

Django By Example

Create your own line of successful web applications
with Django

Antonio Melé

BIRMINGHAM - MUMBAI

Django By Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1261115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-191-1

www.packtpub.com

Credits

Author
Antonio Melé

Reviewers
Tarun Behal

Alasdair Nicol

Alex Robbins

Glen Robertson

Derek Stegelman

Commissioning Editor
Akram Hussain

Acquisition Editor
Larissa Pinto

Content Development Editor
Arun Nadar

Technical Editor
Rupali Shrawane

Copy Editor
Vatsal Surti

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=2b6c032a-c60c-4e6d-fb35-537224beaa6f
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=997611be-3da0-cc45-d80b-50bc7753e60c
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c7983052-9c94-72c0-5ad8-538337769f5f
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=11df0c1c-8c11-7cb6-45c1-53db7eff0702
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7f6ead3c-b9f9-806d-8ff9-53db7f3eed3e
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=7f6ead3c-b9f9-806d-8ff9-53db7f3eed3e

About the Author

Antonio Melé holds an MSc in Computer Science. He has been developing Django
projects since 2006 and leads the django.es Spanish Django community. He has
founded Zenx IT, a technology company that creates web applications for clients of
several industries.

Antonio has also worked as a CTO for several technology-based start-ups. His father
inspired his passion for computers and programming.

About the Reviewers

Tarun Behal is a full-stack software engineer with 4 years of experience in building
and delivering high-quality applications using Python, JavaScript, PHP, Ruby, and
other open source technologies. He is passionate about software development and
enjoys exploring open source projects. Over the years, he has provided consulting
services to several organizations and has played many different roles such as cloud
administrator, frontend technologies, software architect, ERP consultant, and
software developer.

Tarun has a bachelors degree in computer engineering from the Uttar Pradesh
Technical University, Noida, India. He currently lives in Gurgaon, India and works
with Nagarro Software Pvt. Ltd. In the digital world, he can be contacted by e-mail
at tarunbehal@hotmail.com.

I feel very honored to have been asked to review this book. This was
an amazing experience for me as I learned a lot on the way through,
as I am sure you will too. I'd like to thank my family, especially my
brother, Varun, and all my colleagues for their constant support and
motivation.

I feel honored to have been asked to review this book. This was an
amazing experience as I learned a lot, as I am sure you will too.

Alasdair Nicol is a Python developer from Scotland. He discovered Django in
2009 while learning Python, and was instantly hooked. After 5 years with UK-based
hosting provider Memset Hosting, he recently started working at SpatialBuzz, who
provide SaaS for mobile network operators.

When he's not coding, Alasdair enjoys playing squash and running.

Alex Robbins is a programmer living in Dallas, Texas. He loves programming
in Clojure and Python, doing anything from web development to data science.
He has been using Django since 2008 and enjoying it the whole time. When not
programming, he spends his time with his beautiful wife and amazing son.

Alex has also contributed distributed processing recipes to Clojure Cookbook and has
technically reviewed Enterprise Data Workflows with Cascading.

Glen Robertson is a software engineer from New Zealand. He currently works at
Lyft, where he builds applications in Python and PHP to help grow their transportation
network and fill up more empty car seats on the road. Prior to that, he worked for
Trulia, where he built heat-map visualizations with GeoDjango and PostGIS to show
local information to homebuyers such as crime rates and commute times.

Glen has a bachelor in information technology, majoring in software engineering
from Victoria University of Wellington.

Derek Stegelman is a senior web application developer at Kansas State
University. He works on maintaining Python web applications written using the
Django web framework. He has been working with Django for 5 years on websites
and applications and actively contributes to the Django community through open
source projects.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

To my parents and my sister. Thank you for always
encouraging and supporting me.

[i]

Table of Contents
Preface ix
Chapter 1: Building a Blog Application 1

Installing Django 1
Creating an isolated Python environment 2
Installing Django with pip 3

Creating your first project 4
Running the development server 5
Project settings 6
Projects and applications 8
Creating an application 8

Designing the blog data schema 9
Activating your application 11
Creating and applying migrations 11

Creating an administration site for your models 13
Creating a superuser 13
The Django administration site 14
Adding your models to the administration site 14
Customizing the way models are displayed 16

Working with QuerySet and managers 18
Creating objects 18
Updating objects 19
Retrieving objects 19

Using the filter() method 20
Using exclude() 20
Using order_by() 20

Deleting objects 21
When QuerySet are evaluated 21
Creating model managers 21

Table of Contents

[ii]

Building list and detail views 22
Creating list and detail views 22
Adding URL patterns for your views 23
Canonical URLs for models 25

Creating templates for your views 25
Adding pagination 29
Using class-based views 31
Summary 33

Chapter 2: Enhancing Your Blog with Advanced Features 35
Sharing posts by e-mail 35

Creating forms with Django 36
Handling forms in views 37
Sending e-mails with Django 39
Rendering forms in templates 41

Creating a comment system 44
Creating forms from models 47
Handling ModelForms in views 47
Adding comments to the post detail template 49

Adding tagging functionality 52
Retrieving posts by similarity 58
Summary 60

Chapter 3: Extending Your Blog Application 61
Creating custom template tags and filters 61

Creating custom template tags 62
Creating custom template filters 67

Adding a sitemap to your site 69
Creating feeds for your blog posts 73
Adding a search engine with Solr and Haystack 75

Installing Solr 75
Creating a Solr core 76
Installing Haystack 79
Building indexes 80
Indexing data 82
Creating a search view 83

Summary 86
Chapter 4: Building a Social Website 87

Creating a social website project 87
Starting your social website project 88

Table of Contents

[iii]

Using the Django authentication framework 89
Creating a log-in view 90
Using Django authentication views 95
Log in and log out views 96
Change password views 101
Reset password views 104

User registration and user profiles 109
User registration 109
Extending the User model 112

Using a custom User model 118
Using the messages framework 118

Building a custom authentication backend 120
Adding social authentication to your site 122

Authentication using Facebook 123
Authentication using Twitter 126
Authentication using Google 127

Summary 131
Chapter 5: Sharing Content in Your Website 133

Creating an image bookmarking website 134
Building the image model 134
Creating many-to-many relationships 136
Registering the image model in the administration site 137

Posting content from other websites 137
Cleaning form fields 138
Overriding the save() method of a ModelForm 139
Building a bookmarklet with jQuery 143

Creating a detail view for images 150
Creating image thumbnails using sorl-thumbnail 153
Adding AJAX actions with jQuery 154

Loading j Query 155
Cross-Site Request Forgery in AJAX requests 156
Performing AJAX requests with jQuery 158

Creating custom decorators for your views 161
Adding AJAX pagination to your list views 163
Summary 168

Chapter 6: Tracking User Actions 169
Building a follower system 169

Creating many-to-many relationships with an intermediary model 170
Creating list and detail views for user profiles 173
Building an AJAX view to follow users 178

Table of Contents

[iv]

Building a generic activity stream application 180
Using the contenttypes framework 181
Adding generic relations to your models 182
Avoiding duplicate actions in the activity stream 186
Adding user actions to the activity stream 187
Displaying the activity stream 188
Optimizing QuerySets that involve related objects 189

Using select_related 189
Using prefetch_related 189

Creating templates for actions 190
Using signals for denormalizing counts 192

Working with signals 193
Defining application configuration classes 195

Using Redis for storing item views 197
Installing Redis 197
Using Redis with Python 199
Storing item views in Redis 200
Storing a ranking in Redis 202
Next steps with Redis 204

Summary 204
Chapter 7: Building an Online Shop 205

Creating an online shop project 205
Creating product catalog models 206
Registering catalog models in the admin site 209
Building catalog views 210
Creating catalog templates 212

Building a shopping cart 217
Using Django sessions 218
Session settings 218
Session expiration 220
Storing shopping carts in sessions 220
Creating shopping cart views 224

Adding items to the cart 225
Building a template to display the cart 227
Adding products to the cart 229
Updating product quantities in the cart 230

Creating a context processor for the current cart 232
Context processors 232
Setting the cart into the request context 233

Table of Contents

[v]

Registering customer orders 234
Creating order models 235
Including order models in an administration site 236
Creating customer orders 238

Launching asynchronous tasks with Celery 242
Installing Celery 242
Installing RabbitMQ 243
Adding Celery to your project 243
Adding asynchronous tasks to your application 244
Monitoring Celery 246

Summary 247
Chapter 8: Managing Payments and Orders 249

Integrating a payment gateway 249
Creating a PayPal account 250
Installing django-paypal 250
Adding the payment gateway 252
Using PayPal's Sandbox 256
Getting payment notifications 260
Configuring our application 261
Testing payment notifications 262

Exporting orders to CSV files 264
Adding custom actions to the administration site 264

Extending the admin site with custom views 267
Generating PDF invoices dynamically 271

Installing WeasyPrint 272
Creating a PDF template 272
Rendering PDF files 274
Sending PDF files by e-mail 277

Summary 278
Chapter 9: Extending Your Shop 279

Creating a coupon system 279
Building the coupon models 280
Applying a coupon to the shopping cart 282
Applying coupons to orders 289

Adding internationalization and localization 291
Internationalization with Django 291

Internationalization and localization settings 292
Internationalization management commands 292
How to add translations to a Django project 293
How Django determines the current language 293

Table of Contents

[vi]

Preparing our project for internationalization 294
Translating Python code 295

Standard translations 295
Lazy translations 295
Translations including variables 296
Plural forms in translations 296
Translating your own code 296

Translating templates 301
The {% trans %} template tag 301
The {% blocktrans %} template tag 301
Translating the shop templates 302

Using the Rosetta translation interface 305
Fuzzy translations 308
URL patterns for internationalization 308

Adding a language prefix to URL patterns 308
Translating URL patterns 309

Allowing users to switch language 311
Translating models with django-parler 312

Installing django-parler 313
Translating model fields 313
Creating a custom migration 315
Integrating translations in the administration site 319
Applying migrations for model translation 320
Adapting views for translations 321

Format localization 324
Using django-localflavor to validate form fields 325

Building a recommendation engine 326
Recommending products based on previous purchases 327

Summary 335
Chapter 10: Building an e-Learning Platform 337

Creating an e-Learning platform 337
Building the course models 338

Registering the models in the administration site 341
Providing initial data for models 341

Creating models for diverse content 344
Using model inheritance 345

Abstract models 346
Multi-table model inheritance 346
Proxy models 347

Creating the content models 347
Creating custom model fields 350
Creating a content management system 356

Adding the authentication system 356
Creating the authentication templates 356

Table of Contents

[vii]

Creating class-based views 359
Using mixins for class-based views 360
Working with groups and permissions 362

Restricting access to class-based views 363
Using formsets 370

Managing course modules 371
Adding content to course modules 375
Managing modules and contents 380
Reordering modules and contents 385

Summary 388
Chapter 11: Caching Content 389

Displaying courses 389
Adding student registration 394

Creating a student registration view 395
Enrolling in courses 397

Accessing the course contents 401
Rendering different types of content 404

Using the cache framework 407
Available cache backends 407
Installing memcached 408
Cache settings 409
Adding memcached to your project 409

Montioring memcached 410
Cache levels 410
Using the low-level cache API 411

Caching based on dynamic data 413
Caching template fragments 414
Caching views 416

Using the per-site cache 416
Summary 417

Chapter 12: Building an API 419
Building a RESTful API 419

Installing Django Rest Framework 420
Defining serializers 421
Understanding parsers and renderers 422
Building list and detail views 423
Creating nested serializers 425
Building custom views 427
Handling authentication 428
Adding permissions to views 429

Table of Contents

[viii]

Creating view sets and routers 431
Adding additional actions to view sets 432
Creating custom permissions 433
Serializing course contents 434

Summary 436
Index 437

[ix]

Preface
Django is a powerful Python web framework that encourages rapid development
and clean, pragmatic design, offering a relatively shallow learning curve. This makes
it attractive to both novice and expert programmers.

This book will guide you through the entire process of developing professional web
applications with Django. The book not only covers the most relevant aspects of the
framework, it also teaches you how to integrate other popular technologies into your
Django projects.

The book will walk you through the creation of real-world applications, solving
common problems, and implementing best practices with a step-by-step approach
that is easy to follow.

After reading this book, you will have a good understanding of how Django works
and how to build practical, advanced web applications.

What this book covers
Chapter 1, Building a Blog Application, introduces you to the framework by creating a
blog application. You will create the basic blog models, views, templates, and URLs
to display blog posts. You will learn how to build QuerySets with the Django ORM,
and you will configure the Django administration site.

Chapter 2, Enhancing Your Blog with Advanced Features, teaches how to handle forms
and modelforms, send e-mails with Django, and integrate third-party applications.
You will implement a comment system for your blog posts and allow your users
to share posts by e-mail. The chapter will also guide you through the process of
creating a tagging system.

Preface

[x]

Chapter 3, Extending Your Blog Application explores how to create custom template
tags and filters. The chapter will also show you how to use the sitemap framework
and create an RSS feed for your posts. You will complete your blog application by
building a search engine with Solr.

Chapter 4, Building a Social Website explains how to build a social website. You will
use the Django authentication framework to create user account views. You will
learn how to create a custom user profile model and build social authentication into
your project using major social networks.

Chapter 5, Sharing Content in Your Website teaches you how to transform your social
application into an image bookmarking website. You will define many-to-many
relationships for models, and you will create an AJAX bookmarklet in JavaScript
and integrate it into your project. The chapter will show you how to generate image
thumbnails and create custom decorators for your views.

Chapter 6, Tracking User Actions shows you how to build a follower system for users.
You will complete your image bookmarking website by creating a user activity
stream application. You will learn how to optimise QuerySets, and you will work
with signals. You will integrate Redis into your project to count image views.

Chapter 7, Building an Online Shop explores how to create an online shop. You will
build the catalog models, and you will create a shopping cart using Django sessions.
You will learn to manage customer orders and send asynchronous notifications to
users using Celery.

Chapter 8, Managing Payments and Orders explains you how to integrate a payment
gateway into your shop and handle payment notifications. You will also customize
the administration site to export orders to CSV files, and you will generate PDF
invoices dynamically.

Chapter 9, Extending Your Shop teaches you how to create a coupon system to apply
discounts to orders. The chapter will show you how to add internationalization
to your project and how to translate models. You will also build a product
recommendation engine using Redis.

Chapter 10, Building an e-Learning Platform guides you through creating an e-learning
platform. You will add fixtures to your project, use model inheritance, create custom
model fields, use class-based views, and manage groups and permissions. You will
create a content management system and handle formsets.

Chapter 11, Caching Content shows you how to create a student registration system and
manage student enrollment in courses. You will render diverse course contents and
you will learn how to use the cache framework.

Preface

[xi]

Chapter 12, Building an API explores building a RESTful API for your project using
the Django REST framework.

Additionally, Chapter 13, Going Live, is available for download at
https://www.packtpub.com/sites/default/files/downloads/
Django_By_Example_GoingLive.pdf. You will learn how to create
a production environment using uWSGI and Nginx, and how to secure it
with SSL. The chapter will explain you how to build a custom subdomain
middleware and create custom management commands.

What you need for this book
• A working installation of Python 3
• A Linux OS is recommended

Who this book is for
This book is intended for developers with a basic knowledge of Python who wish to
learn Django in a pragmatic way. Perhaps you are completely new to Django or you
already know a little but you want to get the most out of it. This book will help you
master the most relevant areas of the framework by building practical projects from
scratch. You need to have familiarity with basic programming concepts in order to
read this book. Some previous knowledge of HTML and JavaScript is assumed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

def post_share(request, post_id):
 post = get_object_or_404(Post, id=post_id, status='published')
 if request.method == 'POST':
 form = EmailPostForm(request.POST)

https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf

Preface

[xii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def post_share(request, post_id):
 post = get_object_or_404(Post, id=post_id, status='published')
 if request.method == 'POST':
 form = EmailPostForm(request.POST)

Any command-line input or output is written as follows:

python manage.py runserver

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xiii]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

[1]

Building a Blog Application
In this book, you will learn how to build complete Django projects, ready for
production use. In case you haven't installed Django yet, you will learn how to do
it in the first part of this chapter. This chapter will cover how to create a simple blog
application using Django. The purpose of the chapter is to get a general idea of how
the framework works, understand how the different components interact with each
other, and give you the skills to easily create Django projects with basic functionality.
You will be guided through the creation of a complete project without elaborating
upon all the details. The different framework components will be covered in detail
throughout the following chapters of this book.

This chapter will cover the following points:

• Installing Django and creating your first project
• Designing models and generating model migrations
• Creating an administration site for your models
• Working with QuerySet and managers
• Building views, templates, and URLs
• Adding pagination to list views
• Using Django class-based views

Installing Django
If you have already installed Django, you can skip this section and jump directly
to Creating your first project. Django comes as a Python package and thus can be
installed in any Python environment. If you haven't installed Django yet, here
is a quick guide to installing Django for local development.

Building a Blog Application

[2]

Django works well with Python versions 2.7 or 3. In the examples of this book, we
are going to use Python 3. If you're using Linux or Mac OS X, you probably have
Python installed. If you are not sure if Python is installed in your computer, you can
verify it by typing python in the terminal. If you see something like the following,
then Python is installed in your computer:

Python 3.5.0 (v3.5.0:374f501f4567, Sep 12 2015, 11:00:19)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

If your installed Python version is lower than 3, or Python is not installed on your
computer, download Python 3.5.0 from http://www.python.org/download/ and
install it.

Since you are going to use Python 3, you don't have to install a database. This
Python version comes with the SQLite database built-in. SQLite is a lightweight
database that you can use with Django for development. If you plan to deploy your
application in a production environment, you should use an advanced database
such as PostgreSQL, MySQL, or Oracle. You can get more information about how
to get your database running with Django in https://docs.djangoproject.com/
en/1.8/topics/install/#database-installation.

Creating an isolated Python environment
It is recommended that you use virtualenv to create isolated Python environments,
so you can use different package versions for different projects, which is far more
practical than installing Python packages system wide. Another advantage of using
virtualenv is that you won't need any administration privileges to install Python
packages. Run the following command in your shell to install virtualenv:

pip install virtualenv

After you install virtualenv, create an isolated environment with the following
command:

virtualenv my_env

This will create a my_env/ directory including your Python environment. Any
Python libraries you install while your virtual environment is active will go into
the my_env/lib/python3.5/site-packages directory.

http://www.python.org/download/
https://docs.djangoproject.com/en/1.8/topics/install/#database-installation
https://docs.djangoproject.com/en/1.8/topics/install/#database-installation

Chapter 1

[3]

If your system comes with Python 2.X and you installed Python 3.X, you have to tell
virtualenv to use the latter. You can locate the path where Python 3 is installed and
use it to create the virtual environment with the following commands:

zenx$ *which python3*

/Library/Frameworks/Python.framework/Versions/3.5/bin/python3

zenx$ *virtualenv my_env -p

/Library/Frameworks/Python.framework/Versions/3.5/bin/python3*

Run the following command to activate your virtual environment:

source my_env/bin/activate

The shell prompt will include the name of the active virtual environment enclosed in
parentheses, like this:

(my_env)laptop:~ zenx$

You can deactivate your environment anytime with the deactivate command.

You can find more information about virtualenv at https://virtualenv.pypa.io/
en/latest/.

On top of virtualenv, you can use virtualenvwrapper. This tool provides wrappers
that make it easier to create and manage your virtual environments. You can
download it from http://virtualenvwrapper.readthedocs.org/en/latest/.

Installing Django with pip
pip is the preferred method for installing Django. Python 3.5 comes with pip pre-
installed, but you can find pip installation instructions at https://pip.pypa.io/
en/stable/installing/. Run the following command at the shell prompt to install
Django with pip:

pip install Django==1.8.6

Django will be installed in the Python site-packages/ directory of your virtual
environment.

Now check if Django has been successfully installed. Run python on a terminal and
import Django to check its version:

>>> import django
>>> django.VERSION
django.VERSION(1, 8, 5, 'final', 0)

https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
http://virtualenvwrapper.readthedocs.org/en/latest/
https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Building a Blog Application

[4]

If you get this output, Django has been successfully installed in your machine.

Django can be installed in several other ways. You can find a complete installation
guide at https://docs.djangoproject.com/en/1.8/topics/install/.

Creating your first project
Our first Django project will be a complete blog site. Django provides a command
that allows you to easily create an initial project file structure. Run the following
command from your shell:

django-admin startproject mysite

This will create a Django project with the name mysite.

Let's take a look at the generated project structure:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

These files are as follows:

• manage.py: A command-line utility to interact with your project. It is a thin
wrapper around the django-admin.py tool. You don't need to edit this file.

• mysite/: Your project directory consist of the following files:
 ° __init__.py: An empty file that tells Python to treat the mysite

directory as a Python module.
 ° settings.py: Settings and configuration for your project. Contains

initial default settings.
 ° urls.py: The place where your URL patterns live. Each URL defined

here is mapped to a view.
 ° wsgi.py: Configuration to run your project as a WSGI application.

The generated settings.py file includes a basic configuration to use a SQLite
database and a list of Django applications that are added to your project by default.
We need to create the tables in the database for the initial applications.

https:// docs.djangoproject.com/en/1.8/topics/install/

Chapter 1

[5]

Open the shell and run the following commands:

cd mysite

python manage.py migrate

You will see an output that ends like this:

Rendering model states... DONE
Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying sessions.0001_initial... OK

The tables for the initial applications have been created in the database. You will
learn about the migrate management command in a bit.

Running the development server
Django comes with a lightweight web server to run your code quickly, without
needing to spend time configuring a production server. When you run the
Django development server, it keeps checking for changes in your code. It reloads
automatically, freeing you from manually reloading it after code changes. However,
it might not notice some actions like adding new files to your project, so you will
have to restart the server manually in these cases.

Start the development server by typing the following command from your project's
root folder:

python manage.py runserver

You should see something like this:

Performing system checks...

System check identified no issues (0 silenced).
November 5, 2015 - 19:10:54
Django version 1.8.6, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Building a Blog Application

[6]

Now, open the URL http://127.0.0.1:8000/ in your browser. You should see
a page telling you the project is successfully running, as shown in the following
screenshot:

You can indicate Django to run the development server on a custom host and port, or
tell it that you want to run your project loading a different settings file. For example,
you can run the manage.py command as follows:

python manage.py runserver 127.0.0.1:8001 \

--settings=mysite.settings

This comes in handy to deal with multiple environments that require different
settings. Remember, this server is only intended for development and is not suitable
for production use. In order to deploy Django in a production environment, you
should run it as a Web Server Gateway Interface (WSGI) application using a real
web server such as Apache, Gunicorn, or uWSGI. You can find more information
about how to deploy Django with different web servers at https://docs.
djangoproject.com/en/1.8/howto/deployment/wsgi/.

Additional downloadable Chapter 13, Going Live covers setting up a production
environment for your Django projects.

Project settings
Let's open the settings.py file and take a look at the configuration of our project.
There are several settings that Django includes in this file, but these are only a part of
all the Django settings available. You can see all settings and their default values in
https://docs.djangoproject.com/en/1.8/ref/settings/.

https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/
https://docs.djangoproject.com/en/1.8/ref/settings/

Chapter 1

[7]

The following settings are worth looking at:

• DEBUG is a boolean that turns on/off the debug mode of the project. If set to
True, Django will display detailed error pages when an uncaught exception
is thrown by your application. When you move to a production environment,
remember you have to set it to False. Never deploy a site into production
with DEBUG turned on because you will expose sensitive data of your project.

• ALLOWED_HOSTS is not applied while debug mode is on or when running
tests. Once you are going to move your site to production and set DEBUG
to False, you will have to add your domain/host to this setting in order
to allow it to serve the Django site.

• INSTALLED_APPS is a setting you will have to edit in all projects. This setting
tells Django which applications are active for this site. By default, Django
includes the following applications:

 ° django.contrib.admin: This is an administration site.
 ° django.contrib.auth: This is an authentication framework.
 ° django.contrib.contenttypes: This is a framework for

content types.
 ° django.contrib.sessions: This is a session framework.
 ° django.contrib.messages: This is a messaging framework.
 ° django.contrib.staticfiles: This is a framework for managing

static files.

• MIDDLEWARE_CLASSES is a tuple containing middlewares to be executed.
• ROOT_URLCONF indicates the Python module where the root URL patterns

of your application are defined.
• DATABASES is a dictionary containing the settings for all the databases to be

used in the project. There must always be a default database. The default
configuration uses a SQLite3 database.

• LANGUAGE_CODE Defines the default language code for this Django site.

Don't worry if you don't understand much about what you are seeing. You will
get more familiar with Django settings in the following chapters.

Building a Blog Application

[8]

Projects and applications
Throughout this book, you will read the terms project and application over and over.
In Django, a project is considered a Django installation with some settings; and an
application is a group of models, views, templates, and URLs. Applications interact
with the framework to provide some specific functionalities and may be reused in
various projects. You can think of the project as your website, which contains several
applications like blog, wiki, or forum, which can be used in other projects.

Creating an application
Now let's create your first Django application. We will create a blog application from
scratch. From your project's root directory, run the following command:

python manage.py startapp blog

This will create the basic structure of the application, which looks like this:

blog/
 __init__.py
 admin.py
 migrations/
 __init__.py
 models.py
 tests.py
 views.py

These files are as follows:

• admin.py: This is where you register models to include them into the Django
administration site. Using the Django admin site is optional.

• migrations: This directory will contain database migrations of your
application. Migrations allow Django to track your model changes and
synchronize the database accordingly.

• models.py: Data models of your application. All Django applications need
to have a models.py file, but this file can be left empty.

• tests.py: This is where you can add tests for your application.
• views.py: The logic of your application goes here. Each view receives an

HTTP request, processes it, and returns a response.

Chapter 1

[9]

Designing the blog data schema
We will start by defining the initial data models for our blog. A model is a Python
class that subclasses django.db.models.Model, in which each attribute represents
a database field. Django will create a table for each model defined in the models.py
file. When you create a model, Django offers you a practical API to query the
database easily.

First, we will define a Post model. Add the following lines to the models.py file of
the blog application:

from django.db import models
from django.utils import timezone
from django.contrib.auth.models import User

class Post(models.Model):
 STATUS_CHOICES = (
 ('draft', 'Draft'),
 ('published', 'Published'),
)
 title = models.CharField(max_length=250)
 slug = models.SlugField(max_length=250,
 unique_for_date='publish')
 author = models.ForeignKey(User,
 related_name='blog_posts')
 body = models.TextField()
 publish = models.DateTimeField(default=timezone.now)
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)
 status = models.CharField(max_length=10,
 choices=STATUS_CHOICES,
 default='draft')

 class Meta:
 ordering = ('-publish',)

 def __str__(self):
 return self.title

Building a Blog Application

[10]

This is our basic model for blog posts. Let's take a look at the fields we just defined
for this model:

• title: This is the field for the post title. This field is CharField, which
translates into a VARCHAR column in the SQL database.

• slug: This is a field intended to be used in URLs. A slug is a short label
containing only letters, numbers, underscores, or hyphens. We will use the
slug field to build beautiful, SEO-friendly URLs for our blog posts. We have
added the unique_for_date parameter to this field so we can build URLs
for posts using the date and slug of the post. Django will prevent from
multiple posts having the same slug for the same date.

• author: This field is ForeignKey. This field defines a many-to-one
relationship. We are telling Django that each post is written by a user and
a user can write several posts. For this field, Django will create a foreign
key in the database using the primary key of the related model. In this case,
we are relying on the User model of the Django authentication system. We
specify the name of the reverse relationship, from User to Post, with the
related_name attribute. We are going to learn more about this later.

• body: This is the body of the post. This field is TextField, which translates
into a TEXT column in the SQL database.

• publish: This datetime indicates when the post was published. We use
Django's timezone now method as default value. This is just a timezone-aware
datetime.now.

• created: This datetime indicates when the post was created. Since we
are using auto_now_add here, the date will be saved automatically when
creating an object.

• updated: This datetime indicates the last time the post has been updated.
Since we are using auto_now here, the date will be updated automatically
when saving an object.

• status: This is a field to show the status of a post. We use a choices
parameter, so the value of this field can only be set to one of the given choices.

As you can see, Django comes with different types of fields that you can use to define
your models. You can find all field types in https://docs.djangoproject.com/
en/1.8/ref/models/fields/.

The class Meta inside the model contains metadata. We are telling Django to sort
results by the publish field in descending order by default when we query the
database. We specify descending order by using the negative prefix.

https://docs.djangoproject.com/en/1.8/ref/models/fields/
https://docs.djangoproject.com/en/1.8/ref/models/fields/

Chapter 1

[11]

The __str__() method is the default human-readable representation of the object.
Django will use it in many places such as the administration site.

If you come from Python 2.X, note that in Python 3 all strings are natively
considered unicode, therefore we only use the __str__() method. The
__unicode__() method is obsolete.

Since we are going to deal with datetimes, we will install the pytz module. This
module provides timezone definitions for Python and is required by SQLite to work
with datetimes. Open the shell and install pytz with the following command:

pip install pytz

Django comes with support for timezone-aware datetimes. You can activate/
deactivate time zone support with the USE_TZ setting in the settings.py file of
your project. This setting is set to True when you create a new project using the
startproject management command.

Activating your application
In order for Django to keep track of our application and be able to create database
tables for its models, we have to activate it. To do this, edit the settings.py file
and add blog to the INSTALLED_APPS setting. It should look like this:

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'blog',
)

Now Django knows that our application is active for this project and will be able
to introspect its models.

Creating and applying migrations
Let's create a data table for our model in the database. Django comes with a
migration system to track the changes you do to your models and propagate them
into the database. The migrate command applies migrations for all applications
listed in INSTALLED_APPS; it synchronizes the database with the current models
and migrations.

Building a Blog Application

[12]

First, we need to create a migration for the new model we just created. From the root
directory of your project, enter this command:

python manage.py makemigrations blog

You should get the following output:

Migrations for 'blog':
 0001_initial.py:
 - Create model Post

Django just created a file 0001_initial.py inside the migrations directory of the
blog application. You can open that file to see how a migration looks like.

Let's take a look at the SQL code that Django will execute in the database to create the
table for our model. The sqlmigrate command takes migration names and returns
their SQL without running it. Run the following command to inspect its output:

python manage.py sqlmigrate blog 0001

The output should look as follows:

BEGIN;
CREATE TABLE "blog_post" ("id" integer NOT NULL PRIMARY KEY
AUTOINCREMENT, "title" varchar(250) NOT NULL, "slug" varchar(250) NOT
NULL, "body" text NOT NULL, "publish" datetime NOT NULL, "created"
datetime NOT NULL, "updated" datetime NOT NULL, "status" varchar(10)
NOT NULL, "author_id" integer NOT NULL REFERENCES "auth_user" ("id"));
CREATE INDEX "blog_post_2dbcba41" ON "blog_post" ("slug");
CREATE INDEX "blog_post_4f331e2f" ON "blog_post" ("author_id");
COMMIT;

The exact output depends on the database you are using. The output above
is generated for SQLite. As you can see, Django generates the table names by
combining the app name and the lowercase name of the model (blog_post), but
you can also specify them in the Meta class of the models using the db_table
attribute. Django creates a primary key automatically for each model but you can
also override this specifying primary_key=True on one of your model fields.

Let's sync our database with the new model. Run the following command to apply
existing migrations:

python manage.py migrate

You will get the following output that ends with the following line:

Applying blog.0001_initial... OK

Chapter 1

[13]

We just applied migrations for the applications listed in INSTALLED_APPS, including
our blog application. After applying migrations, the database reflects the current
status of our models.

If you edit your models.py file in order to add, remove, or change fields of existing
models, or if you add new models, you will have to make a new migration using the
makemigrations command. The migration will allow Django to keep track of model
changes. Then you will have to apply it with the migrate command to keep the
database in sync with your models.

Creating an administration site for your
models
Now that we have defined the Post model, we will create a simple administration
site to manage blog posts. Django comes with a built-in administration interface
that is very useful for editing content. The Django admin site is built dynamically by
reading your model metadata and providing a production-ready interface for editing
content. You can use it out-of-the-box, configuring how you want your models to be
displayed in it.

Remember that django.contrib.admin is already included in the INSTALLED_APPS
setting of our project and that's why we don't have to add it.

Creating a superuser
First, we need to create a user to manage the admin site. Run the following command:

python manage.py createsuperuser

You will see the following output. Enter your desired username, e-mail, and
password:

Username (leave blank to use 'admin'): admin
Email address: admin@admin.com
Password: ********
Password (again): ********
Superuser created successfully.

Building a Blog Application

[14]

The Django administration site
Now, start the development server with the command python manage.py
runserver and open http://127.0.0.1:8000/admin/ in your browser. You
should see the administration login page, as shown in the following screenshot:

Log in using the credentials of the user you created in the previous step. You will see
the admin site index page, as shown in the following screenshot:

The Group and User models you see here are part of the Django authentication
framework located in django.contrib.auth. If you click on Users, you will see the
user you created before. The Post model of your blog application has a relationship
with this User model. Remember, it is a relationship defined by the author field.

Adding your models to the administration site
Let's add your blog models to the administration site. Edit the admin.py file of your
blog application and make it look like this:

from django.contrib import admin
from .models import Post

admin.site.register(Post)

Chapter 1

[15]

Now, reload the admin site in your browser. You should see your Post model in the
admin site as follows:

That was easy, right? When you register a model in the Django admin site, you get
a user-friendly interface generated by introspecting your models that allows you
to list, edit, create, and delete objects in a simple way.

Click on the Add link on the right of Posts to add a new post. You will see the
create form that Django has generated dynamically for your model, as shown
in the following screenshot:

Django uses different form widgets for each type of field. Even complex fields such
as DateTimeField are displayed with an easy interface like a JavaScript date picker.

Building a Blog Application

[16]

Fill in the form and click on the Save button. You should be redirected to the post
list page with a successful message and the post you just created, as shown in the
following screenshot:

Customizing the way models are displayed
Now we are going to see how to customize the admin site. Edit the admin.py file of
your blog application and change it into this:

from django.contrib import admin
from .models import Post

class PostAdmin(admin.ModelAdmin):
 list_display = ('title', 'slug', 'author', 'publish',
 'status')
admin.site.register(Post, PostAdmin)

We are telling the Django admin site that our model is registered into the admin site
using a custom class that inherits from ModelAdmin. In this class, we can include
information about how to display the model in the admin site and how to interact
with it. The list_display attribute allows you to set the fields of your model that
you want to display in the admin object list page.

Let's customize the admin model with some more options, using the following code:

class PostAdmin(admin.ModelAdmin):
 list_display = ('title', 'slug', 'author', 'publish',
 'status')
 list_filter = ('status', 'created', 'publish', 'author')
 search_fields = ('title', 'body')
 prepopulated_fields = {'slug': ('title',)}
 raw_id_fields = ('author',)
 date_hierarchy = 'publish'
 ordering = ['status', 'publish']

Chapter 1

[17]

Go back to your browser and reload the post list page. Now it will look like this:

You can see that the fields displayed on the post list page are the ones you specified
in the list_display attribute. The list page now includes a right sidebar that
allows you to filter the results by the fields included in the list_filter attribute.
A search bar has appeared on the page. This is because we have defined a list of
searchable fields using the search_fields attribute. Just below the search bar, there
is a bar to navigate quickly through a date hierarchy. This has been defined by the
date_hierarchy attribute. You can also see that the posts are ordered by Status
and Publish columns by default. You have specified the default order using the
ordering attribute.

Now click on the Add post link. You will also see some changes here. As you
type the title of a new post, the slug field is filled automatically. We have told
Django to prepopulate the slug field with the input of the title field using the
prepopulated_fields attribute. Also, now the author field is displayed with a
lookup widget that can scale much better than a dropdown select input when you
have thousands of users, as shown in the following screenshot:

With a few lines of code, we have customized the way our model is displayed
in the admin site. There are plenty of ways to customize and extend the Django
administration site. Later in this book, we will cover this further.

Building a Blog Application

[18]

Working with QuerySet and managers
Now that you have a fully functional administration site to manage your blog's
content, it's time to learn how to retrieve information from the database and interact
with it. Django comes with a powerful database-abstraction API that lets you create,
retrieve, update, and delete objects easily. The Django Object-relational Mapper
(ORM) is compatible with MySQL, PostgreSQL, SQLite, and Oracle. Remember
that you can define the database of your project by editing the DATABASES setting in
the settings.py file of your project. Django can work with multiple databases at
a time and you can even program database routers that handle the data in any way
you like.

Once you have created your data models, Django gives you a free API to interact
with them. You can find the data model reference of the official documentation at
https://docs.djangoproject.com/en/1.8/ref/models/.

Creating objects
Open the terminal and run the following command to open the Python shell:

python manage.py shell

Then type the following lines:

>>> from django.contrib.auth.models import User
>>> from blog.models import Post
>>> user = User.objects.get(username='admin')
>>> Post.objects.create(title='One more post',
 slug='one-more-post',
 body='Post body.',
 author=user)
>>> post.save()

Let's analyze what this code does. First, we retrieve the user object that has the
username admin:

user = User.objects.get(username='admin')

The get() method allows you to retrieve a single object from the database. Note that
this method expects one result that matches the query. If no results are returned by
the database, this method will raise a DoesNotExist exception, and if the database
returns more than one result, it will raise a MultipleObjectsReturned exception.
Both exceptions are attributes of the model class that the query is being performed on.

https://docs.djangoproject.com/en/1.8/ref/models/

Chapter 1

[19]

Then we create a Post instance with a custom title, slug, and body; and we set the
user we previously retrieved as author of the post:

post = Post(title='Another post', slug='another-post', body='Post
body.', author=user)

This object is in memory and is not persisted to the database.

Finally, we save the Post object to the database using the save() method:

post.save()

This action performs an INSERT SQL statement behind the scenes. We have seen how
to create an object in memory first and then persist it to the database, but we can also
create the object into the database directly using the create() method as follows:

Post.objects.create(title='One more post', slug='one-more-post',
body='Post body.', author=user)

Updating objects
Now, change the title of the post into something different and save the object again:

>>> post.title = 'New title'
>>> post.save()

This time, the save() method performs an UPDATE SQL statement.

The changes you make to the object are not persisted to the
database until you call the save() method.

Retrieving objects
The Django Object-relational mapping (ORM) is based on QuerySet. A QuerySet
is a collection of objects from your database that can have several filters to limit
the results. You already know how to retrieve a single object from the database
using the get() method. As you have seen, we have accessed this method using
Post.objects.get(). Each Django model has at least one manager, and the
default manager is called objects. You get a QuerySet object by using your models
manager. To retrieve all objects from a table, you just use the all() method on the
default objects manager, like this:

>>> all_posts = Post.objects.all()

Building a Blog Application

[20]

This is how we create a QuerySet that returns all objects in the database. Note
that this QuerySet has not been executed yet. Django QuerySets are lazy; they are
only evaluated when they are forced to do it. This behavior makes QuerySets very
efficient. If we don't set the QuerySet to a variable, but instead write it directly on
the Python shell, the SQL statement of the QuerySet is executed because we force
it to output results:

>>> Post.objects.all()

Using the filter() method
To filter a QuerySet, you can use the filter() method of the manager. For example,
we can retrieve all posts published in the year 2015 using the following QuerySet:

Post.objects.filter(publish__year=2015)

You can also filter by multiple fields. For example, we can retrieve all posts
published in 2015 by the author with the username admin:

Post.objects.filter(publish__year=2015, author__username='admin')

This equals to building the same QuerySet chaining multiple filters:

Post.objects.filter(publish__year=2015)\
 filter(author__username='admin')

We are building queries with field lookup methods using two
underscores (publish__year), but we are also accessing fields
of related models using two underscores (author__username).

Using exclude()
You can exclude certain results from your QuerySet using the exclude() method
of the manager. For example, we can retrieve all posts published in 2015 whose
titles don't start by Why:

Post.objects.filter(publish__year=2015)\
 .exclude(title__startswith='Why')

Using order_by()
You can order results by different fields using the order_by() method of the
manager. For example, you can retrieve all objects ordered by their title:

Post.objects.order_by('title')

Chapter 1

[21]

Ascending order is implied. You can indicate descending order with a negative sign
prefix, like this:

Post.objects.order_by('-title')

Deleting objects
If you want to delete an object, you can do it from the object instance:

post = Post.objects.get(id=1)
post.delete()

Note that deleting objects will also delete any dependent relationships.

When QuerySet are evaluated
You can concatenate as many filters as you like to a QuerySet and you will not hit
the database until the QuerySet is evaluated. Querysets are only evaluated in the
following cases:

• The first time you iterate over them
• When you slice them. for instance: Post.objects.all()[:3]
• When you pickle or cache them
• When you call repr() or len() on them
• When you explicitly call list()on them
• When you test it in a statement such as bool(), or , and, or if

Creating model managers
As we previously mentioned, objects is the default manager of every model,
which retrieves all objects in the database. But we can also define custom managers
for our models. We are going to create a custom manager to retrieve all posts with
published status.

There are two ways to add managers to your models: You can add extra manager
methods or modify initial manager QuerySets. The first one turns up something
like Post.objects.my_manager()and the later like Post.my_manager.all().
Our manager will allow us to retrieve posts using Post.published.

Building a Blog Application

[22]

Edit the models.py file of your blog application to add the custom manager:

class PublishedManager(models.Manager):
 def get_queryset(self):
 return super(PublishedManager,
 self).get_queryset()\
 .filter(status='published')

class Post(models.Model):
 # ...
 objects = models.Manager() # The default manager.
 published = PublishedManager() # Our custom manager.

get_queryset() is the method that returns the QuerySet to be executed. We use it to
include our custom filter in the final QuerySet. We have defined our custom manager
and added it to the Post model; we can now use it to perform queries. For example,
we can retrieve all published posts whose title starts with Who using:

Post.published.filter(title__startswith='Who')

Building list and detail views
Now that you have some knowledge about how to use the ORM, you are ready to
build the views of the blog application. A Django view is just a Python function that
receives a web request and returns a web response. Inside the view goes all the logic
to return the desired response.

First, we will create our application views, then we will define an URL pattern for
each view; and finally, we will create HTML templates to render the data generated
by the views. Each view will render a template passing variables to it and will return
an HTTP response with the rendered output.

Creating list and detail views
Let's start by creating a view to display the list of posts. Edit the views.py file of
your blog application and make it look like this:

from django.shortcuts import render, get_object_or_404
from .models import Post

def post_list(request):
 posts = Post.published.all()
 return render(request,
 'blog/post/list.html',
 {'posts': posts})

Chapter 1

[23]

You just created your first Django view. The post_list view takes the request
object as the only parameter. Remember that this parameter is required by all views.
In this view, we are retrieving all the posts with the published status using the
published manager we created previously.

Finally, we are using the render() shortcut provided by Django to render the list of
posts with the given template. This function takes the request object as parameter,
the template path and the variables to render the given template. It returns an
HttpResponse object with the rendered text (normally HTML code). The render()
shortcut takes the request context into account, so any variable set by template
context processors is accessible by the given template. Template context processors
are just callables that set variables into the context. You will learn how to use them
in Chapter 3, Extending Your Blog Application.

Let's create a second view to display a single post. Add the following function to the
views.py file:

def post_detail(request, year, month, day, post):
 post = get_object_or_404(Post, slug=post,
 status='published',
 publish__year=year,
 publish__month=month,
 publish__day=day)
 return render(request,
 'blog/post/detail.html',
 {'post': post})

This is the post detail view. This view takes year, month, day, and post parameters
to retrieve a published post with the given slug and date. Notice that when we
created the Post model, we added the unique_for_date parameter to the slug field.
This way we ensure that there will be only one post with a slug for a given date,
and thus, we can retrieve single posts by date and slug. In the detail view, we are
using the get_object_or_404() shortcut to retrieve the desired Post. This function
retrieves the object that matches with the given parameters, or launches an HTTP 404
(Not found) exception if no object is found. Finally, we use the render() shortcut to
render the retrieved post using a template.

Adding URL patterns for your views
An URL pattern is composed of a Python regular expression, a view, and a name that
allows you to name it project-wide. Django runs through each URL pattern and stops
at the first one that matches the requested URL. Then, Django imports the view of the
matching URL pattern and executes it, passing an instance of the HttpRequest class
and keyword or positional arguments.

Building a Blog Application

[24]

If you haven't worked with regular expressions before, you might want to take a
look at https://docs.python.org/3/howto/regex.html first.

Create an urls.py file in the directory of the blog application and add the
following lines:

from django.conf.urls import url
from . import views

urlpatterns = [
 # post views
 url(r'^$', views.post_list, name='post_list'),
 url(r'^(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d{2})/'\
 r'(?P<post>[-\w]+)/$',
 views.post_detail,
 name='post_detail'),
]

The first URL pattern doesn't take any arguments and is mapped to the post_list
view. The second pattern takes the following four arguments and is mapped to the
post_detail view. Let's take a look at the regular expression of the URL pattern:

• year: Requires four digits.
• month: Requires two digits. We will only allow months with leading zeros.
• day: Requires two digits. We will only allow days with leading zeros.
• post: Can be composed by words and hyphens.

Creating an urls.py file for each app is the best way to make your
applications reusable by other projects.

Now you have to include the URL patterns of your blog application into the main
URL patterns of the project. Edit the urls.py file located in the mysite directory of
your project and make it look like the following:

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^blog/', include('blog.urls',
 namespace='blog',
 app_name='blog')),
]

https://docs.python.org/3/howto/regex.html

Chapter 1

[25]

This way, you are telling Django to include the URL patterns defined in the blog
urls.py under the blog/ path. You are giving them a namespace called blog so
you can refer to this group of URLs easily.

Canonical URLs for models
You can use the post_detail URL that you have defined in the previous section to
build the canonical URL for Post objects. The convention in Django is to add a
get_absolute_url() method to the model that returns the canonical URL of the
object. For this method, we will use the reverse() method that allows you to build
URLs by their name and passing optional parameters. Edit your models.py file
and add the following:

from django.core.urlresolvers import reverse
Class Post(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('blog:post_detail',
 args=[self.publish.year,
 self.publish.strftime('%m'),
 self.publish.strftime('%d'),
 self.slug])

Note that we are using the strftime() function to build the URL using month
and day with leading zeros. We will use the get_absolute_url() method in
our templates.

Creating templates for your views
We have created views and URL patterns for our application. Now it's time to add
templates to display posts in a user-friendly way.

Create the following directories and files inside your blog application directory:

templates/
 blog/
 base.html
 post/
 list.html
 detail.html

Building a Blog Application

[26]

This will be the file structure for our templates. The base.html file will include the
main HTML structure of the website and divide the content into a main content area
and a sidebar. The list.html and detail.html files will inherit from the base.html
file to render the blog post list and detail views respectively.

Django has a powerful template language that allows you to specify how data
is displayed. It is based on template tags, which look like {% tag %} template
variables, which look like {{ variable }} and template filters, which can be
applied to variables and look like {{ variable|filter }}. You can see all
built-in template tags and filters in https://docs.djangoproject.com/en/1.8/
ref/templates/builtins/.

Let's edit the base.html file and add the following code:

{% load staticfiles %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/blog.css" %}" rel="stylesheet">
</head>
<body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>My blog</h2>
 <p>This is my blog.</p>
 </div>
</body>
</html>

{% load staticfiles %} tells Django to load the staticfiles template tags
that are provided by the django.contrib.staticfiles application. After loading
it, you are able to use the {% static %} template filter throughout this template.
With this template filter, you can include static files such as the blog.css file that
you will find in the code of this example, under the static/ directory of the blog
application. Copy this directory into the same location of your project to use the
existing static files.

https://docs.djangoproject.com/en/1.8/ref/templates/builtins/
https://docs.djangoproject.com/en/1.8/ref/templates/builtins/

Chapter 1

[27]

You can see that there are two {% block %} tags. These tell Django that we want to
define a block in that area. Templates that inherit from this template can fill the blocks
with content. We have defined a block called title and a block called content.

Let's edit the post/list.html file and make it look like the following:

{% extends "blog/base.html" %}

{% block title %}My Blog{% endblock %}

{% block content %}
 <h1>My Blog</h1>
 {% for post in posts %}
 <h2>

 {{ post.title }}

 </h2>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }}
 </p>
 {{ post.body|truncatewords:30|linebreaks }}
 {% endfor %}
{% endblock %}

With the {% extends %} template tag, we are telling Django to inherit from the
blog/base.html template. Then we are filling the title and content blocks of the
base template with content. We iterate through the posts and display their title, date,
author, and body, including a link in the title to the canonical URL of the post. In the
body of the post, we are applying two template filters: truncatewords truncates the
value to the number of words specified, and linebreaks converts the output into
HTML line breaks. You can concatenate as many template filters as you wish; each
one will be applied to the output generated by the previous one.

Building a Blog Application

[28]

Open the shell and execute the command python manage.py runserver to start the
development server. Open http://127.0.0.1:8000/blog/ in your browser and
you will see everything running. Note that you need to have some posts with status
Published in order to see them here. You should see something like this:

Then, let's edit the post/detail.html file and make it look like the following:

{% extends "blog/base.html" %}

{% block title %}{{ post.title }}{% endblock %}

{% block content %}
 <h1>{{ post.title }}</h1>
 <p class="date">
 Published {{ post.publish }} by {{ post.author }}
 </p>
 {{ post.body|linebreaks }}
{% endblock %}

Chapter 1

[29]

Now, you can go back to your browser and click on one of the post titles to see the
detail view of a post. You should see something like this:

Take a look at the URL. It should look like /blog/2015/09/20/who-was-django-
reinhardt/. We have created a SEO friendly URL for our blog posts.

Adding pagination
When you start adding content to your blog, you will soon realize you need to split
the list of posts across several pages. Django has a built-in pagination class that
allows you to manage paginated data easily.

Edit the views.py file of the blog application to import the Django paginator classes
and modify the post_list view as follows:

from django.core.paginator import Paginator, EmptyPage,\
 PageNotAnInteger

def post_list(request):
 object_list = Post.published.all()
 paginator = Paginator(object_list, 3) # 3 posts in each page
 page = request.GET.get('page')
 try:
 posts = paginator.page(page)
 except PageNotAnInteger:
 # If page is not an integer deliver the first page
 posts = paginator.page(1)
 except EmptyPage:
 # If page is out of range deliver last page of results
 posts = paginator.page(paginator.num_pages)
 return render(request,
 'blog/post/list.html',
 {'page': page,
 'posts': posts})

/blog/2015/09/20/who-was-django-reinhardt/
/blog/2015/09/20/who-was-django-reinhardt/

Building a Blog Application

[30]

This is how pagination works:

1. We instantiate the Paginator class with the number of objects we want to
display in each page.

2. We get the page GET parameter that indicates the current page number.
3. We obtain the objects for the desired page calling the page() method of

Paginator.
4. If the page parameter is not an integer, we retrieve the first page of results.

If this parameter is a number higher than the last page of results, we retrieve
the last page.

5. We pass the page number and retrieved objects to the template.

Now, we have to create a template to display the paginator, so that it can be included
in any template that uses pagination. In the templates folder of the blog application,
create a new file and name it pagination.html. Add the following HTML code to
the file:

<div class="pagination">

 {% if page.has_previous %}
 Previous
 {% endif %}

 Page {{ page.number }} of {{ page.paginator.num_pages }}.

 {% if page.has_next %}
 Next
 {% endif %}

</div>

The pagination template expects a Page object in order to render previous and next
links and display the current page and total pages of results. Let's go back to the
blog/post/list.html template and include the pagination.html template at the
bottom of the {% content %} block, like this:

{% block content %}
 ...
 {% include "pagination.html" with page=posts %}
{% endblock %}

Since the Page object we are passing to the template is called posts, we are including
the pagination template into the post list template specifying the parameters to
render it correctly. This is the method you can use to reuse your pagination template
in paginated views of different models.

Chapter 1

[31]

Now, open http://127.0.0.1:8000/blog/ in your browser. You should see
the pagination at the bottom of the post list and you should be able to navigate
through pages:

Using class-based views
Since a view is a callable that takes a web request and returns a web response, you
can also define your views as class methods. Django provides base view classes
for this. All of them inherit from the View class, which handles HTTP method
dispatching and other functionality. This is an alternate method to create your views.

We are going to change our post_list view into a class-based view to use the
generic ListView offered by Django. This base view allows you to list objects of
any kind.

Edit the views.py file of your blog application and add the following code:

from django.views.generic import ListView

class PostListView(ListView):
 queryset = Post.published.all()
 context_object_name = 'posts'
 paginate_by = 3
 template_name = 'blog/post/list.html'

Building a Blog Application

[32]

This class-based view is analogous to the previous post_list view. Here, we are
telling ListView to:

• Use a specific QuerySet instead of retrieving all objects. Instead of defining
a queryset attribute, we could have specified model = Post and Django
would have built the generic Post.objects.all() QuerySet for us.

• Use the context variable posts for the query results. The default variable is
object_list if we don't specify any context_object_name.

• Paginate the result displaying three objects per page.
• Use a custom template to render the page. If we don't set a default template,

ListView will use blog/post_list.html.

Now, open the urls.py file of your blog application, comment the previous
post_list URL pattern, and add a new URL pattern using the PostListView
class as follows:

urlpatterns = [
 # post views
 # url(r'^$', views.post_list, name='post_list'),
 url(r'^$', views.PostListView.as_view(), name='post_list'),
 url(r'^(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d{2})/'\
 r'(?P<post>[-\w]+)/$',
 views.post_detail,
 name='post_detail'),
]

In order to keep pagination working, we have to use the right page object that is
passed to the template. Django's ListView passes the selected page in a variable
called page_obj, so you have to edit your post_list.html template accordingly
to include the paginator using the right variable, like this:

{% include "pagination.html" with page=page_obj %}

Open http://127.0.0.1:8000/blog/ in your browser and check that everything
works the same way as with the previous post_list view. This is a simple example
of a class-based view that uses a generic class provided by Django. You will learn
more about class-based views in Chapter 10, Building an e-Learning Platform and
successive chapters.

Chapter 1

[33]

Summary
In this chapter, you have learned the basics of the Django web framework by creating
a basic blog application. You have designed the data models and applied migrations
to your project. You have created the views, templates, and URLs for your blog,
including object pagination.

In the next chapter, you will learn how to enhance your blog application with
a comment system, tagging functionality, and allowing your users to share
posts by e-mail.

[35]

Enhancing Your Blog with
Advanced Features

In the previous chapter, you created a basic blog application. Now you will turn your
application into a fully functional blog with advanced features such as sharing posts
by e-mail, adding comments, tagging posts, and retrieving posts by similarity. In this
chapter, you will learn the following topics:

• Sending e-mails with Django
• Creating forms and handling them in views
• Creating forms from models
• Integrating third-party applications
• Building complex QuerySets

Sharing posts by e-mail
First, we will allow users to share posts by sending them by e-mail. Take a short time
to think how you would use views, URL's, and templates to create this functionality
using what you have learned in the previous chapter. Now, check what you need
to allow your users to send posts by e-mail. You will need to:

• Create a form for users to fill in their name and e-mail, the e-mail recipient,
and optional comments

• Create a view in the views.py file that handles the posted data and sends
the e-mail

• Add an URL pattern for the new view in the urls.py file of the
blog application

• Create a template to display the form

Enhancing Your Blog with Advanced Features

[36]

Creating forms with Django
Let's start by building the form to share posts. Django has a built-in forms framework
that allows you to create forms in an easy manner. The forms framework allows
you to define the fields of your form, specify the way they have to be displayed, and
indicate how they have to validate input data. Django forms framework also offers
a flexible way to render forms and handle the data.

Django comes with two base classes to build forms:

• Form: Allows you to build standard forms
• ModelForm: Allows you to build forms to create or update model instances

First, create a forms.py file inside the directory of your blog application and make it
look like this:

from django import forms

class EmailPostForm(forms.Form):
 name = forms.CharField(max_length=25)
 email = forms.EmailField()
 to = forms.EmailField()
 comments = forms.CharField(required=False,
 widget=forms.Textarea)

This is your first Django form. Take a look at the code: we have created a form by
inheriting the base Form class. We use different field types for Django to validate
fields accordingly.

Forms can reside anywhere in your Django project but the convention is
to place them inside a forms.py file for each application.

The name field is a CharField. This type of field is rendered as an <input
type="text"> HTML element. Each field type has a default widget that determines
how the field is displayed in HTML. The default widget can be overridden with the
widget attribute. In the comments field, we use a Textarea widget to display it
as a <textarea> HTML element instead of the default <input> element.

Chapter 2

[37]

Field validation also depends on the field type. For example, the email and to
fields are EmailField. Both fields require a valid e-mail address, otherwise the
field validation will raise a forms.ValidationError exception and the form will
not validate. Other parameters are also taken into account for form validation: we
define a maximum length of 25 characters for the name field and make the comments
field optional with required=False. All of this is also taken into account for field
validation. The field types used in this form are only a part of Django form fields. For
a list of all form fields available, you can visit https://docs.djangoproject.com/
en/1.8/ref/forms/fields/.

Handling forms in views
You have to create a new view that handles the form and sends an e-mail when it's
successfully submitted. Edit the views.py file of your blog application and add the
following code to it:

from .forms import EmailPostForm

def post_share(request, post_id):
 # Retrieve post by id
 post = get_object_or_404(Post, id=post_id, status='published')

 if request.method == 'POST':
 # Form was submitted
 form = EmailPostForm(request.POST)
 if form.is_valid():
 # Form fields passed validation
 cd = form.cleaned_data
 # ... send email
 else:
 form = EmailPostForm()
 return render(request, 'blog/post/share.html', {'post': post,
 'form': form})

https://docs.djangoproject.com/en/1.8/ref/forms/fields/
https://docs.djangoproject.com/en/1.8/ref/forms/fields/

Enhancing Your Blog with Advanced Features

[38]

This view works as follows:

• We define the post_share view that takes the request object and the
post_id as parameters.

• We use the get_object_or_404() shortcut to retrieve the post by ID and
make sure the retrieved post has a published status.

• We use the same view for both displaying the initial form and processing
the submitted data. We differentiate if the form was submitted or not based
on the request method. We are going to submit the form using POST. We
assume that if we get a GET request, an empty form has to be displayed, and
if we get a POST request, the form was submitted and needs to be processed.
Therefore, we use request.method == 'POST' to distinguish between the
two scenarios.

The following is the process to display and handle the form:

1. When the view is loaded initially with a GET request, we create a new form
instance that will be used to display the empty form in the template:
form = EmailPostForm()

2. The user fills in the form and submits it via POST. Then, we create a form
instance using the submitted data that is contained in request.POST:
if request.method == 'POST':
 # Form was submitted
 form = EmailPostForm(request.POST)

3. After this, we validate the submitted data using the form's is_valid()
method. This method validates the data introduced in the form and returns
True if all fields contain valid data. If any field contains invalid data,
then is_valid() returns False. You can see a list of validation errors
by accessing form.errors.

4. If the form is not valid, we render the form in the template again with the
submitted data. We will display validation errors in the template.

5. If the form is valid, we retrieve the validated data accessing form.cleaned_
data. This attribute is a dictionary of form fields and their values.

If your form data does not validate, cleaned_data will
only contain the valid fields.

Now, you need to learn how to send e-mails with Django to put everything together.

Chapter 2

[39]

Sending e-mails with Django
Sending e-mails with Django is pretty straightforward. First, you need to have a local
SMTP server or define the configuration of an external SMTP server by adding the
following settings in the settings.py file of your project:

• EMAIL_HOST: The SMTP server host. Default localhost.
• EMAIL_PORT: The SMTP port Default 25.
• EMAIL_HOST_USER: Username for the SMTP server.
• EMAIL_HOST_PASSWORD: Password for the SMTP server.
• EMAIL_USE_TLS: Whether to use a TLS secure connection.
• EMAIL_USE_SSL: Whether to use an implicit TLS secure connection.

If you don't have a local SMTP server, you can probably use the SMTP server of your
e-mail provider. The sample configuration below is valid for sending e-mails via
Gmail servers using a Google account:

EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'your_account@gmail.com'
EMAIL_HOST_PASSWORD = 'your_password'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

Run the command python manage.py shell to open the Python shell and send an
e-mail like this:

>>> from django.core.mail import send_mail
>>> send_mail('Django mail', 'This e-mail was sent with Django.',
'your_account@gmail.com', ['your_account@gmail.com'], fail_
silently=False)

send_mail() takes the subject, message, sender, and list of recipients as required
arguments. By setting the optional argument fail_silently=False, we are telling
it to raise an exception if the e-mail couldn't be sent correctly. If the output you see is
1, then your e-mail was successfully sent. If you are sending e-mails by Gmail with
the preceding configuration, you might have to enable access for less secured apps at
https://www.google.com/settings/security/lesssecureapps.

Now, we are going to add this to our view. Edit the post_share view in the
views.py file of your blog application and make it look like this:

from django.core.mail import send_mail

def post_share(request, post_id):
 # Retrieve post by id

https://www.google.com/settings/security/lesssecureapps

Enhancing Your Blog with Advanced Features

[40]

 post = get_object_or_404(Post, id=post_id, status='published')
 sent = False

 if request.method == 'POST':
 # Form was submitted
 form = EmailPostForm(request.POST)
 if form.is_valid():
 # Form fields passed validation
 cd = form.cleaned_data
 post_url = request.build_absolute_uri(
 post.get_absolute_url())
 subject = '{} ({}) recommends you reading "{}"'.
format(cd['name'], cd['email'], post.title)
 message = 'Read "{}" at {}\n\n{}\'s comments: {}'.
format(post.title, post_url, cd['name'], cd['comments'])
 send_mail(subject, message, 'admin@myblog.com',
[cd['to']])
 sent = True
 else:
 form = EmailPostForm()
 return render(request, 'blog/post/share.html', {'post': post,
 'form': form,
 'sent': sent})

Note that we declare a sent variable and set it to True when the post was sent. We
are going to use that variable later in the template to display a success message when
the form is successfully submitted. Since we have to include a link to the post in
the e-mail, we retrieve the absolute path of the post using its get_absolute_url()
method. We use this path as input for request.build_absolute_uri() to build a
complete URL including HTTP schema and hostname. We build the subject and the
message body of the e-mail using the cleaned data of the validated form and finally
send the e-mail to the e-mail address contained in the to field of the form.

Now that your view is complete, remember to add a new URL pattern for it. Open
the urls.py file of your blog application and add the post_share URL pattern,
as follows:

urlpatterns = [
 # ...
 url(r'^(?P<post_id>\d+)/share/$', views.post_share,
 name='post_share'),
]

Chapter 2

[41]

Rendering forms in templates
After creating the form, programming the view, and adding the URL pattern, we are
only missing the template for this view. Create a new file into the blog/templates/
blog/post/ directory and name it share.html. Add the following code to it:

{% extends "blog/base.html" %}

{% block title %}Share a post{% endblock %}

{% block content %}
 {% if sent %}
 <h1>E-mail successfully sent</h1>
 <p>
 "{{ post.title }}" was successfully sent to {{ cd.to }}.
 </p>
 {% else %}
 <h1>Share "{{ post.title }}" by e-mail</h1>
 <form action="." method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="submit" value="Send e-mail">
 </form>
 {% endif %}
{% endblock %}

This is the template to display the form or a success message when it's sent. As you
can see, we create the HTML form element indicating that it has to be submitted by
the POST method:

<form action="." method="post">

Then we include the actual form instance. We tell Django to render its fields in
HTML paragraph <p> elements with the as_p method. We can also render the form
as an unordered list with as_ul or as a HTML table with as_table. If we want to
render each field, we can also iterate through the fields like in the following example:

{% for field in form %}
 <div>
 {{ field.errors }}
 {{ field.label_tag }} {{ field }}
 </div>
{% endfor %}

Enhancing Your Blog with Advanced Features

[42]

The {% csrf_token %} template tag introduces a hidden field with an auto-
generated token to avoid Cross-Site request forgery (CSRF) attacks. These attacks
consist of a malicious website or program performing an unwanted action for a user
on your site. You can find more information about this at https://en.wikipedia.
org/wiki/Cross-site_request_forgery.

The preceding tag generates a hidden field that looks like this:

<input type='hidden' name='csrfmiddlewaretoken'
value='26JjKo2lcEtYkGoV9z4XmJIEHLXN5LDR' />

By default, Django checks for the CSRF token in all POST requests.
Remember to include the csrf_token tag in all forms that are
submitted via POST.

Edit your blog/post/detail.html template and add a the following link to the
share post URL after the {{ post.body|linebreaks }} variable:

<p>

 Share this post

</p>

Remember that we are building the URL dynamically using the {% url %} template
tag provided by Django. We are using the namespace called blog and the URL
named post_share, and we are passing the post ID as parameter to build the
absolute URL.

Now, start the development server with the command python manage.py
runserver, and open http://127.0.0.1:8000/blog/ in your browser. Click on
any post title to view the detail page. Under the post body, you should see the link
we just added, as shown in the following image:

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Chapter 2

[43]

Click on Share this post and you should see the page including the form to share this
post by e-mail. It has to look like the following:

CSS styles for the form are included in the example code in the static/css/blog.
css file. When you click on the Send e-mail button, the form is submitted and
validated. If all fields contain valid data, you will get a success message like
the following:

Enhancing Your Blog with Advanced Features

[44]

If you input invalid data, you will see that the form is rendered again, including all
validation errors:

Creating a comment system
Now we are going to build a comment system for the blog, wherein the users will be
able to comment on posts. To build the comment system, you will need to:

• Create a model to save comments
• Create a form to submit comments and validate the input data
• Add a view that processes the form and saves the new comment into

the database
• Edit the post detail template to display the list of comments and the form

for adding a new comment

Chapter 2

[45]

First, let's build a model to store comments. Open the models.py file of your blog
application and add the following code:

class Comment(models.Model):
 post = models.ForeignKey(Post, related_name='comments')
 name = models.CharField(max_length=80)
 email = models.EmailField()
 body = models.TextField()
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)
 active = models.BooleanField(default=True)

 class Meta:
 ordering = ('created',)

 def __str__(self):
 return 'Comment by {} on {}'.format(self.name, self.post)

This is our Comment model. It contains a ForeignKey to associate the comment
with a single post. This many-to-one relationship is defined in the Comment model
because each comment will be made on one post, and each post might have multiple
comments. The related_name attribute allows us to name the attribute that we use
for the relation from the related object back to this one. After defining this, we can
retrieve the post of a comment object using comment.post and retrieve all comments
of a post using post.comments.all(). If you don't define the related_name
attribute, Django will use the undercase name of the model followed by _set
(that is, comment_set) to name the manager of the related object back to this one.

You can learn more about many-to-one relationships at https://docs.
djangoproject.com/en/1.8/topics/db/examples/many_to_one/.

We have included an active boolean field that we will use to manually
deactivate inappropriate comments. We use the created field to sort comments in
chronological order by default.

The new Comment model you just created is not yet synchronized into the database.
Run the following command to generate a new migration that reflects the creation
of the new model:

python manage.py makemigrations blog

You should see this output:

Migrations for 'blog':
 0002_comment.py:
 - Create model Comment

https://docs.djangoproject.com/en/1.8/topics/db/examples/many_to_one/
https://docs.djangoproject.com/en/1.8/topics/db/examples/many_to_one/

Enhancing Your Blog with Advanced Features

[46]

Django has generated a file 0002_comment.py inside the migrations/ directory
of the blog application. Now, you need to create the related database schema and
apply the changes to the database. Run the following command to apply existing
migrations:

python manage.py migrate

You will get an output that includes the following line:

Applying blog.0002_comment... OK

The migration we just created has been applied and now a blog_comment table exists
in the database.

