
����������	�
����	

���������������������������������

�

�������������
���������	
�����

���������� ��!���"�
##�$��%�#����$�� �&'()��*��%�������#���+����,�%��� �*��#��+���������-���./0/0� �'0(1)&23/))&
444�56��!���$�7

� � �

President and Publisher Jim Leisy (jimleisy@fbeedle.com)
Production TomSumner

Dean Lake
Cover Ian Shadburne
Marketing Christine Collier
Order Processing Krista Brown

Printed in the U.S.A.

Names of all products herein are used for identification purposes only and are trade-
marks and/or registered trademarks of their respective owners. Franklin, Beedle & Asso-
ciates, Inc., makes no claim of ownership or corporate association with the products or
companies that own them.

©2004 Franklin, Beedle & Associates Incorporated. No part of this book may be repro-
duced, stored in a retrieval system, transmitted, or transcribed, in any form or by any
means—electronic, mechanical, telepathic, photocopying, recording, or otherwise—with-
out prior written permission of the publisher. Requests for permission should be ad-
dressed as follows:

Rights and Permissions
Franklin, Beedle & Associates, Incorporated
8536 SW St. Helens Drive, Suite D
Wilsonville, Oregon 97070

Library of Congress Cataloging-in-Publication data may be obtained from the publisher.

��������

����4��! �� �8
���5�$� ��� 8

���	��
�� ��	���
�������
��
�� �
9�9 �������+��#�����$���� ��� 9
9�2 ���-��7���4�� �� (
9�(*��%��#���7:,%����$���$�; �� (
9�< ���!4���� �#�$# ��� '
9�' ���-��77��-�=��-,�-�# ��)
9�) ������-�$��5��>%��� ��� .
9�/ ��#�!�����>%�������-��7 ���9<
9�& ����#���!���7:,%��# ���9/
9�. ���:%����,77��> ���9&
9�90 �8��$�#�# ���20

���	��
�� �
��������	����
��
�� ��
2�9 ������5%4�����+���:7��%����$�## �� ��2'
2�2 �8�7:������-��7?���7:���%,������+��%�� ��2)
2�(���7��%#��5����-��7# ���2.

2�(�9 ��7�# ��2.
@ 2�(�2 �8:��##���# ���(0
2�< �,%:,%��%�%�7��%# ���(9
2�'
##�-�7��%��%�%�7��%# ��� �((

2�'�9 ��7:���
##�-�7��% ���((
2�'�2
##�-���-���:,% ���('
2�'�(��7,�%����,#�
##�-�7��% ���()

2�) �5���%��=��:# ��� �(.
2�/ �8�7:������-��7?��,%,���A��,� �� �<2

���%��%#�+

2�& ���:%����,77��> ���<'
2�. �8��$�#�# ���<)

���	��
�� ��	���������������
� ��
(�9 �,7���$��%���>:�# ���'9
(�2 �#��-�%�����%��=�6���> ���''
(�(
$$,7,��%��-���#,�%#?���$%����� ���'&
(�< ����=�7�%#��5���% ���)9
(�' ���!���-�=��-���,76��#?�=��-���%# ��� �)<
(�) �>:�����+��#���# ��))
(�/ ���:%����,77��> ���)&
(�& �8��$�#�# ��� �).

���	��
�� ��	�������������
���� ��
<�9 �����%���-��%���>:� ��� �//
<�2 ��7:����%���-����$�##��- �� ��&2
<�(�%���-#��=�#%#����!���B,��$�# �� ��&'
<�< �%���-#���!���$��%���!�# �� ��&/

<�<�9 �%���-���:��#��%�%��� �� ��&/
<�<�2 ���-��77��-������$�!�� ��� �&.
<�<�(���-��77��-����$�!�� ��� �.0
<�<�< �%�����%���-��:���%���# ��� �.<
<�<�' ���7���$�!��-�%����$�>:%��� ��� �.'

<�' ��:,%1�,%:,%��#��%���-�����:,��%��� �� �./
<�'�9 �8�7:���
::��$�%���?��%�����+��#��� ��� ��./
<�'�2 �%���-����7�%%��- �� ��902
<�'�(�%%�������-����,�%�� �� ��90<

<�) ��������$�##��- ��� �90)
<�)�9 �,�%�3=�����%���-# �� �90)
<�)�2 ��������$�##��- �� ��90/
<�)�(�8�7:������-��7?� �%$���#����7�# ��� �999
<�)�< ��7��-�
%%��$%���?��6C�$%# ��� ��992

<�/ ���:%����,77��> ��� 99(
<�& �8��$�#�# �� �99'

���	��
�� ���� �������!
�	�� � ���
'�9 �+��+��4 �� ��92(
'�2 �����6C�$%��5��6C�$%# �� �92<
'�(��7:���	��:��$#����-��77��- �� �92'
'�< �#��-�	��:��$����6C�$%# ��� ��92.
'�' 	��:���-��,%,���A��,� ��� �9('
'�) ����#��-�����!���%�# ��� �9<(
'�/ ��%���$%�+��	��:��$# �� �9<)

'�/�9 	�%%��-���,#�����$�# ��� �9<)
'�/�2 ���!���-���8%,�����:,% �� �9<&

���%��%# +

'�& 	��:��$#���!,�����5����$� �� �9'9
'�&�9 	��:�*����6C�$%# ��� �9'9
'�&�2 	��:��$#��6C�$%# ��� ��9'2
'�&�(��%�>��6C�$%# �� �9''
'�&�< �#:��>��-��7�-�# �� �9''
'�&�' 	�����%��-������# �� �9')

'�. ���:%����,77��> ��� 9')
'�90 �8��$�#�# �� �9'/

���	��
�" #�$������%�� ����� �"�
)�9 �����,�$%�����5��,�$%���# ��� �9)'
)�2 �,�$%���#����5��7���> �� �9)/
)�(�,%,���A��,��4�%�����,�$%��� ��� ��9/9
)�< �,�$%���#���!�����7�%��#?������%���# ��� �9/(
)�' 	�%%��-���#,�%#�5��7����,�$%��� ��� �9//

)�'�9 �,�$%���#����%���%,���A��,�# ��� �9//
)�'�2 �,�$%���#�%��%���!�5>�����7�%��# ��� ��9&9

)�) �,�$%���#���!����-��7��%�,$%,�� ��� �9&/
)�/ ���:%����,77��> ��� 9.9
)�& �8��$�#�# �� �9.9

���	��
�� #� ��������
� ��
�� �&&
/�9 ��7:����$�#���# ��� 9..

/�9�9 �8�7:��?���7:���%,���*�����-# �� ��200
/�9�2 ���7��-���7:������!�%���# �� ��202
/�9�(�8�7:��?����!�%���������-��7��8�$,%��� ��� �20<

/�2 �4�3*�>��$�#���# ��� 20)
/�(�,�%�3*�>��$�#���# ��� �290
/�< �8$�:%�������!���- ��� 29(
/�' �%,!>�����#�-�?���8��5������ ��� �29/

/�'�9 �%��%�->�9?���7:������$��%��
�� �� ��29&
/�'�2 �%��%�->�2?��$�#�������� ��� �220
/�'�(�%��%�->�(?���B,��%�������$�##��- �� ��229
/�'�< �%��%�->�<?��#���>%��� ��22(
/�'�' ��7��=�##��# �� �22<

/�) ���:%����,77��> ��� 22'
/�/ �8��$�#�# �� �22'

���	��
�' (��	���
� ��
�������)������� ���
&�9 ����=��:#?�
�D,�$����+��4 �� �2((
&�2 ��!�5���%��=��:# ��� �2('
&�(��77���=��:���%%���# ��� �2(/

&�(�9 ��%���$%�+��=��:# ��� ��2(/
&�(�2 ���%�����=��:# ��� �2(.
&�(�(�����=��:# �� 2<2

���%��%#+�

&�(�< ��#%�!�=��:# �� �2<<
&�< ��7:,%��-�4�%�� ������# �� �2<)

&�<�9 ��������:���%��# ��� �2<)
&�<�2 �������
�-�6�� �� ��2'0

&�' �%������77����%�,$%,��# ��� �2'9
&�'�9 ��#%3��#%�=��: �� �2'9
&�'�2 =��:���!������5 �� �2'<
&�'�(��������8:��##���#��#��$�#���# ��� ��2'<

&�) ���:%����,77��> ��� 2'&
&�/ �8��$�#�# �� �2'.

���	��
�& ��������������#����� �"�
.�9 ��7,��%��-���$B,�%6��� ��� �2)'

.�9�9
���7,��%�������6��7�� ��2))

.�9�2
���>#�#���!��:�$�5�$�%��� �� �2))
.�2 �#�,!����!�7��,76��# �� ��2)&
.�(��:3�4���#�-� �� 2/0

.�2�9 ��:3=�+����#�-� ��� ��2/9

.�2�2 ��:���%�����5����$���# �� �2/(
E .�2�(��$��!3=�+����#�-� �� �2/(

.�2�< �#�-���-�#�7�	�7�# ��� ��2/'

.�2�' ����!3=�+����#�-� �� �2//

.�2�) ����#���-��: �� �2&0

.�2�/ �,77��>��5�%����#�-�����$�## ��� �2&2

.�< �%%�73�:��7:��7��%�%��� �� �2&(
.�<�9 ���%���#%��- ��� 2&(
.�<�2 ��7,��%������#,�%# ��� �2&'

.�' �%�����#�-����$���B,�# �� ��2&)
.�'�9 ���%�%>:��-���!��:������+���:7��% �� �2&)
.�'�2 ����
�%��5��#�-� ��� ��2&&

.�) ���:%����,77��> ��� 2&&

.�/ �8��$�#�# �� �2&.

���	��
��* #�$������������� �&�
90�9 D,�$����+��4��5��6C�$%# �� ��2.'
90�2 �8�7:������-��7?�������6��� �� �2.)

90�2�9 ���-��7��:�$�5�$�%��� �� ��2.)
90�2�2 �#�-���-�%������-��7 �� ��2./
90�2�(��!,����F��-�%������-��7 ��� �(09

90�(�5����-���4����##�# ��� �(0(
90�(�9 �8�7:��?��,�%�3��!�!��$� ��� ��(0(
90�(�2 �8�7:��?��������C�$%�������## �� �(0/

90�< �%�����$�##��-�4�%�����## �� �(0.
90�' �6C�$%#���!���$�:#,��%��� ��� �(9(

90�'�9 ��$�:#,��%��-��#�5,��
6#%��$%���# ��� �(9(
90�'�2 �,%%��-����##�#������!,��# �� ��(9'

���%��%# +��

90�'�(��!,����$,7��%�%��� ��� �(9'
90�'�< *�����-�4�%���,�%�:�����!,��# ��� �(9/

90�) *�!-�%# ��� �(9&
90�)�9 �8�7:������-��7?��$�������� ��� �(9.
90�)�2 ,��!��-� ,%%��# ��� ��(9.
90�)�(,��!��-��$� ��� �(2(
90�)�< ������������-��7 �� �(2/

90�/ ���:%����,77��> ��� (2&
90�& �8��$�#�# �� �(2.

���	��
��� +#���� ����� ����� ���
99�9 �8�7:������6��7?���7:����%�%�#%�$# �� ��((/
99�2
::�>��-�=�#%# �� �((.

99�2�9 =�#%#���!�
���># ��� �(<0
99�2�2 =�#%��:���%���# �� �(<9
99�2�(�%�%�#%�$#�4�%��=�#%# ��� �(<'

99�(=�#%#��5��6C�$%# �� �('0
99�< �#�-���-�4�%��=�#%#���!����##�# ��� �('(
99�' ��#���%,!>?��>%�������$,��%�� ��� ��('.

99�'�9
����$,��%����#�����6C�$% �� �('.
99�'�2 ���#%�,$%��-�%�����%��5�$� ��� �()0
99�'�(���$�##��-� ,%%��# �� �()(

99�) ���3��B,��%���������$%���# ��� �()/
99�)�9 �$%�����>� �#�$# ��� ��()/

99�)�2 �$%�����>��:���%���# �� ��()&
99�)�(�8�7:������-��7?�*��!����B,��$> ��� �(/0

99�/ ���:%����,77��> ��� (/'
99�& �8��$�#�# �� �(/)

���	��
��� ���� �,�
�������#����� �'�
92�9 �������$�##��5��� �� �(&'
92�2 ��#���%,!>?���$B,�%6������7,��%��� ��� �(&&

92�2�9 ���!�!�%���6C�$%#���!���%��!# �� �(&&
92�2�2 �7:��7��%��-���7�%�%# �� �(.0
92�2�(�7:��7��%��-�� ���	�7�� �(.2
92�2�< �7:��7��%��-����>�� �� �(.'
92�2�' ������7:��%�����-��7 ��� ��(.)

92�(��#���%,!>?��$������� �� �(..
92�(�9 ���-��7��:�$�5�$�%��� ��(..
92�(�2 �!��%�5>��-����!�!�%���6C�$%# �� �<00
92�(�(�7:��7��%��-�%�����!�� �� �<02
92�(�<
���8%3 �#�!��� �� �<0)
92�(�' �+���:��-���	�� �� ��<0.

92�< ������$�:%# ��� �<9/
92�<�9 ��$�:#,��%��� �� �<9&
92�<�2 ���>7��:��#7 �� �<9&

���%��%#+���

92�<�(������%��$� ��� <9.
92�' ���:%����,77��> ��� <29
92�) �8��$�#�# �� �<22

���	��
��� -���
����#����������.� �
���� ���
9(�9 ����$���- ��� ��<2)

9(�9�9
���7:�������$���-����6��7 �� ��<2)
9(�9�2 �%��%�->�9?�=����������$� ��� �<2/
9(�9�(�%��%�->�2?� ����>�����$� �� �<2&
9(�9�< ��7:����-�
�-���%�7# ��� ��<2.

9(�2 ��$,�#�+�����6��73���+��- �� �<(9
9(�2�9 ��$,�#�+���5���%���# ��� �<(2
9(�2�2 ��$,�#�+���,�$%���# ��� �<(<
9(�2�(�8�7:��?��%���-���+��#�� ��� �<('
9(�2�< �8�7:��?�
��-��7# ��� �<(/
9(�2�' �8�7:��?���#%��8:����%��%��� �� �<(&
9(�2�) �8�7:��?� ����>�����$� ��� �<(.
9(�2�/ ��$,�#����+#���%���%��� ��� ��<<0

9(�(���%��-�
�-���%�7# �� <<(
9(�(�9 ���+�����%��-?�����$%�������% ��� �<<(
9(�(�2 �+�!����!����B,��?����-�����% �� ��<<'
9(�(�(��7:����-����%# �� ��<</

9(�< ���!����6��7# ��� �<'0
9(�<�9 ��4��#��5������ �� ��<'0

9(�<�2 �������%��-����6��7 ��� �<''
9(�<�(���$�,#��� �� <'.

9(�' ���:%����,77��> ��� <'.
9(�) �8��$�#�# �� �<)0

-		����/�- �0�����1�� 2�.�$�
�� � �"&
-		����/�) 3������0���������4#(5 ��&
-		����/�� !�����
0 �&�
4���/ �*�

%�
���
�

When the publisher first sent me a draft of this book, I was immediately excited.
Disguised as a Python textbook, it is really an introduction to the fine art of
programming, using Python merely as the preferred medium for beginners. This
is how I have always imagined Python would be most useful in education: not as
the only language, but as a first language, just as in art one might start learning
to draw using a pencil rather than trying to paint in oil right away.

The author mentions in his preface that Python is near-ideal as a first pro-
gramming language, without being a “toy language.” As the creator of Python I
don’t want to take full credit for this: Python was derived from ABC, a language
designed to teach programming in the early 1980s by Lambert Meertens, Leo
Geurts, and others at CWI (National Research Institute for Mathematics and
Computer Science) in Amsterdam. If I added anything to their work, it was
making Python into a non-toy language, with a broad user base and an exten-
sive collection of standard and third-party application modules.

I have no formal teaching experience, so I may not be qualified to judge its
educational effectiveness. Still, as a programmer with nearly 30 years experi-
ence, reading through the chapters I am continuously delighted by the book’s
clear explanations of difficult concepts. I also like the many good excercises and
questions which both test understanding and encourage thinking about deeper
issues.

Reader of this book, congratulations! You will be well rewarded for studying
Python. I promise you’ll have fun along the way, and I hope you won’t forget
your first language once you have become a proficient software developer.

—Guido van Rossum
�8

�
�$� �

This book is designed to be used as the primary textbook in a college-level first
course in computing. It takes a fairly traditional approach, emphasizing prob-
lem solving, design, and programming as the core skills of computer science.
However, these ideas are illustrated using a non-traditional language, namely
Python.

In my teaching experience, I have found that many students have difficulty
mastering the basic concepts of computer science and programming. Part of this
difficulty can be blamed on the complexity of the languages and tools that are
most often used in introductory courses. Consequently, this textbook was writ-
ten with a single overarching goal: to introduce fundamental computer science
concepts as simply as possible without being simplistic. Using Python is central
to this goal.

Traditional systems languages such as C++, Ada, and Java evolved to solve
problems that arise in large-scale programming, where the primary emphasis is
on structure and discipline. They were not designed to make writing small- or
medium-scale programs easy. The recent rise in popularity (in industry, if not
necessarily in academia) of scripting (sometimes called “agile”) languages, such
as Python, suggests an alternative approach. Python is very flexible and makes
experimentation easy. Solutions to simple problems are simply and elegantly
expressed. Python provides a great laboratory for the neophyte programmer.

Python has a number of features that make it a near-perfect choice as a first
programming language. The basic structures are simple, clean, and well de-
signed, which allows students to focus on the primary skills of algorithmic thinking

8

and program design without getting bogged down in arcane language details.
Concepts learned in Python carry over directly to subsequent study of systems
languages such as Java and C++. But Python is not a “toy language.” It is a real-
world, production language that is freely available for virtually every program-
ming platform and comes standard with its own easy-to-use integrated program-
ming environment. The best part is that Python makes learning to program fun
again.

Although I use Python as the language, teaching Python is not the main
point of this book. Rather, Python is used to illustrate fundamental principles of
design and programming that apply in any language or computing environment.
In some places, I have purposely avoided certain Python features and idioms
that are not generally found in other languages. There are already many good
books about Python on the market; this book is intended as an introduction to
computing.

Similarly, there are places in the book where the “Pythonic” way of doing
things has been eschewed for pedagogical reasons. For example, the chapter on
the string data type uses functions from the string library before introducing
string methods, which are generally preferable. This is done purposely in an
effort to meet students “where they’re at.” Most beginning students know noth-
ing about strings or objects, but they are already quite familiar with the basic
concepts of computation in the context of mathematics (numbers). Thus, it is a
natural progression to start with numeric algorithms and functions and extend
those ideas to a less familiar data type, namely strings and string functions.
From there, the introduction of string methods makes a perfect bridge to the use
of objects.

Besides using Python, there are other features of this book designed to make
it a gentler introduction to computer science. Some of these features include the
following:

· Extensive use of computer graphics. Students love working on programs
that include graphics. This book presents a simple-to-use graphics pack-
age (provided as a Python module) that allows students both to learn the
principles of computer graphics and to practice object-oriented concepts
without the complexity inherent in a full-blown graphics library and event-
driven programming.

· Interesting examples. The book is packed with complete programming ex-
amples to solve real problems.

���5�$� 8�

· Readable prose. The narrative style of this book introduces key computer
science concepts in a natural way as an outgrowth of a developing discus-
sion. I have tried to avoid random facts or tangentially related sidebars.

· Flexible spiral coverage. Since the goal of the book is to present concepts
simply, each chapter is organized so that students are introduced to new
ideas in a gradual way, giving them time to assimilate an increasing level
of detail as they progress. Ideas that take more time to master are intro-
duced in early chapters and reinforced in later chapters.

· Just-in-time object coverage. The proper place for the introduction of ob-
ject-oriented techniques is an ongoing controversy in computer science
education. This book is neither strictly “objects early” nor “objects late,”
but gradually introduces object concepts after a brief initial grounding in
the basics of imperative programming. Students learn multiple design tech-
niques, including top-down (functional decomposition), spiral
(prototyping), and object-oriented methods. Additionally, the textbook
material is flexible enough to accommodate other approaches.

· Extensive end-of-chapter problems. Exercises at the end of every chapter
provide ample opportunity for students to both reinforce chapter material
and practice new programming skills.

��6�
�����	�����

In keeping with the goal of simplicity, I have tried to limit inclusion of material
that would not be covered in a first course. Still, there is probably more material
here than can be covered in a typical one-semester introduction. My classes
cover virtually all of the material in the first twelve chapters in order, though not
necessarily covering every section in depth. One or two topics from Chapter 13
(Algorithm Design and Recursion) are generally interspersed at appropriate places
during the term.

Recognizing that different instructors prefer to approach topics in other or-
ders, I have tried to keep the material relatively flexible. Chapters 1–3 (Comput-
ers and Programs, Writing Simple Programs, and Computing with Numbers) are
essential introduction and should probably be covered in order. The first several
sections of Chapter 4 (Computing with Strings) are also fundamental to mate-

���5�$�8��

rial throughout the book, but the later sections (String formatting and File Pro-
cessing) can be delayed until later in the course, if desired. Chapters 5–8 (Graphics
and Objects, Defining Functions, Decision Structures, and Loop Structures and
Booleans) are designed to stand independently and can be taken in virtually any
order. Chapters 9–12 are written to be taken in order, but the material in Chap-
ter 11 could easily be moved earlier, should the instructor want to cover lists
(arrays) before covering design. Instructors wishing to emphasize object-ori-
ented design need not spend much time on Chapter 9. Chapter 13 contains
more advanced material that may be covered at the end or interspersed at vari-
ous places throughout the course.

- 2�����������

My approach to CS1 has been influenced over the years by the many fine text-
books that I have read and used for classes. Much that I have learned from those
books has undoubtedly found its way into these pages. There are a few specific
authors whose approaches have been so important that I feel they deserve spe-
cial mention. A.K. Dewdney has always had a knack for finding simple examples
that illustrate complex issues; I have borrowed a few of those and given them
new legs in Python. I also owe a debt to wonderful textbooks from both Owen
Astrachan and Cay Horstmann. The graphics library I introduce in Chapter 5
was directly inspired by my experience teaching with a similar library designed
by Horstmann. I also learned much about teaching computer science from Nell
Dale, for whom I was fortunate enough to serve as a TA when I was a graduate
student at the University of Texas.

Many people have contributed either directly or indirectly to the production
of this book. I am grateful to Dave Reed at Capital University who used early
versions and offered numerous insightful suggestions. I have also received much
help and encouragement from my colleagues at Wartburg College: Lynn Olson,
who offered unflagging support; and Josef Breutzmann, who supplied many
project ideas. I also want to acknowledge the fine folks at Franklin, Beedle, and
Associates, including Christine Collier and Krista Brown, and especially Jim Leisy,
Tom Sumner, and Dean Lake, who turned my pet project into a real textbook.
Thanks also goes to all of my students, who have taught me so much about
teaching, and to Wartburg College for giving me sabbatical support to work on
the book. Last, but most importantly, I acknowledge my wife, Lib Bingham, who

���5�$� 8���

has served as editor, advisor, and morale booster while putting up with me
throughout this project.

I also thank the following individuals who read and commented on parts or
all of the manuscript:

Rus May Morehead State University
Carolyn Miller North Carolina State University
Guido van Rossum Elemental Security
Jim Sager California State University, Chico
Christine Shannon Centre College
Paul Tymann Rochester Institute of Technology
Suzanne Westbrook University of Arizona

—JMZ

���������	

3547698;:=<?> @ � ��A BDC	��
FEG HI��J
K EG�FLMEGHIA

NPO!Q�RTSVUXWZYTRT[
\ To understand the respective roles of hardware and software in a comput-

ing system.

\ To learn what computer scientists study and the techniques that they use.

\ To understand the basic design of a modern computer.

\ To understand the form and function of computer programming languages.

\ To begin using the Python programming language.

\ To learn about chaotic models and their implications for computing.

]_^`] a;bcRFdfecWZYTRhg1[�ihjlkminSobcWpecR

Almost everyone has used a computer at one time or another. Perhaps you have

played computer games or used a computer to write a paper or balance your

checkbook. Computers are used to predict the weather, design airplanes, make

movies, run businesses, perform financial transactions, and control factories.

Have you ever stopped to wonder what exactly a computer is? How can one

device perform so many different tasks? These basic questions are the starting

point for learning about computers and computer programming.

A modern computer can be defined as “a machine that stores and manipu-

lates information under the control of a changeable program.” There are two

q

r s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

key elements to this definition. The first is that computers are devices for ma-

nipulating information. This means we can put information into a computer,

and it can transform the information into new, useful forms, and then output or

display the information for our interpretation.

Computers are not the only machines that manipulate information. When

you use a simple calculator to add up a column of numbers, you are entering

information (the numbers) and the calculator is processing the information to

compute a running sum which is then displayed. Another simple example is a

gas pump. As you fill your tank, the pump uses certain inputs: the current price

of gas per gallon and signals from a sensor that reads the rate of gas flowing

into your car. The pump transforms this input into information about how much

gas you took and how much money you owe.

We would not consider either the calculator or the gas pump as full-fledged

computers, although modern versions of these devices may actually contain em-

bedded computers. They are different from computers in that they are built to

perform a single, specific task. This is where the second part of our definition

comes into the picture: Computers operate under the control of a changeable

program. What exactly does this mean?

A computer program is a detailed, step-by-step set of instructions telling a

computer exactly what to do. If we change the program, then the computer

performs a different sequence of actions, and hence, performs a different task.

It is this flexibility that allows your PC to be at one moment a word processor,

at the next moment a financial planner, and later on, an arcade game. The

machine stays the same, but the program controlling the machine changes.

Every computer is just a machine for executing (carrying out) programs.

There are many different kinds of computers. You might be familiar with Mac-

intoshes and PCs, but there are literally thousands of other kinds of computers

both real and theoretical. One of the remarkable discoveries of computer sci-

ence is the realization that all of these different computers have the same power;

with suitable programming, each computer can basically do all the things that

any other computer can do. In this sense, the PC that you might have sitting on

your desk is really a universal machine. It can do anything you want it to do,

provided you can describe the task to be accomplished in sufficient detail. Now

that’s a powerful machine!

~�� r0���!}�����}�ux�P�0����{�} �
]_^�� ��g1�h�Gg1i_� ���T��Rcg

You have already learned an important lesson of computing: Software (pro-

grams) rules the hardware (the physical machine). It is the software that de-

termines what any computer can do. Without software, computers would just

be expensive paperweights. The process of creating software is called program-

ming, and that is the main focus of this book.

Computer programming is a challenging activity. Good programming re-

quires an ability to see the big picture while paying attention to minute detail.

Not everyone has the talent to become a first-class programmer, just as not ev-

eryone has the skills to be a professional athlete. However, virtually anyone can

learn how to program computers. With some patience and effort on your part,

this book will help you to become a programmer.

There are lots of good reasons to learn programming. Programming is a

fundamental part of computer science and is, therefore, important to anyone in-

terested in becoming a computer professional. But others can also benefit from

the experience. Computers have become a commonplace tool in our society. Un-

derstanding the strengths and limitations of this tool requires an understanding

of programming. Non-programmers often feel they are slaves of their comput-

ers. Programmers, however, are truly in control. If you want to become a more

intelligent user of computers, then this book is for you.

Programming can also be loads of fun. It is an intellectually engaging ac-

tivity that allows people to express themselves through useful and sometimes

remarkably beautiful creations. Believe it or not, many people actually write

computer programs as a hobby. Programming also develops valuable problem-

solving skills, especially the ability to analyze complex systems by reducing them

to interactions of understandable subsystems.

As you probably know, programmers are in great demand. More than a few

liberal arts majors have turned a couple of computer programming classes into

a lucrative career option. Computers are so commonplace in the business world

today that the ability to understand and program computers might just give you

the edge over your competition, regardless of your occupation.

]_^�� � b�ioUPW�[¡ ¢�£�¥¤§¦nU¨Rcgª©«S¬W�RcecSRh®

You might be surprised to learn that computer science is not the study of com-

puters. A famous computer scientist named Edsger Dijkstra once quipped that

computers are to computer science what telescopes are to astronomy. The com-

¯ s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

puter is an important tool in computer science, but it is not itself the object of

study. Since a computer can carry out any process that we can describe, the real

question is What processes can we describe? Put another way, the fundamental

question of computer science is simply What can be computed? Computer sci-

entists use numerous techniques of investigation to answer this question. The

three main ones are design, analysis, and experimentation.

One way to demonstrate that a particular problem can be solved is to actu-

ally design a solution. That is, we develop a step-by-step process for achieving

the desired result. Computer scientists call this an algorithm. That’s a fancy

word that basically means “recipe.” The design of algorithms is one of the most

important facets of computer science. In this book you will find techniques for

designing and implementing algorithms.

One weakness of design is that it can only answer the question What is com-

putable? in the positive. If I can devise an algorithm, then the problem is solv-

able. However, failing to find an algorithm does not mean that a problem is

unsolvable. It may mean that I’m just not smart enough, or I haven’t hit upon

the right idea yet. This is where analysis comes in.

Analysis is the process of examining algorithms and problems mathemati-

cally. Computer scientists have shown that some seemingly simple problems

are not solvable by any algorithm. Other problems are intractable. The algo-

rithms that solve these problems take too long or require too much memory to

be of practical value. Analysis of algorithms is an important part of computer

science; throughout this book we will touch on some of the fundamental princi-

ples. Chapter 13 has examples of unsolvable and intractable problems.

Some problems are too complex or ill-defined to lend themselves to anal-

ysis. In such cases, computer scientists rely on experimentation; they actually

implement systems and then study the resulting behavior. Even when theoret-

ical analysis is done, experimentation is often needed in order to verify and

refine the analysis. For most problems, the bottom line is whether a working,

reliable system can be built. Often we require empirical testing of the system

to determine that this bottom-line has been met. As you begin writing your

own programs, you will get plenty of opportunities to observe your solutions in

action.

I have defined computer science in terms of designing, analyzing, and evalu-

ating algorithms, and this is certainly the core of the academic discipline. These

days, however, computer scientists are involved in far-flung activities, all of

which fall under the general umbrella of computing. Some example areas in-

clude networking, human-computer interaction, artificial intelligence, computa-

~x� ¯ ��°"u�}����Vu1}�{²±Xu�� $ ³ � ´

Input

Devices

CPU

Secondary

Memory
Main

Memory

Output

Devices

Figure
�
.
�
: Functional View of a Computer.

tional science (using powerful computers to model scientific data), databases,

software engineering, web and multimedia design, management information

systems, and computer security. Wherever computing is done, the skills and

knowledge of computer science are being applied.

]_^|µ ¶ªing1·���ing1RF¸li�[XW�S¬[

You don’t have to know all the details of how a computer works to be a successful

programmer, but understanding the underlying principles will help you master

the steps we go through to put our programs into action. It’s a bit like driving a

car. Knowing a little about internal combustion engines helps to explain why you

have to do things like fill the gas tank, start the engine, step on the accelerator,

etc. You could learn to drive by just memorizing what to do, but a little more

knowledge makes the whole process much more understandable. Let’s take a

moment to “look under the hood” of your computer.

Although different computers can vary significantly in specific details, at a

higher level all modern digital computers are remarkably similar. Figure
�
.
�

shows a functional view of a computer. The central processing unit (CPU) is the

“brain” of the machine. This is where all the basic operations of the computer are

carried out. The CPU can perform simple arithmetic operations like adding two

numbers and can also do logical operations like testing to see if two numbers

are equal.

The memory stores programs and data. The CPU can only directly access

information that is stored in main memory (called RAM for Random Access Mem-

ory). Main memory is fast, but it is also volatile. That is, when the power is

¹ s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

turned off, the information in the memory is lost. Thus, there must also be some

secondary memory that provides more permanent storage. In a modern per-

sonal computer, this is usually some sort of magnetic medium such as a hard

disk (also called a hard drive) or floppy. Optical media such as CD (compact

disc) and DVD (digital versatile disc) are also common.

Humans interact with the computer through input and output devices. You

are probably familiar with common devices such as a keyboard, mouse, and

monitor (video screen). Information from input devices is processed by the CPU

and may be shuffled off to the main or secondary memory. Similarly, when infor-

mation needs to be displayed, the CPU sends it to one or more output devices.

So what happens when you fire up your favorite game or word processing

program? First, the instructions that comprise the program are copied from the

(more) permanent secondary memory into the main memory of the computer.

Once the instructions are loaded, the CPU starts executing the program.

Technically the CPU follows a process called the fetch-execute cycle. The first

instruction is retrieved from memory, decoded to figure out what it represents,

and the appropriate action carried out. Then the next instruction is fetched,

decoded and executed. The cycle continues, instruction after instruction. This

is really all the computer does from the time that you turn it on until you turn

it off again: fetch, decode, execute. It doesn’t seem very exciting, does it? But

the computer can execute this stream of simple instructions with blazing speed,

zipping through millions of instructions each second. Put enough simple instruc-

tions together in just the right way, and the computer does amazing things.

]_^|º ��g1�h�Gg1i_�¥�»Wpe��I¼�i_en�G¦cio�_Ro[

Remember that a program is just a sequence of instructions telling a computer

what to do. Obviously, we need to provide those instructions in a language that a

computer can understand. It would be nice if we could just tell a computer what

to do using our native language, like they do in science fiction movies. (“Com-

puter, how long will it take to reach planet Alphalpha at maximum warp?”) Un-

fortunately, despite the continuing efforts of many top-flight computer scientists

(including your author), designing a computer to understand human language

is still an unsolved problem.

Even if computers could understand us, human languages are not very well

suited for describing complex algorithms. Natural language is fraught with am-

biguity and imprecision. For example, if I say: “I saw the man in the park with

the telescope,” did I have the telescope, or did the man? And who was in the

~x� ´2�¨�½}��1�0}�ux�_� $ ����¾�ux�����vu��1{z� ¿

park? We understand each other most of the time only because all humans share

a vast store of common knowledge and experience. Even then, miscommunica-

tion is commonplace.

Computer scientists have gotten around this problem by designing notations

for expressing computations in an exact and unambiguous way. These special

notations are called programming languages. Every structure in a programming

language has a precise form (its syntax) and a precise meaning (its semantics).

A programming language is something like a code for writing down the instruc-

tions that a computer will follow. In fact, programmers often refer to their

programs as computer code, and the process of writing an algorithm in a pro-

gramming language is called coding.

Python is one example of a programming language. It is the language that

we will use throughout this book. You may have heard of some other languages,

such as C++, Java, Perl, Scheme, or BASIC. Although these languages differ in

many details, they all share the property of having well-defined, unambiguous

syntax and semantics.

All of the languages mentioned above are examples of high-level computer

languages. Although they are precise, they are designed to be used and under-

stood by humans. Strictly speaking, computer hardware can only understand a

very low-level language known as machine language.

Suppose we want the computer to add two numbers. The instructions that

the CPU actually carries out might be something like this.

À2Á�Â0ÃPÄ�Å½ÆÈÇ�É�Ê�ËXÆ0Ì9Í0Ì�ÁxÊ?ÊÎÆxÊ!Á0Ì2ÏÐÀ2Á�Ñ0Â�Ä½Ò�ÁÓÇ¡Ô2Õ2ÕÎÖ7Ò�Ç¨Ä�Á7Ä�Å½Æ9×�Ø0Ù
À2Á�Â0ÃPÄ�Å½ÆÈÇ�É�Ê�ËXÆ0Ì9Í0Ì�ÁxÊ?ÊÎÆxÊ!Á0Ì2ÏÐÀ2Á�Ñ0Â�Ä½Ò�ÁÓÇ¡Ô2Õ2Õ¨ÔÐÒ�Ç¨Ä�Á7Ä�Å½Æ9×�Ø0Ù
Ú Ã2ÃPÄ0ÅXÆ?Ä2ÛXÁÈÇ2É0Ê¨Ë½Æ0Ì!Ü?Ò�ÇÐÄ�Å½Æ9×�Ø0Ù
ÜxÄ¨Á0Ì¨Æ7Ä0ÅXÆ?Ì�Æ½Ü�É!À�Ä¡Ò�Ç¨Ä�ÁÝÀ2Á�Ñ0Â�Ä!Ò�ÁÓÇ¡Ô2Õ2Õ�Þ
This seems like a lot of work to add two numbers, doesn’t it? Actually, it’s even

more complicated than this because the instructions and numbers are repre-

sented in binary notation (as sequences of 0s and 1s).

In a high-level language like Python, the addition of two numbers can be

expressed more naturally:
ÑÈßàÂ?á?Ë

. That’s a lot easier for us to understand,

but we need some way to translate the high-level language into the machine

language that the computer can execute. There are two ways to do this: a

high-level language can either be compiled or interpreted.

A compiler is a complex computer program that takes another program writ-

ten in a high-level language and translates it into an equivalent program in the

machine language of some computer. Figure
�
.
�

shows a block diagram of the

â s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

Source
Code

(Program)
Machine
Code

Running
Program

Inputs Outputs

Compiler

Figure
�
.
�
: Compiling a High-Level Language

Computer

Running an

Interpreter

Inputs

Outputs

Source
Code

(Program)

Figure
�
.
�
: Interpreting a High-Level Language.

compiling process. The high-level program is called source code, and the re-

sulting machine code is a program that the computer can directly execute. The

dashed line in the diagram represents the execution of the machine code.

An interpreter is a program that simulates a computer that understands a

high-level language. Rather than translating the source program into a machine

language equivalent, the interpreter analyzes and executes the source code in-

struction by instruction as necessary. Figure
�
.
�

illustrates the process.

The difference between interpreting and compiling is compiling is a one-

shot translation; once a program is compiled, it may be run over and over again

without further need for the compiler or the source code. In the interpreted

case, the interpreter and the source are needed every time the program runs.

Compiled programs tend to be faster, since the translation is done once and for

all, but interpreted languages lend themselves to a more flexible programming

environment as programs can be developed and run interactively.

The translation process highlights another advantage that high-level lan-

guages have over machine language: portability. The machine language of a

computer is created by the designers of the particular CPU. Each kind of com-

~�� ¹0��ãTt�{Gä²u�� $ ³ ��åæ�0ç�yèt��0� é

puter has its own machine language. A program for a Pentium CPU won’t run on

a Macintosh that sports a PowerPC. On the other hand, a program written in a

high-level language can be run on many different kinds of computers as long as

there is a suitable compiler or interpreter (which is just another program). For

example, if I design a new computer, I can also program a Python interpreter for

it, and then any program written in Python can be run on my new computer, as

is.

]_^�ê a;bcRFkëin�§W�S»��ì;�îí¬UÎb��£e

Now that you have all the technical details, it’s time to start having fun with

Python. The ultimate goal is to make the computer do our bidding. To this

end, we will write programs that control the computational processes inside the

machine. You have already seen that there is no magic in this process, but in

some ways programming feels like magic.

The computational processes inside the computer are like magical spirits that

we can harness for our work. Unfortunately, those spirits only understand a very

arcane language that we do not know. What we need is a friendly Genie that can

direct the spirits to fulfill our wishes. Our Genie is a Python interpreter. We can

give instructions to the Python interpreter, and it directs the underlying spirits

to carry out our demands. We communicate with the Genie through a special

language of spells and incantations (i.e., Python). The best way to start learning

about Python is to let our Genie out of the bottle and try some spells.

You can start the Python interpreter in an interactive mode and type in some

commands to see what happens. When you first start the interpreter program,

you may see something like the following:

Ø�Ï2Ä0ÅXÁ�Ç¡ÔTïðÞòñôóÎÖ�õlöXÂ�Ì»ÖxÞÝÔ0Õ�Õ2ÞTõfÖ2Ö÷èÔ0øn÷ùÕ�Þ!úûpü ×�×ÝÔTïðý�øPÔ2Õ�Õ2Õ�Õ2þ�ÞÎÖÿñ��XÆ0Ã��½Â�Ä��!Ò1Ç�É��ÝþoïðÞÝÔTïðý�ø	�!Ö2ÖxÕ!ú�
PÁÓÇÿÀ�Ò�Ç2É��¨Ô��Ï�½Æ��ôÅ½Æ¨À���!õ��xÑ�Á�¨Ï�Ì!Ò���Å¨Ä��Îõ��xÑxÌ�Æ2ÃXÒÓÄ!Ü���Á�Ì��1À¨Ò�Ñ�ÆÓÇ(ÜÓÆ���Í�Á0ÌÈÊÎÁ�Ì�ÆÐÒ1ÇXÍ�Á0Ì�ÊÎÂ�Ä½Ò�Á�Çhï�	���
The ��� � is a Python prompt indicating that the Genie is waiting for us to give

it a command. In programming languages, a complete command is called a

statement.

Here is a sample interaction with the Python interpreter:�	��� �Ì½Ò�Ç�Ä��!�XÆ�À�À0ÁTõ#"�Á0ÌXÀ�Ã$��XÆ�À�À0ÁTõ#"�Á0ÌXÀ�Ã

~&% s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

�	��� �Ì½Ò�Ç�ÄÝÔ9áÝÞ'�	��� �Ì½Ò�Ç�Ä��1Ô?áÐÞPß$�!õ Ô9áÝÞÔ?áÐÞPß('
Here I have tried out three examples using the Python

�Ì½Ò�Ç�Ä
statement. The

first statement asks Python to display the literal phrase Hello, World. Python

responds on the next line by printing the phrase. The second
¨Ì!Ò�Ç¨Ä

statement

asks Python to print the sum of 2 and 3. The third
¨Ì!Ò1Ç�Ä

combines these two

ideas. Python prints the part in quotes “2 + 3 =” followed by the result of

adding 2 + 3, which is 5.

This kind of interaction is a great way to try out new things in Python. Snip-

pets of interactive sessions are sprinkled throughout this book. When you see

the Python prompt ����� in an example, that should tip you off that an inter-

active session is being illustrated. It’s a good idea to fire up Python and try the

examples yourself.

Usually we want to move beyond snippets and execute an entire sequence

of statements. Python lets us put a sequence of statements together to create a

brand-new command called a function. Here is an example of creating a new

function called
Å½Æ�À�À2Á

:�	��� Ã¨Æ0Í7Å½Æ¨À2À2Á¬ñ1ú¬÷�Ì!Ò1Ç�Ä)�&�XÆ�À�À2Á*��Ì!Ò1Ç�Ä)�v×�Á�Ê+�É¨Ä�Æ�ÌÎÜ Â�Ì�Æ-,�É�Ç��
�	���
The first line tells Python that we are defining a new function called

ÅXÆ¨À2À2Á
. The

following lines are indented to show that they are part of the
Å½Æ¨À2À2Á

function.

The blank line (obtained by hitting the .�/ Ç�Ä¨Æ0Ì � key twice) lets Python know that

the definition is finished, and the interpreter responds with another prompt. No-

tice that the definition did not cause anything to happen. We have told Python

what should happen when the
ÅXÆ¨À�À0Á

function is used as a command; we haven’t

actually asked Python to perform it yet.

A function is invoked by typing its name. Here’s what happens when we use

our
ÅXÆ¨À�À0Á

command:�	��� Å½Æ�À�À2Á¬ñ1ú�XÆ�À�À0Á
×�Á�Ê+2É�Ä�Æ�ÌÎÜ;Â�Ì�Æ-,�É�Ç�	���

~�� ¹0��ãTt�{Gä²u�� $ ³ ��åæ�0ç�yèt��0� ~�~

Do you see what this does? The two
¨Ì!Ò1Ç�Ä

statements from the
Å½Æ¨À2À2Á

function

are executed in sequence.

You may be wondering about the parentheses in the definition and use ofÅ½Æ�À�À0Á
. Commands can have changeable parts called parameters that are placed

within the parentheses. Let’s look at an example of a customized greeting using

a parameter. First the definition:�	��� Ã¨Æ0Í��2Ì�Æ2Æ0Ä�ñ0½Æ�ÌÎÜÓÁ�Ç�ú÷�Ì!Ò1Ç�Ä)�&�XÆ�À�À2Á*�Îõ1XÆ0Ì!Ü�Á�Ç�Ì!Ò1Ç�Ä)�&�XÁ�Û¡Â�Ì�Æ?Ï¨Á�É323�
Now we can use our customized greeting.�	��� �2Ì¨Æ�Æ0Ä�ñ���4�Á�Å2Ç��Óú�XÆ�À�À0Á54�ÁÓÅ�Ç�XÁ�Û¡Â�Ì¨Æ?Ï�Á�É32�	��� �2Ì¨Æ�Æ0Ä�ñ�� / Ê�Ò�À�Ï$��ú�XÆ�À�À0Á / Ê(Ò0À�Ï�XÁ�Û¡Â�Ì¨Æ?Ï�Á�É32�	���

Can you see what is happening here? When we use
�2Ì¨Æ�Æ�Ä

we can send different

names to customize the result. We will discuss parameters in detail later on. For

the time being, our functions will not use parameters, so the parentheses will be

empty, but you still need to include them when defining and using functions.

One problem with entering functions interactively at the Python prompt like

this is that the definitions go away when we quit Python. If we want to use them

again the next time, we have to type them all over again. Programs are usually

created by typing definitions into a separate file called a module or script. This

file is saved on a disk so that it can be used over and over again.

A module file is just a text file, and you can create one using any program

for editing text, like a notepad or word processor program (provided you save

your program as a “plain text” file). A special type of program known as a pro-

gramming environment simplifies the process. A programming environment is

specifically designed to help programmers write programs and includes features

such as automatic indenting, color highlighting, and interactive development.

The standard Python distribution includes a programming environment called

IDLE that you may use for working on the programs in this book.

Let’s illustrate the use of a module file by writing and running a complete

program. Our program will illustrate a mathematical concept known as chaos.

~zr s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

Here is the program as we would type it into IDLE or some other editor and save

in a module file:

ó6,!Ò�À2Æo÷ Ñ�Å!Â0Á½Ü¬ï7�Ï
ó Ú Ü2ÒvÊ+!À0Æ8�Ì¨Á��0ÌXÂ�Ê Ò0À�ÀxÉ(Ü�Ä�ÌXÂ�Ä!Ò1Ç��9Ñ�Å!Â0Á0Ä½Ò�Ñ ËXÆ�Å!Â�9!Ò�Á0Ìcï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ò0À2ÀÓÉ"ÜxÄ�Ì�Â�Ä¨Æ½Ü ÂàÑ1Å!Â2Á�Ä!Ò2Ñ;Í�É2Ç"ÑxÄ!Ò�ÁÓÇ���9ßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂ7Ç2É0Ê¨Ë½Æ0ÌÈË½Æ0Ä0ÛXÆ2Æ�ÇàÕÝÂxÇXÃ Ö÷��Óú

Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���Ææñ�Ö�Õ!ú÷�9ßàÞoïðý(;<�=;¥ñ�Ö8�6�!ú�Ì!Ò1Ç�Ä��
Ê"Â¨Ò�Çoñ1ú

This file should be saved with the name
Ñ1Å!Â2ÁXÜæï>�Ï

. The
ï7¨Ï

extension in-

dicates that this is a Python module. You can see that this particular example

contains lines to define a new function called
Ê"Â¨Ò�Ç

. (Programs are often placed

in a function called
Ê"Â¨Ò�Ç

.) The last line of the file is the command to invoke this

function. Don’t worry if you don’t understand what
Ê"Â�Ò1Ç

actually does; we will

discuss it in the next section. The point here is that once we have a program in

a module file, we can run it any time we want.

This program can be run in a number of different ways that depend on the

actual operating system and programming environment that you are using. If

you are using a windowing system, you can run a Python program by clicking

(or double-clicking) on the module file’s icon. In a command line situation, you

might type a command like
�Ï�Ä�Å½ÁÓÇ Ñ�Å½Â2Á½Ü¬ï7¨Ï

. If you are using IDLE (or another

programming environment) you can run a program by opening it in the editor

and then selecting a command like import, run, or execute.

One method that should always work is to start the Python interpreter and

then
Ò�Ê?½Á0Ì2Ä

the file. Here is how that looks:�	��� Ò�Ê?½Á0Ì2Ä¡Ñ�Å½Â2ÁXÜ�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ò0À2ÀÓÉ"ÜxÄ�Ì�Â�Ä¨Æ½Ü ÂàÑ1Å!Â2Á�Ä!Ò2Ñ;Í�É2Ç"ÑxÄ!Ò�ÁÓÇ/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ ÖV÷9ïèÔ	'
Õnïùþ�Þ!ÖÓÔ	'
Õnïùþ�ø2ø�@	@ÎÖ�@�Õ�ø¨Ô�'
Õnïùø�ý�AÎÖxÞ	'2Õ!ÖxÕ�@�Þ�ý
ÕnïBA¨Ô½Ö�A�ý	'�A!Ö�A�þ2ý
Õnï0'2þ2Õ	A�ýC@¨Õ!ÖxýÎÖ�ý�þ

~�� ¹0��ãTt�{Gä²u�� $ ³ ��åæ�0ç�yèt��0� ~��

Õnïùý?'�'2Þ�ý�A�þC@?A�Þ2ø�@
Õnï�Öxø2øÎÖ�A2ø�þ�Ô!Öxý	'C@
Õnï0'C@�Õ�@"Ö�þ�ý!ÖÓÔ2Õ2ø¨Ô
Õnïùý�ø�A�ø¨ÔCA�ý2Þ�Õ�Þ
Õnï�Ö�Ö�A?'2Õ2ý�Õ!ÖxÕÎÖ�þ�ø�	���
Typing the first line

Ò�Ê?½Á0Ì2Ä¡Ñ�Å½Â2ÁXÜ
tells the Python interpreter to load the

Ñ1Å!Â0Á½Ü
module from the file

Ñ�Å½Â2Á½Ü¬ï7¨Ï
into main memory. Notice that I did not include

the
ï7¨Ï

extension on the
Ò�Ê?½Á�Ì�Ä

line; Python assumes the module will have aï7¨Ï
extension.

As Python imports the module file, each line executes. It’s just as if we

had typed them one-by-one at the interactive Python prompt. The
Ã�Æ2Í

in the

module causes Python to create the
Ê"Â�Ò1Ç

function. When Python encounters the

last line of the module, the
ÊÎÂ�Ò1Ç

function is invoked, thus running our program.

The running program asks the user to enter a number between 0 and 1 (in this

case, I typed “.25”) and then prints out a series of 10 numbers.

When you first import a module file in this way, Python creates a companion

file with a
ï>�Ï½Ñ

extension. In this example, Python creates another file on the

disk called
Ñ1Å!Â2ÁXÜæï>�Ï!Ñ

. This is an intermediate file used by the Python inter-

preter. Technically, Python uses a hybrid compiling/interpreting process. The

Python source in the module file is compiled into more primitive instructions

called byte code. This byte code (the
ï7�Ï½Ñ

) file is then interpreted. Having aï7¨Ï!Ñ
file available makes importing a module faster the second time around.

However, you may delete the byte code files if you wish to save disk space;

Python will automatically recreate them as needed.

A module needs to be imported into a session only once. After the mod-

ule has been loaded, we can run the program again by asking Python to exe-

cute the
Ê"Â¨Ò�Ç

command. We do this by using a special dot notation. TypingÑ�Å½Â2ÁXÜæï�ÊÎÂ�Ò1Çnñ1ú
tells Python to invoke the

ÊÎÂ�Ò1Ç
function in the

Ñ1Å!Â0Á½Ü
module.

Continuing with our example, here is how it looks when we rerun the program

with D ��E as the input:�	��� Ñ�Å½Â2Á½Ü¬ï�ÊÎÂ�Ò�Çoñ1ú�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ò0À2ÀÓÉ"ÜxÄ�Ì�Â�Ä¨Æ½Ü ÂàÑ1Å!Â2Á�Ä!Ò2Ñ;Í�É2Ç"ÑxÄ!Ò�ÁÓÇ/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ ÖV÷9ïèÔ2ø
Õnïùþ?'0Õ�Þ�ø
Õnïùþ�Þ2Õ?'C@�þ�@�ý�@+'0ø
Õnïùþ�ø2þ�þ�Õ2ø�ø�Ô	'2þ2Þ�Þ

~ ¯ s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

Õnïùø�ý	'C@¨ý2ý�Þ2Þ�Þ�ý
ÕnïBA¨Ô�'2ý�@¨Ô2ÕC@¨Õ�þ2Þ�@
Õnï0'2ø2Õ�ø�þ2Õ�ý2ø?'2þ�Ô!Ö
Õnïùý�ø2Õ�ø�@�@�Ô0Þ¨Ô�ÔCA¨Ô
Õnï�Ö�@�þ�@	@�ø	A2þ?'2ý2Þ?'
ÕnïF@¨ý2Õ¨Ô	'�@+'�@¨ý�Þ2þ�ø
Õnïùý�þC@¨ø¨Ô0ý�ø2Õ¨Ô!ÖG@¨ý�	���
]_^IH J`e�[XW�·§Ròi��îí¬U!bc�£e ��g1�h�Gg1i_�

The output from the
Ñ�Å½Â2ÁXÜ

program may not look very exciting, but it illustrates

a very interesting phenomenon known to physicists and mathematicians. Let’s

take a look at this program line by line and see what it does. Don’t worry about

understanding every detail right away; we will be returning to all of these ideas

in the next chapter.

The first two lines of the program start with the
ó

character:ó6,!Ò�À2Æo÷ Ñ�Å!Â0Á½Ü¬ï7�Ï
ó Ú Ü2ÒvÊ+!À0Æ8�Ì¨Á��0ÌXÂ�Ê Ò0À�ÀxÉ(Ü�Ä�ÌXÂ�Ä!Ò1Ç��9Ñ�Å!Â0Á0Ä½Ò�Ñ ËXÆ�Å!Â�9!Ò�Á0Ìcï
These lines are called comments. They are intended for human readers of the

program and are ignored by Python. The Python interpreter always skips any

text from the pound sign (
ó
) through the end of a line.

The next line of the program begins the definition of a function called
ÊÎÂ�Ò1Ç

:

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
Strictly speaking, it would not be necessary to create a

ÊÎÂ�Ò1Ç
function. Since the

lines of a module are executed as they are loaded, we could have written our

program without this definition. That is, the module could have looked like this:ó6,!Ò�À2Æo÷ Ñ�Å!Â0Á½Ü¬ï7�Ï
ó Ú Ü2ÒvÊ+!À0Æ8�Ì¨Á��0ÌXÂ�Ê Ò0À�ÀxÉ(Ü�Ä�ÌXÂ�Ä!Ò1Ç��9Ñ�Å!Â0Á0Ä½Ò�Ñ ËXÆ�Å!Â�9!Ò�Á0Ìcï
�Ì½Ò�Ç¨Ä)�:��Å"Ò¨Ü�¨Ì�ÁC�2ÌXÂ1Ê»Ò0À2ÀÓÉ"ÜxÄ�Ì�Â�Ä¨Æ½Ü Â¡Ñ1Å!Â0Á0Ä!Ò2Ñ Í�É2Ç"ÑxÄ!Ò�ÁÓÇ���9ßÿÒ�Ç��É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂÈÇ�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ ÖV÷���ú
Í¨Á�ÌÿÒ9Ò�ÇàÌXÂxÇ���Ææñ�Ö�Õ!ú÷�9ßÐÞnïðý(;<�=;¥ñ1Ö8���!ú�Ì½Ò�Ç�Ä6�

~�� ¿0�?K ��� $ �1{hu«�2ç�yèt��0�=�½}��1�0}�ux� ~�´

This version is a bit shorter, but it is customary to place the instructions that

comprise a program inside of a function called
Ê"Â¨Ò�Ç

. One immediate benefit of

this approach was illustrated above; it allows us to run the program by simply

invoking
Ñ�Å!Â0Á½Ü¬ï�Ê"Â¨Ò�Çoñ1ú

. We don’t have to reload the module from the file in

order to run it again, which would be necessary in the
Ê"Â�Ò1Ç

-less case.

The first line inside of
Ê"Â�Ò1Ç

is really the beginning of our program.�Ì½Ò�Ç¨Ä)�:��Å"Ò¨Ü�¨Ì�ÁC�2ÌXÂ1Ê»Ò0À2ÀÓÉ"ÜxÄ�Ì�Â�Ä¨Æ½Ü Â¡Ñ1Å!Â0Á0Ä!Ò2Ñ Í�É2Ç"ÑxÄ!Ò�ÁÓÇ��
This line causes Python to print a message introducing the program when it

runs.

Take a look at the next line of the program:�9ßÿÒ�Ç��É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂÈÇ�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ ÖV÷���ú
Here

�
is an example of a variable. A variable is used to give a name to a value

so that we can refer to it at other points in the program. The entire line is anÒ�Ç��É¨Ä
statement. When Python gets to this statement, it displays the quoted

message / Ç�Ä�Æ�ÌÐÂÈÇ�É�Ê�Ë½Æ�Ì7Ë½Æ�Ä2Û�Æ�Æ�ÇÝÕÐÂÓÇXÃ ÖV÷
and then pauses, waiting for the

user to type something on the keyboard and press the .�/ Ç�Ä�Æ�Ì � key. The value

that the user types in is then stored as the variable
�
. In the first example shown

above, the user entered
ïèÔ�'

, which becomes the value of
�
.

The next statement is an example of a loop.

Í�Á0ÌÿÒ9Ò1ÇÐÌXÂÓÇ+�¨Æ¬ñ�ÖxÕ½ú¬÷
A loop is a device that tells Python to do the same thing over and over again. This

particular loop says to do something 10 times. The lines indented underneath

the loop heading are the statements that are done 10 times. These form the

body of the loop.�9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä��
The effect of the loop is exactly the same as if we had written the body of

the loop 10 times:�9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú

~z¹ s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä���9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä��
Obviously, using the loop instead saves the programmer a lot of trouble.

But what exactly do these statements do? The first one performs a calcula-

tion.�9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú
This is called an assignment statement. The part on the right side of the

ß
is a

mathematical expression. Python uses the
;

character to indicate multiplication.

Recall that the value of
�

is M?D ��N (from the
Ò1Ç	2É�Ä

statement). The computed

value is O	DQP+RSM?D ��N�T:R0U V�M?D ��N�T or M?DXW�O?U���N . Once the value on the righthand side is

computed, it is stored back (or assigned) into the variable that appears on the

lefthand side of the
ß
, in this case

�
. The new value of

�
(M?DXW�O?U���N) replaces the

old value (M?D ��N).
The second line in the loop body is a type of statement we have encountered

before, a
¨Ì!Ò�Ç¨Ä

statement.�Ì½Ò�Ç¨Ä��
When Python executes this statement the current value of

�
is displayed on the

screen. So, the first number of output is 0.73125.

Remember the loop executes 10 times. After printing the value of
�
, the two

statements of the loop are executed again.�9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú�Ì½Ò�Ç¨Ä��

~�� â0�0s(tvu��1�æux��� sX���_w���y|{�}�� ~�¿

Of course, now
�

has the value M?DXW�O?U���N , so the formula computes a new value of�
as O	DQP+RSM?DXW�O?U���N�T:R0U�VYM?DXW�O?U���N�T , which is M?DXW�E�E�Z�Z�U:Z�M�E���N .

Can you see how the current value of
�

is used to compute a new value each

time around the loop? That’s where the numbers in the example run came from.

You might try working through the steps of the program yourself for a different

input value (say M?DQN). Then run the program using Python and see how well you

did impersonating a computer.

]_^I[�b�i���[Pi�ec·I ¢�£�¥¤§¦oU�Rcg1[

I said above that the
Ñ1Å!Â2ÁXÜ

program illustrates an interesting phenomenon.

What could be interesting about a screen full of numbers? If you try out the

program for yourself, you’ll find that, no matter what number you start with,

the results are always similar: the program spits back 10 seemingly random

numbers between M and U . As the program runs, the value of
�

seems to jump

around, well, chaotically.

The function computed by this program has the general form: *R^]_T:R0U`V�]_T ,
where \ in this case is

Þoïðý
. This is called a logistic function. It models cer-

tain kinds of unstable electronic circuits and is also sometimes used to predict

population under limiting conditions. Repeated application of the logistic func-

tion can produce chaos. Although our program has a well defined underlying

behavior, the output seems unpredictable.

An interesting property of chaotic functions is that very small differences

in the initial value can lead to large differences in the result as the formula is

repeatedly applied. You can see this in the chaos program by entering numbers

that differ by only a small amount. Here is the output from a modified program

that shows the results for initial values of M?D ��N and M?D ��E side by side:

Ò�Ç��É¨Ä ÕnïèÔ�' ÕnïèÔ0ø�	���	���	�	���	���	�	���	���	�	���	���	�	���	�C�	���
Õnïùþ�ÞÎÖxÔ	'0Õ Õnïðþ	'2Õ2Þ�ø�Õ
Õnïùþ�ø�øC@	@ÎÖ Õnïðþ2Þ�Õ	'C@¨þ
Õnïùø�ý	A!ÖxÞ	' Õnïðþ2ø�þ2þ�Õ�þ
ÕnïBA¨Ô!Ö�A�ý2ø Õnïðø2ý?'�@¨ý�ý
Õnï0'2þ�Õ�A�ýC@ Õnï0A�Ô	'0ý�@�Ô
Õnïùý?'	'0Þ�ý2ý Õnï�'0ø�Õ2ø�þÎÖ
Õnï�Öxø�ø!Ö�A2þ Õnïðý2ø�Õ2ø�@	@
Õnï0'C@¨ÕC@"Ö�A Õnï�ÖG@¨þC@	@¨þ

~zâ s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

Õnïùý�ø	A2ø¨Ô0ý ÕnïB@�ý�Õ�Ô	'	'
Õnï�Ö�Ö�A	'2Õ2ý Õnïðý2þ�@�ø�Þ�Õ

With very similar starting values, the outputs stay similar for a few iterations,

but then differ markedly. By about the fifth iteration, there no longer seems to

be any relationship between the two models.

These two features of our
Ñ1Å!Â2ÁXÜ

program, apparent unpredictability and ex-

treme sensitivity to initial values, are the hallmarks of chaotic behavior. Chaos

has important implications for computer science. It turns out that many phe-

nomena in the real world that we might like to model and predict with our

computers exhibit just this kind of chaotic behavior. You may have heard of

the so-called butterfly effect. Computer models that are used to simulate and

predict weather patterns are so sensitive that the effect of a single butterfly flap-

ping its wings in New Jersey might make the difference of whether or not rain

is predicted in Peoria.

It’s very possible that even with perfect computer modeling, we might never

be able to measure existing weather conditions accurately enough to predict

weather more than a few days in advance. The measurements simply can’t be

precise enough to make the predictions accurate over a longer time frame.

As you can see, this small program has a valuable lesson to teach users of

computers. As amazing as computers are, the results that they give us are only

as useful as the mathematical models on which the programs are based. Com-

puters can give incorrect results because of errors in programs, but even correct

programs may produce erroneous results if the models are wrong or the initial

inputs are not accurate enough.

]_^Ia �b�i�¤nU�Rcg © ¦§�¥� ing1í

This chapter has introduced computers, computer science, and programming.

Here is a summary of some of the key concepts:

\ A computer is a universal information-processing machine. It can carry out

any process that can be described in sufficient detail. A description of the

sequence of steps for solving a particular problem is called an algorithm.

Algorithms can be turned into software (programs) that determines what

the hardware (physical machine) can and does accomplish. The process

of creating software is called programming.

~�� é0�0s(t�uxw�y|{�}3b¨������u�}�ç ~�é

\ Computer science is the study of what can be computed. Computer sci-

entists use the techniques of design, analysis, and experimentation. Com-

puter science is the foundation of the broader field of computing which

includes areas such as networking, databases, and information manage-

ment systems, to name a few.

\ A basic functional view of a computer system comprises a central process-

ing unit (CPU), main memory, secondary memory, and input and output

devices. The CPU is the brain of the computer that performs simple arith-

metic and logical operations. Information that the CPU acts on (data and

programs) is stored in main memory (RAM). More permanent information

is stored on secondary memory devices such as magnetic disks and optical

devices. Information is entered into the computer via input devices, and

output devices display the results.

\ Programs are written using a formal notation known as a programming

language. There are many different languages, but all share the property

of having a precise syntax (form) and semantics (meaning). Computer

hardware only understands a very low-level language known as machine

language. Programs are usually written using human-oriented high-level

languages such as Python. A high-level language must either be compiled

or interpreted in order for the computer to understand it. High-level lan-

guages are more portable than machine language.

\ Python is an interpreted language. One good way to learn about Python is

to use the interactive interpreter for experimentation.

\ A Python program is a sequence of commands (called statements) for the

Python interpreter to execute. Python includes statements to do things

such as print output to the screen, get input from the user, calculate the

value of a mathematical expression, and perform a sequence of statements

multiple times (loop).

\ A mathematical model is called chaotic if very small changes in the input

lead to large changes in the results, making them seem random or un-

predictable. The models of many real-world phenomena exhibit chaotic

behavior, which places some limits on the power of computing.

rG% s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�
]_^`]dc egfTRhg1S¬W�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. Computer science is the study of computers.

2. The CPU is the “brain” of the computer.

3. Secondary memory is also called RAM.

4. All information that a computer is currently working on is stored in main

memory.

5. The syntax of a language is its meaning, and semantics is its form.

6. A function definition is a sequence of statements that defines a new com-

mand.

7. A programming environment refers to a place where programmers work.

8. A variable is used to give a name to a value so it can be referred to in other

places.

9. A loop is used to skip over a section of a program.

10. A chaotic function describes things that are random and unpredictable.

� |��Q�!�����X}1�j�?������}
1. What is the fundamental question of computer science?

a) How fast can a computer compute?

b) What can be computed?

c) What is the most effective programming language?

d) How much money can a programmer make?

2. An algorithm is like a

a) newspaper b) venus flytrap c) drum d) recipe

3. A problem is intractable when

a) you cannot reverse its solution

b) it involves tractors

~x� ~!%0�?����{1} ³�$ ��{z� r0~

c) it has many solutions

d) it is not practical to solve

4. Which of the following is not an example of secondary memory?

a) RAM b) hard drive c) floppy d) CD-Rom

5. Computer languages designed to be used and understood by humans are

a) natural languages

b) high-level computer languages

c) machine languages

d) fetch-execute languages

6. A statement is

a) a translation of machine language

b) a complete computer command

c) a precise description of a problem

d) a section of an algorithm

7. One difference between a compiler and an interpreter is

a) a compiler is a program

b) a compiler is used to translate high-level language into machine lan-

guage

c) a compiler is no longer needed after a program is translated

d) a compiler processes source code

8. By convention, the statements of a program are often placed in a function

called

a) import b) IDLE c) program d) main

9. Which of the following is not true of comments?

a) They make a program more efficient

b) They are intended for human readers

c) They are ignored by Python

d) In Python, they begin with a pound sign (
ó
)

10. The items listed in the parentheses of a function definition are called

a) parentheticals b) scripts c) comments d) parameters

� ���!��|?�&�:���m�
1. Compare and contrast the following pairs of concepts from the chapter:

r1r s(tvuxwzy|{1}V~���s��0��w���y|{�}���ux�����!}��1��}�ux�o�

(a) Hardware vs. Software

(b) Algorithm vs. Program

(c) Programming Language vs. Natural Language

(d) High-Level Language vs. Machine Language

(e) Interpreter vs. Compiler

(f) Syntax vs. Semantics

2. List and explain in your own words the role of each of the five basic func-

tional units of a computer depicted in Figure
�
.
�
.

3. Write a detailed algorithm for making a peanut butter and jelly sandwich

(or some other everyday activity). You should assume that you are talking

to someone who is conceptually able to do the task, but has never actually

done it before. For example, you might be telling a young child.

4. As you will learn in a later chapter, many of the numbers stored in a com-

puter are not exact values, but rather close approximations. For example,

the value 0.1 might be stored as 0.10000000000000000555. Usually, such

small differences are not a problem; however, given what you have learned

about chaotic behavior in Chapter 1, you should realize the need for cau-

tion in certain situations. Can you think of examples where this might be

a problem? Explain.

5. Trace through the Chaos program from Section 1.6 by hand using M?D�UuN as

the input value. Show the sequence of output that results.

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. Start up an interactive Python session and try typing in each of the follow-

ing commands. Write down the results you see.

(a)
�Ì½Ò�Ç¨Ä��!�XÆ�À�À0ÁTõîÛ�Á0Ì�À0Ãj���

(b)
�Ì½Ò�Ç¨Ä��!�XÆ�À�À0Á��Îõ���Û�Á0ÌXÀ�Ãj���

(c)
�Ì½Ò�Ç¨ÄÐÞ

(d)
�Ì½Ò�Ç¨ÄÐÞnïðÕ

(e)
�Ì½Ò�Ç¨ÄàÔ?áàÞ

(f)
�Ì½Ò�Ç¨ÄàÔoïðÕPáÝÞoïðÕ

~x� ~!%0�?����{1} ³�$ ��{z� r��

(g)
�Ì½Ò�Ç¨Ä��1Ô*�fá)�vÞ��

(h)
�Ì½Ò�Ç¨Ä��1Ô?áÝÞ9ß$�!õ Ô?áàÞ

(i)
�Ì½Ò�Ç¨ÄàÔ5;PÞ

(j)
�Ì½Ò�Ç¨ÄàÔ5;	;7Þ

(k)
�Ì½Ò�Ç¨ÄàÔ��ÝÞ

(l)
�Ì½Ò�Ç¨ÄàÔoïðÕ �PÞoïðÕ

2. Enter and run the Chaos program from Section 1.6. Try it out with various

values of input to see that it functions as described in the chapter.

3. Modify the Chaos program using 2.0 in place of 3.9 as the multiplier in the

logistic function. Your modified line of code should look like this:�ÐßÐÔTïðÕ(;��¡;¥ñ�Ö<�-�!ú
Run the program for various input values and compare the results to those

obtained from the original program. Write a short paragraph describing

any differences that you notice in the behavior of the two versions.

4. Modify the Chaos program so that it prints out 20 values instead of 10.

5. Modify the Chaos program so that the number of values to print is deter-

mined by the user. You will have to add a line near the top of the program

to get another value from the user:

Çÿß¡Ò1Ç	2É�ÄTñ��!��Á�Û ÊÎÂÓÇ¨Ï?Ç�É0Ê¨Ë½Æ�ÌÎÜPÜ�Å½Á�É½À0Ã¡¢�¨Ì!Ò1Ç�Ä�2¡��ú
Then you will need to change the loop to use

Ç
instead of a specific number.

6. (Advanced) Modify the Chaos program so that it accepts two inputs and

then prints a table with two columns similar to the one shown in Sec-

tion 1.8. (Note: You will probably not be able to get the columns to line

up as nicely as those in the example. Chapter 4 discusses how to print

numbers with a fixed number of decimal places.)

3547698;:=<?>¤£ E¦¥��§¥"� L ¨ ¥"A Bª©0

K EG�FLMEGHIA

NPO!Q�RTSVUXWZYTRT[
\ To know the steps in an orderly software development process.

\ To understand programs following the Input, Process, Output (IPO) pat-

tern and be able to modify them in simple ways.

\ To understand the rules for forming valid Python identifiers and expres-

sions.

\ To be able to understand and write Python statements to output infor-

mation to the screen, assign values to variables, get numeric information

entered from the keyboard, and perform a counted loop

�«^`] a;bcR	©G��ì�UÓ��ing1R¬«ªR�YTRcj �²¤§� RcenU ��g1�GS¬RT[�[

As you saw in the previous chapter, it is easy to run programs that have already

been written. The hard part is actually coming up with the program in the first

place. Computers are very literal, and they must be told what to do right down

to the last detail. Writing large programs is a daunting challenge. It would be

almost impossible without a systematic approach.

The process of creating a program is often broken down into stages according

to the information that is produced in each phase. In a nutshell, here’s what you

should do: �®

r1¹ s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
Analyze the Problem Figure out exactly what the problem to be solved is. Try

to understand as much as possible about it. Until you really know what

the problem is, you cannot begin to solve it.

Determine Specifications Describe exactly what your program will do. At this

point, you should not worry about how your program will work, but rather

about deciding exactly what it will accomplish. For simple programs this

involves carefully describing what the inputs and outputs of the program

will be and how they relate to each other.

Create a Design Formulate the overall structure of the program. This is where

the how of the program gets worked out. The main task is to design the

algorithm(s) that will meet the specifications.

Implement the Design Translate the design into a computer language and put

it into the computer. In this book, we will be implementing our algorithms

as Python programs.

Test/Debug the Program Try out your program and see if it works as expected.

If there are any errors (often called bugs), then you should go back and

fix them. The process of locating and fixing errors is called debugging a

program. During the debugging phase, your goal is to find errors, so you

should try everything you can think of that might “break” the program. It’s

good to keep in mind the old maxim: “Nothing is foolproof because fools

are too ingenious.”

Maintain the Program Continue developing the program in response to the

needs of your users. Most programs are never really finished; they keep

evolving over years of use.

�«^�� egfTi_�¥¤_j Rm��g1�h�Gg1i_�³² a Rh� ¤£Rcg1iTUÎ¦_g1R	 ¢�£e�YTRcgvU¨Rhg

Let’s go through the steps of the software development process with a simple

real-world example involving a fictional computer science student, Susan Com-

putewell.

Susan is spending a year studying in Germany. She has no problems with

language, as she is fluent in many languages (including Python). Her problem

is that she has a hard time figuring out the temperature in the morning so that

she knows how to dress for the day. Susan listens to the weather report each

r0� r0�+����ux��w�± {²�!}��1��}�ux��´(ã¨{1��w�{�}�u�yè��}�{_s��0� , {�}�y|{�} r�¿

morning, but the temperatures are given in degrees Celsius, and she is used to

Fahrenheit.

Fortunately, Susan has an idea to solve the problem. Being a computer sci-

ence major, she never goes anywhere without her laptop computer. She thinks

it might be possible that a computer program could help her out.

Susan begins with an analysis of her problem. In this case, the problem is

pretty clear: the radio announcer gives temperatures in degrees Celsius, but

Susan only comprehends temperatures that are in degrees Fahrenheit.

