is decision making and at the heart of 
it is MDP. We explored the elements of MDP and learned about it using an example. 
We then covered some fundamental Reinforcement Learning techniques that are on-
policy and off-policy, and some of them are indirect and direct methods of learning. 
We covered dynamic programming (DP) methods, Monte Carlo methods, and some 
key temporal difference (TD) methods like Q-learning, Sarsa, R-learning, and actor-
critic methods. Finally, we had hands-on implementations for some of these algorithms 
using our standard technology stack identified for this book. In the next chapter, we 
will cover ensemble learning methods.
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Ensemble learning
This chapter is the concluding chapter of all the learning methods we have learned 
from Chapter 5, Decision Tree based learning. It is only apt to have this chapter as a 
closing chapter for the learning methods, as this learning method explains how 
effectively these methods can be used in a combination to maximize the outcome 
from the learners. Ensemble methods have an effective, powerful technique to 
achieve high accuracy across supervised and unsupervised solutions. Different 
models are efficient and perform very well in the selected business cases. It is 
important to find a way to combine the competing models into a committee, and 
there has been much research in this area with a fair degree of success. Also, as 
different views generate a large amount of data, the key aspect is to consolidate 
different concepts for intelligent decision making. Recommendation systems and 
stream-based text mining applications use ensemble methods extensively.
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There have been many independent studies done in supervised and unsupervised 
learning groups. The common theme observed was that many mixed models, 
when brought together, strengthened the weak models and brought in an overall 
better performance. One of the important goals of this chapter details a systematic 
comparison of different ensemble techniques that combine both supervised and 
unsupervised techniques and a mechanism to merge the results.

This chapter covers the following topics:

•	 An overview of ensemble methods based learning—the concept of the wisdom 
of the crowd and the key attributes.

•	 Core ensemble method taxonomy, real-world examples, and applications of 
ensemble learning

•	 Ensemble method categories and various representative methods:
°° Supervised ensemble methods provide an overview and a detailed 

coverage of concepts such as bagging, boosting, gradient boosting 
methods, and Random decision trees and Random forests

°° Unsupervised ensemble methods provide an overview of generative, 
direct and indirect methods that include clustering ensembles

•	 Hands-on implementation exercises using Apache Mahout, R, Julia, Python 
(scikit-learn), and Apache Spark
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Ensemble learning methods
Ensemble, in general, means a group of things that are usually seen as a whole  
rather than in terms of the value as against the individual value. Ensembles follow  
a divide-and-conquer approach used to improve performance.

We will start understanding the specific algorithm with an introduction to the 
famous concept of the wisdom of the crowd.

The wisdom of the crowd
Imperfect judgments when aggregated in a right way result in a collective intelligence, 
thus resulting in a superior outcome. The wisdom of the crowd is all about this 
collective intelligence.

In general, the term crowd is usually associated with irrationality and the common 
perception that there is some influence, which sways the behavior of the crowd 
in the context of mobs and cults. However, the fact is that this need not always be 
negative and works well when working with collating intellect. The key concept 
of Wisdom of Crowds is that the decisions made by a group of people are always 
robust and accurate than those made by individuals. The ensemble learning methods 
of Machine learning have exploited this idea effectively to produce efficiency and 
accuracy in their results.
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The term the wisdom of the crowd was coined by Galton in 1906. Once he attended a 
farmer's fair where there was a contest to guess the weight of an ox that is butchered 
and dressed. The closest guess won the prize from a total of 800 contestants. He chose 
to collect all the responses and analyze them. When he took the average of the guesses, 
he was shocked to notice that they were very close to the actual value. This collective 
guess was both better than the contestant who won the prize and also proved to be the 
best in comparison to the guesses by cattle experts. The democracy of thoughts was 
a clear winner. For such a useful output, it is important that each contestant had his/
her strong source of information. The independent guess provided by the contestant 
should not be influenced by his/her neighbor's guess, and also, there is an error-free 
mechanism to consolidate the guesses across the group. So in short, this is not an easy 
process. Another important aspect is also to the fact these guesses were superior to any 
individual expert's guess.

Some basic everyday examples include:

•	 Google search results that usually have the most popular pages listed at  
the top

•	 In a game like "Who wants to be a billionaire", the audience poll is used 
for the answering questions that the contestant has no knowledge about. 
Usually, the answer that is most voted by the crowd is the right answer.

The results of the wisdom of the crowd approach is not guaranteed. Following is the 
basic criteria for an optimal result using this approach:

•	 Aggregation: There needs to be a foolproof way of consolidating individual 
responses into a collective response or judgment. Without this, the core 
purpose of collective views or responses across the board goes in vain.

•	 Independence: Within the crowd, there needs to be discipline around 
controlling the response from one entity over the rest in the crowd.  
Any influence would skew the response, thus impacting the accuracy.

•	 Decentralization: Individual responses have their source and thrive on the 
limited knowledge.

•	 The diversity of opinion: It is important that each person has a response  
that is isolated; the response's unusualness is still acceptable.

The word ensemble means grouping. To build ensemble classifiers, we first need to 
build a set of classifiers from the training data, aggregate the predictions made by 
these classifiers, and predict a class label of a new record using this data.
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The following diagram depicts this process:

Technically, the core building blocks include a training set, an inducer, and an 
ensemble generator. Inducer handles defining classifiers for each of the sample training 
datasets. The ensemble generator creates classifiers and a combiner or aggregator that 
consolidates the responses across the combiners. With these building blocks and the 
relationships between them, we have the following properties that we will be using to 
categorize the ensemble methods. The next section covers these methods:

•	 Usage of a combiner: This property defines the relationship between  
the ensemble generator and the combiner

•	 Dependency between classifiers: This property defines the degree to  
which the classifiers are dependent on each other

•	 Generating diversity: This property defines the procedure used to ensure 
diversity across combiners

•	 The size of the ensemble: This property denotes the number of classifiers 
used in the ensembles

•	 Cross inducers: This property defines how the classifiers leverage the 
inducers. There are cases where the classifiers are built to work with a  
certain set of inducers
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In summary, the building model ensembles first involves building experts and letting 
them provide a response/vote. The expected benefit is an improvement in prediction 
performance and produces a single global structure. Although, any interim results 
produced might end up being difficult to analyze.

Let's look at how the performance of an aggregated/combined classifier works better 
in a comprehensive manner.

Let's consider three classifiers that have an error rate of 0.35(ԑ) or an accuracy of 
0.65. For each of the classifiers, the probability that the classifier goes wrong with  
its prediction is 35%.

Given here is the truth table denoting the error rate of 0.35(35%) and the accuracy 
rate of 0.65(65%):
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After the three classifiers are combined, the class label of a test instance is predicted by 
using the majority vote process across the combiners to compute the probability that 
the ensemble classifier makes an error. This is depicted in the formula given below.

Moreover, the accuracy is 71.83%. Very clearly, the error rate is lowered when 
aggregated across the classifiers. Now, if we extend this to 25 classifiers, the  
accuracy goes up to 94% as per the computation of the error rate (6%).

Thus, the ensembles work as they give the bigger picture.

We have covered the criteria for the the wisdom of the crowd to work in the previous 
section. Let's now take the preceding case where we have 25 base classifiers, and see 
how the accuracy of the ensemble classifier changes for different error rates of the 
base classifier.

The ensemble classifier's performance deteriorates and 
performs much worse than the base classifier in cases 
where the base classifier error rate is more than 0.5.
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In the next section, we will cover some real-world use cases that apply  
ensemble methods.

Key use cases
Some of the key real-world applications of ensemble learning methods are detailed 
and discussed in this section.

Recommendation systems
The purpose of recommendation systems is to produce significant or meaningful 
recommendations to a community of users around the products that would possibly 
interest them. Some examples include suggestions related to decision-making 
process such as what books to read on Amazon, what movies to watch on Netflix, 
or what news to read on a news website. The business domain, or the context and 
the characteristics of the business attributes are the primary inputs to the design of 
recommendation systems. The rating (on a scale of 1-5) that users provide for each of 
the films is a significant input as it records the degree to which users interact with the 
system. In addition to this, the details of the user (such as demographics and other 
personal or profile attributes) are also used by the recommender systems to identify 
a potential match between items and potential users.

The following screenshot is an example of a recommendation system result  
on Netflix:
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Anomaly detection
Anomaly detection or outlier detection is one of the most popular use cases or 
applications of ensemble learning methods. It is all about finding patterns in  
the data that look abnormal or unusual. Identifying anomalies is important  
as it may result in taking any decisive action. Some famous examples include  
(among many others):

•	 Fraud detection with credit cards
•	 Unusual disease detection in healthcare
•	 Anomaly detection in aircraft engines

Let's now expand on the example for anomaly detection in aircraft engines.  
Features of a plane engine which are considered to verify if it is anomalous  
or not are as follows:

•	 Heat generated(x1)
•	 The intensity of vibration (x2)
•	 With the dataset = x(1), x(2) … x(m) marked, following are the anomalous  

and non-anomalous cases:
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Transfer learning
Traditionally, all the Machine learning algorithms assume learning to happen from 
scratch for every new learning problem. The assumption is that no previous learning 
will be leveraged. In cases where the domains for the learning problems relate, there 
will be some learnings from the past that can be acquired and used. Some common 
examples include:

•	 The knowledge of French could help students learn Spanish
•	 The knowledge of mathematics could help students learn Physics
•	 The knowledge of driving a car could help drivers learn to drive a truck

In the Machine learning context, this refers to identifying and applying the knowledge 
accumulated from previous tasks to new tasks from a related domain. The key here is 
the ability to identify the commonality between the domains. Reinforcement learning 
and classification and regression problems apply transfer learning. The transfer 
learning process flow is as shown here:
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Stream mining or classification
Mining data that comes in as streams has now become a key requirement for a wide 
range of applications with the growing technological advancements and social media.

