

Hands-On	Cryptography	with	Python

	

	

	

	

	

	

	

Leverage	the	power	of	Python	to	encrypt	and	decrypt	data

	

	

	

	

	

	

	

	

	

	

	

Samuel	Bowne

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Hands-On	Cryptography	with	Python
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Gebin	George
Acquisition	Editor:	Prachi	Bisht
Content	Development	Editor:	Deepti	Thore
Technical	Editor:	Varsha	Shivhare
Copy	Editor:	Safis	Editing
Project	Coordinator:	Kinjal	Bari
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Jisha	Chirayil
Production	Coordinator:	Nilesh	Mohite

First	published:	June	2018

Production	reference:	1280618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78953-444-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

http://www.PacktPub.com
http://www.packtpub.com

Contributor

About	the	author
Sam	Bowne	has	been	teaching	computer	networking	and	security	classes	at	City
College	of	San	Francisco	since	2000.	He	has	given	talks	and	hands-on	training	at
DEFCON,	HOPE,	B-Sides	SF,	B-Sides	LV,	BayThreat,	LayerOne,	Toorcon,	and
many	other	schools	and	conferences.	He	has	done	his	PhD	and	CISSP.	He	is	a
DEF	CON	Black-Badge	co-winner.

	

	

	

	

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Hands-On	Cryptography	with	Python

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributor

About	the	author

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

1.	 Obfuscation

About	cryptography

Installing	and	setting	up	Python

Using	Python	on	Mac	or	Linux

Installing	Python	on	Windows

Caesar	cipher	and	ROT13

Implementing	the	Caesar	cipher	in	Python

ROT13

base64	encoding

ASCII	data

Binary	data

XOR

Challenge	1	–	the	Caesar	cipher

Challenge	2 –	base64

Challenge	3 – XOR

Summary

2.	 Hashing

MD5	and	SHA	hashes

What	are	hashes?

Windows	password	hashes

Getting	hashes	with	Cain

MD4	and	Unicode

Cracking	hashes	with	Google

Cracking	hashes	with	wordlists

Linux	password	hashes

Challenge	1	–	cracking	Windows	hashes

Challenge	2	–	cracking	many-round	hashes

Challenge	3	–	cracking	Linux	hashes

Summary

3.	 Strong	Encryption

Strong	encryption	with	AES

ECB	and	CBC	modes

ECB

CBC

Padding	oracle	attack

Strong	encryption	with	RSA

Public	key	encryption

RSA	algorithm

Implementation	in	Python

Challenge	–	cracking	RSA	with	similar	factors

Large	integers	in	Python

What's	next?

Cryptography	within	IoT

ZigBee	cryptographic	keys

Complexity	of	ZigBee	key	management

Bluetooth	–	LE

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Cryptography	has	a	long	and	important	history	in	protecting	critical	systems	and
sensitive	information.	This	book	will	show	you	how	to	encrypt,	evaluate,
compare,	and	attack	data	using	Python.	Overall,	the	book	will	help	you	deal	with
the	common	errors	in	encryption	and	show	you	how	to	exploit	them.

	

Who	this	book	is	for
This	book	is	intended	for	security	professionals	who	want	to	learn	how	to
encrypt	data,	evaluate	and	compare	encryption	methods,	and	how	to	attack	them.

What	this	book	covers
Chapter	1,	Obfuscation,	covers	the	Caesar	cipher	and	ROT13,	simple	character
substitution	ciphers,	and	base64	encoding.	We	then	move	on	to	XOR.	In	the	end,
there	are	challenges	to	test	your	learning		that	involve	cracking	the	Caesar
cipher,	reversing	base64	encoding,	and	deciphering	XOR	encryption	without	the
key.	

Chapter	2,	Hashing,	covers	the	older	MD5	and	the	newer	SHA	hashing	techniques
and	also	Windows	password	hashes.	The	weakest	type	of	hashing	is	common
use,	followed	by	Linux	password	hashes,	which	are	the	strongest	type	of	hashing
in	common	use.	Afterward,	there	are	some	challenges	to	complete.	The	first	is	to
crack	some	Windows	hashes	and	recover	passwords,	then	you	will	be	tasked
with	cracking	hashes	where	you	don't	even	know	how	many	rounds	of	hashing
algorithm	were	used,	and	finally	you	will	be	asked	to	crack	those	strong	Linux
hashes.

Chapter	3,	Strong	Encryption,	covers	the	primary	mode	used	to	hide	data	today.	It
is	strong	enough	for	the	US	military.	Then,	there	are	two	of	its	modes,	ECB	and
CBC;	CBC	being	the	stronger	and	more	common	one.	We	will	also	discuss	the
padding	oracle	attack,	which	makes	it	possible	to	overcome	some	parts	of	AES
CBC	if	the	designer	makes	an	error	and	the	overly	informative	error	message
gives	information	to	the	attacker.	Finally,	we	introduce	RSA,	the	main	public
key	algorithm	used	today,	which	makes	it	possible	to	send	secrets	over	an
insecure	channel	without	having	exchanged	a	gives	private	key.	Following	all
that,	we	will	perform	a	challenge	where,	we	will	crack	RSA	in	the	case	where	it
is	erroneously	created	with	two	similar	prime	numbers	instead	of	two	random
prime	numbers.

To	get	the	most	out	of	this	book
You	do	not	need	to	have	programming	experience	or	any	special	computer.	Any
computer	that	can	run	Python	can	do	these	projects,	and	you	don't	need	much
math	because	we'll	not	be	inventing	new	encryption	techniques	just	to	learn	how
to	use	the	pre-existing	standard	ones	that	don't	require	anything	more	than	very
basic	algebra.

	

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Hands-On-Cryptography-with-Python.	In	case	there's	an	update	to	the	code,	it
will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Cryptography-with-Python
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/
files/downloads/HandsOnCryptographywithPython_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/HandsOnCryptographywithPython_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"If	we	enter	HELLO,	it	prints	out	the	correct	answer
of	KHOOR."

A	block	of	code	is	set	as	follows:	alpha	=
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
str_in	=	raw_input("Enter	message,	like	HELLO:	")

n	=	len(str_in)
str_out	=	""

for	i	in	range(n):
c	=	str_in[i]
loc	=	alpha.find(c)
print	i,	c,	loc,	
newloc	=	loc	+	3
str_out	+=	alpha[newloc]
print	newloc,	str_out

print	"Obfuscated	version:",	str_out

Any	command-line	input	or	output	is	written	as	follows:	$	python

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

Obfuscation
	

Python	is	the	best	language	to	start	with	if	you	are	a	beginner,	which	is	what
makes	it	so	popular.	You	can	write	powerful	code	with	just	a	few	lines,	and	most
importantly,	you	can	handle	arbitrarily	large	integers	with	complete	precision.
This	book	covers	essential	cryptography	concepts;	classic	encryption	methods,
such	as	the	Caesar	cipher	and	XOR;	the	concepts	of	confusion	and	diffusion,
which	determine	how	strong	a	crypto	system	is;	hiding	data	with	obfuscation;
hashing	data	for	integrity	and	passwords;	and	strong	encryption	methods	and
attacks	against	these	methods,	including	the	padding	oracle	attack.	You	do	not
need	to	have	programming	experience	to	learn	any	of	this.	You	don't	need	any
special	computer;	any	computer	that	can	run	Python	can	do	these	projects.	We'll
not	be	inventing	new	encryption	techniques	just	for	learning	how	to	use	standard
pre-existing	ones	that	don't	require	anything	more	than	very	basic	algebra.

We	will	first	deal	with	obfuscation,	the	basic	idea	of	what	encryption	is,	and	old-
fashioned	encryption	techniques	that	hide	data	to	make	it	more	difficult	to	read.
This	latter	process	is	one	of	the	basic	activities	that	encryption	modules	use	in
combination	with	other	methods	to	make	stronger,	more	modern	encryption
techniques.

In	this	chapter,	we	will	cover	the	following	topics:

About	cryptography
Installing	and	setting	up	Python
Caesar	cipher	and	ROT13
base64	encoding
XOR

	

	

About	cryptography
The	term	crypto	has	become	overloaded	recently	with	the	introduction	of	all
currencies,	such	as	Bitcoin,	Ethereum,	and	Litecoin.	When	we	refer	to	crypto	as
a	form	of	protection,	we	are	referring	to	the	concept	of	cryptography	applied	to
communication	links,	storage	devices,	software,	and	messages	used	in	a	system.
Cryptography	has	a	long	and	important	history	in	protecting	critical	systems	and
sensitive	information.

During	World	War	II,	the	Germans	used	Enigma	machines	to	encrypt
communications,	and	the	Allies	went	to	great	lengths	to	crack	the	encryption.
Enigma	machines	used	a	series	of	rotors	that	transformed	plaintext	to	ciphertext,
and	by	understanding	the	position	of	the	rotors,	the	Allies	were	able	to	decrypt
the	ciphertext	into	plaintext.	This	was	a	momentous	achievement	but	took
significant	manpower	and	resources.	Today	it	is	still	possible	to	crack	certain
encryption	techniques;	however,	it	is	often	more	feasible	to	attack	other	aspects
of	cryptographic	systems,	such	as	the	protocols,	the	integration	points,	or	even
the	libraries	used	to	implement	cryptography.

Cryptography	has	a	rich	history;	however,	nowadays,	you	will	come	across	new
concepts,	such	as	blockchain,	that	can	be	used	as	a	tool	to	help	secure	the	IoT.
Blockchain	is	based	on	a	set	of	well-known	cryptographic	primitives.	Other	new
directions	in	cryptography	include	quantum-resistant	algorithms,	which	hold	up
against	a	theorized	onslaught	of	quantum	computers	and	quantum	key
distributions.	They	use	protocols	such	as	BB84	and	BB92	to	leverage	the
concepts	of	quantum	entanglement	and	create	good-quality	keys	for	using
classical	encryption	algorithms.

Installing	and	setting	up	Python
Python	has	never	been	easy	to	install.	In	order	to	proceed,	let's	make	sure	that	we
have	set	up	Python	on	our	machine.	We	will	see	how	to	use	Python	on	macOS	or
Linux	and	how	to	install	it	on	Windows.

Using	Python	on	Mac	or	Linux
	

On	a	macOS	or	Linux	system,	you	do	not	need	to	install	Python	because	it	is
already	included.	You	just	need	to	open	a	Terminal	window	and	enter	the	python
command.	This	will	put	you	in	an	interactive	mode	where	you	can	execute	python
commands	one	by	one.	You	can	close	the	interactive	mode	by	executing
the	exit()	command.	So,	basically,	to	create	a	script,	we	use	the	nano	text	editor
followed	by	the	name	of	the	file.	We	then	enter	python	commands	and	save	the
file.	You	can	then	run	the	script	with	python	followed	by	the	script	name.	So,	let's
see	how	to	use	Python	on	macOS	or	Linux	in	the	following	steps:

1.	 Open	the	Terminal	on	a	macOS	or	Linux	system	and	run
the	python	command.	This	opens	an	interactive	mode	of	Python,	as	shown	in
the	following	screenshot:

2.	 When	you	use	the	print	command,	it	prints	Hello	right	away:

>>>	print	"Hello"

Hello

3.	 We	will	then	leave	with	the	following	command:

>>>	exit()

4.	 As	mentioned	before,	to	use	Python	in	interactive	mode,	we	will	enter	the
command	as	shown:

$	nano	hello.py

5.	 In	the	hello.py	file,	we	can	write	commands	like	this:

print	"HELLO"

6.	 Save	the	file	by	pressing	Ctrl	+	X	followed	by	Y	and	Enter	only	if	you've
modified	it.

7.	 Now,	let's	type	Python	followed	by	the	the	script	name:

$	python	hello.py

When	you	run	it,	you	will	get	the	following	output:

The	preceding	command	runs	the	script	and	prints	out	HELLO;	that's	all	you	have	to
do	if	you	have	a	macOS	or	Linux	system.

	

	

Installing	Python	on	Windows
If	you	have	Windows,	you	have	to	download	and	install	Python.

Here	are	the	steps	which	you	need	to	follow:

1.	 Download	Python	from	https://www.python.org/downloads/
2.	 Run	it	in	a	Command	Prompt	window
3.	 Start	interactive	mode	with	Python
4.	 Close	with	exit()

To	create	a	script,	you	just	use	Notepad,	enter	the	text,	save	the	file	with	Ctrl	+
S,	and	then	run	it	with	python	followed	by	the	script	name.	Let's	get	started	with
the	installation.	

Open	the	Python	page	using	link	given	previously	and	download	Python.	It
offers	you	various	versions	of	Python.	In	this	book,	we	will	use	Python	2.7.12.