Next, Susan considers the specifications of a program that might help her

out. What should the input be? She decides that her program will allow her to

type in the temperature in degrees Celsius. And the output? The program will

display the temperature converted into degrees Fahrenheit. Now she needs to

specify the exact relationship of the output to the input.

Susan does some quick figuring. She knows that 0 degrees Celsius (freez-

ing) is equal to 32 degrees Fahrenheit, and 100 Celsius (boiling) is equal to 212

Fahrenheit. With this information, she computes the ratio of Fahrenheit to Cel-

sius degrees as µ!¶Iµ!·m¸�µ¶I¹�¹!·m¹�º ¶I»�¹¶I¹�¹¦º½¼¾ . Using F to represent the Fahrenheit tempera-

ture and C for Celsius, the conversion formula will have the form ¿ ºÀ¼¾	Á1Â \ for

some constant \ . Plugging in M and O�� for Á and ¿ , respectively, Susan immedi-

ately sees that \ º O�� . So, the final formula for the relationship is ¿ ºÃ¼¾ Á§Â O�� .
That seems an adequate specification.

Notice that this describes one of many possible programs that could solve

this problem. If Susan had background in the field of Artificial Intelligence (AI),

she might consider writing a program that would actually listen to the radio

announcer to get the current temperature using speech recognition algorithms.

For output, she might have the computer control a robot that goes to her closet

and picks an appropriate outfit based on the converted temperature. This would

be a much more ambitious project, to say the least!

Certainly, the robot program would also solve the problem identified in the

problem analysis. The purpose of specification is to decide exactly what this

particular program will do to solve a problem. Susan knows better than to just

dive in and start writing a program without first having a clear idea of what she

is trying to build.

Susan is now ready to design an algorithm for her problem. She immedi-

ately realizes that this is a simple algorithm that follows a standard pattern:

Input, Process, Output (IPO). Her program will prompt the user for some in-

put information (the Celsius temperature), process it to convert to a Fahrenheit

temperature, and then output the result by displaying it on the computer screen.

r1â s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
Susan could write her algorithm down in a computer language. However,

the precision of writing it out formally tends to stifle the creative process of

developing the algorithm. Instead, she writes her algorithm using pseudocode.

Pseudocode is just precise English that describes what a program does. It is

meant to communicate algorithms without all the extra mental overhead of get-

ting the details right in any particular programming language.

Here is Susan’s completed algorithm:¢1Ç��É¨ÄPÄ0ÅXÆ?Ä�ÆxÊ?½Æ�ÌXÂ�Ä�É�Ì¨ÆÝÒ�ÇàÃ�Æ��0Ì�Æ�ÆXÜ ×�Æ�ÀXÜ0Ò�É(Ü ñvÑ0Â2À�ÀÝÒxÄÿÑ�Æ�ÀXÜ2Ò1É(Ü�ú
×¨Â2À�Ñ1É!À�Â�Ä�ÆÈÍ�ÂÓÅ¨Ì�ÆÓÇ�Å½Æ�ÒÓÄ9ÂXÜ ñzý	�	'Xú0Ñ�Æ�ÀXÜ0Ò�É(Ü áÝÞ¨ÔÄ É¨ÄC2É�Ä9Í¨ÂÓÅ�Ì¨Æ�Ç2Å½ÆXÒxÄ

The next step is to translate this design into a Python program. This is

straightforward, as each line of the algorithm turns into a corresponding line

of Python code.

ó¡Ñ�ÁÓÇ+9¨Æ0Ì�Ä�ï7¨Ï
ó Ú �Ì�ÁC�2Ì�Â�ÊàÄ¨ÁàÑ�Á�Ç?9�Æ�Ì�ÄÝ×2Æ¨ÀXÜ0Ò�É"Ü Ä�Æ�Ê+"Ü;Ä�Á-,XÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄ
ó7Ë�Ï�÷ÆÅÓÉ"Ü�ÂÓÇ¡×2ÁxÊ?�É�Ä¨Æ�Û�Æ¨À�À
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Ñ�Æ�ÀXÜ2Ò1É(Ü;ß¡Ò1Ç	2É�ÄTñ��!"0Å!Â�ÄÐÒ¨Ü;Ä�Å½Æ9×�Æ�ÀXÜ0Ò�É(Ü Ä�ÆxÊ?½Æ�ÌXÂ�Ä�É�Ì¨Æ�25��ú
Í�ÂxÅ�Ì�ÆÓÇ�ÅXÆXÒÓÄ?ß ñzýoïðÕ ��'oïùÕ!ú-;ÝÑ�Æ�ÀXÜ0Ò�É(Ü áÐÞ¨Ô�Ì½Ò�Ç�Ä��:�0ÅXÆ?Ä�Æ�Ê+½Æ�ÌXÂ�Ä0É�Ì¨ÆÝÒ�Ü��ÎõlÍ�ÂÓÅ¨Ì�ÆÓÇ�Å½Æ�ÒÓÄoõ��vÃ�Æ��0Ì�Æ�ÆXÜ§,XÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄcïG�

Ê"Â¨Ò�Çoñ1ú
See if you can figure out what each line of this program does. Don’t worry

if some parts are a bit confusing. They will be discussed in detail in the next

section.

After completing her program, Susan tests it to see how well it works. She

uses inputs for which she knows the correct answers. Here is the output from

two of her tests:"2Å½Â�ÄÿÒ�Ü;Ä0Å½Æ9×2Æ¨À�Ü2Ò�É"Ü Ä�Æ�Ê+XÆ0ÌXÂ�Ä0É¨Ì�Æ�2 Õ�0ÅXÆ?Ä�Æ�Ê+½Æ�ÌXÂ�Ä0É�Ì¨ÆÝÒ�ÜÈÞ¨ÔoïùÕ?Ã¨ÆC�2Ì¨Æ�Æ½Ü Í�ÂÓÅ¨Ì�ÆÓÇ�Å½Æ�ÒÓÄ�ï
"2Å½Â�ÄÿÒ�Ü;Ä0Å½Æ9×2Æ¨À�Ü2Ò�É"Ü Ä�Æ�Ê+XÆ0ÌXÂ�Ä0É¨Ì�Æ�2PÖxÕ2Õ�0ÅXÆ?Ä�Æ�Ê+½Æ�ÌXÂ�Ä0É�Ì¨ÆÝÒ�Ü7Ô!ÖÓÔTïðÕ?Ã�Æ��0Ì�Æ�ÆXÜ;Í�ÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄcï

r0� �0�+�	± {��n{���y|�¬�1å�!}�����}�ux�o� r�é

You can see that Susan used the values of 0 and 100 to test her program. It looks

pretty good, and she is satisfied with her solution. She is especially pleased that

no debugging seems necessary (which is very unusual).

�«^�� e=j Rc� RcenU¨[9��ì;��g1�h�«g1i�� [

Now that you know something about the programming process, you are almost

ready to start writing programs on your own. Before doing that, though, you

need a more complete grounding in the fundamentals of Python. The next few

sections will discuss technical details that are essential to writing correct pro-

grams. This material can seem a bit tedious, but you will have to master these

basics before plunging into more interesting waters.

Ç�È�É�ÈSÊ Ë �*��i�s
You have already seen that names are an important part of programming. We

give names to modules (e.g.,
Ñ�Á�Ç?9�Æ�Ì�Ä

) and to the functions within modules

(e.g.,
Ê"Â¨Ò�Ç

). Variables are used to give names to values (e.g.,
Ñ�Æ�ÀXÜ2Ò1É(Ü

andÍ�ÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄ
). Technically, all these names are called identifiers. Python has

some rules about how identifiers are formed. Every identifier must begin with a

letter or underscore (the “ ” character) which may be followed by any sequence

of letters, digits, or underscores. This implies that a single identifier cannot

contain any spaces.

According to these rules, all of the following are legal names in Python:�
Ñ�Æ�ÀXÜ0Ò�É(Ü
ÜG½Â�Ê
ÜG½Â�ÊÎÔÅ�½Â�Ê Ú ÇXÃ / ���!ÜÅ�½Â�Ê3Ì�ÂÓÇ�Ã+Ì / �	�½Ü
Identifiers are case-sensitive, so

ÜG½Â�Ê
,
Å�½Â�Ê

,
Ü�ØXÂ1Ê

, and
Å�Ø Ú ö

are all different

names to Python. For the most part, programmers are free to choose any name

that conforms to these rules. Good programmers always try to choose names

that describe the thing being named.

One other important thing to be aware of is that some identifiers are part

of Python itself. These names are called reserved words and cannot be used as

�G% s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
ordinary identifiers. The complete list of Python reserved words is shown in

Table
�
.1.

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

Table
�
.1: Python Reserved Words.

Ç�È�É�È�Ç ���_Í3�Bi�s�s�lnvxw�s
Programs manipulate data. The fragments of code that produce or calculate

new data values are called expressions. So far our program examples have dealt

mostly with numbers, so I’ll use numeric data to illustrate expressions.

The simplest kind of expression is a literal. A literal is used to indicate a spe-

cific value. In
Ñ�Å!Â0Á½Ü¬ï7�Ï

you can find the numbers
Þnïðý

and
Ö
. The

Ñ�Á�Ç?9�Æ�Ì�Äcï>�Ï
program contains

ýoïðÕ
,
'oïùÕ

, and
Þ¨Ô

. These are all examples of numeric literals,

and their meaning is obvious:
Þ�Ô

represents, well, O�� .
A simple identifier can also be an expression. We use identifiers as variables

to give names to values. When an identifier appears in an expression, this value

is retrieved to provide a result for the expression. Here is an interaction with

the Python interpreter that illustrates the use of variables as expressions:�	��� �9ß('�	��� �'�	��� �Ì½Ò�Ç�Ä6�'�	��� �Ì½Ò�Ç�Ä¡ÜG!Â1Ê��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . �Ï!Ü1ÅXÆ¨À�À�ó¨ÞC@ � �!õ¢À¨Ò�ÇXÆÿÖ�õ�Ò�ÇÏ2�Ì½Ò�Ç�Ä¡ÜG!Â1ÊÐXÂ1ÊÎÆ / Ì�Ì¨Á0Ì�÷ ÜG½Â�Ê�	���

r0� ¯ ��Ñn��yèw���y{bÓy�u�y|{��o{1�zy|� �0~

First the variable
�

is assigned the value N (using the numeric literal
'
). The

next line has Python evaluate the expression
�
. Python spits back

'
, which is

the value that was just assigned to
�
. Of course, we get the same result when

we put
�

in a print statement. The last example shows what happens when we

use a variable that has not been assigned a value. Python cannot find a value,

so it reports a Name Error. This says that there is no value with that name. A

variable must always be assigned a value before it can be used in an expression.

More complex and interesting expressions can be constructed by combining

simpler expressions with operators. For numbers, Python provides the normal

set of mathematical operations: addition, subtraction, multiplication, division,

and exponentiation. The corresponding Python operators are:
á
,
�
,
;
,
�
, and

;	;
.

Here are some examples of complex expressions from
Ñ�Å½Â2ÁXÜæï7¨Ï

and
Ñ�Á�Ç?9�Æ0Ì2Äcï>�Ï

Þnïùý(;<�=;¥ñ�Ö8�6�Îú
ýnïùÕ ��'oïùÕ(;ÐÑ�Æ¨À�Ü2Ò�É"Ü;áÝÞ¨Ô
Spaces are irrelevant within an expression. The last expression could have been

written
ýnïùÕ?��'oïðÕ+;�Ñ�Æ¨ÀXÜ0Ò�É"ÜÓá¨Þ�Ô

and the result would be exactly the same. Usually

it’s a good idea to place some spaces in expressions to make them easier to read.

Python’s mathematical operators obey the same rules of precedence and as-

sociativity that you learned in your math classes, including using parentheses to

modify the order of evaluation. You should have little trouble constructing com-

plex expressions in your own programs. Do keep in mind that only the round

parentheses are allowed in expressions, but you can nest them if necessary to

create expressions like this.

ñ�ñÒ�"Ö8�-�¨Ô½ú<�9Ô+;1Ç�ú;á	ñ�Üu!Â1ÊL�<Î3;�;�Þ!ú
If you are reading carefully, you may be curious why, in her temperature

conversion program, Susan chose to write
ýnïùÕ?��'oïðÕ

rather than
ý	�	'

. Both of

these are legal expressions, but they give different results. This mystery will be

discussed in Chapter 3. If you can’t stand the wait, try them out for yourself and

see if you can figure out what’s going on.

�«^|µ N9¦oU!¤§¦nUÐ©£U¨ioU�Rc� RceoU�[

Now that you have the basic building blocks, identifier and expression, you are

ready for a more complete description of various Python statements. You al-

ready know that you can display information on the screen using Python’s
¨Ì!Ò1Ç�Ä

�1r s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
statement. But what exactly can be printed? Python, like all programming lan-

guages, has a precise set of rules for the syntax (form) and semantics (meaning)

of each statement. Computer scientists have developed sophisticated notations

called meta-languages for describing programming languages. In this book we

will rely on a simple template notation to illustrate the syntax of statements.

Here are the possible forms of the
¨Ì!Ò1Ç�Ä

statement:�Ì½Ò�Ç¨Ä�Ì½Ò�Ç¨Ä . ÆC���Ì ��Ì½Ò�Ç¨Ä . ÆC���Ì � õ . Æ����Ì � õÝï�ï2ï0õ . Æ���¨Ì ��Ì½Ò�Ç¨Ä . ÆC���Ì � õ . Æ����Ì � õÝï�ï2ï0õ . Æ���¨Ì � õ
In a nutshell, these templates show that a

¨Ì!Ò1Ç�Ä
statement consists of the key-

word
�Ì!Ò1Ç�Ä

followed by zero or more expressions, which are separated by com-

mas. The angle bracket notation (Ó��) is used to indicate “slots” that are filled

in by other fragments of Python code. The name inside the brackets indicates

what is missing;
Æ����Ì

stands for an expression. The ellipses (“...”) indicate an

indefinite series (of expressions, in this case). You don’t actually type the dots.

The fourth version shows that a
�Ì½Ò�Ç�Ä

statement may be optionally ended with

a comma. That is all there is to know about the syntax of
�Ì½Ò�Ç�Ä

.

As far as semantics are concerned, a
�Ì½Ò�Ç¨Ä

statement displays information

in textual form. Any supplied expressions are evaluated left to right, and the

resulting values are displayed on a single line of output in a left-to-right fashion.

A single blank space character is placed between the displayed values.

Normally, successive
�Ì!Ò1Ç�Ä

statements will display on separate lines of the

screen. A bare
�Ì½Ò�Ç�Ä

(first version above) can be used to get a blank line of

output. If a
¨Ì!Ò1Ç�Ä

statement ends with a comma (fourth version), a final space

is appended to the line, but the output does not advance to the next line. Using

this method, multiple
�Ì½Ò�Ç�Ä

statements can be used to generate a single line of

output.

Putting it all together, this sequence of
�Ì!Ò1Ç�Ä

statements�Ì½Ò�Ç¨ÄÝÞ2á�@�Ì½Ò�Ç¨ÄÝÞTõÔ@oõ ÞPá @�Ì½Ò�Ç¨Ä�Ì½Ò�Ç¨ÄÝÞTõÔ@oõ�Ì½Ò�Ç¨ÄÝÞ2á�@�Ì½Ò�Ç¨Ä)�:��Å½ÆÝÂÓÇ"Ü�Û�Æ0Ì¡Ò�Ü��Îõ ÞPá @
produces this output:

r0� ´0��Õ(��� $ ���x�o{���y�bÓy�u�y|{��o{1�zy|� ���

þ
Þ6@Ðþ
Þ6@Ðþ�0ÅXÆÝÂÓÇ"Ü�ÛXÆ�Ì¡Ò¨ÜÈþ

That last
¨Ì!Ò1Ç�Ä

statement may be a bit confusing. According to the syntax

templates above,
¨Ì!Ò1Ç�Ä

requires a sequence of expressions. That means
�!�0Å½Æ

ÂÓÇ"Ü�Û�Æ0Ì¡Ò�Ü��
must be an expression. In fact, it is an expression, but it doesn’t

produce a number. Instead, it produces another kind of data called a string.

A sequence of characters enclosed in quotes is a string literal. Strings will be

discussed in detail in a later chapter. For now, consider this a convenient way of

labeling output.

�«^|º Öf[�[XWZ�«e_� RceoUà©£U¨ioU¨Rh� RheoU�[
Ç�È�×�ÈSÊ Ø l���Í_Ù�i§Ú s�s�l���w���i_wmt

One of the most important kinds of statements in Python is the assignment state-

ment. We’ve already seen a number of these in our previous examples. The basic

assignment statement has this form:

. 9�Â�Ì½Ò0ÂÓË½À2Æ � ß . ÆC��¨Ì �
Here

9XÂ�Ì½Ò0ÂxË!À2Æ
is an identifier and

Æ���¨Ì
is an expression. The semantics of the

assignment is that the expression on the right side is evaluated to produce a

value, which is then associated with the variable named on the left side.

Here are some of the assignments we’ve already seen:�9ßÐÞnïùý(;<�L;¥ñ1Ö8�6�Îú
Í�ÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄPßÝýnïùÕ � 'oïðÕ(;9Ñ�Æ¨À�Ü2Ò�É"Ü;áÝÞ¨Ô�9ß('

A variable can be assigned many times. It always retains the value of the

most recent assignment. Here is an interactive Python session that demonstrates

the point:�	��� Ê½Ï�ÛXÂ�ÌPßàÕ�	��� Ê½Ï�ÛXÂ�ÌÕ

� ¯ s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
�	��� Ê½Ï�ÛXÂ�ÌPßàþ�	��� Ê½Ï�ÛXÂ�Ìþ �	��� Ê½Ï�ÛXÂ�ÌPß7ÊXÏ	Û�Â�Ì9á»Ö�	��� Ê½Ï�ÛXÂ�ÌA
The last assignment statement shows how the current value of a variable can

be used to update its value. In this case I simply added one to the previous

value. The
Ñ�Å½Â2ÁXÜæï7¨Ï

program from Chapter 1 did something similar, though a

bit more complex. Remember, the values of variables can change; that’s why

they’re called variables.

Sometimes it’s helpful to think of a variable as a sort of named storage loca-

tion in computer memory, a box that we can put a value in. When the variable

changes, the old value is erased and a new one written in. Figure
�
.
�

shows

how we might picture the effect of
�Ýß��Ýá Ö

using this model. This is exactly

the way assignment works in some computer languages. It’s also a very sim-

ple way to view the effect of assignment, and you’ll find pictures similar to this

throughout the book.

x 10

Before After

11x

x = x + 1

Figure Ü . Ý : Variable as box view of Þ ß�Þ�àâá
Python assignment statements are actually slightly different from the “vari-

able as a box” model. In Python, values may end up anywhere in memory, and

variables are used to refer to them. Assigning a variable is like putting one of

those little yellow sticky notes on the value and saying, “this is x.” Figure Ü . Ü
gives a more accurate picture of the effect of assignment in Python. An ar-

row is used to show which value a variable refers to. Notice that the old value

doesn’t get erased by the new one; the variable simply switches to refer to the

new value. The effect is like moving the sticky note from one object to another.

This is the way assignment actually works in Python, so you’ll see some of these

sticky-note style pictures sprinkled throughout the book as well.

r0� ´0��Õ(��� $ ���x�o{���y�bÓy�u�y|{��o{1�zy|� ��´

x

After

11

10x

Before

10

x = x + 1

Figure
�
.
�
: Variable as sticky note (Python) view of

�9ß5�9á Ö

By the way, even though the assignment statement doesn’t directly cause the

old value of a variable to be erased and overwritten, you don’t have to worry

about computer memory getting filled up with the “discarded” values. When a

value is no longer referred to by any variable, it is no longer useful. Python will

automatically clear these values out of memory so that the space can be used for

new values. This is like going through your closet and tossing out anything that

doesn’t have a sticky note to label it. In fact, this process of automatic memory

management is actually called garbage collection.

Ç�È�×�È�Ç ÚãsGs�l���w3l�wm�¡ä7w�Í�r�t
The purpose of an input statement is to get some information from the user of

a program and store it into a variable. Some programming languages have a

special statement to do this. In Python, input is accomplished using an assign-

ment statement combined with a special expression called
Ò1Ç	�É¨Ä

. This template

shows the standard form.. 9�Â�Ì½Ò0ÂÓË½À2Æ � ß¡Ò�Ç��É¨ÄTñ . �Ì¨ÁxÊ+¨Ä � ú
Here

¨Ì�Á�Ê+�Ä
is an expression that serves to prompt the user for input; this is

almost always a string literal (i.e., some text inside of quotation marks).

When Python encounters an
Ò1Ç	2É�Ä

expression, it evaluates the prompt and

displays the result of the prompt on the screen. Python then pauses and waits

for the user to type an expression and press the Óå/ Ç�Ä¨Æ0Ì � key. The expression

typed by the user is then evaluated to produce the result of the
Ò1Ç	2É�Ä

. This

sounds complicated, but most uses of
Ò1Ç	2É�Ä

are straightforward. In our example

programs,
Ò�Ç��É�Ä

statements are used to get numbers from the user.

�1¹ s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
�9ßÿÒ�Ç��É�Ä�ñ���ØXÀ2Æ�ÂXÜÓÆ7ÆÓÇ�Ä�Æ�ÌÐÂÈÇ�É�Ê�Ë½Æ�Ì7Ë½Æ�Ä2Û�Æ�Æ�ÇÐÕÝÂÓÇXÃ ÖV÷���ú
Ñ�Æ�ÀXÜ0Ò�É(Ü ß¡Ò�Ç	2É�Ä�ñ��!"0Å!Â�ÄàÒ¨Ü;Ä�Å½Æ9×2Æ¨ÀXÜ0Ò�É"Ü Ä�Æ�Ê+½Æ�ÌXÂ�Ä0É�Ì¨Æ�25��ú

If you are reading programs carefully, you probably noticed the blank space

inside the quotes at the end of these prompts. I usually put a space at the end

of a prompt so that the input that the user types does not start right next to the

prompt. Putting a space in makes the interaction easier to read and understand.

Although these two examples specifically prompt the user to enter a number,

a number is just a numeric literal—a simple Python expression. In fact, any valid

expression would be just as acceptable. Consider the following interaction with

the Python interpreter:�	��� ÂÓÇ"Ü ß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÝÂxÇ¡Æ����Ì�ÆXÜ�Ü0Ò�Á�Çh÷æ�Óú/ Ç¨Ä�Æ�ÌÐÂÓÇÿÆ����Ì¨Æ½Ü�Ü0Ò�ÁÓÇ�÷ ÞÝá�@=;-'�	��� �Ì½Ò�Ç�ÄÝÂÓÇ(ÜÔ2Þ�	���
Here, when prompted to enter an expression, the user typed “3 + 4 * 5.”

Python evaluated this expression and stored the value in the variable
ÂxÇ(Ü

. When

printed, we see that
ÂxÇ(Ü

got the value 23 as expected.

In a way, the
Ò�Ç��É¨Ä

is like a delayed expression. The example interaction

produced exactly the same result as if we had simply done
ÂxÇ(Ü ßÝÞ9á�@=;-'

.

The difference is that the expression was supplied at the time the statement was

executed instead of being determined when the statement was written by the

programmer. Thus, the user can supply formulas for a program to evaluate.

Ç�È�×�È�É Ø l���r_ÙXtu�*w3i�vxr�s°Ú s�s�l���w���i_wmt
There is an alternative form of the assignment statement that allows us to cal-

culate several values all at the same time. It looks like this:

. 9�Â�Ì � õ . 9XÂ�Ì � õÝï2ï�ï�õ . 9XÂ�Ì � ß . Æ���¨Ì � õ . ÆC��¨Ì � õ9ï�ï�ï�õ . ÆC���Ì �
This is called simultaneous assignment. Semantically, this tells Python to evaluate

all the expressions on the right-hand side and then assign these values to the

corresponding variables named on the left-hand side. Here’s an example:

Ü1É�Ê�õ�ÃXÒ�Í�Í?ß5�2á2Ïoõç�+��Ï

r0� ´0��Õ(��� $ ���x�o{���y�bÓy�u�y|{��o{1�zy|� ��¿

Here
Ü�É0Ê

would get the sum of
�

and
Ï

and
Ã½ÒÓÍ�Í

would get the difference.

This form of assignment seems strange at first, but it can prove remarkably

useful. Here’s an example: Suppose you have two variables
�

and
Ï

and you

want to swap the values. That is, you want the value currently stored in
�

to

be in
Ï

and the value that is currently in
Ï

to be stored in
�
. At first, you might

think this could be done with two simple assignments.�9ß9Ï
ÏÝß �
This doesn’t work. We can trace the execution of these statements step-by-step

to see why.

Suppose
�

and
Ï

start with the values 2 and 4. Let’s examine the logic of

the program to see how the variables change. The following sequence uses

comments to describe what happens to the variables as these two statements

are executed:

ó69XÂ�Ì!Ò�ÂÓË!À0Æ½Ü � Ï
ó¡Ò�ÇÎÒÓÄ½Ò0Â�À89XÂ�ÀxÉ½ÆXÜ Ô @�9ß9Ï
ó7Ç½Á�Û @ @
ÏÝß �
ó9Í½Ò1Ç!Â2À @ @
See how the first statement clobbers the original value of

�
by assigning to it the

value of
Ï
? When we then assign

�
to
Ï

in the second step, we just end up with

two copies of the original
Ï

value.

One way to make the swap work is to introduce an additional variable that

temporarily remembers the original value of
�
.

Ä�Æ�Ê+àß���9ß9Ï
ÏÝß9Ä�Æ�Ê+
Let’s walk-through this sequence to see how it works.

ó69XÂ�Ì!Ò�ÂÓË!À0Æ½Ü � Ï Ä�Æ�Ê+
ó¡Ò�ÇÎÒÓÄ½Ò0Â�À89XÂ�ÀxÉ½ÆXÜ Ô @ Ç½Á69�Â�ÀÓÉXÆ7Ï�Æ�Ä
Ä�Æ�Ê+àß��
ó Ô @ Ô�9ß9Ï

�1â s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
ó @ @ Ô
ÏÝß9Ä�Æ�Ê+
ó @ Ô Ô
As you can see from the final values of

�
and

Ï
, the swap was successful in this

case.

This sort of three-way shuffle is common in other programming languages.

In Python, the simultaneous assignment statement offers an elegant alternative.

Here is a simpler Python equivalent:�oõ¢ÏÐßPÏoõÆ�
Because the assignment is simultaneous, it avoids wiping out one of the original

values.

Simultaneous assignment can also be used to get multiple values from the

user in a single
Ò�Ç��É�Ä

. Consider this program for averaging exam scores:

óÐÂ�9	��ÔTï7�Ï
ó Ú Ü2ÒvÊ+!À0Æ8�Ì¨Á��0ÌXÂ�ÊÐÄ�ÁÝÂ�9¨Æ0Ì�ÂC�¨ÆÈÄ2ÛXÁ9ÆC��Â1Ê¥Ü2Ñ�Á�Ì�ÆXÜ
ó ¢�À2ÀÓÉ(Ü�Ä�Ì�Â�Ä�ÆXÜfÉ"Ü�Æ9Á2Í Ê¨É!À�Ä!Ò�½À2Æ9Ò�Ç	2É�Ä
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ�Á�Ê+2É�Ä�ÆXÜ Ä0ÅXÆÝÂ�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ2Û�Á9Æ���Â1Ê Ü2Ñ�Á0Ì¨Æ½Üæïu�

Ü2Ñ�Á0Ì�Æ!Ö�õ Ü0Ñ�Á�Ì�Æ¨ÔÈß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä0ÛXÁ¡Ü0Ñ�Á0Ì¨Æ½ÜPÜÓÆ�½Â�ÌXÂ�Ä�Æ0Ã Ë�ÏàÂàÑ�ÁxÊ�ÊÎÂo÷��ÓúÂ�9¨Æ0ÌXÂ��¨Æ?ß ñvÜ2Ñ�Á0Ì�Æ!Ö áÿÜ2Ñ�Á0Ì¨Æ¨Ô½úè�ÐÔTïðÕ
�Ì½Ò�Ç�Ä��:�0ÅXÆÝÂ�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆ¡Ü2Ñ�Á�Ì�ÆXÜ?Ò¨Ü¬÷G�Îõ�Â�9�Æ�ÌXÂ��¨Æ

Ê"Â¨Ò�Çoñ1ú
The program prompts for two scores separated by a comma. Suppose the user

types
A2øTõ ý�Ô

. The effect of the
Ò1Ç	2É�Ä

statement is then the same as if we had

done this assignment:

Ü2Ñ�Á0Ì¨ÆÎÖ�õ�Ü2Ñ�Á�Ì�Æ�Ô7ß A�ø�õ ý¨Ô
We have gotten a value for each of the variables in one fell swoop. This example

used just two values, but it could be generalized to any number of inputs.

Of course, we could have just gotten the input from the user using separate

input statements.

r0� ¹0�+é"{ëê�� $ y|{²¾v�Ó��w�� ��é

Ü2Ñ�Á0Ì¨ÆÎÖ ßÿÒ�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÄ0ÅXÆPÍ½ÒxÌÎÜxÄ¡Ü2Ñ�Á�Ì�Æo÷���úÜ2Ñ�Á0Ì¨Æ¨Ô7ßÿÒ�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÄ0ÅXÆ¡Ü�Æ�Ñ�Á�Ç�Ã¡Ü2Ñ�Á0Ì¨Æn÷��Óú
In some ways this may be better, as the separate prompts are more informative

for the user. In this example the decision as to which approach to take is largely

a matter of taste. Sometimes getting multiple values in a single
Ò1Ç	�É¨Ä

provides

a more intuitive user interface, so it’s a nice technique to have in your toolkit.

�«^�ê «ªR{ì�ecW U�R�¼��G�²¤h[

You already know that programmers use loops to execute a sequence of state-

ments several times in succession. The simplest kind of loop is called a definite

loop. This is a loop that will execute a definite number of times. That is, at the

point in the program when the loop begins, Python knows how many times to

go around (or iterate) the body of the loop. For example, the Chaos program

from Chapter 1 used a loop that always executed exactly ten times.

Í¨Á0ÌÿÒÝÒ1ÇÐÌXÂÓÇ+�¨Æ¬ñ�ÖxÕ½ú¬÷�9ßÐÞnïðý(;<�=;¥ñ1Ö8���!ú�Ì½Ò�Ç�Ä6�
This particular loop pattern is called a counted loop, and it is built using a PythonÍ¨Á�Ì

statement. Before considering this example in detail, let’s take a look at

what
Í¨Á�Ì

loops are all about.

A Python
Í�Á0Ì

loop has this general form:

Í¨Á0Ì . 9XÂ�Ì � Ò�Ç . Ü�ÆCí�É½ÆÓÇ"Ñ�Æ � ÷. Ë½Á0Ã2Ï �
The body of the loop can be any sequence of Python statements. The start and

end of the body is indicated by its indentation under the loop heading (the
Í�Á0Ì. 9�Â�Ì � Ò�Ç . ÜÓÆ�í�É½Æ�ÇÎÑ�Æ � ÷ part).

The variable after the keyword
Í¨Á�Ì

is called the loop index. It takes on each

successive value in the
ÜÓÆ�í�É½Æ�ÇÎÑ�Æ

, and the statements in the
ËXÁ2Ã2Ï

are executed

once for each value. Often the
ÜÓÆ�í�ÉXÆ�ÇÎÑ�Æ

portion consists of a list of values. Lists

are a very important concept in Python, and you will learn more about them in

upcoming chapters. For now, it’s enough to know that you can create a simple

list by placing a sequence of expressions in square brackets. Some interactive

examples help to illustrate the point:

¯ % s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
�	��� Í¨Á�ÌÿÒ9Ò�Ç û Õ�õ�Ö(õôÔ�õèÞ�
n÷�Ì!Ò1Ç�Ä¡Ò
Õ
Ö
Ô
Þ
�	��� Í¨Á�ÌÐÁ2Ã�Ã¡Ò1Ç û Ö(õ ÞTõî'�õ þ�õ ý�
n÷�Ì!Ò1Ç�ÄÝÁ0Ã�Ã¡;?Á2Ã2Ã
Ö
ý
Ô	'@¨ýAÎÖ

You can see what is happening in these two examples. The body of the

loop is executed using each successive value in the list. The length of the list

determines the number of times the loop will execute. In the first example,

the list contains the four values 0 through 3, and these successive values of
Ò

are simply printed. In the second example,
Á2Ã2Ã

takes on the values of the first

five odd natural numbers, and the body of the loop prints the squares of these

numbers.

Now, let’s go back to the example which began this section (from
Ñ�Å½Â2Á½Ü¬ï7¨Ï

)

Look again at the loop heading:

Í¨Á0ÌÿÒÝÒ1ÇÐÌXÂÓÇ+�¨Æ¬ñ�ÖxÕ½ú¬÷
Comparing this to the template for the

Í¨Á�Ì
loop shows that the last portion,ÌXÂxÇ���Ææñ�Ö�Õ!ú

, must be some kind of sequence. Let’s see what the Python inter-

preter tells us.�	��� ÌXÂxÇ��¨Æ¬ñ�Ö�Õ!úû Õ�õªÖ�õ Ôæõ ÞTõÆ@oõ�'æõ øTõ þTõÔA�õ ý�

Do you see what is happening here? The

ÌXÂÓÇ+�¨Æ
function is a built-in Python

command that simply produces a list of numbers. The loop using
Ì�ÂÓÇ+�¨Ææñ1ÖxÕ½ú

is

exactly equivalent to one using a list of 10 numbers.

Í¨Á0ÌÿÒÝÒ1Ç û ÕTõªÖ(õ Ô�õ Þ�õÆ@oõî'�õ ø�õ þTõÔATõ ýC
�÷

r0� ¹0�+é"{ëê�� $ y|{²¾v�Ó��w�� ¯ ~

In general,
Ì�ÂÓÇ���Ææñ . Æ����Ì � ú will produce a list of numbers that starts with

0 and goes up to, but not does not include, the value of . Æ����Ì � . If you think

about it, you will see that the value of the expression determines the number of

items in the resulting list. In
Ñ1Å!Â0Á½Üæï>�Ï

we did not even care what values the

loop index variable used (since the value of
Ò

was not referred to anywhere in

the loop body). We just needed a list length of 10 to make the body execute 10

times.

As I mentioned above, this pattern is called a counted loop, and it is a very

common way to use definite loops. When you want to do something in your

program a certain number of times, use a
Í¨Á0Ì

loop with a suitable
Ì�ÂÓÇ+�¨Æ

.

Í¨Á0Ì . 9XÂ�Ì!Ò0ÂxË!À0Æ � Ò1ÇÐÌXÂxÇ��¨Æ¬ñ . Æ���¨Ì � ú¬÷
The value of the expression determines how many times the loop executes. The

name of the index variable doesn’t really matter much; programmers often use
Ò

or ï as the loop index variable for counted loops. Just be sure to use an identifier

that you are not using for any other purpose. Otherwise you might accidentally

wipe out a value that you will need later.

The interesting and useful thing about loops is the way that they alter the

“flow of control” in a program. Usually we think of computers as executing a

series of instructions in strict sequence. Introducing a loop causes Python to go

back and do some statements over and over again. Statements like the
Í�Á0Ì

loop

are called control structures because they control the execution of other parts of

the program.

Some programmers find it helpful to think of control structures in terms of

pictures called flowcharts. A flowchart is a diagram that uses boxes to represent

different parts of a program and arrows between the boxes to show the sequence

of events when the program is running. Figure
�
.
�

depicts the semantics of theÍ¨Á�Ì
loop as a flowchart.

If you are having trouble understanding the
Í¨Á�Ì

loop, you might find it useful

to study the flowchart. The diamond shape box in the flowchart represents a

decision in the program. When Python gets to the loop heading, it checks to

see if there are any (more) items left in the sequence. If the answer is yes,

the loop index variable is assigned the next item in the sequence, and then the

loop body is executed. Once the body is complete, the program goes back to the

loop heading and checks for another value in the sequence. The loop quits when

there are no more items, and the program moves on to the statements that come

after the loop.

¯ r s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�

yes

more items in <sequence>
no

<var> = next item

<body>

Figure
�
.
�
: Flowchart of a

Í¨Á�Ì
loop.

�«^IH egfTi_�¥¤_j Rm��g1�h�Gg1i_�³²-ð_¦oUÎ¦_g1Ròñ i�j|¦�R
Let’s close the chapter with one more example of the programming process in

action. We want to develop a program to determine the future value of an

investment. We’ll start with an analysis of the problem. You know that money

deposited in a bank account earns interest, and this interest accumulates as the

years pass. How much will an account be worth ten years from now? Obviously,

it depends on how much money we start with (the principal) and how much

interest the account earns. Given the principal and the interest rate, a program

should be able to calculate the value of the investment ten years into the future.

We continue by developing the exact specifications for the program. Remem-

ber, this is a description of what the program will do. What exactly should the

inputs be? We need the user to enter the initial amount to invest, the principal.

We will also need some indication of how much interest the account earns. This

depends both on the interest rate and how often the interest is compounded.

One simple way of handling this is to have the user enter an annual percentage

rate. Whatever the actual interest rate and compounding frequency, the annual

r0� ¿0�?����ux��w�± {£�!}�����}�ux��´�óÓ��yè��}�{jô"u�±%��{ ¯ �

rate tells us how much the investment accrues in one year. If the annual inter-

est is 3%, then a $100 investment will grow to $103 in one year’s time. How

should the user represent an annual rate of 3%? There are a number of rea-

sonable choices. Let’s assume the user supplies a decimal, so the rate would be

entered as 0.03.

This leads us to the following specification:

Program Future Value

Inputs

principal The amount of money being invested in dollars.

apr The annual percentage rate expressed as a decimal number.

Output The value of the investment 10 years into the future.

Relationship Value after one year is given by õmö�÷7ø�ù!÷�õ�ú	û�R0U Â úGõmöCT . This formula

needs to be applied 10 times.

Next we design an algorithm for the program. We’ll use pseudocode, so

that we can formulate our ideas without worrying about all the rules of Python.

Given our specification, the algorithm seems straightforward.

Ø�Ì½Ò�Ç¨ÄÐÂÓÇ»Ò�Ç¨Ä�Ì¨Á2Ã�ÉÎÑÓÄ½Ò�Á�Ç¢1Ç��É¨ÄPÄ0ÅXÆÝÂ�ÊÎÁÓÉ�Ç¨ÄÝÁ2Í9Ä0ÅXÆ8�Ì½Ò�ÇÎÑ�Ò�½Â�À ñB�Ì½Ò�Ç"Ñ2Ò�½Â�À½ú¢1Ç��É¨ÄPÄ0ÅXÆÝÂÓÇ�Ç2É!Â2Àè½Æ�Ì!Ñ�ÆÓÇ�Ä�ÂC�¨Æ ÌXÂ�Ä�Æòñ�Â��ÌÎú�XÆ�½Æ�Â�Ä Ö�Õ?Ä!Ò�Ê!Æ½Ü¬÷�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈß-¨Ì!Ò�ÇÎÑ�ÒG!Â�À6;¥ñ�Ö;áÐÂ�¨Ì"úÄ É¨ÄC2É�ÄPÄ�Å½Æ-9XÂ2ÀÓÉXÆPÁ2Í-�Ì½Ò�ÇÎÑ�Ò�½Â�À
If you know a little bit about financial math (or just some basic algebra),

you probably realize that the loop in this design is not strictly necessary; there

is a formula for calculating future value in a single step using exponentiation. I

have used a loop here both to illustrate another counted loop, and also because

this version will lend itself to some modifications that are discussed in the pro-

gramming exercises at the end of the chapter. In any case, this design illustrates

that sometimes an algorithmic approach to a calculation can make the mathe-

matics easier. Knowing how to calculate the interest for just one year allows us

to calculate any number of years into the future.

Now that we’ve thought the problem all the way through in pseudocode, it’s

time to put our new Python knowledge to work and develop a program. Each

line of the algorithm translates into a statement of Python.

¯1¯ s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
Print an introduction (

�Ì½Ò�Ç¨Ä
statement, Section 2.4)�Ì½Ò�Ç¨Ä)�:��Å"Ò¨Ü�¨Ì�ÁC�2ÌXÂ1Ê»Ñ0Â2À�Ñ1É!À�Â�Ä�ÆXÜ Ä0ÅXÆ?Í�É¨Ä0É¨Ì�Æ-9XÂ2ÀÓÉXÆ���Ì½Ò�Ç¨Ä)��Á0ÍÐÂ Ö�Õ?��Ï�Æ¨Â�Ì¡Ò�Ç?9�ÆXÜxÄ�Ê!Æ�Ç¨ÄcïG�

Input the amount of the principal (
Ò1Ç	2É�Ä

statement, Section 2.5.2)�Ì½Ò�ÇÎÑ�Ò�½Â�À ß Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì7Ä�Å½ÆàÒ1Ç"ÒÓÄ½Ò0Â2Àè�Ì½Ò�Ç"Ñ2Ò�½Â�Ào÷ �Óú
Input the annual percentage rate (

Ò�Ç��É�Ä
expression, Section 2.5.2)Â�¨ÌÝß¡Ò�Ç��É�Ä�ñ�� / Ç�Ä¨Æ0Ì7Ä0Å½ÆÝÂxÇ�Ç2É!Â�À9Ò�Ç�Ä¨Æ0Ì¨Æ½ÜxÄ7ÌXÂ�Ä�Æn÷ ��ú

Repeat 10 times: (counted loop, Section 2.6)Í¨Á�Ì ÒÝÒ1ÇÐÌXÂÓÇ+�¨Æ¬ñ�ÖxÕ½ú¬÷
Calculate principal = principal * (1 + apr) (simple assignment, Section 2.5.1)¨Ì!Ò1Ç"Ñ�ÒG!Â2À7ß��Ì½Ò�Ç"Ñ2Ò�½Â�À�; ñ1Ö á¡Â��ÌÎú
Output the value of the principal (

¨Ì!Ò1Ç�Ä
statement, Section 2.4)�Ì½Ò�Ç¨Ä)�:��Å½Æ-9XÂ2ÀÓÉXÆÐÒ�Ç ÖxÕ?Ï¨Æ¨Â�ÌÎÜ?Ò�Üæ÷G�!õ1�Ì½Ò�ÇÎÑ�Ò�½Â�À

All of the statement types in this program have been discussed in detail in this

chapter. If you have any questions, you should go back and review the relevant

descriptions. Notice especially the counted loop pattern is used to apply the

interest formula 10 times.

That about wraps it up. Here is the completed program:

ó9Í�É¨Ä	9�Â�Àoï>�Ï
ó Ú ¨Ì�Á��0ÌXÂ1ÊàÄ�ÁàÑ�ÁxÊ+2É�Ä¨Æ7Ä0ÅXÆ-9XÂ�ÀxÉ½ÆPÁ0ÍÐÂÓÇ»Ò�Ç?9�ÆXÜxÄ�Ê!Æ�Ç¨Ä
ó Ñ�Â�Ì�Ì½Ò�Æ0ÃÿÖxÕPÏ¨Æ¨Â�Ì!Ü?Ò�Ç¨Ä�Á?Ä�Å½ÆPÍ�É¨Ä0É¨Ì�Æ
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ0Â2À�Ñ1É!À�Â�Ä�ÆXÜ Ä0ÅXÆPÍ�É¨Ä0É�Ì¨Æ�9XÂ2ÀÓÉXÆ�Ì½Ò�Ç�Ä���Á2ÍÐÂ Ö�Õ?��Ï¨Æ¨Â�ÌàÒ�Ç?9�ÆXÜxÄ�Ê!Æ�Ç¨ÄcïG�

�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�ÀÝÒ1Ç�Ä¨Æ0Ì�ÆXÜxÄ7ÌXÂ�Ä¨Æn÷��Óú
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���Ææñ�Ö�Õ!ú÷�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú

r0� â0�0s(t�uxw�y|{�}3b¨������u�}�ç ¯ ´

�Ì½Ò�Ç�Ä��:�0ÅXÆ-9XÂ2ÀÓÉ½ÆÝÒ�Ç¥ÖxÕPÏ¨Æ¨Â�Ì!Ü?Ò¨Ü¬÷G�!õ1�Ì½Ò�Ç"Ñ2Ò�½Â�À
Ê"Â¨Ò�Çoñ1ú
Notice that I have added a few blank lines to separate the input, processing,

and output portions of the program. Strategically placed “white space” can help

make your programs more readable.

That’s about it for this example; I leave the testing and debugging as an

exercise for you.

�«^I[�b�i�¤nU�Rcg © ¦§�¥� ing1í

This chapter has covered a lot of ground laying out both the process that is used

to develop programs and the details of Python that are necessary to implement

simple programs. Here is a quick summary of some of the key points:

\ Writing programs requires a systematic approach to problem solving and

involves the following steps:

1. Problem Analysis: Studying the problem to be solved.

2. Program Specification: Deciding exactly what the program will do.

3. Design: Writing an algorithm in pseudocode.

4. Implementation: Translating the design into a programming language.

5. Testing/Debugging: Finding and fixing errors in the program.

6. Maintenance: Keeping the program up to date with evolving needs.

\ Many simple programs follow the input, process, output (IPO) pattern.

\ Programs are composed of statements that are built from identifiers and

expressions.

\ Identifiers are names; they begin with an underscore or letter which can

be followed by a combination of letter, digit, or underscore characters.

Identifiers in Python are case sensitive.

\ Expressions are the fragments of a program that produce data. An expres-

sion can be composed of the following components:

¯ ¹ s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
literals A literal is a representation of a specific value. For example

Þ
is a

literal representing the number three.

variables A variable is an identifier that stores a value.

operators Operators are used to combine expressions into more complex

expressions. For example, in
�9áÝÞ¡; Ï

the operators
á

and
;

are

used.

\ The Python operators for numbers include the usual arithmetic operations

of addition (
á
), subtraction (

�
), multiplication (

;
), division (

�
), and expo-

nentiation (
;	;

).

\ The Python output statement
¨Ì!Ò�Ç¨Ä

displays the values of a series of ex-

pressions to the screen.

\ In Python, assignment of a value to a variable is done using the equal sign

(
ß
). Using assignment, programs can get input from the keyboard. Python

also allows simultaneous assignment, which is useful for getting multiple

input values with a single prompt.

\ Definite loops are loops that execute a known number of times. The

Python
Í¨Á�Ì

statement is a definite loop that iterates through a sequence of

values. A Python list is often used in a
Í¨Á�Ì

loop to provide a sequence of

values for the loop.

\ One important use of a
Í¨Á�Ì

statement is in implementing a counted loop,

which is a loop designed specifically for the purpose of repeating some

portion of the program a specific number of times. A counted loop in

Python is created by using the built-in
ÌXÂxÇ���Æ

function to produce a suitably

sized list of numbers.

�«^Ia egfTRcg1SæW�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. The best way to write a program is to immediately write down some code

and then debug it until it works.

2. An algorithm can be written without using a programming language.

r2� é2�+����{1} ³�$ ��{ô� ¯ ¿

3. Programs no longer require modification after they are written and de-

bugged.

4. Python identifiers must start with a letter or underscore.

5. Reserved words make good variable names.

6. Expressions are built from literals, variables, and operators.

7. In Python,
�Ýß��Ðá Ö

is a legal statement.

8. Python does not allow the input of multiple values with a single statement.

9. A counted loop is designed to iterate a specific number of times.

10. In a flowchart, diamonds are used to show statements, and rectangles are

used for decision points.

� |��Q�!�����X}1�j�?������}
1. Which of the following is not a step in the software development process?

a) Specification b) Testing/Debugging

c) Fee setting d) Maintenance

2. What is the correct formula for converting Celsius to Fahrenheit?

a) ¿ º P�ý�N+R Á T Â O�� b) ¿ º N�ý�P+R Á T{VæO��
c) ¿ º6þ µ VYZ�ÿ Á d) ¿ º µ!¶Iµ!·m¸�µ¶I¹�¹!·m¹

3. The process of describing exactly what a computer program will do to solve

a problem is called

a) design b) implementation c) programming d) specification

4. Which of the following is not a legal identifier?

a)
ÜG½Â�Ê

b)
Üu Ú Ê

c)
ÔXÜG½Â�Ê

d)
ÜG½Â�Êm@�Ù

5. Which of the following are not used in expressions?

a) variables b) statements c) operators d) literals

6. Fragments of code that produce or calculate new data values are called

a) identifiers b) expressions

c) productive clauses d) assignment statements

¯ â s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
7. Which of the following is not a part of the IPO pattern?

a) Input b) Program c) Process d) Output

8. The template
Í�Á0Ì . 9�Â�Ì½Ò0ÂÓË½À2Æ � Ò�ÇàÌ�ÂÓÇ���Ææñ . Æ����Ì � ú describes

a) a general for loop b) an assignment statement

c) a flowchart d) a counted loop

9. Which of the following is the most accurate model of assignment in Python?

a) sticky-note b) variable-as-box

c) simultaneous d) plastic-scale

10. In Python, getting user input is done with a special expression called

a)
Í¨Á�Ì

b)
Ì�Æ�Â0Ã

c) simultaneous assignment d)
Ò1Ç	�É¨Ä

� ���!��|?�&�:���m�
1. List and describe in your own words the six steps in the software develop-

ment process.

2. Write out the
Ñ�Å!Â0Á½Ü¬ï7�Ï

program (Section 1.6) and identify the parts of

the program as follows:

\ Circle each identifier.\ Underline each expression.\ Put a comment at the end of each line indicating the type of statement

on that line (output, assignment, input, loop, etc.)

3. Explain the relationships among the concepts: definite loop,
Í�Á0Ì

loop, and

counted loop.

4. Show the output from the following fragments:

(a)
Í¨Á�ÌÿÒÝÒ�ÇÐÌXÂxÇ���Ææñ!'Xú¬÷¨Ì!Ò1Ç�ÄÿÒ�;9Ò

(b)
Í¨Á�ÌÝÃÿÒ�Ç û Þ�õ�Ö(õ�@oõvÖ�õÒ'C
�÷¨Ì!Ò1Ç�ÄÝÃoõ

(c)
Í¨Á�ÌÿÒÝÒ�ÇÐÌXÂxÇ���Ææñë@!ú¬÷¨Ì!Ò1Ç�Ä��!��Æ¨À2À2Á��

(d)
Í¨Á�ÌÿÒÝÒ�ÇÐÌXÂxÇ���Ææñ!'Xú¬÷¨Ì!Ò1Ç�ÄÿÒ¬õ Ô?;	;2Ò

r2� é2�+����{1} ³�$ ��{ô� ¯ é

5. Why is it a good idea to first write out an algorithm in pseudocode rather

than jumping immediately to Python code?

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. A user-friendly program should print an introduction that tells the user

what the program does. Modify the
Ñ�Á�Ç+9¨Æ0Ì2Äcï7¨Ï

program (Section 2.2) to

print an introduction.

2. Modify the
Â�9	��ÔTï7�Ï

program (Section 2.5.3) to find the average of three

exam scores.

3. Modify the
Ñ�Á�Ç+9¨Æ0Ì2Äcï7¨Ï

program (Section 2.2) with a loop so that it exe-

cutes 5 times before quitting (i.e., it converts 5 temperatures in a row).

4. Modify the
Ñ�Á�Ç?9�Æ�Ì�Äcï>�Ï

program (Section 2.2) so that it computes and

prints a table of Celsius temperatures and the Fahrenheit equivalents every

10 degrees from 0C to 100C.

5. Modify the
Í�É�Ä	9�Â�ÀTï7�Ï

program (Section 2.7) so that the number of years

for the investment is also a user input. Make sure to change the final

message to reflect the correct number of years.

6. Suppose you have an investment plan where you invest a certain fixed

amount every year. Modify
Í�É�Ä�9XÂ2Àoï7¨Ï

to compute the total accumulation

of your investment. The inputs to the program will be the amount to invest

each year, the interest rate, and the number of years for the investment.

7. As an alternative to APR, the interest accrued on an account is often de-

scribed in terms of a nominal rate and the number of compounding peri-

ods. For example, if the interest rate is 3% and the interest is compounded

quarterly, the account actually earns 3/4 % interest every 3 months.

Modify the
Í�É�Ä	9�Â�ÀTï7�Ï

program to use this method of entering the interest

rate. The program should prompt the user for the yearly rate (
ÌXÂ�Ä�Æ

) and

the number of times that the interest is compounded each year (
½Æ�Ì!Ò�Á2Ã!Ü

).

To compute the value in ten years, the program will loop
ÖxÕ(;è½Æ�Ì!Ò�Á0Ã!Ü

times and accrue
ÌXÂ�Ä�Æ?��½Æ�Ì!Ò�Á0Ã

interest on each iteration.

8. Write a program that converts temperatures from Fahrenheit to Celsius.

9. Write a program that converts distances measured in kilometers to miles.

One kilometer is approximately 0.62 miles.

´G% s(tvuxwzy|{1}½r0�°¯�} $ y $ ��� b $ ��w�± {£�½}��1�0}�ux�o�
10. Write a program to perform a unit conversion of your own choosing. Make

sure that the program prints an introduction that explains what it does.

3547698;:=<?>�� � � A BDC ��¥(� L � ¥����
� C A �D
FE«

NPO!Q�RTSVUXWZYTRT[
\ To understand the concept of data types.

\ To be familiar with the basic numeric data types in Python.

\ To understand the fundamental principles of how numbers are represented

on a computer.

\ To be able to use the Python math library.

\ To understand the accumulator program pattern.

\ To be able to read and write programs that process numerical data.

�«^`] � ¦_� Rcg�W�S «ªiTU�i	a ín¤²RT[

When computers were first developed, they were seen primarily as number

crunchers, and that is still an important application. As you have seen, problems

that involve mathematical formulas are easy to translate into Python programs.

In this chapter, we’ll take a closer look at programs that involve numerical cal-

culations.

The information that is stored and manipulated by computer programs is

generically referred to as data. Different kinds of data will be stored and manip-

ulated in different ways. Consider this program to calculate the value of loose

change: ®
q

´1r s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
ó¡Ñ�Å½ÂÓÇ+�¨Ænï>�Ï
ó Ú �Ì¨Á��2Ì�Â�ÊàÄ¨ÁàÑ0Â2À�Ñ�É½À�Â�Ä�Æ7Ä�Å½Æ-9XÂ2ÀÓÉXÆPÁ2ÍÿÜÓÁxÊÎÆàÑ1Å!ÂxÇ��¨ÆÝÒ�ÇàÃ¨Á�À�À2Â�ÌÎÜ
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä���×�Å½ÂÓÇ+�¨ÆP×2Á�É�Ç¨Ä�Æ�Ì���Ì½Ò�Ç�Ä�Ì½Ò�Ç�Ä���ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�ÁÓÉ�Ç�ÄÐÁ0ÍÝÆ¨Â¨Ñ�Å Ñ�Á�Ò�ÇÝÄ2ÏCXÆnïG�í�É½Â�Ì�Ä¨Æ0Ì!Ü ßÿÒ�Ç��É�Ä�ñ���ÓÉ!Â�Ì�Ä¨Æ0ÌÎÜ¬÷���ú

Ã½ÒvÊÎÆ½Ü ß Ò1Ç	2É�ÄTñ����!Ò�ÊÎÆXÜæ÷Y��ú
Ç"Ò2Ñ�ÎXÆ�ÀXÜ;ß¡Ò1Ç	2É�ÄTñ��:Ð½Ò�Ñ�Î�Æ¨À�Üæ÷Y��ú½ÆÓÇ�Ç"Ò�Æ½Ü;ß¡Ò1Ç	2É�ÄTñ���Ø¨Æ�Ç�ÇÎÒ�ÆXÜæ÷Y��ú
Ä�Á�ÄXÂ�ÀÈß5í�É!Â�Ì�Ä�Æ�ÌÎÜ<; ïðÔ	'?á9ÃXÒ�ÊÎÆXÜ-;	ï�Ö�ÕPá7Ç"Ò�Ñ�ÎXÆ�ÀXÜ-;	ïðÕ	'7á-½ÆÓÇ�Ç"Ò�Æ½Ü-; ïùÕÎÖ�Ì½Ò�Ç�Ä�Ì½Ò�Ç�Ä��:�0ÅXÆ?Ä�Á�ÄXÂ�À89XÂ�ÀxÉ½Æ9Á0ÍPÏ�Á�É¨Ì¡Ñ�Å½ÂÓÇ+�¨ÆàÒ¨Üm�ÎõlÄ¨Á0Ä�Â�À

Ê"Â¨Ò�Çoñ1ú
Here is an example of the output.

×�Å½ÂÓÇ+�¨ÆP×2Á�É�Ç¨Ä�Æ�Ì
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�ÁÓÉ�Ç�ÄÐÁ0ÍÝÆ¨Â¨Ñ�Å Ñ�Á�Ò�ÇÝÄ2ÏCXÆnï�ÓÉ½Â�Ì2Ä�Æ0Ì!Üæ÷#'�ÎÒvÊÎÆXÜæ÷lÞÐ!Ò2Ñ�Î�Æ¨ÀXÜ¬÷#@
Ø�ÆÓÇ�ÇÎÒ�Æ½Ü¬÷lø
�0ÅXÆ?Ä�Á�ÄXÂ�À89XÂ�ÀxÉ½Æ9Á0ÍPÏ�Á�É¨Ì¡Ñ�Å½ÂÓÇ+�¨ÆàÒ¨ÜÐÖVï0A!Ö

This program actually manipulates two different kinds of numbers. The val-

ues entered by the user (5, 3, 4, 6) are whole numbers; they don’t have any

fractional part. The values of the coins (.25, .10, .05, .01) are decimal fractions.

Inside the computer, whole numbers and numbers that have fractional compo-

nents are represented differently. Technically, we say that these are two different

data types.

The data type of an object determines what values it can have and what

operations can be performed on it. Whole numbers are represented using the

integer data type (int for short). Values of type int can be positive or negative

whole numbers. Numbers that can have fractional parts are represented as float-

ing point (or float) values. So how do we tell whether a number is an int or a

�0� ~�������n{�} $ ³ é(u�y�u²ã�çxw�{ô� ´��

float? A numeric literal that does not contain a decimal point produces an int

value, but a literal that has a decimal point is represented by a float (even if the

fractional part is 0).

Python provides a special function called
Ä�ÏCXÆ

that tells us the data type

of any value. Here is an interaction with the Python interpreter showing the

difference between int and float literals:�	��� Ä�Ï�½ÆæñôÞ!ú. Ä2ÏCXÆ���Ò1Ç�Ä�� ��	��� Ä�Ï�½ÆæñôÞnï�Ö�@Îú. Ä2ÏCXÆ��èÍ¨À2Á¨Â�Ä�� ��	��� Ä�Ï�½ÆæñôÞnïùÕ!ú. Ä2ÏCXÆ��èÍ¨À2Á¨Â�Ä�� ��	��� Ê½Ï�¢1Ç�ÄPß¡�0Þ¨Ô�	��� Ä�Ï�½Ææñ�Ê½Ï�¢1Ç�ÄÎú. Ä2ÏCXÆ���Ò1Ç�Ä�� ��	��� Ê½Ï�,XÀ2Á�Â�Ä9ßÝÞ�ÔoïùÕ�	��� Ä�Ï�½Ææñ�Ê½Ï�,XÀ2Á�Â�ÄÎú. Ä2ÏCXÆ��èÍ¨À2Á¨Â�Ä�� �
You may be wondering why there are two different data types for numbers.

One reason has to do with program style. Values that represent counts can’t

be fractional; we can’t have O ¶µ quarters, for example. Using an int value tells

the reader of a program that the value can’t be a fraction. Another reason has

to do with the efficiency of various operations. The underlying algorithms that

perform computer arithmetic are simpler, and therefore faster, for ints than the

more general algorithms required for float values.

You should be warned that the float type only stores approximations to real

numbers. There is a limit to the precision, or accuracy, of the stored values.

Since float values are not exact, while ints always are, your general rule of

thumb should be: If you don’t absolutely need fractional values, use an int.

A value’s data type determines what operations can be used on it. As we

have seen, Python supports the usual mathematical operations on numbers. Ta-

ble
�
.1 summarizes these operations. Actually, this table is somewhat misleading

since the two numeric data types have their own operations. When addition is

performed on floats, the computer performs a floating point addition, whereas

with ints the computer performs an integer addition.

Consider the following interaction with Python:�	��� ÞnïùÕPá�@�ïðÕ

´ ¯ s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
operator operation

Â additionV subtraction� multiplicationý division��� exponentiation

% remainderÂxË(Ü(ñ1ú
absolute value

Table
�
.1: Python built-in numeric operations.

þnïùÕ�	��� ÞPá @þ �	��� ÞnïùÕ(;<@�ïðÕÖÓÔTïðÕ�	��� Þ(;�@ÖÓÔ�	��� ÖxÕoïðÕ �PÞnïùÕÞnïùÞ�Þ2Þ�Þ�Þ2Þ�Þ2Þ�Þ�Þ2Þ�	��� ÖxÕ �9ÞÞ �	��� ÖxÕ��ÐÞÖ�	��� ÂÓË"Ü�ñ!'Xú'�	��� ÂÓË"Ü�ñ!�0Þnï0'½úÞnï0'
Notice how operations on floats produce floats, and operations on ints produce

ints. Most of the time, we don’t have to worry about what type of operation is

being performed; for example, integer addition produces pretty much the same

result as floating point addition.

However, in the case of division, the results are quite different. Integer di-

vision always produces an integer, discarding any fractional result. Think of

integer division as “gozinta.” The expression,
ÖxÕ �PÞ

produces O because three

gozinta (goes into) ten three times (with a remainder of one). The third to last

example shows the remainder operation (
�
) in action. The remainder of divid-

�2� r2���½� $ ���²yèt�{£ä²u�yèt«¾ $
�}�u�}�ç ´�´

ing U�M by O is U . The last two examples illustrate taking the absolute value of an

expression.

You may recall that the temperature conversion program from Chapter 2

used the expression
ýoïðÕ	�	'oïùÕ

rather than
ý	�	'

. Now you know why. The former

gives the correct multiplier of U�D�� , while the latter yields U , since N gozinta P just

once.

Depending on your math background, you may not have used the integer

division or remainder operations before. The thing to keep in mind is that these

two operations are closely related. Integer division tells you how many times

one number goes into another and the remainder tells you how much is left

over. Mathematically you could write the idea like this: ú º RSú+ý���T:R���T Â RSú�� ��T .
As an example application, suppose we calculated the value of our loose

change in cents (rather than dollars). If I have 383 cents, then I can find the

number of whole dollars by computing O���O�ý	U�M�M º O , and the remaining change

is O���O!�°U�M�M º ��O . Thus, I must have a total of three dollars and ��O cents in

change.

�«^�� d [XWpen� U!bcRFkëioU!b ¼cW�Ocg1ing1í

Besides the operations listed in Table
�
.1, Python provides many other useful

mathematical functions in a special math library. A library is just a module that

contains some useful definitions. Our next program illustrates the use of this

library to compute the roots of quadratic equations.

A quadratic equation has the form úC] µ Â �&] Â ù º M . Such an equation has

two solutions for the value of] given by the quadratic formula:

] º V"�$#�% � µ VüZ�ú�ù
��ú

Let’s write a program that can find the solutions to a quadratic equation. The

input to the program will be the values of the coefficients ú , � , and ù . The outputs

are the two values given by the quadratic formula. Here’s a program that does

the job.

ó�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñæï7�Ï
ó Ú ¨Ì�Á��0ÌXÂ1ÊàÄ0Å½Â�ÄÿÑ�Á�Ê+2É�Ä�ÆXÜ Ä�Å½Æ?Ì�Æ�Â�À7Ì¨Á�Á0Ä!Ü Á2ÍÐÂ6í�É!Â0Ã0ÌXÂ�Ä!Ò�Ñ;Æ�í�É!Â�Ä½Ò�ÁÓÇ�ï
ó ¢�À�ÀÓÉ"ÜxÄ2ÌXÂ�Ä¨Æ½Ü É(ÜÓÆ9Á2ÍPÄ0ÅXÆ;Ê"Â�Ä0ÅÿÀ�Ò1Ë�Ì�Â�Ì�Ï�ï
ó Ð¨Á0Ä�Æo÷îÄ0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê ÑÓÌ�ÂXÜ�Å½Æ½Ü7Ò�ÍPÄ0ÅXÆ9Æ�í�É!Â�Ä½Ò�ÁÓÇPÅ!Â�Ü Ç½Á?Ì�Æ�Â�À7Ì¨Á�Á0Ä!Üæï

´1¹ s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å óPö½Â�ÎXÆ½Ü Ä0Å½Æ;ÊÎÂ�Ä�ÅÿÀ�Ò�Ë¨ÌXÂ�Ì�ÏÐÂ�9XÂ�Ò�À�ÂxË!À2Æoï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ3��Ì½Ò�Ç�Ä

Â�õ Ë�õ Ñ?ß¡Ò1Ç	2É�ÄTñ���Ø�À2Æ¨Â�Ü�ÆÈÆ�Ç¨Ä�Æ0Ì9Ä�Å½ÆàÑ�Á�Æ2Í2Í½Ò2Ñ�Ò�ÆÓÇ�Ä!Ü ñzÂ�õ Ëcõ Ñ¨ú¬÷��Óú
Ã½Ò�Ü2Ñ���Á�Á�ÄPßÈÊ"Â�Ä0Å�ïôÜ�í0Ì�ÄTñùË=; ËL�-@¡;PÂ5;ÝÑ�ú
Ì�Á2Á0Ä(Öªß ñ&�ÓËàá9ÃXÒ¨Ü2Ñ��XÁ2Á0Ä"ú§�òñ�Ô5;?Â½ú
Ì�Á2Á0ÄXÔÈß ñ&�ÓË=�?ÃXÒ¨Ü2Ñ��XÁ2Á0Ä"ú§�òñ�Ô5;?Â½ú
�Ì½Ò�Ç�Ä�Ì½Ò�Ç�Ä��:�0ÅXÆ¡Ü�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Â�Ì�Æo÷G�Îõ Ì�Á�Á�Ä(Ö(õlÌ�Á2Á0ÄXÔ

Ê"Â¨Ò�Çoñ1ú
This program makes use of the square root function

Ü�í2Ì�Ä
from the math

library module. The line at the top of the program,

Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å
tells Python that we are using the math module. Importing a module makes

whatever is defined in it available to the program. To compute %] , we useÊ"Â�Ä0ÅhïzÜ�í0Ì�Ä�ñë�Îú
. You may recall this dot notation from Chapter 1. This tells

Python to use the
Ü�í2Ì�Ä

function that “lives” in the math module. In the quadratic

program we calculate % � µ VYZ�ú	ù with the line

Ã½Ò�Ü2Ñ��XÁ�Á�Ä9ß Ê"Â�Ä0ÅhïzÜ�í0Ì�Ä�ñðË=; ËL�-@=;?Â5;ÝÑ�ú
Here is how the program looks in action:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ

ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷¢ÞTõÆ@oõî�2Ô
�0ÅXÆ¡Ü�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Â�Ì�Æo÷¢ÕnïðÞ�A�þC@�Ô	'CA	A2ø�þ¨Ô0Þ-�½Öïùþ¨Ô2Õ2þ?'0ý¨Ô�Ô0Õ�Õ2ø

This program is fine as long as the quadratics we try to solve have real so-

lutions. However, some inputs will cause the program to crash. Here’s another

example run:

�2� r2���½� $ ���²yèt�{£ä²u�yèt«¾ $
�}�u�}�ç ´�¿

�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷�Ö�õ Ô�õ Þ��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñpÊÎÁXÜxÄ9Ì¨ÆXÑ�ÆÓÇ�Ä¡Ñ�Â�À2ÀPÀ�Â�ÜxÄ"ú÷,!Ò�À2Æ��:í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ�ï>�Ï��!õ¢À¨Ò�ÇXÆ9Ô!Ö(õ Ò�ÇÏ2

Ê"Â¨Ò�Çnñ�ú,!Ò�À2Æ��:í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ�ï>�Ï��!õ¢À¨Ò�ÇXÆÿÖ�@Tõ Ò�Ç?Ê"Â¨Ò�Ç
Ã½Ò�Ü2Ñ���Á�Á�ÄPßÈÊ"Â�Ä0Å�ïôÜ�í0Ì�ÄTñùË=; ËL�-@¡;PÂ5;ÝÑ�úÛXÂ2ÀÓÉXÆ / Ì2Ì�Á�Ìc÷�ÊÎÂ�Ä�ÅÐÃ¨Á�Ê"Â�Ò1ÇàÆ0Ì2Ì�Á�Ì

The problem here is that � µ V�Z�ú	ù�ÓqM , and the
Ü�í0Ì�Ä

function is unable to

compute the square root of a negative number. Python prints a
Ê"Â�Ä�ÅàÃ¨Á�Ê"Â�Ò1Ç

Æ0Ì2Ì�Á�Ìcï
This is telling us that negative numbers are not in the domain of theÜ�í0Ì�Ä

function. Right now, we don’t have the tools to fix this problem, so we will

just have to assume that the user gives us solvable equations.

Actually,
í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ�ï>�Ï

did not need to use the math library. We could have

taken the square root using exponentiation
;�;

. (Can you see how?) UsingÊ"Â�Ä0ÅhïzÜ�í0Ì�Ä
is somewhat more efficient, and it allowed me to illustrate the use of

the math library. In general, if your program requires a common mathematical

function, the math library is the first place to look. Table
�
.2 shows some of the

other functions that are available in the math library.

Python Mathematics EnglishÎÒ &
An approximation of pi.Æ '
An approximation of

'
.Ü0Ò�ÇnñÒ�Îú (*),+] The sine of x.Ñ�Á½Ü�ñÒ�Îú -/.!(] The cosine of x.Ä�ÂÓÇnñÒ�Îú 0*1�+] The tangent of x.Â�Ü2Ò�Çoñë�!ú 1�23-4(3)5+] The inverse of sine x.Â¨Ñ�Á½Ü(ñë�!ú 1�23-4-/.!(] The inverse of cosine x.Â�ÄXÂÓÇoñë�!ú 1�23-/0*1�+] The inverse of tangent x.À0Á���ñÒ�Îú 65+] The natural (base

'
) logarithm of xÀ0Á��"Ö�ÕæñÒ�Îú 67.�8 ¶I¹] The common (base 10) logarithm of x.ÆC��nñÒ�Îú '9

The exponential of x.Ñ�ÆXÒ0Àñë�!ú :]<; The smallest whole number � º]Í¨À2Á�Á�ÌTñÒ�Îú =]<> The largest whole number Ó º]
Table

�
.2: Some math library functions.

´1â s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
�«^�� ÖfS¬So¦_� ¦�j ioU�Wpe��@?îRT[Î¦�j U�[�²5ð�i�S�U��hg�W�i�j

Suppose you have a root beer sampler pack containing six different kinds of

root beer. Drinking the various flavors in different orders might affect how good

they taste. If you wanted to try out every possible ordering, how many different

orders would there be? It turns out the answer is a surprisingly large number,

720. Do you know where this number comes from? The value 720 is the factorial

of 6.

In mathematics, factorial is often denoted with an exclamation (!). The

factorial of a whole number ø is defined as øBA º ødR^øYV UGT:R^øæV7��T�D�D�D�R0UGT . This

happens to be the number of distinct arrangements for ø items. Given six items,

we compute ECA º R>E�T:R>N�T:R^Z�T:R>O�T:R ��T:R0U�T º WÓ��M possible arrangements.

Let’s write a program that will compute the factorial of a number entered

by the user. The basic outline of our program follows an input, process, output

pattern.¢1Ç��É¨Ä7Ç�É�Ê�Ë½Æ�ÌPÄ�ÁPÄ�Â�ÎXÆ7Í�Â�ÑxÄ�Á�Ì!Ò0Â2À?Á2ÍTõîÇ
×�Á�Ê+2É�Ä�Æ7Í�Â�ÑxÄ�Á�Ì!Ò0Â2À7Á0Í7Çcõ�Í�Â¨ÑÓÄÄ É¨ÄC2É�Ä9Í¨Â�ÑÓÄ
Obviously, the tricky part here is in the second step.

How do we actually compute the factorial? Let’s try one by hand to get an

idea for the process. In computing the factorial of 6, we first multiply E+R>N�T ºO�M . Then we take that result and do another multiplication O�M�R^Z�T º U���M . This

result is multiplied by three U���M�R>O�T º O�E�M . Finally, this result is multiplied by 2O�E�M�R ��T º WÓ��M . According to the definition, we then multiply this result by U , but

that won’t change the final value of WÓ��M .
Now let’s try to think about the algorithm more generally. What is actually

going on here? We are doing repeated multiplications, and as we go along, we

keep track of the running product. This is a very common algorithmic pattern

called an accumulator. We build up, or accumulate, a final value piece by piece.

To accomplish this in a program, we will use an accumulator variable and a loop

structure. The general pattern looks like this:¢1ÇÎÒÓÄ½Ò0Â�À¨Ò�D�ÆÈÄ0ÅXÆÝÂ�Ñ2Ñ�É0Ê¨É!À2Â�Ä�Á�Ì-9�Â�Ì!Ò�ÂÓË½À2Æ��Á2Á�9É2Ç�Ä!Ò�À7Í½Ò1Ç!Â2ÀÈÌ�ÆXÜ1É!À�Ä¡Ò¨Ü Ì¨Æ¨Â�Ñ1Å½Æ0Ã
É	�Ã�Â�Ä¨Æ7Ä0ÅXÆ-9XÂ2ÀÓÉ½Æ?Á2ÍÐÂ�Ñ2Ñ�É�Ê�É!À2Â�Ä¨Á0Ì-9�Â�Ì½Ò0ÂÓË½À2Æ

Realizing this is the pattern that solves the factorial problem, we just need

to fill in the details. We will be accumulating the factorial. Let’s keep it in a

�2� �2��Õ ³ô³ ������± u�y $ ���FE�{z�`��± y|�&´xó�u ³ y|�Ó} $ u�± ´�é

variable called
Í¨Â�ÑxÄ

. Each time through the loop, we need to multiply
Í¨Â�ÑxÄ

by

one of the factors øBGGR^øîV6UGTHG�D�D�DIGuU . It looks like we should use a
Í�Á0Ì

loop that

iterates over this sequence of factors. For example, to compute the factorial of

6, we need a loop that works like this:

Í�Â¨ÑÓÄÝß Ö
Í¨Á�ÌÝÍ�Â¨ÑÓÄ�Á�Ì¡Ò�Ç û øTõÒ'�õ�@Tõ`Þ�õôÔ�õvÖ�
n÷

Í�Â¨ÑÓÄÝß9Í�Â¨ÑÓÄ=;ÈÍ¨Â�ÑÓÄ¨Á0Ì
Take a minute to trace through the execution of this loop and convince your-

self that it works. When the loop body first executes,
Í�Â¨ÑÓÄ

has the value
Ö

andÍ�Â¨ÑÓÄ¨Á0Ì
is
ø
. So, the new value of

Í�Â¨ÑÓÄ
is U � E º E . The next time through the

loop,
Í�Â¨ÑÓÄ¨Á0Ì

will be
'
, and

Í¨Â�ÑÓÄ
is updated to E � N º O�M . The pattern continues

for each successive factor until the final result of 720 has been accumulated.