Now, we can add our new model to the administration site in order to manage
comments through a simple interface. Open the admin.py file of the blog application
and add an import for the Comment model and the following ModelAdmin:

from .models import Post, Comment

class CommentAdmin(admin.ModelAdmin):
 list_display = ('name', 'email', 'post', 'created', 'active')
 list_filter = ('active', 'created', 'updated')
 search_fields = ('name', 'email', 'body')
admin.site.register(Comment, CommentAdmin)

Start the development server with the command python manage.py runserver and
open http://127.0.0.1:8000/admin/ in your browser. You should see the new
model included in the Blog section, as shown in the following screenshot:

Our model is now registered into the admin site and we can manage Comment
instances using a simple interface.

Chapter 2

[47]

Creating forms from models
We still need to build a form to let our users comment on blog posts. Remember
that Django has two base classes to build forms: Form and ModelForm. You used
the first one previously to let your users share posts by e-mail. In the present case,
you will need to use ModelForm because you have to build a form dynamically
from your Comment model. Edit the forms.py of your blog application and add
the following lines:

from .models import Comment

class CommentForm(forms.ModelForm):
 class Meta:
 model = Comment
 fields = ('name', 'email', 'body')

To create a form from a model, we just need to indicate which model to use to
build the form in the Meta class of the form. Django introspects the model and
builds the form dynamically for us. Each model field type has a corresponding
default form field type. The way we define our model fields is taken into account
for form validation. By default, Django builds a form field for each field contained
in the model. However, you can explicitly tell the framework which fields you
want to include in your form using a fields list, or define which fields you want to
exclude using an exclude list of fields. For our CommentForm, we will just use the
name, email, and body fields for the form because those are the only fields our
users will be able to fill in.

Handling ModelForms in views
We will use the post detail view to instantiate the form, and process it in order to
keep it simple. Edit the models.py file, add imports for the Comment model and
the CommentForm form, and modify the post_detail view to make it look like
the following:

from .models import Post, Comment
from .forms import EmailPostForm, CommentForm

def post_detail(request, year, month, day, post):
 post = get_object_or_404(Post, slug=post,
 status='published',
 publish__year=year,
 publish__month=month,
 publish__day=day)

Enhancing Your Blog with Advanced Features

[48]

 # List of active comments for this post
 comments = post.comments.filter(active=True)

 if request.method == 'POST':
 # A comment was posted
 comment_form = CommentForm(data=request.POST)
 if comment_form.is_valid():

 # Create Comment object but don't save to database
yet

 new_comment = comment_form.save(commit=False)
 # Assign the current post to the comment
 new_comment.post = post
 # Save the comment to the database
 new_comment.save()
 else:
 comment_form = CommentForm()
 return render(request,
 'blog/post/detail.html',
 {'post': post,
 'comments': comments,
 'comment_form': comment_form})

Let's review what we have added to our view. We are using the post_detail
view to display the post and its comments. We add a QuerySet to retrieve all
active comments for this post:

 comments = post.comments.filter(active=True)

We are building this QuerySet starting from the post object. We are using the
manager for related objects we defined as comments using the related_name
attribute of the relationship in the Comment model.

We also use the same view to let our users add a new comment. Therefore we
build a form instance with comment_form = CommentForm() if the view is called
by a GET request. If the request is done via POST, we instantiate the form using the
submitted data and validate it using the is_valid() method. If the form is invalid,
we render the template with the validation errors. If the form is valid, we take the
following actions:

1. We create a new Comment object by calling the form's save() method
like this:
new_comment = comment_form.save(commit=False)

Chapter 2

[49]

The save() method creates an instance of the model that the form is linked
to and saves it to the database. If you call it with commit=False, you create
the model instance, but you don't save it to the database. This comes very
handy when you want to modify the object before finally saving, which is
what we do next. The save() method is available for ModelForm but not for
Form instances, since they are not linked to any model.

2. We assign the current post to the comment we just created:
new_comment.post = post

By doing this, we are specifying that the new comment belongs to the
given post.

3. Finally, we save the new comment to the database with the following code:
new_comment.save()

Our view is now ready to display and process new comments.

Adding comments to the post detail template
We have created the functionality to manage comments for a post. Now we need to
adapt our post_detail.html template to do the following:

• Display the total number of comments for the post
• Display the list of comments
• Display a form for users to add a new comment

First, we will add the total comments. Open the blog_detail.html template and
append the following code inside the content block:

{% with comments.count as total_comments %}
 <h2>
 {{ total_comments }} comment{{ total_comments|pluralize }}
 </h2>
{% endwith %}

We are using the Django ORM in the template executing the QuerySet comments.
count(). Note that Django template language doesn't use parentheses for calling
methods. The {% with %} tag allows us to assign a value to a new variable that
will be available to be used until the {% endwith %} tag.

The {% with %} template tag is useful to avoid hitting the database or
accessing expensive methods multiple times.

Enhancing Your Blog with Advanced Features

[50]

We use the pluralize template filter to display a plural suffix for the word comment
depending on the total_comments value. Template filters take the value of the
variable they are applied to as input and return a computed value. We will discuss
template filters in Chapter 3, Extending Your Blog Application.

The pluralize template filter displays an "s" if the value is different than 1. The
preceding text will be rendered as 0 comments, 1 comment, or N comments. Django
includes plenty of template tags and filters that help you display information in
the way you want.

Now, let's include the list of comments. Append the following lines to the template
after the preceding code:

{% for comment in comments %}
 <div class="comment">
 <p class="info">
 Comment {{ forloop.counter }} by {{ comment.name }}
 {{ comment.created }}
 </p>
 {{ comment.body|linebreaks }}
 </div>
{% empty %}
 <p>There are no comments yet.</p>
{% endfor %}

We use the {% for %} template tag to loop through comments. We display a default
message if the comments list is empty, telling our users there are no comments for
this post yet. We enumerate comments with the {{ forloop.counter }} variable,
which contains the loop counter in each iteration. Then we display the name of the
user who posted the comment, the date, and the body of the comment.

Finally, you need to render the form or display a successful message instead when it
is successfully submitted. Add the following lines just below the previous code:

{% if new_comment %}
 <h2>Your comment has been added.</h2>
{% else %}
 <h2>Add a new comment</h2>
 <form action="." method="post">
 {{ comment_form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Add comment"></p>
 </form>
{% endif %}

Chapter 2

[51]

The code is pretty straightforward: If the new_comment object exists, we display
a success message because the comment was successfully created. Otherwise, we
render the form with a paragraph <p> element for each field and include the CSRF
token required for POST requests. Open http://127.0.0.1:8000/blog/ in your
browser and click on a post title to see its detail page. You will see something like
the following:

Add a couple of comments using the form. They should appear under your post in
chronological order, like this:

Enhancing Your Blog with Advanced Features

[52]

Open http://127.0.0.1:8000/admin/blog/comment/ in your browser. You
will see the admin page with the list of comments you created. Click on one of
them to edit it, uncheck the Active checkbox, and click the Save button. You will
be redirected to the list of comments again and the Active column will display
an inactive icon for the comment. It should look like the first comment in the
following screenshot:

If you go back to the post detail view, you will notice that the deleted comment is
not displayed anymore; neither is it being counted for the total number of comments.
Thanks to the active field, you can deactivate inappropriate comments and avoid
showing them in your posts.

Adding tagging functionality
After implementing our comment system, we are going to create a way to tag
our posts. We are going to do this by integrating a third-party Django tagging
application in our project. django-taggit is a reusable application that primarily
offers you a Tag model and a manager to easily add tags to any model. You can
take a look at its source code at https://github.com/alex/django-taggit.

First, you need to install django-taggit via pip, running the following command:

pip install django-taggit==0.17.1

Then open the settings.py file of the mysite project and add taggit to your
INSTALLED_APPS setting like this:

INSTALLED_APPS = (
 # ...
 'blog',
 'taggit',
)

https://github.com/alex/django-taggit

Chapter 2

[53]

Open the models.py file of your blog application and add the TaggableManager
manager provided by django-taggit to the Post model using the following code:

from taggit.managers import TaggableManager
class Post(models.Model):
 # ...
 tags = TaggableManager()

The tags manager will allow you to add, retrieve, and remove tags from
Post objects.

Run the following command to create a migration for your model changes:

python manage.py makemigrations blog

You should get the following output:

Migrations for 'blog':
 0003_post_tags.py:
 - Add field tags to post

Now, run the following command to create the required database tables for
django-taggit models and to synchronize your model changes:

python manage.py migrate

You will see an output indicating that migrations have been applied, as follows:

Applying taggit.0001_initial... OK
Applying taggit.0002_auto_20150616_2121... OK
Applying blog.0003_post_tags... OK

Your database is now ready to use django-taggit models. Open the terminal with
the command python manage.py shell and learn how to use the tags manager.
First, we retrieve one of our posts (the one with ID 1):

>>> from blog.models import Post
>>> post = Post.objects.get(id=1)

Then add some tags to it and retrieve its tags back to check that they were
successfully added:

>>> post.tags.add('music', 'jazz', 'django')

>>> post.tags.all()

[<Tag: jazz>, <Tag: django>, <Tag: music>]

Enhancing Your Blog with Advanced Features

[54]

Finally, remove a tag and check the list of tags again:

>>> post.tags.remove('django')
>>> post.tags.all()
[<Tag: jazz>, <Tag: music>]

That was easy, right? Run the command python manage.py runserver to start
the development server again and open http://127.0.0.1:8000/admin/taggit/
tag/ in your browser. You will see the admin page with the list of Tag objects of the
taggit application:

Navigate to http://127.0.0.1:8000/admin/blog/post/ and click on a post to edit
it. You will see that posts now include a new Tags field like the following where you
can easily edit tags:

Now, we are going to edit our blog posts to display the tags. Open the blog/post/
list.html template and add the following HTML code below the post title:

<p class="tags">Tags: {{ post.tags.all|join:", " }}</p>

Chapter 2

[55]

The join template filter works as the Python string join() method to concatenate
elements with the given string. Open http://127.0.0.1:8000/blog/ in your
browser. You should see the list of tags under each post title:

Now, we are going to edit our post_list view to let users list all posts tagged with a
specific tag. Open the views.py file of your blog application, import the Tag model
form django-taggit, and change the post_list view to optionally filter posts by
tag like this:

from taggit.models import Tag

def post_list(request, tag_slug=None):
 object_list = Post.published.all()
 tag = None

 if tag_slug:
 tag = get_object_or_404(Tag, slug=tag_slug)
 object_list = object_list.filter(tags__in=[tag])
 # ...

The view now works as follows:

1. The view takes an optional tag_slug parameter that has a None default
value. This parameter will come in the URL.

2. Inside the view, we build the initial QuerySet, retrieving all published posts,
and if there is a given tag slug, we get the Tag object with the given slug
using the get_object_or_404() shortcut.

3. Then we filter the list of posts by the ones that contain the given tag. Since
this is a many-to-many relationship, we have to filter by tags contained in a
given list, which in our case contains only one element.

Remember that Querysets are lazy. The QuerySets to retrieve posts will only be
evaluated when we loop over the post list when rendering the template.

Enhancing Your Blog with Advanced Features

[56]

Finally, modify the render() function at the bottom of the view to pass the tag
variable to the template The view should finally look like this:

def post_list(request, tag_slug=None):
 object_list = Post.published.all()
 tag = None

 if tag_slug:
 tag = get_object_or_404(Tag, slug=tag_slug)
 object_list = object_list.filter(tags__in=[tag])

 paginator = Paginator(object_list, 3) # 3 posts in each page
 page = request.GET.get('page')
 try:
 posts = paginator.page(page)
 except PageNotAnInteger:
 # If page is not an integer deliver the first page
 posts = paginator.page(1)
 except EmptyPage:
 # If page is out of range deliver last page of results
 posts = paginator.page(paginator.num_pages)
 return render(request, 'blog/post/list.html', {'page': page,
 'posts': posts,
 'tag': tag})

Open the urls.py file of your blog application, comment out the class-based
PostListView URL pattern, and uncomment the post_list view like this:

url(r'^$', views.post_list, name='post_list'),
url(r'^$', views.PostListView.as_view(), name='post_list'),

Add the following additional URL pattern to list posts by tag:

url(r'^tag/(?P<tag_slug>[-\w]+)/$', views.post_list,
 name='post_list_by_tag'),

As you can see, both patterns point to the same view, but we are naming them
differently. The first pattern will call the post_list view without any optional
parameters, while the second pattern will call the view with the tag_slug parameter.

Since we are using the post_list view, edit the blog/post/list.html template
and modify the pagination to use the posts object like this:

{% include "pagination.html" with page=posts %}

Chapter 2

[57]

Add the following lines above the {% for %} loop:

{% if tag %}
 <h2>Posts tagged with "{{ tag.name }}"</h2>
{% endif %}

If the user is accessing the blog, he will see the list of all posts. If he is filtering
by posts tagged with a specific tag, he will see this information. Now, change
the way tags are displayed into the following:

<p class="tags">
 Tags:
 {% for tag in post.tags.all %}

 {{ tag.name }}

 {% if not forloop.last %}, {% endif %}
 {% endfor %}
</p>

Now, we loop through all the tags of a post displaying a custom link to the URL to
filter posts by that tag. We build the URL with {% url "blog:post_list_by_tag"
tag.slug %}, using the name of the URL and the tag slug as parameter. We separate
the tags by commas.

Open http://127.0.0.1:8000/blog/ in your browser and click on any tag link.
You will see the list of posts filtered by that tag like this:

Enhancing Your Blog with Advanced Features

[58]

Retrieving posts by similarity
Now that we have tagging for our blog posts, we can do many interesting things
with them. Using tags, we can classify our blog posts very well. Posts about similar
topics will have several tags in common. We are going to build a functionality to
display similar posts by the number of tags they share. In this way, when a user
reads a post, we can suggest them to read other related posts.

In order to retrieve similar posts for a specific post, we need to:

• Retrieve all tags for the current post.
• Get all posts that are tagged with any of those tags.
• Exclude the current post from that list to avoid recommending the same post.
• Order the results by the number of tags shared with the current post.
• In case of two or more posts with the same number of tags, recommend the

most recent post.
• Limit the query to the number of posts we want to recommend.

These steps are translated into a complex QuerySet that we are going to include in
our post_detail view. Open the views.py file of your blog application and add the
following import at the top of it:

from django.db.models import Count

This is the Count aggregation function of the Django ORM. This function will allow
us to perform aggregated counts. Then add the following lines inside the post_
detail view before the render() function:

List of similar posts
post_tags_ids = post.tags.values_list('id', flat=True)
similar_posts = Post.published.filter(tags__in=post_tags_ids)\
 .exclude(id=post.id)
similar_posts = similar_posts.annotate(same_tags=Count('tags'))\
 .order_by('-same_tags','-publish')[:4]

This code is as follows:

1. We retrieve a Python list of ID'S for the tags of the current post. The
values_list() QuerySet returns tuples with the values for the given
fields. We are passing it flat=True to get a flat list like [1, 2, 3, ...].

2. We get all posts that contain any of these tags excluding the current
post itself.

Chapter 2

[59]

3. We use the Count aggregation function to generate a calculated field
same_tags that contains the number of tags shared with all the tags queried.

4. We order the result by the number of shared tags (descendant order) and
by the publish to display recent posts first for the posts with the same
number of shared tags. We slice the result to retrieve only the first four posts.

Add the similar_posts object to the context dictionary for the render() function
as follows:

return render(request,
 'blog/post/detail.html',
 {'post': post,
 'comments': comments,
 'comment_form': comment_form,
 'similar_posts': similar_posts})

Now, edit the blog/post/detail.html template and add the following code before
the post comments list:

<h2>Similar posts</h2>
{% for post in similar_posts %}
 <p>
 {{ post.title }}
 </p>
{% empty %}
 There are no similar posts yet.
{% endfor %}

It's also recommended that you add the list of tags to your post detail template the
same way we did in the post list template. Now, your post detail page should look
like this:

Enhancing Your Blog with Advanced Features

[60]

You are successfully recommending similar posts to your users. django-taggit
also includes a a similar_objects() manager that you can use to retrieve objects
by shared tags. You can see all django-taggit managers at http://django-taggit.
readthedocs.org/en/latest/api.html.

Summary
In this chapter, you learned how to work with Django forms and model forms. You
created a system to share your site's content by e-mail and you created a comment
system for your blog. You added tagging to your blog posts, integrating a reusable
application, and you built complex QuerySets to retrieve objects by similarity.

In the next chapter, you will learn how to create custom template tags and filters.
You will also build a custom sitemap and feed for your blog posts, and integrate
an advanced search engine into your application.

http://django-taggit.readthedocs.org/en/latest/api.html
http://django-taggit.readthedocs.org/en/latest/api.html

[61]

Extending Your Blog
Application

The previous chapter went through the basics of forms, and you learned how to
integrate third-party applications into your project. This chapter will cover the
following points:

• Creating custom template tags and filters
• Adding a sitemap and a post feed
• Building a search engine with Solr and Haystack

Creating custom template tags and filters
Django offers a variety of built-in template tags such as {% if %} or {% block %}.
You have used several in your templates. You can find a complete reference of
built-in template tags and filters at https://docs.djangoproject.com/en/1.8/
ref/templates/builtins/.

However, Django also allows you to create your own template tags to perform
custom actions. Custom template tags come in very handy when you need to
add functionality to your templates that is not covered by the core set of Django
template tags.

https://docs.djangoproject.com/en/1.8/ref/templates/builtins/
https://docs.djangoproject.com/en/1.8/ref/templates/builtins/

Extending Your Blog Application

[62]

Creating custom template tags
Django provides the following helper functions that allow you to create your own
template tags in an easy manner:

• simple_tag: Processes the data and returns a string
• inclusion_tag: Processes the data and returns a rendered template
• assignment_tag: Processes the data and sets a variable in the context

Template tags must live inside Django applications.

Inside your blog application directory, create a new directory, name it
templatetags and add an empty __init__.py file to it. Create another file in the
same folder and name it blog_tags.py. The file structure of the blog application
should look like the following:

blog/
 __init__.py
 models.py
 ...
 templatetags/
 __init__.py
 blog_tags.py

The name of the file is important. You are going to use the name of this module to
load your tags in templates.

We will start by creating a simple tag to retrieve the total posts published in the blog.
Edit the blog_tags.py file you just created and add the following code:

from django import template

register = template.Library()

from ..models import Post

@register.simple_tag
def total_posts():
 return Post.published.count()

Chapter 3

[63]

We have created a simple template tag that returns the number of posts published
so far. Each template tags module needs to contain a variable called register to be
a valid tag library. This variable is an instance of template.Library and it's used
to register your own template tags and filters. Then we are defining a tag called
total_posts with a Python function and using @register.simple_tag to define
the function as a simple tag and register it. Django will use the function's name as the
tag name. If you want to register it with a different name, you can do it by specifying
a name attribute like @register.simple_tag(name='my_tag').

After adding a new template tags module, you will need to restart
the Django development server in order to use the new template
tags and filters.

Before using custom template tags, you have to make them available for the template
using the {% load %} tag. As mentioned before, you need to use the name of the
Python module containing your template tags and filters. Open the blog/base.html
template and add {% load blog_tags %} at the top of it to load your template tags
module. Then use the tag you created to display your total posts. Just add {% total_
posts %} to your template. The template should finally look like this:

{% load blog_tags %}
{% load staticfiles %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/blog.css" %}" rel="stylesheet">
</head>
<body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>My blog</h2>
 <p>This is my blog. I've written {% total_posts %} posts so far.</
p>
 </div>
</body>
</html>

Extending Your Blog Application

[64]

We need to restart the server to keep track of the new files added to the project. Stop
the development server with Ctrl+C and run it again using this command:

python manage.py runserver

Open http://127.0.0.1:8000/blog/ in your browser. You should see the number
of total posts in the sidebar of the site, like this:

The power of custom template tags is that you can process any data and add it to any
template regardless of the view executed. You can perform QuerySets or process any
data to display results in your templates.

Now, we are going to create another tag to display the latest posts in the sidebar of
our blog. This time we are going to use an inclusion tag. Using an inclusion tag, you
can render a template with context variables returned by your template tag. Edit the
blog_tags.py file and add the following code:

@register.inclusion_tag('blog/post/latest_posts.html')
def show_latest_posts(count=5):
 latest_posts = Post.published.order_by('-publish')[:count]
 return {'latest_posts': latest_posts}

In this code, we register the template tag with @register.inclusion_tag and we
specify the template that has to be rendered with the returned values with blog/
post/latest_posts.html. Our template tag will accept an optional count parameter
that defaults to 5 and allows us to specify the number of comments we want to
display. We use this variable to limit the results of the query Post.published.
order_by('-publish')[:count]. Notice that the function returns a dictionary
of variables instead of a simple value. Inclusion tags have to return a dictionary of
values that is used as the context to render the specified template. Inclusion tags
return a dictionary. The template tag we just created can be used passing the optional
number of comments to display like {% show_latest_posts 3 %}.

Now, create a new template file under blog/post/ and name it latest_posts.
html. Add the following code to it:

{% for post in latest_posts %}

 {{ post.title }}

Chapter 3

[65]

{% endfor %}

Here, we display an unordered list of posts using the latest_posts variable
returned by our template tag. Now, edit the blog/base.html template and add the
new template tag to display the last 3 comments. The sidebar block should look like
the following:

<div id="sidebar">
 <h2>My blog</h2>
 <p>This is my blog. I've written {% total_posts %} posts so far.</p>

 <h3>Latest posts</h3>
 {% show_latest_posts 3 %}
</div>

The template tag is called passing the number of comments to display and the
template is rendered in place with the given context.

Now, go back to your browser and refresh the page. The sidebar should now look
like this:

Finally, we are going to create an assignment tag. Assignment tags are like simple
tags but they store the result in a given variable. We will create an assignment tag
to display the most commented posts. Edit the blog_tags.py file and add the
following import and template tag in it:

from django.db.models import Count

@register.assignment_tag
def get_most_commented_posts(count=5):
 return Post.published.annotate(
 total_comments=Count('comments')
).order_by('-total_comments')[:count]

Extending Your Blog Application

[66]

This QuerySet uses the annotate() function for query aggregation, using the Count
aggregation function. We build a QuerySet aggregating the total number of comments
for each post in a total_comments field and we order the QuerySet by this field. We
also provide an optional count variable to limit the total number of objects returned
to a given value.

In adition to Count, Django offers the aggregation functions Avg, Max, Min, and Sum.
You can read more about aggregation functions at https://docs.djangoproject.
com/en/1.8/topics/db/aggregation/.

Edit the blog/base.html template and append the following code to the sidebar
<div> element:

<h3>Most commented posts</h3>
{% get_most_commented_posts as most_commented_posts %}

{% for post in most_commented_posts %}

 {{ post.title }}

{% endfor %}

The notation for assignment template tags is {% template_tag as variable
%}. For our template tag, we use {% get_most_commented_posts as most_
commented_posts %}. This way, we are storing the result of the template tag in a
new variable named most_commented_posts. Then, we display the returned posts
with an unordered list.

Now, open your browser and refresh the page to see the final result. It should look
like the following:

https://docs.djangoproject.com/en/1.8/topics/db/aggregation/
https://docs.djangoproject.com/en/1.8/topics/db/aggregation/

Chapter 3

[67]

You can read more about custom template tags at https://docs.djangoproject.
com/en/1.8/howto/custom-template-tags/.

Creating custom template filters
Django has a variety of built-in template filters that allow you to modify variables
in templates. These are Python functions that take one or two parameters—the
value of the variable it's being applied to, and an optional argument. They return
a value that can be displayed or treated by another filter. A filter looks like {{
variable|my_filter }} or passing an argument, it looks like {{ variable|my_
filter:"foo" }}. You can apply as many filters as you like to a variable like {{
variable|filter1|filter2 }}, and each of them will be applied to the output
generated by the previous filter.

We are going to create a custom filter to be able to use markdown syntax in
our blog posts and then convert the post contents to HTML in the templates.
Markdown is a plain text formatting syntax that is very simple to use and it's
intended to be converted into HTML. You can learn the basics of this format
at http://daringfireball.net/projects/markdown/basics.

First, install the Python markdown module via pip using the following command:

pip install Markdown==2.6.2

Then edit the blog_tags.py file and include the following code:

from django.utils.safestring import mark_safe
import markdown

@register.filter(name='markdown')
def markdown_format(text):
 return mark_safe(markdown.markdown(text))

We register template filters in the same way as we do with template tags. To avoid
collision between our function name and the markdown module, we name our
function markdown_format and name the filter markdown for usage in templates like
{{ variable|markdown }}. Django escapes the HTML code generated by filters.
We use the mark_safe function provided by Django to mark the result as safe HTML
to be rendered in the template. By default, Django will not trust any HTML code
and will escape it before placing it into the output. The only exception are variables
that are marked safe from escaping. This behavior prevents Django from outputting
potentially dangerous HTML and allows you to create exceptions when you know
you are returning safe HTML.

https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/
https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/
http://daringfireball.net/projects/markdown/basics

Extending Your Blog Application

[68]

Now, load your template tags module in the post list and detail templates. Add the
following line at the top of the post/list.html and post/detail.html template
after the {% extends %} tag:

{% load blog_tags %}

In the post/detail.html templates, replace the following line:

{{ post.body|linebreaks }}

...with the following one:

{{ post.body|markdown }}

Then, in the post/list.html file, replace this line:

{{ post.body|truncatewords:30|linebreaks }}

...with the following one:

{{ post.body|markdown|truncatewords_html:30 }}

The truncatewords_html filter truncates a string after a certain number of words,
avoiding unclosed HTML tags.

Now, open http://127.0.0.1:8000/admin/blog/post/add/ in your browser and
add a post with the following body:

This is a post formatted with markdown

This is emphasized and **this is more emphasized**.

Here is a list:

* One
* Two
* Three

And a [link to the Django website](https://www.djangoproject.com/)

Chapter 3

[69]

Open your browser and see how the post is rendered. You should see the following:

As you can see, custom template filters are very useful to customize formatting. You
can find more information about custom filters at https://docs.djangoproject.
com/en/1.8/howto/custom-template-tags/#writing-custom-template-
filters.

Adding a sitemap to your site
Django comes with a sitemap framework, which allows you to generate sitemaps for
your site dynamically. A sitemap is an XML file that tells search engines the pages
of your website, their relevance, and how frequently they are updated. By using a
sitemap, you will help crawlers indexing your website's content.

The Django sitemap framework depends on django.contrib.sites, which allows
you to associate objects to particular websites that are running with your project.
This comes handy when you want to run multiple sites using a single Django project.
To install the sitemap framework, we need to activate both the sites and the sitemap
applications in our project. Edit the settings.py file of your project and add
django.contrib.sites and django.contrib.sitemaps to the INSTALLED_APPS
setting. Also define a new setting for the site ID, as follows:

SITE_ID = 1

Application definition
INSTALLED_APPS = (

https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/#writing-custom-template-filters
https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/#writing-custom-template-filters
https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/#writing-custom-template-filters

Extending Your Blog Application

[70]

 # ...
 'django.contrib.sites',
 'django.contrib.sitemaps',
)

Now, run the following command to create the tables of the Django sites application
in the database:

python manage.py migrate

You should see an output that contains this line:

Applying sites.0001_initial... OK

The sites application is now synced with the database. Now, create a new file inside
your blog application directory and name it sitemaps.py. Open the file and add the
following code to it:

from django.contrib.sitemaps import Sitemap
from .models import Post

class PostSitemap(Sitemap):
 changefreq = 'weekly'
 priority = 0.9

 def items(self):
 return Post.published.all()

 def lastmod(self, obj):
 return obj.publish

We create a custom sitemap by inheriting the Sitemap class of the sitemaps module.
The changefreq and priority attributes indicate the change frequency of your
post pages and their relevance in your website (maximum value is 1). The items()
method returns the QuerySet of objects to include in this sitemap. By default, Django
calls the get_absolute_url() method on each object to retrieve its URL. Remember
that we created this method in Chapter 1, Building a Blog Application, to retrieve the
canonical URL for posts. If you want to specify the URL for each object, you can
add a location method to your sitemap class. The lastmod method receives each
object returned by items() and returns the last time the object was modified. Both
changefreq and priority method can also be either methods or attributes. You can
see the complete sitemap reference in the official Django documentation located at
https://docs.djangoproject.com/en/1.8/ref/contrib/sitemaps/.

https://docs.djangoproject.com/en/1.8/ref/contrib/sitemaps/

Chapter 3

[71]

Finally, we just need to add our sitemap URL. Edit the main urls.py file of your
project and add the sitemap like this:

from django.conf.urls import include, url
from django.contrib import admin
from django.contrib.sitemaps.views import sitemap
from blog.sitemaps import PostSitemap

sitemaps = {
 'posts': PostSitemap,
}

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^blog/',
 include('blog.urls'namespace='blog', app_name='blog')),
 url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps},
 name='django.contrib.sitemaps.views.sitemap'),
]

Here, we include the required imports and define a dictionary of sitemaps. We
define a URL pattern that matches with sitemap.xml and uses the sitemap
view. The sitemaps dictionary is passed to the sitemap view. Now open
http://127.0.0.1:8000/sitemap.xml in your browser. You should see
XML code like the following:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>http://example.com/blog/2015/09/20/another-post/</loc>
 <lastmod>2015-09-29</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.9</priority>
 </url>
 <url>
 <loc>http://example.com/blog/2015/09/20/who-was-django-
reinhardt/</loc>
 <lastmod>2015-09-20</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.9</priority>
 </url>
</urlset>

Extending Your Blog Application

[72]

The URL for each post has been built calling its get_absolute_url() method.
The lastmod attribute corresponds to the post publish date field as we specified
in our sitemap, and the changefreq and priority attributes are also taken from
our PostSitemap class. You can see that the domain used to build the URLs is
example.com. This domain comes from a Site object stored in the database. This
default object has been created when we synced the sites framework with our
database. Open http://127.0.0.1:8000/admin/sites/site/ in your browser.
You should see something like this:

This is the list display admin view for the sites framework. Here, you can set the
domain or host to be used by the sites framework and the applications that depend
on it. In order to generate URLs that exist in our local environment, change the
domain name to 127.0.0.1:8000 as shown in the following screenshot and save it:

We point to our local host for development purposes. In a production environment,
you will have to use your own domain name for the sites framework.

Chapter 3

[73]

Creating feeds for your blog posts
Django has a built-in syndication feed framework that you can use to dynamically
generate RSS or Atom feeds in a similar manner to creating sitemaps using the
sites framework.

Create a new file in your blog application directory and name it feeds.py. Add the
following lines to it:

from django.contrib.syndication.views import Feed
from django.template.defaultfilters import truncatewords
from .models import Post

class LatestPostsFeed(Feed):
 title = 'My blog'
 link = '/blog/'
 description = 'New posts of my blog.'

 def items(self):
 return Post.published.all()[:5]

 def item_title(self, item):
 return item.title

 def item_description(self, item):
 return truncatewords(item.body, 30)

First, we subclass the Feed class of the syndication framework. The title, link, and
description attributes correspond to the <title>, <link>, and <description>
RSS elements respectively.

The items() method retrieves the objects to be included in the feed. We are
retrieving only the last five published posts for this feed. The item_title() and
item_description() methods receive each object returned by items() and return
the title and description for each item. We use the truncatewords built-in template
filter to build the description of the blog post with the first 30 words.

Now, edit the urls.py file of your blog application, import the LatestPostsFeed
you just created, and instantiate the feed in a new URL pattern:

from .feeds import LatestPostsFeed

urlpatterns = [
 # ...
 url(r'^feed/$', LatestPostsFeed(), name='post_feed'),
]

Extending Your Blog Application

[74]

Navigate to http://127.0.0.1:8000/blog/feed/ in your browser. You should
now see the RSS feedincluding the last five blog posts:

<?xml version="1.0" encoding="utf-8"?>
<rss xmlns:atom="http://www.w3.org/2005/Atom" version="2.0">
 <channel>
 <title>My blog</title>
 <link>http://127.0.0.1:8000/blog/</link>
 <description>New posts of my blog.</description>
 <atom:link href="http://127.0.0.1:8000/blog/feed/" rel="self"/>
 <language>en-us</language>
 <lastBuildDate>Sun, 20 Sep 2015 20:40:55 -0000</lastBuildDate>
 <item>
 <title>Who was Django Reinhardt?</title>
 <link>http://127.0.0.1:8000/blog/2015/09/20/who-was-django-
reinhardt/</link>
 <description>The Django web framework was named after the
amazing jazz guitarist Django Reinhardt.</description>
 <guid>http://127.0.0.1:8000/blog/2015/09/20/who-was-django-
reinhardt/</guid>
 </item>
 ...
 </channel>
</rss>

If you open the same URL in a RSS client, you will be able to see your feed with a
user-friendly interface.

Last step is adding a feed subscription link to the blog's sidebar. Open the blog/
base.html template and add the following line under the number of total posts
inside the sidebar div:

<p>Subscribe to my RSS feed</
p>

Now, open http://127.0.0.1:8000/blog/ in your browser and take a look at the
sidebar. The new link should take you to your blog's feed:

Chapter 3

[75]

Adding a search engine with Solr and
Haystack
Now, we are going to add search capabilities to our blog. The Django ORM allows
you to perform case-insensitive lookups using the icontains filter. For example,
you can use the following query to find posts that contain the word framework in
their body:

Post.objects.filter(body__icontains='framework')

However, if you need more powerful search functionalities, you have to use a proper
search engine. We are going to use Solr in conjunction with Django to build a search
engine for our blog. Solr is a popular open-source search platform that offers full-
text search, term boosting, hit highlighting, faceted search, and dynamic clustering,
among other advanced search features.

In order to integrate Solr in our project, we are going to use Haystack. Haystack is a
Django application that works as an abstraction layer for multiple search engines. It
offers a simple search API very similar to Django QuerySets. Let's start by installing
and configuring Solr and Haystack.

Installing Solr
You will need the Java Runtime Environment version 1.7 or higher to install Solr.
You can check your java version using the command java -version in the shell
prompt. The output might vary but you need to make sure the installed version
is at least 1.7:

java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

If you don't have Java installed or your version is lower than the required one,
then you can download Java from http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

After checking your Java version, download Solr version 4.10.4 from http://
archive.apache.org/dist/lucene/solr/. Unzip the downloaded file and go
to the example directory within the Solr installation directory (that is, cd solr-
4.10.4/example/). This directory contains a ready to use Solr configuration. From
this directory, run Solr with the built-in Jetty web server using the command:

java -jar start.jar

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://archive.apache.org/dist/lucene/solr/
http://archive.apache.org/dist/lucene/solr/

Extending Your Blog Application

[76]

Open your browser and enter the URL http://127.0.0.1:8983/solr/. You should
see something like the following:

This is the Solr administration console. This console shows you usage statistics
and allows you to manage your search backend, check the indexed data, and
perform queries.

Creating a Solr core
Solr allows you to isolate instances in cores. Each Solr core is a Lucene instance along
with a Solr configuration, a data schema, and other required configuration to use it.
Solr allows you to create and manage cores on the fly. The example configuration
includes a core called collection1. You can see the information of this core if you
click on the Core Admin menu tab, as shown in the following screenshot:

Chapter 3

[77]

We are going to create a core for our blog application. First, we need to create the
file structure for our core. Inside the example directory within the solr-4.10.4/
directory, create a new directory and name it blog. Then create the following empty
files and directories inside it:

blog/
 data/
 conf/
 protwords.txt
 schema.xml
 solrconfig.xml
 stopwords.txt
 synonyms.txt
 lang/
 stopwords_en.txt

Add the following XML code to the solrconfig.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<config>
 <luceneMatchVersion>LUCENE_36</luceneMatchVersion>
 <requestHandler name="/select" class="solr.StandardRequestHandler"
default="true" />
 <requestHandler name="/update" class="solr.UpdateRequestHandler" />
 <requestHandler name="/admin" class="solr.admin.AdminHandlers" />
 <requestHandler name="/admin/ping" class="solr.PingRequestHandler">
 <lst name="invariants">
 <str name="qt">search</str>
 <str name="q">*:*</str>
 </lst>
 </requestHandler>
</config>

You can also copy this file from the code that comes along with this chapter. This
is a minimal Solr configuration. Edit the schema.xml file and add the following
XML code:

<?xml version="1.0" ?>
<schema name="default" version="1.5">
</schema>

This is an empty schema. The schema defines the fields and their types for the data
that will be indexed in the search engine. We are going to use a custom schema later.

Extending Your Blog Application

[78]

Now, click on the Core Admin menu tab and then click on the Add Core button.
You will see a form like the following that allows you to specify the information
for your core:

Fill the form with the following data:

• name: blog
• instanceDir: blog
• dataDir: data
• config: solrconfig.xml
• schema: schema.xml

The name field is the name you want to give to this core. The instanceDir field is
the directory of your core. The dataDir is the directory where indexed data will
reside. It is located inside the instanceDir. The config field is the name of your Solr
XML configuration file and the schema field is the name of your Solr XML data
schema file.

Chapter 3

[79]

Now, click the Add Core button. If you see the following, then your new core has
been successfully added to Solr:

Installing Haystack
To use Solr with Django, we need Haystack. Install Haystack via pip using the
following command:

pip install django-haystack==2.4.0

Haystack can interact with several search engine backends. To use the Solr backend,
you also need to install the pysolr module. Run the following command to install it:

pip install pysolr==3.3.2

After installing django-haystack and pysolr, you need to activate Haystack in your
project. Open the settings.py file and add haystack to the INSTALLED_APPS
setting like this:

INSTALLED_APPS = (
 # ...
 'haystack',
)

Extending Your Blog Application

[80]

You need to define the search engine backends for haystack. You can do
this by adding a HAYSTACK_CONNECTIONS setting. Add the following into your
settings.py file:

HAYSTACK_CONNECTIONS = {
 'default': {
 'ENGINE': 'haystack.backends.solr_backend.SolrEngine',
 'URL': 'http://127.0.0.1:8983/solr/blog'
 },
}

Notice that the URL points to our blog core. Haystack is now installed and ready
to be used with Solr.

Building indexes
Now, we have to register the models we want to store in the search engine. The
convention for Haystack is to create a search_indexes.py file into your application
and register your models there. Create a new file into your blog application
directory and name it search_indexes.py. Add the following code to it:

from haystack import indexes
from .models import Post

class PostIndex(indexes.SearchIndex, indexes.Indexable):
 text = indexes.CharField(document=True, use_template=True)
 publish = indexes.DateTimeField(model_attr='publish')

 def get_model(self):
 return Post

 def index_queryset(self, using=None):
 return self.get_model().published.all()

This is a custom SearchIndex for the Post model. With this index, we tell Haystack
which data from this model has to be indexed in the search engine. The index is built
by subclassing indexes.SearchIndex and indexes.Indexable. Every SearchIndex
requires that one of its fields has document=True. The convention is to name this
field text. This field is the primary search field. With use_template=True, we
are telling Haystack that this field will be rendered to a data template to build the
document the search engine will index. The publish field is a datetime field that will
be also indexed. We indicate that this field corresponds to the publish field of the
Post model by using the model_attr parameter. The field will be indexed with the
content of the publish field of the indexed Post object.

Chapter 3

[81]

Additional fields like this one are useful to provide additional filters to searches. The
get_model() method has to return the model for the documents that will be stored
in this index. The index_queryset() method returns the QuerySet for the objects
that will be indexed. Notice that we are only including published posts.

Now, create the path and file search/indexes/blog/post_text.txt in the
templates directory of the blog application and add the following code to it:

{{ object.title }}
{{ object.tags.all|join:", " }}
{{ object.body }}

This is the default path for the document template for the text field of our
index. Haystack uses the application name and the model name to build the path
dynamically. Every time we are going to index an object, Haystack will build
a document based on this template and then index the document in the Solr
search engine.

Now that we have a custom search index, we have to create the appropriate Solr
schema. Solr's configuration is XML-based, so we have to generate an XML schema
for the data we are going to index. Fortunately, Haystack offers a way to generate
the schema dynamically, based on our search indexes. Open the terminal and run
the following command:

python manage.py build_solr_schema

You should see an XML output. If you take a look at the bottom of the generated XML
code, you will see that Haystack generated fields for your PostIndex automatically:

<field name="text" type="text_en" indexed="true" stored="true"
 multiValued="false" />
<field name="publish" type="date" indexed="true" stored="true"
 multiValued="false" />

Copy the whole XML output from the initial tag <?xml version="1.0" ?> to the
last tag </schema>, including both tags.

This XML is the schema to index data into Solr. Paste the new schema into the blog/
conf/schema.xml file inside the example directory of your Solr installation. The
schema.xml file is included in the code that comes along with this chapter, so you
can also copy it directly from this file.

Extending Your Blog Application

[82]

Open http://127.0.0.1:8983/solr/ in your browser and click on Core Admin
menu tab, then click on the blog core, and then click the Reload button:

We reload the core so that it takes into account the schema.xml changes. When the
core finishes reloading, the new schema is ready to index new data.

Indexing data
Let's index the posts of our blog into Solr. Open the terminal and execute the
following command:

python manage.py rebuild_index

You should see the following warning:

WARNING: This will irreparably remove EVERYTHING from your search
index in connection 'default'.
Your choices after this are to restore from backups or rebuild via the
`rebuild_index` command.
Are you sure you wish to continue? [y/N]

Enter y for yes. Haystack will clear the search index and insert all published blog
posts. You should see an output like this:

Removing all documents from your index because you said so.
All documents removed.
Indexing 4 posts

Open http://127.0.0.1:8983/solr/#/blog in your browser. Under Statistics,
you should be able to see the number of indexed documents as follows:

Chapter 3

[83]

Now, open http://127.0.0.1:8983/solr/#/blog/query in your browser. This
is a query interface provided by Solr. Click the Execute query button. The default
query requests all documents indexed in your core. You will see a JSON output
with the results of the query. The outputted documents look like the following:

{
 "id": "blog.post.1",
 "text": "Who was Django Reinhardt?\njazz, music\nThe Django
web framework was named after the amazing jazz guitarist Django
Reinhardt.",
 "django_id": "1",
 "publish": "2015-09-20T12:49:52Z",
 "django_ct": "blog.post"
 },

This is the data stored for each post in the search index. The text field contains the
title, tags separated by commas, and the body of the post, as this field is built with
the template we defined before.

You have used python manage.py rebuild_index to remove everything in the
index and to index the documents again. To update your index without removing all
objects, you can use python manage.py update_index. Alternatively, you can use
the parameter --age=<num_hours> to update less objects. You can set up a Cron job
for this in order to keep your Solr index updated.

Creating a search view
Now, we are going to create a custom view to allow our users to search posts. First,
we need a search form. Edit the forms.py file of your blog application and add the
following form:

class SearchForm(forms.Form):
 query = forms.CharField()

We will use the query field to let the users introduce search terms. Edit the views.py
file of your blog application and add the following code to it:

from .forms import EmailPostForm, CommentForm, SearchForm
from haystack.query import SearchQuerySet

def post_search(request):
 form = SearchForm()
 if 'query' in request.GET:
 form = SearchForm(request.GET)
 if form.is_valid():

Extending Your Blog Application

[84]

 cd = form.cleaned_data
 results = SearchQuerySet().models(Post)\
 .filter(content=cd['query']).load_all()
 # count total results
 total_results = results.count()
 return render(request,
 'blog/post/search.html',
 {'form': form,
 'cd': cd,
 'results': results,
 'total_results': total_results})

In this view, first we instantiate the SearchForm that we created before. We are
going to submit the form using the GET method so that the resulting URL includes
the query parameter. To see if the form has been submitted, we look for the
query parameter in the request.GET dictionary. When the form is submitted, we
instantiate it with the submitted GET data and we check that the given data is valid.
If the form is valid, we use the we use SearchQuerySet to perform a search for
indexed Post objects whose main content contains the given query. The load_all()
method loads all related Post objects from the database at once. With this method,
we populate the search results with the database objects to avoid per-object access to
the database when iterating over results to access object data. Finally, we store the
total number of results in a total_results variable and pass the local variables as
context to render a template.

The search view is ready. We need to create a template to display the form and the
results when the user performs a search. Create a new file inside the templates/
blog/post/ directory, name it search.html, and add the following code to it:

{% extends "blog/base.html" %}

{% block title %}Search{% endblock %}

{% block content %}
 {% if "query" in request.GET %}
 <h1>Posts containing "{{ cd.query }}"</h1>
 <h3>Found {{ total_results }} result{{ total_results|pluralize
}}</h3>
 {% for result in results %}
 {% with post=result.object %}
 <h4>{{ post.title }}</
a></h4>
 {{ post.body|truncatewords:5 }}
 {% endwith %}
 {% empty %}

Chapter 3

[85]

 <p>There are no results for your query.</p>
 {% endfor %}
 <p>Search again</p>
 {% else %}
 <h1>Search for posts</h1>
 <form action="." method="get">
 {{ form.as_p }}
 <input type="submit" value="Search">
 </form>
 {% endif %}
{% endblock %}

As in the search view, we distinguish if the form has been submitted based on the
presence of the query parameter. Before the post is submitted, we display the form
and a submit button. After the post is submitted, we display the query performed,
the total number of results, and the list of results. Each result is a document
returned by Solr and encapsulated by Haystack. We need to use result.object
to access the actual Post object related to this result.

Finally, edit the urls.py file of your blog application and add the following
URL pattern:

 url(r'^search/$', views.post_search, name='post_search'),

Now, open http://127.0.0.1:8000/blog/search/ in your browser. You should
see a search form like this:

Extending Your Blog Application

[86]

Now, enter a query and click the Search button. You will see the results of the search
query like the this:

Now, you have a powerful search engine built into your project, but starting from
here there are a plenty of things you can do with Solr and Haystack. Haystack
includes search views, forms, and advanced functionalities for search engines. You
can read the Haystack documentation at http://django-haystack.readthedocs.
org/en/latest/.

The Solr search engine can be adapted to any need by customizing your schema.
You can combine analyzers, tokenizers, and token filters that are executed at
index or search time to provide a more accurate search for your site's content.
You can see all possibilities for this at https://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters.

Summary
In this chapter, you learned how to create custom Django template tags and filters to
provide templates with custom functionality. You also created a sitemap for search
engines to crawl your site and an RSS feed for users to subscribe to. You also built a
search engine for your blog by integrating Solr with Haystack into your project.

In the next chapter, you will learn how to build a social website by using the Django
authentication framework, creating custom user profiles, and building social
authentication.

http://django-haystack.readthedocs.org/en/latest/
http://django-haystack.readthedocs.org/en/latest/
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

[87]

Building a Social Website
In the previous chapter, you learned how to create sitemaps and feeds, and you
built a search engine for your blog application. In this chapter, you will develop a
social application. You will create functionality for users to login, logout, edit, and
reset their password. You will learn how to create a custom profile for your users,
and you will add social authentication to your site.

This chapter will cover the following points:

•	 Using the authentication framework
•	 Creating user registration views
•	 Extending the User model with a custom profile model
•	 Adding social authentication with python-social-auth

Let's start by creating our new project.

Creating a social website project
We are going to create a social application that will allow users to share images they
find on the Internet. We will need to build the following elements for this project:

•	 An authentication system for users to register, log in, edit their profile,
and change or reset their password

•	 A followers' system to allow users to follow each other
•	 Functionality to display shared images and implement a bookmarklet

for users to share images from any website
•	 An activity stream for each user that allows users to see the content

uploaded by the people they follow

This chapter addresses the first point.

Building a Social Website

[88]

Starting your social website project
Open the terminal and use the following commands to create a virtual environment
for your project and activate it:

mkdir env

virtualenv env/bookmarks

source env/bookmarks/bin/activate

The shell prompt will display your active virtual environment as follows:

(bookmarks)laptop:~ zenx$

Install Django in your virtual environment with the following command:

pip install Django==1.8.6

Run the following command to create a new project:

django-admin startproject bookmarks

After creating the initial project structure, use the following commands to get into
your project directory and create a new application named account:

cd bookmarks/

django-admin startapp account

Remember to activate the new application in your project by adding it to the
INSTALLED_APPS setting in the settings.py file. Place it in the INSTALLED_APPS
list before any of the other installed apps:

INSTALLED_APPS = (
 'account',
 # ...
)

Run the next command to sync the database with the models of the default
applications included in the INSTALLED_APPS setting:

python manage.py migrate

We are going to build an authentication system into our project using the
authentication framework.

Chapter 4

[89]

Using the Django authentication
framework
Django comes with a built-in authentication framework that can handle user
authentication, sessions, permissions, and user groups. The authentication system
includes views for common user actions such as login, logout, change password,
and reset password.

The authentication framework is located at django.contrib.auth and is used by
other Django contrib packages. Remember that you already used the authentication
framework in Chapter 1, Building a Blog Application to create a superuser for your blog
application to access the administration site.

When you create a new Django project using the startproject command, the
authentication framework is included in the default settings of your project. It
consists of the django.contrib.auth application and the following two middleware
classes found in the MIDDLEWARE_CLASSES setting of your project:

•	 AuthenticationMiddleware: Associates users with requests
using sessions

•	 SessionMiddleware: Handles the current session across requests

A middleware is a class with methods that are globally executed during the request
or response phase. You will use middleware classes on several occasions throughout
this book. You will learn to create custom middlewares in Chapter 13, Going Live.

The authentication framework also includes the following models:

•	 User: A user model with basic fields; the main fields of this model are:
username, password, email, first_name, last_name, and is_active.

•	 Group: A group model to categorize users.
•	 Permission: Flags to perform certain actions.

The framework also includes default authentication views and forms that we will
use later.

Building a Social Website

[90]

Creating a log-in view
We will start by using the Django authentication framework to allow users to log in
into our website. Our view should perform the following actions to log in a user:

1. Get the username and password by posting a form.
2. Authenticate the user against the data stored in the database.
3. Check if the user is active.
4. Log the user into the website and start an authenticated session.

First, we are going to create a log in form. Create a new forms.py file into your
account application directory and add the following lines to it:

from django import forms

class LoginForm(forms.Form):
 username = forms.CharField()
 password = forms.CharField(widget=forms.PasswordInput)

This form will be used to authenticate users against the database. Note that we
use the PasswordInput widget to render its HTML input element, including a
type="password" attribute. Edit the views.py file of your account application
and add the following code to it:

from django.http import HttpResponse
from django.shortcuts import render
from django.contrib.auth import authenticate, login
from .forms import LoginForm

def user_login(request):
 if request.method == 'POST':
 form = LoginForm(request.POST)
 if form.is_valid():
 cd = form.cleaned_data
 user = authenticate(username=cd['username'],
 password=cd['password'])
 if user is not None:
 if user.is_active:
 login(request, user)
 return HttpResponse('Authenticated '\
 'successfully')
 else:
 return HttpResponse('Disabled account')

Chapter 4

[91]

 else:
 return HttpResponse('Invalid login')
 else:
 form = LoginForm()
 return render(request, 'account/login.html', {'form': form})

This is what our basic log in view does: when the user_login view is called with
a GET request, we instantiate a new log in form with form = LoginForm() to
display it in the template. When the user submits the form via POST, we perform
the following actions:

1. Instantiate the form with the submitted data with form =
LoginForm(request.POST).

2. Check if the form is valid. If it is not valid, we display the form errors in our
template (for example, if user did not fill one of the fields).

3. If the submitted data is valid, we authenticate the user against the database
by using the authenticate() method. This method takes a username
and a password and returns a User object if the user has been successfully
authenticated, or None otherwise. If the user has not been authenticated,
we return a raw HttpResponse displaying a message.

4. If the user was successfully authenticated, we check if the user is active
accessing its is_active attribute. This is an attribute of Django's User
model. If the user is not active, we return an HttpResponse displaying
the information.

5. If the user is active, we log the user into the website. We set the user in the
session by calling the login() method and return a success message.

Note the difference between authenticate and login:
authenticate() checks user credentials and returns a user object
if they are right; login() sets the user in the current session.

Now, you need to create an URL pattern for this view. Create a new urls.py file into
your account application directory and add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 # post views
 url(r'^login/$', views.user_login, name='login'),
]

Building a Social Website

[92]

Edit the main urls.py file located in your bookmarks project directory and include
the URL patterns of the account application as follows:

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^account/', include('account.urls')),
]

The log in view can now be accessed by a URL. It is time to create a template for this
view. Since you don't have any templates for this project, you can start by creating a
base template that can be extended by the log in template. Create the following files
and directories inside the account application directory:

templates/
 account/
 login.html
 base.html

Edit the base.html file and add the following code to it:

{% load staticfiles %}
<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
 <link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
 <div id="header">
 Bookmarks
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
</body>
</html>

This will be the base template for the website. As we did in our previous project,
we include the CSS styles in the main template. You can find these static files in the
code that comes along with this chapter. Copy the static/ directory of the account
application to the same location in your project, so that you can use the static files.

Chapter 4

[93]

The base template defines a title and a content block that can be filled with
content by the templates that extend from it.

Let's create the template for our log-in form. Open the account/login.html
template and add the following code to it:

{% extends "base.html" %}

{% block title %}Log-in{% endblock %}

{% block content %}
 <h1>Log-in</h1>
 <p>Please, use the following form to log-in:</p>
 <form action="." method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Log-in"></p>
 </form>
{% endblock %}

This template includes the form that is instantiated in the view. Since our form will
be submitted via POST, we include the {% csrf_token %} template tag for CSRF
protection. You learned about CSRF protection in Chapter 2, Enhancing Your Blog with
Advanced Features.

There are no users in your database yet. You will need to create a superuser first
in order to be able to access the administration site to manage other users. Open
the command line and execute python manage.py createsuperuser. Fill in the
desired username, e-mail, and password. Then run the development server using
the command python manage.py runserver and open http://127.0.0.1:8000/
admin/ in your browser. Access the administration site using the username and
password of the user you just created. You will see the Django administration site,
including the User and Group models of the Django authentication framework. It
will look as follows:

Building a Social Website

[94]

Create a new user using the administration site and open http://127.0.0.1:8000/
account/login/ in your browser. You should see the rendered template, including
the log-in form:

Now, submit the form leaving one of the fields empty. In this case, you will see that
the form is not valid and it displays errors as follows:

If you enter an non-existing user or a wrong password, you will get an Invalid
login message.

Chapter 4

[95]

If you enter valid credentials, you get an Authenticated successfully message
like this:

Using Django authentication views
Django includes several forms and views in the authentication framework that
you can use straightaway. The login view you have created is a good exercise to
understand the process of user authentication in Django. However, you can use
the default Django authentication views in most cases.

Django provides the following views to deal with authentication:

•	 login: Handles a log in form and logs in a user
•	 logout: Logs out a user
•	 logout_then_login: Logs out a user and redirects him to the log-in page

Django provides the following views to handle password changes:

•	 password_change: Handles a form to change user password
•	 password_change_done: The success page shown to the user after

changing his password

Django also includes the following views to allow users to reset their password:

•	 password_reset: Allows the user to reset his password. It generates a
one-time use link with a token and sends it to the user's e-mail account.

•	 password_reset_done: Shows the user that the e-mail to reset his
password has been sent to his e-mail account.

•	 password_reset_confirm: Lets the user set a new password.
•	 password_reset_complete: The success page shown to the user after he

resets their password.

The views listed here can save you a lot of time when creating a website with user
accounts. The views use default values that you can override, such as the location of
the template to be rendered or the form to be used by the view.

You can get more information about built-in authentication views at https://docs.
djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.
auth.views.

https://docs.djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.auth.views
https://docs.djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.auth.views
https://docs.djangoproject.com/en/1.8/topics/auth/default/#module-django.contrib.auth.views

Building a Social Website

[96]

Log in and log out views
Edit the urls.py of your account application and make it look like this:

from django.conf.urls import url
from . import views

urlpatterns = [
 # previous login view
 # url(r'^login/$', views.user_login, name='login'),

 # login / logout urls
 url(r'^login/$',
 'django.contrib.auth.views.login',
 name='login'),
 url(r'^logout/$',
 'django.contrib.auth.views.logout',
 name='logout'),
 url(r'^logout-then-login/$',
 'django.contrib.auth.views.logout_then_login',
 name='logout_then_login'),
]

We comment out the URL pattern for the user_login view we have created
previously to use the login view of Django's authentication framework.

Create a new directory inside the templates directory of your account application
and name it registration. This is the default path where the Django authentication
views expect your authentication templates to be. Create a new file inside the new
directory, name it login.html, and add the following code to it:

{% extends "base.html" %}

{% block title %}Log-in{% endblock %}

{% block content %}
 <h1>Log-in</h1>
 {% if form.errors %}
 <p>
 Your username and password didn't match.
 Please try again.
 </p>
 {% else %}
 <p>Please, use the following form to log-in:</p>
 {% endif %}

Chapter 4

[97]

 <div class="login-form">
 <form action="{% url 'login' %}" method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="hidden" name="next" value="{{ next }}" />
 <p><input type="submit" value="Log-in"></p>
 </form>
 </div>
{% endblock %}

This login template is quite similar to the one we created before. Django uses the
AuthenticationForm located at django.contrib.auth.forms by default. This
form tries to authenticate the user and raises a validation error if the login was not
successful. In this case, we can look for errors using {% if form.errors %} in the
template to check if the provided credentials are wrong. Notice that we have added
a hidden HTML <input> element to submit the value of a variable called next. This
variable is first set by the log in view when you pass a next parameter in the request
(for example. http://127.0.0.1:8000/account/login/?next=/account/).

The next parameter has to be a URL. If this parameter is given, the Django login
view will redirect to the given URL after the user logs in.

Now, create a logged_out.html template inside the registration template
directory and make it look like this:

{% extends "base.html" %}

{% block title %}Logged out{% endblock %}

{% block content %}
 <h1>Logged out</h1>
 <p>You have been successfully logged out. You can <a href="{% url
"login" %}">log-in again.</p>
{% endblock %}

This is the template that Django will display after the user logs out.

After adding the URL patterns and the templates for log in and log out views, your
website is ready for users to log in using the Django authentication views.

Note that the logout_then_login view we included in our urlconf
does not need any template since it performs a redirect to the log in view.

Building a Social Website

[98]

Now, we are going to create a new view to display a dashboard to the user when he
or she logs in their account. Open the views.py file of your account application and
add the following code to it:

from django.contrib.auth.decorators import login_required

@login_required
def dashboard(request):
 return render(request,
 'account/dashboard.html',
 {'section': 'dashboard'})

We decorate our view with the login_required decorator of the authentication
framework. The login_required decorator checks if the current user is
authenticated. If the user is authenticated, it executes the decorated view; if the user
is not authenticated, it redirects him to the login URL with the URL he was trying to
access as a GET parameter named next. By doing so, the log in view redirects the user
back to the URL he was trying to access after he is successfully logged in. Remember
that we added a hidden input in the form of our log in template for this purpose.

We also define a section variable. We are going to use this variable to track which
section of the site the user is watching. Multiple views may correspond to the same
section. This is a simple way to define which section each view corresponds to.

Now, you need to create a template for the dashboard view. Create a new file inside
the templates/account/ directory and name it dashboard.html. Make it look
like this:

{% extends "base.html" %}

{% block title %}Dashboard{% endblock %}

{% block content %}
 <h1>Dashboard</h1>
 <p>Welcome to your dashboard.</p>
{% endblock %}

Then, add the following URL pattern for this view in the urls.py file of the
account application:

urlpatterns = [
 # ...
 url(r'^$', views.dashboard, name='dashboard'),
]

Chapter 4

[99]

Edit the settings.py file of your project and add the following code to it:

from django.core.urlresolvers import reverse_lazy

LOGIN_REDIRECT_URL = reverse_lazy('dashboard')
LOGIN_URL = reverse_lazy('login')
LOGOUT_URL = reverse_lazy('logout')

These settings are:

•	 LOGIN_REDIRECT_URL: Tells Django which URL to redirect after login
if the contrib.auth.views.login view gets no next parameter

•	 LOGIN_URL: Is the URL to redirect the user to log in (e.g. using the
login_required decorator)

•	 LOGOUT_URL: Is the URL to redirect the user to log out

We are using reverse_lazy() to build the URLs dynamically by their name. The
reverse_lazy() function reverses URLs just like reverse() does, but you can use it
when you need to reverse URLs before your project's URL configuration is loaded.

Let's summarize what you have done so far:

•	 You added the built-in Django authentication log in and log out views to
your project

•	 You created custom templates for both views and defined a simple view
to redirect users after they log in

•	 Finally, you configured your settings for Django to use these URLs
by default

Now, we are going to add log in and log out links to our base template to put
everything together.

In order to do this, we have to determine whether the current user is logged in or
not, to display the appropriate link in each case. The current user is set in the Http
Request object by the authentication middleware. You can access it with request.
user. You will find a user object in the request even if the user is not authenticated.
A non-authenticated user is set in the request as an instance of AnonymousUser. The
best way to check if the current user is authenticated is by calling request.user.
is_authenticated().

Building a Social Website

[100]

Edit your base.html and modify the <div> element with ID header, like this:

<div id="header">
 Bookmarks
 {% if request.user.is_authenticated %}
 <ul class="menu">
 <li {% if section == "dashboard" %}class="selected"{% endif %}>
 My dashboard

 <li {% if section == "images" %}class="selected"{% endif %}>
 Images

 <li {% if section == "people" %}class="selected"{% endif %}>
 People

 {% endif %}

 {% if request.user.is_authenticated %}
 Hello {{ request.user.first_name }},
 Logout
 {% else %}
 Log-in
 {% endif %}

</div>

As you can see, we only display the site's menu to authenticated users. We also check
the current section to add a selected class attribute to the corresponding item
in order to highlight the current section in the menu using CSS. We also display the
user's first name and a link to log out if the user is authenticated, or a link to log in
otherwise.

Now, open http://127.0.0.1:8000/account/login/ in your browser. You should
see the log in page. Enter a valid username and password and click the Log-in
button. You should see something like this:

Chapter 4

[101]

You can see that the My dashboard section is highlighted with CSS because it has
a selected class. Since the user is authenticated the first name of the user is
displayed in the right side of the header. Click on the Logout link. You should
see the following page:

In this page, you can see that the user is logged out, and therefore, you cannot see
the menu of the website anymore. The link on the right side of the header is shows
now Log-in.

If you are seeing the log out page of the Django administration site instead of your
own log out page, check the INSTALLED_APPS setting of your project and make sure
that django.contrib.admin comes after the account application. Both templates
are located in the same relative path and the Django template loader will use the
first one it finds.

Change password views
We also need our users to be able to change their password after they log in to our
site. We are going to integrate Django authentication views for password change.
Open the urls.py file of the account application and add the following URL
patterns to it:

change password urls
url(r'^password-change/$',
 'django.contrib.auth.views.password_change',
 name='password_change'),
url(r'^password-change/done/$',
 'django.contrib.auth.views.password_change_done',
 name='password_change_done'),

The password_change view will handle the form to change the password and
the password_change_done will display a success message after the user has
successfully changed his password. Let's create a template for each view.

Building a Social Website

[102]

Add a new file inside the templates/registration/ directory of your account
application and name it password_change_form.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}Change you password{% endblock %}

{% block content %}
 <h1>Change you password</h1>
 <p>Use the form below to change your password.</p>
 <form action="." method="post">
 {{ form.as_p }}
 <p><input type="submit" value="Change"></p>
 {% csrf_token %}
 </form>
{% endblock %}

This template includes the form to change the password. Now, create another file in
the same directory and name it password_change_done.html. Add the following
code to it:

{% extends "base.html" %}

{% block title %}Password changed{% endblock %}

{% block content %}
 <h1>Password changed</h1>
 <p>Your password has been successfully changed.</p>
{% endblock %}

This template only contains the success message to be displayed when the user has
successfully changed their password.

Chapter 4

[103]

Open http://127.0.0.1:8000/account/password-change/ in your browser. If
your user is not logged in, the browser will redirect you to the login page. After you
are successfully authenticated, you will see the following change password page:

Fill in the form with your current password and your new password and click the
Change button. You will see the following success page:

Log out and log in again using your new password to verify that everything works
as expected.

Building a Social Website

[104]

Reset password views
Add the following URL patterns for password restoration to the urls.py file of the
account application:

restore password urls
url(r'^password-reset/$',
 'django.contrib.auth.views.password_reset',
 name='password_reset'),
url(r'^password-reset/done/$',
 'django.contrib.auth.views.password_reset_done',
 name='password_reset_done'),
url(r'^password-reset/confirm/(?P<uidb64>[-\w]+)/(?P<token>[-\w]+)/$',
 'django.contrib.auth.views.password_reset_confirm',
 name='password_reset_confirm'),
url(r'^password-reset/complete/$',
 'django.contrib.auth.views.password_reset_complete',
 name='password_reset_complete'),

Add a new file in the templates/registration/ directory of your account
application and name it password_reset_form.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}Reset your password{% endblock %}

{% block content %}
 <h1>Forgotten your password?</h1>
 <p>Enter your e-mail address to obtain a new password.</p>
 <form action="." method="post">
 {{ form.as_p }}
 <p><input type="submit" value="Send e-mail"></p>
 {% csrf_token %}
 </form>
{% endblock %}

Now, create another file in the same directory and name it password_reset_email.
html. Add the following code to it:

Someone asked for password reset for email {{ email }}. Follow the
link below:
{{ protocol }}://{{ domain }}{% url "password_reset_confirm"
uidb64=uid token=token %}
Your username, in case you've forgotten: {{ user.get_username }}

Chapter 4

[105]

This is the template that will be used to render the e-mail sent to the user to reset
their password.

Create another file in the same directory and name it password_reset_done.html.
Add the following code to it:

{% extends "base.html" %}

{% block title %}Reset your password{% endblock %}

{% block content %}
 <h1>Reset your password</h1>
 <p>We've emailed you instructions for setting your password.</p>
 <p>If you don't receive an email, please make sure you've entered
the address you registered with.</p>
{% endblock %}

Create another template and name it password_reset_confirm.html. Add the
following code to it:

{% extends "base.html" %}

{% block title %}Reset your password{% endblock %}

{% block content %}
 <h1>Reset your password</h1>
 {% if validlink %}
 <p>Please enter your new password twice:</p>
 <form action="." method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Change my password" /></p>
 </form>
 {% else %}
 <p>The password reset link was invalid, possibly because it has
already been used. Please request a new password reset.</p>
 {% endif %}
{% endblock %}

We check if the provided link is valid. Django reset password view sets this variable
and puts it in the context of this template. If the link is valid, we display the user
password reset form.