Sometimes,	you	can't	install	it	right	away	because	Windows	marks	it	as
untrusted:

1.	 You	have	to	unblock	it	in	the	properties	first	so	that	it	will	run,	and	run	the
installer

2.	 If	you	go	through	the	steps	of	the	installer,	you'll	see	an	optional	step
named	Add	python.exe	to	path.	You	need	to	choose	that	selection

The	purpose	of	that	selection	is	to	make	it	so	Python	can	run	from	the	command
line	in	a	Terminal	window,	which	is	called	Command	Prompt	on	Windows.

Now	let's	proceed	with	our	installation:

1.	 Open	the	Terminal	and	type	the	following	command:

$	python

2.	 When	you	run	it,	you	can	see	that	it	works.	So,	now	we	will	type	a
command:

https://www.python.org/downloads/

print	"HELLO"

Refer	to	the	following	screenshot:

3.	 We	can	exit	using	the	exit()	command	as	shown	earlier.
4.	 Now,	if	we	want	to	make	a	script,	we	type	the	following	command:

notepad	hello.py

5.	 This	opens	up	Notepad:

6.	 We	want	to	create	a	file.	In	that	file,	we	enter	the	following	command:

print	"HELLO"

7.	 Then,	save	and	close	it.	In	order	to	run	it,	we	need	to	enter	the	following
command:

$	python	hello.py

It	runs	and	prints	HELLO.

Usually,	when	you	install	Python	on	Windows,	it	fails	to	correct	the	path,	so	you
have	to	execute	the	following	commands	to	create	a	symbolic	link;	otherwise,
Python	will	not	start	correctly	from	the	command	line:

1.	 cd	c:	\Windows
2.	 mklink	/H	python.exe
3.	 c:	\python27\python.exe

In	the	next	section,	we	will	look	at	the	Caesar	cipher	and	ROT13	obfuscation
techniques.

techniques.

Caesar	cipher	and	ROT13
In	this	section,	we	will	explain	what	a	Caesar	cipher	is	and	how	to	implement	it
in	Python.	Then,	we	will	consider	other	shift	values,	modular	arithmetic,	and
ROT13.

A	Caesar	cipher	is	an	ancient	trick	where	you	just	move	every	letter	forward
three	characters	in	the	alphabet.	Here	is	an	example:

Plaintext:	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext:	DEFGHIJKLMNOPQRSTUVWXYZABC

So,	HELLO	becomes	KHOOR.

To	implement	it,	we're	going	to	use	the	string.find()	method.	The	interactive
mode	of	Python	is	good	for	testing	new	methods,	hence	it's	easy	to	create	a
string.	You	can	make	a	very	simple	script	to	implement	the	Caesar	cipher	with	a
string	named	alpha	for	alphabet.	You	can	then	take	input	from	the	user,	which	is
the	plaintext	method,	then	set	a	value,	n,	which	equals	the	length	of	the	string,
and	the	string	out	is	equal	to	an	empty	string.	We	then	have	a	loop	that	goes
through	n	repetitions,	finding	the	character	from	string	in	and	then	finding	the
location	of	that	character	in	the	alpha	string.	It	then	prints	out	those	three	values
so	that	we	can	make	sure	that	the	script	is	working	correctly,	then	it	adds	3	to	loc
(location)	and	puts	the	corresponding	character	in	string	out,	and	again	prints	out
partial	values	so	that	we	can	see	that	the	script	is	working	correctly.	At	the	end,
we	print	our	final	output.	Adding	extra	print	statements	is	a	very	good	way	to
begin	your	programming	because	you	can	detect	mistakes.	

Implementing	the	Caesar	cipher	in
Python
Let's	go	ahead	and	open	the	Terminal	and	follow	these	steps	to	implement
Caesar	cipher	in	Python:

1.	 We	will	use	Python	in	interactive	mode	first	and	then	make	a	string	that	just
has	some	letters	in	order	to	test	this	method:

>>>	str	=	"ABCDE"

>>>	str.find("A")

0

>>>	str.find("B")

1

>>>	exit()

2.	 Because	we	understand	how	the	string	methods	work,	we'll	exit	and	go	into
the	nano	text	editor	to	look	at	the	first	version	of	our	script:

$	nano	caesar1.py

3.	 When	you	run	the	command,	you	will	get	the	following	code:

alpha	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

str_in	=	raw_input("Enter	message,	like	HELLO:	")

n	=	len(str_in)

str_out	=	""

for	i	in	range(n):

			c	=	str_in[i]

			loc	=	alpha.find(c)

			print	i,	c,	loc,	

			newloc	=	loc	+	3

			str_out	+=	alpha[newloc]

			print	newloc,	str_out

print	"Obfuscated	version:",	str_out

You	can	see	the	alphabet	and	the	input	from	the	user	in	the	script.
You	calculate	the	length	of	the	string,	and	for	each	character,	C	is
going	to	be	the	one	character	on	processing,	loc	will	be	the
numerical	location	of	that	character,	newloc	will	be	loc	plus	3,	and
we	can	then	add	that	character	to	string	out.	Let's	see	this.	

4.	 Leave	using	Ctrl+X	and	then	enter	the	following	command:

$	python	caesar1.py

5.	 When	you	run	this	command,	you	will	get	the	following	output:

Enter	message,	like	HELLO:

6.	 If	we	enter	HELLO,	it	prints	out	the	correct	answer	of	KHOOR:

When	we	run	this	script,	it	takes	the	input	of	HELLO	and	it	breaks	it	up	character	by
character	so	that	it	processes	each	character	on	a	separate	line.	H	is	found	to	be
the	7th	character,	so	adding	3	gives	me	10,	which	results	in	K.	It	shows	us
character	by	character	how	it	works.	So,	the	first	version	of	the	script	is	a
success.

To	clean	the	code	further,	we	will	remove	the	unnecessary	print	statements	and
switch	to	a	shift	variable.	We	will	create	a	variable	shift	variable.	Which	also
comes	from	raw	inputs,	but	we	have	to	convert	it	to	an	integer	because	raw	input
is	interpreted	as	text	as	you	can't	add	text	to	an	integer.	This	is	the	only	change	in
the	script	that	follows.	If	you	give	it	a	shift	value	of	3,	you	get	KHOOR;	if	you	give	it
a	shift	value	of	10,	you	get	ROVVY;	but	if	you	put	in	a	shift	value	of	14,	it	crashes,
saying	string	index	out	of	range.	Here,	the	problem	is,	we've	added	multiple
times	to	the	loc	variable,	and	eventually,	we	move	past	Z,	and	the	variable	is	no
longer	valid.	In	order	to	improve	that,	after	adding	something	to	the	variable,
we'll	check	to	see	whether	it's	greater	than	or	equal	to	26,	and	whether	26	can	be
subtracted	from	it.	Once	you	run	this,	you	can	use	a	shift	of	14,	which	will	work.
We	can	use	a	shift	of	24,	and	it	works	too.	However,	if	we	use	a	shift	of	44,	it's
out	of	range	again.	This	is	because	just	subtracting	26	once	when	it's	over	26	is
not	really	enough,	and	the	right	solution	here	is	modular	arithmetic.	If	we	put	%
26,	it	will	calculate	the	number	modulus	26,	which	will	prevent	it	from	ever
leaving	the	range	of	0	through	25.	It	will	divide	it	by	26	and	keep	only	the
remainder,	as	expected	in	this	case.	We're	going	to	see	the	modular	function

many	more	times	as	we	move	forward	in	cryptography.	You	can	put	in	any
shift	value	of	your	choice,	such	as	300,	and	it	will	never	crash,	but	will	turn	that
into	a	number	between	0	and	25.

Let's	see	how	the	script	works	with	other	shift	values:

1.	 Take	a	look	at	the	script	Caesar:

$	nano	caesar2.py

2.	 When	you	run	it,	you	will	get	the	following:

3.	 This	is	the	script	that	allows	us	to	vary	the	shift	value	but	does	not	handle
anything	about	the	shift	value	getting	too	large.	Let's	run	the	following
command:

$	python	caesar2.py

4.	 If	you	enter	HELLO	and	give	it	a	shift	of	3,	it's	fine,	but	if	we	run	it	again	and
give	it	a	shift	of	20,	it	crashes:

So,	as	expected,	there	are	some	limitations	in	this	one.

5.	 Let's	move	on	to	caesar3:

$	nano	caesar3.py

6.	 After	running	it,	we	get	the	following	output:

Caesar3	attempts	to	solve	that	problem	by	catching	it	if	we	know
that	the	addition	causes	it	to	be	greater	than	or	equal	to	26	and
subtracting	26	from	it.

7.	 Let's	run	the	following	command:

$	python	caesar3.py

8.	 We	will	give	it	shift	characters	and	a	shift	of	20,	and	it	will	be	fine:

9.	 If	we	give	it	a	shift	of	40,	it	does	not	work:

There	is	some	improvement,	but	we	are	still	not	able	to	handle
any	value	of	shift.

10.	 Let's	go	up	to	caesar4:

$	nano	caesar4.py

11.	 When	you	run	the	command,	you	will	get	this:

This	is	the	one	that	uses	modular	arithmetic	with	the	percent	sign,
and	that's	not	going	to	fail.

12.	 Let's	run	the	following	command:

$	python	caesar4.py

13.	 When	you	run	the	command,	you	will	get	this:

This	is	the	script	that	handles	all	the	values	of	the	Caesar	shift.

ROT13
ROT13	is	nothing	more	than	a	Caesar	cipher	with	a	shift	equal	to	13	characters.
In	the	script	that	follows,	we	will	hardcode	the	shift	to	be	13.	If	you	run	one	cycle
of	ROT13,	it	changes	HELLO	to	URYYB,	and	if	you	encrypt	it	again	with	the	same
process,	putting	in	that	URYYB,	it'll	turn	back	into	HELLO,	because	the	first	shift	is	just
by	13	characters	and	shifting	by	another	13	characters	takes	the	total	shift	to	26,
which	wraps	right	around,	and	that	is	what	makes	this	one	useful	and	important:

1.	 Now	let's	look	at	the	ROT13	script	using	the	following	command:

$	nano	rot13.py

2.	 When	you	run	the	preceding	command,	you	can	see	the	script	file:

3.	 It's	just	exactly	equal	to	our	last	Caesar	cipher	shift,	with	a	script	with	a
shift	of	13.	Run	the	script	as	shown	here:

$	python	rot13.py

The	following	is	the	output:	

4.	 If	we	enter	the	message	URYYB	and	run	that,	it	turns	back	into	HELLO:

This	is	important	because	there	are	quite	a	few	cryptographic	functions	that	have
this	property;	where	you	encrypt	something	once	and	encrypt	it	again,	you
reverse	the	process.	Instead	of	making	it	more	encrypted,	it	becomes
unencrypted.	In	the	next	section,	we	will	cover	base64	encoding.

base64	encoding
We	will	now	discuss	encoding	ASCII	data	as	bytes	and	base64	encoding	these
bytes.	We	will	also	cover	base64	encoding	for	binary	data	and	decoding	to	get
back	to	the	original	input.

ASCII	data
In	ASCII,	each	character	turns	into	one	byte:

A	is	65	in	base	10,	and	in	binary,	it	is	0b01000001.	Here,	you	have	0	in	the	most
significant	bit	because	there's	no	128,	then	you	have	1	in	the	next	bit	for	64
and	1	in	the	end,	so	you	have	64	+	1=65.
The	next	is	B	with	base	66	and	C	with	base	67.	The	binary	for	B	is	0b01000010,
and	for	C,	it	is	0b01000011.

The	three-letter	string	ABC	can	be	interpreted	as	a	24-bit	string	that	looks	like	this:

We've	added	these	blue	lines	just	to	show	where	the	bytes	are	broken	out.	To
interpret	that	as	base64,	you	need	to	break	it	into	groups	of	6	bits.	6	bits	have	a
total	of	64	combinations,	so	you	need	64	characters	to	encode	it.

The	characters	used	are	as	follows:

We	use	the	capital	letters	for	the	first	26,	lowercase	letters	for	another	26,	the
digits	for	another	10,	which	gets	you	up	to	62	characters.	In	the	most	common
form	of	base64,	you	use	+	and	/	for	the	last	two	characters:

If	you	have	an	ASCII	string	of	three	characters,	it	turns	into	24	bits	interpreted	as
3	groups	of	8.	If	you	just	break	them	up	into	4	groups	of	6,	you	have	4	numbers
between	0	and	63,	and	in	this	case,	they	turn	into	Q,	U,	J,	and	D.	In	Python,	you

just	have	a	string	followed	by	the	command:

>>>	"ABC".encode("base64")

'QUJD\n'

This	will	do	the	encoding.	Then	add	an	extra	carriage	return	at	the	end,	which
neither	matters	nor	affects	the	decoding.

What	if	you	have	something	other	than	a	group	of	3	bytes?

The	=	sign	is	used	to	indicate	padding	if	the	input	string	length	is	not	a	multiple	of	3	bytes.