The initial assignment of
Ö

to
Í�Â¨ÑÓÄ

before the loop is essential to get the

loop started. Each time through the loop body (including the first), the current

value of
Í�Â¨ÑÓÄ

is used to compute the next value. The initialization ensures thatÍ�Â¨ÑÓÄ
has a value on the very first iteration. Whenever you use the accumulator

pattern, make sure you include the proper initialization. Forgetting this is a

common mistake of beginning programmers.

Of course, there are many other ways we could have written this loop. As

you know from math class, multiplication is commutative and associative, so it

really doesn’t matter what order we do the multiplications in. We could just as

easily go the other direction. You might also notice that including
Ö

in the list

of factors is unnecessary, since multiplication by U does not change the result.

Here is another version that computes the same result:

Í�Â¨ÑÓÄÝß Ö
Í¨Á�ÌÝÍ�Â¨ÑÓÄ�Á�Ì¡Ò�Ç û Ô�õèÞTõ�@Tõë'æõ`ø�
n÷

Í�Â¨ÑÓÄÝß9Í�Â¨ÑÓÄ=;ÈÍ¨Â�ÑÓÄ¨Á0Ì
Unfortunately, neither of these loops solves the original problem. We have

hand-coded the list of factors to compute the factorial of six. What we really

want is a program that can compute the factorial of any given input ø . We need

some way to generate an appropriate list from the value of ø .

Luckily, this is quite easy to do using the Python
ÌXÂxÇ���Æ

function. Recall

that
Ì�ÂÓÇ+�¨ÆæñùÇ�ú

produces a list of numbers starting with 0 and continuing up to,

but not including,
Ç
. There are other variations of

ÌXÂÓÇ+�¨Æ
that can be used to

produce different sequences. With two parameters,
Ì�ÂÓÇ���ÆæñvÜxÄXÂ�Ì�ÄoõpÇ�ú

produces

a sequence that starts with the value
ÜxÄ�Â�Ì�Ä

and continues up to, but does not

¹G% s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
include,

Ç
. A third version

Ì�ÂÓÇ+�¨ÆæñvÜxÄ�Â�Ì�Äoõ Ç�õ�ÜxÄ¨Æ��ú
is like the two-parameter

version, except that it uses
ÜxÄ¨Æ�

as the increment between numbers. Here are

some examples:�	��� ÌXÂxÇ��¨Æ¬ñ�Ö�Õ!úû Õ�õªÖ�õ Ôæõ ÞTõÆ@oõ�'æõ øTõ þTõÔA�õ ý�

�	��� ÌXÂxÇ��¨Æ¬ñ!'æõ�ÖxÕ½úû 'æõ øTõ þ�õÔATõ ý�

�	��� ÌXÂxÇ��¨Æ¬ñ!'æõ�ÖxÕ�õ Þ!úû 'æõÔA�

Given our input value
Ç

we have a couple of different
ÌXÂxÇ���Æ

commands

that produce an appropriate list of factors for computing the factorial of
Ç
. To

generate them from smallest to largest (a la our second loop), we could useÌXÂxÇ���Ææñ�ÔæõpÇ�á"Ö2ú
. Notice how I used

Ç�á"Ö
as the second parameter, since the range

will go up to but not include this value. We need the
áÎÖ

to make sure that
Ç

itself is included as the last factor.

Another possibility is to generate the factors in the other direction (a la our

first loop) using the three-parameter version of range and a negative step to

cause the counting to go backwards:
ÌXÂxÇ��¨Æ¬ñðÇ�õ�Ö�õÒ�!Ö0ú

. This one produces a list

starting with
Ç

and counting down (step -1) to, but not including
Ö
.

Here then is one possible version of the factorial program:

ó9Í�Â¨ÑÓÄ¨Á0Ì!Ò�Â�ÀTï7�Ï
ó Ø2Ì�Á��0ÌXÂ1ÊÐÄ�Á¡Ñ�ÁxÊ+2É�Ä¨ÆÈÄ0ÅXÆPÍ�Â¨ÑÓÄ�Á�Ì!Ò�Â�À?Á0ÍÐÂ Ç�É0Ê¨Ë½Æ�Ì
ó ¢�À�ÀÓÉ"ÜxÄ2ÌXÂ�Ä¨Æ½ÜªÍ¨Á�ÌàÀ2Á�Á�ÝÛÎÒxÄ0ÅÿÂÓÇÿÂ¨Ñ�Ñ1É0Ê�É½À�Â�Ä�Á0Ì
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ÇàßÿÒ�Ç	2É�Ä�ñ���Ø�À2Æ�ÂXÜ�ÆÈÆ�Ç¨Ä�Æ�ÌÐÂ7Û2Å½Á�À2Æ Ç2É0Ê¨Ë½Æ0Ì�÷���ú
Í�Â¨ÑÓÄÝß Ö
Í¨Á�ÌÝÍ�Â�ÑxÄ�Á�Ì¡Ò�ÇÐÌ�ÂÓÇ���ÆæñùÇcõ�Ö(õë�½Ö2ú¬÷

Í�Â�ÑxÄ9ßÝÍ�Â¨ÑÓÄ=;ÈÍ�Â¨ÑÓÄ¨Á0Ì�Ì½Ò�Ç�Ä��:�0ÅXÆPÍ�Â¨ÑÓÄ�Á�Ì!Ò�Â�À7Á0Í$�!õ Çcõè�xÒ�Ü��!õ¢Í�Â¨ÑÓÄ
Ê"Â¨Ò�Çoñ1ú
Of course, there are numerous other ways this program could have been written.

I have already mentioned changing the order of factors. Another possibility is to

�0� ¯ ��ãTt�{£¾ $ � $ y|�æ��å�K �zy ¹0~

initialize
Í�Â�ÑxÄ

to
Ç

and then use factors starting at ø V�U (as long as øü�8M). You

might try out some of these variations and see which one you like best.

�«^|µ a;bcR ¼cWp� W U�[9�hì�J`eoU
It’s sometimes suggested that the reason “!” is used to represent factorial is

because the function grows very rapidly. For example, here is what happens if

we use our program to find the factorial of 100:�	��� Ò�Ê?½Á0Ì2Ä9Í�Â¨ÑÓÄ¨Á0Ì!Ò�Â�ÀØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌÐÂ7Û2ÅXÁ¨À2Æ;Ç�É0Ê¨Ë½Æ�Ìc÷ Ö�Õ�Õ�0ÅXÆPÍ�Â¨ÑÓÄ�Á�Ì!Ò�Â�À7Á0Í ÖxÕ2ÕàÒ¨ÜÈý�Þ2Þ¨Ô0ø¨Ô!Ö�'C@�@¨Þ�ýC@	@ÎÖ�'�Ô0ø	A!Öxø�ý2ý¨Ô0Þ	ACA?'2ø�Ô0ø2ø�þ0Õ�ÕC@¨ý0Õ�þÎÖ�'0ý2ø	A2Ô2ø@¨Þ�AÎÖ�ø¨Ô!ÖG@¨ø�A?'2ý�Ô2ý2ø�Þ	A2ý?'2Ô!Öxþ	'2ý0ý�ý2ý�Þ2Ô�Ô2ý2ý!Ö�'2ø0Õ	A2ý�@!Ö�@¨ø2Þ2ý2þ�ø½Ö�'0ø?'XÖ�A¨ÔCA2ø�Ô	'�Þ�ø2ý�þ0ý¨Ô2Õ�A�Ô0þ¨Ô0Ô2Þ2þ'�A�Ô	'½Ö�Ö�A	'�Ô½ÖxÕ�ý!Öxø�A�ø�@�Õ�Õ2Õ�Õ�Õ2Õ�Õ0Õ�Õ2Õ�Õ0Õ�Õ�Õ2Õ2Õ2Õ�Õ0Õ�Õ2Õ�Õ0Õ�Õ
That’s a pretty big number!

Although recent versions of Python have no difficulty with this calculation,

older versions of Python (and modern versions of other languages such as C++

and Java) would not fare as well. To illustrate the point, here’s what happens

when we test the program in an older version of Python.

Ø�Ï2Ä0ÅXÁ�Ç ÖVï�'oïðÔ ñôóÎÖ�õ Ú �Ì ÞÝÔ0Õ�Õ�Ô�õªÖ�Ao÷�Ö�øn÷èÔ0ø!ú ï�ï�ï
×�Á��Ï2Ì!Ò���Å�ÄÿÖxý�ý!Ö��½Öxý�ý	'6Å�Ä½Ò�Ñ1Å�Ä!Ò1Ç�� ö½Â�Ä�Å½Æ�Ê"Â�Ä½Ò¨Ü0Ñ�Å9×�Æ�Ç¨Ä�Ì�É0Ê�õ Ú ÊVÜ�Ä�Æ�Ì¨Ã�Â1Ê�	��� Ò�Ê?½Á0Ì2Ä9Í�Â¨ÑÓÄ¨Á0Ì!Ò�Â�ÀØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌÐÂ7Û2ÅXÁ¨À2Æ;Ç�É0Ê¨Ë½Æ�Ìc÷lø�0ÅXÆPÍ�Â¨ÑÓÄ�Á�Ì!Ò�Â�À7Á0ÍÝø¡Ò¨ÜÈþ¨Ô0Õ
�	��� Í�Â¨ÑÓÄ�Á�Ì!Ò�Â�ÀoïZÊ"Â¨Ò�Çnñ�úØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌÐÂ7Û2ÅXÁ¨À2Æ;Ç�É0Ê¨Ë½Æ�Ìc÷ Ö�Õ�0ÅXÆPÍ�Â¨ÑÓÄ�Á�Ì!Ò�Â�À7Á0Í ÖxÕ¡Ò¨ÜÈÞ2ø¨ÔCA	A�Õ2Õ
�	��� Í�Â¨ÑÓÄ�Á�Ì!Ò�Â�ÀoïZÊ"Â¨Ò�Çnñ�úØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌÐÂ7Û2ÅXÁ¨À2Æ;Ç�É0Ê¨Ë½Æ�Ìc÷ Ö�Þ��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2,!Ò�À2Æ���Í�Â�ÑxÄ�Á�Ì!Ò0Â2Àoï>�Ï��!õ¢À¨Ò�ÇXÆPýTõ�Ò�Ç?ÊÎÂ�Ò1Ç

Í�Â¨ÑÓÄÝß9Í�Â¨ÑÓÄ=;ÈÍ¨Â�ÑÓÄ¨Á0ÌÄ 9¨Æ0Ì�Í�À2Á�Û / Ì�Ì�Á�Ìc÷lÒ�Ç¨Ä�Æ���Æ0Ì Ê¨É!À�Ä!Ò�½À�Ò2Ñ0Â�Ä½Ò�ÁÓÇ

¹1r s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
In this example, everything seems fine until we try to compute the factorial ofUuO . At that point, the program prints out an

Ä 9¨Æ0Ì�Í�À2Á�Û / Ì�Ì�Á�Ì message.

What is going on here? So far, I have talked about numeric data types as

representations of familiar numbers such as integers and decimal fractions. It is

important to keep in mind, however, that they do not always behave exactly like

the numbers that they represent.

The problem is that this program is representing whole numbers using Python’s

int data type. Unfortunately, ints are not exactly like mathematical integers.

There are infinitely many integers, but only a finite range of ints. Inside the

computer, ints are stored in a fixed-sized binary representation. To make sense

of this, we need to look at what’s going on at the hardware level.

Computer memory is composed of electrical “switches,” each of which can

be in one of two possible states, basically on or off. Each switch represents a

binary digit or bit of information. One bit can encode two possibilities, usually

represented with the numerals M (for off) and U (for on). A sequence of bits can

be used to represent more possibilities. With two bits, we can represent four

things.

bit 2 bit 1

0 0

0 1

1 0

1 1

Three bits allow us to represent eight different values by adding a zero or one

to each of the four two-bit patterns.

bit 3 bit 2 bit 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

You can see the pattern here. Each extra bit doubles the number of distinct

patterns. In general, ø bits can represent �KJ different values.

�0� ¯ ��ãTt�{£¾ $ � $ y|�æ��å�K �zy ¹��

The number of bits that a particular computer uses to represent an int de-

pends on the design of the CPU. Typical PCs today use 32 bits. That means there

are � ¸�µ possible values. These values are centered at 0 to represent a range of

positive and negative integers. Now µMLONµ º � ¸!¶ . So, the range of integers that

can be represented in a 32 bit int value is V_� ¸!¶ to � ¸!¶ VüU . The reason for the V�U
on the high end is to account for the representation of M in the top half of the

range.

Let’s go back to an older version of Python and try out some expressions to

test this analysis. Remember that
;�;

is the Python exponentiation operator.

Ø�Ï2Ä0ÅXÁ�Ç ÖVï�'oïðÔ ñôóÎÖ�õ Ú �Ì ÞÝÔ0Õ�Õ�Ô�õªÖ�Ao÷�Ö�øn÷èÔ0ø!ú ï�ï2ï
×�Á��Ï2Ì!Ò���Å�ÄÿÖxý�ý!Ö��½Öxý�ý	'6Å�Ä½Ò�Ñ1Å�Ä!Ò1Ç�� ö½Â�Ä�Å½Æ�Ê"Â�Ä½Ò¨Ü0Ñ�Å9×�Æ�Ç¨Ä�Ì�É0Ê�õ Ú ÊVÜ�Ä�Æ�Ì¨Ã�Â1Ê�	��� Ô5;	;?Þ�ÕÖxÕ2þ�Þ2þ�@"Ö�A¨Ô�@
�	��� Ô5;	;?ÞÎÖ��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2Ä 9¨Æ0Ì�Í�À2Á�Û / Ì�Ì�Á�Ìc÷lÒ�Ç¨Ä�Æ���Æ0Ì�XÁ�ÛTñ1ú
Old Python can calculate � ¸�¹ , but “blows up” trying to compute � ¸!¶ . You can see

that the overflow happens somewhere between the 30th and 31st power of two.

That is consistent with our analysis that the largest int is � ¸!¶ V8U .
Suppose we try to display the largest int directly.�	��� Ô5;	;?ÞÎÖ8�ÿÖ��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2Ä 9¨Æ0Ì�Í�À2Á�Û / Ì�Ì�Á�Ìc÷lÒ�Ç¨Ä�Æ���Æ0Ì�XÁ�ÛTñ1ú

Our first try didn’t work. Can you see why? Python evaluates this expression

by first trying to calculate
Ô5;�;7ÞÎÖ

. That calculation produces the error before

Python has a chance to subtract one.

We need to be a little cleverer and sneak up on the value from underneath.

We can use the fact that � ¸!¶ º � ¸�¹ Â � ¸�¹ . Strategically subtracting one from each

side gives us � ¸!¶ V�U º � ¸�¹ V�U Â � ¸�¹ . By subtracting one in the middle of the

computation, we can ensure that the intermediate value never gets bigger than

the final result. Here’s what Python says:�	��� Ô5;	;?Þ�Õ �ÿÖ;áÐÔ(;	;7Þ2ÕÔ!ÖG@¨þC@?A�Þ2ø�@�þ

¹ ¯ s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
By the way, this expression illustrates another way that Python ints differ

from the integers that they represent. In normal arithmetic, there is no differ-

ence between � ¸!¶ VèU and � ¸�¹ VèU Â � ¸�¹ . They both represent the same value. In

this example of computer arithmetic, however, one is computable and the other

is not! Representations of numbers do not always obey all the properties that

we take for granted with numbers.

Now that we have a numeric value, we can directly test our conjecture that

this is the largest int.�	��� Ô!ÖG@¨þ�@	A�Þ2ø�@¨þÔ!ÖG@¨þC@?A�Þ2ø�@�þ
�	��� Ô!ÖG@¨þ�@	A�Þ2ø�@?AÄ 9¨Æ0Ì�Í�À2Á�Û / Ì�Ì�Á�Ìc÷lÒ�Ç¨Ä�Æ���Æ0ÌÐÀ¨ÒÓÄ¨Æ0ÌXÂ2ÀÈÄ�Á2Á9À�Â�Ì?��Æ
There you have it. The largest integer that can be represented in O�� bits is

�CGuU:Z�WPG�ZK��OCGëE�Z�W .
Now you know exactly why older versions of Python can’t compute UuOCA This

value is larger than the 32-bit limit of �CGuU:Z�WPG�ZK��OCGëE�Z�W . With this understanding

of ints in mind, you might be wondering why our program seems to work quite

well computing large numbers in modern Python.

�«^|º ¶ªi�ec·£jZWpe�� ¼�iog��§RQ� ¦§�¥O²Rcg1[�²9¼��£en� J`enU¨[
At first, you might think that Python uses the float data type to get us around

the size limitation of the ints. However, it turns out that floats do not really

solve this problem. Here is an example run of a modified factorial program that

initializes
Í¨Â�ÑxÄ

to the float U�D M .
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌÐÂ7Û2ÅXÁ¨À2Æ;Ç�É0Ê¨Ë½Æ�Ìc÷ Ö�'�0ÅXÆPÍ�Â¨ÑÓÄ�Á�Ì!Ò�Â�À7Á0Í Ö�'àÒ¨ÜÐÖVïðÞ2Õ�þ�ø2þ�@�Þ�ø	A2Æ2áÎÖÓÔ
Although this program runs just fine, after switching to float, we no longer get

an exact answer.

A very large (or very small) floating point value is printed out using exponen-

tial, or scientific, notation. The
Æ0á"ÖxÔ

at the end means that the result is equal toU�DQO�MCW�E�W�ZCO�E��SRæU�M ¶Iµ . You can think of the
áÎÖÓÔ

at the end as a marker that shows

where the decimal point should be placed. In this case, it must move 12 places

to the right to get the actual value. However, there are only 9 digits to the right

of the decimal, so we have “lost” the last three digits.

�2� ´2��°"ux���C± $ ��� ¾�u1}���{T��x��
�{�}��&´æ¾v�0��� K �zy|� ¹�´

Remember, floats are approximations. Using a float allows us to represent

a much larger range of values, but the amount of precision is still fixed. In

fact, a computer stores floating point numbers as a pair of fixed-length (binary)

integers. One integer represents the string of digits in the value, and the second

represents the exponent value that keeps track of where the whole part ends

and the fractional part begins.

Fortunately, Python has a better solution for large, exact values in the form

of a third numeric type long int. A long int is not a fixed size, but expands to

accommodate whatever value it holds. The only limit is the amount of memory

the computer has available to it. To get a long int, you put an “L” suffix on a

numeric literal. So, the literal
'

is an int representation of the number five, but'��
is a long int representation of the number five. Of course, for a number this

small, there is no need for a long int. However, using a long int causes Python

to use long int operations, and our value can grow to any size. Here are some

examples that illustrate:�	��� Ô��Ô���	��� Ô��=;�;7ÞÎÖÔ!ÖG@¨þC@?A�Þ2ø�@	AC��	��� Ä�Ï�½Ææñ1ÖxÕ2ÕC�"ú. Ä2ÏCXÆ��ôÀ0Á�Ç��¡Ò1Ç�ÄU� ��	��� ÖxÕ2Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ2Õ�Õ2Õ�Õ0Õ�Õ�Õ2Õ2Õ2Õ�Õ0Õ�Õ2Õ�Õ0Õ�Õ�Õ��;áÐÔ	'ÖxÕ2Õ�Õ2Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ2Õ�Õ0Õ�Õ2Õ�Õ0Õ�Õ�Õ2Õ2Õ2Õ�Õ0Õ¨Ô�'��
Notice how calculations involving a long int produce a long int result. Using

long ints allows us to compute with really large numbers.

In newer versions of Python, ints that grow too large to be represented with

32 bits are automatically converted into long ints instead of producing an over-

flow error. Here is an interactive session that illustrates this conversion process:

Ø�Ï2Ä0ÅXÁ�Ç¡ÔTïðÞ¨Â2Ô ñôóÎÖ�õlöXÂ�Ì»ÖxÞÝÔ0Õ�Õ2ÞTõªÖ�ÖV÷èÔ0øn÷ðÕ2Þ!úï�ï�ï��Ï�½Æ��ôÅ½Æ¨À���!õ��xÑ�Á�¨Ï�Ì!Ò���Å¨Ä��Îõ��xÑxÌ�Æ2ÃXÒÓÄ!Ü���Á�Ì��1À¨Ò�Ñ�ÆÓÇ(ÜÓÆ���Í�Á0ÌÈÊÎÁ�Ì�ÆÐÒ1ÇXÍ�Á0Ì�ÊÎÂ�Ä½Ò�Á�Çhï�	��� �9ßàÔ!Ö�@�þ�@	A�Þ�øC@¨þ�	��� �Ô!ÖG@¨þC@?A�Þ2ø�@�þ�	��� �9ß �9á Ö�	��� �Ô!ÖG@¨þC@?A�Þ2ø�@	AC��	��� �Ì½Ò�Ç�Ä6�

¹1¹ s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
Ô!ÖG@¨þC@?A�Þ2ø�@	A
I started by assigning

�
the value of the largest 32-bit int. When evaluated,

Python displayed the value as an int literal. After adding
Ö

to the value, it

displays as a long int literal. Notice the last interaction; when a long int is

actually
¨Ì!Ò�Ç¨Ä

ed, the trailing “L” is automatically omitted so that the result looks

just like an ordinary number.

Taking advantage of the fact that Python now converts large ints into long

ints on demand, our simple factorial program can compute interestingly large

results. Long ints are obviously a cool feature of Python. In fact, you might

wonder why Python even has a separate int data type. The downside of long

ints is that these representations are less efficient than the plain old int data type.

The operations needed to do arithmetic on ints is built right into the CPU of the

computer. When doing operations on long ints, Python has to employ algorithms

in software that simulate long arithmetic using the computer’s built-in, fixed-

length int operations. As a result, long int arithmetic is much slower than int

arithmetic. Except when very large values are needed, ints are preferable to

long ints.

�«^�ê a ín¤²R	 ¢�£e�YTRcg1[XW��£e�[

In the previous section you saw that Python sometimes converts numbers repre-

sented as ints into long ints. There are other situations where a value may need

to be converted from one data type into another. You already know that com-

bining an int with an int produces an int (or a long int), and combining a float

with a float creates another float. But what happens if we write an expression

that mixes an int with a float? For example, what should the value of
�

be after

this assignment statement?�9ß('oïùÕ �9Ô
If this is floating point division, then the result should be the float value �	DQN .
If integer division is performed, the result is � . Before reading ahead for the

answer, take a minute to consider how you think Python should handle this

situation.

In order to make sense of the expression
'oïðÕ �9Ô

, Python must either change'oïùÕ
to
'

and perform integer division or convert
Ô

to
ÔTïðÕ

and perform floating

point division. In general, converting a float to an int is a dangerous step, be-

cause some information (the fractional part) will be lost. On the other hand, an

�0� ¹0��ã�çxw�{§s��0� , {�}�� $ �0��� ¹�¿

int can be safely turned into a float just by adding a fractional part of D M . So,

in mixed-typed expressions, Python will automatically convert ints to floats and

perform floating point operations to produce a float result.

Sometimes we may want to perform a type conversion ourselves. This is

called an explicit type conversion. For example, suppose we are writing a pro-

gram that finds the average of some numbers. Our program would first sum up

the numbers and then divide by ø , the count of how many numbers there are.

The line of code to compute the average might look like this:

Â�9¨Æ0Ì�ÂC�¨Æ7ßÿÜ1É0ÊÏ�ÈÇ
Unfortunately, this line may not always produce the result we intend.

Consider a specific example. The numbers to be averaged are the ints
@oõ�'æõ

øTõ þ
. The

Ü�É0Ê
variable will hold

Ô2Ô
, also an int, and dividing by

@
gives the

answer
'
, not

'Tï�'
. Remember, an int divided by an int always produces an int.

To solve this problem, we need to tell Python to convert one of the operands

to a floating point value.

Â�9¨Æ0Ì�ÂC�¨Æ7ß9Í�À2Á�Â�Ä�ñ�Ü1É�Êú§�7Ç
The

Í�À2Á�Â�Ä�ñ1ú
function converts an int into a float. We only need to convert

the numerator, because this produces a mixed-type expression, and Python will

automatically convert the denominator.

Notice that putting the
Í�À0Á¨Â�ÄTñ1ú

around the entire expression would not

work.

Â�9¨Æ0Ì�ÂC�¨Æ7ß9Í�À2Á�Â�Ä�ñ�Ü1É�Ê_�xÇ�ú
In this form,

Ü1É�Ê
and

Ç
could both be ints causing Python to perform an integer

division and then convert the resulting quotient to a float. Of course, this float

would always end in D M , since it is being converted from an int. That is not what

we want.

Python also provides
Ò�Ç¨ÄTñ�ú

and
À0Á�Ç+��ñ1ú

functions that can be used to convert

numbers into ints and longs, respectively. Here are a few examples:�	��� Ò�Ç¨ÄTñë@nï�'Xú@ �	��� Ò�Ç¨ÄTñzÞoïðý½úÞ �	��� À2ÁÓÇ���ñôÞnïùý!úÞC�

¹1â s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
�	��� Í�À0Á¨Â�Ä�ñvÒ1Ç�ÄTñôÞnïùÞ!ú�úÞnïùÕ�	��� Ò�Ç¨ÄTñôÍ¨À2Á�Â�ÄTñôÞnïùÞ!ú�úÞ �	��� Ò�Ç¨ÄTñôÍ¨À2Á�Â�ÄTñôÞ!ú2úÞ
As you can see, converting to an int or long int simply discards the fractional

part of a float; the value is truncated, not rounded. If you want a rounded

result, you can add 0.5 to the value before using
Ò�Ç¨ÄTñ�ú

, assuming the value is

positive.

A more general way of rounding off numbers is to use the built-in
Ì�Á�É2ÇXÃ

function which rounds a float off to the nearest whole value.�	��� Ì�ÁÓÉ�ÇXÃæñzÞoï�Ö�@!úÞnïùÕ�	��� Ì�ÁÓÉ�ÇXÃæñ!�0Þnï�ÖG@Îú�2ÞoïðÕ�	��� Ì�ÁÓÉ�ÇXÃæñzÞoï�'½ú@�ïùÕ�	��� Ì�ÁÓÉ�ÇXÃæñ!�0Þnï�'Xú�C@nïðÕ�	��� Ò�Ç¨ÄTñ`Ì¨Á�É2ÇXÃ�ñ&�2Þoï�Ö�@!ú�ú�2Þ
Notice that

Ì¨Á�É2ÇXÃ
returns a float. The last example shows how the result can

then be turned into an int value, if necessary, by using
Ò1Ç�Ä�ñ1ú

.

�«^IH �b�i�¤nU�Rcg © ¦§�¥� ing1í

This chapter has filled in some important details concerning programs that do

numerical computations. Here is a quick summary of some key concepts:

\ The way a computer represents a particular kind of information is called a

data type. The data type of an object determines what values it can have

and what operations it supports.

\ Python has several different data types for representing numeric values,

including int, float, and long int.

�2� â2�+����{1} ³�$ ��{ô� ¹�é

\ Whole numbers are generally represented using the int data type and frac-

tional values are represented using floats. All of the Python numeric

data types support standard, built-in mathematical operations addition

(
á
), subtraction (

�
), multiplication (

;
), division (

�
), remainder (

�
), ex-

ponentiation (
;�;

), and absolute value (
ÂÓË"Ü�ñë�!ú

).

\ Additional mathematical functions are defined in the
Ê"Â�Ä0Å

library. To use

these functions, a program must first
ÒvÊ+½Á�Ì�Ä

the
Ê"Â�Ä0Å

library.

\ Numerical results are often calculated by computing the sum or product

of a sequence of values. The loop accumulator programming pattern is

useful for this sort of calculation.

\ Both ints and floats are represented in the computer using a fixed-length

sequence of bits. This imposes certain limits on these representations. Ints

must be in the range V_� ¸!¶ D�D�D�R � ¸!¶ V(UGT . Floats have a finite amount of

precision and cannot represent most numbers exactly.

\ Python long ints may be used to store whole numbers of arbitrary size.

Int values are automatically converted to long ints when they become too

large. Calculations involving long ints are less efficient that those that use

only ints.

\ Python automatically converts numbers from one data type to another in

certain situations. For example, in a mixed-type expression involving ints

and floats, Python first converts the ints into floats and then uses float

arithmetic.

\ Programs may also explicitly convert one data type into another using the

functions
Í¨À2Á�Â�ÄTñ�ú

,
Ò1Ç�Ä�ñ1ú

, and
À0Á�Ç��æñ1ú

.

�«^I[egfTRcg1SæW�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. Information that is stored and manipulated by computers is called data.

2. Since floating point numbers are extremely accurate, they should generally

be used instead of ints.

¿G% s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
3. Operations like addition and subtraction are defined in the

ÊÎÂ�Ä0Å
library.

4. The number of possible rearrangements of n items is equal to øBA .
5. The

Ü�í0Ì�Ä
function computes the squirt of a number.

6. The int data type is identical to the mathematical concept of integer.

7. Computers represent numbers using base 2 representations.

8. A float can represent a larger range of values than an int.

9. An int can represent indefinitely large numbers.

10. In Python,
@+��'

is the same as
@nïðÕ	�	'oïùÕ

.

� |��Q�!�����X}1�j�?������}
1. Which of the following is not a Python numeric data type?

a) int b) float c) rational d) long int

2. Which of the following is not a built-in operation?

a)
á

b)
�

c)
ÂÓË"Ü�ñ1ú

d)
Ü�í2Ì�Ä�ñ1ú

3. In order to use functions in the
Ê"Â�Ä0Å

library, a program must include

a) a comment b) a loop c) an operator d) an import statement

4. The value of Z�A is
a) 9 b) 24 c) 41 d) 120

5. The most appropriate data type for storing the value of pi is

a) int b) float c) long int d) string

6. The number of distinct values that can be represented using 5 bits is

a) 5 b) 10 c) 32 d) 50

7. In a mixed-type expression involving ints and floats, Python will convert

a) floats to ints b) ints to long ints c) floats and ints to long ints

d) ints to floats

8. Which of the following is not a Python type-conversion function?

a)
Í�À0Á¨Â�Ä

b)
Ì�ÁÓÉ�ÇXÃ

c)
Ò1Ç�Ä

d)
À2ÁÓÇ��

�2� â2�+����{1} ³�$ ��{ô� ¿0~

9. The pattern used to compute factorial is

a) accumulator b) input, process, output

c) counted loop d) plaid

10. In modern Python, an int that grows too large

a) causes an overflow b) converts to float c) breaks the computer

d) converts to long int

� ���!��|?�&�:���m�
1. Show the result of evaluating each expression. Be sure that the value

is in the proper form to indicate its type (int, long int, or float). If the

expression is illegal, explain why.

(a)
@�ïùÕ � ÖxÕnïùÕ?áÐÞnï0'5;?Ô

(b)
ÖxÕ�� @9áÐø �ÝÔ

(c)
ÂÓË"Ü�ñÒ@5�9Ô2Õ �9Þ!ú-;�;7Þ

(d)
Ü�í0Ì�Ä�ñë@�ï0'6��'oïùÕ!ú;áÝþ¡;7Þ

(e)
Þ¡;àÖxÕ �9ÞPá»ÖxÕ��ÝÞ

(f)
ÞC�=;�;?Þ

2. Translate each of the following mathematical expressions into an equiva-

lent Python expression. You may assume that the math library has been

imported (via
Ò�Ê+XÁ0Ì2ÄÈÊ"Â�Ä�Å

).

(a) R>O Â Z�T:R>N�T
(b) JPVWJ ·*¶YXµ
(c) Z & ö µ
(d) Z ö�R -/.!(ú+T µ Â ö�R (*)5+ ú+T µ
(e) [µ!· [¶9 µ!· 9 ¶

3. Show the list of numbers that would be generated by each of the followingÌXÂÓÇ+�¨Æ
expressions.

(a)
ÌXÂxÇ���Ææñ!'Xú

(b)
ÌXÂxÇ���ÆæñzÞ�õfÖxÕ½ú

(c)
ÌXÂxÇ���Ææñë@TõfÖxÞ�õ Þ!ú

¿1r s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
(d)

ÌXÂxÇ���Ææñ�Ö�'�õÔ'æõî��ÔXú
(e)

ÌXÂxÇ���Ææñ!'æõ�Þ!ú
4. Show the output that would be generated by each of the following pro-

gram fragments.

(a)
Í¨Á�ÌÿÒÝÒ�ÇÐÌXÂxÇ���Ææñ�Ö(õ�Ö2Ö2ú¬÷¨Ì!Ò1Ç�ÄÿÒ	;2Ò

(b)
Í¨Á�ÌÿÒÝÒ�Ç û Ö(õ`Þ�õë'�õèþTõèý�
�÷¨Ì!Ò1Ç�ÄÿÒ¬õè�"÷G�!õ�Ò	;�;�Þ�Ì!Ò1Ç�ÄÿÒ

(c)
�ÝßÐÔ
Ïàß Ö�Õ
Í¨Á0Ì ï Ò1ÇÐÌXÂÓÇ+�¨Æ¬ñzÕTõîÏnõÔ�Îú÷¨Ì!Ò1Ç�Ä ï õ¨Ì!Ò1Ç�Ä �9áPÏ�Ì!Ò1Ç�Ä���Ã¨Á�ÇXÆ��

(d)
ÂÓÇ"Ü ßÐÕ
Í¨Á0ÌÿÒÝÒ1ÇÐÌXÂÓÇ+�¨Æ¬ñ�Ö�õ Ö�Ö0ú¬÷

ÂxÇ(Ü ßàÂÓÇ"Ü;áÿÒ	;2Ò¨Ì!Ò1Ç�ÄÿÒ�Ì!Ò1Ç�ÄàÂxÇ(Ü
���Bv_���0�*����l�wm�5����i_���	lns�i�s

1. Write a program to calculate the volume and surface area of a sphere from

its radius, given as input. Here are some formulas that might be useful:\ º Z�ý�O & ö ¸ÿ º Z & ö µ
2. Write a program that calculates the cost per square inch of a circular pizza,

given its diameter and price. The formula for area is ÿ º & ö µ
3. Write a program that determines the molecular weight of a hydrocarbon

based on the number of hydrogen, carbon, and oxygen atoms. You should

use the following weights:

�2� â2�+����{1} ³�$ ��{ô� ¿��

Atom Weight

(grams / mole)

H 1.0079

C 12.011

O 15.9994

4. Write a program that determines the distance to a lightning strike based on

the time elapsed between the flash and the sound of thunder. The speed

of sound is approximately 1100 ft/sec and 1 mile is 5280 ft.

5. The Konditorei coffee shop sells coffee at $10.50 a pound plus the cost

of shipping. Each order ships for $0.86 per pound + $1.50 fixed cost for

overhead. Write a program that calculates the cost of an order.

6. Two points in a plane are specified using the coordinates (x1,y1) and

(x2,y2). Write a program that calculates the slope of a line through two

(non-vertical) points entered by the user.] û_^&õ ' ºa` �`V ` U]Î�`VY]xU
7. Write a program that accepts two points (see previous problem) and de-

termines the distance between them.b ÷]c úCø�ù ' ºed R^]"�`VY]xUGT µ Â R ` � V ` UGT µ
8. The Gregorian epact is the number of days between January U!fOg and the

previous new moon. This value is used to figure out the date of Easter. It

is calculated by these formulas (using int arithmetic):

Á º ` ' úCöCý	U�M�M' õ�ú�ù c º R�� Â R Á ý�Z�T V Á<Â R�R�� Á�Â UuO�T�ýÓ��N�T Â U�U�R ` ' úCöK�#UuP�T�TM� O�MWrite a program that prompts the user for a 4-digit year and then outputs

the value of the epact.

9. Write a program to calculate the area of a triangle given the length of its

three sides a, b, and c using these formulas:] º ú Â � Â ù�ÿ º d] R] Vüú+T:R] Vh�:T:R] VüùuT

¿ ¯ s(tvuxwzy|{1}!�0��s��0��w���y $ ���_� $ yèt	�V�x��
�{1}��
10. Write a program to determine the length of a ladder required to reach a

given height when leaned against a house. The height and angle of the

ladder are given as inputs. To compute length use

û ' øji clk º k ' ÷�i k�c(*)5+ ú�øji�û '
Note: the angle must be in radians. Prompt for an angle in degrees and

use this formula to convert:

ö�ú b ÷IúCø] º &U��M b ' iCö 'm']
11. Write a program to find the sum of the first ø natural numbers, where the

value of ø is provided by the user.

12. Write a program to find the sum of the cubes of the first ø natural numbers

where the value of ø is provided by the user.

13. Write a program to sum a series of numbers entered by the user. The

program should first prompt the user for how many numbers are to be

summed. It should then input each of the numbers and print a total sum.

14. Write a program that finds the average of a series of numbers entered by

the user. As in the previous problem, the program will first ask the user

how many numbers there are. Note: the average should always be a float,

even if the user inputs are all ints.

15. Write a program that approximates the value of
&

by summing the terms

of this series: Z�ý	UxV Z�ý�O Â Z�ý�NdV1Z�ý�W Â Z�ý�PdV1Z�ý	U�U Â D�D�D The program should

prompt the user for ø , the number of terms to sum, and then output the

sum of the first ø terms of this series. Have your program subtract the

approximation from the value of
Ê"Â�Ä0Å�ï>"Ò

to see how accurate it is.

16. A Fibonacci sequence is a sequence of numbers where each successive

number is the sum of the previous two. The classic Fibonacci sequence

begins: 1, 1, 2, 3, 5, 8, 13, D�D�D . Write a program that computes the nth

Fibonacci number where ø is a value input by the user. For example, ifø º E , then the result is 8.

17. You have seen that the math library contains a function that computes

the square root of numbers. In this exercise, you are to write your own

�2� â2�+����{1} ³�$ ��{ô� ¿�´

algorithm for computing square roots. One way to solve this problem

is to use a guess-and-check approach. You first guess what the square

root might be and then see how close your guess is. You can use this

information to make another guess and continue guessing until you have

found the square root (or a close approximation to it). One particularly

good way of making guesses is to use Newton’s method. Suppose
�

is the

number we want the root of and
��É½Æ½Ü2Ü

is the current guessed answer. The

guess can be improved by using n*omp fqfYrtsuqv3w_x_xµ as the next guess.

Write a program that implements Newton’s method. The program should

prompt the user for the value to find the square root of (
�
) and the num-

ber of times to improve the guess. Starting with a
��É½ÆXÜ�Ü

value of
�+�2Ô

,

your program should loop the specified number of times applying New-

ton’s method and report the final value of
��É½ÆXÜ�Ü

. You should also subtract

your estimate from the value of
Ê"Â�Ä�Å�ïôÜ�í2Ì2ÄTñÒ�Îú

to show how close it is.

3547698;:=<?>zy � � A BDC ��¥(� L � ¥����
¨��7E ¥"�ëLD

NPO!Q�RTSVUXWZYTRT[
\ To understand the string data type and how strings are represented in the

computer.

\ To be familiar with various operations that can be performed on strings

through built-in functions and the string library.

\ To understand the basic idea of sequences and indexing as they apply to

Python strings and lists.

\ To be able to apply string formatting to produce attractive, informative

program output.

\ To understand basic file processing concepts and techniques for reading

and writing text files in Python.

\ To understand basic concepts of cryptography.

\ To be able to understand and write programs that process textual informa-

tion.

µ=^`] a;bcR	©²UÎg�Wpen� «ªioU�i	a ín¤£R

So far, we have been discussing programs designed to manipulate numbers.

These days we know that computers are also useful for working with other kinds{�{

¿1â s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
of data. In fact, the most common use for most personal computers is word

processing. The data in this case is text. Text is represented in programs by the

string data type.

You can think of a string as a sequence of characters. In Chapter 2 you

learned that a string literal is formed by enclosing some characters in quotation

marks. Python also allows strings to be delimited by single quotes (apostro-

phes). There is no difference; just be sure to use a matching set. Strings can

also be stored in variables, just like numbers. Here are some examples illustrat-

ing these two forms of string literals:�	��� ÜxÄ2Ì(Ö ß)�!��Æ¨À2À2Á���	��� ÜxÄ2ÌXÔ?ß|��Üu!Â1Ê���	��� �Ì½Ò�Ç�Ä¡ÜxÄ�Ì"Ö�õ�Ü�Ä�ÌXÔ�XÆ�À�À0ÁàÜG½Â�Ê�	��� Ä�Ï�½ÆæñvÜxÄ2Ì(Ö2ú. Ä2ÏCXÆ���Ü�Ä�Ì!Ò1Ç��}� ��	��� Ä�Ï�½ÆæñvÜxÄ2ÌXÔ½ú. Ä2ÏCXÆ���Ü�Ä�Ì!Ò1Ç��}� �
You already know how to print strings. Some programs also need to get

string input from the user (e.g., a name). Getting string-valued input requires a

bit of care. Remember that the
Ò1Ç	�É¨Ä

statement treats whatever the user types

as an expression to be evaluated. Consider the following interaction:�	��� Í½ÒxÌÎÜxÄ�ÐXÂ1ÊÎÆ7ßÿÒ1Ç	�É¨ÄTñ���ØXÀ0Æ¨Â�Ü�ÆÈÆ�Ç�Ä¨Æ0ÌPÏ¨Á�É¨Ì?Ç!Â�Ê!Æn÷��ÓúØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÏ�ÁÓÉ�Ì?Ç½Â�ÊÎÆo÷Ô4�ÁÓÅ�Ç��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . �Ï!Ü1ÅXÆ¨À�À�ó?A � �ÎõlÀ�Ò1Ç½Æ Ö(õ Ò�ÇÏ2
Í½ÒxÌÎÜxÄ�ÐXÂ1ÊÎÆ7ßÿÒ1Ç	�É¨ÄTñ���ØXÀ0Æ¨Â�Ü�ÆÈÆ�Ç�Ä¨Æ0ÌPÏ¨Á�É¨Ì?Ç!Â�Ê!Æn÷��Óú,!Ò�À2Æ�� . ÜxÄ2Ì!Ò1Ç�� � �Îõ¢À�Ò�ÇXÆPÕTõ�Ò1ÇÏ2ÐXÂ1ÊÎÆ / Ì�Ì¨Á0Ì�÷Æ4�ÁÓÅ�Ç

Something has gone wrong here. Can you see what the problem is?

Remember, an
Ò1Ç	2É�Ä

statement is just a delayed expression. When I entered

the name, “John,” this had the exact same effect as executing this assignment

statement:Í½ÒxÌÎÜ�Ä	ÐXÂ1ÊÎÆÈßL4�Á�Å2Ç
This statement says, “look up the value of the variable

4�ÁÓÅ�Ç
and store that value

in
Í½ÒÓÌ!ÜxÄ�ÐXÂ�Ê!Æ

.” Since
4�ÁÓÅ�Ç

was never given a value, Python cannot find any

variable with that name and responds with a
ÐXÂ1ÊÎÆ / Ì�Ì¨Á0Ì .

¯ � ~���ã�t�{ bxyè} $ ��� é(u�y�u_ã�çxw�{ ¿�é

One way to fix this problem is to type quotes around a string input so that it

evaluates as a string literal.�	��� Í½ÒxÌÎÜxÄ�ÐXÂ1ÊÎÆ7ßÿÒ1Ç	�É¨ÄTñ���ØXÀ0Æ¨Â�Ü�ÆÈÆ�Ç�Ä¨Æ0ÌPÏ¨Á�É¨Ì?Ç!Â�Ê!Æn÷��ÓúØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÏ�ÁÓÉ�Ì?Ç½Â�ÊÎÆo÷���4�Á�Å2Ç���	��� �Ì½Ò�Ç�Ä��!�XÆ�À�À0Á��ÎõlÍ½ÒÓÌ!ÜxÄ�ÐXÂ�Ê!Æ�XÆ�À�À0Á54�ÁÓÅ�Ç
This works, but it is not a very satisfactory solution. We shouldn’t have to burden

the users of our programs with details like typing quotes around their names.

Python provides a better mechanism. The
ÌXÂÓÛ Ò1Ç	2É�Ä

function is exactly likeÒ�Ç��É¨Ä
except it does not evaluate the expression that the user types. The input

is simply handed to the program as a string of text. Revisiting our example, here

is how it looks with
ÌXÂÓÛ Ò�Ç	2É�Ä

:�	��� Í½ÒxÌÎÜxÄ�ÐXÂ1ÊÎÆ7ß9Ì�Â�ÛmÌ¨Ò�Ç��É�Ä�ñ���ØXÀ2Æ�ÂXÜÓÆÈÆÓÇ�Ä¨Æ0ÌPÏ¨Á�É�Ì?Ç½Â�Ê!Æn÷��ÓúØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÏ�ÁÓÉ�Ì?Ç½Â�ÊÎÆo÷Ô4�ÁÓÅ�Ç�	��� �Ì½Ò�Ç�Ä��!�XÆ�À�À0Á��ÎõlÍ½ÒÓÌ!ÜxÄ�ÐXÂ�Ê!Æ�XÆ�À�À0Á54�ÁÓÅ�Ç
Notice that this example works as expected without having to type quotes around

the input. If you want to get textual input from the user,
Ì�Â�Û Ò�Ç��É�Ä

is the way

to do it.

So far, we have seen how to get strings as input, assign them to variables,

and how to print them out. That’s enough to write a parrot program, but not

to do any serious text-based computing. For that, we need some string opera-

tions. The rest of this section takes you on a tour of the more important Python

string operations. In the following section, we’ll put these ideas to work in some

example programs.

While the idea of numeric operations may be old hat to you from your math

studies, you may not have thought about string operations. What kinds of things

can we do with strings?

For starters, remember what a string is: a sequence of characters. One thing

we might want to do is access the individual characters that make up the string.

In Python, this can be done through the operation of indexing. We can think

of the positions in a string as being numbered, starting from the left with 0.

Figure
�
.
�

illustrates with the string “Hello Bob.” Indexing is used in string

expressions to access a specific character position in the string. The general

form for indexing is . Ü�Ä�Ì!Ò1Ç�� � û . Æ����Ì �
 . The value of the expression determines

which character is selected from the string.

Here are some interactive indexing examples:

âG% s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
~ � � � � � ��� � � � �� � � �
Figure

�
.
�
: Indexing of the string

�&�XÆ¨À2À2Á��¨Á�Ëx�
�	��� �2Ì¨Æ�Æ0ÄPßò�&�XÆ�À�À2Á���Á�Ëx��	��� �2Ì¨Æ�Æ0Ä û ÕC
�B����	��� �Ì½Ò�Ç�Ä6�2Ì�Æ2Æ0Ä û Õ�
Tõç�2Ì¨Æ�Æ�Ä û Ô�
oõ#�2Ì�Æ2Æ0Ä û @	
�¡À9Á�	��� �9ß5A�	��� �Ì½Ò�Ç�Ä6�2Ì�Æ2Æ0Ä û �+�2ÔC
�
Notice that, in a string of ø characters, the last character is at position øüV U ,
because the indexes start at M .

By the way, Python also allows indexing from the right end of a string using

negative indexes.�	��� Ü û �!Ö�
�pË���	��� Ü û �2Þ�
�l�U�
This is particularly handy for getting at the last character of a string.

Indexing returns a string containing a single character from a larger string. It

is also possible to access a contiguous sequence of characters or substring from a

string. In Python, this is accomplished through an operation called slicing. You

can think of slicing as a way of indexing a range of positions in the string. Slicing

takes the form Ó ÜxÄ2Ì!Ò�Ç+� � û Ó Ü�ÄXÂ�Ì2Ä � ÷ Ó ÆÓÇXÃ �
 . Both
Ü�ÄXÂ�Ì�Ä

and
Æ�Ç�Ã

should be

int-valued expressions. A slice produces the substring starting at the position

given by
ÜxÄ�Â�Ì2Ä

and running up to, but not including, position
Æ�Ç�Ã

.

Continuing with our interactive example, here are some slices:�	��� �2Ì¨Æ�Æ0Ä û Õo÷ðÞ�
�B��Æ¨À$��	��� �2Ì¨Æ�Æ0Ä û 'T÷ðý�
����ÁÓË��

¯ � ~���ã�t�{ bxyè} $ ��� é(u�y�u_ã�çxw�{ â0~

�	��� �2Ì¨Æ�Æ0Ä û ÷0'C
�B��Æ¨À2À2Á}��	��� �2Ì¨Æ�Æ0Ä û 'T÷B
����ÁÓË���	��� �2Ì¨Æ�Æ0Ä û ÷F
�B��Æ¨À2À2Á��¨Á�Ë��
The last three examples show that if either expression is missing, the start and

end of the string are the assumed defaults. The final expression actually hands

back the entire string.

Indexing and slicing are useful operations for chopping strings into smaller

pieces. The string data type also supports operations for putting strings together.

Two handy operators are concatenation (
á
) and repetition (

;
). Concatenation

builds a string by “gluing” two strings together. Repetition builds a string

by multiple concatenations of a string with itself. Another useful function isÀ2ÆÓÇ
, which tells how many characters are in a string. Finally, since strings are

sequences of characters, you can iterate through the characters using a PythonÍ¨Á�Ì
loop.

Here are some examples of various string operations:�	��� �ÓÜu!Â�Ê{��á)��ÆC�	�½Ü����Üu!Â1ÊÎÆ����!Ü���	��� �GÅ�!Â�Ê{��á)� Ú ÇXÃ��fá)� / ���!Üm��ëÅ�!Â1Ê Ú Ç�Ã / �	�!Ü���	��� Þ(;Ï�ÓÜG½Â�Ê{���Üu!Â1ÊVÜG½Â�Ê�ÜG!Â1Ê���	��� �ÓÜu!Â�Ê{�§;-'��Üu!Â1ÊVÜG½Â�Ê�ÜG!Â1ÊVÜu!Â�Ê�ÜG½Â�Ê���	��� ñzÞ(;Ï�ÓÜu!Â1Ê ��úªá	ñ���ÆC�	�½Ü��§;-'Xú��Üu!Â1ÊVÜG½Â�Ê�ÜG!Â1ÊÎÆC�	�!ÜÓÆ����!Ü�ÆC�	�XÜ�ÆC�	�XÜ�Æ����½Ü���	��� À2ÆÓÇnñ��xÜG½Â�Ê �Óú@ �	��� À2ÆÓÇnñ��uÅ�½Â�Ê Ú ÇXÃ / �	�½Ü��ÓúÖ�Ö�	��� Í¨Á�ÌÿÑ�Å Ò�Ç³�uÅ�½Â�Êg���(÷�Ì!Ò1Ç�Ä¡Ñ1ÅcõÅ8 Â Êq��	���
These basic string operations are summarized in Table

�
.1.

â1r s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
Operator Meaning

+ Concatenation

* RepetitionÓ string � [] IndexingÓ string � [:] Slicing

len(Ó string �) Length

for Ó var � in Ó string � Iteration through characters

Table
�
.1: Python string operations.

µ=^�� ©«Wp�¥¤§j R ©²UÎg�Wpen� ��g1�GS¬RT[�[XWpen�

Now that you have an idea what various string operations can do, we’re ready to

write some programs. Our first example is a program to compute the usernames

for a computer system.

Many computer systems use a username and password combination to au-

thenticate system users. The system administrator must assign a unique user-

name to each user. Often, usernames are derived from the user’s actual name.

One scheme for generating usernames is to use the user’s first initial followed by

up to seven letters of the user’s last name. Using this method, the username for

Elmer Thudpucker would be “ethudpuc,” and John Smith would just be “jsmith.”

We want to write a program that reads a person’s name and computes the

corresponding username. Our program will follow the basic input, process, out-

put pattern. For brevity, I will skip discussion of the algorithm development and

jump right to the code. The outline of the algorithm is included as comments in

the final program.

ó7É(ÜÓÆ0Ì�Ç!Â�Ê!Ænï>�Ï
ó Å¨Ò�Ê+½À2ÆàÜ�Ä�Ì½Ò�Ç��8�Ì�Á�Ñ�ÆXÜ�Ü2Ò1Ç��è�Ì�ÁC�2Ì�Â�ÊàÄ¨Á6�¨Æ�ÇXÆ0Ì�Â�Ä�Æ É(ÜÓÆ0Ì0Ç½Â�Ê!Æ½Üæï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê(�¨ÆÓÇ½Æ�ÌXÂ�Ä¨Æ½Ü?Ñ�ÁxÊ?�É�Ä¨Æ0Ì É(Ü�Æ�Ì0Ç½Â�ÊÎÆXÜæïu��Ì½Ò�Ç�Ä

ó��¨Æ�Ä?É(Ü�Æ�Ì���Ü;Í½ÒxÌÎÜxÄàÂxÇXÃÐÀ2ÂXÜxÄÈÇ!Â�Ê!Æ½Ü
Í½ÒxÌÎÜxÄPßÝÌ�Â�Û�Ì�Ò�Ç��É¨ÄTñ���ØXÀ0Æ¨ÂXÜÓÆ Æ�Ç�Ä¨Æ0ÌPÏ¨Á�É¨ÌÝÍ½ÒÓÌ!ÜxÄ7Ç½Â�Ê!Æòñ�Â�À2ÀPÀ2Á�ÛXÆ�Ì!Ñ0Â�Ü�Æ½ú¬÷æ�Óú
À�Â�ÜxÄÝßPÌXÂÓÛmÌ¨Ò�Ç	2É�Ä�ñ���Ø�À2Æ�ÂXÜ�Æ ÆÓÇ�Ä�Æ�ÌPÏ�ÁÓÉ�ÌàÀ2ÂXÜxÄ?Ç½Â�Ê!Æ ñ�Â2À�À9À2Á�ÛXÆ�Ì!Ñ0Â�Ü�Æ½ú¬÷æ�Óú

¯ � r0��b $ ��w�± { bxyè} $ ��� �½}�� ³ {ô�p� $ ��� â��

ó¡Ñ�ÁÓÇ"Ñ0Â�Ä�ÆÓÇ!Â�Ä¨Æ7ÍXÒÓÌÎÜ�Ä¡Ò�ÇÎÒÓÄ½Ò0Â�À;ÛÎÒÓÄ�Å¡þàÑ�Å½Â�ÌÎÜÈÁ0ÍPÄ0ÅXÆÝÀ�ÂXÜ�Ä7Ç!Â1ÊÎÆoï
É�Ç½Â�ÊÎÆ7ßÐÍXÒÓÌ!ÜxÄ û Õ�
7á¡À2ÂXÜ�Ä û ÷ùþ�

óÝÁ�É¨ÄC�É¨ÄPÄ0ÅXÆÈÉ(ÜÓÆ0Ì0Ç½Â�Ê!Æ�Ì½Ò�Ç�Ä��/��ÁÓÉ�Ì?É"Ü�Æ0Ì�Ç!Â1ÊÎÆÝÒ�Üæ÷u�Îõ É�Ç½Â�Ê!Æ

Ê"Â¨Ò�Çoñ1ú
This program first uses

Ì�Â�Û Ò�Ç��É¨Ä
to get strings from the user. Then indexing,

slicing, and concatenation are combined to produce the username.

Here’s an example run:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê(�¨ÆÓÇ½Æ�ÌXÂ�Ä¨Æ½Ü?Ñ�ÁxÊ?�É�Ä¨Æ0Ì É(Ü�Æ�Ì0Ç½Â�ÊÎÆXÜæï
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÏ�ÁÓÉ�ÌÝÍXÒÓÌÎÜ�Ä7Ç!Â1ÊÎÆòñzÂ�À�À9À0Á�Û�Æ0Ì!Ñ�ÂXÜÓÆ!ú¬÷ Æ¨À1ÊÎÆ�Ì
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÏ�ÁÓÉ�ÌàÀ2ÂXÜxÄ?Ç½Â�Ê!Æ ñ�Â2À�À9À2Á�ÛXÆ�Ì!Ñ0Â�Ü�Æ½ú¬÷ Ä�Å�É�Ã��ÉÎÑ�Î�Æ0Ì��ÁÓÉ�Ì?É"Ü�Æ0Ì�Ç!Â1ÊÎÆÝÒ�Üæ÷¢Æ�Ä0Å�É�Ã�2É"Ñ
As you can see, computing with strings is very similar to computing with num-

bers.

Here is another problem that we can solve with string operations. Suppose

we want to print the abbreviation of the month that corresponds to a given

month number. The input to the program is an int that represents a month

number (1–12), and the output is the abbreviation for the corresponding month.

For example, if the input is 3, then the output should be
öXÂ�Ì

, for March.

At first, it might seem that this program is beyond your current ability. Ex-

perienced programmers recognize that this is a decision problem. That is, we

have to decide which of 12 different outputs is appropriate, based on the num-

ber given by the user. We will not cover decision structures until later; however,

we can write the program now by some clever use of string slicing.

The basic idea is to store all the month names in a big string.

ÊÎÁÓÇ�Ä�Å(Ü;ß���4�ÂÓÇ?,�Æ�Ë�ö½Â�Ì Ú ¨Ì2öXÂ�Ï�41É�Ç34�É!À Ú É+�+Å�Æ� Ä Ñ�Ä	Ð�Á�9K��ÆXÑm�
We can lookup a particular month by slicing out the appropriate substring. The

trick is computing where to slice. Since each month is represented by three

letters, if we knew where a given month started in the string, we could easily

extract the abbreviation.

ÊÎÁÓÇ�Ä�Å Ú Ë2Ë�Ì¨ÆC9Pß Ê!Á�Ç¨Ä0Å(Ü û XÁ½Üæ÷>½ÁXÜÓá¨ÞC

â ¯ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
This would get us the substring of length three that starts in the position indi-

cated by
XÁ½Ü

.

How do we compute this position? Let’s try a few examples and see what we

find. Remember that string indexing starts at 0.

month number position

Jan 1 0

Feb 2 3

Mar 3 6

Apr 4 9

Of course, the positions all turn out to be multiples of 3. To get the correct

multiple, we just subtract 1 from the month number and then multiply by 3. So

for 1 we get R0U VüUGT � O º M � O º M and for 12 we have R0U�� VüUGT � O º U�U � O º O�O .
Now we’re ready to code the program. Again, the final result is short and

sweet; the comments document the algorithm we’ve developed.

ó ÊÎÁÓÇ�Ä�Å�ï7¨Ï
ó Ú ¨Ì�Á��0ÌXÂ1ÊÐÄ�Á�¨Ì!Ò�Ç¨ÄPÄ0ÅXÆÝÂÓË2Ë�Ì�Æ�9!Ò�Â�Ä!Ò�Á�Ç9Á2ÍàÂ ÊÎÁÓÇ�Ä�Åcõç�XÒ�9�ÆÓÇ ÒÓÄ!Ü Ç�É�Ê�Ë½Æ�Ì
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ó ÊÎÁÓÇ�Ä0Å"Ü?Ò¨Ü É"Ü�Æ2Ã9ÂXÜ7ÂÝÀ2Á2Á�Î2É�ÝÄXÂxË!À0Æ
ÊÎÁÓÇ�Ä0Å"Ü;ß)��4�ÂÓÇ?,�Æ�Ë�ö½Â�Ì Ú ¨Ì2öXÂ�Ï�41É�Ç34�É!À Ú É+�+Å�Æ� Ä ÑxÄ�Ð�Á�9P��ÆXÑm�
ÇàßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂ Ê!Á�Ç¨Ä0ÅPÇ2É0Ê�ËXÆ0Ì ñ1Ö��½ÖÓÔ½ú÷���ú
ó¡Ñ�Á�Ê+�É¨Ä�ÆàÜ�ÄXÂ�Ì�Ä!Ò1Ç��<XÁ½Ü0ÒÓÄ!Ò�Á�ÇÝÁ2Í ÊÎÁÓÇ�Ä�Å9Ç Ò�Ç?ÊÎÁÓÇ�Ä�Å(Ü½ÁXÜ ß ñðÇ��½Ö2ú-;7Þ
ó ü Ì�ÂÓËÐÄ0ÅXÆÝÂ���Ì�Á��Ì½Ò0Â�Ä¨ÆÐÜ�À�Ò�Ñ�Æ?Í2Ì¨ÁxÊ9Ê!Á�Ç�Ä�Å(Ü
ÊÎÁÓÇ�Ä0Å Ú Ë2Ë�Ì�Æ�9Pß Ê!Á�Ç�Ä�Å(Ü û ½ÁXÜæ÷>½Á½Üxá¨ÞC

ó��Ì½Ò�Ç�Ä9Ä�Å½Æ?Ì¨Æ½Ü1É½À�Ä�Ì½Ò�Ç�Ä��:�0ÅXÆ;ÊÎÁÓÇ�Ä0ÅàÂÓË�Ë¨Ì�Æ�9!Ò0Â�Ä!Ò�Á�ÇÿÒ�Ü��!õ ÊÎÁÓÇ�Ä0Å Ú Ë2Ë�Ì�Æ�9Pá��(ïu�

Ê"Â¨Ò�Çoñ1ú
Notice the last line of this program uses string concatenation to put a period at

the end of the month abbreviation.

Here is a sample of program output:

¯ � �0��bxyè} $ �����H��¾ $ ��y|�H��ux�v��bÓ{H�0��{1� ³ {ô� â�´

/ Ç¨Ä�Æ�ÌÐÂ;ÊÎÁ�Ç¨Ä0ÅPÇ2É0Ê¨Ë½Æ0Ìòñ�Ö��½ÖÓÔXú¬÷#@�0ÅXÆ;ÊÎÁÓÇ�Ä0ÅàÂÓË�Ë¨Ì�Æ�9!Ò0Â�Ä!Ò�Á�ÇÿÒ�Ü Ú ¨Ìcï
One weakness of the “string as lookup table” approach used in this example

is that it will only work when the substrings all have the same length (in this

case, three). Suppose we want to write a program that outputs the complete

month name for a given number. How could that be accomplished?

µ=^�� ©²UÎg�Wpen�§[���¼cW�[�U¨[��îi�ec·F©GRU�G¦�Rhe�S¬RT[
Strictly speaking the operations in Table

�
.1 are not really just string operations.

They are operations that apply to sequences. As you know from the discussion

in Chapter 2, Python lists are also a kind of sequence. That means we can also

index, slice, and concatenate lists, as the following session illustrates:�	��� û Ö(õôÔC
?á û ÞTõ0@	
û Ö(õ Ô�õ Þ�õÆ@	
�	��� û Ö(õôÔC
�;�Þû Ö(õ Ô�õªÖ(õ Ô�õªÖ�õ�Ô�
�	��� �2Ì�Â0Ã¨ÆXÜ;ß û � Ú �2õC�l�U��õP�`×}�2õC�Y����õP�0,U��
�	��� �2Ì�Â0Ã¨ÆXÜ û Õ�
� Ú ��	��� �2Ì�Â0Ã¨ÆXÜ û Ôo÷B@�
û �è×}�2õ��q����
�	��� À2ÆÓÇnñë�0ÌXÂ�Ã¨Æ½Ü�ú'
One of the nice things about lists is that they are more general than strings.

Strings are always sequences of characters, whereas lists can be sequences of

arbitrary values. You can create a list of numbers or a list of strings. In fact, you

can even mix it up and create a list that contains both numbers and strings:

Ê½Ï��!Ò�ÜxÄ9ß û Ö(õ§�GÅ�!Â1Ê �Îõ°@oõè�zÙx��

In later chapters, we’ll put all sorts of things into lists like points, rectangles,

dice, buttons, and even students!

Using a list of strings, we can rewrite our month abbreviation program from

the previous section and make it even simpler.

â1¹ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
ó ÊÎÁÓÇ�Ä�Å!Ôoï>�Ï
ó Ú ¨Ì�Á��0ÌXÂ1ÊÐÄ�Á�¨Ì!Ò�Ç¨ÄPÄ0ÅXÆ;ÊÎÁÓÇ�Ä0ÅàÂÓË�Ë¨Ì�Æ�9!Ò0Â�Ä!Ò�Á�Çcõ1�½Ò�9�ÆÓÇ ÒÓÄÎÜ Ç2É0Ê¨Ë½Æ0Ì�ï

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ó ÊÎÁÓÇ�Ä0Å"Ü?Ò¨Ü?Â9À¨Ò¨ÜxÄ?É"Ü�Æ0ÃÝÂXÜ?Â9À2Á2Á�Î0É	ÝÄ�ÂÓË!À0Æ
ÊÎÁÓÇ�Ä0Å"Ü;ß û ��40ÂxÇ��Îõ��:,�ÆÓË��!õ§��öXÂ�Ì��!õ§� Ú �Ì$�Îõè��öXÂ�Ï$�Îõ§��4�É�Çx�Îõ��4�É½À*�Îõ�� Ú É+�$�!õ§�GÅ0Æ���!õ§� Ä ÑÓÄ$�Îõè�:Ð¨ÁC9$�Îõ§�H�XÆXÑ���

ÇàßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂ Ê!Á�Ç¨Ä0ÅPÇ2É0Ê�ËXÆ0Ì ñ1Ö��½ÖÓÔ½ú÷���ú
�Ì½Ò�Ç�Ä��:�0ÅXÆ;ÊÎÁÓÇ�Ä0ÅàÂÓË�Ë¨Ì�Æ�9!Ò0Â�Ä!Ò�Á�ÇÿÒ�Ü��!õ ÊÎÁÓÇ�Ä0Å"Ü û Ç��!ÖG
?á��(ïu�

Ê"Â¨Ò�Çoñ1ú
There are a couple of things you should notice about this program. I have cre-

ated a list of strings called
ÊÎÁÓÇ�Ä0Å"Ü

to use as the lookup table. The code that

creates the list is split over two lines. Normally a Python statement is written

on a single line, but in this case Python knows that the list isn’t finished until

the closing bracket “

” is encountered. Allowing the statement to go across two

lines like this makes the code more readable.

Lists, just like strings, are indexed starting with 0, so in this list the valueÊÎÁÓÇ�Ä�Å(Ü û Õ�

is the string

��40ÂxÇ��
. In general, the nth month is at position

Ç��!Ö
.

Since this computation is straightforward, I didn’t even bother to put it in a sep-

arate step; the expression
ÊÎÁÓÇ�Ä�Å(Ü û Ç��½Ö�

is used directly in the print statement.

Not only is this solution to the abbreviation problem a bit simpler, it is also

more flexible. For example, it would be trivial to change the program so that it

prints out the entire name of the month. All we need is a new definition of the

lookup list.

ÊÎÁÓÇ�Ä0Å"Ü;ß û ��40ÂxÇ�É!Â�Ì�Ï$�Îõ��!,�ÆÓË�Ì0É½Â�Ì2Ï��Îõ���öXÂ�Ì!Ñ1Å��!õ�� Ú �Ì½Ò0À*�!õ�zö½Â�Ï��Îõ���4�É2Ç½Æ*�Îõ§��4�É!À�Ï��!õ§� Ú É���É"ÜxÄ$�Îõ�uÅ2Æ��Ä�Æ�Ê�ËXÆ0Ì��!õ�� Ä ÑÓÄ¨Á�ËXÆ0Ì��!õ��!Ð�ÁC9¨ÆxÊ¨Ë½Æ0Ì$�Îõæ����ÆXÑ�Æ�Ê�ËXÆ0Ì��:

Before we leave the topic of lists and strings as sequences, there is an im-

portant difference between lists and strings that I should mention. Lists are

mutable. That means that the value of an item in a list can be modified with an

assignment statement. Strings, on the other hand, cannot be changed “in place.”

Here is an example interaction that illustrates the difference:

¯ � ¯ ��bÓyè} $ ���1��ux�v� bÓ{ ³ }�{ôy�sX���1{z� â�¿

�	��� Ê½Ï��!Ò¨Ü�Ä9ß û ÞC@oõ Ô0øTõªÖ�'æõªÖxÕC
�	��� Ê½Ï��!Ò¨Ü�Ä û ÔC
Ö�'�	��� Ê½Ï��!Ò¨Ü�Ä û ÔC
?ßÐÕ�	��� Ê½Ï��!Ò¨Ü�Äû ÞC@oõ Ô0øTõ ÕTõªÖ�Õ�
�	��� Ê½Ï+Å�Ä�Ì½Ò�Ç+�?ß��!��Æ¨À�À0Á<"XÁ�ÌXÀ�Ã$��	��� Ê½Ï+Å�Ä�Ì½Ò�Ç+� û Ô�
�ôÀ$��	��� Ê½Ï+Å�Ä�Ì½Ò�Ç+� û Ô�
?ß|�lDU���Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2��Ï�½Æ / Ì�Ì¨Á0Ì�÷ Á�Ë ï Æ�ÑÓÄ9Ã�Á�Æ½Ü�Ç��ùÄÿÜ1É�	½Á�Ì�Ä¡ÒxÄ�Æ�Ê ÂXÜ2Ü2Ò���Ç0Ê!Æ�Ç�Ä
The first line creates a list of four numbers. Indexing position 2 returns the

value 15 (as usual, indexes start at 0). The next command assigns the value 0

to the item in position 2. After the assignment, evaluating the list shows that

the new value has replaced the old. Attempting a similar operation on a string

produces an error. Strings are not mutable; lists are.

µ=^|µ ©²UÎg�Wpen�§[9i�ec·F©GRTSog1RæU¡ ¢�G·_RT[
� È � ÈSÊ Ø t���l�wm�¡hji*Í��0i�sGi_w�tu��tGlnvxw

Hopefully, you are starting to get the hang of computing with textual (string)

data. However, we haven’t yet discussed how computers actually manipulate

strings. In the previous chapter, you saw that numbers are stored in binary

notation (sequences of zeros and ones); the computer CPU contains circuitry to

do arithmetic with these representations. Textual information is represented in

exactly the same way. Underneath, when the computer is manipulating text, it

is really no different from number crunching.

To understand this, you might think in terms of messages and secret codes.

Consider the age-old grade school dilemma. You are sitting in class and want

to pass a note to a friend across the room. Unfortunately, the note must pass

through the hands, and in front of the curious eyes, of many classmates before

it reaches its final destination. And, of course, there is always the risk that the

note could fall into enemy hands (the teacher’s). So you and your friend need

to design a scheme for encoding the contents of your message.

â1â s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
One approach is to simply turn the message into a sequence of numbers.

You could choose a number to correspond to each letter of the alphabet and use

the numbers in place of letters. Without too much imagination, you might use

the numbers 1-26 to represent the letters a–z. Instead of the word “sourpuss,”

you would write “18, 14, 20, 17, 15, 20, 18, 18.” To those who don’t know the

code, this looks like a meaningless string of numbers. For you and your friend,

however, it represents a word.

This is how a computer represents strings. Each character is translated into

a number, and the entire string is stored as a sequence of (binary) numbers

in computer memory. It doesn’t really matter what number is used to repre-

sent any given character as long as the computer is consistent about the encod-

ing/decoding process. In the early days of computing, different designers and

manufacturers used different encodings. You can imagine what a headache this

was for people transferring data between different systems.

Consider a situation that would result if, say, PCs and Macintosh computers

each used their own encoding. If you type a term paper on a PC and save it as

a text file, the characters in your paper are represented as a certain sequence of

numbers. Then, if the file was read into your instructor’s Macintosh computer,

the numbers would be displayed on the screen as different characters from the

ones you typed. The result would be gibberish!

To avoid this sort of problem, computer systems today use industry standard

encodings. One important standard is called ASCII (American Standard Code for

Information Interchange). ASCII uses the numbers 0 through 127 to represent

the characters typically found on an (American) computer keyboard, as well as

certain special values known as control codes that are used to coordinate the

sending and receiving of information. For example, the capital letters A–Z are

represented by the values 65–90, and the lowercase versions have codes 97–122.

One problem with the ASCII encoding, as its name implies, is that it is

American-centric. It does not have symbols that are needed in many other lan-

guages. Extended ASCII encodings have been developed by the International

Standards Organization to remedy this situation. Most modern systems are mov-

ing to the support of Unicode, a much larger standard that includes support for

the characters of nearly all written languages. Newer versions of Python include

support for Unicode as well as ASCII.

Python provides a couple of built-in functions that allow us to switch back

and forth between characters and the numeric values used to represent them

in strings. The
Á0Ì�Ã

function returns the numeric (“ordinal”) code of a single-

character string, while
Ñ1Å�Ì

goes the other direction. Here are some interac-

¯ � ¯ ��bÓyè} $ ���1��ux�v� bÓ{ ³ }�{ôy�sX���1{z� â�é

tive examples:�	��� Á0Ì�Ã�ñ���Â*�Óúý�þ�	��� Á0Ì�Ã�ñ�� Ú �Óúø?'�	��� Ñ�Å¨ÌTñzý2þ!ú�ôÂ$��	��� Ñ�Å¨ÌTñzý2Õ!ú�*�B�� È � È�Ç ���0v_���B�*����l�wm���*w � w_��v$�*i_�
Let’s return to the note-passing example. Using the Python

Á0Ì�Ã
and

Ñ1Å�Ì
func-

tions, we can write some simple programs that automate the process of turning

messages into sequences of numbers and back again. The algorithm for encod-

ing the message is simple.�¨Æ�Ä9Ä0ÅXÆ;ÊÎÆ½Ü2Ü�Â��¨Æ7Ä¨Á9Æ�Ç"Ñ�Á2Ã�Æ
Í¨Á�ÌÐÆ¨Â¨Ñ�Å Ñ�Å½Â�Ì�Â�ÑÓÄ¨Æ0ÌÐÒ�ÇÐÄ0ÅXÆ;ÊÎÆXÜ�Ü�Â��¨Æo÷�Ì½Ò�Ç�Ä?Ä0Å½ÆÝÀ0Æ0Ä2Ä�Æ0ÌÈÇ�É0Ê¨Ë½Æ�ÌÝÁ2Í9Ä0ÅXÆÐÑ�Å½Â�Ì�Â�ÑÓÄ¨Æ0Ì

Getting the message from the user is easy, a
Ì�Â�Û Ò�Ç��É¨Ä

will take care of that

for us.