Building a Social Website

[106]

Create another template and name it password_reset_complete.html. Enter the
following code into it:

{% extends "base.html" %}

{% block title %}Password reset{% endblock %}

{% block content %}
 <h1>Password set</h1>
 <p>Your password has been set. You can <a href="{% url "login"
%}">log in now</p>
{% endblock %}

Finally, edit the registration/login.html template of the account application
and add the following code after the <form> element:

<p>Forgotten your
password?</p>

Now, open http://127.0.0.1:8000/account/login/ in your browser and click
the Forgotten your password? link. You should see the following page:

At this point, you need to add an SMTP configuration to the settings.py file of
your project, so that Django is able to send e-mails. We have seen how to add e-mail
settings to your project in Chapter 2, Enhancing Your Blog with Advanced Features.
However, during development, you can configure Django to write e-mails to the
standard output instead of sending them through an SMTP server. Django provides
an e-mail backend to write e-mails to the console. Edit the settings.py file of your
project and add the following line:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Chapter 4

[107]

The EMAIL_BACKEND setting indicates the class to use to send e-mails.

Go back to your browser, enter the e-mail address of an existing user, and click the
Send e-mail button. You should see the following page:

Take a look at the console where you are running the development server. You will
see the generated e-mail as follows:

IME-Version: 1.0
Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: 7bit
Subject: Password reset on 127.0.0.1:8000
From: webmaster@localhost
To: user@domain.com
Date: Thu, 24 Sep 2015 14:35:08 -0000
Message-ID: <20150924143508.62996.55653@zenx.local>

Someone asked for password reset for email user@domain.com. Follow the
link below:
http://127.0.0.1:8000/account/password-reset/confirm/MQ/45f-
9c3f30caafd523055fcc/
Your username, in case you've forgotten: zenx

Building a Social Website

[108]

The e-mail is rendered using the password_reset_email.html template we
created earlier. The URL to reset your password includes a token that was generated
dynamically by Django. Open the link in your browser. You should see the
following page:

The page to set a new password corresponds to the password_reset_confirm.html
template. Fill in a new password and click the Change my password button. Django
creates a new encrypted password and saves it in the database. You will see a
success page like this one:

Now, you can log in back to your account using your new password. Each token to
set a new password can be used only once. If you open the link you received again,
you will get a message telling you the token is invalid.

You have integrated the views of the Django authentication framework in your
project. These views are suitable for most cases. However, you can create your
own views if you need a different behavior.

Chapter 4

[109]

User registration and user profiles
Existing users can now log in, log out, change their password, and reset the
password if they forgot it. Now, we need to build a view to allow visitors to
create a user account.

User registration
Let's create a simple view to allow user registration in our website. Initially, we have
to create a form to let the user enter a username, their real name, and a password.
Edit the forms.py file located inside the account application directory and add
the following code to it:

from django.contrib.auth.models import User

class UserRegistrationForm(forms.ModelForm):
 password = forms.CharField(label='Password',
 widget=forms.PasswordInput)
 password2 = forms.CharField(label='Repeat password',
 widget=forms.PasswordInput)

 class Meta:
 model = User
 fields = ('username', 'first_name', 'email')

 def clean_password2(self):
 cd = self.cleaned_data
 if cd['password'] != cd['password2']:
 raise forms.ValidationError('Passwords don\'t match.')
 return cd['password2']

We have created a model form for the User model. In our form we include only the
username, first_name, and email fields of the model. These fields will be validated
based on their corresponding model fields. For example, if the user chooses a
username that already exists, their will get a validation error. We have added two
additional fields password and password2 for the user to set his or her password
and confirm it. We have defined a clean_password2() method to check the second
password against the first one and not let the form validate if the passwords don't
match. This check is done when we validate the form calling its is_valid() method.
You can provide a clean_<fieldname>() method to any of your form fields in
order to clean the value or raise form validation errors for the specific field. Forms
also include a general clean() method to validate the entire form, which is useful to
validate fields that depend on each other.

Building a Social Website

[110]

Django also provides a UserCreationForm form that you can use, which resides in
django.contrib.auth.forms and is very similar to the one we have created.

Edit the views.py file of the account application and add the following code to it:

from .forms import LoginForm, UserRegistrationForm

def register(request):
 if request.method == 'POST':
 user_form = UserRegistrationForm(request.POST)
 if user_form.is_valid():
 # Create a new user object but avoid saving it yet
 new_user = user_form.save(commit=False)
 # Set the chosen password
 new_user.set_password(
 user_form.cleaned_data['password'])
 # Save the User object
 new_user.save()
 return render(request,
 'account/register_done.html',
 {'new_user': new_user})
 else:
 user_form = UserRegistrationForm()
 return render(request,
 'account/register.html',
 {'user_form': user_form})

The view for creating user accounts is quite simple. Instead of saving the raw
password entered by the user, we use the set_password() method of the User
model that handles encryption to save for safety.

Now, edit the urls.py file of your account application and add the following
URL pattern:

url(r'^register/$', views.register, name='register'),

Finally, create a new template in the account/ template directory, name it
register.html, and make it look as follows:

{% extends "base.html" %}

{% block title %}Create an account{% endblock %}

{% block content %}
 <h1>Create an account</h1>
 <p>Please, sign up using the following form:</p>

Chapter 4

[111]

 <form action="." method="post">
 {{ user_form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Create my account"></p>
 </form>
{% endblock %}

Add a template file in the same directory and name it register_done.html. Add
the following code to it:

{% extends "base.html" %}

{% block title %}Welcome{% endblock %}

{% block content %}
 <h1>Welcome {{ new_user.first_name }}!</h1>
 <p>Your account has been successfully created. Now you can log in.</p>
{% endblock %}

Now, open http://127.0.0.1:8000/account/register/ in your browser. You
will see the registration page you created:

Building a Social Website

[112]

Fill in the details for a new user and click the Create my account button. If all fields
are valid, the user will be created and you will get the following success message:

Click the log in link and enter your username and password to verify that you can
access your account.

Now, you can also add a link for registration to your login template. Edit the
registration/login.html template and replace this line:

<p>Please, use the following form to log-in:</p>

...with this one:

<p>Please, use the following form to log-in. If you don't have an
account register here</p>

We made the sign up page accessible from the login page.

Extending the User model
When you have to deal with user accounts, you will find out that the User model
of the Django authentication framework is suitable for common cases. However,
the User model comes with very basic fields. You may wish to extend the User
model to include additional data. The best way to do this is by creating a profile
model that contains all additional fields and a one-to-one relationship with the
Django User model.

Edit the models.py file of your account application and add the following code to it:

from django.db import models
from django.conf import settings

class Profile(models.Model):
 user = models.OneToOneField(settings.AUTH_USER_MODEL)
 date_of_birth = models.DateField(blank=True, null=True)

Chapter 4

[113]

 photo = models.ImageField(upload_to='users/%Y/%m/%d',
 blank=True)

 def __str__(self):
 return 'Profile for user {}'.format(self.user.username)

In order to keep your code generic, use the get_user_model() method
to retrieve the user model and the AUTH_USER_MODEL setting to refer to
it when defining model's relations to the user model, instead of referring
to the auth User model directly.

The user one-to-one field allows us to associate profiles with users. The photo field is
an ImageField field. You will need to install one of the Python packages to manage
images, which are PIL (Python Imaging Library) or Pillow, which is a PIL fork. Install
Pillow by running the following command in your shell:

pip install Pillow==2.9.0

For Django to serve media files uploaded by users with the development server, add
the following settings to the settings.py file of your project:

MEDIA_URL = '/media/'
MEDIA_ROOT = os.path.join(BASE_DIR, 'media/')

MEDIA_URL is the base URL to serve the media files uploaded by users, and
MEDIA_ROOT is the local path where they reside. We build the path dynamically
relative to our project path to make our code more generic.

Now, edit the main urls.py file of the bookmarks project and modify the code
as follows:

from django.conf.urls import include, url
from django.contrib import admin
from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^account/', include('account.urls')),
]

if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MEDIA_ROOT)

Building a Social Website

[114]

In this way, the Django development server will be in charge of serving the media
files during development.

The static() helper function is suitable for development but not for production use.
Never serve your static files with Django in a production environment.

Open the shell and run the following command to create the database migration
for the new model:

python manage.py makemigrations

You will get this output:

Migrations for 'account':
 0001_initial.py:
 - Create model Profile

Next, sync the database with the following command:

python manage.py migrate

You will see an output that includes the following line:

Applying account.0001_initial... OK

Edit the admin.py file of the account application and register the Profile model in
the administration site, like this:

from django.contrib import admin
from .models import Profile

class ProfileAdmin(admin.ModelAdmin):
 list_display = ['user', 'date_of_birth', 'photo']

admin.site.register(Profile, ProfileAdmin)

Run the development server again using the python manage.py runserver
command. Now, you should be able to see the Profile model in the administration
site of your project, as follows:

Chapter 4

[115]

Now, we are going to let users edit their profile in the website. Add the following
model forms to the forms.py file of the account application:

from .models import Profile

class UserEditForm(forms.ModelForm):
 class Meta:
 model = User
 fields = ('first_name', 'last_name', 'email')

class ProfileEditForm(forms.ModelForm):
 class Meta:
 model = Profile
 fields = ('date_of_birth', 'photo')

These forms are as follows:

•	 UserEditForm: Will allow users to edit their first name, last name, and
e-mail, which are stored in the built-in User model.

•	 ProfileEditForm: Will allow users to edit the extra data we save in the
custom Profile model. Users will be able to edit their date of birth and
upload a picture for their profile.

Edit the views.py file of the account application and import the Profile model
like this:

from .models import Profile

And add the following lines to the register view below new_user.save():

Create the user profile
profile = Profile.objects.create(user=new_user)

When users register in our site, we create an empty profile associated to them. You
should create a Profile object manually using the administration site for the users
you created before.

Now, we are going to let users edit their profile. Add the following code to the
same file:

from .forms import LoginForm, UserRegistrationForm, \
 UserEditForm, ProfileEditForm

@login_required
def edit(request):
 if request.method == 'POST':

Building a Social Website

[116]

 user_form = UserEditForm(instance=request.user,
 data=request.POST)
 profile_form = ProfileEditForm(
 instance=request.user.profile,
 data=request.POST,
 files=request.FILES)
 if user_form.is_valid() and profile_form.is_valid():
 user_form.save()
 profile_form.save()
 else:
 user_form = UserEditForm(instance=request.user)
 profile_form = ProfileEditForm(
 instance=request.user.profile)
 return render(request,
 'account/edit.html',
 {'user_form': user_form,
 'profile_form': profile_form})

We use the login_required decorator because users have to be authenticated to edit
their profile. In this case, we are using two model forms: UserEditForm to store the
data of the built-in User model and ProfileEditForm to store the additional profile
data. To validate the submitted data, we check that the is_valid() method of both
forms returns True. In this case, we save both forms to update the corresponding
object in the database.

Add the following URL pattern to the urls.py file of the account application:

url(r'^edit/$', views.edit, name='edit'),

Finally, create a template for this view in templates/account/ and name it
edit.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}Edit your account{% endblock %}

{% block content %}
 <h1>Edit your account</h1>
 <p>You can edit your account using the following form:</p>
 <form action="." method="post" enctype="multipart/form-data">
 {{ user_form.as_p }}
 {{ profile_form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Save changes"></p>
 </form>
{% endblock %}

Chapter 4

[117]

We include enctype="multipart/form-data" in our form to enable
file uploads. We use one HTML form to submit both the user_form and
the profile_form forms.

Register a new user and open http://127.0.0.1:8000/account/edit/. You
should see the following page:

Now, you can also edit the dashboard page and include links to edit profile
and change password pages. Open the account/dashboard.html template
and replace this line:

<p>Welcome to your dashboard.</p>

...with this one:

<p>Welcome to your dashboard. You can edit
your profile or change your
password.</p>

Users can now access the form to edit their profile from their dashboard.

Building a Social Website

[118]

Using a custom User model
Django also offers a way to substitute the whole User model with your own custom
model. Your user class should inherit from Django's AbstractUser class, which
provides the full implementation of the default user as an abstract model. You can
read more about this method at https://docs.djangoproject.com/en/1.8/
topics/auth/customizing/#substituting-a-custom-user-model.

Using a custom user model will give you more flexibility, but it might also result
in more difficult integration with pluggable applications that interact with the
User model.

Using the messages framework
When dealing with user actions, you might want to inform your users about the
result of their actions. Django has a built-in messages framework that allows you
to display one-time notifications to your users. The messages framework is located
at django.contrib.messages and it is included in the default INSTALLED_APPS
list of the settings.py file when you create new projects using python manage.
py startproject. You will notice that your settings file contains a middleware
named django.contrib.messages.middleware.MessageMiddleware in the list of
MIDDLEWARE_CLASSES of your settings. The messages framework provides a simple
way to add messages to users. Messages are stored in the database and displayed in
the next request the user does. You can use the messages framework in your views
by importing the messages module and adding new messages with simple shortcuts
like this:

from django.contrib import messages
messages.error(request, 'Something went wrong')

You can create new messages using the add_message() method or any of the
following shortcut methods:

•	 success(): Success messages to display after an action was successful
•	 info(): Informational messages
•	 warning(): Something has not yet failed but may fail imminently
•	 error(): An action was not successful or something failed
•	 debug(): Debug messages that will be removed or ignored in a

production environment

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#substituting-a-custom-user-model
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#substituting-a-custom-user-model

Chapter 4

[119]

Let's display messages to users. Since the messages framework applies globally to
the project, we can display messages for the user in our base template. Open the
base.html template and add the following code between the <div> element with
the id header and the <div> element with the id content:

{% if messages %}
 <ul class="messages">
 {% for message in messages %}
 <li class="{{ message.tags }}">
 {{ message|safe }}
 ✖

 {% endfor %}

{% endif %}

The messages framework includes a context processor that adds a messages variable
to the request context. So you can use this variable in your templates to display
current messages to the user.

Now, let's modify our edit view to use the messages framework. Edit the views.py
file of your application and make the edit view look as follows:

from django.contrib import messages

@login_required
def edit(request):
 if request.method == 'POST':
 # ...
 if user_form.is_valid() and profile_form.is_valid():
 user_form.save()
 profile_form.save()
 messages.success(request, 'Profile updated '\
 'successfully')
 else:
 messages.error(request, 'Error updating your profile')
 else:
 user_form = UserEditForm(instance=request.user)
 # ...

We add a success message when the user successfully updates their profile. If any of
the forms are invalid, we add an error message instead.

Building a Social Website

[120]

Open http://127.0.0.1:8000/account/edit/ in your browser and edit your
profile. When the profile is successfully updated, you should see the following
message:

When the form is not valid, you should see the following message:

Building a custom authentication
backend
Django allows you to authenticate against different sources. The AUTHENTICATION_
BACKENDS setting includes the list of authentication backends for your project. By
default, this setting is set to the following:

('django.contrib.auth.backends.ModelBackend',)

The default ModelBackend authenticates users against the database using the User
model of django.contrib.auth. This will suit most of your projects. However, you
can create custom backends to authenticate your user against other sources like a
LDAP directory or any other system.

You can read more information about customizing authentication at https://
docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-
authentication-sources.

Whenever you use the authenticate() function of django.contrib.auth,
Django tries to authenticate the user against each of the backends defined in
AUTHENTICATION_BACKENDS one by one, until one of them successfully authenticates
the user. Only if all of the backends fail to authenticate the user, he or she will not be
authenticated into your site.

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-authentication-sources
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-authentication-sources
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#other-authentication-sources

Chapter 4

[121]

Django provides a simple way to define your own authentication backends. An
authentication backend is a class that provides the following two methods:

•	 authenticate(): Takes user credentials as parameters. Has to return
True if the user has been successfully authenticated, or False otherwise.

•	 get_user(): Takes a user ID parameter and has to return a User object.

Creating a custom authentication backend is as simple as writing a Python class that
implements both methods. We are going to create an authentication backend to let
users authenticate in our site using their e-mail address instead of their username.

Create a new file inside your account application directory and name it
authentication.py. Add the following code to it:

from django.contrib.auth.models import User

class EmailAuthBackend(object):
 """
 Authenticate using e-mail account.
 """
 def authenticate(self, username=None, password=None):
 try:
 user = User.objects.get(email=username)
 if user.check_password(password):
 return user
 return None
 except User.DoesNotExist:
 return None

 def get_user(self, user_id):
 try:
 return User.objects.get(pk=user_id)
 except User.DoesNotExist:
 return None

This is a simple authentication backend. The authenticate() method receives the
username and password optional parameters. We could use different parameters,
but we use username and password to make our backend work with the
authentication framework views straightaway. The preceding code works as follows:

•	 authenticate(): We try to retrieve a user with the given e-mail address
and check the password using the built-in check_password() method of
the User model. This method handles the password hashing to compare
the given password against the password stored in the database.

•	 get_user(): We get a user by the ID set in the user_id parameter.
Django uses the backend that authenticated the user to retrieve the
User object for the duration of the user session.

Building a Social Website

[122]

Edit the settings.py file of your project and add the following setting:

AUTHENTICATION_BACKENDS = (
 'django.contrib.auth.backends.ModelBackend',
 'account.authentication.EmailAuthBackend',
)

We keep the default ModelBackend that is used to authenticate with username and
password, and we include our own email-based authentication backend. Now, open
http://127.0.0.1:8000/account/login/ in your browser. Remember that Django
will try to authenticate the user against each of the backends, so now you should be
able to log in using your username or e-mail account seamlessly.

The order of the backends listed in the AUTHENTICATION_
BACKENDS setting matters. If the same credentials are valid for
multiple backends, Django will stop at the first backend that
successfully authenticates the user.

Adding social authentication to your site
You might also want to add social authentication to your site using services such as
Facebook, Twitter, or Google. Python-social-auth is a Python module that simplifies
the process of adding social authentication to your website. By using this module, you
can let your users log in to your website using their account of other services. You can
find the code of this module at https://github.com/omab/python-social-auth.

This module comes with authentication backends for different Python frameworks,
including Django.

To install the package via pip, open the console and run the following command:

pip install python-social-auth==0.2.12

Then add social.apps.django_app.default to the INSTALLED_APPS setting in the
settings.py file of your project:

INSTALLED_APPS = (
 #...
 'social.apps.django_app.default',
)

This is the default application to add python-social-auth to Django projects. Now,
run the following command to sync python-social-auth models with your database:

python manage.py migrate

Chapter 4

[123]

You should see that the migrations for the default application are applied as
follows:

Applying default.0001_initial... OK
Applying default.0002_add_related_name... OK
Applying default.0003_alter_email_max_length... OK

Python-social-auth includes backends for multiple services. You can see a list of
all backends at https://python-social-auth.readthedocs.org/en/latest/
backends/index.html#supported-backends.

We are going to include authentication backends for Facebook, Twitter, and Google.

You need to add social login URL patterns to your project. Open the main urls.py
file of the bookmarks project and add the following URL pattern to it:

url('social-auth/',
 include('social.apps.django_app.urls', namespace='social')),

In order to make social authentication work, you will need a hostname, because
several services will not allow redirecting to 127.0.0.1 or localhost. In order to
fix this, under Linux or Mac OS X, edit your /etc/hosts file and add the following
line to it:

127.0.0.1 mysite.com

This will tell your computer to point the mysite.com hostname to your own
machine. If you are using Windows, your hosts file is located at C:\Winwows\
System32\Drivers\etc\hosts.

To verify that your host redirection worked, open http://mysite.com:8000/
account/login/ in your browser. If you see the log in page of your application,
everything was done correctly.

Authentication using Facebook
In order to let your users log in with their Facebook account to your site, add the
following line to the AUTHENTICATION_BACKENDS setting in the settings.py file
of your project:

'social.backends.facebook.Facebook2OAuth2',

https://python-social-auth.readthedocs.org/en/latest/backends/index.html#supported-backends
https://python-social-auth.readthedocs.org/en/latest/backends/index.html#supported-backends
http://mysite.com:8000/account/login/
http://mysite.com:8000/account/login/

Building a Social Website

[124]

In order to add social authentication with Facebook, you need a Facebook developer
account, and you have to to create a new Facebook application. Open https://
developers.facebook.com/apps/?action=create in your browser and click on
the Add new app button. Click on Website platform and enter Bookmarks for your
app name. When asked, enter http://mysite.com:8000/ as your Site URL. Follow
the quickstart and click on Create App ID.

Go to the Dashboard of your site. You will see something similar to the following:

Copy the App ID and App Secret keys and add them to the settings.py file of
your project as follows:

SOCIAL_AUTH_FACEBOOK_KEY = 'XXX' # Facebook App ID
SOCIAL_AUTH_FACEBOOK_SECRET = 'XXX' # Facebook App Secret

Optionally, you can define a SOCIAL_AUTH_FACEBOOK_SCOPE setting with the extra
permissions you want to ask Facebook users for:

SOCIAL_AUTH_FACEBOOK_SCOPE = ['email']

Finally, open your registration/login.html template and append the following
code to the content block:

<div class="social">

 <li class="facebook"><a href="{% url "social:begin" "facebook"
%}">Sign in with Facebook

</div>

https://developers.facebook.com/apps/?action=create
https://developers.facebook.com/apps/?action=create

Chapter 4

[125]

Open http://mysite.com:8000/account/login/ in your browser. Now your login
page will look as follows:

Click the Login with Facebook button. You will be redirected to Facebook, and you
will see a modal dialog asking for your permission to let the Bookmarks application
access your public Facebook profile:

Click the Okay button. Python-social-auth handles the authentication. If everything
goes well, you will be logged in and redirected to the dashboard page of your site.
Remember that we have used this URL in the LOGIN_REDIRECT_URL setting. As you
can see, adding social authentication to your site is pretty straightforward.

Building a Social Website

[126]

Authentication using Twitter
For social authentication using Twitter, add the following line to the
AUTHENTICATION_BACKENDS setting in the settings.py file of your project:

'social.backends.twitter.TwitterOAuth',

You need to create a new application in your Twitter account. Open https://apps.
twitter.com/app/new in your browser and enter the details of your application
including the following settings:

•	 Website: http://mysite.com:8000/
•	 Callback URL: http://mysite.com:8000/social-auth/complete/

twitter/

Make sure you mark the checkbox Allow this application to be used to Sign in
with Twitter. Then click on Keys and Access Tokens. You should see the following
information:

Copy the Consumer Key and Consumer Secret keys into the following settings in
the settings.py file of your project:

SOCIAL_AUTH_TWITTER_KEY = 'XXX' # Twitter Consumer Key
SOCIAL_AUTH_TWITTER_SECRET = 'XXX' # Twitter Consumer Secret

Now, edit the login.html template and add the following code in the element:

<li class="twitter"><a href="{% url "social:begin" "twitter"
%}">Login with Twitter

https://apps.twitter.com/app/new
https://apps.twitter.com/app/new

Chapter 4

[127]

Open http://mysite.com:8000/account/login/ in your browser and click the
Login with Twitter link. You will be redirected to Twitter and it will ask you to
authorize the application:

Click on Authorize app button. You will be logged in and redirected to the
dashboard page of your site.

Authentication using Google
Google offers OAuth2 authentication. You can read about Google's OAuth2
implementation at https://developers.google.com/accounts/docs/OAuth2.

First, you need to create an API key in your Google Developer Console. Open
https://console.developers.google.com/project in your browser and click
the Create project button. Give it a name and click the Create button as follows:

http://mysite.com:8000/account/login/
https://developers.google.com/accounts/docs/OAuth2
https://console.developers.google.com/project

Building a Social Website

[128]

After the project is created, click the APIs & auth link on the left menu and then
click on Credentials section. Click the Add credentials button and choose OAuth 2.0
client ID as follows:

Google will ask you to configure the consent screen first. This is the page that will be
shown to users to give their consent to access your site with their Google account. Click
the Configure consent screen button. Select your e-mail address, enter Bookmarks as
Product name, and click the Save button. The consent screen for your application will
be configured and you will be redirected to finish creating your Client ID.

Fill in the form with the following information:

•	 Application type: Select Web application
•	 Name: Enter Bookmarks.
•	 Authorized redirect URIs: Add http://mysite.com:8000/social-

auth/complete/google-oauth2/

http://mysite.com:8000/social-auth/complete/google-oauth2/
http://mysite.com:8000/social-auth/complete/google-oauth2/

Chapter 4

[129]

The form should look as follows:

Click the Create button. You will get the Client ID and Client Secret keys. Add them
to your settings.py file, like this:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = '' # Google Consumer Key
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = '' # Google Consumer Secret

In the left menu of the Google Developers Console, under the APIs & auth section,
click the APIs link. You will see a list that contains all Google APIs. Click on
Google+ API and then click the Enable API button in the following page:

Building a Social Website

[130]

Edit the login.html template and add the following code to the element:

<li class="google">Login
with Google

Open http://mysite.com:8000/account/login/ in your browser. The login page
should now look as follows:

Click the Login with Google button. You should be redirected to Google and asked
for permissions with the consent screen we previously configured:

http://mysite.com:8000/account/login/

Chapter 4

[131]

Click the Accept button. You will be logged in and redirected to the dashboard page
of your website.

We have added social authentication to our project. The python-social-auth module
contains backends for other popular on-line services.

Summary
In this chapter, you learned how to build an authentication system into your site and
created custom user profiles. You also added social authentication to your site.

In the next chapter, you will learn how to create an image bookmarking system,
generate image thumbnails, and create AJAX views.

[133]

Sharing Content in
Your Website

In the previous chapter, you built user registration and authentication into your
website. You learned how to create a custom profile model for your users and
you added social authentication to your site with major social networks.

In this chapter, you will learn how to create a JavaScript bookmarklet to share
content from other sites into your website, and you will implement AJAX
features into your project using jQuery and Django.

This chapter will cover the following points:

• Creating many-to-many relationships
• Customizing behavior for forms
• Using jQuery with Django
• Building a jQuery bookmarklet
• Generating image thumbnails using sorl-thumbnail
• Implementing AJAX views and integrating them with jQuery
• Creating custom decorators for views
• Building AJAX pagination

Sharing Content in Your Website

[134]

Creating an image bookmarking website
We are going to allow users to bookmark and share images they find in other
websites and share them in our site. For this, we will need to do the following tasks:

1. Define a model to store images and their information.
2. Create a form and a view to handle image uploads.
3. Build a system for users to be able to post images they find in external

websites.

First, create a new application inside your bookmarks project directory with the
following command:

django-admin startapp images

Add 'images' to the INSTALLED_APPS setting in the settings.py file as follows:

INSTALLED_APPS = (
 # ...
 'images',
)

Now Django knows that the new application is active.

Building the image model
Edit the models.py file of the images application and add the following code to it:

from django.db import models
from django.conf import settings

class Image(models.Model):
 user = models.ForeignKey(settings.AUTH_USER_MODEL,
 related_name='images_created')
 title = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200,
 blank=True)
 url = models.URLField()
 image = models.ImageField(upload_to='images/%Y/%m/%d')
 description = models.TextField(blank=True)
 created = models.DateField(auto_now_add=True,
 db_index=True)

 def __str__(self):
 return self.title

Chapter 5

[135]

This is the model we are going to use to store images bookmarked from different
sites. Let's take a look at the fields of this model:

• user: The User object that bookmarked this image. This is a ForeignKey
field because it specifies a one-to-many relationship: A user can post multiple
images, but each image is posted by a single user.

• title: A title for the image.
• slug: A short label containing only letters, numbers, underscores, or hyphens

to be used for building beautiful SEO-friendly URLs.
• url: The original URL for this image.
• image: The image file.
• description: An optional description for the image.
• created: The datetime that indicates when the object has been created in

the database. Since we use auto_now_add, this datetime is automatically set
when the object is created. We use db_index=True so that Django creates
an index in the database for this field.

Database indexes improve query performance. Consider setting db_
index=True for fields that you frequently query using filter(),
exclude(), or order_by(). ForeignKey fields or fields with
unique=True imply the creation of an index. You can also use
Meta.index_together to create indexes for multiple fields.

We are going to override the save() method of the Image model to automatically
generate the slug field based on the value of the title field. Import the slugify()
function and add a save() method to the Image model as follows:

from django.utils.text import slugify

class Image(models.Model):
 # ...
 def save(self, *args, **kwargs):
 if not self.slug:
 self.slug = slugify(self.title)
 super(Image, self).save(*args, **kwargs)

In this code, we use the slufigy() function provided by Django to automatically
generate the image slug for the given title when no slug is provided. Then, we save
the object. We will generate slugs for images automatically so that users don't have
to enter a slug for each image.

Sharing Content in Your Website

[136]

Creating many-to-many relationships
We are going to add another field to the Image model to store the users that like an
image. We will need a many-to-many relationship in this case, because a user might
like multiple images and each image can be liked by multiple users.

Add the following field to the Image model:

users_like = models.ManyToManyField(settings.AUTH_USER_MODEL,
 related_name='images_liked',
 blank=True)

When you define a ManyToManyField, Django creates an intermediary join table
using the primary keys of both models. The ManyToManyField can be defined in
any of the two related models.

As with ForeignKey fields, the related_name attribute of ManyToManyField
allows us to name the relationship from the related object back to this one.
ManyToManyField fields provide a many-to-many manager that allows us to
retrieve related objects such as image.users_like.all() or from a user object
such as user.images_liked.all().

Open the command line and run the following command to create an initial
migration:

python manage.py makemigrations images

You should see the following output:

Migrations for 'images':
 0001_initial.py:
 - Create model Image

Now run this command to apply your migration:

python manage.py migrate images

You will get an output that includes the following line:

Applying images.0001_initial... OK

The Image model is now synced to the database.

Chapter 5

[137]

Registering the image model in the
administration site
Edit the admin.py file of the images application and register the Image model into
the administration site as follows:

from django.contrib import admin
from .models import Image

class ImageAdmin(admin.ModelAdmin):
 list_display = ['title', 'slug', 'image', 'created']
 list_filter = ['created']

admin.site.register(Image, ImageAdmin)

Start the development server with the command python manage.py runserver.
Open http://127.0.0.1:8000/admin/ in your browser and you will see the
Image model in the administration site, like this:

Posting content from other websites
We are going to allow users to bookmark images from external websites. The user
will provide the URL of the image, a title, and optional description. Our application
will download the image and create a new Image object in the database.

Let's start by building a form to submit new images. Create a new forms.py file
inside the images application directory and add the following code to it:

from django import forms
from .models import Image

class ImageCreateForm(forms.ModelForm):
 class Meta:
 model = Image
 fields = ('title', 'url', 'description')
 widgets = {
 'url': forms.HiddenInput,
 }

Sharing Content in Your Website

[138]

As you can see, this form is a ModelForm built from the Image model including only
the title, url, and description fields. Our users are not going to enter the image
URL directly in the form. Instead, they are going to use a JavaScript tool to choose
an image from an external site and our form will receive its URL as a parameter.
We override the default widget of the url field to use a HiddenInput widget. This
widget is rendered as an HTML input element with a type="hidden" attribute.
We use this widget because we don't want this field to be visible to users.

Cleaning form fields
In order to verify that the provided image URL is valid, we are going to check that
the filename ends with a .jpg or .jpeg extension to only allow JPG files. Django
allows you to define form methods to clean specific fields using the notation
clean_<fieldname>(). This method is executed for each field, if present, when you
call is_valid() on a form instance. In the clean method, you can alter the field's
value or raise any validation errors for this specific field when needed. Add the
following method to the ImageCreateForm:

def clean_url(self):
 url = self.cleaned_data['url']
 valid_extensions = ['jpg', 'jpeg']
 extension = url.rsplit('.', 1)[1].lower()
 if extension not in valid_extensions:
 raise forms.ValidationError('The given URL does not ' \
 'match valid image extensions.')
 return url

In this code, we define a clean_url() method to clean the url field. The code works
as follows:

1. We get the value of the url field by accessing the cleaned_data dictionary
of the form instance.

2. We split the URL to get the file extension and check if it is one of the valid
extensions. If it is not a valid extension, we raise a ValidationError and
the form instance will not be validated. We are performing a very simple
validation. You could use more advanced methods to check whether the
given URL provides a valid image file or not.

In addition to validating the given URL, we will also need to download the image
file and save it. We could, for example, use the view that handles the form to
download the image file. Instead, we are going to take a more general approach by
overriding the save() method of our model form to perform this task every time
the form is saved.

Chapter 5

[139]

Overriding the save() method of a ModelForm
As you know, ModelForm provides a save() method to save the current model
instance to the database and return the object. This method receives a boolean
commit parameter, which allows you to specify whether the object has to be persisted
to the database. If commit is False, the save() method will return a model instance
but will not save it to the database. We are going to override the save() method of
our form in order to retrieve the given image and save it.

Add the following imports at the top of the forms.py file:

from urllib import request
from django.core.files.base import ContentFile
from django.utils.text import slugify

Then add the following save() method to the ImageCreateForm:

def save(self, force_insert=False,
 force_update=False,
 commit=True):
 image = super(ImageCreateForm, self).save(commit=False)
 image_url = self.cleaned_data['url']
 image_name = '{}.{}'.format(slugify(image.title),
 image_url.rsplit('.', 1)[1].lower())

 # download image from the given URL
 response = request.urlopen(image_url)
 image.image.save(image_name,
 ContentFile(response.read()),
 save=False)
 if commit:
 image.save()
 return image

We override the save() method keeping the parameters required by ModelForm.
This code is as follows:

1. We create a new image instance by calling the save() method of the form
with commit=False.

2. We get the URL from the cleaned_data dictionary of the form.
3. We generate the image name by combining the image title slug with the

original file extension.

Sharing Content in Your Website

[140]

4. We use the Python urllib module to download the image and then we call
the save() method of the image field passing it a ContentFile object that is
instantiated with the downloaded file contents. In this way we save the file to
the media directory of our project. We also pass the parameter save=False
to avoid saving the object to database yet.

5. In order to maintain the same behavior as the save() method we override,
we save the form to the database only when the commit parameter is True.

Now we need a view for handling the form. Edit the views.py file of the images
application and add the following code to it:

from django.shortcuts import render, redirect
from django.contrib.auth.decorators import login_required
from django.contrib import messages
from .forms import ImageCreateForm

@login_required
def image_create(request):
 if request.method == 'POST':
 # form is sent
 form = ImageCreateForm(data=request.POST)
 if form.is_valid():
 # form data is valid
 cd = form.cleaned_data
 new_item = form.save(commit=False)

 # assign current user to the item
 new_item.user = request.user
 new_item.save()
 messages.success(request, 'Image added successfully')

 # redirect to new created item detail view
 return redirect(new_item.get_absolute_url())
 else:
 # build form with data provided by the bookmarklet via GET
 form = ImageCreateForm(data=request.GET)

 return render(request,
 'images/image/create.html',
 {'section': 'images',
 'form': form})

Chapter 5

[141]

We add a login_required decorator to the image_create view to prevent access
for non-authenticated users. This is how this view works:

1. We expect initial data via GET in order create an instance of the form. This
data will consist of the url and title attributes of an image from an external
website and will be provided via GET by the JavaScript tool we will create
later. For now we just assume that this data will be there initially.

2. If the form is submitted we check if it is valid. If the form is valid we create
a new Image instance, but we prevent the object from being saved into the
database yet by passing commit=False.

3. We assign the current user to the new image object. This is how we can know
who uploaded each image.

4. We save the image object to the database.
5. Finally, we create a success message using the Django messaging framework

and redirect the user to the canonical URL of the new image. We haven't
implemented the get_absolute_url() method of the Image model yet,
we will do that later.

Create a new urls.py file inside your images application and add the following
code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^create/$', views.image_create, name='create'),
]

Edit the main urls.py file of your project to include the patterns we just created for
the images application as follows:

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^account/', include('account.urls')),
 url(r'^images/', include('images.urls', namespace='images')),
]

Finally, you need to create a template to render the form. Create the following
directory structure inside the images application directory:

templates/

 images/

 image/

 create.html

Sharing Content in Your Website

[142]

Edit the new create.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}Bookmark an image{% endblock %}

{% block content %}
 <h1>Bookmark an image</h1>

 <form action="." method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="submit" value="Bookmark it!">
 </form>
{% endblock %}

Now open http://127.0.0.1:8000/images/create/?title=...&url=... in
your browser, including a title and url GET parameters providing an existing
JPG image URL in the latter.

For example, you can use the following URL: http://127.0.0.1:8000/
images/create/?title=%20Django%20and%20Duke&url=http://upload.
wikimedia.org/wikipedia/commons/8/85/Django_Reinhardt_and_Duke_
Ellington_%28Gottlieb%29.jpg.

You will see the form with an image preview like the following one:

Chapter 5

[143]

Add a description and click the Bookmark it! button. A new Image object will be
saved into your database. You will get an error indicating that the Image model has
no get_absolute_url() method. Don't worry about this for now, we are going to
add this method later. Open http://127.0.0.1:8000/admin/images/image/ in
your browser and verify that the new image object has been saved.

Building a bookmarklet with jQuery
A bookmarklet is a bookmark stored in a web browser that contains JavaScript code
to extend the browser's functionality. When you click the bookmark, the JavaScript
code is executed on the website being displayed in the browser. This is very useful
for building tools that interact with other websites.

Some online services such as Pinterest implement their own bookmarklets to let
users share content from other sites onto their platform. We are going to create
a bookmarklet, in a similar way, to let users share images from other sites in
our website.

We are going to use jQuery to build our bookmarklet. jQuery is a popular JavaScript
framework that allows you to develop client-side functionality faster. You can read
more about jQuery at its official website http://jquery.com/.

This is how your users will add a bookmarklet to their browser and use it:

1. The user drags a link from your site to his browser's bookmarks. The link
contains JavaScript code in its href attribute. This code will be stored in
the bookmark.

2. The user navigates to any website and clicks the bookmark. The JavaScript
code of the bookmark is executed.

Since the JavaScript code will be stored as a bookmark, you will not be able to
update it later. This is an important drawback, but you can solve it by implementing
a simple launcher script that loads the actual JavaScript bookmarklet from a URL.
Your users will save this launcher script as a bookmark and you will be able to
update the code of the bookmarklet anytime. This is the approach we are going
to take to build our bookmarklet. Let's start!

Create a new template under images/templates/ and name it bookmarklet_
launcher.js. This will be the launcher script. Add the following JavaScript
code to this file:

(function(){
 if (window.myBookmarklet !== undefined){
 myBookmarklet();
 }

http://jquery.com/

Sharing Content in Your Website

[144]

 else {
 document.body.appendChild(document.createElement('script')).
src='http://127.0.0.1:8000/static/js/bookmarklet.js?r='+Math.
floor(Math.random()*99999999999999999999);
 }
})();

This script discovers if the bookmarklet is already loaded by checking if the
myBookmarklet variable is defined. By doing so, we avoid loading it again if the
user clicks on the bookmarklet repeatedly. If myBookmarklet is not defined, we load
another JavaScript file adding a <script> element to the document. The script tag
loads the bookmarklet.js script using a random number as parameter to prevent
loading the file from the browser's cache.

The actual bookmarklet code will reside in the bookmarklet.js static file. This will
allow us to update our bookmarklet code without requiring our users to update
the bookmark they previously added to their browser. Let's add the bookmarklet
launcher to the dashboard pages, so that our users can copy it to their bookmarks.

Edit the account/dashboard.html template of the account application and make it
look like the following:

{% extends "base.html" %}

{% block title %}Dashboard{% endblock %}

{% block content %}
 <h1>Dashboard</h1>

 {% with total_images_created=request.user.images_created.count %}
 <p>Welcome to your dashboard. You have bookmarked {{ total_images_
created }} image{{ total_images_created|pluralize }}.</p>
 {% endwith %}

 <p>Drag the following button to your bookmarks toolbar to bookmark
images from other websites → <a href="javascript:{% include
"bookmarklet_launcher.js" %}" class="button">Bookmark it<p>

 <p>You can also edit your profile or
change your password.<p>
{% endblock %}

Chapter 5

[145]

The dashboard displays now the total number of images bookmarked by the
user. We use the {% with %} template tag to set a variable with the total number
of images bookmarked by the current user. We also include a link with an href
attribute that contains the bookmarklet launcher script. We are including this
JavaScript code from the bookmarklet_launcher.js template.

Open http://127.0.0.1:8000/account/ in your browser. You should see the
following page:

Drag the Bookmark it! link to the bookmarks toolbar of your browser.

Now create the following directories and files inside the images application directory:

• static/

• js/

• bookmarklet.js

You will find a static/css/ directory under the images application directory,
in the code that comes along with this chapter. Copy the css/ directory into the
static/ directory of your code. The css/bookmarklet.css file provides the styles
for our JavaScript bookmarklet.

Edit the bookmarklet.js static file and add the following JavaScript code to it:

(function(){
 var jquery_version = '2.1.4';
 var site_url = 'http://127.0.0.1:8000/';
 var static_url = site_url + 'static/';
 var min_width = 100;
 var min_height = 100;

 function bookmarklet(msg) {
 // Here goes our bookmarklet code
 };

Sharing Content in Your Website

[146]

 // Check if jQuery is loaded
 if(typeof window.jQuery != 'undefined') {
 bookmarklet();
 } else {
 // Check for conflicts
 var conflict = typeof window.$!= 'undefined';
 // Create the script and point to Google API
 var script = document.createElement('script');
 script.setAttribute('src',
 'http://ajax.googleapis.com/ajax/libs/jquery/' +
 jquery_version + '/jquery.min.js');
 // Add the script to the 'head' for processing
 document.getElementsByTagName('head')[0].appendChild(script);
 // Create a way to wait until script loading
 var attempts = 15;
 (function(){
 // Check again if jQuery is undefined
 if(typeof window.jQuery == 'undefined') {
 if(--attempts > 0) {
 // Calls himself in a few milliseconds
 window.setTimeout(arguments.callee, 250)
 } else {
 // Too much attempts to load, send error
 alert('An error ocurred while loading jQuery')
 }
 } else {
 bookmarklet();
 }
 })();
 }
})()

This is the main jQuery loader script. It takes care of using jQuery if it's already
loaded in the current website, or it loads jQuery from Google's CDN otherwise.
When jQuery is loaded it executes the bookmarklet() function that will contain
our bookmarklet code. We also set some variables at the top of the file:

• jquery_version: The jQuery version to load
• site_url and static_url: The base URL for our website and base URL

for static files respectively
• min_width and min_height: minimum width and height in pixels for the

images our bookmarklet will try to find in the site

Chapter 5

[147]

Now let's implement the bookmarklet function. Edit the bookmarklet() function to
make it look like this:

function bookmarklet(msg) {
 // load CSS
 var css = jQuery('<link>');
 css.attr({
 rel: 'stylesheet',
 type: 'text/css',
 href: static_url + 'css/bookmarklet.css?r=' + Math.floor(Math.
random()*99999999999999999999)
 });
 jQuery('head').append(css);

 // load HTML
 box_html = '<div id="bookmarklet">×</
a><h1>Select an image to bookmark:</h1><div class="images"></div></
div>';
 jQuery('body').append(box_html);

 // close event
 jQuery('#bookmarklet #close').click(function(){
 jQuery('#bookmarklet').remove();
 });
};

This code works as follows:

1. We load the bookmarklet.css stylesheet using a random number as
parameter to avoid the browser's cache.

2. We add custom HTML to the document <body> element of the current
website. This consists of a <div> element that will contain the images
found on the current website.

3. We add an event that removes our HTML from the document when the user
clicks the close link of our HTML block. We use the #bookmarklet #close
selector to find the HTML element with an ID named close, which has a
parent element with an ID named bookmarklet. A jQuery selectors allow
you to find HTML elements. A jQuery selector returns all elements
found by the given CSS selector. You can find a list of jQuery selectors
at http://api.jquery.com/category/selectors/.

http://api.jquery.com/category/selectors/

Sharing Content in Your Website

[148]

After loading the CSS styles and the HTML code for the bookmarklet we need to find
the images in the website. Add the following JavaScript code at the bottom of the
bookmarklet() function:

// find images and display them
jQuery.each(jQuery('img[src$="jpg"]'), function(index, image) {
 if (jQuery(image).width() >= min_width && jQuery(image).height() >=
min_height)
 {
 image_url = jQuery(image).attr('src');
 jQuery('#bookmarklet .images').append('<img src="'+
image_url +'" />');
 }
});

This code uses the img[src$="jpg"] selector to find all HTML elements,
whose src attribute finishes with a jpg string. This means that we are finding all JPG
images displayed in the current website. We iterate over the results using the each()
method of jQuery. We add to our <div class="images"> HTML container the
images with a size larger than the one specified with the min_width and min_height
variables.

The HTML container now includes the images that can be bookmarked. We want
the user to click on the desired image and bookmark it. Add the following code at
the bottom of the bookmarklet() function:

// when an image is selected open URL with it
jQuery('#bookmarklet .images a').click(function(e){
 selected_image = jQuery(this).children('img').attr('src');
 // hide bookmarklet
 jQuery('#bookmarklet').hide();
 // open new window to submit the image
 window.open(site_url +'images/create/?url='
 + encodeURIComponent(selected_image)
 + '&title='
 + encodeURIComponent(jQuery('title').text()),
 '_blank');
});

Chapter 5

[149]

This code works as follows:

1. We attach a click() event to the images' link elements.
2. When a user clicks on an image we set a new variable called selected_image

that contains the URL of the selected image.
3. We hide the bookmarklet and open a new browser window with the URL for

bookmarking a new image in our site. We pass the <title> element of the
website and the selected image URL as GET parameters.

Open a website of your own choice in your browser and click on your bookmarklet.
You will see that a new white box appears on the the website, displaying all JPG
images found with higher dimensions than 100 x 100 px. It should look like the
following example:

Since we are using the Django development server, and we are serving pages via
HTTP, the bookmarklet will not work in websites served via HTTPS due to security
restrictions of the browser.

Sharing Content in Your Website

[150]

If you click on an image, you will be redirected to the image create page, passing the
title of the website and the URL of the selected image as GET parameters:

Congratulations! This is your first JavaScript bookmarklet and it is fully integrated
into your Django project.

Creating a detail view for images
We are going to create a simple detail view for displaying an image that has been
saved into our site. Open the views.py file of the images application and add the
following code to it:

from django.shortcuts import get_object_or_404
from .models import Image
def image_detail(request, id, slug):
 image = get_object_or_404(Image, id=id, slug=slug)
 return render(request,
 'images/image/detail.html',
 {'section': 'images',
 'image': image})

Chapter 5

[151]

This is a simple view to display an image. Edit the urls.py file of the images
application and add the following URL pattern:

url(r'^detail/(?P<id>\d+)/(?P<slug>[-\w]+)/$',
 views.image_detail, name='detail'),

Edit the models.py file of the images application and add the get_absolute_url()
method to the Image model as follows:

from django.core.urlresolvers import reverse

class Image(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('images:detail', args=[self.id, self.slug])

Remember that the common pattern for providing canonical URLs for objects is
to define a get_absolute_url() method in the model.

Finally, create a template inside the /images/image/ template directory of the
images application and name it detail.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}{{ image.title }}{% endblock %}

{% block content %}
 <h1>{{ image.title }}</h1>

 {% with total_likes=image.users_like.count %}
 <div class="image-info">
 <div>

 {{ total_likes }} like{{ total_likes|pluralize }}

 </div>
 {{ image.description|linebreaks }}
 </div>
 <div class="image-likes">
 {% for user in image.users_like.all %}
 <div>

 <p>{{ user.first_name }}</p>
 </div>
 {% empty %}
 Nobody likes this image yet.

Sharing Content in Your Website

[152]

 {% endfor %}
 </div>
 {% endwith %}
{% endblock %}

This is the template to display the detail of a bookmarked image. We make use
of the {% with %} tag to store the result of the QuerySet counting all user likes
in a new variable called total_likes. By doing so we avoid evaluating the same
QuerySet twice. We also include the image description and we iterate over
image.users_like.all to display all the users that like this image.

Using the {% with %} template tag is useful to prevent Django from
evaluating QuerySets multiple times.

Now bookmark a new image using the bookmarklet. You will be redirected to
the image detail page after you posted the image. The page will include a success
message as follows:

Chapter 5

[153]

Creating image thumbnails using
sorl-thumbnail
We are displaying the original image in the detail page but dimensions for different
images may vary a lot. Also, the original files for some images might be huge, and
loading them might take too long time. The best way to display optimized images in
a uniform way is to generate thumbnails. We are going to use a Django application
called sorl-thumbnail for this purpose.

Open the terminal and install sorl-thumbnail using the following command:

pip install sorl-thumbnail==12.3

Edit the settings.py file of the bookmarks project and add sorl.thumbnail
to the INSTALLED_APPS settings.

Then run the following command to sync the application with your database:

python manage.py migrate

You should see an output that includes the following line:

Creating table thumbnail_kvstore

The sorl-thumbnail application offers you different ways to define image
thumbnails. The application provides a {% thumbnail %} template tag to generate
thumbnails in templates and a custom ImageField if you want to define thumbnails
in your models. We are going to use the template tag approach. Edit the images/
image/detail.html template and replace the following line:

With these lines:

{% load thumbnail %}
{% thumbnail image.image "300" as im %}

{% endthumbnail %}

Here, we define a thumbnail with fixed width of of 300 pixels. The first time a user
loads this page, a thumbnail image will be created. The generated thumbnail will
be served in the following requests. Start the development server with the python
manage.py runserver command and access the image detail page for an existing
image. The thumbnail will be generated and displayed on the site.

Sharing Content in Your Website

[154]

The sorl-thumbnail application offers several options to customize your
thumbnails, including cropping algorithms and different effects that can be applied.
If you have any difficulty generating thumbnails, you can add THUMBNAIL_DEBUG
= True to your settings in order to obtain debug information. You can read the full
documentation of the sorl-thumbnail application at http://sorl-thumbnail.
readthedocs.org/.

Adding AJAX actions with jQuery
Now we are going to add AJAX actions to our application. AJAX comes from
Asynchronous JavaScript and XML. This term encompasses a group of techniques
to make asynchronous HTTP requests. It consists in sending and retrieving data
from the server asynchronously, without reloading the whole page. Despite the
name, XML is not required. You can send or retrieve data in other formats such
as JSON, HTML, or plain text.

We are going to add a link to the image detail page to let users click it to like an
image. We will perform this action with an AJAX call to avoid reloading the whole
page. First, we are going to create a view for users to like/unlike images. Edit the
views.py file of the images application and add the following code to it:

from django.http import JsonResponse
from django.views.decorators.http import require_POST

@login_required
@require_POST
def image_like(request):
 image_id = request.POST.get('id')
 action = request.POST.get('action')
 if image_id and action:
 try:
 image = Image.objects.get(id=image_id)
 if action == 'like':
 image.users_like.add(request.user)
 else:
 image.users_like.remove(request.user)
 return JsonResponse({'status':'ok'})
 except:
 pass
 return JsonResponse({'status':'ko'})

http://sorl-thumbnail.readthedocs.org/
http://sorl-thumbnail.readthedocs.org/

Chapter 5

[155]

We are using two decorators for our view. The login_required decorator
prevents users that are not logged in from accessing this view. The require_GET
decorator returns an HttpResponseNotAllowed object (status code 405) if the HTTP
request is not done via GET. This way we only allow GET requests for this view.
Django also provides a require_POST decorator to only allow POST requests and
a require_http_methods decorator to which you can pass a list of allowed methods
as an argument.

In this view we use two GET parameters:

• image_id: The ID of the image object on which the user is performing
the action

• action: The action that the user wants to perform, which we assume
to be a string with the value like or unlike

We use the manager provided by Django for the users_like many-to-many field of
the Image model in order to add or remove objects from the relationship using the
add() or remove() methods. Calling add() passing an object that is already present
in the related object set does not duplicate it and thus, calling remove() passing an
object that is not in the related object set does nothing. Another useful method of
the many-to-many manager is clear(), which removes all objects from the related
object set.

Finally, we use the JsonResponse class provided by Django, which returns an HTTP
response with an application/json content type, converting the given object into
a JSON output.

Edit the urls.py file of the images application and add the following URL pattern
to it:

url(r'^like/$', views.image_like, name='like'),

Loading j Query
We need to add the AJAX functionality to our image detail template. In order to use
jQuery in our templates, we are going to include it in the base.html template of our
project first. Edit the base.html template of the account application and include the
following code before the closing </body> HTML tag:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
<script>
 $(document).ready(function(){
 {% block domready %}
 {% endblock %}
 });
</script>

Sharing Content in Your Website

[156]

We load the jQuery framework from Google, which hosts popular JavaScript
frameworks in a high-speed reliable content delivery network. You can also
download jQuery from http://jquery.com/ and add it to the static directory
of your application.

We add a <script> tag to include JavaScript code. $(document).ready() is a
jQuery function that takes a handler that is executed when the DOM hierarchy has
been fully constructed. DOM comes from Document Object Model. The DOM is
created by the browser when a webpage is loaded, and it is constructed as a tree of
objects. By including our code inside this function we make sure all HTML elements
we are going to interact with are loaded in the DOM. Our code will be only executed
once the DOM is ready.

Inside the document ready handler function, we include a Django template block
called domready, in which templates that extend the base template will be able to
include specific JavaScript.

Don't get confused with JavaScript code and Django template tags. Django template
language is rendered in the server side outputting the final HTML document
and JavaScript is executed in the client side. In some cases, it is useful to generate
JavaScript code dynamically using Django.

In the examples of this chapter we include JavaScript code in
Django templates. The preferred way to include JavaScript code
is by loading .js files, which are served as static files, especially
when they are large scripts.

Cross-Site Request Forgery in AJAX requests
You have learned about Cross-Site Request Forgery in Chapter 2, Enhancing Your
Blog With Advanced Features. With the CSRF protection active, Django checks for a
CSRF token in all POST requests. When you submit forms you can use the {% csrf_
token %} template tag to send the token along with the form. However, it is a bit
inconvenient for AJAX requests to pass the CSRF token as POST data in with every
POST request. Therefore, Django allows you to set a custom X-CSRFToken header
in your AJAX requests with the value of the CSRF token. This allows you to set up
jQuery or any other JavaScript library, to automatically set the X-CSRFToken header
in every request.

http://jquery.com/

Chapter 5

[157]

In order to include the token in all requests, you need to:

1. Retrieve the CSRF token form the csrftoken cookie, which is set if CSRF
protection is active.

2. Send the token in the AJAX request using the X-CSRFToken header.

You can find more information about CSRF protection and AJAX at https://docs.
djangoproject.com/en/1.8/ref/csrf/#ajax.

Edit the last code you included in your base.html template and make it look like
the following:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
<script src=" http://cdn.jsdelivr.net/jquery.cookie/1.4.1/jquery.
cookie.min.js "></script>
<script>
 var csrftoken = $.cookie('csrftoken');
 function csrfSafeMethod(method) {
 // these HTTP methods do not require CSRF protection
 return (/^(GET|HEAD|OPTIONS|TRACE)$/.test(method));
 }
 $.ajaxSetup({
 beforeSend: function(xhr, settings) {
 if (!csrfSafeMethod(settings.type) && !this.crossDomain) {
 xhr.setRequestHeader("X-CSRFToken", csrftoken);
 }
 }
 });
 $(document).ready(function(){
 {% block domready %}
 {% endblock %}
 });
</script>

The code above is as follows:

1. We load the jQuery Cookie plugin from a public CDN, so that we can interact
with cookies.

2. We read the value of the csrftoken cookie.
3. We define the csrfSafeMethod() function to check whether an HTTP

method is safe. Safe methods don't require CSRF protection. These are GET,
HEAD, OPTIONS, and TRACE.

https://docs.djangoproject.com/en/1.8/ref/csrf/#ajax
https://docs.djangoproject.com/en/1.8/ref/csrf/#ajax

Sharing Content in Your Website

[158]

4. We setup jQuery AJAX requests using $.ajaxSetup(). Before each AJAX
request is performed, we check if the request method is safe and the current
request is not cross-domain. If the request is unsafe, we set the X-CSRFToken
header with the value obtained from the cookie. This setup will apply to all
AJAX requests performed with jQuery.

The CSRF token will be included in all AJAX request that use unsafe HTTP methods
such as POST or PUT.

Performing AJAX requests with jQuery
Edit the images/image/detail.html template of the images application and
replace the following line:

{% with total_likes=image.users_like.count %}

With the following one:

{% with total_likes=image.users_like.count users_like=image.users_
like.all %}

Then modify the <div> element with the image-info class as follows:

<div class="image-info">
 <div>

 {{ total_likes }}
 like{{ total_likes|pluralize }}

 <a href="#" data-id="{{ image.id }}" data-action="{% if request.
user in users_like %}un{% endif %}like" class="like button">
 {% if request.user not in users_like %}
 Like
 {% else %}
 Unlike
 {% endif %}

 </div>
 {{ image.description|linebreaks }}
</div>

Chapter 5

[159]

First, we add another variable to the {% with %} template tag to store the results
of the image.users_like.all query and avoid executing it twice. We display the
total number of users that like this image and include a link to like/unlike the image:
We check if the user is in the related object set of users_like to display either like
or unlike based on the current relationship of the user and this image. We add the
following attributes to the <a> HTML element:

• data-id: The ID of the image displayed.
• data-action: The action to run when the user clicks the link. This can be

like or unlike.

We will send the value of both attributes in the AJAX request to the image_like
view. When a user clicks the like/unlike link, we need to perform the following
actions on the client side:

1. Call the AJAX view passing the image ID and the action parameters to it.
2. If the AJAX request is successful, update the data-action attribute of the

<a> HTML element with the opposite action (like / unlike), and modify its
display text accordingly.

3. Update the total number of likes that is displayed.

Add the domready block at the bottom of the images/image/detail.html template
with the following JavaScript code:

{% block domready %}
 $('a.like').click(function(e){
 e.preventDefault();
 $.post('{% url "images:like" %}',
 {
 id: $(this).data('id'),
 action: $(this).data('action')
 },
 function(data){
 if (data['status'] == 'ok')
 {
 var previous_action = $('a.like').data('action');

 // toggle data-action
 $('a.like').data('action', previous_action == 'like' ?
'unlike' : 'like');
 // toggle link text
 $('a.like').text(previous_action == 'like' ? 'Unlike' :
'Like');

Sharing Content in Your Website

[160]

 // update total likes
 var previous_likes = parseInt($('span.count .total').
text());
 $('span.count .total').text(previous_action == 'like' ?
previous_likes + 1 : previous_likes - 1);
 }
 }
);
 });
{% endblock %}

This code works as follows:

1. We use the $('a.like') jQuery selector to find all <a> elements of the
HTML document with the class like.

2. We define a handler function for the click event. This function will be
executed every time the user clicks the like/unlike link.

3. Inside the handler function we use e.preventDefault() to avoid the
default behavior of the <a> element. This will prevent from the link
taking us anywhere.

4. We use $.post() to perform an asynchronous POST request to the server.
jQuery also provides a $.get() method to perform GET requests and a
low-level $.ajax() method.

5. We use Django's {% url %} template tag to build the URL for the
AJAX request.

6. We build the POST parameters dictionary to send in the request. These are
the ID and action parameters expected by our Django view. We retrieve
these values from the <a> element's data-id and data-action attributes.

7. We define a callback function that is executed when the HTTP response is
received. It takes a data attribute that contains the content of the response.

8. We access the status attribute of the data received and check if it equals to
ok. If the returned data is as expected, we toggle the data-action attribute
of the link and its text. This allows the user to undo his action.

9. We increase or decrease the total likes count by one, depending on the
action performed.

Chapter 5

[161]

Open the image detail page in your browser for an image you have uploaded. You
should be able to see the following initial likes count and the LIKE button as follows:

Click the LIKE button. You will see that the total likes count increases in one and the
button text changes into UNLIKE like this:

When you click the UNLIKE button the action is performed, the button's text
changes back to LIKE and the total count changes accordingly.

When programming JavaScript, especially when performing AJAX requests, it is
recommended to use a tool such as Firebug for debugging. Firebug is a Firefox
add-on that allows you to debug JavaScript and monitor CSS and HTML changes.
You can download Firebug from http://getfirebug.com/. Other browsers such as
Chrome or Safari also include developer tools to debug JavaScript. In those browsers
you can right-click anywhere in the website and click on Inspect element to access
the web developer tools.

Creating custom decorators for your
views
We are going to restrict our AJAX views to allow only requests generated via AJAX.
The Django Request object provides an is_ajax() method that checks if the request
is being made with XMLHttpRequest, which means it is an AJAX request. This value
is set in the HTTP_X_REQUESTED_WITH HTTP header, which is included in AJAX
requests by most JavaScript libraries.

We are going to create a decorator for checking the HTTP_X_REQUESTED_WITH header
in our views. A decorator is a function that takes another function and extends the
behavior of the latter without explicitly modifying it. If the concept of decorators
is foreign to you, you might like to take a look at https://www.python.org/dev/
peps/pep-0318/ before you continue reading.

http://getfirebug.com/
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-0318/

Sharing Content in Your Website

[162]

Since our decorator will be generic and could be applied to any view, we will create a
common Python package in our project. Create the following directory and files inside
the bookmarks project directory:

• common/

• __init__.py

• decorators.py

Edit the decorators.py file and add the following code to it:

from django.http import HttpResponseBadRequest

def ajax_required(f):
 def wrap(request, *args, **kwargs):
 if not request.is_ajax():
 return HttpResponseBadRequest()
 return f(request, *args, **kwargs)
 wrap.__doc__=f.__doc__
 wrap.__name__=f.__name__
 return wrap

This is our custom ajax_required decorator. It defines a wrap function that returns
an HttpResponseBadRequest object (HTTP 400 code) if the request is not AJAX.
Otherwise, it returns the decorated function.

Now you can edit the views.py file of the images application and add this decorator
to your image_like AJAX view as follows:

from common.decorators import ajax_required

@ajax_required
@login_required
@require_POST
def image_like(request):
 # ...

If you try to access http://127.0.0.1:8000/images/like/ directly with your
browser, you will get an HTTP 400 response.

Build custom decorators for your views if you find that you are repeating
the same checks in multiple views.

Chapter 5

[163]

Adding AJAX pagination to your list
views
We need to list all bookmarked images in our website. We are going to use AJAX
pagination to build infinite scroll functionality. Infinite scroll is achieved by loading
the next results automatically when the user scrolls to the bottom of the page.

We are going to implement an image list view that will handle both standard
browser requests and AJAX requests including pagination. When the user initially
loads the image list page, we display the first page of images. When he scrolls to the
bottom of the page we load the following page of items via AJAX and append it
to the bottom of the main page.

The same view will handle both standard and AJAX pagination. Edit the views.py
file of the images application and add the following code to it:

from django.http import HttpResponse
from django.core.paginator import Paginator, EmptyPage, \
 PageNotAnInteger

@login_required
def image_list(request):
 images = Image.objects.all()
 paginator = Paginator(images, 8)
 page = request.GET.get('page')
 try:
 images = paginator.page(page)
 except PageNotAnInteger:
 # If page is not an integer deliver the first page
 images = paginator.page(1)
 except EmptyPage:
 if request.is_ajax():
 # If the request is AJAX and the page is out of range
 # return an empty page
 return HttpResponse('')
 # If page is out of range deliver last page of results
 images = paginator.page(paginator.num_pages)
 if request.is_ajax():
 return render(request,
 'images/image/list_ajax.html',
 {'section': 'images', 'images': images})
 return render(request,
 'images/image/list.html',
 {'section': 'images', 'images': images})

Sharing Content in Your Website

[164]

In this view, we create a QuerySet to return all images from the database. Then we
build a Paginator object to paginate the results retrieving eight images per page.
We get an EmptyPage exception if the requested page is out of range. If this the
case and the request is done via AJAX, we return an empty HttpResponse that will
help us stop the AJAX pagination on the client side. We render the results to two
different templates:

• For AJAX requests, we render the list_ajax.html template. This template
will only contain the images of the requested page.

• For standard requests, we render the list.html template. This template will
extend the base.html template to display the whole page and will include
the list_ajax.html template to include the list of images.

Edit the urls.py file of the images application and add the following URL pattern
to it:

url(r'^$', views.image_list, name='list'),

Finally, we need to create the templates mentioned above. Inside the images/image/
template directory create a new template and name it list_ajax.html. Add the
following code to it:

{% load thumbnail %}

{% for image in images %}
 <div class="image">

 {% thumbnail image.image "300x300" crop="100%" as im %}

 {% endthumbnail %}

 <div class="info">

 {{ image.title }}

 </div>
 </div>
{% endfor %}

Chapter 5

[165]

This template displays the list of images. We will use it to return results for AJAX
requests. Create another template in the same directory and name it list.html.
Add the following code to it:

{% extends "base.html" %}

{% block title %}Images bookmarked{% endblock %}

{% block content %}
 <h1>Images bookmarked</h1>
 <div id="image-list">
 {% include "images/image/list_ajax.html" %}
 </div>
{% endblock %}

The list template extends the base.html template. To avoid repeating code, we
include the list_ajax.html template for displaying images. The list.html
template will hold the JavaScript code for loading additional pages when scrolling
to the bottom of the page.

Add the following code to the list.html template:

{% block domready %}
 var page = 1;
 var empty_page = false;
 var block_request = false;

 $(window).scroll(function() {
 var margin = $(document).height() - $(window).height() - 200;
 if ($(window).scrollTop() > margin && empty_page == false &&
block_request == false) {
 block_request = true;
 page += 1;
 $.get('?page=' + page, function(data) {
 if(data == '') {
 empty_page = true;
 }
 else {
 block_request = false;
 $('#image-list').append(data);
 }
 });
 }
 });
{% endblock %}

Sharing Content in Your Website

[166]

This code provides the infinite scroll functionality. We include the JavaScript
code in the domready block that we defined in the base.html template. The code
is as follows:

1. We define the following variables:
 ° page: Stores the current page number.
 ° empty_page: Allows us to know if the user is in the last page and

retrieves an empty page. As soon as we get an empty page we will
stop sending additional AJAX requests because we will assume there
are no more results.

 ° block_request: Prevents from sending additional requests while an
AJAX request is in progress.

2. We use $(window).scroll() to capture the scroll event and we define
a handler function for it.

3. We calculate the margin variable getting the difference between the total
document height and the window height because that's the height of the
remaining content for the user to scroll. We subtract a value of 200 from the
result so that we load the next page when the user is closer than 200 pixels
to the bottom of the page.

4. We only send an AJAX request if no other AJAX request is being done
(block_request has to be false) and the user didn't got to the last
page of results (empty_page is also false).

5. We set block_request to true to avoid that the scroll event triggers
additional AJAX requests, and we increase the page counter by one,
in order to retrieve the next page.

6. We perform an AJAX GET request using $.get() and we receive the HTML
response back in a variable called data. There are two scenarios:

 ° The response has no content: We got to the end of the results and
there are no more pages to load. We set empty_page to true
to prevent additional AJAX requests.

 ° The response contains data: We append the data to the HTML
element with the image-list id. The page content expands vertically
appending results when the user approaches the bottom of the page.

Chapter 5

[167]

Open http://127.0.0.1:8000/images/ in your browser. You will see the list of
images you have bookmarked so far. It should look similar to this:

Scroll to the bottom of the page to load additional pages. Make sure that you have
bookmarked more than eight images using the bookmarklet, because that's the
number of images we are displaying per page. Remember that you can use Firebug
or a similar tool to track the AJAX requests and debug your JavaScript code.

Finally, edit the base.html template of the account application and add the URL
for the Images item of the main menu as follows:

<li {% if section == "images" %}class="selected"{% endif %}>Images

Now you can access the image list from the main menu.