If	you	have	four	bytes	for	the	input,	then	the	base64	encoding	ends	with	two
equals	signs,	just	to	indicate	that	it	had	to	add	two	characters	of	padding.	If	you
have	five	bytes,	you	have	one	equals	sign,	and	if	you	have	six	bytes,	then	there's
no	equals	signs,	indicating	that	the	input	fit	neatly	into	base64	with	no	need	for
padding.	The	padding	is	null.

You	take	ABCD	and	encode	it	and	then	you	take	ABCD	with	explicit	byte	of	zero.	x00
means	a	single	character	with	eight	bits	of	zero,	and	you	get	the	same	result	with
just	an	extra	A	and	one	equals,	and	if	you	fill	it	out	all	the	way	with	two	bytes	of
zero,	you	get	capital	A	all	the	way.	Remember:	a	capital	A	is	the	very	first
character	in	base64.	It	stands	for	six	bits	of	zero.

Let's	take	a	look	at	base64	encoding	in	Python:

1.	 We	will	start	python	up	and	make	a	string.	If	you	just	make	a	string	with
quotes	and	press	Enter,	it	will	print	it	in	immediate	mode:

>>>	"ABC"

'ABC'

2.	 Python	will	print	the	result	of	each	calculation	automatically.	If	we	encode
that	with	base64,	we	will	get	this:

>>>	"ABC".encode(""base64")

'QUJD\n'

3.	 It	turns	into	QUJD	with	an	extra	courage	return	at	the	end	and	if	we	make	it
longer:

>>>	"ABCD".encode("base64")

'QUJDRA==\n'

4.	 This	has	two	equals	signs	because	we	started	with	four	bytes,	and	it	had	to
add	two	more	to	make	it	a	multiple	of	three:

>>>	"ABCDE".encode("base64")

'QUJDREU=\n'

>>>	"ABCDEF".encode("base64")

'QUJDREVG\n'

5.	 With	a	five-byte	input,	we	have	one	equals	sign;	and	with	six	bytes	of	input,
we	have	no	more	equal	signs,	instead,	we	have	a	total	of	eight	characters
with	base64.

6.	 Let's	go	back	to	ABCD	with	the	two	equals	signs:

>>>"ABCD".encode("base64")

'QUJDRA==\n'

7.	 You	can	see	how	the	padding	was	done	by	putting	it	in	explicitly	here:

>>>	"ABCD\x00\x00".encode("base64")

'QUJDRAA=\n'

There's	a	first	byte	of	zero,	and	now	we	get	another	single	equals
sign.

8.	 Let's	put	in	a	second	byte	of	zero:

>>>	"ABCD\x00\x00".encode("base64")

'QUJDRAAA\n'

We	have	no	padding	here,	and	we	see	that	the	last	characters	are	all	A,	indicating
that	there's	been	a	filling	of	binary	zeros.

Binary	data
The	next	issue	is	handling	binary	data.	Executable	files	are	binary	and	not
ASCII.	Also,	images,	movies,	and	many	other	files	have	binary	data.	ASCII	data
always	starts	with	a	zero	as	the	first	bit,	but	base64	works	fine	with	binary	data.
Here	is	a	common	executable	file,	a	forensic	utility;	it	starts	with	MZê	and	has
unprintable	ASCII	characters:

As	this	is	a	hex	viewer,	you	see	the	raw	data	in	hexadecimal,	and	on	the	right,	it
attempts	to	print	it	as	ASCII.	Windows	programs	have	this	string	at	the	start,	and
this	program	cannot	be	run	in	DOS	mode,	but	they	have	a	lot	of	unprintable
characters,	such	as	FF	and	0,	which	really	doesn't	matter	for	Python	at	all.	An
easy	way	to	encode	data	like	that	is	to	read	it	directly	from	the	file.	You	can	use
the	with	command.	It	will	just	open	a	file	with	filename	and	mode	read	binary
with	the	handle	f	and	then	you	can	read	it.	The	with	command	is	here	just	to	tell
Python	to	open	the	file,	and	that	if	it	cannot	be	opened	due	to	some	error,	then
just	to	close	the	handle	and	then	decode	it	exactly	the	same	way.	To	decode	data
you've	encoded	in	this	fashion,	you	just	take	the	output	string	and	you	put	.decode
instead	of	.encode.

Now	let's	take	a	look	at	how	to	handle	binary	data:

1.	 We	will	first	exit	Python	so	that	we	can	see	the	filesystem,	and	then	we'll
look	for	the	Ac	file	using	the	command	shown	here:

>>>	exit()

$	ls	Ac*

AccessData	Registry	Viewer_1.8.3.exe

There's	the	filename.	Since	that's	kind	of	a	long	block,	we	are	just

going	to	copy	and	paste	it.

2.	 Now	we	start	Python	and	clear	the	screen	using	the	following	command:

$	clear

3.	 We	will	start	python	again:

$	python

4.	 Alright,	so,	now	we	use	the	following	command:

>>>	with	open("AccessData	Registry	Viewer_1.8.3.exe",	"rb")	as	f:

...	data	=	f.read()

...	print	data.encode("base64")

Here	we	enter	the	filename	first	and	then	the	mode,	which	is	read
binary.	We	will	give	it	filename	handle	of	f.	We	will	take	all	the
data	and	put	it	in	a	single	variable	data.	We	could	just	encode	the
data	in	base64,	and	it	would	automatically	print	it.	If	you	have	an
intended	block	in	Python,	you	have	to	press	Enter	twice	so	it
knows	the	block	is	done,	and	then	base64	encodes	it.

5.	 You	get	a	long	block	of	base64	that	is	not	very	readable,	but	this	is	a	handy
way	to	handle	data	like	that;	say,	if	you	want	to	email	it	or	put	it	in	some
other	text	format.	So,	to	do	the	decoding,	let's	encode	something	simpler	so
that	we	can	easily	see	the	result:

>>>	"ABC".encode("base64")

'QUJD\n'

6.	 If	we	want	to	play	with	it,	put	that	in	a	c	variable	using	the	following
command:

>>>	c	=	"ABC".encode("base64")

>>>	print	c

QUJD

7.	 Now	we	can	print	c	to	make	sure	that	we	have	got	what	we	expected.	We
have	QUJD,	which	is	what	we	expected.	So,	now	we	can	decode	it	using	the
following	command:

>>>	c.decode("base64")

'ABC'

base64	is	not	encrypting.	It	is	not	hiding	anything,	but	it	is	just	another	way	to
represent	it.	In	the	next	section,	we'll	cover	XOR.

XOR
This	section	explains	what	XOR	is	on	single	bits	with	a	truth	table,	and	then
shows	how	to	do	it	on	bytes.	XOR	undoes	itself,	so	decryption	is	the	same
operation	as	encryption.	You	can	use	single	bytes	or	multiple	byte	keys	for
XOR,	and	we	will	use	looping	to	test	keys.	Here's	the	XOR	truth	table:

0	^	0	=	0

0	^	1	=	1

1	^	0	=	1

1	^	1	=	0

If	you	feed	in	two	bits	and	the	two	bits	are	the	same,	the	answer	is	0.	If	the	bits
are	different,	the	answer	is	1.

XOR	operates	on	one	bit	at	a	time.	Python	indicates	XOR	with	the	^	operator.

The	truth	table	shows	how	it	works.	You	feed	in	bits	that	are	equally	likely	to	be
0	and	1	and	XOR	them	together,	then	you	end	up	with	50%	ones	and	zeros,
which	means	that	XOR	does	not	destroy	any	information.

Here's	the	XOR	for	bytes:

A	0b01000001

B	0b01000010

XOR	0b00000011

A	is	the	number	65,	so	you	have	1	for	64	and	1	for	1;	B	is	1	larger,	and	if	you	XOR
the	two	of	them	together,	all	the	bits	match	for	the	first	6	bits,	and	they're	all	0.
The	last	two	bits	are	different,	and	they	turn	into	1.	This	is	the	binary	value	3,
which	is	not	a	printable	character,	but	you	can	express	it	as	an	integer.

The	key	can	be	single	byte	or	multibyte.	If	the	key	is	a	single	byte,	such	as	B,
then	you	use	the	same	byte	to	encrypt	every	plaintext	character.	Just	keep
repeating	the	key	over	and	over:

Repeat	B	for	this	byte,	B	for	that	byte,	and	so	on.	If	the	key	is	multibyte,	then	you
repeat	the	pattern:

You	use	B	for	the	first	byte,	C	for	the	next	byte,	then	again	B	for	the	next	byte,	C
for	the	next	byte,	and	so	on.	

To	do	this	in	Python,	you	need	to	loop	through	the	bytes	of	a	string	and	calculate
an	index	to	show	which	byte	you're	on.	Then	we	enter	some	text	from	the	user,
calculate	its	length,	then	go	through	the	indices	from	1	up	to	the	length	of	the
string,	starting	at	0.	Then	we	take	the	text	byte	and	just	print	it	out	here	so	you
can	see	how	the	loop	works.	So,	if	we	give	it	a	five-character	plaintext,	such
as	HELLO,	it	just	prints	out	the	characters	one	by	one.	

To	do	the	XOR,	we'll	input	a	plaintext	and	a	key	and	then	take	a	byte	of	text	and
a	byte	of	key,	XOR	them	together,	and	print	out	the	results

Note	%len(key),	which	is	what	prevents	you	from	running	off	the	end	of	the	key.
It	will	just	keep	repeating	the	bytes	in	the	key.	So,	if	the	key	is	three	bytes	long,
this	will	be	modulus	three,	so	it	will	count	as	0,	1,	2,	and	then	back	to	0	1	2	0	1	2,
and	so	on.	In	this	way,	you	can	handle	any	length	of	plaintext.

If	you	combine	uppercase	and	lowercase	letters,	you'll	often	find	the	case	that
XOR	produces	unprintable	bytes.	In	the	example	that	follows,	we	have	used
HELLO,	Kitty,	and	a	key	of	qrs.	Note	that	some	of	these	bytes	are	readily	printable
and	some	of	them	contain	strange	characters,	such	as	Esc	and	Tab,	which	are

difficult	to	print.	Therefore,	the	best	way	to	handle	the	output	is	not	to	attempt	to
print	it	as	ASCII,	but	instead	print	it	as	hex	encoded	values.	Instead	of	trying	to
print	the	bytes	one	by	one,	we	combine	them	into	a	cipher	variable,	and	in	the
end,	we	print	out	the	entire	plaintext,	the	entire	key,	and	then	the	entire
ciphertext	in	hex.	In	this	way,	it	can	correctly	handle	these	strange	values	that
are	difficult	to	print.

Let's	try	this	looping	in	Python:

1.	 We	open	the	Terminal	and	enter	the	following	command:

$	nano	xor1.py

2.	 When	you	run	it,	you	will	get	the	following	output:

3.	 This	is	the	first	one	that	is	xor1.py,	so	we	input	text	from	the	user,	calculate
it's	length,	and	then	just	print	out	the	bytes	one	by	one	to	see	how	the	loop
works.	Let's	run	it	and	give	it	HELLO:

4.	 	It	just	prints	out	the	bytes	one	by	one.	Now,	let's	look	at	the	next	XOR	2:

This	inputs	text	and	key	the	same	way	and	goes	through	each	byte	of	text,	picks
out	the	correct	byte	of	key	using	the	modular	arithmetic,	performs	the	XOR,	and
prints	out	the	results.

5.	 So	if	we	run	the	same	file	here,	we	take	HELLO	and	a	key	as	shown:

$	nano	xor2.py

$	python	xor2.py

So,	the	output	is	as	follows:

It	calculates	the	bytes	one	by	one.	Note	how	we	get	two	equals
signs	here,	which	is	the	reason	why	you	would	use	a	multiple	by
key	because	the	plaintext	is	changing	but	the	key,	is	also	changing
and	that	pattern	is	not	reflected	in	the	output,	so	it's	more
effective	obfuscation.

6.	 Clear	that	and	look	at	the	third	xor2a.py	file:

You	can	see	that	this	handles	the	problem	of	unprintable	bytes.

7.	 So,	we	create	a	variable	named	cipher,	combine	each	byte	of	output	here,
and	at	the	end,	we	encode	it	with	hex	instead	of	trying	to	print	it	out	directly:

8.	 If	you	give	it	HELLO	and	then	text	a	key	of	qrs,	it	will	give	you	the	plaintext
HELLO	Kitty,	the	key,	and	then	the	hexadecimal-encoded	output,	which	can
easily	handle	funny	characters,	such	as	0	7	and	0	5.	In	the	next	section,	you'll
see	challenge	1—the	Caesar	cipher.

Challenge	1	–	the	Caesar	cipher
After	a	Caesar	cipher	review,	we'll	have	an	example	of	how	to	solve	it	and	then
your	challenge.	Remember	how	the	Caesar	cipher	works.	You	have	an	alphabet
of	available	characters,	you	take	in	the	message	and	a	shift	value,	and	then	you
just	shift	the	characters	forward	that	many	steps	in	the	alphabet,	wrapping
around	if	you	go	around	the	end.	The	script	we	end	up	with	works	for	any	shift
value,	including	normal	numbers,	such	as	3,	or	even	numbers	that	are	larger	than
26;	they	just	wrap	around	and	can	scramble	any	data	you	put	it.