ÊÎÆXÜ�Ü�ÂC�¨Æ7ßPÌXÂ�Û�Ì�Ò1Ç	�É¨ÄTñ���ØXÀ0Æ¨Â�Ü�Æ Æ�Ç¨Ä�Æ0Ì9Ä�Å½Æ;Ê!Æ½Ü�Ü�ÂC��ÆÈÄ�ÁÝÆÓÇ"Ñ�Á0Ã¨Æo÷æ��ú
Implementing the loop requires a bit more effort. We need to do something for

each character of the message. Recall that a
Í�Á0Ì

loop iterates over a sequence

of objects. Since a string is a kind of sequence, we can just use a
Í¨Á�Ì

loop to run

through all the characters of the message.

Í¨Á�ÌÿÑ�Å Ò1Ç?ÊÎÆ½Ü2Ü�Â��¨Æn÷
Finally, we need to convert each character to a number. The simplest ap-

proach is to use the ASCII number (provided by
Á�Ì¨Ã

) for each character in the

message.

Here is the final program for encoding the message:

óPÄ�ÆC�2Ä�ÔÓÇ�É�Ê�ËXÆ0ÌÎÜ¬ï7¨Ï
ó Ú �Ì�ÁC�2Ì�Â�ÊàÄ¨ÁàÑ�Á�Ç?9�Æ�Ì�ÄÐÂ7Ä¨Æ��2Ä�É!Â2À ÊÎÆXÜ�Ü�Â��¨ÆÐÒ1Ç�Ä¨Á9Â¡Ü�Æ�í�É½ÆÓÇ"Ñ�Æ7Á2Í
ó Ç�É0Ê¨Ë½Æ�ÌÎÜõ É�Ä!Ò�À�Ò�D½Ò�Ç+�7Ä�Å½ÆÈÉ�Ç�Ã¨Æ�ÌXÀ�Ï½Ò�Ç+� Ú Å0×m¢�¢ Æ�ÇÎÑ�Á2ÃXÒ�Ç+��ï

éG% s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ�ÁÓÇ+9¨Æ0Ì�Ä!ÜÈÂ7Ä�ÆC�2Ä�É!Â�ÀªÊÎÆ½Ü2Ü�Â��¨ÆÐÒ1Ç�Ä�ÁÝÂàÜÓÆ�í�É½Æ�ÇÎÑ�Æ*��Ì½Ò�Ç�Ä���Á2Í7Ç2É0Ê¨Ë½Æ0Ì!Ü Ì�Æ��Ì¨Æ½Ü�ÆÓÇ�Ä½Ò�Ç�� Ä0ÅXÆ Ú Å0×m¢	¢ÈÆÓÇ"Ñ�Á2Ã½Ò1Ç��?Á2ÍPÄ0ÅXÆ;ÊÎÆXÜ�Ü�Â��¨ÆoïG��Ì½Ò�Ç�Ä

ó ü Æ�Ä9Ä0Å½Æ;Ê!Æ½Ü2Ü�ÂC��Æ7Ä�Á9ÆÓÇ"Ñ�Á2Ã¨Æ
ÊÎÆXÜ�Ü�Â��¨Æ?ßPÌ�Â�Û�Ì�Ò�Ç��É¨ÄTñ���ØXÀ0Æ¨ÂXÜÓÆ Æ�Ç�Ä¨Æ0Ì9Ä�Å½Æ;ÊÎÆXÜ�Ü�ÂC�¨Æ Ä�ÁÝÆ�ÇÎÑ�Á0Ã¨Æn÷ü��ú
�Ì½Ò�Ç�Ä�Ì½Ò�Ç�Ä��!�XÆ�Ì�ÆÝÂ�Ì�Æ?Ä0ÅXÆ Ú Å0×m¢�¢PÑ�Á2Ã�Æ½Ü¬÷G�
ó6��Á2Á�ÐÄ0Å¨Ì�ÁÓÉ���Å9Ä0Å½Æ;Ê!Æ½Ü2Ü�ÂC��Æ9ÂÓÇ�Ã<�Ì½Ò�Ç¨ÄÐÁ�É�Ä9Ä�Å½Æ Ú Å2×m¢�¢§9XÂ2ÀÓÉXÆ½Ü
Í¨Á�ÌÿÑ�Å Ò�Ç?Ê!Æ½Ü2Ü�ÂC��Æn÷�Ì!Ò1Ç�ÄÝÁ�Ì¨ÃæñvÑ�Å(úVõ ó?É"Ü�ÆàÑ�Á�Ê�ÊÎÂÈÄ�Á<¨Ì!Ò�Ç¨ÄÐÂ�À2ÀPÁ�ÇÿÁ�ÇXÆ9À�Ò1Ç½Æoï
�Ì½Ò�Ç�Ä

Ê"Â¨Ò�Çoñ1ú
We can use the program to encode important messages.�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ�ÁÓÇ+9¨Æ0Ì�Ä!ÜÈÂ7Ä�ÆC�2Ä�É!Â�ÀªÊÎÆ½Ü2Ü�Â��¨ÆÐÒ1Ç�Ä�ÁÝÂàÜÓÆ�í�É½Æ�ÇÎÑ�Æ
Á2Í7Ç2É0Ê¨Ë½Æ0Ì!Ü Ì�Æ��Ì¨Æ½Ü�ÆÓÇ�Ä½Ò�Ç�� Ä0ÅXÆ Ú Å0×m¢	¢ÈÆÓÇ"Ñ�Á2Ã½Ò1Ç��?Á2ÍPÄ0ÅXÆ;ÊÎÆXÜ�Ü�Â��¨Æoï
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆ;ÊÎÆXÜ�Ü�Â��¨Æ7Ä¨Á9Æ�ÇÎÑ�Á2Ã�Æn÷ "0Å!Â�ÄàÂ�Å2Á�É¨ÌC2É(Ü�Ü��
�XÆ�Ì�ÆÝÂ�Ì�Æ?Ä0ÅXÆ Ú Å0×m¢�¢PÑ�Á2Ã�Æ½Ü¬÷A�þ Ö�Õ�@Ýý2þ Ö�Öxø9Þ�ÔPý�þÝÞ¨Ô6A2Þ Ö�Ö2Ö9Ö�Öxþ Ö2Ö�@ Ö2ÖÓÔÿÖ�Ö�þÿÖ�Ö�'ÿÖ�Ö�'PÞ�Þ
One thing to notice about this result is that even the space character has a cor-

responding ASCII code. It is represented by the value O�� .� È � È�É ���0v_���B�*����l�wm����� im�	v$�*i_�
Now that we have a program to turn a message into a sequence of numbers,

it would be nice if our friend on the other end had a similar program to turn

the numbers back into a readable message. Let’s solve that problem next. Our

decoder program will prompt the user for a sequence of numbers representing

ASCII codes and then print out the text message corresponding to those codes.

¯ � ¯ ��bÓyè} $ ���1��ux�v� bÓ{ ³ }�{ôy�sX���1{z� é0~

This program presents us with a couple of challenges; we’ll address these as we

go along.

The overall outline of the decoder program looks very similar to the encoder

program. One change in structure is that the decoding version will collect the

characters of the message in a string and print out the entire message at the end

of the program. To do this, we need to use an accumulator variable, a pattern

we saw in the factorial program from the previous chapter. Here is the decoding

algorithm:�¨Æ�Ä9Ä0ÅXÆ¡Ü�Æ�í�É½ÆÓÇ"Ñ�Æ7Á2Í?Ç�É�Ê�ËXÆ0ÌÎÜªÄ�Á9Ã¨Æ�Ñ�Á0Ã¨Æ
ÊÎÆXÜ�Ü�ÂC�¨Æ7ß)�	�
Í¨Á�ÌÐÆ¨Â¨Ñ�Å9Ç�É�Ê�ËXÆ0Ì¡Ò1ÇÐÄ0Å½ÆàÒ1Ç	2É�Äc÷

Ñ�ÁÓÇ+9�Æ�Ì�ÄPÄ�Å½ÆÈÇ2É0Ê�ËXÆ0ÌPÄ¨Á?Ä0ÅXÆÝÂ�	¨Ì�Á��Ì!Ò�Â�Ä¨ÆÝÑ�Å½Â�Ì�Â�ÑÓÄ¨Æ0Ì
Â0Ã2ÃPÄ0Å½ÆàÑ1Å!Â�ÌXÂ�ÑxÄ�Æ�Ì?Ä�Á?Ä�Å½Æ9ÆÓÇXÃÝÁ2Í Ê!Æ½Ü2Ü�ÂC��Æ�Ì½Ò�Ç¨ÄPÄ0ÅXÆ;ÊÎÆ½Ü2Ü�Â��¨Æ

Before the loop, the accumulator variable
Ê!Æ½Ü2Ü�ÂC��Æ

is initialized to be an empty

string, that is a string that contains no characters (
�	�

). Each time through the

loop a number from the input is converted into an appropriate character and

appended to the end of the message constructed so far.

The algorithm seems simple enough, but even the first step presents us with

a problem. How exactly do we get the sequence of numbers to decode? We

don’t even know how many numbers there will be. To solve this problem, we

are going to rely on some more string manipulation operations.

First, we will read the entire sequence of numbers as a single string usingÌXÂÓÛ Ò1Ç	2É�Ä
. Then we will split the big string into a sequence of smaller strings,

each of which represents one of the numbers. Finally, we can iterate through

the list of smaller strings, convert each into a number, and use that number to

produce the corresponding ASCII character. Here is the complete algorithm:�¨Æ�Ä9Ä0ÅXÆ¡Ü�Æ�í�É½ÆÓÇ"Ñ�Æ7Á2Í?Ç�É�Ê�ËXÆ0ÌÎÜ;ÂXÜ?ÂàÜxÄ2Ì!Ò1Ç��oõ Ò�Ç�Å�Ä�Ì½Ò�Ç��
ÜG½À�ÒxÄ¡Ò�ÇmÅ�Ä�Ì½Ò�Ç+�àÒ�Ç¨Ä�ÁÝÂàÜ�ÆCí�ÉXÆ�Ç"Ñ�ÆPÁ2ÍÿÜ�Ê"Â2À�À2Æ�ÌÿÜxÄ2Ì!Ò1Ç��!Ü
ÊÎÆXÜ�Ü�ÂC�¨Æ7ß)�	�
Í¨Á�ÌÐÆ¨Â¨Ñ�Å¡Á2ÍPÄ�Å½Æ¡Ü�Ê"Â�À2À2Æ�Ì¡ÜxÄ2Ì!Ò1Ç��!Ü¬÷

Ñ�Å½ÂÓÇ���Æ7Ä0ÅXÆ¡ÜxÄ2Ì!Ò�Ç+�9Á2Í9ÃXÒ��XÒÓÄÎÜ7Ò�Ç�Ä¨Á?Ä0ÅXÆÈÇ�É0Ê¨Ë½Æ�Ì¡ÒÓÄ9Ì¨Æ��Ì¨Æ½ÜÓÆ�Ç�Ä!Ü
Â��½Æ�Ç�Ã?Ä0ÅXÆ Ú Å0×m¢	¢7Ñ�Å!Â�ÌXÂ¨ÑÓÄ�Æ�Ì9Í¨Á�ÌPÄ0Å½Â�Ä?Ç2É0Ê�ËXÆ0ÌPÄ¨Á;ÊÎÆXÜ�Ü�Â��¨Æ�Ì½Ò�Ç¨Ä ÊÎÆXÜ�Ü�Â��¨Æ

This looks complicated, but Python provides some functions that do just what

we need.

é1r s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
We saw in Chapter 3 that Python provides a standard

ÊÎÂ�Ä0Å
library containing

useful functions for computing with numbers. Similarly, the
Ü�Ä�Ì!Ò1Ç��

library

contains many functions that are useful in string-manipulation programs.

For our decoder, we will make use of the
Üu!À¨ÒÓÄ

function. This function is

used to split a string into a sequence of substrings. By default, it will split the

string wherever a space occurs. Here’s an example:�	��� Ò�Ê?½Á0Ì2ÄÿÜxÄ2Ì!Ò1Ç���	��� ÜxÄ2Ì!Ò�Ç+��ïôÜG!À¨ÒÓÄ�ñ��!��Æ¨À2À2Á?ÜxÄ2Ì!Ò1Ç��ÐÀ�Ò1Ë�Ì�Â�Ì�Ïj�u�Óúû �F�XÆ�À�À2ÁB��õ���ÜxÄ2Ì!Ò1Ç��U�2õ��ôÀ¨Ò�Ë¨ÌXÂ�Ì2Ïå����

You can see how

ÜG½À�ÒxÄ
has turned the original string

�!��Æ¨À�À0ÁàÜxÄ2Ì!Ò1Ç��ÝÀ¨Ò�Ë�Ì�Â�Ì2Ïå�u�
into a list of three strings:

�!��Æ¨À2À2Á��
,
�xÜxÄ�Ì½Ò�Ç+�$�

, and
��À�Ò�Ë¨ÌXÂ�Ì�Ïå���

.

By the way, the
ÜG½À�ÒÓÄ

function can be used to split a string at places other

than spaces by supplying the character to split on as a second parameter. For

example, if we have a string of numbers separated by commas, we could split

on the commas.�	��� ÜxÄ2Ì!Ò�Ç+��ïôÜG!À¨ÒÓÄ�ñ���Þ�Ô�õ`ÔC@oõ`Ô	'æõë'�þ��Îõî�Îõ��Óúû �èÞ¨Ô$��õ��`ÔC@U�2õ��ôÔ�'B�2õ��ë'2þB��

Since our decoder program should accept the same format that was pro-

duced by the encoder program, namely a sequence of numbers with spaces be-

tween, the default version of split works nicely.�	��� ÜxÄ2Ì!Ò�Ç+��ïôÜG!À¨ÒÓÄ�ñ��uA2þÝÖxÕ�@Ýý2þ Ö�Ö�ø9Þ¨ÔPý�þÝÞ�Ô6A�Þ Ö�Ö2Ö9Ö�Ö�þ Ö�Ö�@ Ö2ÖÓÔÿÖ2Öxþ��Óúû ��A�þB��õ��vÖxÕ�@}��õ��èý�þB��õ���Ö2ÖxøB��õ��èÞ¨ÔB�2õ��`ý2þ}�2õ��`Þ�ÔB��õ���A�ÞB��õ��vÖ�Ö�Ö���õ��vÖ�Ö�þ}��õ��Ö2Ö�@}��õ��vÖ�ÖÓÔ$��õ��vÖ�Ö�þ}��

Notice that the resulting list is not a list of numbers, it is a list of strings. It just so

happens these strings contain only digits and could be interpreted as numbers.

All that we need now is a way of converting a string containing digits into a

Python number. One way to accomplish this is with the Python
Æ�9XÂ2À

function.

This function takes any string and evaluates it as if it were a Python expression.

Here are some interactive examples of
ÆC9�Â�À

:�	��� Ç�É�Ê_Å�Ä2Ì9ß)�G'0Õ�Õ*��	��� ÆC9�Â�À¬ñùÇ�É�Ê_Å�Ä2Ì"ú'2Õ2Õ�	��� ÆC9�Â�À¬ñ���ÞC@+'oïùø�þ*��úÞ�@?'oïùø�þ

¯ � ¯ ��bÓyè} $ ���1��ux�v� bÓ{ ³ }�{ôy�sX���1{z� é��

�	��� ÆC9�Â�À¬ñ���Þ0á	@$�Óúþ �	��� �9ßÐÞnï�'�	��� ÏÝß @�ïðþ�	��� ÆC9�Â�À¬ñ����(; Ï$��úÖxøoïB@?'�	��� �9ßÐÆC9XÂ2À¬ñèÌXÂ�Û�Ì�Ò1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Â Ç�É0Ê¨Ë½Æ�Ì)��ú2ú/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�ÌÝÞnï�Ö�@�	��� �Ì½Ò�Ç�Ä6�Þnï�Ö�@
The last pair of statements shows that the

ÆC9�Â�À
of a

ÌXÂÓÛ Ò�Ç	2É�Ä
produces exactly

what we would expect from an
Ò1Ç	�É¨Ä

expression. Remember,
Ò1Ç	2É�Ä

evaluates

what the user types, and
Æ�9XÂ2À

evaluates whatever string it is given.

Using
ÜG!À¨ÒÓÄ

and
ÆC9�Â�À

we can write our decoder program.

ó7Ç�É�Ê�ËXÆ0ÌÎÜ�Ô�Ä¨Æ��2Ä�ï7¨Ï
ó Ú �Ì�ÁC�2Ì�Â�ÊàÄ¨ÁàÑ�Á�Ç?9�Æ�Ì�ÄÐÂàÜÓÆ�í�ÉXÆ�ÇÎÑ�ÆPÁ0Í Ú Å2×�¢	¢ªÇ2É0Ê¨Ë½Æ0Ì!Ü?Ò�Ç¨Ä�Á
ó ÂÿÜ�Ä�Ì½Ò�Ç��PÁ2ÍPÄ�ÆC�2Ä�ï
Ò�Ê?½Á�Ì�ÄÿÜ�Ä�Ì!Ò1Ç�� ó¡Ò�ÇÎÑ0ÀÓÉ�Ã¨ÆàÜ�Ä�Ì½Ò�Ç��9À�Ò�Ë¨ÌXÂ�Ì�Ï9Í�Á0Ì9Ä0ÅXÆ¡ÜG½À�ÒÓÄPÍ�É�ÇÎÑÓÄ½Ò�Á�Çhï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ�ÁÓÇ+9¨Æ0Ì�Ä!ÜÈÂàÜ�ÆCí�ÉXÆ�Ç"Ñ�ÆPÁ2Í Ú Å2×�¢	¢ Ç�É�Ê�ËXÆ0ÌÎÜÈÒ�Ç¨Ä�Á���Ì½Ò�Ç�Ä���Ä0ÅXÆ¡ÜxÄ2Ì!Ò�Ç+�9Á2ÍPÄ¨Æ��0Ä9Ä0Å!Â�Ä¡ÒÓÄÝÌ¨Æ��Ì¨Æ½ÜÓÆ�Ç�Ä!Üæïu��Ì½Ò�Ç�Ä

ó ü Æ�Ä9Ä0Å½Æ;Ê!Æ½Ü2Ü�ÂC��Æ7Ä�Á9ÆÓÇ"Ñ�Á2Ã¨Æ
Ò�ÇmÅ�Ä�Ì½Ò�Ç+�?ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø�À2Æ¨Â�Ü�Æ Æ�Ç¨Ä�Æ�ÌPÄ0ÅXÆ Ú Å2×�¢	¢��2Æ�ÇÎÑ�Á0Ã¨Æ2ÃªÊÎÆXÜ�Ü�ÂC�¨Æo÷���ú
ó6��Á2Á�ÐÄ0Å¨Ì�ÁÓÉ���ÅÐÆ¨Â�Ñ1Å Ü1É2Ë(Ü�Ä�Ì!Ò1Ç��ÝÂxÇXÃ7Ë2É"Ò0À�Ã Ú Å0×m¢�¢�ÊÎÆXÜ�Ü�Â��¨Æ
ÊÎÆXÜ�Ü�Â��¨Æ?ß)���
Í¨Á�Ì?Ç�É0Ê3Å�Ä2Ì¡Ò�Ç»Ü�Ä�Ì!Ò1Ç��nïzÜG½À�ÒxÄTñvÒ1Ç�Å�Ä�Ì!Ò1Ç��!ú¬÷

ÂXÜ2Ñ2Ò�Ò�Ð0É0ÊÐßÐÆC9XÂ2À¬ñùÇ�É0Ê3Å�Ä2Ì"ú ó¡Ñ�ÁÓÇ+9¨Æ0Ì�ÄPÃ½Ò��XÒÓÄ!Ü Ä�ÁÝÂÈÇ�É�Ê�ËXÆ0Ì
ÊÎÆ½Ü2Ü�Â��¨Æ?ß Ê!Æ½Ü�Ü�ÂC��Æ?á¡Ñ�Å¨ÌTñ�Â�Ü2Ñ2Ò�Ò�Ð�É0ÊVú óÐÂ��½ÆÓÇXÃàÑ1Å!Â�Ì�Â�ÑxÄ�Æ0Ì7Ä�Á ÊÎÆXÜ�Ü�ÂC�¨Æ

�Ì½Ò�Ç�Ä��:�0ÅXÆPÃ¨Æ�Ñ�Á2Ã�Æ2Ã;Ê!Æ½Ü2Ü�ÂC��ÆÐÒ¨Ü¬÷G�!õ ÊÎÆXÜ�Ü�Â��¨Æ
Ê"Â¨Ò�Çoñ1ú

é ¯ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
Study this program a bit, and you should be able to understand exactly how

it accomplishes its task. The heart of the program is the loop.

Í¨Á�Ì?Ç�É�Ê_Å�Ä2Ì¡Ò�Ç»Ü�Ä�Ì½Ò�Ç��nïzÜu!À�ÒxÄTñ�Ò�Ç�Å�Ä�Ì½Ò�Ç��!ú¬÷
ÂXÜ0Ñ�Ò�Ò�Ð0É�ÊàßÐÆC9�Â�À¬ñùÇ�É�Ê_Å�Ä2Ì"ú
ÊÎÆXÜ�Ü�Â��¨Æ?ß Ê!Æ½Ü2Ü�ÂC��Æ?á¡Ñ�Å¨ÌTñzÂXÜ2Ñ2Ò�Ò�Ð0É0ÊVú

The
Üu!À�ÒxÄ

function produces a sequence of strings, and
Ç�É�Ê_Å�Ä�Ì

takes on each

successive (sub)string in the sequence. I called the loop variable
Ç�É�Ê_Å�Ä2Ì

to em-

phasize that its value is a string of digits that represents some number. Each

time through the loop, the next substring is converted to a number by
Æ�9XÂ2À

ing

it. This number is converted to the corresponding ASCII character via
Ñ�Å�Ì

and

appended to the end of the accumulator,
ÊÎÆXÜ�Ü�Â��¨Æ

. When the loop is finished, ev-

ery number in
Ò1Ç�Å�Ä�Ì!Ò1Ç��

has been processed and
ÊÎÆXÜ�Ü�ÂC�¨Æ

contains the decoded

text.

Here is an example of the program in action:�	��� Ò�Ê?½Á0Ì2Ä7Ç�É�Ê�ËXÆ0ÌÎÜ�Ô�Ä¨Æ��2Ä�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ�ÁÓÇ+9¨Æ0Ì�Ä!ÜÈÂàÜ�ÆCí�ÉXÆ�Ç"Ñ�ÆPÁ2Í Ú Å2×�¢	¢ Ç�É�Ê�ËXÆ0ÌÎÜÈÒ�Ç¨Ä�Á
Ä0ÅXÆ¡ÜxÄ2Ì!Ò�Ç+�9Á2ÍPÄ¨Æ��0Ä9Ä0Å!Â�Ä¡ÒÓÄÝÌ¨Æ��Ì¨Æ½ÜÓÆ�Ç�Ä!Üæï
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆ Ú Å0×m¢	¢��2ÆÓÇ"Ñ�Á0Ã¨Æ0Ã ÊÎÆXÜ�Ü�ÂC�¨Æo÷A�Þ Ö2Öxø Ö2Ö�@ ÖxÕ	'ÿÖ�Ö�Õ ÖxÕ�Þ Ö2Ö�'PÞ�ÔPý�þ Ö�ÖG@ ÖxÕ!Ö;Þ¨ÔPþ�Õ Ö2Öxþ Ö2ÖxÕ9Þ�Þ�0ÅXÆPÃ¨Æ�Ñ�Á2Ã�Æ2Ã;Ê!Æ½Ü2Ü�ÂC��ÆÐÒ¨Ü¬÷çÅ�Ä2Ì!Ò1Ç��!Ü Â�Ì�Æ-,�É�Ç �
� È � È � � t� �i_� Ø t���l�wm�¡�#Í�i_�0��tGlnvxw�s

Now we have a couple of programs that can encode and decode messages as

sequences of ASCII values. These programs turned out to be quite simple due to

the power both of Python’s string data type and its built-in operations as well as

extensions that can be found in the
Ü�Ä�Ì½Ò�Ç��

library.

Python is a very good language for writing programs that manipulate textual

data. Table
�
.2 lists some of the other useful functions of the

ÜxÄ�Ì½Ò�Ç+�
library. A

good way to learn about these functions is to try them out interactively.�	��� Ò�Ê?½Á0Ì2ÄÿÜxÄ2Ì!Ò1Ç���	��� Ü ß��!�XÆ�À�À0ÁTõY¢PÑ�Â�ÊÎÆÈÅXÆ0Ì¨Æ?Í¨Á�ÌàÂÓÇÿÂ�Ì	��É�ÊÎÆ�Ç¨Ä���	��� ÜxÄ2Ì!Ò�Ç+��ï`Ñ0Â�ÎÒÓÄ�Â�À�Ò�D¨Æ¬ñ�Ü¨ú�B��Æ¨À2À2ÁTõ Ò9Ñ0Â�Ê!ÆÈÅ½Æ�Ì�ÆPÍ¨Á�ÌÐÂÓÇ Â�Ì?��É�ÊÎÆÓÇ�Ä���	��� ÜxÄ2Ì!Ò�Ç+��ï`Ñ0Â��ÛXÁ�Ì¨Ã!Ü(ñ�Ü�ú

¯ � ¯ ��bÓyè} $ ���1��ux�v� bÓ{ ³ }�{ôy�sX���1{z� é�´

�B��Æ¨À2À2ÁTõ�¢È×¨Â�Ê!Æ��XÆ�Ì�Æ-,�Á�Ì Ú Ç Ú Ì?��É�ÊÎÆÓÇ�Ä���	��� ÜxÄ2Ì!Ò�Ç+��ïðÀ2Á�Û�Æ0Ì�ñ�Ü¨ú�pÅXÆ¨À2À2ÁTõ Ò9Ñ0Â�Ê!ÆÈÅ½Æ�Ì�ÆPÍ¨Á�ÌÐÂÓÇ Â�Ì?��É�ÊÎÆÓÇ�Ä���	��� ÜxÄ2Ì!Ò�Ç+��ï É		XÆ0Ì�ñ�Ü¨ú�B� / ��� Ä õ�¢È× Ú ö / � / � / , Ä � Ú Ð Ú � ü Ù�ö / Ð	����	��� ÜxÄ2Ì!Ò�Ç+��ï�Ì�Æ�½À�Â¨Ñ�ÆæñvÜõ���¢��!õY��Ï¨Á�É��Óú�B��Æ¨À2À2ÁTõ Ï�Á�É Ñ�Â�Ê!Æ Å½Æ�Ì�ÆPÍ¨Á�ÌàÂÓÇÿÂ�Ì?��É�ÊÎÆÓÇ�Ä���	��� ÜxÄ2Ì!Ò�Ç+��ï`Ñ�Æ�Ç¨Ä�Æ�ÌTñ�ÜVõ`Þ2Õ!ú�B��Æ¨À2À2ÁTõ�¢PÑ0Â�Ê!ÆÈÅ½Æ�Ì�ÆPÍ¨Á�ÌÐÂÓÇ Â�Ì?��É�ÊÎÆÓÇ�Ä���	��� ÜxÄ2Ì!Ò�Ç+��ï`Ñ�Æ�Ç¨Ä�Æ�ÌTñ�ÜVõë'0Õ!ú� �XÆ�À�À0ÁTõY¢PÑ�Â�ÊÎÆÈÅXÆ0Ì¨Æ?Í¨Á�ÌàÂÓÇÿÂ�Ì	��É�ÊÎÆ�Ç¨Ä ��	��� ÜxÄ2Ì!Ò�Ç+��ï`Ñ�Á�É2Ç�Ä�ñ�ÜõP�`ÆB�vú'�	��� ÜxÄ2Ì!Ò�Ç+��ïpÍ½Ò�Ç�Ã�ñvÜõC�2õC��ú'�	��� ÜxÄ2Ì!Ò�Ç+��ï ï ÁXÒ1Çnñ û �:Ð�É0Ê¨Ë½Æ0Ì$�ÎõY�vÁ�Ç½Æ�õ��!õ���Ä�Å½Æ*�Îõè�:��Â�Ì½Ñ�Å��:
Îú�0Ð�É0Ê¨Ë½Æ0Ì9Á�Ç½Æ�õlÄ0ÅXÆ-�XÂ�Ì!Ñ�Å���	��� ÜxÄ2Ì!Ò�Ç+��ï ï ÁXÒ1Çnñ û �:Ð�É0Ê¨Ë½Æ0Ì$�ÎõY�vÁ�Ç½Æ�õ��!õ���Ä�Å½Æ*�Îõè�:��Â�Ì½Ñ�Å��:
oõ��vÍ¨Á2Á��Óú�0Ð�É0Ê¨Ë½Æ0Ì�Í¨Á2Á�Á�ÇXÆTõðÍ¨Á�Á�Ä0ÅXÆ2Í¨Á2ÁC�¨Â�Ì½Ñ�Å��
I should mention that many of these functions, like

Üu!À�ÒxÄ
, accept additional

parameters to customize their operation. Python also has a number of other

standard libraries for text-processing that are not covered here. You can consult

the online documentation or a Python reference to find out more.

� È � È�× ¢ �Bvx� �dw3�	v£��l�w��8tuv5�dw3�m�q¤3ÍmtGlnvxw
We have looked at how computers represent strings as a sort of encoding prob-

lem. Each character in a string is represented by a number that is stored in the

computer as a binary representation. You should realize that there is nothing

really secret about this code at all. In fact, we are simply using an industry-

standard mapping of characters into numbers. Anyone with a little knowledge

of computer science would be able to crack our code with very little effort.

The process of encoding information for the purpose of keeping it secret or

transmitting it privately is called encryption. The study of encryption methods is

an increasingly important sub-field of mathematics and computer science known

as cryptography. For example, if you shop over the Internet, it is important that

your personal information such as social security number or credit card number

é1¹ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
Function MeaningÑ0Â�"ÒxÄXÂ�À¨Ò�D�Ææñ�Ü�ú

Copy of
Ü

with only the first character capitalizedÑ0Â�¨Û�Á0Ì¨Ã½Ü�ñvÜ¨ú
Copy of

Ü
; first character of each word capitalizedÑ�ÆÓÇ�Ä¨Æ0ÌTñvÜõ ÛÎÒ�Ã0Ä0Å(ú

Center
Ü

in a field of given
ÛÎÒÓÃ2Ä0Å

Ñ�ÁÓÉ�Ç¨ÄTñ�ÜVõ�Ü�É�Ë�ú
Count the number of occurrences of

Ü1É2Ë
in
Ü

Í½Ò1ÇXÃæñ�Üõ�Ü1É�Ë(ú
Find the first position where

Ü�É�Ë
occurs in

Üï Á�Ò�Çoñ�À�Ò�ÜxÄÎú Concatenate
À�Ò¨Ü�Ä

of strings into one large stringÀ ï É(Ü�ÄTñ�ÜVõîÛ!Ò�Ã2Ä�Å�ú Like
Ñ�Æ�Ç¨Ä�Æ0Ì

, but
Ü

is left-justifiedÀ2Á�ÛXÆ�ÌTñ�Ü�ú
Copy of

Ü
in all lowercase charactersÀXÜ�Ä�Ì½Ò�nñvÜ¨ú

Copy of
Ü

with leading whitespace removedÌ�Æ�!À2Â�Ñ�Æ¬ñ�ÜVõ`Á¨À�Ã!Ü�É�Ëcõ�Ç½Æ�Û"Ü1É2Ë�ú
Replace occurrences of

Á�À0Ã!Ü�É�Ë
in
Ü

with
Ç½Æ�Û"Ü�É�Ë

Ì¨ÍXÒ�Ç�Ã�ñ�ÜVõ�Ü�É�Ë�ú
Like

ÍXÒ�Ç�Ã
, but returns the rightmost positionÌ ï É(Ü�ÄTñ�ÜVõùÛ!Ò�Ã2Ä�Å�ú Like

Ñ�Æ�Ç¨Ä�Æ0Ì
, but

Ü
is right-justifiedÌÎÜ�Ä�Ì½Ò�nñvÜ¨ú

Copy of
Ü

with trailing whitespace removedÜG½À�ÒxÄTñ�Ü�ú
Split

Ü
into a list of substrings (see text)É	�½Æ�ÌTñ�Ü�ú

Copy of
Ü
; all characters converted to uppercase

Table
�
.2: Some components of the Python string library

be transmitted using encodings that keep it safe from potential eavesdroppers

on the network.

Our simple encoding/decoding programs use a very weak form of encryption

known as a substitution cipher. Each character of the original message, called

the plaintext, is replaced by a corresponding symbol (in our case a number) from

a cipher alphabet. The resulting code is called the ciphertext.

Even if our cipher were not based on the well-known ASCII encoding, it

would still be easy to discover the original message. Since each letter is always

encoded by the same symbol, a code-breaker could use statistical information

about the frequency of various letters and some simple trial and error testing

to discover the original message. Such simple encryption methods may be suffi-

cient for grade-school note passing, but they are certainly not up to the task of

securing communication over global networks.

Modern approaches to encryption start by translating a message into num-

bers, much like our encoding program. Then sophisticated mathematical algo-

rithms are employed to transform these numbers into other numbers. Usually,

the transformation is based on combining the message with some other special

value called the key. In order to decrypt the message, the party on the receiving

¯ � ´2�?K �xw���yq¥GÑ��zyèwx�zy¬u��dbxyè} $ ��� ä§ux� $ wx��± u�y $ �0� é�¿

end needs to have an appropriate key so that the encoding can be reversed to

recover the original message.

Encryption approaches come in two flavors: private key and public key. In a

private key system the same key is used for encrypting and decrypting messages.

All parties that wish to communicate need to know the key, but it must be kept

secret from the outside world. This is the usual system that people think of when

considering secret codes.

In public key systems, there are separate but related keys for encrypting and

decrypting. Knowing the encryption key does not allow you to decrypt messages

or discover the decryption key. In a public key system, the encryption key can

be made publicly available, while the decryption key is kept private. Anyone

can safely send a message using the public key for encryption. Only the party

holding the decryption key will be able to decipher it. For example, a secure

web site can send your web browser its public key, and the browser can use it

to encode your credit card information before sending it on the Internet. Then

only the company that is requesting the information will be able to decrypt and

read it using the proper private key.

µ=^|º J`e�¤²¦oU§¦�N9¦oU!¤§¦nUPi�[Ð©²UÎg�Wpen� kmi�ehW�¤§¦�j ioUXW��£e

Even programs that we may not view as primarily doing text manipulation often

need to make use of string operations. For example, consider a program that

does financial analysis. Some of the information (e.g., dates) must be entered

as strings. After doing some number crunching, the results of the analysis will

typically be a nicely formatted report including textual information that is used

to label and explain numbers, charts, tables, and figures. String operations are

needed to handle these basic input and output tasks.� È�×�ÈSÊ �����*��Í_Ù�i§Ú Í�Í*Ùnl����mtGlnvxw©¨�� ��tui�ª vxwmk�i_�0s�lnvxw
As a concrete example, let’s extend our month abbreviation program to do date

conversions. The user will input a date such as “05/24/2003,” and the program

will display the date as “May 24, 2003.” Here is the algorithm for our program:¢1Ç��É¨ÄPÄ0ÅXÆPÃ�Â�Ä¨ÆàÒ�Ç?Ê2Ê_�0Ã2Ã+��Ï�Ï�Ï2ÏPÍ�Á0Ì�ÊÎÂ�Ä ñ`Ã�Â�Ä�Æ?Å�Ä�ÌÎúÅ�½À�ÒxÄ9Ã�Â�Ä�Æ?Å�Ä�Ì¡Ò1Ç�Ä¨Á;ÊÎÁ�Ç¨Ä0Å�õ¢Ã�Â�ÏàÂÓÇXÃPÏ¨Æ¨Â�ÌÿÜxÄ2Ì!Ò�Ç+�!Ü
×�ÁÓÇ+9¨Æ0Ì�Ä?Ä0Å½Æ;Ê!Á�Ç¨Ä0Å Ü�Ä�Ì!Ò1Ç��àÒ1Ç�Ä¨ÁÝÂ ÊÎÁ�Ç¨Ä0Å9Ç2É0Ê�ËXÆ0Ì
Ù(ÜÓÆ?Ä0ÅXÆ;ÊÎÁ�Ç¨Ä0ÅPÇ2É0Ê¨Ë½Æ0Ì?Ä�ÁÝÀ2Á2Á�Î0É	ÐÄ0ÅXÆ ÊÎÁÓÇ�Ä�Å9Ç!Â�Ê!Æ

é1â s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
×0Ì¨Æ¨Â�Ä�Æ9ÂÈÇ½Æ�ÛÝÃ�Â�Ä�Æ¡Ü�Ä�Ì!Ò1Ç��àÒ1ÇàÍ¨Á�Ì�ÊàöXÁÓÇ�Ä�Å��½Â�Ïnõ���Æ�Â�ÌÄ É¨ÄC2É�ÄPÄ�Å½ÆÈÇ½Æ�ÛÐÃ�Â�Ä�Æ¡ÜxÄ2Ì!Ò1Ç��

We can implement the first two lines of our algorithm directly in code using

string operations we have already discussed.

Ã�Â�Ä�Æ	Å�Ä�ÌPßPÌXÂ�Û�Ì�Ò1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì9Â?Ã¨Â�Ä�Æòñ�Ê�Ê3�0Ã�Ã?��Ï2Ï�Ï�ÏÎú¬÷Y��ú
ÊÎÁÓÇ�Ä�Å�Å�Ä2Ìnõ Ã�Â�Ï+Å�Ä2ÌnõlÏ¨Æ¨Â�Ì+Å�Ä2Ì9ßÿÜxÄ2Ì!Ò�Ç+��ïôÜG!À¨ÒÓÄ�ñôÃ�Â�Ä�Æ	Å�Ä�ÌoõY�G�_��ú
Here I have gotten the date as a string and split it at the slashes. I then

“unpacked” the list of three strings into the variables
Ê!Á�Ç�Ä�Å�Å�Ä�Ì

,
Ã�Â�Ï�Å�Ä�Ì

, andÏ�Æ�Â�Ì+Å�Ä�Ì
using simultaneous assignment.

The next step is to convert
ÊÎÁÓÇ�Ä0ÅmÅ�Ä2Ì

into an appropriate number. In the

ASCII decoding program, we used the
Æ�9XÂ�À

function to convert from a string

data type into a numeric data type. Recall that
ÆC9�Â�À

evaluates a string as a

Python expression. It is very general and can be used to turn strings into nearly

any other Python data type. It’s the Swiss army knife of string conversion.

You can also convert strings into numbers using the Python numeric type

conversion functions (
Ò1Ç�Ä�ñ1ú

,
Í¨À2Á�Â�ÄTñ�ú

,
À0Á�Ç+�

()) that were covered in Chapter 3.

Here are some quick examples.�	��� Ò�Ç¨ÄTñ��vÞ��ÓúÞ �	��� Í�À0Á¨Â�Ä�ñ��vÞ���úÞnïùÕ�	��� Í�À0Á¨Â�Ä�ñ��vÞnï�'_��úÞnï0'�	��� Ò�Ç¨ÄTñ��vÞnï0'*��ú��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñpÊÎÁXÜxÄ9Ì¨ÆXÑ�ÆÓÇ�Ä¡Ñ�Â�À2ÀPÀ�Â�ÜxÄ"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2ÛXÂ2ÀÓÉXÆ / Ì2Ì�Á�Ìc÷�Ò1Ç+9�Â�À�ÒÓÃÝÀ�ÒxÄ�Æ�ÌXÂ�À Í¨Á�ÌÿÒ�Ç�Ä�ñ1ú÷lÞnï0'
As the last example shows, the string passed to these conversion functions must

be a numeric literal of the appropriate form, otherwise you will get an error.

There is one subtle “gotcha” to consider when choosing between
Æ�9XÂ2À¬ñ1ú

andÒ�Ç¨ÄTñ�ú
to convert strings into numbers. If the string to be converted has a leading

zero, strange things can happen. Take a look at these examples.�	��� Ò�Ç¨ÄTñ��vÕ?'_��ú'�	��� Ò�Ç¨ÄTñ��vÕÎÖ�þ���ú

¯ � ´2�?K �xw���yq¥GÑ��zyèwx�zy¬u��dbxyè} $ ��� ä§ux� $ wx��± u�y $ �0� é�é

Öxþ�	��� Ò�Ç¨ÄTñ��vÕ	A*��úA �	��� ÆC9�Â�À¬ñ���Õ	'*��ú'�	��� ÆC9�Â�À¬ñ���Õ!Öxþ��ÓúÖ�'�	��� ÆC9�Â�À¬ñ���Õ�A���ú��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñpÊÎÁXÜxÄ9Ì¨ÆXÑ�ÆÓÇ�Ä¡Ñ�Â�À2ÀPÀ�Â�ÜxÄ"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2,!Ò�À2Æ�� . ÜxÄ2Ì!Ò1Ç�� � �Îõ¢À�Ò�ÇXÆÿÖÕ	A«Å�Ï�Ç�Ä�ÂC� / Ì�Ì¨Á0Ìc÷lÒ�Ç?9XÂ2À�Ò�Ã7Ä�Á�Î�Æ�Ç
As you might expect, when using

Ò�Ç¨ÄTñ1ú
the leading zeroes are simply ignored.

But what’s going on with
Æ�9XÂ2À¬ñ1ú

? It turns out that Python allows int literals to

be expressed in other number systems in addition to the usual base 10 (decimal).

If an int literal starts with a 0, Python interprets it as a base 8 (octal) number.

The octal value M+UGW is equal to the decimal value UuN , and octal uses only the

digits M – W , so M!� is an illegal number.

So why does Python support number systems other than decimal? Contrary

to what you might think, it isn’t just to trip up new programmers. As you know,

computers represent numbers using binary (base 2). Because of this, computer

scientists and engineers sometimes find it convenient to uses number systems

with bases that are powers of 2, and � º � ¸ . If this seems weird to you, don’t

worry about it. Just be sure that you use
Ò�Ç¨ÄTñ�ú

when converting strings (e.g.

dates) that may contain leading zeroes.

Returning to the date conversion algorithm, we can turn
Ê!Á�Ç�Ä�Å�Å�Ä�Ì

into a

number using
Ò1Ç�Ä

and then use this value to look up the correct month name.

Here is the code:

ÊÎÁÓÇ�Ä�Å(Ü;ß û ��40ÂxÇ�É!Â�Ì�Ï$�Îõæ�:,�ÆÓË�Ì�É!Â�Ì2Ï��!õ���öXÂ�Ì½Ñ�Å��!õ§� Ú �Ì½Ò0À*�!õ��ö½Â�Ï��!õ§��41É�Ç½Æ*�Îõ§��4�É½À�Ï��!õ§� Ú É���É(ÜxÄ$�Îõ�GÅ2Æ��Ä¨ÆxÊ�ËXÆ0Ì$�Îõ�� Ä ÑxÄ�Á�ËXÆ0Ì$�Îõ��!Ð�Á�9�ÆxÊ¨Ë½Æ�Ì��Îõæ����ÆXÑ�ÆxÊ�ËXÆ0Ì$��

ÊÎÁÓÇ�Ä�Å�Å�Ä2Ì9ß ÊÎÁÓÇ�Ä�Å(Ü û Ò�Ç¨ÄTñpÊ!Á�Ç¨Ä0Å�Å�Ä�ÌÎú��!ÖG

Remember the indexing expression

Ò�Ç�Ä�ñpÊ!Á�Ç�Ä�Å�Å�Ä�Ì"ú��!Ö
is used because indexing

of lists starts with 0.

The last step in our program is to piece together the date in the new format.

~&%�% s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
�Ì½Ò�Ç¨Ä)�:��Å½ÆàÑ�ÁÓÇ+9¨Æ0Ì�Ä¨Æ2Ã7Ã�Â�Ä¨ÆàÒ¨Ü¬÷G�Îõ ÊÎÁ�Ç¨Ä0ÅmÅ�Ä�Ìoõ¢Ã�Â�Ï�Å�Ä�Ì¨á��Îõ��Îõ Ï�Æ¨Â�Ì�Å�Ä�Ì
Notice how I have used concatenation for the comma immediately after the day.

Here’s the complete program:

ó9Ã�Â�Ä�Æ�Ñ�Á�Ç?9�Æ�Ì�Äcï>�Ï
ó ×2Á�Ç+9¨Æ0Ì2ÄÎÜ ÂPÃ¨Â�Ä�ÆÝÒ�ÇàÍ¨Á�Ì�Ê �èÊ�Ê_��Ã�Ã?��Ï�Ï2Ï�Ï$��Ä�Á��èÊÎÁÓÇ�Ä0ÅÝÃ�Â�ÏoõlÏ�Æ�Â�Ì$�
Ò�Ê?½Á�Ì�ÄÿÜ�Ä�Ì!Ò1Ç��
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ó��¨Æ�Ä9Ä0Å½ÆPÃ¨Â�Ä¨Æ
Ã�Â�Ä�Æ?Å�Ä�Ì9ßPÌ�Â�Û�Ì�Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌPÂ?Ã�Â�Ä�Æòñ�Ê�Ê_��Ã�Ã?��Ï�Ï2Ï�ÏÎú¬÷Y��ú
óÿÜG½À�ÒÓÄÿÒ1Ç�Ä¨ÁÐÑ�Á�Ê+½ÁÓÇ½ÆÓÇ�ÄÎÜ
ÊÎÁÓÇ�Ä0ÅmÅ�Ä2ÌnõlÃ¨Â�Ï+Å�Ä�ÌoõlÏ�Æ�Â�Ì+Å�Ä�ÌPßÿÜxÄ�Ì½Ò�Ç+��ïzÜu!À¨ÒÓÄTñ`Ã�Â�Ä�Æ?Å�Ä�ÌoõY�G�*�Óú
ó¡Ñ�ÁÓÇ+9�Æ�Ì�Ä Ê!Á�Ç¨Ä0Å�Å�Ä�ÌPÄ¨Á?Ä0ÅXÆ;ÊÎÁ�Ç¨Ä0ÅPÇ½Â�Ê!Æ
ÊÎÁÓÇ�Ä0Å"Ü;ß û ��40ÂxÇ�É!Â�Ì�Ï$�Îõ��!,�ÆÓË�Ì0É½Â�Ì2Ï��Îõ���öXÂ�Ì!Ñ1Å��!õ�� Ú �Ì½Ò0À*�!õ�zö½Â�Ï��Îõ���4�É2Ç½Æ*�Îõ§��4�É!À�Ï��!õ§� Ú É���É"ÜxÄ$�Îõ�uÅ2Æ��Ä�Æ�Ê�ËXÆ0Ì��!õ�� Ä ÑÓÄ¨Á�ËXÆ0Ì��!õ��!Ð�ÁC9¨ÆxÊ¨Ë½Æ0Ì$�Îõæ����ÆXÑ�Æ�Ê�ËXÆ0Ì��:

ÊÎÁÓÇ�Ä0ÅmÅ�Ä2ÌPßÈÊÎÁÓÇ�Ä0Å"Ü û Ò�Ç�Ä�ñpÊ!Á�Ç�Ä�Å�Å�Ä�Ì"ú��!ÖG

óÝÁ�É¨ÄC�É¨ÄPÌ�ÆXÜ1É½À�ÄÿÒ�Ç?Ê!Á�Ç¨Ä0ÅÐÃ¨Â�Ïnõ¢Ï¨Æ¨Â�Ì9Í¨Á�Ì�Ê"Â�Ä�Ì½Ò�Ç�Ä��:�0ÅXÆàÑ�ÁÓÇ+9�Æ�Ì�Ä¨Æ2Ã?Ã¨Â�Ä¨ÆàÒ¨Üæ÷u�Îõ Ê!Á�Ç¨Ä0Å�Å�Ä�ÌoõlÃ�Â�Ï�Å�Ä�Ì¨á��Îõ��Îõ Ï¨Æ¨Â�Ì�Å�Ä2Ì

Ê"Â¨Ò�Çoñ1ú
When run, the output looks like this:/ Ç¨Ä�Æ�ÌÐÂPÃ�Â�Ä¨Æ ñpÊ2Ê_��Ã�Ã+��Ï�Ï2Ï�Ï"ú÷ Õ	'	��Ô�@+�2Ô2Õ�Õ2Þ�0ÅXÆàÑ�ÁÓÇ+9�Æ�Ì�Ä¨Æ2Ã?Ã¨Â�Ä¨ÆàÒ¨Üæ÷îöXÂ�ÏàÔ�@oõ Ô2Õ2Õ�Þ

This simple example didn’t really show it, but often it is also necessary to

turn a number into a string. In Python, most data types can be converted into

strings using the
Ü�Ä�Ì

function. Here are a couple of simple examples:�	��� ÜxÄ2ÌTñ!'0Õ�Õ½ú�ë'0Õ�ÕB��	��� 9XÂ2ÀÓÉ½Æ7ßàÞoï�ÖG@�	��� ÜxÄ2ÌTñÒ9�Â�ÀxÉ½Æ!ú

¯ � ´2�?K �xw���yq¥GÑ��zyèwx�zy¬u��dbxyè} $ ��� ä§ux� $ wx��± u�y $ �0� ~&%0~
�`Þoï�ÖG@U��	��� �Ì½Ò�Ç�Ä��:�0ÅXÆ-9XÂ2ÀÓÉ½ÆÝÒ¨Ü��!õ�ÜxÄ2ÌTñÒ9�Â�ÀxÉ½Æ!úªá)�(ïu��0ÅXÆ-9XÂ2ÀÓÉ½ÆÝÒ¨ÜÈÞnï�Ö�@nï
Notice particularly the last example. By turning

9�Â�ÀxÉ½Æ
into a string, we can use

string concatenation to put a period at the end of a sentence. If we didn’t first

turn
9XÂ�ÀxÉ½Æ

into a string, Python would interpret the
á

as a numerical operation

and produce an error, because “.” is not a number.

We now have a complete set of operations for converting values among var-

ious Python data types. Table
�
.3 summarizes these five Python type conversion

functions:

Function MeaningÍ¨À2Á�Â�ÄTñ . ÆC���Ì � ú Convert
Æ����Ì

to a floating point value.Ò1Ç�Ä�ñ . ÆC��¨Ì � ú Convert
Æ����Ì

to an integer value.À0Á�Ç+��ñ . Æ����Ì � Convert
Æ����Ì

to a long integer value.Ü�Ä�Ì�ñ . ÆC��¨Ì � ú Return a string representation of
Æ����Ì

.Æ�9XÂ2À¬ñ . ÜxÄ2Ì!Ò�Ç+� � ú Evaluate
Ü�Ä�Ì!Ò1Ç��

as an expression.

Table
�
.3: Type Conversion Functions

One common reason for converting a number into a string is so that string

operations can be used to control the way the value is printed. For example,

a program performing date calculations would have to manipulate the month,

day, and year as numbers. For nicely formatted output, these numbers would be

converted back to strings.

Just for fun, here is a program that inputs the day, month, and year as num-

bers and then prints out the date in two different formats:

ó9Ã�Â�Ä�Æ�Ñ�Á�Ç?9�Æ�Ì�ÄXÔTï7¨Ï
ó ×�ÁÓÇ+9�Æ�Ì�Ä!Ü;Ã�Â�ÏÈÊÎÁ�Ç¨Ä0Å¡ÂxÇXÃPÏ¨Æ¨Â�Ì?Ç2É0Ê¨Ë½Æ0Ì!Ü?Ò�Ç¨Ä�Á7Ä0ÛXÁPÃ¨Â�Ä�ÆPÍ�Á0ÌÓÊ"Â�Ä!Ü
Ò�Ê?½Á�Ì�ÄÿÜ�Ä�Ì!Ò1Ç��
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ó��¨Æ�Ä9Ä0Å½ÆPÃ¨Â�ÏÈÊ!Á�Ç�Ä�Å¡ÂÓÇ�ÃPÏ�Æ�Â�Ì
Ã�Â�Ïnõ ÊÎÁÓÇ�Ä�ÅcõlÏ¨Æ¨Â�ÌPß Ò1Ç	2É�ÄTñ���Ø�À2Æ¨Â�Ü�ÆÈÆ�Ç¨Ä�Æ0ÌPÃ�Â�Ïoõ ÊÎÁÓÇ�Ä0Å�õ ÂÓÇ�ÃPÏ�Æ�Â�Ì?Ç�É�Ê�ËXÆ0ÌÎÜ¬÷æ�Óú
Ã�Â�Ä�ÆÎÖªß Ü�Ä�Ì�ñpÊÎÁÓÇ�Ä�Å�úxá��G�_�vá!Ü�Ä�Ì�ñôÃ�Â�Ï"ú1á$�u�*��á!ÜxÄ2Ì�ñèÏ�Æ2Â�ÌÎú

~&%�r s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
ÊÎÁÓÇ�Ä0Å"Ü;ß û ��40ÂxÇ�É!Â�Ì�Ï$�Îõ��!,�ÆÓË�Ì0É½Â�Ì2Ï��Îõ���öXÂ�Ì!Ñ1Å��!õ�� Ú �Ì½Ò0À*�!õ�zö½Â�Ï��Îõ���4�É2Ç½Æ*�Îõ§��4�É!À�Ï��!õ§� Ú É���É"ÜxÄ$�Îõ�uÅ2Æ��Ä�Æ�Ê�ËXÆ0Ì��!õ�� Ä ÑÓÄ¨Á�ËXÆ0Ì��!õ��!Ð�ÁC9¨ÆxÊ¨Ë½Æ0Ì$�Îõæ����ÆXÑ�Æ�Ê�ËXÆ0Ì��:

ÊÎÁÓÇ�Ä0ÅmÅ�Ä2ÌPßÈÊÎÁÓÇ�Ä0Å"Ü û ÊÎÁ�Ç¨Ä0Åm�!Ö�

Ã�Â�Ä�Æ¨ÔÈß7Ê!Á�Ç¨Ä0Å�Å�Ä�Ì�á$�-�fá Ü�Ä�ÌTñ`Ã�Â�Ï"ú á��!õè�fá Ü�Ä�Ì�ñ`Ï�Æ�Â�ÌÎú
�Ì½Ò�Ç�Ä��:�0ÅXÆPÃ�Â�Ä�ÆàÒ¨Üm�Îõ¢Ã¨Â�Ä¨ÆÎÖ�õ���Á0Ì$�Îõ�Ã¨Â�Ä�Æ�Ô0á��(ïG�

Ê"Â¨Ò�Çoñ1ú
Notice how string concatenation is used to produce the required output. Here is

how the result looks:

ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�Ì9Ã�Â�Ïnõ Ê!Á�Ç�Ä�Åcõ ÂxÇXÃPÏ¨Æ¨Â�Ì?Ç2É0Ê¨Ë½Æ0Ì!Üæ÷ ÔC@oõî'æõ Ô2Õ2Õ�Þ�0ÅXÆPÃ�Â�Ä�ÆàÒ¨Ü�'���Ô�@+��Ô0Õ�Õ2Þ?Á0ÌPöXÂ�ÏàÔ�@oõ Ô2Õ2Õ�Þoï
� È�×�È�Ç Ø t���l�wm� ¢ v*�&�î�mt�tGl�wm�

As you have seen, basic string operations can be used to build nicely formatted

output. This technique is useful for simple formatting, but building up a com-

plex output through slicing and concatenation of smaller strings can be tedious.

Python provides a powerful string formatting operation that makes the job much

easier.

Let’s start with a simple example. Here is a run of the change counting

program from last chapter:

×�Å½ÂÓÇ+�¨ÆP×2Á�É�Ç¨Ä�Æ�Ì
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�ÁÓÉ�Ç�ÄÐÁ0ÍÝÆ¨Â¨Ñ�Å Ñ�Á�Ò�ÇÝÄ2ÏCXÆnï�XÁ�Û7Ê"ÂxÇ�Ï í�É½Â�Ì2Ä�Æ0Ì!Ü Ã�Á?Ï�Á�É9Å½Â�9¨Æ�27ø�XÁ�Û7Ê"ÂxÇ�ÏÝÃ½ÒvÊÎÆXÜ;Ã¨Á?Ï¨Á�É9Å!Â�9�Æ+2ÈÕ�XÁ�Û7Ê"ÂxÇ�Ï?Ç"Ò2Ñ�Î�Æ¨ÀXÜ Ã¨ÁPÏ�ÁÓÉPÅ!Â�9�Æ+27Õ�XÁ�Û7Ê"ÂxÇ�Ï-½ÆÓÇ�ÇÎÒ�Æ½Ü Ã¨ÁPÏ�ÁÓÉPÅ!Â�9�Æ+27Õ�0ÅXÆ?Ä�Á�ÄXÂ�À89XÂ�ÀxÉ½Æ9Á0ÍPÏ�Á�É¨Ì¡Ñ�Å½ÂÓÇ+�¨ÆàÒ¨ÜÐÖVï�'
Notice that the final value is given as a fraction with only one decimal place.

This looks funny, since we expect the output to be something like ¬ Öï0'2Õ .
We can fix this problem by changing the very last line of the program as

follows:

¯ � ´2�?K �xw���yq¥GÑ��zyèwx�zy¬u��dbxyè} $ ��� ä§ux� $ wx��± u�y $ �0� ~&%��
�Ì½Ò�Ç¨Ä)�:��Å½Æ?Ä�Á�ÄXÂ2À<9XÂ2ÀÓÉ½Æ9Á0ÍPÏ�ÁÓÉ�ÌÿÑ�Å½ÂÓÇ+�¨ÆÐÒ�Ü ¬ �¨ÕoïèÔ�Í$�� ñèÄ�Á0Ä�Â�ÀXú
Now the program prints this message:�0ÅXÆ?Ä�Á�ÄXÂ�À89XÂ�ÀxÉ½Æ9Á0ÍPÏ�Á�É¨Ì¡Ñ�Å½ÂÓÇ+�¨ÆàÒ¨Ü ¬ Öï0'2Õ

Let’s try to make some sense of this. When used with numbers, the percent

sign
�

is the remainder operation. With strings, the percent sign is a string

formatting operator. In general, the string formatting operator is used like this:

. Ä¨ÆxÊ?!À�Â�Ä�Æ	�XÜxÄ2Ì!Ò1Ç�� � �	ñ . 9XÂ2ÀÓÉ½ÆXÜ � ú
Percent signs inside the

Ä¨ÆxÊ?!À�Â�Ä�Æ	�XÜxÄ2Ì!Ò1Ç��
mark “slots” into which the

9XÂ2ÀÓÉXÆ½Ü
are inserted. There must be exactly one slot for each value. Each of the slots

is described by a format specifier that tells Python how the value for that slot

should appear.

Returning to the example, the template contains a single specifier at the

end:
��ÕnïèÔ�Í

. The value of
Ä�Á�ÄXÂ�À

will be inserted into the template in place of the

specifier. The specifier also tells Python that
Ä¨Á0Ä�Â�À

is a floating point number

that should be rounded to two decimal places. To understand the formatting,

we need to look at the structure of the specifier.

A formatting specifier has this general form:� . Û!Ò�Ã2Ä�Å � ï . ¨Ì�Æ�Ñ�Ò¨Ü0Ò�ÁÓÇ � . Ä�Ï�½Æ	��Ñ�Å!Â�Ì �
The specifier starts with a

�
and ends with a character that indicates the data

type of the value being inserted. We will use three different format types:

decimal, float, and string. Decimal mode is used to display ints as base-10

numbers. (Python also allows ints to be printed using a number of different

bases; we will only use the normal decimal representation.) Float and string

formats are used for the corresponding data types, obviously.

The
Û!Ò�Ã2Ä�Å

and
�Ì¨ÆXÑ2Ò¨Ü2Ò�Á�Ç

portions of a specifier are optional. If present,ÛÎÒÓÃ2Ä�Å
tells how many spaces to use in displaying the value. If a value requires

more room than is given in
Û!Ò�Ã0Ä0Å

, Python will just expand the
ÛÎÒÓÃ2Ä0Å

so that

the value fits. You can use a 0
ÛÎÒÓÃ2Ä�Å

to indicate “use as much space as needed.”Ø�Ì¨ÆXÑ2Ò¨Ü2Ò�Á�Ç
is used with floating-point values to indicate the desired number of

digits after the decimal. The example specifier
�¨ÕoïèÔ�Í

tells Python to insert a

floating-point value using as much space as necessary and rounding it to two

decimal places.

The easiest way to get the hang of formatting is just to play around with

some examples in the interactive environment.

~&% ¯ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
�	��� �!��Æ¨À�À0Á��!Ü®�½Üõ¢Ï¨Á�É?Ê"Â�Ï?Å!Â�9�Æ7ÛXÁÓÇ ¬ �2Ãj���¯� ñ���ö�Ìcïu�Îõ§�uÅ�Ê�ÒxÄ0Åx�ÎõfÖ�Õ�Õ�Õ2Õ!ú�B��Æ¨À2À2ÁÈö�ÌcïÆÅ�Ê(ÒÓÄ�ÅcõlÏ¨Á�É?Ê"Â�Ï?Å!Â�9�ÆÝÂ�À�Ì�Æ�Â0Ã2ÏÈÛXÁÓÇ ¬ ÖxÕ2Õ�Õ2Õ �!��	��� �0��Å"Ò¨Ü7Ò�Ç�Äoõ°�+'�ÃoõlÛ½Â�Ü�!À2Â�Ñ�Æ2Ã¡Ò�ÇÿÂ?ÍXÒ�Æ�À0ÃÝÁ2Í?Û!Ò�Ã0Ä0Å¡'$�°� ñôþ!ú�0��Å"Ò�Ü?Ò�Ç¨Änõ þTõlÛXÂXÜ�!À2Â�Ñ�Æ2ÃàÒ1ÇÿÂ9ÍXÒ�Æ�À0Ã9Á0Í?ÛÎÒ�Ã0Ä0Å='$�
�	��� �0��Å"Ò¨Ü7Ò�Ç�Äoõ°�"Ö�Õ2ÃoõîÛ½ÂXÜ�½À�Â¨Ñ�Æ2ÃÐÒ�ÇÿÂPÍ½Ò�Æ¨À0ÃPÁ2Í?ÛÎÒÓÃ2Ä�Å¥ÖxÕ}�°� ñôþ!ú�0��Å"Ò�Ü?Ò�Ç¨Änõ þTõlÛXÂXÜ�½À�Â�Ñ�Æ2ÃàÒ1ÇÿÂ?Í½Ò�Æ¨À0ÃÝÁ0Í?ÛÎÒÓÃ2Ä0Å»ÖxÕ}�
�	��� �0��Å"Ò¨Ü Í�À2Á�Â�Äoõ��"Ö�Õnï�'�ÍoõîÅ½ÂXÜ Û!Ò�Ã2Ä�Å ÖxÕÐÂxÇXÃ��Ì¨ÆXÑ2Ò¨Ü2Ò�Á�Ç5'oïK�°� ñôÞnï�Ö�@"Ö�'2ý�Ô2ø!ú�0��Å"Ò�Ü;Í�À0Á¨Â�Äoõ Þoï�Ö�@ÎÖ�'0ýTõ Å½ÂXÜ Û!Ò�Ã2Ä�Å ÖxÕÐÂxÇXÃ��Ì¨ÆXÑ2Ò¨Ü2Ò�Á�Ç5'oïK�
�	��� �0��Å"Ò¨Ü Í�À2Á�Â�Äoõ��¨Õoï�'0ÍTõîÅ!Â�Ü ÛÎÒÓÃ2Ä0Å¡ÕÝÂxÇXÃ�¨Ì�ÆXÑ2Ò¨Ü0Ò�Á�Ç5'oï!�°� ñôÞnï�Ö�@"Ö�'2ý�Ô2ø!ú�0��Å"Ò�Ü;Í�À0Á¨Â�Äoõ�Þnï�Ö�@ÎÖ�'2ý�õîÅ!Â�Ü ÛÎÒÓÃ2Ä0ÅÐÕàÂxÇXÃ�¨Ì�ÆXÑ2Ò¨Ü0Ò�Á�Ç5'oï!�
�	��� ��×2ÁxÊ+½Â�Ì¨Æ���ÍàÂxÇXÃ��¨ÕoïèÔ0Õ2Í$�±�	ñzÞnï�Ö�@Tõ�Þnï�Ö�@Îú�`×2ÁxÊ?!Â�Ì¨ÆPÞnï�Ö�@�Õ�Õ�Õ2ÕPÂxÇXÃÝÞnï�Ö�@�Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ2Õ�Õ2Õ�Õ�Õ!ÖÓÔ�@¨Þ�@}�

A couple of points are worth noting here. If the width in the specifier is

larger than needed, the value is right-justified in the field by default. You can

left-justify the value in the field by preceding the width with a minus sign (e.g.,�+�CAnïùÞ2Í
).

The last example shows that if you print enough digits of a floating-point

number, you will almost always find a “surprise.” The computer can’t represent

3.14 exactly as a floating-point number. The closest value it can represent is ever

so slightly larger than 3.14. If not given an explicit precision, Python will print

the number out to a few decimal places. The slight extra amount shows up if

you print lots of digits. Generally, Python only displays a closely rounded version

of a float. Using explicit formatting allows you to see the full result down to the

last bit.� È�×�È�É ² i+t�tui_�Fª³ ���wm��i®ª vxr$wmtui_�
Let’s close our formatting discussion with one more example program. Given

what you have learned about floating point numbers, you might be a little un-

easy about using them to represent money.

Suppose you are writing a computer system for a bank. Your customers

would not be too happy to learn that a check went through for an amount “very

close to $107.56.” They want to know that the bank is keeping precise track of

¯ � ´2�?K �xw���yq¥GÑ��zyèwx�zy¬u��dbxyè} $ ��� ä§ux� $ wx��± u�y $ �0� ~&%�´
their money. Even though the amount of error in a given value is very small,

the small errors can be compounded when doing lots of calculations, and the

resulting error could add up to some real cash. That’s not a satisfactory way of

doing business.

A better approach would be to make sure that our program used exact values

to represent money. We can do that by keeping track of the money in cents and

using an int (or long int) to store it. We can then convert this into dollars and

cents in the output step. If
Ä�Á0Ä�Â�À

represents the value in cents, then we can get

the number of dollars by
Ä¨Á0ÄXÂ2À��ÿÖxÕ2Õ

and the cents from
Ä�Á�ÄXÂ2À��»ÖxÕ�Õ

. Both

of these are integer calculations and, hence, will give us exact results. Here is

the updated program:ó¡Ñ�Å½ÂÓÇ+�¨Æ¨ÔTï7¨Ï
ó Ú �Ì¨Á��2Ì�Â�ÊàÄ¨ÁàÑ0Â2À�Ñ�É½À�Â�Ä�Æ7Ä�Å½Æ-9XÂ2ÀÓÉXÆPÁ2ÍÿÜÓÁxÊÎÆàÑ1Å!ÂxÇ��¨ÆÝÒ�ÇàÃ¨Á�À�À2Â�ÌÎÜ
ó �0ÅÎÒ¨Üè9�Æ�ÌÎÜ0Ò�Á�ÇPÌ�Æ��Ì�ÆXÜ�ÆÓÇ�ÄÎÜªÄ0ÅXÆ?Ä�Á0Ä�Â�ÀÐÑ�ÂXÜ1ÅÿÒ�Ç Ñ�ÆÓÇ�Ä!Üæï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä���×�Å½ÂÓÇ+�¨ÆP×2Á�É�Ç¨Ä�Æ�Ì���Ì½Ò�Ç�Ä�Ì½Ò�Ç�Ä���ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�ÁÓÉ�Ç�ÄÐÁ0ÍÝÆ¨Â¨Ñ�Å Ñ�Á�Ò�ÇÝÄ2ÏCXÆnïG�í�É½Â�Ì�Ä¨Æ0Ì!Ü ßÿÒ�Ç��É�Ä�ñ���ÓÉ!Â�Ì�Ä¨Æ0ÌÎÜ¬÷���ú

Ã½ÒvÊÎÆ½Ü ß Ò1Ç	2É�ÄTñ����!Ò�ÊÎÆXÜæ÷Y��ú
Ç"Ò2Ñ�ÎXÆ�ÀXÜ;ß¡Ò1Ç	2É�ÄTñ��:Ð½Ò�Ñ�Î�Æ¨À�Üæ÷Y��ú½ÆÓÇ�Ç"Ò�Æ½Ü;ß¡Ò1Ç	2É�ÄTñ���Ø¨Æ�Ç�ÇÎÒ�ÆXÜæ÷Y��ú
Ä�Á�ÄXÂ�ÀÈß5í�É!Â�Ì�Ä�Æ�ÌÎÜ<;9Ô�'?á9Ã½ÒvÊÎÆ½Ü6;àÖ�ÕPá?Ç"Ò�Ñ�ÎXÆ�ÀXÜ-;-'Pá�½ÆÓÇ�ÇÎÒ�Æ½Ü�Ì½Ò�Ç�Ä�Ì½Ò�Ç�Ä��:�0ÅXÆ?Ä�Á�ÄXÂ�À89XÂ�ÀxÉ½Æ9Á0ÍPÏ�Á�É¨Ì¡Ñ�Å½ÂÓÇ+�¨ÆàÒ¨Ü ¬ ��Ãnïq�¨Õ�Ô0Ã��¯´� ñ`Ä¨Á0Ä�Â�À	�½ÖxÕ2ÕTõ Ä¨Á0Ä�Â�ÀK�ÎÖxÕ2Õ!ú

Ê"Â¨Ò�Çoñ1ú
I have split the final

�Ì½Ò�Ç¨Ä
statement across two lines. Normally a statement

ends at the end of the line. Sometimes it is nicer to break a long statement

into smaller pieces. A backslash at the end of a line is one way to indicate that

a statement is continued on the following line. Notice that the backslash must

appear outside of the quotes; otherwise, it would be considered part of the string

literal.

The string formatting in the print statement contains two slots, one for dol-

lars as an int and one for cents as an int. This example also illustrates one addi-

tional twist on format specifiers. The value of cents is printed with the specifier

~&%�¹ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
�¨Õ�Ô0Ã

. The zero in front of the width tells Python to pad the field (if necessary)

with zeroes instead of spaces. This ensures that a value like 10 dollars and 5

cents prints as ¬ ÖxÕoïðÕ?' rather than ¬ Ö�Õnï '
.

By the way, string formatting would also be useful in the
Ã¨Â�Ä¨ÆXÑ�ÁÓÇ+9¨Æ0Ì�Ä�Ôoï>�Ï

program. You might want to try redoing that program using string formatting in

place of
ÜxÄ�Ì�ñ1ú

and concatenation.

µ=^�ê ð§W�j RF�¢g1�GS¬RT[�[XWpe��

I began the chapter with a reference to word-processing as an application of

the string data type. One critical feature of any word processing program is the

ability to store and retrieve documents as files on disk. In this section, we’ll take

a look at file input and output, which, as it turns out, is really just another form

of string processing.� È5µ�ÈSÊ ¶ r_ÙXtGlW·�¸3l�w�i Ø t��0l�w���s
Conceptually, a file is a sequence of data that is stored in secondary memory

(usually on a disk drive). Files can contain any data type, but the easiest files to

work with are those that contain text. Files of text have the advantage that they

can be read and understood by humans, and they are easily created and edited

using general-purpose text editors and word processors. In Python, text files can

be very flexible, since it is easy to convert back and forth between strings and

other types.

You can think of a text file as a (possibly long) string that happens to be

stored on disk. Of course, a typical file generally contains more than a single

line of text. A special character or sequence of characters is used to mark the end

of each line. There are numerous conventions for end-of-line markers. Python

uses a single character called newline as a marker.

You can think of newline as the character produced when you press theÓå/ Ç¨Ä�Æ0Ì � key on your keyboard. Although a newline is a single character, it is

represented in Python (and many other computer languages) using the special

notation
�*¹�Ç��

. Other special characters are represented using a similar notation

(e.g.,
�*¹�Ä��

for Ó ��ÂÓË �).

Let’s take a look at a concrete example. Suppose you type the following lines

into a text editor exactly as shown here:�XÆ�À�À0Á

¯ � ¹2�?ó $ ± {G�!}�� ³ {ô��� $ ��� ~&%�¿
"XÁ�ÌXÀ�Ã
ü Á2Á2Ã�Ë�Ï�Æ?Þ¨Ô
When stored to a file, you get this sequence of characters.�XÆ�À�À0Á�´ÓÇ	"XÁ�ÌXÀ0Ã�´ÓÇº´ÓÇ ü Á�Á0Ã�Ë�Ï¨Æ Þ¨ÔP´ÓÇ
Notice that the blank line becomes a bare newline in the resulting file/string.