Sharing Content in Your Website

[168]

Summary
In this chapter, we have built a JavaScript bookmarklet to share images from other
websites into our site. You have implemented AJAX views with jQuery and added
AJAX pagination.

Next chapter will teach you how to build a follower system and an activity stream.
You will work with generic relations, signals, and denormalization. You will also
learn how to use Redis with Django.

[169]

Tracking User Actions
In the previous chapter, you implemented AJAX views into your project using
jQuery and built a JavaScript bookmarklet for sharing content from other websites
in your platform.

In this chapter, you will learn how to build a follower system and create a user
activity stream. You will discover how Django signals work and integrate Redis
fast I/O storage into your project to store item views.

This chapter will cover the following points:

• Creating many-to-many relationships with an intermediary model
• Building AJAX views
• Creating an activity stream application
• Adding generic relations to models
• Optimizing QuerySets for related objects
• Using signals for denormalizing counts
• Storing item views in Redis

Building a follower system
We will build a follower system into our project. Our users will be able to follow
each other and track what other users share on the platform. The relationship
between users is a many-to-many relationship, A user can follow multiple users
and can be followed back by multiple users.

Tracking User Actions

[170]

Creating many-to-many relationships with an
intermediary model
In previous chapters, you created many-to-many relationships by adding a
ManyToManyField to one of the related models and letting Django create the
database table for the relationship. This is suitable for most of the cases, but
sometimes you might need to create an intermediate model for the relation. Creating
an intermediary model is necessary when you want to store additional information
for the relationship, for example the date when the relation was created or a field
that describes the type of the relationship.

We will create an intermediary model for building relationships between users.
There are two reasons why we want to use an intermediate model:

• We are using the user model provided by Django and we want to avoid
altering it

• We want to store the time when the relation is created

Edit the models.py file of your account application and add the following code to it:

from django.contrib.auth.models import User

class Contact(models.Model):
 user_from = models.ForeignKey(User,
 related_name='rel_from_set')
 user_to = models.ForeignKey(User,
 related_name='rel_to_set')
 created = models.DateTimeField(auto_now_add=True,
 db_index=True)

 class Meta:
 ordering = ('-created',)

 def __str__(self):
 return '{} follows {}'.format(self.user_from,
 self.user_to)

This is the Contact model we will use for user relationships. It contains the
following fields:

• user_from: A ForeignKey for the user that creates the relationship
• user_to: A ForeignKey for the user being followed
• created: A DateTimeField field with auto_now_add=True to store the time

when the relationship was created

Chapter 6

[171]

A database index is automatically created on ForeignKey fields. We use
db_index=True to create a database index for the created field. This will
improve query performance when ordering QuerySets by this field.

Using the ORM, we could create a relationship for a user user1 following another
user user2, like this:

user1 = User.objects.get(id=1)
user2 = User.objects.get(id=2)
Contact.objects.create(user_from=user1, user_to=user2)

The related managers rel_from_set and rel_to_set will return a QuerySet for
the Contact model. In order to access the end side of the relationship from the User
model, it would be desirable that User contained a ManyToManyField as follows:

following = models.ManyToManyField('self',
 through=Contact,
 related_name='followers',
 symmetrical=False)

In this example, we tell Django to use our custom intermediary model for the
relationship by adding through=Contact to the ManyToManyField. This is a
many-to-many relationship from the User model to itself: We refer to 'self'
in the ManyToManyField field to create a relationship to the same model.

When you need additional fields in a many-to-many relationship,
create a custom model with a ForeignKey for each side of the
relationship. Add a ManyToManyField in one of the related
models and indicate Django to use your intermediary model by
including it in the through parameter.

If the User model was part of our application, we could add the previous field to
the model. However, we cannot alter the User class directly because it belongs to
the django.contrib.auth application. We are going to take a slightly different
approach, by adding this field dynamically to the User model. Edit the models.py
file of the account application and add the following lines:

Add following field to User dynamically
User.add_to_class('following',
 models.ManyToManyField('self',
 through=Contact,
 related_name='followers',
 symmetrical=False))

Tracking User Actions

[172]

In this code, we use the add_to_class() method of Django models to
monkey-patch the User model. Be aware that using add_to_class() is not the
recommended way for adding fields to models. However, we take advantage
from using it in this case because of the following reasons:

• We simplify the way we retrieve related objects using the Django ORM
with user.followers.all() and user.following.all(). We use the
intermediary Contact model and avoid complex queries that would involve
additional database joins, as it would have been if we had defined the
relationship in our custom Profile model.

• The table for this many-to-many relationship will be created using the
Contact model. Thus, the ManyToManyField added dynamically will not
imply any database changes for the Django User model.

• We avoid creating a custom user model, keeping all the advantages of
Django's built-in User.

Keep in mind that in most cases, it is preferable to add fields to the Profile model
we created before, instead of monkey-patching the User model. Django also allows
you to use custom user models. If you want to use your custom user model, take a
look at the documentation at https://docs.djangoproject.com/en/1.8/topics/
auth/customizing/#specifying-a-custom-user-model.

You can see that the relationship includes symmetrical=False. When you define a
ManyToManyField to the model itself, Django forces the relationship to be symmetrical.
In this case, we are setting symmetrical=False to define a non-symmetric relation.
This is, if I follow you, it doesn't mean you automatically follow me.

When you use an intermediate model for many-to-many
relationships some of the related manager's methods are disabled,
such as add(), create() or remove(). You need to create or
delete instances of the intermediate model instead.

Run the following command to generate the initial migrations for the account
application:

python manage.py makemigrations account

You will see the following output:

Migrations for 'account':
 0002_contact.py:
 - Create model Contact

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#specifying-a-custom-user-model

Chapter 6

[173]

Now run the following command to sync the application with the database:

python manage.py migrate account

You should see an output that includes the following line:

Applying account.0002_contact... OK

The Contact model is now synced to the database and we are able to create
relationships between users . However, our site doesn't offer a way to browse
through users or see a particular user profile yet. Let's build list and detail
views for the User model.

Creating list and detail views for user profiles
Open the views.py file of the account application and add the following code to it:

from django.shortcuts import get_object_or_404
from django.contrib.auth.models import User

@login_required
def user_list(request):
 users = User.objects.filter(is_active=True)
 return render(request,
 'account/user/list.html',
 {'section': 'people',
 'users': users})

@login_required
def user_detail(request, username):
 user = get_object_or_404(User,
 username=username,
 is_active=True)
 return render(request,
 'account/user/detail.html',
 {'section': 'people',
 'user': user})

These are simple list and detail views for User objects. The user_list view gets all
active users. The Django User model contains a flag is_active to designate whether
the user account is considered active. We filter the query by is_active=True to
return only active users. This view returns all results, but you can improve it by
adding pagination the same way we did for the image_list view.

Tracking User Actions

[174]

The user_detail view uses the get_object_or_404() shortcut to retrieve the
active user with the given username. The view returns an HTTP 404 response
if no active user with the given username is found.

Edit the urls.py file of the account application, and add an URL pattern for each
view as follows:

urlpatterns = [
 # ...
 url(r'^users/$', views.user_list, name='user_list'),
 url(r'^users/(?P<username>[-\w]+)/$',
 views.user_detail,
 name='user_detail'),
]

We are going to use the user_detail URL pattern to generate the canonical URL
for users. You have already defined a get_absolute_url() method in a model to
return the canonical URL for each object. Another way to specify an URL for a model
is by adding the ABSOLUTE_URL_OVERRIDES setting to your project.

Edit the settings.py file of your project and add the following code to it:

ABSOLUTE_URL_OVERRIDES = {
 'auth.user': lambda u: reverse_lazy('user_detail',
 args=[u.username])
}

Django adds a get_absolute_url() method dynamically to any models that appear
in the ABSOLUTE_URL_OVERRIDES setting. This method returns the corresponding
URL for the given model specified in the setting. We return the user_detail URL
for the given user. Now you can use get_absolute_url() on a User instance to
retrieve its corresponding URL. Open the Python shell with the command python
manage.py shell and run the following code to test it:

>>> from django.contrib.auth.models import User
>>> user = User.objects.latest('id')
>>> str(user.get_absolute_url())
'/account/users/ellington/'

The returned URL is as expected. We need to create templates for the views we just
built. Add the following directory and files to the templates/account/ directory of
the account application:

/user/
 detail.html
 list.html

Chapter 6

[175]

Edit the account/user/list.html template and add the following code to it:

{% extends "base.html" %}
{% load thumbnail %}

{% block title %}People{% endblock %}

{% block content %}
 <h1>People</h1>
 <div id="people-list">
 {% for user in users %}
 <div class="user">

 {% thumbnail user.profile.photo "180x180" crop="100%" as im
%}

 {% endthumbnail %}

 <div class="info">

 {{ user.get_full_name }}

 </div>
 </div>
 {% endfor %}
 </div>
{% endblock %}

This template allows us to list all the active users in the site. We iterate over the given
users and use sorl-thumbnail's {% thumbnail %} template tag to generate profile
image thumbnails.

Open the base.html template of your project and include the user_list URL in the
href attribute of the following menu item:

<li {% if section == "people" %}class="selected"{% endif %}>People

Tracking User Actions

[176]

Start the development server with the command python manage.py runserver and
open http://127.0.0.1:8000/account/users/ in your browser. You should see a
list of users like the following one:

Edit account/user/detail.html template of the account application and add the
following code to it:

{% extends "base.html" %}
{% load thumbnail %}

{% block title %}{{ user.get_full_name }}{% endblock %}

{% block content %}
 <h1>{{ user.get_full_name }}</h1>
 <div class="profile-info">
 {% thumbnail user.profile.photo "180x180" crop="100%" as im %}

 {% endthumbnail %}
 </div>
 {% with total_followers=user.followers.count %}

 {{ total_followers }}
 follower{{ total_followers|pluralize }}

 <a href="#" data-id="{{ user.id }}" data-action="{% if request.
user in user.followers.all %}un{% endif %}follow" class="follow
button">
 {% if request.user not in user.followers.all %}

Chapter 6

[177]

 Follow
 {% else %}
 Unfollow
 {% endif %}

 <div id="image-list" class="image-container">
 {% include "images/image/list_ajax.html" with images=user.
images_created.all %}
 </div>
 {% endwith %}
{% endblock %}

In the detail template we display the user profile and we use the {% thumbnail %}
template tag to display the profile image. We show the total number of followers and
a link to follow/unfollow the user. We prevent users from following themselves
by hiding this link if the user is watching their own profile. We are going to perform
an AJAX request to follow/unfollow a particular user. We add data-id and data-
action attributes to the <a> HTML element including the user ID and the initial
action to perform when it's clicked, follow or unfollow, that depends on the user
requesting the page being or not a follower of this user. We display the images
bookmarked by the user with the list_ajax.html template.

Open your browser again and click on a user that has bookmarked some images.
You will see a profile detail like the following one:

Tracking User Actions

[178]

Building an AJAX view to follow users
We will create a simple view to follow/unfollow a user using AJAX. Edit the
views.py file of the account application and add the following code to it:

from django.http import JsonResponse
from django.views.decorators.http import require_POST
from common.decorators import ajax_required
from .models import Contact

@ajax_required
@require_POST
@login_required
def user_follow(request):
 user_id = request.POST.get('id')
 action = request.POST.get('action')
 if user_id and action:
 try:
 user = User.objects.get(id=user_id)
 if action == 'follow':
 Contact.objects.get_or_create(
 user_from=request.user,
 user_to=user)
 else:
 Contact.objects.filter(user_from=request.user,
 user_to=user).delete()
 return JsonResponse({'status':'ok'})
 except User.DoesNotExist:
 return JsonResponse({'status':'ko'})
 return JsonResponse({'status':'ko'})

The user_follow view is quite similar to the image_like view we created before.
Since we are using a custom intermediary model for the users' many-to-many
relationship, the default add() and remove() methods of the automatic manager
of ManyToManyField are not available. We use the intermediary Contact model
to create or delete user relationships.

Import the view you just created in the urls.py file of the account application and
add the following URL pattern to it:

url(r'^users/follow/$', views.user_follow, name='user_follow'),

Chapter 6

[179]

Make sure that you place this pattern before the user_detail URL pattern.
Otherwise, any requests to /users/follow/ will match the regular expression of
the user_detail pattern and it will be executed instead. Remember that in every
HTTP request Django checks the requested URL against each pattern in order of
appearance and stops at the first match.

Edit the user/detail.html template of the account application and append the
following code to it:

{% block domready %}
 $('a.follow').click(function(e){
 e.preventDefault();
 $.post('{% url "user_follow" %}',
 {
 id: $(this).data('id'),
 action: $(this).data('action')
 },
 function(data){
 if (data['status'] == 'ok') {
 var previous_action = $('a.follow').data('action');

 // toggle data-action
 $('a.follow').data('action',
 previous_action == 'follow' ? 'unfollow' : 'follow');
 // toggle link text
 $('a.follow').text(
 previous_action == 'follow' ? 'Unfollow' : 'Follow');

 // update total followers
 var previous_followers = parseInt(
 $('span.count .total').text());
 $('span.count .total').text(previous_action == 'follow' ?
previous_followers + 1 : previous_followers - 1);
 }
 }
);
 });
{% endblock %}

This is the JavaScript code to perform the AJAX request to follow or unfollow a
particular user and also toggle the follow/unfollow link. We use jQuery to perform
the AJAX request and set both the data-action attribute and the text of the HTML
<a> element based on its previous value. When the AJAX action is performed, we also
update the count of total followers displayed on the page. Open the user detail page
of an existing user and click the Follow link to try the functionality we just built.

Tracking User Actions

[180]

Building a generic activity stream
application
Many social websites show an activity stream to their users, so that they can track
what other users do in the platform. An activity stream is a list of recent activities
performed by a user or a group of users. For example, Facebook's News Feed is an
activity stream. Example actions can be User X bookmarked image Y or User X is
now following user Y. We will build an activity stream application so that every
user can see recent interactions of users he follows. To do so, we will need a model
to save the actions performed by users on the website and simple way to add actions
to the feed.

Create a new application named actions inside your project with the following
command:

django-admin startapp actions

Add 'actions' to INSTALLED_APPS in the settings.py file of your project to let
Django know the new application is active:

INSTALLED_APPS = (
 # …
 'actions',
)

Edit the models.py file of the actions application and add the following code to it:

from django.db import models
from django.contrib.auth.models import User

class Action(models.Model):
 user = models.ForeignKey(User,
 related_name='actions',
 db_index=True)
 verb = models.CharField(max_length=255)
 created = models.DateTimeField(auto_now_add=True,
 db_index=True)

 class Meta:
 ordering = ('-created',)

Chapter 6

[181]

This is the Action model that will be used for storing user activities. The fields of
this model are as follows:

• user: The user that performed the action. This is a ForeignKey to the Django
User model.

• verb: The verb describing the action that the user has performed.
• created: The date and time when this action was created. We use auto_now_

add=True to automatically set this to the current datetime when the object is
saved for the first time in the database.

With this basic model, we can only store actions such as User X did something. We
need an extra ForeignKey field in order to save actions that involve a target object,
such as User X bookmarked image Y or User X is now following user Y. As you
already know, a normal ForeignKey can only point to one other model. Instead,
we need a way for the action's target object to be an instance of any existing model.
This is where the Django contenttypes framework comes on the scene.

Using the contenttypes framework
Django includes a contenttypes framework located at django.contrib.
contenttypes. This application can track all models installed in your project
and provides a generic interface to interact with your models.

The 'django.contrib.contenttypes' is included in the INSTALLED_APPS setting
by default when you create a new project using the startproject command. It
is used by other contrib packages such as the authentication framework and the
admin application.

The contenttypes application contains a ContentType model. Instances of this
model represent the actual models of your application, and new instances of
ContentType are automatically created when new models are installed in your
project. The ContentType model has the following fields:

• app_label: The name of the application the model belongs to. This is
automatically taken from the app_label attribute of the model Meta options.
For example, our Image model belongs to the application images.

• model: The name of the model class.
• name: The human-readable name of the model. This is automatically taken

from the verbose_name attribute of the model Meta options.

Tracking User Actions

[182]

Let's take a look at how we can interact with ContentType objects. Open the
Python console using the python manage.py shell command. You can get the
ContentType object corresponding to a specific model by performing a query
with the app_label and model attributes such as this:

>>> from django.contrib.contenttypes.models import ContentType
>>> image_type = ContentType.objects.get(app_label='images',
model='image')
>>> image_type
<ContentType: image>

You can also retrieve the model class back from a ContentType object by calling its
model_class() method:

>>> image_type.model_class()
<class 'images.models.Image'>

It's also common to get the ContentType object for a particular model class as
follows:

>>> from images.models import Image
>>> ContentType.objects.get_for_model(Image)
<ContentType: image>

These are just some examples of using contenttypes. Django offers more ways to work
with them. You can find the official documentation about the contenttypes framework
at https://docs.djangoproject.com/en/1.8/ref/contrib/contenttypes/.

Adding generic relations to your models
In generic relations ContentType objects play the role of pointing to the model used
for the relationship. You will need three fields to setup a generic relation in a model:

• A ForeignKey field to ContentType. This will tell us the model for the
relationship.

• A field to store the primary key of the related object. This will usually be a
PositiveIntegerField to match Django automatic primary key fields.

• A field to define and manage the generic relation using the two previous
fields. The contenttypes framework offers a GenericForeignKey field for
this purpose.

https://docs.djangoproject.com/en/1.8/ref/contrib/contenttypes/

Chapter 6

[183]

Edit the models.py file of the actions application and make it look like this:

from django.db import models
from django.contrib.auth.models import User
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey

class Action(models.Model):
 user = models.ForeignKey(User,
 related_name='actions',
 db_index=True)
 verb = models.CharField(max_length=255)

 target_ct = models.ForeignKey(ContentType,
 blank=True,
 null=True,
 related_name='target_obj')
 target_id = models.PositiveIntegerField(null=True,
 blank=True,
 db_index=True)
 target = GenericForeignKey('target_ct', 'target_id')
 created = models.DateTimeField(auto_now_add=True,
 db_index=True)

 class Meta:
 ordering = ('-created',)

We have added the following fields to the Action model:

• target_ct: A ForeignKey field to the ContentType model.
• target_id: A PositiveIntegerField for storing the primary key of the

related object.
• target: A GenericForeignKey field to the related object based on the

combination of the two previous fields.

Django does not create any field in the database for GenericForeignKey fields. The
only fields that are mapped to database fields are target_ct and target_id. Both
fields have blank=True and null=True attributes so that a target object is not
required when saving Action objects.

You can make your applications more flexible by using generic
relationships instead of foreign-keys when it makes sense to have
a generic relation.

Tracking User Actions

[184]

Run the following command to create initial migrations for this application:

python manage.py makemigrations actions

You should see the following output:

Migrations for 'actions':
 0001_initial.py:
 - Create model Action

Then, run the next command to sync the application with the database:

python manage.py migrate

The output of the command should indicate that the new migrations have been
applied as follows:

Applying actions.0001_initial... OK

Let's add the Action model to the administration site. Edit the admin.py file of the
actions application and add the following code to it:

from django.contrib import admin
from .models import Action

class ActionAdmin(admin.ModelAdmin):
 list_display = ('user', 'verb', 'target', 'created')
 list_filter = ('created',)
 search_fields = ('verb',)

admin.site.register(Action, ActionAdmin)

You just registered the Action model in the administration site. Run the command
python manage.py runserver to initialize the development server and open
http://127.0.0.1:8000/admin/actions/action/add/ in your browser. You
should see the page for creating a new Action object as follows:

Chapter 6

[185]

As you can see, only the target_ct and target_id fields that are mapped to actual
database fields are shown, and the GenericForeignKey field does not appear here.
The target_ct allows you to select any of the registered models of your Django
project. You can restrict the contenttypes to choose from to a limited set of models
by using the limit_choices_to attribute in the target_ct field: The limit_
choices_to attribute allows you to restrict the content of ForeignKey fields to a
specific set of values.

Create a new file inside the actions application directory and name it utils.py.
We will define a shortcut function that will allow us to create new Action objects in
a simple way. Edit the new file and add the following code to it:

from django.contrib.contenttypes.models import ContentType
from .models import Action

def create_action(user, verb, target=None):
 action = Action(user=user, verb=verb, target=target)
 action.save()

The create_action() function allows us to create actions that optionally include a
target object. We can use this function anywhere in our code to add new actions
to the activity stream.

Tracking User Actions

[186]

Avoiding duplicate actions in the activity
stream
Sometimes your users might perform an action multiple times. They might click
several times on like/unlike buttons or perform the same action multiple times in a
short period of time. This will make you end up storing and displaying duplicated
actions. In order to avoid this we will improve the create_action() function to
avoid most of the duplicates.

Edit the utils.py file of the actions application and make it look like the following:

import datetime
from django.utils import timezone
from django.contrib.contenttypes.models import ContentType
from .models import Action

def create_action(user, verb, target=None):
 # check for any similar action made in the last minute
 now = timezone.now()
 last_minute = now - datetime.timedelta(seconds=60)
 similar_actions = Action.objects.filter(user_id=user.id,
 verb= verb,
 timestamp__gte=last_minute)
 if target:
 target_ct = ContentType.objects.get_for_model(target)
 similar_actions = similar_actions.filter(
 target_ct=target_ct,
 target_id=target.id)
 if not similar_actions:
 # no existing actions found
 action = Action(user=user, verb=verb, target=target)
 action.save()
 return True
 return False

We have changed the create_action() function to avoid saving duplicate actions
and return a boolean to tell if the action was saved or not. This is how we avoid
duplicates:

• First, we get the current time using the timezone.now() method provided
by Django. This method does the same as datetime.datetime.now() but
returns a timezone-aware object. Django provides a setting called USE_TZ
to enable or disable timezone support. The default settings.py file created
using the startproject command includes USE_TZ=True.

Chapter 6

[187]

• We use the last_minute variable to store the datetime one minute ago and
we retrieve any identical actions performed by the user since then.

• We create an Action object if no identical action already exists in the last
minute. We return True if an Action object was created, False otherwise.

Adding user actions to the activity stream
It's time to add some actions to our views to build the activity stream for our users.
We are going to store an action for each of the following interactions:

• A user bookmarks an image
• A user likes/unlikes an image
• A user creates an account
• A user follows/unfollows another user

Edit the views.py file of the images application and add the following import:

from actions.utils import create_action

In the image_create view, add create_action() after saving the image like this:

new_item.save()
create_action(request.user, 'bookmarked image', new_item)

In the image_like view, add create_action() after adding the user to the
users_like relationship as follows:

image.users_like.add(request.user)
create_action(request.user, 'likes', image)

Now edit the views.py file of the account application and add the following import:

from actions.utils import create_action

In the register view, add create_action() after creating the Profile object
as follows:

new_user.save()
profile = Profile.objects.create(user=new_user)
create_action(new_user, 'has created an account')

Tracking User Actions

[188]

In the user_follow view add create_action() like this:

Contact.objects.get_or_create(user_from=request.user,
 user_to=user)
create_action(request.user, 'is following', user)

As you can see, thanks to our Action model and our helper function, it's very easy
to save new actions to the activity stream.

Displaying the activity stream
Finally, we need a way to display the activity stream for each user. We are going to
include it in the user's dashboard. Edit the views.py file of the account application.
Import the Action model and modify the dashboard view as follows:

from actions.models import Action

@login_required
def dashboard(request):
 # Display all actions by default
 actions = Action.objects.exclude(user=request.user)
 following_ids = request.user.following.values_list('id',
 flat=True)
 if following_ids:
 # If user is following others, retrieve only their actions
 actions = actions.filter(user_id__in=following_ids)
 actions = actions[:10]

 return render(request,
 'account/dashboard.html',
 {'section': 'dashboard',
 'actions': actions})

In this view, we retrieve all actions from the database, excluding the ones performed
by the current user. If the user is not following anybody yet, we display the latest
actions performed by other users on the platform. This is the default behavior when
the user is not following any other users yet. If the user is following other users, we
restrict the query to only display actions performed by the users he follows. Finally,
we limit the result to the first 10 actions returned. We are not using order_by() here
because we are relying on the default ordering we provided in the Meta options
of the Action model. Recent actions will come first, since we have set ordering =
('-created',) in the Action model.

Chapter 6

[189]

Optimizing QuerySets that involve related
objects
Every time you retrieve an Action object, you will probably access its related User
object, and probably the user's related Profile object too. The Django ORM offers
a simple way to retrieve related objects at once, avoiding additional queries to
the database.

Using select_related
Django offers a QuerySet method called select_related() that allows you to
retrieve related objects for one-to-many relationships. This translates to a single,
more complex QuerySet, but you avoid additional queries when accessing the
related objects. The select_related method is for ForeignKey and OneToOne fields.
It works by performing a SQL JOIN and including the fields of the related object
in the SELECT statement.

To take advantage of select_related(), edit the following line of the previous code:

actions = actions.filter(user_id__in=following_ids)

And add select_related on the fields that you will use:

actions = actions.filter(user_id__in=following_ids)\
 .select_related('user', 'user__profile')

We are using user__profile to join the profile table too in one single SQL query.
If you call select_related() without passing any arguments to it, it will retrieve
objects from all ForeignKey relationships. Always limit select_related() to the
relationships that will be accessed afterwards.

Using select_related() carefully can vastly improve execution time.

Using prefetch_related
As you see, select_related() will help you boost performance for retrieving related
objects in one-to-many relationships. However, select_related() cannot work for
many-to-many or many-to-one relationships (ManyToMany or reverse ForeignKey
fields). Django offers a different QuerySet method called prefetch_related that
works for many-to-many and many-to-one relations in addition to the relations
supported by select_related(). The prefetch_related() method performs a
separate lookup for each relationship and joins the results using Python. This method
also supports prefetching of GenericRelation and GenericForeignKey.

Tracking User Actions

[190]

Complete your query by adding prefetch_related() to it for the target
GenericForeignKey field as follows:

actions = actions.filter(user_id__in=following_ids)\
 .select_related('user', 'user__profile')\
 .prefetch_related('target')

This query is now optimized for retrieving the user actions including related objects.

Creating templates for actions
We are going to create the template to display a particular Action object. Create a
new directory inside the actions application directory and name it templates. Add
the following file structure to it:

actions/
 action/
 detail.html

Edit the actions/action/detail.html template file and add the following lines
to it:

{% load thumbnail %}

{% with user=action.user profile=action.user.profile %}
<div class="action">
 <div class="images">
 {% if profile.photo %}
 {% thumbnail user.profile.photo "80x80" crop="100%" as im %}

 <img src="{{ im.url }}" alt="{{ user.get_full_name }}"
class="item-img">

 {% endthumbnail %}
 {% endif %}

 {% if action.target %}
 {% with target=action.target %}
 {% if target.image %}
 {% thumbnail target.image "80x80" crop="100%" as im %}

 {% endthumbnail %}
 {% endif %}

Chapter 6

[191]

 {% endwith %}
 {% endif %}
 </div>
 <div class="info">
 <p>
 {{ action.created|timesince }} ago

 {{ user.first_name }}

 {{ action.verb }}
 {% if action.target %}
 {% with target=action.target %}
 {{ target }}
 {% endwith %}
 {% endif %}
 </p>
 </div>
</div>
{% endwith %}

This is the template to display an Action object. First, we use the {% with %}
template tag to retrieve the user performing the action and their profile. Then, we
display the image of the target object if the Action object has a related target object.
Finally, we display the link to the user that performed the action, the verb and the
target object, if any.

Now, edit the account/dashboard.html template and append the following code
to the bottom of the content block:

<h2>What's happening</h2>
<div id="action-list">
 {% for action in actions %}
 {% include "actions/action/detail.html" %}
 {% endfor %}
</div>

Tracking User Actions

[192]

Open http://127.0.0.1:8000/account/ in your browser. Log in with an existing
user and perform several actions so that they get stored in the database. Then, log in
using another user, follow the previous user, and take a look at the generated action
stream in the dashboard page. It should look like the following:

We just created a complete activity stream for our users and we can easily add new
user actions to it. You can also add infinite scroll functionality to the activity stream
by implementing the same AJAX paginator we used for the image_list view.

Using signals for denormalizing counts
There are some cases when you would like to denormalize your data. Denormalization
is making data redundant in a way that it optimizes read performance. You have
to be careful about denormalization and only start using it when you really need
it. The biggest issue you will find with denormalization is it's difficult to keep your
denormalized data updated.

We will see an example of how to improve our queries by denormalizing counts.
The drawback is that we have to keep the redundant data updated. We are going
to denormalize data from our Image model and use Django signals to keep the
data updated.

Chapter 6

[193]

Working with signals
Django comes with a signal dispatcher that allows receiver functions to get notified
when certain actions occur. Signals are very useful when you need your code to do
something every time something else happens. You can also create your own signals
so that others can get notified when an event happens.

Django provides several signals for models located at django.db.models.signals.
Some of these signals are:

• pre_save and post_save: Sent before or after calling the save() method
of a model

• pre_delete and post_delete: Sent before or after calling the delete()
method of a model or QuerySet

• m2m_changed: Sent when a ManyToManyField on a model is changed

These are just a subset of the signals provided by Django. You can find the list of all
built-in signals at https://docs.djangoproject.com/en/1.8/ref/signals/.

Let's say you want to retrieve images by popularity. You can use the Django
aggregation functions to retrieve images ordered by then number of users who like
them. Remember you used Django aggregation functions in Chapter 3, Extending Your
Blog Application. The following code will retrieve images by their number of likes:

from django.db.models import Count
from images.models import Image

images_by_popularity = Image.objects.annotate(
 total_likes=Count('users_like')).order_by('-total_likes')

However, ordering images by counting their total likes is more expensive in terms
of performance than ordering them by a field which stores total counts. You can
add a field to the Image model to denormalize the total number of likes to boost
performance in queries that involve this field. How to keep this field updated?

Edit the models.py file of the images application and add the following field to the
Image model:

total_likes = models.PositiveIntegerField(db_index=True,
 default=0)

The total_likes field will allow us to store the total count of users that like each
image. Denormalizing counts is useful when you want to filter or order QuerySets
by them.

https://docs.djangoproject.com/en/1.8/ref/signals/

Tracking User Actions

[194]

There are several ways to improve performance that you have to take into
account before denormalizing fields. Consider database indexes, query
optimization and caching before starting to denormalize your data.

Run the following command to create the migrations for adding the new field to the
database table:

python manage.py makemigrations images

You should see the following output:

Migrations for 'images':
 0002_image_total_likes.py:
 - Add field total_likes to image

Then, run the following command to apply the migration:

python manage.py migrate images

The output should include the following line:

Applying images.0002_image_total_likes... OK

We are going to attach a receiver function to the m2m_changed signal. Create a
new file inside the images application directory and name it signals.py. Add the
following code to it:

from django.db.models.signals import m2m_changed
from django.dispatch import receiver
from .models import Image

@receiver(m2m_changed, sender=Image.users_like.through)
def users_like_changed(sender, instance, **kwargs):
 instance.total_likes = instance.users_like.count()
 instance.save()

First, we register the users_like_changed function as a receiver function using
the receiver() decorator and we attach it to the m2m_changed signal. We connect
the function to Image.users_like.through so that the function is only called if the
m2m_changed signal has been launched by this sender. There is an alternate method
for registering a receiver function, which consists of using the connect() method
of the Signal object.

Chapter 6

[195]

Django signals are synchronous and blocking. Don't confuse signals
with asynchronous tasks. However, you can combine both to launch
asynchronous tasks when your code gets notified by a signal.

You have to connect your receiver function to a signal, so that it gets called every
time the signal is sent. The recommended method for registering your signals is
by importing them in the ready() method of your application configuration class.
Django provides an application registry that allows you to configure and introspect
your applications.

Defining application configuration classes
Django allows you to specify configuration classes for your applications. To provide
a custom configuration for your application, create a custom class that inherits
the AppConfig class located in django.apps. The application configuration class
allows you to store metadata and configuration for the application and provides
introspection.

You can find more information about application configuration at https://docs.
djangoproject.com/en/1.8/ref/applications/.

In order to register your signal receiver functions, when you are using the
receiver() decorator you just need to import the signals module of your
application inside the ready() method of the AppConfig class. This method is called
as soon as the application registry is fully populated. Any other initializations for
your application should be also included inside this method.

Create a new file inside the images application directory and name it apps.py.
Add the following code to it:

from django.apps import AppConfig

class ImagesConfig(AppConfig):
 name = 'images'
 verbose_name = 'Image bookmarks'

 def ready(self):
 # import signal handlers
 import images.signals

https://docs.djangoproject.com/en/1.8/ref/applications/
https://docs.djangoproject.com/en/1.8/ref/applications/

Tracking User Actions

[196]

The name attribute defines the full Python path to the application. The verbose_name
attribute sets the human-readable name for this application. It's displayed in the
administration site. The ready() method is where we import the signals for this
application.

Now we need to tell Django where our application configuration resides. Edit the
__init__.py file located inside the images application directory and add the
following line to it:

default_app_config = 'images.apps.ImagesConfig'

Open your browser to view an image detail page and click on the like button. Go
back to the administration site and take a look at the total_likes attribute. You
should see that the total_likes attribute is updated like in the following example:

Now you can use the total_likes attribute to order images by popularity or
display the value anywhere, avoiding complex queries to calculate it. The following
query to get images ordered by their like count:

images_by_popularity = Image.objects.annotate(
 likes=Count('users_like')).order_by('-likes')

Can now become like this:

images_by_popularity = Image.objects.order_by('-total_likes')

This results in a much less expensive SQL query. This is just an example about how
to use Django signals.

Use signals with caution, since they make difficult to know the control
flow. In many cases you can avoid using signals if you know which
receivers need to be notified.

Chapter 6

[197]

You will need to set initial counts to match the current status of the database. Open
the shell with the command python manage.py shell and run the following code:

from images.models import Image
for image in Image.objects.all():
 image.total_likes = image.users_like.count()
 image.save()

The likes count for each image is now updated.

Using Redis for storing item views
Redis is and advanced key-value database that allows you to save different types of
data and is extremely fast on I/O operations. Redis stores everything in memory, but
the data can be persisted by dumping the dataset to disk every once in a while or by
adding each command to a log. Redis is very versatile compared to other key-value
stores: It provides a set of powerful commands and supports diverse data structures
such as strings, hashes, lists, sets, ordered sets, and even bitmaps or HyperLogLogs.

While SQL is best suitable for schema-defined persistent data storage, Redis offers
numerous advantages when dealing with rapidly changing data, volatile storage,
or when a quick cache is needed. Let's see how Redis can be used for building new
functionality into our project.

Installing Redis
Download the latest Redis version from http://redis.io/download. Unzip
the tar.gz file, enter the redis directory and compile Redis using the make
command as follows:

cd redis-3.0.4

make

After installing it use the following shell command to initialize the Redis server:

src/redis-server

You should see an output that ends with the following lines:

Server started, Redis version 3.0.4
* DB loaded from disk: 0.001 seconds
* The server is now ready to accept connections on port 6379

http://redis.io/download

Tracking User Actions

[198]

By default, Redis runs on port 6379, but you can also specify a custom port using the
--port flag, for example redis-server --port 6655. When your server is ready,
you can open the Redis client in another shell using the following command:

src/redis-cli

You should see the Redis client shell like the following:

127.0.0.1:6379>

The Redis client allows you to execute Redis commands directly from the shell.
Let's try some commands. Enter the SET command in the Redis shell to store a
value in a key:

127.0.0.1:6379> SET name "Peter"

OK

The previous command creates a name key with the string value "Peter" in the
Redis database. The OK output indicates that the key has been saved successfully.
Then, retrieve the value using the GET command as follows:

127.0.0.1:6379> GET name

"Peter"

You can also check if a key exists by using the EXISTS command. This command
returns 1 if the given key exists, 0 otherwise:

127.0.0.1:6379> EXISTS name

(integer) 1

You can set the time for a key to expire using the EXPIRE command, which allows
you to set time to live in seconds. Another option is using the EXPIREAT command
that expects a Unix timestamp. Key expiration is useful to use Redis as a cache or
to store volatile data:

127.0.0.1:6379> GET name

"Peter"

127.0.0.1:6379> EXPIRE name 2

(integer) 1

Wait for 2 seconds and try to get the same key again:

127.0.0.1:6379> GET name

(nil)

Chapter 6

[199]

The (nil) response is a null response and means no key has been found. You can
also delete any key using the DEL command as follows:

127.0.0.1:6379> SET total 1

OK

127.0.0.1:6379> DEL total

(integer) 1

127.0.0.1:6379> GET total

(nil)

These are just basic commands for key operations. Redis includes a large set of
commands for other data types such as strings, hashes, sets, ordered sets, and so on.
You can take a look at all Redis commands at http://redis.io/commands and all
Redis data types at http://redis.io/topics/data-types.

Using Redis with Python
We need Python bindings for Redis. Install redis-py via pip using the command:

pip install redis==2.10.3

You can find the redis-py docs at http://redis-py.readthedocs.org/.

The redis-py offers two classes for interacting with Redis: StrictRedis and Redis.
Both offer the same functionality. The StrictRedis class attempts to adhere to the
official Redis command syntax. The Redis class extends StrictRedis overriding
some methods to provide backwards compatibility. We are going to use the
StrictRedis class since it follows the Redis command syntax. Open the Python
shell and execute the following code:

>>> import redis
>>> r = redis.StrictRedis(host='localhost', port=6379, db=0)

This code creates a connection with the Redis database. In Redis, databases are
identified by an integer index instead of a database name. By default, a client is
connected to database 0. The number of available Redis databases is set to 16,
but you can change this in the redis.conf file.

Now set a key using the Python shell:

>>> r.set('foo', 'bar')
True

http://redis.io/commands
http://redis.io/topics/data-types
http://redis-py.readthedocs.org/

Tracking User Actions

[200]

The command returns True indicating that the key has been successfully created.
Now you can retrieve the key using the get() command:

>>> r.get('foo')
'bar'

As you can see, the methods of StrictRedis follow the Redis command syntax.

Let's integrate Redis into our project. Edit the settings.py file of the bookmarks
project and add the following settings to it:

REDIS_HOST = 'localhost'
REDIS_PORT = 6379
REDIS_DB = 0

These are the settings for the Redis server and the database that we will use for
our project.

Storing item views in Redis
Let's store the total number of times an image has been viewed. If we did this using
the Django ORM, it would involve an SQL UPDATE statement every time an image
is displayed. Using Redis instead, we just need to increment a counter stored in
memory, resulting in much better performance.

Edit the views.py file of the images application and add the following code to it:

import redis
from django.conf import settings

connect to redis
r = redis.StrictRedis(host=settings.REDIS_HOST,
 port=settings.REDIS_PORT,
 db=settings.REDIS_DB)

Here we establish the Redis connection in order to use it in our views. Edit the
image_detail view and make it look as follows:

def image_detail(request, id, slug):
 image = get_object_or_404(Image, id=id, slug=slug)
 # increment total image views by 1
 total_views = r.incr('image:{}:views'.format(image.id))
 return render(request,
 'images/image/detail.html',
 {'section': 'images',
 'image': image,
 'total_views': total_views})

Chapter 6

[201]

In this view, we use the INCR command that increments the value of a key by 1 and
sets the value to 0 before performing the operation if the key does not exist. The
incr() method returns the value of the key after performing the operation and we
store it in the total_views variable. We build the Redis key using a notation like
object-type:id:field (for example image:33:id).

The convention for naming Redis keys is to use a colon sign as separator
for creating namespaced keys. By doing so, the key names are specially
verbose and related keys share part of the same schema in their names.

Edit the image/detail.html template and add the following code to it after the
existing element:

 {{ total_views }}
 view{{ total_views|pluralize }}

Now open an image detail page in your browser and load it several times. You will
see that each time the view is executed the total views displayed are incremented by
1. See the following example:

You have successfully integrated Redis into your project to store item counts.

Tracking User Actions

[202]

Storing a ranking in Redis
Let's built some more functionality with Redis. We are going to create a ranking
of the most viewed images in our platform. For building this ranking we will use
Redis sorted sets. A sorted set is a non-repeating collection of strings in which
every member is associated with a score. Items are sorted by their score.

Edit the views.py file of the images application and make the image_detail view
look as follows:

def image_detail(request, id, slug):
 image = get_object_or_404(Image, id=id, slug=slug)
 # increment total image views by 1
 total_views = r.incr('image:{}:views'.format(image.id))
 # increment image ranking by 1
 r.zincrby('image_ranking', image.id, 1)
 return render(request,
 'images/image/detail.html',
 {'section': 'images',
 'image': image,
 'total_views': total_views})

We use the zincrby() command to store image views in a sorted set with the key
image:ranking. We are storing the image id, and a score of 1 that will be added to
the total score of this element in the sorted set. This will allow us to keep track of all
image views globally and have a sorted set ordered by the total number of views.

Now create a new view to display the ranking of the most viewed images. Add the
following code to the views.py file:

@login_required
def image_ranking(request):
 # get image ranking dictionary
 image_ranking = r.zrange('image_ranking', 0, -1,
 desc=True)[:10]
 image_ranking_ids = [int(id) for id in image_ranking]
 # get most viewed images
 most_viewed = list(Image.objects.filter(
 id__in=image_ranking_ids))
 most_viewed.sort(key=lambda x: image_ranking_ids.index(x.id))
 return render(request,
 'images/image/ranking.html',
 {'section': 'images',
 'most_viewed': most_viewed})

Chapter 6

[203]

This is the image_ranking view. We use the zrange() command to obtain the
elements in the sorted set. This command expects a custom range by lowest and
highest score. By using 0 as lowest and -1 as highest score we are telling Redis
to return all elements in the sorted set. We also specify desc=True to retrieve the
elements ordered by descending score. Finally, we slice the results using [:10] to get
the first 10 elements with highest scores. We build a list of returned image IDs and we
store it in the image_ranking_ids variable as a list of integers. We retrieve the Image
objects for those IDs and force the query to be executed by using the list() function.
It is important to force the QuerySet execution because next we use the sort() list
method on it (at this point we need a list of objects instead of a queryset). We sort the
Image objects by their index of appearance in the image ranking. Now we can use the
most_viewed list in our template to display the 10 most viewed images.

Create a new image/ranking.html template file and add the following code to it:

{% extends "base.html" %}

{% block title %}Images ranking{% endblock %}

{% block content %}
 <h1>Images ranking</h1>

 {% for image in most_viewed %}

 {{ image.title }}

 {% endfor %}

{% endblock %}

The template is pretty straightforward, as we just iterate over the Image objects
contained in the most_viewed list.

Finally create an URL pattern for the new view. Edit the urls.py file of the images
application and add the following pattern to it:

url(r'^ranking/$', views.image_ranking, name='create'),

Tracking User Actions

[204]

Open http://127.0.0.1:8000/images/ranking/ in your browser. You should be
able to see an image ranking as follows:

Next steps with Redis
Redis is not a replacement for your SQL database but a fast in-memory storage that
is more suitable for certain tasks. Add it to your stack and use it when you really feel
it's needed. The following are some scenarios in which Redis suits pretty well:

• Counting: As you have seen, it is very easy to manage counters with Redis.
You can use incr() and incrby() for counting stuff.

• Storing latest items: You can add items to the start/end of a list using
lpush() and rpush(). Remove and return first/last element using lpop() /
rpop().You can trim the list length using ltrim() to maintain its length.

• Queues: In addition to push and pop commands, Redis offers blocking
queue commands.

• Caching: Using expire() and expireat() allows you to use Redis as a
cache. You can also find third-party Redis cache backends for Django.

• Pub/Sub: Redis provides commands for subscribing/unsubscribing and
sending messages to channels.

• Rankings and leaderboards: Redis sorted sets with scores make it very easy
to create leaderboards.

• Real-time tracking: Redis fast I/O makes it perfect for real-time scenarios.

Summary
In this chapter, you have built a follower system and a user activity stream. You have
learned how Django signals work and you have integrated Redis into your project.

In the next chapter, you will learn how to build an on-line shop. You will create a
product catalog and build a shopping cart using sessions. You will also learn how
to launch asynchronous tasks with Celery.

[205]

Building an Online Shop
In the previous chapter, you created a follower system and built a user activity
stream. You also learned how Django signals work and integrated Redis into your
project to count image views. In this chapter, you will learn how to build a basic
online shop. You will create a catalog of products and implement a shopping cart
using Django sessions. You will also learn how to create custom context processors
and launch asynchronous tasks using Celery.

In this chapter, you will learn to:

• Create a product catalog
• Build a shopping cart using Django sessions
• Manage customer orders
• Send asynchronous notifications to customers using Celery

Creating an online shop project
We are going to start with a new Django project to build an online shop. Our users
will be able to browse through a product catalog and add products to a shopping
cart. Finally, they will be able to checkout the cart and place an order. This chapter
will cover the following functionalities of an online shop:

• Creating the product catalog models, adding them to the administration site,
and building the basic views to display the catalog

• Building a shopping cart system using Django sessions to allow users
to keep selected products while they browse the site

• Creating the form and functionality to place orders
• Sending an asynchronous email confirmation to users when they place

an order

Building an Online Shop

[206]

First, create a virtual environment for your new project and activate it with the
following commands:

mkdir env

virtualenv env/myshop

source env/myshop/bin/activate

Install Django in your virtual environment with the following command:

pip install Django==1.8.6

Start a new project called myshop with an application called shop by opening a shell
and running the following commands:

django-admin startproject myshop

cd myshop/

django-admin startapp shop

Edit the settings.py file of your project and add your application to the
INSTALLED_APPS setting as follows:

INSTALLED_APPS = (
 # ...
 'shop',
)

Your application is now active for this project. Let's define the models for the
product catalog.

Creating product catalog models
The catalog of our shop will consist of products that are organized into different
categories. Each product will have a name, optional description, optional image,
a price, and an available stock. Edit the models.py file of the shop application
that you just created and add the following code:

from django.db import models

class Category(models.Model):
 name = models.CharField(max_length=200,
 db_index=True)
 slug = models.SlugField(max_length=200,
 db_index=True,
 unique=True)

Chapter 7

[207]

 class Meta:
 ordering = ('name',)
 verbose_name = 'category'
 verbose_name_plural = 'categories'

 def __str__(self):
 return self.name

class Product(models.Model):
 category = models.ForeignKey(Category,
 related_name='products')
 name = models.CharField(max_length=200, db_index=True)
 slug = models.SlugField(max_length=200, db_index=True)
 image = models.ImageField(upload_to='products/%Y/%m/%d',
 blank=True)
 description = models.TextField(blank=True)
 price = models.DecimalField(max_digits=10, decimal_places=2)
 stock = models.PositiveIntegerField()
 available = models.BooleanField(default=True)
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)

 class Meta:
 ordering = ('name',)
 index_together = (('id', 'slug'),)

 def __str__(self):
 return self.name

These are our Category and Product models. The Category model consists of
a name field and a slug unique field. The Product model fields are as follows:

• category: This is ForeignKey to the Category model. This is a many-to-one
relationship: A product belongs to one category and a category contains
multiple products.

• name: This is the name of the product.
• slug: This is the slug for this product to build beautiful URLs.
• image: This is an optional product image.
• description: This is an optional description of the product.

Building an Online Shop

[208]

• price: This is DecimalField. This field uses Python's decimal.Decimal
type to store a fixed-precision decimal number. The maximum number of
digits (including the decimal places) is set using the max_digits attribute
and decimal places with the decimal_places attribute.

• stock: This is PositiveIntegerField to store the stock of this product.
• available: This is a boolean that indicates whether the product is available

or not. This allows us to enable/disable the product in the catalog.
• created: This field stores when the object was created.
• updated: This field stores when the object was last updated.

For the price field, we use DecimalField instead of FloatField to avoid
rounding issues.

Always use DecimalField to store monetary amounts. FloatField
uses Python's float type internally, whereas DecimalField uses
Python's Decimal type. By using the Decimal type, you will avoid the
float rounding issues.

In the Meta class of the Product model, we use the index_together meta option to
specify an index for the id and slug fields together. We define this index, because
we plan to query products by both, id and slug. Both fields are indexed together to
improve performances for queries that utilize the two fields.

Since we are going to deal with images in our models, open the shell and install
Pillow with the following command:

pip install Pillow==2.9.0

Now, run the next command to create initial migrations for your project:

python manage.py makemigrations

You will see the following output:

Migrations for 'shop':
 0001_initial.py:
 - Create model Category
 - Create model Product
 - Alter index_together for product (1 constraint(s))

Run the next command to sync the database:

python manage.py migrate

Chapter 7

[209]

You will see an output that includes the following line:

Applying shop.0001_initial... OK

The database is now synced with your models.

Registering catalog models in the admin site
Let's add our models to the administration site so that we can easily manage
categories and products. Edit the admin.py file of the shop application and
add the following code to it:

from django.contrib import admin
from .models import Category, Product

class CategoryAdmin(admin.ModelAdmin):
 list_display = ['name', 'slug']
 prepopulated_fields = {'slug': ('name',)}
admin.site.register(Category, CategoryAdmin)

class ProductAdmin(admin.ModelAdmin):
 list_display = ['name', 'slug', 'price', 'stock',
 'available', 'created', 'updated']
 list_filter = ['available', 'created', 'updated']
 list_editable = ['price', 'stock', 'available']
 prepopulated_fields = {'slug': ('name',)}
admin.site.register(Product, ProductAdmin)

Remember that we use the prepopulated_fields attribute to specify fields where
the value is automatically set using the value of other fields. As you have seen
before, this is convenient for generating slugs. We use the list_editable attribute
in the ProductAdmin class to set the fields that can be edited from the list display
page of the administration site. This will allow you to edit multiple rows at once.
Any field in list_editable must also be listed in the list_display attribute, since
only the fields displayed can be edited.

Now, create a superuser for your site using the following command:

python manage.py createsuperuser

Building an Online Shop

[210]

Start the development server with the command python manage.py runserver.
Open http://127.0.0.1:8000/admin/shop/product/add/ in your browser and
log in with the user that you just created. Add a new category and product using the
administration interface. The product change list page of the administration page
will then look like this:

Building catalog views
In order to display the product catalog, we need to create a view to list all the
products or filter products by a given category. Edit the views.py file of the shop
application and add the following code to it:

from django.shortcuts import render, get_object_or_404
from .models import Category, Product

def product_list(request, category_slug=None):
 category = None
 categories = Category.objects.all()
 products = Product.objects.filter(available=True)
 if category_slug:
 category = get_object_or_404(Category, slug=category_slug)
 products = products.filter(category=category)
 return render(request,
 'shop/product/list.html',
 {'category': category,
 'categories': categories,
 'products': products})

We will filter the QuerySet with available=True to retrieve only available products.
We will use an optional category_slug parameter to optionally filter products by a
given category.

Chapter 7

[211]

We also need a view to retrieve and display a single product. Add the following
view to the views.py file:

def product_detail(request, id, slug):
 product = get_object_or_404(Product,
 id=id,
 slug=slug,
 available=True)
 return render(request,
 'shop/product/detail.html',
 {'product': product})

The product_detail view expects the id and slug parameters in order to retrieve
the Product instance. We can get this instance by just the ID since it's a unique
attribute. However, we include the slug in the URL to build SEO-friendly URLs
for products.

After building the product list and detail views, we have to define URL patterns for
them. Create a new file inside the shop application directory and name it urls.py.
Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^$', views.product_list, name='product_list'),
 url(r'^(?P<category_slug>[-\w]+)/$',
 views.product_list,
 name='product_list_by_category'),
 url(r'^(?P<id>\d+)/(?P<slug>[-\w]+)/$',
 views.product_detail,
 name='product_detail'),
]

These are the URL patterns for our product catalog. We have defined two different
URL patterns for the product_list view: a pattern named product_list, which
calls the product_list view without any parameters; and a pattern named
product_list_by_category, which provides a category_slug parameter to the
view for filtering products by a given category. We added a pattern for the product_
detail view, which passes the id and slug parameters to the view in order to
retrieve a specific product.

Building an Online Shop

[212]

Edit the urls.py file of the myshop project to make it look like this:

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^', include('shop.urls', namespace='shop')),
]

In the main URLs patterns of the project, we will include URLs for the shop
application under a custom namespace named 'shop'.

Now, edit the models.py file of the shop application, import the reverse() function,
and add a get_absolute_url() method to the Category and Product models
as follows:

from django.core.urlresolvers import reverse
...
class Category(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('shop:product_list_by_category',
 args=[self.slug])

class Product(models.Model):
 # ...
 def get_absolute_url(self):
 return reverse('shop:product_detail',
 args=[self.id, self.slug])

As you already know, get_absolute_url() is the convention to retrieve URL
for a given object. Here, we will use the URLs patterns that we just defined in
the urls.py file.

Creating catalog templates
Now, we need to create templates for the product list and detail views. Create the
following directory and file structure inside the shop application directory:

templates/
 shop/
 base.html
 product/
 list.html
 detail.html

Chapter 7

[213]

We need to define a base template, and then extend it in the product list and detail
templates. Edit the shop/base.html template and add the following code to it:

{% load static %}
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>{% block title %}My shop{% endblock %}</title>
 <link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
 <div id="header">
 My shop
 </div>
 <div id="subheader">
 <div class="cart">
 Your cart is empty.
 </div>
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
</body>
</html>

This is the base template that we will use for our shop. In order to include the
required CSS styles and images that are used by the templates, you will need to copy
the static files that come along with this chapter, located in the static/ directory of
the shop application. Copy them to the same location of your project.

Edit the shop/product/list.html template and add the following code to it:

{% extends "shop/base.html" %}
{% load static %}

{% block title %}
 {% if category %}{{ category.name }}{% else %}Products{% endif %}
{% endblock %}

{% block content %}
 <div id="sidebar">
 <h3>Categories</h3>

Building an Online Shop

[214]

 <li {% if not category %}class="selected"{% endif %}>
 All

 {% for c in categories %}
 <li {% if category.slug == c.slug %}class="selected"{% endif
%}>
 {{ c.name }}

 {% endfor %}

 </div>
 <div id="main" class="product-list">
 <h1>{% if category %}{{ category.name }}{% else %}Products{% endif
%}</h1>
 {% for product in products %}
 <div class="item">

 <img src="{% if product.image %}{{ product.image.url }}{%
else %}{% static "img/no_image.png" %}{% endif %}">

 {{ product.name }}</
a>

 ${{ product.price }}
 </div>
 {% endfor %}
 </div>
{% endblock %}

This is the product list template. It extends the shop/base.html template and
uses the categories context variable to display all the categories in a sidebar and
products to display the products of the current page. The same template is used for
both: listing all available products and listing products filtered by a category. Since
the image field of the Product model can be blank, we need to provide a default
image for the products that don't have an image. The image is located in our static
files directory with the relative path img/no_image.png.

Since we are using ImageField to store product images, we need the development
server to serve uploaded image files. Edit the settings.py file of myshop and add
the following settings:

MEDIA_URL = '/media/'
MEDIA_ROOT = os.path.join(BASE_DIR, 'media/')

Chapter 7

[215]

MEDIA_URL is the base URL that serves media files uploaded by users. MEDIA_ROOT is
the local path where these files reside, which we build dynamically prepending the
BASE_DIR variable.

For Django to serve the uploaded media files using the development server, edit the
urls.py file of myshop and add make it look like this:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
 # ...
]
if settings.DEBUG:
 urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MEDIA_ROOT)

Remember that we only serve static files this way during the development. In a
production environment, you should never serve static files with Django.

Add a couple of products to your shop using the administration site and open
http://127.0.0.1:8000/ in your browser. You will see the product list page,
which looks like this:

Building an Online Shop

[216]

If you create a product using the administration site and don't upload any images,
the default no_image.png image will be displayed:

Let's edit the product detail template. Edit the shop/product/detail.html template
and add the following code to it:

{% extends "shop/base.html" %}
{% load static %}

{% block title %}
 {% if category %}{{ category.title }}{% else %}Products{% endif %}
{% endblock %}

{% block content %}
 <div class="product-detail">
 <img src="{% if product.image %}{{ product.image.url }}{% else %}
{% static "img/no_image.png" %}{% endif %}">
 <h1>{{ product.name }}</h1>
 <h2>{{ product.
category }}</h2>
 <p class="price">${{ product.price }}</p>
 {{ product.description|linebreaks }}
 </div>
{% endblock %}

Chapter 7

[217]

We call the get_absolute_url() method on the related category object to
display the available products that belong to the same category. Now, open
http://127.0.0.1:8000/ in your browser and click on any product to see
the product detail page. It will look as follows:

We have now created a basic product catalog.

Building a shopping cart
After building the product catalog, the next step is to create a shopping cart that will
allow users to select the products that they want to purchase. A shopping cart allows
users to select the products they want and store them temporarily while they browse
the site, until they eventually place an order. The cart has to be persisted in the
session so that the cart items are kept during the user's visit.

We will use Django's session framework to persist the cart. The cart will be kept in
the session until it finishes or the user checks out of the cart. We will also need
to build additional Django models for the cart and its items.

Building an Online Shop

[218]

Using Django sessions
Django provides a session framework that supports anonymous and user sessions.
The session framework allows you to store arbitrary data for each visitor. Session
data is stored on the server side, and cookies contain the session ID, unless you use
the cookie-based session engine. The session middleware manages sending and
receiving cookies. The default session engine stores session data in the database,
but as you will see next, you can choose between different session engines.
To use sessions, you have to make sure that the MIDDLEWARE_CLASSES setting of your
project contains 'django.contrib.sessions.middleware.SessionMiddleware'.
This middleware manages sessions and is added by default when you create a new
project using the startproject command.

The session middleware makes the current session available in the request object.
You can access the current session using request.session, by utilizing it similar to
a Python dictionary to store and retrieve session data. The session dictionary accepts
any Python object by default that can be serialized into JSON. You can set a variable
in the session like this:

request.session['foo'] = 'bar'

Retrieve a session key:

request.session.get('foo')

Delete a key you stored in the session:

del request.session['foo']

As you saw, we just treated request.session like a standard Python dictionary.

When users log into the site, their anonymous session is lost and a new
session is created for the authenticated users. If you store items in an
anonymous session that you need to keep after users log in, you will have
to copy the old session data into the new session.

Session settings
There are several settings you can use to configure sessions for your project. The
most important is SESSION_ENGINE. This setting allows you to set the place where
sessions are stored. By default, Django stores sessions in the database using the
Session model of the django.contrib.sessions application.

Chapter 7

[219]

Django offers the following options for storing session data:

• Database sessions: Session data is stored in the database. This is the default
session engine.

• File-based sessions: Session data is stored in the file system.
• Cached sessions: Session data is stored in a cache backend. You can specify

cache backends using the CACHES setting. Storing session data in a cache
system offers best performance.

• Cached database sessions: Session data is stored in a write-through cache
and database. Reads only use the database if the data is not already in
the cache.

• Cookie-based sessions: Session data is stored in the cookies that are sent
to the browser.

For better performance, use a cache-based session engine. Django
supports Memcached and there are other third-party cache
backends for Redis and other cache systems.

You can customize sessions with other settings. Here are some of the important
session related settings:

• SESSION_COOKIE_AGE: This is the duration of session cookies in seconds. The
default value is 1209600 (2 weeks).

• SESSION_COOKIE_DOMAIN: This domain is used for session cookies. Set this to
.mydomain.com to enable cross-domain cookies.

• SESSION_COOKIE_SECURE: This is a boolean indicating that the cookie should
only be sent if the connection is an HTTPS connection.

• SESSION_EXPIRE_AT_BROWSER_CLOSE: This is a boolean indicating that the
session has to expire when the browser is closed.

• SESSION_SAVE_EVERY_REQUEST: This is a boolean that, if True, will save
the session to the database on every request. The session expiration is also
updated each time.

You can see all the session settings at https://docs.djangoproject.com/en/1.8/
ref/settings/#sessions.

https://docs.djangoproject.com/en/1.8/ref/settings/#sessions
https://docs.djangoproject.com/en/1.8/ref/settings/#sessions

Building an Online Shop

[220]

Session expiration
You can choose to use browser-length sessions or persistent sessions using the
SESSION_EXPIRE_AT_BROWSER_CLOSE setting. This is set to False by default,
forcing the session duration to the value stored in the SESSION_COOKIE_AGE setting.
If you set SESSION_EXPIRE_AT_BROWSER_CLOSE to True, the session will expire
when the user closes the browser, and the SESSION_COOKIE_AGE setting will not
have any effect.

You can use the set_expiry() method of request.session to overwrite the
duration of the current session.

Storing shopping carts in sessions
We need to create a simple structure that can be serialized to JSON for storing
cart items in a session. The cart has to include the following data for each item
contained in it:

• id of a Product instance
• The quantity selected for this product
• The unit price for this product

Since product prices may vary, we take the approach of storing the product's price
along with the product itself when it's added to the cart. By doing so, we keep the
same price that users saw when they added the item to the cart, even if the product's
price is changed afterward.

Now, you have to manage creating carts and associate them with sessions. The
shopping cart has to work as follows:

• When a cart is needed, we check if a custom session key is set. If no cart is set
in the session, we create a new cart and save it in the cart session key.

• For successive requests, we perform the same check and get the cart items
from the cart session key. We retrieve the cart items from the session and
their related Product objects from the database.

Edit the settings.py file of your project and add the following setting to it:

CART_SESSION_ID = 'cart'

This is the key that we are going to use to store the cart in the user session. Since
Django sessions are per-visitor, we can use the same cart session key for all sessions.

Chapter 7

[221]

Let's create an application for managing shopping carts. Open the terminal and
create a new application, running the following command from the project directory:

python manage.py startapp cart

Then, edit the settings.py file of your project and add 'cart' to the INSTALLED_
APPS setting as follows:

INSTALLED_APPS = (
 # ...
 'shop',
 'cart',
)

Create a new file inside the cart application directory and name it cart.py. Add the
following code to it:

from decimal import Decimal
from django.conf import settings
from shop.models import Product

class Cart(object):

 def __init__(self, request):
 """
 Initialize the cart.
 """
 self.session = request.session
 cart = self.session.get(settings.CART_SESSION_ID)
 if not cart:
 # save an empty cart in the session
 cart = self.session[settings.CART_SESSION_ID] = {}
 self.cart = cart

This is the Cart class that will allow us to manage the shopping cart. We require
the cart to be initialized with a request object. We store the current session using
self.session = request.session to make it accessible to the other methods
of the Cart class. First, we try to get the cart from the current session using self.
session.get(settings.CART_SESSION_ID). If no cart is present in the session, we
set an empty cart just by setting an empty dictionary in the session. We expect our
cart dictionary to use product IDs as keys and a dictionary with quantity and price as
value for each key. By doing so, we can guarantee that a product is not added more
than once in the cart; we can also simplify the way to access any cart item data.

Building an Online Shop

[222]

Let's create a method to add products to the cart or update their quantity. Add the
following add() and save() methods to the Cart class:

def add(self, product, quantity=1, update_quantity=False):
 """
 Add a product to the cart or update its quantity.
 """
 product_id = str(product.id)
 if product_id not in self.cart:
 self.cart[product_id] = {'quantity': 0,
 'price': str(product.price)}
 if update_quantity:
 self.cart[product_id]['quantity'] = quantity
 else:
 self.cart[product_id]['quantity'] += quantity
 self.save()

def save(self):
 # update the session cart
 self.session[settings.CART_SESSION_ID] = self.cart
 # mark the session as "modified" to make sure it is saved
 self.session.modified = True

The add() method takes the following parameters:

• product: The Product instance to add or update in the cart.
• quantity: An optional integer for product quantity. This defaults to 1.
• update_quantity: This is a boolean that indicates whether the quantity

needs to be updated with the given quantity (True), or the new quantity
has to be added to the existing quantity (False).

We use the product id as a key in the cart contents dictionary. We convert the
product id into a string because Django uses JSON to serialize session data, and
JSON only allows string key names. The product id is the key and the value that we
persist is a dictionary with quantity and price for the product. The product's price
is converted from Decimal into string in order to serialize it. Finally, we call the
save() method to save the cart in the session.

The save() method saves all the changes to the cart in the session and marks the
session as modified using session.modified = True. This tells Django that the
session has changed and needs to be saved.

Chapter 7

[223]

We also need a method for removing products from the cart. Add the following
method to the Cart class:

def remove(self, product):
 """
 Remove a product from the cart.
 """
 product_id = str(product.id)
 if product_id in self.cart:
 del self.cart[product_id]
 self.save()

The remove() method removes a given product from the cart dictionary and calls
the save() method to update the cart in the session.

We will have to iterate through the items contained in the cart and access the related
Product instances. To do so, you can define an __iter__() method in your class.
Add the following method to the Cart class:

def __iter__(self):
 """
 Iterate over the items in the cart and get the products
 from the database.
 """
 product_ids = self.cart.keys()
 # get the product objects and add them to the cart
 products = Product.objects.filter(id__in=product_ids)
 for product in products:
 self.cart[str(product.id)]['product'] = product

 for item in self.cart.values():
 item['price'] = Decimal(item['price'])
 item['total_price'] = item['price'] * item['quantity']
 yield item

In the __iter__() method, we retrieve the Product instances that are present in
the cart to include them in the cart items. Finally, we iterate over the cart items
converting the item's price back into Decimal and add a total_price attribute
to each item. Now, we can easily iterate over the items in the cart.

Building an Online Shop

[224]

We also need a way to return the number of total items in the cart. When the len()
function is executed on an object, Python calls its __len__() method to retrieve
its length. We are going to define a custom __len__() method to return the total
number of items stored in the cart. Add the following __len__() method to the
Cart class:

def __len__(self):
 """
 Count all items in the cart.
 """
 return sum(item['quantity'] for item in self.cart.values())

We return the sum of the quantities of all the cart items.

Add the following method to calculate the total cost for the items in the cart:

def get_total_price(self):
 return sum(Decimal(item['price']) * item['quantity'] for item in
self.cart.values())

And finally, add a method to clear the cart session:

def clear(self):
 # remove cart from session
 del self.session[settings.CART_SESSION_ID]
 self.session.modified = True

Our Cart class is now ready to manage shopping carts.

Creating shopping cart views
Now that we have a Cart class to manage the cart, we need to create the views
to add, update, or remove items from it. We need to create the following views:

• A view to add or update items in a cart, which can handle current and new
quantities

• A view to remove items from the cart
• A view to display cart items and totals

Chapter 7

[225]

Adding items to the cart
In order to add items to the cart, we need a form that allows the user to select a
quantity. Create a forms.py file inside the cart application directory and add the
following code to it:

from django import forms

PRODUCT_QUANTITY_CHOICES = [(i, str(i)) for i in range(1, 21)]

class CartAddProductForm(forms.Form):
 quantity = forms.TypedChoiceField(
 choices=PRODUCT_QUANTITY_CHOICES,
 coerce=int)
 update = forms.BooleanField(required=False,
 initial=False,
 widget=forms.HiddenInput)

We will use this form to add products to the cart. Our CartAddProductForm class
contains the following two fields:

• quantity: This allows the user to select a quantity between 1-20. We use
a TypedChoiceField field with coerce=int to convert the input into
an integer.

• update: This allows you to indicate whether the quantity has to be added
to any existing quantity in the cart for this product (False), or if the existing
quantity has to be updated with the given quantity (True). We use a
HiddenInput widget for this field, since we don't want to display it
to the user.

