

B4x Booklets

B4x Basic Language

Copyright: © 2017 Anywhere Software Edition 1.0

Last update : 2017.05.25

Table of contents 2 B4x Basic language

1 BASIC .. 6
1.1 B4x ... 6

1.1.1 B4A Android ... 6
1.1.2 B4i iOS .. 6
1.1.3 B4J Java Desktop ... 6
1.1.4 B4R Arduino ... 6

2 Variables and objects ... 7
2.1 Variable Types ... 7
2.2 Names of variables ... 10
2.3 Declaring variables... 10

2.3.1 Simple variables ... 10

2.3.2 Array variables ... 11
2.3.3 Array of views / nodes (objects) .. 13
2.3.4 Type variables B4A, B4i and B4J only .. 16

2.4 Casting ... 17
2.5 Scope .. 18

2.5.1 Process variables .. 18
2.5.2 Activity variables B4A only ... 19

2.5.3 Local variables ... 19
2.6 Tips ... 19

3 Basic language ... 20
3.1 Expressions .. 20

3.1.1 Mathematical expressions .. 20
3.1.2 Relational expressions .. 21

3.1.3 Boolean expressions ... 21
3.2 Standard keywords ... 22

Abs (Number As Double) As Double .. 24

ACos (Value As Double) As Double ... 24

ACosD (Value As Double) As Double .. 24

Array .. 24

Asc (Char As Char) As Int ... 24

ASin (Value As Double) As Double .. 24

ASinD (Value As Double) As Double ... 24

ATan (Value As Double) As Double ... 24

ATan2 (Y As Double, X As Double) As Double... 24

ATan2D (Y As Double, X As Double) As Double .. 24

ATanD (Value As Double) As Double .. 24

BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String)

As String .. 25

CallSub (Component As Object, Sub As String) As Object .. 25

CallSub2 (Component As Object, Sub As String, Argument As Object) As Object 25

CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As

Object) As Object ... 25

Catch .. 25

cE As Double ... 25

Ceil (Number As Double) As Double .. 25

CharsToString (Chars() As Char, StartOffset As Int, Length As Int) As String 26

Chr (UnicodeValue As Int) As Char .. 26

Continue ... 26

Cos (Radians As Double) As Double .. 26

CosD (Degrees As Double) As Double ... 26

cPI As Double .. 26

Table of contents 3 B4x Basic language

CRLF As String ... 26

Dim ... 26

Exit ... 26

False As Boolean ... 27

Floor (Number As Double) As Double .. 27

For .. 27

GetType (object As Object) As String ... 27

If ... 27

IsNumber (Text As String) As Boolean ... 27

LoadBitmap (Dir As String, FileName As String) As Bitmap 28

LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight

As Int) As Bitmap .. 28

Log (Message As String) ... 28

Logarithm (Number As Double, Base As Double) As Double 28

LogColor (Message As String, Color As Int) .. 28

Max (Number1 As Double, Number2 As Double) As Double 28

Me As Object ... 28

Min (Number1 As Double, Number2 As Double) As Double 28

Not (Value As Boolean) As Boolean ... 28

Null As Object ... 28

NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As

Int) As String .. 29

NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions

As Int, MinimumFractions As Int, GroupingUsed As Boolean) As String 29

Power (Base As Double, Exponent As Double) As Double .. 29

QUOTE As String .. 29

Regex As Regex ... 29

Return ... 29

Rnd (Min As Int, Max As Int) As Int ... 29

RndSeed (Seed As Long) ... 29

Round (Number As Double) As Long ... 29

Round2 (Number As Double, DecimalPlaces As Int) As Double 29

Select .. 30

Sender As Object.. 30

Sin (Radians As Double) As Double Calculates the trigonometric sine function. Angle

measured in radians. ... 30

SinD (Degrees As Double) As Double .. 30

Calculates the trigonometric sine function. Angle measured in degrees. 30

Sleep (Value As Double) As Double ... 30

Sqrt (Value As Double) As Double ... 30

Sub ... 31

SubExists (Object As Object, Sub As String) As Boolean .. 31

TAB As String ... 31

Tan (Radians As Double) As Double .. 31

TanD (Degrees As Double) As Double ... 31

True As Boolean .. 31

Try .. 31

Type.. 32

Until ... 32

While .. 32
3.3 Conditional statements ... 33

Table of contents 4 B4x Basic language

3.3.1 If – Then – End If ... 33
3.3.2 Select – Case .. 35

3.4 Loop structures ... 37
3.4.1 For – Next .. 37
3.4.2 For - Each ... 38
3.4.3 Do - Loop ... 39

3.5 Subs .. 41
3.5.1 Declaring .. 41
3.5.2 Calling a Sub .. 41
3.5.3 Calling a Sub from another module ... 41
3.5.4 Naming ... 42

3.5.5 Parameters .. 42
3.5.6 Returned value ... 42

3.6 Resumable Subs ... 43

3.6.1 Sleep ... 43
3.6.2 Wait For ... 44
3.6.3 Code Flow .. 46
3.6.4 Waiting for a resumable sub to complete ... 47

3.6.5 DoEvents .. 48
3.6.6 Dialogs ... 49
3.6.7 SQL with Wait For ... 50

3.6.7.1 Queries ... 50

3.6.7.2 B4J ... 51
3.6.8 Notes & Tips .. 52

3.7 Events ... 53
3.7.1 B4A .. 53
3.7.2 B4i .. 56

3.7.3 B4J ... 58
3.7.4 B4R .. 61

3.7.5 User interface summary ... 62
3.8 Libraries ... 63

3.8.1 Standard libraries ... 63
3.8.2 Additional libraries folder .. 64
3.8.3 Load and update a Library ... 65
3.8.4 Error message "Are you missing a library reference?" .. 65

3.9 String manipulation .. 66
3.9.1 B4A, B4i, B4J .. 66
3.9.2 B4R .. 67

3.10 Number formatting ... 70

3.10.1 B4A, B4i, B4J .. 70
3.10.2 B4R .. 70

3.11 Timers .. 71

3.12 Files B4A, B4i, B4J .. 73
3.12.1 File object ... 73
3.12.2 Filenames ... 75
3.12.3 Subfolders .. 75
3.12.4 TextWriter .. 76

3.12.5 TextReader ... 77
3.12.6 Text encoding ... 78

3.13 Lists B4A, B4i and B4J only .. 80

3.14 Maps B4A, B4i and B4J only ... 82
4 Help tools ... 84

4.1 Search function in the forum .. 84

Table of contents 5 B4x Basic language

4.2 B4x Help Viewer.. 86
4.3 Help documentation - B4A Object Browser .. 89

Main contributors: Klaus Christl (klaus), Erel Uziel (Erel)

To search for a given word or sentence use the Search function in the Edit menu.

Updated for following versions:

B4A version 7.00

B4i version 4.01

B4J version 5.51

B4R version 1.80

1 BASIC B4x Basic language

1 BASIC

BASIC (an acronym for Beginner's All-purpose Symbolic Instruction Code) is a family of general-

purpose, high-level programming languages whose design philosophy emphasizes ease of use. In

1964, John G. Kemeny and Thomas E. Kurtz designed the original BASIC language at Dartmouth

College in the U.S. state of New Hampshire. They wanted to enable students in fields other than

science and mathematics to use computers. At the time, nearly all use of computers required writing

custom software, which was something only scientists and mathematicians tended to learn (source

Wikipedia).

1.1 B4x

B4X is a suite of rapid application development IDEs that allows the creation of applications the

following platforms: Google Android, Apple iOS, Java, Raspberry Pi and Arduino. B4X uses a

Proprietary dialect of Visual Basic (hereinafter called "B4X") and also features a visual designer

that simplifies the process of creating user interfaces.

1.1.1 B4A Android

B4A – The simple way to develop native Android apps.

B4A includes all the features needed to quickly develop any type of Android app.

B4A is used by tens of thousands of developers from all over the world, including companies such

as NASA, HP, IBM and others.

Together with B4i you can now easily develop applications for both Android and iOS.

1.1.2 B4i iOS

B4i – The simple way to develop native iOS apps.

B4i is a development tool for native iOS applications.

B4i follows the same concepts as B4A, allowing you to reuse most of the code and build apps for

both Android and iOS.

It is the only development tool that allows you to develop 100% native iOS apps without a local

Mac computer.

1.1.3 B4J Java Desktop

B4J – Modern “VB6 like” development tool for cross platform desktop, server and IoT solutions

B4J is a 100% free development tool for desktop, server and IoT solutions.

With B4J you can easily create desktop applications (UI), console programs (non-UI) and server

solutions.

The compiled apps can run on Windows, Mac, Linux and ARM boards (such as Raspberry Pi).

1.1.4 B4R Arduino

B4R – Easily build native Arduino & ESP8266 programs.

B4R is a 100% free development tool for native Arduino and ESP8266 programs.

B4R follows the same concepts of the other B4X tools, providing a simple and powerful

development tool.

B4R, B4A, B4J and B4i together make the best development solution for the Internet of Things

(IoT).

https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Java_%28programming_language%29
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/Visual_Basic

2 Variables and objects 7 B4x Basic language

2 Variables and objects

A variable is a symbolic name given to some known or unknown quantity or information, for the

purpose of allowing the name to be used independently of the information it represents. A variable

name in computer source code usually associated with a data storage location and thus also its

contents, and these may change during the course of program execution (source Wikipedia).

There are two types of variables: primitives and non-primitives types.

Primitives include the numeric types: Byte, Short, Int, Long, Float and Double.

Primitives also include: Boolean and Char.

2.1 Variable Types

B4A, B4i, B4J

List of types with their ranges:

B4x Type min value max value

Boolean boolean False True

Byte integer 8 bits
- 2 7 2 7 - 1

-128 127

Short integer 16 bits
- 2 15 2 15 -1

- 32768 32767

Int integer 32 bits
- 2 31 2 31 -1

-2147483648 2147483647

Long long integer 64 bits
- 2 63 2 63 -1

-9223372036854775808 9223372036854775807

Float

floating point

number

32 bits

- 2 -149 (2 -2 -23) * 2 127

1.4E-45 3.4028235 E 38

Double

double precision

number

64 bits

- 2 -1074 (2 -2 -52) * 2 1023

2.2250738585072014 E -

308
1.7976931348623157 E

308

Char character

String array of characters

2.1 Variable types 8 B4x Basic language

B4R

List of types with their ranges:

Numeric types:

Byte 0 - 255

Int (2 bytes) -32768 - 32768. Similar to Short type in other B4x tools.

UInt (2 bytes) 0 - 65535. B4R specific.

Long (4 bytes) -2,147,483,648 - 2,147,483,647. Similar to Int type in other B4x tools.

ULong (4 bytes) 0 - 4,294,967,295 B4R specific.

Double (4 bytes) 4 bytes floating point. Similar to Float in other B4x tools.

Float is the same as Double. Short is the same as Int.

The above is true on all boards, including the Arduino Due.

Other types:

Boolean True or False. Practically it is saved as a byte with the value of 1 or 0.

String Strings are made from an array of bytes that end with a null byte (byte with the value of 0).

Object Objects can hold other types of values.

2.1 Variable types 9 B4x Basic language

Primitive types are always passed by value to other subs or when assigned to other variables.

For example:

Sub S1
 Private A As Int

 A = 12 The variable A = 12

 S2(A) It's passed by value to routine S2

 Log(A) ' Prints 12 Variable A still equals 12, even though B was changed in routine S2.
End Sub

Sub S2(B As Int) Variable B = 12

 B = 45 Its value is changed to B = 45
End Sub

All other types, including arrays of primitive types and strings are categorized as non-primitive

types.

When you pass a non-primitive to a sub or when you assign it to a different variable, a copy of the

reference is passed.

This means that the data itself isn't duplicated.

It is slightly different than passing by reference as you cannot change the reference of the original

variable.

All types can be treated as Objects.

Collections like lists and maps work with Objects and therefore can store any value.

Here is an example of a common mistake, where the developer tries to add several arrays to a list:

Private arr(3) As Int
Private List1 As List
List1.Initialize
For i = 1 To 5
 arr(0) = i * 2
 arr(1) = i * 2
 arr(2) = i * 2
 List1.Add(arr) 'Add the whole array as a single item
Next
arr = List1.Get(0) 'get the first item from the list
Log(arr(0)) 'What will be printed here???

You may expect it to print 2. However it will print 10.

We have created a single array and added 5 references of this array to the list.

The values in the single array are the values set in the last iteration.

To fix this we need to create a new array each iteration.

This is done by calling Private each iteration:

Private arr(3) As Int 'This call is redundant in this case.
Private List1 As List
List1.Initialize
For i = 1 To 5
 Private arr(3) As Int
 arr(0) = i * 2
 arr(1) = i * 2
 arr(2) = i * 2
 List1.Add(arr) 'Add the whole array as a single item
Next
arr = List1.Get(0) 'get the first item from the list
Log(arr(0)) 'Will print 2

2.2 Names of variables 10 B4x Basic language

2.2 Names of variables

It is up to you to give any name to a variable, except reserved words.

A variable name must begin with a letter and must be composed by the following characters A-Z, a-

z, 0-9, and underscore "_", no spaces, no brackets etc.

Variable names are case insensitive, that means that Index and index refer to the same variable.

But it is good practice to give them meaningful names.

Example:

Interest = Capital * Rate / 100 is meaningful

n1 = n2 * n3 / 100 not meaningful

For Views (B4A, B4i), Nodes (B4J), it is useful to add to the name a three character prefix that

defines its type.

Examples:

lblCapital lbl > Label Capital > purpose

edtInterest edt > EditText Interest > purpose

btnNext btn > Button Next > purpose

2.3 Declaring variables

2.3.1 Simple variables

Variables are declared with the Private or the Public keyword followed by the variable name and

the As keyword and followed by the variable type. For details look at chapter Scope.

There exist the Dim keyword, this is maintained for compatibility.

Examples:

 Private Capital As Double Declares three variables as Double,

 Private Interest As Double double precision numbers.
 Private Rate As Double

 Private i As Int Declares three variables as Int, integer numbers.
 Private j As Int
 Private k As Int

 Private lblCapital As Label

 Private lblInterest As Label Declares three variables as Label views.
 Private lblRate As Label

 Private btnNext As Button Declares two variables as Button views.
 Private btnPrev As Button

The same variables can also be declared in a short way.