By the way, by embedding newline characters into output strings, you can

produce multiple lines of output with a single
¨Ì!Ò1Ç�Ä

statement. Here is the

example from above printed interactively:�	��� �Ì½Ò�Ç�Ä��!�XÆ�À�À0Á�´ÓÇ	"XÁ�ÌXÀ0Ã�´ÓÇº´ÓÇ ü Á�Á0Ã�Ë�Ï¨Æ Þ¨ÔP´ÓÇx��XÆ�À�À0Á"XÁ�ÌXÀ�Ã
ü Á2Á2Ã�Ë�Ï�Æ?Þ¨Ô
�	���
If you simply ask Python to evaluate a string containing newline characters, you

will just get the embedded newline representation back again.�	��� �&�XÆ¨À2À2ÁC´ÓÇ?"�Á0Ì�À0Ã�´xÇ<´xÇ ü Á2Á2ÃÓË�Ï¨Æ Þ¨ÔP´ÓÇ���B��Æ¨À2À2Á�´xÇ?"�Á0ÌXÀ�Ã�´xÇ<´ÓÇ ü Á2Á2Ã�Ë¨Ï�Æ Þ�ÔC´xÇ��
It’s only when a string is printed that the special characters affect how the string

is displayed.� È5µ�È�Ç ¢ l�Ù�i����0vx�	i�s�s�l�wm�
The exact details of file-processing differ substantially among programming lan-

guages, but virtually all languages share certain underlying file manipulation

concepts. First, we need some way to associate a file on disk with a variable in

a program. This process is called opening a file. Once a file has been opened, it

is manipulated through the variable we assign to it.

Second, we need a set of operations that can manipulate the file variable.

At the very least, this includes operations that allow us to read the information

from a file and write new information to a file. Typically, the reading and writing

operations for text files are similar to the operations for text-based, interactive

input and output.

~&%�â s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
Finally, when we are finished with a file, it is closed. Closing a file makes

sure that any bookkeeping that was necessary to maintain the correspondence

between the file on disk and the file variable is finished up. For example, if you

write information to a file variable, the changes might not show up on the disk

version until the file has been closed.

This idea of opening and closing files is closely related to how you might

work with files in an application program like a word processor. However, the

concepts are not exactly the same. When you open a file in a program like

Microsoft Word, the file is actually read from the disk and stored into RAM. In

programming terminology, the file is opened for reading and the contents of the

file are then read into memory via file reading operations. At this point, the file

is closed (again in the programming sense). As you “edit the file,” you are really

making changes to data in memory, not the file itself. The changes will not show

up in the file on the disk until you tell the application to “save” it.

Saving a file also involves a multi-step process. First, the original file on the

disk is reopened, this time in a mode that allows it to store information—the

file on disk is opened for writing. Doing so actually erases the old contents of

the file. File writing operations are then used to copy the current contents of

the in-memory version into the new file on the disk. From your perspective, it

appears that you have edited an existing file. From the program’s perspective,

you have actually opened a file, read its contents into memory, closed the file,

created a new file (having the same name), written the (modified) contents of

memory into the new file, and closed the new file.

Working with text files is easy in Python. The first step is to associate a file

with a variable using the
Á�½Æ�Ç

function.

. ÍXÒ0À0ÆC9XÂ�Ì � ßàÁ�½ÆÓÇnñ . Ç!Â1ÊÎÆ � õ . ÊÎÁ0Ã¨Æ � ú
Here

Ç!Â1ÊÎÆ
is a string that provides the name of the file on the disk. The

ÊÎÁ0Ã¨Æ
parameter is either the string

��Ì$�
or
�zÛx�

depending on whether we intend to

read from the file or write to the file.

For example, to open a file on our disk called “numbers.dat” for reading, we

could use a statement like the following:

Ò�Ç�Í½Ò�À2Æ?ßÐÁ�XÆ�Çoñ��zÇ2É0Ê¨Ë½Æ0Ì!ÜæïpÃ�Â�Ä$�ÎõY��Ì���ú
Now we can use the variable

Ò1ÇXÍXÒ0À2Æ
to read the contents of

Ç�É0Ê¨Ë½Æ�ÌÎÜæïpÃ�Â�Ä
from

the disk.

Python provides three related operations for reading information from a file:

¯ � ¹2�?ó $ ± {G�!}�� ³ {ô��� $ ��� ~&%�é
Ó Í½Ò�À2ÆC9�Â�Ì � ï�Ì�Æ�Â0Ã�ñ�ú Returns the entire remaining contents of the file as a single

(potentially large, multi-line) string.

Ó Í½Ò�À2ÆC9�Â�Ì � ï�Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú Returns the next line of the file. That is all text up to

and including the next newline character.

Ó Í½Ò�À2ÆC9�Â�Ì � ï�Ì�Æ�Â0Ã�À¨Ò�ÇXÆ½Ü�ñ�ú Returns a list of the remaining lines in the file. Each

list item is a single line including the newline character at the end.

Here’s an example program that prints the contents of a file to the screen

using the
Ì�Æ�Â0Ã

operation:

ó��Ì½Ò�Ç¨Ä¨Í½Ò�À2Æoï7�Ï
ó Ø�Ì½Ò�Ç�Ä!ÜÈÂPÍ½Ò�À2Æ?Ä�Á?Ä�Å½Æ¡Ü0ÑÓÌ�Æ2Æ�Çhï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Í�Ç½Â�ÊÎÆ7ßÝÌ�Â�Û�Ì�Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÍXÒ0À2ÆÓÇ!Â1ÊÎÆn÷ü��úÒ�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñôÍ�Ç½Â�Ê!ÆTõC�ùÌ���ú
Ã�Â�ÄXÂ?ß¡Ò�Ç�Í½Ò�À2Ænï�Ì�Æ�Â0Ã�ñ�ú�Ì½Ò�Ç�ÄPÃ�Â�Ä�Â

Ê"Â¨Ò�Çoñ1ú
The program first prompts the user for a file name and then opens the file for

reading through the variable
Ò�Ç�Í½Ò�À2Æ

. You could use any name for the variable;

I used
Ò1ÇXÍ½Ò�À2Æ

to emphasize that the file was being used for input. The entire

contents of the file is then read as one large string and stored in the variableÃ�Â�ÄXÂ
. Printing

Ã�Â�ÄXÂ
causes the contents to be displayed.

The
Ì¨Æ¨Â0Ã¨À�Ò1Ç½Æ

operation can be used to read the next line from a file. Suc-

cessive calls to
Ì¨Æ¨Â0Ã¨À�Ò1Ç½Æ

get successive lines from the file. This is analogous toÌXÂÓÛ Ò1Ç	2É�Ä
, which reads characters interactively until the user hits the Óå/ Ç�Ä¨Æ0Ì �

key; each call to
ÌXÂÓÛ Ò1Ç	2É�Ä

gets another line from the user. One thing to keep

in mind, however, is that the string returned by
Ì�Æ�Â0Ã�À¨Ò�ÇXÆ

will always end with

a newline character, whereas
Ì�Â�Û Ò�Ç��É�Ä

discards the newline character.

As a quick example, this fragment of code prints out the first five lines of a

file:

Ò�Ç�Í½Ò�À2Æ?ßÐÁ�XÆ�Çoñ�Ü�Á�ÊÎÆ�,!Ò0À0ÆTõ®�ðÌU�vú
Í¨Á�ÌÿÒ9Ò�ÇàÌXÂxÇ���Ææñ!'Xú¬÷

À�Ò1Ç½ÆPß¡Ò�Ç�Í½Ò�À2Ænï�Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú�Ì½Ò�Ç�ÄÝÀ�Ò�ÇXÆ û ÷��!ÖG

~1~!% s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
Notice the use of slicing to strip off the newline character at the end of the line.

Since
�Ì½Ò�Ç�Ä

automatically jumps to the next line (i.e., it outputs a newline),

printing with the explicit newline at the end would put an extra blank line of

output between the lines of the file.

One way to loop through the entire contents of a file is to read in all of the

file using
Ì�Æ¨Â�Ã�À¨Ò�Ç½ÆXÜ

and then loop through the resulting list.

Ò�Ç�Í½Ò�À2Æ?ßÐÁ�XÆ�Çoñ�Ü�Á�ÊÎÆ�,!Ò0À0ÆTõ®�ðÌU�vú
Í¨Á�ÌàÀ�Ò1Ç½ÆàÒ�Ç Ò1ÇXÍXÒ0À2ÆoïpÌ¨Æ¨Â0Ã¨À�Ò1Ç½Æ½Ü(ñ1ú÷

ó��Ì¨ÁXÑ�ÆXÜ�Ü Ä�Å½ÆÝÀ¨Ò�Ç½ÆÈÅXÆ0Ì¨Æ
Ò�Ç�Í½Ò�À2Ænï`Ñ0À0Á½Ü�Æ¬ñ1ú
Of course, a potential drawback of this approach is the fact that the file may be

very large, and reading it into a list all at once may take up too much RAM.

Fortunately, there is a simple alternative. Python treats the file itself as a

sequence of lines. So looping through the lines of a file can be done directly like

this:

Ò�Ç�Í½Ò�À2Æ?ßÐÁ�XÆ�Çoñ�Ü�Á�ÊÎÆ�,!Ò0À0ÆTõ®�ðÌU�vú
Í¨Á�ÌàÀ�Ò1Ç½ÆàÒ�Ç Ò1ÇXÍXÒ0À2Æo÷

ó��Ì¨ÁXÑ�ÆXÜ�Ü Ä�Å½ÆÝÀ¨Ò�Ç½ÆÈÅXÆ0Ì¨Æ
Ò�Ç�Í½Ò�À2Ænï`Ñ0À0Á½Ü�Æ¬ñ1ú
This is a particularly handy way to process the lines of a file one at a time.

Opening a file for writing prepares that file to receive data. If no file with

the given name exists, a new file will be created. A word of warning: if a file

with the given name does exist, Python will delete it and create a new, empty

file. When writing to a file, make sure you do not clobber any files you will need

later! Here is an example of opening a file for output:

Á�É¨Ä¨ÍXÒ0À2Æ7ßÝÁ�½ÆÓÇnñ��`Ê½Ï�Ã�Â�ÄXÂoïùÁ�É¨Ä��Îõü�zÛx��ú
We can put data into a file, using the

Û�Ì!ÒxÄ�Æ
operation.

. ÍXÒ0À0Æ?��9�Â�Ì � ï�Û�Ì!ÒxÄ�Ææñ . Ü�Ä�Ì!Ò1Ç�� � ú
This is similar to

�Ì½Ò�Ç�Ä
, except that

Û¨Ì½ÒÓÄ�Æ
is a little less flexible. The

Û�Ì!ÒÓÄ¨Æ
operation takes a single parameter, which must be a string, and writes that

string to the file. If you want to start a new line in the file, you must explicitly

provide the newline character.

Here’s a silly example that writes two lines to a file:

¯ � ¹2�?ó $ ± {G�!}�� ³ {ô��� $ ��� ~1~�~

Á�É¨Ä¨ÍXÒ0À2Æ7ßÝÁ�½ÆÓÇnñ���Æ��¨Â�Ê?!À2ÆoïðÁÓÉ�Ä��!õ®�ùÛ���ú
Ñ�ÁÓÉ�Ç¨Ä9ß»Ö
Á�É¨Ä¨ÍXÒ0À2Æoï�Û�Ì!ÒÓÄ¨Ææñ��:�0ÅÎÒ¨Ü;Ò¨Ü;Ä�Å½ÆPÍXÒÓÌÎÜ�ÄÐÀ�Ò1Ç½ÆC´ÓÇ��Óú
Ñ�ÁÓÉ�Ç¨Ä9ßÿÑ�Á�É2Ç�Ä9á»Ö
Á�É¨Ä¨ÍXÒ0À2Æoï�Û�Ì!ÒÓÄ¨Ææñ��:�0ÅÎÒ¨Ü;Ò¨Ü7À¨Ò�ÇXÆ Ç�É�Ê�Ë½Æ�Ì���Ã��¯�	ñvÑ�ÁÓÉ�Ç¨Ä"ú�ú
Á�É¨Ä¨ÍXÒ0À2ÆoïôÑ�À2Á½ÜÓÆæñ�ú
Notice the use of string formatting to write out the value of the variable

Ñ�Á�É2Ç�Ä
.

If you want to output something that is not a string, you must first convert it;

the string-formatting operator is often a handy way to do this. This code will

produce a file on disk called “example.out” containing the following two lines:�0ÅÎÒ¨ÜPÒ�Ü;Ä0Å½ÆPÍXÒÓÌ!ÜxÄÐÀ¨Ò�Ç½Æ�0ÅÎÒ¨ÜPÒ�Ü7À�Ò�ÇXÆ Ç�É�Ê�ËXÆ0ÌàÔ
If “example.out” existed before executing this fragment, its old contents would

be destroyed.� È5µ�È�É �����*��Í_Ù�i6���Bv_���B���»§ ² �mtG�º��¼`s�i_�ëw3�*�îims
To see how all these pieces fit together, let’s redo the username generation pro-

gram. Our previous version created usernames interactively by having the user

type in his or her name. If we were setting up accounts for a large number of

users, the process would probably not be done interactively, but in batch mode.

In batch processing, program input and output is done through files.

Our new program is designed to process a file of names. Each line of the

input file will contain the first and last names of a new user separated by one

or more spaces. The program produces an output file containing a line for each

generated username.

ó7É(ÜÓÆ0Ì�Í½Ò0À0Ænï>�Ï
ó Ø2Ì�Á��0ÌXÂ1ÊÐÄ�Á¡ÑxÌ�Æ¨Â�Ä�Æ9Â?ÍXÒ0À0Æ9Á2Í7É(ÜÓÆ0Ì�Ç!Â�Ê!Æ½ÜÈÒ�Ç9Ë!Â�Ä!Ñ1Å?ÊÎÁ2Ã�Ænï
Ò�Ê?½Á�Ì�ÄÿÜ�Ä�Ì!Ò1Ç��
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê ÑÓÌ¨Æ¨Â�Ä�Æ½Ü Â9ÍXÒ0À0ÆPÁ2Í?É(ÜÓÆ0Ì�Ç!Â�Ê!Æ½Ü Í2Ì�Á�Ê Â*��Ì½Ò�Ç�Ä��vÍ½Ò�À2Æ9Á0Í7Ç!Â�Ê!Æ½Ü¬ïG�

ó��¨Æ�Ä9Ä0Å½ÆPÍXÒ0À0ÆÈÇ!Â�Ê!Æ½Ü

~1~�r s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
Ò�Ç�Í½Ò0À0ÆCÐ�Â�ÊÎÆÈßPÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ��!"0Å!Â�Ä7Í½Ò�À2ÆÝÂ�Ì�Æ?Ä0ÅXÆ Ç!Â1ÊÎÆXÜPÒ�Ç_2L�Óú
Á�É¨Ä¨Í½Ò�À2Æ�ÐXÂ�Ê!Æ7ßPÌ�Â�ÛmÌ¨Ò�Ç��É�Ä�ñ��&"2Å!Â�Ä?ÍXÒ0À0ÆàÜ1ÅXÁ�É!À�Ã?Ä0ÅXÆÈÉ(ÜÓÆ0Ì0Ç½Â�Ê!Æ½Üè��ÁàÒ�Ç_2L�Óú
óÝÁ�XÆ�ÇÐÄ0ÅXÆPÍ½Ò�À2Æ½Ü
Ò�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñvÒ�Ç�Í½Ò�À2ÆCÐ�Â�Ê!ÆTõ��ðÌ���ú
Á�É¨Ä¨Í½Ò�À2Æ?ßÝÁ�½ÆÓÇnñzÁÓÉ�Ä�Í½Ò0À0ÆCÐ�Â�ÊÎÆ�õ®�ùÛ���ú
ó��Ì¨ÁXÑ�ÆXÜ�Ü Æ�Â�Ñ1ÅÿÀ�Ò�ÇXÆPÁ2Í9Ä�Å½ÆàÒ�Ç��É¨Ä9Í½Ò�À2Æ
Í¨Á�ÌàÀ�Ò�ÇXÆÐÒ�Ç»Ò1ÇXÍ½Ò�À2Æo÷

ó��¨Æ0Ä9Ä�Å½ÆPÍXÒÓÌÎÜ�ÄÐÂÓÇ�ÃÐÀ�Â�ÜxÄ?Ç!Â1ÊÎÆXÜ;Í2Ì¨ÁxÊ À�Ò1Ç½Æ
Í½ÒÓÌ!ÜxÄoõ À�Â�ÜxÄÝßÿÜxÄ2Ì!Ò1Ç���ïôÜG½À�ÒÓÄ�ñ�À¨Ò�Ç½Æ½ú
ó¡ÑÓÌ�Æ�Â�Ä¨Æ7Ä0ÅXÆÈÉ(Ü�Æ�Ì0Ç½Â�ÊÎÆ
É�Ç!Â1ÊÎÆ?ß Ü�Ä�Ì!Ò1Ç��nïèÀ2Á�ÛXÆ�ÌTñôÍXÒÓÌ!ÜxÄ û Õ�
2á�À0ÂXÜxÄ û ÷ùþ�
½ú
ó?Û¨Ì!ÒxÄ�ÆàÒxÄ9Ä�Á?Ä0ÅXÆ9Á�É¨ÄC�É¨Ä9Í½Ò�À2Æ
Á�É�Ä�Í½Ò�À2Ænï|Û¨Ì½ÒÓÄ�Æ¬ñðÉ2Ç!Â�Ê!Æ2á}�3´ÓÇ���ú

ó¡Ñ0À0Á½Ü�ÆÈËXÁ0Ä�ÅÐÍ½Ò�À2Æ½Ü
Ò�Ç�Í½Ò0À0Ænï`Ñ0À2ÁXÜ�Æ¬ñ1ú
Á�É¨Ä¨Í½Ò�À2ÆoïôÑ0À0Á½ÜÓÆæñ1ú
�Ì½Ò�Ç�Ä��zÙ(ÜÓÆ0Ì�Ç!Â�Ê!Æ½Ü�Å!Â�9¨ÆÈË½Æ2Æ�ÇÝÛ¨Ì½ÒÓÄ2Ä�Æ�ÇPÄ�Á*�Îõ Á�É¨Ä¨ÍXÒ0À2Æ�ÐXÂ1ÊÎÆ

Ê"Â¨Ò�Çoñ1ú
There are a few things worth noticing in this program. I have two files open

at the same time, one for input (
Ò�ÇXÍXÒ0À0Æ

) and one for output (
ÁÓÉ�Ä�Í½Ò0À0Æ

). It’s not

unusual for a program to operate on several files simultaneously. Also, when

creating the username, I used the
À0Á�Û�Æ0Ì

function from the
ÜxÄ2Ì!Ò�Ç+�

library. This

ensures that the username is all lower case, even if the input names are mixed

case. Finally, you should also notice the line that writes the username to the file.

Á�É�Ä�Í½Ò�À2Ænï|Û¨Ì½ÒÓÄ�Æ¬ñðÉ2Ç!Â�Ê!Æ2á}�3´ÓÇ���ú
Concatenating the newline character is necessary to indicate the end of line.

Without this, all of the usernames would run together in one giant line.� È5µ�È � ª vx�Yl�wm��Úgt�t��B�3��tGlnvxw©¨½�S¾I¿!im��tus
Have you noticed anything strange about the syntax of the file processing exam-

ples? To apply an operation to a file, we use dot notation. For example, to read

¯ � ¿0�0s(t�uxw�y|{�}3b¨������u�}�ç ~1~��

from
Ò1ÇXÍ½Ò�À2Æ

we type
Ò�Ç�Í½Ò0À0Ænï�Ì�Æ¨Â�Ã�ñ�ú

. This is different from the normal function

application that we have used before. After all, to take the absolute value of a

variable
�
, we type

ÂÓË(Ü(ñë�!ú
, not

�nïèÂÓË"Ü�ñ�ú
.

In Python, a file is an example of an object. Objects combine both data and

operations together. An object’s operations, called methods, are invoked using

the dot notation. That’s why the syntax looks a bit different.

By the way, strings and lists are also objects in Python. In modern Python,

you can use string methods in place of the string library functions that we dis-

cussed earlier. For example,Ê½Ï+Å�Ä2Ì!Ò�Ç+��ïôÜG!À¨ÒÓÄ�ñ1ú
is equivalent toÜxÄ2Ì!Ò1Ç���ïôÜG½À�ÒÓÄ�ñpÊXÏ�Å�Ä2Ì!Ò1Ç��Îú

We’ll discuss list methods in detail in Chapter 11. Just to whet your appetite,

the
Â��½ÆÓÇXÃ

method can be used to add an item at the end of a list. This is often

used to build a list one item at a time. Here’s a fragment of code that creates a

list of the squares of the first 100 natural numbers:Ü�í�É!Â�Ì�Æ½Ü ß û

Í¨Á�Ì �¡Ò�ÇàÌXÂxÇ���Ææñ�Ö(õ�Ö�ÕÎÖ2ú÷

Ü�í�É!Â�Ì¨Æ½Ü¬ïèÂ��½ÆÓÇXÃ�ñÒ�m;��Îú
In this example we start with an empty list (

û

) and each number from 1 to 100

is squared and appended to the list. When the loop is done,
Ü�í�É!Â�Ì�Æ½Ü

will be the

list:
û Ö(õÆ@oõ ý�õÐï�ï�ï�õªÖxÕ2Õ�Õ�ÕC

.

If this object stuff sounds confusing right now, don’t worry; Chapter 5 is all

about the power of objects (and pretty pictures, too).

µ=^IH �b�i�¤nU�Rcg © ¦§�¥� ing1í

This chapter has covered important elements of the Python sequence types:

strings, lists, and files. Here is a summary of the highlights:

\ Strings are sequences of characters. String literals can be delimited with

either single or double quotes.

\ Strings and lists can be manipulated with the built-in sequence opera-

tions for concatenation (
á
), repetition (

;
), indexing (

û

), slicing (

û ÷B

),

and length (
À2ÆÓÇnñ�ú

). A
Í�Á0Ì

loop can be used to iterate through the charac-

ters of a string, items in a list, or lines of a file.

~1~ ¯ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
\ One way of converting numeric information into string information is to

use a string or a list as a lookup table.

\ Lists are more general than strings.

– Strings are always sequences of characters, whereas lists can contain

values of any type.

– Lists are mutable, which means that items in a list can be modified

by assigning new values.

\ Strings are represented in the computer as numeric codes. ASCII and Uni-

code are compatible standards that are used for specifying the correspon-

dence between characters and the underlying codes. Python provides theÁ0Ì¨Ã
and

Ñ�Å�Ì
functions for translating between ASCII codes and characters.

\ Python has a string library that can be imported to provide an extended

set of useful string manipulation functions.

\ The process of encoding data to keep it private is called encryption. There

are two different kinds of encryption systems: private key and public key.

\ Program input and output often involve string processing. Python pro-

vides numerous operators for converting back and forth between numbers

and strings. The string formatting operator (
�
) is particularly useful for

producing nicely formatted output.

\ Text files are multi-line strings stored in secondary memory. A file may

be opened for reading or writing. When opened for writing, the existing

contents of the file are erased. Python provides three file reading opera-

tions:
Ì�Æ�Â0Ãæñ1ú

,
Ì�Æ¨Â�Ã�À¨Ò�Ç½Æ¬ñ1ú

and
Ì�Æ�Â0Ã�À¨Ò�ÇXÆ½Ü�ñ�ú

. It is also possible to iterate

through the lines of a file with a
Í¨Á�Ì

loop. Data is written to a file using aÛ¨Ì!ÒxÄ�Æ¬ñ1ú
operation. When processing is finished, a file should be closed.

\ Files, strings, and lists are examples of Python objects that combine data

and operations (called methods). Methods are applied to objects using dot

notation. String methods can be used in place of functions from the string

library. One particularly useful list method is
Â�	XÆ�Ç�Ã�ñ1ú

, which adds an

item to the end of a list.

¯ � â2�+����{1} ³�$ ��{ô� ~1~�´
µ=^I[egfTRcg1SæW�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. A Python string literal is always enclosed in double quotes.

2. The last character of a string
Ü

is at position
À2ÆÓÇnñvÜ¨ú��½Ö

.

3. Using
Ò1Ç	2É�Ä

is the best way to get string data from the user.

4. In Python
��@$�fá)�u'*�

equals
��@?'*�

.

5. Python lists are mutable, but strings are not.

6. ASCII is a standard for representing characters using numeric codes.

7. The
ÜG½À�ÒxÄ

function breaks a string into a list of substrings, and ï ÁXÒ�Ç does

the opposite.

8. A substitution cipher is a good way to keep sensitive information secure.

9. Python uses the percent sign as a string-formatting operator.

10. The process of associating a file with a variable in a program is called

“reading” the file.

� |��Q�!�����X}1�j�?������}
1. Accessing a single character out of a string is called:

a) slicing b) concatenation c) assignment d) indexing

2. Which of the following is the same as
Ü û Õo÷��½Ö�

?

a)
Ü û �!Ö�

b)
Ü û ÷B

c)
Ü û ÷ðÀ2ÆÓÇnñ�Ü�ú��½Ö�

d)
Ü û Õn÷ðÀ2ÆÓÇnñ�Ü�ú�

3. What function gives the ASCII value of a character?

a)
Á0Ì�Ã

b)
ÂXÜ0Ñ�Ò2Ò

c)
Ñ�Å�Ì

d)
Æ�9XÂ�À

4. Which of the following can not be used to convert a string of digits into a

number?

a)
Ò�Ç¨Ä

b)
Í�À0Á¨Â�Ä

c)
ÜxÄ�Ì

d)
ÆC9�Â�À

~1~�¹ s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
5. A successor to ASCII that includes characters from all written languages is

a) TELLY b) ASCII++ c) Unicode d) ISO

6. Which string library function converts all the characters of a string to upper

case?

a)
Ñ0Â�"ÒÓÄ�Â�À¨Ò�D¨Æ

b)
Ñ0Â�¨Û�Á0Ì¨Ã½Ü

c)
É�	½Æ�Ì!Ñ�ÂXÜ�Æ

d)
É�	XÆ0Ì

7. Which of the following is not a legal format specifier?

a)
�¨Þ0Í

b)
�¨Þ�À

c)
�+��AoïðÞ0Í

d)
�¨Õ?'�Ã

8. Which of the following is not a file reading method in Python?

a)
Ì�Æ�Â0Ã

b)
Ì¨Æ¨Â�Ã�À�Ò1Ç½Æ

c)
Ì¨Æ¨Â�Ã�Â�À2À

d)
Ì�Æ�Â0Ã�À¨Ò�ÇXÆ½Ü

9. The term for a program that does its I/O to files is

a) file-oriented b) multi-line c) batch d) lame

10. A function that “lives” in an object is called a(n)

a) method b) intern c) module d) library

� ���!��|?�&�:���m�
1. Given the initial statements:

Ò�Ê+XÁ0Ì2ÄÿÜxÄ2Ì!Ò�Ç+�
Ü�Ö ß��ÓÜu!Â�Ê{�
Ü�Ô?ß��zÇÎÒ �u�
Show the result of evaluating each of the following string expressions.

(a)
�:��Å½Æ�À0Ç"Ò���Å�Ä!Ü Û2ÅXÁ¡Ü�Â�Ïoõ§�ªáÿÜ�Ô

(b)
Þ¡;ÝÜ�Ö áàÔ5;ÐÜ�Ô

(c)
Ü�Ö û ÖG

(d)
Ü�Ö û ÖV÷ðÞ�

(e)
Ü�Ö û Ô�
9áÿÜ�Ô û ÷èÔ�

(f)
Ü�Ö á Ü�Ô û �½Ö�

(g)
ÜxÄ2Ì!Ò1Ç���ï É	�½Æ0Ì�ñ�Ü¨Ö2ú

(h)
ÜxÄ2Ì!Ò1Ç���ïðÀ ï É(ÜxÄ�ñ�Ü�Ä�Ì!Ò1Ç��nï|É	�½Æ�Ì�ñvÜ�Ô½ú(õ�@!ú�;?Þ

¯ � â2�+����{1} ³�$ ��{ô� ~1~�¿

2. Given the same initial statements as in the previous problem, show a

Python expression that could construct each of the following results by

performing string operations on
Ü�Ö

and
Ü�Ô

.

(a)
�:Ð�¢��

(b)
�zÇÎÒ �`ÜG!Â1Ê�ÇÎÒ �u�

(c)
�GÅ�!Â1Ê¡Ð!Ò � Å�½Â�Ê¡Ð½Ò � Å�!Â1Ê(Ð!Ò{�u�

(d)
�ÓÜu!Â1Ê �

(e)
û �xÜGx�Îõ��èÊ �:

(f)
�ÓÜu0Ê{�

3. Show the output that would be generated by each of the following pro-

gram fragments:

(a)
Í¨Á�ÌÿÑ�Å Ò1Ç ��Â�Â�Ì¨Ã�9�Â�ÌCÎx�(÷¨Ì!Ò1Ç�ÄÿÑ�Å

(b)
Í¨Á�ÌPÛ Ò�Ç»ÜxÄ2Ì!Ò1Ç���ïôÜG½À�ÒÓÄ�ñ��!Ð�Á�ÛÝÒ�Ü;Ä0Å½Æ7Û!Ò�Ç¨Ä�Æ0Ì9Á2ÍÝÁ�É¨ÌÝÃ½Ò�Ü2Ñ�ÁÓÇ�Ä¨Æ�Ç�Ä�ï�ï2ïG��ú÷¨Ì!Ò1Ç�ÄPÛ

(c)
Í¨Á�ÌPÛ Ò�Ç»ÜxÄ2Ì!Ò1Ç���ïôÜG½À�ÒÓÄ�ñ��zöÎÒ¨Ü2Ü2Ò�Ü�Ü2ÒG	!Ò3�!õ��xÒ���ú¬÷¨Ì!Ò1Ç�ÄPÛ�õ

(d)
ÊVÜ��9ß��	�
Í¨Á0Ì Ü9Ò1Ç»ÜxÄ�Ì½Ò�Ç+��ïzÜu!À¨ÒÓÄTñ��ÓÜÓÆXÑÓÌ¨Æ0Ä$�Îõ��vÆ*�Óú¬÷

Ê�Ü��9ßÈÊVÜ��Pá Ü�Ì!Ò1Ç�ÄÈÊ�Ü��
(e)

ÊVÜ��9ß��	�
Í¨Á0ÌÿÑ1Å Ò�Ç½�ÓÜÓÆXÑxÌ�Æ0Ä$�(÷

Ê�Ü��9ßÈÊVÜ��PáÿÑ�Å¨ÌTñzÁ�Ì¨ÃæñvÑ�Å(úxáÎÖ2ú�Ì!Ò1Ç�ÄÈÊ�Ü��
4. Show the string that would result from each of the following string for-

matting operations. If the operation is not legal, explain why.

(a)
�:�¨Á�Á�Î"ÜÈÀ¨Ò�ÎXÆ��½Ü7ÂÓÇ�Ã��!Ü Í¨Á�Ì?Ë�Ì¨Æ¨Â�Î¨Í�Â�ÜxÄ��±�	ñ��ÓÜu!Â1Ê �Îõ���ÆC�	�!Üm��ú

(b)
�:��Å½Æ�Ì�ÆÐÒ�Ü��2Ã��!Ü®�2Ã��!Ü��¯� ñ1Ö�õ��ÓÜG½Â�Ê{�Îõ°@Tõ8��Ï�ÁÓÉ��Óú

(c)
�!��Æ¨À2À2Á��½Ü��¯�	ñ��uÅÓÉ(Ü�ÂÓÇx�Îõ��v×�Á�Ê+�É¨Ä�Æ�ÛXÆ¨À2À*�Óú

(d)
�4��ÕnïðÔ0Í���ÕnïèÔ�Í$��	ñzÔoïðÞ�õ ÔoïùÞ�@�ø	A!ú

(e)
�4��þnï0'0Í���þnï�'�Í$��	ñzÔoïðÞ�õ ÔoïùÞ�@�ø	A!ú

~1~�â s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
(f)

�:�½Ò�Ê!ÆÝÀ2Æ2Í0Ä��¨Õ�Ô0Ãn÷q�¨Õ	'oïðÔ0Í$�±� ñ�Ö(õ Þ�þnïùÞ�þC@Îú
(g)

�4��Þ2Ã��¯� ñ���ÖG@$�Óú
5. Explain why public key encryption is more useful for securing communi-

cations on the Internet than private (shared) key encryption.

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. The decoder program

Ç2É0Ê�ËXÆ0Ì!Ü�Ô�Ä¨Æ��0Äcï7¨Ï
uses a string variable as an accu-

mulator for the output. Because strings are immutable, this is somewhat

inefficient. The statement

ÊÎÆ½Ü2Ü�Â��¨Æ?ßÈÊÎÆXÜ�Ü�ÂC�¨ÆÈáÿÑ�Å�Ì�ñ�Â�Ü2Ñ�Ò2Ò�Ð�É0Êú
essentially creates a complete copy of the message so far and tacks one

more character on the end.

One way to avoid recopying the message over and over again is to use a

list. The message can be accumulated as a list of characters where each

new character is
Â�	XÆ�Ç�Ã

ed to the end of the existing list. The message can

then be formed by ï Á�Ò�Ç ing the characters in the list, using an empty string

between the characters.

ÜxÄ�Ì½Ò�Ç+��ï ï ÁXÒ1ÇnñpÊ�Ü��C�!Ò¨Ü�Änõ��	��ú
Use this approach to redo the decoder program.

2. As discussed in the chapter, string formatting could be used to simplify theÃ�Â�Ä¨ÆXÑ�Á�Ç+9¨Æ0Ì2ÄXÔoï>�Ï
program. Go back and redo this program making use

of the string-formatting operator.

3. A certain CS professor gives 5-point quizzes that are graded on the scale

5-A, 4-B, 3-C, 2-D, 1-F, 0-F. Write a program that accepts a quiz score as an

input and prints out the corresponding grade.

4. A certain CS professor gives 100-point exams that are graded on the scale

90–100:A, 80–89:B, 70–79:C, 60–69:D, Ó 60:F. Write a program that ac-

cepts an exam score as input and prints out the corresponding grade.

¯ � â2�+����{1} ³�$ ��{ô� ~1~�é

5. An acronym is a word formed by taking the first letters of the words in a

phrase and making a word from them. For example, RAM is an acronym

for “random access memory.” Write a program that allows the user to

type in a phrase and then outputs the acronym for that phrase. Note: the

acronym should be all uppercase, even if the words in the phrase are not

capitalized.

6. Numerologists claim to be able to determine a person’s character traits

based on the “numeric value” of a name. The value of a name is deter-

mined by summing up the values of the letters of the name where ’a’ is

1, ’b’ is 2, ’c’ is 3 etc., up to ’z’ being 26. For example, the name “Zelle”

would have the value ��E Â N Â U�� Â U�� Â N º E�M (which happens to be a

very auspicious number, by the way). Write a program that calculates the

numeric value of a single name provided as input.

7. Expand your solution to the previous problem to allow the calculation of

a complete name such as “John Marvin Zelle” or “John Jacob Jingleheimer

Smith.” The total value is just the sum of the numeric values of all the

names.

8. A Caesar cipher is a simple substitution cipher based on the idea of shifting

each letter of the plaintext message a fixed number (called the key) of

positions in the alphabet. For example, if the key value is 2, the word

“Sourpuss” would be encoded as “Uqwtrwuu.” The original message can

be recovered by “reencoding” it using the negative of the key.

Write a program that can encode and decode Caesar ciphers. The input

to the program will be a string of plaintext and the value of the key. The

output will be an encoded message where each character in the original

message is replaced by shifting it \ ' ` characters in the ASCII character set.

For example, if
Ñ�Å

is a character in the string and
ÎXÆ�Ï

is the amount to shift,

then the character that replaces
Ñ1Å

can be calculated as:
Ñ�Å¨ÌTñôÁ0Ì¨ÃæñvÑ1Å�úfáÎXÆ0ÏÎú

.

9. One problem with the previous exercise is that it does not deal with the

case when we “drop off the end” of the alphabet (or ASCII encodings). A

true Caesar cipher does the shifting in a circular fashion where the next

character after “z” is “a”. Modify your solution to the previous problem

to make it circular. You may assume that the input consists only of letters

and spaces.

~zr�% s(tvuxwzy|{1} ¯ � sX���_w���y $ ���²� $ yèt�bxyè} $ ���1�
10. Write a program that counts the number of words in a sentence entered

by the user.

11. Write a program that calculates the average word length in a sentence

entered by the user.

12. Write an improved version of the Chaos program from Chapter 1 that al-

lows a user to input two initial values and the number of iterations and

then prints a nicely formatted table showing how the values change over

time. For example, if the starting values were
ïèÔ�'

and
ïðÔ2ø

with
ÖxÕ

itera-

tions, the table might look like this:

Ò�ÇXÃ�Æ�� ÕnïèÔ�' ÕnïèÔ0ø�	�	���	���	�	���	���	�	���	���	�	���	���	�	���	�C�	���
Ö Õnïùþ�ÞÎÖxÔ	'0Õ Õnïðþ	'2Õ2Þ�ø�Õ
Ô Õnïùþ�ø�øC@	@ÎÖ Õnïðþ2Þ�Õ	'C@¨þ
Þ Õnïùø�ý	A!ÖxÞ	' Õnïðþ2ø�þ2þ�Õ�þ@ ÕnïBA¨Ô!Ö�A�ý2ø Õnïðø2ý?'�@¨ý�ý' Õnï0'2þ�Õ�A�ýC@ Õnï0A�Ô	'0ý�@�Ô
ø Õnïùý?'	'0Þ�ý2ý Õnï�'0ø�Õ2ø�þÎÖ
þ Õnï�Öxø�ø!Ö�A2þ Õnïðý2ø�Õ2ø�@	@A Õnï0'C@¨ÕC@"Ö�A Õnï�ÖG@¨þC@	@¨þ
ý Õnïùý�ø	A2ø¨Ô0ý ÕnïB@�ý�Õ�Ô	'	'
ÖxÕ Õnï�Ö�Ö�A	'2Õ2ý Õnïðý2þ�@�ø�Þ�Õ

13. Write an improved version of the future value program from Chapter 2.

Your program will prompt the user for the amount of the investment, the

annualized interest rate, and the number of years of the investment. The

program will then output a nicely formatted table that tracks the value of

the investment year by year. Your output might look something like this:��Æ¨Â�Ì ÛXÂ�ÀxÉ½Æ�	�	���	���	�	���	���	�	���	���
Õ ¬ Ô2Õ�Õ2ÕnïùÕ�ÕÖ ¬ Ô�Ô2Õ2ÕnïùÕ�ÕÔ ¬ ÔC@�Ô0ÕnïùÕ�ÕÞ ¬ Ô2ø�ø�ÔoïùÕ�Õ@ ¬ Ô2ý¨ÔCAnïðÔ2Õ' ¬ Þ¨Ô�Ô½ÖïùÕ¨Ô

¯ � â2�+����{1} ³�$ ��{ô� ~zr0~

ø ¬ Þ?'C@¨Ôoï�ÖÓÔþ ¬ Þ	A�ý2þnïF@¨Þ
14. Redo any of the previous programming problems to make them batch ori-

ented (using text files for input and output).

15. Word count. A common utility on Unix/Linux systems is a small program

called “wc.” This program analyzes a file to determine the number of

lines, words, and characters contained therein. Write your own version of

wc. The program should accept a file name as input and then print three

numbers showing the count of lines, words, and characters in the file.

3547698;:=<?>ÂÁ Ã �ÅÄî
|ÆÐ� HI��J
Ç E«HIBÈ� ¥�Æÿ

NPO!Q�RTSVUXWZYTRT[
\ To understand the concept of objects and how they can be used to simplify

programs.

\ To be familiar with the various objects available in the graphics library.

\ To be able to create objects in programs and call appropriate methods to

perform graphical computations.

\ To understand the fundamental concepts of computer graphics, especially

the role of coordinate systems and coordinate transformations.

\ To understand how to work with both mouse and text-based input in a

graphical programming context.

\ To be able to write simple interactive graphics programs using the graphics

library.

º=^`] N YTRcg�YoW�R��

So far we have been writing programs that use the built-in Python data types for

numbers and strings. We saw that each data type could represent a certain set

of values, and each had a set of associated operations. Basically, we viewed the

data as passive entities that were manipulated and combined via active opera-

tions. This is a traditional way to view computation. To build complex systems,

q
�É

~zr ¯ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
however, it helps to take a richer view of the relationship between data and

operations.

Most modern computer programs are built using an object-oriented (OO) ap-

proach. Object orientation is not easily defined. It encompasses a number of

principles for designing and implementing software, principles that we will re-

turn to numerous times throughout the course of this book. This chapter pro-

vides a basic introduction to object concepts by way of some computer graphics.

Graphical programming is a lot of fun and provides a great vehicle for learn-

ing about objects. In the process, you will also learn the principles of computer

graphics that underlie many modern computer applications. Most of the ap-

plications that you are familiar with probably have a so-called Graphical User

Interface (GUI) that provides visual elements like windows, icons (representa-

tive pictures), buttons and menus.

Interactive graphics programming can be very complicated; entire textbooks

are devoted to the intricacies of graphics and graphical interfaces. Industrial-

strength GUI applications are usually developed using a dedicated graphics pro-

gramming framework. Python comes with its own standard GUI module called

Tkinter. As GUI frameworks go, Tkinter is one of the simplest to use, and Python

is a great language for developing real-world GUIs. Still, at this point in your

programming career, it would be a challenge to learn the intricacies of any GUI

framework, and doing so would not contribute much to the main objectives of

this chapter, which are to introduce you to objects and the fundamental princi-

ples of computer graphics.

To make learning these basic concepts easier, we will use a graphics library

(
�2ÌXÂ��ÅÎÒ�Ñ¨Ü¬ï7¨Ï

) specifically written for use with this textbook. This library is a

wrapper around Tkinter that makes it more suitable for beginning programmers.

It is freely available as a Python module file1 and you are welcome to use it as

you see fit. Eventually, you may want to study the code for the library itself as a

stepping stone to learning how to program directly in Tkinter.

º=^�� a;bcR NPO!Q�RTSVUP��ìfNPOÎQ�RoS�U�[

The basic idea of object-oriented development is to view a complex system as the

interaction of simpler objects. The word objects is being used here in a specific

technical sense. Part of the challenge of OO programming is figuring out the

1See Appendix B for information on how to obtain the graphics library and other supporting

materials for this book.

´0� �0��b $ ��w�± {ÍËV}�uxw�t $ ³ �c�!}�����}�ux��� $ ��� ~zr�´

vocabulary. You can think of an OO object as a sort of active data type that

combines both data and operations. To put it simply, objects know stuff (they

contain data), and they can do stuff (they have operations). Objects interact by

sending each other messages. A message is simply a request for an object to

perform one of its operations.

Consider a simple example. Suppose we want to develop a data processing

system for a college or university. We will need to keep track of considerable

information. For starters, we must keep records on the students who attend

the school. Each student could be represented in the program as an object. A

student object would contain certain data such as name, ID number, courses

taken, campus address, home address, GPA, etc. Each student object would also

be able to respond to certain requests. For example, to send out a mailing, we

would need to print an address for each student. This task might be handled by

a
¨Ì!Ò1Ç�Ä�×�Â�Ê?�É(Ü Ú Ã2Ã2Ì�ÆXÜ�Ü

operation. When a particular student object is sent the�Ì½Ò�Ç¨Ä�×¨Â1Ê+2É(Ü Ú Ã�Ã0Ì�Æ½Ü2Ü
message, it prints out its own address. To print out all the

addresses, a program would loop through the collection of student objects and

send each one in turn the
¨Ì!Ò�Ç¨Ä�×�Â�Ê+2É(Ü Ú Ã�Ã0Ì�ÆXÜ�Ü

message.

Objects may refer to other objects. In our example, each course in the college

might also be represented by an object. Course objects would know things such

as who the instructor is, what students are in the course, what the prerequisites

are, and when and where the course meets. One example operation might beÂ0Ã2Ã+Å�Ä0ÉXÃ�Æ�Ç¨Ä
, which causes a student to be enrolled in the course. The student

being enrolled would be represented by the appropriate student object. Instruc-

tors would be another kind of object, as well as rooms, and even times. You can

see how successive refinement of these ideas could lead to a rather sophisticated

model of the information structure of the college.

As a beginning programmer, you’re probably not yet ready to tackle a college

information system. For now, we’ll study objects in the context of some simple

graphics programming.

º=^�� ©«Wp�¥¤§j RÏÎªg1i�¤§bhW�S[��g1�h�Gg1i_� �»Wpen�

In order to run the graphical programs and examples in this chapter (and the

rest of the book), you will need a copy of the file
�2Ì�Â�2Å"Ò�Ñ�Üæï>�Ï

that is supplied

with the supplemental materials. Using the graphics library is as easy as placing

a copy of the
�0ÌXÂ�2Å"Ò2Ñ¨Üæï>�Ï

file in the same folder as your graphics program(s).

Alternatively, you can place it in a system directory where other Python libraries

are stored so that it can be used from any folder on the system.

~zr�¹ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
The graphics library makes it easy to experiment with graphics interactively

and write simple graphics programs. As you do, you will be learning principles

of object-oriented programming and computer graphics that can be applied in

more sophisticated graphical programming environments. The details of the�2Ì�Â�2Å"Ò�Ñ�Ü
module will be explored in later sections. Here we’ll concentrate on a

basic hands-on introduction to whet your appetite.

As usual, the best way to start learning new concepts is to roll up your sleeves

and try out some examples. The first step is to import the graphics module.

Assuming you have placed
�0ÌXÂ��Å"Ò2Ñ¨Ü¬ï7�Ï

in an appropriate place, you can import

the graphics commands into an interactive Python session.�	��� Ò�Ê?½Á0Ì2Ä��2Ì�Â�2Å"Ò�Ñ�Ü
Next we need to create a place on the screen where the graphics will appear.

That place is a graphics window or
ü Ì�Â�2Å?"ÎÒ1Ç

, which is provided by the
�2Ì�Â��ÅÎÒ�Ñ�Ü

module.�	��� ÛÎÒ1Çàß��2ÌXÂ��ÅÎÒ�Ñ¨Ü¬ï ü ÌXÂ�2Å?"!Ò�Çnñ�ú
This command creates a new window on the screen. The window will have the

title “Graphics Window.” The
ü ÌXÂ��Å?"!Ò�Ç

may overlap your Python interpreter

window, so you might have to resize the Python window to make both fully

visible. Figure
�
.
�

shows an example screen view.

The
ü ÌXÂ�2Å?"!Ò�Ç

is an object, and we have assigned it to the variable calledÛÎÒ1Ç
. We can manipulate the window object through this variable, similar to the

way that file objects are manipulated through file variables. For example, when

we are finished with a window, we can destroy it. This is done by issuing theÑ0À0Á½ÜÓÆ
command.�	��� ÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Typing this command causes the window to vanish from the screen.

We will be working with quite a few commands from the
�2ÌXÂ��ÅÎÒ�Ñ¨Ü

library,

and it gets tedious having to type the
�0ÌXÂ�2Å"Ò2Ñ¨Üæï

notation every time we use

one. Python has an alternative form of
ÒvÊ+XÁ0Ì�Ä

that can help out.

Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
The

Í0Ì�Á�Ê
statement allows you to load specific definitions from a library mod-

ule. You can either list the names of definitions to be imported or use an as-

terisk, as shown, to import everything defined in the module. The imported

commands become directly available without having to preface them with the

module name. After doing this import, we can create a
ü ÌXÂ��Å?"!Ò�Ç

more simply.

´0� �0��b $ ��w�± {ÍËV}�uxw�t $ ³ �c�!}�����}�ux��� $ ��� ~zr�¿

Figure
�
.
�
: Screen shot with a Python window and a GraphWin.

ÛÎÒ1Çàß ü Ì�Â��Å	"ÎÒ1Çnñ1ú
All of the rest of the graphics examples will assume that the entire

�2ÌXÂ��ÅÎÒ�Ñ¨Ü
module has been imported using

Í2Ì¨ÁxÊ
.

Let’s try our hand at some drawing. A graphics window is actually a collec-

tion of tiny points called pixels (short for picture elements). By controlling the

color of each pixel, we control what is displayed in the window. By default, aü Ì�Â�2Å?"ÎÒ1Ç
is 200 pixels tall and 200 pixels wide. That means there are 40,000

pixels in the
ü ÌXÂ�2Å?"!Ò�Ç

. Drawing a picture by assigning a color to each individ-

ual pixel would be a daunting challenge. Instead, we will rely on a library of

graphical objects. Each type of object does its own bookkeeping and knows how

to draw itself into a
ü ÌXÂ��Å?"!Ò�Ç

.

The simplest object in the
�0ÌXÂ�2Å"Ò2Ñ¨Ü

module is a
Ø¨ÁXÒ�Ç¨Ä

. In geometry, a point

is a location in space. A point is located by reference to a coordinate system. Our

graphics object
Ø�Á�Ò�Ç�Ä

is similar; it can represent a location in a
ü Ì�Â��Å	"ÎÒ1Ç

. We

define a point by supplying] and ` coordinates R^]�G ` T . The] value represents

the horizontal location of the point, and the ` value represents the vertical.

Traditionally, graphics programmers locate the point RSM�GÒMCT in the upper-left

~zr�â s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
corner of the window. Thus] values increase from left to right, and ` values

increase from top to bottom. In the default ��M�M x ��M�M ü ÌXÂ��Å?"!Ò�Ç , the lower-right

corner has the coordinates R0UuP�PCGuUuP�P�T . Drawing a
Ø�Á�Ò�Ç¨Ä

sets the color of the

corresponding pixel in the
ü Ì�Â�2Å?"ÎÒ1Ç

. The default color for drawing is black.

Here is a sample interaction with Python illustrating the use of
Ø�ÁXÒ1Ç�Ä!Ü

:�	��� àß9Ø�ÁXÒ1Ç�Ä�ñ!'2Õ�õ`ø2Õ!ú�	��� �ïF�¨Æ0ÄCÐ�ñ�ú'2Õ�	��� �ïF�¨Æ0ÄP�Tñ�úø�Õ�	��� ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ1ú�	��� �ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú�	��� !Ô?ß9Ø�Á�Ò�Ç¨ÄTñ�ÖG@¨Õ�õ�ÖxÕ2Õ!ú�	��� !ÔTïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
The first line creates a

Ø�Á�Ò�Ç¨Ä
located at R>N�M�GëE�MCT . After the

Ø�Á�Ò�Ç�Ä
has been cre-

ated, its coordinate values can be accessed by the operations
�¨Æ�Ä�Ð

and
��Æ0ÄC�

.

A
Ø¨ÁXÒ1Ç�Ä

is drawn into a window using the
Ã2ÌXÂÓÛ

operation. In this example,

two different point objects (

and
!Ô

) are created and drawn into the
ü ÌXÂ�2Å?"!Ò�Ç

called
ÛÎÒ1Ç

. Figure
�
.
�

shows the resulting graphical output.

Figure
�
.
�
: Graphics window with two points drawn.

In addition to points, the graphics library contains commands for drawing

lines, circles, rectangles, ovals, polygons and text. Each of these objects is cre-

´0� ¯ �C�½� $ ���	ËV}�uxw�t $ ³ u�±CÑ�
YÊZ{ ³ y|� ~zr�é

ated and drawn in a similar fashion. Here is a sample interaction to draw various

shapes into a
ü ÌXÂ��Å	"ÎÒ�Ç

:�	��� ó�ó2ó�ó Ä XÆ�Ç¡Â6�0ÌXÂ�2Å"Ò2Ñ¨ÜªÛ!Ò�Ç�Ã¨Á�Û�	��� ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ��ÒÅÓÅ!Â�½ÆXÜ©�vú�	��� ó�ó2ó�ó��¨Ì�Â�ÛàÂ?Ì¨Æ2Ã¡Ñ�ÒxÌ!Ñ�À2ÆÐÑ�Æ�Ç�Ä¨Æ0Ì¨Æ2Ã9Â�Ä-½Á�Ò�Ç�Ä	ñ1ÖxÕ2ÕTõ�Ö�Õ�Õ½úfÛÎÒxÄ0ÅÐÌ�Â0Ã½Ò1É(Ü Þ2Õ�	��� Ñ�ÆÓÇ�Ä�Æ�Ì9ßPØ�Á�Ò�Ç¨ÄTñ�Ö�Õ�Õ�õ�ÖxÕ2Õ!ú�	��� Ñ�ÒxÌ!ÑÈßÝ×XÒxÌ!Ñ�À2Ææñ�Ñ�ÆÓÇ�Ä�Æ�Ìnõ Þ�Õ½ú�	��� Ñ�ÒxÌ!Ñ�ïôÜ�Æ�Ä	,!Ò�À�Àñ��ðÌ¨Æ2Ã}�vú�	��� Ñ�ÒxÌ!Ñ�ïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú�	��� ó�ó2ó�óPØ0É¨ÄÐÂ?Ä�ÆC�2Ä0É½Â�ÀPÀ2ÂÓËXÆ¨ÀÝÒ1ÇÐÄ0Å½ÆàÑ�Æ�Ç¨Ä�Æ0Ì9Á2ÍPÄ0ÅXÆàÑ�ÒxÌ!Ñ0À0Æ�	��� À�ÂxË½Æ¨ÀÈß �¨Æ��0ÄTñvÑ�Æ�Ç¨Ä�Æ0Ìoõ��&�XÆ0ÃÝ×XÒÓÌ½Ñ0À0Æ���ú�	��� À�ÂxË½Æ¨ÀTïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú�	��� ó�ó2ó�ó��¨Ì�Â�ÛàÂ¡Ü�í�É!Â�Ì�Æ É"Ü2Ò1Ç��ÝÂ��XÆ�ÑÓÄ�ÂÓÇ��¨À2Æ7Á�Ë ï ÆXÑxÄ�	��� Ì�Æ�ÑÓÄÝß-�XÆ�ÑÓÄ�ÂÓÇ��¨À2Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñzÞ2ÕTõèÞ�Õ!ú�õ Ø�Á�Ò�Ç¨ÄTñzþ2ÕTõèþ�Õ!ú2ú�	��� Ì�Æ�ÑÓÄcïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú�	��� ó�ó2ó�ó��¨Ì�Â�ÛàÂÝÀ¨Ò�Ç½ÆÐÜ�Æ��xÊÎÆÓÇ�Ä7É"Ü2Ò�Ç+�ÝÂ-�!Ò1Ç½Æ9Á�Ë ï Æ�ÑÓÄ�	��� À�Ò1Ç½ÆPß6�!Ò1Ç½Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñ�Ô0ÕTõèÞ�Õ!ú�õ Ø�ÁXÒ1Ç�Ä�ñ�Ö�A2ÕTõ Öxø?'Xú�ú�	��� À�Ò1Ç½ÆnïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú�	��� ó�ó2ó�ó��¨Ì�Â�ÛàÂxÇ¡ÁC9�Â�À É(Ü0Ò�Ç+�?Ä0ÅXÆ Ä 9XÂ2ÀPÁ�Ë ï ÆXÑxÄ�	��� ÁC9�Â�À?ß Ä 9�Â�Àñ`Ø�Á�Ò�Ç¨ÄTñ�Ô0ÕTõvÖ�'2Õ½úVõ Ø�Á�Ò�Ç¨ÄTñ�Ö�A�Õ�õ�Öxý2ý!ú2ú�	��� ÁC9�Â�ÀoïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú
Try to figure out what each of these statements does. If you type them in as

shown, the final result will look like Figure
�
.
�
.

º=^|µ d [XWpen�ÈÎªg1i�¤§bhW�Si�j NPO!Q�RTSVU¨[
Some of the examples in the above interactions may look a bit strange to you.

To really understand the
�2Ì�Â��ÅÎÒ�Ñ�Ü

module, we need to take an object-oriented

point of view. Remember, objects combine data with operations. Computation

is performed by asking an object to carry out one of its operations. In order to

make use of objects, you need to know how to create them and how to request

operations.

In the interactive examples above, we manipulated several different kinds

of objects:
ü Ì�Â��Å	"ÎÒ1Ç

,
Ø�Á�Ò�Ç¨Ä

,
×XÒÓÌ½Ñ0À0Æ

,
Ä 9XÂ2À

,
�!Ò1Ç½Æ

,
��ÆC�2Ä

, and
�XÆ�ÑÓÄ�ÂÓÇ��¨À2Æ

. These

are examples of classes. Every object is an instance of some class, and the class

describes the properties the instance will have.

~z��% s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �

Figure
�
.
�
: Various shapes from the

�2ÌXÂ��ÅÎÒ�Ñ¨Ü
module.

Borrowing a biological metaphor, when we say that Fido is a dog, we are

actually saying that Fido is a specific individual in the larger class of all dogs. In

OO terminology, Fido is an instance of the dog class. Because Fido is an instance

of this class, we expect certain things. Fido has four legs, a tail, a cold, wet nose

and he barks. If Rex is a dog, we expect that he will have similar properties,

even though Fido and Rex may differ in specific details such as size or color.

The same ideas hold for our computational objects. We can create two sepa-

rate instances of
Ø�Á�Ò�Ç¨Ä

, say

and
½Ô

. Each of these points has an] and ` value,

and they both support the same set of operations like
��Æ0ÄCÐ

and
Ã2Ì�Â�Û

. These

properties hold because the objects are
Ø�Á�Ò�Ç�Ä

s. However, different instances

can vary in specific details such as the values of their coordinates.

To create a new instance of a class, we use a special operation called a con-

structor. A call to a constructor is an expression that creates a brand new object.

The general form is as follows:. Ñ�À�Â�Ü�Ü��xÇ!Â1ÊÎÆ � ñ . !Â�Ì�Â�ÊÖ � õ . !Â�ÌXÂ�ÊÎÔ � õ9ï�ï2ï�ú
Here . Ñ�À�ÂXÜ2Ü��xÇ!Â�Ê!Æ � is the name of the class that we want to create a new in-

stance of, e.g.,
×XÒxÌ!Ñ�À2Æ

or
Ø¨ÁXÒ�Ç¨Ä

. The expressions in the parentheses are any

parameters that are required to initialize the object. The number and type of

the parameters depends on the class. A
Ø¨ÁXÒ�Ç¨Ä

requires two numeric values,

while a
ü ÌXÂ��Å	"ÎÒ�Ç

can be constructed without any parameters. Often, a con-

structor is used on the right side of an assignment statement, and the resulting

´0� ¯ �C�½� $ ���	ËV}�uxw�t $ ³ u�±CÑ�
YÊZ{ ³ y|� ~z�0~

object is immediately assigned to a variable on the left side that is then used to

manipulate the object.

To take a concrete example, let’s look at what happens when we create a

graphical point. Here is a constructor statement from the interactive example

above.àß9Ø�Á�Ò�Ç�Ä�ñ!'0ÕTõ`ø2Õ!ú
The constructor for the

Ø�ÁXÒ1Ç�Ä
class requires two parameters giving the] and` coordinates for the new point. These values are stored as instance variables

inside of the object. In this case, Python creates an instance of
Ø�Á�Ò�Ç�Ä

having an] value of 50 and a ` value of 60. The resulting point is then assigned to the

variable

. A conceptual diagram of the result is shown in Figure

�
.
�
. Note that,

in this diagram as well as similar ones later on, only the most salient details

are shown.
Ø¨ÁXÒ�Ç¨Ä

s also contain other information such as their color and which

window (if any) they are drawn in. Most of this information is set to default

values when the
Ø�ÁXÒ1Ç�Ä

is created.

x:

60

50

p:

y:

Point

Figure
�
.
�
: Conceptual picture of the result of

¡ßPØ¨ÁXÒ�Ç¨ÄTñ&'2ÕTõèø�Õ½ú
. The variable

refers to a freshly created
Ø�Á�Ò�Ç¨Ä

having the given coordinates.

To perform an operation on an object, we send the object a message. The

set of messages that an object responds to are called the methods of the object.

You can think of methods as functions that live inside of the object. A method is

invoked using dot-notation.

. ÁÓË ï ÆXÑÓÄ � ï . ÊÎÆ�Ä0ÅXÁ2Ã+�xÇ!Â1ÊÎÆ � ñ . !Â�ÌXÂ�Ê¬Ö � õ . ½Â�Ì�Â�Ê"Ô � õPï�ï�ïzú
The number and type of the parameters is determined by the method being used.

Some methods require no parameters at all. You can find numerous examples

of method invocation in the interactive examples above.

As examples of parameterless methods, consider these two expressions:

~z��r s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
�ïF�¨Æ�Ä�Ð�ñ�ú�ïF�¨Æ�ÄC�Tñ�ú
The

��Æ0ÄCÐ
and

�¨Æ0ÄP�
methods return the] and ` values of a point, respectively.

Methods such as these are sometimes called accessors, because they allow us to

access information from the instance variables of the object.

Other methods change the values of an object’s instance variables, hence

changing the state of the object. All of the graphical objects have a
Ê!ÁC9¨Æ

method.

Here is a specification:

ÊÎÁ�9�Æ¬ñôÃ	�Tõ¢Ã2ÏÎú
: Moves the object

Ã	�
units in the] direction and

Ã2Ï
units in the` direction.

To move the point

to the right 10 units, we could use this statement.�ïZÊÎÁ�9�Ææñ1ÖxÕ�õ`Õ!ú
This changes the x instance variable of

by adding 10 units. If the point is

currently drawn in a
ü ÌXÂ�2Å?"!Ò�Ç

,
Ê!ÁC9¨Æ

will also take care of erasing the old image

and drawing it in its new position. Methods that change the state of an object

are sometimes called mutators.

The
Ê!ÁC9¨Æ

method must be supplied with two simple numeric parameters

indicating the distance to move the object along each dimension. Some methods

require parameters that are themselves complex objects. For example, drawing

a
×XÒxÌ!Ñ0À0Æ

into a
ü ÌXÂ��Å	"ÎÒ�Ç

involves two objects. Let’s examine a sequence of

commands that does this.

Ñ�ÒxÌ!ÑÈßÝ×�ÒÓÌ!Ñ�À2Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñ�Ö�Õ�Õ�õ�ÖxÕ2Õ!ú�õ Þ�Õ!ú
ÛÎÒ1Çàß ü Ì�Â��Å	"ÎÒ1Çnñ1ú
Ñ�ÒxÌ!ÑæïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
The first line creates a

×XÒÓÌ½Ñ0À0Æ
with a center located at the

Ø¨ÁXÒ�Ç¨Ä R0U�M�M�GuU�M�MCT and

a radius of 30. Notice that we used the
Ø¨ÁXÒ�Ç¨Ä

constructor to create a location

for the first parameter to the
×XÒxÌ!Ñ0À0Æ

constructor. The second line creates aü Ì�Â�2Å?"ÎÒ1Ç
. Do you see what is happening in the third line? This is a request for

the
×XÒxÌ!Ñ0À0Æ

object
Ñ�ÒÓÌ½Ñ

to draw itself into the
ü ÌXÂ��Å	"ÎÒ�Ç

object
ÛÎÒ�Ç

. The visible

effect of this statement is a circle in the
ü Ì�Â�2Å?"ÎÒ1Ç

centered at R0U�M�M�GuU�M�MCT and

having a radius of 30. Behind the scenes, a lot more is happening.

Remember, the
Ã2Ì�Â�Û

method lives inside the
Ñ2ÒÓÌ½Ñ

object. Using informa-

tion about the center and radius of the circle from the instance variables, theÃ2Ì�Â�Û
method issues an appropriate sequence of low-level drawing commands

´0� ¯ �C�½� $ ���	ËV}�uxw�t $ ³ u�±CÑ�
YÊZ{ ³ y|� ~z���

(a sequence of method invocations) to the
ü Ì�Â�2Å?"ÎÒ1Ç

. A conceptual picture of

the interactions among the
Ø¨ÁXÒ�Ç¨Ä

,
×�ÒÓÌ½Ñ0À2Æ

and
ü Ì�Â�2Å?"ÎÒ1Ç

objects is shown in

Figure
�
.
�
. Fortunately, we don’t usually have to worry about these kinds of

details; they’re all taken care of by the graphical objects. We just create objects,

call the appropriate methods, and let them do the work. That’s the power of

object-oriented programming.

Circle

y:

x:

100

100

Pointcenter:

radius:

draw()

.

.

.

GraphWin

.

.

.

Low-level drawing commands

win:

30

circ:

Figure
�
.
�
: Object interactions to draw a circle.

There is one subtle “gotcha” that you need to keep in mind when using

objects. It is possible for two different variables to refer to exactly the same

object; changes made to the object through one variable will also be visible to

the other. Suppose we are trying to write a sequence of code that draws a smiley

face. We want to create two eyes that are 20 units apart. Here is a sequence of

code intended to draw the eyes.

ó�ó=¢�Ç"Ñ�Á0Ì�Ì¨ÆXÑxÄ7Û½Â�Ï9Ä�Á¡ÑÓÌ¨Æ¨Â�Ä�Æ7Ä0ÛXÁàÑ�ÒxÌ!Ñ�À2Æ½Ü¬ï
À2Æ0Í2Ä / Ï�Æ7ßÝ×XÒÓÌ½Ñ0À0Ææñ`Ø¨ÁXÒ1Ç�ÄTñëA�Õ�õç'0Õ!úVõÆ'½úÀ2Æ0Í2Ä / Ï�ÆoïzÜÓÆ0Ä	,½Ò0À2À¬ñ��ùÏ�Æ�À�À2Á�Û���úÀ2Æ0Í2Ä / Ï�ÆoïzÜÓÆ0Ä Ä É�Ä�À�Ò�ÇXÆæñ��ðÌ�Æ0ÃU��úÌ!Ò���Å¨Ä / Ï¨Æ?ßÐÀ2Æ0Í2Ä / Ï�Æ

~z� ¯ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
Ì!Ò���Å¨Ä / Ï¨ÆnïZÊÎÁC9¨ÆæñzÔ2ÕTõèÕ!ú
The basic idea is to create the left eye and then copy that into a right eye which

is then moved over 20 units.

This doesn’t work. The problem here is that only one
×XÒÓÌ½Ñ0À0Æ

object is cre-

ated. The assignment

Ì!Ò���Å¨Ä / Ï¨Æ?ßÐÀ2Æ0Í2Ä / Ï�Æ
simply makes

Ì!Ò���Å�Ä / Ï¨Æ refer to the very same circle as
À2Æ2Í0Ä / Ï�Æ . Figure

�
.
�

shows the situation. When the
×�ÒÓÌ!Ñ�À2Æ

is moved in the last line of code, bothÌ!Ò���Å¨Ä / Ï¨Æ and
À2Æ2Í0Ä / Ï�Æ refer to it in its new location on the right side. This

situation where two variables refer to the same object is called aliasing, and it

can sometimes produce rather unexpected results.

rightEye:

leftEye: Circle

y:

x:

50

80

Pointcenter:

radius: 10

Figure Ñ . Ò : Variables ÓKÔPÕPÖP×CØ�Ô and Ù<Ú�Û!Ü�ÖP×CØ�Ô are aliases.

One solution to this problem would be to create a separate circle for each

eye.ÝCÝ�Þeß�à ÙCÙ�Ô ß Ö�áºâ�Ø�Ö àãß Ù�Ô�â�Ö�Ô�ÖKá àäß ÚIÙ ß ÓPÔºå£æÓPÔKÕPÖP×CØ�Ô�ç¡èéÚ�Ù ß ÓKÔ$ê*ë à Úíì�Ö}ê3îCïBð�ñKï<ò�ð°ñºòÓPÔKÕPÖP×CØ�ÔUæHå�ÔKÖCóºÚKÓPÓ£ê�ôqØ�ÔCÓCÓ à á�ô�òÓPÔKÕPÖP×CØ�ÔUæHå�ÔKÖéõIö�Ö�Ó�ÚmìéÔ$ê�ôlÙ�ÔK÷Uô�òÙ<Ú�Û!Ü�ÖC×CØ�Ô�ç¡èéÚIÙ ß ÓPÔ$êMë à Úmì�ÖBêmømïCï}ðSñKï<ò�ðùñéòÙ<Ú�Û!Ü�ÖC×CØ�Ô�æ3å�ÔKÖPó<Ú!ÓCÓ£ê�ôlØ�Ô�ÓCÓ à áUô4òÙ<Ú�Û!Ü�ÖC×CØ�Ô�æ3å�ÔKÖ�õ�ö�ÖéÓ�ÚíìºÔ£ê�ôlÙ�ÔP÷Bô4ò
This will certainly work, but it’s cumbersome. We had to write duplicated code

for the two eyes. That’s easy to do using a “cut and paste” approach, but it’s not

´0� ´0�KËV}�uxw�t $ ���¦óÓ��yè��}�{jô(u�±%��{ ~z��´

very elegant. If we decide to change the appearance of the eyes, we will have to

be sure to make the changes in two places.

The
�2Ì�Â�2Å"Ò�Ñ�Ü

library provides a better solution; all graphical objects support

a
Ñ0À2ÁÓÇ½Æ

method that makes a copy of the object. Using
Ñ�À2ÁÓÇ½Æ

, we can rescue

the original approach.

ó�óÝ×2Á0Ì2Ì�ÆXÑxÄ?Û½Â�Ï9Ä�ÁàÑxÌ�Æ¨Â�Ä�Æ7Ä0ÛXÁàÑ2ÒÓÌ!Ñ�À2ÆXÜõîÉ"Ü2Ò�Ç+�àÑ0À0Á�ÇXÆnï
À2Æ0Í2Ä / Ï�Æ7ßÝ×XÒÓÌ½Ñ0À0Ææñ`Ø¨ÁXÒ1Ç�ÄTñëA�Õ�õç'0Õ!úVõÆ'½úÀ2Æ0Í2Ä / Ï�ÆoïzÜÓÆ0Ä	,½Ò0À2À¬ñ��ùÏ�Æ�À�À2Á�Û���úÀ2Æ0Í2Ä / Ï�ÆoïzÜÓÆ0Ä Ä É�Ä�À�Ò�ÇXÆæñ��ðÌ�Æ0ÃU��úÌ!Ò���Å¨Ä / Ï¨Æ?ßÐÀ2Æ0Í2Ä / Ï�ÆoïôÑ�À2Á�ÇXÆæñ�úªóPÌ½Ò���Å¨Ä / Ï�ÆÐÒ�Ü7ÂÓÇ¡Æ��¨Â�ÑxÄ¡Ñ�Á��ÏÐÁ2ÍPÄ�Å½ÆÝÀ0Æ2Í2ÄÌ!Ò���Å¨Ä / Ï¨ÆnïZÊÎÁC9¨ÆæñzÔ2ÕTõèÕ!ú
Strategic use of cloning can make some graphics tasks much easier.

º=^|º Îªg1i�¤§bhWpen�qð_¦oUÎ¦_g1Ròñ i�j|¦�R
Now that you have some idea of how to use objects from the

�0ÌXÂ�2Å"Ò2Ñ¨Ü
module,

we’re ready to try some real graphics programming. One of the most important

uses of graphics is providing a visual representation of data. They say a picture is

worth a thousand words; it is almost certainly better than a thousand numbers.

Few programs that manipulate numeric data couldn’t be improved with a bit

of graphical output. Remember the program in Chapter 2 that computed the

future value of a ten year investment? Let’s try our hand at creating a graphical

summary.

Programming with graphics requires careful planning. You’ll probably want

pencil and paper handy to draw some diagrams and scratch out calculations as

we go along. As usual, we begin by considering the specification of exactly what

the program will do.

The original program
Í�É�Ä�9XÂ�ÀTï7¨Ï

had two inputs, the amount of money to

be invested and the annualized rate of interest. Using these inputs, the program

calculated the change in principal year by year for ten years using the formula

principal º principal R0U Â apr T . It then printed out the final value of the principal.

In the graphical version, the output will be a ten-year bar graph where the height

of successive bars represents the value of the principal in successive years.

Let’s use a concrete example for illustration. Suppose we invest $2000 at

10% interest. This table shows the growth of the investment over a ten-year

period:

~z��¹ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
Years Value

0 $2,000.00

1 $2,200.00

2 $2,420.00

3 $2,662.00

4 $2,928.20

5 $3,221.02

6 $3,542.12

7 $3,897.43

8 $4,287.18

9 $4,715.90

10 $5,187.49

Our program will display this information in a bar graph. Figure
�
.
�

shows the

data in graphical form. The graph actually contains eleven bars. The first bar

Figure
�
.
�
: Bar graph showing growth of $2,000 at 10% interest.

shows the original value of the principal. For reference, let’s number these bars

according to the number of years of interest accrued, 0–10.

Here is a rough design for the program:

Ø�Ì½Ò�Ç¨ÄÐÂÓÇ»Ò�Ç¨Ä�Ì¨Á2Ã�ÉÎÑÓÄ½Ò�Á�Çü Æ�Ä�9XÂ2ÀÓÉ½Æ?Á2Í��Ì½Ò�ÇÎÑ�Ò�½Â�ÀPÂxÇXÃÐÂ��ÌÝÍ2Ì¨ÁxÊÝÉ"Ü�Æ�Ì

´0� ´0�KËV}�uxw�t $ ���¦óÓ��yè��}�{jô(u�±%��{ ~z��¿

×0Ì¨Æ¨Â�Ä�Æ9Â ü Ì�Â�2Å?"ÎÒ1Ç�¨Ì�Â�Û Ü0Ñ0Â�À0Æ9À�ÂxË½Æ�ÀXÜ ÁÓÇÿÀ2Æ2Í0Ä Ü2ÒÓÃ¨Æ9Á2Í?Û!Ò�Ç�Ã¨Á�Û�¨Ì�Â�ÛPË½Â�ÌàÂ�Ä-XÁ½Ü0ÒÓÄ!Ò�Á�ÇÝÕPÛ!ÒÓÄ�ÅPÅ½Æ�Ò���Å¨Ä¡Ñ�Á�Ì�Ì¨Æ½ÜGXÁ�Ç�Ã½Ò�Ç+�7Ä¨Á<�Ì!Ò1Ç"Ñ2Ò�!Â2À,�Á�Ì Ü1ÉÎÑ�Ñ�ÆXÜ�Ü0Ò�9�Æ Ï�Æ�Â�ÌÎÜ9Ö;Ä�Å�Ì¨Á�É���Å ÖxÕ
×¨Â2À�Ñ�É½À�Â�Ä�Æè¨Ì!Ò1Ç"Ñ�ÒG!Â2ÀÈß-�Ì½Ò�Ç"Ñ2Ò�½Â�À�; ñ1Ö áÐÂ��ÌÎú�¨Ì�Â�Û¡Â Ë!Â�ÌÝÍ¨Á�Ì9Ä0Å"Ò�Ü Ï�Æ�Â�Ì?Å½Â�9!Ò1Ç��ÝÂÈÅXÆXÒ���Å�Ä¡Ñ�Á0Ì2Ì�Æ½Üu½ÁÓÇXÃ½Ò1Ç�� Ä�Á<¨Ì!Ò�ÇÎÑ�ÒG!Â�À"½Â¨ÒÓÄÝÍ�Á0Ì?É(ÜÓÆ0ÌPÄ¨Á<�Ì¨Æ½Ü�Ü / Ç�Ä¨Æ0Ìcï

The pause created by the last step is necessary to keep the graphics window dis-

played so that we can interpret the results. Without such a pause, the program

would end and the
ü ÌXÂ�2Å?"!Ò�Ç

would vanish with it.