Here's	an	example:

1.	 For	ciphertext,	you	can	decipher	it	by	just	trying	all	the	shift	values	from	0
to	25,	and	one	of	them	will	just	be	readable.	This	is	a	simple	brute-force
attack.	Let's	take	a	look	at	it.

Here,	in	Python,	go	to	the	caesar4	script,	that	we	had	before.	It
takes	in	a	string	and	shifts	it	by	any	value	you	specify.	If	we	use
that	script,	we	can	run	it	as	follows:

2.	 Then,	if	we	put	in	HELLO	and	shift	it	by	3,	it	turns	into	KHOOR.
3.	 If	we	want	to	crack	it,	we	can	use	the	solution	script	as	follows:

4.	 So,	if	we	use	that	script,	we	can	run	it:

5.	 If	we	put	it	in	KHOOR,	it'll	shift	it	by	a	variety	of	values,	and	you	can	see	the
one	that's	readable	at	23,	which	is	HELLO.	So,	the	example	we	discussed	before
of	longer	ciphertexts	and	so	on	will	become	readable	down	at	3,	where	you

see	its	DEMONSTRATION:

6.	 Your	challenge	is	to	decipher	this	string:	MYXQBKDEVKDSYXC.

In	the	next	section,	we'll	have	a	challenge	on	base64.

Challenge	2	–	base64
After	a	base64	review,	we'll	perform	an	example	to	show	you	how	to	decode	some
obfuscated	text,	and	then	we	have	one	simple	and	one	hard	challenge	for	you.

Here	is	the	base64	review:

base64	encoding	text	makes	it	longer.	Here's	the	sample	text	to	decode:

U2FtcGxliHRleHQ=

It	decodes	into	the	string	sample	text.	Let's	take	a	look	at	that.

Refer	to	the	following	steps:

1.	 If	you	run	python	in	immediate	mode,	it	will	do	four	simple	jobs:

$	python

2.	 So,	if	we	take	ABC	and	encode	it	with	base64,	we	get	this	string:

>>>	"ABC".encode("base64")

'QUJD\n'

3.	 If	we	decode	that	with	base64,	we	get	back	to	the	original	text:

>>>	"QUJD".decode("base64")

'ABC'

4.	 So,	the	challenge	text	is	as	follows,	and	if	you	decode	it,	you	get	the	string
sample	text:

>>>	"U2FtcGxliHRleHQ=".decode("base64")

'Sample	text'

5.	 So,	that	will	do	for	simple	case;	your	first	challenge	looks	like	that:

Decode	this:	VGhpcyBpcyB0b28gZWFzeQ==

6.	 Here's	a	long	string	to	decode	for	your	longer	challenge:

Decode	this:

VWtkc2EwbEliSFprVTJeFl6SlZaMWxUUW5OaU1qbDNVSGM5UFFvPQo=

This	long	string	is	so	long	because	it's	been	encoded	by	base64	not	just	once	but
several	times.	So,	you'll	have	to	try	decoding	it	until	it	turns	into	something
readable.	In	the	next	section,	we'll	have	Challenge	3	–	XOR.

Challenge	3	–	XOR
In	this	section,	we	will	review	how	XOR	works	and	then	give	you	an	example,
and	then	present	you	with	two	challenges.

So,	here	is	one	of	the	XOR	programs	we	discussed	before:

You	input	arbitrary	texts	and	an	arbitrary	key,	and	then	go	through	the	bytes	one
by	one,	picking	out	one	byte	of	text	and	one	byte	of	key	before	combining	them
with	XOR	and	printing	out	the	results.	So,	if	you	put	in	HELLO	and	qrs,	you'll	get
encrypted	stuff,	encrypted	with	XOR.

Here's	an	example:

It	will	scramble	into	EXAMPLE.	So,	this	undoes	encryption;	remember	that	XOR
undoes	itself.

If	you	want	to	break	into	one	of	these,	one	simple	procedure	is	just	to	try	every
key	and	print	out	the	results	for	each	one,	and	then	read	the	key	is	readable.

So,	we	try	all	single-digit	keys	from	0	to	9.

The	result	is	that	you	feed	in	the	ciphertext,	encrypt	it	with	each	of	these,	and
when	you	hit	the	correct	key	value,	it	will	turn	into	readable	text.

when	you	hit	the	correct	key	value,	it	will	turn	into	readable	text.

Let's	take	a	look	at	that:

Here's	the	decryption	routine,	which	simply	inputs	texts	from	the	user	and	then
tries	every	key	in	this	string,	0	through	9.	For	each	one	of	those	it	combines,
think	the	XORed	text	into	a	variable	named	clear,	so	it	can	print	one	line	for	each
key	and	then	the	clear	result.	So,	if	we	run	that	one	and	put	in	my	ciphertext,	it

gives	us	10	lines.:	

We	just	scanned	through	these	lines	and	saw	which	one	becomes	readable,	and
you	can	see	the	correct	key	and	the	correct	plaintext	at	6.	The	first	challenge	is

here:	

This	is	similar	to	the	one	we	saw	earlier.	The	key	is	a	single	digit,	and	it	will
decrypt	into	something	readable.	Here's	a	longer	example	that	is	in	a
hexadecimal	format:	

The	key	is	two	digits	of	ASCII,	so	you'll	have	to	try	100	choices	to	find	a	way	to
turn	this	into	a	readable	string.

Summary
In	this	chapter,	after	setting	up	Python,	we	covered	the	simple	substitution
cipher,	the	Caesar	cipher,	and	then	base64	encoding.	We	gathered	data	six	bits	at	a
time	instead	of	eight	bits	at	a	time,	and	then	we	looked	at	XOR	encoding,	where
bits	are	flipped	one	by	one	in	accordance	with	the	key.	We	also	saw	a	very
simple	truth	table.	The	challenges	you	performed	were	cracking	the	Caesar
cipher	without	the	key,	cracking	base64	by	reversing	it	to	get	the	original	bytes,
and	cracking	XOR	encryption	without	knowledge	of	the	key	with	a	brute-force
attack	trying	all	possible	keys.	In	Chapter	2,	Hashing,	we	will	cover	different
types	of	hashing	algorithms.

	

Hashing
	

Hashing	has	two	main	purposes:	the	first	is	to	put	a	fingerprint	on	a	file	so	you
can	tell	whether	it	has	been	altered,	and	the	second	is	to	conceal	passwords	so
you	can	still	recognize	the	correct	password	and	enable	login	but	a	person	who
steals	the	hash	cannot	easily	recover	the	password	from	it.

In	this	chapter,	we	will	cover	the	following	topics:

MD5	and	SHA	hashes
Windows	password	hashes
Linux	password	hashes
Challenge	1	–	cracking	Windows	hashes
Challenge	2	–	cracking	many-round	hashes
Challenge	3	–	cracking	Linux	hashes

	

	

MD5	and	SHA	hashes
After	explaining	what	a	hash	function	is,	we	will	deal	with	MD5	and	then	the
SHA	family:	SHA-1,	SHA-2,	and	SHA-3.	We	will	also	acquire	a	bit	of
information	about	cracking	hashes.

What	are	hashes?
As	mentioned	earlier,	one	point	of	using	hashes	is	to	put	a	fingerprint	on	a	file.
You	can	take	all	the	bytes	in	the	file	and	combine	them	together	with	a	hash
algorithm,	and	this	creates	a	fixed-links	hash	value.	If	you	change	any	part	of	the
file	and	recalculate	the	hash,	you	get	a	completely	different	value.	So,	the	idea
is	that	if	you	have	two	files	that	are	supposed	to	be	identical,	you	can	calculate
the	hash	of	each	file,	and	if	the	hash	of	both	files	match,	then	the	files	are
identical.

A	very	common	hash	is	MD5;	it's	been	around	for	a	couple	of	decades.	It's	128
bits	long,	which	is	rather	short	for	a	hash	function,	and	it's	reliable	enough	for
most	purposes.	People	use	it	to	put	a	fingerprint	on	downloads,	and	malware
samples,	and	all	sorts	of	things,	and	they	are	also	sometimes	used	to	obscure
passwords.	It's	not	a	perfect	hash	function:	there	are	some	collisions	known,	and
there	are	some	algorithms	that,	at	the	expense	of	some	computer	time,	can	create
collisions,	which	are	pairs	of	files	that	hash	to	the	same	value.	So,	if	you	do	find
two	files	with	MD5s	that	match,	you	do	not	know	with	complete	certainty	that
they	are	identical	files,	but	they	usually	are.

It's	very	easy	to	calculate	them	in	Python.	You	just	import	the	hash	library	and
then	proceed	with	the	calculation.	You	call	the	hash	library	to	create	a	new
object.	The	first	parameter	is	the	algorithm	used,	which	is	MD5.	The	second
parameter	is	the	contents	of	the	data	to	be	hashed.

Here,	we	will	use	HELLO	as	an	example,	and	then	you	need	to	use	the	hexdigest	at
the	end	or	it	will	just	print	an	address	to	the	data	structure	instead	of	showing
you	the	actual	value.	We	will	use	the	hash	of	HELLO,	MD5,	and	a	hexadecimal	and
it	is	128	bits	long.	So,	that's	128	over	4,	or	32,	hexadecimal	characters,	and	if
you	add	another	character	to	the	HELLO,	like	an	exclamation	point	the	hash
changes	completely;	there's	no	resemblance	between	the	hash	of	one	value	and
the	hash	of	the	next.

The	Secure	Hash	Algorithm	(SHA)	was	designed	to	be	an	improvement	on
MD5,	and	SHA-1	had	no	collisions	until	about	a	year	ago,	when	some

researchers	at	Google	Inc.	found	out	how	to	make	collisions	in	SHA-1,	so
careful	people	are	switching	to	SHA-2.	There	is	another	algorithm	approved	by
the	National	Institute	of	Standards,	called	SHA-3,	which	almost	nobody	is
using	because	as	far	as	anyone	expects,	SHA-2	will	remain	secure	for	a	very
long	time	to	coms.	But,	if	something	were	to	happen	to	compromise	SHA-2,
SHA-3	will	be	available	for	us	to	use.	Both	SHA-2	and	SHA-3	have	various
lengths,	but	the	most	common	lengths	are	256	and	512	bits.

You	can	calculate	SHA-1	and	SHA-2	hashes	easily	in	Python,	but	SHA-3	is	not
commonly	used	and	it's	not	part	of	this	hash	library	yet.	So,	if	you	use	SHA-1	for
the	algorithm,	you	get	a	SHA-1	hash.	It	looks	like	an	MD5	hash,	but	it's	longer.
Then	there	are	SHA-256	and	SHA-512,	which	are	both	SHA-2	hashes.	You	can
see	that,	although	they're	more	secure,	they	are	much	longer	and	somewhat	less
convenient:

So,	let's	take	a	look.

Open	the	Terminal	and	execute	the	python	command	to	start	the	Python	Terminal:

You	can	then	run	the	following	commands:

You	have	to	import	hashlib.	Then,	you	can	add	hashlib.new.	The	first	parameter	is
the	algorithm,	which	is	md5,	in	this	case.	The	next	parameter	is	the	data	to	hash,

which	is	HELLO,	and	then	hexdigest	is	added	to	see	the	hexadecimal	value.	So,
there's	the	hash	of	HELLO,	and	if	we	put	another	character	at	the	end	such	that	it
reads	HELLOa,	then	we	get	a	completely	different	answer:

If	we	want	to	use	a	different	algorithm,	we	can	just	put	in	SHA-1:

Now	we	get	a	long	hash,	and,	if	we	add	sha256	as	character,	we	get	an	even	longer
hash:

These	are	enough	hashes	for	almost	any	purpose.

If	you	have	the	hash	value	of	something	and	you	want	to	calculate	the	data	it
came	from,	in	principle,	there	is	not	a	unique	solution.	In	practice,	though,	for
short	objects	like	passwords,	there	is.	So,	if	someone	uses	an	MD5	function	to
obscure	a	password,	which	is	done	by	some	old	web	applications,	then	you	can
reverse	it	by	guessing	passwords	until	you	find	a	match.	There	is	no
mathematical	way	to	undo	a	hash	function,	so	you	just	have	to	make	a	library.	In
the	example	of	the	MD5	hash	of	HELLO,	if	you	just	made	a	series	of	guesses,	you'd
get	the	right	answer.	That's	how	hash	cracking	works;	it's	not	a	complicated	idea,
it's	just	kind	of	inconvenient.