 Private Capital, Interest, Rate As Double
 Private i, j, k As Int
 Private lblCapital, lblInterest, lblRate As Label
 Private btnNext, btnPrev As Button

The names of the variables separated by commas and followed by the type declaration.

2.3 Declaring variables 11 B4x Basic language

Following variable declarations are valid:

Private i = 0, j = 2, k = 5 As Int

Private txt = "test" As String, value = 1.05 As Double, flag = False As Boolean

View names must be declared if we want to use them in the code.

For example, if we want to change the text in a Label view in the code, like

lblCapital.Text = "1200",

we need to reference this Label view by its name lblCapital, this is done with the Private

declaration.

If we never make any reference to this Label view anywhere in the code no declaration is needed.

Using an event routine for that view doesn't need a declaration either.

To allocate a value to a variable write its name followed by the equal sign and followed by the

value, like:
Capital = 1200
LastName = "SMITH"

Note that for Capital we wrote just 1200 because Capital is a number.

But for LastName we wrote "SMITH" because LastName is a string.

Strings must always be written between double quotes.

2.3.2 Array variables

Arrays are collections of data or objects that can be selected by indices. Arrays can have multiple

dimensions.

The declaration contains the Private or the Public keyword followed by the variable name

LastName, the number of items between brackets (50), the keyword As and the variable type String.

For details look at chapter Scope. There exist the Dim keyword, this is maintained for compatibility.

Note: B4R supports only single dimension arrays !

Examples:

Public LastName(50) As String One dimension array of strings, total number of items 50.

Public Matrix(3, 3) As Double Two dimensions array of Doubles, total number of items 9.

Public Data(3, 5, 10) As Int Three dimensions array of integers, total number of items 150.

The first index of each dimension in an array is 0.
LastName(0), Matrix(0,0), Data(0,0,0)

The last index is equal to the number of items in each dimension minus 1.
LastName(49), Matrix(2,2), Data(2,4,9)

Public LastName(10) As String
Public FirstName(10) As String
Public Address(10) As String
Public City(10) As String

or
Public LastName(10), FirstName(10), Address(10), City(10) As String

2.3 Declaring variables 12 B4x Basic language

This example shows how to access all items in a three dimensional array.

 Public Data(3, 5, 10) As Int

 For i = 0 To 2
 For j = 0 To 4
 For k = 0 To 9
 Data(i, j, k) = ...
 Next
 Next
 Next

A more versatile way to declare arrays is to use variables.

 Public NbPers = 10 As Int
 Public LastName(NbPers) As String
 Public FirstName(NbPers) As String
 Public Address(NbPers) As String
 Public City(NbPers) As String

We declare the variable Public NbPers = 10 As Int and set its value to 10.

Then we declare the arrays with this variable instead of the number 10 as before.
The big advantage is if at some point we need to change the number of items, we change only ONE

value.

For the Data array we could use the following code.

 Public NbX = 2 As Int
 Public NbY = 5 As Int
 Public NbZ = 10 As Int
 Public Data(NbX, NbY, NbZ) As Int

And the access routine.

 For i = 0 To NbX - 1
 For j = 0 To NbY - 1
 For k = 0 To NbZ - 1
 Data(i, j, k) = ...
 Next
 Next
 Next

Filling an array with the Array keyword :

 Public Name() As String
 Name = Array As String("Miller", "Smith", "Johnson", "Jordan")

2.3 Declaring variables 13 B4x Basic language

2.3.3 Array of views / nodes (objects)

Views / nodes or objects can also be in an Array. The following code shows an example:

In B4A and B4i user interface objects are called views and called nodes in B4J.

In the example below the Buttons are added to the parent view / node by code.

B4A

Sub Globals
 Private Buttons(6) As Button
End Sub

Sub Activity_Create(FirstTime As Boolean)
 Private i As Int

 For i = 0 To 5
 Buttons(i).Initialize("Buttons")
 Activity.AddView(Buttons(i), 10dip, 10dip + i * 60dip, 150dip, 50dip)
 Buttons(i).Tag = i + 1
 Buttons(i).Text = "Test " & (i + 1)
 Next
End Sub

Sub Buttons_Click
 Private btn As Button
 btn = Sender
 Log("Button " & btn.Tag & " clicked")
End Sub

B4i

Sub Process_Globals

 Private Buttons(6) As Button
End Sub

Private Sub Application_Start (Nav As NavigationController)

 Private i As Int
 For i = 0 To 5
 Buttons(i).Initialize("Buttons")
 Page1.RootPanel.AddView(Buttons(i), 10dip, 10dip + i * 60dip, 150dip, 50dip)
 Buttons(i).Tag = i + 1
 Buttons(i).Text = "Test " & (i + 1)
 Next
End Sub

Sub Buttons_Click
 Private btn As Button
 btn = Sender
 Log("Button " & btn.Tag & " clicked")
End Sub

2.3 Declaring variables 14 B4x Basic language

B4J

Sub Process_Globals

 Private Buttons(6) As Button
End Sub

Sub AppStart (Form1 As Form, Args() As String)

 Private i As Int
 For i = 0 To 5
 Buttons(i).Initialize("Buttons")
 MainForm.RootPane.AddNode(Buttons(i), 10, 10 + i * 60, 150, 50)
 Buttons(i).Tag = i + 1
 Buttons(i).Text = "Test " & (i + 1)
 Next
End Sub

Sub Buttons_MouseClicked (EventData As MouseEvent)
 Private btn As Button
 btn = Sender
 Log("Button " & btn.Tag & " clicked")
End Sub

The Buttons could also have been added in a layout file, in that case they must neither be initialized,

nor added to the parent view / node and the Text and Tag properties should also be set in the

Designer.

In that case the code would look like this:

B4A

Sub Globals
 Private b1, b2, b3, b4, b5, b6, b7 As Button
 Private Buttons() As Button
End Sub

Sub Activity_Create(FirstTime As Boolean)

 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7)
End Sub

Sub Buttons_Click
 Private btn As Button
 btn = Sender
 Log("Button " & btn.Tag & " clicked")
End Sub

2.3 Declaring variables 15 B4x Basic language

B4i

Sub Process_Globals

 Private b1, b2, b3, b4, b5, b6, b7 As Button
 Private Buttons(6) As Button
End Sub

Private Sub Application_Start (Nav As NavigationController)

 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7)
End Sub

Sub Buttons_Click
 Private btn As Button
 btn = Sender
 Log("Button " & btn.Tag & " clicked")
End Sub

B4J

Sub Process_Globals

 Private b1, b2, b3, b4, b5, b6, b7 As Button
 Private Buttons(6) As Button
End Sub

Sub AppStart (Form1 As Form, Args() As String)

 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7)
End Sub

Sub Buttons_MouseClicked (EventData As MouseEvent)
 Private btn As Button
 btn = Sender
 Log("Button " & btn.Tag & " clicked")
End Sub

2.3 Declaring variables 16 B4x Basic language

2.3.4 Type variables B4A, B4i and B4J only

A Type cannot be private. Once declared it is available everywhere (similar to Class modules).

The best place to declare them is in the Process_Globals routine in the Main module.

Let us reuse the example with the data of a person.

Instead of declaring each parameter separately, we can define a personal type variable with the

Type keyword:

Public NbUsers = 10 As Int
Type Person(LastName As String, FirstName As String. Address As String, City As String)
Public User(NbUsers) As Person
Public CurrentUser As Person

The new personal type is Person , then we declare either single variables or arrays of this personal

type.

To access a particular item use following code.
CurrentUser.FirstName
CurrentUser.LastName

User(1).LastName
User(1).FirstName

The variable name, followed by a dot and the desired parameter.

If the variable is an array then the name is followed by the desired index between brackets.

It is possible to assign a typed variable to another variable of the same type, as shown below.

CurrentUser = User(1)

2.4 Casting 17 B4x Basic language

2.4 Casting

B4x casts types automatically as needed. It also converts numbers to strings and vice versa

automatically.

In many cases you need to explicitly cast an Object to a specific type.

This can be done by assigning the Object to a variable of the required type.

For example, Sender keyword references an Object which is the object that raised the event.

The following code changes the color of the pressed button.

Note that there are multiple buttons that share the same event sub.

Sub Globals
 Private Btn1, Btn2, Btn3 As Button
End Sub

Sub Activity_Create(FirstTime As Boolean)
 Btn1.Initialize("Btn")
 Btn2.Initialize("Btn")
 Btn3.Initialize("Btn")
 Activity.AddView(Btn1, 10dip, 10dip, 200dip, 50dip)
 Activity.AddView(Btn2, 10dip, 70dip, 200dip, 50dip)
 Activity.AddView(Btn3, 10dip, 130dip, 200dip, 50dip)
End Sub

Sub Btn_Click
 Private btn As Button
 btn = Sender ' Cast the Object to Button
 btn.Color = Colors.RGB(Rnd(0, 255), Rnd(0, 255), Rnd(0, 255))
End Sub

The above code could also be written more elegantly:

Sub Globals

End Sub

Sub Activity_Create(FirstTime As Boolean)
 Private i As Int
 For i = 0 To 9 ' create 10 Buttons
 Private Btn As Button
 Btn.Initialize("Btn")
 Activity.AddView(Btn, 10dip, 10dip + 60dip * i, 200dip, 50dip)
 Next
End Sub

Sub Btn_Click
 Private btn As Button
 btn = Sender ' Cast the Object to Button
 btn.Color = Colors.RGB(Rnd(0, 255), Rnd(0, 255), Rnd(0, 255))
End Sub

2.5 Scope 18 B4x Basic language

2.5 Scope

2.5.1 Process variables

These variables live as long as the process lives.

You should declare these variables inside Sub Process_Globals.

This sub is called once when the process starts (this is true for all modules, not just the main

module).

These variables are the only "public" variables. Which means that they can be accessed from other

modules as well.

However, in B4A, not all types of objects can be declared as process variables.

For example, views / nodes cannot be declared as process variables.

The reason is that we do not want to hold a reference to objects that should be destroyed together

with the activity.

In other words, once the activity is being destroyed, all of the views which are contained in the

activity are being destroyed as well.

If we hold a reference to a view, the garbage collector would not be able to free the resource and we

will have a memory leak. The compiler enforces this requirement.

To access process global variables in other modules than the module where they were declared their

names must have the module name they were declared as a prefix.

Example:

Variable defined in a module with the name : MyModule
Sub Process_Globals
 Public MyVar As String
End Sub

Accessing the variable in MyModule module:
 MyVar = "Text"

Accessing the variable in any other module:
 MyModule.MyVar = "Text"

Variables can be declared with:
Dim MyVar As String
In this case the variable is public same as Public.

It is good practice to declare the variables like this:
Public MyVar As String
This variable is public.

It is possible to declare private variables in Sub Process_Globals like this:
Private MyVar As String
The variable is private to the activity or the module where it is declared.

For Activities it is better to declare them in Sub Globals.

For variables declared in Class modules in Sub Class_Globals the same rules as above are valid.
 Public MyVarPublic As String ' public
 Private MyVarPublic As String ' private
 Dim MyVar As String ' public like Public

Using Dim in Sub Class_Globals is not recommended !

2.5 Scope 19 B4x Basic language

2.5.2 Activity variables B4A only

These variables are contained by the activity.

You should declare these variables inside Sub Globals.

These variables are "private" and can only be accessed from the current activity module.

All object types can be declared as activity variables.

Every time the activity is created, Sub Globals is called (before Activity_Create).

These variables exist as long as the activity exists.

2.5.3 Local variables

Variables declared in a subroutine are local to this subroutine.

They are "private" and can only be accessed from within the subroutine where they were declared.

All objects types can be declared as local variables.

At each call of the subroutine the local variables are initialized to their default value or to any other

value you have defined in the code and are 'destroyed' when the subroutine is exited.

2.6 Tips

A view / node can be assigned to a variable so you can easily change the common properties of the

view.

For example, the following code disables all views that are direct children of a Panel / Pane:

 For i = 0 To MyPanel.NumberOfViews - 1
 Private v As View
 v = MyPanel.GetView(i)
 v.Enabled = False
 Next

If we only want to disable buttons:

 For i = 0 To.NumberOfViews - 1
 Private v As View
 v = MyPanel.GetView(i)
 If v Is Button Then ' check whether it is a Button
 v.Enabled = False
 End If
 Next

Note: MyPanel is a Panel in B4A and B4i but it is a Pane in B4J.

3 Basic language 20 B4x Basic language

3 Basic language

3.1 Expressions

An expression in a programming language is a combination of explicit values, constants, variables,

operators, and functions that are interpreted according to the particular rules of precedence and of

association for a particular programming language, which computes and then produces (returns)

another value. This process, like for mathematical expressions, is called evaluation. The value can

be of various types, such as numerical, string, and logical (source Wikipedia).

For example, 2 + 3 is an arithmetic and programming expression which evaluates to 5. A variable is

an expression because it is a pointer to a value in memory, so y + 6 is an expression. An example of

a relational expression is 4 = 4 which evaluates to True (source Wikipedia).

3.1.1 Mathematical expressions

Operator Example
Precedence

level
Operation

+ x + y 3 Addition

- x - y 3 Subtraction

* x * y 2 Multiplication

/ x / y 2 Division

Mod x Mod y 2 Modulo

Power Power(x,y) xy 1 Power of

Precedence level: In an expression, operations with level 1 are evaluated before operations with

level 2, which are evaluated before operations with level 3.

Examples:

4 + 5 * 3 + 2 = 21 > 4 + 15 + 2

(4 + 5) * (3 + 2) = 45 > 9 * 5

(4 + 5)2 * (3 + 2) = 405 > 92 * 5 > 81 * 5
Power(4+5,2)*(3+2)

11 Mod 4 = 3 > Mod is the remainder of 10 / 4

233 Power(23,3) > 23 at the power of 3

- 22 = - 4
(-2)2 = 4

http://en.wikipedia.org/wiki/Expression_(programming)

3.1 Expressions 21 B4x Basic language

3.1.2 Relational expressions

In computer science in relational expressions an operator tests some kind of relation between two

entities. These include numerical equality (e.g., 5 = 5) and inequalities (e.g., 4 >= 3).

In B4x these operators return True or False, depending on whether the conditional relationship

between the two operands holds or not.