While this design gives us the broad brush strokes for our algorithm, there

are some very important details that have been glossed over. We must decide

exactly how big the graphics window will be and how we will position the ob-

jects that appear in this window. For example, what does it mean to draw, say, a

bar for year five with height corresponding to $3,221.02?

Let’s start with the size of the
ü ÌXÂ��Å	"ÎÒ�Ç

. Recall that the size of a window

is given in terms of the number of pixels in each dimension. Computer screens

are also measured in terms of pixels. The number of pixels or resolution of the

screen is determined by the monitor and graphics card in the computer you use.

The lowest resolution screen you are likely to encounter these days is a so-called

standard VGA screen that is 640 x 480 pixels. Most screens are considerably

larger. Let’s make the
ü ÌXÂ��Å?"!Ò�Ç

one quarter the size of a 640 x 480 screen, or

320 x 240. That should allow all users to see the graphical output as well as the

textual output from our program.

Given this analysis, we can flesh out a bit of our design. The third line of the

design should now read:

×0Ì¨Æ¨Â�Ä�Æ9Â9Þ¨Ô0Õ-�àÔC@�Õ ü ÌXÂ��Å	"ÎÒ�ÇPÄ!ÒxÄXÀ2Æ0ÃaúCú!¢1Ç?9�Æ½Ü�Ä�Ê!Æ�Ç�Ä ü Ì¨Á�Û¨Ä�Åà×�Å½Â�Ì2Ä��C�
You may be wondering how this will translate into Python code. You have al-

ready seen that the
ü ÌXÂ��Å?"!Ò�Ç

constructor allows an optional parameter to spec-

ify the title of the window. You may also supply width and height parameters to

control the size of the window. Thus, the command to create the output window

will be:

ÛÎÒ1Çàß ü Ì�Â��Å	"ÎÒ1Çnñ���¢1Ç?9�Æ½Ü�Ä�Ê!Æ�Ç�Ä ü Ì�Á�Û�Ä0Åà×ÓÅ!Â�Ì�Ä��!õ�Þ¨Ô0ÕTõ Ô�@¨Õ½ú
Next we turn to the problem of printing labels along the left edge of our

window. To simplify the problem, we will assume the graph is always scaled to

~z��â s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
a maximum of $10,000 with the five labels “0.0K” to “10.0K” as shown in the

example window. The question is how should the labels be drawn? We will need

some
��ÆC�2Ä

objects. When creating
��ÆC�2Ä

, we specify the anchor point (the point

the text is centered on) and the string to use as the label.

The label strings are easy. Our longest label is five characters, and the labels

should all line up on the right side of a column, so the shorter strings will be

padded on the left with spaces. The placement of the labels is chosen with a bit

of calculation and some trial and error. Playing with some interactive examples,

it seems that a string of length five looks nicely positioned in the horizontal

direction placing the center 20 pixels in from the left edge. This leaves just a bit

of whitespace at the margin.

In the vertical direction, we have just over 200 pixels to work with. A simple

scaling would be to have 100 pixels represent $5,000. That means our five labels

should be spaced 50 pixels apart. Using 200 pixels for the range 0–10,000 leaves

��Z�M¦V;��M�M º Z�M pixels to split between the top and bottom margins. We might

want to leave a little more margin at the top to accommodate values that grow

beyond $10,000. A little experimentation suggests that putting the “ 0.0K” label

10 pixels from the bottom (position 230) seems to look nice.

Elaborating our algorithm to include these details, the single step�¨Ì�Â�Û Ü0Ñ0Â�À0Æ9À�ÂxË½Æ�ÀXÜ ÁÓÇÿÀ2Æ2Í0Ä Ü2ÒÓÃ¨Æ9Á2Í?Û!Ò�Ç�Ã¨Á�Û
becomes a sequence of steps�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ�ªÕnïùÕ!À�� Â�Ä	ñ�Ô0ÕTõ Ô0Þ�Õ!ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ� Ôoï0'�À�� Â�Ä	ñ�Ô0ÕTõªÖ�A�Õ!ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ��'oïùÕ!À�� Â�Ä	ñ�Ô0ÕTõªÖ�Þ�Õ!ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ�ªþnï0'�À�� Â�Ä	ñ�Ô0ÕTõÔA2Õ!ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ��Ö�ÕnïùÕ!Àx�fÂ�Ä	ñ�Ô0ÕTõ Þ2Õ!ú

The next step in the original design calls for drawing the bar that corresponds

to the initial amount of the principal. It is easy to see where the lower left corner

of this bar should be. The value of $0.0 is located vertically at pixel 230, and

the labels are centered 20 pixels in from the left edge. Adding another 20 pixels

gets us to the right edge of the labels. Thus the lower left corner of the 0th bar

should be at location R^Z�M�Gô��O�MCT .
Now we just need to figure out where the opposite (upper right) corner

of the bar should be so that we can draw an appropriate rectangle. In the

vertical direction, the height of the bar is determined by the value of
¨Ì!Ò1Ç"Ñ�ÒG!Â2À

.

In drawing the scale, we determined that 100 pixels is equal to $5,000. This

´0� ´0�KËV}�uxw�t $ ���¦óÓ��yè��}�{jô(u�±%��{ ~z��é

means that we have U�M�MCý�N�M�M�M º M?D M�� pixels to the dollar. This tells us, for

example, that a principal of $2,000 should produce a bar of height ��M�M�M�RBD M���T ºZ�M pixels. In general, the ` position of the upper-right corner will be given by

��O�M$V#R principal T:RSM?D M���T . (Remember that ��O�M is the M point, and the ` coordinates

decrease going up).

How wide should the bar be? The window is 320 pixels wide, but 40 pixels

are eaten up by the labels on the left. That leaves us with 280 pixels for 11 bars:

����MCý	U�U º ��N	D ZCN�ZCN . Let’s just make each bar 25 pixels; that will give us a bit of

margin on the right side. So, the right edge of our first bar will be at positionZ�M Â ��N º E�N .
We can now fill the details for drawing the first bar into our algorithm.�¨Ì�Â�Û¡Â7Ì¨ÆXÑÓÄ�ÂÓÇ+��À2ÆÈÍ2Ì¨ÁxÊ ñë@�ÕTõ Ô0Þ�Õ!úªÄ�Áòñzø	'�õ Ô0Þ�Õ �8�Ì½Ò�ÇÎÑ�Ò�½Â�À ;7ÕoïðÕ�Ô½ú

At this point, we have made all the major decisions and calculations required to

finish out the problem. All that remains is to percolate these details into the rest

of the algorithm. Figure
�
.
�

shows the general layout of the window with some

of the dimensions we have chosen.

0.0K

2.5K

5.0K

7.5K

10.0K

(40,230)

320

(0,0)

(319,239)

25

10

40

50

(315,230)

240

Figure
�
.
�
: Position of elements in future value bar graph.

Let’s figure out where the lower-left corner of each bar is going to be lo-

cated. We chose a bar width of 25, so the bar for each successive year will start

25 pixels farther right than the previous year. We can use a variable
Ï�Æ�Â�Ì

to rep-

resent the year number and calculate the] coordinate of the lower left corner

~ ¯ % s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
as R year T:R ��N�T Â Z�M . (The Â Z�M leaves space on the left edge for the labels.) Of

course, the ` coordinate of this point is still ��O�M (the bottom of the graph).

To find the upper-right corner of a bar, we add 25 (the width of the bar) to

the] value of the lower-left corner. The ` value of the upper right corner is

determined from the (updated) value of
¨Ì!Ò1Ç"Ñ�ÒG!Â2À

exactly as we determined it

for the first bar. Here is the refined algorithm:

Í¨Á�Ì9Ï�Æ�Â�Ì9Ì0É2Ç�ÇÎÒ�Ç��7Í2Ì¨ÁxÊ Â�9XÂ2ÀÓÉXÆ9Á2Í ÖfÉ	àÄ�Å�Ì�ÁÓÉ���Å»ÖxÕo÷
×¨Â2À�Ñ�É½À�Â�Ä�Æè¨Ì!Ò1Ç"Ñ�ÒG!Â2ÀÈß-�Ì½Ò�Ç"Ñ2Ò�½Â�À�; ñ1Ö áÐÂ��ÌÎú
×¨Â2À�Ñ�É½À�Â�Ä�Æ��¨À�À?ßàÔ	'5; Ï¨Æ¨Â�ÌÝá�@¨Õ
×¨Â2À�Ñ�É½À�Â�Ä�Æ;ÅXÆXÒ���Å�ÄPß6¨Ì!Ò1Ç"Ñ�ÒG!Â2À�;7ÕnïùÕ¨Ô�¨Ì�Â�Û¡Â7Ì�Æ�ÑÓÄ�ÂÓÇ��¨À2ÆÈÍ2Ì�Á�Ê ñë�¨À�À�õ�Ô2Þ�Õ½ú Ä�ÁòñÒ��À�À�á�Ô�'�õ Ô0Þ�Õ � Å½Æ�Ò���Å�Ä"ú

The variable
�¨À�À

stands for] lower left—the] value of the lower left corner of

the bar.

Putting all of this together produces the detailed algorithm shown below:

Ø�Ì½Ò�Ç¨ÄÐÂÓÇ»Ò�Ç¨Ä�Ì¨Á2Ã�ÉÎÑÓÄ½Ò�Á�Çü Æ�Ä�9XÂ2ÀÓÉ½Æ?Á2Í��Ì½Ò�ÇÎÑ�Ò�½Â�ÀPÂxÇXÃÐÂ��ÌÝÍ2Ì¨ÁxÊÝÉ"Ü�Æ�Ì
×0Ì¨Æ¨Â�Ä�Æ9Â9Þ¨Ô0Õ��¨ÔC@¨Õ ü Ì�Â��Å	"ÎÒ1ÇÝÄ!ÒxÄXÀ2Æ0ÃaúCú!¢1Ç?9�Æ½Ü�Ä�Ê!Æ�Ç�Ä ü Ì¨Á�Û�Ä0Å¡×�Å½Â�Ì2Ä��C��¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ�ªÕnïùÕ!À�� Â�Ä	ñ�Ô0ÕTõ`Ô2Þ�Õ½ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ� Ôoï0'�À�� Â�Ä	ñ�Ô0ÕTõªÖ�A�Õ!ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ��'oïùÕ!À�� Â�Ä	ñ�Ô0ÕTõªÖ�Þ�Õ!ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ�ªþnï0'�À�� Â�Ä	ñ�Ô0ÕTõÔA2Õ!ú�¨Ì�Â�Û¡À2ÂÓË½Æ�ÀÏ��Ö�ÕnïùÕ!Àx�fÂ�Ä	ñ�Ô0ÕTõ Þ2Õ!ú�¨Ì�Â�Û¡Â7Ì¨ÆXÑÓÄ�ÂÓÇ+��À2ÆÈÍ2Ì¨ÁxÊ ñë@�ÕTõ Ô0Þ�Õ!úªÄ�Áòñzø	'�õ Ô0Þ�Õ �8�Ì½Ò�ÇÎÑ�Ò�½Â�À ;7ÕoïðÕ�Ô½ú
Í¨Á�Ì9Ï�Æ�Â�Ì9Ì0É2Ç�ÇÎÒ�Ç��7Í2Ì¨ÁxÊ Â�9XÂ2ÀÓÉXÆ9Á2Í ÖfÉ	àÄ�Å�Ì�ÁÓÉ���Å»ÖxÕo÷

×¨Â2À�Ñ�É½À�Â�Ä�Æè¨Ì!Ò1Ç"Ñ�ÒG!Â2ÀÈß-�Ì½Ò�Ç"Ñ2Ò�½Â�À�; ñ1Ö áÐÂ��ÌÎú
×¨Â2À�Ñ�É½À�Â�Ä�Æ��¨À�À?ßàÔ	'5; Ï¨Æ¨Â�ÌÝá�@¨Õ�¨Ì�Â�Û¡Â7Ì�Æ�ÑÓÄ�ÂÓÇ��¨À2ÆÈÍ2Ì�Á�Ê ñë�¨À�À�õ�Ô2Þ�Õ½ú Ä�ÁòñÒ��À�À�á�Ô�'�õ Ô0Þ�Õ �8�Ì½Ò�ÇÎÑ�Ò�½Â�À6;PÕoïðÕ�Ô½ú"½Â¨ÒÓÄÝÍ�Á0Ì?É(ÜÓÆ0ÌPÄ¨Á<�Ì¨Æ½Ü�Ü / Ç�Ä¨Æ0Ì

Whew! That was a lot of work, but we are finally ready to translate this algo-

rithm into actual Python code. The translation is straightforward using objects

from the
�2ÌXÂ��ÅÎÒ�Ñ¨Ü

module. Here’s the program:

ó9Í�É¨Ä	9�Â�À	Ì��2Ì�Â��Åhï7¨Ï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;

´0� ´0�KËV}�uxw�t $ ���¦óÓ��yè��}�{jô(u�±%��{ ~ ¯ ~

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ó=¢1Ç¨Ä�Ì�Á0Ã�ÉÎÑÓÄ!Ò�Á�Ç�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê�!À0Á0Ä!Ü;Ä0Å½Æ6�0Ì�Á�Û¨Ä0ÅÐÁ2ÍÐÂÿÖxÕ	��Ï¨Æ¨Â�ÌàÒ�Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä�ïG�
ó ü Æ�Ä-�Ì!Ò1Ç"Ñ2Ò�!Â2ÀPÂÓÇ�ÃàÒ�Ç¨Ä�Æ�Ì�Æ½Ü�ÄPÌXÂ�Ä�Æ�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�À¨Ò�D¨Æ0ÃÐÒ1Ç�Ä�Æ�Ì�ÆXÜxÄ?Ì�Â�Ä¨Æn÷���ú
óÝ×0Ì¨Æ¨Â�Ä¨Æ9Â6�2Ì�Â��ÅÎÒ�Ñ�ÜªÛÎÒ1ÇXÃ�Á�Û9ÛÎÒxÄ0Å¡À2ÂÓËXÆ¨ÀXÜ;Á�ÇÿÀ2Æ0Í2ÄÐÆ0Ã	�¨Æ
ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ���¢1Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä ü Ì¨Á�Û�Ä0Åà×ÓÅ!Â�Ì2Ä��!õ¢Þ¨Ô0ÕTõ Ô�@¨Õ!ú
ÛÎÒ1Ç�ïzÜÓÆ0ÄP�XÂ�Ñ�Î+�0Ì�Á�É2ÇXÃæñ���Û0Å"ÒxÄ�Æ_��ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ô0ÕTõlÔ2Þ�Õ½úVõ�� ÕoïðÕ!À��vúïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ô0ÕTõ�Ö�A�Õ½úVõ���ÔTï�'�À��vúïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ô0ÕTõ�ÖxÞ�Õ½úVõ���'TïðÕ!À��vúïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ô0ÕTõ#A�Õ!ú�õ�� þnï0'�À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ô0ÕTõ Þ�Õ!ú�õ���Ö�ÕnïùÕ!À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
ó��¨Ì�Â�ÛPË!Â�ÌÝÍ¨Á�ÌÿÒ�Ç"ÒxÄ!Ò�Â�Àè¨Ì!Ò�ÇÎÑ�ÒG!Â�À
Å½Æ�Ò���Å¨Ä9ß��Ì½Ò�ÇÎÑ�Ò�½Â�À ;7ÕoïðÕ�Ô
Ë!Â�ÌÝß-�XÆXÑxÄXÂxÇ���À0ÆæñèØ�ÁXÒ1Ç�Ä�ñë@¨Õ�õ Ô2Þ�Õ½úVõlØ¨ÁXÒ1Ç�ÄTñôø?'æõ�Ô2Þ2Õ?�xÅ½ÆXÒ���Å¨Ä"ú�ú
Ë!Â�ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ����2Ì¨Æ�ÆÓÇ���ú
Ë!Â�ÌcïzÜÓÆ0ÄC"ÎÒ�Ã0Ä0Åoñ�Ô½ú
Ë!Â�ÌcïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç(ú
ó��¨Ì�Â�ÛPË!Â�ÌÎÜ Í�Á0Ì Ü1ÉÎÑ�Ñ�Æ½Ü�Ü0Ò�9¨ÆÈÏ�Æ�Â�Ì!Ü
Í¨Á�Ì9Ï�Æ¨Â�Ì¡Ò�ÇàÌ�ÂÓÇ���Ææñ1Ö�õ�Ö2Ö2ú÷

ó¡Ñ0Â�À¨Ñ�É½À�Â�Ä¨Æ�9XÂ2ÀÓÉXÆ?Í¨Á�Ì9Ä0Å½ÆÈÇXÆ��0ÄPÏ�Æ�Â�Ì�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú
ó9Ã2ÌXÂÓÛPË!Â�ÌÝÍ¨Á0Ì9Ä�Å"Ò�Ü§9XÂ2ÀÓÉ½Æ��À�À?ßPÏ¨Æ¨Â�Ì=;?Ô	'?á @¨Õ
Å½ÆXÒ���Å¨Ä9ß��Ì½Ò�Ç"Ñ2Ò�½Â�À ;7ÕoïðÕ¨Ô
Ë!Â�ÌÝß-��ÆXÑxÄXÂÓÇ+��À0Ææñ`Ø¨ÁXÒ1Ç�ÄTñÒ��À2À�õîÔ2Þ2Õ!ú�õ¢Ø�ÁXÒ1Ç�Ä�ñë��À2À0á¨Ô	'�õlÔ2Þ2Õ?�xÅ½ÆXÒ���Å¨Ä"ú�ú
Ë!Â�Ì�ïzÜÓÆ0Ä	,½Ò0À2À¬ñ��:�2Ì¨Æ�Æ�Çx��ú
Ë!Â�Ì�ïzÜÓÆ0Ä�"!Ò�Ã0Ä0ÅnñzÔ½ú
Ë!Â�Ì�ïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú

ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄ��Óú

~ ¯ r s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
ÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Ê"Â¨Ò�Çoñ1ú
If you study this program carefully, you will see that I added a number of

features to spruce it up a bit. All graphical objects support methods for changing

color. I have set the background color of the window to white (by default it’s

gray).

ÛÎÒ1Ç�ïôÜ�Æ0ÄP�XÂ¨Ñ�Î+�0Ì�ÁÓÉ�ÇXÃæñ��zÛ2Å"ÒxÄ�Æ_��ú
I have also changed the color of the

Ë!Â�Ì
object. The following line asks the

bar to color its interior green (because it’s money, you know):

Ë!Â�ÌcïôÜ�Æ0Ä�,!Ò�À�À¬ñ����0Ì�Æ�ÆÓÇ��Óú
You can also change the color of a shape’s outline using the

Ü�Æ�Ä Ä É¨ÄXÀ¨Ò�Ç½Æ
method.

In this case, I have chosen to leave the outline the default black so that the bars

stand out from each other. To enhance this effect, this code makes the outline

wider (two pixels instead of the default one).

Ë!Â�ÌcïôÜ�Æ0ÄC"ÎÒÓÃ2Ä0Åoñ�ÔXú
You might also have noted the economy of notation in drawing the labels.

Since we don’t ever change the labels, saving them into a variable is unnecessary.

We can just create a
�¨Æ��0Ä

object, tell it to draw itself, and be done with it. Here

is an example:��ÆC�2Ä�ñ`Ø�Á�Ò�Ç¨ÄTñ�Ô0ÕTõ`Ô2Þ�Õ½úVõ®� ÕnïùÕ!À��vú¬ïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú
Finally, take a close look at the use of the

Ï�Æ¨Â�Ì
variable in the loop.

Í¨Á�Ì9Ï�Æ�Â�ÌÿÒ�ÇÐÌ�ÂÓÇ+�¨Ææñ1Ö�õvÖ�Ö2ú÷
The expression

ÌXÂÓÇ+�¨Æ¬ñ�Ö�õvÖ�Ö0ú
produces a sequence of ints 1–10. The loop in-

dex variable
Ï�Æ�Â�Ì

marches through this sequence on successive iterations of the

loop. So, the first time through
Ï�Æ¨Â�Ì

is 1, then 2, then 3, etc., up to 10. The

value of
Ï�Æ¨Â�Ì

is then used to compute the proper position of the lower left corner

of each bar.��À2À?ßPÏ�Æ�Â�Ì=;?Ô	'Pá�@�Õ
I hope you are starting to get the hang of graphics programming. It’s a bit

strenuous, but very addictive.

´0� ¹0�0s(t��x��� $ ���GsX�Ó�Ó}�� $ �vu�y|{ô� ~ ¯ �
º=^�ê �b��G��[XWpe��I l�G��g1·§WpeciTU�RT[

The lion’s share of the work in designing the
Í�É�Ä�9XÂ�À �0ÌXÂ�2Å

program was in de-

termining the precise coordinates where things would be placed on the screen.

Most graphics programming problems require some sort of a coordinate trans-

formation to change values from a real-world problem into the window coordi-

nates that get mapped onto the computer screen. In our example, the problem

domain called for] values representing the year (0–10) and ` values represent-

ing monetary amounts ($0–$10,000). We had to transform these values to be

represented in a 320 x 240 window. It’s nice to work through an example or two

to see how this transformation happens, but it makes for tedious programming.

Coordinate transformation is an integral and well-studied component of com-

puter graphics. It doesn’t take too much mathematical savvy to see that the

transformation process always follows the same general pattern. Anything that

follows a pattern can be done automatically. In order to save you the trouble

of having to explicitly convert back and forth between coordinate systems, the�2Ì�Â�2Å"Ò�Ñ�Ü
module provides a simple mechanism to do it for you. When you cre-

ate a
ü ÌXÂ�2Å?"!Ò�Ç

you can specify a coordinate system for the window using theÜ�Æ�Ä�×2Á�Á0Ì�Ã!Ü
method. The method requires four parameters specifying the coor-

dinates of the lower-left and upper-right corners, respectively. You can then use

this coordinate system to place graphical objects in the window.

To take a simple example, suppose we just want to divide the window into

nine equal squares, Tic-Tac-Toe fashion. This could be done without too much

trouble using the default 200 x 200 window, but it would require a bit of arith-

metic. The problem becomes trivial if we first change the coordinates of the

window to run from 0 to 3 in both dimensions.

ó¡ÑÓÌ¨Æ¨Â�Ä�ÆÝÂ?Ã¨Æ0Í�ÂxÉ!À�ÄÝÔ2Õ�ÕC��Ô0Õ�ÕÈÛ!Ò�ÇXÃ�Á�Û
ÛÎÒ1Çàß ü Ì�Â��Å	"ÎÒ1Çnñ��!�!Ò2ÑC����Â�Ñ�����Á2Æ��Óú
óÿÜ�Æ�ÄÿÑ�Á2Á0Ì¨ÃXÒ�Ç½Â�Ä�ÆXÜ Ä¨Á6�¨ÁPÍ2Ì¨ÁxÊ ñôÕTõ`Õ½ú7Ò�ÇàÄ�Å½ÆÝÀ2Á�ÛXÆ�ÌÐÀ2Æ0Í2Ä
ó Ä�Á ñzÞ�õ`Þ½ú7Ò�ÇÐÄ�Å½ÆÈÉ	�½Æ�ÌPÌ!Ò���Å�Ä�ï
ÛÎÒ1Ç�ïôÜ�Æ0Ä¨×�Á2Á0Ì¨Ã½Ü�ñôÕnïðÕ�õîÕnïðÕ�õ�ÞnïùÕTõ ÞoïðÕ!ú
ó��¨Ì�Â�Û 9¨Æ0Ì�Ä½Ò�Ñ�Â�ÀPÀ¨Ò�Ç½ÆXÜ�!Ò1Ç½Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñ�Ö(õ`Õ½úVõ Ø�Á�Ò�Ç�Ä�ñ�Ö(õ`Þ!ú2ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú�!Ò1Ç½Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñ�Ôæõ`Õ½úVõ Ø�Á�Ò�Ç�Ä�ñ�Ôæõ`Þ!ú2ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
ó��¨Ì�Â�ÛPÅXÁ0Ì!Ò�D¨ÁÓÇ�ÄXÂ2À?À¨Ò�Ç½ÆXÜ

~ ¯�¯ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
�!Ò1Ç½Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñzÕ�õ�Ö0úVõ Ø�Á�Ò�Ç�Ä�ñzÞ�õ�Ö2ú2ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú�!Ò1Ç½Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñzÕ�õôÔXúVõ Ø�Á�Ò�Ç�Ä�ñzÞ�õôÔ½ú2ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
Another benefit of this approach is that the size of the window can be changed

by simply changing the dimensions used when the window is created (e.g.
Û!Ò�Ç

ß ü Ì�Â�2Å?"ÎÒ1Çnñ��:�!Ò2ÑC���XÂ�Ñ����¨Á�Æ��!õ Þ�Õ2ÕTõ Þ�Õ2Õ!ú
). Because the same coordinates span

the window (due to
Ü�Æ�Ä�×�Á2Á0Ì�Ã!Ü

) the objects will scale appropriately to the new

window size. Using “raw” window coordinates would require changes in the

definitions of the lines.

We can apply this idea to simplify our graphing future value program. Ba-

sically, we want our graphics window to go from 0 through 10 (representing

years) in the] dimension and from 0 to 10,000 (representing dollars) in the `dimension. We could create just such a window like this.

ÛÎÒ1Çàß ü Ì�Â��Å	"ÎÒ1Çnñ���¢1Ç?9�Æ½Ü�Ä�Ê!Æ�Ç�Ä ü Ì�Á�Û�Ä0Åà×ÓÅ!Â�Ì�Ä��!õ�Þ¨Ô0ÕTõ Ô�@¨Õ½ú
ÛÎÒ1Ç�ïôÜ�Æ0Ä¨×�Á2Á0Ì¨Ã½Ü�ñôÕnïðÕ�õîÕnïðÕ�õfÖxÕoïðÕ�õªÖxÕ�Õ2Õ�ÕoïðÕ!ú
Then creating a bar for any values of

Ï�Æ¨Â�Ì
and

¨Ì!Ò1Ç"Ñ�ÒG!Â2À
would be simple.

Each bar starts at the given year and a baseline of 0 and grows to the next year

and a height equal to
¨Ì!Ò�ÇÎÑ�ÒG!Â�À

.

Ë!Â�ÌÝß-�XÆ�ÑÓÄXÂxÇ��¨À2ÆæñèØ�Á�Ò�Ç�Ä�ñ`Ï¨Æ¨Â�Ìoõ Õ!ú�õ¢Ø�ÁXÒ1Ç�Ä�ñ`Ï�Æ�Â�Ì�á"Ö�õ �Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú�ú
There is a small problem with this scheme. Can you see what I have forgot-

ten? The bars will fill the entire window; we haven’t left any room for labels or

margins around the edges. This is easily fixed by expanding the coordinates of

the window slightly. Since our bars start at 0, we can locate the left side labels

at -1. We can add a bit of whitespace around the graph by expanding the co-

ordinates slightly beyond that required for our graph. A little experimentation

leads to this window definition:

ÛÎÒ1Çàß ü Ì�Â��Å	"ÎÒ1Çnñ���¢1Ç?9�Æ½Ü�Ä�Ê!Æ�Ç�Ä ü Ì�Á�Û�Ä0Åà×ÓÅ!Â�Ì�Ä��!õ�Þ¨Ô0ÕTõ Ô�@¨Õ½ú
ÛÎÒ1Ç�ïôÜ�Æ0Ä¨×�Á2Á0Ì¨Ã½Ü�ñ&�!Öïùþ?'æõë��Ô0Õ�Õæõ Ö�ÖVï�'�õ�ÖxÕ�@�Õ�Õ½ú

Here is the program again, using the alternative coordinate system:

ó9Í�É¨Ä	9�Â�À	Ì��2Ì�Â��Å½Ôoï>�Ï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

´0� ¹0�0s(t��x��� $ ���GsX�Ó�Ó}�� $ �vu�y|{ô� ~ ¯ ´

ó=¢1Ç¨Ä�Ì�Á0Ã�ÉÎÑÓÄ!Ò�Á�Ç�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê�!À0Á0Ä!Ü;Ä0Å½Æ6�0Ì�Á�Û¨Ä0ÅÐÁ2ÍÐÂÿÖxÕ	��Ï¨Æ¨Â�ÌàÒ�Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä�ïG�
ó ü Æ�Ä-�Ì!Ò1Ç"Ñ2Ò�!Â2ÀPÂÓÇ�ÃàÒ�Ç¨Ä�Æ�Ì�Æ½Ü�ÄPÌXÂ�Ä�Æ�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�À¨Ò�D¨Æ0ÃÐÒ1Ç�Ä�Æ�Ì�ÆXÜxÄ?Ì�Â�Ä¨Æn÷���ú
óÝ×0Ì¨Æ¨Â�Ä¨Æ9Â6�2Ì�Â��ÅÎÒ�Ñ�ÜªÛÎÒ1ÇXÃ�Á�Û9ÛÎÒxÄ0Å¡À2ÂÓËXÆ¨ÀXÜ;Á�ÇÿÀ2Æ0Í2ÄÐÆ0Ã	�¨Æ
ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ���¢1Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä ü Ì¨Á�Û�Ä0Åà×ÓÅ!Â�Ì2Ä��!õ¢Þ¨Ô0ÕTõ Ô�@¨Õ!ú
ÛÎÒ1Ç�ïzÜÓÆ0ÄP�XÂ�Ñ�Î+�0Ì�Á�É2ÇXÃæñ���Û0Å"ÒxÄ�Æ_��ú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñ!�½Öïùþ?'�õÒ��Ô0Õ�Õæõ Ö�Öï0'�õfÖ�Õ�@�Õ�Õ!ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ Õ!úVõ�� ÕoïðÕ�À��vúïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õlÔ	'2Õ2Õ!ú�õ�� Ôoï0'�À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ°'2Õ�Õ2Õ!ú�õ��î'oïùÕ!À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ þ?'2Õ2Õ!ú�õ�� þnï0'�Î���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ�ÖxÕ�Õ2Õ�Õ½úVõ��vÖxÕnïùÕ!À��vú¬ïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú
ó��¨Ì�Â�ÛPË!Â�ÌÝÍ¨Á�ÌÿÒ�Ç"ÒxÄ!Ò�Â�Àè¨Ì!Ò�ÇÎÑ�ÒG!Â�À
Ë!Â�ÌÝß-�XÆXÑxÄXÂxÇ���À0ÆæñèØ�ÁXÒ1Ç�Ä�ñzÕTõîÕ½úVõ¢Ø�Á�Ò�Ç¨ÄTñ�Ö(õ1�Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú�ú
Ë!Â�ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ����2Ì¨Æ�ÆÓÇ���ú
Ë!Â�ÌcïzÜÓÆ0ÄC"ÎÒ�Ã0Ä0Åoñ�Ô½ú
Ë!Â�ÌcïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç(ú
ó��¨Ì�Â�Û¡Â Ë!Â�ÌÝÍ¨Á�ÌÐÆ¨Â�Ñ1Å»Ü1É2Ë(Ü�ÆCí�ÉXÆ�Ç�Ä7Ï�Æ�Â�Ì
Í¨Á�Ì9Ï�Æ¨Â�Ì¡Ò�ÇàÌ�ÂÓÇ���Ææñ1Ö�õ�Ö2Ö2ú÷�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú

Ë!Â�ÌÝß-��ÆXÑxÄXÂÓÇ+��À0Ææñ`Ø¨ÁXÒ1Ç�ÄTñèÏ�Æ�Â�Ìnõ Õ½úVõ¢Ø¨ÁXÒ�Ç¨ÄTñèÏ�Æ¨Â�Ì¨áÎÖ�õ �Ì!Ò1Ç"Ñ2Ò�!Â2À½ú2ú
Ë!Â�Ì�ïzÜÓÆ0Ä	,½Ò0À2À¬ñ��:�2Ì¨Æ�Æ�Çx��ú
Ë!Â�Ì�ïzÜÓÆ0Ä�"!Ò�Ã0Ä0ÅnñzÔ½ú
Ë!Â�Ì�ïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú

ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄcïu��úÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú
Ê"Â¨Ò�Çoñ1ú
Notice how the cumbersome coordinate calculations have been eliminated. This

version also makes it easy to change the size of the
ü Ì�Â��Å	"ÎÒ1Ç

. Changing the

window size to 640 x 480 produces a larger, but correctly drawn bar graph. In

~ ¯ ¹ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
the original program, all of the calculations would have to be redone to accom-

modate the new scaling factors in the larger window.

Obviously, the second version of our program is much easier to develop and

understand. When you are doing graphics programming, give some consider-

ation to choosing a coordinate system that will make your task as simple as

possible.

º=^IH J`eoU�Rcg1i�S�UXWZYTR|Îªg1i�¤§bhW�S[
Graphical interfaces can be used for input as well as output. In a GUI envi-

ronment, users typically interact with their applications by clicking on buttons,

choosing items from menus, and typing information into on-screen text boxes.

These applications use a technique called event-driven programming. Basically,

the program draws a set of interface elements (often called widgets) on the

screen, and then waits for the user to do something.

When the user moves the mouse, clicks a button or types a key on the key-

board, this generates an event. Basically, an event is an object that encapsulates

data about what just happened. The event object is then sent off to an appropri-

ate part of the program to be processed. For example, a click on a button might

produce a button event. This event would be passed to the button handling code,

which would then perform the appropriate action corresponding to that button.

Event-driven programming can be tricky for novice programmers, since it’s

hard to figure out “who’s in charge” at any given moment. The
�2ÌXÂ��ÅÎÒ�Ñ¨Ü

module

hides the underlying event-handling mechanisms and provides two simple ways

of getting user input in a
ü Ì�Â��Å	"ÎÒ1Ç

.

×�È5û�ÈSÊ ü i+t�tGl�wm� ¶ vxr�s�iÅªgÙnl��<ý?s
We can get graphical information from the user via the

��Æ0Ä0öXÁ�É"Ü�Æ
method of theü Ì�Â�2Å?"ÎÒ1Ç

class. When
�¨Æ�Ä2öXÁÓÉ(ÜÓÆ

is invoked on a
ü Ì�Â�2Å?"ÎÒ1Ç

, the program pauses

and waits for the user to click the mouse somewhere in the graphics window.

The spot where the user clicks is returned to the program as a
Ø�Á�Ò�Ç�Ä

. Here is a

bit of code that reports the coordinates of ten successive mouse clicks:

Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
ÛÎÒ1Çàß ü Ì�Â��Å	"ÎÒ1Çnñ��v×¨À¨Ò�Ñ�ÎÈöXÆ �u�Óú
Í¨Á�ÌÿÒ9Ò�ÇàÌXÂxÇ���Ææñ�Ö�Õ!ú÷

´2� ¿2�?K ��y|{�}�u ³ y $, {"ËV}�uxw�t $ ³ � ~ ¯ ¿

àßPÛÎÒ�ÇhïB��Æ0Ä2ö�Á�É"Ü�Ææñ�ú�Ì½Ò�Ç�Ä��/��ÁÓÉ Ñ0À¨Ò�Ñ�Î�Æ2Ãòñ*��ÃTõ���Ã!úm�¯� ñ0hïB��Æ0Ä�Ðæñ1ú�õ �ïF�¨Æ�ÄC�Tñ�ú�ú
The value returned by

�¨Æ�Ä2ö�Á�É(ÜÓÆæñ�ú
is a ready-made

Ø�ÁXÒ1Ç�Ä
. We can use it like

any other point using accessors such as
��Æ0ÄCÐ

and
��Æ0ÄP�

or other methods such asÃ2Ì�Â�Û
and

Ê!ÁC9�Æ
.

Here is an example of an interactive program that allows the user to draw

a triangle by clicking on three points in a graphics window. This example is

completely graphical, making use of
��ÆC�2Ä

objects as prompts. No interaction

with a Python text window is required. If you are programming in a Windows

environment, you can name this program using a
ï>�Ï0Û

extension. Then when

the program is run, it will not even display the Python shell window.óPØ�Ì¨Á��0ÌXÂ�Ê_÷îÄ�Ì½Ò0ÂxÇ���À0Ænï>�Ï2Û
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ��H�¨ÌXÂÓÛÝÂ-�2Ì!Ò0ÂxÇ��¨À2Æ��Óú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñzÕoïðÕ�õ ÕoïðÕ�õfÖxÕoïðÕTõªÖ�ÕnïùÕ!ú
ÊÎÆXÜ�Ü�Â��¨Æ?ß6�¨Æ��0ÄTñ`Ø¨ÁXÒ1Ç�ÄTñ&'�õ Õnï0'½úVõè�v×¨À¨Ò�Ñ�ÎÝÁ�ÇÐÄ0Å¨Ì�Æ2Æ8½Á�Ò�Ç�Ä!Ü��Óú
ÊÎÆXÜ�Ü�Â��¨ÆoïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
ó ü Æ�ÄàÂÓÇXÃ9Ã0ÌXÂÓÛÝÄ0Å�Ì¨Æ�Æ�9¨Æ0Ì2Ä!Ò�Ñ�Æ½Ü Á0ÍPÄ�Ì½Ò0ÂÓÇ+��À0ÆVÖ ßPÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1úVÖVïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú!Ô?ßPÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1ú!ÔTïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú½ÞPßPÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1ú½ÞoïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
ó7Ù(ÜÓÆ?Ø�Á¨À�Ï?��Á�ÇàÁÓË ï Æ�ÑÓÄPÄ¨ÁPÃ2Ì�Â�ÛÝÄ0ÅXÆ?Ä�Ì½Ò0ÂÓÇ+��À0ÆÄ�Ì½Ò0ÂÓÇ+��À0Æ7ß9Ø�Á�À�Ï?��Á�Çoñ0VÖ(õF½Ô�õFXÞ!ú
Ä�Ì½Ò0ÂÓÇ+��À0ÆnïzÜÓÆ0Ä�,!Ò0À2À¬ñ��&½Æ�Â�Ñ1Å	0ÉXÍ�Í��Óú
Ä�Ì½Ò0ÂÓÇ+��À0ÆnïzÜÓÆ0Ä Ä É�Ä�À�Ò1Ç½Ææñ��xÑxÏXÂ�Ç���ú
Ä�Ì½Ò0ÂÓÇ+��À0ÆnïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç(ú
ó-"½Â¨ÒÓÄÝÍ¨Á�ÌàÂÓÇXÁ0Ä0ÅXÆ0Ì¡Ñ�À�Ò2Ñ�Î9Ä¨Á9Æ��½ÒxÄ
ÊÎÆXÜ�Ü�Â��¨ÆoïzÜ�Æ�Ä	�¨Æ��2Ä�ñ��v×¨À�Ò2Ñ�Î?ÂxÇ�Ï2Û0Å½Æ�Ì�ÆÈÄ¨Á6í�ÉÎÒÓÄcïu��ú
ÛÎÒ1Ç�ïB��Æ0Ä0öXÁ�É"Ü�Æ¬ñ1ú

Ê"Â¨Ò�Çoñ1ú

~ ¯ â s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
The three-click triangle illustrates a couple new features of the

�2ÌXÂ��ÅÎÒ�Ñ¨Ü
module. There is no triangle class; however there is a general class

Ø�Á�À�Ï	�¨Á�Ç
that can be used for any multi-sided, closed shape. The constructor for

Ø¨Á¨À�Ï?�¨ÁÓÇ
accepts any number of points and creates a polygon by using line segments to

connect the points in the order given and to connect the last point back to the

first. A triangle is just a three-sided polygon. Once we have three
Ø�Á�Ò�Ç�Ä!Ü �Ö

,!Ô
, and

XÞ
, creating the triangle is a snap.

Ä�Ì½Ò0ÂxÇ���À0Æ?ßPØ�Á�À�Ï	�¨Á�Çoñ0�Ö�õ ½Ô�õ#XÞ!ú
You should also study how the

��ÆC�2Ä
object is used to provide prompts. A

single
�¨Æ��2Ä

object is created and drawn near the beginning of the program.

ÊÎÆXÜ�Ü�ÂC�¨Æ7ß6��Æ��0ÄTñèØ�ÁXÒ1Ç�Ä�ñ!'�õ Õnï0'½ú�õè��×¨À¨Ò�Ñ�ÎÐÁ�ÇÐÄ�Å�Ì�Æ2Æ8½Á�Ò�Ç¨ÄÎÜ��Óú
ÊÎÆXÜ�Ü�ÂC�¨ÆoïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú
To change the prompt, we don’t need to create a new

��ÆC�2Ä
object, we can just

change the text that is displayed. This is done near the end of the program with

the
Ü�Æ�Ä	�¨Æ��2Ä

method.

ÊÎÆXÜ�Ü�ÂC�¨ÆoïzÜÓÆ0Ä	�¨Æ��0ÄTñ��v×¨À¨Ò�Ñ�Î?ÂxÇ�Ï0Û2Å½Æ�Ì�Æ Ä�Á6í�ÉÎÒÓÄ�ïG��ú
As you can see, the

�¨Æ�Ä2ö�Á�É(ÜÓÆ
method of

ü ÌXÂ��Å?"!Ò�Ç
provides a simple way of

interacting with the user in a graphics-oriented program.

×�È5û�È�Ç þ �*wj�$Ùnl�wm��ÿ i��+t�r��3Ù ä>w�Í$rmt
In the triangle example, all of the input was provided through mouse clicks.

The
�0ÌXÂ�2Å"Ò2Ñ¨Ü

module also includes a simple / Ç¨Ä�Ì�Ï object that can be used to

get keyboard input in a
ü ÌXÂ��Å?"!Ò�Ç

.

An / Ç�Ä2Ì�Ï object draws a box on the screen that can contain text. It un-

derstands
ÜÓÆ0Ä���Æ��0Ä

and
�¨Æ�Ä	�¨Æ��2Ä

methods just like the
��Æ��0Ä

object does. The

difference is that the contents of an / Ç�Ä2Ì�Ï can be edited by the user. Here’s a

version of the temperature conversion program from Chapter 2 with a graphical

user interface:

ó¡Ñ�ÁÓÇ+9¨Æ0Ì�Ä+ÌC��É"Ò�ï>�Ï0Û
óPØ�Ì¨Á��0ÌXÂ�ÊÐÄ�ÁàÑ�ÁÓÇ+9¨Æ0Ì�Ä9×�Æ¨À�Ü2Ò1É(Ü Ä¨Á-,XÂÓÅ¨Ì�ÆÓÇ�Å½Æ�ÒÓÄ É(Ü2Ò1Ç��ÐÂàÜ0Ò�Ê+½À2Æ
ó �2Ì�Â��ÅÎÒ�Ñ�Â�À9Ò1Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�Ænï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;

´2� ¿2�?K ��y|{�}�u ³ y $, {"ËV}�uxw�t $ ³ � ~ ¯ é

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ��v×�Æ¨À�Ü2Ò1É(Üª×�ÁÓÇ+9�Æ�Ì�Ä¨Æ0Ì��!õ¢Þ2Õ�ÕTõ Ô0Õ�Õ½ú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñzÕoïðÕ�õ ÕoïðÕ�õ�ÞnïùÕTõÆ@�ïùÕ!ú
ó��¨Ì�Â�ÛÝÄ0ÅXÆàÒ�Ç¨Ä�Æ0Ì�Í�Â¨Ñ�Æ��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ö(õ`Þ!ú�õü� ×2Æ¨À�Ü2Ò�É"Ü§��Æ�Ê+XÆ0ÌXÂ�Ä0É¨Ì�Æn÷u��úïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ö(õ�Ö2ú�õü�:,XÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄ-��Æ�Ê+XÆ0ÌXÂ�Ä0É¨Ì�Æn÷u��úïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
Ò�Ç��É�ÄPß / Ç�Ä2Ì�ÏTñèØ�Á�Ò�Ç�Ä�ñ�Ôæõ`Þ!ú�õ#'½úÒ�Ç��É�Ä�ïzÜÓÆ0Ä	�¨Æ��0ÄTñ��vÕnïùÕ���ú
Ò�Ç��É�Ä�ïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú
Á�É¨ÄC�É¨Ä9ß6��ÆC�2Ä�ñ`Ø�Á�Ò�Ç¨ÄTñ�Ôæõ�Ö0úVõ�����ú
Á�É¨ÄC�É¨ÄcïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
Ë�É¨Ä�Ä�ÁÓÇÐß6��ÆC�2Ä�ñ`Ø�Á�Ò�Ç¨ÄTñ�ÖVï�'æõôÔoïùÕ!ú�õ���×2Á�Ç?9�Æ�Ì�Ä�¢xÄ$��ú
Ë�É¨Ä�Ä�ÁÓÇ�ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú�XÆ�ÑÓÄXÂxÇ��¨À2ÆæñèØ�Á�Ò�Ç�Ä�ñ�Ö(õ�Öï0'½ú�õ Ø�Á�Ò�Ç�Ä�ñ�ÔæõôÔoï0'½ú2ú¬ïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç(ú
ó?Û½Â¨ÒÓÄÝÍ¨Á�ÌàÂ ÊÎÁÓÉ(Ü�ÆàÑ�À�Ò2Ñ�Î
ÛÎÒ1Ç�ïB��Æ0Ä0öXÁ�É"Ü�Æ¬ñ1ú
ó¡Ñ�ÁÓÇ+9�Æ�Ì�Ä¡Ò1Ç	2É�Ä
Ñ�Æ�ÀXÜ2Ò1É(Ü;ßÝÆ�9XÂ2À¬ñvÒ1Ç	2É�ÄcïF�¨Æ�Ä	��ÆC�2Ä�ñ1ú�ú
Í�ÂxÅ�Ì�ÆÓÇ�ÅXÆXÒÓÄ?ßÝýnïùÕ?�	'TïðÕ5;ÝÑ�Æ¨ÀXÜ0Ò�É"Ü áÐÞ¨Ô
ó9Ã½Ò�ÜG!À2Â�ÏÝÁÓÉ�Ä��É�ÄÝÂÓÇXÃ¡Ñ1Å!ÂxÇ��¨Æ;Ë�É�Ä2Ä�ÁÓÇ
Á�É¨ÄC�É¨ÄcïôÜ�Æ0Ä���ÆC�2ÄTñ��4��Õnï�Ö1Í$�°�9Í¨ÂÓÅ�Ì¨Æ�Ç2Å½ÆXÒxÄ"ú
Ë�É¨Ä�Ä�ÁÓÇ�ïôÜ�Æ0Ä���ÆC�2ÄTñ��í�xÉ"ÒÓÄ$��ú
ó?Û½Â¨ÒÓÄÝÍ¨Á�ÌÿÑ0À¨Ò�Ñ�ÎÐÂÓÇXÃPÄ�Å½ÆÓÇ(í�É"ÒxÄ
ÛÎÒ1Ç�ïB��Æ0Ä0öXÁ�É"Ü�Æ¬ñ1ú
ÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Ê"Â¨Ò�Çoñ1ú
When run, this produces a window with an entry box for typing in a Celsius

temperature and a “button” for doing the conversion. The button is just for show.

The program actually just pauses for a mouse click anywhere in the window.

Figure
�
.
�

shows how the window looks when the program starts.

Initially, the
Ò�Ç��É�Ä

entry box is set to contain the value 0.0. The user can

~z´�% s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �

Figure
�
.
�
: Initial screen for graphical temperature converter.

delete this value and type in another temperature. The program pauses until

the user clicks the mouse. Notice that the point where the user clicks is not even

saved; the
�¨Æ�Ä2öXÁÓÉ(ÜÓÆ

function is just used to pause the program until the user

has a chance to enter a value in the input box.

The program then processes the input in four steps. First, the text in the

input box is converted into a number (via
Æ�9XÂ�À

). This number is then converted

to degrees Fahrenheit. Finally, the resulting number is turned back into a string

(via the string formatting operator) for display in the
Á�É�Ä��É¨Ä

text area.

Figure
�
.
���

shows how the window looks after the user has typed an input

and clicked the mouse. Notice that the converted temperature shows up in the

output area, and the label on the button has changed to “Quit” to show that

clicking again will exit the program. This example could be made much prettier

using some of the options in the graphics library for changing the colors, sizes

and line widths of the various widgets. The code for the program is deliberately

Spartan to illustrate just the essential elements of GUI design.

Although the basic tools
��Æ0Ä2ö�Á�É"Ü�Æ

and / Ç�Ä2Ì�Ï do not provide a full-fledged

GUI environment, we will see in later chapters how these simple mechanisms

can support surprisingly rich interactions.

´0� â0�KËV}�uxw�t $ ³ ��ä§������± {TE2{ôå {�}�{�� ³ { ~z´0~

Figure
�
.
���

: Graphical temperature converter after user input.

º=^I[Îªg1i�¤§bhW�S[»km�G·G¦�j RQ?îR�ì�Rhg1Rce�S¬R
The examples in this chapter have touched on most of the elements in the�2Ì�Â�2Å"Ò�Ñ�Ü

module. This section provides a complete reference to the objects and

functions provided in the graphics library. The set of objects and functions that

are provided by a module is sometimes called an Applications Programming In-

terface or API. Experienced programmers study APIs to learn about new libraries.

You should probably read this section over once to see what the graphics library

has to offer. After that, you will probably want to refer back to this section often

when you are writing your own graphical programs.

×�È���ÈSÊ ü �B��Í ��³l�w��S¾I¿!im��tus
A
ü ÌXÂ��Å	"ÎÒ�Ç

object represents a window on the screen where graphical images

may be drawn. A program may define any number of
ü Ì�Â��Å	"ÎÒ1Ç

s. A
ü Ì�Â��Å	"ÎÒ1Ç

understands the following methods:ü Ì�Â�2Å?"ÎÒ1ÇnñèÄ!ÒÓÄ�À2Æ�õ Û!Ò�Ã2Ä�ÅcõîÅXÆXÒ���Å�ÄÎú
Constructs a new graphics window for draw-

ing on the screen. The parameters are optional, the default title is “Graph-

ics Window,” and the default size is 200 x 200.!À0Á0Ä�ñë�oõ Ïnõ Ñ�Á�À2Á�Ì"ú
Draws the pixel at R^]�G ` T in the window. Color is optional,

black is the default.

~z´�r s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
!À0Á0Ä2Ø!Ò���Æ¨Àñë�oõ Ïnõ ×2Á¨À2Á�Ì"ú

Draws the pixel at the “raw” position R^]�G ` T ignoring

any coordinate transformations set up by
Ü�Æ�Ä�×2Á�Á0Ì�Ã!Ü

.

Ü�Æ�ÄC��Â�Ñ�Î?�2Ì¨Á�É�Ç�Ã�ñ�Ñ�Á¨À0Á0ÌÎú
Sets the window background to the given color. The

initial background is gray. See Section 5.8.5 for information on specifying

colors.

Ñ0À0Á½ÜÓÆæñ1ú
Closes the on-screen window.�¨Æ�Ä2ö�Á�É(ÜÓÆæñ�ú

Pauses for the user to click a mouse in the window and returns

where the mouse was clicked as a
Ø�Á�Ò�Ç�Ä

object.

Ü�Æ�Ä�×2Á�Á0Ì�Ã!Ü(ñë��À2À�õ ÏXÀ2À�õÆ��É¨ÌnõlÏ�É�ÌÎú
Sets the coordinate system of the window.

The lower left corner is R^]�ûSûqG ` ûSû7T and the upper right corner is R^]���ömG ` �möCT .All subsequent drawing will be done with respect to the altered coordinate

system (except for
!À0Á0Ä2Ø!Ò���Æ¨À

).

×�È���È�Ç ü �B��Í �3l��	s �½¾�¿&i��Ctus
The module provides the following classes of drawable objects:

Ø¨ÁXÒ1Ç�Ä
,
�½Ò�Ç½Æ

,×XÒxÌ!Ñ�À2Æ
,
Ä 9XÂ�À

,
��ÆXÑxÄXÂÓÇ+��À0Æ

,
Ø�Á�À�Ï	�¨Á�Ç

, and
��ÆC�2Ä

. All objects are initially created

unfilled with a black outline. All graphics objects support the following generic

set of methods:

Ü�Æ�Ä	,½Ò0À�ÀñvÑ�Á¨À2Á�Ì"ú
Sets the interior of the object to the given color.

Ü�Æ�Ä Ä É�ÄXÀ¨Ò�ÇXÆæñvÑ�Á¨À0Á0Ì"ú
Sets the outline of the object to the given color.

Ü�Æ�Ä�"!Ò�Ã2Ä�ÅnñB"Ò���Æ¨À�Ü¨ú
Sets the width of the outline of the object to this many pix-

els. (Does not work for
Ø�ÁXÒ1Ç�Ä

.)

Ã2Ì�Â�ÛTñ�Â ü ÌXÂ��Å?"!Ò�Ç(ú
Draws the object into the given

ü Ì�Â�2Å?"ÎÒ1Ç
.

É�Ç�Ã2Ì�Â�Ûoñ�ú
Undraws the object from a graphics window.

ÊÎÁ�9�Æ¬ñôÃ	�TõèÃ0Ï"ú
Moves the object

Ã	�
units in the] direction and

Ã0Ï
units in the` direction. If the object is currently drawn, the image is adjusted to the

new position.

Ñ0À0Á�ÇXÆæñ1ú
Returns a duplicate of the object. Clones are always created in an

undrawn state. Other than that, they are identical to the cloned object.

´0� â0�KËV}�uxw�t $ ³ ��ä§������± {TE2{ôå {�}�{�� ³ { ~z´��� �����	� � }��:�+�����
Ø�Á�Ò�Ç¨ÄTñë�TõðÏÎú

Constructs a point having the given coordinates.�¨Æ�Ä�Ðæñ1ú
Returns the] coordinate of a point.�¨Æ�ÄC��ñ1ú
Returns the ` coordinate of a point.� �n�+} � }����?�	���

�!Ò1Ç½Æ¬ñ0½Á�Ò�Ç¨Ä(Ö�õ ½Á�Ò�Ç¨ÄXÔ½ú
Constructs a line segment from

½Á�Ò�Ç�Ä"Ö
to
½Á�Ò�Ç�Ä�Ô

.

Ü�Æ�Ä Ú Ì�Ì�Á�ÛoñvÜxÄ�Ì½Ò�Ç+�Îú
Sets the arrowhead status of a line. Arrows may be drawn

at either the first point, the last point, or both. Possible values of
Ü�Ä�Ì½Ò�Ç��

are
�èÍXÒÓÌÎÜ�Ä��

,
�ôÀ2ÂXÜxÄU�

,
�pË½Á�Ä0Å��

, and
�pÇXÁ�Ç½ÆB�

. The default setting is
�pÇXÁ�Ç½ÆB�

.�¨Æ�Ä�×2Æ�Ç�Ä¨Æ0Ì�ñ1ú
Returns a clone of the midpoint of the line segment.�¨Æ�Ä�Ø"Ö"ñ1ú�õç�¨Æ�Ä�Ø�Ô¬ñ1ú

Returns a clone of the corresponding endpoint of the seg-

ment.

� ��zI���X} � }��:�?�	���
×XÒxÌ!Ñ�À2Ææñ�Ñ�ÆÓÇ�Ä�Æ�Ì�Ø¨ÁXÒ�Ç¨Änõ ÌXÂ�Ã½Ò1É(Ü¨ú

Constructs a circle with given center point and

radius.�¨Æ�Ä�×2Æ�Ç�Ä¨Æ0Ì�ñ1ú
Returns a clone of the center point of the circle.�¨Æ�Ä��XÂ0Ã½Ò1É(Ü(ñ1ú
Returns the radius of the circle.�¨Æ�Ä�Ø"Ö"ñ1ú�õç�¨Æ�Ä�Ø�Ô¬ñ1ú

Returns a clone of the corresponding corner of the circle’s

bounding box. These are opposite corner points of a square that circum-

scribes the circle.
 }����&�+�����X} � }��:�?�	���
�XÆ�ÑÓÄ�ÂÓÇ��¨À2Æ¬ñ0½Á�Ò�Ç¨Ä(Ö�õ XÁXÒ�Ç¨ÄXÔXú

Constructs a rectangle having opposite corners

at
XÁXÒ1Ç�Ä(Ö

and
½ÁXÒ1Ç�Ä�Ô

.�¨Æ�Ä�×2Æ�Ç�Ä¨Æ0Ì�ñ1ú
Returns a clone of the center point of the rectangle.�¨Æ�Ä�Ø"Ö"ñ1ú�õç�¨Æ�Ä�Ø�Ô¬ñ1ú

Returns a clone of corner points originally used to construct

the rectangle.

~z´ ¯ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ ��� �+� � }����?�	���
Ä 9�Â�Àñ0½Á�Ò�Ç¨Ä(Ö�õ ½Á�Ò�Ç¨ÄXÔ½ú

Constructs an oval in the bounding box determined by½ÁXÒ1Ç�Ä"Ö
and

½Á�Ò�Ç�Ä�Ô
.�¨Æ�Ä�×2Æ�Ç�Ä¨Æ0Ì�ñ1ú

Returns a clone of the point at the center of the oval.�¨Æ�Ä�Ø"Ö"ñ1ú�õç�¨Æ�Ä�Ø�Ô¬ñ1ú
Returns a clone of the corresponding point used to con-

struct the oval.� �m�������m� � }��:�?�	���
Ø�Á�À�Ï	�¨Á�Çoñ0XÁXÒ�Ç¨Ä(Ö(õ XÁXÒ�Ç¨ÄXÔæõ ½Á�Ò�Ç¨Ä�ÞTõ9ï�ï�ïzú

Constructs a polygon having the given

points as vertices. Also accepts a single parameter that is a list of the ver-

tices.�¨Æ�Ä�Ø¨ÁXÒ�Ç¨ÄÎÜ(ñ1ú
Returns a list containing clones of the points used to construct the

polygon.

yx}���� � }��:�+�����
��ÆC�2Ä�ñ�ÂÓÇÎÑ�ÅXÁ0Ì�Ø¨ÁXÒ1Ç�Änõ�Ü�Ä�Ì!Ò1Ç��!ú

Constructs a text object that displays the givenÜxÄ�Ì½Ò�Ç+�
centered at

ÂxÇ"Ñ1Å½Á0Ì2Ø�Á�Ò�Ç�Ä
. The text is displayed horizontally.

Ü�Æ�Ä	�¨Æ��2Ä�ñ�Ü�Ä�Ì!Ò1Ç��!ú
Sets the text of the object to

ÜxÄ2Ì!Ò�Ç+�
.�¨Æ�Ä	�¨Æ��2Ä�ñ1ú

Returns the current string.�¨Æ�Ä Ú Ç"Ñ�ÅXÁ0Ì�ñ1ú
Returns a clone of the anchor point.

Ü�Æ�Ä	,�Â�Ñ�Æ¬ñôÍ¨Â�Ê�Ò�À�ÏÎú
Changes the font face to the given

Í�Â1Ê�Ò0À�Ï
. Possible values

are:
�pÅXÆ¨À�9¨Æ0Ä½Ò�Ñ0Â$�

,
��Ñ�Á�É�Ì½Ò�Æ�Ì��

,
�ðÄ½Ò�ÊÎÆXÜ Ì�Á�Ê"ÂxÇ��

, and
�`Â�Ì!Ò�Â�À$�

.

Ü�Æ�Ä�Å¨Ò�D¨Æ¬ñ0XÁXÒ�Ç¨Ä"ú
Changes the font size to the given

XÁXÒ1Ç�Ä
size. Sizes from 5 to

36 points are legal.

Ü�Æ�Ä�Å�Ä�ÏXÀ0ÆæñvÜxÄ�Ï�À2Æ½ú
Changes font to the given

Ü�Ä�Ï�À2Æ
. Possible values are

�pÇ½Á�Ì�ÊÎÂ�ÀB�
,�pË½Á�À0Ã}�

,
�zÒÓÄ�Â�À�Ò2Ñ£�

, and
��Ë½Á�À0ÃàÒxÄXÂ�À¨Ò�Ñ©�

.

Ü�Æ�Ä	�¨Æ��2Ä¨×�Á�À2Á0Ì�ñvÑ�Á¨À2Á�Ì"ú
Sets the color of the text to

Ñ�Á�À2Á0Ì
. Note:

Ü�Æ�Ä	,!Ò�À�À
has

the same effect.

´0� â0�KËV}�uxw�t $ ³ ��ä§������± {TE2{ôå {�}�{�� ³ { ~z´�´
×�È���È�É �dwmt��l¤Å�S¾I¿!im��tus

Objects of type / Ç�Ä�Ì2Ï are displayed as text entry boxes that can be edited by

the user of the program. / Ç¨Ä�Ì�Ï objects support the generic graphics meth-

ods
ÊÎÁC9¨Ææñ�ú

,
Ã2ÌXÂÓÛoñÒ�2ÌXÂ��Å�ÛÎÒ�Ç(ú

,
É2ÇXÃ0ÌXÂ�ÛTñ1ú

,
ÜÓÆ0Ä�,!Ò0À2À¬ñ�Ñ�Á¨À0Á0ÌÎú

, and
Ñ�À2Á�ÇXÆæñ�ú

. The/ Ç¨Ä�Ì2Ï specific methods are given below.

/ Ç¨Ä�Ì2ÏTñvÑ�Æ�Ç¨Ä�Æ0Ì2Ø�Á�Ò�Ç�Äoõ ÛÎÒ�Ã0Ä0Å(ú Constructs an / Ç¨Ä�Ì�Ï having the given center point

and
Û!Ò�Ã0Ä0Å

. The
ÛÎÒÓÃ2Ä�Å

is specified in number of characters of text that can

be displayed.�¨Æ�Ä Ú Ç"Ñ�ÅXÁ0Ì�ñ1ú
Returns a clone of the point where the entry box is centered.�¨Æ�Ä	�¨Æ��2Ä�ñ1ú

Returns the string of text that is currently in the entry box.

Ü�Æ�Ä	�¨Æ��2Ä�ñ�Ü�Ä�Ì!Ò1Ç��!ú
Sets the text in the entry box to the given string. Changes

the font face to the given
Í¨Â�Ê(Ò0À�Ï

. Possible values are:
��Å½Æ�À�9�Æ�Ä!Ò2Ñ0ÂB�

,��Ñ�ÁÓÉ�Ì½Ò�Æ0ÌU�
,
�ðÄ½Ò�ÊÎÆXÜ Ì�Á�Ê"ÂxÇ��

, and
�ôÂ�Ì!Ò�Â�ÀB�

.

Ü�Æ�Ä�Å¨Ò�D¨Æ¬ñ0XÁXÒ�Ç¨Ä"ú
Changes the font size to the given

XÁXÒ1Ç�Ä
size. Sizes from 5 to

36 points are legal.

Ü�Æ�Ä�Å�Ä�ÏXÀ0ÆæñvÜxÄ�Ï�À2Æ½ú
Changes font to the given

Ü�Ä�Ï�À2Æ
. Possible values are:

��Ç½Á0ÌÓÊ"Â2ÀB�
,�pË½Á�À0Ã}�

,
�zÒÓÄ�Â�À�Ò2Ñ£�

, and
��Ë½Á�À0ÃàÒxÄXÂ�À¨Ò�Ñ©�

.

Ü�Æ�Ä	�¨Æ��2Ä¨×�Á�À2Á0Ì�ñvÑ�Á¨À2Á�Ì"ú
Sets the color of the text to

Ñ�Á¨À0Á0Ì
.

×�È���È � �¦lns�Í*Ù��C¤�l�w��=ä7�î�m��i�s
The graphics module also provides minimal support for displaying certain image

formats into a GraphWin. Most platforms will support JPEG, PPM and GIF im-

ages. Display is done with an
¢vÊÎÂC��Æ

object. Images support the generic methodsÊÎÁ�9�Æ¬ñôÃ	�TõèÃ0Ï"ú
,
Ã2Ì�Â�ÛTñë�2Ì�Â�2Å¨ÛÎÒ1Ç�ú

,
É2ÇXÃ2Ì�Â�ÛTñ1ú

, and
Ñ�À2ÁÓÇ½Ææñ�ú

. Image specific meth-

ods are given below.¢vÊÎÂC��ÆæñvÑ�Æ�Ç¨Ä�Æ0Ì2Ø�Á�Ò�Ç�Äoõ Í½Ò0À0Æ�Ç½Â�ÊÎÆ½ú
Constructs an image from contents of the given

file, centered at the given center point.�¨Æ�Ä Ú Ç"Ñ�ÅXÁ0Ì�ñ1ú
Returns a clone of the point where the image is centered.

~z´�¹ s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
×�È���È�× ü i_w�i_�0��tGl�wm� ª v$Ù�v*�0s

Colors are indicated by strings. Most normal colors such as
�ùÌ�Æ0ÃU�

,
�F2É�Ì�!À2ÆB�

,���0Ì�Æ2Æ�Ç��
,
��ÑÓÏ�ÂÓÇ��

, etc. should be available. Many colors come in various shades,

such as
�ðÌ¨Æ2ÃÎÖ �

,
�ùÌ�Æ0Ã�ÔB�

,
�ðÌ¨Æ2Ã¨ÞB�

,
�ðÌ�Æ0Ã	@}�

, which are increasingly darker shades

of red.

The graphics module also provides a function for mixing your own colors nu-

merically. The function
Ñ�Á¨À0Á0Ì Ì?��Ënñ`Ì¨Æ2ÃTõ°�2Ì¨Æ�ÆÓÇcõ Ë!ÀxÉ½Æ½ú

will return a string rep-

resenting a color that is a mixture of the intensities of red, green and blue spec-

ified. These should be ints in the range 0–255. Thus
Ñ�Á¨À0Á0Ì Ì?��ËnñzÔ	'	'æõ¢Õ�õ Õ!ú

is

a bright red, while
Ñ�Á�À2Á�Ì Ì	��Ëoñ�ÖxÞ2ÕTõlÕTõªÖxÞ2Õ!ú

is a medium magenta.

º=^Ia �b�i�¤nU�Rcg © ¦§�¥� ing1í

This chapter introduced computer graphics and object-based programming. Here

is a summary of some of the important concepts.

\ An object is a computational entity that combines data and operations.

Objects know stuff and can do stuff. An object’s data is stored in instance

variables, and its operations are called methods.

\ Every object is an instance of some class. It is the class that determines

what methods an object will have. An instance is created by calling a

constructor method.

\ An object’s attributes are accessed via dot notation. Generally computa-

tions with objects are performed by calling on an object’s methods. Acces-

sor methods return information about the instance variables of an object.

Mutator methods change the value(s) of instance variables.

\ The graphics module supplied with this book provides a number of classes

that are useful for graphics programming. A
ü ÌXÂ��Å?"!Ò�Ç

is an object that

represents a window on the screen for displaying graphics. Various graph-

ical objects such as
Ø�ÁXÒ1Ç�Ä

,
�½Ò�ÇXÆ

,
×XÒÓÌ½Ñ0À0Æ

,
�XÆ�ÑÓÄXÂxÇ��¨À2Æ

,
Ä 9XÂ2À

,
Ø�Á¨À�Ï?��Á�Ç

, and��Æ��0Ä
may be drawn in a

ü ÌXÂ��Å?"!Ò�Ç
. Users may interact with a

ü ÌXÂ�2Å?"!Ò�Ç
by clicking the mouse or typing into an / Ç�Ä2Ì�Ï box.

\ An important consideration in graphical programming is the choice of an

appropriate coordinate system. The graphics library provides a way of

automating certain coordinate transformations.

´2� ~!%0�?����{1} ³�$ ��{z� ~z´�¿

\ The situation where two variables refer to the same object is called alias-

ing. It can sometimes cause unexpected results. Use of the
Ñ0À0Á�ÇXÆ

method

in the graphics library can help prevent these situations.

º=^`]dc egfTRhg1S¬W�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. Using
�2ÌXÂ��ÅÎÒ�Ñ¨Ü¬ï7¨Ï

allows graphics to be drawn into a Python shell win-

dow.

2. Traditionally, the upper-left corner of a graphics window has coordinates

(0,0).

3. A single point on a graphics screen is called a pixel.

4. A function that creates a new instance of a class is called an accessor.

5. Instance variables are used to store data inside an object.

6. The statement
ÊXÏ�ÅÓÅ½Â�XÆnï�Ê!ÁC9¨Ææñ�Ö�ÕTõ`Ô2Õ!ú

moves
ÊXÏ�ÅÓÅ½Â�XÆ

to the point (10,20).

7. Aliasing occurs when two variables refer to the same object.

8. The
Ñ�Á��Ï

method is provided to make a copy of a graphics object.

9. A graphics window always has the title “Graphics Window.”

10. The method in the graphics library used to get a mouse click is
Ì�Æ�Â0Ã0ö�Á�É"Ü�Æ

.

� |��Q�!�����X}1�j�?������}
1. A method that returns the value of an object’s instance variable is called

a(n)

a) mutator b) function c) constructor d) accessor

2. A method that changes the state of an object is called a(n)

a) stator b) mutator c) constructor d) changor

3. What graphics class would be best for drawing a square?

a)
ÅCí�É!Â�Ì¨Æ

b)
Ø¨Á¨À�Ï	�¨ÁÓÇ

c)
�!Ò1Ç½Æ

d)
�XÆ�ÑÓÄXÂxÇ��¨À2Æ

~z´�â s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
4. What command would set the coordinates of

ÛÎÒ1Ç
to go from (0,0) in the

lower-left corner to (10,10) in the upper-right?

a)
ÛÎÒ1Ç�ïzÜÓÆ0Ä½Ñ�Á�Á�Ì¨Ã½Ü�ñ`Ø¨ÁXÒ1Ç�ÄTñôÕTõèÕ½ú�õ Ø�Á�Ò�Ç�Ä�ñ�Ö�ÕTõ�Ö�Õ!ú2ú

b)
Û!Ò�ÇhïzÜ�Æ�Ä!Ñ�Á�Á0Ì�Ã!Ü(ñ�ñzÕ�õ`Õ½úVõ ñ�Ö�ÕTõ�Ö�Õ!ú2ú

c)
ÛÎÒ1Ç�ïôÜ�Æ0Ä½Ñ�Á2Á0Ì¨Ã½Ü�ñôÕTõîÕTõ ÖxÕ�õfÖxÕ½ú

d)
ÛÎÒ1Ç�ïzÜÓÆ0Ä½Ñ�Á�Á�Ì¨Ã½Ü�ñ`Ø¨ÁXÒ1Ç�ÄTñ1ÖxÕ�õ�Ö1Õ!úVõ�Ø�ÁXÒ1Ç�Ä�ñzÕTõèÕ!ú2ú

5. What expression would create a line from (2,3) to (4,5)?

a)
�!Ò1Ç½ÆæñzÔ�õlÞTõÔ@oõî'Xú

b)
�½Ò�ÇXÆæñ�ñzÔ�õèÞ!úVõ ñë@Tõë'½ú2ú

c)
�!Ò1Ç½Æ¬ñ�Ô�õ°@oõ ÞTõî'Xú

d)
�!Ò1Ç½ÆæñèØ�Á�Ò�Ç�Ä�ñ�Ôæõ`Þ!ú�õ Ø�ÁXÒ1Ç�Ä�ñë@oõÒ'½ú2ú

6. What command would be used to draw the graphics object
Ü�Å!Â�XÆ

into the

graphics window
ÛÎÒ1Ç

?

a)
ÛÎÒ1Ç�ïùÃ0ÌXÂÓÛoñ�Ü�Å!Â�½Æ!ú

b)
Û!Ò�ÇhïzÜ1ÅXÁ�ÛTñ�Ü1Å½Â�XÆ!ú

c)
Ü1Å½Â�XÆnïùÃ0ÌXÂÓÛoñ1ú

d)
Ü1Å!Â�½ÆoïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú

7. Which of the following computes the horizontal distance between pointsVÖ
and

!Ô
?

a)
ÂÓË"Ü�ñ0�Ö���!Ô½ú

b)
½ÔoïF�¨Æ0ÄCÐ�ñ�ú8�8VÖVïB�¨Æ�Ä�Ðæñ1ú

c)
ÂÓË"Ü�ñBVÖïF�¨Æ�ÄC�Tñ�ú§�<½ÔoïB��Æ0ÄP�Tñ1ú2ú

d)
ÂÓË"Ü�ñ0�ÖïF�¨Æ0ÄCÐ�ñ�ú§�8½ÔoïB��Æ0ÄCÐ�ñ1ú2ú

8. What kind of object can be used to get text input in a graphics window?

a)
��ÆC�2Ä

b) / Ç�Ä2Ì�Ï c)
¢1Ç��É¨Ä

d)
À�Æ0Ï�Ë½Á¨Â�Ì¨Ã

9. A user interface organized around visual elements and user actions is

called a(n)

a) GUI b) application c) windower d) API

10. What color is
Ñ�Á¨À0Á0Ì Ì?��ËnñzÕ�õôÔ�'	'�õ`Ô	'�'½ú

?

a) yellow b) cyan c) magenta d) orange

� ���!��|?�&�:���m�
1. Pick an example of an interesting real-world object and describe it as a

programming object by listing its data (attributes, what it “knows”) and

its methods (behaviors, what it can “do”).

´2� ~!%0�?����{1} ³�$ ��{z� ~z´�é

2. Describe in your own words the object produced by each of the following

operations from the graphics module. Be as precise as you can. Be sure to

mention such things as the size, position, and appearance of the various

objects. You may include a sketch if that helps.