Let's create a view for adding items to the cart. Edit the views.py file of the cart
application and add the following code to it:

from django.shortcuts import render, redirect, get_object_or_404
from django.views.decorators.http import require_POST
from shop.models import Product
from .cart import Cart
from .forms import CartAddProductForm

@require_POST
def cart_add(request, product_id):
 cart = Cart(request)
 product = get_object_or_404(Product, id=product_id)
 form = CartAddProductForm(request.POST)

Building an Online Shop

[226]

 if form.is_valid():
 cd = form.cleaned_data
 cart.add(product=product,
 quantity=cd['quantity'],
 update_quantity=cd['update'])
 return redirect('cart:cart_detail')

This is the view for adding products to the cart or updating quantities for existing
products. We use the require_POST decorator to allow only POST requests, since
this view is going to change data. The view receives the product ID as parameter. We
retrieve the Product instance with the given ID and validate CartAddProductForm.
If the form is valid, we will either add or update the product in the cart. The view
redirects to the cart_detail URL that will display the contents of the cart. We are
going to create the cart_detail view shortly.

We also need a view to remove items from the cart. Add the following code to the
views.py file of the cart application:

def cart_remove(request, product_id):
 cart = Cart(request)
 product = get_object_or_404(Product, id=product_id)
 cart.remove(product)
 return redirect('cart:cart_detail')

The cart_remove view receives the product id as parameter. We retrieve the
Product instance with the given id and remove the product from the cart.
Then, we redirect the user to the cart_detail URL.

Finally, we need a view to display the cart and its items. Add the following view
to the views.py file:

def cart_detail(request):
 cart = Cart(request)
 return render(request, 'cart/detail.html', {'cart': cart})

The cart_detail view gets the current cart to display it.

We have created views to add items to the cart, update quantities, remove items
from the cart, and display the cart. Let's add URL patterns for these views. Create
a new file inside the cart application directory and name it urls.py. Add the
following URLs to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^$', views.cart_detail, name='cart_detail'),

Chapter 7

[227]

 url(r'^add/(?P<product_id>\d+)/$',
 views.cart_add,
 name='cart_add'),
 url(r'^remove/(?P<product_id>\d+)/$',
 views.cart_remove,
 name='cart_remove'),
]

Edit the main urls.py file of myshop and add the following URL pattern to include
the cart URLs:

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^cart/', include('cart.urls', namespace='cart')),
 url(r'^', include('shop.urls', namespace='shop')),
]

Make sure that you include this URL pattern before the shop.urls pattern, since it's
more restrictive than the latter.

Building a template to display the cart
The cart_add and cart_remove views don't render any templates, but we need
to create a template for the cart_detail view to display cart items and totals.

Create the following file structure inside the cart application directory:

templates/
 cart/
 detail.html

Edit the cart/detail.html template and add the following code to it:

{% extends "shop/base.html" %}
{% load static %}

{% block title %}
 Your shopping cart
{% endblock %}

{% block content %}
 <h1>Your shopping cart</h1>
 <table class="cart">
 <thead>
 <tr>
 <th>Image</th>

Building an Online Shop

[228]

 <th>Product</th>
 <th>Quantity</th>
 <th>Remove</th>
 <th>Unit price</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 {% for item in cart %}
 {% with product=item.product %}
 <tr>
 <td>

 <img src="{% if product.image %}{{ product.image.url
}}{% else %}{% static "img/no_image.png" %}{% endif %}">

 </td>
 <td>{{ product.name }}</td>
 <td>{{ item.quantity }}</td>
 <td><a href="{% url "cart:cart_remove" product.id
%}">Remove</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">${{ item.total_price }}</td>
 </tr>
 {% endwith %}
 {% endfor %}
 <tr class="total">
 <td>Total</td>
 <td colspan="4"></td>
 <td class="num">${{ cart.get_total_price }}</td>
 </tr>
 </tbody>
 </table>
 <p class="text-right">
 <a href="{% url "shop:product_list" %}" class="button
light">Continue shopping
 Checkout
 </p>
{% endblock %}

This is the template that is used to display the cart contents. It contains a table with
the items stored in the current cart. We allow users to change the quantity for the
selected products using a form that is posted to the cart_add view. We also allow
users to remove items from the cart by providing a Remove link for each of them.

Chapter 7

[229]

Adding products to the cart
Now, we need to add an Add to cart button to the product detail page. Edit
the views.py file of the shop application, and add CartAddProductForm to
the product_detail view like this:

from cart.forms import CartAddProductForm

def product_detail(request, id, slug):
 product = get_object_or_404(Product, id=id,
 slug=slug,
 available=True)
 cart_product_form = CartAddProductForm()
 return render(request,
 'shop/product/detail.html',
 {'product': product,
 'cart_product_form': cart_product_form})

Edit the shop/product/detail.html template of the shop application, and add the
following form the product's price like this:

<p class="price">${{ product.price }}</p>
<form action="{% url "cart:cart_add" product.id %}" method="post">
 {{ cart_product_form }}
 {% csrf_token %}
 <input type="submit" value="Add to cart">
</form>

Make sure the development server is running with the command python manage.py
runserver. Now, open http://127.0.0.1:8000/ in your browser and navigate to
a product detail page. It now contains a form to choose a quantity before adding the
product to the cart. The page will look like this:

Building an Online Shop

[230]

Choose a quantity and click on the Add to cart button. The form is submitted to
the cart_add view via POST. The view adds the product to the cart in the session,
including its current price and the selected quantity. Then, it redirects the user
to the cart detail page, which will look like the following screenshot:

Updating product quantities in the cart
When users see the cart, they might want to change product quantities before placing
an order. We are going to allow users to change quantities from the cart detail page.

Edit the views.py file of the cart application and change the cart_detail view
to this:

def cart_detail(request):
 cart = Cart(request)
 for item in cart:
 item['update_quantity_form'] = CartAddProductForm(
 initial={'quantity': item['quantity'],
 'update': True})
 return render(request, 'cart/detail.html', {'cart': cart})

Chapter 7

[231]

We create an instance of CartAddProductForm for each item in the cart to allow
changing product quantities. We initialize the form with the current item quantity
and set the update field to True so that when we submit the form to the cart_add
view, the current quantity is replaced with the new one.

Now, edit the cart/detail.html template of the cart application and find
following line:

<td>{{ item.quantity }}</td>

Replace the previous line with the following code:

<td>
 <form action="{% url "cart:cart_add" product.id %}" method="post">
 {{ item.update_quantity_form.quantity }}
 {{ item.update_quantity_form.update }}
 <input type="submit" value="Update">
 {% csrf_token %}
 </form>
</td>

Open http://127.0.0.1:8000/cart/ in your browser. You will see a form to edit
the quantity for each cart item, shown as follows:

Change the quantity of an item and click on the Update button to test the
new functionality.

Building an Online Shop

[232]

Creating a context processor for the current
cart
You might have noticed that we are still showing the message Your cart is empty in
the header of the site. When we start adding items to the cart, we will see the total
number of items in the cart and the total cost instead. Since this is something that
should be displayed in all the pages, we will build a context processor to include the
current cart in the request context, regardless of the view that has been processed.

Context processors
A context processor is a Python function that takes the request object as an
argument and returns a dictionary that gets added to the request context. They
come in handy when you need to make something available to all templates.

By default, when you create a new project using the startproject command,
your project will contain the following template context processors, in the
context_processors option inside the TEMPLATES setting:

• django.template.context_processors.debug: This sets the Boolean
debug and sql_queries variables in the context representing the list
of SQL queries executed in the request

• django.template.context_processors.request: This sets the request
variable in the context

• django.contrib.auth.context_processors.auth: This sets the user
variable in the request

• django.contrib.messages.context_processors.messages: This sets
a messages variable in the context containing all messages that have been
sent using the messages framework.

Django also enables django.template.context_processors.csrf to avoid
cross-site request forgery attacks. This context processor is not present in the
settings, but it is always enabled and cannot be turned off for security reasons.

You can see the list of all built-in context processors at https://docs.
djangoproject.com/en/1.8/ref/templates/api/#built-in-template-
context-processors.

https://docs.djangoproject.com/en/1.8/ref/templates/api/#built-in-template-context-processors
https://docs.djangoproject.com/en/1.8/ref/templates/api/#built-in-template-context-processors
https://docs.djangoproject.com/en/1.8/ref/templates/api/#built-in-template-context-processors

Chapter 7

[233]

Setting the cart into the request context
Let's create a context processor to set the current cart into the request context for
templates. We will be able to access this cart in any template.

Create a new file into the cart application directory and name it context_
processors.py. Context processors can reside anywhere in your code, but creating
them here will keep your code well organized. Add the following code to the file:

from .cart import Cart

def cart(request):
 return {'cart': Cart(request)}

As you can see, a context processor is a function that receives the request object
as parameter, and returns a dictionary of objects that will be available to all the
templates rendered using RequestContext. In our context processor, we instantiate
the cart using the request object and make it available for the templates as a variable
named cart.

Edit the settings.py file of your project and add 'cart.context_processors.
cart' to the context_processors option inside the TEMPLATES setting. The setting
will look as follows after the change:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
 'cart.context_processors.cart',
],
 },
 },
]

Your context processor will now be executed every time a template is rendered
using Django's RequestContext. The cart variable will be set in the context for
your templates.

Building an Online Shop

[234]

Context processors are executed in all the requests that use
RequestContext. You might want to create a custom template tag
instead of a context processor, if you are going to access the database.

Now, edit the shop/base.html template of the shop application and find the:

<div class="cart">
 Your cart is empty.
</div>

Replace the previous lines with the following code:

<div class="cart">
 {% with total_items=cart|length %}
 {% if cart|length > 0 %}
 Your cart:

 {{ total_items }} item{{ total_items|pluralize }},
 ${{ cart.get_total_price }}

 {% else %}
 Your cart is empty.
 {% endif %}
 {% endwith %}
</div>

Reload your server using the command python manage.py runserver. Open
http://127.0.0.1:8000/ in your browser and add some products to the cart.
In the header of the website, you can see the total number of items in the current
and the total cost like this:

Registering customer orders
When a shopping cart is checked out, you need to save an order into the database.
Orders will contain information about customers and the products they are buying.

Create a new application for managing customer orders using the following command:

python manage.py startapp orders

Chapter 7

[235]

Edit the settings.py file of your project and add 'orders' to the INSTALLED_APPS
setting as follows:

INSTALLED_APPS = (
 # ...
 'orders',
)

You have activated the new application.

Creating order models
You will need a model to store the order details, and a second model to store items
bought, including their price and quantity. Edit the models.py file of the orders
application and add the following code to it:

from django.db import models
from shop.models import Product

class Order(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 email = models.EmailField()
 address = models.CharField(max_length=250)
 postal_code = models.CharField(max_length=20)
 city = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)
 paid = models.BooleanField(default=False)

 class Meta:
 ordering = ('-created',)

 def __str__(self):
 return 'Order {}'.format(self.id)

 def get_total_cost(self):
 return sum(item.get_cost() for item in self.items.all())

class OrderItem(models.Model):
 order = models.ForeignKey(Order, related_name='items')
 product = models.ForeignKey(Product,
 related_name='order_items')

Building an Online Shop

[236]

 price = models.DecimalField(max_digits=10, decimal_places=2)
 quantity = models.PositiveIntegerField(default=1)

 def __str__(self):
 return '{}'.format(self.id)

 def get_cost(self):
 return self.price * self.quantity

The Order model contains several fields for customer information and a paid
boolean field, which defaults to False. Later on, we are going to use this field to
differentiate between paid and unpaid orders. We also define a get_total_cost()
method to obtain the total cost of the items bought in this order.

The OrderItem model allows us to store the product, quantity, and price paid for
each item. We include get_cost() to return the cost of the item.

Run the next command to create initial migrations for the orders application:

python manage.py makemigrations

You will see the following output:

Migrations for 'orders':
 0001_initial.py:
 - Create model Order
 - Create model OrderItem

Run the following command to apply the new migration:

python manage.py migrate

Your order models are now synced to the database.

Including order models in an administration
site
Let's add the order models to the administration site. Edit the admin.py file of the
orders application to make it look like this:

from django.contrib import admin
from .models import Order, OrderItem

class OrderItemInline(admin.TabularInline):
 model = OrderItem
 raw_id_fields = ['product']

Chapter 7

[237]

class OrderAdmin(admin.ModelAdmin):
 list_display = ['id', 'first_name', 'last_name', 'email',
 'address', 'postal_code', 'city', 'paid',
 'created', 'updated']
 list_filter = ['paid', 'created', 'updated']
 inlines = [OrderItemInline]

admin.site.register(Order, OrderAdmin)

We use a ModelInline for the OrderItem model to include it as an inline in the
OrderAdmin class. An inline allows you to include a model for appearing on the
same edit page as the parent model.

Run the development server with the command python manage.py runserver, and
then open http://127.0.0.1:8000/admin/orders/order/add/ in your browser.
You will see the following page:

Building an Online Shop

[238]

Creating customer orders
We need to use the order models that we just created to persist the items contained
in the shopping cart when the user finally wishes to place an order. The functionality
for creating a new order will work as follows:

1. We present users an order form to fill in their data.
2. We create a new Order instance with the data entered by users, and then we

create an associated OrderItem instance for each item in the cart.
3. We clear all the cart contents and redirect users to a success page.

First, we need a form to enter order details. Create a new file inside the orders
application directory and name it forms.py. Add the following code to it:

from django import forms
from .models import Order

class OrderCreateForm(forms.ModelForm):
 class Meta:
 model = Order
 fields = ['first_name', 'last_name', 'email', 'address',
 'postal_code', 'city']

This is the form that we are going to use for creating new Order objects. Now, we
need a view to handle the form and create a new order. Edit the views.py file of
the orders application and add the following code to it:

from django.shortcuts import render
from .models import OrderItem
from .forms import OrderCreateForm
from cart.cart import Cart

def order_create(request):
 cart = Cart(request)
 if request.method == 'POST':
 form = OrderCreateForm(request.POST)
 if form.is_valid():
 order = form.save()
 for item in cart:
 OrderItem.objects.create(order=order,
 product=item['product'],
 price=item['price'],
 quantity=item['quantity'])
 # clear the cart
 cart.clear()

Chapter 7

[239]

 return render(request,
 'orders/order/created.html',
 {'order': order})
 else:
 form = OrderCreateForm()
 return render(request,
 'orders/order/create.html',
 {'cart': cart, 'form': form})

In the order_create view, we will obtain the current cart from the session with
cart = Cart(request). Depending on the request method, we will perform the
following tasks:

• The GET request: This instantiates the OrderCreateForm form and renders
the template orders/order/create.html.

• The POST request: This validates the data that get posted. If the data is
valid, we will use order = form.save() to create a new Order instance. We
will then save it to the database, and then store it in the order variable. After
creating the order, we will iterate over the cart items and create OrderItem
for each of them. Finally, we will clear the cart contents.

Now, create a new file inside the orders application directory and name it urls.py.
Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^create/$',
 views.order_create,
 name='order_create'),
]

This is the URL pattern for the order_create view. Edit the urls.py file of myshop
and include the following pattern. Remember to place it before the shop.urls pattern:

url(r'^orders/', include('orders.urls', namespace='orders')),

Edit the cart/detail.html template of the cart application and replace this line:

Checkout

Replace this with the following ones:

 Checkout

Building an Online Shop

[240]

Users can now navigate from the cart detail page to the order form. We still need
to define templates for placing orders. Create the following file structure inside
the orders application directory:

templates/
 orders/
 order/
 create.html
 created.html

Edit the orders/order/create.html template and include the following code:

{% extends "shop/base.html" %}

{% block title %}
 Checkout
{% endblock %}

{% block content %}
 <h1>Checkout</h1>

 <div class="order-info">
 <h3>Your order</h3>

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name }}
 ${{ item.total_price }}

 {% endfor %}

 <p>Total: ${{ cart.get_total_price }}</p>
 </div>

 <form action="." method="post" class="order-form">
 {{ form.as_p }}
 <p><input type="submit" value="Place order"></p>
 {% csrf_token %}
 </form>
{% endblock %}

This template displays the cart items including totals and the form to place an order.

Chapter 7

[241]

Edit the orders/order/created.html template and add the following code:

{% extends "shop/base.html" %}

{% block title %}
 Thank you
{% endblock %}

{% block content %}
 <h1>Thank you</h1>
 <p>Your order has been successfully completed. Your order number is
{{ order.id }}.</p>
{% endblock %}

This is the template that we render when the order is successfully created. Start the
web development server to track new files. Open http://127.0.0.1:8000/ in your
browser, add a couple of products to the cart, and continue to checkout the page.
You will see a page like the following one:

Building an Online Shop

[242]

Fill in the form with the valid data and click on Place order button. The order will be
created and you will see a success page like this:

Launching asynchronous tasks with
Celery
Everything you execute in a view will affect response time. In many situations
you might want to return a response to the user as quickly as possible and let the
server execute some process asynchronously. This is especially relevant for time-
consuming processes or processes subject to failure, which might need a retry policy.
For example, a video sharing platform allows users to upload videos but requires
a long time to transcode uploaded videos. The site might return a response to the
user, telling him the transcoding will start soon, and start transcoding the video
asynchronously. Another example is sending e-mails to users. If your site sends
e-mail notifications from a view, the SMTP connection might fail or slow down the
response. Launching asynchronous tasks is essential to avoid blocking execution.

Celery is a distributed task queue that can process vast amounts of messages. It does
real-time processing, but also supports task scheduling. Using Celery, not only can
you create asynchronous tasks easily and let them be executed by workers as soon as
possible, but you can also schedule them to run at a specific time.

You can find the Celery documentation at http://celery.readthedocs.org/en/
latest/.

Installing Celery
Let's install Celery and integrate it into our project. Install Celery via pip using the
following command:

pip install celery==3.1.18

http://celery.readthedocs.org/en/latest/
http://celery.readthedocs.org/en/latest/

Chapter 7

[243]

Celery requires a message broker in order to handle requests from an external
source. The broker takes care of sending messages to Celery workers, which
process tasks as they receive them. Let's install a message broker.

Installing RabbitMQ
There are several options to choose as a message broker for Celery, including
key-value stores such as Redis or an actual message system such as RabbitMQ. We will
configure Celery with RabbitMQ, since it's a recommended message worker for Celery.

If you are using Linux, you can install RabbitMQ from the shell using the following
command:

apt-get install rabbitmq

If you need to install RabbitMQ on Mac OS X or Windows, you can find standalone
versions at https://www.rabbitmq.com/download.html.

After installing it, launch RabbitMQ using the following command from the shell:

rabbitmq-server

You will see an output that ends with the following line:

Starting broker... completed with 10 plugins.

RabbitMQ is running and ready to receive messages.

Adding Celery to your project
You have to provide a configuration for the Celery instance. Create a new file next
to the settings.py file of myshop and name it celery.py. This file will contain the
Celery configuration for your project. Add the following code to it:

import os
from celery import Celery
from django.conf import settings

set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myshop.settings')

app = Celery('myshop')

app.config_from_object('django.conf:settings')
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

https://www.rabbitmq.com/download.html

Building an Online Shop

[244]

In this code we set the DJANGO_SETTINGS_MODULE variable for the Celery
command-line program. Then we create an instance of our application with app
= Celery('myshop'). We load any custom configuration from our project settings
using the config_from_object() method. Finally we tell Celery to auto-discover
asynchronous tasks for the applications listed in the INSTALLED_APPS setting.
Celery will look for a tasks.py file in each application directory to load asynchronous
tasks defined in it.

You need to import the celery module in the __init__.py file of your project to
make sure it is loaded when Django starts. Edit the myshop/__init__.py file and
add the following code to it:

import celery
from .celery import app as celery_app

Now, you can start programming asynchronous tasks for your applications.

The CELERY_ALWAYS_EAGER setting allows you to execute tasks locally
in a synchronous way instead of sending them to the queue. This is useful
for running unit tests or the project in your local environment without
running Celery.

Adding asynchronous tasks to your
application
We are going to create an asynchronous task to send an email notification to our
users when they place an order.

The convention is to include asynchronous tasks for your application in a tasks
module within your application directory. Create a new file inside the orders
application and name it tasks.py. This is the place where Celery will look for
asynchronous tasks. Add the following code to it:

from celery import task
from django.core.mail import send_mail
from .models import Order

@task
def order_created(order_id):
 """
 Task to send an e-mail notification when an order is
 successfully created.
 """

Chapter 7

[245]

 order = Order.objects.get(id=order_id)
 subject = 'Order nr. {}'.format(order.id)
 message = 'Dear {},\n\nYou have successfully placed an order.\
 Your order id is {}.'.format(order.first_name,
 order.id)
 mail_sent = send_mail(subject,
 message,
 'admin@myshop.com',
 [order.email])
 return mail_sent

We define the order_created task by using the task decorator. As you can see, a
Celery task is just a Python function decorated with task. Our task function receives
an order_id parameter. It's always recommended to pass only IDS to task functions
and lookup objects when the task is executed. We use the send_mail() function
provided by Django to send an email notification to the user that placed the order.
If you don't want to set up email settings, you can tell Django to write emails to the
console by adding the following setting to the settings.py file:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Use asynchronous tasks not only for time-consuming processes,
but also for other processes that are subject to failure, which do
not take so much time to be executed, but which are subject to
connection failures or require a retry policy.

Now we have to add the task to our order_create view. Open the views.py file of
the orders application and import the task as follows:

from .tasks import order_created

Then, call the order_created asynchronous task after clearing the cart as follows:

clear the cart
cart.clear()
launch asynchronous task
order_created.delay(order.id)

We call the delay() method of the task to execute it asynchronously. The task will
be added to the queue and will be executed by a worker as soon as possible.

Open another shell and start the celery worker, using the following command:

celery -A myshop worker -l info

Building an Online Shop

[246]

The Celery worker is now running and ready to process tasks. Make sure the Django
development server is also running. Open http://127.0.0.1:8000/ in your
browser, add some products to your shopping cart, and complete an order. In the
shell, you started the Celery worker and you will see an output similar to this one:

[2015-09-14 19:43:47,526: INFO/MainProcess] Received task: orders.
tasks.order_created[933e383c-095e-4cbd-b909-70c07e6a2ddf]
[2015-09-14 19:43:50,851: INFO/MainProcess] Task orders.tasks.
order_created[933e383c-095e-4cbd-b909-70c07e6a2ddf] succeeded in
3.318835098994896s: 1

The task has been executed and you will receive an email notification for your order.

Monitoring Celery
You might want to monitor the asynchronous tasks that are executed. Flower is a
web-based tool for monitoring Celery. You can install Flower using the command
pip install flower

Once installed, you can launch Flower running the following command from your
project directory:

celery -A myshop flower

Open http://localhost:5555/dashboard in your browser. You will be able to see
the active Celery workers and asynchronous tasks' statistics:

You can find documentation for Flower at http://flower.readthedocs.org/en/
latest/.

http://flower.readthedocs.org/en/latest/
http://flower.readthedocs.org/en/latest/

Chapter 7

[247]

Summary
In this chapter, you created a basic shop application. You created a product catalog
and built a shopping cart using sessions. You implemented a custom context
processor to make the cart available to your templates and created a form for placing
orders. You also learned how to launch asynchronous tasks with Celery.

In the next chapter, you will learn to integrate a payment gateway into your shop,
add custom actions to the administration site, export data as CSV, and generate PDF
files dynamically.

[249]

Managing Payments
and Orders

In the previous chapter, you created a basic on-line shop with a product catalog and
ordering system. You also learned how to launch asynchronous tasks with Celery.
In this chapter, you will learn how to integrate a payment gateway into your site.
You will also extend the administration site to manage orders and export them to
different formats.

In this chapter, we will cover how to:

• Integrate a payment gateway into your project
• Manage payment notifications
• Export orders to CSV files
• Create custom views for the administration site
• Generate PDF invoices dynamically

Integrating a payment gateway
A payment gateway allows you to process payments online. Using a payment
gateway, you can manage customer's orders and delegate payment processing
through a reliable, secure third party. This means you don't have to worry about
storing credit cards in your own system.

There are many payment gateway providers to choose from. We are going to
integrate PayPal, which is one of the most popular payment gateways.

Managing Payments and Orders

[250]

PayPal offers several methods to integrate its gateway into your site. The standard
integration consists of a Buy now button, which you probably have seen on other
websites. The button redirects buyers to PayPal to process the payment. We are
going to integrate PayPal Payments Standard including a custom Buy now button in
our site. PayPal will process the payment and will send a notification to our server
indicating the payment status.

Creating a PayPal account
You need to have a PayPal Business account to integrate the payment gateway into
your site. If you don't own a PayPal account yet, sign up at https://www.paypal.
com/signup/account. Make sure that you choose a Business Account and sign up
to the PayPal Payments Standard solution, as shown in the following screenshot:

Fill in your details in the sign up form and complete the sign up process. PayPal will
send you an e-mail to verify your account.

Installing django-paypal
Django-paypal is a third-party Django application that simplifies integrating
PayPal into Django projects. We are going to use it to integrate the PayPal Payments
Standard solution in our shop. You can find django-paypal's documentation
at http://django-paypal.readthedocs.org/.

Install django-paypal from the shell with the following command:

pip install django-paypal==0.2.5

https://www.paypal.com/signup/account
https://www.paypal.com/signup/account
http://django-paypal.readthedocs.org/

Chapter 8

[251]

Edit the settings.py file of your project and add 'paypal.standard.ipn' to the
INSTALLED_APPS setting as follows:

INSTALLED_APPS = (
 # ...
 'paypal.standard.ipn',
)

This is the application provided by django-paypal to integrate PayPal Payments
Standard with Instant Payment Notification (IPN). We are going to handle payment
notifications later.

Add the following settings to the settings.py file of myshop to configure
django-paypal:

django-paypal settings
PAYPAL_RECEIVER_EMAIL = 'mypaypalemail@myshop.com'
PAYPAL_TEST = True

These settings are as follows:

• PAYPAL_RECEIVER_EMAIL: The e-mail of your PayPal account. Replace
mypaypalemail@myshop.com with the e-mail you used to create your
PayPal account.

• PAYPAL_TEST: A boolean indicating whether the PayPal's sandbox
environment should be used to process payments. The sandbox allows you
to test your PayPal integration before moving to a production environment.

Open the shell and run the following command to sync models of django-paypal
with the database:

python manage.py migrate

You should see an output that ends in a similar way to this:

Running migrations:
 Rendering model states... DONE
 Applying ipn.0001_initial... OK
 Applying ipn.0002_paypalipn_mp_id... OK
 Applying ipn.0003_auto_20141117_1647... OK

Managing Payments and Orders

[252]

The models of django-paypal are now synced with the database. You also need to
add the URL patterns of django-paypal to your project. Edit the main urls.py file
located in the myshop directory and add the following URL pattern. Remember to
place it before the shop.urls pattern to avoid wrong pattern match:

url(r'^paypal/', include('paypal.standard.ipn.urls')),

Let's add the payment gateway to the checkout process.

Adding the payment gateway
The checkout process should work as follows:

1. Users add items to their shopping cart.
2. Users check out their shopping cart.
3. Users are redirected to PayPal for payment.
4. PayPal sends a payment notification to our site.
5. PayPal redirects users back to our website.

Create a new application in your project using the following command:

python manage.py startapp payment

We are going to use this application to manage the checkout process and
user payments.

Edit the settings.py file of your project and add 'payment' to the INSTALLED_APPS
setting as follows:

INSTALLED_APPS = (
 # ...
 'paypal.standard.ipn',
 'payment',
)

The payment application is now active in the project. Edit the views.py file of the
orders application and make sure to include the following imports:

from django.shortcuts import render, redirect
from django.core.urlresolvers import reverse

Replace the following lines of the order_create view:

launch asynchronous task
order_created.delay(order.id)
return render(request, 'orders/order/created.html', locals())

Chapter 8

[253]

...with the following ones:

launch asynchronous task
order_created.delay(order.id) # set the order in the session
request.session['order_id'] = order.id # redirect to the payment
return redirect(reverse('payment:process'))

After successfully creating an order, we set the order ID in the current session using
the order_id session key. Then, we redirect the user to the payment:process URL,
which we are going to create next.

Edit the views.py file of the payment application and add the following code to it:

from decimal import Decimal
from django.conf import settings
from django.core.urlresolvers import reverse
from django.shortcuts import render, get_object_or_404
from paypal.standard.forms import PayPalPaymentsForm
from orders.models import Order

def payment_process(request):
 order_id = request.session.get('order_id')
 order = get_object_or_404(Order, id=order_id)
 host = request.get_host()

 paypal_dict = {
 'business': settings.PAYPAL_RECEIVER_EMAIL,
 'amount': '%.2f' % order.get_total_cost().quantize(
 Decimal('.01')),
 'item_name': 'Order {}'.format(order.id),
 'invoice': str(order.id),
 'currency_code': 'USD',
 'notify_url': 'http://{}{}'.format(host,
 reverse('paypal-ipn')),
 'return_url': 'http://{}{}'.format(host,
 reverse('payment:done')),
 'cancel_return': 'http://{}{}'.format(host,
 reverse('payment:canceled')),
 }
 form = PayPalPaymentsForm(initial=paypal_dict)
 return render(request,
 'payment/process.html',
 {'order': order, 'form':form})

Managing Payments and Orders

[254]

In the payment_process view, we generate a custom PayPal's Buy now button to
pay an order. First, we get the current order from the order_id session key, which
was set before by the order_create view. We get the Order object for the given ID
and build a new PayPalPaymentsForm including the following fields:

• business: The PayPal merchant account to process the payment. We use the
e-mail account defined in the PAYPAL_RECEIVER_EMAIL setting here.

• amount: The total amount to charge the customer.
• item_name: The name of the item being sold. We use the order ID, since the

order may contain multiple products.
• invoice: The invoice ID. This id has to be unique for each payment. We use

the order ID.
• currency_code: The currency for this payment. We set this to USD for

U.S. Dollar. Use the same currency as the one set in your PayPal account
(EUR for Euro).

• notify_url: The URL PayPal will send IPN requests to. We use the
paypal-ipn URL provided by django-paypal. The view associated to
this URL handles payment notifications and stores them in the database.

• return_url: The URL to redirect the user after the payment is successful.
We use the URL payment:done, which we have to create next.

• cancel_return: The URL to redirect the user if the payment was canceled or
there was some other issue. We use the URL payment:canceled, which we
also have to create next.

The PayPalPaymentsForm will be rendered as a standard form with hidden fields,
and the user will only see the Buy now button. When users click the button, the
form will be submitted to PayPal via POST.

Let's create simple views for PayPal to redirect users when the payment has been
successful, or when it has been canceled for some reason. Add the following code
to the same views.py file:

from django.views.decorators.csrf import csrf_exempt

@csrf_exempt
def payment_done(request):
 return render(request, 'payment/done.html')

@csrf_exempt
def payment_canceled(request):
 return render(request, 'payment/canceled.html')

Chapter 8

[255]

We use the csrf_exempt decorator to avoid Django expecting a CSRF token, since
PayPal can redirect the user to any of these views via POST. Create a new file inside
the payment application directory and name it urls.py. Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^process/$', views.payment_process, name='process'),
 url(r'^done/$', views.payment_done, name='done'),
 url(r'^canceled/$', views.payment_canceled, name='canceled'),
]

These are the URLs for the payment workflow. We have included the following
URL patterns:

• process: For the view that generates the PayPal form for the Buy now button
• done: For PayPal to redirect the user when the payment is successful
• canceled: For PayPal to redirect the user when the payment is canceled

Edit the main urls.py file of the myshop project and include the URL patterns for the
payment application:

url(r'^payment/', include('payment.urls', namespace='payment')),

Remember to place it before the shop.urls pattern to avoid wrong pattern match.

Create the following file structure inside the payment application directory:

templates/

 payment/

 process.html

 done.html

 canceled.html

Edit the payment/process.html template and add the following code to it:

{% extends "shop/base.html" %}

{% block title %}Pay using PayPal{% endblock %}

{% block content %}
 <h1>Pay using PayPal</h1>
 {{ form.render }}
{% endblock %}

Managing Payments and Orders

[256]

This is the template that renders PayPalPaymentsForm and displays the Buy
now button.

Edit the payment/done.html template and add the following code to it:

{% extends "shop/base.html" %}

{% block content %}
 <h1>Your payment was successful</h1>
 <p>Your payment has been successfully received.</p>
{% endblock %}

This is the template for the page that the user is redirected to after a successful
payment.

Edit the payment/canceled.html template and add the following code to it:

{% extends "shop/base.html" %}

{% block content %}
 <h1>Your payment has not been processed</h1>
 <p>There was a problem processing your payment.</p>
{% endblock %}

This is the template for the page that the user is redirected to when there is some
issue processing the payment or if the user canceled the payment.

Let's try the complete payment process.

Using PayPal's Sandbox
Open http://developer.paypal.com in your browser and log in with your PayPal
business account. Click the Dashboard menu item, and on the left menu click the
Accounts option under Sandbox. You should see the list of your sandbox test
accounts as follows:

http://developer.paypal.com

Chapter 8

[257]

Initially, you will see a business and a personal test account automatically created by
PayPal. You can create new sandbox test accounts with the Create Account button.

Click the Personal Account in the list to expand it, and then click the Profile
link. You will see information about the test account including e-mail and profile
information as follows:

In the Funding tab, you will find bank account, credit card data, and PayPal
credit balance.

The test accounts can be used to do payments in your website using the sandbox
environment. Navigate to the Profile tab and click the Change password link.
Create a custom password for this test account.

Managing Payments and Orders

[258]

Open the shell and start the development server with the command python
manage.py runserver. Open http://127.0.0.1:8000/ in your browser, add some
products to the shopping cart, and fill in the checkout form. When you click the Place
order button, the order will be persisted to the database, the order ID will be saved
in the current session, and you will be redirected to the payment process page. This
page retrieves the order from the session and renders the PayPal form displaying a
Buy Now button, like this:

You can take a look at the HTML source code to see the generated form fields.

Click the Buy Now button. You will be redirected to PayPal, and you should see the
following page:

Chapter 8

[259]

Enter the buyer test account e-mail and password and click the Log In button. You
will be redirected to the following page:

Now, click the Pay Now button. Finally, you will see a confirmation page that
includes your transaction ID. The page should look like this:

Managing Payments and Orders

[260]

Click the Return to e-mail@domain.com button. You will be redirected to the URL
you have specified in the return_url field of PayPalPaymentsForm. That is the
URL for the payment_done view. The page will look like this:

The payment has been successful. However, PayPal is unable to send a payment
status notification to our application, since we are running our project on our local
host with the IP 127.0.0.1 that is not publicly accessible. We are going to learn how
to make our site accessible form the Internet and be able to receive IPN notifications.

Getting payment notifications
IPN is a method offered by most payment gateways to track purchases real-
time. A notification is instantly sent to your server when the gateway processes a
payment. This notification contains all payment details, including the status and a
signature of the payment, which can be used to confirm the origin of the notification.
This notification is sent as a separate HTTP request to your server. In the case of
connectivity issues, PayPal will make multiple attempts to notify your site.

The django-paypal application comes with two different signals for IPNs. These
signals are:

• valid_ipn_received: Triggered when the IPN message received from
PayPal is correct and is not a duplicate of an existing message in the database

• invalid_ipn_received: This signal is triggered when the IPN received from
PayPal contains invalid data or is not well formed

We are going to create a custom receiver function and connect it to the valid_ipn_
received signal to confirm payments.

Create a new file inside the payment application directory and name it signals.py.
Add the following code to it:

from django.shortcuts import get_object_or_404
from paypal.standard.models import ST_PP_COMPLETED
from paypal.standard.ipn.signals import valid_ipn_received
from orders.models import Order

Chapter 8

[261]

def payment_notification(sender, **kwargs):
 ipn_obj = sender
 if ipn_obj.payment_status == ST_PP_COMPLETED:
 # payment was successful
 order = get_object_or_404(Order, id=ipn_obj.invoice)
 # mark the order as paid
 order.paid = True
 order.save()

valid_ipn_received.connect(payment_notification)

We connect the payment_notification receiver function to the valid_ipn_
received signal provided by django-paypal. The receiver function works
as follows:

1. We receive the sender object, which is an instance of the PayPalIPN model
defined in paypal.standard.ipn.models.

2. We check the payment_status attribute to make sure it equals the completed
status of django-paypal. This status indicates that the payment was
successfully processed.

3. Then we use the get_object_or_404() shortcut function to get the order
whose ID matches the invoice parameter we provided for PayPal.

4. We mark the order as paid by setting its paid attribute to True and saving
the Order object to the database.

You have to make sure that your signals module is loaded so that the receiver
function is called when the valid_ipn_received signal is triggered. The best
practice is to load your signals when the application containing them is loaded. This
can be done by defining a custom application configuration, which will be explained
in the next section.

Configuring our application
You learned about application configuration in Chapter 6, Tracking User Actions. We
are going to define a custom configuration for our payment application in order to
load our signal receiver functions.

Create a new file inside the payment application directory and name it apps.py.
Add the following code to it:

from django.apps import AppConfig

class PaymentConfig(AppConfig):
 name = 'payment'

Managing Payments and Orders

[262]

 verbose_name = 'Payment'

 def ready(self):
 # import signal handlers
 import payment.signals

In this code, we define a custom AppConfig class for the payment application. The
name parameter is the name of the application and verbose_name contains the
human-readable format. We import the signals module in the ready() method
to make sure they are loaded when the application is initialized.

Edit the __init__.py file of the payment application and add the following line to it:

default_app_config = 'payment.apps.PaymentConfig'

This will make Django to automatically load your custom application configuration
class. You can find further information about application configuration at
https://docs.djangoproject.com/en/1.8/ref/applications/.

Testing payment notifications
Since we are working in a local environment, we need to make sure that our site
is available to PayPal. There are several applications that allow you to make your
development environment available on the Internet. We are going to use Ngrok,
which is one of the most popular ones.

Download Ngrok for your operating system from https://ngrok.com/ and run it
from the shell using the following command:

./ngrok http 8000

With this command, you are telling Ngrok to create a tunnel to your local host on
port 8000 and assign an Internet accessible hostname for it. You should see an output
similar to this one:

Tunnel Status online
Version 2.0.17/2.0.17
Web Interface http://127.0.0.1:4040
Forwarding http://1a1b50f2.ngrok.io -> localhost:8000
Forwarding https://1a1b50f2.ngrok.io -> localhost:8000

Connnections ttl opn rt1 rt5 p50 p90
 0 0 0.00 0.00 0.00 0.00

https://docs.djangoproject.com/en/1.8/ref/applications/

Chapter 8

[263]

Ngrok tells us that our site, running locally at localhost on port 8000 using
Django's development server, is made available on the Internet through the URLs
http://1a1b50f2.ngrok.io and https://1a1b50f2.ngrok.io for the HTTP and
HTTPS protocols respectively. Ngrok also provides a URL to access a web interface
that displays information about requests sent to the server.

Open the URL provided by Ngrok with your browser; for example,
http://1a1b50f2.ngrok.io. Add some products to the shopping cart, place an
order, and pay using your PayPal test account. This time, PayPal will be able to reach
the URL that is generated for the notify_url field of PayPalPaymentsForm in the
payment_process view. If you take a look at the rendered form, you will see that
the HTML form field looks like this:

<input id="id_notify_url" name="notify_url" type="hidden"
value="http://1a1b50f2.ngrok.io/paypal/">

After finishing the payment process, open http://127.0.0.1:8000/admin/ipn/
paypalipn/ in your browser. You should see an IPN object for the last payment with
status Completed. This object contains all the information of the payment, which is
sent by PayPal to the URL you provided for IPN notifications. The IPN admin list
display page should look like this:

You can also launch IPNs using the PayPal's IPN simulator located at https://
developer.paypal.com/developer/ipnSimulator/. The simulator allows
you to specify the fields and the type of notification to send.

In addition to PayPal Payments Standard, PayPal offers Website Payments Pro,
which is a subscription service that allows you to accept payments on your site
without redirecting the user to PayPal. You can find information about how to
integrate Website Payments Pro at http://django-paypal.readthedocs.org/en/
v0.2.5/pro/index.html.

https://developer.paypal.com/developer/ipnSimulator/
https://developer.paypal.com/developer/ipnSimulator/
http://django-paypal.readthedocs.org/en/v0.2.5/pro/index.html
http://django-paypal.readthedocs.org/en/v0.2.5/pro/index.html

Managing Payments and Orders

[264]

Exporting orders to CSV files
Sometimes, you might want to export the information contained in a model to a file
so that you can import it in any other system. One of the most widely used formats
to export/import data is Comma-Separated Values (CSV). A CSV file is a plain text
file consisting of a number of records. There is usually one record per line, and some
delimiter character, usually a literal comma, separates the record fields. We are going
to customize the administration site to be able to export orders to CSV files.

Adding custom actions to the administration
site
Django offers you a wide range of options to customize the administration site. We
are going to modify the object list view to include a custom admin action.

An admin action works as follows: A user selects objects from the admin's object list
page with checkboxes, then selects an action to perform on all of the selected items,
and executes the action. The following screenshot shows where actions are located
in the administration site:

Create custom admin actions to allow staff users to apply actions
to multiple elements at once.

You can create a custom action by writing a regular function that receives the
following parameters:

• The current ModelAdmin being displayed
• The current request object as an HttpRequest instance
• A QuerySet for the the objects selected by the user

Chapter 8

[265]

This function will be executed when the action is triggered from the
administration site.

We are going to create a custom admin action to download a list of orders as a CSV
file. Edit the admin.py file of the orders application and add the following code
before the OrderAdmin class:

import csv
import datetime
from django.http import HttpResponse

def export_to_csv(modeladmin, request, queryset):
 opts = modeladmin.model._meta
 response = HttpResponse(content_type='text/csv')
 response['Content-Disposition'] = 'attachment; \
 filename={}.csv'.format(opts.verbose_name)
 writer = csv.writer(response)

 fields = [field for field in opts.get_fields() if not field.many_
to_many and not field.one_to_many]
 # Write a first row with header information
 writer.writerow([field.verbose_name for field in fields])
 # Write data rows
 for obj in queryset:
 data_row = []
 for field in fields:
 value = getattr(obj, field.name)
 if isinstance(value, datetime.datetime):
 value = value.strftime('%d/%m/%Y')
 data_row.append(value)
 writer.writerow(data_row)
 return response
export_to_csv.short_description = 'Export to CSV'

In this code, we perform the following tasks:

1. We create an instance of HttpResponse including a custom text/csv content
type to tell the browser that the response has to be treated as a CSV file. We
also add a Content-Disposition header to indicate that the HTTP response
contains an attached file.

2. We create a CSV writer object that will write on the response object.
3. We get the model fields dynamically using the get_fields() method of

the model _meta options. We exclude many-to-many and one-to-many
relationships.

Managing Payments and Orders

[266]

4. We write a header row including the field names.
5. We iterate over the given QuerySet and write a row for each object returned

by the QuerySet. We take care of formatting datetime objects because the
output value for CSV has to be a string.

6. We customize the display name for the action in the template by setting a
short_description attribute to the function.

We have created a generic admin action that can be added to any ModelAdmin class.

Finally, add the new export_to_csv admin action to the OrderAdmin class
as follows:

class OrderAdmin(admin.ModelAdmin):
 # ...
 actions = [export_to_csv]

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. The
resulting admin action should look like this:

Select some orders and choose the Export to CSV action from the select box, then
click the Go button. Your browser will download the generated CSV file named
order.csv. Open the downloaded file using a text editor. You should see contents
with the following format, including a header row and a row for each Order object
you selected:

ID,first name,last name,email,address,postal
code,city,created,updated,paid
3,Antonio,Melé,antonio.mele@gmail.com,Bank Street 33,WS J11,London,25/
05/2015,25/05/2015,False
...

As you can see, creating admin actions is pretty straightforward.

Chapter 8

[267]

Extending the admin site with custom
views
Sometimes you may want to customize the administration site beyond what is
possible through configuration of ModelAdmin, creation of admin actions, and
overriding admin templates. If this is the case, you need to create a custom admin
view. With a custom view, you can build any functionality you need. You just have
to make sure that only staff users can access your view and that you maintain the
admin look and feel by making your template extend an admin template.

Let's create a custom view to display information about an order. Edit the views.py
file of the orders application and add the following code to it:

from django.contrib.admin.views.decorators import staff_member_
required
from django.shortcuts import get_object_or_404
from .models import Order

@staff_member_required
def admin_order_detail(request, order_id):
 order = get_object_or_404(Order, id=order_id)
 return render(request,
 'admin/orders/order/detail.html',
 {'order': order})

The staff_member_required decorator checks that both is_active and is_staff
fields of the user requesting the page are set to True. In this view, we get the Order
object with the given id and render a template to display the order.

Now, edit the urls.py file of the orders application and add the following URL
pattern to it:

url(r'^admin/order/(?P<order_id>\d+)/$',
 views.admin_order_detail,
 name='admin_order_detail'),

Create the following file structure inside the templates/ directory of the orders
application:

admin/
 orders/
 order/
 detail.html

Managing Payments and Orders

[268]

Edit the detail.html template and add the following contents to it:

{% extends "admin/base_site.html" %}
{% load static %}

{% block extrastyle %}
 <link rel="stylesheet" type="text/css" href="{% static "css/admin.
css" %}" />
{% endblock %}

{% block title %}
 Order {{ order.id }} {{ block.super }}
{% endblock %}

{% block breadcrumbs %}
 <div class="breadcrumbs">
 Home ›
 Orders
 ›
 Order {{
order.id }}
 › Detail
 </div>
{% endblock %}

{% block content %}
<h1>Order {{ order.id }}</h1>
<ul class="object-tools">

 Print order

<table>
 <tr>
 <th>Created</th>
 <td>{{ order.created }}</td>
 </tr>
 <tr>
 <th>Customer</th>
 <td>{{ order.first_name }} {{ order.last_name }}</td>
 </tr>
 <tr>
 <th>E-mail</th>
 <td>{{ order.email }}</td>
 </tr>
 <tr>

Chapter 8

[269]

 <th>Address</th>
 <td>{{ order.address }}, {{ order.postal_code }} {{ order.city
}}</td>
 </tr>
 <tr>
 <th>Total amount</th>
 <td>${{ order.get_total_cost }}</td>
 </tr>
 <tr>
 <th>Status</th>
 <td>{% if order.paid %}Paid{% else %}Pending payment{% endif %}</
td>
 </tr>
</table>

<div class="module">
 <div class="tabular inline-related last-related">
 <table>
 <h2>Items bought</h2>
 <thead>
 <tr>
 <th>Product</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Total</th>
 </tr>
 </thead>
 <tbody>
 {% for item in order.items.all %}
 <tr class="row{% cycle "1" "2" %}">
 <td>{{ item.product.name }}</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">{{ item.quantity }}</td>
 <td class="num">${{ item.get_cost }}</td>
 </tr>
 {% endfor %}
 <tr class="total">
 <td colspan="3">Total</td>
 <td class="num">${{ order.get_total_cost }}</td>
 </tr>
 </tbody>
 </table>
 </div>
</div>
{% endblock %}

Managing Payments and Orders

[270]

This is the template to display an order detail in the administration site. This
template extends the admin/base_site.html template of Django's administration
site that contains the main HTML structure and CSS styles of the admin. We load
the custom static file css/admin.css.

In order to use static files, you need to get them from the code that came with
this chapter. Copy the static files located in the static/ directory of orders
application and add them to the same location in your project.

We use the blocks defined in the parent template to include our own content.
We display information about the order and the items bought.

When you want to extend an admin template, you need to know its structure and
identify existing blocks. You can find all admin templates at https://github.com/
django/django/tree/1.8.6/django/contrib/admin/templates/admin.

You can also override an admin template if you need so. To override an admin
template, copy it into your templates directory keeping the same relative path and
filename. Django's administration site will use your custom template instead of the
default one.

Finally, let's add a link to each Order object in the list display page of the
administration site. Edit the admin.py file of the orders application and add the
following code to it, above the OrderAdmin class:

from django.core.urlresolvers import reverse

def order_detail(obj):
 return 'View'.format(
 reverse('orders:admin_order_detail', args=[obj.id]))
order_detail.allow_tags = True

This is a function that takes an Order object as argument and returns an HTML link
for the admin_order_detail URL. Django escapes HTML output by default. We
have to set the allow_tags attribute of this callable to True to avoid auto-escaping.

Set the allow_tags attribute to True to avoid HTML-escaping in any
Model method, ModelAdmin method, or any other callable. When you
use allow_tags, make sure to escape input that has come from the user
to avoid cross-site scripting.

https://github.com/django/django/tree/1.8.6/django/contrib/admin/templates/admin
https://github.com/django/django/tree/1.8.6/django/contrib/admin/templates/admin

Chapter 8

[271]

Then, edit the OrderAdmin class to display the link:

class OrderAdmin(admin.ModelAdmin):
 list_display = ['id',
 'first_name',
 # ...
 'updated',
 order_detail]

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. Each row
now includes a View link as follows:

Click the View link of any order to load the custom order detail page. You should
see a page like the following one:

Generating PDF invoices dynamically
Now that we have a complete checkout and payment system, we can generate a
PDF invoice for each order. There are several Python libraries to generate PDF
files. One popular library to generate PDFs with Python code is Reportlab. You can
find information about how to output PDF files with Reportlab at https://docs.
djangoproject.com/en/1.8/howto/outputting-pdf/.

https://docs.djangoproject.com/en/1.8/howto/outputting-pdf/
https://docs.djangoproject.com/en/1.8/howto/outputting-pdf/

Managing Payments and Orders

[272]

In most cases, you will have to add custom styles and formatting to your PDF
files. You will find it more convenient to render an HTML template and convert it
into a PDF file, keeping Python away from the presentation layer. We are going to
follow this approach and use a module to generate PDF files with Django. We will
use WeasyPrint, which is a Python library that can generate PDF files from HTML
templates.

Installing WeasyPrint
First, install WeasyPrint's dependencies for your OS, which you will find at
http://weasyprint.org/docs/install/#platforms.

Then, install WeasyPrint via pip using the following command:

pip install WeasyPrint==0.24

Creating a PDF template
We need an HTML document as input for WeasyPrint. We are going to create an
HTML template, render it using Django, and pass it to WeasyPrint to generate the
PDF file.

Create a new template file inside the templates/orders/order/ directory of the
orders application and name it pdf.html. Add the following code to it:

<html>
<body>
 <h1>My Shop</h1>
 <p>
 Invoice no. {{ order.id }}</br>

 {{ order.created|date:"M d, Y" }}

 </p>

 <h3>Bill to</h3>
 <p>
 {{ order.first_name }} {{ order.last_name }}

 {{ order.email }}

 {{ order.address }}

 {{ order.postal_code }}, {{ order.city }}
 </p>

http://weasyprint.org/docs/install/#platforms

Chapter 8

[273]

 <h3>Items bought</h3>
 <table>
 <thead>
 <tr>
 <th>Product</th>
 <th>Price</th>
 <th>Quantity</th>
 <th>Cost</th>
 </tr>
 </thead>
 <tbody>
 {% for item in order.items.all %}
 <tr class="row{% cycle "1" "2" %}">
 <td>{{ item.product.name }}</td>
 <td class="num">${{ item.price }}</td>
 <td class="num">{{ item.quantity }}</td>
 <td class="num">${{ item.get_cost }}</td>
 </tr>
 {% endfor %}
 <tr class="total">
 <td colspan="3">Total</td>
 <td class="num">${{ order.get_total_cost }}</td>
 </tr>
 </tbody>
 </table>

 {% if order.paid %}Paid{% else %}Pending payment{% endif %}

</body>
</html>

This is the template for the PDF invoice. In this template, we display all order details
and an HTML <table> element including the products. We also include a message
to display if the order has been paid or the payment is still pending.

Managing Payments and Orders

[274]

Rendering PDF files
We are going to create a view to generate PDF invoices for existing orders using the
administration site. Edit the views.py file inside the orders application directory
and add the following code to it:

from django.conf import settings
from django.http import HttpResponse
from django.template.loader import render_to_string
import weasyprint

@staff_member_required
def admin_order_pdf(request, order_id):
 order = get_object_or_404(Order, id=order_id)
 html = render_to_string('orders/order/pdf.html',
 {'order': order})
 response = HttpResponse(content_type='application/pdf')
 response['Content-Disposition'] = 'filename=\
 "order_{}.pdf"'.format(order.id)
 weasyprint.HTML(string=html).write_pdf(response,
 stylesheets=[weasyprint.CSS(
 settings.STATIC_ROOT + 'css/pdf.css')])
 return response

This is the view to generate a PDF invoice for an order. We use the staff_member_
required decorator to make sure only staff users can access this view. We get the
Order object with the given ID and we use the render_to_string() function
provided by Django to render orders/order/pdf.html. The rendered HTML is
saved in the html variable. Then, we generate a new HttpResponse object specifying
the application/pdf content type and including the Content-Disposition header
to specify the file name. We use WeasyPrint to generate a PDF file from the rendered
HTML code and write the file to the HttpResponse object. We use the static file css/
pdf.css to add CSS styles to the generated PDF file. We load it from the local path
by using the STATIC_ROOT setting. Finally, we return the generated response.

Since we need to use the STATIC_ROOT setting, we have to add it to our project. This
is the project's path for static files to reside. Edit the settings.py file of the myshop
project and add the following setting:

STATIC_ROOT = os.path.join(BASE_DIR, 'static/')

Chapter 8

[275]

Then, run the command python manage.py collectstatic. You should see an
output that ends as follows:

You have requested to collect static files at the destination
location as specified in your settings:

 code/myshop/static

This will overwrite existing files!
Are you sure you want to do this?

Write yes and press Enter. You should get a message indicating that the static files
have been copied to the STATIC_ROOT directory.

The collectstatic command copies all static files from your applications into
the directory defined in the STATIC_ROOT setting. This allows each application to
provide its own static files using a static/ directory that contains them. You can
also provide additional static files sources in the STATICFILES_DIRS setting. All
of the directories specified in the STATICFILES_DIRS list will also be copied to the
STATIC_ROOT directory when collectstatic is executed.

Edit the urls.py file inside the orders application directory and add the following
URL pattern to it:

url(r'^admin/order/(?P<order_id>\d+)/pdf/$',
 views.admin_order_pdf,
 name='admin_order_pdf'),

Now, we can edit the admin list display page for the Order model to add a link to
the PDF file for each result. Edit the admin.py file inside the orders application and
add the following code above the OrderAdmin class:

def order_pdf(obj):
 return 'PDF'.format(
 reverse('orders:admin_order_pdf', args=[obj.id]))
order_pdf.allow_tags = True
order_pdf.short_description = 'PDF bill'

Add order_pdf to the list_display attribute of the OrderAdmin class as follows:

class OrderAdmin(admin.ModelAdmin):
 list_display = ['id',
 # ...
 order_detail,
 order_pdf]

Managing Payments and Orders

[276]

If you specify a short_description attribute for your callable, Django will use it for
the name of the column.

Open http://127.0.0.1:8000/admin/orders/order/ in your browser. Each row
should now include a PDF link like this:

Click the PDF link for any order. You should see a generated PDF file like the
following one for orders that have not been paid yet:

Chapter 8

[277]

For paid orders, you will see the following PDF file:

Sending PDF files by e-mail
Let's send an e-mail to our customers including the generated PDF invoice when
a payment is received. Edit the signals.py file of the payment application and
add the following imports:

from django.template.loader import render_to_string
from django.core.mail import EmailMessage
from django.conf import settings
import weasyprint
from io import BytesIO

Then add the following code after the order.save() line, with the same indentation
level:

create invoice e-mail
subject = 'My Shop - Invoice no. {}'.format(order.id)
message = 'Please, find attached the invoice for your recent
purchase.'
email = EmailMessage(subject,
 message,
 'admin@myshop.com',
 [order.email])

generate PDF
html = render_to_string('orders/order/pdf.html', {'order': order})
out = BytesIO()

Managing Payments and Orders

[278]

stylesheets=[weasyprint.CSS(settings.STATIC_ROOT + 'css/pdf.css')]
weasyprint.HTML(string=html).write_pdf(out,
 stylesheets=stylesheets)
attach PDF file
email.attach('order_{}.pdf'.format(order.id),
 out.getvalue(),
 'application/pdf')
send e-mail
email.send()

In this signal, we use the EmailMessage class provided by Django to create an e-mail
object. Then we render the template into the html variable. We generate the PDF
file from the rendered template, and we output it to a BytesIO instance, which is a
in-memory bytes buffer. Then we attach the generated PDF file to the EmailMessage
object using its attach() method, including the contents of the out buffer.

Remember to set up your SMTP settings in the settings.py file of the project to
send e-mails. You can refer to Chapter 2, Enhancing Your Blog with Advanced Features
to see a working example for an SMTP configuration.

Now you can open the URL for your application provided by Ngrok and complete
a new payment process in order to receive the PDF invoice into your e-mail.

Summary
In this chapter, you integrated a payment gateway into your project. You customized
the Django administration site and learned how to generate CSV and PDF files
dynamically.

The next chapter will give you an insight into internationalization and localization
for Django projects. You will also create a coupon system and build a product
recommendation engine.

[279]

Extending Your Shop
In the previous chapter, you learned how to integrate a payment gateway into your
shop. You managed payment notifications and you learned how to generate CSV
and PDF files. In this chapter, you will add a coupon system to your shop. You
will learn how internationalization and localization work, and you will build a
recommendation engine.

 This chapter will cover the following points:

• Creating a coupon system to apply discounts
• Adding internationalization to your project
• Using Rosetta to manage translations
• Translating models using django-parler
• Building a product recommendation engine

Creating a coupon system
Many online shops give out coupons to customers that can be redeemed for
discounts on their purchases. An online coupon usually consists of a code that is
given to users, which is valid for a specific time frame. The code can be redeemed
one or multiple times.

We are going to create a coupon system for our shop. Our coupons will be valid for
clients that enter the coupon in a specific time frame. The coupons will not have any
limitation on the number of times they can be redeemed, and they will be applied to
the total amount of the shopping cart. For this functionality, we will need to create a
model to store the coupon code, a valid time frame, and the discount to apply.

Extending Your Shop

[280]

Create a new application inside the myshop project using the following command:

python manage.py startapp coupons

Edit the settings.py file of myshop and add the application to the INSTALLED_APPS
setting as follows:

INSTALLED_APPS = (
 # ...
 'coupons',
)

The new application is now active in our Django project.

Building the coupon models
Let's start by creating the Coupon model. Edit the models.py file of the coupons
application and add the following code to it:

from django.db import models
from django.core.validators import MinValueValidator, \
 MaxValueValidator

class Coupon(models.Model):
 code = models.CharField(max_length=50,
 unique=True)
 valid_from = models.DateTimeField()
 valid_to = models.DateTimeField()
 discount = models.IntegerField(
 validators=[MinValueValidator(0),
 MaxValueValidator(100)])
 active = models.BooleanField()

 def __str__(self):
 return self.code

This is the model we are going to use to store coupons. The Coupon model contains
the following fields:

• code: The code that users have to enter in order to apply the coupon
to their purchase.

• valid_from: The datetime value that indicates when the coupon
becomes valid.

Chapter 9

[281]

• valid_to: The datetime value that indicates when the coupon
becomes invalid.

• discount: The discount rate to apply (this is a percentage, so it takes values
from 0 to 100). We use validators for this field to limit the minimum and
maximum accepted values.

• active: A boolean that indicates whether the coupon is active.

Run the following command to generate the initial migration for the coupons
application:

python manage.py makemigrations

The output should include the following lines:

Migrations for 'coupons':
 0001_initial.py:
 - Create model Coupon

Then we execute the next command to apply migrations:

python manage.py migrate

You should see an output that includes the following line:

Applying coupons.0001_initial... OK

The migrations are now applied in the database. Let's add the Coupon model to the
administration site. Edit the admin.py file of the coupons application and add the
following code to it:

from django.contrib import admin
from .models import Coupon

class CouponAdmin(admin.ModelAdmin):
 list_display = ['code', 'valid_from', 'valid_to',
 'discount', 'active']
 list_filter = ['active', 'valid_from', 'valid_to']
 search_fields = ['code']
admin.site.register(Coupon, CouponAdmin)

Extending Your Shop

[282]

The Coupon model is now registered in the administration site. Ensure your local
server is running with the command python manage.py runserver. Open
http://127.0.0.1:8000/admin/coupons/coupon/add/ in your browser. You
should see the following form:

Fill in the form to create a new coupon that is valid for the current date, make sure
you check the Active checkbox, and click the Save button.

Applying a coupon to the shopping cart
We can store new coupons and make queries to retrieve existing coupons. Now we
need a way for customers to apply coupons to their purchases. Take a moment to
think about how this functionality would work. The way to apply a coupon would
be as follows:

1. The user adds products to the shopping cart.
2. The user can enter a coupon code in a form displayed in the shopping cart

detail page.
3. When a user enters a coupon code and submits the form, we look for an

existing coupon with the given code that is currently valid. We have to check
that the coupon's code matches the one entered by the user, the active
attribute is True, and the current datetime is between the valid_from and
valid_to values.

Chapter 9

[283]

4. If a coupon is found, we save it in the user's session and display the cart
including the discount applied to it and the updated total amount.

5. When the user places an order, we save the coupon to the given order.

Create a new file inside the coupons application directory and name it forms.py.
Add the following code to it:

from django import forms

class CouponApplyForm(forms.Form):
 code = forms.CharField()

This is the form we are going to use for the user to enter a coupon code. Edit the
views.py file inside the coupons application and add the following code to it:

from django.shortcuts import render, redirect
from django.utils import timezone
from django.views.decorators.http import require_POST
from .models import Coupon
from .forms import CouponApplyForm

@require_POST
def coupon_apply(request):
 now = timezone.now()
 form = CouponApplyForm(request.POST)
 if form.is_valid():
 code = form.cleaned_data['code']
 try:
 coupon = Coupon.objects.get(code__iexact=code,
 valid_from__lte=now,
 valid_to__gte=now,
 active=True)
 request.session['coupon_id'] = coupon.id
 except Coupon.DoesNotExist:
 request.session['coupon_id'] = None
 return redirect('cart:cart_detail')

The coupon_apply view validates the coupon and stores it in the user's session. We
apply the require_POST decorator to this view to restrict it to POST requests. In the
view, we perform the following tasks:

1. We instantiate the CouponApplyForm form using the posted data and we
check that the form is valid.

Extending Your Shop

[284]

2. If the form is valid, we get the code entered by the user from the form's
cleaned_data dictionary. We try to retrieve the Coupon object with the given
code. We use the iexact field lookup to perform a case-insensitive exact
match. The coupon has to be currently active (active=True) and valid for
the current datetime. We use Django's timezone.now() function to get the
current time-zone-aware datetime and we compare it with the valid_from
and valid_to fields performing lte (less than or equal to) and gte (greater
than or equal to) field lookups respectively.

3. We store the coupon id in the user's session.
4. We redirect the user to the cart_detail URL to display the cart with the

coupon applied.

We need a URL pattern for the coupon_apply view. Create a new file inside the
coupons application directory and name it urls.py. Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^apply/$', views.coupon_apply, name='apply'),
]

Then, edit the main urls.py of the myshop project and include the coupons URL
patterns as follows:

url(r'^coupons/', include('coupons.urls', namespace='coupons')),

Remember to place this pattern before the shop.urls pattern.

Now edit the cart.py file of the cart application. Include the following import:

from coupons.models import Coupon

Add the following code to the end of the __init__() method of the Cart class to
initialize the coupon from the current session:

store current applied coupon
self.coupon_id = self.session.get('coupon_id')

In this code, we try to get the coupon_id session key from the current session and
store its value in the Cart object. Add the following methods to the Cart object:

@property
def coupon(self):
 if self.coupon_id:

Chapter 9

[285]

 return Coupon.objects.get(id=self.coupon_id)
 return None

def get_discount(self):
 if self.coupon:
 return (self.coupon.discount / Decimal('100')) \
 * self.get_total_price()
 return Decimal('0')

def get_total_price_after_discount(self):
 return self.get_total_price() - self.get_discount()

These methods are as follows:

• coupon(): We define this method as a property. If the cart contains a
coupon_id function, the Coupon object with the given id is returned.

• get_discount(): If the cart contains a coupon, we retrieve its discount rate
and return the amount to be deducted from the total amount of the cart.

• get_total_price_after_discount(): We return the total amount of the
cart after deducting the amount returned by the get_discount() method.

The Cart class is now prepared to handle a coupon applied to the current session
and apply the corresponding discount.

Let's include the coupon system in the cart detail view. Edit the views.py file of the
cart application and add the following import at the top of the file:

from coupons.forms import CouponApplyForm

Further down, edit the cart_detail view and add the new form to it as follows:

def cart_detail(request):
 cart = Cart(request)
 for item in cart:
 item['update_quantity_form'] = CartAddProductForm(
 initial={'quantity': item['quantity'],
 'update': True})
 coupon_apply_form = CouponApplyForm()

 return render(request,
 'cart/detail.html',
 {'cart': cart,
 'coupon_apply_form': coupon_apply_form})

Extending Your Shop

[286]

Edit the cart/detail.html template of the cart application and find the
following lines:

<tr class="total">
 <td>Total</td>
 <td colspan="4"></td>
 <td class="num">${{ cart.get_total_price }}</td>
</tr>

Replace them with the following ones:

{% if cart.coupon %}
 <tr class="subtotal">
 <td>Subtotal</td>
 <td colspan="4"></td>
 <td class="num">${{ cart.get_total_price }}</td>
 </tr>
 <tr>
 <td>
 "{{ cart.coupon.code }}" coupon
 ({{ cart.coupon.discount }}% off)
 </td>
 <td colspan="4"></td>
 <td class="num neg">
 - ${{ cart.get_discount|floatformat:"2" }}
 </td>
 </tr>
{% endif %}
<tr class="total">
 <td>Total</td>
 <td colspan="4"></td>
 <td class="num">
 ${{ cart.get_total_price_after_discount|floatformat:"2" }}
 </td>
</tr>

This is the code to display an optional coupon and its discount rate. If the cart
contains a coupon, we display a first row including the total amount of the cart as
the Subtotal. Then we use a second row to display the current coupon applied to
the cart. Finally, we display the total price including any discount by calling the
get_total_price_after_discount() method of the cart object.

Chapter 9

[287]

In the same file, include the following code after the </table> HTML tag:

<p>Apply a coupon:</p>
<form action="{% url "coupons:apply" %}" method="post">
 {{ coupon_apply_form }}
 <input type="submit" value="Apply">
 {% csrf_token %}
</form>

This will display the form to enter a coupon code and apply it to the current cart.

Open http://127.0.0.1:8000/ in your browser, add a product to the cart, and
apply the coupon you created by entering its code in the form. You should see that
the cart displays the coupon discount as follows:

Let's add the coupon to the next step of the purchase process. Edit the orders/
order/create.html template of the orders application and find the following lines:

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name }}
 ${{ item.total_price }}

Extending Your Shop

[288]

 {% endfor %}

Replace them with the following code:

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name }}
 ${{ item.total_price }}

 {% endfor %}
 {% if cart.coupon %}

 "{{ cart.coupon.code }}" ({{ cart.coupon.discount }}% off)
 - ${{ cart.get_discount|floatformat:"2" }}

 {% endif %}

The order summary should now include the applied coupon, if there is any. Now
find the following line:

<p>Total: ${{ cart.get_total_price }}</p>

Replace it with the following one:

<p>Total: ${{ cart.get_total_price_after_discount|floatformat:"2" }}</
p>

By doing so, the total price will be also calculated by applying the discount of
the coupon.