Operator Example Used to test

= x = y the equivalence of two values

<> x <> y the negated equivalence of two values

> x > y if the value of the left expression is greater than that of the right

< x < y if the value of the left expression is less than that of the right

>= x >= y if the value of the left expression is greater than or equal to that of the right

<= x <= y if the value of the left expression is less than or equal to that of the right

3.1.3 Boolean expressions

In computer science, a Boolean expression is an expression that produces a Boolean value when

evaluated, i.e. one of True or False. A Boolean expression may be composed of a combination of

the Boolean constants True or False, Boolean-typed variables, Boolean-valued operators, and

Boolean-valued functions (source Wikipedia).

Boolean operators are used in conditional statements such as IF-Then and Select-Case.

Operator Comment

Or Boolean Or Z = X Or Y Z = True if X or Y is equal to True or both are True

And Boolean And Z = X And Y Z = True if X and Y are both equal to True

Not () Boolean Not X = True Y = Not(X) > Y = False

 Or And

X Y Z Z

False False False False

True False True False

False True True False

True True True True

3.2 Standard keywords 22 B4x Basic language

3.2 Standard keywords

Not all keywords are available in B4R.

 Abs (Number As Double) As Double

 ACos (Value As Double) As Double

 ACosD (Value As Double) As Double

 Array

 Asc (Char As Char) As Int

 ASin (Value As Double) As Double

 ASinD (Value As Double) As Double

 ATan (Value As Double) As Double

 ATan2 (Y As Double, X As Double) As Double

 ATan2D (Y As Double, X As Double) As Double

 ATanD (Value As Double) As Double

 BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String) As String

 CallSub (Component As Object, Sub As String) As Object

 CallSub2 (Component As Object, Sub As String, Argument As Object) As Object

 CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object)

As Object

 Catch

 cE As Double

 Ceil (Number As Double) As Double

 CharsToString (Chars() As Char, StartOffset As Int, Length As Int) As String

 Chr (UnicodeValue As Int) As Char

 Continue

 Cos (Radians As Double) As Double

 CosD (Degrees As Double) As Double

 cPI As Double

 CRLF As String

 Dim

 Exit

 False As Boolean

 Floor (Number As Double) As Double

 For

 GetType (object As Object) As String

 If

 Is

 IsNumber (Text As String) As Boolean

 LoadBitmap (Dir As String, FileName As String) As Bitmap

 LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As

Int) As Bitmap

 Log (Message As String)

 Logarithm (Number As Double, Base As Double) As Double

 LogColor (Message As String, Color As Int)

 Max (Number1 As Double, Number2 As Double) As Double

 Me As Object

 Min (Number1 As Double, Number2 As Double) As Double

 Not (Value As Boolean) As Boolean

https://www.b4x.com/android/help/core.html#keywords_loadbitmapsample
https://www.b4x.com/android/help/core.html#keywords_logcolor

3.2 Standard keywords 23 B4x Basic language

 Null As Object

 NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int) As

String

 NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int,

MinimumFractions As Int, GroupingUsed As Boolean) As String

 Power (Base As Double, Exponent As Double) As Double

 QUOTE As String

 Regex As Regex

 Return

 Rnd (Min As Int, Max As Int) As Int

 RndSeed (Seed As Long)

 Round (Number As Double) As Long

 Round2 (Number As Double, DecimalPlaces As Int) As Double

 Select

 Sender As Object

 Sin (Radians As Double) As Double

 SinD (Degrees As Double) As Double

 Sleep (Milliseconds As Int)

 SmartStringFormatter (Format As String, Value As Object) As String

 Sqrt (Value As Double) As Double

 Sub

 SubExists (Object As Object, Sub As String) As Boolean

 TAB As String

 Tan (Radians As Double) As Double

 TanD (Degrees As Double) As Double

 True As Boolean

 Try

 Type

 Until

 While

3.2 Standard keywords 24 B4x Basic language

Abs (Number As Double) As Double

Returns the absolute value.

ACos (Value As Double) As Double

Returns the angle measured with radians.

ACosD (Value As Double) As Double

Returns the angle measured with degrees.

Array

Creates a single dimension array of the specified type.

The syntax is: Array [As type] (list of values).

If the type is ommitted then an array of objects will be created.

Example:
Dim Days() As String
Days = Array As String("Sunday", "Monday", ...)

Asc (Char As Char) As Int

Returns the unicode code point of the given character or first character in string.

ASin (Value As Double) As Double

Returns the angle measured with radians.

ASinD (Value As Double) As Double

Returns the angle measured with degrees.

ATan (Value As Double) As Double

Returns the angle measured with radians.

ATan2 (Y As Double, X As Double) As Double

Returns the angle measured with radians.

ATan2D (Y As Double, X As Double) As Double

Returns the angle measured with degrees.

ATanD (Value As Double) As Double

Returns the angle measured with degrees.

3.2 Standard keywords 25 B4x Basic language

BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String) As String

Decodes the given bytes array as a string.

Data - The bytes array.

StartOffset - The first byte to read.

Length - Number of bytes to read.

CharSet - The name of the character set.

Example:
Dim s As String
s = BytesToString(Buffer, 0, Buffer.Length, "UTF-8")

CallSub (Component As Object, Sub As String) As Object

Calls the given sub. CallSub can be used to call a sub which belongs to a different module.

However the sub will only be called if the other module is not paused. In that case an empty string

will be returned.

You can use IsPaused to test whether a module is paused.

This means that one activity cannot call a sub of a different activity. As the other activity will be

paused for sure.

CallSub allows an activity to call a service sub or a service to call an activity sub.

Note that it is not possible to call subs of code modules.

CallSub can also be used to call subs in the current module. Pass Me as the component in that case.

Example:
CallSub(Main, "RefreshData")

CallSub2 (Component As Object, Sub As String, Argument As Object) As Object

Similar to CallSub. Calls a sub with a single argument.

CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object) As Object

Catch

Any exception thrown inside a try block will be caught in the catch block.

Call LastException to get the caught exception.

Syntax:
Try
 ...
Catch
 ...
End Try

cE As Double

e (natural logarithm base) constant.

Ceil (Number As Double) As Double

Returns the smallest double that is greater or equal to the specified number and is equal to an

integer.

3.2 Standard keywords 26 B4x Basic language

CharsToString (Chars() As Char, StartOffset As Int, Length As Int) As String

Creates a new String by copying the characters from the array.

Copying starts from StartOffset and the number of characters copied equals to Length.

Chr (UnicodeValue As Int) As Char

Returns the character that is represented by the given unicode value.

Continue

Stops executing the current iteration and continues with the next one.

Cos (Radians As Double) As Double

Calculates the trigonometric cosine function. Angle measured in radians.

CosD (Degrees As Double) As Double

Calculates the trigonometric cosine function. Angle measured in degrees.

cPI As Double

PI constant.

CRLF As String

New line character. The value of Chr(10).

Dim

Declares a variable.

Syntax:

Declare a single variable:

Dim variable name [As type] [= expression]

The default type is String.

Declare multiple variables. All variables will be of the specified type.

Dim [Const] variable1 [= expression], variable2 [= expression], ..., [As type]

Note that the shorthand syntax only applies to Dim keyword.

Example: Dim a = 1, b = 2, c = 3 As Int

Declare an array:

Dim variable(Rank1, Rank2, ...) [As type]

Example: Dim Days(7) As String

The actual rank can be omitted for zero length arrays.

Exit

Exits the most inner loop.

Note that Exit inside a Select block will exit the Select block.

3.2 Standard keywords 27 B4x Basic language

False As Boolean

Floor (Number As Double) As Double

Returns the largest double that is smaller or equal to the specified number and is equal to an integer.

For

Syntax:
For variable = value1 To value2 [Step interval]
 ...
Next
If the iterator variable was not declared before it will be of type Int.

Or:
For Each variable As type In collection
 ...
Next
Examples:
For i = 1 To 10
 Log(i) 'Will print 1 to 10 (inclusive).
Next
For Each n As Int In Numbers 'an array
 Sum = Sum + n
Next

Note that the loop limits will only be calculated once before the first iteration.

GetType (object As Object) As String

Returns a string representing the object's java type.

If

Single line:
If condition Then true-statement [Else false-statement]
Multiline:
If condition Then
 statement
Else If condition Then
 statement
 ...
Else
 statement
End If

IsNumber (Text As String) As Boolean

Tests whether the specified string can be safely parsed as a number.

3.2 Standard keywords 28 B4x Basic language

LoadBitmap (Dir As String, FileName As String) As Bitmap

Loads the bitmap.

Note that the Android file system is case sensitive.

You should consider using LoadBitmapSample if the image size is large.

The actual file size is not relevant as images are usually stored compressed.

Example:

Activity.SetBackgroundImage(LoadBitmap(File.DirAssets, "SomeFile.jpg"))

LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As Int) As Bitmap

Loads the bitmap.

The decoder will subsample the bitmap if MaxWidth or MaxHeight are smaller than the bitmap

dimensions.

This can save a lot of memory when loading large images.

Example:
Panel1.SetBackgroundImage(LoadBitmapSample(File.DirAssets, "SomeFile.jpg",
Panel1.Width, Panel1.Height))

Log (Message As String)

Logs a message. The log can be viewed in the Logs tab.

Logarithm (Number As Double, Base As Double) As Double

LogColor (Message As String, Color As Int)

Logs a message. The message will be displayed in the IDE with the specified color.

Max (Number1 As Double, Number2 As Double) As Double

Returns the larger number between the two numbers.

Me As Object

For classes: returns a reference to the current instance.

For activities and services: returns a reference to an object that can be used with CallSub,

CallSubDelayed and SubExists keywords.

Cannot be used in code modules.

Min (Number1 As Double, Number2 As Double) As Double

Returns the smaller number between the two numbers.

Not (Value As Boolean) As Boolean

Inverts the value of the given boolean.

Null As Object

3.2 Standard keywords 29 B4x Basic language

NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int) As String

Converts the specified number to a string.

The string will include at least Minimum Integers and at most Maximum Fractions digits.

Example:
Log(NumberFormat(12345.6789, 0, 2)) '"12,345.68"
Log(NumberFormat(1, 3 ,0)) '"001"

NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int,

MinimumFractions As Int, GroupingUsed As Boolean) As String

Converts the specified number to a string.

The string will include at least Minimum Integers, at most Maximum Fractions digits and at least

Minimum Fractions digits.

GroupingUsed - Determines whether to group every three integers.

Example:
Log(NumberFormat2(12345.67, 0, 3, 3, false)) '"12345.670"

Power (Base As Double, Exponent As Double) As Double

Returns the Base value raised to the Exponent power.

QUOTE As String

Quote character. The value of Chr(34).

Regex As Regex

Regular expressions related methods.

Return

Returns from the current sub and optionally returns the given value.

Syntax: Return [value]

Rnd (Min As Int, Max As Int) As Int

Returns a random integer between Min (inclusive) and Max (exclusive).

RndSeed (Seed As Long)

Sets the random seed value.

This method can be used for debugging as it allows you to get the same results each time.

Round (Number As Double) As Long

Returns the closest long number to the given number.

Round2 (Number As Double, DecimalPlaces As Int) As Double

Rounds the given number and leaves up to the specified number of fractional digits.

3.2 Standard keywords 30 B4x Basic language

Select

Compares a single value to multiple values.

Example:
Dim value As Int
value = 7
Select value
 Case 1
 Log("One")
 Case 2, 4, 6, 8
 Log("Even")
 Case 3, 5, 7, 9
 Log("Odd larger than one")
 Case Else
 Log("Larger than 9")
End Select

Sender As Object

Returns the object that raised the event.

Only valid while inside the event sub.

Example:
Sub Button_Click
 Dim b As Button
 b = Sender
 b.Text = "I've been clicked"
End Sub

Sin (Radians As Double) As Double

Calculates the trigonometric sine function. Angle measured in radians.

SinD (Degrees As Double) As Double

Calculates the trigonometric sine function. Angle measured in degrees.

Sleep (Value As Double) As Double

Pauses the current sub execution and resumes it after the specified time.

SmartStringFormatter (Format As String, Value As Object) As String

Internal keyword used by the Smart String literal.

Sqrt (Value As Double) As Double

Returns the positive square root.

3.2 Standard keywords 31 B4x Basic language

Sub

Declares a sub with the parameters and return type.

Syntax: Sub name [(list of parameters)] [As return-type]

Parameters include name and type.

The lengths of arrays dimensions should not be included.

Example:
Sub MySub (FirstName As String, LastName As String, Age As Int, OtherValues() As
Double) As Boolean
 ...
End Sub
In this example OtherValues is a single dimension array.

The return type declaration is different than other declarations as the array parenthesis follow the

type and not

the name (which does not exist in this case).

SubExists (Object As Object, Sub As String) As Boolean

Tests whether the object includes the specified method.

Returns false if the object was not initialized or not an instance of a user class.

TAB As String

Tab character.

Tan (Radians As Double) As Double

Calculates the trigonometric tangent function. Angle measured in radians.

TanD (Degrees As Double) As Double

Calculates the trigonometric tangent function. Angle measured in degrees.

True As Boolean

Try

Any exception thrown inside a try block will be caught in the catch block.

Call LastException to get the caught exception.

Syntax:
Try
...
Catch
...
End Try

3.2 Standard keywords 32 B4x Basic language

Type

Declares a structure.

Can only be used inside sub Globals or sub Process_Globals.

Syntax:

Type type-name (field1, field2, ...)

Fields include name and type.

Example:
Type MyType (Name As String, Items(10) As Int)
Dim a, b As MyType
a.Initialize
a.Items(2) = 123

Until

Loops until the condition is true.

Syntax:
Do Until condition
 ...
Loop

While

Loops while the condition is true.

Syntax:

Do While condition

...

Loop

3.3 Conditional statements 33 B4x Basic language

3.3 Conditional statements

Different conditional statements are available in Basic.

3.3.1 If – Then – End If

The If-Then-Else structure allows to operate conditional tests and execute different code sections

according to the test result.

General case:

 If test1 Then
 ' code1
 Else If test2 Then
 ' code2
 Else
 ' code3
 End If

The If-Then-Else structure works as follows:

1. When reaching the line with the If keyword, test1 is executed.

2. If the test result is True, then code1 is executed until the line with the Else If keyword.

And jumps to the line following the End If keyword and continues.