We	can	take	the	MD5	hash	of	HELLO	and	keep	guessing:

If	we	were	guessing	words,	we	might	have	to	guess	millions	of	words	to	get
down	to	the	value	shown,	but	if	we	are	able	to	guess	the	right	value,	we'll	know
it's	right	when	the	hash	matches.	The	only	thing	that	determines	the	difficulty	of
this	is	how	many	hashes	you	can	calculate	per	second,	and	MD5	and	the	SHA
family	are	designed	to	calculate	very	fast,	so	you	could	actually	try	millions	of
passwords	per	second	with	them.	In	the	next	section,	we'll	talk	about	Windows
password	hashes.

Windows	password	hashes
In	this	section,	we	will	see	how	to	get	hashes	with	Cain	and	then	how	MD4	and
Unicode	work.	Then,	we'll	discuss	cracking	hashes	with	Google	and	cracking
hashes	with	wordlists.

Getting	hashes	with	Cain
Cain	is	a	free	hacking	tool	that	can	harvest	Windows	hashes	from	a	running
operating	system.	In	order	to	test	it,	we'll	make	three	accounts	on	Windows
Server,	the	very	latest	version	of	the	Windows	operating	system.	You	can	use
the	user	command	at	the	Command	Prompt	to	do	this.	You	can	add	a	user
named	John	with	a	password	P@sw0rd,	a	user	named	Paul	with	a	password,	and	a
user	named	Ringo	with	password	P@sw0rd999:	

If	you	run	Cain,	it	can	harvest	the	hashes.	The	following	screenshot	shows	the
three	users	and	their	hashes:	

The	LM	Hash	section	is	an	obsolete	system	that	is	no	longer	used	by	any	version
of	Windows,	so	it	just	contains	a	dummy	value	that	has	no	information.	The

actual	hash	used	by	Windows	when	you	log	in	is	called	the	NT	Hash.	Notice	that
if	two	users	have	the	same	password,	they	have	exactly	the	same	hash:	a	464
value.	That	is	one	of	the	weaknesses	in	this	system.	It	is	a	very	weak	and	old
password	system,	unfortunately.

MD4	and	Unicode
Here's	the	algorithm	Microsoft	uses.	It	takes	the	password	and	encodes	in
Unicode	instead	of	ASCII,	and	then	when	you	run	it	through	MD4	(which	is	a
very	old	algorithm,	even	older	than	MD5),	it	produces	the	NT	hash	value:

The	reason	Unicode	is	used	is	because	Microsoft	is	an	international	operating
system	that	allows	you	to	have	passwords	in	languages	such	as	Chinese	and
Japanese	that	do	not	encode	with	8-bits	per	character	but	16-bits	per	character.

Cracking	hashes	with	Google
Since	password	hashes	have	no	variation	and	any	two	users	with	the	same
password	will	have	the	same	hash,	all	the	hackers	that	had	cracked	wordlists	for
the	last	24	years	have	put	their	results	on	the	internet,	resulting	in	a	situation
where	you	can	just	Google	frequently	used	password	hashes:

If	you	just	put	a	hash	into	Google,	you'll	often	find	that	somebody	has	already
cracked	it	for	you	and	put	on	the	internet.	For	instance,	here's	this	one	P@sw0rd
that's	got	a	known	result,	so	you	can	crack	it.	That	simple	method	works	for	a
great	many	passwords	but	this	technique	does	not	work	for	the	password,	we
used	for	the	user	Ringo,	which	is	P@sw0rd999.

Cracking	hashes	with	wordlists
So,	in	a	case	where	the	passwords	cannot	be	cracked,	you	need	to	calculate	it
yourself:

You	just	use	the	same	procedure.	Make	a	series	of	guesses,	hash	them,	and	hunt
for	your	answer.	If	your	list	of	guesses	does	eventually	hit	the	right	value,	you'll
of	course	find	it	here.	So,	you	can	see	the	password	P@sw0rd999	with	5c2c....

It's	very	simple,	so	let's	give	it	a	try	in	Python.

In	the	Terminal	window,	we'll	enter	the	python	command.	Next	we'll	import	the
hashlib	library:

Thus,	you	can	see	the	line	that	does	the	encoding.	We	put	in	the	password,
encode	utf-16le,	which	is	the	Unicode;	then,	we	hash	it	with	MD4	and	express	it
as	hexdigest.

That's	number	for	P@sw0rd.	Now,	if	we	try	to	get	to	the	Ringo	user,	we	need	to	have

a	list	of	two	hashes	to	try,	which	will	need	to	have	some	values	that	eventually
reach	the	right	value:

If	we	are	just	counting	up	sequentially	using	997,	998,	and	999,	we'll	get	that	5c2c...
value	that	we	are	looking	for.

Linux	password	hashes
In	this	section,	we	will	first	discuss	how	to	get	the	hashes	from	an	operating
system,	and	then	look	at	the	salting	and	stretching	procedures	that	make	Linux
hashes	much	stronger.	We	will	then	discuss	the	specific	hashing	algorithm	used
by	modern	versions	of	Linux,	and	finally	look	at	cracking	hashes	with	wordlists
and	Python.

Here,	we	have	created	three	users	to	test	the	software	in	much	the	same	way	as
we	did	earlier	on	Windows.	John	and	Paul	have	the	same	password	and	Ringo	has	a
different	password:

You	get	the	hashes	from	the	etcshadow	file,	from	which	we	will	print	out	the	last
three	records.	So,	you	will	see	John,	Paul,	and	Ringo,	and	after	each	username
comes	$6,	which	indicates	that	it	is	a	type	6	of	password,	which	is	the	most
modern	and	secure	form.	Then	there	is	a	long,	random	string	of	characters	that
goes	up	to	the	next	dollar	sign,	and	then	an	even	longer	random	string	of
characters,	which	is	the	password	hash	itself.

The	first	thing	you	can	see	is	the	password	hash,	which	is	much	longer	and	more
complicated	than	the	Windows	password	hash.	The	next	thing	to	observe	is	that
even	though	John	and	Paul	have	the	same	password,	they	have	completely
different	hashes,	because	it	adds	a	random	salt	to	each	one	before	hashing	them
in	order	to	obscure	the	fact	that	these	passwords	are	the	same,	making	the
passwords	much	stronger.	Salting	is	the	procedure	of	adding	random	characters
before	hashing;	stretching	is	also	employed	here.	Instead	of	just	using	one	round
of	MD4,	it	uses	5,000	rounds	of	SHA-512,	which	simply	makes	it	take	much
more	CPU	time	to	calculate	the	hash.	The	point	of	this	is	to	slow	down	attackers
who	are	trying	to	make	dictionaries	of	password	hashes.

You	can	find	the	details	of	the	method	in	the	etclogin.defs	file,	which	shows	you
that	modern	versions	of	Linux	using	crypt	methods	SHA512	and	5000	rounds:

Thus,	the	procedure	requires	you	to	combine	salt	with	the	password.	You
perform	an	algorithm	that	includes	5,000	rounds	of	SHA-512	hashing.	It	actually
has	more	than	20	steps	that	involve	taking	two	hashes	together	and	mixing	the
bits	together,	but	it's	a	little	more	complicated	than	just	repeating	the	same	hash
algorithm	over	and	over.

We'll	use	the	passlive	library.	Before	using	it	in	Python,	you	have	to	install	it	with
the	pip	install	passlib	command.	Once	you've	got	it,	you	can	import	the
sha512_crypt	module.	Here's	how	you	use	it:

Let's	start	the	Python	Terminal.	Then	we	can	import	the	passlib	library	as	shown

earlier,	because	we've	already	put	it	in	pip	install.

Now,	we	can	calculate	the	first	one,	which	will	use	the	salt	value	from	the
shadow	file	and	hash	it,	as	shown	in	the	previous	screenshot.

As	you	can	see,	we	get	the	correct	results	(starting	r7k).	And,	if	we	were	doing	a
dictionary	attack,	we	would	have	a	series	of	password	guesses	as	shown:

It's	just	a	question	of	trying	them	until	you	get	the	one	that	matches.

Challenge	1	–	cracking	Windows
hashes
After	a	review	of	Windows	hashing	and	an	example	of	1-digit	hashing,	we	will
give	you	two	challenges—one	with	a	2-digit	password	and	one	with	a	7-digit
password.	Here's	how	Windows	hashes	look	in	Python:

The	algorithm	uses	hashlib	to	do	an	MD4	for	the	hash	of	the	password,	but	before
you	do	that,	encode	in	Unicode	which	is	utf-16le,	and	then	calculate	the	hexdigest
of	the	results	to	get	the	long	number,	The	number	starts	with	464,	in	this	case,
which	is	a	Windows	password	hash.

Thus,	you	can	write	a	program	that	will	try	all	the	characters	in	this	string,	which
will	consist	of	10	digits,	and	then	calculate	the	hash	for	each	one	of	them.	You
will	be	left	with	a	simple	dictionary	with	10	values:

You	can	crack	this	1-digit	hash	using	a	1-digit	password	as	follows:

So,	here's	a	challenge.	The	password	is	a	2-digit	one	between	00	and	99,	and	this
is	the	hash:

So,	you	have	to	make	a	loop	that	tries	100	possible	values.

The	next	one	is	a	7-digit	password,	and	this	is	the	hash:

So,	you'll	have	to	try	10	million	values.	That	will	only	take	a	few	seconds,	and
that's	why	Windows	password	hashes	are	so	very	weak—you	can	try	many
millions	of	them	per	second.

Challenge	2	–	cracking	many-round
hashes
After	a	review	of	how	MD5	and	SHA	work	in	Python,	we	will	see	what	a	many
round	hash	is,	and	then	you	will	get	two	challenges	to	solve.

MD5	and	SHA	are	both	easy	to	calculate:

From	the	hashlib	library,	you	just	need	to	use	the	hashlib.new	method	and	put	the
name	of	the	algorithm	in	the	first	parameter,	the	password	in	the	second
parameter,	and	then	add	the	hex-digest	to	it	to	see	the	actual	result	in
hexadecimal	instead	of	just	an	address	to	the	object.	To	do	many	rounds,	you
just	repeat	that	process.

You	need	to	put	the	password	in	h	and	then	use	the	current	h,	to	calculate	the	next
h	and	repeat	this	over	and	over	and	over.	Here's	a	little	script	that	prints	out	the
first	10	rounds	of	a	multi-round	MD5	hash:

This	technique	is	called	stretching,	and	it's	used	by	stronger	password	hashing
routines,	such	as	the	Linux	password	hashes	that	we've	seen	in	previous	sections.

Here's	your	first	challenge:	a	3-digit	password	hashed	100	times	with	MD5.	Find
it	from	this	hash:

Here's	another	challenge	for	you.	In	this	one,	you	have	an	unknown	number	of
rounds	with	SHA-1,	but	it's	not	more	than	5,000.	So,	you	just	have	to	try	all
values	and	find	the	3-digit	password	of	the	results	in	this	hash.

Challenge	3	–	cracking	Linux	hashes
After	a	review	of	Linux	hashes,	we'll	show	you	your	challenge.

Linux	hashes	are	salted	and	stretched,	and	there	are	various	versions	of	them.
We	are	covering	the	current	version,	which	is	version	6,	that	is,	the	most	secure
form:

The	hash	is	a	long	string	starting	with	the	dollar	sign;	the	6	indicates	the	version,
then	you	have	a	dollar	sign	followed	by	salt,	and	another	dollar	sign	followed	by
the	hash.	To	calculate	them	in	Python,	you	need	to	import	a	special	SHA-512
crypt	library,	as	you	use	the	format	shown	earlier.

Here's	your	third	challenge:	a	3-digit	password	in	this	format.	The	salt	value	is
penguins	and	the	hash	is	this	long	mess	starting	with	a	P	instance.

Summary
In	this	chapter,	we	covered	the	MD5	and	SHA-1	hashing	algorithms,	the
Windows	password	hashing	algorithm,	and	the	Linux	password	hashing
algorithm.	In	the	challenges,	you	cracked	a	Windows	password	hash	to	recover	a
plaintext	password,	and	another	password	hash	using	an	unknown	number	of
MD5	and	SHA-1	rounds.	Finally,	you	cracked	the	Linux	password	hashes	to
recover	the	plaintext	password.

In	Chapter	3,	Strong	Encryption,	we	will	cover	two	main	methods	of	strong
encryption,	that	is,	AES	and	RSA.

	

Strong	Encryption
	

Strong	encryption	conceals	data	even	against	determined	adversaries,	such	as
enemy	military	agencies,	if	done	correctly.	The	two	main	methods	of	strong
encryption	are	AES	and	RSA,	which	are	both	approved	by	the	US	government.
You	do	not	need	to	have	programming	experience	to	learn	this,	and	you	don't
need	any	special	computer;	any	computer	that	can	run	Python	can	do	these
projects.	Also,	you	don't	need	much	math	because	we	are	not	going	to	be
inventing	new	encryption	techniques	just	to	learn	how	to	use	the	standard	pre-
existing	ones	that	don't	require	anything	more	than	very	basic	algebra.