Open http://127.0.0.1:8000/orders/create/ in your browser. You should see
that the order summary includes the applied coupon as follows:

Chapter 9

[289]

Users can now apply coupons to their shopping cart. However, we still need to store
coupon information in the order that is created when users check out the cart.

Applying coupons to orders
We are going to store the coupon that was applied for each order. First, we need
to modify the Order model to store the related Coupon object, if there is any.

Edit the models.py file of the orders application and add the following imports
to it:

from decimal import Decimal
from django.core.validators import MinValueValidator, \
 MaxValueValidator
from coupons.models import Coupon

Then, add the following fields to the Order model:

coupon = models.ForeignKey(Coupon,
 related_name='orders',
 null=True,
 blank=True)
discount = models.IntegerField(default=0,
 validators=[MinValueValidator(0),
 MaxValueValidator(100)])

These fields will allow us to store an optional coupon applied to the order and the
discount applied by the coupon. The discount is stored in the related Coupon object,
but we include it in the Order model to preserve it if the coupon is modified or
deleted.

Since the Order model has changed, we need to create a migration. Run the
following command from the command line:

python manage.py makemigrations

You should see an output like this:

Migrations for 'orders':
 0002_auto_20150606_1735.py:
 - Add field coupon to order
 - Add field discount to order

Apply the new migration with the next command:

python manage.py migrate orders

Extending Your Shop

[290]

You should get the confirmation that the new migration has been applied. The Order
model field changes are now synced with the database.

Go back to the models.py file and change the get_total_cost() method of the
Order model as follows:

def get_total_cost(self):
 total_cost = sum(item.get_cost() for item in self.items.all())
 return total_cost - total_cost * \
 (self.discount / Decimal('100'))

The get_total_cost() method of the Order model will now take into account the
applied discount, if there is any.

Edit the views.py file of the orders application and modify the order_create view
to save the related coupon and its discount when creating a new order. Find the
following line:

order = form.save()

Replace it with the following ones:

order = form.save(commit=False)
if cart.coupon:
 order.coupon = cart.coupon
 order.discount = cart.coupon.discount
order.save()

In the new code, we create an Order object using the save() method of the
OrderCreateForm form. We avoid saving it to the database yet by using
commit=False. If the cart contains a coupon, we store the related coupon and
the discount that was applied. Then we save the order object to the database.

Make sure the development server is running with the command python manage.py
runserver. Run Ngrok from the shell using the following command:

./ngrok http 8000

Open the URL provided by Ngrok in your browser and complete a purchase using
the coupon you created. When you finish a successful purchase, you can go to
http://127.0.0.1:8000/admin/orders/order/ and check that the order object
contains the coupon and the applied discount as follows:

Chapter 9

[291]

You can also modify the admin order detail template and the order PDF bill to
display the applied coupon in the same manner we did for the cart.

Next, we are going to add internationalization to our project.

Adding internationalization and
localization
Django offers full internationalization and localization support. It allows you to
translate your application into multiple languages and it handles locale-specific
formatting for dates, times, numbers, and time zones. Let's clarify the difference
between internationalization and localization. Internationalization (frequently
abbreviated to i18n) is the process of adapting software for the potential use of
different languages and locales, so that it isn't hard-wired to a specific language or
locale. Localization (abbreviated to l10n) is the process of actually translating the
software and adapting it to a particular locale. Django itself is translated into more
than 50 languages using its internationalization framework.

Internationalization with Django
The internationalization framework allows you to easily mark strings for translation
both in Python code and in your templates. It relies on the GNU gettext toolset to
generate and manage message files. A message file is a plain text file that represents
a language. It contains a part, or all, translation strings found in your application
and their respective translations for a single language. Message files have the
.po extension.

Once the translation is done, message files are compiled to offer rapid access to
translated strings. The compiled translation files have the .mo extension.

Extending Your Shop

[292]

Internationalization and localization settings
Django provides several settings for internationalization. The following settings are
the most relevant ones:

• USE_I18N: A boolean that specifies whether Django's translation system is
enabled. This is True by default.

• USE_L10N: A boolean indicating whether localized formatting is enabled.
When active, localized formats are used to represent dates and numbers.
This is False by default.

• USE_TZ: A boolean that specifies whether datetimes are timezone-aware.
When you create a project with the startproject command, this is set
to True.

• LANGUAGE_CODE: The default language code for the project. This is in
standard language ID format, for example, 'en-us' for American English
or 'en-gb' for British English. This setting requires USE_I18N set to True
in order to take effect. You can find a list of valid language IDs at
http://www.i18nguy.com/unicode/language-identifiers.html.

• LANGUAGES: A tuple that contains available languages for the project. They
come in two-tuples of language code and language name. You can see the
list of available languages at django.conf.global_settings. When you
choose which languages your site will be available in, you set LANGUAGES
to a subset of that list.

• LOCALE_PATHS: A list of directories where Django looks for message files
containing translations for this project.

• TIME_ZONE: A string that represents the time zone for the project. This is set
to 'UTC' when you create a new project using the startproject command.
You can set it to any other time zone such as 'Europe/Madrid'.

These are some of the internationalization and localization settings available.
You can find the full list at https://docs.djangoproject.com/en/1.8/ref/
settings/#globalization-i18n-l10n.

Internationalization management commands
Django includes the following commands to manage translations using manage.py
or the django-admin utility:

• makemessages – This runs over the source tree to find all strings marked
for translation and creates or updates the .po message files in the locale
directory. A single.po file is created for each language.

http://www.i18nguy.com/unicode/language-identifiers.html
https://docs.djangoproject.com/en/1.8/ref/settings/#globalization-i18n-l10n
https://docs.djangoproject.com/en/1.8/ref/settings/#globalization-i18n-l10n

Chapter 9

[293]

• compilemessages – This compiles the existing .po message files to .mo files
that are used to retrieve translations.

You will need the gettext toolset to be able to create, update, and compile message
files. Most Linux distributions include the gettext toolkit. If you are using Mac OS X,
probably the simplest way to install it is via Homebrew at http://brew.sh/
with the command brew install gettext. You might also need to force link
it with the command brew link gettext --force. For Windows, follow
the steps at https://docs.djangoproject.com/en/1.8/topics/i18n/
translation/#gettext-on-windows.

How to add translations to a Django project
Let's take a look at the process to internationalize our project. We will need to do the
following:

1. We mark strings for translation in our Python code and our templates.
2. We run the makemessages command to create or update message files that

include all translations strings from our code.
3. We translate the strings contained in the message files and compile them

using the compilemessages management command.

How Django determines the current language
Django comes with a middleware that determines the current language based on
request data. This is the LocaleMiddleware middleware that resides in django.
middleware.locale. LocaleMiddleware performs the following tasks:

1. If you are using i18_patterns, that is, you use translated URL patterns, it
looks for a language prefix in the requested URL to determine the current
language.

2. If no language prefix is found, it looks for an existing LANGUAGE_SESSION_
KEY in the current user's session.

3. If the language is not set in the session, it looks for an existing cookie with
the current language. A custom name for this cookie can be provided in
the LANGUAGE_COOKIE_NAME setting. By default, the name for this cookie is
django_language.

4. If no cookie is found, it looks for the Accept-Language HTTP header of
the request.

5. If the Accept-Language header does not specify a language, Django uses the
language defined in the LANGUAGE_CODE setting.

http://brew.sh/
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#gettext-on-windows
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#gettext-on-windows

Extending Your Shop

[294]

By default, Django will use the language defined in the LANGUAGE_CODE setting
unless you are using LocaleMiddleware. The process described above only
applies when using this middleware.

Preparing our project for internationalization
Let's prepare our project to use different languages. We are going to create an
English and a Spanish version for our shop. Edit the settings.py file of your
project and add the following LANGUAGES setting to it. Place it next to the
LANGUAGE_CODE setting:

LANGUAGES = (
 ('en', 'English'),
 ('es', 'Spanish'),
)

The LANGUAGES setting contains two tuples that consist of language code and name.
Language codes can be locale-specific, such as en-us or en-gb, or generic, such as
en. With this setting, we specify that our application will be only available in English
and Spanish. If we don't define a custom LANGUAGES setting, the site will be available
in all the languages Django is translated into.

Make your LANGUAGE_CODE setting look as follows:

LANGUAGE_CODE = 'en'

Add 'django.middleware.locale.LocaleMiddleware' to the MIDDLEWARE_
CLASSES setting. Make sure that this middleware comes after SessionMiddleware,
because LocaleMiddleware needs to use session data. It also has to be placed before
CommonMiddleware, because the latter needs an active language to resolve the
requested URL. The MIDDLEWARE_CLASSES setting should now look as follows:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
 # ...
)

The order of middlewares is very important because each middleware
can depend on data set by other middleware executed previously.
Middleware is applied for requests in order of appearance in
MIDDLEWARE_CLASSES, and in reverse order for responses.

Chapter 9

[295]

Create the following directory structure inside the main project directory, next to the
manage.py file:

locale/
 en/
 es/

The locale directory is the place where message files for your application will
reside. Edit the settings.py file again and add the following setting to it:

LOCALE_PATHS = (
 os.path.join(BASE_DIR, 'locale/'),
)

The LOCALE_PATHS setting specifies the directories where Django has to look for
translation files. Locale paths that appear first have the highest precedence.

When you use the makemessages command from your project directory, message
files will be generated in the locale/ path we created. However, for applications
that contain a locale/ directory, message files will be generated in that directory.

Translating Python code
To translate literals in your Python code, you can mark strings for translation using
the gettext() function included in django.utils.translation. This function
translates the message and returns a string. The convention is to import this function
as a shorter alias named _ (underscore character).

You can find all the documentation about translations at https://docs.
djangoproject.com/en/1.8/topics/i18n/translation/.

Standard translations
The following code shows how to mark a string for translation:

from django.utils.translation import gettext as _
output = _('Text to be translated.')

Lazy translations
Django includes lazy versions for all of its translation functions, which have the
suffix _lazy(). When using the lazy functions, strings are translated when the value
is accessed rather than when the function is called (this is why they are translated
lazily). The lazy translation functions come in handy when strings marked for
translation are in paths that are executed when modules are loaded.

https://docs.djangoproject.com/en/1.8/topics/i18n/translation/
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/

Extending Your Shop

[296]

Using gettext_lazy() instead of gettext(), strings are translated
when the value is accessed rather than when the function is called. Django
offers a lazy version for all translation functions.

Translations including variables
The strings marked for translation can include placeholders to include variables
in the translations. The following code is an example of a translation string with
a placeholder:

from django.utils.translation import gettext as _
month = _('April')
day = '14'
output = _('Today is %(month)s %(day)s') % {'month': month,
 'day': day}

By using placeholders, you can reorder the text variables. For example, an English
translation for the previous example might be "Today is April 14", while the Spanish
one is "Hoy es 14 de Abril". Always use string interpolation instead of positional
interpolation when you have more than one parameter for the translation string.
By doing so, you will be able to reorder the placeholder text.

Plural forms in translations
For plural forms, you can use ngettext() and ngettext_lazy(). These functions
translate singular and plural forms depending on an argument that indicates the
number of objects. The following example shows how to use them:

output = ngettext('there is %(count)d product',
 'there are %(count)d products',
 count) % {'count': count}

Now that you know the basics about translating literals in our Python code, it's time
to apply translations to our project.

Translating your own code
Edit the settings.py file of your project, import the gettext_lazy() function, and
change the LANGUAGES setting as follows to translate the language names:

from django.utils.translation import gettext_lazy as _

LANGUAGES = (

Chapter 9

[297]

 ('en', _('English')),
 ('es', _('Spanish')),
)

Here, we use the gettext_lazy() function instead of gettext() to avoid a circular
import, thus translating the languages' names when they are accessed.

Open the shell and run the following command from your project directory:

django-admin makemessages --all

You should see the following output:

processing locale es
processing locale en

Take a look at the locale/ directory. You should see a file structure like this:

en/
 LC_MESSAGES/
 django.po
es/
 LC_MESSAGES/
 django.po

A .po message file has been created for each language. Open es/LC_MESSAGES/
django.po with a text editor. At the end of the file, you should be able to see
the following:

#: settings.py:104
msgid "English"
msgstr ""

#: settings.py:105
msgid "Spanish"
msgstr ""

Each translation string is preceded by a comment showing details about the file and
line where it was found. Each translation includes two strings:

• msgid: The translation string as it appears in the source code.
• msgstr: The language translation, which is empty by default. This is where

you have to enter the actual translation for the given string.

Extending Your Shop

[298]

Fill in the msgstr translations for the given msgid string as follows:

#: settings.py:104
msgid "English"
msgstr "Inglés"

#: settings.py:105
msgid "Spanish"
msgstr "Español"

Save the modified message file, open the shell, and run the following command:

django-admin compilemessages

If everything goes well, you should see an output like the following:

processing file django.po in myshop/locale/en/LC_MESSAGES
processing file django.po in myshop/locale/es/LC_MESSAGES

The output gives you information about the message files that are being compiled.
Take a look at the locale directory of the myshop project again. You should see the
following files:

en/
 LC_MESSAGES/
 django.mo
 django.po
es/
 LC_MESSAGES/
 django.mo
 django.po

You can see that a .mo compiled message file has been generated for each language.

We have translated the language names themselves. Now let's translate the model
field names that are displayed in the site. Edit the models.py file of the orders
application and add names marked for translation for the Order model fields
as follows:

from django.utils.translation import gettext_lazy as _

class Order(models.Model):
 first_name = models.CharField(_('first name'),
 max_length=50)
 last_name = models.CharField(_('last name'),
 max_length=50)
 email = models.EmailField(_('e-mail'),)

Chapter 9

[299]

 address = models.CharField(_('address'),
 max_length=250)
 postal_code = models.CharField(_('postal code'),
 max_length=20)
 city = models.CharField(_('city'),
 max_length=100)
 #...

We have added names for the fields that are displayed when a user is placing a new
order. These are first_name, last_name, email, address, postal_code, and city.
Remember that you can also use the verbose_name attribute to name the fields.

Create the following directory structure inside the orders application directory:

locale/
 en/
 es/

By creating a locale directory, translation strings of this application will be stored
in a message file under this directory instead of the main messages file. In this way,
you can generate separated translation files for each application.

Open the shell from the project directory and run the following command:

django-admin makemessages --all

You should see the following output:

processing locale es
processing locale en

Open the es/LC_MESSAGES/django.po file using a text editor. You will see the
translations strings for the Order model. Fill in the following msgstr translations
for the given msgid strings:

#: orders/models.py:10
msgid "first name"
msgstr "nombre"

#: orders/models.py:12
msgid "last name"
msgstr "apellidos"

#: orders/models.py:14
msgid "e-mail"
msgstr "e-mail"

Extending Your Shop

[300]

#: orders/models.py:15
msgid "address"
msgstr "dirección"

#: orders/models.py:17
msgid "postal code"
msgstr "código postal"

#: orders/models.py:19
msgid "city"
msgstr "ciudad"

After you have finished adding the translations, save the file.

Besides a text editor, you can use Poedit to edit translations. Poedit is a software
to edit translations, and it uses gettext. It is available for Linux, Windows, and
Mac OS X. You can download Poedit from http://poedit.net/.

Let's also translate the forms of our project. OrderCreateForm of the orders
application does not have to be translated, since it is a ModelForm and it uses the
verbose_name attribute of the Order model fields for the form field labels. We are
going to translate the forms of the cart and coupons applications.

Edit the forms.py file inside the cart application directory and add a label
attribute to the quantity field of the CartAddProductForm, then mark this
field for translation as follows:

from django import forms
from django.utils.translation import gettext_lazy as _

PRODUCT_QUANTITY_CHOICES = [(i, str(i)) for i in range(1, 21)]

class CartAddProductForm(forms.Form):
 quantity = forms.TypedChoiceField(
 choices=PRODUCT_QUANTITY_CHOICES,
 coerce=int,
 label=_('Quantity'))
 update = forms.BooleanField(required=False,
 initial=False,
 widget=forms.HiddenInput)

http://poedit.net/

Chapter 9

[301]

Edit the forms.py file of the coupons application and translate the CouponApplyForm
form as follows:

from django import forms
from django.utils.translation import gettext_lazy as _

class CouponApplyForm(forms.Form):
 code = forms.CharField(label=_('Coupon'))

We have added a label to the code field and marked it for translation.

Translating templates
Django offers the {% trans %} and {% blocktrans %} template tags to translate
strings in templates. In order to use the translation template tags, you have to add
{% load i18n %} at the top of your template to load them.

The {% trans %} template tag
The {% trans %} template tag allows you to mark a string, a constant, or variable
content for translation. Internally, Django executes gettext() on the given text.
This is how to mark a string for translation in a template:

{% trans "Text to be translated" %}

You can use as to store the translated content in a variable that you can use
throughout your template. The following example stores the translated text
in a variable called greeting:

{% trans "Hello!" as greeting %}
<h1>{{ greeting }}</h1>

The {% trans %} tag is useful for simple translation strings, but it cannot handle
content for translation that includes variables.

The {% blocktrans %} template tag
The {% blocktrans %} template tag allows you to mark content that includes
literals and variable content using placeholders. The following example shows you
how to use the {% blocktrans %} tag including a name variable in the content
for translation:

{% blocktrans %}Hello {{ name }}!{% endblocktrans %}

Extending Your Shop

[302]

You can use with to include template expressions such as accessing object attributes
or applying template filters to variables. You always have to use placeholders for
these. You cannot access expressions or object attributes inside the blocktrans
block. The following example shows you how to use with to include an object
attribute on which the capfirst filter is applied:

{% blocktrans with name=user.name|capfirst %}
 Hello {{ name }}!
{% endblocktrans %}

Use the {% blocktrans %} tag instead of {% trans %} when you
need to include variable content in your translation string.

Translating the shop templates
Edit the shop/base.html template of the shop application. Make sure you load the
i18n tag at the top of the template and mark strings for translation as follows:

{% load i18n %}
{% load static %}
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>
 {% block title %}{% trans "My shop" %}{% endblock %}
 </title>
 <link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
 <div id="header">
 {% trans "My shop" %}
 </div>
 <div id="subheader">
 <div class="cart">
 {% with total_items=cart|length %}
 {% if cart|length > 0 %}
 {% trans "Your cart" %}:

 {% blocktrans with total_items_plural=total_
items|pluralize
total_price=cart.get_total_price %}

Chapter 9

[303]

 {{ total_items }} item{{ total_items_plural }},
 ${{ total_price }}
 {% endblocktrans %}

 {% else %}
 {% trans "Your cart is empty." %}
 {% endif %}
 {% endwith %}
 </div>
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
</body>
</html>

Notice the {% blocktrans %} tag to display the cart's summary. The cart's summary
was previously as follows:

{{ total_items }} item{{ total_items|pluralize }},
${{ cart.get_total_price }}

We utilized {% blocktrans with ... %} to use placeholders for total_
items|pluralize (template tag applied here) and cart.get_total_price
(object method accessed here), resulting in:

{% blocktrans with total_items_plural=total_items|pluralize
total_price=cart.get_total_price %}
 {{ total_items }} item{{ total_items_plural }},
 ${{ total_price }}
{% endblocktrans %}

Next, edit the shop/product/detail.html template of the shop application and
load the i18n tags at the top of it but after the {% extends %} tag, which always
has to be the first tag in the template:

{% load i18n %}

Then, find the following line:

<input type="submit" value="Add to cart">

Replace it with the following one:

<input type="submit" value="{% trans "Add to cart" %}">

Extending Your Shop

[304]

Now translate the orders application templates. Edit the orders/order/create.
html template of the orders application and mark text for translation as follows:

{% extends "shop/base.html" %}
{% load i18n %}

{% block title %}
 {% trans "Checkout" %}
{% endblock %}

{% block content %}
 <h1>{% trans "Checkout" %}</h1>

 <div class="order-info">
 <h3>{% trans "Your order" %}</h3>

 {% for item in cart %}

 {{ item.quantity }}x {{ item.product.name }}
 ${{ item.total_price }}

 {% endfor %}
 {% if cart.coupon %}

 {% blocktrans with code=cart.coupon.code
discount=cart.coupon.discount %}
 "{{ code }}" ({{ discount }}% off)
 {% endblocktrans %}
 - ${{ cart.get_discount|floatformat:"2" }}

 {% endif %}

 <p>{% trans "Total" %}: ${{
cart.get_total_price_after_discount|floatformat:"2" }}</p>
 </div>

 <form action="." method="post" class="order-form">
 {{ form.as_p }}
 <p><input type="submit" value="{% trans "Place order" %}"></p>
 {% csrf_token %}
 </form>
{% endblock %}

Chapter 9

[305]

Take a look at the following files in the code that come along with this chapter to see
how strings are marked for translation:

• The shop application: the shop/product/list.html template
• The orders application: the orders/order/created.html template
• The cart application: the cart/detail.html template

Let's update the message files to include the new translation strings. Open the shell
and run the following command:

django-admin makemessages --all

The .po files inside the locale directory of the myshop project and you'll see that the
orders application now contains all the strings we marked for translation.

Edit the .po translation files of the project and the orders application and include
Spanish translations. You can refer to the translated .po files in the source code that
comes along with this chapter.

Open the shell from the project directory and run the following commands:

cd orders/

django-admin compilemessages

cd ../

We have compiled the translation files for the order application.

Run the following command so that translations for applications that do not contain
a locale directory are included in the project's messages file:

django-admin compilemessages

Using the Rosetta translation interface
Rosetta is a third-party application that allows you to edit translations using the
same interface as the Django administration site. Rosetta makes it easy to edit .po
files and it updates compiled translation files. Let's add it into our project.

Install Rosetta via pip using this command:

pip install django-rosetta==0.7.6

Then, add 'rosetta' to the INSTALLED_APPS setting in your project's
settings.py file.

Extending Your Shop

[306]

You need to add Rosetta's URLs to your main URL configuration. Edit the main
urls.py file of your project and add the following URL pattern to it:

url(r'^rosetta/', include('rosetta.urls')),

Make sure you place it before the shop.urls pattern to avoid a wrong pattern match.

Open http://127.0.0.1:8000/admin/ and log in using your superuser. Then,
navigate to http://127.0.0.1:8000/rosetta/ in your browser. You should see
a list of existing languages like this:

In the Filter section, click All to display all the available message files, including
those that belong to the orders application. Click the Myshop link under the
Spanish section to edit Spanish translations. You should see a list of translation
strings as follows:

Chapter 9

[307]

You can enter the translations under the Spanish column. The Occurrences column
displays the files and line of code where each translation string was found.

Translations that include placeholders will appear like this:

Rosetta uses a different background color to display placeholders. When you
translate content, make sure you keep placeholders untranslated. For example,
take the following string:

%(total_items)s item%(total_items_plural)s, $%(total_price)s

It is translated into Spanish like this:

%(total_items)s producto%(total_items_plural)s, $%(total_price)s

You can take a look at the source code that comes along with this chapter to use
the same Spanish translations for your project.

When you finish editing translations, click the Save and translate next block button
to save the translations to the .po file. Rosetta compiles the message file when you
save translations, so there is no need for you to run the compilemessages command.
However, Rosetta requires write access to the locale directories to write the
message files. Make sure the directories have valid permissions.

If you want other users to be able to edit translations, open http://127.0.0.1:8000/
admin/auth/group/add/ in your browser and create a new group named
translators. Then access http://127.0.0.1:8000/admin/auth/user/ to edit the
users you want to grant permissions to so they can edit translations. When editing
a user, under the Permissions section, add the translators group to the Chosen
Groups for each user. Rosetta is only available to superusers or users that belong
to the translators group.

You can read Rosetta's documentation at http://django-rosetta.readthedocs.
org/en/latest/.

When you add new translations in your production environment, if you
serve Django with a real web server, you will have to reload your server
after running the compilemessages command or after saving the
translations with Rosetta for changes to take effect.

http://django-rosetta.readthedocs.org/en/latest/
http://django-rosetta.readthedocs.org/en/latest/

Extending Your Shop

[308]

Fuzzy translations
You might have noticed that there is a Fuzzy column in Rosetta. This is not a Rosetta
feature; it is provided by gettext. If the fuzzy flag is active for a translation, it will
not be included in the compiled message files. This flag is for translation strings that
require revision from the translator. When .po files are updated with new translation
strings, it is possible that some translation strings are automatically flagged as fuzzy.
This happens when gettext finds some msgid that has been slightly modified and
gettext pairs it with what it thinks it was the old translation and flags it as fuzzy for
review. The translator should then review fuzzy translations, remove the fuzzy flag,
and compile the message file again.

URL patterns for internationalization
Django offers internationalization capabilities for URLs. It includes two main
features for internationalized URLs:

• Language prefix in URL patterns: Adding a language prefix to URLs
to serve each language version under a different base URL

• Translated URL patterns: Marking URL patterns for translation so that
the same URL is different for each language

A reason for translating URLs is to optimize your site for search engines. By adding
a language prefix to your patterns, you will be able to index an URL for each
language instead of a single URL for all of them. Furthermore, by translating URLs
into each language, you will provide search engines with URLs that will rank better
for each language.

Adding a language prefix to URL patterns
Django allows you to add a language prefix to your URL patterns. For example, the
English version of your site can be served under a path starting by /en/ and the
Spanish version under /es/.

To use languages in URL patterns, you have to make sure that django.middleware.
locale.LocaleMiddleware appears in the MIDDLEWARE_CLASSES setting in the
settings.py file. Django will use it to identify the current language from the
requested URL.

Let's add a language prefix to our URL patterns. Edit the main urls.py file of the
myshop project and add the following import:

from django.conf.urls.i18n import i18n_patterns

Chapter 9

[309]

Then, add i18n_patterns() as follows:

urlpatterns = i18n_patterns(
 url(r'^admin/', include(admin.site.urls)),
 url(r'^cart/', include('cart.urls', namespace='cart')),
 url(r'^orders/', include('orders.urls', namespace='orders')),
 url(r'^payment/', include('payment.urls',
 namespace='payment')),
 url(r'^paypal/', include('paypal.standard.ipn.urls')),
 url(r'^coupons/', include('coupons.urls',
 namespace='coupons')),
 url(r'^rosetta/', include('rosetta.urls')),
 url(r'^', include('shop.urls', namespace='shop')),
)

You can combine URL patterns under patterns() and under i18n_patterns()
so that some patterns include a language prefix and others don't. However, it's best
to use translated URLs only to avoid the possibility that a carelessly translated URL
matches a non-translated URL pattern.

Run the development server and open http://127.0.0.1:8000/ in your
browser. Since you are using the LocaleMiddleware Django will perform the steps
described in the How Django determines the current language section to determine
the current language and then it will redirect you to the same URL including the
language prefix. Take a look at the URL in your browser; it should now look like
http://127.0.0.1:8000/en/. The current language will be the one set by the
Accept-Language header of your browser if it is Spanish or English, or the default
LANGUAGE_CODE (English) defined in your settings otherwise.

Translating URL patterns
Django supports translated strings in URL patterns. You can use a different
translation for each language for a single URL pattern. You can mark URL patterns
for translation the same way you would do with literals, using the ugettext_lazy()
function.

Edit the main urls.py file of the myshop project and add translation strings to the
regular expressions of the URL patterns for the cart, orders, payment, and coupons
applications as follows:

from django.utils.translation import gettext_lazy as _

urlpatterns = i18n_patterns(
 url(r'^admin/', include(admin.site.urls)),
 url(_(r'^cart/'), include('cart.urls', namespace='cart')),

Extending Your Shop

[310]

 url(_(r'^orders/'), include('orders.urls',
 namespace='orders')),
 url(_(r'^payment/'), include('payment.urls',
 namespace='payment')),
 url(r'^paypal/', include('paypal.standard.ipn.urls')),
 url(_(r'^coupons/'), include('coupons.urls',
 namespace='coupons')),
 url(r'^rosetta/', include('rosetta.urls')),
 url(r'^', include('shop.urls', namespace='shop')),
)

Edit the urls.py file of the orders application and mark URL patterns for
translation like this:

from django.conf.urls import url
from .import views
from django.utils.translation import gettext_lazy as _

urlpatterns = [
 url(_(r'^create/$'), views.order_create, name='order_create'),
 # ...
]

Edit the urls.py file of the payment application and change the code into this:

from django.conf.urls import url
from . import views
from django.utils.translation import gettext_lazy as _

urlpatterns = [
 url(_(r'^process/$'), views.payment_process, name='process'),
 url(_(r'^done/$'), views.payment_done, name='done'),
 url(_(r'^canceled/$'),
 views.payment_canceled,
 name='canceled'),
]

We don't need to translate the URL patterns of the shop application since they are
built with variables and do not include any other literals.

Open the shell and run the next command to update the message files with the new
translations:

django-admin makemessages --all

Chapter 9

[311]

Make sure the development server is running. Open http://127.0.0.1:8000/en/
rosetta/ in your browser and click the Myshop link under the Spanish section.
You can use the display filter to see only the strings that have not been translated
yet. Make sure you keep the special characters of regular expressions in your URL
translations. Translating URLs is a delicate task; if you alter the regular expression,
you can break the URL.

Allowing users to switch language
Since we are serving content that is available in multiple languages, we should let
our users switch the site's language. We are going to add a language selector to our
site. The language selector will consist of a list of available languages, which are
displayed using links.

Edit the shop/base.html template and find the following lines:

<div id="header">
 {% trans "My shop" %}
</div>

Replace them with the following code:

<div id="header">
 {% trans "My shop" %}

 {% get_current_language as LANGUAGE_CODE %}
 {% get_available_languages as LANGUAGES %}
 {% get_language_info_list for LANGUAGES as languages %}
 <div class="languages">
 <p>{% trans "Language" %}:</p>
 <ul class="languages">
 {% for language in languages %}

 <a href="/{{ language.code }}/" {% if language.code ==
LANGUAGE_CODE %} class="selected"{% endif %}>
 {{ language.name_local }}

 {% endfor %}

 </div>
</div>

Extending Your Shop

[312]

This is how we build our language selector:

1. First we load the internationalization tags using {% load i18n %}.
2. We use the {% get_current_language %} tag to retrieve the

current language.
3. We get the languages defined in the LANGUAGES setting using the

{% get_available_languages %} template tag.
4. We use the tag {% get_language_info_list %} to provide easy access

to the language attributes.
5. We build an HTML list to display all available languages and we add a

selected class attribute to the current active language.

We use the template tags provided by i18n based on the languages available in
the settings of your project. Now open http://127.0.0.1:8000/ in your browser
and take a look. You should see the language selector at the top right of the site
as follows:

Users can now easily switch their language.

Translating models with django-parler
Django does not provide a solution for translating models out of the box. You have to
implement your own solution to manage content stored in different languages or use
a third-party module for model translation. There are several third-party applications
that allow you to translate model fields. Each of them takes a different approach to
storing and accessing translations. One of these applications is django-parler. This
module offers a very effective way to translate models and it integrates smoothly
with Django's administration site.

django-parler generates a separate database table for each model that contains
translations. This table includes all the translated fields and a foreign key for the
original object the translation belongs to. It also contains a language field, since
each row stores the content for one single language.

Chapter 9

[313]

Installing django-parler
Install django-parler via pip using the following command:

pip install django-parler==1.5.1

Then, edit the settings.py file of your project and add 'parler' to the
INSTALLED_APPS setting. Add also the following code to your settings file:

PARLER_LANGUAGES = {
 None: (
 {'code': 'en',},
 {'code': 'es',},
),
 'default': {
 'fallback': 'en',
 'hide_untranslated': False,
 }
}

This setting defines the available languages en and es for django-parler. We
specify the default language en and we indicate that django-parler should
not hide untranslated content.

Translating model fields
Let's add translations for our product catalog. django-parler provides a
TranslatedModel model class and a TranslatedFields wrapper to translate
model fields. Edit the models.py file inside the shop application directory and
add the following import:

from parler.models import TranslatableModel, TranslatedFields

Then, change the Category model to make the name and slug fields translatable.
We are keeping also the non-translated fields for now:

class Category(TranslatableModel):
 name = models.CharField(max_length=200, db_index=True)
 slug = models.SlugField(max_length=200,
 db_index=True,
 unique=True)
 translations = TranslatedFields(
 name = models.CharField(max_length=200,
 db_index=True),
 slug = models.SlugField(max_length=200,
 db_index=True,
 unique=True)
)

Extending Your Shop

[314]

The Category model inherits now from TranslatedModel instead of models.Model.
and both the name and slug fields are included in the TranslatedFields wrapper.

Edit the Product model to add translations for the name, slug, and description
fields as follows. Also keep the non-translated fields for now:

class Product(TranslatableModel):
 name = models.CharField(max_length=200, db_index=True)
 slug = models.SlugField(max_length=200, db_index=True)
 description = models.TextField(blank=True)
 translations = TranslatedFields(
 name = models.CharField(max_length=200, db_index=True),
 slug = models.SlugField(max_length=200, db_index=True),
 description = models.TextField(blank=True)
)
 category = models.ForeignKey(Category,
 related_name='products')
 image = models.ImageField(upload_to='products/%Y/%m/%d',
 blank=True)
 price = models.DecimalField(max_digits=10, decimal_places=2)
 stock = models.PositiveIntegerField()
 available = models.BooleanField(default=True)
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)

django-parler generates another model for each translatable model. In the following
image, you can see the fields of the Product model and what the generated
ProductTranslation model will look like:

Chapter 9

[315]

The ProductTranslation model generated by django-parler includes the
name, slug, and description translatable fields, a language_code field, and a
ForeignKey for the master Product object. There is a one-to-many relationship from
Product to ProductTranslation. A ProductTranslation object will exist for each
available language of each Product object.

Since Django uses a separate table for translations, there are some Django features
that we cannot use. It is not possible to use a default ordering by a translated field.
You can filter by translated fields in queries, but you cannot include a translatable
field in the ordering Meta options. Edit the models.py file of the shop application
and comment out the ordering attribute of the Category Meta class:

class Meta:
 # ordering = ('name',)
 verbose_name = 'category'
 verbose_name_plural = 'categories'

We also have to comment out the index_together attribute of the Product Meta
class, since the current version of django-parler does not provide support to validate
it. Edit the Product Meta class and make it look like this:

class Meta:
 ordering = ('-created',)
 # index_together = (('id', 'slug'),)

You can read more about django-parler's compatibility with Django at
http://django-parler.readthedocs.org/en/latest/compatibility.html.

Creating a custom migration
When you create new models with translations, you need to execute
makemigrations to generate migrations for the models and then migrate to sync
changes to the database. However, when making existing fields translatable, you
probably have existing data in your database that you want to keep. We are going
to migrate our current data into the new translation models. Therefore, we have
added the translated fields but we have intentionally kept the original fields.

The steps to add translations to existing fields are the following:

1. We create the migration for the new translatable model fields, keeping the
original fields.

2. We build a custom migration to copy data from existing fields into
translation models.

3. We remove the existing fields from the original models.

http://django-parler.readthedocs.org/en/latest/compatibility.html

Extending Your Shop

[316]

Run the following command to create the migration for the translation fields we have
added to the Category and Product models:

python manage.py makemigrations shop --name "add_translation_model"

You should see the following output:

Migrations for 'shop':
 0002_add_translation_model.py:
 - Create model CategoryTranslation
 - Create model ProductTranslation
 - Change Meta options on category
 - Alter index_together for product (0 constraint(s))
 - Add field master to producttranslation
 - Add field master to categorytranslation
 - Alter unique_together for producttranslation (1 constraint(s))
 - Alter unique_together for categorytranslation (1 constraint(s))

Migrating existing data
Now we need to create a custom migration to copy existing data into the new
translation models. Create an empty migration using this command:

python manage.py makemigrations --empty shop --name "migrate_
translatable_fields"

You will get the following output:

Migrations for 'shop':
 0003_migrate_translatable_fields.py

Edit the shop/migrations/0003_migrate_translatable_fields.py file and add
the following code to it:

-*- coding: utf-8 -*-
from __future__ import unicode_literals
 from django.db import models, migrations
from django.apps import apps
from django.conf import settings
from django.core.exceptions import ObjectDoesNotExist

translatable_models = {
 'Category': ['name', 'slug'],
 'Product': ['name', 'slug', 'description'],
}

Chapter 9

[317]

def forwards_func(apps, schema_editor):
 for model, fields in translatable_models.items():
 Model = apps.get_model('shop', model)
 ModelTranslation = apps.get_model('shop',
 '{}Translation'.format(model))

 for obj in Model.objects.all():
 translation_fields = {field: getattr(obj, field) for field
in fields}
 translation = ModelTranslation.objects.create(
 master_id=obj.pk,
 language_code=settings.LANGUAGE_CODE,
 **translation_fields)

def backwards_func(apps, schema_editor):
 for model, fields in translatable_models.items():
 Model = apps.get_model('shop', model)
 ModelTranslation = apps.get_model('shop',
 '{}Translation'.format(model))

 for obj in Model.objects.all():
 translation = _get_translation(obj, ModelTranslation)
 for field in fields:
 setattr(obj, field, getattr(translation, field))
 obj.save()

def _get_translation(obj, MyModelTranslation):
 translations = MyModelTranslation.objects.filter(master_id=obj.pk)
 try:
 # Try default translation
 return translations.get(language_code=settings.LANGUAGE_CODE)
 except ObjectDoesNotExist:
 # Hope there is a single translation
 return translations.get()

class Migration(migrations.Migration):
 dependencies = [
 ('shop', '0002_add_translation_model'),
]
 operations = [
 migrations.RunPython(forwards_func, backwards_func),
]

Extending Your Shop

[318]

This migration includes forwards_func() and backwards_func() functions that
contain the code to be executed to apply/reverse the migration.

The migration process works as follows:

1. We define the models and their translatable fields in the translatable_
models dictionary.

2. To apply the migration, we iterate over the models that include translations
to get the model and its translatable model classes with app.get_model().

3. We iterate over all existing objects in the database and create a translation
object for the LANGUAGE_CODE defined in the project's settings. We include a
ForeignKey to the original object and a copy for each translatable field from
the original fields.

The backward function executes the reverse process, retrieving the default translation
object and copying the translatable fields' values back into the original object.

We have created a migration to add translation fields, then a migration to copy
content from existing fields into the new translation models.

Finally, we need to remove the original fields we don't need anymore. Edit the
models.py file of the shop application and remove the name and slug fields of
the Category model. The Category model fields should now look as follows:

class Category(TranslatableModel):
 translations = TranslatedFields(
 name = models.CharField(max_length=200, db_index=True),
 slug = models.SlugField(max_length=200,
 db_index=True,
 unique=True)
)

Remove the name, slug, and description fields of the Product model. It should
now look like this:

class Product(TranslatableModel):
 translations = TranslatedFields(
 name = models.CharField(max_length=200, db_index=True),
 slug = models.SlugField(max_length=200, db_index=True),
 description = models.TextField(blank=True)
)
 category = models.ForeignKey(Category,
 related_name='products')
 image = models.ImageField(upload_to='products/%Y/%m/%d',
 blank=True)

Chapter 9

[319]

 price = models.DecimalField(max_digits=10, decimal_places=2)
 stock = models.PositiveIntegerField()
 available = models.BooleanField(default=True)
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)

Now we have to create a final migration that reflects this model change. However, if
we try to run the manage.py utility, we will get an error because we haven't adapted
the administration site for the translatable models yet. Let's fix the administration
site first.

Integrating translations in the administration site
Django-parler integrates smoothly with the Django administration site. It includes a
TranslatableAdmin class that overrides the ModelAdmin class provided by Django
to manage model translations.

Edit the admin.py file of the shop application and add the following import to it:

from parler.admin import TranslatableAdmin

Modify the CategoryAdmin and ProductAdmin classes to inherit from
TranslatableAdmin instead of ModelAdmin. Django-parler doesn't support the
prepopulated_fields attribute yet, but it does support the get_prepopulated_
fields() method that provides the same functionality. Let's change this
accordingly. The admin.py file should now look like this:

from django.contrib import admin
from .models import Category, Product
from parler.admin import TranslatableAdmin

class CategoryAdmin(TranslatableAdmin):
 list_display = ['name', 'slug']

 def get_prepopulated_fields(self, request, obj=None):
 return {'slug': ('name',)}

admin.site.register(Category, CategoryAdmin)

class ProductAdmin(TranslatableAdmin):
 list_display = ['name', 'slug', 'category', 'price', 'stock',
 'available', 'created', 'updated']
 list_filter = ['available', 'created', 'updated', 'category']
 list_editable = ['price', 'stock', 'available']

Extending Your Shop

[320]

 def get_prepopulated_fields(self, request, obj=None):
 return {'slug': ('name',)}

admin.site.register(Product, ProductAdmin)

We have adapted the administration site to work with the new translated models.
We can now sync the database with the model changes we made.

Applying migrations for model translation
We removed the old fields from our models before adapting the administration site.
Now we need to create a migration for this change. Open the shell and run
the following command:

python manage.py makemigrations shop --name "remove_untranslated_fields"

You will see the following output:

Migrations for 'shop':
 0004_remove_untranslated_fields.py:
 - Remove field name from category
 - Remove field slug from category
 - Remove field description from product
 - Remove field name from product
 - Remove field slug from product

With this migration, we are going to remove the original fields and keep the
translatable fields.

In summary, we have created the following migrations:

1. Added translatable fields to models.
2. Migrated existing data from the original fields to the translatable fields.
3. Removed the original fields from the models.

Run the following command to apply the three migrations we have created:

python manage.py migrate shop

You will an output that includes the following lines:

Applying shop.0002_add_translation_model... OK
Applying shop.0003_migrate_translatable_fields... OK
Applying shop.0004_remove_untranslated_fields... OK

Chapter 9

[321]

Our models are now synchronized with the database. Let's translate an object.

Run the development server using python manage.py runserver and open
http://127.0.0.1:8000/en/admin/shop/category/add/ in your browser. You
will see that the Add category page includes two different tabs, one for English and
one for Spanish translations:

You can now add a translation and click the Save button. Make sure you save the
changes before you change the tab or you will lose them.

Adapting views for translations
We have to adapt our shop views to use translations QuerySets. Run python
manage.py shell from the command line and take a look at how you can retrieve
and query translation fields. To get a field's content for the current active language,
you just have to access the field the same way you access any normal model field:

>>> from shop.models import Product
>>> product=Product.objects.first()
>>> product.name
'Black tea'

When you access translated fields, they are resolved using the current language.
You can set a different current language for an object so that you access that
specific translation:

>>> product.set_current_language('es')
>>> product.name
'Té negro'
>>> product.get_current_language()
'es'

Extending Your Shop

[322]

When performing a QuerySet using filter(), you can filter using the related
translation objects with the translations__ syntax as follows:

>>> Product.objects.filter(translations__name='Black tea')

[<Product: Black tea>]

You can also use the language() manager to set a specific language for the objects
retrieved as follows:

>>> Product.objects.language('es').all()

[<Product: Té negro>, <Product: Té en polvo>, <Product: Té rojo>,
<Product: Té verde>]

As you can see, the way to access and query translated fields is quite straightforward.

Let's adapt the product catalog views. Edit the views.py file of the shop application
and in the product_list view, find the following line:

category = get_object_or_404(Category, slug=category_slug)

Replace it with the following ones:

language = request.LANGUAGE_CODE
category = get_object_or_404(Category,
 translations__language_code=language,
 translations__slug=category_slug)

Then, edit the product_detail view and find the following lines:

product = get_object_or_404(Product,
 id=id,
 slug=slug,
 available=True)

Replace them with the following code:

language = request.LANGUAGE_CODE
get_object_or_404(Product,
 id=id,
 translations__language_code=language,
 translations__slug=slug,
 available=True)

The product_list and product_detail views are now adapted to retrieve
objects using translated fields. Run the development server and open
http://127.0.0.1:8000/es/ in your browser. You should see the product
list page, including all products translated into Spanish:

Chapter 9

[323]

Now each product's URL is built using the slug field translated into the current
language. For example, the URL for a product in Spanish is http://127.0.0.1:8000/
es/2/te-rojo/, whereas in English the URL is http://127.0.0.1:8000/en/2/red-
tea/. If you navigate to a product detail page, you will see the translated URL and the
contents for the selected language, like the following example:

Extending Your Shop

[324]

If you want to know more about django-parler, you can find the full documentation
at http://django-parler.readthedocs.org/en/latest/.

You have learned how to translate Python code, templates, URL patterns, and model
fields. To complete the internationalization and localization process, we need to
display localized formatting for dates, times, and numbers.

Format localization
Depending on the user's locale, you might want to display dates, times, and numbers
in different formats. The localized formatting can be activated by changing the
USE_L10N setting to True in the settings.py file of your project.

When USE_L10N is enabled, Django will try to use a locale specific format whenever
it outputs a value in a template. You can see that decimal numbers in the English
version of your site are displayed with a dot separator for decimal places, while
in the Spanish version they are displayed using a comma. This is due to the locale
formats specified for the es locale by Django. You can take a look at the Spanish
formatting configuration at https://github.com/django/django/blob/
stable/1.8.x/django/conf/locale/es/formats.py.

Normally, you will set the USE_L10N setting to True and let Django apply the format
localization for each locale. However, there might be situations in which you don't
want to use localized values. This is especially relevant when outputting JavaScript
or JSON that has to provide a machine-readable format.

Django offers a {% localize %} template tag that allows you to turn on/off
localization for template fragments. This gives you control over localized formatting.
You will have to load the l10n tags to be able to use this template tag. The following
is an example of how to turn on and off localization in a template:

{% load l10n %}

{% localize on %}
 {{ value }}
{% endlocalize %}

{% localize off %}
 {{ value }}
{% endlocalize %}

http://django-parler.readthedocs.org/en/latest/
https://github.com/django/django/blob/stable/1.8.x/django/conf/locale/es/formats.py
https://github.com/django/django/blob/stable/1.8.x/django/conf/locale/es/formats.py

Chapter 9

[325]

Django also offers the localize and unlocalize template filters to force or avoid
localization of a value. These filters can be applied as follows:

{{ value|localize }}
{{ value|unlocalize }}

You can also create custom format files to specify locale formatting. You can find
further information about format localization at https://docs.djangoproject.
com/en/1.8/topics/i18n/formatting/.

Using django-localflavor to validate
form fields
django-localflavor is a third-party module that contains a collection of specific utils,
such as form fields or model fields that are specific for each country. It's very useful
to validate local regions, local phone numbers, identity card numbers, social security
numbers, and so on. The package is organized into a series of modules named after
ISO 3166 country codes.

Install django-localflavor using the following command:

pip install django-localflavor==1.1

Edit the settings.py file of your project and add 'localflavor' to the
INSTALLED_APPS setting.

We are going to add a United States (U.S.) zip code field so that a valid U.S. zip
code is required to create a new order.

Edit the forms.py file of the orders application and make it look as follows:

from django import forms
from .models import Order
from localflavor.us.forms import USZipCodeField

class OrderCreateForm(forms.ModelForm):
 postal_code = USZipCodeField()
 class Meta:
 model = Order
 fields = ['first_name', 'last_name', 'email', 'address',
 'postal_code', 'city',]

https://docs.djangoproject.com/en/1.8/topics/i18n/formatting/
https://docs.djangoproject.com/en/1.8/topics/i18n/formatting/

Extending Your Shop

[326]

We import the USZipCodeField field from the us package of localflavor
and use it for the postal_code field of the OrderCreateForm form. Open
http://127.0.0.1:8000/en/orders/create/ in your browser and try to enter
a 3-letter postal code. You will get the following validation error that is raised
by USZipCodeField:

Enter a zip code in the format XXXXX or XXXXX-XXXX.

This is just a brief example of how to use a custom field from localflavor in your
own project for validation purposes. The local components provided by localflavor
are very useful to adapt your application to specific countries. You can read the
django-localflavor documentation and see all available local components for each
country at https://django-localflavor.readthedocs.org/en/latest/.

Next, we are going to build a recommendation engine into our shop.

Building a recommendation engine
A recommendation engine is a system that predicts the preference or rating that a user
would give to an item. The system selects relevant items for the users based on their
behavior and the knowledge it has about them. Nowadays, recommendation systems
are used in many online services. They help users by selecting the stuff they might be
interested in from the vast amount of available data irrelevant to them. Offering good
recommendations enhances user engagement. E-commerce sites also benefit from
offering relevant product recommendations by increasing their average sale.

We are going to create a simple yet powerful recommendation engine that suggests
products that are usually bought together. We will suggest products based on
historic sales, thus identifying products that are usually bought together. We are
going to suggest complementary products in two different scenarios:

• Product detail page: We will display a list of products that are usually
bought with the given product. This will be displayed like: Users who
bought this also bought X, Y, Z. We need a data structure that allows us to
store the number of times that each product has been bought together with
the product being displayed.

• Cart detail page: Based on the products users add to the cart, we are going
to suggest products that are usually bought together with these ones. In this
case, the score we calculate to obtain related products has to be aggregated.

We are going to use Redis to store products that are purchased together. Remember
that you already used Redis in Chapter 6, Tracking User Actions. If you haven't
installed Redis yet, you can find installation instructions in that chapter.

https://django-localflavor.readthedocs.org/en/latest/

Chapter 9

[327]

Recommending products based on previous
purchases
Now, we will recommend products to users based on what they have added to the
cart. We are going to store a key in Redis for each product bought in our site. The
product key will contain a Redis sorted set with scores. We will increment the score
by 1 for each product bought together every time a new purchase is completed.

When an order is successfully paid for, we store a key for each product bought,
including a sorted set of products that belong to the same order. The sorted set
allows us to give scores for products that are bought together.

Edit the settings.py file of your project and add the following settings to it:

REDIS_HOST = 'localhost'
REDIS_PORT = 6379
REDIS_DB = 1

These are the settings required to establish a connection with the Redis server. Create
a new file inside the shop application directory and name it recommender.py. Add
the following code to it:

import redis
from django.conf import settings
from .models import Product

connect to redis
r = redis.StrictRedis(host=settings.REDIS_HOST,
 port=settings.REDIS_PORT,
 db=settings.REDIS_DB)

class Recommender(object):

 def get_product_key(self, id):
 return 'product:{}:purchased_with'.format(id)

 def products_bought(self, products):
 product_ids = [p.id for p in products]
 for product_id in product_ids:
 for with_id in product_ids:
 # get the other products bought with each product
 if product_id != with_id:
 # increment score for product purchased together
 r.zincrby(self.get_product_key(product_id),
 with_id,
 amount=1)

Extending Your Shop

[328]

This is the Recommender class that will allow us to store product purchases
and retrieve product suggestions for a given product or products. The get_
product_key() method receives an id of a Product object and builds the
Redis key for the sorted set where related products are stored, which looks like
product:[id]:purchased_with.

The products_bought() method receives a list of Product objects that have been
bought together (that is, belong to the same order). In this method, we perform the
following tasks:

1. We get the product IDs for the given Product objects.
2. We iterate over the product IDs. For each id, we iterate over the product

IDs and skip the same product so that we get the products that are bought
together with each product.

3. We get the Redis product key for each product bought using the
get_product_id() method. For a product with an ID of 33, this method
returns the key product:33:purchased_with. This is the key for the sorted
set that contains the product IDs of products that were bought together with
this one.

4. We increment the score of each product id contained in the sorted set by 1.
The score represents the times another product has been bought together
with the given product.

So we have a method to store and score the products that were bought together.
Now we need a method to retrieve the products that are bought together for a list
of given products. Add the following suggest_products_for() method to the
Recommender class:

 def suggest_products_for(self, products, max_results=6):
 product_ids = [p.id for p in products]
 if len(products) == 1:
 # only 1 product
 suggestions = r.zrange(
 self.get_product_key(product_ids[0]),
 0, -1, desc=True)[:max_results]
 else:
 # generate a temporary key
 flat_ids = ''.join([str(id) for id in product_ids])
 tmp_key = 'tmp_{}'.format(flat_ids)
 # multiple products, combine scores of all products
 # store the resulting sorted set in a temporary key
 keys = [self.get_product_key(id) for id in product_ids]
 r.zunionstore(tmp_key, keys)

Chapter 9

[329]

 # remove ids for the products the recommendation is for
 r.zrem(tmp_key, *product_ids)
 # get the product ids by their score, descendant sort
 suggestions = r.zrange(tmp_key, 0, -1,
 desc=True)[:max_results]
 # remove the temporary key
 r.delete(tmp_key)
 suggested_products_ids = [int(id) for id in suggestions]

 # get suggested products and sort by order of appearance
 suggested_products = list(Product.objects.filter(id__in=suggested_
products_ids))
 suggested_products.sort(key=lambda x: suggested_products_ids.
index(x.id))
 return suggested_products

The suggest_products_for() method receives the following parameters:

• products: This is a list of Product objects to get recommendations for. It can
contain one or more products.

• max_results: This is an integer that represents the maximum number of
recommendations to return.

In this method, we perform the following actions:

1. We get the product IDs for the given Product objects.
2. If only one product is given, we retrieve the ID of the products that were

bought together with the given product, ordered by the total number of times
that they were bought together. To do so, we use Redis' ZRANGE command.
We limit the number of results to the number specified in the max_results
attribute (6 by default).

3. If more than one product is given, we generate a temporary Redis key built
with the IDs of the products.

4. We combine and sum all scores for the items contained in the sorted set
of each of the given products. This is done using the Redis' ZUNIONSTORE
command. The ZUNIONSTORE command performs a union of the sorted
sets with the given keys, and stores the aggregated sum of scores of the
elements in a new Redis key. You can read more about this command at
http://redis.io/commands/ZUNIONSTORE. We save the aggregated
scores in the temporary key.

http://redis.io/commands/ZUNIONSTORE

Extending Your Shop

[330]

5. Since we are aggregating scores, we might obtain the same products we are
getting recommendations for. We remove them from the generated sorted
set using the ZREM command.

6. We retrieve the IDs of the products from the temporary key, ordered by
their score using the ZRANGE command. We limit the number of results to
the number specified in the max_results attribute. Then we remove the
temporary key.

7. Finally, we get the Product objects with the given id and we order the
products by the same order as the them.

For practical purposes, let's also add a method to clear the recommendations.
Add the following method to the Recommender class:

 def clear_purchases(self):
 for id in Product.objects.values_list('id', flat=True):
 r.delete(self.get_product_key(id))

Let's try our recommendation engine. Make sure you include several Product objects
in the database and initialize the Redis server using the following command from
the shell:

src/redis-server

Open another shell, execute python manage.py shell, and write the following code
to retrieve several products:

from shop.models import Product
black_tea = Product.objects.get(translations__name='Black tea')
red_tea = Product.objects.get(translations__name='Red tea')
green_tea = Product.objects.get(translations__name='Green tea')
tea_powder = Product.objects.get(translations__name='Tea powder')

Then, add some test purchases to the recommendation engine:

from shop.recommender import Recommender
r = Recommender()
r.products_bought([black_tea, red_tea])
r.products_bought([black_tea, green_tea])
r.products_bought([red_tea, black_tea, tea_powder])
r.products_bought([green_tea, tea_powder])
r.products_bought([black_tea, tea_powder])
r.products_bought([red_tea, green_tea])

Chapter 9

[331]

We have stored the following scores:

black_tea: red_tea (2), tea_powder (2), green_tea (1)
red_tea: black_tea (2), tea_powder (1), green_tea (1)
green_tea: black_tea (1), tea_powder (1), red_tea(1)
tea_powder: black_tea (2), red_tea (1), green_tea (1)

Let's take a look at the recommended products for a single product:

>>> r.suggest_products_for([black_tea])
[<Product: Tea powder>, <Product: Red tea>, <Product: Green tea>]
>>> r.suggest_products_for([red_tea])
[<Product: Black tea>, <Product: Tea powder>, <Product: Green tea>]
>>> r.suggest_products_for([green_tea])
[<Product: Black tea>, <Product: Tea powder>, <Product: Red tea>]
>>> r.suggest_products_for([tea_powder])
[<Product: Black tea>, <Product: Red tea>, <Product: Green tea>]

As you can see, the order for recommended products is based on their score. Let's get
recommendations for multiple products with aggregated scores:

>>> r.suggest_products_for([black_tea, red_tea])
[<Product: Tea powder>, <Product: Green tea>]
>>> r.suggest_products_for([green_tea, red_tea])
[<Product: Black tea>, <Product: Tea powder>]
>>> r.suggest_products_for([tea_powder, black_tea])
[<Product: Red tea>, <Product: Green tea>]

You can see that the order of the suggested products matches the aggregated scores.
For example, products suggested for black_tea and red_tea are tea_powder (2+1)
and green_tea (1+1).

We have verified that our recommendation algorithm works as expected. Let's
display recommendations for products on our site.

Edit the views.py file of the shop application and add the following import:

from .recommender import Recommender

Extending Your Shop

[332]

Add the following code to the product_detail view just before the render()
function:

r = Recommender()
recommended_products = r.suggest_products_for([product], 4)

We get a maximum of four product suggestions. The product_detail view should
now look as follows:

from .recommender import Recommender

def product_detail(request, id, slug):
 product = get_object_or_404(Product,
 id=id,
 slug=slug,
 available=True)
 cart_product_form = CartAddProductForm()
 r = Recommender()
 recommended_products = r.suggest_products_for([product], 4)
 return render(request,
 'shop/product/detail.html',
 {'product': product,
 'cart_product_form': cart_product_form,
 'recommended_products': recommended_products})

Now edit the shop/product/detail.html template of the shop application and add
the following code after {{ product.description|linebreaks }}:

{% if recommended_products %}
 <div class="recommendations">
 <h3>{% trans "People who bought this also bought" %}</h3>
 {% for p in recommended_products %}
 <div class="item">

 <img src="{% if p.image %}{{ p.image.url }}{% else %}{%
static "img/no_image.png" %}{% endif %}">

 <p>{{ p.name }}</p>
 </div>
 {% endfor %}
 </div>
{% endif %}

Chapter 9

[333]

Run the development server with the command python manage.py runserver and
open http://127.0.0.1:8000/en/ in your browser. Click on any product to see its
details page. You should see that recommended products are displayed below the
product, as shown in the following image:

We are also going to include product recommendations in the cart. The
recommendation will be based on the products that the user has added to the cart.
Edit the views.py inside the cart application directory and add the following import:

from shop.recommender import Recommender

Then, edit the cart_detail view to make it look as follows:

def cart_detail(request):
 cart = Cart(request)
 for item in cart:
 item['update_quantity_form'] = CartAddProductForm(
 initial={'quantity': item['quantity'],
 'update': True})
 coupon_apply_form = CouponApplyForm()

 r = Recommender()
 cart_products = [item['product'] for item in cart]
 recommended_products = r.suggest_products_for(cart_products,
 max_results=4)

Extending Your Shop

[334]

 return render(request,
 'cart/detail.html',
 {'cart': cart,
 'coupon_apply_form': coupon_apply_form,
 'recommended_products': recommended_products})

Edit the cart/detail.html template of the cart application and add the following
code just after the </table> HTML tag:

{% if recommended_products %}
 <div class="recommendations cart">
 <h3>{% trans "People who bought this also bought" %}</h3>
 {% for p in recommended_products %}
 <div class="item">

 <img src="{% if p.image %}{{ p.image.url }}{% else %}{%
static "img/no_image.png" %}{% endif %}">

 <p>{{ p.name }}</p>
 </div>
 {% endfor %}
 </div>
{% endif %}

Open http://127.0.0.1:8000/en/ in your browser and add a couple of products
to your cart. When you navigate to http://127.0.0.1:8000/en/cart/, you should
see the aggregated product recommendations for the items in the cart as follows:

Chapter 9

[335]

Congratulations! You have built a complete recommendation engine using Django
and Redis.

Summary
In this chapter, you created a coupon system using sessions. You learned how
internationalization and localization work. You also built a recommendation
engine using Redis.

In the next chapter, you will start a new project. You will build an e-learning
platform with Django using class-based views and you will create a custom
content management system.

[337]

Building an e-Learning
Platform

In the previous chapter, you added internationalization to your online shop project.
You also built a coupon system and a product recommendation engine. In this
chapter, you will create a new project. You will build an e-Learning platform
creating a custom content management system.

In this chapter, you will learn how to:

• Create fixtures for your models
• Use model inheritance
• Create custom model fields
• Use class-based views and mixins
• Build formsets
• Manage groups and permissions
• Create a content management system

Creating an e-Learning platform
Our last practical project will be an e-Learning platform. In this chapter, we are going
to build a flexible Content Management System (CMS) that allows instructors to
create courses and manage their contents.

First, create a virtual environment for your new project and activate it with the
following commands:

mkdir env

virtualenv env/educa

source env/educa/bin/activate

Building an e-Learning Platform

[338]

Install Django in your virtual environment with the following command:

pip install Django==1.8.6

We are going to manage image uploads in our project, so we also need to install
Pillow with the following command:

pip install Pillow==2.9.0

Create a new project using the following command:

django-admin startproject educa

Enter the new educa directory and create a new application using the following
commands:

cd educa

django-admin startapp courses

Edit the settings.py file of the educa project and add courses to the
INSTALLED_APPS setting as follows:

INSTALLED_APPS = (
 'courses',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
)

The courses application is now active for the project. Let's define the models for
courses and course contents.

Building the course models
Our e-Learning platform will offer courses in various subjects. Each course will be
divided into a configurable number of modules, and each module will contain a
configurable number of contents. There will be contents of various types: text, file,
image, or video. The following example shows what the data structure of our course
catalog will look like:

Subject 1
 Course 1
 Module 1
 Content 1 (image)

Chapter 10

[339]

 Content 3 (text)
 Module 2
 Content 4 (text)
 Content 5 (file)
 Content 6 (video)
 ...

Let's build the course models. Edit the models.py file of the courses application and
add the following code to it:

from django.db import models
from django.contrib.auth.models import User

class Subject(models.Model):
 title = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200, unique=True)

 class Meta:
 ordering = ('title',)

 def __str__(self):
 return self.title

class Course(models.Model):
 owner = models.ForeignKey(User,
 related_name='courses_created')
 subject = models.ForeignKey(Subject,
 related_name='courses')
 title = models.CharField(max_length=200)
 slug = models.SlugField(max_length=200, unique=True)
 overview = models.TextField()
 created = models.DateTimeField(auto_now_add=True)

 class Meta:
 ordering = ('-created',)

 def __str__(self):
 return self.title

class Module(models.Model):
 course = models.ForeignKey(Course, related_name='modules')
 title = models.CharField(max_length=200)
 description = models.TextField(blank=True)

 def __str__(self):
 return self.title

Building an e-Learning Platform

[340]

These are the initial Subject, Course, and Module models. The Course model fields
are as follows:

• owner: The instructor that created this course.
• subject: The subject that this course belongs to. A ForeignKey field that

points to the Subject model.
• title: The title of the course.
• slug: The slug of the course. This will be used in URLs later.
• overview: This is a TextField column to include an overview about

the course.
• created: The date and time when the course was created. It will be

automatically set by Django when creating new objects because of
auto_now_add=True.

Each course is divided into several modules. Therefore, the Module model contains
a ForeignKey field that points to the Course model.

Open the shell and run the following command to create the initial migration for
this app:

python manage.py makemigrations

You will see the following output:

Migrations for 'courses':
 0001_initial.py:
 - Create model Course
 - Create model Module
 - Create model Subject
 - Add field subject to course

Then, run the following command to apply all migrations to the database:

python manage.py migrate

You should see an output including all applied migrations, including those of
Django. The output will contain the following line:

Applying courses.0001_initial... OK

This tells us that the models of our courses app have been synced to the database.

Chapter 10

[341]

Registering the models in the administration
site
We are going to add the course models to the administration site. Edit the admin.py
file inside the courses application directory and add the following code to it:

from django.contrib import admin
from .models import Subject, Course, Module

@admin.register(Subject)
class SubjectAdmin(admin.ModelAdmin):
 list_display = ['title', 'slug']
 prepopulated_fields = {'slug': ('title',)}

class ModuleInline(admin.StackedInline):
 model = Module

@admin.register(Course)
class CourseAdmin(admin.ModelAdmin):
 list_display = ['title', 'subject', 'created']
 list_filter = ['created', 'subject']
 search_fields = ['title', 'overview']
 prepopulated_fields = {'slug': ('title',)}
 inlines = [ModuleInline]

The models for the course application are now registered in the administration site.
We use the @admin.register() decorator instead of the admin.site.register()
function. Both provide the same functionality.

Providing initial data for models
Sometimes you might want to pre-populate your database with hard-coded data.
This is useful to automatically include initial data in the project setup instead of
having to add it manually. Django comes with a simple way to load and dump
data from the database into files that are called fixtures.

Django supports fixtures in JSON, XML, or YAML formats. We are going to create a
fixture to include some initial Subject objects for our project.

First, create a superuser using the following command:

python manage.py createsuperuser

Building an e-Learning Platform

[342]

Then, run the development server using the following command:

python manage.py runserver

Now, open http://127.0.0.1:8000/admin/courses/subject/ in your browser.
Create several subjects using the administration site. The list display page should
look as follows:

Run the following command from the shell:

python manage.py dumpdata courses --indent=2

You will see an output similar to the following:

[
{
 "fields": {
 "title": "Programming",
 "slug": "programming"
 },
 "model": "courses.subject",
 "pk": 1
},
{
 "fields": {
 "title": "Mathematics",
 "slug": "mathematics"
 },
 "model": "courses.subject",
 "pk": 2
},
{

Chapter 10

[343]

 "fields": {
 "title": "Physics",
 "slug": "physics"
 },
 "model": "courses.subject",
 "pk": 3
},
{
 "fields": {
 "title": "Music",
 "slug": "music"
 },
 "model": "courses.subject",
 "pk": 4
}
]

The dumpdata command dumps data from the database into the standard output,
serialized in JSON by default. The resulting data structure includes information
about the model and its fields for Django to be able to load it into the database.

You can provide names of applications to the command or specify models for
outputting data using the app.Model format. You can also specify the format using
the --format flag. By default, dumpdata outputs the serialized data to the standard
output. However, you can indicate an output file using the --output flag. The
--indent flag allows you to specify indentation. For more information on dumpdata
parameters, run python manage.py dumpdata --help.

Save this dump to a fixtures file into a fixtures/ directory in the orders application
using the following commands:

mkdir courses/fixtures

python manage.py dumpdata courses --indent=2 --output=courses/fixtures/
subjects.json

Use the administration site to remove the subjects you created. Then load the fixture
into the database using the following command:

python manage.py loaddata subjects.json

All Subject objects included in the fixture are loaded into the database.

Building an e-Learning Platform

[344]

By default, Django looks for files in the fixtures/ directory of each application, but
you can specify the complete path to the fixture file for the loaddata command. You
can also use the FIXTURE_DIRS setting to tell Django additional directories to look
for fixtures.

Fixtures are not only useful for initial data but also to provide sample
data for your application or data required for your tests.

You can read about how to use fixtures for testing at https://docs.djangoproject.
com/en/1.8/topics/testing/tools/#topics-testing-fixtures.