3. If the result is False, then test2 is executed.

4. If the test result is True, then code2 is executed until the line with the Else keyword.

And jumps to the line following the End If keyword and continues.

5. If the result is False, then code3 is executed and continues at the line following the End If

keyword.

The tests can be any kind of conditional test with two possibilities True or False.

Some examples:

 If b = 0 Then

 a = 0 The simplest If-Then structure.
 End If

 If b = 0 Then a = 0 The same but in one line.

 If b = 0 Then

 a = 0 The simplest If-Then-Else structure.
 Else
 a = 1
 End If

 If b = 0 Then a = 0 Else a = 1 The same but in one line.

Personally, I prefer the structure on several lines, better readable.

An old habit from HP Basic some decades ago, this Basic accepted only one instruction per line.

3.3 Conditional statements 34 B4x Basic language

Note. Difference between:

B4x VB
Else If ElseIf

In B4x there is a blank character between Else and If.

Some users try to use this notation:

 If b = 0 Then a = 0 : c = 1

There is a big difference between B4x and VB that gives errors :

The above statements is equivalent to :

 B4x VB
 If b = 0 Then If b = 0 Then
 a = 0 a = 0
 End If c = 1
 c = 1 End If

The colon character ' : ' in the line above is treated in B4x like a CarriageReturn CR character.

This structure throws an error.
Sub Plus1 : x = x + 1 : End Sub
You cannot have a Sub declaration and End Sub on the same line.

3.3 Conditional statements 35 B4x Basic language

3.3.2 Select – Case

The Select - Case structure allows to compare a TestExpression with other Expressions and to

execute different code sections according to the matches between the TestExpression and

Expressions.

General case:

 Select TestExpression TestExpression is the expression to test.
 Case ExpressionList1

 ' code1 ExpressionList1 is a list of expressions to compare

 Case ExpressionList2 to TestExpression

 ' code2 ExpressionList2 is another list of expressions to compare

 Case Else to TestExpression
 ' code3
 End Select

The Select - Case structure works as follows:

1. The TestExpression is evaluated.

2. If one element in the ExpressionList1 matches TestExpression then executes code1

and continues at the line following the End Select keyword.

3. If one element in the ExpressionList2 matches TestExpression then executes

code2 and continues at the line following the End Select keyword.

4. For no expression matches TestExpression executes code3

and continues at the line following the End Select keyword.

TestExpression can be any expression or value.

ExpressionList1 is a list of any expressions or values.

Examples:

 Select Value

 Case 1, 2, 3, 4 The Value variable is a numeric value.

 Select a + b The TestExpression is the sum of a + b
 Case 12, 24

 Select Txt.CharAt The TestExpression is a character at
 Case "A", "B", "C"

Sub Activity_Touch (Action As Int, X As Float, Y As Float)
 Select Action
 Case Activity.ACTION_DOWN

 Case Activity.ACTION_MOVE

 Case Activity.ACTION_UP

 End Select
End Sub

3.3 Conditional statements 36 B4x Basic language

Note. Differences between:

B4x VB
Select Value Select Case Value
Case 1,2,3,4,8,9,10 Case 1 To 4 , 8 To 9

In VB the keyword Case is added after the Select keyword.

VB accepts Case 1 To 4 , this is not implemented in B4x.

3.4 Loop structures 37 B4x Basic language

3.4 Loop structures

Different loop structures are available in Basic.

3.4.1 For – Next

In a For–Next loop a same code will be executed a certain number of times.

Example:

 For i = n1 To n2 Step n3 i incremental variable

 n1 initial value

 ' Specific code n2 final value

 n3 step
 Next

The For–Next loop works as below:

1. At the beginning, the incremental variable i is equal to the initial value n1.

i = n1

2. The specific code between the For and Next keywords is executed.

3. When reaching Next, the incremental variable i is incremented by the step value n3.

i = i + n3.

4. The program jumps back to For, compares if the incremental variable i is lower or equal to

the final value n2.

test if i <= n2

5. If Yes, the program continues at step 2, the line following the For keyword.

6. If No, the program continues at the line following the Next keyword.

If the step value is equal to '+1' the step keyword is not needed.

 For i = 0 To 10 For i = 0 To 10 Step 1

 is the same as
 Next Next

The step variable can be negative.

 For i = n3 To 0 Step -1

 Next

It is possible to exit a For – Next loop with the Exit keyword.

 For i = 0 To 10 In this example, if the variable a equals 0

 ' code

 If A = 0 Then Exit Then exit the loop.
 ' code
 Next

3.4 Loop structures 38 B4x Basic language

Note : Differences between

 B4x VB
 Next Next i
 Exit Exit For

In VB :

• The increment variable is added after the Next Keyword.

• The loop type is specified after the Exit keyword.

3.4.2 For - Each

It is a variant of the For - Next loop.

Example:

 For Each n As Type In Array n variable any type or object

 Type type of variable n

 ' Specific code Array Array of values or objects

 Next

The For–Each loop works as below:

1. At the beginning, n gets the value of the first element in the Array.

n = Array(0)

2. The specific code between the For and Next keywords is executed.

3. When reaching Next, the program checks if n is the last element in the array.

4. If No, the variable n gets the next value in the Array and continues at step 2, the line

following the For keyword.

n = Array(next)

5. If Yes, the program continues at the line following the Next keyword.

Example For - Each :
 Private Numbers() As Int
 Private Sum As Int

 Numbers = Array As Int(1, 3, 5 , 2, 9)

 Sum = 0
 For Each n As Int In Numbers
 Sum = Sum + n
 Next

Same example but with a For - Next loop :
 Private Numbers() As Int
 Private Sum As Int
 Private i As Int

 Numbers = Array As Int(1, 3, 5 , 2, 9)

 Sum = 0
 For i = 0 To Numbers.Length - 1
 Sum = Sum + Numbers(i)
 Next

3.4 Loop structures 39 B4x Basic language

This example shows the power of the For - Each loop :
 For Each lbl As Label In Activity
 lbl.TextSize = 20
 Next

Same example with a For - Next loop :
 For i = 0 To Activity.NumberOfViews - 1
 Private v As View
 v = Activity.GetView(i)
 If v Is Label Then
 Private lbl As Label
 lbl = v
 lbl.TextSize = 20
 End If
 Next

3.4.3 Do - Loop

Several configurations exist:

 Do While test test is any expression

 ' code Executes the code while test is True
 Loop

 Do Until test test is any expression

 ' code Executes the code until test is True
 Loop

The Do While -Loop loop works as below :

1. At the beginning, test is evaluated.

2. If True, then executes code

3. If False continues at the line following the Loop keyword.

The Do Until -Loop loop works as below :

1. At the beginning, test is evaluated.

2. If False, then executes code

3. If True continues at the line following the Loop keyword.

It is possible to exit a Do-Loop structure with the Exit keyword.

 Do While test
 ' code

 If a = 0 Then Exit If a = 0 then exit the loop
 ' code
 Loop

3.4 Loop structures 40 B4x Basic language

Examples :

Do Until Loop :
 Private i, n As Int

 i = 0
 Do Until i = 10
 ' code
 i = i + 1
 Loop

Do While Loop :
 Private i, n As Int

 i = 0
 Do While i < 10
 ' code
 i = i + 1
 Loop

Read a text file and fill a List :
 Private lstText As List
 Private line As String
 Private tr As TextReader

 tr.Initialize(File.OpenInput(File.DirInternal, "test.txt"))
 lstText.Initialize
 line = tr.ReadLine
 Do While line <> Null
 lstText.Add(line)
 line = tr.ReadLine
 Loop

 tr.Close

Note : Difference between:

 B4x VB
 Exit Exit Loop

In VB the loop type is specified after the Exit keyword.

VB accepts also the following loops, which are not supported in B4x.
Do Do
 ' code ' code
Loop While test Loop Until test

3.5 Subs 41 B4x Basic language

3.5 Subs

A Subroutine (“Sub”) is a piece of code. It can be any length, and it has a distinctive name and a

defined scope (in the means of variables scope discussed earlier). In B4x code, a subroutine is

called “Sub”, and is equivalent to procedures, functions, methods and subs in other programming

languages. The lines of code inside a Sub are executed from first to last, as described in the program

flow chapter.

It is not recommended to have Subs with a large amount of code, they get less readable.

3.5.1 Declaring

A Sub is declared in the following way:

Sub CalcInterest(Capital As Double, Rate As Double) As Double
 Return Capital * Rate / 100
End Sub

It starts with the keyword Sub, followed by the Sub’s name, followed by a parameter list, followed

by the return type and ends with the keywords End Sub.

Subs are always declared at the top level of the module, you cannot nest two Subs one inside the

other.

3.5.2 Calling a Sub

When you want to execute the lines of code in a Sub, you simply write the Sub’s name.

For example:
 Interest = CalcInterest(1234, 5.2)

Interest Value returned by the Sub.

CalcInterest Sub name.

1235 Capital value transmitted to the Sub.

5.25 Rate value transmitted to the Sub.

3.5.3 Calling a Sub from another module

A subroutine declared in a code module can be accessed from any other module but the name of the

routine must have the name of the module where it was declared as a prefix.

Example: If the CalcInterest routine is declared in module MyModule then calling the routine

must be :
 Interest = MyModule.CalcInterest(1234, 5.2)

instead of:
 Interest = CalcInterest(1234, 5.2)

3.5 Subs 42 B4x Basic language

3.5.4 Naming

Basically, you can name a Sub any name that’s legal for a variable. It is recommended to name the

Sub with a significant name, like CalcInterest in the example, so you can tell what it does from

reading the code.

There is no limit on the number of Subs you can add to your program, but it is not allowed to have

two Subs with the same name in the same module.

Sub CalcInterest(Capital As Double, Rate As Double) As Double
 Return Capital * Rate / 100
End Sub

3.5.5 Parameters

Parameters can be transmitted to the Sub. The list follows the sub name. The parameter list is put in

brackets.

The parameter types should be declared directly in the list.

Sub CalcInterest(Capital As Double, Rate As Double) As Double
 Return Capital * Rate / 100
End Sub

In B4x, the parameters are transmitted by value and not by reference.

3.5.6 Returned value

A sub can return a value, this can be any object.

Returning a value is done with the Return keyword.

The type of the return value is added after the parameter list.

Sub CalcInterest(Capital As Double, Rate As Double) As Double
 Return Capital * Rate / 100
End Sub

3.6 Resumable Subs 43 B4x Basic language

3.6 Resumable Subs

Resumable subs is a new feature added in B4A v7.00 / B4i v4.00 / B4J v5.50. It dramatically

simplifies the handling of asynchronous tasks.

(This feature is a variant of stackless coroutines.)

You find more examples in the forum.

The special feature of resumable subs is that they can be paused, without pausing the executing

thread, and later be resumed.

The program doesn't wait for the resumable sub to be continued. Other events will be raised as

usual.

Any sub with one or more calls to Sleep or Wait For is a resumable sub.

The IDE shows this indicator next to the sub declaration:

Private Sub CountDown(Start As Int)
 For i = Start To 0 Step -1
 Label1.Text = i
 Sleep(1000)
 Next
End Sub

3.6.1 Sleep

Pauses the current sub execution and resumes it after the specified time.

Sleep (Milliseconds As Int) Milliseconds, time delay in milliseconds.

Example:

Sleep(1000)

Using Sleep is simple:

Log(1)
Sleep(1000)
Log(2)

The sub will be paused for 1000 milliseconds and then be resumed.

You can call Sleep(0) for the shortest pause. This can be used to allow the UI to be refreshed. It is a

good alternative to DoEvents (which doesn't exist in B4J and B4i and should be avoided in B4A).

Sub VeryBusySub
 For i = 1 To 10000000
 'do something
 If i Mod 1000 = 0 Then Sleep(0) 'allow the UI to refresh every 1000 iterations.
 Next
 Log("finished!")
End Sub

https://en.wikipedia.org/wiki/Coroutine
https://www.b4x.com/android/forum/threads/b4x-resumable-subs-sleep-wait-for.78601/#content

3.6 Resumable Subs 44 B4x Basic language

3.6.2 Wait For

B4X programming languages are event driven. Asynchronous tasks run in the background and raise

an event when the task completes.

With the new Wait For keyword you can handle the event inside the current sub.

For example, this code will wait for the GoogleMap Ready event (B4J example):

Sub AppStart (Form1 As Form, Args() As String)
 MainForm = Form1
 MainForm.RootPane.LoadLayout("1") 'Load the layout file.

 gmap.Initialize("gmap")
 Pane1.AddNode(gmap.AsPane, 0, 0, Pane1.Width, Pane1.Height)
 MainForm.Show
 Wait For gmap_Ready '<----------------
 gmap.AddMarker(10, 10, "Marker")
End Sub

A bit more complicated example with FTP:

Listing all files in a remote folder and then downloading all the files:

Sub DownloadFolder (ServerFolder As String)
 FTP.List(ServerFolder)
 Wait For FTP_ListCompleted (ServerPath As String, Success As Boolean, Folders() As
 FTPEntry, Files() As FTPEntry) '<----
 If Success Then
 For Each f As FTPEntry In Files
 FTP.DownloadFile(ServerPath & f.Name, False, File.DirApp, f.Name)
 Wait For FTP_DownloadCompleted (ServerPath2 As String, Success As Boolean) '<----
 Log($"File ${ServerPath2} downloaded. Success = ${Success}"$)
 Next
 End If
 Log("Finish")
End Sub

When the Wait For keyword is called, the sub is paused and the internal events dispatcher takes care

to resume it when the event is raised. If the event is never raised then the sub will never be resumed.

The program will still be completely responsive.

If Wait For is later called with the same event then the new sub instance will replace the previous

one.

3.6 Resumable Subs 45 B4x Basic language

Lets say that we want to create a sub that downloads an image and sets it to an ImageView:

'Bad example. Don't use.

Sub DownloadImage(Link As String, iv As ImageView)
 Dim job As HttpJob
 job.Initialize("", Me) 'note that the name parameter is no longer needed.
 job.Download(Link)
 Wait For JobDone(job As HttpJob)
 If job.Success Then
 iv.SetImage (job.GetBitmap) 'replace with iv.Bitmap = job.GetBitmap in B4A / B4i
 End If
 job.Release
End Sub

It will work properly if we call it once (more correctly, if we don't call it again before the previous

call completes).