The primary difference between the traditional learning is that the training and 
test data sets evolved in a distributed way as they come in streams. The goal of 
prediction now becomes a bit complex as the probabilities keep changing for 
changing timestamps, thus making this an ideal context for applying ensemble 
learning methods. The next diagram shows how P(y) changes with timestamp  
and changes to P(x) and P (y|x):

With ensemble learning methods, the variance produced by single models is reduced, 
and the prediction or result is more accurate or robust as the distribution is evolving.

Ensemble methods
As discussed in the previous sections, ensemble methods are now proven to be 
powerful methods for improving the accuracy and robustness of the supervised,  
semi-supervised, and unsupervised solutions. Also, we have seen how the dynamics 
of decision-making are becoming complex as different sources have started generating 
enormous amounts of data continuously. Effective consolidation is now critical for 
successful and intelligent decision making.

The supervised and unsupervised ensemble methods share the same principles 
that involve combining the diverse base models that strengthen weak models. In 
the sections to follow, let's look at supervised, semi-supervised, and unsupervised 
techniques independently and in detail.
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The following model depicts various learning categories and different algorithms 
that cover both, combining the learning and consensus approaches to the ensemble 
learning:

Source: On the Power of Ensemble: Supervised and Unsupervised Methods Reconciled  
(http://it.engineering.illinois.edu/ews/)

Before we go deeper into each of the ensemble techniques, let's understand the 
difference between combining by learning versus combining by consensus:

Benefits Downside

Combining 
by learning

•	 Uses labeled data as a 
feedback mechanism

•	 Has the potential to improve 
accuracy

•	 Works only with labeled 
data

•	 There are chances of  
over-fitting

Combining 
by 
consensus

•	 Does not require labeled data
•	 Has the potential to improve 

performance

•	 The valued feedback from 
the labeled data is missing

•	 Works on the assumption 
that consensus is a good 
thing

http://it.engineering.illinois.edu/ews/
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Supervised ensemble methods
In the case of supervised learning methods, the input is always a labeled data. 
The combining by learning method includes boosting stack generalization and the 
rule ensembles techniques. The combining by consensus methods includes bagging, 
Random forests, and Random decision trees techniques. The following shows the 
process flow for combining by learning followed by another model for combining  
by consensus:
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The supervised ensemble method problem statement is defined as follows:

•	 The input data set is D={x1, x2, …, xn} the respective labels are L={l1,l2,…,ln}
•	 The ensemble method now generated a set of classifiers C = {f1,f2,…,fk}
•	 Finally, the combination of classifiers f* minimizes generalization error as per 

the f*(x)= ω1f1(x)+ ω2f2(x)+ ….+ ωkfk(x) formula
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Boosting
Boosting is a pretty straightforward approach to calculating the output by applying a 
weighted average of all the outputs generated by multiple models. It is a framework 
for weak learners. The weights applied can be varied by using a powerful weighting 
formula to come up with a strong predictive model that addresses the pitfalls of 
these approaches and also works for a wider range of input data, using different 
narrowly tuned models.

Boosting has been successful in solving binary classification problems. This 
technique was introduced by Freund and Scaphire in the 1990s via the famous 
AdaBoost algorithm. Here listed are some key characteristics of this framework:

•	 It combines several base classifiers that demonstrate improved performance 
in comparison to the base classifier

•	 The weak learners are sequentially trained
•	 The data used for training each of the base classifiers is based on the 

performance of the previous classifier
•	 Every classifier votes and contributes to the outcome
•	 This framework works and uses the online algorithm strategy
•	 For every iteration, the weights are recomputed or redistributed where  

the incorrect classifiers will start to have their weights reduced
•	 Correct classifiers receive more weight while incorrect classifiers have 

reduced weight
•	 Boosting methods, though were originally designed for solving classification 

problems, are extended to handle regression as well

Boosting algorithm is stated next:
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1.	 Train a set of weak hypotheses: h1, …, hT.
2.	 Combine the hypothesis H as a weighted and majority vote of T  

weaker hypotheses.

3.	 Every iteration focuses on the misclassifications and recomputes the  
weights Dt(i).

AdaBoost
AdaBoost is a linear classifier and constructs a stronger classifier H(x) as a linear 
combination of weaker functions ht(x).
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The pictorial representation next demonstrates how the boosting framework works:

1.	 All the data points are labeled into two classes +1 and -1 with equal 
weights—1.

2.	 Apply a p (error) and classify the data points as shown here:
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3.	 Recompute the weights.

4.	 Have the weak classifiers participate again with a new problem set.



Chapter 13

[ 385 ]

5.	 A strong non-linear classifier is built using the weak classifiers iteratively.

Bagging
Bagging is also called Bootstrap Aggregation. This technique of ensemble learning 
combines the consensus approach. There are three important steps in this technique:

1.	 Build the bootstrap sample that contains approximately 63.2% of the  
original records.

2.	 Classify training using each bootstrap sample.
3.	 Use the majority voting and identify the class label of the ensemble classifier.
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This process decreases the prediction variance by generating additional data 
generation, based on the original dataset by combining the datasets of the same  
size repetitively. The accuracy of the model increases with a decrease in variance  
and not by increasing dataset size. Following is the bagging algorithm:

As per the previous algorithm steps, an example flow of the bagging algorithm and 
the process is depicted here:

1.	 Training step: For each iteration t, t=1,…T, create N samples from the 
training sets (this process is called bootstrapping), select a base model  
(for example, decision tree, neural networks, and so on), and train it  
using the samples built.

2.	 Testing step: For every test cycle, predict by combining the results of all the 
T trained models. In the case of a classification problem, the majority of the 
voting approach is applied and for regression, it is the averaging approach.



Chapter 13

[ 387 ]

Some of the error computations are done as follows:

Bagging works both in the over-fitting and under-fitting cases under the  
following conditions:

•	 For under-fitting: High bias and low variance case
•	 For over-fitting: Small bias and large variance case

Here is an example of Bagging:
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Wagging
Wagging is another variation of bagging. The entire dataset is used to train each 
model. Also, weights are assigned stochastically. So in short, wagging is bagging 
with additional weights that are assignment-based on the Poisson or exponential 
distribution. Following is the Wagging algorithm:

Random forests
Radom forests is another ensemble learning method that combines multiple Decision 
trees. The following diagram represents the Random forest ensemble:

Source: https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-
performance-metrics/

https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/
https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/
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For a Random forest with T-trees, training of the decision tree classifiers is done  
as follows:

•	 Similar to the standard Bagging technique, a sample of N cases is defined 
with a random replacement to create a subset of the data that is about 62-66% 
of the comprehensive set.

•	 For each node, do as follows:
°° Select the m predictor variables in such a way that the identified 

variable gives the best split (binary split)
°° At the next node, choose other m variables that do the same

•	 The value of the m can vary
°° For Random splitter selection—m=1
°° For Breiman's bagger: m= total number of predictor variables
°° For Random forest, m is less than the number of predictor variables, 

and it can take three values: ½√m, √m, and 2√m

Now, for every new input to the Random forest for prediction, the new value is run 
down through all the trees and an average, weighted average, or a voting majority is 
used to get the predicted value.

In Chapter 5, Decision Tree based learning, we have covered 
Random forests in detail.

Gradient boosting machines (GBM)
GBMs are one of the highly adopted Machine learning algorithms. They are used to 
address classification and regression problems. The basis for GBMs is Decision trees, 
and they apply boosting technique where multiple weak algorithms are combined 
algorithmically to produce a strong learner. They are stochastic and gradient 
boosted, which means that they iteratively solve residuals.

They are known to be highly customizable as they can use a variety of loss functions. 
We have seen that the Random forests ensemble technique uses simple averaging 
against GBMs, which uses a practical strategy of the ensemble formation. In this 
strategy, new models are iteratively added to the ensemble where every iteration 
trains the weak modeler to identify the next steps.
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GBMs are flexible and are relatively more efficient than any other ensemble learning 
methods. The following table details the GBM algorithm:

Gradient boosted regression trees (GBRT) are similar to GBMs that follow  
regression techniques.

Unsupervised ensemble methods
As a part of unsupervised ensemble learning methods, one of the consensus-based 
ensembles is the clustering ensemble. The next diagram depicts the working of the 
clustering-based ensemble:
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For a given unlabeled dataset D={x1,x2,…,xn}, a clustering ensemble computes a set 
of clusters C = { C1,C2,…,Ck}, each of which maps the data to a cluster. A consensus-
based unified cluster is formed. The following diagram depicts this flow:
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Implementing ensemble methods
Refer to the source code provided for this chapter to implement the ensemble 
learning methods (only supervised learning techniques). (source code path  
.../chapter13/... under each of the folders for the technology).

Using Mahout
Refer to the folder .../mahout/chapter13/ensembleexample/.

Using R
Refer to the folder .../r/chapter13/ensembleexample/.

Using Spark
Refer to the folder .../spark/chapter13/ensembleexample/.

Using Python (Scikit-learn)
Refer to the folder .../python (scikit-learn)/chapter13/ensembleexample/.

Using Julia
Refer to the folder .../julia/chapter13/ensembleexample/.