In	this	chapter,	we	will	cover		pre-existing:

Strong	encryption	with	AES	
ECB	and	CBC	modes
Padding	oracle	attack
Strong	encryption	with	RSA	
What's	next?

	

	

Strong	encryption	with	AES
In	this	section,	we	will	take	a	look	at	the	Advanced	Encryption	Standard
(AES),	private	key	encryption,	key	and	block	size,	how	to	influence	AES,	and
Python	and	confusion	and	diffusion.

AES	is	the	encryption	standard	approved	by	the	United	States	National	Institute
of	Standards	and	is	considered	very	secure.	It's	approved	even	for	the	storage	of
secret	military	information.	It	is	private	key	cryptography,	which	is	the	kind	of
cryptography	that	has	been	used	for	thousands	of	years	in	which	both	the	sender
and	the	receiver	use	the	same	key.	It's	a	block	cipher,	so	the	input	data	has	to	be
put	in	blocks	that	are	128-bits	long,	and	a	block	of	plaintext	is	encrypted	with	a
key,	producing	a	block	of	ciphertext:

There	are	three	key	sizes:	128,	192,	and	256-bits.	The	most	common	type	of
AES	is	the	128-bit	key	size,	and	that's	what	we'll	use	in	this	example.	In	Python,
it's	quite	easy	to	use.

Firstly,	you	need	to	import	the	AES	module	from	crypto	cipher,	then	you	need	a	16-
byte	key	and	plaintext,	which	is	some	integral	multiple	of	16	bytes.	You	will
then	create	a	new	AES	object	with	the	key	and	then	calculate	it	with	cipher
encrypt.	This	gives	you	a	16-byte	string,	which	may	be	unprintable,	so	it's	best	to
encode	it	as	hex	to	print	it	out;	and,	of	course,	if	you	decrypt	it,	you	get	back	to
your	original	plaintext.	This	has	many	desirable	cryptographic	properties,	and
one	of	them	is	confusion.	If	you	change	a	bit	of	the	key,	it	changes	the	entire

ciphertext.

So,	if	we	change	the	key	to	kex,	you	will	see	that	all	of	the	ciphertext	changes.
This	is	what	you	want.	Two	very	similar	keys	produce	completely	different
results,	so	you	cannot	find	any	pattern	in	the	results	that	you	could	use	to	deduce
information	about	the	key.

Similarly,	diffusion	is	a	desirable	property,	where	if	you	encrypt	something
twice	with	the	same	key	but	you	change	even	one	bit	of	the	plaintext,	again,	the
entire	ciphertext	changes.	See	the	following	example:

Here	we	have	bytes	and	we	get	the	same	433	ending	in	6a8.	If	we	change	the	last
letter	to	t,	you	can	see	that	it	starts	with	90c	and	ends	with	5d2;	that	is,	it
completely	changes.

Let's	take	a	look	at	that	in	Python:

1.	 Open	the	Terminal	window	and	start	python.	We	will	enter	the	following
command,	as	shown	in	the	sceenshot:

2.	 We	import	the	AES	module,	where	we	have	a	16-byte	key	and	a	16-byte
plaintext.	We	have	created	an	AES	object,	encrypted	it,	and	then	we	have
printed	out	the	hex	value	over	here:

3.	 Now,	we	change	the	key:

Here	we	go	up	to	the	key	line	and	change	that	to	say	z,	and	then
do	it	again,	creating	a	new	AES	object	with	that	key.	Performing
the	encryption	and	printing	out	the	results	again,	you	see
everything	is	different.

It	now	starts	with	b,	ends	with	4,	and	has	completely	changed.

4.	 Now,	we'll	leave	the	key	where	it	is	and	change	the	plaintext.	Let's	change	t
to	F.	Now	if	we	encrypt	that	and	print	out	the	result	in	hexadecimal,	once
again,	everything	has	changed;	even	though	this	is	the	same	key	as	the	one
above	it:

So,	this	shows	both	confusion	and	diffusion,	which	are	desirable	properties.	In
the	next	section,	we'll	discuss	ECB	and	CBC	modes.

ECB	and	CBC	modes
We'll	compare	Electronic	Codebook	(ECB)	and	Cipher	Block	Chaining
(CBC)	and	show	you	how	to	implement	AES	CBC	in	Python.

ECB
In	the	ECB	method,	each	block	of	plaintext	is	encrypted	with	the	key	separately,
so	if	you	have	two	blocks	of	plaintext	that	are	the	same,	they	will	result	in
identical	ciphertext:

If	you	have	something	like	an	image	here	with	large	areas	of	solid	colors	such	as
gray	and	black	and	then	you	encrypt	it,	you'll	just	get	different	colors	but	the
pattern	won't	change:

That's	not	good.	You	can	still	see	that	this	is	a	picture	of	a	penguin,	and	that's	not
what	most	people	expect	out	of	encryption.	You	expect	the	encryption	to	conceal

what	most	people	expect	out	of	encryption.	You	expect	the	encryption	to	conceal
the	data	so	attackers	looking	at	the	encrypted	data	can't	tell	what	the	message	is,
and	here	that	property	is	not	present.

Thus,	CBC	is	considered	the	best	solution	to	this	problem.

CBC
In	addition	to	the	key,	you	add	an	initialization	vector,	which	is	XOR'd	with	the
plaintext	before	encryption.	Then	for	the	next	block,	you	take	the	ciphertext
produced	by	encryption	and	use	it	as	the	initialization	vector	for	the	second
block.	The	output	of	that	is	used	as	the	initialization	vector	for	the	third	block.
Thus,	even	if	the	inputting	plaintext	is	the	same	in	every	block,	the	ciphertext
will	be	different	in	each	block:

This	results	in	far	more	obfuscation:

You	can	see	that	the	penguin	is	now	completely	invisible	and	all	the	bytes	are
just	random,	so	this	is	preferred	from	almost	every	purpose.

just	random,	so	this	is	preferred	from	almost	every	purpose.

To	do	it	in	Python,	here's	how	we	did	the	previous	AES,	which	was	the	EBC
mode.	By	default,	you	don't	specify	the	mode.

If	you	want	to	use	CBC	mode,	you	put	the	following	command:

AES	mode	CBC	when	you	create	the	cipher	object.	You	also	have	to	provide	an
initialization	vector,	which	can	be	16	bytes,	just	like	the	key.	If	you	encrypt	one
block	of	16	bytes	of	text,	there's	no	obvious	difference	in	the	result	because	of
the	initialization	vector,	but	it's	just	a	block	of	hexadecimal.	To	see	the	effect	of
this,	you	need	to	make	the	plaintext	longer.	When	you	encrypt	it,	you	get	a	blob
of	hexadecimal.	That's	the	ECB	mode,	which	does	not	remove	all	the	patterns	in
the	data.	Here's	the	CBC	mode	with	the	same	repeating	input.	As	you	can	see,
the	output	has	no	pattern,	and	does	not	repeat	however	far	you	go.	So,	it	much
more	effectively	conceals	the	data.

Let's	take	a	look	at	that.	We	start	Python	in	the	Terminal,	and	then	add	this	code:

So,	you	can	see	the	16-byte	key	and	the	16-byte	plaintext	AES	in	ECB	mode.
We	encrypt	it	and	print	the	answer.

If	we	want	to	make	it	longer,	we	add	this:

You	can	multiply	a	string	object	in	Python	and	if	you	just	print	it	out,	you'll	see
it's	just	the	same	thing	three	times.

Now	we	can	encrypt	that	plain3:

When	we	print	that	out,	it'll	have	that	repeating	pattern	for	33.	Now,	if	we
change	the	mode,	we'll	need	an	iv:

We	just	need	16	bytes,	so	we'll	just	16	bytes	to	iv.	Next,	we	create	a	new	AES
object.	In	the	iv	now,	we	encryp	plain3	again,	and	we	print	out	the	result	again.

You	see	it	has	61f,	and	you	can	see	that	there's	no	longer	any	repetition.	So,	this
is	a	much	more	effective	way	to	encrypt	things	if	you	really	want	to	obscure	the
input.

Padding	oracle	attack
In	this	section,	we	will	see	how	padding	works	in	the	PKCS	#	7	system	and	then
show	you	a	system	with	the	PADDING	ERROR	message.	Plus,	we'll	also	deal	with	the
padding	oracle	attack,	which	makes	it	possible	to	craft	ciphertext	that	will
decode	20	plaintext	we	want.

Here	is	the	encryption	routine:

We'll	have	three	blocks	of	data,	each	16-bytes	long.	We'll	encrypt	the	data	with
AES	in	CBC	mode,	so	in	comes	the	initialization	vector	and	the	key.	You
produce	three	blocks	of	ciphertext,	and	each	one	of	the	blocks	after	the	first	uses
the	output	of	the	previous	encryption	routine	as	an	initialization	vector	to	XOR
with	the	plaintext.

Here's	how	PKCS#7	padding	works:

If	one	byte	of	padding	is	needed,	use	01
If	two	bytes	of	padding	are	needed,	use	0202
If	three	bytes	of	padding	are	needed,	use	030303
And	so	on...

If	we	have	a	message	here	that	is	only	47-bytes	long,	then	we	can't	fill	the	last
block,	so	we	have	to	add	a	byte	of	padding.	You	could	use	a	variety	of	numbers
as	the	padding,	but	in	this	system,	we	use	one	binary	value	one,	if	you	have	one

as	the	padding,	but	in	this	system,	we	use	one	binary	value	one,	if	you	have	one
byte	of	padding	needed	if	you	have	two,	you	use	two	for	both	bytes	and	three	for
all	three	bytes	for	three	bytes	of	padding	and	so	on.	This	means	that,	if	we
decrypt	it,	we'll	have	three	blocks	of	ciphertext.	We	decrypt	it	and	we'll	get	the
47-byte	message:

The	last	byte	here	will	always	be	the	padding	byte,	and	that	will	be	0-1,	a	binary
value	of	1.

Here	is	an	example	of	a	vulnerable	system	that	you	can	attack.	This	is	just	using
the	same	techniques	we've	made	before	where	we	just	encrypt	things	with	AES
and	CBC	mode,	which	you	can	save	in	pador.py,	and	then	you	can	just	import	it	to
make	it	easy	to	use	and	more	realistic.	There	have	been	real	systems	that	use
this.	So,	we	import,	encrypt,	and	decrypt	methods	so	that	we	can	put	in	a	47-pipe
message	and	encrypt	it.	We'll	get	a	long	blob	of	hexadecimal	output.

If	we	decrypt	that,	we	will	get	our	original	input	plus	one	byte	of	01	at	the	end.
x01	is	the	Python	notation	for	a	single	byte	with	the	binary	value	of	1.	If	you
modify	the	input	by	keeping	the	first	47	bytes	alone	and	changing	the	last	byte	to
A	or	65	and	decrypt	it,	you'll	get	a	padding	error.	This	error	message	may	seem
harmless,	but	in	fact	it	makes	it	possible	to	completely	subvert	the	encryption.

Let's	take	a	look	at	that:

1.	 Open	the	Terminal	and	start	python.
2.	 We	will	enter	the	following	command:	

3.	 We	will	encrypt	and	decrypt	routines.	You	can	see	we	have	the	plaintext.
When	we	encrypt	47	bytes	of	plaintext,	we	get	a	long	binary	blob:

941dc2865db9204c40dd6f0898cbe0086fc6d915e288ed4ef223766a02967b81c6c431778a40f517e9e4aa86856e0a3b68297e102b1ec93713bf89750cdfa80e

4.	 When	we	decrypt	that,	we	get	the	following:

We	can	see	that	it	in	fact	added	the	single	byte	of	padding	at	the	end	of	it.

Now,	we	should	do	the	deformed	one.	If	we	set	our	modified	text	equal	to	the
original	plaintext	going	up	to	character	47	and	then	we	add	"A"	at	the	end,	when
we	decrypt	it,	we	get	'PADDING	ERROR':

That	is	the	error	message	that	we	can	exploit	to	subvert	the	system.	So,	here's
how	the	padding	oracle	attacked	works	change:

1.	 Change	ciphertext	[16:31]	to	any	bytes
2.	 Change	ciphertext	[31]	until	padding	is	valid
3.	 Intermediate	[47]	must	be	1

Here	is	a	diagram	of	CBC:

Leave	the	first	16	bytes	of	the	ciphertext	alone.	Change	this	to	anything	you	like,
such	as	all-As,	and	then	decrypt	that.	What	will	happen	is,	because	you	changed
the	bytes	in	the	second	block,	the	second	block	will	turn	to	random	characters,
and	so	will	the	third	block.	But	it'll	give	you	a	padding	error	unless	the,	very	last
byte		of	the	very	last	block	is	one.	So,	you	brute	force	it.	You	change	a	byte	to	all
256	possible	values	until	the	byte	becomes	1,	and	when	that	happens,	you	know
this	value	is	1.	You	know	this	value	because	it's	the	one	that	did	not	give	you	a
padding	error	message,	and	you	can	XOR	them	to	determine	this	intermediate
value	right	here.	So,	proceeding	byte	by	byte	to	the	left,	you	can	determine	these
intermediate	values.	If	you	know	them,	you	can	put	in	ciphertext	that	will	make
anything	you	like	appear	in	the	third	block.	So,	you	can	defeat	the	encryption
even	though	you	don't	know	the	key	or	the	initialization	vector.