If we call it like this:

 DownloadImage("https://www.b4x.com/images3/android.png", ImageView1)
 DownloadImage("https://www.b4x.com/images3/apple.png", ImageView2)

Then only the second image will show because the second call to Wait For JobDone will overwrite

the previous one.

This brings us to the second variant of Wait For.

To solve this issue, Wait For can distinguish between events based on the event sender.

This is done with an optional parameter:

Wait For (<sender>) <event signature>

Example:

'Good example. Use.

Sub DownloadImage(Link As String, iv As ImageView)
 Dim job As HttpJob
 job.Initialize("", Me) 'note that the name parameter is no longer needed.
 job.Download(Link)
 Wait For (job) JobDone(job As HttpJob)
 If job.Success Then
 iv.SetImage (job.GetBitmap) 'replace with iv.Bitmap = job.GetBitmap in B4A / B4i
 End If
 job.Release
End Sub

With the above code, each resumable sub instance will wait for a different event and will not be

affected by other calls.

3.6 Resumable Subs 46 B4x Basic language

3.6.3 Code Flow

Sub S1
 Log("S1: A")
 S2
 Log("S1: B")
End Sub

Sub S2
 Log("S2: A")
 Sleep(0)
 Log("S2: B")
End Sub

The output is:

S1: A

S2: A

S1: B

S2: B

Whenever Sleep or Wait For are called, the current sub is paused. This is equivalent to calling

Return.

3.6 Resumable Subs 47 B4x Basic language

3.6.4 Waiting for a resumable sub to complete

When one sub calls a second resumable sub, the code in the first sub will continue after the first

Sleep or Wait For call (in the second sub).

If you want to wait for the second sub to complete then you can raise an event from the second sub

and wait for it in the first:

Sub FirstSub
 Log("FirstSub started")
 SecondSub
 Wait For SecondSub_Complete
 Log("FirstSub completed")
End Sub

Sub SecondSub
 Log("SecondSub started")
 Sleep(1000)
 Log("SecondSub completed")
 CallSubDelayed(Me, "SecondSub_Complete")
End Sub

Logs:

FirstSub started

SecondSub started

SecondSub completed

FirstSub completed

Notes:

- It is safer to use CallSubDelayed than CallSub. CallSub will fail if the second sub is never paused

(for example if the sleep is only called based on some condition).

- There is an assumption here that FirstSub will not be called again until it is completed.

3.6 Resumable Subs 48 B4x Basic language

3.6.5 DoEvents

Starting from B4A v7.0 the following warning will appear for DoEvents calls:

DoEvents is deprecated. It can lead to stability issues. Use Sleep(0) instead (if really needed).

The purpose of DoEvents was to allow the UI to be updated while the main thread is busy.

DoEvents which shares the same implementation as the modal dialogs implementation, is a low

level implementation. It accesses the process message queue and runs some of the waiting

messages.

As Android evolved, the handling of the message queue became more sophisticated and fragile.

The reasons for deprecating DoEvents are:

1. It is a major source for instability issues. It can lead to hard to debug crashes or ANR (application

not responding) dialogs. Note that this is also true for the modal dialogs (such as Msgbox and

InputList).

2. There are better ways to keep the main thread free. For example use the asynchronous SQL

methods instead of the synchronous methods.

3. It doesn't do what many developers expect it to do. As it only handles UI related messages, most

events could not be raised from a DoEvents call.

4. It is now possible to call Sleep to pause the current sub and resume it after the waiting messages

are processed. Sleep implementation is completely different than DoEvents. It doesn't hold the

thread. It instead releases it while preserving the sub state.

Unlike DoEvents which only processed UI related messages, with Sleep all messages will be

processed and other events will be raised.

(Note that using Wait For to wait for an event is better than calling Sleep in a loop.)

With that said, DoEvents is still there and existing applications will work exactly as before.

https://www.b4x.com/android/forum/threads/79532/#content
https://www.b4x.com/android/forum/threads/79532/#content
https://www.b4x.com/android/forum/threads/78601/#content

3.6 Resumable Subs 49 B4x Basic language

3.6.6 Dialogs

Modal dialogs = dialogs that hold the main thread until the dialog is dismissed.

As written above, modal dialogs share the same implementation as DoEvents. It is therefore

recommended to switch to the new async dialogs instead. Using Wait For it is really a simple

change:

Instead of:

Dim res As Int = Msgbox2("Delete?", "Title", "Yes", "Cancel", "No", Null)
If res = DialogResponse.POSITIVE Then
 '...
End If

You should use :

Msgbox2Async("Delete?", "Title", "Yes", "Cancel", "No", Null, False)
Wait For Msgbox_Result (Result As Int)
If Result = DialogResponse.POSITIVE Then
 '...
End If

Wait For doesn't hold the main thread. It instead saves the current sub state and releases it. The

code will resume when the user clicks on one of the dialog buttons.

The other similar new methods are: MsgboxAsync, InputListAsync and InputMapAsync.

With the exception of MsgboxAsync, the new methods also add a new cancelable parameter. If it is

true then the dialog can be dismissed by clicking on the back key or outside the dialog. This is the

default behavior of the older methods.

As other code can run while the async dialog is visible, it is possible that multiple dialogs will

appear at the same time.

If this case is relevant for your app then you should set the sender filter parameter in the Wait For

call:

Dim sf As Object = Msgbox2Async("Delete?", "Title", "Yes", "Cancel", "No", Null, False)
Wait For (sf) Msgbox_Result (Result As Int)
If Result = DialogResponse.POSITIVE Then
 '...
End If

This allows multiple messages to be displayed and the result events will be handled correctly.

https://www.b4x.com/android/forum/threads/78601/#content

3.6 Resumable Subs 50 B4x Basic language

3.6.7 SQL with Wait For

The new resumable subs feature, makes it simpler to work with large data sets with minimum effect

on the program responsiveness.

The new standard way to insert data is:

For i = 1 To 1000
 SQL1.AddNonQueryToBatch("INSERT INTO table1 VALUES (?)", Array(Rnd(0, 100000)))
Next
Dim SenderFilter As Object = SQL1.ExecNonQueryBatch("SQL")
Wait For (SenderFilter) SQL_NonQueryComplete (Success As Boolean)
Log("NonQuery: " & Success)

The steps are:

- Call AddNonQueryToBatch for each commands that should be issued.

- Execute the commands with ExecNonQueryBatch. This is an asynchronous method. The

commands will be executed in the background and the NonQueryComplete event will be raised

when done.

- This call returns an object that can be used as the sender filter parameter. This is important as there

could be multiple background batch executions running. With the filter parameter the event will be

caught by the correct Wait For call in all cases.

- Note that SQL1.ExecNonQueryBatch begins and ends a transaction internally.

3.6.7.1 Queries

In most cases the queries will be fast and should therefore be issued synchronously with

SQL1.ExecQuery2. However if there is a slow query then you should switch to

SQL1.ExecQueryAsync:

Dim SenderFilter As Object = SQL1.ExecQueryAsync("SQL", "SELECT * FROM table1", Null)
Wait For (SenderFilter) SQL_QueryComplete (Success As Boolean, rs As ResultSet)
If Success Then
 Do While rs.NextRow
 Log(rs.GetInt2(0))
 Loop
 rs.Close
Else
 Log(LastException)
End If

As in the previous case, the ExecQueryAsync method returns an object that is used as the sender

filter parameter.

Tips:

1. ResultSet type in B4A extends the Cursor type. You can change it to Cursor if you prefer. The

advantage of using ResultSet is that it is compatible with B4J and B4i.

2. If the number of rows returned from the query is large then the Do While loop will be slow in

debug mode. You can make it faster by putting it in a different sub and cleaning the project (Ctrl +

P):

3.6 Resumable Subs 51 B4x Basic language

 Wait For (SenderFilter) SQL_QueryComplete (Success As Boolean, rs As ResultSet)
 If Success Then
 WorkWithResultSet(rs)
 Else
 Log(LastException)
 End If
End Sub

Private Sub WorkWithResultSet(rs As ResultSet)
 Do While rs.NextRow
 Log(rs.GetInt2(0))
 Loop
 rs.Close
End Sub

This is related to a debugger optimization that is currently disabled in resumable subs.

The performance of both solutions will be the same in release mode.

3.6.7.2 B4J

- Requires jSQL v1.50+ (https://www.b4x.com/android/forum/threads/updates-to-internal-

libaries.48274/#post-503552).

- Recommended to set the journal mode to WAL: https://www.b4x.com/android/forum/t...ent-

access-to-sqlite-databases.39904/#content

https://www.b4x.com/android/forum/threads/updates-to-internal-libaries.48274/#post-503552
https://www.b4x.com/android/forum/threads/updates-to-internal-libaries.48274/#post-503552
https://www.b4x.com/android/forum/threads/webapp-concurrent-access-to-sqlite-databases.39904/#content
https://www.b4x.com/android/forum/threads/webapp-concurrent-access-to-sqlite-databases.39904/#content

3.6 Resumable Subs 52 B4x Basic language

3.6.8 Notes & Tips

• Resumable subs cannot return a value.

• The performance overhead of resumable subs in release mode should be insignificant in

most cases. The overhead can be larger in debug mode. (If this becomes an issue then take

the slow parts of the code and move them to other subs that are called from the resumable

sub.)

• Wait For events handlers precede the regular event handlers.

• Resumable subs do not create additional threads. The code is executed by the main thread,

or the handler thread in server solutions.

3.7 Events B4A 53 B4x Basic language

3.7 Events

In Object-oriented programming we have objects which can react on different user actions called

events.

The number and the type of events an object can raise depend on the type of the object.

3.7.1 B4A

User interface objects are called 'Views' in Android.

Summary of the events for different views:

 Events

Views

C
li

ck

L
o
n
g
C

li
ck

T
o
u
ch

D
o
w

n

U
p

K
ey

P
re

ss

K
ey

U
p

It
em

C
li

ck

It
em

L
o
n
g
C

li
ck

C
h
ec

k
ed

C
h
an

g
e

E
n
te

rP
re

ss
ed

F
o
cu

sC
h
an

g
ed

T
ex

tC
h
an

g
ed

S
cr

o
ll

C
h
an

g
ed

V
al

u
eC

h
an

g
ed

T
ab

C
h
an

g
ed

O
v
er

ri
d
eU

rl

P
ag

eF
in

is
h
ed

Activity

Button

CheckBox

EditText

HorizontalScrollView

ImageView

Label

ListView

Panel

RadioButton

ScrollView

SeekBar

Spinner

TabHost

ToggleButton

WebView

3.7 Events B4A 54 B4x Basic language

The most common events are:

• Click Event raised when the user clicks on the view.

Example:
Sub Button1_Click
 ' Your code
End Sub

• LongClick Event raised when the user clicks on the view and holds it pressed for a while.

Example:
Sub Button1_LongClick
 ' Your code
End Sub

• Touch (Action As Int, X As Float, Y As Float)
Event raised when the user touches the screen.

Three different actions are handled:

- Activity.Action_DOWN, the user touches the screen.

- Activity.Action_MOVE, the user moves the finger without leaving the screen.

- Activity.Action_UP, the user leaves the screen.

The X an Y coordinates of the finger position are given.

Example:
Sub Activity_Touch (Action As Int, X As Float, Y As Float)
 Select Action
 Case Activity.ACTION_DOWN
 ' Your code for DOWN action
 Case Activity.ACTION_MOVE
 ' Your code for MOVE action
 Case Activity.ACTION_UP
 ' Your code for UP action
 End Select
End Sub

• CheckChanged (Checked As Boolean)

Event raised when the user clicks on a CheckBox or a RadioButton

Checked is equal to True if the view is checked or False if not checked.

Example:
Sub CheckBox1_CheckedChange(Checked As Boolean)
 If Checked = True Then
 ' Your code if checked
 Else
 ' Your code if not checked
 End If
End Sub

3.7 Events B4A 55 B4x Basic language

• KeyPress (KeyCode As Int) As Boolean

Event raised when the user presses a physical or virtual key.

KeyCode is the code of the pressed key, you can get them with the KeyCodes keyword.

The event can return either:

- True, the event is 'consumed', considered by the operating system as already executed and

no further action is taken.

- False, the event is not consumed and transmitted to the system for further actions.

Example:

Sub Activity_KeyPress(KeyCode As Int) As Boolean
 Private Answ As Int
 Private Txt As String

 If KeyCode = KeyCodes.KEYCODE_BACK Then ' Checks if KeyCode is BackKey
 Txt = "Do you really want to quit the program ?"
 Answ = Msgbox2(Txt,"A T T E N T I O N","Yes","","No",Null)' MessageBox
 If Answ = DialogResponse.POSITIVE Then ' If return value is Yes then
 Return False ' Return = False the Event will not be consumed
 Else ' we leave the program
 Return True ' Return = True the Event will be consumed to avoid
 End If ' leaving the program
 End If
End Sub

3.7 Events B4i 56 B4x Basic language

3.7.2 B4i

User interface objects are called 'Views' in iOS.

Summary of the events for different views:

 Events

Views

C
li

ck

L
o
n
g
C

li
ck

B
eg

in
E

d
it

E
n
d
E

d
it

E
n
te

rP
re

ss
ed

T
ex

tC
h
an

g
ed

T
o
u
ch

R
es

iz
e

S
cr

o
ll

C
h
an

g
ed

V
al

u
eC

h
an

g
ed

It
em

S
el

ec
te

d

In
d
ex

C
h
an

g
ed

O
v
er

ri
d
eU

rl

P
ag

eF
in

is
h
ed

Button

TextField

TextView

ImageView

Label

Panel

ScrollView

Slider

Picker

Stepper

Switch

SegmentedControl

Slider

Stepper

WebView

3.7 Events B4i 57 B4x Basic language

The most common events are:

• Click Event raised when the user clicks on the view.

Example:
Private Sub Button1_Click
 ' Your code
End Sub

• LongClick Event raised when the user clicks on the view and holds it pressed for a while.

Example:
Private Sub Button1_LongClick
 ' Your code
End Sub

• Touch (Action As Int, X As Float, Y As Float)
Event raised when the user touches a Panel on the screen.

Three different actions are handled:

- Panel.ACTION_DOWN, the user touches the screen.