(a)
Ø�Á�Ò�Ç¨ÄTñ�Ö�Þ�Õ�õ�ÖxÞ2Õ!ú

(b)
Ñ7ßÝ×XÒxÌ!Ñ0À0ÆæñèØ�ÁXÒ1Ç�Ä�ñzÞ�Õ�õ�@�Õ!úVõ`Ô	'Xú
Ñ�ïzÜÓÆ0Ä�,!Ò0À2À¬ñ��pË!ÀxÉ½ÆB�vú
Ñ�ïzÜÓÆ0Ä Ä É�Ä�À�Ò1Ç½Ææñ��ðÌ¨Æ2ÃU��ú

(c)
ÌÐß-�XÆ�ÑÓÄXÂxÇ��¨À2ÆæñèØ�Á�Ò�Ç�Ä�ñ�Ô0ÕTõôÔ0Õ!ú�õ Ø�ÁXÒ1Ç�Ä�ñë@¨Õ�õ�@�Õ!ú�ú
ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ�Ñ�Á¨À0Á0Ì+Ì�Ì?��ËnñôÕTõôÔ�'	'¬õ�Ö�'2ÕXú�ú
ÌcïzÜÓÆ0ÄC"ÎÒ�Ã0Ä0ÅoñzÞ!ú

(d)
ÀPß6�!Ò1Ç½ÆæñèØ�Á�Ò�Ç�Ä�ñ�Ö�Õ�ÕTõvÖxÕ2Õ!úVõ Ø¨ÁXÒ1Ç�ÄTñ1ÖxÕ2ÕTõôÔ0Õ�Õ½ú�ú
ÀoïzÜÓÆ0Ä Ä É�Ä�À�Ò1Ç½Ææñ��ðÌ¨Æ2Ã	@}�vú
ÀoïzÜÓÆ0Ä Ú Ì�Ì¨Á�ÛTñ��èÍXÒÓÌ!ÜxÄ���ú

(e)
Ä 9�Â�Àñ`Ø�Á�Ò�Ç¨ÄTñ!'0ÕTõÒ'2Õ!ú�õ Ø�ÁXÒ1Ç�Ä�ñzø�Õ�õ�Ö�Õ�Õ!ú2ú

(f)
Ü1Å½Â�XÆPßPØ�Á¨À�Ï?��Á�ÇnñèØ�Á�Ò�Ç�Ä�ñ!'æõë'½ú�õ Ø�ÁXÒ1Ç�Ä�ñ�ÖxÕ�õ�Ö�Õ!úVõ Ø�Á�Ò�Ç¨ÄTñ!'æõ�Ö�Õ!úVõ Ø�Á�Ò�Ç¨ÄTñ�Ö�ÕTõÒ'½ú�ú
Ü1Å!Â�½ÆoïzÜ�Æ�Ä	,½Ò0À�Àñ��èÁ0ÌXÂxÇ���Æ}�vú

(g)
ÄÐß6��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ�Ö�Õ�ÕTõvÖxÕ2Õ!úVõY�&�XÆ�À�À2Á�"�Á0Ì�À0Ãj����ú
ÄcïzÜÓÆ0Ä�,XÂ�Ñ�Ææñ��xÑ�ÁÓÉ�Ì½Ò�Æ0Ì$��ú
ÄcïzÜÓÆ0Ä+Å�Ò�D�Ææñ1Öxø!ú
ÄcïzÜÓÆ0Ä+Å�Ä�Ï�À2Æ¬ñ��xÒxÄXÂ2À�Ò�Ñ���ú

3. Describe what happens when the following interactive graphics program

runs:

Í2Ì�Á�Ê=�2Ì�Â��ÅÎÒ�Ñ�Ü7Ò�Ê?½Á�Ì�Ä=;
Ã¨Æ2Í ÊÎÂ�Ò1Çnñ1ú÷

Û!Ò�Çàß ü Ì�Â�2Å?"ÎÒ1Çnñ�ú
Ü�Å!Â�½ÆPßÝ×XÒxÌ!Ñ�À2ÆæñèØ�Á�Ò�Ç�Ä�ñ!'0ÕTõë'0Õ!ú�õîÔ2Õ!ú
Ü�Å!Â�½ÆnïôÜ�Æ�Ä Ä É¨ÄXÀ¨Ò�Ç½Æ¬ñ���Ì�Æ2Ã���ú
Ü�Å!Â�½ÆnïôÜ�Æ�Ä	,!Ò�À�Àñ���Ì¨Æ2Ã���ú
Ü�Å!Â�½ÆnïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú
Í�Á0ÌÿÒÝÒ�ÇÐÌ�ÂÓÇ+�¨Ææñ1ÖxÕ½ú¬÷¡ß?ÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1ú

Ñ7ßÿÜ1Å½Â�XÆnïB��Æ0Ä¨×�Æ�Ç¨Ä�Æ�ÌTñ1ú
Ã��9ß6hïB��Æ0Ä�Ðæñ1ú§�¡ÑæïB��Æ0Ä�Ðæñ1ú

~z¹�% s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
Ã0ÏÝß6hïB��Æ0ÄC��ñ1ú§�¡ÑæïB��Æ0ÄC��ñ1ú
Ü�Å!Â�XÆnïZÊÎÁC9¨Ææñ`Ã	�oõðÃ2ÏÎú

Û!Ò�ÇhïôÑ0À0Á½ÜÓÆæñ1ú
Ê"Â�Ò1Çnñ�ú

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. Alter the program from the last discussion question in the following ways:

(a) Make it draw squares instead of circles.

(b) Have each successive click draw an additional square on the screen

(rather than moving the existing one).

(c) Print a message on the window ”Click again to quit” after the loop,

and wait for a final click before closing the window.

2. An archery target consists of a central circle of yellow surrounded by con-

centric rings of red, blue, black and white. Each ring has the same “width,”

which is the same as the radius of the yellow circle. Write a program that

draws such a target. Hint: Objects drawn later will appear on top of ob-

jects drawn earlier.

3. Write a program that draws some sort of face.

4. Write a program that draws a winter scene with a Christmas tree and a

snowman.

5. Write a program that draws 5 dice on the screen depicting a straight (1, 2,

3, 4, 5 or 2, 3, 4, 5, 6).

6. Modify the graphical future value program so that the input (principal and

apr) also are done in a graphical fashion using / Ç�Ä�Ì2Ï objects.

7. Circle Intersection. Write a program that computes the intersection of a

circle with a horizontal line and displays the information textually and

graphically.

Input: Radius of the circle and the ` -intercept of the line.

Output: Draw a circle centered at RSM�GÒMCT with the given radius in a window

with coordinates running from -10,-10 to 10,10.

Draw a horizontal line across the window with the given y-intercept.

´2� ~!%0�?����{1} ³�$ ��{z� ~z¹0~

Draw the two points of intersection in red.

Print out the] values of the points of intersection.

Formula:] º # Z ö µ V ` µ
8. Line Segment Information.

This program allows the user to draw a line segment and then displays

some graphical and textual information about the line segment.

Input: 2 mouse clicks for the end points of the line segment.

Output: Draw the midpoint of the segment in cyan.

Draw the line.

Print the length and the slope of the line.

Formulas:
b] º] µ VY] ¶b ` º ` µ V ` ¶] û_^ëõ ' º b ` ý b]û ' øji cMk º Z b] µ Â b ` µ

9. Rectangle Information.

This program displays information about a rectangle drawn by the user.

Input: 2 mouse clicks for the opposite corners of a rectangle.

Output: Draw the rectangle.

Print the perimeter and area of the rectangle.

Formulas:
úCö ' ú º RSû ' øji clk T:R�� ÷ b clk Tõ ' ö�÷�� ' c ' ö º �+RSû ' øji cMk Â � ÷ b cMk T

10. Triangle Information.

Same as previous problem, but with 3 clicks for the verticies of a triangle.

Formulas: For perimeter, see length from line problem.ú�ö ' ú º Z] R] Vüú+T:R] V¯��T:R] VüùuT where ú<G§�mG and ù are the lengths of

the sides and] º � r��Or��µ
11. Five-click house.

~z¹�r s"tvuxw�y|{�}!´2�îÑ�
YÊZ{ ³ y|��ux���ÌËV}�uxwxt $ ³ �
You are to write a program that allows the user to draw a simple house

using five mouse-clicks. The first two clicks will be the opposite corners of

the rectangular frame of the house. The third click will indicate the center

of the top edge of a rectangular door. The door should have a total width

that is ¶¾ of the width of the house frame. The sides of the door should

extend from the corners of the top down to the bottom of the frame. The

fourth click will indicate the center of a square window. The window is

half as wide as the door. The last click will indicate the peak of the roof.

The edges of the roof will extend from the point at the peak to the corners

of the top edge of the house frame.

1

2

43

5

12. Write a program to plot a horizontal bar chart of student exam scores.

Your program should get input from a file. The first line of the file contains

the count of the number of students in the file, and each subsequent line

contains a student’s last name followed by a score in the range 0 to 100.

Your program should draw a horizontal rectangle for each student where

the length of the bar represents the student’s score. The bars should all

line up on their left-hand edges. Hint: use the number of students to

determine the size of the window and its coordinates. Bonus: label the

bars at the left end with the student name.

Computewell

Dibblebit

Jones

Smith

´2� ~!%0�?����{1} ³�$ ��{z� ~z¹��

13. Write a program to draw a quiz score histogram. Your program should

read data from a file. Each line of the file contains a number in the

range 0–10. Your program must count the number of occurrences of

each score and then draw a vertical bar chart with a bar for each pos-

sible score (0–10) with a height corresponding to the count of that score.

For example, if 15 students got an 8, then the height of the bar for 8

should be 15. Hint: use a list that stores the count for each possible score.

7 8 9 100 1 2 3 4 5 6

3547698;:=<?>�� �
! � ¥(� L " C � ÆÐ�§¥����m

NPO!Q�RTSVUXWZYTRT[
\ To understand why programmers divide programs up into sets of cooper-

ating functions.

\ To be able to define new functions in Python.

\ To understand the details of function calls and parameter passing in Python.

\ To write programs that use functions to reduce code duplication and in-

crease program modularity.

ê«^`] a;bcR ð_¦_e�SVUXW��£e �hì8ð_¦_ecS�UXW��£ec[
The programs that we have written so far comprise a single function, usually

called
Ê"Â�Ò1Ç

. We have also been using pre-written functions and methods in-

cluding built-in Python functions (e.g.,
ÂÓË"Ü

), functions from the Python stan-

dard libraries (e.g.,
ÊÎÂ�Ä�Å�ïzÜ�í2Ì2Ä

,
ÜxÄ�Ì½Ò�Ç+��ïzÜu!À¨ÒÓÄ

), and object methods from the�2Ì�Â�2Å"Ò�Ñ�Ü
module (e.g.,

ÊXÏ�Ø�Á�Ò�Ç¨ÄcïB��Æ0ÄCÐ�ñ1ú
). Functions are an important tool for

building sophisticated programs. This chapter covers the whys and hows of

designing your own functions to make your programs easier to write and under-

stand.

In the previous chapter, we looked at a graphic solution to the future value

problem. This program makes use of the
�0ÌXÂ��Å"Ò2Ñ¨Ü

library to draw a bar chart

showing the growth of an investment. Here is the program as we left it:

ó9Í�É¨Ä	9�Â�À	Ì��2Ì�Â��Å½Ôoï>�Ï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;

q$# ®

~z¹�¹ s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ó=¢1Ç¨Ä�Ì�Á0Ã�ÉÎÑÓÄ!Ò�Á�Ç�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê�!À0Á0Ä!Ü;Ä0Å½Æ6�0Ì�Á�Û¨Ä0ÅÐÁ2ÍÐÂÿÖxÕ	��Ï¨Æ¨Â�ÌàÒ�Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä�ïG�
ó ü Æ�Ä-�Ì!Ò1Ç"Ñ2Ò�!Â2ÀPÂÓÇ�ÃàÒ�Ç¨Ä�Æ�Ì�Æ½Ü�ÄPÌXÂ�Ä�Æ�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�À¨Ò�D¨Æ0ÃÐÒ1Ç�Ä�Æ�Ì�ÆXÜxÄ?Ì�Â�Ä¨Æn÷���ú
óÝ×0Ì¨Æ¨Â�Ä¨Æ9Â6�2Ì�Â��ÅÎÒ�Ñ�ÜªÛÎÒ1ÇXÃ�Á�Û9ÛÎÒxÄ0Å¡À2ÂÓËXÆ¨ÀXÜ;Á�ÇÿÀ2Æ0Í2ÄÐÆ0Ã	�¨Æ
ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ���¢1Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä ü Ì¨Á�Û�Ä0Åà×ÓÅ!Â�Ì2Ä��!õ¢Þ¨Ô0ÕTõ Ô�@¨Õ!ú
ÛÎÒ1Ç�ïzÜÓÆ0ÄP�XÂ�Ñ�Î+�0Ì�Á�É2ÇXÃæñ���Û0Å"ÒxÄ�Æ_��ú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñ!�½Öïùþ?'�õÒ��Ô0Õ�Õæõ Ö�Öï0'�õfÖ�Õ�@�Õ�Õ!ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ Õ!úVõ�� ÕoïðÕ�À��vúïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õlÔ	'2Õ2Õ!ú�õ�� Ôoï0'�À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ°'2Õ�Õ2Õ!ú�õ��î'oïùÕ!À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ þ?'2Õ2Õ!ú�õ�� þnï0'�Î���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ�ÖxÕ�Õ2Õ�Õ½úVõ��vÖxÕnïùÕ!À��vú¬ïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú
ó��¨Ì�Â�ÛPË!Â�ÌÝÍ¨Á�ÌÿÒ�Ç"ÒxÄ!Ò�Â�Àè¨Ì!Ò�ÇÎÑ�ÒG!Â�À
Ë!Â�ÌÝß-�XÆXÑxÄXÂxÇ���À0ÆæñèØ�ÁXÒ1Ç�Ä�ñzÕTõîÕ½úVõ¢Ø�Á�Ò�Ç¨ÄTñ�Ö(õ1�Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú�ú
Ë!Â�ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ����2Ì¨Æ�ÆÓÇ���ú
Ë!Â�ÌcïzÜÓÆ0ÄC"ÎÒ�Ã0Ä0Åoñ�Ô½ú
Ë!Â�ÌcïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç(ú
ó��¨Ì�Â�Û¡Â Ë!Â�ÌÝÍ¨Á�ÌÐÆ¨Â�Ñ1Å»Ü1É2Ë(Ü�ÆCí�ÉXÆ�Ç�Ä7Ï�Æ�Â�Ì
Í¨Á�Ì9Ï�Æ¨Â�Ì¡Ò�ÇàÌ�ÂÓÇ���Ææñ1Ö�õ�Ö2Ö2ú÷�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú

Ë!Â�ÌÝß-��ÆXÑxÄXÂÓÇ+��À0Ææñ`Ø¨ÁXÒ1Ç�ÄTñèÏ�Æ�Â�Ìnõ Õ½úVõ¢Ø¨ÁXÒ�Ç¨ÄTñèÏ�Æ¨Â�Ì¨áÎÖ�õ �Ì!Ò1Ç"Ñ2Ò�!Â2À½ú2ú
Ë!Â�Ì�ïzÜÓÆ0Ä	,½Ò0À2À¬ñ��:�2Ì¨Æ�Æ�Çx��ú
Ë!Â�Ì�ïzÜÓÆ0Ä�"!Ò�Ã0Ä0ÅnñzÔ½ú
Ë!Â�Ì�ïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú

ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄcïu��úÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú
This is certainly a workable program, but there is a nagging issue of program

style that really should be addressed. Notice that this program draws bars in two

different places. The initial bar is drawn just before the loop, and the subsequent

¹0� r0�?óÓ�x� ³ y $ �����H�	K ��å �Ó}Z�nu�± ± ç ~z¹�¿

bars are drawn inside of the loop.

Having similar code like this in two places has some drawbacks. Obviously,

one issue is having to write the code twice. A more subtle problem is that

the code has to be maintained in two different places. Should we decide to

change the color or other facets of the bars, we would have to make sure these

changes occur in both places. Failing to keep related parts of the code in sync is

a common problem in program maintenance.

Functions can be used to reduce code duplication and to make programs

more understandable and easier to maintain. Before fixing up the future value

program, let’s take look at what functions have to offer.

ê«^�� ð_¦_e�SVUXW��£e�[��üJ`enì���g�� i�j j í

You can think of a function as a subprogram—a small program inside of a pro-

gram. The basic idea of a function is that we write a sequence of statements and

give that sequence a name. The instructions can then be executed at any point

in the program by referring to the function name.

The part of the program that creates a function is called a function definition.

When a function is subsequently used in a program, we say that the definition

is called or invoked. A single function definition may be called at many different

points of a program.

Let’s take a concrete example. Suppose you want to write a program that

prints out the lyrics to the “Happy Birthday” song. The standard lyrics look like

this.�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì . Ò�Ç"Ü�Æ�Ì�Ä��xÇ!Â1ÊÎÆ � ï�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �
We’re going to play with this example in the interactive Python environment.

You might want to fire up Python and try some of this out yourself.

A simple approach to this problem is to use four
¨Ì!Ò�Ç¨Ä

statements. Here’s an

interactive session that creates a program for singing “Happy Birthday” to Fred.�	��� Ã¨Æ0Í Ê"Â�Ò1Çnñ�ú¬÷�Ì!Ò1Ç�Ä)�&�½Â�	�ÏÈË"ÒÓÌ2Ä0Å�Ã�Â�Ï?Ä�Á?Ï�ÁÓÉ ����Ì!Ò1Ç�Ä)�&�½Â�	�ÏÈË"ÒÓÌ2Ä0Å�Ã�Â�Ï?Ä�Á?Ï�ÁÓÉ ����Ì!Ò1Ç�Ä)�&�½Â�	�ÏÈË"ÒÓÌ2Ä0Å�Ã�Â�Ïoõ¢Ã¨Æ�Â�Ì6,2Ì�Æ0Ã�ïG�

~z¹�â s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
�Ì!Ò1Ç�Ä)�&�½Â�	�ÏÈË"ÒÓÌ2Ä0Å�Ã�Â�Ï?Ä�Á?Ï�ÁÓÉ ���

We can then run this program to get our lyrics.�	��� Ê"Â¨Ò�Çnñ�ú�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì-,�Ì�Æ0Ã�ï�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �
Obviously, there is some duplicated code in this program. For such a simple

program, that’s not a big deal, but even here it’s a bit annoying to keep retyping

the same line. Let’s introduce a function that prints the lyrics of the first, second,

and fourth lines.�	��� Ã¨Æ0Í7Å!Â���Ï�ñ1ú¬÷�Ì!Ò1Ç�Ä)�&�½Â�	�ÏÈË"ÒÓÌ2Ä0Å�Ã�Â�Ï?Ä�Á?Ï�ÁÓÉ ���
We have defined a new function called

Å½Â���Ï
. Here is an example of what it

does:�	��� Å!Â�	�Ï�ñ1ú�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �
Invoking the

Å!Â���Ï
command causes Python to print a line of the song.

Now we can redo the verse for Fred using happy. Let’s call our new versionÜ2Ò1Ç��C,�Ì�Æ0Ã
.�	��� Ã¨Æ0ÍÿÜ2Ò�Ç+��,2Ì�Æ2Ãæñ1ú÷Å!Â���Ï�ñ1ú
Å!Â���Ï�ñ1ú�Ì!Ò1Ç�Ä)�&�½Â�	�ÏÈË"ÒÓÌ2Ä0Å�Ã�Â�Ïoõ¢Ã¨Æ�Â�Ì6,2Ì�Æ0Ã�ïG�
Å!Â���Ï�ñ1ú

This version required much less typing, thanks to the
Å!Â�	¨Ï

command. Let’s try

printing the lyrics for Fred just to make sure it works.�	��� Ü2Ò1Ç���,2Ì�Æ0Ã�ñ1ú�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì-,�Ì�Æ0Ã�ï�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �

¹0� r0�?óÓ�x� ³ y $ �����H�	K ��å �Ó}Z�nu�± ± ç ~z¹�é

So far, so good. Now suppose that it’s also Lucy’s birthday, and we want to

sing a verse for Fred followed by a verse for Lucy. We’ve already got the verse

for Fred; we can prepare one for Lucy as well.�	��� Ã¨Æ0ÍÿÜ2Ò�Ç+����É"ÑÓÏ�ñ1ú÷Å!Â���Ï�ñ1ú
Å!Â���Ï�ñ1ú�Ì!Ò1Ç�Ä)�&�½Â�	�ÏÈË"ÒÓÌ2Ä0Å�Ã�Â�Ïoõ¢Ã¨Æ�Â�Ì6��É"ÑxÏcïG�
Å!Â���Ï�ñ1ú

Now we can write a
Ê"Â�Ò1Ç

program that sings to both Fred and Lucy.�	��� Ã¨Æ0Í Ê"Â�Ò1Çnñ�ú¬÷Ü2Ò�Ç+��,2Ì�Æ2Ãæñ1ú�Ì!Ò1Ç�Ä
Ü2Ò�Ç+����É"ÑÓÏ�ñ1ú

The bare
�Ì!Ò1Ç�Ä

between the two function calls puts a space between the verses

in our output. And here’s the final product in action:�	��� Ê"Â¨Ò�Çnñ�ú�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì-,�Ì�Æ0Ã�ï�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �
�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì-�0É"ÑxÏcï�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �

Well now, that certainly seems to work, and we’ve removed some of the

duplication by defining the
Å!Â�	¨Ï

function. However, something still doesn’t feel

quite right. We have two functions,
Ü2Ò�Ç+��,2Ì�Æ2Ã

and
Ü0Ò�Ç+���0ÉÎÑÓÏ

, that are almost

identical. Following this approach, adding a verse for Elmer would have us

create a
Ü2Ò�Ç+� / À�ÊÎÆ�Ì function that looks just like those for Fred and Lucy. Can’t

we do something about the proliferation of verses?

Notice that the only difference between
Ü0Ò�Ç��C,�Ì¨Æ2Ã

and
Ü0Ò�Ç��C�0ÉÎÑÓÏ

is the name

at the end of the third
�Ì!Ò1Ç�Ä

statement. The verses are exactly the same except

for this one changing part. We can collapse these two functions together by

using a parameter. Let’s write a generic function called
Ü0Ò�Ç��

.

~z¿�% s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
�	��� Ã¨Æ0ÍÿÜ2Ò�Ç+��ñB½Æ0Ì!Ü�ÁÓÇ�ú¬÷Å!Â���Ï�ñ1ú

Å!Â���Ï�ñ1ú�Ì!Ò1Ç�Ä)�&�½Â�	�Ï��!ÒÓÌ2Ä0Å�Ã�Â�Ïoõ¢Ã¨Æ�Â�Ì$�Îõ1XÆ0ÌÎÜÓÁ�ÇÐá)�"ïG�
Å!Â���Ï�ñ1ú

This function makes use of a parameter named
½Æ�ÌÎÜÓÁ�Ç

. A parameter is a variable

that is initialized when the function is called. We can use the
Ü0Ò�Ç��

function to

print a verse for either Fred or Lucy. We just need to supply the name as a

parameter when we invoke the function.�	��� Ü2Ò1Ç���ñ��:,2Ì�Æ2Ã���ú�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï��!ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì-,�Ì�Æ0Ã�ï�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �
�	��� Ü2Ò1Ç���ñ��:��É"ÑÓÏ$��ú�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ��½Â�	¨Ï��!ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì-�0É"ÑxÏcï�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É �

Let’s finish with a program that sings to all three of our birthday people.�	��� Ã¨Æ0Í Ê"Â�Ò1Çnñ�ú¬÷Ü2Ò�Ç+��ñ��:,�Ì¨Æ2Ã���ú�Ì!Ò1Ç�Ä
Ü2Ò�Ç+��ñ��:�0ÉÎÑÓÏ$��ú�Ì!Ò1Ç�Ä
Ü2Ò�Ç+��ñ�� / À1ÊÎÆ�Ì���ú

It doesn’t get much easier than that.

Here is the complete program as a module file.

ó7Å!Â�	¨Ïcï7¨Ï
Ã¨Æ0Í7Å!Â�	�Ï�ñ1ú÷�Ì½Ò�Ç�Ä��!�½Â�	¨Ï��!ÒxÌ�Ä0Å�Ã�Â�ÏPÄ�Á?Ï¨Á�É ���
Ã¨Æ0ÍÿÜ2Ò1Ç���ñB½Æ�ÌÎÜ�ÁÓÇ�ú÷

¹2� �2�?óÓ�zyè�x}�{jô(u�±%��{n� $ yèt_u óÓ�x� ³ y $ ��� ~z¿0~

Å!Â�	�Ï�ñ1ú
Å!Â�	�Ï�ñ1ú�Ì½Ò�Ç�Ä��!�½Â�	¨Ï7Ë"ÒxÌ�Ä0Å�Ã�Â�Ïnõ¢Ã�Æ¨Â�Ì$�Îõ1XÆ0Ì!Ü�Á�ÇÝá)�(ïG�
Å!Â�	�Ï�ñ1ú

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
Ü2Ò1Ç���ñ��:,2Ì�Æ2Ã���ú�Ì½Ò�Ç�Ä
Ü2Ò1Ç���ñ��:��É"ÑÓÏ$��ú�Ì½Ò�Ç�Ä
Ü2Ò1Ç���ñ�� / À�ÊÎÆ�Ì��Óú

ê«^�� ð_¦oUÎ¦_g1R�ñ ihj|¦cR � W U!bëi ð_¦_ecS�UXW��£e
Now that you’ve seen how defining functions can help solve the code duplication

problem, let’s return to the future value graph. Remember, the problem is that

bars of the graph are printed at two different places in the program.

The code just before the loop looks like this:

ó��¨Ì�Â�ÛPË½Â�ÌÝÍ¨Á�ÌÿÒ�ÇÎÒÓÄ!Ò�Â�Àè¨Ì!Ò1Ç"Ñ�ÒG!Â2À
Ë!Â�ÌÝß-�XÆ�ÑÓÄXÂxÇ��¨À2ÆæñèØ�Á�Ò�Ç�Ä�ñzÕ�õ Õ½úVõ¢Ø¨ÁXÒ�Ç¨ÄTñ1Ö�õ1¨Ì!Ò�ÇÎÑ�ÒG!Â�ÀXú�ú
Ë!Â�ÌcïôÜ�Æ0Ä�,!Ò�À�À¬ñ����0Ì�Æ�ÆÓÇ��Óú
Ë!Â�ÌcïôÜ�Æ0ÄC"ÎÒÓÃ2Ä0Åoñ�ÔXú
Ë!Â�ÌcïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
And the code inside of the loop is as follows.

Ë!Â�ÌÝß-�XÆ�ÑÓÄXÂxÇ��¨À2ÆæñèØ�Á�Ò�Ç�Ä�ñ`Ï¨Æ¨Â�Ìoõ Õ!ú�õ¢Ø�ÁXÒ1Ç�Ä�ñ`Ï�Æ�Â�Ì�á"Ö�õ �Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú�ú
Ë!Â�ÌcïôÜ�Æ0Ä�,!Ò�À�À¬ñ����0Ì�Æ�ÆÓÇ��Óú
Ë!Â�ÌcïôÜ�Æ0ÄC"ÎÒÓÃ2Ä0Åoñ�ÔXú
Ë!Â�ÌcïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
Let’s try to combine these two into a single function that draws a bar on the

screen.

In order to draw the bar, we need some information. Specifically, we need to

know what year the bar will be for, how tall the bar will be, and what window

the bar will be drawn in. These three values will be supplied as parameters for

the function. Here’s the function definition:

~z¿�r s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
Ã¨Æ0Í9Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1ÇXÃ�Á�Û�õ Ï�Æ�Â�ÌoõîÅ½Æ�Ò���Å¨Ä"ú÷

ó��¨Ì�Â�Û¡Â Ë!Â�ÌÿÒ�ÇÐÛÎÒ1ÇXÃ�Á�ÛÝÍ�Á0Ì �½Ò�9�ÆÓÇÝÏ�Æ�Â�ÌPÛÎÒxÄ0Å5�XÒ�9¨Æ�Ç9Å½Æ�Ò���Å�Ä
Ë!Â�ÌÝß-�XÆXÑxÄXÂxÇ���À0ÆæñèØ�ÁXÒ1Ç�Ä�ñ`Ï�Æ�Â�Ìoõ Õ!úVõ¢Ø¨ÁXÒ1Ç�ÄTñèÏ�Æ�Â�Ì¨áÎÖ�õ Å½Æ�Ò���Å¨Ä"ú2ú
Ë!Â�ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ����2Ì¨Æ�ÆÓÇ���ú
Ë!Â�ÌcïzÜÓÆ0ÄC"ÎÒ�Ã0Ä0Åoñ�Ô½ú
Ë!Â�ÌcïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç�Ã¨Á�Û"ú

To use this function, we just need to supply values for the three parameters. For

example, if
ÛÎÒ�Ç

is a
ü ÌXÂ��Å	"ÎÒ�Ç

, we can draw a bar for year 0 and a principal of

$2,000 by invoking
Ã2Ì�Â�Û���Â�Ì

like this:

Ã2Ì�Â�ÛC�XÂ�Ì�ñèÛ!Ò�Çcõ ÕTõ�Ô0Õ�Õ�Õ½ú
Incorporating the

Ã0ÌXÂ�ÛC�XÂ�Ì
function, here is the latest version of our future

value program:

ó9Í�É¨Ä	9�Â�À	Ì��2Ì�Â��ÅXÞnï>�Ï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ã¨Æ0Í9Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1ÇXÃ�Á�Û�õ Ï�Æ�Â�ÌoõîÅ½Æ�Ò���Å¨Ä"ú÷

ó��¨Ì�Â�Û¡Â Ë!Â�ÌÿÒ�ÇÐÛÎÒ1ÇXÃ�Á�Û Ü�ÄXÂ�Ì2Ä!Ò1Ç��9Â�Ä9Ï�Æ�Â�ÌPÛÎÒxÄ0Å(�XÒ�9�ÆÓÇPÅ½Æ�Ò���Å�Ä
Ë!Â�ÌÝß-�XÆXÑxÄXÂxÇ���À0ÆæñèØ�ÁXÒ1Ç�Ä�ñ`Ï�Æ�Â�Ìoõ Õ!úVõ¢Ø¨ÁXÒ1Ç�ÄTñèÏ�Æ�Â�Ì¨áÎÖ�õ Å½Æ�Ò���Å¨Ä"ú2ú
Ë!Â�ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ����2Ì¨Æ�ÆÓÇ���ú
Ë!Â�ÌcïzÜÓÆ0ÄC"ÎÒ�Ã0Ä0Åoñ�Ô½ú
Ë!Â�ÌcïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç�Ã¨Á�Û"ú

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ó=¢1Ç¨Ä�Ì�Á0Ã�ÉÎÑÓÄ!Ò�Á�Ç�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê�!À0Á0Ä!Ü;Ä0Å½Æ6�0Ì�Á�Û¨Ä0ÅÐÁ2ÍÐÂÿÖxÕ	��Ï¨Æ¨Â�ÌàÒ�Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä�ïG�
ó ü Æ�Ä-�Ì!Ò1Ç"Ñ2Ò�!Â2ÀPÂÓÇ�ÃàÒ�Ç¨Ä�Æ�Ì�Æ½Ü�ÄPÌXÂ�Ä�Æ�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�À¨Ò�D¨Æ0ÃÐÒ1Ç�Ä�Æ�Ì�ÆXÜxÄ?Ì�Â�Ä¨Æn÷���ú
óÝ×0Ì¨Æ¨Â�Ä¨Æ9Â6�2Ì�Â��ÅÎÒ�Ñ�ÜªÛÎÒ1ÇXÃ�Á�Û9ÛÎÒxÄ0Å¡À2ÂÓËXÆ¨ÀXÜ;Á�ÇÿÀ2Æ0Í2ÄÐÆ0Ã	�¨Æ
ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ���¢1Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä ü Ì¨Á�Û�Ä0Åà×ÓÅ!Â�Ì2Ä��!õ¢Þ¨Ô0ÕTõ Ô�@¨Õ!ú
ÛÎÒ1Ç�ïzÜÓÆ0ÄP�XÂ�Ñ�Î+�0Ì�Á�É2ÇXÃæñ���Û0Å"ÒxÄ�Æ_��ú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñ!�½Öïùþ?'�õÒ��Ô0Õ�Õæõ Ö�Öï0'�õfÖ�Õ�@�Õ�Õ!ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ Õ!úVõ�� ÕoïðÕ�À��vúïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õlÔ	'2Õ2Õ!ú�õ�� Ôoï0'�À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú

¹0� ¯ �?óÓ�x� ³ y $ �����æux�����0u1}�ux�o{`y|{1}��!´(ã�t�{ é"{ôy�u $ ± � ~z¿��

��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ°'2Õ�Õ2Õ!ú�õ��î'oïùÕ!À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ þ?'2Õ2Õ!ú�õ�� þnï0'�Î���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ�ÖxÕ�Õ2Õ�Õ½úVõ��vÖxÕnïùÕ!À��vú¬ïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú
Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1Çcõ ÕTõ°�Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú
Í¨Á�Ì9Ï�Æ¨Â�Ì¡Ò�ÇàÌ�ÂÓÇ���Ææñ1Ö�õ�Ö2Ö2ú÷�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú

Ã2ÌXÂÓÛ���Â�ÌTñðÛÎÒ1Çcõ Ï�Æ¨Â�Ìnõ#¨Ì!Ò�ÇÎÑ�ÒG!Â�ÀXú
ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄcïu��úÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Ê"Â¨Ò�Çoñ1ú
You can see how

Ã0ÌXÂÓÛ��XÂ�Ì
has eliminated the duplicated code. Should we

wish to change the appearance of the bars in the graph, we only need to change

the code in one spot, the definition of
Ã0ÌXÂ�ÛC�XÂ�Ì

. Don’t worry yet if you don’t

understand every detail of this example. You still have some things to learn

about functions.

ê«^|µ ð_¦_e�SVUXW��£e�[Ýi_e�· ��iog1i_� RæU�Rcg1[�²;a;bcR «ªRæU¨icW�j [
You may be wondering about the choice of parameters for the

Ã2ÌXÂÓÛ���Â�Ì
function.

Obviously, the year for which a bar is being drawn and the height of the bar are

the changeable parts in the drawing of a bar. But why is
ÛÎÒ1ÇXÃ¨Á�Û

also a parameter

to this function? After all, we will be drawing all of the bars in the same window;

it doesn’t seem to change.

The reason for making
Û!Ò�Ç�Ã¨Á�Û

a parameter has to do with the scope of vari-

ables in function definitions. Scope refers to the places in a program where a

given variable may be referenced. Remember each function is its own little sub-

program. The variables used inside of one function are local to that function,

even if they happen to have the same name as variables that appear inside of

another function.

The only way for a function to see a variable from another function is for that

variable to be passed as a parameter. Since the
ü ÌXÂ�2Å?"!Ò�Ç

(in the variable
ÛÎÒ1Ç

)

is created inside of
Ê"Â¨Ò�Ç

, it is not directly accessible in
Ã2Ì�Â�ÛC�XÂ�Ì

. However, theÛÎÒ1ÇXÃ�Á�Û
parameter in

Ã2ÌXÂÓÛ���Â�Ì
gets assigned the value of

Û!Ò�Ç
from

ÊÎÂ�Ò�Ç
whenÃ2Ì�Â�ÛC�XÂ�Ì

is called. To see how this happens, we need to take a more detailed

look at the function invocation process.

~z¿ ¯ s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
A function definition looks like this.

Ã¨Æ0Í . Ç½Â�ÊÎÆ � ñ . Í¨Á�Ì�ÊÎÂ�À	��!Â�ÌXÂ�Ê!Æ0Ä¨Æ0Ì½Ü � ú÷. ËXÁ2Ã2Ï �
The

Ç!Â�Ê!Æ
of the function must be an identifier, and

Í�Á0Ì�ÊÎÂ�À���!Â�ÌXÂ1ÊÎÆ0Ä¨Æ0Ì!Ü
is a

(possibly empty) list of variable names (also identifiers). The formal parameters,

like all variables used in the function, are only accessible in the
ËXÁ2Ã0Ï

of the

function. Variables with identical names elsewhere in the program are distinct

from the formal parameters and variables inside of the function
Ë½Á0Ã2Ï

.

A function is called by using its name followed by a list of actual parameters

or arguments.

. Ç½Â�Ê!Æ � ñ . Â¨ÑÓÄ0É½Â�À���!Â�ÌXÂ1ÊÎÆ0Ä¨Æ0Ì½Ü � ú
When Python comes to a function call, it initiates a four-step process:

1. The calling program suspends execution at the point of the call.

2. The formal parameters of the function get assigned the values supplied by

the actual parameters in the call.

3. The body of the function is executed.

4. Control returns to the point just after where the function was called.

Returning to the Happy Birthday example, let’s trace through the singing of

two verses. Here is part of the body from
ÊÎÂ�Ò�Ç

:

Ü2Ò1Ç��æñ��:,2Ì�Æ0Ã$��ú�Ì½Ò�Ç¨Ä
Ü2Ò1Ç��æñ��:��É"ÑxÏ���ú
ï�ï2ï
When Python gets to

Ü2Ò1Ç���ñ��:,2Ì�Æ2Ã���ú
, execution of

ÊÎÂ�Ò�Ç
is temporarily suspended.

At this point, Python looks up the definition of
Ü2Ò�Ç+�

and sees that it has a single

formal parameter,
XÆ0ÌÎÜÓÁ�Ç

. The formal parameter is assigned the value of the

actual, so it is as if we had executed this statement:½Æ�ÌÎÜÓÁ�ÇÐß��:,2Ì�Æ0Ã$�

¹0� ¯ �?óÓ�x� ³ y $ �����æux�����0u1}�ux�o{`y|{1}��!´(ã�t�{ é"{ôy�u $ ± � ~z¿�´

 sing("Fred")

 print

 sing("Lucy")

def main():
def sing(person):

 happy()

 happy()

 print "Happy birthday, dear", person + "."

 happy()

person = "Fred"

person: "Fred"

Figure
�
.
�
: Illustration of control transferring to

Ü2Ò1Ç��
.

A snapshot of this situation is shown in Figure
�
.
�
. Notice the variable

½Æ0Ì!Ü�ÁÓÇ
inside of

Ü2Ò1Ç��
has just been initialized.

At this point, Python begins executing the body of
Ü2Ò1Ç��

. The first statement

is another function call, this one to
Å½Â�	¨Ï

. Python suspends execution of
Ü0Ò�Ç+�

and transfers control to the called function. The body of
Å½Â���Ï

consists of a

single
¨Ì!Ò�Ç¨Ä

. This statement is executed, and then control returns to where it

left off in
Ü2Ò1Ç��

. Figure
�
.
�

shows a snapshot of the execution so far.

 sing("Fred")

 print

 sing("Lucy")

def main():
def sing(person):

 happy()

 happy()

 print "Happy birthday, dear", person + "."

 happy()

def happy():

 print "Happy Birthday to you!"person = "Fred"

person: "Fred"

Figure
�
.
�
: Snaphot of completed call to

Å!Â�	¨Ï
.

Execution continues in this manner with Python making two more side trips

back to
Å!Â���Ï

to complete the execution of
Ü2Ò�Ç+�

. When Python gets to the end

of
Ü0Ò�Ç+�

, control then returns to
Ê"Â�Ò1Ç

and continues immediately after the func-

tion call. Figure
�
.
�

shows where we are at that point. Notice that the
XÆ0Ì!Ü�Á�Ç

variable in
Ü2Ò�Ç+�

has disappeared. The memory occupied by local function vari-

ables is reclaimed when the function finishes. Local variables do not retain any

values from one function execution to the next.

The next statement to execute is the bare
¨Ì!Ò�Ç¨Ä

statement in
ÊÎÂ�Ò1Ç

. This

produces a blank line in the output. Then Python encounters another call toÜ2Ò1Ç��
. As before, control transfers to the function definition. This time the formal

parameter is
�:�0ÉÎÑÓÏ$�

. Figure
�
.
�

shows the situation as
Ü0Ò�Ç��

begins to execute

~z¿�¹ s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
 sing("Fred")

 print

 sing("Lucy")

def main():
def sing(person):

 happy()

 happy()

 print "Happy birthday, dear", person + "."

 happy()

person = "Fred"

Figure
�
.
�
: Snaphot of completed call to

Ü0Ò�Ç��
.

for the second time.

 sing("Fred")

 print

 sing("Lucy")

def main():
def sing(person):

 happy()

 happy()

 print "Happy birthday, dear", person + "."

 happy()

per
son

 =
"Lu

cy"

person: "Lucy"

Figure
�
.
�
: Snaphot of second call to

Ü2Ò1Ç��
.

Now we’ll fast forward to the end. The function body of
Ü0Ò�Ç+�

is executed

for Lucy (with three side trips through
Å½Â�	¨Ï

) and control returns to
ÊÎÂ�Ò1Ç

just

after the point of the function call. Now we have reached the bottom of our

code fragment, as illustrated by Figure
�
.
�
. These three statements in

ÊÎÂ�Ò1Ç
have

caused
Ü2Ò1Ç��

to execute twice and
Å!Â�	�Ï

to execute six times. Overall, nine total

lines of output were generated.

 sing("Fred")

 print

 sing("Lucy")

def main():
def sing(person):

 happy()

 happy()

 print "Happy birthday, dear", person + "."

 happy()

per
son

 =
"Lu

cy"

Figure
�
.
�
: Completion of second call to

Ü2Ò1Ç��
.

Hopefully you’re getting the hang of how function calls actually work. One

point that this example did not address is the use of multiple parameters. When

a function definition has several parameters, the actual parameters are matched

up with the formal parameters by position. The first actual parameter is assigned

¹0� ´0�KË!{`y y $ ��� E�{ô�`��± y|�¬å }��0� uãóÓ�x� ³ y $ ��� ~z¿�¿

to the first formal parameter, the second actual is assigned to the second formal,

etc.1

As an example, look again at the use of the
Ã2Ì�Â�Û���Â�Ì

function from the future

value program. Here is the call to draw the initial bar:

Ã2Ì�Â�ÛC�XÂ�Ì�ñèÛ!Ò�Çcõ ÕTõ°¨Ì!Ò�ÇÎÑ�ÒG!Â�ÀXú
When Python transfers control to

Ã2Ì�Â�ÛC�XÂ�Ì
, these parameters are matched up to

the formal parameters in the function heading.

Ã¨Æ0Í9Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1ÇXÃ�Á�Û�õ Ï�Æ�Â�ÌoõîÅ½Æ�Ò���Å¨Ä"ú÷
The net effect is as if the function body had been prefaced with three assignment

statements.

ÛÎÒ1ÇXÃ�Á�ÛÝßPÛÎÒ1Ç
Ï�Æ�Â�ÌÝßÝÕ
Å½Æ�Ò���Å�Ä9ß-�Ì½Ò�ÇÎÑ�Ò�½Â�À
You must always be careful when calling a function that you get the actual pa-

rameters in the correct order to match the function definition.

ê«^|º Î�R�U2UXWpen�@?îRT[Î¦_j U¨[PìÓg1�G� i¬ð_¦§e�SVU�W��£e
You have seen that parameter passing provides a mechanism for initializing the

variables in a function. In a way, parameters act as inputs to a function. We

can call a function many times and get different results by changing the input

parameters. Sometimes we also want to get information back out of a function.µ�È�×�ÈSÊ ¢ r�w3��tGlnvxw�s ÿ ���t�hji+t�r��ëw&%`�3Ù r�ims
One way to get information from a function is by having it return a value to the

caller. You have already seen numerous examples of this type of function. For

example, consider this call to the
Ü�í0Ì�Ä

function from the
ÊÎÂ�Ä0Å

library:

Ã½Ò�Ü2Ñ��¨Ä9ßÈÊ"Â�Ä0ÅhïzÜ�í0Ì�Ä�ñðË_;1Ë5�-@�;0Â?;�Ñ�ú
1Python also allows parameters to be matched up by name rather than position, but that

approach is not used in this textbook; see the Python documentation for details.

~z¿�â s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
Here the value of

Ë_;�Ë=�-@�;0Â?;�Ñ
is the actual parameter of

Ê"Â�Ä0Å�ïôÜ�í0Ì�Ä
. This

function call occurs on the right side of an assignment statement; that means it

is an expression. The
Ê"Â�Ä0ÅhïzÜ�í0Ì�Ä

function must somehow produce a value that

is then assigned to the variable
ÃXÒ¨Ü2Ñ��¨Ä

. Technically, we say that
Ü�í2Ì2Ä

returns

the square root of its argument.

It’s very easy to write functions that return values. Here’s an example value-

returning function that does the opposite of
Ü�í0Ì�Ä

; it returns the square of its

argument:

Ã¨Æ0ÍÿÜ�í�É!Â�Ì¨ÆæñÒ�Îú¬÷
Ì�Æ�Ä0É�Ì�Ç5�¡;��

The body of this function consists of a single
Ì¨Æ0Ä0É¨Ì0Ç

statement. When Python

encounters
Ì¨Æ0Ä�É�Ì0Ç

, it exits the function and returns control to the point where

the function was called. In addition, the value(s) provided in the
Ì¨Æ0Ä0É¨Ì0Ç

state-

ment are sent back to the caller as an expression result.

We can use our
Ü�í�É!Â�Ì¨Æ

function any place that an expression would be legal.

Here are some interactive examples:�	��� Ü�í�É!Â�Ì¨ÆæñôÞ!úý �	��� �Ì½Ò�Ç�Ä¡Ü�í�É½Â�Ì¨Ææñë@!úÖxø�	��� �9ß('�	��� ÏÝß Ü�í�É½Â�Ì¨Ææñë�!ú�	��� �Ì½Ò�Ç�Ä?ÏÔ	'�	��� �Ì½Ò�Ç�Ä¡Ü�í�É½Â�Ì¨Ææñë�!ú áÿÜ�í�É!Â�Ì�ÆæñôÞ!úÞ�@
Let’s use the square function to write another function that finds the distance

between two points. Given two points R^] ¶ G ` ¶ T and R^] µ G ` µ T , the distance between

them is calculated from the Pythagorean Theorem as Z R^] µ Vü] ¶ T µ Â R ` µ V ` ¶ T µ .Here is a Python function to compute the distance between two
Ø�Á�Ò�Ç�Ä

objects:

Ã¨Æ0Í9Ã½Ò�ÜxÄXÂxÇ"Ñ�Ææñ0�Ö�õ !ÔXú¬÷
Ã½Ò�ÜxÄÝß Ê"Â�Ä0ÅhïzÜ�í0Ì�Ä�ñ�Ü�í�É!Â�Ì�ÆæñB!ÔTïB�¨Æ�Ä�Ð¬ñ1úæ�8�ÖïB��Æ0ÄCÐ�ñ1ú2ú

á Ü�í�É½Â�Ì�Æ¬ñ0½ÔoïB��Æ0ÄP�Tñ1ú��<VÖVïB��Æ0ÄC��ñ1ú2ú�ú
Ì�Æ�Ä0É�Ì�ÇÐÃ½Ò�ÜxÄ

¹0� ´0�KË!{`y y $ ��� E�{ô�`��± y|�¬å }��0� uãóÓ�x� ³ y $ ��� ~z¿�é

Using the
ÃXÒ¨Ü�ÄXÂÓÇÎÑ�Æ

function, we can augment the interactive triangle pro-

gram from the last chapter to calculate the perimeter of the triangle. Here’s the

complete program:

óPØ�Ì¨Á��0ÌXÂ�Ê_÷îÄ�Ì½Ò0ÂxÇ���À0Æ¨ÔTï7�Ï
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ã¨Æ0ÍÿÜ�í�É!Â�Ì¨ÆæñÒ�Îú¬÷

Ì�Æ�Ä0É�Ì�Ç5�¡;��
Ã¨Æ0Í9Ã½Ò�ÜxÄXÂxÇ"Ñ�Ææñ0�Ö�õ !ÔXú¬÷

Ã½Ò�ÜxÄÝß Ê"Â�Ä0ÅhïzÜ�í0Ì�Ä�ñ�Ü�í�É!Â�Ì�ÆæñB!ÔTïB�¨Æ�Ä�Ð¬ñ1úæ�8�ÖïB��Æ0ÄCÐ�ñ1ú2ú
á Ü�í�É½Â�Ì�Æ¬ñ0½ÔoïB��Æ0ÄP�Tñ1ú��<VÖVïB��Æ0ÄC��ñ1ú2ú�ú

Ì�Æ�Ä0É�Ì�ÇÐÃ½Ò�ÜxÄ
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ��H�¨ÌXÂÓÛÝÂ-�2Ì!Ò0ÂxÇ��¨À2Æ��Óú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñzÕoïðÕ�õ ÕoïðÕ�õfÖxÕoïðÕTõªÖ�ÕnïùÕ!ú
ÊÎÆXÜ�Ü�Â��¨Æ?ß6�¨Æ��0ÄTñ`Ø¨ÁXÒ1Ç�ÄTñ&'�õ Õnï0'½úVõè�v×¨À¨Ò�Ñ�ÎÝÁ�ÇÐÄ0Å¨Ì�Æ2Æ8½Á�Ò�Ç�Ä!Ü��Óú
ÊÎÆXÜ�Ü�Â��¨ÆoïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
ó ü Æ�ÄàÂÓÇXÃ9Ã0ÌXÂÓÛÝÄ0Å�Ì¨Æ�Æ�9¨Æ0Ì2Ä!Ò�Ñ�Æ½Ü Á0ÍPÄ�Ì½Ò0ÂÓÇ+��À0ÆVÖ ßPÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1úVÖVïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú!Ô?ßPÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1ú!ÔTïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú½ÞPßPÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1ú½ÞoïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
ó7Ù(ÜÓÆ?Ø�Á¨À�Ï?��Á�ÇàÁÓË ï Æ�ÑÓÄPÄ¨ÁPÃ2Ì�Â�ÛÝÄ0ÅXÆ?Ä�Ì½Ò0ÂÓÇ+��À0ÆÄ�Ì½Ò0ÂÓÇ+��À0Æ7ß9Ø�Á�À�Ï?��Á�Çoñ0VÖ(õF½Ô�õFXÞ!ú
Ä�Ì½Ò0ÂÓÇ+��À0ÆnïzÜÓÆ0Ä�,!Ò0À2À¬ñ��&½Æ�Â�Ñ1Å	0ÉXÍ�Í��Óú
Ä�Ì½Ò0ÂÓÇ+��À0ÆnïzÜÓÆ0Ä Ä É�Ä�À�Ò1Ç½Ææñ��xÑxÏXÂ�Ç���ú
Ä�Ì½Ò0ÂÓÇ+��À0ÆnïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç(ú
óÝ×¨Â2À�Ñ�É½À�Â�Ä�Æ7Ä�Å½Æ<½Æ�Ì!ÒvÊÎÆ0Ä¨Æ0ÌPÁ2ÍPÄ0ÅXÆ?Ä�Ì½Ò0ÂÓÇ+��À0Æ½Æ�Ì!Ò�ÊàßÐÃXÒ¨Ü�ÄXÂÓÇÎÑ�Æ¬ñ0VÖ(õF½Ô½ú�áÝÃ½Ò¨Ü�ÄXÂxÇ"Ñ�Æ¬ñ0½Ô�õFXÞ!ú�áÝÃ½Ò�ÜxÄXÂxÇ"Ñ�Ææñ0XÞTõIVÖ2ú
ÊÎÆXÜ�Ü�Â��¨ÆoïzÜ�Æ�Ä	�¨Æ��2Ä�ñ��!�0Å½ÆæXÆ0Ì½Ò�ÊÎÆ�Ä�Æ�ÌàÒ¨Ü¬÷ �¨ÕoïèÔ0Í��¬�-½Æ�Ì!Ò�ÊVú

~zâ�% s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
ó-"½Â¨ÒÓÄÝÍ¨Á�ÌàÂÓÇXÁ0Ä0ÅXÆ0Ì¡Ñ�À�Ò2Ñ�Î9Ä¨Á9Æ��½ÒxÄ
ÛÎÒ1Ç�ïB��Æ0Ä0öXÁ�É"Ü�Æ¬ñ1ú
ÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

You can see how
Ã½Ò�ÜxÄXÂxÇ"Ñ�Æ

is called three times in one line to compute the

perimeter of the triangle. Using a function here saves quite a bit of tedious

coding.

Sometimes a function needs to return more than one value. This can be done

by simply listing more than one expression in the
Ì¨Æ0Ä�É�Ì0Ç

statement. As a silly

example, here is a function that computes both the sum and the difference of

two numbers.Ã¨Æ0ÍÿÜ1É�Êé�ÎÒÓÍ�Íæñë�oõùÏ"ú÷
Ü1É�Êÿß��ÐáPÏ
Ã½ÒÓÍ�Í9ß��5�?Ï
Ì�Æ�Ä0É�Ì�Ç Ü1É�Ê�õ�ÃXÒ�Í�Í

As you can see, this
Ì�Æ0Ä�É�Ì�Ç

hands back two values. When calling this func-

tion, we would place it in a simultaneous assignment.Ç�É�Ê¬Ö(õîÇ�É�Ê"Ô?ß¡Ò�Ç��É¨ÄTñ���ØXÀ0Æ¨ÂXÜÓÆ?ÆÓÇ�Ä�Æ�ÌPÄ2Û�ÁÈÇ�É�Ê�Ë½Æ�ÌÎÜ»ñùÇ�É�Ê¬Ö�õ Ç�É0ÊÎÔ½ú(�Óú
Üõ�Ã ß Ü1É0Ê��ÎÒÓÍ�Í�ñùÇ�É�Ê¬Ö�õ Ç�É�Ê"ÔXú�Ì½Ò�Ç¨Ä)�:��Å½Æ¡Ü1É�Ê Ò¨Üm�Îõ�Üõè��ÂÓÇ�Ã?Ä0ÅXÆPÃ½Ò�Í2Í¨Æ�Ì�Æ�ÇÎÑ�Æ9Ò¨Ü��!õ�Ã
As with parameters, when multiple values are returned from a function, they

are assigned to variables by position. In this example,
Ü

will get the first value

listed in the
Ì�Æ0Ä�É�Ì�Ç

(
Ü1É�Ê

), and
Ã

will get the second value (
Ã½Ò�Í2Í

).

That’s just about all there is to know about value-returning functions in

Python. There is one “gotcha” to warn you about. Technically, all functions

in Python return a value, regardless of whether or not the function actually

contains a
Ì�Æ�Ä0É¨Ì0Ç

statement. Functions without a
Ì�Æ0Ä�É�Ì�Ç

always hand back

a special object, denoted
Ð¨Á�ÇXÆ

. This object is often used as a sort of default

value for variables that don’t currently hold anything useful. A common mis-

take that new (and not-so-new) programmers make is writing what should be

a value-returning function but forgetting to include a
Ì�Æ�Ä0É�Ì�Ç

statement at the

end.

Suppose we forget to include the
Ì�Æ�Ä0É�Ì�Ç

statement at the end of the
Ã½Ò�ÜxÄXÂxÇ"Ñ�Æ

function.Ã¨Æ0Í9Ã½Ò�ÜxÄXÂxÇ"Ñ�Ææñ0�Ö�õ !ÔXú¬÷
Ã½Ò�ÜxÄÝß Ê"Â�Ä0ÅhïzÜ�í0Ì�Ä�ñ�Ü�í�É!Â�Ì�ÆæñB!ÔTïB�¨Æ�Ä�Ð¬ñ1úæ�8�ÖïB��Æ0ÄCÐ�ñ1ú2ú

á Ü�í�É½Â�Ì�Æ¬ñ0½ÔoïB��Æ0ÄP�Tñ1ú��<VÖVïB��Æ0ÄC��ñ1ú2ú�ú

¹0� ´0�KË!{`y y $ ��� E�{ô�`��± y|�¬å }��0� uãóÓ�x� ³ y $ ��� ~zâ0~

Running the revised triangle program with this version of
ÃXÒ¨ÜxÄ�ÂÓÇÎÑ�Æ

generates

this Python error message:��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2,!Ò�À2Æ���Ä�Ì!Ò�ÂÓÇ+��À2Æ�Ô2Æ�Ì�Ìcï>�Ï$�Îõ À�Ò1Ç½Æ6@	@Tõ�Ò�Çâ2
Ê"Â¨Ò�Çnñ�ú,!Ò�À2Æ���Ä�Ì!Ò�ÂÓÇ+��À2Æ�Ô2Æ�Ì�Ìcï>�Ï$�Îõ À�Ò1Ç½Æ9Þ�þ�õ�Ò�ÇPÊÎÂ�Ò�Ç½Æ�Ì!Ò�ÊàßÐÃXÒ¨Ü�ÄXÂÓÇÎÑ�Æ¬ñ0VÖ(õF½Ô½ú�áÝÃ½Ò¨Ü�ÄXÂxÇ"Ñ�Æ¬ñ0½Ô�õFXÞ!ú�áÝÃ½Ò�ÜxÄXÂxÇ"Ñ�Ææñ0XÞTõIVÖ2ú��Ï�½Æ / Ì�Ì¨Á0Ì�÷ Ë!Â�ÃÝÁ�XÆ0ÌXÂxÇXÃ?Ä2ÏCXÆæñ�Ü�ú Í¨Á�Ì9á

The problem here is that this version of
Ã½Ò�ÜxÄXÂxÇ"Ñ�Æ

does not return a number;

it always hands back the value
Ð�Á�ÇXÆ

. Addition is not defined for
Ð�ÁÓÇ½Æ

, and so

Python complains. If your value-returning functions are producing strange error

messages, check to make sure you remembered to include the
Ì¨Æ0Ä0É¨Ì0Ç

.µ�È�×�È�Ç ¢ r�w3��tGlnvxw�s1t� ��mt ¶ v$��l('l¤��d�m�0�*��i+tui_�Bs
Return values are the main way to send information from a function back to the

part of the program that called the function. In some cases, functions can also

communicate back to the calling program by making changes to the function

parameters. Understanding when and how this is possible requires the mastery

of some subtle details about how assignment works in Python and the effect

this has on the relationship between the actual and formal parameters used in a

function call.

Let’s start with a simple example. Suppose you are writing a program that

manages bank accounts or investments. One of the common tasks that must

be performed is to accumulate interest on an account (as we did in the future

value program). We might consider writing a function that automatically adds

the interest to the account balance. Here is a first attempt at such a function:

óÐÂ0Ã2Ã½Ò1Ç�Ä�Æ�Ì�ÆXÜxÄ(ÖVï7¨Ï
Ã¨Æ0ÍÐÂ0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�ÄTñùË!Â�À2ÂÓÇÎÑ�ÆTõ Ì�Â�Ä¨Æ!ú¬÷

Ç½Æ�Û��XÂ2À�ÂxÇ"Ñ�ÆÈß7Ë!Â2À�ÂÓÇÎÑ�Æ5; ñ1Ö�á2Ì�Â�Ä¨Æ!ú
Ë!Â2À�ÂÓÇÎÑ�Æ?ß7ÇXÆ�ÛC�XÂ�À2ÂÓÇÎÑ�Æ

The intent of this function is to set the balance of the account to a value that has

been updated by the amount of interest.

Let’s try out our function by writing a very small test program.

~zâ�r s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
Ã¨Æ0ÍPÄ�ÆXÜxÄTñ�ú¬÷

Â�Ê!Á�É�Ç¨Ä9ß ÖxÕ2Õ�Õ
ÌXÂ�Ä�ÆPßÝÕnïùÕ?'
Â0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�ÄTñzÂ�ÊÎÁÓÉ�Ç¨Änõ ÌXÂ�Ä�Æ½ú�Ì½Ò�Ç�ÄÝÂ�ÊÎÁÓÉ�Ç¨Ä

Ä�ÆXÜxÄ�ñ1ú
What to you think this program will print? Our intent is that N!� should be

added to
Â�Ê!Á�É�Ç¨Ä

, giving a result of U�M�N�M . Here’s what actually happens:�	��� Â�Ã�Ã½Ò1Ç�Ä¨Æ0Ì�ÆXÜxÄ�ïpÄ�ÆXÜxÄ�ñ1úÖxÕ2Õ�Õ
As you can see,

Â1ÊÎÁÓÉ�Ç�Ä
is unchanged! What has gone wrong?

Actually, nothing has gone wrong. If you consider carefully what we have

discussed so far regarding functions and parameters, you will see that this is

exactly the result that we should expect. Let’s trace the execution of this example

to see what happens. The first two lines of the
Ä¨Æ½Ü�Ä

function create two local

variables called
Â�ÊÎÁÓÉ�Ç¨Ä

and
Ì�Â�Ä¨Æ

which are given the initial values of U�M�M�M andM?D M�N , respectively.

Next, control transfers to the
Â�Ã�Ã�¢�Ç�Ä¨Æ0Ì�ÆXÜxÄ

function. The formal parametersË!Â2À�ÂxÇ"Ñ�Æ
and

ÌXÂ�Ä�Æ
are assigned the values from the actual parameters

Â1ÊÎÁ�É2Ç�Ä
and

ÌXÂ�Ä�Æ
. Remember, even though the name

ÌXÂ�Ä�Æ
appears in both functions,

these are two separate variables. The situation as
Â0Ã�Ãm¢1Ç¨Ä�Æ0Ì¨Æ½Ü�Ä

begins to exe-

cute is shown in Figure
�
.
�
. Notice that the assignment of parameters causes the

variables
Ë!Â2À�ÂÓÇÎÑ�Æ

and
Ì�Â�Ä�Æ

in
Â0Ã�Ãm¢1Ç¨Ä�Æ0Ì¨Æ½Ü�Ä

to refer to the values of the actual

parameters.

Executing the first line of
Â�Ã�Ã�¢�Ç�Ä¨Æ0Ì�ÆXÜxÄ

creates a new variable
Ç½Æ�Û���Â�À�ÂxÇ"Ñ�Æ

.

Now comes the key step. The next statement in
Â0Ã�Ãm¢1Ç¨Ä�Æ0Ì¨Æ½Ü�Ä

assigns
Ë!Â�À2ÂÓÇÎÑ�Æ

to have the same value as
ÇXÆ�Û���Â�À2ÂÓÇ"Ñ�Æ

. The result is shown in Figure
�
.
�
. Notice

that
Ë!Â2À�ÂÓÇÎÑ�Æ

now refers to the same value as
Ç½Æ�Û��XÂ2À�ÂxÇ"Ñ�Æ

, but this had no effect

on
Â�Ê!Á�É2Ç�Ä

in the
Ä¨Æ½Ü�Ä

function.

At this point, execution of
Â0Ã�Ãm¢1Ç¨Ä�Æ0Ì¨Æ½Ü�Ä

has completed and control returns

to
Ä�Æ½Ü�Ä

. The local variables (including parameters) in
Â�Ã�Ã�¢�Ç�Ä¨Æ0Ì�ÆXÜxÄ

go away,

but
Â1ÊÎÁ�É2Ç�Ä

and
Ì�Â�Ä¨Æ

in the
Ä¨Æ½ÜxÄ

function still refer to the initial values of 1000

and 0.05, respectively. Of course, the program prints the value of
Â1ÊÎÁ�É2Ç�Ä

asU�M�M�M .
To summarize the situation, the formal parameters of a function only receive

the values of the actual parameters. The function does not have any access to

¹0� ´0�KË!{`y y $ ��� E�{ô�`��± y|�¬å }��0� uãóÓ�x� ³ y $ ��� ~zâ��

def addInterest(balance, rate):

 newBalance = balance * (1 + rate)

 balance = newBalance

amount

def test():

 amount = 1000

 rate = 0.05

 print amount

 addInterest(amount,rate)

bal
anc

e=a
mou

nt

rat
e=r

ate

1000

0.05rate

balance

rate

Figure
�
.
�
: Transfer of control to

Â0Ã�Ãm¢1Ç¨Ä�Æ0Ì¨Æ½Ü�Ä
.

def addInterest(balance, rate):

 newBalance = balance * (1 + rate)

 balance = newBalance

amount

def test():

 amount = 1000

 rate = 0.05

 print amount

 addInterest(amount,rate)

bal
anc

e=a
mou

nt

rat
e=r

ate

1000

0.05rate

balance

rate

newBalance

1050

Figure
�
.
�
: Assignment of

Ë½Â�À2ÂÓÇ"Ñ�Æ
.

~zâ ¯ s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
the variable that holds the actual parameter; therefore, assigning a new value to

a formal parameter has no effect on the variable that contains the actual param-

eter. In programming language parlance, Python is said to pass all parameters

by value.

Some programming languages (e.g., C++ and Ada), do allow variables

themselves to be sent as parameters to a function. Such a mechanism is called

passing parameters by reference. When a variable is passed by reference, as-

signing a new value to the formal parameter actually changes the value of the

parameter variable in the calling program.

Since Python does not allow passing parameters by reference, an obvious al-

ternative is to change our
Â0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�Ä

function so that it returns the
Ç½Æ�Û��XÂ2À�ÂxÇ"Ñ�Æ

.

This value can then be used to update the
Â1ÊÎÁÓÉ�Ç�Ä

in the
Ä�Æ½Ü�Ä

function. Here’s a

working version:

óÐÂ0Ã2Ã½Ò1Ç�Ä�Æ�Ì�ÆXÜxÄXÔTï7¨Ï
Ã¨Æ0ÍÐÂ0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�ÄTñùË!Â�À2ÂÓÇÎÑ�ÆTõ Ì�Â�Ä¨Æ!ú¬÷

Ç½Æ�Û��XÂ2À�ÂxÇ"Ñ�ÆÈß7Ë!Â2À�ÂÓÇÎÑ�Æ5; ñ1Ö�á2Ì�Â�Ä¨Æ!ú
Ì�Æ�Ä0É�Ì�ÇPÇ½Æ�Û���Â�À�ÂxÇ"Ñ�Æ

Ã¨Æ0ÍPÄ�ÆXÜxÄTñ�ú¬÷
Â�Ê!Á�É�Ç¨Ä9ß ÖxÕ2Õ�Õ
ÌXÂ�Ä�ÆPßÝÕnïùÕ?'
Â�Ê!Á�É�Ç¨Ä9ßÐÂ0Ã2Ã�¢�Ç�Ä�Æ�Ì�ÆXÜxÄTñzÂ�Ê!Á�É�Ç¨Änõ ÌXÂ�Ä�Æ½ú�Ì½Ò�Ç�ÄÝÂ�ÊÎÁÓÉ�Ç¨Ä

Ä�ÆXÜxÄ�ñ1ú
You should easily be able to trace through the execution of this program to see

how we get this output.�	��� Â�Ã�Ã½Ò1Ç�Ä¨Æ0Ì�ÆXÜxÄ�ÔoïpÄ¨Æ½Ü�ÄTñ1úÖxÕ	'2Õ
Now suppose instead of looking at a single account, we are writing a pro-

gram that deals with many bank accounts. We could store the account balances

in a Python list. It would be nice to have an
Â�Ã�Ã�¢�Ç�Ä¨Æ0Ì�ÆXÜxÄ

function that adds the

accrued interest to all of the balances in the list. If
Ë!Â2À�ÂxÇ"Ñ�ÆXÜ

is a list of account

balances, we can update the first amount in the list (the one at index 0) with a

line of code like this:

¹0� ´0�KË!{`y y $ ��� E�{ô�`��± y|�¬å }��0� uãóÓ�x� ³ y $ ��� ~zâ�´

Ë!Â2À�ÂxÇ"Ñ�ÆXÜ û Õ�
?ß7Ë½Â�À2ÂÓÇ"Ñ�Æ½Ü û Õ�
 ;¥ñ�Ö;áPÌXÂ�Ä�Æ½ú
Remember, this works because lists are mutable. This line of code essentially

says, “multiply the value in the 0th position of the list by R0U Â ö�ú c ' T and store

the result back into the 0th position of the list.” Of course, a very similar line of

code would work to update the balance of the next location in the list; we just

replace the
Õ
s with

Ö
s.

Ë!Â2À�ÂxÇ"Ñ�ÆXÜ û Ö�
?ß7Ë½Â�À2ÂÓÇ"Ñ�Æ½Ü û Ö�
 ;¥ñ�Ö;áPÌXÂ�Ä�Æ½ú
A more general way of updating all the balances in a list is to use a loop that

goes through positions M�GuU�G�D�D�DIGÒû ' øji cMk V-U . Here is a program that implements

this idea.

óÐÂ0Ã2Ã½Ò1Ç�Ä�Æ�Ì�ÆXÜxÄ�Þoï7¨Ï
Ã¨Æ0ÍÐÂ0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�ÄTñùË!Â�À2ÂÓÇÎÑ�Æ½ÜVõ ÌXÂ�Ä�Æ!ú÷

Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���Ææñ�À0Æ�ÇoñðË!Â2À�ÂxÇ"Ñ�ÆXÜ¨ú2ú¬÷
Ë!Â�À2ÂÓÇÎÑ�Æ½Ü û Ò�
?ß7Ë!Â2À�ÂxÇ"Ñ�ÆXÜ û Ò�
5;¥ñ1Ö�á0ÌXÂ�Ä¨Æ!ú

Ã¨Æ0ÍPÄ�ÆXÜxÄTñ�ú¬÷
Â�Ê!Á�É�Ç¨ÄÎÜ;ß û ÖxÕ2Õ�ÕTõ�Ô�Ô2Õ2ÕTõÔA2Õ�ÕTõ¢Þ�ø�ÕC

ÌXÂ�Ä�ÆPßÝÕnïùÕ?'
Â0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�ÄTñzÂ�ÊÎÁÓÉ�Ç¨ÄÎÜõ Ì�Â�Ä¨Æ!ú�Ì½Ò�Ç�ÄÝÂ�ÊÎÁÓÉ�Ç¨ÄÎÜ

Ä�ÆXÜxÄ�ñ1ú
Take a moment to study this program. The

Ä¨Æ½ÜxÄ
function starts by settingÂ�Ê!Á�É2Ç�ÄÎÜ

to be a list of four values. Then the
Â�Ã�Ãm¢1Ç�Ä¨Æ0Ì¨Æ½ÜxÄ

function is called

sending
Â1ÊÎÁÓÉ�Ç�Ä!Ü

as the first parameter. After the function call, the value ofÂ�Ê!Á�É2Ç�ÄÎÜ
is printed out. What do you expect to see? Let’s run this little program

and see what happens.�	��� Â0Ã2Ã½Ò�Ç¨Ä�Æ�Ì�Æ½Ü�Ä�ÞoïpÄ�ÆXÜxÄ�ñ1úû Ö�Õ?'0ÕnïðÕ�õ Ô2Þ!ÖxÕoïðÕTõ°A�@�ÕnïðÕ�õ�Þ�þ�AnïùÕ�

Isn’t that interesting? In this example, the function seems to change the

value of the
Â1ÊÎÁ�É2Ç�Ä!Ü

variable. But I just told you that Python passes parameters

by value, so the variable itself (
Â�Ê!Á�É2Ç�ÄÎÜ

) can’t be changed by the function. So

what’s going on here?

~zâ�¹ s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
The first two lines of

Ä�ÆXÜxÄ
create the variables

Â�ÊÎÁÓÉ�Ç¨ÄÎÜ
and

ÌXÂ�Ä�ÆXÜ
, and then

control transfers to the
Â�Ã�Ãm¢1Ç�Ä¨Æ0Ì¨Æ½ÜxÄ

function. The situation at this point is

depicted in Figure
�
.
�
. Notice that the value of the variable

Â1ÊÎÁ�É2Ç�Ä!Ü
is now a

[, , ,]

def test():

 rate = 0.05

 print amounts

 amounts = [1000,2150,800,3275]

rate

amounts

1000 800

0.05

rate

balances

 addInterest(amounts,rate)

def addInterest(balances, rate):

 for i in range(len(balances)):

 balances[i] = balances[i] * (1+rate)

2200 360

Figure
�
.
�
: Transfer of list parameter to

Â�Ã�Ã�¢�Ç�Ä¨Æ0Ì�ÆXÜxÄ
.

list object that itself contains four int values. It is this list object that gets passed

to
Â�Ã�Ã�¢�Ç�Ä¨Æ0Ì�ÆXÜxÄ

and is therefore also the value of
Ë½Â�À�ÂxÇ"Ñ�Æ½Ü

.

Next
Â0Ã2Ã�¢�Ç�Ä�Æ�Ì�ÆXÜxÄ

executes. The loop goes through each index in the rangeM�GuU�G�D�D�DIGÒû ' øji cMk V6U and updates that item in
Ë!Â2À�ÂxÇ"Ñ�ÆXÜ

. The result is shown in

Figure
�
.
�
. You’ll notice in the diagram that I left the old values (1000, 2200,

800, 360) just hanging around. I did this to emphasize that the numbers in the

value boxes have not changed. Instead what has happened is that new values

were created, and the assignments into the list cause it to refer to the new

values. The old values will actually get cleaned up when Python does garbage

collection.

It should be clear now why the list version of the
Â0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�Ä

program

produces the answer that it does. When
Â0Ã2Ã�¢1Ç¨Ä�Æ�Ì�Æ½Ü�Ä

terminates, the list stored

in
Â�ÊÎÁÓÉ�Ç¨ÄÎÜ

now contains the new balances, and that is what gets printed. Notice

that the variable
Â�Ê!Á�É�Ç¨ÄÎÜ

was never changed. It still refers to the same list that

it did before the call to
Â0Ã�Ãm¢1Ç¨Ä�Æ0Ì¨Æ½Ü�Ä

. What has happened is that the state of

that list has changed, and this change is visible back in the calling program.

Now you really know everything there is to know about how Python passes

parameters to functions. Parameters are always passed by value. However, if

¹0� ¹0�?óÓ�x� ³ y $ �����æux�����!}�����}�ux�<bxyè} � ³ yè�x}�{ ~zâ�¿

[, , ,]

def test():

 rate = 0.05

 print amounts

 amounts = [1000,2150,800,3275]

rate

amounts

1050

0.05

rate

balances

 addInterest(amounts,rate)

def addInterest(balances, rate):

 for i in range(len(balances)):

 balances[i] = balances[i] * (1+rate)

2310 840 378

1000 2200 800 360

Figure
�
.
�
: List modified in

Â0Ã2Ã�¢�Ç�Ä�Æ�Ì�ÆXÜxÄ
.

the value of the variable is a mutable object (like a list or graphics object), then

changes to the state of the object will be visible to the calling program. This

latter situation is another example of the aliasing issue discussed in Chapter 5.