Summary
In this chapter, we have covered the ensemble learning methods of Machine learning. 
We covered the concept of the wisdom of the crowd, how and when it is applied in the 
context of Machine learning, and how the accuracy and performance of the learners are 
improved. Specifically, we looked at some supervised ensemble learning techniques 
with some real-world examples. Finally, this chapter has source code examples for the 
gradient boosting algorithm using R, Python (scikit-learn), Julia, and Spark Machine 
learning tools and recommendation engines using the Mahout libraries.

This chapter covers all the Machine learning methods and in the last chapter that 
follows, we will cover some advanced and upcoming architecture and technology 
strategies for Machine learning.



New generation data 
architectures for  

Machine learning
This is our last chapter, and we will take a detour from our usual learning topics 
to cover some of the solution aspects of Machine learning. This is in an attempt to 
complete a practitioner's view on the implementation aspects of Machine learning 
solutions, covering more on the choice of platform for different business cases. Let's 
look beyond Hadoop, NoSQL, and other related solutions. The new paradigm is 
definitely a unified platform architecture that takes care of all the aspects of Machine 
learning, starting from data collection and preparation until the visualizations, with 
focus on all the key architecture drivers such as volume, sources, throughput, latency, 
extensibility, data quality, reliability, security, self-service, and cost.

The following flowchart depicts different data architecture paradigms that will be 
covered in this chapter:
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The topics listed here are covered in depth in this chapter:

•	 A brief history of how traditional data architectures were implemented and 
why they are found desirable in the current context of big data and analytics.

•	 An overview of the new-age data architecture requirements in the context of 
Machine learning that includes Extract, Transform, and Load (ETL), storage, 
processing and reporting, distribution, and the presentation of the insights.

•	 An introduction to Lambda architectures that unifies strategies for batch and 
real-time processing with some examples.

•	 An introduction to Polyglot Persistence and Polymorphic databases that 
unify data storage strategies that include structured, unstructured, and  
semi-structured data stores, and centralize the querying approach across  
data stores. An example of how the Greenplum database supports the  
same and how it integrates with Hadoop seamlessly.

•	 Semantic Data Architectures include Ontologies Evolution, purpose, use 
cases, and technologies.

Evolution of data architectures
We will start with understanding how data architectures traditionally have been 
followed by detailing the demands of modern machine learning or analytics 
platforms in the context of big data.

Observation 1—Data stores were always for a purpose

Traditionally, data architectures had a clear segregation of purpose, OLTP (Online 
Transaction Processing), typically known to be used for transactional needs, and 
OLAP (Online Analytic Processing) data stores that typically used for reporting  
and analytical needs. The following table elaborates the general differences:

OLTP databases OLAP databases
Definition This involves many small online 

transactions (INSERT, UPDATE, 
and DELETE). The fast query 
processing is the core requirement; 
maintaining data integrity, 
concurrency, and effectiveness 
is measured by the number of 
transactions per second. It's usually 
characterized by a high-level of 
normalization.

This involves a relatively small 
volume of transactions. Complex 
Queries involves slicing and 
dicing of data. The data stored 
is usually aggregated, historical 
in nature, and mostly stored 
in multi-dimensional schemas 
(usually star schema).
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OLTP databases OLAP databases
Data type Operational data Integrated/consolidated/

aggregated data
Source OLTP databases usually are the 

actual sources of data
OLAP databases consolidate 
data from various OLTP 
databases

Primary 
purpose

This deals with the execution of 
day-to-day business processes/
tasks

This serves decision-support

CUD This is short, fast inserts and 
updates initiated by users

Periodic long-running jobs are 
refreshing the data

Queries This usually works on smaller 
volumes of data and executes 
simpler queries

This often includes complex 
queries involving aggregations 
and slicing and dicing in the 
multi-dimensional structure

Throughput This is usually very fast due to 
relatively smaller data volumes and 
quicker running queries

This usually run in batches and 
in higher volumes, may take 
several hours depending on 
volumes

Storage 
Capacity

Relatively small as historical data is 
archived

This requires larger storage 
space due to the volumes that 
are involved

Schema 
Design

Highly normalized with many 
tables

This is typically de-normalized 
with fewer tables and the use of 
star and/or snowflake schemas

Backup and 
Recovery

This requires proper backup 
religiously; operational data is 
critical to run the business. Data 
loss is likely to entail significant 
monetary loss and legal liability

Instead of regular backups, some 
environments may consider 
simply reloading the OLTP data 
as a recovery method

Observation 2—Data architectures were shared disk

Shared disk data architecture refers to an architecture where there is a data disk that 
holds all the data, and each node in the cluster has access to this data for processing. 
All the data operations can be performed by any node at a given point in time, 
and in case two nodes attempt at persisting/writing a tuple at the same time, to 
ensure consistency, a disk-based lock or intended lock communication is passed on, 
thus affecting the performance. Further with an increase in the number of nodes, 
contention at the database level increases. These architectures are write limited as 
there is a need to handle the locks across the nodes in the cluster.
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Even in the case of the reads, partitioning should be implemented effectively to 
avoid complete table scans. All the traditional RDBMS databases are the shared  
disk data architectures.

Observation 3—Traditional ETL architecture had limitations. The following list 
provides the details of these limitations:

•	 Onboarding and integrating data were slow and expensive. Most of the 
ETL logic that exists today is custom coded and is tightly coupled with the 
database. This tight coupling also resulted in a problem where the existing 
logic code cannot be reused. Analytics and reporting requirements needed 
a different set of tuning techniques to be applied. Optimization for analytics 
was time-consuming and costly.

•	 Data provenance was often poorly recorded. The data meaning was  
lost in translation. Post-onboarding, maintenance and analysis cost for the  
on-boarded data was usually very high. Recreating data lineage was manual, 
time-consuming, and error-prone. There was no strong auditing or record of 
the data transformations and were generally tracked in spreadsheets.
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•	 The target data was difficult to consume. The optimization favors known 
analytics but was not well-suited to the new requirements. A one-size-fits-all  
canonical view was used rather than fit-for-purpose views, or lacks a 
conceptual model to consume easily the target data. It has been difficult to 
identify what data was available, how to get access, and how to integrate the 
data to answer a question.

Observation 4—Data was usually only structured

Most of the time, the database was designed to fit the RDBMS models. If the incoming 
data was not actually structured, the ETLs would build a structure around for being 
stored in a standard OLTP or OLAP store.

Observation 5—Performance and scalability

The optimization of a data store or a query was possible to an extent, given the 
infrastructure, and beyond a certain point, there was a need for a redesign.

Emerging perspectives & drivers for new age 
data architectures
Driver 1—BIG data intervention.

We have defined big data and large dataset concepts in Chapter 2, Machine learning 
and Large-scale datasets. The data that is now being ingested and needs to be 
processed typically has the following characteristics:

•	 Source: Depending upon the nature of the information, the source may be a 
real-time stream of data (for example, trade transactions), or batches of data 
containing updates since the last sync

•	 Content: The data may represent different types of information. Often, this 
information is related to other pieces of data and is needed to be connected
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The following screenshot shows the types of data and different sources that 
need to be supported:

•	 Volume: Depending upon the nature of the data, the volumes that are being 
processed may vary. For example, master data or the securities definition 
data are relatively fixed, whereas the transaction data is enormous compared 
to the other two.

•	 Lifecycle: Master data has a fixed life and is rarely updated (such as, slowly 
changing dimensions). However, the transactional data has a very short life 
but needs to be available for analysis, audit, and so on for longer periods.

•	 Structure: While most of the data is structured, there is an advent of 
unstructured data in the financial industry. It is becoming increasingly 
critical for financial systems to incorporate unstructured data as part of  
their IT architectures.

The next chart depicts the complexity, velocity volume, and various aspects of each 
data source:

Source: SoftServe
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Driver 2—Data platform requirements are advanced

The landscape of the new age-data platform requirements is drastically expanding, 
and the unified platforms are the happening ones. The next concept map explains 
it all. The core elements of data architectures include ETL (Extract, Transform, and 
Load), Storage, Reporting, Analytics, Visualization, and data distribution.

Driver 3—Machine learning and analytics platforms now have a new purpose  
and definition

The evolution of analytics and it repurposing itself is depicted in the  
following diagram:

•	 Historically, the focus was merely on reporting. Aggregated or preprocessed 
data is loaded into the warehouse to understand what has happened. This is 
termed as Descriptive analytics and was primarily a backward step.

•	 With the advent of ad-hoc data inclusion, the need was to understand why 
certain behavior happened. This is called Diagnostic analytics and is focused 
on understanding the root cause of the behavior, which is again based on the 
historical data.