- Panel.ACTION_MOVE, the user moves the finger without leaving the screen.

- Panel.ACTION_UP, the user leaves the screen.

The X and Y coordinates of the finger positions are given in Points not in Pixels.

Example:
Private Sub Panel_Touch (Action As Int, X As Float, Y As Float)
 Select Action
 Case Panel.ACTION_DOWN
 ' Your code for DOWN action
 Case Panel.ACTION_MOVE
 ' Your code for MOVE action
 Case Panel.ACTION_UP
 ' Your code for UP action
 End Select
End Sub

3.7 Events B4J 58 B4x Basic language

3.7.3 B4J

User interface objects are called 'Nodes' in Java.

Summary of the events for different nodes:

 Events

Nodes

A
ct

io
n

F
o
cu

sC
h
an

g
ed

M
o
u
se

C
li

ck
ed

M
o
u
se

D
ra

g
g

ed

M
o
u
se

M
o
v
ed

M
o
u
se

P
re

ss
ed

M
o
u
se

R
el

ea
se

d

R
es

iz
e

C
h
ec

k
ed

C
h
an

g
e

S
el

ec
te

d
In

d
ex

C
h

an
g
ed

d

V
al

u
eC

h
an

g
e

S
el

ec
te

d
C

h
an

g
e

H
 /

 V
S

cr
o
ll

C
h
an

g
ed

T
ab

C
h
an

g
ed

T
ex

tC
h
an

g
ed

P
ag

eF
in

is
h
ed

Button

Canvas

CheckBox

ChoiceBox

ComboBox

ImageView

Label

ListView

Pane

RadioButton

ScrollPane

Slider

Spinner

TabPane

TextArea

TextField

ToggleButton

WebView

3.7 Events B4J 59 B4x Basic language

The most common events are:

• Action Event raised when the user clicks on the node (Button or TextField).

Example:
Private Sub Button1_Action
 ' Your code
End Sub

• FocusChanged (HasFocus As Boolean) Event raised when the node gets or looses focus.

Example:
Private Sub Button1_FocusChanged (HasFocus As Boolean)
 ' Your code
End Sub

• MouseClicked (EventData As MouseEvent)
Event raised when the user clicks on the node.

Example:
Private Sub Pane1_MouseClicked (EventData As MouseEvent)
 ' Your code
End Sub

• MouseDragged (EventData As MouseEvent)
Event raised when the user draggs over the node (moves with a button pressed).

Similar to ACTION_MOVE in B4A Touch events.

• Example:
Private Sub Pane1_MouseDragged (EventData As MouseEvent)
 ' Your code
End Sub

• MouseMoved (EventData As MouseEvent)
Event raised when the user moves over the node (without a button pressed).

Example:
Private Sub Pane1_MouseMoved (EventData As MouseEvent)
 ' Your code
End Sub

• MousePressed (EventData As MouseEvent)
Event raised when the user presses on the node.

Similar to ACTION_DOWN in B4A Touch events.

Example:
Private Sub Pane1_MousePressed (EventData As MouseEvent)
 ' Your code
End Sub

• MouseReleased (EventData As MouseEvent)
Event raised when the user releases the node.

Similar to ACTION_UP in B4A Touch events.

Example:
Private Sub Pane1_MouseReleased (EventData As MouseEvent)
 ' Your code
End Sub

3.7 Events B4J 60 B4x Basic language

• MouseEvent

Data returned by the Mouse events:

o ClickCount Returns the number of clicks associated with this event.

o Consume Consumes the current event and prevent it from being

handled by the nodes parent.

o MiddleButtonDown Returns true if the middle button is currently down.

o MiddleButtonPressed Returns true if the middle button was responsible for raising

the current click event.

o PrimaryButtonDown Returns true if the primary button is currently down.

o PrimaryButtonPressed Returns true if the primary button was responsible for raising

the current click event.

o SecondaryButtonDown Returns true if the secondary button is currently down.

o SecondaryButtonPressed Returns true if the secondary button was responsible for

raising the current click event.

o X Returns the X coordinate related to the node bounds.

o Y Returns the Y coordinate related to the node bounds.

3.7.4 Events B4R 61 B4x Basic language

3.7.4 B4R

In B4R, the Pin and Timer objects are the only ones raising an event:

• Pin

StateChanged (State As Boolean) Event raised when the pin changes its state.

Example:
Sub Pin1_StateChanged(State As Boolean)
 ' Your code
End Sub

• Timer

Tick Event raised at every given interval

Example:
Sub Timer1_Tick
 ' Your code
End Sub

3.7.5 User interface summary 62 B4x Basic language

3.7.5 User interface summary

The ‘standard’ user interface objects.

This shows the difference between the three operating systems.

Some views / nodes which don’t exist as standard objects can exis as CustomViews in other

operating systems. You should look in the forums.

View / node B4A B4i B4J

Activity

Button

CheckBox

EditText

HorizontalScrollView

ImageView

Label

ListView

Panel

RadioButton

ScrollView

SeekBar

Spinner

TabHost

ToggleButton

WebView

TextField

TextView

ScrollView different from B4A 2D

Slider

Picker

Stepper

Switch

SegmentedControl

Canvas a node on its own

ChoiceBox

ComboBox

Pane similar to Panel in B4A and B4i

ScrollPane similar to ScrollView

TabPane

TextArea

3.8 Libraries 63 B4x Basic language

3.8 Libraries

Libraries add more objects and functionalities to B4x.

Some of these libraries are shipped with the B4x products and are part of the standard development

system.

Other, often developed by users, can be downloaded (by registered users only) to add

supplementary functionalities to the B4x development environments.

When you need a library, you have to:

- Check it in the Libs Tab, if you already have the library.

- For additional libraries, check if it's the latest version.

You can check the versions in the documentation page

B4A, B4i, B4J, B4R

To find the library files use a query like

http://www.b4x.com/search?query=betterdialogs+library

in your internet browser.

- If yes, then check the library in the list to select it.

- If no, download the library, unzip it and copy the

<LibraryName>.jar and <LibraryName>.xml files to the additional libraries folder.

- Right click in the Lib area and click on and check the library in the list

to select it.

3.8.1 Standard libraries

The standard B4x libraries are saved in the Libraries folder in the B4x program folder.

Normally in:

C:\Program Files\Anywhere Software\B4A\Libraries

C:\Program Files\Anywhere Software\B4i\Libraries

C:\Program Files\Anywhere Software\B4J\Libraries

C:\Program Files\Anywhere Software\B4R\Libraries

https://www.b4x.com/android/documentation.html
https://www.b4x.com/b4i/documentation.html
https://www.b4x.com/b4j/documentation.html
https://www.b4x.com/b4r/documentation.html
http://www.b4x.com/search?query=betterdialogs+library

3.8 Libraries 64 B4x Basic language

3.8.2 Additional libraries folder

For the additional libraries it is useful to setup a special folder to save them somewhere else.

For example:

C:\B4A\AddLibraries, C:\B4i\AddLibraries, C:\B4J\AddLibraries, C:\B4R\AddLibraries

When you install a new version of B4x, all standard libraries are automatically updated, but the

additional libraries are not included. The advantage of the special folder is that you don't need to

care about them because this folder is not affected when you install the new version of B4x.

The additional libraries are not systematically updated with new version of B4x.

When the IDE starts, it looks first for the available libraries in the Libraries folder of B4x and then

in the folder for the additional libraries.

To setup the special additional libraries folder click in

the IDE menu on Tools / Configure Paths.

Example for B4A. It is similar for the other B4x products.

Enter the folder name and click on .

3.8 Libraries 65 B4x Basic language

3.8.3 Load and update a Library

A list of the official and additional libraries with links t.o the relevant help documentation can be

found on the B4x site in the:

B4A Documentation page: List of Libraries.

B4i Documentation page: List of Libraries.

B4J Documentation page: List of Libraries.

B4RA Documentation page: List of Libraries.

To find the library files use a query like http://www.b4x.com/search?query=betterdialogs+library

in your internet browser.

To load or update a library follow the steps below:

• Download the library zip file somewhere.

• Unzip it.

• Copy the xxx.jar and xxx.xml files to the

o B4x Library folder for a standard B4x library

o Additional libraries folder for an additional library.

• Right click in the libraries list in the Lib Tab and click on and select the

library.

3.8.4 Error message "Are you missing a library reference?"

If you get a message similar to this, means that you forgot to check the specified library in the Lib

Tab list !

https://www.b4x.com/android/documentation.html
https://www.b4x.com/android/documentation.html
https://www.b4x.com/android/documentation.html
https://www.b4x.com/android/documentation.html
http://www.b4x.com/search?query=betterdialogs+library

3.9 String manuipulation 66 B4x Basic language

3.9 String manipulation

3.9.1 B4A, B4i, B4J

B4A, B4i and B4J allow string manipulations like other Basic languages but with some differences.

These manipulations can be done directly on a string.

Example:
 txt = "123,234,45,23"
 txt = txt.Replace(",", ";")

Result: 123;234;45;23

The different functions are:

• CharAt(Index) Returns the character at the given index.

• CompareTo(Other) Lexicographically compares the string with the Other string.

• Contains(SearchFor) Tests whether the string contains the given SearchFor string.

• EndsWith(Suffix) Returns True if the string ends with the given Suffix substring.

• EqualsIgnoreCase(Other) Returns True if both strings are equal ignoring their case.

• GetBytes(Charset) Encodes the Charset string into a new array of bytes.

• IndexOf(SearchFor) Returns the index of the first occurrence of SearchFor in the

string. The index is 0 based. Returns -1 if no occurrence is found.

• IndexOf2(SearchFor, Index) Returns the index of the first occurrence of SearchFor

in the string. Starts searching from the given index.

The index is 0 based. Returns -1 if no occurrence is found.

• LastIndexOf(SearchFor) Returns the index of the first occurrence of SearchFor in the

string. The search starts at the end of the string and advances to the beginning.

The index is 0 based. Returns -1 if no occurrence is found.

• LastIndexOf2(SearchFor) Returns the index of the first occurrence of SearchFor in the

string. The search starts at the given index and advances to the beginning.

The index is 0 based. Returns -1 if no occurrence is found.

• Length Returns the length, number of characters, of the string.

• Replace(Target, Replacement) Returns a new string resulting from the replacement of

all the occurrences of Target with Replacement.

• StartsWith(Prefix) Returns True if this string starts with the given Prefix.

• Substring(BeginIndex) Returns a new string which is a substring of the original string.

The new string will include the character at BeginIndex and will extend to the end of the

string.

• Substring2(BeginIndex, EndIndex) Returns a new string which is a substring of the

original string. The new string will include the character at BeginIndex and will extend to

the character at EndIndex, not including the last character.

Note that EndIndex is the end index and not the length like in other languages.

• ToLowerCase Returns a new string which is the result of lower casing this string.

• ToUpperCase Returns a new string which is the result of upper casing this string.

• Trim Returns a copy of the original string without any leading or trailing

white spaces.

Note: The string functions are case sensitive.

If you want to use case insensitive functions you should use either ToLowerCase or ToUpperCase.

Example: NewString = OriginalString.ToLowerCase.StartsWith("pre")

3.9 String manuipulation 67 B4x Basic language

3.9.2 B4R

B4R doesn’t support string manipulations like other Basic languages.

These kind of manipulations can be done with the ByteConverter object in the rRandomAccesFile

library.

B4R strings are different than in other B4x tools. The reasons for these differences are:

• Very limited memory.

• Lack of Unicode encoders.

A String object in B4R is the same as a C language char* string. It is an array of bytes with an

additional zero byte at the end.

The requirement of the last zero byte makes it impossible to create a substring without copying the

memory to a new address.

For that reason, arrays of bytes are preferable over Strings.

The various string related methods work with arrays of bytes.

Converting a string to an array of bytes is very simple and doesn't involve any memory copying.

The compiler will do it automatically when needed:
Private b() As Byte = "abc" 'equivalent to Private b() As Byte = "abc".GetBytes

Only two functions are supported:

These functions are:

• GetBytes(Charset) Returns the string content as an array of bytes.

 Note that the array and string share the same memory

• Length Returns the length, number of characters, of the string.

3.9 String manuipulation 68 B4x Basic language

String Methods

The standard string methods are available in ByteConverter type (rRandomAccessFile library).

They are similar to the string methods in other B4x tools:

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
 Dim bc As ByteConverter
 Log("IndexOf: ", bc.IndexOf("0123456", "3")) 'IndexOf: 3
 Dim b() As Byte = " abc,def,ghijkl "
 Log("Substring: ", bc.SubString(b, 3)) 'Substring: c,def,ghijkl
 Log("Trim: ", bc.Trim(b)) 'Trim: abc,def,ghijkl
 For Each s() As Byte In bc.Split(b, ",")
 Log("Split: ", s)
 'Split: abc
 'Split: def
 'Split: ghijkl
 Next
 Dim c As String = JoinStrings(Array As String("Number of millis: ", Millis, CRLF, "N
umber of micros: ", Micros))
 Log("c = ", c)
 Dim b() As Byte = bc.SubString2(c, 0, 5)
 b(0) = Asc("X")
 Log("b = ", b)
 Log("c = ", c) 'first character will be X
End Sub

Note how both strings and array of bytes can be used as the compiler converts strings to arrays of

bytes automatically.

With the exception of JoinStrings, none of the above methods make a copy of the original string /

bytes.

This means that modifying the returned array as in the last three lines will also modify the original

array.

It will also happen with string literals that all share the same memory block:

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
 Dim bc As ByteConverter
 Dim b() As Byte = bc.Trim("abcdef ")
 b(0) = Asc("M") 'this line will change the value of the literal string
 Dim s as String = "abcdef "
 Log(s) 'Mbcdef
End Sub

3.9 String manuipulation 69 B4x Basic language

String manipulations in the ByteConverte object:

• EndsWith(Source As Byte(), Suffix As Byte())

Returns True if the string ends with the given Suffix substring.

• IndexOf(Source As Byte(), SearchFor As Byte())
Returns the index of the first occurrence of SearchFor in the string.

• IndexOf2(Source As Byte(), SearchFor As Byte(), Index As UInt)
Returns the index of the first occurrence of SearchFor in the string. Starts searching from the

given index.

• LastIndexOf(Source As Byte(), SearchFor As Byte())
Returns the index of the first occurrence of SearchFor in the string. Starts searching from the

end of the string.