If you want to load fixtures in model migrations, take a look at Django's
documentation about data migrations. Remember that we created a custom migration
in Chapter 9, Extending Your Shop to migrate existing data after modifying models for
translations. You can find the documentation for migrating data at https://docs.
djangoproject.com/en/1.8/topics/migrations/#data-migrations.

Creating models for diverse content
We plan to add different types of content to the course modules such as texts,
images, files, and videos. We need a versatile data model that allows us to store
diverse content. In Chapter 6, Tracking User Actions, you have learned about the
convenience of using generic relations to create foreign keys that can point to objects
of any model. We are going to create a Content model that represents the modules
contents and define a generic relation to associate any kind of content.

Edit the models.py file of the courses application and add the following imports:

from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes.fields import GenericForeignKey

Then add the following code to the end of the file:

class Content(models.Model):
 module = models.ForeignKey(Module, related_name='contents')
 content_type = models.ForeignKey(ContentType)
 object_id = models.PositiveIntegerField()
 item = GenericForeignKey('content_type', 'object_id')

https://docs.djangoproject.com/en/1.8/topics/testing/tools/#topics-testing-fixtures
https://docs.djangoproject.com/en/1.8/topics/testing/tools/#topics-testing-fixtures
https://docs.djangoproject.com/en/1.8/topics/migrations/#data-migrations
https://docs.djangoproject.com/en/1.8/topics/migrations/#data-migrations

Chapter 10

[345]

This is the Content model. A module contains multiple contents, so we define a
ForeignKey field to the Module model. We also set up a generic relation to associate
objects from different models that represent different types of content. Remember
that we need three different fields to set up a generic relationship. In our Content
model, these are:

• content_type: A ForeignKey field to the ContentType model
• object_id: This is PositiveIntegerField to store the primary key of the

related object
• item: A GenericForeignKey field to the related object by combining the

two previous fields

Only the content_type and object_id fields have a corresponding column in the
database table of this model. The item field allows you to retrieve or set the related
object directly, and its functionality is built on top of the other two fields.

We are going to use a different model for each type of content. Our content models
will have some common fields, but they will differ in the actual contents they
can store.

Using model inheritance
Django supports model inheritance. It works in a similar way to standard class
inheritance in Python. Django offers the following three options to use model
inheritance:

• Abstract models: Useful when you want to put some common information
into several models. No database table is created for the abstract model.

• Multi-table model inheritance: Applicable when each model in the
hierarchy is considered a complete model by itself. A database table is
created for each model.

• Proxy models: Useful when you need to change the behavior of a model, for
example, including additional methods, changing the default manager, or
using different meta options. No database table is created for proxy models.

Let's take a closer look at each of them.

Building an e-Learning Platform

[346]

Abstract models
An abstract model is a base class in which you define fields you want to include in
all child models. Django doesn't create any database table for abstract models. A
database table is created for each child model, including the fields inherited from
the abstract class and the ones defined in the child model.

To mark a model as abstract, you need to include abstract=True in its Meta class.
Django will recognize that it is an abstract model and will not create a database
table for it. To create child models, you just need to subclass the abstract model.
The following is an example of an abstract Content model and a child Text model:

from django.db import models

class BaseContent(models.Model):
 title = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True)

 class Meta:
 abstract = True

class Text(BaseContent):
 body = models.TextField()

In this case, Django would create a table for the Text model only, including the
title, created, and body fields.

Multi-table model inheritance
In multi-table inheritance, each model corresponds to a database table. Django
creates a OneToOneField field for the relationship in the child's model to its parent.

To use multi-table inheritance, you have to subclass an existing model. Django will
create a database table for both the original model and the sub-model. The following
example shows multi-table inheritance:

from django.db import models

class BaseContent(models.Model):
 title = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True)

class Text(BaseContent):
 body = models.TextField()

Django would include an automatically generated OneToOneField field in the Text
model and create a database table for each model.

Chapter 10

[347]

Proxy models
Proxy models are used to change the behavior of a model, for example, including
additional methods or different meta options. Both models operate on the database
table of the original model. To create a proxy model, add proxy=True to the Meta
class of the model.

The following example illustrates how to create a proxy model:

from django.db import models
from django.utils import timezone

class BaseContent(models.Model):
 title = models.CharField(max_length=100)
 created = models.DateTimeField(auto_now_add=True)

class OrderedContent(BaseContent):
 class Meta:
 proxy = True
 ordering = ['created']

 def created_delta(self):
 return timezone.now() - self.created

Here, we define an OrderedContent model that is a proxy model for the Content
model. This model provides a default ordering for QuerySets and an additional
created_delta() method. Both models, Content and OrderedContent, operate on
the same database table, and objects are accessible via the ORM through either model.

Creating the content models
The Content model of our courses application contains a generic relation to
associate different types of content to it. We will create a different model for each
type of content. All content models will have some fields in common, and additional
fields to store custom data. We are going to create an abstract model that provides
the common fields for all content models.

Edit the models.py file of the courses application and add the following code to it:

class ItemBase(models.Model):
 owner = models.ForeignKey(User,
 related_name='%(class)s_related')
 title = models.CharField(max_length=250)
 created = models.DateTimeField(auto_now_add=True)
 updated = models.DateTimeField(auto_now=True)

Building an e-Learning Platform

[348]

 class Meta:
 abstract = True

 def __str__(self):
 return self.title

class Text(ItemBase):
 content = models.TextField()

class File(ItemBase):
 file = models.FileField(upload_to='files')

class Image(ItemBase):
 file = models.FileField(upload_to='images')

class Video(ItemBase):
 url = models.URLField()

In this code, we define an abstract model named ItemBase. Therefore, we have
set abstract=True in its Meta class. In this model, we define the owner, title,
created, and updated fields. These common fields will be used for all types of
content. The owner field allows us to store which user created the content. Since
this field is defined in an abstract class, we need different related_name for each
sub-model. Django allows us to specify a placeholder for the model class name in
the related_name attribute as %(class)s. By doing so, related_name for each
child model will be generated automatically. Since we use '%(class)s_related'
as related_name, the reverse relation for child models will be text_related,
file_related, image_related, and video_related respectively.

We have defined four different content models, which inherit from the ItemBase
abstract model. These are:

• Text: To store text content.
• File: To store files, such as PDF.
• Image: To store image files.
• Video: To store videos. We use an URLField field to provide a video URL in

order to embed it.

Each child model contains the fields defined in the ItemBase class in addition to its
own fields. A database table will be created for the Text, File, Image, and Video
models respectively. There will be no database table associated to the ItemBase
model since it is an abstract model.

Chapter 10

[349]

Edit the Content model you created previously and modify its content_type field
as follows:

content_type = models.ForeignKey(ContentType,
 limit_choices_to={'model__in':('text',
 'video',
 'image',
 'file')})

We add a limit_choices_to argument to limit the ContentType objects that can
be used for the generic relationship. We use the model__in field lookup to filter the
query to the ContentType objects with a model attribute that is 'text', 'video',
'image' or, 'file'.

Let's create a migration to include the new models we have added. Run the following
command from the command line:

python manage.py makemigrations

You should see the following output:

Migrations for 'courses':
 0002_content_file_image_text_video.py:
 - Create model Content
 - Create model File
 - Create model Image
 - Create model Text
 - Create model Video

Then, run the following command to apply the new migration:

python manage.py migrate

The output you see should end as follows:

Running migrations:
 Rendering model states... DONE
 Applying courses.0002_content_file_image_text_video... OK

We have created models that are suitable to add diverse content to the course
modules. However, there is still something missing in our models. The course
modules and contents should follow a particular order. We need a field that
allows us to order them easily.

Building an e-Learning Platform

[350]

Creating custom model fields
Django comes with a complete collection of model fields that you can use to build
your models. However, you can also create your own model fields to store custom
data or alter the behavior of existing fields.

We need a field that allows us to specify an order for objects. If you think about an
easy way to do this with a field provided by Django, you will probably think of
adding a PositiveIntegerField to your models. This is a good starting point. We
can create a custom field that inherits from PositiveIntegerField and provides
additional behavior.

There are two relevant functionalities that we will build into our order field:

• Automatically assign an order value when no specific order is provided.
When no order is provided while storing an object, our field should
automatically assign the next order based on the last existing ordered object.
If there are two objects with order 1 and 2 respectively, when saving a third
object, we should automatically assign the order 3 to it if no specific order
is given.

• Order objects with respect to other fields. Course modules will be ordered
with respect to the course they belong to and module contents with respect
to the module they belong to.

Create a new fields.py file inside the courses application directory and add the
following code to it:

from django.db import models
from django.core.exceptions import ObjectDoesNotExist

class OrderField(models.PositiveIntegerField):

 def __init__(self, for_fields=None, *args, **kwargs):
 self.for_fields = for_fields
 super(OrderField, self).__init__(*args, **kwargs)

 def pre_save(self, model_instance, add):
 if getattr(model_instance, self.attname) is None:
 # no current value
 try:
 qs = self.model.objects.all()
 if self.for_fields:
 # filter by objects with the same field values
 # for the fields in "for_fields"

Chapter 10

[351]

 query = {field: getattr(model_instance, field) for
field in self.for_fields}
 qs = qs.filter(**query)
 # get the order of the last item
 last_item = qs.latest(self.attname)
 value = last_item.order + 1
 except ObjectDoesNotExist:
 value = 0
 setattr(model_instance, self.attname, value)
 return value
 else:
 return super(OrderField,
 self).pre_save(model_instance, add)

This is our custom OrderField. It inherits from the PositiveIntegerField field
provided by Django. Our OrderField field takes an optional for_fields parameter
that allows us to indicate the fields that the order has to be calculated with respect to.

Our field overrides the pre_save() method of the PositiveIntegerField field,
which is executed before saving the field into the database. In this method, we
perform the following actions:

1. We check if a value already exists for this field in the model instance. We use
self.attname, which is the attribute name given to the field in the model. If
the attribute's value is different than None, we calculate the order we should
give it as follows:

1. We build a QuerySet to retrieve all objects for the field's model. We
retrieve the model class the field belongs to by accessing self.model.

2. We filter the QuerySet by the fields' current value for the model fields
that are defined in the for_fields parameter of the field, if any. By
doing so, we calculate the order with respect to the given fields.

3. We retrieve the object with the highest order with last_item =
qs.latest(self.attname) from the database. If no object is found,
we assume this object is the first one and assign the order 0 to it.

4. If an object is found, we add 1 to the highest order found.
5. We assign the calculated order to the field's value in the model

instance using setattr()and return it.

2. If the model instance has a value for the current field, we don't do anything.

Building an e-Learning Platform

[352]

When you create custom model fields, make them generic. Avoid
hardcoding data that depends on a specific model or field. Your
field should work in any model.

You can find more information about writing custom model fields at
https://docs.djangoproject.com/en/1.8/howto/custom-model-fields/.

Let's add the new field to our models. Edit the models.py file of the courses
application and import the new field as follows:

from .fields import OrderField

Then, add the following OrderField field to the Module model:

order = OrderField(blank=True, for_fields=['course'])

We name the new field order, and we specify that the ordering is calculated with
respect to the course by setting for_fields=['course']. This means that the order
for a new module will be assigned adding 1 to the last module of the same Course
object. Now you can edit the __str__() method of the Module model to include its
order as follows:

def __str__(self):
 return '{}. {}'.format(self.order, self.title)

Module contents also need to follow a particular order. Add an OrderField field
to the Content model as follows:

order = OrderField(blank=True, for_fields=['module'])

This time, we specify that the order is calculated with respect to the module
field. Finally, let's add a default ordering for both models. Add the following
Meta class to the Module and Content models:

class Meta:
 ordering = ['order']

The Module and Content models should now look as follows:

class Module(models.Model):
 course = models.ForeignKey(Course, related_name='modules')
 title = models.CharField(max_length=200)
 description = models.TextField(blank=True)
 order = OrderField(blank=True, for_fields=['course'])

https://docs.djangoproject.com/en/1.8/howto/custom-model-fields/

Chapter 10

[353]

 class Meta:
 ordering = ['order']

 def __str__(self):
 return '{}. {}'.format(self.order, self.title)

class Content(models.Model):
 module = models.ForeignKey(Module, related_name='contents')
 content_type = models.ForeignKey(ContentType,
 limit_choices_to={'model__in':('text',
 'video',
 'file')})
 object_id = models.PositiveIntegerField()
 item = GenericForeignKey('content_type', 'object_id')
 order = OrderField(blank=True, for_fields=['module'])

 class Meta:
 ordering = ['order']

Let's create a new model migration that reflects the new order fields. Open the
shell and run the following command:

python manage.py makemigrations courses

You will see the following output:

You are trying to add a non-nullable field 'order' to content without
a default; we can't do that (the database needs something to populate
existing rows).
Please select a fix:
 1) Provide a one-off default now (will be set on all existing rows)
 2) Quit, and let me add a default in models.py
Select an option:

Django is telling us that since we added a new field for an existing model, we have to
provide a default value for existing rows in the database. If the field had null=True,
it would accept null values and Django would create the migration without asking
for a default value. We can specify a default value or cancel the migration and
add a default attribute to the order field in the models.py file before creating
the migration.

Building an e-Learning Platform

[354]

Enter 1 and press Enter to provide a default value for existing records. You will see
the following output:

Please enter the default value now, as valid Python
The datetime and django.utils.timezone modules are available, so you
can do e.g. timezone.now()
>>>

Enter 0 so that this is the default value for existing records and press Enter. Django
will ask you for a default value for the Module model too. Choose the first option
and enter 0 as default value again. Finally, you will see an output similar to the
following one:

Migrations for 'courses':
 0003_auto_20150701_1851.py:
 - Change Meta options on content
 - Change Meta options on module
 - Add field order to content
 - Add field order to module

Then, apply the new migrations with the following command:

python manage.py migrate

The output of the command will inform you that the migration was successfully
applied as follows:

Applying courses.0003_auto_20150701_1851... OK

Let's test our new field. Open the shell using python manage.py shell and create a
new course as follows:

>>> from django.contrib.auth.models import User
>>> from courses.models import Subject, Course, Module
>>> user = User.objects.latest('id')
>>> subject = Subject.objects.latest('id')
>>> c1 = Course.objects.create(subject=subject, owner=user,
title='Course 1', slug='course1')

We have created a course in the database. Now, let's add modules to the course and
see how the modules' order is automatically calculated. We create an initial module
and check its order:

>>> m1 = Module.objects.create(course=c1, title='Module 1')
>>> m1.order
0

Chapter 10

[355]

OrderField sets its value to 0, since this is the first Module object created for the
given course. Now we create a second module for the same course:

>>> m2 = Module.objects.create(course=c1, title='Module 2')
>>> m2.order
1

OrderField calculates the next order value adding 1 to the highest order for existing
objects. Let's create a third module forcing a specific order:

>>> m3 = Module.objects.create(course=c1, title='Module 3', order=5)
>>> m3.order
5

If we specify a custom order, the OrderField field does not interfere and the value
given to the order is used.

Let's add a fourth module:

>>> m4 = Module.objects.create(course=c1, title='Module 4')
>>> m4.order
6

The order for this module has been automatically set. Our OrderField field does not
guarantee that all order values are consecutive. However, it respects existing order
values and always assigns the next order based on the highest existing order.

Let's create a second course and add a module to it:

>>> c2 = Course.objects.create(subject=subject, title='Course 2',
slug='course2', owner=user)
>>> m5 = Module.objects.create(course=c2, title='Module 1')
>>> m5.order
0

To calculate the new module's order, the field only takes into consideration
existing modules that belong to the same course. Since this is the first module
of the second course, the resulting order is 0. This is because we specified for_
fields=['course'] in the order field of the Module model.

Congratulations! You have successfully created your first custom model field.

Building an e-Learning Platform

[356]

Creating a content management system
Now that we have created a versatile data model, we are going to build a content
management system (CMS). The CMS will allow instructors to create courses and
manage their content. We need to provide the following functionality:

• Login to the CMS.
• List the courses created by the instructor.
• Create, edit, and delete courses.
• Add modules to a course and re-order them.
• Add different types of content to each module and re-order contents.

Adding the authentication system
We are going to use Django's authentication framework in our platform. Both
instructors and students will be an instance of Django's User model. Thus, they will
be able to login to the site using the authentication views of django.contrib.auth.

Edit the main urls.py file of the educa project and include the login and logout
views of Django's authentication framework:

from django.conf.urls import include, url
from django.contrib import admin
from django.contrib.auth import views as auth_views

urlpatterns = [
 url(r'^accounts/login/$', auth_views.login, name='login'),
 url(r'^accounts/logout/$', auth_views.logout, name='logout'),
 url(r'^admin/', include(admin.site.urls)),
]

Creating the authentication templates
Create the following file structure inside the courses application directory:

templates/
 base.html
 registration/
 login.html
 logged_out.html

Chapter 10

[357]

Before building the authentication templates, we need to prepare the base template
for our project. Edit the base.html template file and add the following content to it:

{% load staticfiles %}
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>{% block title %}Educa{% endblock %}</title>
 <link href="{% static "css/base.css" %}" rel="stylesheet">
</head>
<body>
 <div id="header">
 Educa
 <ul class="menu">
 {% if request.user.is_authenticated %}
 Sign out
 {% else %}
 Sign in
 {% endif %}

 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 {% block domready %}
 {% endblock %}
 });
 </script>
</body>
</html>

This is the base template that will be extended by the rest of the templates. In this
template, we define the following blocks:

• title: The block for other templates to add a custom title for each page.
• content: The main block for content. All templates that extend the base

template should add content to this block.
• domready: Located inside the $document.ready() function of jQuery. It

allows us to execute code when the DOM has finished loading.

Building an e-Learning Platform

[358]

The CSS styles used in this template are located in the static/ directory of the
courses application, in the code that comes along with this chapter. You can copy
the static/ directory into the same directory of your project to use them.

Edit the registration/login.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}Log-in{% endblock %}

{% block content %}
 <h1>Log-in</h1>
 <div class="module">
 {% if form.errors %}
 <p>Your username and password didn't match. Please try again.</
p>
 {% else %}
 <p>Please, use the following form to log-in:</p>
 {% endif %}
 <div class="login-form">
 <form action="{% url 'login' %}" method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <input type="hidden" name="next" value="{{ next }}" />
 <p><input type="submit" value="Log-in"></p>
 </form>
 </div>
 </div>
{% endblock %}

This is a standard login template for Django's login view. Edit the registration/
logged_out.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}Logged out{% endblock %}

{% block content %}
 <h1>Logged out</h1>
 <div class="module">
 <p>You have been successfully logged out. You can <a href="{% url
"login" %}">log-in again.</p>
 </div>
{% endblock %}

Chapter 10

[359]

This is the template that will be displayed to the user after logout. Run the
development server with the command python manage.py runserver and open
http://127.0.0.1:8000/accounts/login/ in your browser. You should see the
login page like this:

Creating class-based views
We are going to build views to create, edit, and delete courses. We will use
class-based views for this. Edit the views.py file of the courses application
and add the following code to it:

from django.views.generic.list import ListView
from .models import Course

class ManageCourseListView(ListView):
 model = Course
 template_name = 'courses/manage/course/list.html'

 def get_queryset(self):
 qs = super(ManageCourseListView, self).get_queryset()
 return qs.filter(owner=self.request.user)

This is the ManageCourseListView view. It inherits from Django's generic ListView.
We override the get_queryset() method of the view to retrieve only courses
created by the current user. To prevent users from editing, updating, or deleting
courses they didn't create, we will also need to override the get_queryset()
method in the create, update, and delete views. When you need to provide a specific
behavior for several class-based views, it is recommended to use mixins.

Building an e-Learning Platform

[360]

Using mixins for class-based views
Mixins are a special kind of multiple inheritance for a class. You can use them to
provide common discrete functionality that, added to other mixins, allows you
to define the behavior of a class. There are two main situations to use mixins:

• You want to provide multiple optional features for a class
• You want to use a particular feature in several classes

You can find documentation about how to use mixins with class-based views at
https://docs.djangoproject.com/en/1.8/topics/class-based-views/mixins/.

Django comes with several mixins that provide additional functionality to your
class-based views. You can find all mixins at https://docs.djangoproject.com/
en/1.8/ref/class-based-views/mixins/.

We are going to create a mixin class that includes a common behavior and use it for
the course's views. Edit the views.py file of the courses application and modify
it as follows:

from django.core.urlresolvers import reverse_lazy
from django.views.generic.list import ListView
from django.views.generic.edit import CreateView, UpdateView, \
 DeleteView
from .models import Course

class OwnerMixin(object):
 def get_queryset(self):
 qs = super(OwnerMixin, self).get_queryset()
 return qs.filter(owner=self.request.user)

class OwnerEditMixin(object):
 def form_valid(self, form):
 form.instance.owner = self.request.user
 return super(OwnerEditMixin, self).form_valid(form)

class OwnerCourseMixin(OwnerMixin):
 model = Course

class OwnerCourseEditMixin(OwnerCourseMixin, OwnerEditMixin):
 fields = ['subject', 'title', 'slug', 'overview']
 success_url = reverse_lazy('manage_course_list')
 template_name = 'courses/manage/course/form.html'

https://docs.djangoproject.com/en/1.8/topics/class-based-views/mixins/
https://docs.djangoproject.com/en/1.8/ref/class-based-views/mixins/
https://docs.djangoproject.com/en/1.8/ref/class-based-views/mixins/

Chapter 10

[361]

class ManageCourseListView(OwnerCourseMixin, ListView):
 template_name = 'courses/manage/course/list.html'

class CourseCreateView(OwnerCourseEditMixin, CreateView):
 pass

class CourseUpdateView(OwnerCourseEditMixin, UpdateView):
 pass

class CourseDeleteView(OwnerCourseMixin, DeleteView):
 template_name = 'courses/manage/course/delete.html'
 success_url = reverse_lazy('manage_course_list')

In this code, we create the OwnerMixin and OwnerEditMixin mixins. We will use
these mixins together with the ListView, CreateView, UpdateView, and DeleteView
views provided by Django. OwnerMixin implements the following method:

• get_queryset(): This method is used by the views to get the base QuerySet.
Our mixin will override this method to filter objects by the owner attribute to
retrieve objects that belong to the current user (request.user).

OwnerEditMixin implements the following method:

• form_valid(): This method is used by views that use Django's
ModelFormMixin mixin, i.e., views with forms or modelforms such as
CreateView and UpdateView. form_valid() is executed when the submitted
form is valid. The default behavior for this method is saving the instance
(for modelforms) and redirecting the user to success_url. We override this
method to automatically set the current user in the owner attribute of the
object being saved. By doing so, we set the owner for an object automatically
when it is saved.

Our OwnerMixin class can be used for views that interact with any model that
contains an owner attribute.

We also define an OwnerCourseMixin class that inherits OwnerMixin and provides
the following attribute for child views:

• model: The model used for QuerySets. Used by all views.

Building an e-Learning Platform

[362]

We define a OwnerCourseEditMixin mixin with the following attributes:

• fields: The fields of the model to build the model form of the CreateView
and UpdateView views.

• success_url: Used by CreateView and UpdateView to redirect the user
after the form is successfully submitted. We use a URL with the name
manage_course_list that we are going to create later.

Finally, we create the following views that subclass OwnerCourseMixin:

• ManageCourseListView: Lists the courses created by the user. It inherits
from OwnerCourseMixin and ListView.

• CourseCreateView: Uses a modelform to create a new Course object. It uses
the fields defined in OwnerCourseEditMixin to build a model form and also
subclasses CreateView.

• CourseUpdateView: Allows editing an existing Course object. It inherits
from OwnerCourseEditMixin and UpdateView.

• CourseDeleteView: Inherits from OwnerCourseMixin and the generic
DeleteView. Defines success_url to redirect the user after the object
is deleted.

Working with groups and permissions
We have created the basic views to manage courses. Currently, any user could access
these views. We want to restrict these views so that only instructors have permission
to create and manage courses. Django's authentication framework includes a
permission system that allows you to assign permissions to users and groups. We are
going to create a group for instructor users and assign permissions to create, update,
and delete courses.

Run the development server using the command python manage.py runserver
and open http://127.0.0.1:8000/admin/auth/group/add/ in your browser to
create a new Group object. Add the name Instructors and choose all permissions of
the courses application except those of the Subject model as follows:

Chapter 10

[363]

As you can see, there are three different permissions for each model: Can add,
can change, and Can delete. After choosing permissions for this group, click
the Save button.

Django creates permissions for models automatically, but you can also create custom
permissions. You can read more about adding custom permissions at https://docs.
djangoproject.com/en/1.8/topics/auth/customizing/#custom-permissions.

Open http://127.0.0.1:8000/admin/auth/user/add/ and create a new user. Edit
the user and add the Instructors group to it as follows:

Users inherit the permissions of the groups they belong to, but you can also add
individual permissions to a single user using the administration site. Users that
have is_superuser set to True have all permissions automatically.

Restricting access to class-based views
We are going to restrict access to the views so that only users with the appropriate
permissions can add, change, or delete Course objects. The authentication
framework includes a permission_required decorator to restrict access to views.
Django 1.9 will include permission mixins for class-based views. However, Django
1.8 does not include them. Therefore, we are going to use permission mixins
provided by a third-party module named django-braces.

https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#custom-permissions
https://docs.djangoproject.com/en/1.8/topics/auth/customizing/#custom-permissions

Building an e-Learning Platform

[364]

Using mixins from django-braces
Django-braces is a third-party module that contains a collection of generic mixins
for Django. These mixins provide additional features for class-based views. You
can see a list of all mixins provided by django-braces at http://django-braces.
readthedocs.org/en/latest/.

Install django-braces via pip using the command:

pip install django-braces==1.8.1

We are going to use the following two mixins from django-braces to limit access
to views:

• LoginRequiredMixin: Replicates the login_required decorator's
functionality.

• PermissionRequiredMixin: Grants access to the view to users that have
a specific permission. Remember that superusers automatically have
all permissions.

Edit the views.py file of the courses application and add the following import:

from braces.views import LoginRequiredMixin,
 PermissionRequiredMixin

Make OwnerCourseMixin inherit LoginRequiredMixin like this:

class OwnerCourseMixin(OwnerMixin, LoginRequiredMixin):
 model = Course
 fields = ['subject', 'title', 'slug', 'overview']
 success_url = reverse_lazy('manage_course_list')

Then, add a permission_required attribute to the create, update, and delete views,
as follows:

class CourseCreateView(PermissionRequiredMixin,
 OwnerCourseEditMixin,
 CreateView):
 permission_required = 'courses.add_course'

class CourseUpdateView(PermissionRequiredMixin,
 OwnerCourseEditMixin,
 UpdateView):
 template_name = 'courses/manage/course/form.html'
 permission_required = 'courses.change_course'

http://django-braces.readthedocs.org/en/latest/
http://django-braces.readthedocs.org/en/latest/

Chapter 10

[365]

class CourseDeleteView(PermissionRequiredMixin,

 OwnerCourseMixin,
 DeleteView):
 template_name = 'courses/manage/course/delete.html'
 success_url = reverse_lazy('manage_course_list')
 permission_required = 'courses.delete_course'

PermissionRequiredMixin checks that the user accessing the view has the
permission specified in the permission_required attribute. Our views are
now only accessible to users that have proper permissions.

Let's create URLs for these views. Create a new file inside the courses application
directory and name it urls.py. Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^mine/$',
 views.ManageCourseListView.as_view(),
 name='manage_course_list'),
 url(r'^create/$',
 views.CourseCreateView.as_view(),
 name='course_create'),
 url(r'^(?P<pk>\d+)/edit/$',
 views.CourseUpdateView.as_view(),
 name='course_edit'),
 url(r'^(?P<pk>\d+)/delete/$',
 views.CourseDeleteView.as_view(),
 name='course_delete'),
]

These are the URL patterns for the list, create, edit, and delete course views. Edit the
main urls.py file of the educa project and include the URL patterns of the courses
application as follows:

urlpatterns = [
 url(r'^accounts/login/$', auth_views.login, name='login'),
 url(r'^accounts/logout/$', auth_views.logout, name='logout'),
 url(r'^admin/', include(admin.site.urls)),
 url(r'^course/', include('courses.urls')),
]

Building an e-Learning Platform

[366]

We need to create the templates for these views. Create the following directories and
files inside the templates/ directory of the courses application:

courses/
 manage/
 course/
 list.html
 form.html
 delete.html

Edit the courses/manage/course/list.html template and add the following
code to it:

{% extends "base.html" %}

{% block title %}My courses{% endblock %}

{% block content %}
 <h1>My courses</h1>

 <div class="module">
 {% for course in object_list %}
 <div class="course-info">
 <h3>{{ course.title }}</h3>
 <p>
 Edit
 Delete
 </p>
 </div>
 {% empty %}
 <p>You haven't created any courses yet.</p>
 {% endfor %}
 <p>
 Create new
course
 </p>
 </div>
{% endblock %}

This is the template for the ManageCourseListView view. In this template, we
list the courses created by the current user. We include links to edit or delete each
course, and a link to create new courses.

Chapter 10

[367]

Run the development server using the command python manage.py runserver.
Open http://127.0.0.1:8000/accounts/login/?next=/course/mine/ in your
browser and log in with a user that belongs to the Instructors group. After logging
in, you will be redirected to the URL http://127.0.0.1:8000/course/mine/ and
you should see the following page:

This page will display all courses created by the current user.

Let's create the template that displays the form for the create and update course
views. Edit the courses/manage/course/form.html template and write the
following code:

{% extends "base.html" %}

{% block title %}
 {% if object %}
 Edit course "{{ object.title }}"
 {% else %}
 Create a new course
 {% endif %}
{% endblock %}

{% block content %}
 <h1>
 {% if object %}
 Edit course "{{ object.title }}"
 {% else %}
 Create a new course
 {% endif %}
 </h1>
 <div class="module">
 <h2>Course info</h2>
 <form action="." method="post">
 {{ form.as_p }}

Building an e-Learning Platform

[368]

 {% csrf_token %}
 <p><input type="submit" value="Save course"></p>
 </form>
 </div>
{% endblock %}

The form.html template is used for both the CourseCreateView and
CourseUpdateView views. In this template, we check if an object variable is in the
context. If object exists in the context, we know that we are updating an existing
course, and we use it in the page title. Otherwise, we are creating a new Course object.

Open http://127.0.0.1:8000/course/mine/ in your browser and click the Create
new course button. You will see the following page:

Chapter 10

[369]

Fill in the form and click the Save course button. The course will be saved and you
will be redirected to the course list page. It should look as follows:

Then, click the Edit link for the course you have just created. You will see the form
again, but this time you are editing an existing Course object instead of creating one.

Finally, edit the courses/manage/course/delete.html template and add the
following code:

{% extends "base.html" %}

{% block title %}Delete course{% endblock %}

{% block content %}
 <h1>Delete course "{{ object.title }}"</h1>

 <div class="module">
 <form action="" method="post">
 {% csrf_token %}
 <p>Are you sure you want to delete "{{ object }}"?</p>
 <input type="submit" class"button" value="Confirm">
 </form>
 </div>
{% endblock %}

This is the template for the CourseDeleteView view. This view inherits from
DeleteView provided by Django, which expects user confirmation to delete
an object.

Building an e-Learning Platform

[370]

Open your browser and click the Delete link of your course. You should see the
following confirmation page:

Click the CONFIRM button. The course will be deleted and you will be redirected
to the course list page again.

Instructors can now create, edit, and delete courses. Next, we need to provide them
with a content management system to add modules and contents to courses. We will
start by managing course modules.

Using formsets
Django comes with an abstraction layer to work with multiple forms on the same
page. These groups of forms are known as formsets. Formsets manage multiple
instances of certain Form or ModelForm. All forms are submitted at once and the
formset takes care of things like the initial number of forms to display, limiting the
maximum number of forms that can be submitted, and validating all forms.

Formsets include an is_valid() method to validate all forms at once. You can also
provide initial data for the forms and specify how many additional empty forms
to display.

You can learn more about formsets at https://docs.djangoproject.com/
en/1.8/topics/forms/formsets/, and about model formsets at https://docs.
djangoproject.com/en/1.8/topics/forms/modelforms/#model-formsets.

https://docs.djangoproject.com/en/1.8/topics/forms/formsets/
https://docs.djangoproject.com/en/1.8/topics/forms/formsets/
https://docs.djangoproject.com/en/1.8/topics/forms/modelforms/#model-formsets
https://docs.djangoproject.com/en/1.8/topics/forms/modelforms/#model-formsets

Chapter 10

[371]

Managing course modules
Since a course is divided into a variable number of modules, it makes sense to use
formsets here. Create a forms.py file in the courses application directory and add
the following code to it:

from django import forms
from django.forms.models import inlineformset_factory
from .models import Course, Module

ModuleFormSet = inlineformset_factory(Course,
 Module,
 fields=['title',
 'description'],
 extra=2,
 can_delete=True)

This is the ModuleFormSet formset. We build it using the inlineformset_factory()
function provided by Django. Inline formsets is a small abstraction on top of formsets
that simplifies working with related objects. This function allows us to build a model
formset dynamically for the Module objects related to a Course object.

We use the following parameters to build the formset:

• fields: The fields that will be included in each form of the formset.
• extra: Allows us to set up the number of empty extra forms to display in

the formset.
• can_delete: If you set this to True, Django will include a Boolean field for

each form that will be rendered as a checkbox input. It allows you to mark
the objects you want to delete.

Edit the views.py file of the courses application and add the following code to it:

from django.shortcuts import redirect, get_object_or_404
from django.views.generic.base import TemplateResponseMixin, View
from .forms import ModuleFormSet

class CourseModuleUpdateView(TemplateResponseMixin, View):
 template_name = 'courses/manage/module/formset.html'
 course = None

 def get_formset(self, data=None):
 return ModuleFormSet(instance=self.course,
 data=data)

Building an e-Learning Platform

[372]

 def dispatch(self, request, pk):
 self.course = get_object_or_404(Course,
 id=pk,
 owner=request.user)
 return super(CourseModuleUpdateView,
 self).dispatch(request, pk)

 def get(self, request, *args, **kwargs):
 formset = self.get_formset()
 return self.render_to_response({'course': self.course,
 'formset': formset})

 def post(self, request, *args, **kwargs):
 formset = self.get_formset(data=request.POST)
 if formset.is_valid():
 formset.save()
 return redirect('manage_course_list')
 return self.render_to_response({'course': self.course,
 'formset': formset})

The CourseModuleUpdateView view handles the formset to add, update, and delete
modules for a specific course. This view inherits from the following mixins and views:

• TemplateResponseMixin: This mixin takes charge of rendering templates
and returning an HTTP response. It requires a template_name attribute
that indicates the template to be rendered and provides the render_to_
response() method to pass it a context and render the template.

• View: The basic class-based view provided by Django.

In this view, we implement the following methods:

• get_formset(): We define this method to avoid repeating the code to build
the formset. We create a ModuleFormSet object for the given Course object
with optional data.

• dispatch(): This method is provided by the View class. It takes an HTTP
request and its parameters and attempts to delegate to a lowercase method
that matches the HTTP method used: A GET request is delegated to the
get() method and a POST request to post() respectively. In this method,
we use the get_object_or_404() shortcut function to get the Course object
for the given id parameter that belongs to the current user. We include this
code in the dispatch() method because we need to retrieve the course for
both GET and POST requests. We save it into the course attribute of the
view to make it accessible to other methods.

Chapter 10

[373]

• get(): Executed for GET requests. We build an empty ModuleFormSet
formset and render it to the template together with the current
Course object using the render_to_response() method provided by
TemplateResponseMixin.

• post(): Executed for POST requests. In this method, we perform the
following actions:

1. We build a ModuleFormSet instance using the submitted data.
2. We execute the is_valid() method of the formset to validate all

of its forms.
3. If the formset is valid, we save it by calling the save() method. At

this point, any changes made, such as adding, updating, or marking
modules for deletion, are applied to the database. Then, we redirect
users to the manage_course_list URL. If the formset is not valid, we
render the template to display any errors instead.

Edit the urls.py file of the courses application and add the following URL pattern
to it:

url(r'^(?P<pk>\d+)/module/$',
 views.CourseModuleUpdateView.as_view(),
 name='course_module_update'),

Create a new directory inside the courses/manage/ template directory and name
it module. Create a courses/manage/module/formset.html template and add the
following code to it:

{% extends "base.html" %}

{% block title %}
 Edit "{{ course.title }}"
{% endblock %}

{% block content %}
 <h1>Edit "{{ course.title }}"</h1>
 <div class="module">
 <h2>Course modules</h2>
 <form action="" method="post">
 {{ formset }}
 {{ formset.management_form }}
 {% csrf_token %}
 <input type="submit" class="button" value="Save modules">
 </form>
 </div>
{% endblock %}

Building an e-Learning Platform

[374]

In this template, we create a <form> HTML element, in which we include our
formset. We also include the management form for the formset with the variable
{{ formset.management_form }}. The management form includes hidden fields to
control the initial, total, minimum, and maximum number of forms. As you can see,
it's very easy to create a formset.

Edit the courses/manage/course/list.html template and add the following link
for the course_module_update URL below the course edit and delete links:

Edit
Delete
Edit modules

We have included the link to edit the course modules. Open
http://127.0.0.1:8000/course/mine/ in your browser and click the
Edit modules link for a course. You should see a formset as follows:

The formset includes a form for each Module object contained in the course.
After these, two empty extra forms are displayed because we set extra=2 for
ModuleFormSet. When you save the formset, Django will include another two
extra fields to add new modules.

Chapter 10

[375]

Adding content to course modules
Now, we need a way to add content to course modules. We have four different
types of content: Text, Video, Image, and File. We can consider creating four different
views to create content, one for each model. Yet, we are going to take a more
generic approach and create a view that handles creating or updating objects
of any content model.

Edit the views.py file of the courses application and add the following code to it:

from django.forms.models import modelform_factory
from django.apps import apps
from .models import Module, Content

class ContentCreateUpdateView(TemplateResponseMixin, View):
 module = None
 model = None
 obj = None
 template_name = 'courses/manage/content/form.html'

 def get_model(self, model_name):
 if model_name in ['text', 'video', 'image', 'file']:
 return apps.get_model(app_label='courses',
 model_name=model_name)
 return None

 def get_form(self, model, *args, **kwargs):
 Form = modelform_factory(model, exclude=['owner',
 'order',
 'created',
 'updated'])
 return Form(*args, **kwargs)

 def dispatch(self, request, module_id, model_name, id=None):
 self.module = get_object_or_404(Module,
 id=module_id,
 course__owner=request.user)
 self.model = self.get_model(model_name)
 if id:
 self.obj = get_object_or_404(self.model,
 id=id,
 owner=request.user)
 return super(ContentCreateUpdateView,
 self).dispatch(request, module_id, model_name, id)

Building an e-Learning Platform

[376]

This is the first part of ContentCreateUpdateView. It will allow us to create and
update contents of different models. This view defines the following methods:

• get_model(): Here, we check that the given model name is one of the four
content models: text, video, image, or file. Then we use Django's apps module
to obtain the actual class for the given model name. If the given model name
is not one of the valid ones, we return None.

• get_form(): We build a dynamic form using the modelform_factory()
function of the form's framework. Since we are going to build a form for
the Text, Video, Image, and File models, we use the exclude parameter
to specify the common fields to exclude from the form and let all other
attributes be included automatically. By doing so, we don't have to know
which fields to include depending on the model.

• dispatch(): It receives the following URL parameters and stores the
corresponding module, model, and content object as class attributes:

 ° module_id: The id for the module that the content is/will be
associated with.

 ° model_name: The model name of the content to create/update.
 ° id: The id of the object that is being updated. It's None to create

new objects.

Add the following get() and post() methods to ContentCreateUpdateView:

def get(self, request, module_id, model_name, id=None):
 form = self.get_form(self.model, instance=self.obj)
 return self.render_to_response({'form': form,
 'object': self.obj})

def post(self, request, module_id, model_name, id=None):
 form = self.get_form(self.model,
 instance=self.obj,
 data=request.POST,
 files=request.FILES)
 if form.is_valid():
 obj = form.save(commit=False)
 obj.owner = request.user
 obj.save()
 if not id:
 # new content
 Content.objects.create(module=self.module,

Chapter 10

[377]

 item=obj)
 return redirect('module_content_list', self.module.id)

 return self.render_to_response({'form': form,
 'object': self.obj})

These methods are as follows:

• get(): Executed when a GET request is received. We build the model
form for the Text, Video, Image, or File instance that is being updated.
Otherwise, we pass no instance to create a new object, since self.obj is
None if no id is provided.

• post(): Executed when a POST request is received. We build the modelform
passing any submitted data and files to it. Then we validate it. If the form is
valid, we create a new object and assign request.user as its owner before
saving it to the database. We check for the id parameter. If no id is provided,
we know the user is creating a new object instead of updating an existing
one. If this is a new object, we create a Content object for the given module
and associate the new content to it.

Edit the urls.py file of the courses application and add the following URL patterns
to it:

url(r'^module/(?P<module_id>\d+)/content/(?P<model_name>\w+)/
create/$',
 views.ContentCreateUpdateView.as_view(),
 name='module_content_create'),
url(r'^module/(?P<module_id>\d+)/content/(?P<model_name>\w+)/(?P<id>\
d+)/$',
 views.ContentCreateUpdateView.as_view(),
 name='module_content_update'),

The new URL patterns are:

• module_content_create: To create new text, video, image, or file objects
and adding them to a module. It includes the module_id and model_name
parameters. The first one allows linking the new content object to the given
module. The latter specifies the content model to build the form for.

• module_content_update: To update an existing text, video, image, or file
object. It includes the module_id and model_name parameters, and an id
parameter to identify the content that is being updated.

Building an e-Learning Platform

[378]

Create a new directory inside the courses/manage/ template directory and name it
content. Create the template courses/manage/content/form.html and add the
following code to it:

{% extends "base.html" %}

{% block title %}
 {% if object %}
 Edit content "{{ object.title }}"
 {% else %}
 Add a new content
 {% endif %}
{% endblock %}

{% block content %}
 <h1>
 {% if object %}
 Edit content "{{ object.title }}"
 {% else %}
 Add a new content
 {% endif %}
 </h1>
 <div class="module">
 <h2>Course info</h2>
 <form action="" method="post" enctype="multipart/form-data">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Save content"></p>
 </form>
 </div>
{% endblock %}

This is the template for the ContentCreateUpdateView view. In this template, we
check if an object variable is in the context. If object exists in the context, we know
that we are updating an existing object. Otherwise, we are creating a new object.

We include enctype="multipart/form-data" to the <form> HTML element,
because the form contains a file upload for the File and Image content models.

Chapter 10

[379]

Run the development server. Create a module for an existing course and open
http://127.0.0.1:8000/course/module/6/content/image/create/ in your
browser. Change the module id in the URL if necessary. You will see the form to
create an Image object as follows:

Don't submit the form yet. If you try to do so, it will fail because we haven't defined
the module_content_list URL yet. We are going to create it in a bit.

We also need a view to delete contents. Edit the views.py file of the courses
application and add the following code:

class ContentDeleteView(View):

 def post(self, request, id):
 content = get_object_or_404(Content,
 id=id,
 module__course__owner=request.user)
 module = content.module
 content.item.delete()
 content.delete()
 return redirect('module_content_list', module.id)

The ContentDeleteView retrieves the Content object with the given id, it deletes
the related Text, Video, Image, or File object, and finally, it deletes the Content
object and redirects the user to the module_content_list URL to list the other
contents of the module.

Building an e-Learning Platform

[380]

Edit the urls.py file of the courses application and add the following URL pattern
to it:

url(r'^content/(?P<id>\d+)/delete/$',
 views.ContentDeleteView.as_view(),
 name='module_content_delete'),

Now, instructors can create, update, and delete contents easily.

Managing modules and contents
We have built views to create, edit, and delete course modules and contents.
Now, we need a view to display all modules for a course and list contents for
a specific module.

Edit the views.py file of the courses application and add the following code to it:

class ModuleContentListView(TemplateResponseMixin, View):
 template_name = 'courses/manage/module/content_list.html'

 def get(self, request, module_id):
 module = get_object_or_404(Module,
 id=module_id,
 course__owner=request.user)

 return self.render_to_response({'module': module})

This is ModuleContentListView. This view gets the Module object with the given id
that belongs to the current user and renders a template with the given module.

Edit the urls.py file of the courses application and add the following URL pattern
to it:

url(r'^module/(?P<module_id>\d+)/$',
 views.ModuleContentListView.as_view(),
 name='module_content_list'),

Create a new template inside the templates/courses/manage/module/ directory
and name it content_list.html. Add the following code to it:

{% extends "base.html" %}

{% block title %}
 Module {{ module.order|add:1 }}: {{ module.title }}
{% endblock %}

Chapter 10

[381]

{% block content %}
{% with course=module.course %}
 <h1>Course "{{ course.title }}"</h1>
 <div class="contents">
 <h3>Modules</h3>
 <ul id="modules">
 {% for m in course.modules.all %}
 <li data-id="{{ m.id }}" {% if m == module %}
class="selected"{% endif %}>

 Module {{ m.order|add:1 }}

 {{ m.title }}

 {% empty %}
 No modules yet.
 {% endfor %}

 <p>Edit
modules</p>
 </div>
 <div class="module">
 <h2>Module {{ module.order|add:1 }}: {{ module.title }}</h2>
 <h3>Module contents:</h3>

 <div id="module-contents">
 {% for content in module.contents.all %}
 <div data-id="{{ content.id }}">
 {% with item=content.item %}
 <p>{{ item }}</p>
 Edit
 <form action="{% url "module_content_delete" content.id
%}" method="post">
 <input type="submit" value="Delete">
 {% csrf_token %}
 </form>
 {% endwith %}
 </div>
 {% empty %}
 <p>This module has no contents yet.</p>
 {% endfor %}

Building an e-Learning Platform

[382]

 </div>
 <hr>
 <h3>Add new content:</h3>
 <ul class="content-types">
 <a href="{% url "module_content_create" module.id "text"
%}">Text
 <a href="{% url "module_content_create" module.id "image"
%}">Image
 <a href="{% url "module_content_create" module.id "video"
%}">Video
 <a href="{% url "module_content_create" module.id "file"
%}">File

 </div>
{% endwith %}
{% endblock %}

This is the template that displays all modules for a course and the contents for the
selected module. We iterate over the course modules to display them in a sidebar.
We also iterate over the module's contents and access content.item to get the
related Text, Video, Image, or File object. We also include links to create new text,
video, image, or file contents.

We want to know which type of object each of the item object is: Text, Video, Image,
or File. We need the model name to build the URL to edit the object. Besides this,
we could display each item in the template differently, based on the type of content
it is. We can get the model for an object from the model's Meta class, by accessing
the object's _meta attribute. Nevertheless, Django doesn't allow accessing variables
or attributes starting with underscore in templates to prevent retrieving private
attributes or calling private methods. We can solve this by writing a custom
template filter.

Create the following file structure inside the courses application directory:

templatetags/
 __init__.py
 course.py

Edit the course.py module and add the following code to it:

from django import template

register = template.Library()

@register.filter
def model_name(obj):

Chapter 10

[383]

 try:
 return obj._meta.model_name
 except AttributeError:
 return None

This is the model_name template filter. We can apply it in templates as
object|model_name to get the model's name for an object.

Edit the templates/courses/manage/module/content_list.html template and
add the following line after the {% extends %} template tag:

{% load course %}

This will load the course template tags. Then, replace the following lines:

<p>{{ item }}</p>
Edit

...with the following ones:

<p>{{ item }} ({{ item|model_name }})</p>
<a href="{% url "module_content_update" module.id item|model_name
item.id %}">Edit

Now, we display the item model in the template and use the model name to build
the link to edit the object. Edit the courses/manage/course/list.html template
and add a link to the module_content_list URL like this:

Edit modules
{% if course.modules.count > 0 %}
 <a href="{% url "module_content_list" course.modules.first.id
%}">Manage contents
{% endif %}

The new link allows users to access the contents of the first module of the course,
if any.

Building an e-Learning Platform

[384]

Open http://127.0.0.1:8000/course/mine/ and click the Manage contents
link for a course that contains at least one module. You will see a page like the
following one:

When you click on a module in the left sidebar, its contents are displayed in the main
area. The template also includes links to add a new text, video, image, or file content
for the module being displayed. Add a couple of different contents to the module
and take a look at the result. The contents will appear after Module contents like
the following example:

Chapter 10

[385]

Reordering modules and contents
We need to offer a simple way to re-order course modules and their contents. We
will use a JavaScript drag-n-drop widget to let our users reorder the modules of
a course by dragging them. When users finish dragging a module, we will launch
an asynchronous request (AJAX) to store the new module order.

We need a view that receives the new order of modules' id encoded in JSON. Edit
the views.py file of the courses application and add the following code to it:

from braces.views import CsrfExemptMixin, JsonRequestResponseMixin

class ModuleOrderView(CsrfExemptMixin,
 JsonRequestResponseMixin,
 View):
 def post(self, request):
 for id, order in self.request_json.items():
 Module.objects.filter(id=id,
 course__owner=request.user).update(order=order)
 return self.render_json_response({'saved': 'OK'})

This is ModuleOrderView. We use the following mixins of django-braces:

• CsrfExemptMixin: To avoid checking for a CSRF token in POST requests.
We need this to perform AJAX POST requests without having to generate
csrf_token.

• JsonRequestResponseMixin: Parses the request data as JSON and also
serializes the response as JSON and returns an HTTP response with the
application/json content type.

We can build a similar view to order a module's contents. Add the following code
to the views.py file:

class ContentOrderView(CsrfExemptMixin,
 JsonRequestResponseMixin,
 View):
 def post(self, request):
 for id, order in self.request_json.items():
 Content.objects.filter(id=id,
 module__course__owner=request.user) \
 .update(order=order)
 return self.render_json_response({'saved': 'OK'})

Building an e-Learning Platform

[386]

Now, edit the urls.py file of the courses application and add the following URL
patterns to it:

url(r'^module/order/$',
 views.ModuleOrderView.as_view(),
 name='module_order'),
url(r'^content/order/$',
 views.ContentOrderView.as_view(),
 name='content_order'),

Finally, we need to implement the drag-n-drop functionality in the template. We
will use the jQuery UI library for this. jQuery UI is built on top of jQuery and it
provides a set of interface interactions, effects, and widgets. We will use its sortable
element. First, we need to load jQuery UI in the base template. Open the base.html
file located in the templates/ directory of the courses application, and add jQuery
UI below the script to load jQuery, as follows:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/
jquery.min.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.11.4/
jquery-ui.min.js"></script>

We load the jQuery UI library just after the jQuery framework. Now, edit the
courses/manage/module/content_list.html template and add the following
code to it at the bottom of the template:

{% block domready %}
$('#modules').sortable({
 stop: function(event, ui) {
 modules_order = {};
 $('#modules').children().each(function(){
 // update the order field
 $(this).find('.order').text($(this).index() + 1);
 // associate the module's id with its order
 modules_order[$(this).data('id')] = $(this).index();
 });
 $.ajax({
 type: 'POST',
 url: '{% url "module_order" %}',
 contentType: 'application/json; charset=utf-8',
 dataType: 'json',
 data: JSON.stringify(modules_order)
 });
 }
});

Chapter 10

[387]

$('#module-contents').sortable({
 stop: function(event, ui) {
 contents_order = {};
 $('#module-contents').children().each(function(){
 // associate the module's id with its order
 contents_order[$(this).data('id')] = $(this).index();
 });

 $.ajax({
 type: 'POST',
 url: '{% url "content_order" %}',
 contentType: 'application/json; charset=utf-8',
 dataType: 'json',
 data: JSON.stringify(contents_order),
 });
 }
});
{% endblock %}

This JavaScript code is in the {% block domready %} block and therefore it will
be included inside the $(document).ready() event of jQuery that we defined in
the base.html template. This guarantees that our JavaScript code is executed once
the page has been loaded. We define a sortable element for the modules list in
the sidebar and a different one for the module's content list. Both work in a similar
manner. In this code, we perform the following tasks:

1. First, we define a sortable element for the modules HTML element.
Remember that we use #modules, since jQuery uses CSS notation for
selectors.

2. We specify a function for the stop event. This event is triggered every time
the user finishes sorting an element.

3. We create an empty modules_order dictionary. The keys for this dictionary
will be the modules' id, and the values will be the assigned order for each
module.

4. We iterate over the #module children elements. We recalculate the displayed
order for each module and get its data-id attribute, which contains the
module's id. We add the id as key of the modules_order dictionary and
the new index of module as the value.

5. We launch an AJAX POST request to the content_order URL, including the
serialized JSON data of modules_order in the request. The corresponding
ModuleOrderView takes care of updating the modules order.

Building an e-Learning Platform

[388]

The sortable element to order contents is quite similar to this one. Go back to your
browser and reload the page. Now you will be able to click and drag both, modules
and contents, to reorder them like the following example:

Great! Now you can re-order both course modules and module contents.

Summary
In this chapter, you learned how to create a versatile content management system.
You used model inheritance and created a custom model field. You also worked with
class-based views and mixins. You created formsets and a system to manage diverse
types of contents.

In the next chapter, you will create a student registration system. You will also
render different kinds of contents, and you will learn how to work with Django's
cache framework.

[389]

Caching Content
In the previous chapter, you used model inheritance and generic relationships to
create flexible course content models. You also built a course management system
using class-based views, formsets and AJAX ordering for contents. In this chapter,
you will:

• Create public views for displaying course information
• Build a student registration system
• Manage student enrollment in courses
• Render diverse course contents
• Cache content using the cache framework

We will start by creating a course catalog for students to browse existing courses and
be able to enroll in them.

Displaying courses
For our course catalog we have to build the following functionality:

• List all available courses, optionally filtered by subject
• Display a single course overview

Edit the views.py file of the courses application and add the following code:

from django.db.models import Count
from .models import Subject

class CourseListView(TemplateResponseMixin, View):
 model = Course
 template_name = 'courses/course/list.html'

Caching Content

[390]

 def get(self, request, subject=None):
 subjects = Subject.objects.annotate(
 total_courses=Count('courses'))
 courses = Course.objects.annotate(
 total_modules=Count('modules'))
 if subject:
 subject = get_object_or_404(Subject, slug=subject)
 courses = courses.filter(subject=subject)
 return self.render_to_response({'subjects': subjects,
 'subject': subject,
 'courses': courses})

This is the CourseListView. It inherits from TemplateResponseMixin and View. In
this view, we perform the following tasks:

1. We retrieve all subjects, including the total number of courses for each of
them. We use the ORM's annotate() method with the Count() aggregation
function for doing so.

2. We retrieve all available courses, including the total number of modules
contained in each course.

3. If a subject slug URL parameter is given we retrieve the corresponding
subject object and we limit the query to the courses that belong to the
given subject.

4. We use the render_to_response() method provided by
TemplateResponseMixin to render the objects to a template
and return an HTTP response.

Let's create a detail view for displaying a single course overview. Add the following
code to the views.py file:

from django.views.generic.detail import DetailView

class CourseDetailView(DetailView):
 model = Course
 template_name = 'courses/course/detail.html'

This view inherits from the generic DetailView provided by Django. We specify the
model and template_name attributes. Django's DetailView expects a primary key
(pk) or slug URL parameter to retrieve a single object for the given model. Then it
renders the template specified in template_name, including the object in the context
as object.

Chapter 11

[391]

Edit the main urls.py file of the educa project and add the following URL
pattern to it:

from courses.views import CourseListView

urlpatterns = [
 # ...
 url(r'^$', CourseListView.as_view(), name='course_list'),
]

We add the course_list URL pattern to the main urls.py file of the project
because we want to display the list of courses in the URL http://127.0.0.1:8000/
and all other URLs for the courses application have the /course/ prefix.

Edit the urls.py file of the courses application and add the following URL patterns:

url(r'^subject/(?P<subject>[\w-]+)/$',
 views.CourseListView.as_view(),
 name='course_list_subject'),

url(r'^(?P<slug>[\w-]+)/$',
 views.CourseDetailView.as_view(),
 name='course_detail'),

We define the following URL patterns:

• course_list_subject: For displaying all courses for a subject
• course_detail: For displaying a single course overview

Let's build templates for the CourseListView and CourseDetailView views.
Create the following file structure inside the templates/courses/ directory of
the courses application:

• course/

• list.html

• detail.html

Edit the courses/course/list.html template and write the following code:

{% extends "base.html" %}

{% block title %}
 {% if subject %}
 {{ subject.title }} courses
 {% else %}
 All courses
 {% endif %}

Caching Content

[392]

{% endblock %}

{% block content %}
<h1>
 {% if subject %}
 {{ subject.title }} courses
 {% else %}
 All courses
 {% endif %}
</h1>
<div class="contents">
 <h3>Subjects</h3>
 <ul id="modules">
 <li {% if not subject %}class="selected"{% endif %}>
 All

 {% for s in subjects %}
 <li {% if subject == s %}class="selected"{% endif %}>

 {{ s.title }}

{{ s.total_courses }} courses

 {% endfor %}

</div>
<div class="module">
 {% for course in courses %}
 {% with subject=course.subject %}
 <h3>{{
course.title }}</h3>
 <p>
 <a href="{% url "course_list_subject" subject.slug
%}">{{ subject }}.
 {{ course.total_modules }} modules.
 Instructor: {{ course.owner.get_full_name }}
 </p>
 {% endwith %}
 {% endfor %}
</div>
{% endblock %}

This is the template for listing available courses. We create an HTML list to display
all Subject objects and build a link to the course_list_subject URL for each of
them. We add a selected HTML class to highlight the current subject, if any. We
iterate over every Course object, displaying the total number of modules and the
instructor name.

Chapter 11

[393]

Run the development server using the command python manage.py runserver and
open http://127.0.0.1:8000/ in your browser. You should see a page similar to
the following one:

The left sidebar contains all subjects, including the total number of courses for each
of them. You can click any subject to filter the courses being displayed.

Edit the courses/course/detail.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}
 {{ object.title }}
{% endblock %}

{% block content %}
 {% with subject=course.subject %}
 <h1>
 {{ object.title }}
 </h1>
 <div class="module">
 <h2>Overview</h2>
 <p>
 <a href="{% url "course_list_subject" subject.slug
%}">{{ subject.title }}.
 {{ course.modules.count }} modules.

Caching Content

[394]

 Instructor: {{ course.owner.get_full_name }}
 </p>
 {{ object.overview|linebreaks }}
 </div>
 {% endwith %}
{% endblock %}

In this template, we display the overview and details for a single course. Open
http://127.0.0.1:8000/ in your browser and click one of the courses. You
should see a page with the following structure:

We have created a public area for displaying courses. Next, we need to allow users to
register as students and enroll in courses.

Adding student registration
Create a new application using the following command:

python manage.py startapp students

Edit the settings.py file of the educa project and add 'students' to the
INSTALLED_APPS setting as follows:

INSTALLED_APPS = (
 # ...
 'students',
)

Chapter 11

[395]

Creating a student registration view
Edit the views.py file of the students application and write the following code:

from django.core.urlresolvers import reverse_lazy
from django.views.generic.edit import CreateView
from django.contrib.auth.forms import UserCreationForm
from django.contrib.auth import authenticate, login

class StudentRegistrationView(CreateView):
 template_name = 'students/student/registration.html'
 form_class = UserCreationForm
 success_url = reverse_lazy('student_course_list')

 def form_valid(self, form):
 result = super(StudentRegistrationView,
 self).form_valid(form)
 cd = form.cleaned_data
 user = authenticate(username=cd['username'],
 password=cd['password1'])
 login(self.request, user)
 return result

This is the view that allows students to register in our site. We use the generic
CreateView that provides the functionality for creating model objects. This view
requires the following attributes:

• template_name: The path of the template to render for this view.
• form_class: The form for creating objects, which has to be a ModelForm. We

use Django's UserCreationForm as registration form to create User objects.
• success_url: The URL to redirect the user to when the form is successfully

submitted. We reverse the student_course_list URL, which we are going
to create later for listing the courses students are enrolled in.

The form_valid() method is executed when valid form data has been posted. It
has to return an HTTP response. We override this method to login the user after
successfully signing up.

Create a new file inside the students application directory and add name it urls.py.
Add the following code to it:

from django.conf.urls import url
from . import views

urlpatterns = [

Caching Content

[396]

 url(r'^register/$',
 views.StudentRegistrationView.as_view(),
 name='student_registration'),
]

The edit the main urls.py of the educa project and include the URLs for the
students application by adding the following pattern to your URL configuration:

url(r'^students/', include('students.urls')),

Create the following file structure inside the students application:

templates/
 students/
 student/
 registration.html

Edit the students/student/registration.html template and add the following
code to it:

{% extends "base.html" %}

{% block title %}
 Sign up
{% endblock %}

{% block content %}
 <h1>
 Sign up
 </h1>
 <div class="module">
 <p>Enter your details to create an account:</p>
 <form action="" method="post">
 {{ form.as_p }}
 {% csrf_token %}
 <p><input type="submit" value="Create my account"></p>
 </form>
 </div>
{% endblock %}

Finally edit the settings.py file of the educa project and add the following code to it:

from django.core.urlresolvers import reverse_lazy
LOGIN_REDIRECT_URL = reverse_lazy('student_course_list')

Chapter 11

[397]

This is the setting used by the auth module to redirect the user to after a successful
login, if no next parameter is present in the request.

Run the development server and open http://127.0.0.1:8000/students/
register/ in your browser. You should see the registration form like this:

Enrolling in courses
After users create an account, they should be able to enroll in courses. In order
to store enrollments, we need to create a many-to-many relationship between the
Course and User models. Edit the models.py file of the courses application and
add the following field to the Course model:

students = models.ManyToManyField(User,
 related_name='courses_joined',
 blank=True)

From the shell, execute the following command to create a migration for this change:

python manage.py makemigrations

You will see an output similar to this:

Migrations for 'courses':
 0004_course_students.py:
 - Add field students to course

Caching Content

[398]

Then execute the next command to apply pending migrations:

python manage.py migrate

You should see the following output:

Operations to perform:
 Apply all migrations: courses
Running migrations:
 Rendering model states... DONE
 Applying courses.0004_course_students... OK

We can now associate students with the courses in which they are enrolled.
Let's create the functionality for students to enroll in courses.

Create a new file inside the students application directory and name it forms.py.
Add the following code to it:

from django import forms
from courses.models import Course

class CourseEnrollForm(forms.Form):
 course = forms.ModelChoiceField(queryset=Course.objects.all(),
 widget=forms.HiddenInput)

We are going to use this form for students to enroll in courses. The course field is
for the course in which the user gets enrolled. Therefore, it's a ModelChoiceField.
We use a HiddenInput widget because we are not going to show this field to the
user. We are going to use this form in the CourseDetailView view to display an
enroll button.

Edit the views.py file of the students application and add the following code:

from django.views.generic.edit import FormView
from braces.views import LoginRequiredMixin
from .forms import CourseEnrollForm

class StudentEnrollCourseView(LoginRequiredMixin, FormView):
 course = None
 form_class = CourseEnrollForm

 def form_valid(self, form):
 self.course = form.cleaned_data['course']
 self.course.students.add(self.request.user)
 return super(StudentEnrollCourseView,
 self).form_valid(form)

Chapter 11

[399]

 def get_success_url(self):
 return reverse_lazy('student_course_detail',
 args=[self.course.id])

This is the StudentEnrollCourseView. It handles students enrolling in courses.
The view inherits from the LoginRequiredMixin so that only logged in users can
access the view. It also inherits from Django's FormView , since we handle a form
submission. We use the CourseEnrollForm form for the form_class attribute and
also define a course attribute for storing the given Course object. When the form is
valid, we add the current user to the students enrolled in the course.

The get_success_url() method returns the URL the user will be redirected to if
the form was successfully submitted. This method is equivalent to the success_url
attribute. We reverse the student_course_detail URL, which we will create later
in order to display the course contents.

Edit the urls.py file of the students application and add the following URL pattern
to it:

url(r'^enroll-course/$',
 views.StudentEnrollCourseView.as_view(),
 name='student_enroll_course'),

Let's add the enroll button form to the course overview page. Edit the views.py
file of the courses application and modify the CourseDetailView to make it look
as follows:

from students.forms import CourseEnrollForm

class CourseDetailView(DetailView):
 model = Course
 template_name = 'courses/course/detail.html'

 def get_context_data(self, **kwargs):
 context = super(CourseDetailView,
 self).get_context_data(**kwargs)
 context['enroll_form'] = CourseEnrollForm(
 initial={'course':self.object})
 return context

We use the get_context_data() method to include the enrollment form in the
context for rendering the templates. We initialize the hidden course field of the
form with the current Course object, so that it can be submitted directly.

Caching Content

[400]

Edit the courses/course/detail.html template and find the following line:

{{ object.overview|linebreaks }}

The preceding line should be replaced with the following ones:

{{ object.overview|linebreaks }}
{% if request.user.is_authenticated %}
 <form action="{% url "student_enroll_course" %}" method="post">
 {{ enroll_form }}
 {% csrf_token %}
 <input type="submit" class="button" value="Enroll now">
 </form>
{% else %}

 Register to enroll

{% endif %}

This is the button for enrolling in courses. If the user is authenticated, we
display the enrollment button including the hidden form that points to the
student_enroll_course URL. If the user is not authenticated, we display
a link to register in the platform.

Make sure the development server is running, open http://127.0.0.1:8000/ in
your browser and click a course. If you are logged in, you should see an ENROLL
NOW button placed below the course overview, as follows:

If you are not logged in, you will see a Register to enroll button instead.

Chapter 11

[401]

Accessing the course contents
We need a view for displaying the courses the students are enrolled in, and a view
for accessing the actual course contents. Edit the views.py file of the students
application and add the following code to it:

from django.views.generic.list import ListView
from courses.models import Course

class StudentCourseListView(LoginRequiredMixin, ListView):
 model = Course
 template_name = 'students/course/list.html'

 def get_queryset(self):
 qs = super(StudentCourseListView, self).get_queryset()
 return qs.filter(students__in=[self.request.user])

This is the view for students to list the courses they are enrolled in. It inherits from
LoginRequiredMixin to make sure that only logged in users can access the view.
It also inherits from the generic ListView for displaying a list of Course objects.
We override the get_queryset() method for retrieving only the courses the user
is enrolled in: We filter the QuerySet by the students ManyToManyField field for
doing so.

Then add the following code to the views.py file:

from django.views.generic.detail import DetailView

class StudentCourseDetailView(DetailView):
 model = Course
 template_name = 'students/course/detail.html'

 def get_queryset(self):
 qs = super(StudentCourseDetailView, self).get_queryset()
 return qs.filter(students__in=[self.request.user])

 def get_context_data(self, **kwargs):
 context = super(StudentCourseDetailView,
 self).get_context_data(**kwargs)
 # get course object
 course = self.get_object()
 if 'module_id' in self.kwargs:
 # get current module
 context['module'] = course.modules.get(
 id=self.kwargs['module_id'])

Caching Content

[402]

 else:
 # get first module
 context['module'] = course.modules.all()[0]
 return context

This is the StudentCourseDetailView. We override the get_queryset() method to
limit the base QuerySet to courses in which the user is enrolled. We also override the
get_context_data() method to set a course module in the context if the module_id
URL parameter is given. Otherwise, we set the first module of the course. This way,
students will be able to navigate through modules inside a course.