•	 Now, the demand has shifted, and the need is to understand what will 
happen. This is called Predictive analytics, and the focus is to predict the 
events based on the historical behavior.
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•	 With the advent of real-time data, the focus is now on do we make it  
happen? This goes beyond predictive analytics where remediation is a  
part of something. The ultimate focus is to Make it happen! with the advent 
of real-time event access. The following diagram depicts the evolution of 
analytics w.r.t. the value and related complexity:
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The next table differentiates the traditional analytics (BI) and the new age analytics:

Area Traditional analytics (BI) New age analytics

Scope Descriptive Analytics
Diagnostic Analytics

Predictive Analytics
Data science

Data Limited/Controlled 
volumes
Preprocessed/Validated
Basic models

Large volumes
Diverse formats and heavy 
on variety
Raw data that are not  
pre-processed
The growing model 
complexity

Result Here, the focus is on 
retrospection and the  
root-cause analysis

Here, the focus is on 
prediction/insights and the 
accuracy of analysis

Driver 4—It is not all about historical and batch, it is real-time and instantaneous 
insights

The data coming in lower volumes and higher velocity is what defines real-time.  
The new age analytics systems are expected to handle real-time, batch, and near  
real-time processing requests (these are scheduled and known as micro batches).  
The following graph depicts the properties of real-time and batch data characteristics 
with respect to volume, velocity, and variety being constant.
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Driver 5—Traditional ETL is unable to cope with BIG data

The goal is to be able to lay out an ETL architecture strategy that can address the 
following problematic areas:

•	 Facilitates standardization in implementation—dealing with the need for  
one standard

•	 Supports building reusable components
•	 Building agnostic functions
•	 Improving performance and scalability using parallel processing techniques
•	 Reducing the total overall cost of ownership (TCO)
•	 Building a specialized skill pool

The following table provides a comparative analysis of the key data loading pattern:

ETL

Extract, Transform, 
and Load

ELT

Extract, Load, and 
Transform

ETLT

Extract, Transform, 
Load, and Transform

Overview This is a traditional 
technique for moving 
and transforming 
data in which an 
ETL engine is either 
separated from the 
source or the target 
DBMS performs the 
data transformations.

This is a technique 
for moving and 
transforming data 
from one location 
and formatting it to 
another instance and 
format. In this style of 
integration, the target 
DBMS becomes the 
transformation engine.

In this technique, 
transformations 
are partly done by 
the ETL engine and 
partly pushed to the 
destination DBMS.

Highlights A heavy work of 
transformation is 
done in the ETL 
engine.
It uses the integrated 
transformation 
functions.
Transformation logic 
can be configured 
through the GUI.
This is supported by 
Informatica.

A heavy work of 
transformation is 
handed over to the 
DBMS layer.
Transformation logic 
runs closer to the data.
It is supported by 
Informatica.

Transformation work is 
split between the ETL 
engine and the DBMS.
It is supported by 
Informatica.
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ETL

Extract, Transform, 
and Load

ELT

Extract, Load, and 
Transform

ETLT

Extract, Transform, 
Load, and Transform

Benefits This is an easy,  
GUI-based 
configuration.
The transformation 
logic is independent, 
outside the database, 
and is reusable
This works very well 
for granular, simple, 
function-oriented 
transformations that 
do not require any 
database calls.
Can run on SMP or 
MPP hardware.

This leverages the 
RDBMS engine 
hardware for 
scalability.
It always keeps all the 
data in RDBMS.
It is parallelized 
according to the 
dataset, and the 
disk I/O is usually 
optimized at the 
engine level for faster 
throughput.
It scales as long as 
the hardware and the 
RDBMS engine can 
continue to scale.
Can achieve 3x to 4x 
the throughput rates 
on the appropriately 
tuned MPP RDBMS 
platform.

It can balance the 
workload or share  
the workload with  
the RDBMS.

Risks This requires a higher 
processing power on 
the ETL side.
The costs are higher.
It consists of 
the complex 
transformations that 
would need reference 
data, which will slow 
down the process.

Transformation logic 
is tied to a database.
The transformations 
that involve smaller 
volume and simple in 
nature will not gain 
many benefits.

This will still have a part 
of the transformation 
logic within the 
database.
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Fact 6—No "one" data model fits advanced or complex data processing requirements; 
there is a need for multi-data model platforms

Different databases are designed to solve different problems. Using a single database 
engine for all of the requirements usually leads to non-performant solutions. RDBMSs 
are known to work well-transactional operations, OLAP databases for reporting, 
NoSQL for high-volume data processing, and storage. Some solutions unify these 
storages and provide an abstraction for querying across these stores.

Modern data architectures for Machine 
learning
From this section onwards, we will cover some of the emergent data architectures, 
challenges that gave rise to architectures of this implementation architecture, some 
relevant technology stacks, and use cases where these architectures apply (as relevant) 
in detail.

Semantic data architecture
Some of the facts covered in the emerging perspectives in the previous section give 
rise to the following core architecture drivers to build semantic data model driven 
data lakes that seamlessly integrate a larger data scope, which is analytics ready. 
The future of analytics is semantified. The goal here is to create a large-scale, flexible, 
standards-driven ETL architecture framework that models with the help of tools and 
other architecture assets to enable the following:

•	 Enabling a common data architecture that can be a standard architecture.
•	 Dovetailing into the Ontology-driven data architecture and data lakes of 

the future (it is important to tie this architecture strategy with the data 
aggregation reference architecture). This will ensure there is a single  
data strategy that takes care of the data quality and data integration.

•	 Enabling product groups to integrate rapidly into the data architecture  
and deliver into and draw from the common data repository.

•	 Enabling ad-hoc analytics on need basis.
•	 Reducing time needed to implement the new data aggregation, ingestion,  

and transformation.
•	 Enabling any format to any format model (a format-agnostic approach  

that involves data normalization sometimes).
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•	 Complying with emerging semantic standards. This will bring in the flexibility.
•	 Enabling the common IT management and reduction of the TCO.
•	 Enabling a consolidated cloud (that can be a proprietary) for the Broadridge 

Master Business Data Repository.
•	 Enabling all the applications and products to "talk to a common language" 

and building the Broadridge data format.
•	 Reduce, and in some cases eliminate, the proliferation of too many licenses, 

databases, implementations, stacks, and more.
•	 Data Semantification: It is important to analyze the underlying schemas 

in order to unlock the meaning from them. The semantification process 
is always iterative and evolves over the period of time. The metadata 
definitions in this context will be elaborated or expanded in this process.

Setting up an enterprise-wide aggregate data mart is not the solution to problems 
outlined previously. Even if such a data mart was set up, keeping it updated and 
in line with the rest of the projects would be a major problem. As stated earlier, the 
need is to lay out the common reference architecture of a system that can accumulate 
data from many sources without making any assumptions on how, where, or when 
this data will be used.

There are two different advances in the field that we leverage to address the issues at 
an architecture level. These are the evolution of a data lake as an architecture pattern, 
and the emergence of Semantic Web and its growing relevance in e-business.
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The business data lake
The enterprise data lake gives the concept of an enterprise data warehouse a whole 
new dimension. While the approach with a data warehouse has always been to 
design a single schema and aggregate the minimum information needed to fulfill 
the schema, data lake turns both these premises of traditional data warehouse 
architectures on its head. The traditional data warehouse is designed for a specific 
purpose in mind (for example, analytics, reporting, and operational insights).  
The schema is designed accordingly, and the minimum information needed for  
the purpose is aggregated. This means that using this warehouse for any other 
objective is only incidental if at all, but it is not designed for such a use.

The business data lake promotes the concept of an appropriate schema—the 
warehouse is not constrained by a fixed, predetermined schema. This allows  
the data lake to assimilate information as and when it becomes available in the 
organization. The important direct implication of this is that rather than assimilating 
the minimum information—the data lake can assimilate all the information produced 
in the organization. Since there are no assumptions made about what the data is, 
options remain open to use the information for any purpose in the future. This 
enables the data lake to power business agility by being able to serve newer ideas 
with the data that is already available in the data lake.

The business data lake addresses the following concerns:

•	 How to handle unstructured data?
•	 How to link internal and external data?
•	 How to adapt to the speed of business change?
•	 How to remove the repetitive ETL cycle?
•	 How to support different levels of data quality and governance based on 

differing business demands?
•	 How to let local business units take the initiative?
•	 How to ensure the deliverance of platform and that it will it be adopted?
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Semantic Web technologies
When using external data that are most often found on the web, the most important 
requirement is understanding the precise semantics of the data. Without this, the 
results cannot be trusted. Here, Semantic Web technologies come to the rescue, as 
they allow semantics ranging from very simple to very complex to be specified for 
any available resource. Semantic Web technologies do not only support capturing 
the passive semantics, but also support active inference and reasoning on the data.

Semantic Web technologies allow data to be annotated with additional metadata  
(as RDF). One of the most fundamental capabilities that this adds is the AAA 
principle of Semantic Computing is—Anyone can add anything about anything at any 
time. As the information is made up of metadata, adding more metadata can enrich 
the information at any time.

Querying RDF data is done using SPARQL, which allows navigating complex 
relationship graphs to extract meaningful information from the data store. Reasoner 
(or an inference engine) works with the RDF metadata to deliver inferences at the top 
of the data. This allows the system to extract newer insights, which were originally 
not available in the incoming data.

Today, enormous amounts of information are becoming available over the web 
and over corporate and regulatory networks. However, access to all the available 
information remains limited as long as the information is stored separately without 
easy means to combine them from different sources.

This exacerbates the need for suitable methods to combine data from various sources. 
This is termed as the cooperation of information systems. This is defined as the ability 
to share, combine, and exchange information between heterogeneous sources in a 
transparent way to the end users. These heterogeneous sources are usually known 
to have always handled data in silos, and thus, they are inaccessible. To achieve data 
interoperability, the issues posed by data heterogeneity needs to be eliminated. Data 
sources can be heterogeneous in the following ways:

•	 Syntax: Syntactic heterogeneity is caused by the use of different models  
or languages

•	 Schema: Schematic heterogeneity results from structural differences
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•	 Semantics: Semantic heterogeneity is caused by different meanings or 
interpretations of data in various contexts

Data integration provides the ability to manipulate data transparently across 
multiple data sources. Based on the architecture, there are two systems:

•	 Central Data Integration: A central data integration system usually has a 
global schema, which provides the user with a uniform interface to access 
information stored in the data sources.