Here's	the	code	that	does	it:

And	will	get	the	following	output:

We	set	the	ciphertext	equal	to	the	first	original	16	bytes	of	ciphertext	and	then	15
bytes	of	A.	Then	we	vary	the	next	byte	through	all	possible	256	values	and	add	the
third	block	of	data	unchanged.	After	that,	we	look	to	see	when	we	no	longer	get

a	padding	error,	and	that	will	be	234,	so	the	intermediate	value	is	234	XOR	one:

1.	 Now,	if	we	want	to	get	the	next	byte	back,	we	have	to	arrange	two	bytes	of
padding,	both	of	which	will	be	2,	as	shown:

So,	the	final	two	bytes	of	ciphertext	46	and	47	will	both	be	two.
So,	we	set	ciphertext	31	to	the	value	needed	to	create	two	there.
Now	that	we	know	the	intermediate	value,	we	can	calculate	it.

2.	 We	vary	ciphertext	30	until	the	padding	is	valid	and	that	will	determine	the
next	byte	of	the	intermediate:

3.	 Leave	the	first	block	unchanged	and	add	14	bytes	of	a	vary	the	next	byte.
Leave	the	byte	at	the	chosen	value	of	233	so	you	know	that	the	final	byte	of
the	decrypted	output	will	be	2,	and	when	the	padding	error	message	goes
away,	you	can	take	that	number,	XOR	it	with	2,	and	you	get	the	next	value
of	the	intermediate.	So,	now	we	can	make	messages.	We	would	have	to
repeat	this	more	times	to	get	more	bytes,	but	for	this	demonstration,	we'll
settle	for	a	message	just	one	letter	long.	We'll	make	an	A	followed	by	a
binary	value	of	1	for	valid	padding.	That's	our	goal,	and	in	order	to	do	that,
all	we	have	to	do	is	set	ciphertext	30	and	31	to	these	chosen	values:

ciphertext[30]	=	ord("A")	^	113

ciphertext[31]	=	16	235

4.	 Since	we	know	the	intermediate	values	are	113	and	235,	we	just	need	to	XOR
these	intermediate	values	with	the	values	we	want.

	

5.	 We	will	create	ciphertext	that	will	decrypt	to	a	message	ending	in	A	and	a

binary	1,	so	let's	see	that	go.	Now,	this	one	is	a	little	complicated,	so	we've
chosen	to	save	some	of	the	text	here	in	a	text	editor	so	we	can	do	it	stage	by
stage:

6.	 Here's	our	Python:

>>>	from	pador	import	encr,	decr	

>>>	prefix	=	c[0:16]	+	"A"*14

>>>	for	i	in	range(256):

...			mod	=	prefix	+	chr(i)	+	chr(233)	+	c[32:]

...			if	decr(mod)	!=	"PADDING	ERROR":

...					print	i,	"is	correctly	padded"

7.	 Alright,	we	import	the	library,	which	we	already	had	anyway.	Here	we
leave	the	first	16	bytes	unchanged	and	fill	in	15	bytes	with	A.	Then,	we	have
the	loop	that	changes	the	next	byte's	every	possible	value	and	leave	the
third	block	of	data	unchanged.	We	run	through	the	loop	until	we	no	longer
get	a	padding	error.	This	tells	us	that	234	is	the	value	that	gives	us	correct
padding:

234	is	correctly	padded

8.	 So,	we	take	234	to	the	1,	which	tells	us	the	intermediate	value,	all	over	cut
the	indentation	right,	so	it's	234	XOR	1.	This	tells	us	that	the	value	is	235.
That's	the	intermediate	value.	For	the	next	bit,	use	a	very	similar	process,	so
now	we	have	14	bytes	of	padding.	We	will	vary	the	next	byte,	and	the	byte
after	that	is	233,	which	is	chosen	to	always	give	us	a	2	at	the	end.	So,	when
we	run	this	loop	through,	it	is	correctly	padded	at	115:

...

115	is	correctly	padded

9.	 So,	115	XOR	2	is	113:

>>>	115	^	2

113

Therefore,	113	is	the	next	byte	of	intermediate	value.

10.	 Now	that	we	know	these	two	numbers,	235	and	113,	we	can	control	the	last
two	bytes	of	plaintext.	Now	we	will	keep	the	first	block	of	input	data
unchanged.	We	have	14	bytes	of	padding:

>>>	prefix	=	c[0:16]	+	"A"*14	

>>>	c30	=	ord("A")	^	113	

>>>	c31	=	1	^	235	mod	=	prefix	+	chr(c30)	+	chr(c31)	+	c[32:]	

>>>	decr(mod)

11.	 We	choose	to	make	A	and	a	binary	one	with	the	two	bytes,	235	and	113.	When
we	create	the	modified	ciphertext	and	decrypt	it,	we	get	the	following
message:

"This	simple	

sent\xc6\x8d\x12;y.\xdc\xa2\xb4\xa9)7c\x95b\xd1I\xd0(\xbb\x1f\x8d\xebRlY'\x17\xf6wA\x01"

The	first	block	of	data	is	unmodified.	The	second	block	and	most	of	the	third
block	have	changed	to	random	characters,	but	we	controlled	the	last	two	bytes
and	we	could	make	them	say	anything	we	wanted.	So,	we	are	able	to	create
ciphertext	that	will	decrypt	at	least	partly	two	values	we	choose,	even	though	we
don't	know	the	key	or	the	initialization	vector.

Strong	encryption	with	RSA
In	this	section,	we	will	cover	public	key	encryption,	the	RSA	algorithm,	and
implementation	in	Python.

Public	key	encryption
In	public	key	encryption,	we	solve	this	problem:	Google,	for	example,	wants	to
receive	confidential	data	from	users,	such	as	passwords	and	credit	card	numbers,
but	they	don't	have	a	secure	communication	channel;	what	they	have	is	the
public	internet,	and	any	data	being	sent	might	be	eavesdropped	upon	by	any
number	of	attackers.	Thus,	there's	no	way	to	deliver	a	shared	secret	key,	and
symmetric	encryption	algorithms,	such	as	AES,	cannot	solve	this	problem.
That's	where	public	key	encryption	comes	in.

Google	creates	a	key	pair.	They	keep	the	private	key	secret	and	don't	tell	anyone,
and	they	publish	public	key	so	anyone	can	know	it.	Everyone	who	wants	to	send
secrets	to	Google	can	encrypt	them	with	the	public	key	and	send	them	over	an
insecure	channel	because	the	only	one	who	can	decrypt	them	is	Google,	who	has
the	private	key.	Mailboxes	work	like	this.	Anybody	can	go	to	the	mailbox	and
put	mail	in	the	top	slot,	but	the	bottom	door	is	locked,	and	only	the	postal	worker
with	the	private	key	can	take	the	mail	out.	The	private	key	and	the	public	key
must	be	related,	but	they	have	to	be	related	by	a	one-way	function	so	that	it's
easy	to	calculate	the	public	key	from	the	private	key,	which	is	what	Google	has
to	do	when	they	first	set	up	their	key	pair.	But	it	has	to	be	very	difficult	to
calculate	the	private	key	from	the	public	key,	so	it's	safe	to	publish	the	public
key	and	no	one's	going	to	find	the	private	key.

	

RSA	algorithm
	

There	are	various	one-way	functions	that	can	be	used	for	this	purpose,	but	in
RSA,	the	function	is	factoring	a	large	number:

Private	key	d	is	made	from	two	large	prime	numbers:	p	and	q
Public	key	is	the	product	of	n	=	p	*	q,	and	and	arbitrary	value	e	

If	p	and	q	are	large,	factoring	n	into	p	and	q	is	very	difficult

If	you	multiply	the	two	prime	numbers	p	and	q	together	to	create	their	product	n,
it	is	a	well-known	difficult	problem	to	factor	n	into	p	and	q.	And	if	p	and	q	are
large	enough,	it	becomes	essentially	impossible.	This	is	the	one-way	function.
You	can	easily	multiply	p	and	q	to	create	the	public	key	n,	but	knowledge	of	the
public	key	cannot	be	used	to	determine	p	and	q	practically:

Public	key:	This	is	two	numbers,	(n,e)
e	can	be	any	prime	number,	often	65537

Encryption:	y	=	xe	mod	n
Decryption:	x	=	yd	mod	n	

x	is	plaintext,	y	is	ciphertext

So,	the	public	key	is	n,	which	is	the	product	of	two	prime	numbers	and	another
arbitrary	number,	e,	which	is	often	just	this	value	65,537.	Anyone	who	wishes	to
secretly	send	their	plaintext,	x,	raises	it	to	the	power	of	e,	modulus	n,	and	sends
that	scrambled	stuff	over	an	insecure	channel,	such	as	the	internet,	to	the
recipient.	The	recipient	has	the	private	key	so	they	can	find	the	decryption	key,	d,
and	they	take	the	ciphertext	to	d	modulus	n,	and	that	turns	into	the	decrypted
message.	The	decryption	key	is	calculated	this	way:

phin	=	(p-1)	*	(q-1)

d*e		=	1	mod	phin

Since	Google	knows	the	p	and	q	secrets,	they	can	calculate	this	number	phin
which	is	p	-	1,	times	q	-	1	and	then	they	choose	a	decryption	key	so	that	d	times	e

is	1	modulus	Phi	of	n.	Nobody	else	can	do	this	calculation	because	they	do	not
know	the	values	of	p	and	q.	So,	in	Python,	you	can	import	the	RSA	module	and
then	generate	a	key	of	whatever	length	you	like.	In	this	example,	we	have	used
2048	bits,	which	is	the	current	National	Institute	of	Standards	recommendation.
Then,	they	have	a	public	key.	There's	a	message	to	encrypt	and	you	encrypt	it,
and	the	result	is	this	very	long	ciphertext,	which	is	as	long	as	2048	bits.	ciphertext
is	long	and	the	calculations	are	very	slow,	so	you	do	not	normally	send	a	long
message	with	this	method.	What	you	do	in	RSA	is	just	send	a	secret	key,	and
then	you	use	AES	to	encrypt	everything	after	that	point	to	make	the	calculations
faster.	This	chapter	covers	something	called	textbook	RSA,	which	contains
many	of	the	essential	ingredients	but	is	not	really	secure	enough	for	real	use,
because	you	have	to	add	a	padding	that	is	specified	in	RFC	8017.	This	adds	a
hash	value,	a	mask,	and	padding	to	the	message	and	protects	the	key	from	some
attacks.	Let's	take	a	look	at	this	in	Python.

	

	

Implementation	in	Python
Here	is	how	we	can	implement	what	we've	talked	about	in	Python:

1.	 We	start	up	python	and	then	add	the	following	code:

2.	 The	last	step	shown	takes	around	2	to	4	seconds	just	to	generate	the	key;
that's	because	it	had	to	find	two	large	prime	numbers,	and	these	are	very
difficult	calculations:

3.	 It	has	to	guess	a	number	and	test	it,	and	typically,	it	has	to	try	more	than	a
hundred	guesses	for	each	of	these	large	prime	numbers,	so	this	process	is
very	time-consuming.	However,	it	happens	automatically,	and	now	we	can
encrypt	the	message	with	the	key,	producing	this	very	long	ciphertext:

4.	 Now,	we	could	test	this	to	see	whether	we	change	one	bit	of	the	message	or
take	the	plaintext	and	change	that	last	letter	to	an	f.	If	we	encrypt	that,	the
results	will	be	similar	to	the	following:

>>>	plain	=	'encrypt	this	messagf'

>>>	ciphertext	=	publicKey.encrypt(plain,	0)	[0

...	ciphertext	=	publicKey.encrypt(plain,	0)	[0

keyboardInterrupt

>>>	ciphertext	=	publicKey.encrypt(plain,	0)	[0]

>>>	print	ciphertext.encode	("hex")

5.	 Now,	we	print	the	results:

As	you	can	see,	all	4ac	go	to	1dc,	and	then	it	ends	at	578	to	633.	This	is	the	desirable
property	of	strong	encryption.	Any	change	in	the	input	changes	all	of	the	output
clipping	approximately	half	the	bits.

Challenge	–	cracking	RSA	with
similar	factors
In	this	section,	we	will	cover	topics	such	as	large	integers–in	Python	and	the
decimal	library.	We	will	also	take	a	look	at	an	example	of	factoring	a	large
number	and	then	two	challenges	for	you	to	solve.