• LastIndexOf2(Source As Byte(), SearchFor As Byte(), Index As UInt)
Returns the index of the first occurrence of SearchFor in the string. Starts searching from the

given index and advances to the beginning.

• StartsWith(Source As Byte(), Prefix As Byte())
Returns True if this string starts with the given Prefix.

• Substring(Source As Byte(), BeginIndex As UInt)

Returns a new string which is a substring of the original string.

The new string will include the character at BeginIndex and will extend to the end of the

string.

• Substring2(Source As Byte(), BeginIndex As UInt, EndIndex As UInt)
Returns a new string which is a substring of the original string. The new string will include

the character at BeginIndex and will extend to the character at EndIndex, not including the

last character.

• Trim(Source As Byte())
Returns a copy of the original string without any leading or trailing white spaces.

Number formatting, display numbers as strings with different formats:

• NumberFormat(Number As Double, MinimumIntegers As Int, MaximumFractions As Int)

NumberFormat(12345.6789, 0, 2) = 12,345.68

NumberFormat(1, 3 ,0) = 001

NumberFormat(Value, 3 ,0) variables can be used.

NumberFormat(Value + 10, 3 ,0) arithmetic operations can be used.

NumberFormat((lblscore.Text + 10), 0, 0) if one variable is a string add parentheses.

3.10 Number formatting 70 B4x Basic language

3.10 Number formatting

3.10.1 B4A, B4i, B4J

Number formatting, display numbers as strings with different formats, there are two keywords:

• NumberFormat(Number As Double, MinimumIntegers As Int, MaximumFractions As Int)

NumberFormat(12345.6789, 0, 2) = 12,345.68

NumberFormat(1, 3 ,0) = 001

NumberFormat(Value, 3 ,0) variables can be used.

NumberFormat(Value + 10, 3 ,0) arithmetic operations can be used.

NumberFormat((lblscore.Text + 10), 0, 0) if one variable is a string add parentheses.

• NumberFormat2(Number As Double, MinimumIntegers As Int, MaximumFractions As

Int, MinimumFractions As Int, GroupingUsed As Boolean)

NumberFormat2(12345.67, 0, 3, 3, True) = 12,345.670

3.10.2 B4R

Number formatting, display numbers as strings with different formats:

• NumberFormat(Number As Double, MinimumIntegers As Int, MaximumFractions As Int)

NumberFormat(12345.6789, 0, 2) = 12,345.68

NumberFormat(1, 3 ,0) = 001

NumberFormat(Value, 3 ,0) variables can be used.

NumberFormat(Value + 10, 3 ,0) arithmetic operations can be used.

NumberFormat((lblscore.Text + 10), 0, 0) if one variable is a string add parentheses.

3.11 Timers 71 B4x Basic language

3.11 Timers

A Timer object generates Tick events at specified intervals. Using a timer is a good alternative to a

long loop, as it allows the UI thread to handle other events and messages.

Note that the timer events will not fire while the UI thread is busy running other code (unless you

call DoEvents keyword).

Timer events will not fire when the activity is paused, or if a blocking dialog (like Msgbox) is

visible.

It is also important to disable the timer when the activity is pausing and then enable it when it

resumes. This will save CPU and battery.

A timer has:

• Three parameters.

o Initialize Initializes the timer with two parameters, the EventName and the

interval.

Timer1.Initialize(EventName As String, Interval As Long)

Ex: Timer1.Initialize("Timer1", 1000)

o Interval Sets the timer interval in milli-seconds.

Timer1. Interval = Interval

Ex: Timer1.Interval = 1000, 1 second

o Enabled Enables or disables the timer. It is False by default.

Ex: Timer1.Enabled = True

• One Event

o Tick The Tick routine is called every time interval.

Ex: Sub Timer1_Tick

The Timer must be declared in a Process_Global routine.

Sub Process_Globals
 Public Timer1 As Timer

3.11 Timers 72 B4x Basic language

But it must be initialized in one of the following routines in the module where the timer tick

event routine is used.

B4A: Activity_Create routine

Sub Activity_Create(FirstTime As Boolean)
 If FirstTime = True Then
 Timer1.Initialize("Timer1", 1000)
 End If

B4i: Application_Start routine

Private Sub Application_Start (Nav As NavigationController)
 Timer1.Initialize("Timer1", 1000)

B4J: Activity_Create routine

Sub AppStart (Form1 As Form, Args() As String)
 Timer1.Initialize("Timer1", 1000)

B4R: Activity_Create routine

Private Sub AppStart
 Timer1.Initialize("Timer1", 1000)

And the Timer Tick event routine.

This routine will be called every second (1000 milli-seconds) by the operating system.

Sub Timer1_Tick
 ' Do something
End Sub

3.12 Files 73 B4x Basic language

3.12 Files B4A, B4i, B4J

Many applications require access to a persistent storage. The two most common storage types are

files and databases.

Android and iOS have their own file system. The B4A nor the B4i program has access to files in the

Windows system,

To add files to your project you must add those in the IDE in the Files Tab. These files will be

added to the project Files folder.

3.12.1 File object

The predefined object File has a number of functions for working with files.

Files locations - There are several important locations where you can read or write files.

File.DirAssets
The assets folder includes the files that were added with the file manager in the IDE.

It's the Files folder in the project folder.

These files are read-only.

You can not create new files in this folder (which is actually located inside the apk file).

If you have a database file in the Dir.Assets folder you need to copy it to another folder before you

can use it.

File.DirInternal / File.DirInternalCache

These two folders are stored in the main memory of the device and are private to your application.

Other applications cannot access these files.

The cache folder may get deleted by the OS if it needs more space.

File.DirRootExternal

The storage card root folder.

File.DirDefaultExternal

The default folder for your application in the SD card.

The folder is: <storage card>/Android/data/<package>/files/

It will be created if required.

Note that calling any of the two above properties will add the EXTERNAL_STORAGE permission

to your application.

Tip: You can check if there is a storage card and whether it is available with

File.ExternalReadable and File.ExternalWritable.

To check if a file already exists use:

File.Exists (Dir As String, FileName As String)

Returns True if the file exists and False if not.

The File object includes several methods for writing to files and reading from files.

To be able to write to a file or to read from a file, it must be opened.

3.12 Files 74 B4x Basic language

File.OpenOutput (Dir As String, FileName As String, Append As Boolean)

- Opens the given file for output, the Append parameter tells whether the text will be added at the

end of the existing file or not. If the file doesn't exist it will be created.

File.OpenInput (Dir As String, FileName As String)

- Opens the file for reading.

File.WriteString (Dir As String, FileName As String, Text As String)

- Writes the given text to a new file.

File.ReadString (Dir As String, FileName As String) As String

- Reads a file and returns its content as a string.

File.WriteList (Dir As String, FileName As String, List As List)

- Writes all values stored in a list to a file. All values are converted to string type if required. Each

value will be stored in a separare line.

Note that if a value contains the new line character it will saved over more than one line and when

you read it, it will be read as multiple items.

File.ReadList (Dir As String, FileName As String) As List

- Reads a file and stores each line as an item in a list.

File.WriteMap (Dir As String, FileName As String, Map As Map)

- Takes a map object which holds pairs of key and value elements and stores it in a text file. The file

format is known as Java Properties file: .properties - Wikipedia, the free encyclopedia

The file format is not too important unless the file is supposed to be edited manually. This format

makes it easy to edit it manually.

One common usage of File.WriteMap is to save a map of "settings" to a file.

File.ReadMap (Dir As String, FileName As String) As Map

- Reads a properties file and returns its key/value pairs as a Map object. Note that the order of

entries returned might be different than the original order.

Some other useful functions:

File.Copy (DirSource As String, FileSource As String, DirTarget As String, FileTarget As String)

- Copies the source file from the source directory to the target file in the target directory.

Note that it is not possible to copy files to the Assets folder.

File.Delete (Dir As String, FileName As String)

- Deletes the given file from the given directory.

File.ListFiles (Dir As String) As List

- Lists the files and subdirectories in the diven directory.

Example:
Private List1 As List
List1 = File.ListFiles(File.DirRootExternal)

List1 can be declared in Sub Globals

File.Size (Dir As String, FileName As String)

- Returns the size in bytes of the specified file.

This method does not support files in the assets folder.

http://en.wikipedia.org/wiki/.properties

3.12 Files 75 B4x Basic language

3.12.2 Filenames

B4x file names allow following characters :

a to z, A to Z, 0 to 9 dot . underscore _ and even following characters + - % &

Spaces and following characters * ? are not allowed.

Example : MyFile.txt

Note that B4x file names are case sensitive !

MyFile.txt is different from myfile.txt

3.12.3 Subfolders

You can define subfolders in B4x with.

File.MakeDir(File.DirInternal, "Pictures")

To access the subfolder you should add the subfoldername to the foldername with "/" inbetween.
ImageView1.Bitmap = LoadBitmap(File.DirInternal & "/Pictures", "test1.png")

Or add the subfoldername before the filename with "/" inbetween.
ImageView1.Bitmap = LoadBitmap(File.DirInternal, "Pictures/test1.png")

Both possibilities work.

3.12 Files 76 B4x Basic language

3.12.4 TextWriter

There are two other useful functions for text files: TextWriter and TextReader:

TextWriter.Initialize (OutputStream As OutputStream)

- Initializes a TextWriter object as an output stream.

Example:
Private Writer As TextWriter
Writer.Initialize(File.OpenOutput(File.DirRootExternal, "Test.txt" , False))

Writer could be declared in Sub Globals.

TextWriter.Initialize2 (OutputStream As OutputStream , Encoding As String)

- Initializes a TextWriter object as as output stream.

- Encoding indicates the CodePage (also called CharacterSet), the text encoding (see next chapter).

Example:
Private Writer As TextWriter
Writer.Initialize2(File.OpenOutput(File.DirRootExternal,"Test.txt" ,False)," ISO-8859-1")

Writer could be declared in Sub Globals.

See : Text encoding

TextWriter.Write (Text As String)

- Writes the given Text to the stream.

TextWriter.WriteLine (Text As String)

- Writes the given Text to the stream followed by a new line character LF Chr(10).

TextWriter.WriteList (List As List)

- Writes each item in the list as a single line.

Note that a value containing CRLF will be saved as two lines (which will return two items when

reading with ReadList).

All values will be converted to strings.

TextWriter.Close
- Closes the stream.

Example:

Private Writer As TextWriter
Writer.Initialize(File.OpenOutput(File.DirDefaultExternal, "Text.txt", False))
Writer.WriteLine("This is the first line")
Writer.WriteLine("This is the second line")
Writer.Close

3.12 Files 77 B4x Basic language

3.12.5 TextReader

There are two other useful functions for text files: TextWriter and TextReader:

TextReader.Initialize (InputStream As InputStream)

- Initializes a TextReader as an input stream.

Example:
Private Reader TextReader
Reader.Initialize(File.InputOutput(File.DirRootExternal, "Test.txt"))

Reader could be declared in Sub Globals.

TextReader.Initialize2 (InputStream As InputStream, Encoding As String)

- Initializes a TextReader as an input stream.

- Encoding indicates the CodePage (also called CharacterSet), the text encoding.

Example:
Private Reader TextReader
Reader.Initialize2(File.OpenInput(File.DirRootExternal, "Test.txt", "ISO-8859-1")

Reader could be declared in Sub Globals.

See : Text encoding

TextReader.ReadAll As String

- Reads all of the remaining text and closes the stream.

Example:
txt = Reader.ReadAll

TextReader.ReadLine As String

- Reads the next line from the stream.

The new line characters are not returned.

Returns Null if there are no more characters to read.

Example:

Private Reader As TextReader
Reader.Initialize(File.OpenInput(File.DirDefaultExternal, "Text.txt"))
Private line As String
line = Reader.ReadLine
Do While line <> Null
 Log(line)
 line = Reader.ReadLine
Loop
Reader.Close

TextReader.ReadList As List

- Reads the remaining text and returns a List object filled with the lines.

Closes the stream when done.

Example:
List1 = Reader.ReadList

3.12 Files 78 B4x Basic language

3.12.6 Text encoding

Text encoding or character encoding consists of a code that pairs each character from a given

repertoire with something else. Other terms like character set (charset), and sometimes character

map or code page are used almost interchangeably (source Wikipedia).

The default character set in Android is Unicode UTF-8.

In Windows the most common character sets are ASCII and ANSI.

• ASCII includes definitions for 128 characters, 33 are non-printing control characters (now

mostly obsolete) that affect how text and space is processed.

• ANSI, Windows-1252 or CP-1252 is a character encoding of the Latin alphabet, used by

default in the legacy components of Microsoft Windows in English and some other Western

languages with 256 definitions (one byte). The first 128 characters are the same as in the

ASCII encoding.

Many files generated by Windows programs are encoded with the ANSI character-set in western

countries. For example: Excel csv files, Notepad files by default.

But with Notepad, files can be saved with UTF-8 encoding.

Android can use following character sets:

• UTF-8 default character-set

• UTF -16

• UTF - 16 BE

• UTF - LE

• US-ASCII ASCII character set

• ISO-8859-1 almost equivalent to the ANSI character-set

• Windows-1251 cyrillic characters

• Windows-1252 latin alphabet

To read Windows files encoded with ANSI you should use the Windows-1252 character-set.

If you need to write files for use with Windows you should also use the Windows-1252 character-

set.

Another difference between Windows and Android is the end of line character:

• Android, only the LF (Line Feed) character Chr(10) is added at the end of a line.

• Windows, two characters CR (Carriage Return Chr(13)) and LF Chr(10) are added at the

end of a line. If you need to write files for Windows you must add CR yourself.

The symbol for the end of line is :

• B4x CRLF Chr(10)

• Basic4PPC CRLF Chr(13) & Chr(10)

To read or write files with a different encoding you must use the TextReader or TextWriter objects

with the Initialize2 methods. Even for reading csv files.

3.12 Files 79 B4x Basic language

Tip for reading Excel csv files:

You can either:

• On the desktop, load the csv file in a text editor like NotePad or Notepad++

• Save the file with UTF-8 encoding

With Notepad++ use Encode in UTF-8 without BOM, see below.

Or

• Read the whole file with TextReader.Initialize2 and "Windows-1252" encoding.