•	 Peer-to-peer: In contrast, in a peer-to-peer data integration system, there are 
no general points of control on the data sources (or peers). Instead, any peer 
can accept user queries for the information distributed in the entire system.

The cooperation of information systems is the ability to share, combine, and/or 
exchange information from multiple information sources, and the ability to access the 
integrated information by its final receivers transparently. The major problems that 
hinder the cooperation of information systems are the autonomy, the distribution, 
the heterogeneity, and the instability of information sources. In particular, we are 
interested in the heterogeneity problem that can be identified at several levels: the 
system, the syntactic, the structural, and the semantic heterogeneity. The cooperation 
of information systems has been extensively studied, and several approaches have 
been proposed to bridge the gap between heterogeneous information systems, such 
as: database translation, standardization, federation, mediation, and web services. 
These approaches provide appropriate solutions to the heterogeneity problem at 
syntactic and basic levels.
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However, in order to achieve semantic interoperability between heterogeneous 
information systems, the meaning of the information that is interchanged has to be 
understood in the systems. Semantic conflicts occur whenever two contexts do not 
use the same interpretation of the information.

Therefore, in order to deal with semantic heterogeneity, there is a need for more 
semantic-specialized approaches, such as ontologies. In this chapter, our focus is to 
demonstrate how information systems can cooperate using semantics. In the next 
section, let us look at the constitution of semantic data architecture.

Ontology and data integration
The diagram here represents the reference architecture for Semantic data 
architecture-based analytics:

The key features of semantic data architecture are as follows:

•	 Metadata representation: Each of the sources can be represented  
as local ontologies supported by a meta-data dictionary to interpret  
the nomenclature.

•	 Global conceptualization: There will be a global ontology definition that 
maps the local ontologies and provides a single view or nomenclature for  
a common view.
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•	 Generic querying: There will be a support for querying at a local of  
a global ontology levels  depending on the need and purpose of the 
consumer / client.

•	 Materialised view: A high level querying strategy that masks querying 
between nomenclatures and peer sources.

•	 Mapping: There will be support for defining the thesaurus based mapping 
between ontology attributes and values.

Vendors

Type Product/framework Vendor 

Open source and 
commercial versions

MarkLogic 8 is the NoSQL graph store 
that supports storing and processing RDF 
data formats and can serve as a triple 
store.

MarkLogic

Open source and 
commercial versions

Stardog is the easiest and the most 
powerful graph database: search, 
query, reasoning, and constraints in a 
lightweight, pure Java system.

Stardog

Open source 4Store is an efficient, scalable, and stable 
RDF database.

Garlik Ltd.

Open source Jena is a free and open source Java 
framework for building Semantic Web 
and Linked Data applications.

Apache

Open source Sesame is a powerful Java framework 
for processing and handling RDF data. 
This includes creating, parsing, storing, 
inferencing, and querying of such data. 
It offers an easy-to-use API that can be 
connected to all the leading RDF storage 
solutions.

GPL v2

Open Source Blazegraph is SYSTAP's flagship graph 
database. It is specifically designed 
to support big graphs offering both 
Semantic Web (RDF/SPARQL) and  
graph database (TinkerPop, blueprints, 
and vertex-centric) APIs.

GPL v2
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Multi-model database architecture / polyglot 
persistence
We could never have imagined, even five years ago, that relational databases would 
become only a single kind of a database technology and not the database technology. 
Internet-scale data processing changed the way we process data.

The new generation architectures such as Facebook, Wikipedia, SalesForce, and so 
on, are found in principles and paradigms, which are radically different from the 
well-established theoretical foundations on which the current data management 
technologies are developed.

The major architectural challenges of these architectures can be characterized next:

•	 Commoditizing information:
Apple App Store, SaaS, Ubiquitous Computing, Mobility, and the  
Cloud-Based Multi-Tenant architectures have unleashed, in business terms, 
an ability to commoditize information delivery. This model changes almost 
all the architecture decision making, as we now need to think in terms of 
what the "units of information" that can be offered and billed as services are, 
instead of thinking in terms of the TCO of the solution.

•	 Theoretical limitations of RDBMS:

What Michael Stonebraker, an influential Database theorist, has been 
writing in recent times at the heart of the Internet Scale Architectures is a 
new theoretical model of data processing and management. The theories 
of database management are now more than three decades old, and when 
they were designed, they were designed for the mainframe-type computing 
environments and very unreliable electronic components. Nature and the 
capabilities of the systems and applications have since evolved significantly. 
With reliability becoming a quality attribute of the underlying environment, 
systems are composed of parallel processing cores, and the nature of 
data creation and usage has undergone tremendous change. In order to 
conceptualize solutions for these new environments, we need to approach 
the designing solution architectures from a computing perspective, not only 
from an engineering perspective.
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Six major forces are driving the data revolution today. They are as follows:

•	 Massive Parallel Processing
•	 Commoditized Information Delivery
•	 Ubiquitous Computing and Mobile Devices
•	 Non-RDBMS and Semantic Databases
•	 Community Computing
•	 Cloud Computing

Hadoop and MapReduce have unleashed massive parallel processing of data on a 
substantial basis and have made complex computing algorithms in a programmatic 
platform. This has changed analytics and BI forever. Similarly, web services and API-
driven architectures have made information delivery commoditized on a substantial 
basis. Today, it is possible to build extremely large systems in such a way that each 
subsystem or component is a complete platform in itself, hosted and managed by a 
different entity altogether.

The previous innovations have changed the traditional Data Architecture completely. 
Especially, semantic computing and the ontology-driven modeling of information have 
turned data design on its head.

Philosophically, the data architecture is going through a factual underpinning. 
In traditional data models, we first design the data model—a fixed, design-time 
understanding of the world and its future. A data model fixes the meaning of  
data forever into a fixed structure.

A table is nothing but a category, a set of something. As a result, data has meaning 
only if we understand the set/category to which it belongs. For example, if we  
design an automobile processing system into some categories such as four-wheelers, 
two-wheelers, commercial vehicles, and so on, this division itself has some significant 
meaning embedded into it. The data that is stored in each of these categories does 
not reveal the purpose of the design that is embedded in the way the categories are 
designed. For example, another system might view the world of automobiles in 
terms of its drivetrain—electric, petroleum powered, nuclear powered, and more. 
This categorization itself reveals the purpose of the system in some manner, which is 
impossible to obtain from the attributes of any single record.
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The term polyglot is typically used to define a person who can speak many languages. 
In the context of big data, this term refers to a set of applications that use many 
database technologies where each database technology solves a particular problem. 
The basic premise of this data architecture is that different database technologies solve 
various problems and since complex applications have many problems, picking one 
option to solve a particular issue is better than trying to solve all the problems using 
one option. When we talk about a data system, it is defined as a system that takes care 
of storage and querying of data, which has a runtime of several years and needs to 
address every possible hardware and maintenance complexities.

Polyglot persistence data architecture is used when there is a complex problem, 
broken down into smaller problems and solved by applying different database 
models. This is followed by aggregating the results into a hybrid data storage 
platform followed by analysis. Some factors influencing the choice of database  
are as follows:

Factor 1—Data Models:

•	 What type of data sources do we want to integrate?
•	 How would we want to manipulate/analyze the data?
•	 What is the volume, variety, and velocity of data?
•	 Examples—Relational, Key-Value, Column-Oriented, Document-Oriented, 

Graph, and so on.

Factor 2—Consistency, availability, and partitioning (CAP):

•	 Consistency: Only one value of an object to each client (Atomicity)
•	 Availability: All objects are always available (Low Latency)
•	 Partition tolerance: Data is split into multiple network partitions (Clustering)
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CAP theorem requires us to choose any of the two features depicted here:

The following diagram is an example of a system that has multiple applications with 
a data model built for its purpose:

Source: ThoughtWorks
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Some important aspects that affect this solution are listed next:

•	 It is important that the proposed hybrid environment be clearly understood 
to ensure that it facilitates taking the right decision about data integration, 
analytics, data visibility, and others, and thus, how the solution fits into the 
entire big data and analytics implementation umbrella.

•	 Since there is more than one data model, there will be a need for a unified 
platform that can interface with all the databases identified for solution and 
aggregation. This platform should address some bare minimum big data 
platform expectations like; fault tolerance high-availability, transactional 
integrity, data agility and reliability, scalability and performance are 
addressed.

•	 Depending on the specific requirements, it is important for us to  
know/understand what sort of a data model works both: for the particular 
problem and the overall solution.

•	 Data ingestion strategies address the real-time and batch data updates and 
how they can be made to work in the context of the multi-model database. 
Since there will be a variety of data stores, what will the System of Record 
(SOR) be? And how do we ensure that data across all the data sources is in 
sync or up-to-date?

So overall, this is probably a big data challenge at its best. Multiple sources of data 
with very different structures need to be collected, integrated, and analyzed to 
solve a particular business problem. Then, the key is to identify whether the data 
needs to be pushed to the client on-demand or in real-time. And obviously, this 
type of problem cannot be solved easily or cost-effectively with one type of database 
technology. There could be some cases where a straightforward RDBMS could 
work, but in cases where there is non-relational data, there is a need for different 
persistence engines such as NoSQL. Similarly, for an e-commerce business problem, 
it is important that we have a highly available and a scalable data store for shopping 
cart functionality. However, to find products bought by a particular group, the same 
store cannot help. The need here is to go for a hybrid approach and have multiple 
data stores used in conjunction that is known as polyglot persistence.
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Vendors

Type Product/framework Vendor 

Commercial FoundationDB is a  
rock-solid database that 
gives NoSQL (Key-Value 
store) and SQL access.