Large	integers	in	Python
Python	can	do	multiplication	and	division–and	a	contented	multiplication	and
division	of	arbitrarily	large	integers	with	complete	precision:

If	we	have	1001	and	then	we	calculate	1001	squared,	we	get	the	right	answer,	of
course;	and	even	if	we	take	a	number	like	10**100	+	1,	it	correctly	gets	that
number	a	hundred	places	with	a	1	at	each	end.	Now,	if	we	square	that	number,	it
again	gets	it	correct,	all	the	way	to	the	one	at	each	end.

So,	for	simple	integer	operations,	Python's	precision	is	unlimited.	However,	if
we	want	to	square	root,	we	need	to	import	a	math	library:

The	math	library	does	not	keep	any	arbitrary	number	of	places,	as	you	can	see	in
the	preceding	code.	If	we	take	10	**100	+	1	and	square	it,	then	take	the	square
root,	we	don't	get	10	**100	+	1.	We	get	10	**	100,	which	means	it	rounded	off	to
some	number	of	places	less	than	100,	and	that's	fine	for	many	purposes.	However,
it's	not	fine	for	what	we	want	to	do	here,	which	is	factor	large	integers.

In	order	to	do	that,	you	use	the	decimal	library,	and	we	will	import	it	as	shown:

As	you	can	see,	we	have	imported	the	decimal	library	and	set	value	to	a	as	10
**100+	1.	Here	b	equals	to	a	squared,	and	then	instead	of	calculating	the	square
root	of	b	with	the	math	library,	you	calculate	the	decimal	value	of	b	with	the	decimal
library.	Use	the	square	root	method	of	that	and	this	gives	you	again	the	wrong
answer,	because	by	default,	the	decimal	library	rounds	things	off.	But	if	you	set
the	precision	to	be	higher,	you	get	exactly	the	right	answer,	and	that's	why	the
decimal	library	is	better	for	our	purposes.	This	getcontext().prec	command	lets	us
set	it	to	keep	enough	places	to	be	as	precise	as	we	want.

All	right,	so,	you	wouldn't	be	able	to	factor	a	large	number	in	the	general	case,
and	that's	what	makes	RSA	secure.	But,	if	a	mistake	is	made	by	using	numbers
and	can	be	predictable	in	some	way,	then	RSA	can	be	cracked:

Here	the	mistake	is	using	two	prime	factors	that	are	close	together	instead	of
choosing	independent	random	numbers	for	the	two	prime	factors.	So,	this	large
number	is	the	product	of	two	prime	factors,	and	so	you	can	factor	it.	So,	if	we
put	that	number	in	a	value	called	n,	we	set	the	precision	to	50	places	and	calculate
the	square	root.	We	find	that	the	square	root	is	1	followed	by	many	zeros,	and
that	is	ended	at	83	+a	fraction.

Now,	if	the	number	is	the	product	of	two	prime	numbers,	and	the	two	prime
numbers	are	close	together,	one	number	must	be	less	than	the	square	root	and	the
other	number	must	be	larger	than	the	square	root.

So,	if	we	simply	start	at	the	square	root	and	try	numbers	close	to	the	square	root
by	jumping	back	by	two	every	time,	we	will	eventually	find	the	prime	factor,
and	we	do:

Of	course,	we	can	jump	back	by	twos	because	even	numbers	are	certainly	not
prime,	so	we	don't	need	to	test	the	even	numbers.

And,	as	we	can	see,	now	we've	found	a	number	where	the	modulus	of	n	modulus
the	number	is	zero,	so	this	is	a	prime	factor.

We	can	get	the	other	prime	factor	by	just	dividing	n	by	the	first	one:

So,	here's	the	original	number,	n,	which	is	the	product	of	two	primes,	and	we
have	one	of	the	primes;	q	is	n	over	p	which	you	can	see.	To	test	it,	if	we	calculate
p*q,	we	get	the	original	number	again.	So,	we	have	factored	a	large	number	into	p
and	q,	and	that	is	enough	information	to	crack	RSA.

So,	let's	try	that	in	Python.	Go	to	the	Terminal	and	run	python:

So,	we	have	n	equal	to	the	large	number	shown.	We	import	this	number	to	the
decimal	library	and	set	the	position	to	50	places.	Now,	if	we	take	the	square	root,
we	get	1	followed	by	many	zeros,	and	then	83,	and	then	a	fraction.	Then,	we	copy
the	integer	part	of	the	square	root:

Now	we	set	p	in	range	of	that	number	followed	by	the	number,	as	shown	here:

>>>	for	p	in	range(100000000000000000083,	100000000000000000030,	-2):

This	begins	a	loop,	and	all	we	have	to	do	is	print:

...		print	p,	n%p

...

It	will	calculate	n	modulus	p,	which	will	be	zero.	If	that's	an	integral	multiple,
pressing	Enter	twice	runs	the	loop:

So,	we	can	see	this	number	is	p:

100000000000000000039	0

If	we	copy	that	number,	we	can	set	p	equal	to	that	and	can	set	q	equal	to	n	over	p:

>>>	p	=	100000000000000000039

>>>	q	=	n/p

If	we	print,	we	will	get	the	following:

You	can	see	n	matches	with	p*q.	So,	we've	now	factored	that	long	number	into	its
complement	primes.

Here's	the	first	challenge:

Here's	the	second	challenge:

In	both	cases,	you	will	be	able	to	factor	them.

What's	next?
Internet	of	Things	(IoT)	has	a	promising	future	and	will	soon	connect	billions
of	devices.	For	IoT,	security	has	always	been	a	major	concern.	But	the	good
news	is	that	cryptography	offers	various	options	to	secure	IOT	from	hackers;
hence,	it	is	a	key	to	the	coming	era	of	IoT.

	

Cryptography	within	IoT
When	we	talk	about	using	cryptography	within	IoT,	we	are	talking	about	using
cryptography	across	many	layers	of	the	communication	stack.	If	we	look	at	the
OSI	model,	we	can	see	that	crypto	is	used	at	Layer	2	and	up	with	linking
operating	at	level	2,	networking	operating	at	layer	3,	and	transporting	operating
at	layer	4:

At	the	Application	Layer,	Cryptography	is	also	used	to	protect	communication
through	both	authentication	and	encryption.	Before	we	begin	our	description
about	specific	cryptographic	approaches	for	IOT	protocols,	let’s	first	talk	about
the	ready	availability	of	exploitation	tools	for	existing	wireless	protocols.	As
IOT	matures,	keep	in	mind	that	there	are	many	tools	available	to	exploit	IOT
wireless	communication	protocols	and	these	tools	will	continue	to	rapidly	keep
up	with	new	technologies	introduced	to	support	the	IOT.

For	example,	looking	at	Wi-Fi	802.11,	which	was	introduced	in	1989,	the
AirCrack	tool	was	introduced	in	2004	and	to	this	day	is	still	a	popular	and	well-
supported	tool.	There	are	also	many	tools	available	to	exploit	Bluetooth
communication	and	cellular	communication.

Besides	this,	keys	that	drive	crypto	must	be	securely	managed	both	at	the	device

Besides	this,	keys	that	drive	crypto	must	be	securely	managed	both	at	the	device
(module)	level	as	well	as	throughout	an	enterprise.	Let’s	explore	some	of	them.

ZigBee	cryptographic	keys
	

ZigBee	uses	many	keys	for	cryptographic	operations:

Link	key:	This	is	established	based	on	the	use	of	pre-provisioned	master
key	from	the	manufacturer.	The	link	key	provides	point-to-point	secure
connection	between	two	ZigBee	nodes.	The	link	key	is	also	used	to
establish	derived	keys,	including	data	keys,	key-transport	keys,	and	Key-
load	keys
Key-transport	keys:	This	key	is	the	outcome	of	executing	the	specialized
keyed	hash	function	under	the	link	key	with	the	1-octet	string	0x00	as	the
input	string

	

	

Complexity	of	ZigBee	key
management
As	mentioned	earlier,	key	management	is	challenging.	Let’s	take	a	look	at	how
challenging	key	management	can	be.	Take,	for	example,	the	ZigBee	protocol.
There	are	three	primary	types	of	keys	that	can	be	employed	within	the	ZigBee
network.	Master	keys	are	often	preinstalled	by	the	vendor	and	protect	the
exchange	between	two	ZigBee	nodes	as	they	generate	link	keys.	Link	keys
support	node-to-node	communication	and	network	keys	support	broadcast
communication.

Key	management	functions	might	be	built	into	the	media	management	software
of	utility,	for	example,	and	it	might	be	provided	as	standalone	software.
However,	all	of	these	keys	need	to	be	sufficiently	secured	across	their	entire
lifecycle.

	

Bluetooth	–	LE
The	Bluetooth	low	energy	protocol	employs	cryptography	for	pairing	devices	for
future	relationships.	Bluetooth—LE	uses	various	keys	within	these
cryptographic	processes,	including	a	long-term	key	(LTK),	which	is	used	to
generate	a	128-bit	key	for	the	link	layer	encryption	and	a	connection	signature
resolving	key	(CSRK),	which	is	used	for	digitally	signing	data	at	the	ATT
layer.

	With	this,	we	come	to	the	end	of	this	book.	Cryptography	applications	should	be
tailored	specifically	for	the	threat	environments.	Cryptography	is	based	on
strong,	well-designed	algorithms	and	associated	with	all	layers	of	the
communication	stack.	It	is	everywhere	and	fundamental	to	the	security	of	IOT
systems.

	

Summary
In	this	chapter,	we	covered	AES,	the	strongest	private	key	system	in	common
use	today,	and	its	two	modes,	ECB	and	CBC.	We	covered	the	padding	oracle
attack	against	CBC,	which	is	made	possible	when	an	error	message	gives	the
attacker	more	information	than	they	should	have	about	the	encryption	process.

Finally,	we	covered	RSA,	the	primary	public	key	algorithm	in	use	today	to	send
secrets	over	the	internet,	and	we	also	looked	at	the	challenge	where	we	cracked
RSA	in	the	case	where	the	two	prime	numbers	are	similar	instead	of	being
independent	and	randomly	chosen.	We	also	looked	at	the	future	of	cryptography
and	how	it	will	help	secure	IOT	devices.

	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:	

Python	Penetration	Testing	Cookbook

Rejah	Rehim

ISBN:	978-1-78439-977-1

Learn	to	configure	Python	in	different	environment	setups
Find	an	IP	address	from	a	web	page	using	BeautifulSoup	and	Scrapy
Discover	different	types	of	packet	sniffing	script	to	sniff	network	packets
Master	layer-2	and	TCP/	IP	attacks
Master	techniques	for	exploit	development	for	Windows	and	Linux
Incorporate	various	network-and	packet-sniffing	techniques	using	Raw
sockets	and	Scrapy

Python	for	Offensive	PenTest

Hussam	Khrais

ISBN:	978-1-78883-897-9

https://www.packtpub.com/networking-and-servers/python-penetration-testing-cookbook
https://www.packtpub.com/networking-and-servers/python-offensive-pentest

ISBN:	978-1-78883-897-9

Code	your	own	reverse	shell	(TCP	and	HTTP)
Create	your	own	anonymous	shell	by	interacting	with	Twitter,	Google
Forms,	and	SourceForge
Replicate	Metasploit	features	and	build	an	advanced	shell
Hack	passwords	using	multiple	techniques	(API	hooking,	keyloggers,	and
clipboard	hijacking)
Exfiltrate	data	from	your	target
Add	encryption	(AES,	RSA,	and	XOR)	to	your	shell	to	learn	how
cryptography	is	being	abused	by	malware
Discover	privilege	escalation	on	Windows	with	practical	examples
Countermeasures	against	most	attacksld	your	own	Windows	IoT	Face
Recognition	door	locking	system

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Hands-On Cryptography with Python

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributor
	About the author
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Obfuscation
	About cryptography
	Installing and setting up Python
	Using Python on Mac or Linux
	Installing Python on Windows

	Caesar cipher and ROT13
	Implementing the Caesar cipher in Python
	ROT13

	base64 encoding
	ASCII data
	Binary data

	XOR
	Challenge 1 – the Caesar cipher
	Challenge 2 – base64
	Challenge 3 – XOR
	Summary

	Hashing
	MD5 and SHA hashes
	What are hashes?

	Windows password hashes
	Getting hashes with Cain
	MD4 and Unicode
	Cracking hashes with Google
	Cracking hashes with wordlists

	Linux password hashes
	Challenge 1 – cracking Windows hashes
	Challenge 2 – cracking many-round hashes
	Challenge 3 – cracking Linux hashes
	Summary

	Strong Encryption
	Strong encryption with AES
	ECB and CBC modes
	ECB
	CBC

	Padding oracle attack
	Strong encryption with RSA
	Public key encryption
	RSA algorithm
	Implementation in Python

	Challenge – cracking RSA with similar factors
	Large integers in Python

	What's next?
	Cryptography within IoT
	ZigBee cryptographic keys
	Complexity of ZigBee key management
	Bluetooth – LE

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