• Save it back with TextWriter.Initialize with the standard Android encoding.

• Read the file with LoadCSV or LoadCSV2 from the StringUtils library.

Private txt As String
Private tr As TextReader
tr.Initialize2(File.OpenInput(File.DirAssets, "TestCSV1_W.csv"), "Windows-1252")
txt = tr.ReadAll
tr.Close

Private tw As TextWriter
tw.Initialize(File.OpenOutput(File.DirInternal, "TestCSV1_W.csv", False))
tw.Write(txt)
tw.Close

lstTest = StrUtil.LoadCSV2(File.DirInternal, "TestCSV1_W.csv", ";", lstHead)

When you save a file with NotePad three additional bytes are added .

These bytes are called BOM characters (Byte Order Mark).

In UTF-8 they are represented by this byte sequence : 0xEF,0xBB,0xBF.

A text editor or web browser interpreting the text as Windows-1252 will display the characters

ï»¿.

To avoid this you can use Notepad++ instead of NotePad and use Encode in UTF-8 without BOM.

Another possibility to change a text from Windows-1252 to UTF-8 is to use the code below.

Private var, result As String
var = "Gestió"
Private arrByte() As Byte
arrByte = var.GetBytes("Windows-1252")
result = BytesToString(arrByte, 0, arrByte.Length, "UTF8")

3.13 Lists B4A, B4i and B4J only 80 B4x Basic language

3.13 Lists B4A, B4i and B4J only

Lists are similar to dynamic arrays.

A List must be initialized before it can be used.

• Initialize Initializes an empty List.
Private List1 As List
List1.Initialize
List1.AddAll(Array As Int(1, 2, 3, 4, 5))

• Initialize2 (SomeArray)

Initializes a list with the given values. This method should be used to convert arrays to lists.

Note that if you pass a list to this method then both objects will share the same list, and if

you pass an array the list will be of a fixed size.

Meaning that you cannot later add or remove items.

Example 1:
Private List1 As List
List1.Initialize2(Array As Int(1, 2, 3, 4, 5))

Example 2:
Private List1 As List
Private SomeArray(10) As String
' Fill the array
List1.Initialize2(SomeArray)

You can add and remove items from a list and it will change its size accordingly.

With either:

• Add (item As Object)

Adds a value at the end of the list.
List1.Add(Value)

• AddAll (Array As String("value1", "value2"))

Adds all elements of an array at the end of the list.
List1.AddAll(List2)
List1.AddAll(Array As Int(1, 2, 3, 4, 5))

• AddAllAt (Index As Int, List As List)

Inserts all elements of an array in the list starting at the given position.
List1.AddAll(12, List2)
List1.AddAllAt(12, Array As Int(1, 2, 3, 4, 5))

• InsertAt (Index As Int, Item As Object)

Inserts the specified element in the specified index.

As a result all items with index larger than or equal to the specified index are shifted.
List1.InsertAt(12, Value)

• RemoveAt (Index As Int)

Removes the specified element at the given position from the list.
List1.RemoveAt(12)

3.13 Lists B4A, B4i and B4J only 81 B4x Basic language

A list can hold any type of object. However if a list is declared as a process global object it cannot

hold activity objects (like views).

B4x automatically converts regular arrays to lists. So when a List parameter is expected you can

pass an array instead.

Get the size of a List:

• List1.Size

Use the Get method to get an item from the list with (List indexes are 0 based):

To get the first item use Get(0).

To get the last item use Get(List1.Size - 1).

• Get(Index As Int)
number = List1.Get(i)

You can use a For loop to iterate over all the values:
For i = 0 To List1.Size - 1
 Private number As Int
 number = List1.Get(i)
 ...
Next

Lists can be saved and loaded from files with:

• File.WriteList(Dir As String, FileName As String, List As List)
File.WriteList(File.DirRootExternal, "Test.txt", List1)

• File.ReadList (Dir As String, FileName As String)
List1 = File.ReadList(File.DirRootExternal, "Test.txt")

A single item can be changed with :

• List1. Set(Index As Int, Item As Object)
List1.Set(12, Value)

A List can be sorted (the items must all be numbers or strings) with :

• Sort(Ascending As Boolean)

List1.Sort(True) sort ascending

List1.Sort(False) sort descending

• SortCaseInsensitive(Ascending As Boolean)

Clear a List with :

• List1.Clear

3.14 Maps B4A, B4i and B4J only 82 B4x Basic language

3.14 Maps B4A, B4i and B4J only

A Map is a collection that holds pairs of keys and values.

The keys are unique. Which means that if you add a key/value pair (entry) and the collection

already holds an entry with the same key, the previous entry will be removed from the map.

The key should be a string or a number. The value can be any type of object.

Similar to a list, a map can hold any object, however if it is a process global variable then it cannot

hold activity objects (like views).

Maps are very useful for storing applications settings.

Maps are used in this example:

• DBUtils module

used for database entries, keys are the column names and values the column values.

A Map must be initialized before it can be used.

• Initialize Initializes an empty Map.
Private Map1 As Map
Map1.Initialize

Add a new entry :

• Put(Key As Object, Value As Object)
Map1.Put("Language", "English")

Get an entry :

• Get(Key As Object)
Language = Map1.Get("Language")

Get a key or a value at a given index (only B4A and B4J):

 Returns the value of the item at the given index.

 GetKeyAt and GetValueAt should be used to iterate over all the items.

 These methods are optimized for iterating over the items in ascending order.

• GetKeyAt(Index As Int)
Key = Map1.GetKeyAt(12)

Get a value at a given index (only B4A and B4J):

• GetValueAt(Index As Int)
Value = Map1.GetValueAt(12)

Check if a Map contains an entry, tests whether there is an entry with the given key :

• ContainsKey(Key As Object)
If Map1.ContainsKey("Language") Then
 Msgbox("There is already an entry with this key !", "ATTENTION")
 Return
End If

3.14 Maps B4A, B4i and B4J only 83 B4x Basic language

Remove an entry :

• Remove(Key As Object)
Map1.Remove("Language")

Clear an entry, clears all items from the map :

• Clear
Map1.Clear

Maps can be saved and loaded with :

• File.WriteMap(Dir As String, FileName As String, Map As Map)
File.WriteMap(File.DirInternal, "settings.txt", mapSettings)

• ReadMap(Dir As String, FileName As String)

Reads the file and parses each line as a key-value pair (of strings).

Note that the order of items in the map may not be the same as the order in the file.
mapSettings = File.ReadMap(File.DirInternal, "settings.txt")

• File.ReadMap2(Dir As String, FileName As String, Map As Map)

Similar to ReadMap. ReadMap2 adds the items to the given Map.

By using ReadMap2 with a populated map you can force the items order as needed.
mapSettings = File.ReadMap2(File.DirInternal, "settings1.txt", mapSettings)

4 Help Tools 84 B4A Beginner's Guide

4 Help tools

To find answers to many questions about B4x the following tools are very useful.

4.1 Search function in the forum

In the upper left corner you find the searchbox

for the forum. Depending on the window size it

can be on the top right side.

Enter a question or any keywords and press

'Return'.

The function shows you the posts that match

your request.

Example: Enter the keyword ScrollView :

A list of the result is displayed below the search box.

Click on an item to show the thread.

4 Help Tools 85 B4A Beginner's Guide

And the result:

On the left you have a list of forums which you can filter.

Click on the title to show the selected post.

4 Help Tools 86 B4A Beginner's Guide

4.2 B4x Help Viewer

This program shows xml help files. It was originally written by Andrew Graham (agrham) for B4A.

I modified it, with Andrews’ agreement, to show B4A, B4J, B4i and B4R xml help files.

The program can be downloaded from the forum.

http://www.basic4ppc.com/android/forum/threads/b4i-help-viewer.46969/

4 Help Tools 87 B4A Beginner's Guide

On top we find:

In the upper left corner a drop down

list shows the different objects

included in the selected library.

Besides the objects list

you find another drop

down list with the

• methods(M)

• events(E)

• properties(P)

• fields(F) constants

for the selected object.

 Select the standard library to display.

 Select the additional library to display.

 Search engine to find the object for a given keyword.

 Closes B4AHelp

 Launches the forum 'Online Community'.

 Launches the Android Developers site.

 Launches the iOS developer’s site.

 B4A help files.

 B4i help files.

 B4J help files.

 B4R help files.

4 Help Tools 88 B4A Beginner's Guide

 Standard libraries

Select the library to display and click on (Open).

Here you can select the directory

where the standard libraries are saved.

Once selected the directory is saved for the next start of the program.

4 Help Tools 89 B4A Beginner's Guide

4.3 Help documentation - B4A Object Browser

This is also a standalone Windows program showing the help files of libraries.

It has been written by Vader and can be downloaded here.

A pdf documentation on how to use the program is part of the download.

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/25682-help-documentation-docloader-16.html#post148746

	1 BASIC
	1.1 B4x
	1.1.1 B4A Android
	1.1.2 B4i iOS
	1.1.3 B4J Java Desktop
	1.1.4 B4R Arduino

	2 Variables and objects
	2.1 Variable Types
	2.2 Names of variables
	2.3 Declaring variables
	2.3.1 Simple variables
	2.3.2 Array variables
	2.3.3 Array of views / nodes (objects)
	2.3.4 Type variables B4A, B4i and B4J only

	2.4 Casting
	2.5 Scope
	2.5.1 Process variables
	2.5.2 Activity variables B4A only
	2.5.3 Local variables

	2.6 Tips

	3 Basic language
	3.1 Expressions
	3.1.1 Mathematical expressions
	3.1.2 Relational expressions
	3.1.3 Boolean expressions

	3.2 Standard keywords
	Abs (Number As Double) As Double
	ACos (Value As Double) As Double
	ACosD (Value As Double) As Double
	Array
	Asc (Char As Char) As Int
	ASin (Value As Double) As Double
	ASinD (Value As Double) As Double
	ATan (Value As Double) As Double
	ATan2 (Y As Double, X As Double) As Double
	ATan2D (Y As Double, X As Double) As Double
	ATanD (Value As Double) As Double
	BytesToString (Data() As Byte, StartOffset As Int, Length As Int, CharSet As String) As String
	CallSub (Component As Object, Sub As String) As Object
	CallSub2 (Component As Object, Sub As String, Argument As Object) As Object
	CallSub3 (Component As Object, Sub As String, Argument1 As Object, Argument2 As Object) As Object
	Catch
	cE As Double
	Ceil (Number As Double) As Double
	CharsToString (Chars() As Char, StartOffset As Int, Length As Int) As String
	Chr (UnicodeValue As Int) As Char
	Continue
	Cos (Radians As Double) As Double
	CosD (Degrees As Double) As Double
	cPI As Double
	CRLF As String
	Dim
	Exit
	False As Boolean
	Floor (Number As Double) As Double
	For
	GetType (object As Object) As String
	If
	IsNumber (Text As String) As Boolean
	LoadBitmap (Dir As String, FileName As String) As Bitmap
	LoadBitmapSample (Dir As String, FileName As String, MaxWidth As Int, MaxHeight As Int) As Bitmap
	Log (Message As String)
	Logarithm (Number As Double, Base As Double) As Double
	LogColor (Message As String, Color As Int)
	Max (Number1 As Double, Number2 As Double) As Double
	Me As Object
	Min (Number1 As Double, Number2 As Double) As Double
	Not (Value As Boolean) As Boolean
	Null As Object
	NumberFormat (Number As Double, MinimumIntegers As Int, MaximumFractions As Int) As String
	NumberFormat2 (Number As Double, MinimumIntegers As Int, MaximumFractions As Int, MinimumFractions As Int, GroupingUsed As Boolean) As String
	Power (Base As Double, Exponent As Double) As Double
	QUOTE As String
	Regex As Regex
	Return
	Rnd (Min As Int, Max As Int) As Int
	RndSeed (Seed As Long)
	Round (Number As Double) As Long
	Round2 (Number As Double, DecimalPlaces As Int) As Double
	Select
	Sender As Object
	Sin (Radians As Double) As Double Calculates the trigonometric sine function. Angle measured in radians.
	SinD (Degrees As Double) As Double
	Calculates the trigonometric sine function. Angle measured in degrees.
	Sleep (Value As Double) As Double
	Sqrt (Value As Double) As Double
	Sub
	SubExists (Object As Object, Sub As String) As Boolean
	TAB As String
	Tan (Radians As Double) As Double
	TanD (Degrees As Double) As Double
	True As Boolean
	Try
	Type
	Until
	While

	3.3 Conditional statements
	3.3.1 If – Then – End If
	3.3.2 Select – Case

	3.4 Loop structures
	3.4.1 For – Next
	3.4.2 For - Each
	3.4.3 Do - Loop

	3.5 Subs
	3.5.1 Declaring
	3.5.2 Calling a Sub
	3.5.3 Calling a Sub from another module
	3.5.4 Naming
	3.5.5 Parameters
	3.5.6 Returned value

	3.6 Resumable Subs
	3.6.1 Sleep
	3.6.2 Wait For
	3.6.3 Code Flow
	3.6.4 Waiting for a resumable sub to complete
	3.6.5 DoEvents
	3.6.6 Dialogs
	3.6.7 SQL with Wait For
	3.6.7.1 Queries
	3.6.7.2 B4J

	3.6.8 Notes & Tips

	3.7 Events
	3.7.1 B4A
	3.7.2 B4i
	3.7.3 B4J
	3.7.4 B4R
	3.7.5 User interface summary

	3.8 Libraries
	3.8.1 Standard libraries
	3.8.2 Additional libraries folder
	3.8.3 Load and update a Library
	3.8.4 Error message "Are you missing a library reference?"

	3.9 String manipulation
	3.9.1 B4A, B4i, B4J
	3.9.2 B4R

	3.10 Number formatting
	3.10.1 B4A, B4i, B4J
	3.10.2 B4R

	3.11 Timers
	3.12 Files B4A, B4i, B4J
	3.12.1 File object
	3.12.2 Filenames
	3.12.3 Subfolders
	3.12.4 TextWriter
	3.12.5 TextReader
	3.12.6 Text encoding

	3.13 Lists B4A, B4i and B4J only
	3.14 Maps B4A, B4i and B4J only

	4 Help tools
	4.1 Search function in the forum
	4.2 B4x Help Viewer
	4.3 Help documentation - B4A Object Browser