FoundationDB

Open source ArangoDB is an open 
source NoSQL solution 
with a flexible data 
model for documents, 
graphs, and key-values.

GPL v2

Lambda Architecture (LA)
Lambda Architecture addresses one important aspect of Machine learning;  
that is, providing a unified platform for real-time and batch analytics. Most of the 
frameworks that we have seen until now support batch architecture (for example, 
Hadoop), in order to support real-time processing integration with specific 
frameworks (for example, Storm).

Nathan Marz introduced the concept of Lambda Architecture for a generic,  
scalable, and fault-tolerant data processing architecture that addresses a real-time 
stream-based processing and batch processing as a unified offering.

Lambda Architecture facilitates a data architecture that is highly fault-tolerant, both: 
against hardware failures and human mistakes. At the same time, it serves a broad 
range of uses and workloads, where low-latency reads and updates are required. The 
resulting system should be linearly scalable, and it should scale out rather than up.

https://twitter.com/nathanmarz
https://twitter.com/nathanmarz
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Here's how it looks from a high-level perspective:

•	 Data Layer: All of the data entering the system is dispatched to both  
the batch layer and the speed layer for processing.

•	 Batch layer: This manages master data and is responsible for batch  
pre-computation. It handles heavy volumes.

•	 Speed layer: Speed layer is responsible for handling recent data and 
compensates for the high latency of updates to the serving layer.  
On an average, this layer does not deal with large volumes.

•	 Serving layer: Serving layer handles indexing the batch views and  
facilitates ad hoc querying demonstrating low-latency.

•	 Query function: This combines the results from batch views and  
real-time views.
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Vendors

Type Product/framework Vendor 
Open source and 
commercial

Spring XD is a unified 
platform for a fragmented 
Hadoop ecosystem. 
It's built at the top of 
the battle-tested open 
source projects, and 
dramatically simplifies 
the orchestration of big 
data workloads and data 
pipelines.

Pivotal (Spring Source)

Open source Apache Spark is a fast 
and conventional engine 
for big data processing 
with built-in modules for 
streaming, SQL, Machine 
learning, and graph 
processing.

Apache

Open source Oryx is a simple, real-time, 
and large-scale Machine 
learning infrastructure.

Apache (Cloudera)

Open source The storm is a system used 
to process streaming data 
in the real time.

Apache (Hortonworks)

Summary
In this concluding chapter, our focus has been on the implementation aspects of 
Machine learning. We have understood what traditional analytics platforms have 
been and how they cannot fit the modern data requirements. You have also learned 
the architecture drivers that are promoting the new data architecture paradigms such 
as Lamda Architectures and polyglot persistence (multi-model database architecture), 
and how Semantic architectures help seamless data integration. With this chapter, 
you can assume that you are ready for implementing a Machine learning solution for 
any domain with an ability to not only identify what algorithms or models are to be 
applied to solve a learning problem, but also what platform solutions will address it 
in the best possible way.
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data science

versus Machine learning  32

datasets
manipulating, with LINQ  59

Data Source layer  69
data structures, Julia  142
Data Warehouses (DW)  32
deciles  268
Decision tree algorithms

about  174
C4.5  175
CART  174

Decision tree based algorithms
about  34
Automatic Interaction Detection  

(CHAID)  34
C4.5 and C5.0  34
Chi-square  34
Classification and Regression Tree  

(CART)  34
decision stump  34
Gradient boosting machines (GBM)  34
Multivariate adaptive regression splines 

(MARS)  34
Random forest  34

decision trees
about  160
benefits  177
characteristics  160, 161
constructing  162-165
constructing, considerations  165
implementing  183
implementing, Julia used  184
implementing, Mahout used  184
implementing, Python (scikit-learn)  

used  184
implementing, R used  184
implementing, Spark used  184
inducing  174
in graphical representation  173, 174
missing values, handling  165
purpose  161
uses  161

Deep Belief Network (DBN)  307
Deep Boltzmann Machines (DBMs)  338
Deep learning

about  307
URL  307
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Deep learning methods
implementing  340
implementing, Julia used  341
implementing, Mahout used  340
implementing, Python (scikit-learn)  

used  341
implementing, R used  340
implementing, Spark used  340

Deep learning taxonomy
about  332
autoencoders  339, 340
convolutional neural networks  

(CNN/ConvNets)  333
Deep Boltzmann Machines (DBMs)  338
Recurrent Neural Networks (RNNs)  336
Restricted Boltzmann Machines  

(RBMs)  337
Deep learning, techniques

Convolutional Networks  23
Deep Belief Networks (DBN)  23
Restricted Boltzmann Machine (RBM)  23
Stacked Autoencoders  23

default block placement policy  87
dendogram  228
denoising autoencoder (DA)  340
dense vectors  125
dependent events  246, 247
Descriptive analytics  399
Diagnostic analytics  399
dimensionality reduction methods

about  36
Multidimensional scaling (MDS)  36
Partial least squares (PLS) regression  36
Principal component analysis (PCA)  36
Projection pursuit (PP)  36
Sammon mapping  36

discrete quantity  253
disjoint events  246
distance measures, in KNN

about  192
Euclidean distance  193
Hamming distance  193
Minkowski distance  193

distance measures methods, k-means  
clustering algorithm

average link  236

centroids  236
complete link  236
single link  236

distributed processing  47
distribution

about  250-253
Bernoulli distribution  253
Binomial distribution  254
relationship between  257

Divisive clustering algorithm  229
Dynamic Learning Vector Quantization 

(DLVQ) networks  325
Dynamic Programming (DP)  359, 360

E
Eclipse

URL  119
Eclipse IDE

used, for setting up Mahout  119, 120
ecosystem components, Hadoop  100-103
effect modification  281, 283
Elman networks  323
ensemble learning methods

about  369
key use cases  374
Wisdom of Crowds  369-374

Ensemble method algorithms
about  36
AdaBoost  36
Bagging  36
Bootstrapped Aggregation (Boosting)  36
Gradient boosting machines (GBM)  37
Random forest  36
Stacked generalization (blending)  37

ensemble methods
about  377, 378
implementing  392
implementing, Julia used  392
implementing, Mahout used  392
implementing, Python (scikit-learn)  

used  392
implementing, R used  392
implementing, Spark used  392
supervised ensemble methods  379, 380

Enterprise Service Bus (ESB)  49
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environment  348
error measures, performance measures

accuracy  25
precision  25
recall  25

Euclidean distance  193
Euclidean distance measure  189
evaluative feedback, Reinforcement  

Learning (RL)
action-value methods  350
n-Armed Bandit problem  349, 350
Reinforcement Comparison methods  351

events
dependent  246, 247
disjoint  246
independent  246
mutually exclusive  246
types  246

evolutionary trees  182
examples, Reinforcement Learning (RL)

chess game  348
elevator scheduling  348
mobile robot behavior  349
network packet routing  349

execution flow, MapReduce  95
expectation

properties  274
exponential distribution  255
Extract, Load, and Transform (ELT)

benefits  403
highlights  402
overview  402
risks  403

Extract, Transform, and Load (ETL)  70
about  394
benefits  403
highlights  402
overview  402
risks  403

Extract, Transform, Load, and  
Transform (ETLT)

benefits  403
highlights  402
overview  402
risks  403

F
FACT  177
Field Programmable Gate Array (FPGA)  61
Flume

about  101
URL  101

FoundationDB  416
FP-growth algorithm

about  218-221
versus Apriori algorithm  222

frequent pattern tree (FP-tree)  217
FS Shell  90
F Statistics  278, 279
functional, versus structural

about  43
information, commoditizing  43
theoretical limitations, of RDBMS  44, 45

functions, MapReduce
Mapper  92
Reducer  93

G
Generalized Linear Models (GLM)  298
Generalized Policy Iteration (GPI)

about  361
off-policy  362
on-policy  362

GFS (Google File System)  67, 82
Gradient boosted regression trees  

(GBRT)  390
gradient boosting machines (GBM)  389
Gradient descent method  326
graphs, Julia  145
GraphX  152
Greedy Decision trees  177

H
Hadoop  

about  44, 66, 412
core components framework  82
core elements  68
distributions  111, 112
ecosystem components  100-103
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evolution  67
starting  110
URL  66
vendors  111, 112

Hadoop 2.6.0
installing, steps  107-109

Hadoop 2.x  99
Hadoop Distributed File System (HDFS)

about  73, 82-84
block loading, to cluster and  

replication  87, 88
Checkpoint process  84, 85
file, reading from  88
file, writing to  88
large data files, splitting  85, 86
Secondary Namenode  84, 85
URL  100

Hadoop (Physical) Infrastructure  
layer  74, 75

Hadoop setup
about  104
Fully-Distributed Operation  104
Pseudo-Distributed Operation  104
standalone operation  104

Hadoop Storage layer  73, 74
Hamming distance  193
HBase

about  77, 102
URL  102

HCatalog
about  102
URL  102

HDFS command line  90
Hellinger trees  183
hierarchical clustering  228, 229
High Performance Computing (HPC)  58
HIHO (Hadoop-in Hadoop-out)

about  74, 102
URL  102

Hive
about  77, 101
URL  101

homoscedasticity  286
Hopfield networks  325
human brain  306-309

I
ID3 (Iterative Dichotomiser 3)  176
implementation options, for scaling-up 

Machine learning
about  56
datasets, manipulating with LINQ  59
FPGA  61
Graphics Processing Unit (GPU)  59
HPC, with MPI  58
Language Integrated Queries (LINQ) 

framework  58, 59
MapReduce programming paradigm  56, 57
multicore processors  62
multiprocessor systems  62

independent events  246
Independent Variables (IVs)  284
induction  20
Ingestion layer

about  70, 71
Data Load pattern  72
Partitioning pattern  72
Pipeline design patterns  72
Storage Design  72
Transformation patterns  72