Edit the the urls.py file of the students application and add the following URL
patterns to it:

url(r'^courses/$',
 views.StudentCourseListView.as_view(),
 name='student_course_list'),

url(r'^course/(?P<pk>\d+)/$',
 views.StudentCourseDetailView.as_view(),
 name='student_course_detail'),

url(r'^course/(?P<pk>\d+)/(?P<module_id>\d+)/$',
 views.StudentCourseDetailView.as_view(),
 name='student_course_detail_module'),

Create the following file structure inside the templates/students/ directory of the
students application:

course/

 detail.html

 list.html

Edit the students/course/list.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}My courses{% endblock %}

{% block content %}
 <h1>My courses</h1>

 <div class="module">
 {% for course in object_list %}
 <div class="course-info">

Chapter 11

[403]

 <h3>{{ course.title }}</h3>
 <p><a href="{% url "student_course_detail" course.id
%}">Access contents</p>
 </div>
 {% empty %}
 <p>
 You are not enrolled in any courses yet.
 Browse courses
to enroll in a course.
 </p>
 {% endfor %}
 </div>
{% endblock %}

This template displays the courses the user is enrolled in. Edit the students/
course/detail.html template and add the following code to it:

{% extends "base.html" %}

{% block title %}
 {{ object.title }}
{% endblock %}

{% block content %}
 <h1>
 {{ module.title }}
 </h1>
 <div class="contents">
 <h3>Modules</h3>
 <ul id="modules">
 {% for m in object.modules.all %}
 <li data-id="{{ m.id }}" {% if m == module %}
class="selected"{% endif %}>
 <a href="{% url "student_course_detail_module" object.
id m.id %}">

 Module {{ m.order|add:1
}}

 {{ m.title }}

 {% empty %}
 No modules yet.

Caching Content

[404]

 {% endfor %}

 </div>
 <div class="module">
 {% for content in module.contents.all %}
 {% with item=content.item %}
 <h2>{{ item.title }}</h2>
 {{ item.render }}
 {% endwith %}
 {% endfor %}
 </div>
{% endblock %}

This is the template for enrolled students to access a course contents. First we
build an HTML list including all course modules and highlighting the current
module. Then we iterate over the current module contents, and access each content
item to display it using {{ item.render }}. We are going to add the render()
method to the content models next. This method will take care of rendering the
content properly.

Rendering different types of content
We need to provide a way to render each type of content. Edit the models.py
file of the courses application directory and add the following render() method
to the ItemBase model as follows:

from django.template.loader import render_to_string
from django.utils.safestring import mark_safe

class ItemBase(models.Model):
 # ...

 def render(self):
 return render_to_string('courses/content/{}.html'.format(
 self._meta.model_name), {'item': self})

This method uses the render_to_string() function for rendering a template and
returning the rendered content as a string. Each kind of content is rendered using a
template named after the content model. We use self._meta.model_name to build
the appropriate template name for la. The render() methods provides a common
interface for rendering diverse content.

Chapter 11

[405]

Create the following file structure inside the templates/courses/ directory of the
courses application:

content/

 text.html

 file.html

 image.html

 video.html

Edit the courses/content/text.html template and write this code:

{{ item.content|linebreaks|safe }}

Edit the courses/content/file.html template and add the following:

<p>Download file</p>

Edit the courses/content/image.html template and write:

<p></p>

For files uploaded with ImageField and FileField to work, we need to set up our
project to serve media files with the development server. Edit the settings.py file
of your project and add the following code to it:

MEDIA_URL = '/media/'
MEDIA_ROOT = os.path.join(BASE_DIR, 'media/')

Remember that MEDIA_URL is the base URL to serve uploaded media files and
MEDIA_ROOT is the local path where the files are located.

Edit the main urls.py file of your project and add the following imports:

from django.conf import settings
from django.conf.urls.static import static

Then, write the following lines at the end of the file:

urlpatterns += static(settings.MEDIA_URL,
 document_root=settings.MEDIA_ROOT)

Your project is now ready for uploading and serving media files using the
development server. Remember that the development server is not suitable
for production use. We will cover configuring a production environment in
the next chapter.

Caching Content

[406]

We also have to create a template for rendering Video objects. We will use django-
embed-video for embedding video content. Django-embed-video is a third-party
Django application that allows you to embed videos in your templates, from sources
like YouTube or Vimeo, by simply providing the video public URL.

Install the package with the following command:
pip install django-embed-video==1.0.0

Then, edit the settings.py file of your project and add 'embed_video' to the
INSTALLED_APPS setting. You can find django-embed-video's documentation at
http://django-embed-video.readthedocs.org/en/v1.0.0/.

Edit the courses/content/video.html template and write the following code:
{% load embed_video_tags %}
{% video item.url 'small' %}

Now run the development server and access http://127.0.0.1:8000/course/
mine/ in your browser. Access the site with a user that belongs the Instructors group
or a superuser, and add multiple contents to a course. For including video content,
you can just copy any YouTube URL, for example https://www.youtube.com/
watch?v=bgV39DlmZ2U, and include it it in the url field of the form. After adding
contents to the course open http://127.0.0.1:8000/, click the course and click the
ENROLL NOW button. You should get enrolled in the course and be redirected to the
student_course_detail URL. The following image shows a sample course contents:

http://django-embed-video.readthedocs.org/en/v1.0.0/
https://www.youtube.com/watch?v=bgV39DlmZ2U
https://www.youtube.com/watch?v=bgV39DlmZ2U

Chapter 11

[407]

Great! You have created a common interface for rendering course contents, each of
them being rendered in a particular way.

Using the cache framework
HTTP requests to your web application usually entail database access, data
processing, and template rendering. This is much more expensive in terms
of processing than serving a static website.

The overhead in some requests can be significant when your site starts getting
more and more traffic. This is where caching becomes precious. By caching
queries, calculation results, or rendered content in an HTTP request, you will
avoid cost-expensive operations in the following requests. This translates into
shorter response times and less processing on the server side.

Django includes a robust cache system that allows you to cache data with different
levels of granularity. You can cache a single query, the output of a specific view,
parts of rendered template content, or your entire site. Items are stored in the cache
system for a default time. You can specify the default timeout for cached data.

This is how you will usually use the cache framework when your application gets
an HTTP request:

1. Try to find the requested data in the cache.
2. If found, return the cached data.
3. If not found, perform the following steps:

1. Perform the query or processing required to obtain the data.
2. Save the generated data in the cache.
3. Return the data.

You can read detailed information about Django's cache system at https://docs.
djangoproject.com/en/1.8/topics/cache/.

Available cache backends
Django comes with several cache backends. These are:

• backends.memcached.MemcachedCache or backends.memcached.
PyLibMCCache: A memcached backend. memcached is a fast and efficient
memory-based cache server. The backend to use depends on the memcached
Python bindings you choose.

https://docs.djangoproject.com/en/1.8/topics/cache/
https://docs.djangoproject.com/en/1.8/topics/cache/

Caching Content

[408]

• backends.db.DatabaseCache: Use the database as cache system.
• backends.filebased.FileBasedCache: Use the file storage system.

Serializes and stores each cache value as a separate file.
• backends.locmem.LocMemCache: Local memory cache backend. This the

default cache backend.
• backends.dummy.DummyCache: A dummy cache backend intended only for

development. It implements the cache interface without actually caching
anything. This cache is per-process and thread-safe.

For optimal performance, use a memory-based cache backend
such as the Memcached backend.

Installing memcached
We are going to use the memcached backend. Memcached runs in memory and it
is allotted a specified amount of RAM. When the allotted RAM is full, Memcached
starts removing the oldest data to store new data.

Download memcached from http://memcached.org/downloads. If you are using
Linux, you can install memcached using the following command:

./configure && make && make test && sudo make install

If you are using Mac OS X, you can install Memcached with the Homebrew
package manager using the command brew install Memcached. You can download
Homebrew from http://brew.sh.

If you are using Windows, you can find a Windows binary version of memcached
at http://code.jellycan.com/memcached/.

After installing Memcached, open a shell and start it using the following command:

memcached -l 127.0.0.1:11211

Memcached will run on port 11211 by default. However, you can specify a custom
host and port by using the –l option. You can find more information about
Memcached at http://memcached.org.

After installing Memcached, you have to install its Python bindings. You can do it
with the following command:

pip install python3-memcached==1.51

http://memcached.org/downloads
http://brew.sh
http://code.jellycan.com/memcached/
http://memcached.org

Chapter 11

[409]

Cache settings
Django provides the following cache settings:

• CACHES: A dictionary containing all available caches for the project.
• CACHE_MIDDLEWARE_ALIAS: The cache alias to use for storage.
• CACHE_MIDDLEWARE_KEY_PREFIX: The prefix to use for cache keys.

Set a prefix to avoid key collisions if you share the same cache between
several sites.

• CACHE_MIDDLEWARE_SECONDS: The default number of seconds to cache pages.

The caching system for the project can be configured using the CACHES setting.
This setting is a dictionary that allows you to specify the configuration for multiple
caches. Each cache included in the CACHES dictionary can specify the following data:

• BACKEND: The cache backend to use.
• KEY_FUNCTION: A string containing a dotted path to a callable that takes a

prefix, version, and key as arguments and returns a final cache key.
• KEY_PREFIX: A string prefix for all cache keys, to avoid collisions.
• LOCATION: The location of the cache. Depending on the cache backend, this

might be a directory, a host and port, or a name for the in-memory backend.
• OPTIONS: Any additional parameters to be passed to the cache backend.
• TIMEOUT: The default timeout, in seconds, for storing the cache keys.

300 seconds by default, which is five minutes. If set to None cache keys
will not expire.

• VERSION: The default version number for the cache keys. Useful for
cache versioning.

Adding memcached to your project
Let's configure the cache for our project. Edit the settings.py file of the educa
project and add the following code to it:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.
MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 }
}

Caching Content

[410]

We are using the MemcachedCache backend. We specify its location using
address:port notation. If you have multiple memcached instances you can
use a list for LOCATION.

Montioring memcached
There is a third-party package called django-memcache-status that displays statistics
for your memcached instances in the administration site. For compatibility with
Python3, install it from the following fork with the following command:

pip install git+git://github.com/zenx/django-memcache-status.git

Edit the settings.py file and add 'memcache_status' to the INSTALLED_APPS
setting. Make sure memcached is running, start the development server in another
shell window and open http://127.0.0.1:8000/admin/ in your browser. Log in
into the administration site using a superuser. You should see the following block:

This graph shows the cache usage. The green color represents free cache while red
indicates used space. If you click the title of the box, it shows detailed statistics about
your memcached instance.

We have setup memcached for our project and are able to monitor it. Let's start
caching data!

Cache levels
Django provides the following levels of caching listed below by ascendant order of
granularity:

• Low-level cache API: Provides the highest granularity. Allows you to cache
specific queries or calculations.

• Per-view cache: Provides caching for individual views.
• Template cache: Allows you to cache template fragments.
• Per-site cache: The highest-level cache. It caches your entire site.

Chapter 11

[411]

Think about your cache strategy before implementing caching. Focus
first on expensive queries or calculations, which are not calculated in
a per-user basis.

Using the low-level cache API
The low-level cache API allows you to store objects in the cache with any granularity.
It is located at django.core.cache. You can import it like this:

from django.core.cache import cache

This uses the default cache. It's equivalent to caches['default']. Accessing a
specific cache is also possible via its alias:

from django.core.cache import caches
my_cache = caches['alias']

Let's take a look at how the cache API works. Open the shell with the command
python manage.py shell and execute the following code:

>>> from django.core.cache import cache
>>> cache.set('musician', 'Django Reinhardt', 20)

We access the default cache backend and use set(key, value, timeout) to store
a key named 'musician' with a value that is the string 'Django Reinhardt' for 20
seconds. If we don't specify a timeout, Django uses the default timeout specified for
the cache backend in the CACHES setting. Now execute the following code:

>>> cache.get('musician')
'Django Reinhardt'

We retrieve the key from the cache. Wait for 20 seconds and execute the same code:

>>> cache.get('musician')
None

The 'musician' cache key expired and the get() method returns None because the
key is not in the cache anymore.

Always avoid storing a None value in a cache key because you won't
be able to distinguish between the actual value and a cache miss.

Caching Content

[412]

Let's cache a QuerySet:

>>> from courses.models import Subject
>>> subjects = Subject.objects.all()
>>> cache.set('all_subjects', subjects)

We perform a queryset on the Subject model and store the returned objects in the
'all_subjects' key. Let's retrieve the cached data:

>>> cache.get('all_subjects')
[<Subject: Mathematics>, <Subject: Music>, <Subject: Physics>,
<Subject: Programming>]

We are going to cache some queries in our views. Edit the views.py file of the
courses application and add the following import:

from django.core.cache import cache

In the get() method of the CourseListView, replace the following line:

subjects = Subject.objects.annotate(
 total_courses=Count('courses'))

With the following ones:

subjects = cache.get('all_subjects')
if not subjects:
 subjects = Subject.objects.annotate(
 total_courses=Count('courses'))
 cache.set('all_subjects', subjects)

In this code, first we try to get the all_students key from the cache using cache.
get(). This returns None if the given key is not found. If no key is found (not cached
yet, or cached but timed out) we perform the query to retrieve all Subject objects
and their number of courses, and we cache the result using cache.set().

Run the development server and open http://127.0.0.1:8000/ in your
browser. When the view is executed, the cache key is not found and the QuerySet
is executed. Open http://127.0.0.1:8000/admin/ in your browser and expand
the memcached statistics. You should see usage data for the cache similar to the
following ones:

Chapter 11

[413]

Take a look at Curr Items, which should be 1. This shows that there is one item
currently stored in the cache. Get Hits shows how many get commands were
successful and Get Misses shows the get requests for keys that are missing.
The Miss Ratio is calculated using both of them.

Now navigate back to http://127.0.0.1:8000/ using your browser and reload the
page several times. If you take a look at the cache statistics now you will see several
reads more (Get Hits and Cmd Get have increased).

Caching based on dynamic data
Many times you will want to cache something that is based on dynamic data. In
these cases, you have to build dynamic keys that contain all information required to
uniquely identify the cached data. Edit the views.py file of the courses application
and modify the CourseListView view to make it look like this:

class CourseListView(TemplateResponseMixin, View):
 model = Course
 template_name = 'courses/course/list.html'

 def get(self, request, subject=None):
 subjects = cache.get('all_subjects')
 if not subjects:
 subjects = Subject.objects.annotate(
 total_courses=Count('courses'))
 cache.set('all_subjects', subjects)
 all_courses = Course.objects.annotate(
 total_modules=Count('modules'))

Caching Content

[414]

 if subject:
 subject = get_object_or_404(Subject, slug=subject)
 key = 'subject_{}_courses'.format(subject.id)
 courses = cache.get(key)
 if not courses:
 courses = all_courses.filter(subject=subject)
 cache.set(key, courses)
 else:
 courses = cache.get('all_courses')
 if not courses:
 courses = all_courses
 cache.set('all_courses', courses)
 return self.render_to_response({'subjects': subjects,
 'subject': subject,
 'courses': courses})

In this case, we also cache both all courses and courses filtered by subject. We
use the all_courses cache key for storing all courses if no subject is given. If
there is a subject we build the key dynamically with 'subject_{}_courses'.
format(subject.id).

It is important to note that we cannot use a cached QuerySet to build other QuerySets,
since what we cached are actually the results of the QuerySet. So we cannot do:

courses = cache.get('all_courses')
courses.filter(subject=subject)

Instead we have to create the base QuerySet Course.objects.annotate
(total_modules=Count('modules')), which is not going to be executed
until it is forced, and use it to further restrict the QuerySet with all_courses.
filter(subject=subject) in case the data was not found in the cache.

Caching template fragments
Caching template fragments is a higher level approach. You need to load the cache
template tags in your template using {% load cache %}. Then you will be able to
use the {% cache %} template tag to cache specific template fragments. You will
usually use the template tag as follows:

{% cache 300 fragment_name %}
 ...
{% endcache %}

Chapter 11

[415]

The {% cache %} tag has two required arguments: The timeout, in seconds, and a
name for the fragment. If you need to cache content depending on dynamic data,
you can do so by passing additional arguments to the {% cache %} template tag to
uniquely identify the fragment.

Edit the /students/course/detail.html of the students application. Add the
following code at the top of it, just after the {% extends %} tag:

{% load cache %}

Then, replace the following lines:

{% for content in module.contents.all %}
 {% with item=content.item %}
 <h2>{{ item.title }}</h2>
 {{ item.render }}
 {% endwith %}
{% endfor %}

With the following ones:

{% cache 600 module_contents module %}
 {% for content in module.contents.all %}
 {% with item=content.item %}
 <h2>{{ item.title }}</h2>
 {{ item.render }}
 {% endwith %}
 {% endfor %}
{% endcache %}

We cache this template fragment using the name module_contents and passing
the current Module object to it. Thus, we uniquely identify the fragment. This is
important to avoid caching a module's contents and serving the wrong content
when a different module is requested.

If the USE_I18N setting is set to True, the per-site middleware cache
will respect the active language. If you use the {% cache %} template
tag you have use one of the translation-specific variables available in
templates to achieve the same result, such as {% cache 600 name
request.LANGUAGE_CODE %}.

Caching Content

[416]

Caching views
You can cache the output of individual views using the cache_page decorator
located at django.views.decorators.cache. The decorator requires a timeout
argument (in seconds).

Let's use it in our views. Edit the urls.py file of the students application and add the
following import:

from django.views.decorators.cache import cache_page

Then apply the cache_page decorator the student_course_detail and student_
course_detail_module URL patterns, as follows:

url(r'^course/(?P<pk>\d+)/$',
 cache_page(60 * 15)(views.StudentCourseDetailView.as_view()),
 name='student_course_detail'),

url(r'^course/(?P<pk>\d+)/(?P<module_id>\d+)/$',
 cache_page(60 * 15)(views.StudentCourseDetailView.as_view()),
 name='student_course_detail_module'),

Now the result for the StudentCourseDetailView is cached for 15 minutes.

The per-view cache uses the URL to build the cache key. Multiple URLs
pointing to the same view will be cached separately.

Using the per-site cache
This is the highest-level cache. It allows you to cache your entire site.

To allow the per-site cache edit the settings.py file of your project and add
the UpdateCacheMiddleware and FetchFromCacheMiddleware classes to the
MIDDLEWARE_CLASSES setting as follows:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.cache.UpdateCacheMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.cache.FetchFromCacheMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 # ...
)

Chapter 11

[417]

Remember that middlewares are executed in the given order during the request
phase, and in reverse order during the response phase. UpdateCacheMiddleware
is placed before CommonMiddleware because it runs during response time, when
middlewares are executed in reverse order. FetchFromCacheMiddleware is placed
after CommonMiddleware intentionally, because it needs to access request data set
by the latter.

Then, add the following settings to the settings.py file:

CACHE_MIDDLEWARE_ALIAS = 'default'
CACHE_MIDDLEWARE_SECONDS = 60 * 15 # 15 minutes
CACHE_MIDDLEWARE_KEY_PREFIX = 'educa'

In these settings we use the default cache for our cache middleware and we set the
global cache timeout to 15 minutes. We also specify a prefix for all cache keys to
avoid collisions in case we use the same memcached backend for multiple projects.
Our site will now cache and return cached content for all GET requests.

We have done this to test the per-site cache functionality. However, the per-site cache
is not suitable for us, since the course management views need to show updated data
to instantly reflect any changes. The best approach to follow in our project is to cache
the templates or views that are used to display course contents to students.

We have seen an overview of the methods provided by Django to cache data.
You should define your cache strategy wisely and prioritize the most expensive
QuerySets or calculations.

Summary
In this chapter, we have created public views for the courses and you have built a
system for students to register and enroll in courses. We have installed memcached
and have implemented different cache levels.

In the next chapter, we will build a RESTful API for your project.

[419]

Building an API
In the previous chapter, you built a student registration system and enrollment
in courses. You created views to display course contents and learned how to use
Django's cache framework. In this chapter, you will learn how to do the following:

• Build a RESTful API
• Handle authentication and permissions for API views
• Create API view sets and routers

Building a RESTful API
You might want to create an interface for other services to interact with your web
application. By building an API, you can allow third parties to consume information
and operate with your application programmatically.

There are several ways you can structure your API, but following REST principles
is encouraged. The REST architecture comes from Representational State Transfer.
RESTful APIs are resource-based. Your models represent resources and HTTP
methods such as GET, POST, PUT, or DELETE are used to retrieve, create, update,
or delete objects. HTTP response codes are also used in this context. Different HTTP
response codes are returned to indicate the result of the HTTP request, e.g. 2XX
response codes for success, 4XX for errors, and so on.

The most common formats to exchange data in RESTful APIs are JSON and XML. We
will build a REST API with JSON serialization for our project. Our API will provide
the following functionality:

• Retrieve subjects
• Retrieve available courses
• Retrieve course contents
• Enroll in a course

Building an API

[420]

We can build an API from scratch with Django by creating custom views. However,
there are several third-party modules that simplify creating an API for your project,
the most popular among them being Django Rest Framework.

Installing Django Rest Framework
Django Rest Framework allows you to easily build REST API's for your project.
You can find all information about REST Framework at http://www.django-rest-
framework.org.

Open the shell and install the framework with the following command:

pip install djangorestframework==3.2.3

Edit the settings.py file of the educa project and add rest_framework to the
INSTALLED_APPS setting to activate the application, as follows:

INSTALLED_APPS = (
 # ...
 'rest_framework',
)

Then, add the following code to the settings.py file:

REST_FRAMEWORK = {
 'DEFAULT_PERMISSION_CLASSES': [
 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly'
]
}

You can provide a specific configuration for your API using the REST_
FRAMEWORK setting. REST Framework offers a wide range of settings to configure
default behaviors. The DEFAULT_PERMISSION_CLASSES setting specifies the
default permissions to read, create, update, or delete objects. We set the
DjangoModelPermissionsOrAnonReadOnly as the only default permission class.
This class relies on Django's permissions system to allow users to create, update,
or delete objects, while providing read-only access for anonymous users. You will
learn more about permissions later.

For a complete list of available settings for REST framework, you can visit
http://www.django-rest-framework.org/api-guide/settings/.

http://www.django-rest-framework.org
http://www.django-rest-framework.org
http://www.django-rest-framework.org/api-guide/settings/

Chapter 12

[421]

Defining serializers
After setting up REST Framework, we need to specify how our data will be
serialized. Output data has to be serialized into a specific format, and input data
will be de-serialized for processing. The framework provides the following classes
to build serializers for single objects:

• Serializer: Provides serialization for normal Python class instances
• ModelSerializer: Provides serialization for model instances
• HyperlinkedModelSerializer: The same as ModelSerializer, but

represents object relationships with links rather than primary keys

Let's build our first serializer. Create the following file structure inside the courses
application directory:

api/
 __init__.py
 serializers.py

We will build all the API functionality inside the api directory to keep everything
well organized. Edit the serializers.py file and add the following code:

from rest_framework import serializers
from ..models import Subject

class SubjectSerializer(serializers.ModelSerializer):
 class Meta:
 model = Subject
 fields = ('id', 'title', 'slug')

This is the serializer for the Subject model. Serializers are defined in a similar
fashion to Django's Form and ModelForm classes. The Meta class allows you to specify
the model to serialize and the fields to be included for serialization. All model fields
will be included if you don't set a fields attribute.

Let's try our serializer. Open the command line and start the Django shell with the
command python manage.py shell. Run the following code:

from courses.models import Subject
from courses.api.serializers import SubjectSerializer
subject = Subject.objects.latest('id')
serializer = SubjectSerializer(subject)
serializer.data

Building an API

[422]

In this example, we get a Subject object, create an instance of SubjectSerializer,
and access the serialized data. You will get the following output:

{'slug': 'music', 'id': 4, 'title': 'Music'}

As you can see, the model data is translated into Python native data types.

Understanding parsers and renderers
The serialized data has to be rendered in a specific format before you return it in an
HTTP response. Likewise, when you get an HTTP request, you have to parse the
incoming data and deserialize it before you can operate with it. REST Framework
includes renderers and parsers to handle that.

Let's see how to parse incoming data. Given a JSON string input, you can use the
JSONParser class provided by REST framework to convert it to a Python object.
Execute the following code in the Python shell:

from io import BytesIO
from rest_framework.parsers import JSONParser
data = b'{"id":4,"title":"Music","slug":"music"}'
JSONParser().parse(BytesIO(data))

You will get the following output:

{'id': 4, 'title': 'Music', 'slug': 'music'}

REST Framework also includes Renderer classes that allow you to format API
responses. The framework determines which renderer to use through content
negotiation. It inspects the request's Accept header to determine the expected
content type for the response. Optionally, the renderer is determined by the format
suffix of the URL. For example, accessing will trigger the JSONRenderer in order
to return a JSON response.

Go back to the shell and execute the following code to render the serializer object
from the previous serializer example:

from rest_framework.renderers import JSONRenderer
JSONRenderer().render(serializer.data)

You will see the following output:

b'{"id":4,"title":"Music","slug":"music"}'

Chapter 12

[423]

We use the JSONRenderer to render the serialized data into JSON. By
default, REST Framework uses two different renderers: JSONRenderer and
BrowsableAPIRenderer. The latter provides a web interface to easily browse your
API. You can change the default renderer classes with the DEFAULT_RENDERER_
CLASSES option of the REST_FRAMEWORK setting.

You can find more information about renderers and parsers at http://www.django-
rest-framework.org/api-guide/renderers/ and http://www.django-rest-
framework.org/api-guide/parsers/ respectively.

Building list and detail views
REST Framework comes with a set of generic views and mixins that you can use
to build your API views. These provide functionality to retrieve, create, update, or
delete model objects. You can see all generic mixins and views provided by REST
Framework at http://www.django-rest-framework.org/api-guide/generic-
views/.

Let's create list and detail views to retrieve Subject objects. Create a new file inside
the courses/api/ directory and name it views.py. Add the following code to it:

from rest_framework import generics
from ..models import Subject
from .serializers import SubjectSerializer

class SubjectListView(generics.ListAPIView):
 queryset = Subject.objects.all()
 serializer_class = SubjectSerializer

class SubjectDetailView(generics.RetrieveAPIView):
 queryset = Subject.objects.all()
 serializer_class = SubjectSerializer

In this code, we are using the generic ListAPIView and RetrieveAPIView views of
REST Framework. We include a pk URL parameter for the detail view to retrieve the
object for the given primary key. Both views have the following attributes:

• queryset: The base QuerySet to use to retrieve objects
• serializer_class: The class to serialize objects

http://www.django-rest-framework.org/api-guide/renderers/
http://www.django-rest-framework.org/api-guide/renderers/
http://www.django-rest-framework.org/api-guide/parsers/
http://www.django-rest-framework.org/api-guide/parsers/
http://www.django-rest-framework.org/api-guide/generic-views/
http://www.django-rest-framework.org/api-guide/generic-views/

Building an API

[424]

Let's add URL patterns for our views. Create a new file inside the courses/api/
directory and name it urls.py and make it look as follows:

from django.conf.urls import url
from . import views

urlpatterns = [
 url(r'^subjects/$',
 views.SubjectListView.as_view(),
 name='subject_list'),
 url(r'^subjects/(?P<pk>\d+)/$',
 views.SubjectDetailView.as_view(),
 name='subject_detail'),
]

Edit the main urls.py file of the educa project and include the API patterns
as follows:

urlpatterns = [
 # ...
 url(r'^api/', include('courses.api.urls', namespace='api')),
]

We use the api namespace for our API URLs. Ensure your server is running with
the command python manage.py runserver. Open the shell and retrieve the URL
http://127.0.0.1:8000/api/subjects/ with cURL as follows:

$ curl http://127.0.0.1:8000/api/subjects/

You will get a response similar to the following one:

[{"id":2,"title":"Mathematics","slug":"mathematics"},{"id":4,"title":"Mus
ic","slug":"music"},{"id":3,"title":"Physics","slug":"physics"},{"id":1,"
title":"Programming","slug":"programming"}]

The HTTP response contains a list of Subject objects in JSON format. If your
operating system doesn't come with cURL installed, you can download it from
http://curl.haxx.se/dlwiz/. Instead of cURL, you can also use any other tool
to send custom HTTP requests such as a browser extension such as Postman, which
you can get at https://www.getpostman.com.

http://curl.haxx.se/dlwiz/
https://www.getpostman.com

Chapter 12

[425]

Open http://127.0.0.1:8000/api/subjects/ in your browser. You will see REST
Framework's browsable API as follows:

This HTML interface is provided by the BrowsableAPIRenderer renderer. It
displays the result headers and content and allows you to perform requests. You can
also access the API detail view for a Subject object by including its id in the URL.
Open http://127.0.0.1:8000/api/subjects/1/ in your browser. You will see a
single Subject object rendered in JSON format.

Creating nested serializers
We are going to create a serializer for the Course model. Edit the api/serializers.
py file and add the following code to it:

from ..models import Course

class CourseSerializer(serializers.ModelSerializer):
 class Meta:

Building an API

[426]

 model = Course
 fields = ('id', 'subject', 'title', 'slug', 'overview',
 'created', 'owner', 'modules')

Let's take a look at how a Course object is serialized. Open the shell, run python
manage.py shell, and run the following code:

from rest_framework.renderers import JSONRenderer
from courses.models import Course
from courses.api.serializers import CourseSerializer
course = Course.objects.latest('id')
serializer = CourseSerializer(course)
JSONRenderer().render(serializer.data)

You will get a JSON object with the fields we included in CourseSerializer. You
can see that the related objects of the modules manager are serialized as a list of
primary keys, like this:

"modules": [17, 18, 19, 20, 21, 22]

We want to include more information about each module, so we need to serialize
Module objects and nest them. Modify the previous code of the api/serializers.
py file to make it look as follows:

from rest_framework import serializers
from ..models import Course, Module

class ModuleSerializer(serializers.ModelSerializer):
 class Meta:
 model = Module
 fields = ('order', 'title', 'description')

class CourseSerializer(serializers.ModelSerializer):
 modules = ModuleSerializer(many=True, read_only=True)

 class Meta:
 model = Course
 fields = ('id', 'subject', 'title', 'slug', 'overview',
 'created', 'owner', 'modules')

We define a ModuleSerializer to provide serialization for the Module model. Then
we add a modules attribute to CourseSerializer to nest the ModuleSerializer
serializer. We set many=True to indicate that we are serializing multiple objects.
The read_only parameter indicates that this field is read-only and should not be
included in any input to create or update objects.

Chapter 12

[427]

Open the shell and create an instance of CourseSerializer again. Render the
serializer's data attribute with JSONRenderer. This time, the listed modules are
being serialized with the nested ModuleSerializer serializer, like this:

"modules": [
 {
 "order": 0,
 "title": "Django overview",
 "description": "A brief overview about the Web Framework."
 },
 {
 "order": 1,
 "title": "Installing Django",
 "description": "How to install Django."
 },
 ...
]

You can read more about serializers at http://www.django-rest-framework.org/
api-guide/serializers/.

Building custom views
REST Framework provides an APIView class, which builds API functionality on
top of Django's View class. The APIView class differs from View in using REST
Framework's custom Request and Response objects and handling APIException
exceptions to return the appropriate HTTP responses. It also has a built-in
authentication and authorization system to manage access to views.

We are going to create a view for users to enroll in courses. Edit the api/views.py
file and add the following code to it:

from django.shortcuts import get_object_or_404
from rest_framework.views import APIView
from rest_framework.response import Response
from ..models import Course

class CourseEnrollView(APIView):
 def post(self, request, pk, format=None):
 course = get_object_or_404(Course, pk=pk)
 course.students.add(request.user)
 return Response({'enrolled': True})

http://www.django-rest-framework.org/api-guide/serializers/
http://www.django-rest-framework.org/api-guide/serializers/

Building an API

[428]

The CourseEnrollView view handles user enrollment in courses. The preceding
code is as follows:

• We create a custom view that subclasses APIView.
• We define a post() method for POST actions. No other HTTP method will

be allowed for this view.
• We expect a pk URL parameter containing the ID of a course. We retrieve the

course by the given pk parameter and raise a 404 exception if it's not found.
• We add the current user to the students many-to-many relationship of the

Course object and return a successful response.

Edit the api/urls.py file and add the following URL pattern for the
CourseEnrollView view:

url(r'^courses/(?P<pk>\d+)/enroll/$',
 views.CourseEnrollView.as_view(),
 name='course_enroll'),

Theoretically, we could now perform a POST request to enroll the current
user in a course. However, we need to be able to identify the user and prevent
unauthenticated users from accessing this view. Let's see how API authentication
and permissions work.

Handling authentication
REST Framework provides authentication classes to identify the user performing
the request. If authentication is successful, the framework sets the authenticated
User object in request.user. If no user is authenticated, an instance of Django's
AnonymousUser is set instead.

REST Framework provides the following authentication backends:

• BasicAuthentication: HTTP Basic Authentication. The user and password
are sent by the client in the Authorization HTTP header encoded with
Base64. You can learn more about it at https://en.wikipedia.org/wiki/
Basic_access_authentication.

• TokenAuthentication: Token-based authentication. A Token model is used
to store user tokens. Users include the token in the Authorization HTTP
header for authentication.

• SessionAuthentication: Uses Django's session backend for authentication.
This backend is useful to perform authenticated AJAX requests to the API
from your website's frontend.

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

Chapter 12

[429]

You can build a custom authentication backend by subclassing the
BaseAuthentication class provided by REST Framework and overriding
the authenticate() method.

You can set authentication on a per-view basis, or set it globally with the
DEFAULT_AUTHENTICATION_CLASSES setting.

Authentication only identifies the user performing the request. It won't
allow or deny access to views. You have to use permissions to restrict
access to views.

You can find all the information about authentication at http://www.django-rest-
framework.org/api-guide/authentication/.

Let's add BasicAuthentication to our view. Edit the api/views.py file of
the courses application and add an authentication_classes attribute to
CourseEnrollView as follows:

from rest_framework.authentication import BasicAuthentication

class CourseEnrollView(APIView):
 authentication_classes = (BasicAuthentication,)
 # ...

Users will be identified by the credentials set in the Authorization header of the
HTTP request.

Adding permissions to views
REST Framework includes a permission system to restrict access to views. Some of
the built-in permissions of REST Framework are:

• AllowAny: Unrestricted access, regardless of if a user is authenticated or not.
• IsAuthenticated: Allows access to authenticated users only.
• IsAuthenticatedOrReadOnly: Complete access to authenticated users.

Anonymous users are only allowed to execute read methods such as GET,
HEAD, or OPTIONS.

• DjangoModelPermissions: Permissions tied to django.contrib.auth. The
view requires a queryset attribute. Only authenticated users with model
permissions assigned are granted permission.

• DjangoObjectPermissions: Django permissions on a per-object basis.

http://www.django-rest-framework.org/api-guide/authentication/
http://www.django-rest-framework.org/api-guide/authentication/

Building an API

[430]

If users are denied permission, they will usually get one of the following HTTP
error codes:

• HTTP 401: Unauthorized
• HTTP 403: Permission denied

You can read more information about permissions at http://www.django-rest-
framework.org/api-guide/permissions/.

Edit the api/views.py file of the courses application and add a
permission_classes attribute to CourseEnrollView as follows:

from rest_framework.authentication import BasicAuthentication
from rest_framework.permissions import IsAuthenticated

class CourseEnrollView(APIView):
 authentication_classes = (BasicAuthentication,)
 permission_classes = (IsAuthenticated,)
 # ...

We include the IsAuthenticated permission. This will prevent anonymous
users from accessing the view. Now, we can perform a POST request to our
new API method.

Make sure the development server is running. Open the shell and run the following
command:

curl -i –X POST http://127.0.0.1:8000/api/courses/1/enroll/

You will get the following response:

HTTP/1.0 401 UNAUTHORIZED
...
{"detail": "Authentication credentials were not provided."}

We get a 401 HTTP code as expected, since we are not authenticated. Let's use basic
authentication with one of our users. Run the following command:

curl -i -X POST -u student:password http://127.0.0.1:8000/api/
courses/1/enroll/

Replace student:password with the credentials of an existing user. You will get the
following response:

HTTP/1.0 200 OK
...
{"enrolled": true}

http://www.django-rest-framework.org/api-guide/permissions/
http://www.django-rest-framework.org/api-guide/permissions/

Chapter 12

[431]

You can access the administration site and check that the user is now enrolled in
the course.

Creating view sets and routers
ViewSets allow you to define the interactions of your API and let REST Framework
build the URLs dynamically with a Router object. By using view sets, you can avoid
repeating logic for multiple views. View sets include actions for the typical create,
retrieve, update, delete operations, which are list(), create(), retrieve(),
update(), partial_update(), and destroy().

Let's create a view set for the Course model. Edit the api/views.py file and add the
following code to it:

from rest_framework import viewsets
from .serializers import CourseSerializer

class CourseViewSet(viewsets.ReadOnlyModelViewSet):
 queryset = Course.objects.all()
 serializer_class = CourseSerializer

We subclass ReadOnlyModelViewSet, which provides the read-only actions list()
and retrieve() to both list objects or retrieve a single object. Edit the api/urls.py
file and create a router for our view set as follows:

from django.conf.urls import url, include
from rest_framework import routers
from . import views

router = routers.DefaultRouter()
router.register('courses', views.CourseViewSet)

urlpatterns = [
 # ...
 url(r'^', include(router.urls)),
]

We create a DefaultRouter object and register our view set with the courses prefix.
The router takes charge of generating URLs automatically for our view set.

Building an API

[432]

Open http://127.0.0.1:8000/api/ in your browser. You will see that the router
lists all view sets in its base URL, as shown in the following screenshot:

You can access http://127.0.0.1:8000/api/courses/ to retrieve the list
of courses.

You can learn more about view sets at http://www.django-rest-framework.
org/api-guide/viewsets/. You can also find more information about routers at
http://www.django-rest-framework.org/api-guide/routers/.

Adding additional actions to view sets
You can add extra actions to view sets. Let's change our previous CourseEnrollView
view into a custom view set action. Edit the api/views.py file and modify the
CourseViewSet class to look as follows:

from rest_framework.decorators import detail_route

class CourseViewSet(viewsets.ReadOnlyModelViewSet):
 queryset = Course.objects.all()
 serializer_class = CourseSerializer

 @detail_route(methods=['post'],
 authentication_classes=[BasicAuthentication],
 permission_classes=[IsAuthenticated])
 def enroll(self, request, *args, **kwargs):
 course = self.get_object()
 course.students.add(request.user)
 return Response({'enrolled': True})

http://www.django-rest-framework.org/api-guide/viewsets/
http://www.django-rest-framework.org/api-guide/viewsets/
http://www.django-rest-framework.org/api-guide/routers/

Chapter 12

[433]

We add a custom enroll() method that represents an additional action for this view
set. The preceding code is as follows:

• We use the detail_route decorator of the framework to specify that this is
an action to be performed on a single object.

• The decorator allows us to add custom attributes for the action. We
specify that only the POST method is allowed for this view, and set the
authentication and permission classes.

• We use self.get_object() to retrieve the Course object.
• We add the current user to the students many-to-many relationship and

return a custom success response.

Edit the api/urls.py file and remove the following URL, since we don't need
it anymore:

url(r'^courses/(?P<pk>[\d]+)/enroll/$',
 views.CourseEnrollView.as_view(),
 name='course_enroll'),

Then edit the api/views.py file and remove the CourseEnrollView class.

The URL to enroll in courses is now automatically generated by the router. The URL
remains the same, since it's built dynamically using our action name enroll.

Creating custom permissions
We want students to be able to access the contents of the courses they are enrolled
in. Only students enrolled in a course should be able to access its contents. The best
way to do this is with a custom permission class. Django provides a BasePermission
class that allows you to define the following methods:

• has_permission(): View-level permission check
• has_object_permission(): Instance-level permission check

These methods should return True to grant access or False otherwise. Create a
new file inside the courses/api/ directory and name it permissions.py. Add the
following code to it:

from rest_framework.permissions import BasePermission

class IsEnrolled(BasePermission):
 def has_object_permission(self, request, view, obj):
 return obj.students.filter(id=request.user.id).exists()

Building an API

[434]

We subclass the BasePermission class and override the has_object_permission().
We check that the user performing the request is present in the students relationship
of the Course object. We are going to use the IsEnrolled permission next.

Serializing course contents
We need to serialize course contents. The Content model includes a generic foreign
key that allows us to associate objects of different content models. Yet, we have
added a common render() method for all content models in the previous chapter.
We can use this method to provide rendered contents to our API.

Edit the api/serializers.py file of the courses application and add the following
code to it:

from ..models import Content

class ItemRelatedField(serializers.RelatedField):
 def to_representation(self, value):
 return value.render()

class ContentSerializer(serializers.ModelSerializer):
 item = ItemRelatedField(read_only=True)

 class Meta:
 model = Content
 fields = ('order', 'item')

In this code, we define a custom field by subclassing the RelatedField serializer
field provided by REST Framework and overriding the to_representation()
method. We define the ContentSerializer serializer for the Content model and
use the custom field for the item generic foreign key.

We need an alternate serializer for the Module model that includes its contents, and
an extended Course serializer as well. Edit the api/serializers.py file and add
the following code to it:

class ModuleWithContentsSerializer(serializers.ModelSerializer):
 contents = ContentSerializer(many=True)

 class Meta:
 model = Module
 fields = ('order', 'title', 'description', 'contents')

Chapter 12

[435]

class CourseWithContentsSerializer(serializers.ModelSerializer):
 modules = ModuleWithContentsSerializer(many=True)

 class Meta:
 model = Course
 fields = ('id', 'subject', 'title', 'slug',
 'overview', 'created', 'owner', 'modules')

Let's create a view that mimics the behavior of the retrieve() action but includes
the course contents. Edit the api/views.py file and add the following method to
the CourseViewSet class:

from .permissions import IsEnrolled
from .serializers import CourseWithContentsSerializer

class CourseViewSet(viewsets.ReadOnlyModelViewSet):
 # ...
 @detail_route(methods=['get'],
 serializer_class=CourseWithContentsSerializer,
 authentication_classes=[BasicAuthentication],
 permission_classes=[IsAuthenticated,
 IsEnrolled])
 def contents(self, request, *args, **kwargs):
 return self.retrieve(request, *args, **kwargs)

The description of this method is as follows:

• We use the detail_route decorator to specify that this action is performed
on a single object.

• We specify that only the GET method is allowed for this action.
• We use the new CourseWithContentsSerializer serializer class that

includes rendered course contents.
• We use both the IsAuthenticated and our custom IsEnrolled permissions.

By doing so, we make sure that only users enrolled in the course are able
to access its contents.

• We use the existing retrieve() action to return the course object.

Open http://127.0.0.1:8000/api/courses/1/contents/ in your browser. If
you access the view with the right credentials, you will see that each module of
the course includes the rendered HTML for course contents, like this:

{
"order": 0,
"title": "Installing Django",

Building an API

[436]

"description": "",
"contents": [
 {
 "order": 0,
 "item": "<p>Take a look at the following video for installing
Django:</p>\n"
 },
 {
 "order": 1,
 "item": "\n<iframe width=\"480\" height=\"360\" src=\"http://
www.youtube.com/embed/bgV39DlmZ2U?wmode=opaque\" frameborder=\"0\"
allowfullscreen></iframe>\n\n"
 }
]
}

You have built a simple API that allows other services to access the course application
programmatically. REST Framework also allows you to manage creating and editing
objects with the ModelViewSet view set. We have covered the main aspects of
Django Rest Framework, but you will find further information about its features
in its extensive documentation at http://www.django-rest-framework.org/.

Summary
In this chapter, you created a RESTful API for other services to interact with your
web application.

An additional Chapter 13, Going Live is available for download at https://www.
packtpub.com/sites/default/files/downloads/Django_By_Example_
GoingLive.pdf. It will teach you how to build a production environment using
uWSGI and NGINX. You will also learn how to implement a custom middleware
and create custom management commands.

You have reached the end of this book. Congratulations! You have learned the skills
required to build successful web applications with Django. This book has guided
you through the process of developing real-life projects and integrating Django with
other technologies. Now you are ready to create your own Django project, whether
it is a simple prototype or a large-scale web application.

Good luck with your next Django adventure!

http://www.django-rest-framework.org/
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf
https://www.packtpub.com/sites/default/files/downloads/Django_By_Example_GoingLive.pdf

[437]

Index
A
activity stream

displaying 188
duplicate actions, avoiding 186
user actions, adding 187, 188

add_to_class() method 172
administration site

catalog models, registering 209
course models, registering 341
creating 13
custom actions, adding to 264-266
extending, with custom views 267, 270
logging in 14
models, adding 14-16
models, customizing 16, 17
superuser, creating 13
translations, integrating 319

admin template
URL 270

aggregation functions
URL 66

AJAX actions
adding, with jQuery 154, 155

AJAX pagination
adding, to list views 163-167

AJAX requests
Cross-Site Request Forgery 156, 157
performing, with jQuery 158-161

AJAX views
building, for following users 178, 179
custom decorators, creating 161, 162

application configuration classes
defining 195
URL 195

asynchronous tasks
adding, to application 244-246

authentication
BasicAuthentication, URL 428
handling 428, 429
SessionAuthentication 428
TokenAuthentication 428
URL 429

authentication backends
about 121
authenticate() method 121
get_user() method 121
URL 123

authentication framework, Django
authentication views, using 95
group model 89
log in views 96-101
log in views, creating 90-94
log out views 96-99
password views, changing 101-103
password views, resetting 104-108
permission model 89
user model 89
using 89

B
blog application

applications 8
creating 4, 8
development server, executing 5, 6
project settings 6, 7

blog data schema
application, activating 11
designing 9-11

[438]

migrations, applying 11-13
migrations, creating 11-13

blogs
feeds, creating 73, 74
posts, retrieving by similarity 58, 59
tagging functionality, adding 52-57

built-in authentication views
URL 95

built-in template tags
URL 26

C
cache backends 408
cache framework

cache backends 407
cache levels 410
cache settings 409
caching, dynamic data based 413, 414
caching template fragments 414, 415
caching, views 416
low-level cache API, using 411-413
memcached, adding to project 409
memcached, installing 408
memcached, monitoring 410
per-site cache, using 416, 417
using 407

CartAddProductForm class
quantity field 225
update field 225

Cart detail page 326
catalog models

registering, in administration site 209, 210
catalog templates

creating 212-217
catalog views

building 210-212
Celery

adding, to project 243, 244
documentation, URL 242
installing 242
monitoring 246

CELERY_ALWAYS_EAGER setting 244
class-based views

using 31, 32

class-based views, CMS
creating 359
mixins, URL 360
mixins, using 360-362

CMS
about 337
authentication system, adding 356
authentication templates, creating 356-359
class-based views, creating 359
content, adding to course modules 375-380
contents, managing 380-384
contents, reordering 385-388
creating 356
formsets, suing 370
groups, working with 362
mixins, using for class-based views 360-362
modules, managing 380-384
modules, reordering 385-388
permissions, working with 362

Comma-Separated Values (CSV) 264
comments

adding, to post detail template 49-52
system, creating 44-46

content management system. See CMS
content models

creating 347-349
contenttypes framework

app_label field 181
model field 181
name field 181
URL 182
using 181

context processor
about 232
creating, for current cart 232
URL 232

coupon system
coupon, applying to shopping cart 282-289
coupon models, building 280-282
coupons, applying to orders 289, 290
creating 279, 280

course contents
accessing 401-404
serializing 434, 435
types, rendering 404-407
video content including, URL 406

[439]

course models
building 338-340
creating, for diverse content 344, 345
initial data, providing 341-344
model inheritance, using 345
registering, in administration site 341

course modules
content, adding 375-380
managing 380-384
reordering 385-387

courses
displaying 389-394

create_action function 185
Cross-Site Request Forgery

in AJAX requests 156, 157
URL 157

CSV files
orders, exporting to 264

cURL
URL 424

custom authentication backend
building 120-122

custom decorators
creating, for AJAX views 161, 162

customer orders
creating 238-242
GET request 239
models, creating 235, 236
models, including in

administration site 236, 237
POST request 239
registering 234

custom filters
URL 69

custom migration
creating 315
existing data, migrating 316, 318

custom models
fields, creating 350-355
fields, URL 352

custom template filters
creating 61-69

custom template tags
creating 62-66
URL 61, 67

custom User model
specifying, URL 172
using 118

custom views
administration site, extending with 267, 270

D
data counts

denormalizing, with signals 192
data migration

URL 344
data models

reference link 18
detail view

building 423-425
for images, creating 150-152

Django
authentication customization, URL 118
authentication, dealing with 95
authentication framework 89
customizing authentication, URL 120
documentation, URL 70
e-mails, sending with 39, 40
forms, creating with 36, 37
installing 1, 2
installing, with pip 3
isolated Python environment, creating 2, 3
password changes, handling 95
password reset, ways 95
reference link 2
URL, for installation 3

django-braces
about 364-370
installing 364
LoginRequiredMixin 364
mixins, URL 364
PermissionRequiredMixin 364

django-localflavor
URL 326
used, for validating form fields 325

django-parler
custom migration, creating 315
installing 313
migrations, applying for model

translation 320, 321

[440]

model fields, translating 313-315
models, translating 312
reference link 315
translations, integrating in administration

site 319
URL 324
views, adapting for translations 321-324

django-paypal
installing 250, 251
URL 250

Django Rest framework
installing 420
URL 420, 436

Django sessions
shopping carts, storing 220, 221
using 218

django-taggit managers
URL 52, 60

domready 156

E
e-Learning platform

building 337, 338
CMS, creating 356
course models, building 338-340
custom model fields, creating 350-355
models, creating for diverse

content 344, 345
e-mails

sending, with Django 39, 40

F
Facebook

URL 124
used, for adding social

authentication 124, 125
feeds

creating, for blog posts 73, 74
follower system

AJAX view, building for
following user 178, 179

building 169
list and detail views for user profiles, creat-

ing 173-177
many-to-many relationships, creating with

intermediary model 170-173

format localization
reference link 325

forms
creating, from models 47
creating, with Django 36, 37
fields, URL 37
handling, in views 37, 38
rendering, in templates 41-43

formsets
can_delete parameter 371
course modules, managing 371
Extra parameter 371
Fields parameter 371
is_valid() method 370
URL 370
using 370-374

Fuzzy translations 308

G
generic activity stream application

activity stream, disadvantages 188
building 180
contenttypes framework, using 181, 182
duplicate actions, adding in activity stream

186
generic relations, adding to models 182-185
QuerySets, optimizing 189
templates, creating 190, 191
user actions, adding to activity stream 187

generic relations
adding, to models 182-185

get_model() method 81
gettext toolset

URL 293
Google

URL 127, 128
used, for adding social

authentication 127-131
groups

access, restricting to class-based views 363
working with 362, 363

H
Haystack

data, indexing 82, 83
documentation, URL 86

[441]

indexes, building 80-82
installing 79, 80
search view, creating 83-86
used, for adding search engine 75

helper functions
assignment_tag 62
inclusion_tag 62
simple_tag 62

Homebrew
URL 293, 408

I
image bookmarking website

creating 134
image model, building 134, 135
image model, registering in administration

site 137
many-to-many relationships, creating 136

image model
building 135
created field 135
description field 135
image field 135
registering, in administration site 137
slug field 135
title field 135
url field 135
user field 135

image thumbnails
creating, with sorl-thumbnail 153

index_queryset() method 81
installation

Celery 243
RabbitMQ 243

Instant Payment Notification (IPN) 251
internationalization (i18n)

about 291
adding 291
django-localflavor, using 325
Fuzzy translations 308
language, determining 293
management commands 292
models, translating with django-parler 312
project, preparing 294, 295
Python code, translating 295

Rosetta translation interface, using 305-307
settings 292
templates, translating 301
translations, adding 293
URL 292
URL patterns 308
users, allowing to switch language 311, 312

item_description() method 73
items() method 73
item views

storing, in Redis 197-201

J
Java

URL, for download 75
jQuery

loading 155, 156
URL 156
used, for adding AJAX actions 154, 155
used, for building bookmarklet 143-150
used, for performing AJAX

requests 158-161

L
language code 292
language name 292
less secured apps

URL 39
list

building 22
creating 22, 23

list views
AJAX pagination, adding 163-167
building 423-425

load_all() method 84
localization (l10n)

adding 291
formatting 324
URL 324

low-level cache API
about 411, 412
caching, dynamic data based 413, 414

Lucene instance 76

[442]

M
management commands, internationaliza-

tion (i18n)
compilemessages 293
makemessages 292

many-to-many relationships
creating 136
creating, with intermediary model 170, 171

many-to-one relationships
URL 45

memcached
adding, to project 409
installing 408
monitoring 410
URL 408
Windows binary version, URL 408

message file 291
messages framework

using 118
methods

add_message() method 118
debug () method 118
error () method 118
info() method 118
success() method 118

migrations
applying 11-13
creating 11-13

mixins
URL 360

ModelForms
handling, in views 47-49
save() method, overriding 139-143

model inheritance
abstract models 345, 346
multi-table model inheritance 345, 346
proxy models 345, 347
using 345

model managers
creating 21, 22

models
forms, creating from 47

N
nested serializers

creating 425-427
Ngrok

URL 263

O
Object-Relational Mapping (ORM) 18, 19
objects

creating 18, 19
deleting 21
retrieving 19
retrieving, exclude() method used 20
retrieving, filter() method used 20
retrieving, order_by() method used 20
updating 19

online shop project
catalog models, registering in administra-

tion site 209
catalog templates, creating 212-217
catalog views, building 210-212
creating 205, 206
product catalog models, creating 206-208

orders
custom actions, adding to administration

site 264-266
exporting, to CSV files 264

P
pagination

adding 29, 30
parsers

about 422, 423
URL 423

payment gateway
adding 252-256
application, configuring 261, 262
django-paypal, installing 250, 251
integrating 249
payment notifications, obtaining 260, 261
payment notifications, testing 262, 263
PayPal account, creating 250
PayPals Sandbox, using 256-259

[443]

PayPal
Sandbox, using 256-259
URL, for signing up 250

PDF invoices
generating 271
files, rendering 274-277
files, sending by e-mail 277, 278
template, creating 272, 273
WeasyPrint, installing 272

permissions
access, restricting to class-based views 363
adding, to views 429-431
custom permissions, URL 363
URL 430
working with 362, 363

per-site cache
using 416, 417

pip
Django, installing with 3
URL 3

Poedit
URL 300

Postman
URL 424

post model
author field 10
body field 10
created field 10
publish field 10
slug field 10
status field 10
title field 10
updated field 10

posts, sharing by e-mail
about 35
e-mails, sending with Django 39, 40
forms, creating with Django 36, 37
forms, handling in views 37, 38
forms, rendering in templates 41

primary key (pk) 390
product catalog models

creating 206-209
Product model fields

available 208
category 207
created 208
description 207

image 207
name 207
price 208
slug 207
stock 208
updated 208

Python
Redis, using with 199

Python 3.5.0
URL 2

Python Imaging Library (PIL) 113

Q
QuerySet

evaluating 21
objects, creating 18, 19
objects, deleting 21
objects, retrieving 19
objects, updating 19
prefetch_related, using 189
select_related, using 189
with involve related objects, optimizing 189
working with 18

R
RabbitMQ

installing 243
URL 243

ready() method 195
receiver functions 193
recommendation engine

building 326
products, recommending 327-335

Redis
caching 204
counting 204
installing 197-199
item views, storing 200, 201
latest items, storing 204
Pub/Sub 204
queues 204
rankings and leaderboards 204
ranking, storing 202, 203
used, for storing item views 197
using, with Python 199, 200

[444]

redis-py docs
URL 199

regular expressions
URL 24

renderers
about 422
URL 423

RESTful API
additional actions, adding to view

sets 432, 433
authentication, handling 428, 429
building 419, 420
course contents, serializing 434, 435
custom permissions, creating 433, 434
custom views, building 427, 428
detail view, building 423-425
Django Rest framework, installing 420
list view, building 423-425
nested serializers, creating 425-427
parsers 422, 423
permissions, adding to views 429, 430
renderers 422, 423
routers, creating 431, 432
serializers, defining 421, 422
view sets, creating 431, 432

reverse_lazy() function 99
Rosetta translation interface

URL 307
using 305-307

routers
creating 431, 432
URL 432

S
save() method, ModelForm

overriding 139-142
search engine

adding, with Haystack 75
adding, with Solr 75

search view
URL 86

serializers
defining 421, 422
URL 427

session related settings 219
sessions data, storing

cached database sessions 219
cached sessions 219
cookie-based sessions 219
database sessions 219
file-based sessions 219

shopping cart
building 217
context processor, creating 232
displaying, by creating template 227, 228
Django sessions, using 218
items, adding 225-227
product quantities, updating 230, 231
products, adding 229, 230
session expiration 220
session settings 218, 219
setting, into request context 233, 234
storing, in sessions 220-224
views, creating 224

signals
application configuration classes,

defining 195-197
URL 193
used, for denormalizing counts 192
working with 193, 194

site
sitemap, adding 69-72
social authentication, adding to 122
social authentication, URL 122

social authentication
adding, to site 122, 123
adding, with Facebook 123-125
adding, with Google 127-131
adding, with Twitter 126

social website project
creating 87
elements, building 87
middleware classes 89
starting 88

Solr
core, creating 76-78
data, indexing 82, 83
indexes, building 80, 81
installing 75

[445]

search view, creating 83-86
URL 82, 83
used, for adding search engine 75

sorl-thumbnail
URL 154
used, for creating image thumbnails 153

static() helper function 114
student registration

adding 394
courses, enrolling in 397-400
view, creating 395-397

T
tagging functionality, blogs

adding 52-60
templates

creating, for views 25-29
forms, rendering 41-43
fragments, caching 414, 415

templates, internationalization (i18n)
{% blocktrans %} template tag 301, 302
{% trans %} template tag 301
shop templates, translating 302-305
translating 301

translations
custom code, translating 296-301
including variables 296
lazy translations 295
plural forms 296
standard translations 295
URL 295

Twitter
URL 126, 127
used, for adding social authentication 126

U
URL patterns, internationalization (i18n)

about 308
features 308
language prefix, adding 308, 309
translating 309-311

User model
extending 112-117

user profiles
about 109, 110
list and detail views, creating 173-177

user registration
about 109
allowing 109-112

users_like_changed function 194

V
views

adapting, for translations 321-324
building 22
canonical URLs, building for models 25
creating 22, 23
forms, handling 37, 38
ModelForms, handling 47-49
templates, creating 25-29
URL patterns, adding 23-25

view sets
actions, adding 432, 433
creating 431, 432
URL 432

virtualenv
URL 3

virtualenvwrapper
about 3
URL 3

W
WeasyPrint

installing 272
URL 272

Z
ZUNIONSTORE command

about 329
URL 329

Thank you for buying
Django By Example

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Django Design Patterns and Best
Practices
ISBN: 978-1-78398-664-4 Paperback: 222 pages

Easily build maintainable websites with powerful and
relevant Django design patterns

1. Unravel the common problems of web
development in Django.

2. Learn the current best practices while working
in Django 1.7 and Python 3.4.

3. Experience the challenges of working on an
end-to-end social network project.

Web Development with Django
Cookbook
ISBN: 978-1-78328-689-8 Paperback: 294 pages

Over 70 practical recipes to create multilingual,
responsive, and scalable websites with Django

1. Improve your skills by developing models,
forms, views, and templates.

2. Create a rich user experience using Ajax and
other JavaScript techniques.

3. A practical guide to writing and using APIs to
import or export data.

Please check www.PacktPub.com for information on our titles

Django Essentials
ISBN: 978-1-78398-370-4 Paperback: 172 pages

Develop simple web applications with the powerful
Django framework

1. Get to know MVC pattern and the structure of
Django.

2. Create your first webpage with Django
mechanisms.

3. Enable user interaction with forms.

4. Program extremely rapid forms with Django
features.

Instant Django 1.5 Application
Development Starter
ISBN: 978-1-78216-356-5 Paperback: 78 pages

Jump into Django with this hands-on guide to
practical web application development with Python

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Work with the database API to create a data-
driven app.

3. Learn Django by creating a practical web
application.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a Blog Application
	Installing Django
	Creating an isolated Python environment
	Installing Django with pip

	Creating your first project
	Running the development server
	Project settings
	Projects and applications
	Creating an application

	Designing the blog data schema
	Activating your application
	Creating and applying migrations

	Creating an administration site for your models
	Creating a superuser
	The Django administration site
	Adding your models to the administration site
	Customizing the way models are displayed

	Working with QuerySet and managers
	Creating objects
	Updating objects
	Retrieving objects
	Using the filter() method
	Using exclude()
	Using order_by()

	Deleting objects
	When QuerySet are evaluated
	Creating model managers

	Building list and detail views
	Creating list and detail views
	Adding URL patterns for your views
	Canonical URLs for models

	Creating templates for your views
	Adding pagination
	Using class-based views
	Summary

	Chapter 2: Enhancing Your Blog with Advanced Features
	Sharing posts by e-mail
	Creating forms with Django
	Handling forms in views
	Sending e-mails with Django
	Rendering forms in templates

	Creating a comment system
	Creating forms from models
	Handling ModelForms in views
	Adding comments to the post detail template

	Adding tagging functionality
	Retrieving posts by similarity
	Summary

	Chapter 3: Extending Your Blog Application
	Creating custom template tags and filters
	Creating custom template tags
	Creating custom template filters

	Adding a sitemap to your site
	Creating feeds for your blog posts
	Adding a search engine with Solr and Haystack
	Installing Solr
	Creating a Solr core
	Installing Haystack
	Building indexes
	Indexing data
	Creating a search view

	Summary

	Chapter 4: Building a Social Website
	Creating a social website project
	Starting your social website project

	Using the Django authentication framework
	Creating a log-in view
	Using Django authentication views
	Log in and log out views
	Change password views
	Reset password views

	User registration and user profiles
	User registration
	Extending the User model
	Using a custom User model

	Using the messages framework

	Building a custom authentication backend
	Adding social authentication to your site
	Authentication using Facebook
	Authentication using Twitter
	Authentication using Google

	Summary

	Chapter 5: Sharing Content in Your Website
	Creating an image bookmarking website
	Building the image model
	Creating many-to-many relationships
	Registering the image model in the administration site

	Posting content from other websites
	Cleaning form fields
	Overriding the save() method of a ModelForm
	Building a bookmarklet with jQuery

	Creating a detail view for images
	Creating image thumbnails using
sorl-thumbnail
	Adding AJAX actions with jQuery
	Loading j Query
	Cross-Site Request Forgery in AJAX requests
	Performing AJAX requests with jQuery

	Creating custom decorators for your views
	Adding AJAX pagination to your list views
	Summary

	Chapter 6: Tracking User Actions
	Building a follower system
	Creating many-to-many relationships with an intermediary model
	Creating list and detail views for user profiles
	Building an AJAX view to follow users

	Building a generic activity stream application
	Using the contenttypes framework
	Adding generic relations to your models
	Avoiding duplicate actions in the activity stream
	Adding user actions to the activity stream
	Displaying the activity stream
	Optimizing QuerySets that involve related objects
	Using select_related
	Using prefetch_related

	Creating templates for actions

	Using signals for denormalizing counts
	Working with signals
	Defining application configuration classes

	Using Redis for storing item views
	Installing Redis
	Using Redis with Python
	Storing item views in Redis
	Storing a ranking in Redis
	Next steps with Redis

	Summary

	Chapter 7: Building an Online Shop
	Creating an online shop project
	Creating product catalog models
	Registering catalog models in the admin site
	Building catalog views
	Creating catalog templates

	Building a shopping cart
	Using Django sessions
	Session settings
	Session expiration
	Storing shopping carts in sessions
	Creating shopping cart views
	Adding items to the cart
	Building a template to display the cart
	Adding products to the cart
	Updating product quantities in the cart

	Creating a context processor for the current cart
	Context processors
	Setting the cart into the request context

	Registering customer orders
	Creating order models
	Including order models in an administration site
	Creating customer orders

	Launching asynchronous tasks with Celery
	Installing Celery
	Installing RabbitMQ
	Adding Celery to your project
	Adding asynchronous tasks to your application
	Monitoring Celery

	Summary

	Chapter 8: Managing Payments and Orders
	Integrating a payment gateway
	Creating a PayPal account
	Installing django-paypal
	Adding the payment gateway
	Using PayPal's Sandbox
	Getting payment notifications
	Configuring our application
	Testing payment notifications

	Exporting orders to CSV files
	Adding custom actions to the administration site

	Extending the admin site with custom views
	Generating PDF invoices dynamically
	Installing WeasyPrint
	Creating a PDF template
	Rendering PDF files
	Sending PDF files by e-mail

	Summary

	Chapter 9: Extending Your Shop
	Creating a coupon system
	Building the coupon models
	Applying a coupon to the shopping cart
	Applying coupons to orders

	Adding internationalization and localization
	Internationalization with Django
	Internationalization and localization settings
	Internationalization management commands
	How to add translations to a Django project
	How Django determines the current language

	Preparing our project for internationalization
	Translating Python code
	Standard translations
	Lazy translations
	Translations including variables
	Plural forms in translations
	Translating your own code

	Translating templates
	The {% trans %} template tag
	The {% blocktrans %} template tag
	Translating the shop templates

	Using the Rosetta translation interface
	Fuzzy translations
	URL patterns for internationalization
	Adding a language prefix to URL patterns
	Translating URL patterns

	Allowing users to switch language
	Translating models with django-parler
	Installing django-parler
	Translating model fields
	Creating a custom migration
	Integrating translations in the administration site
	Applying migrations for model translation
	Adapting views for translations

	Format localization
	Using django-localflavor to validate
form fields

	Building a recommendation engine
	Recommending products based on previous purchases

	Summary

	Chapter 10: Building an e-Learning Platform
	Creating an e-Learning platform
	Building the course models
	Registering the models in the administration site
	Providing initial data for models

	Creating models for diverse content
	Using model inheritance
	Abstract models
	Multi-table model inheritance
	Proxy models

	Creating the content models

	Creating custom model fields
	Creating a content management system
	Adding the authentication system
	Creating the authentication templates
	Creating class-based views
	Using mixins for class-based views
	Working with groups and permissions
	Restricting access to class-based views

	Using formsets
	Managing course modules

	Adding content to course modules
	Managing modules and contents
	Reordering modules and contents

	Summary

	Chapter 11: Caching Content
	Displaying courses
	Adding student registration
	Creating a student registration view
	Enrolling in courses

	Accessing the course contents
	Rendering different types of content

	Using the cache framework
	Available cache backends
	Installing memcached
	Cache settings
	Adding memcached to your project
	Montioring memcached

	Cache levels
	Using the low-level cache API
	Caching based on dynamic data

	Caching template fragments
	Caching views
	Using the per-site cache

	Summary

	Chapter 12: Building an API
	Building a RESTful API
	Installing Django Rest Framework
	Defining serializers
	Understanding parsers and renderers
	Building list and detail views
	Creating nested serializers
	Building custom views
	Handling authentication
	Adding permissions to views
	Creating view sets and routers
	Adding additional actions to view sets
	Creating custom permissions
	Serializing course contents

	Summary

	Index