InputFormat class  96
Instance-based learning (IBL)

about  186, 187
KNN, implementing  196
Nearest Neighbors  188-191

integration aspects, Julia
about  144
C  144
MATLAB  144
Python  144

J
Jena  410
JobTracker  92
joint probability  248
Jordan networks  322
Julia

about  114, 138
benefits  146
characteristics  138
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command line version, downloading of  139
command line version, using of  139
installing  138
setting up  138
used, for implementing ANNs  341
used, for implementing Apriori and  

FP-growth  223
used, for implementing decision trees  184
used, for implementing Deep learning 

methods  341
used, for implementing ensemble  

methods  392
used, for implementing k-means  

clustering  237
used, for implementing KNN  196
used, for implementing linear  

regression  302
used, for implementing logistic  

regression  302
used, for implementing Naïve Bayes  

algorithm  264
used, for implementing Support Vector 

Machines (SVM)  204
using, via browser  140, 141

Julia, and Hadoop
integrating  146, 147

Julia code
running, from command line  141

Julia environment
reference link  138

Juno IDE
URL  140
using, for running Julia  140

just-in-time (JIT) compilers  141
JVM (Java Virtual Machine)  152

K
Karush-Kuhn-Tucker (KKT)  200
kernel functions  197
kernel method based algorithms

about  35
Linear discriminant analysis (LDA)  35
support vector machines (SVM)  35

kernel methods-based learning  197
key assumptions, regression methods

data accuracy  284

homoscedasticity  286
linear behavior  285
missing data  285
normal distribution  285
outliers  284
sample cases size  284

key use cases, ensemble learning methods
about  374
anomaly detection  375
classification  377
recommendation systems  374
stream mining  377
transfer learning  376

k-means algorithm
advantages  234
disadvantages  235, 236

k-means clustering
implementing  237
implementing, Julia used  237
implementing, Mahout used  237
implementing, Python (scikit-learn)  

used  237
implementing, R used  237
implementing, Spark used  237

k-means clustering algorithm
about  231
complexity measure  237
convergence criteria  232, 233
distance measures  236
implementing, on disk  234

KNN
implementing, Julia used  196
implementing, Mahout used  196
implementing, Python (scikit-learn)  

used  196
implementing, R used  196
implementing, Spark used  196

L
labeled datasets  345
Lambda Architecture (LA)

about  416
Batch layer  417
Data layer  417
Query function  417
Serving layer  417
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Speed layer  417
vendors  418

Lambda Architectures (LA)  42
Language Integrated Queries framework. 

See  LINQ framework
large-scale Machine learning

about  42
potential issues  53

lazy learners  187
learning  4
least squares method  298
linear neurons  313
linear regression

implementing  301
implementing, Julia used  302
implementing, Mahout used  302
implementing, R used  302
implementing, scikit-learn used  302
implementing, Spark used  302

linear threshold neurons  314
LINQ framework

about  58
datasets, manipulating with  59

LMDT  177
locally weighed regression (LWR)  196
logistic regression

implementing  301
implementing, Julia used  302
implementing, Mahout used  302
implementing, R used  302
implementing, scikit-learn used  302
implementing, Spark used  302
odds ratio  300

logistic regression (logit link)  298, 299
long-term potentiation (LTP)  312
Low-Level Virtual Machine (LLVM)  141

M
Machine learning

about  2
algorithms  9, 33
attribute  7
complimenting fields  29
core concepts  4
coverage  7
data  6, 7

data inconsistencies  12
dataset  7
data types  7
defining  3
dimension  7
feature  7
feature vector or tuple  7
feed forward, iterative prediction  

cycles  52
field  7
frameworks  38
highly complex algorithm  52
instance  7
labeled data  8
learning  4
model  9
phases  5, 6
performance  50, 51
practical examples  14, 15
problem, types  16
process lifecycle  32, 33
response time windows, shrinking  52
scalability  50, 51
solution architecture  32, 33
tasks  9
terminology  4
tools  38
too many attributes  51
too many data points  51
too many features  51
too many instances  51
unlabeled data  8
variable  7
versus Artificial intelligence (AI)  31
versus data mining  30
versus data science  32
versus statistical learning  31

Machine learning algorithms
about  33, 34
Artificial neural networks (ANN)  35
association rule based learning  

algorithms  37
Bayesian method based algorithms  35
clustering methods  35
decision tree based algorithms  34
Dimensionality Reduction  36
ensemble methods  36
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instance based learning algorithms  37
Kernel method based algorithms  35
regression analysis based algorithms  37

Machine learning solution architecture,  
for big data

about  68, 69
Analytics layer  77, 78
Consumption layer  78, 79
Data Source layer  69
Hadoop (Physical) Infrastructure  

layer  74, 75
Hadoop platform / Processing layer  76, 77
Hadoop Storage layer  73, 74
Ingestion layer  70-72
Security and Monitoring layer  81

Machine learning tasks, Mahout
Classification  117
Clustering  117
Collaborative Filtering /  

Recommendation  117
frequent itemset mining  117

Machine learning tools  114, 115
Mahout

about  103, 114-116
installing  118
setting up  118
setting up, Eclipse ID used  119, 120
setting up, without Eclipse  121, 122
URL  103
used, for implementing ANNs  340
used, for implementing Apriori and  

FP-growth  223
used, for implementing decision trees  184
used, for implementing Deep learning 

methods  340
used, for implementing ensemble  

methods  392
used, for implementing k-means  

clustering  237
used, for implementing KNN  196
used, for implementing linear  

regression  302
used, for implementing logistic  

regression  302
used, for implementing Naïve Bayes  

algorithm  264

used, for implementing Support Vector 
Machines (SVM)  204

vectors, implementing in  124
working  116, 117

Mahout Packages  123
Mapper job  92
MapReduce

about  44, 56, 76, 91, 412
architecture  92
components  94
execution flow  94
functions  92
URL  101

MapReduce components
developing  96
InputFormat class  96
Mapper implementation  97, 98
OutputFormat API  96

MapReduce programming framework
advantages  93, 94

marginal probability  248-250
MarkLogic 8  410
Markov Decision Process (MDP)  354, 355
Markov property  354
MARS  177
Massive Parallel Processing (MPP)  41
Master/Workers Model  49
Maven

setting up  118, 119
mdp-toolkit  149
mean  243
Mean absolute error (MAE)  26
Mean squared error (MSE)  26
median  243
Message Passing Interface (MPI)  58
methods, for determining probability

classical method  245
empirical method  245
subjective method  245

Minkowski distance  193
MLib  152
mlpy  149
mode  243
model, Machine learning

about  9
geometric models  10
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logical models  10
probabilistic models  11

model selection process  53
modern data architectures,  

for Machine learning
about  404
multi-model database architecture /  

polyglot persistence  411-415
semantic data architecture  404, 405

Monte Carlo methods  361
multicollinearity  286
multicore processors  62
multilayer fully connected feedforward 

networks  321
Multi-Layer Perceptrons (MLP)  312
multi-model database architecture /  

polyglot persistence
about  411
challenges  411, 412
vendors  416

Multinomial Naïve Bayes classifier  262
Multiple Instruction Single Data (MISD)  48
Multiple Instructions Multiple Data 

(MIMD)  48
multiple regression  294-296
multiprocessor systems  62
Multivariate adaptive regression  

splines (MARS)  37
mutually exclusive events  246

N
Naïve Bayes algorithm

implementing  264
implementing, Julia used  264
implementing, Mahout used  264
implementing, R used  264
implementing, scikit-learn used  264
implementing, Spark used  264

Naïve Bayes classifier
about  259-261
Bernoulli Naïve Bayes classifier  262, 263
Multinomial Naïve Bayes classifier  262

n-Armed Bandit problem  349, 350
Natural Language Processing (NLP)  303
Nearest Neighbors

about  188-191

distance measures, in KNN  192
value of k, in KNN  192

neighbors  187
neural networks

about  310
neuron  310, 311
synapses  311-313

Neural Network size
about  319
example  320

Neural Network types
about  321
Dynamic Learning Vector Quantization 

(DLVQ) networks  325
Elman networks  323
Gradient descent method  326
Hopfield networks  325
Jordan networks  322
Multilayer fully connected feedforward 

networks  321
Multilayer Perceptrons (MLP)  321
Radial Bias Function (RBF) networks  324

neuron  310, 311
new age data architectures

drivers, emerging for  397-404
perspectives, emerging for  397-404

NLTK  149
normal distribution  256
Normalized MAE (NMAE)  26
Normalized MSE (NMSE)  26
null hypothesis  280
numeric primitives, Julia  142
NumPy  114, 149

O
oblique trees  178
odds ratio, logistic regression

about  300
model  300

OLAP databases
versus OLTP databases  394, 395

OLAP (Online Analytic Processing)  394
OLTP databases

versus OLAP databases  394, 395
OLTP (Online Transaction Processing)  394
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Oozie
about  103
URL  103

optimization, Apriori implementation
dynamic itemset counting  218
has-based itemset counting  218
partitioning  218
sampling  218
transaction elimination / counting  218

Oryx  418
OutputFormat API  96

P
packages, Julia

about  143
reference link  143

parallel computing strategies  47
parallel processor architectures  49
partitional clustering  230, 231
pattern recognition  3
pattern search  3
percentiles  268
perceptrons. See  artificial neurons
performance measures

bias  27-29
Mean absolute error (MAE)  26
Mean squared error (MSE)  26
Normalized MAE (NMAE)  26
Normalized MSE (NMSE)  26
solution  24
using  23
variance  27-29

phases, Machine learning
application phase  5
training phase  5
validation and test phase  5

Pig
about  77, 101
URL  101

plots, Julia  145
plyrmr package  130
Poisson probability distribution  254, 255
Poisson regression  301
policy  348
polyglot  413
polynomial (non-linear) regression  296-298

population  241
posterior probability  247
potential issues, large-scale Machine  

learning
auto scaling  53
fault tolerance  53
job scheduling  53
load balancing  53
monitoring  53
parallel execution  53
skews, managing  53
Workflow Management  53

practical implementation aspects
credit card fraud detection  14
customer segmentation  15
digit recognition  14
face detection  15
product recommendation   15
sentiment analysis  15
spam detection  14
speech recognition  14
stock trading  15

Predictive analytics  399
prior probability  247
probability

about  243, 244
conditional probability  247, 248
joint probability  248
marginal probability  248-250
methods, for determining  245
posterior probability  247
prior probability  247
types  247

Probably Approximately Correct (PAC)
about  23
Approximate  23
Probability  23

problem types, Machine learning
about  16
classification  16, 17
clustering  17, 18
deep learning  23
forecasting  18
optimization  19-21
prediction  18
regression  18
reinforcement learning  22
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semi-supervised learning  22
simulation  19
supervised learning  21
unsupervised learning  22

process lifecycle, Machine learning  32, 33
Producer/Consumer Model  49
Protocol Buffer

URL  130
PyBrain  149
Pydoop  149
PyML  149
Python

about  114, 148
implementing  149
installing  150
toolkit options  148, 149

Python (scikit-learn)
used, for implementing ANNs  341
used, for implementing Apriori and  

FP-growth  223
used, for implementing decision trees  184
used, for implementing Deep learning 

methods  341
used, for implementing ensemble  

methods  392
used, for implementing k-means  

clustering  237
used, for implementing KNN  196
used, for implementing Support Vector 

Machines (SVM)  204

Q
Q-Learning technique  363
Quadratic Discriminant Analysis  

(QDA)  177
quartiles  268
QUEST  177

R
R

about  114, 125
capabilities  126
installing  127, 128
setting up  127, 128
used, for implementing ANNs  340

used, for implementing Apriori and  
FP-growth  223

used, for implementing decision trees  184
used, for implementing Deep learning 

methods  340
used, for implementing ensemble  

methods  392
used, for implementing k-means  

clustering  237
used, for implementing KNN  196
used, for implementing linear  

regression  302
used, for implementing logistic  

regression  302
used, for implementing Naïve Bayes  

algorithm  264
used, for implementing Support Vector 

Machines (SVM)  204
Radial Bias Function (RBF) networks  324
random access sparse vectors  125
random forests  180-182, 388, 389
randomness  242
range  268
R Data Frames  136, 137
RDBMS

theoretical limitations  44, 45
rdfs package  131
recommendation systems  374
rectified linear neurons  314
Recurrent Neural Networks  

(RNNs)  336, 337
Reducer job  93
reference reward  351
regression analysis

about  267
statistics, revisiting  268-273

regression analysis based algorithms  37
regression methods

about  284
Generalized Linear Models (GLM)  298
key assumptions  284, 285
logistic regression (logit link)  298, 299
multiple regression  294-296
Poisson regression  301
polynomial (non-linear) regression  296-298
simple linear regression  287-294
simple regression  287-294
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Reinforcement Comparison methods  351
Reinforcement Learning (RL)

about  343-346
context  346, 347
Delayed Rewards  357
evaluative feedback  349
examples  348
key features  359
Markov Decision Process (MDP)  354, 355
optimal policy  357, 358
solution methods  359
terms  347

Reinforcement Learning (RL) problem
world grid example  351-354

Remote Procedure Calls (RPC)  102
Resilient Distributed Datasets (RDD)

programming with  154, 155
RESTFul HDFS  91
reward  348
R Expressions

about  132
assignments  132
functions  133

R Factors  135, 136
R / Hadoop integration approaches

cons  131
pros  131

rhbase package  131
R, integrating with Apache Hadoop

about  129
R and Streaming APIs, using in  

Hadoop  129
RHadoop, using  130
Rhipe package, using of R  130

R Learning (Off-policy)  365
R Matrices  135
rmr package  131
root mean square error (RMSE)  26
Rote Learner  187
R Statistical frameworks  137
rule extraction  18
R Vectors

about  133
accessing  134
assigning  134
manipulating  134

S
sample

about  242
cluster sampling  242
stratified sampling  242

sample size  242
sample space probability  244
Sampling Bias  242
Sarsa  362
Scala

about  152
examples  153

scaling-out storage
versus scaling-up storage  46

scikit-learn
about  149
setting up  150
used, for implementing linear  

regression  302
used, for implementing logistic  

regression  302
used, for implementing Naïve Bayes  

algorithm  264
SciPy  114, 149
semantic data architecture

about  404, 405
business data lake  406
central data integration  408
features  409
peer-to-peer  408
vendors  410

Semantic Web technologies
about  407, 408
ontology and data integration  409

semi-supervised learning  346
sequence files  124
sequential access sparse vectors  125
Sesame  410
shallow learning algorithm  305
Shared Nothing Architecture (SNA)  75
Sigmoid neurons  316
simple linear regression  287-294
simple regression  287-294
Single Instruction Multiple Data (SIMD)  48
Single Instruction Single Data (SISD)  48
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singularity  286
skewed data  269
smart data  70
Softmax regression technique  331
solution architecture, Machine  

learning  32, 33
solution methods, Reinforcement  

Learning (RL)
about  359
actor-critic methods (on-policy)  364
Dynamic Programming (DP)  359, 360
Monte Carlo methods  361
Q-Learning technique  363
R Learning (Off-policy)  365
temporal difference (TD) learning  362

Spark
used, for implementing ANNs  340
used, for implementing Apriori and  

FP-growth  223
used, for implementing decision trees  184
used, for implementing Deep learning 

methods  340
used, for implementing ensemble  

methods  392
used, for implementing k-means  

clustering  237
used, for implementing KNN  196
used, for implementing linear  

regression  302
used, for implementing logistic  

regression  302
used, for implementing Naïve Bayes  

algorithm  264
used, for implementing Support Vector 

Machines (SVM)  204
Spark SQL  151
Spark Streaming  151
sparse vectors

about  125
random access sparse vectors  125
sequential access sparse vectors  125

specialized trees
about  178
evolutionary trees  182
Hellinger trees  183

oblique trees  178, 179
random forests  180-182

Spring XD
about  114, 155, 418
features  155

Spring XD architecture, layers
about  156
Batch Layer  156
Serving Layer  156
Speed Layer  156

Sqoop
about  103
URL  103

SSE (Sum Squared Error)  290
SSL (Secure Socket Layer)  81
standard deviation  243
Stardog  410
state  348
statistical learning

versus Machine learning  31
statisticians

objective  241
stochastic binary neurons  316-318
stratified sampling  242
stream mining  377
String manipulations, Julia

working with  143
sum of squared error of prediction  

(SSE)  232
supervised ensemble methods

about  368, 379
bagging  385-387
boosting  381, 382
wagging  388

supervised learning  345
Support Vector Machines (SVM)

about  185, 198-202
implementing  204
implementing, Julia used  204
implementing, Mahout used  204
implementing, Python (scikit-learn)  

used  204
implementing, R used  204
implementing, Spark used  204
Inseparable Data  202, 203

symmetric distribution  269
synapses  311, 312
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T
Tableau  151
Tajo

about  103
URL  103

task dependency graph  55
task parallelization  49
TaskTracker  92
Temporal Credit Assignment  357
temporal difference (TD)  344
temporal difference (TD) learning

about  362
Sarsa  362

terms, Reinforcement Learning (RL)
action  348
agent  348
environment  348
policy  348
reward  348
state  348
value  348

top-K recommendation  187
Total Cost of Ownership (TCO)  43
Total Lifetime Value (TLV)  16
traditional ETL architecture

limitations  396, 397
transfer learning  376
tree Induction method

CAL5  177
CHAID  176
FACT  177
ID3  176
LMDT  177
MARS  177
QUEST  177

U
Ubuntu-based Hadoop Installation

IPv6, disabling  106
Jdk 1.7, installing  104
prerequisites  104
system user, creating for Hadoop  106

uncertainty
sources  243

Unique Transaction Identifier (UTI)  208
unlabelled data set  346
unsupervised ensemble methods  390, 391

V
value  348
variables, Julia  141
variance

about  268
properties  274, 275

vectors
implementing, in Mahout  124

Visualizations
about  78
data, exploring with  79, 80

Voronoi cell  189

W
wagging  388
WebHDFS REST API

URL  91
Wisdom of Crowds

about  369, 370
aggregation  370
cross inducers  371
decentralization  370
dependency between classifiers  371
diversity, generating  371
diversity of opinion  370
independence  370
size of ensemble  371
usage of combiner  371

Y
YARN (Yet Another Resource  

Negotiator)  65

Z
ZooKeeper

about  103
URL  103
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