ê«^�ê ð_¦_e�SVUXW��£e�[Ýi_e�· �¢g1���Gg1i�� ©²UÎg�¦�SVU!¦§g1R

So far, we have been discussing functions as a mechanism for reducing code du-

plication, thus shortening and simplifying our programs. Surprisingly, functions

are often used even when doing so actually makes a program longer. A second

reason for using functions is to make programs more modular.

As the algorithms that you design get more complex, it gets more and more

difficult to make sense out of programs. Humans are pretty good at keeping

track of eight to ten things at a time. When presented with an algorithm that is

hundreds of lines long, even the best programmers will throw up their hands in

bewilderment.

One way to deal with this complexity is to break an algorithm into smaller

subprograms, each of which makes sense on its own. I’ll have a lot more to say

about this later when we discuss program design in Chapter 9. For now, we’ll

~zâ�â s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
just take a look at an example. Let’s return to the future value problem one

more time. Here is the
ÊÎÂ�Ò�Ç

program as we left it:

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ó=¢1Ç¨Ä�Ì�Á0Ã�ÉÎÑÓÄ!Ò�Á�Ç�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê�!À0Á0Ä!Ü;Ä0Å½Æ6�0Ì�Á�Û¨Ä0ÅÐÁ2ÍÐÂÿÖxÕ	��Ï¨Æ¨Â�ÌàÒ�Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä�ïG�
ó ü Æ�Ä-�Ì!Ò1Ç"Ñ2Ò�!Â2ÀPÂÓÇ�ÃàÒ�Ç¨Ä�Æ�Ì�Æ½Ü�ÄPÌXÂ�Ä�Æ�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�À¨Ò�D¨Æ0ÃÐÒ1Ç�Ä�Æ�Ì�ÆXÜxÄ?Ì�Â�Ä¨Æn÷���ú
óÝ×0Ì¨Æ¨Â�Ä¨Æ9Â6�2Ì�Â��ÅÎÒ�Ñ�ÜªÛÎÒ1ÇXÃ�Á�Û9ÛÎÒxÄ0Å¡À2ÂÓËXÆ¨ÀXÜ;Á�ÇÿÀ2Æ0Í2ÄÐÆ0Ã	�¨Æ
ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ���¢1Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä ü Ì¨Á�Û�Ä0Åà×ÓÅ!Â�Ì2Ä��!õ¢Þ¨Ô0ÕTõ Ô�@¨Õ!ú
ÛÎÒ1Ç�ïzÜÓÆ0ÄP�XÂ�Ñ�Î+�0Ì�Á�É2ÇXÃæñ���Û0Å"ÒxÄ�Æ_��ú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñ!�½Öïùþ?'�õÒ��Ô0Õ�Õæõ Ö�Öï0'�õfÖ�Õ�@�Õ�Õ!ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ Õ!úVõ�� ÕoïðÕ�À��vúïùÃ0ÌXÂ�ÛTñèÛ!Ò�Ç�ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õlÔ	'2Õ2Õ!ú�õ�� Ôoï0'�À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ°'2Õ�Õ2Õ!ú�õ��î'oïùÕ!À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ þ?'2Õ2Õ!ú�õ�� þnï0'�Î���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ�ÖxÕ�Õ2Õ�Õ½úVõ��vÖxÕnïùÕ!À��vú¬ïpÃ2Ì�Â�ÛoñðÛÎÒ1Ç�ú
ó��¨Ì�Â�ÛPË!Â�ÌÝÍ¨Á�ÌÿÒ�Ç"ÒxÄ!Ò�Â�Àè¨Ì!Ò�ÇÎÑ�ÒG!Â�À
Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1Çcõ ÕTõ°�Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú
ó��¨Ì�Â�Û¡Â Ë!Â�ÌÝÍ¨Á�ÌÐÆ¨Â�Ñ1Å»Ü1É2Ë(Ü�ÆCí�ÉXÆ�Ç�Ä7Ï�Æ�Â�Ì
Í¨Á�Ì9Ï�Æ¨Â�Ì¡Ò�ÇàÌ�ÂÓÇ���Ææñ1Ö�õ�Ö2Ö2ú÷�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú

Ã2ÌXÂÓÛ���Â�ÌTñðÛÎÒ1Çcõ Ï�Æ¨Â�Ìnõ#¨Ì!Ò�ÇÎÑ�ÒG!Â�ÀXú
ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄcïu��úÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Ê"Â¨Ò�Çoñ1ú
Although we have already shortened this algorithm through the use of theÃ2Ì�Â�ÛC�XÂ�Ì

function, it is still long enough to make reading through it awkward.

The comments help to explain things, but—not to put too fine a point on it—

this function is just too long. One way to make the program more readable is

to move some of the details into a separate function. For example, there are

¹0� ¹0�?óÓ�x� ³ y $ �����æux�����!}�����}�ux�<bxyè} � ³ yè�x}�{ ~zâ�é

eight lines in the middle that simply create the window where the chart will be

drawn. We could put these steps into a value returning function.

Ã¨Æ0Í¡ÑÓÌ¨Æ¨Â�Ä¨ÆC��ÂÓË½Æ�À2Æ0ÃC"ÎÒ1ÇXÃ�Á�Ûoñ�ú¬÷
ó-�XÆ�Ä0É�Ì�Ç(ÜÈÂ ü ÌXÂ�2Å?"!Ò�ÇPÛ!ÒÓÄ�ÅÐÄ!ÒÓÄ�À2Æ9ÂxÇXÃÐÀ2ÂÓË½Æ�ÀXÜ;Ã0ÌXÂÓÛ2Ç
ÛÎÒ1ÇXÃ¨Á�ÛÝß ü Ì�Â�2Å?"ÎÒ1Çnñ���¢1Ç?9�ÆXÜxÄ�Ê!Æ�Ç¨Ä ü Ì�Á�Û¨Ä0ÅÐ×�Å!Â�Ì�Ä$�Îõ�Þ�Ô2ÕTõ�ÔC@¨Õ½ú
ÛÎÒ1ÇXÃ¨Á�ÛhïôÜ�Æ0ÄP�XÂ¨Ñ�Î+�0Ì�ÁÓÉ�ÇXÃæñ��zÛ2Å!ÒÓÄ�Æ*�Óú
ÛÎÒ1ÇXÃ¨Á�ÛhïôÜ�Æ0Ä¨×�Á2Á0Ì¨Ã½Ü�ñ&�!Öïùþ?'æõë�0Ô2Õ�Õ�õ�Ö�ÖVï�'æõfÖxÕC@¨Õ�Õ½ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ Õ!úVõ�� ÕoïðÕ�À��vúïùÃ0ÌXÂ�ÛTñèÛ!Ò�ÇXÃ�Á�Û"ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õlÔ	'2Õ2Õ!ú�õ�� Ôoï0'�À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç�Ã¨Á�Û(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ°'2Õ�Õ2Õ!ú�õ��î'oïùÕ!À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç�Ã¨Á�Û(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ þ?'2Õ2Õ!ú�õ�� þnï0'�Î���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç�Ã¨Á�Û(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ�ÖxÕ�Õ2Õ�Õ½úVõ��vÖxÕnïùÕ!À��vú¬ïpÃ2Ì�Â�ÛoñðÛÎÒ1ÇXÃ¨Á�Û(ú
Ì�Æ�Ä0É�Ì�Ç9ÛÎÒ1ÇXÃ�Á�Û

As its name implies, this function takes care of all the nitty-gritty details of

drawing the initial window. It is a self-contained entity that performs this one

well-defined task.

Using our new function, the
Ê"Â¨Ò�Ç

algorithm seems much simpler.

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê�!À0Á0Ä!Ü;Ä0Å½Æ6�0Ì�Á�Û¨Ä0ÅÐÁ2ÍÐÂÿÖxÕ	��Ï¨Æ¨Â�ÌàÒ�Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä�ïG�
�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�À¨Ò�D¨Æ0ÃÐÒ1Ç�Ä�Æ�Ì�ÆXÜxÄ?Ì�Â�Ä¨Æn÷���ú
ÛÎÒ1Çàß¡ÑÓÌ�Æ�Â�Ä¨ÆC�XÂxË½Æ�À2Æ2Ã�"ÎÒ1ÇXÃ¨Á�Ûoñ�ú
Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1Çcõ ÕTõ°�Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú
Í¨Á�Ì9Ï�Æ¨Â�Ì¡Ò�ÇàÌ�ÂÓÇ���Ææñ1Ö�õ�Ö2Ö2ú÷�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú

Ã2ÌXÂÓÛ���Â�ÌTñðÛÎÒ1Çcõ Ï�Æ¨Â�Ìnõ#¨Ì!Ò�ÇÎÑ�ÒG!Â�ÀXú
ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄcïu��úÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Notice that I have removed the comments; the intent of the algorithm is now

clear. With suitably named functions, the code has become nearly self-documenting.

Here is the final version of our future value program:

ó9Í�É¨Ä	9�Â�À	Ì��2Ì�Â��Å+@�ï>�Ï

~zé�% s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ã¨Æ0Í¡ÑÓÌ¨Æ¨Â�Ä¨ÆC��ÂÓË½Æ�À2Æ0ÃC"ÎÒ1ÇXÃ�Á�Ûoñ�ú¬÷

ÛÎÒ1ÇXÃ¨Á�ÛÝß ü Ì�Â�2Å?"ÎÒ1Çnñ���¢1Ç?9�ÆXÜxÄ�Ê!Æ�Ç¨Ä ü Ì�Á�Û¨Ä0ÅÐ×�Å!Â�Ì�Ä$�Îõ�Þ�Ô2ÕTõ�ÔC@¨Õ½ú
ÛÎÒ1ÇXÃ¨Á�ÛhïôÜ�Æ0ÄP�XÂ¨Ñ�Î+�0Ì�ÁÓÉ�ÇXÃæñ��zÛ2Å!ÒÓÄ�Æ*�Óú
ÛÎÒ1ÇXÃ¨Á�ÛhïôÜ�Æ0Ä¨×�Á2Á0Ì¨Ã½Ü�ñ&�!Öïùþ?'æõë�0Ô2Õ�Õ�õ�Ö�ÖVï�'æõfÖxÕC@¨Õ�Õ½ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ Õ!úVõ�� ÕoïðÕ�À��vúïùÃ0ÌXÂ�ÛTñèÛ!Ò�ÇXÃ�Á�Û"ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õlÔ	'2Õ2Õ!ú�õ�� Ôoï0'�À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç�Ã¨Á�Û(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ°'2Õ�Õ2Õ!ú�õ��î'oïùÕ!À���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç�Ã¨Á�Û(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ þ?'2Õ2Õ!ú�õ�� þnï0'�Î���ú¬ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç�Ã¨Á�Û(ú��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñ!�½Ö�õ�ÖxÕ�Õ2Õ�Õ½úVõ��vÖxÕnïùÕ!À��vú¬ïpÃ2Ì�Â�ÛoñðÛÎÒ1ÇXÃ¨Á�Û(ú
Ì�Æ�Ä0É�Ì�Ç9ÛÎÒ1ÇXÃ�Á�Û

Ã¨Æ0Í9Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1ÇXÃ�Á�Û�õ Ï�Æ�Â�ÌoõîÅ½Æ�Ò���Å¨Ä"ú÷
Ë!Â�ÌÝß-�XÆXÑxÄXÂxÇ���À0ÆæñèØ�ÁXÒ1Ç�Ä�ñ`Ï�Æ�Â�Ìoõ Õ!úVõ¢Ø¨ÁXÒ1Ç�ÄTñèÏ�Æ�Â�Ì¨áÎÖ�õ Å½Æ�Ò���Å¨Ä"ú2ú
Ë!Â�ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ����2Ì¨Æ�ÆÓÇ���ú
Ë!Â�ÌcïzÜÓÆ0ÄC"ÎÒ�Ã0Ä0Åoñ�Ô½ú
Ë!Â�ÌcïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç�Ã¨Á�Û"ú

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê�!À0Á0Ä!Ü;Ä0Å½Æ6�0Ì�Á�Û¨Ä0ÅÐÁ2ÍÐÂÿÖxÕPÏ¨Æ¨Â�ÌàÒ�Ç+9¨Æ½Ü�Ä�ÊÎÆÓÇ�Ä�ïG�
�Ì½Ò�Ç"Ñ2Ò�½Â�ÀÈßÿÒ1Ç	�É¨ÄTñ�� / Ç¨Ä�Æ�Ì7Ä�Å½ÆàÒ�ÇÎÒÓÄ½Ò0Â�À§�Ì!Ò1Ç"Ñ2Ò�!Â2Ào÷ü��úÂ�¨ÌÝß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆÝÂxÇ�Ç�É½Â�À¨Ò�D¨Æ0ÃÐÒ1Ç�Ä�Æ�Ì�ÆXÜxÄ?Ì�Â�Ä¨Æn÷���ú
ÛÎÒ1Çàß¡ÑÓÌ�Æ�Â�Ä¨ÆC�XÂxË½Æ�À2Æ2Ã�"ÎÒ1ÇXÃ¨Á�Ûoñ�ú
Ã2Ì�Â�Û���Â�Ì�ñèÛÎÒ1Çcõ ÕTõ°�Ì½Ò�ÇÎÑ�Ò�½Â�ÀXú
Í¨Á�Ì9Ï�Æ¨Â�Ì¡Ò�ÇàÌ�ÂÓÇ���Ææñ1Ö�õ�Ö2Ö2ú÷�Ì!Ò1Ç"Ñ2Ò�!Â2ÀÈß-�Ì½Ò�ÇÎÑ�Ò�½Â�À6;¥ñ�Ö áàÂ�¨Ì"ú

Ã2ÌXÂÓÛ���Â�ÌTñðÛÎÒ1Çcõ Ï�Æ¨Â�Ìnõ#¨Ì!Ò�ÇÎÑ�ÒG!Â�ÀXú
ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ���Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄcïu��úÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Although this version is longer than the previous version, experienced program-

mers would find it much easier to understand. As you get used to reading and

writing functions, you too will learn to appreciate the elegance of more modular

code.

¹0� ¿0�0s(t�uxw�y|{�}3b¨������u�}�ç ~zé0~
ê«^IH �b�i�¤nU�Rcg © ¦§�¥� ing1í
\ A function is a kind of subprogram. Programmers use functions to reduce

code duplication and to help structure or modularize programs. Once a

function is defined, it may be called multiple times from many different

places in a program. Parameters allow functions to have changeable parts.

The parameters appearing in the function definition are called formal pa-

rameters, and the expressions appearing in a function call are known as

actual parameters.

\ A call to a function initiates a four step process:

1. The calling program is suspended.

2. The values of actual parameters are assigned to the formal parame-

ters.

3. The body of the function is executed.

4. Control returns immediately following the function call in the calling

program.

\ The scope of a variable is the area of the program where it may be refer-

enced. Formal parameters and other variables inside function definitions

are local to the function. Local variables are distinct from variables of the

same name that may be used elsewhere in the program.

\ Functions can communicate information back to the caller through return

values. Python functions may return multiple values. Value returning func-

tions should generally be called from inside of an expression. Functions

that don’t explicitly return a value return the special object
Ð�ÁÓÇ½Æ

.

\ Python passes parameters by value. If the value being passed is a mutable

object, then changes made to the object may be visible to the caller.

ê«^I[egfTRcg1SæW�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�sÿ �ër�i*) ¢ �_Ù�sGi

1. Programmers rarely define their own functions.

~zé�r s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
2. A function may only be called at one place in a program.

3. Information can be passed into a function through parameters.

4. Every Python function returns some value.

5. In Python, some parameters are passed by reference.

6. In Python, a function can return only one value.

7. Python functions can never modify a parameter.

8. One reason to use functions is to reduce code duplication.

9. Variables defined in a function are local to that function.

10. It’s a bad idea to define new functions if it makes a program longer.¶ r*ÙXtGl�Í_Ù�i�ª³ �v�l��	i
1. The part of a program that uses a function is called the

a) user b) caller c) callee d) statement

2. A Python function definition begins with

a)
Ã¨Æ0Í

b)
Ã¨Æ0Í½Ò1Ç½Æ

c)
Í�É2Ç"ÑxÄ!Ò�ÁÓÇ

d)
Ã¨Æ0Í�É�Ç

3. A function can send output back to the program with a(n)

a)
Ì�Æ�Ä0É�Ì�Ç

b)
¨Ì!Ò�Ç¨Ä

c) assignment d) SASE

4. Formal and actual parameters are matched up by

a) name b) position c) id d) interests

5. Which of the following is not a step in the function calling process?

a) the calling program suspends

b) the formal parameters are assigned the value of the actual parameters

c) the body of the function executes

d) control returns to the point just before the function was called.

6. In Python, actual parameters are passed to functions

a) by value b) by reference c) at random d) by networking

¹2� â2�+����{1} ³�$ ��{ô� ~zé��

7. Which of the following is not a reason to use functions?

a) to reduce code duplication

b) to make a program more modular

c) to make a program more self-documenting

d) to demonstrate intellectual superiority

8. If a function returns a value, it should generally be called from

a) an expression b) a different program

c)
Ê"Â¨Ò�Ç

d) a cell phone

9. A function with no
Ì�Æ�Ä0É¨Ì0Ç

statement returns

a) nothing b) its parameters c) its variables d)
Ð�ÁÓÇ½Æ

10. A function can modify the value of an actual parameter only if it’s

a) mutable b) a list c) passed by reference d) a variable�¦lns��mr�s�s�lnvxw
1. In your own words, describe the two motivations for defining functions in

your programs.

2. We have been thinking about computer programs as sequences of instruc-

tions where the computer methodically executes one instruction and then

moves on to the next one. Do programs that contain functions fit this

model? Explain your answer.

3. Parameters are an important concept in defining functions.

(a) What is the purpose of parameters?

(b) What is the difference between a formal parameter and an actual

parameter?

(c) In what ways are parameters similar to and different from ordinary

variables?

4. Functions can be thought of as miniature (sub)programs inside of other

programs. Like any other program, we can think of functions as having

input and output to communicate with the main program.

(a) How does a program provide “input” to one of its functions?

(b) How does a function provide “output” to the program?

~zé ¯ s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
5. Consider this very simple function:

Ã¨Æ2Í¡Ñ1É�ËXÆæñë�!ú¬÷
ÂxÇ(Ü1ÛXÆ0ÌPß5�¡;��¡;��
Ì¨Æ0Ä�É�Ì0ÇàÂÓÇ(Ü1ÛXÆ�Ì

(a) What does this function do?

(b) Show how a program could use this function to print the value of ` ¸ ,assuming
Ï

is a variable.

(c) Here is a fragment of a program that uses this function:
ÂÓÇ(Ü1ÛXÆ�Ì9ß @
Ì�Æ½Ü�É!À�Ä9ßÿÑ�É�ËXÆæñôÞ!ú�Ì!Ò1Ç�ÄàÂxÇ(Ü�Û�Æ0Ìoõ Ì�ÆXÜ1É½À�Ä
The output from this fragment is

@ÐÔ0þ
. Explain why the output is notÔ2þÝÔ2þ

, even though
Ñ�É�ËXÆ

seems to change the value of
ÂÓÇ"Ü�Û�Æ0Ì

to
Ô0þ

.

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. Write a program to print the lyrics of the song “Old MacDonald.” Your

program should print the lyrics for five different animals, similar to the

example verse below.

Old MacDonald had a farm, Ee-igh, Ee-igh, Oh!

And on that farm he had a cow, Ee-igh, Ee-igh, Oh!

With a moo, moo here and a moo, moo there.

Here a moo, there a moo, everywhere a moo, moo.

Old MacDonald had a farm, Ee-igh, Ee-igh, Oh!

2. Write a program to print the lyrics for ten verses of “The Ants Go March-

ing.” A couple of sample verses are given below. You may choose your own

activity for the little one in each verse, but be sure to choose something

that makes the rhyme work (or almost work).

The ants go marching one by one, hurrah! hurrah!

The ants go marching one by one, hurrah! hurrah!

The ants go marching one by one,

The little one stops to suck his thumb,

And they all go marching down...

¹2� â2�+����{1} ³�$ ��{ô� ~zé�´

In the ground...

To get out....

Of the rain.

Boom! Boom! Boom!

The ants go marching two by two, hurrah! hurrah!

The ants go marching two by two, hurrah! hurrah!

The ants go marching two by two,

The little one stops to tie his shoe,

And they all go marching down...

In the ground...

To get out...

Of the rain.

Boom! Boom! Boom!

3. Write definitions for these functions:

ÜG�ÅXÆ0Ì¨Æ Ú Ì¨Æ¨Âñ`ÌXÂ�Ã½Ò1É(Ü¨ú
Returns the surface area of a sphere having the

given radius.ÜG�ÅXÆ0Ì¨ÆCÛ�Á�ÀÓÉ�ÊÎÆæñèÌXÂ�Ã½Ò�É"Ü¨ú
Returns the volume of a sphere having the given

radius.

Use your functions to solve Programming Exercise 1 from Chapter 3.

4. Write definitions for the following two functions:

Ü1É0Ê�ÐTñùÇ�ú
returns the sum of the first n natural numbers.Ü1É0Ê�Ð�×ÓÉ�Ë½ÆXÜ�ñùÇ�ú

returns the sum of the cubes of the first n natural numbers.

Then use these functions in a program that prompts a user for ø and prints

out the sum of the first ø natural numbers and the sum of the cubes of the

first n natural numbers.

5. Redo Programming Exercise 2 from Chapter 3. Use two functions—one to

compute the area of a pizza, and one to compute cost per square inch.

6. Write a function that computes the area of a triangle given the length of its

three sides as parameters (see Programming Exercise 9 from Chapter 3).

Use your function to augment
Ä2Ì!Ò0ÂxÇ��¨À2Æ¨ÔTï7¨Ï

so that it also displays the

area of the triangle.

~zé�¹ s(t�uxw�y|{�}½¹2�æé"{Òê�� $ ��� óÓ�x� ³ y $ �����
7. Write a function to compute the nth Fibonacci number. Use your function

to solve Programming Exercise 3 from Chapter 3.

8. Solve Programming Exercise 17 from Chapter 3 using a functionÇ½Æ��0Ä ü É½Æ½Ü2Ü�ñÒ��É½ÆXÜ�ÜVõ#�!ú
that returns the next guess.

9. Do Programming Exercise 3 from Chapter 4 using a function
�0ÌXÂ0Ã�ÆæñvÜ2Ñ�Á�Ì�Æ½ú

that returns the letter grade for a score.

10. Do Programming Exercise 5 from Chapter 4 using a function
Â¨ÑÓÌ¨Á�Ç�ÏÓÊcñB�Å�Ì�ÂXÜÓÆ!ú

that returns an acronym for a phrase supplied as a string.

11. Write and test a function to meet this specification.

Ü�í�É½Â�Ì¨Æ / Â¨Ñ�ÅoñðÇ�É�ÊVÜ�ú�Ç�É�ÊVÜ is a list of numbers. Modifies the list by squaring

each entry.

12. Write and test a function to meet this specification.

Ü1É0Ê��!Ò�ÜxÄTñùÇ�É�ÊVÜ¨ú Ç2É0Ê�Ü
is a list of numbers. Returns the sum of the numbers

in the list.

13. Write and test a function to meet this specification.

Ä�ÁCÐ�É0Ê¨Ë½Æ0Ì!Ü�ñvÜxÄ�Ì��!Ò�ÜxÄ"úªÜxÄ�Ì��!Ò�ÜxÄ
is a list of strings, each of which represents

a number. Modifies each entry in the list by converting it to a number.

14. Use the functions from the previous three problems to implement a pro-

gram that computes the sum of the squares of numbers read from a file.

Your program should prompt for a file name and print out the sum of the

squares of the values in the file. Hint: use
Ì�Æ¨Â�Ã�À¨Ò�Ç½ÆXÜ�ñ�ú

15. Write and test a function to meet this specification.

Ã2ÌXÂÓÛ?,�Â�Ñ�Æ¬ñvÑ�Æ�Ç�Ä¨Æ0Ìoõ Ü0Ò�D¨Æ�õ ÛÎÒ1Ç�ú;Ñ�ÆÓÇ�Ä�Æ�Ì
is a

Ø¨ÁXÒ1Ç�Ä
,
Ü2Ò�D�Æ

is an int, andÛÎÒ�Ç
is a

ü ÌXÂ��Å	"ÎÒ�Ç
. Draws a simple face of the given size in

ÛÎÒ1Ç
.

Your function can draw a simple smiley (or grim) face. Demonstrate the

function by writing a program that draws several faces of varying size in a

single window.

16. Write a function to meet this specification.

¹2� â2�+����{1} ³�$ ��{ô� ~zé�¿

ÊÎÁC9¨ÆC�¨Áæñ�Ü�Å!Â�½ÆTõ Ç½Æ�ÛX×2Æ�Ç�Ä¨Æ0ÌÎú Ü�Å!Â�½Æ
is a graphics object that supports the�¨Æ0Ä¨×�ÆÓÇ�Ä�Æ�Ì

method and
Ç½Æ�ÛX×�ÆÓÇ�Ä¨Æ0Ì

is a
Ø¨ÁXÒ�Ç¨Ä

. Moves
Ü1Å½Â�XÆ

so thatÇ½Æ�Û�×�ÆÓÇ�Ä�Æ�Ì
is its center.

Use your function to write a program that draws a circle and then allows

the user to click the window 10 times. Each time the user clicks, the circle

is moved where the user clicked.

3547698;:=<?>�+ �
aÆ)¥�è¥¨���
¨5�ÈE C ÆÐ�ÈC EG
ò

NPO!Q�RTSVUXWZYTRT[
\ To understand the programming pattern simple decision and its imple-

mentation using a Python
Ò�Í

statement.

\ To understand the programming pattern two-way decision and its imple-

mentation using a Python
Ò�Í?�2Æ�ÀXÜ�Æ

statement.

\ To understand the programming pattern multi-way decision and its imple-

mentation using a Python
Ò�Í?�2Æ�À�Ò�Í?�2Æ�ÀXÜ�Æ

statement.

\ To understand the idea of exception handling and be able to write simple

exception handling code that catches standard Python run-time errors.

\ To understand the concept of Boolean expressions and the
Ë½Á�Á�À

data type.

\ To be able to read, write, and implement algorithms that employ decision

structures, including those that employ sequences of decisions and nested

decision structures.

H«^`] ©«Wp�¥¤§j R «ªRTSæW�[XW��£e�[
So far, we have mostly viewed computer programs as sequences of instructions

that are followed one after the other. Sequencing is a fundamental concept

of programming, but alone it is not sufficient to solve every problem. Often

it is necessary to alter the sequential flow of a program to suit the needs of

q$,�,

rG%�% s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
a particular situation. This is done with special statements known as control

structures. In this chapter, we’ll take a look at decision structures, which are

statements that allow a program to execute different sequences of instructions

for different cases, effectively allowing the program to “choose” an appropriate

course of action.û�ÈSÊ�ÈSÊ �����*��Í_Ù�i ¨ ÿ i_�æÍ�i_�0��t�r��0i-�â���&w3l�wm��s
Let’s start by getting the computer to make a simple decision. For an easy exam-

ple, we’ll return to the Celsius to Fahrenheit temperature conversion program

from Chapter 2. Remember, this was written by Susan Computewell to help her

figure out how to dress each morning in Europe. Here is the program as we left

it:

ó¡Ñ�ÁÓÇ+9¨Æ0Ì�Ä�ï7¨Ï
ó Ú �Ì�ÁC�2Ì�Â�ÊàÄ¨ÁàÑ�Á�Ç?9�Æ�Ì�ÄÝ×2Æ¨ÀXÜ0Ò�É"Ü Ä�Æ�Ê+"Ü;Ä�Á-,XÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄ
ó7Ë�Ï�÷ÆÅÓÉ"Ü�ÂÓÇ¡×2ÁxÊ?�É�Ä¨Æ�Û�Æ¨À�À
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Ñ�Æ�ÀXÜ2Ò1É(Ü;ß¡Ò1Ç	2É�ÄTñ��!"0Å!Â�ÄÐÒ¨Ü;Ä�Å½Æ9×�Æ�ÀXÜ0Ò�É(Ü Ä�ÆxÊ?½Æ�ÌXÂ�Ä�É�Ì¨Æ�25��ú
Í�ÂxÅ�Ì�ÆÓÇ�ÅXÆXÒÓÄ?ßÝýnïùÕ �5'TïðÕ(;9Ñ�Æ¨ÀXÜ0Ò�É"Ü;áÝÞ¨Ô�Ì½Ò�Ç�Ä��:�0ÅXÆ?Ä�Æ�Ê+½Æ�ÌXÂ�Ä0É�Ì¨ÆÝÒ�Ü��ÎõlÍ�ÂÓÅ¨Ì�ÆÓÇ�Å½Æ�ÒÓÄoõ��vÃ�Æ��0Ì�Æ�ÆXÜ;Í�ÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄcïG�

Ê"Â¨Ò�Çoñ1ú
This is a fine program as far as it goes, but we want to enhance it. Susan

Computewell is not a morning person, and even though she has a program to

convert the temperatures, sometimes she does not pay very close attention to

the results. Our enhancement to the program will ensure that when the tem-

peratures are extreme, the program prints out a suitable warning so that Susan

takes notice.

The first step is to fully specify the enhancement. An extreme temperature

is either quite hot or quite cold. Let’s say that any temperature over 90 de-

grees Fahrenheit deserves a heat warning, and a temperature under 30 degrees

warrants a cold warning. With this specification in mind, we can design an

enhanced algorithm.¢1Ç��É¨ÄPÄ0ÅXÆ?Ä�ÆxÊ?½Æ�ÌXÂ�Ä�É�Ì¨ÆÝÒ�ÇàÃ�Æ��0Ì�Æ�ÆXÜ ×�Æ�ÀXÜ0Ò�É(Ü ñvÑ0Â2À�ÀÝÒxÄÿÑ�Æ�ÀXÜ2Ò1É(Ü�ú
×¨Â2À�Ñ1É!À�Â�Ä�ÆÈÍ�ÂÓÅ¨Ì�ÆÓÇ�Å½Æ�ÒÓÄ9ÂXÜÈý?��'ÐÑ�Æ�ÀXÜ2Ò1É(Ü;áÐÞ�ÔÄ É¨ÄC2É�Ä9Í¨ÂÓÅ�Ì¨Æ�Ç2Å½ÆXÒxÄ

¿2� ~x��b $ ��w�± { é"{ ³�$ � $ ����� rG%0~
Ò�Í9Í¨ÂÓÅ¨Ì�Æ�Ç2Å½Æ�ÒÓÄ � ý2Õ¨Ì!Ò1Ç�ÄàÂ Å½Æ�Â�ÄPÛXÂ�Ì0ÇÎÒ�Ç+�
Ò�Í9Í¨ÂÓÅ¨Ì�Æ�Ç2Å½Æ�ÒÓÄ . Þ2Õ¨Ì!Ò1Ç�ÄàÂÐÑ�Á�À0Ã?ÛXÂ�Ì0ÇÎÒ�Ç+�

This new design has two simple decisions at the end. The indentation indi-

cates that a step should be performed only if the condition listed in the previous

line is met. The idea here is that the decision introduces an alternative flow of

control through the program. The exact set of steps taken by the algorithm will

depend on the value of
Í¨ÂÓÅ¨Ì�Æ�Ç2Å½Æ�ÒÓÄ

.

Figure
�
.
�

is a flowchart showing the possible paths that can be taken through

the algorithm. The diamond boxes show conditional decisions. If the condition

is false, control passes to the next statement in the sequence (the one below).

If the condition holds, however, control transfers to the instructions in the box

to the right. Once these instructions are done, control then passes to the next

statement.

yes

no

yes

no

fahrenheit < 30?

fahrenheit > 90?

Print a Heat Warning

Print a Cold Warning

Input Celsius Temperature
Farenheit = 9/5 * celsius + 32

Print Fahrenheit

Figure . . Ý : Flowchart of temperature conversion program with warnings.

Here is how the new design translates into Python code:

rG%�r s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
ó¡Ñ�ÁÓÇ+9¨Æ0Ì�Ä�Ôoï>�Ï
ó Ú �Ì¨Á��0ÌXÂ�ÊÝÄ�Á¡Ñ�ÁÓÇ+9¨Æ0Ì�ÄP×�Æ�ÀXÜ2Ò1É(Ü Ä¨ÆxÊ?(Ü;Ä�Á-,�ÂÓÅ¨Ì�Æ�Ç2Å½Æ�ÒÓÄcï
ó ��Å"Ò¨Üè9¨Æ0Ì!Ü2Ò�ÁÓÇ Ò¨Ü2Ü1ÉXÆ½ÜªÅXÆ¨Â�ÄÝÂÓÇXÃ¡Ñ�Á¨À�Ã?Û½Â�Ì�Ç"Ò1Ç��!Ü¬ï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Ñ�Æ�ÀXÜ2Ò1É(Ü;ß¡Ò1Ç	2É�ÄTñ��!"0Å!Â�ÄÐÒ¨Ü;Ä�Å½Æ9×�Æ�ÀXÜ0Ò�É(Ü Ä�ÆxÊ?½Æ�ÌXÂ�Ä�É�Ì¨Æ�25��ú
Í�ÂxÅ�Ì�ÆÓÇ�ÅXÆXÒÓÄ?ßÝýnïùÕ �5'TïðÕ(;9Ñ�Æ¨ÀXÜ0Ò�É"Ü;áÝÞ¨Ô�Ì½Ò�Ç�Ä��:�0ÅXÆ?Ä�Æ�Ê+½Æ�ÌXÂ�Ä0É�Ì¨ÆÝÒ�Ü��ÎõlÍ�ÂÓÅ¨Ì�ÆÓÇ�Å½Æ�ÒÓÄoõ��vÃ�Æ��0Ì�Æ�ÆXÜ;Í�ÂxÅ�Ì¨Æ�Ç�ÅXÆXÒxÄcïG�
óPØ�Ì½Ò�Ç�ÄPÛXÂ�Ì�Ç"Ò�Ç+�!Ü Í¨Á0ÌÐÆC�2Ä2Ì�ÆxÊ!Æ7Ä�Æ�Ê+"Ü
Ò�Í9Í¨ÂÓÅ�Ì¨Æ�Ç2Å½ÆXÒxÄ � ý�Õo÷�Ì!Ò1Ç�Ä)��¢xÄU��Ü;Ì�Æ�Â�À2À�Ï7ÅXÁ0ÄÐÁ�É¨ÄPÄ0ÅXÆ0Ì¨ÆTõ Ë½ÆàÑ�Â�Ì¨Æ2Í�É½À ���
Ò�Í9Í¨ÂÓÅ�Ì¨Æ�Ç2Å½ÆXÒxÄ . Þ�Õo÷�Ì!Ò1Ç�Ä)����Ì2Ì�Ì�Ì2Ìcï½�¨Æ¡Ü1É¨Ì�Æ?Ä�ÁPÃ0Ì�ÆXÜ�Ü ÛXÂ�Ì�ÊÎÀ�Ïj�u�

Ê"Â¨Ò�Çoñ1ú
You can see that the Python

Ò�Í
statement is used to implement the decision.

The form of the
ÒÓÍ

is very similar to the pseudocode in the algorithm.

Ò�Í . Ñ�ÁÓÇXÃ½ÒxÄ!Ò�Á�Ç � ÷. ËXÁ2Ã2Ï �
The

Ë½Á0Ã2Ï
is just a sequence of one or more statements indented under the

Ò�Í
heading. In

Ñ�Á�Ç?9�Æ0Ì2ÄXÔTï7�Ï
there are two

Ò�Í
statements, both of which have a

single statement in the body.

The semantics of the
ÒÓÍ

should be clear from the example above. First, the

condition in the heading is evaluated. If the condition is true, the sequence of

statements in the body is executed, and then control passes to the next statement

in the program. If the condition is false, the statements in the body are skipped.

Figure
�
.
�

shows the semantics of the
ÒÓÍ

as a flowchart. Notice that the body

of the
Ò�Í

either executes or not depending on the condition. In either case,

control then passes to the next statement after the
Ò�Í

. This is a one-way or

simple decision.û�ÈSÊ�È�Ç ¢ v*�&��l�wm� Ø l��æÍ_Ù�i�ª vxw§��l�tGlnvxw�s
One point that has not yet been discussed is exactly what a condition looks like.

For the time being, our programs will use simple conditions that compare the

values of two expressions.

¿2� ~x��b $ ��w�± { é"{ ³�$ � $ ����� rG%��

<Statement>

<Statement>

<Statement>

yes

no

.

.

.

<condition> true?

Figure . . Ü : Control flow of simple if-statement

.

/10 Þ3254�6 / 4 08739 2�6 /10 Þ3284:6/ 4 08739 2	6 is short for relational operator. That’s just a fancy name for the mathe-

matical concepts like “less than” or “equal to.” There are six relational operators

in Python, shown in the following table.

Python Mathematics Meaning; ;
Less than;�< =
Less than or equal to<>< <
Equal to?�< @
Greater than or equal to? ?
Greater thanA < B<
Not equal to

rG% ¯ s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
Notice especially the use of º�º for equality. Since Python uses the º sign to

indicate an assignment statement, a different symbol is required for the concept

of equality. A common mistake in Python programs is using º in conditions,

where a º�º is required.

Conditions may compare either numbers or strings. When comparing strings,

the ordering is lexicographic. Basically, this means that strings are put in alpha-

betic order according to the underlying ASCII codes. So all upper-case letters

come before lower case letters (e.g., “Bbbb” comes before “aaaa”, since “B” pre-

cedes “a”).

I should mention that conditions are actually a type of expression, called a

Boolean expression, after George Boole, a 19th century English mathematician.

When a Boolean expression is evaluated, it produces a value of either true

(the condition holds) or false (it does not hold). Some languages such as C++

and older versions of Python just use the ints 1 and 0 to represent these values.

Other languages like Java and modern Python have a dedicated data type for

Boolean expressions.

In Python, Boolean expressions are of type
Ë½Á2Á¨À

and the Boolean values

true and false are represented by the literals
�2Ì0ÉXÆ

and
,XÂ2ÀXÜÓÆ

. Here are a few

interactive examples:�	��� Þ . @��Ì�É½Æ�	��� Þ(;�@ . ÞPá @,XÂ2ÀXÜÓÆ�	��� �zÅXÆ¨À�À0Á���ß2ß)�zÅXÆ¨À�À0Á����Ì�É½Æ�	��� �zÅXÆ¨À�À0Á�� . �ôÅ½Æ�À�À2Á*�,XÂ2ÀXÜÓÆ�	��� �!��Æ¨À�À0Á�� . �ôÅ½Æ�À�À2Á*���Ì�É½Æ
û�ÈSÊ�È�É �����*��Í_Ù�i ¨ ª vxw§��l�tGlnvxw3�3Ù����Bv_���B��� ����im�mrmtGlnvxw

Back in Chapter 1, I mentioned that there are several different ways of running

Python programs. Some Python module files are designed to be run directly.

These are usually referred to as “programs” or “scripts.” Other Python modules

are designed primarily to be imported and used by other programs; these are

often called “libraries.” Sometimes we want to create a sort of hybrid module

¿2� ~x��b $ ��w�± { é"{ ³�$ � $ ����� rG%�´
that can be used both as a stand-alone program and as a library that can be

imported by other programs.

So far, most of our programs have had a line at the bottom to invoke theÊ"Â¨Ò�Ç
function.

Ê"Â¨Ò�Çoñ1ú
As you know, this is what actually starts a program running. These programs

are suitable for running directly. In a windowing environment, you might run

a file by (double-)clicking its icon. Or you might type a command like
¨Ï�Ä�Å½Á�Ç. ÊXÏ¨ÍXÒ0À2Æ � ï>�Ï .

Since Python evaluates the lines of a module during the import process, our

current programs also run when they are imported into either an interactive

Python session or into another Python program. Generally, it is nicer not to

have modules run as they are imported. When testing a program interactively,

the usual approach is to first import the module and then call its
Ê"Â¨Ò�Ç

(or some

other function) each time we want to run it.

In a program designed to be either imported (without running) or run di-

rectly, the call to
Ê"Â�Ò1Ç

at the bottom must be made conditional. A simple deci-

sion should do the trick.

Ò�Í . Ñ�ÁÓÇXÃ½ÒxÄ!Ò�Á�Ç � ÷Ê"Â¨Ò�Çnñ�ú
We just need to figure out a suitable condition.

Whenever a module is imported, Python sets a special variable in the module

called
Ç!Â1ÊÎÆ

to be the name of the imported module. Here is an example

interaction showing what happens with the
ÊÎÂ�Ä0Å

library:�	��� Ò�Ê?½Á0Ì2Ä Ê"Â�Ä0Å�	��� Ê"Â�Ä0Å�ï0Ì	ÌxÇ!Â�Ê!Æ?Ì�Ì�|ÊÎÂ�Ä�Å��
You can see that, when imported, the

Ç!Â1ÊÎÆ
variable inside the

Ê"Â�Ä�Å
module

is assigned the string
�|ÊÎÂ�Ä�Å��

.

However, when Python code is being run directly (not imported), Python

sets the value of
Ç!Â1ÊÎÆ

to be
� ÊÎÂ�Ò�Ç �

. To see this in action, you just need

to start Python and look at the value.�	��� Ì	ÌxÇ!Â�Ê!Æ?Ì�Ì�ëÌ�Ì�ÊÎÂ�Ò�ÇmÌ	Ì$�

rG%�¹ s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
So, if a module is imported, the code in that module will see a variable calledÇ½Â�Ê!Æ

whose value is the name of the module. When a file is run directly, the

code will see that
Ç½Â�ÊÎÆ

has the value
� Ê"Â¨Ò�Ç �

. A module can determine

how it is being used by inspecting this variable.

Putting the pieces together, we can change the final lines of our programs to

look like this:

Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷
Ê"Â¨Ò�Çnñ�ú

This guarantees that
Ê"Â¨Ò�Ç

will automatically run when the program is invoked

directly, but it will not run if the module is imported. You will see a line of code

similar to this at the bottom of virtually every Python program.

H«^�� a����DC��5iæí «ªRTSæW�[XW��£e�[
Now that we have a way to selectively execute certain statements in a program

using decisions, it’s time to go back and spruce up the quadratic equation solver

from Chapter 3. Here is the program as we left it:

ó�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñæï7�Ï
ó Ú ¨Ì�Á��0ÌXÂ1ÊàÄ0Å½Â�ÄÿÑ�Á�Ê+2É�Ä�ÆXÜ Ä�Å½Æ?Ì�Æ�Â�À7Ì¨Á�Á0Ä!Ü Á2ÍÐÂ6í�É!Â0Ã0ÌXÂ�Ä!Ò�Ñ;Æ�í�É!Â�Ä½Ò�ÁÓÇ�ï
ó ¢�À�ÀÓÉ"ÜxÄ2ÌXÂ�Ä¨Æ½Ü É(ÜÓÆ9Á2ÍPÄ0ÅXÆ;Ê"Â�Ä0ÅÿÀ�Ò1Ë�Ì�Â�Ì�Ï�ï
ó Ð¨Á0Ä�Æo÷îÄ0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê ÑÓÌ�ÂXÜ�Å½Æ½Ü7Ò�ÍPÄ0ÅXÆ9Æ�í�É!Â�Ä½Ò�ÁÓÇPÅ!Â�Ü Ç½Á?Ì�Æ�Â�À7Ì¨Á�Á0Ä!Üæï
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å óPö½Â�ÎXÆ½Ü Ä0Å½Æ;ÊÎÂ�Ä�ÅÿÀ�Ò�Ë¨ÌXÂ�Ì�ÏÐÂ�9XÂ�Ò�À�ÂxË!À2Æoï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ3��Ì½Ò�Ç�Ä

Â�õ Ë�õ Ñ?ß¡Ò1Ç	2É�ÄTñ���Ø�À2Æ¨Â�Ü�ÆÈÆ�Ç¨Ä�Æ0Ì9Ä�Å½ÆàÑ�Á�Æ2Í2Í½Ò2Ñ�Ò�ÆÓÇ�Ä!Ü ñzÂ�õ Ëcõ Ñ¨ú¬÷��Óú
Ã½Ò�Ü2Ñ���Á�Á�ÄPßÈÊ"Â�Ä0Å�ïôÜ�í0Ì�ÄTñùË=; ËL�-@¡;PÂ5;ÝÑ�ú
Ì�Á2Á0Ä(Öªß ñ&�ÓËàá9ÃXÒ¨Ü2Ñ��XÁ2Á0Ä"ú§�òñ�Ô5;?Â½ú
Ì�Á2Á0ÄXÔÈß ñ&�ÓË=�?ÃXÒ¨Ü2Ñ��XÁ2Á0Ä"ú§�òñ�Ô5;?Â½ú
�Ì½Ò�Ç�Ä�Ì½Ò�Ç�Ä��:�0ÅXÆ¡Ü�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Â�Ì�Æo÷G�Îõ Ì�Á�Á�Ä(Ö(õlÌ�Á2Á0ÄXÔ

¿2� r2��ã(���$E^¯ uôç�é"{ ³�$ � $ ����� rG%�¿
Ê"Â¨Ò�Çoñ1ú

As noted in the comments, this program crashes when it is given coefficients

of a quadratic equation that has no real roots. The problem with this code is

that when � µ VüZ�ú	ù is less than 0, the program attempts to take the square root

of a negative number. Since negative numbers do not have real roots, the
Ê"Â�Ä0Å

library reports an error. Here’s an example:�	��� Ò�Ê?½Á0Ì2Ä�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñ�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷�Ö�õôÔæõ`Þ��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2,!Ò�À2Æ��:í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ�ï>�Ï��!õ¢À¨Ò�ÇXÆ9Ô!Ö(õ Ò�ÇÏ2

Ê"Â¨Ò�Çnñ�ú,!Ò�À2Æ��:í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ�ï>�Ï��!õ¢À¨Ò�ÇXÆÿÖ�@Tõ Ò�Ç?Ê"Â¨Ò�Ç
Ã½Ò�Ü2Ñ���Á�Á�ÄPßÈÊ"Â�Ä0Å�ïôÜ�í0Ì�ÄTñùË=; ËL�-@¡;PÂ5;ÝÑ�úÛXÂ2ÀÓÉXÆ / Ì2Ì�Á�Ìc÷�ÊÎÂ�Ä�ÅÐÃ¨Á�Ê"Â�Ò1ÇàÆ0Ì2Ì�Á�Ì

We can use a decision to check for this situation and make sure that the

program can’t crash. Here’s a first attempt:

ó�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñ�Ôoï7¨Ï
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2ÑK´xÇ��

Â�õ Ë�õ Ñ?ß¡Ò1Ç	2É�ÄTñ���Ø�À2Æ¨Â�Ü�ÆÈÆ�Ç¨Ä�Æ0Ì9Ä�Å½ÆàÑ�Á�Æ2Í2Í½Ò2Ñ�Ò�ÆÓÇ�Ä!Ü ñzÂ�õ Ëcõ Ñ¨ú¬÷��Óú
Ã½Ò�Ü2ÑÓÌ½Ò�Ê¡ß7Ëâ; ËL�-@¡;PÂ5;ÝÑ
Ò�Í9ÃXÒ¨Ü2ÑxÌ!ÒvÊ � ßÝÕo÷Ã½Ò¨Ü0Ñ���Á�Á0Ä?ßÈÊ"Â�Ä�Å�ïôÜ�í2Ì2ÄTñ`Ã½Ò¨Ü0ÑÓÌ½Ò�Êú

Ì�Á�Á�Ä(Ö ß	ñ&�ÓËàá9Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú
Ì�Á�Á�ÄXÔ7ß	ñ&�ÓË=�?Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½ÆÐÜ�Á¨ÀxÉ�Ä½Ò�Á�Ç"ÜÈÂ�Ì¨Æn÷u�ÎõlÌ¨Á�Á0Ä"Ö�õlÌ¨Á�Á�ÄXÔ

Ê"Â¨Ò�Çoñ1ú

rG%�â s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
This version first computes the value of the discriminant (� µ V8Z�ú	ù) and then

checks to make sure it is not negative. Only then does the program proceed

to take the square root and calculate the solutions. This program will never

attempt to call
Ê"Â�Ä0ÅhïzÜ�í0Ì�Ä

when
Ã½Ò�Ü2ÑxÌ!Ò�Ê

is negative.

Incidentally, you might also notice that I have replaced the bare
�Ì½Ò�Ç�Ä

state-

ments from the original version of the program with embedded newlines to put

whitespace in the output; you hadn’t yet learned about
¹�Ç

the first time we

encountered this program.

Unfortunately, this updated version is not really a complete solution. Study

the program for a moment. What happens when the equation has no real roots?

According to the semantics for a simple
Ò�Í

, when
Ë3;�Ë=�-@�;0Â+;2Ñ

is less than zero,

the program will simply skip the calculations and go to the next statement. Since

there is no next statement, the program just quits. Here’s what happens in an

interactive session:�	��� í�É½Â0Ã2Ì�Â�Ä½Ò�Ñ0ÔTï�ÊÎÂ�Ò�Çoñ1ú�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷�Ö�õôÔæõ`Þ�	���

This is almost worse than the previous version, because it does not give

users any indication of what went wrong; it just leaves them hanging. A better

program would print a message telling users that their particular equation has

no real solutions. We could accomplish this by adding another simple decision

at the end of the program.

Ò�Í9ÃXÒ¨Ü0ÑÓÌ!ÒvÊ . Õn÷�Ì½Ò�Ç�Ä��:�0ÅXÆ9Æ�í�É!Â�Ä½Ò�ÁÓÇ?Å!Â�Ü Ç½ÁPÌ�Æ�Â�ÀÈÌ¨Á�Á�ÄÎÜ{���
This will certainly solve our problem, but this solution just doesn’t feel right.

We have programmed a sequence of two decisions, but the two outcomes are

mutually exclusive. If
ÃXÒ¨Ü2ÑxÌ!ÒvÊ � ßÝÕ

is true then
Ã½Ò�Ü2ÑÓÌ½Ò�Ê . Õ must be false

and vice versa. We have two conditions in the program, but there is really only

one decision to make. Based on the value of
ÃXÒ¨Ü2ÑxÌ!ÒvÊ

the program should either

print that there are no real roots or it should calculate and display the roots.

This is an example of a two-way decision. Figure
�
.
�

illustrates the situation.

In Python, a two-way decision can be implemented by attaching an
Æ¨À�Ü�Æ

clause onto an
Ò�Í

clause. The result is called an
ÒÓÍ+�0Æ¨ÀXÜÓÆ

statement.

¿2� r2��ã(���$E^¯ uôç�é"{ ³�$ � $ ����� rG%�é

yesno

Print “no roots”Calculate roots

discrim < 0?

Figure
�
.
�
: Quadratic solver as a two-way decision.

Ò�Í . Ñ�ÁÓÇXÃ½ÒxÄ!Ò�Á�Ç � ÷. Ü�ÄXÂ�Ä¨ÆxÊ!Æ�Ç�Ä!Ü �Æ¨À�Ü�Æo÷. Ü�ÄXÂ�Ä¨ÆxÊ!Æ�Ç�Ä!Ü �
When the Python interpreter encounters this structure, it will first evaluate the

condition. If the condition is true, the statements under the
Ò�Í

are executed.

If the condition is false, the statements under the
Æ¨ÀXÜÓÆ

are executed. In either

case, control then passes to the statement following the
ÒÓÍ+�2Æ�ÀXÜÓÆ

.

Using a two-way decision in the quadratic solver yields a more elegant solu-

tion.

ó�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñ�Þnï7¨Ï
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2ÑK´xÇ��

Â�õ Ë�õ Ñ?ß¡Ò1Ç	2É�ÄTñ���Ø�À2Æ¨Â�Ü�ÆÈÆ�Ç¨Ä�Æ0Ì9Ä�Å½ÆàÑ�Á�Æ2Í2Í½Ò2Ñ�Ò�ÆÓÇ�Ä!Ü ñzÂ�õ Ëcõ Ñ¨ú¬÷��Óú
Ã½Ò�Ü2ÑÓÌ½Ò�Ê¡ß7Ëâ; ËL�-@¡;PÂ5;ÝÑ
Ò�Í9ÃXÒ¨Ü2ÑxÌ!ÒvÊ . Õn÷�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½Æ?Æ�í�É½Â�Ä½Ò�Á�Ç?Å!ÂXÜ ÇXÁ?Ì�Æ�Â�À7Ì�Á2Á0Ä!Ü{�u�
Æ¨À�Ü�Æn÷

r�~!% s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
Ã½Ò¨Ü0Ñ���Á�Á0Ä?ßÈÊ"Â�Ä�Å�ïôÜ�í2Ì2ÄTñùË=; Ë=�6@¡;PÂ5;ÐÑ¨ú
Ì�Á�Á�Ä(Ö ß	ñ&�ÓËàá9Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú
Ì�Á�Á�ÄXÔ7ß	ñ&�ÓË=�?Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú�Ì!Ò1Ç�Ä�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½ÆÐÜ�Á¨ÀxÉ�Ä½Ò�Á�Ç"ÜÈÂ�Ì¨Æn÷u�ÎõlÌ¨Á�Á0Ä"Ö�õlÌ¨Á�Á�ÄXÔ

Ê"Â¨Ò�Çoñ1ú
This program fills the bill nicely. Here is a sample session that runs the new

program twice:�	��� í�É½Â0Ã2Ì�Â�Ä½Ò�Ñ�Þoï�ÊÎÂ�Ò�Çoñ1ú�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷�Ö�õôÔæõ`Þ
�0ÅXÆ9Æ�í�É!Â�Ä½Ò�ÁÓÇ?Å!Â�Ü Ç½ÁPÌ�Æ�Â�ÀÈÌ¨Á�Á�ÄÎÜ{��	��� í�É½Â0Ã2Ì�Â�Ä½Ò�Ñ�Þoï�ÊÎÂ�Ò�Çoñ1ú�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷�Ô�õ�@Tõ�Ö
�0ÅXÆ¡Ü�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Â�Ì�Æo÷Æ�2ÕnïðÔ2ý�Ô�A�ý2Þ¨Ô½Ö�A	A!ÖxÞ<�!ÖVïðþ2Õ�þÎÖ�Õ�ø2þ	AÎÖ2Öxý
H«^�� kF¦_j U�WFC��5iæí «ªRTSæW�[XW��£e�[

The newest version of the quadratic solver is certainly a big improvement, but it

still has some quirks. Here is another example run:�	��� í�É½Â0Ã2Ì�Â�Ä½Ò�Ñ�Þoï�ÊÎÂ�Ò�Çoñ1ú�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ
ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷�Ö�õ Ô�õªÖ
�0ÅXÆ¡Ü�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Â�Ì�Æo÷Æ�!ÖïùÕ��!ÖVïðÕ
This is technically correct; the given coefficients produce an equation that has

a double root at -1. However, the output might be confusing to some users. It

looks like the program has mistakenly printed the same number twice. Perhaps

the program should be a bit more informative to avoid confusion.

¿0� �0�¨ä=��± y $ E^¯ uôç é"{ ³�$ � $ ����� r�~�~

The double-root situation occurs when
ÃXÒ¨Ü2ÑxÌ!ÒvÊ

is exactly 0. In this case,Ã½Ò�Ü2Ñ��XÁ�Á�Ä
is also 0, and both roots have the value · �µ � . If we want to catch this

special case, our program actually needs a three-way decision. Here’s a quick

sketch of the design:

ï�ï2ï
×�ÅXÆXÑ�Î9Ä0ÅXÆ-9XÂ�ÀxÉ½Æ9Á0Í9Ã½Ò¨Ü0ÑÓÌ½Ò�Ê

Û2ÅXÆ�Ç . Õn÷ Å½ÂÓÇ�Ã�À2ÆÈÄ0Å½ÆàÑ�ÂXÜÓÆ9Á2Í7Ç½Á?Ì¨Á�Á�ÄÎÜÛ2ÅXÆ�ÇàßÝÕn÷ Å½ÂÓÇ�Ã�À2ÆÈÄ0Å½ÆàÑ�ÂXÜÓÆ9Á2ÍÐÂ?Ã¨ÁÓÉ�Ë½À2Æ?Ì�Á2Á0Ä
Û2ÅXÆ�Ç � Õn÷ Å½ÂÓÇ�Ã�À2ÆÈÄ0Å½ÆàÑ�ÂXÜÓÆ9Á2ÍPÄ2Û�ÁPÃ½Ò�ÜxÄ!Ò1Ç"ÑxÄ?Ì�Á2Á0Ä!Üæï

One way to code this algorithm is to use two
ÒÓÍ+�0Æ¨ÀXÜÓÆ

statements. The body

of an
Ò�Í

or
Æ�ÀXÜ�Æ

clause can contain any legal Python statements, including otherÒ�Í
or
ÒÓÍ+�2Æ�ÀXÜÓÆ

statements. Putting one compound statement inside of another

is called nesting. Here’s a fragment of code that uses nesting to achieve a

three-way decision: :

Ò�Í9ÃXÒ¨Ü0ÑÓÌ!ÒvÊ . Õn÷�Ì½Ò�Ç�Ä�� / í�É!Â�Ä!Ò�ÁÓÇPÅ!Â�ÜªÇ½ÁPÌ¨Æ¨Â�À Ì�Á�Á�ÄÎÜm�Æ¨À�Ü�Æo÷
Ò�Í9ÃXÒ¨Ü2ÑxÌ!ÒvÊ¡ß�ßÝÕo÷

Ì�Á�Á�Ä9ß(�ÓË=�òñ�Ô5;?ÂXú�Ì!Ò1Ç�Ä)�!�0ÅXÆ0Ì�ÆÝÒ¨Ü7ÂPÃ¨ÁÓÉ�Ë!À0Æ7Ì�Á2Á0ÄàÂ�Ä��Îõ Ì�Á�Á�Ä
Æ¨À�Ü�Æn÷

ó��XÁ¡ÜxÄ�ÉXÍ2Í9Í¨Á0Ì9Ä0ÛXÁ?Ì¨Á�Á0Ä!Ü
If you trace through this code carefully, you will see that there are exactly

three possible paths. The sequencing is determined by the value of
ÃXÒ¨Ü2ÑxÌ!ÒvÊ

. A

flowchart of this solution is shown in Figure
�
.
�
. You can see that the top-level

structure is just an
Ò�Í?�2Æ�ÀXÜ�Æ

. (Treat the dashed box as one big statement.) The

dashed box contains the second
ÒÓÍ+�2Æ�ÀXÜÓÆ

nested comfortably inside the
Æ¨À�Ü�Æ

part of the top-level decision.

Once again, we have a working solution, but the implementation doesn’t

feel quite right. We have finessed a three-way decision by using two two-way

decisions. The resulting code does not reflect the true three-fold decision of the

original problem. Imagine if we needed to make a five-way decision using this

technique. The
Ò�Í?�2Æ¨À�Ü�Æ

structures would nest four levels deep, and the Python

code would march off the right-hand edge of the page.

There is another way to write multi-way decisions in Python that preserves

the semantics of the nested structures but gives it a more appealing look. The

r�~�r s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�

discrim < 0?

Print "no roots"

noyes

yes no

Do Double Root Do Unique Roots

discrim == 0?

Figure
�
.
�
: Three-way decision for quadratic solver using nested

Ò�Í?�2Æ¨À�Ü�Æ
.

idea is to combine an
Æ¨ÀXÜÓÆ

followed immediately by an
Ò�Í

into a single clause

called an
Æ�À�ÒÓÍ

(pronounced “ell-if”).

Ò�Í . Ñ�ÁÓÇXÃ½ÒxÄ!Ò�Á�ÇVÖ � ÷. Ñ�ÂXÜ�Æ!Ö7ÜxÄ�Â�Ä¨ÆxÊÎÆÓÇ�Ä!Ü �Æ¨À¨Ò�Í . Ñ�Á�Ç�Ã½ÒxÄ!Ò�ÁÓÇ!Ô � ÷. Ñ�ÂXÜ�Æ�ÔÐÜxÄ�Â�Ä¨ÆxÊÎÆÓÇ�Ä!Ü �Æ¨À¨Ò�Í . Ñ�Á�Ç�Ã½ÒxÄ!Ò�ÁÓÇ½Þ � ÷. Ñ�ÂXÜ�Æ2ÞàÜxÄ�Â�Ä¨ÆxÊÎÆÓÇ�Ä!Ü �ï�ï2ï
Æ¨À�Ü�Æo÷. Ã�Æ2Í�ÂxÉ!À�Ä¡ÜxÄ�Â�Ä¨ÆxÊÎÆÓÇ�Ä!Ü �
This form is used to set off any number of mutually exclusive code blocks.

Python will evaluate each condition in turn looking for the first one that is true.

If a true condition is found, the statements indented under that condition are ex-

ecuted, and control passes to the next statement after the entire
Ò�Í+�0Æ¨À¨Ò�Í+�0Æ¨À�Ü�Æ

.

If none of the conditions are true, the statements under the
Æ¨À�Ü�Æ

are performed.

The
Æ�ÀXÜÓÆ

clause is optional; if omitted, it is possible that no indented statement

block will be executed.

¿0� ¯ �+��� ³ {1wzy $ �0�G°"ux�v��± $ ��� r�~��

Using an
ÒÓÍ+�0Æ¨À�ÒÓÍ+�0Æ¨ÀXÜÓÆ

to show the three-way decision in our quadratic

solver yields a nicely finished program.

ó�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñ�@�ï7¨Ï
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2ÑK´xÇ��

Â�õ Ë�õ Ñ?ß¡Ò1Ç	2É�ÄTñ���Ø�À2Æ¨Â�Ü�ÆÈÆ�Ç¨Ä�Æ0Ì9Ä�Å½ÆàÑ�Á�Æ2Í2Í½Ò2Ñ�Ò�ÆÓÇ�Ä!Ü ñzÂ�õ Ëcõ Ñ¨ú¬÷��Óú
Ã½Ò�Ü2ÑÓÌ½Ò�Ê¡ß7Ëâ; ËL�-@¡;PÂ5;ÝÑ
Ò�Í9ÃXÒ¨Ü2ÑxÌ!ÒvÊ . Õn÷�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½Æ?Æ�í�É½Â�Ä½Ò�Á�Ç?Å!ÂXÜ ÇXÁ?Ì�Æ�Â�À7Ì�Á2Á0Ä!Ü{�u�
Æ¨À¨Ò�Í9Ã½Ò�Ü2ÑxÌ!Ò�ÊÐß�ßÐÕn÷

Ì�Á�Á�Ä9ß(�ÓË=�òñ�Ô5;?ÂXú�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½Æ�Ì�ÆÐÒ�Ü7Â?Ã¨ÁÓÉ�Ë!À0Æ7Ì�Á2Á0ÄàÂ�Ä��Îõ¢Ì¨Á�Á�Ä
Æ¨À�Ü�Æn÷

Ã½Ò¨Ü0Ñ���Á�Á0Ä?ßÈÊ"Â�Ä�Å�ïôÜ�í2Ì2ÄTñùË=; Ë=�6@¡;PÂ5;ÐÑ¨ú
Ì�Á�Á�Ä(Ö ß	ñ&�ÓËàá9Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú
Ì�Á�Á�ÄXÔ7ß	ñ&�ÓË=�?Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½ÆÐÜ�Á¨ÀxÉ�Ä½Ò�Á�Ç"ÜÈÂ�Ì¨Æn÷u�ÎõlÌ¨Á�Á0Ä"Ö�õlÌ¨Á�Á�ÄXÔ

Ê"Â¨Ò�Çoñ1ú
H«^|µ egfTS¬R�¤nUXW��£e ¶ªi�ec·£jZWpen�

Our quadratic program uses decision structures to avoid taking the square root

of a negative number and generating an error at run-time. This is a common

pattern in many programs: using decisions to protect against rare but possible

errors.

In the case of the quadratic solver, we checked the data before the call to theÜ�í0Ì�Ä
function. Sometimes functions themselves check for possible errors and

return a special value to indicate that the operation was unsuccessful. For ex-

ample, a different square root operation might return a negative number (say,V�U) to indicate an error. Since the square roots of real numbers are never nega-

tive, this value could be used to signal that an error has occurred. The program

would check the result of the operation with a decision.

Ã½Ò�Ü2Ñ��¨Ä9ßÐÁ0Ä�Å½Æ�Ì�ÅCí0Ì�Ä�ñðË_;1Ë5�-@�;0Â?;�Ñ�ú

r�~ ¯ s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
Ò�Í9ÃXÒ¨Ü0Ñ��¨Ä . Õo÷�Ì½Ò�Ç�Ä��:Ð�Á?Ì¨Æ¨Â2À7Ì�Á�Á�ÄÎÜ¬ïG�
Æ¨À�Ü�Æo÷

ï�ï2ï
Sometimes programs become so peppered with decisions to check for special

cases that the main algorithm for handling the run-of-the-mill cases seems com-

pletely lost. Programming language designers have come up with mechanisms

for exception handling that help to solve this design problem. The idea of an ex-

ception handling mechanism is that the programmer can write code that catches

and deals with errors that arise when the program is running. Rather than ex-

plicitly checking that each step in the algorithm was successful, a program with

exception handling can in essence say, “Do these steps, and if any problem crops

up, handle it this way.”

We’re not going to discuss all the details of the Python exception handling

mechanism here, but I do want to give you a concrete example so you can see

how exception handling works and understand programs that use it. In Python,

exception handling is done with a special control structure that is similar to a

decision. Let’s start with a specific example and then take a look at the general

approach.

Here is a version of the quadratic program that uses Python’s exception

mechanism to catch potential errors in the
Ê"Â�Ä0ÅhïzÜ�í0Ì�Ä

function:

ó�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñ�'oï7¨Ï
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2ÑK´xÇ��

Ä�Ì2Ïc÷
Â�õ Ëcõ Ñ7ß¡Ò1Ç	�É¨ÄTñ���ØXÀ0Æ¨Â�Ü�ÆÈÆ�Ç�Ä¨Æ0Ì9Ä�Å½ÆàÑ�Á2Æ2Í2Í½Ò�Ñ2Ò�ÆÓÇ�ÄÎÜÿñ�Âæõ Ëcõ Ñ¨ú¬÷���ú
Ã½Ò¨Ü0Ñ���Á�Á0Ä?ßÈÊ"Â�Ä�Å�ïôÜ�í2Ì2ÄTñùË=; Ë=�6@¡;PÂ5;ÐÑ¨ú
Ì�Á�Á�Ä(Ö ß	ñ&�ÓËàá9Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú
Ì�Á�Á�ÄXÔ7ß	ñ&�ÓË=�?Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½ÆÐÜ�Á¨ÀxÉ�Ä½Ò�Á�Ç"ÜÈÂ�Ì¨Æn÷u�ÎõlÌ¨Á�Á0Ä"Ö�õlÌ¨Á�Á�ÄXÔ

Æ��XÑ�Æ�¨Ä6ÛXÂ2ÀÓÉXÆ / Ì2Ì�Á�Ìc÷�Ì!Ò1Ç�Ä)�´ÓÇ?Ð�Á?Ì�Æ�Â�ÀÈÌ¨Á�Á�ÄÎÜ��
Ê"Â¨Ò�Çoñ1ú

Notice that this is basically the very first version of the quadratic program

¿0� ¯ �+��� ³ {1wzy $ �0�G°"ux�v��± $ ��� r�~�´

with the addition of a
Ä�Ì�Ï�ï�ï2ïðÆ��XÑ�Æ��Ä

around the heart of the program. A
Ä�Ì�Ï

statement has the general form:

Ä�Ì2Ïc÷ . ËXÁ2Ã2Ï �Æ��XÑ�Æ��Ä .�/ Ì�Ì¨Á0Ì���ÏCXÆ � ÷. Å½ÂÓÇXÃ¨À2Æ�Ì �
When Python encounters a

Ä�Ì2Ï
statement, it attempts to execute the statements

inside the body. If these statements execute without error, control then passes

to the next statement after the
Ä2Ì�Ïcï2ï�ïùÆ��½Ñ�Æ�¨Ä

. If an error occurs somewhere in

the body, Python looks for an
Æ��XÑ�Æ�¨Ä

clause with a matching error type. If a

suitable
Æ��XÑ�Æ�¨Ä

is found, the handler code is executed.

The original program without the exception-handling produced the following

error:��Ì�Â�Ñ�Æ�Ë!Â¨Ñ�ÎòñvÒ�Ç2Ç½Æ�Ì�ÊÎÁXÜxÄ9À�ÂXÜ�Ä"ú÷,!Ò�À2Æ�� . ÜxÄ�Ã½Ò1Ç � �!õ�À¨Ò�Ç½Æ Ö(õ Ò�ÇÏ2,!Ò�À2Æ��:í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ�ï>�Ï��!õ¢À¨Ò�ÇXÆÿÖxÞ�õ Ò�ÇÏ2
Ã½Ò�Ü2Ñ���Á�Á�ÄPßÈÊ"Â�Ä0Å�ïôÜ�í0Ì�ÄTñùË=; ËL�-@¡;PÂ5;ÝÑ�úÛXÂ2ÀÓÉXÆ / Ì2Ì�Á�Ìc÷�ÊÎÂ�Ä�ÅÐÃ¨Á�Ê"Â�Ò1ÇàÆ0Ì2Ì�Á�Ì

The last line of this error message indicates the type of error that was generated,

namely an
Û�Â�ÀÓÉXÆ / Ì�Ì�Á�Ì . The updated version of the program provides an

ÆC�½Ñ�Æ��Ä
clause to catch the

ÛXÂ�ÀxÉ½Æ / Ì�Ì¨Á0Ì .
Here is the error handling version in action:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2Ñ

ØXÀ0Æ¨Â�Ü�ÆPÆÓÇ�Ä�Æ�ÌPÄ0ÅXÆàÑ�Á2Æ2Í�ÍXÒ�Ñ2Ò�Æ�Ç¨ÄÎÜ ñ�Â�õ Ë�õ Ñ�ú÷�Ö�õôÔæõ`Þ
Ð�Á?Ì¨Æ¨Â2À7Ì�Á�Á�ÄÎÜ
Instead of crashing, the exception handler catches the error and prints a message

indicating that the equation does not have real roots.

The nice thing about the
Ä�Ì2Ïcï�ï2ïðÆC�½Ñ�Æ��Ä

statement is that it can be used to

catch any kind of error, even ones that might be difficult to test for, and hope-

fully, provide a graceful exit. For example, in the quadratic solver, there are lots

of other things that could go wrong besides having a bad set of coefficients. If the

user fails to type the correct number of inputs, the program generates a differ-

ent kind of
Û�Â�ÀÓÉXÆ / Ì�Ì�Á�Ì (“unpack tuple of wrong size”). If the user accidentally

r�~�¹ s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
types an identifier instead of a number, the program generates a

ÐXÂ1ÊÎÆ / Ì�Ì¨Á0Ì .
If the input is not a valid Python expression, it generates a

Å�Ï0Ç¨ÄXÂC� / Ì2Ì�Á0Ì . If

the user types in a valid Python expression that produces non-numeric results,

the program generates a
�2ÏC½Æ / Ì2Ì�Á0Ì . A single

Ä�Ì�Ï
statement can have multipleÆ��XÑ�Æ��Ä

clauses to catch various possible classes of errors.

Here’s one last version of the program designed to robustly handle any pos-

sible errors in the input:ó�í�É½Â0Ã0ÌXÂ�Ä½Ò�Ñ�ønï7¨Ï
Ò�Ê?½Á�Ì�Ä ÊÎÂ�Ä0Å
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊàÍ½Ò1ÇXÃ½Ü;Ä0Å½Æ?Ì¨Æ¨Â2ÀÐÜ�Á�ÀÓÉ�Ä½Ò�ÁÓÇ(Ü Ä¨ÁÝÂ-í�É!Â�Ã2Ì�Â�Ä!Ò2ÑK´xÇ��

Ä�Ì2Ïc÷
Â�õ Ëcõ Ñ7ß¡Ò1Ç	�É¨ÄTñ���ØXÀ0Æ¨Â�Ü�ÆÈÆ�Ç�Ä¨Æ0Ì9Ä�Å½ÆàÑ�Á2Æ2Í2Í½Ò�Ñ2Ò�ÆÓÇ�ÄÎÜÿñ�Âæõ Ëcõ Ñ¨ú¬÷���ú
Ã½Ò¨Ü0Ñ���Á�Á0Ä?ßÈÊ"Â�Ä�Å�ïôÜ�í2Ì2ÄTñùË=; Ë=�6@¡;PÂ5;ÐÑ¨ú
Ì�Á�Á�Ä(Ö ß	ñ&�ÓËàá9Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú
Ì�Á�Á�ÄXÔ7ß	ñ&�ÓË=�?Ã½Ò�Ü2Ñ��XÁ�Á�Ä"ú§� ñzÔ5;?Â½ú�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å½ÆÐÜ�Á¨ÀxÉ�Ä½Ò�Á�Ç"ÜÈÂ�Ì¨Æn÷u�ÎõlÌ¨Á�Á0Ä"Ö�õlÌ¨Á�Á�ÄXÔ

Æ��XÑ�Æ�¨Ä6ÛXÂ2ÀÓÉXÆ / Ì2Ì�Á�Ìnõ¢ÆC�½Ñ Ä Ë ï ÷ÊVÜ��9ßÿÜ�Ä�Ì�ñzÆ��XÑ Ä Ë ï úÒ�Í ÊVÜ��9ß�ß)�èÊ"Â�Ä�ÅÐÃ¨Á�Ê"Â¨Ò�Ç¡Æ0Ì2Ì�Á�Ì��(÷¨Ì!Ò1Ç�Ä)�!Ð�Á��XÆ�Â�À<��Á�Á0Ä!Ü��
Æ¨À�ÒÓÍ;ÊVÜ��9ß�ß��zÉ2Ç	½Â�Ñ�Î?Ä0É�!À2Æ9Á0Í?Û¨Ì¨Á�Ç��àÜ2Ò�D�Æ��"÷¨Ì!Ò1Ç�Ä)����Á�ÉàÃXÒ�Ã�Ç��ðÄ6�½Ò�9¨Æ ÊÎÆPÄ�Å½Æ?Ì!Ò���Å¨Ä7Ç�É�Ê�Ë½Æ�ÌÝÁ2Í¡Ñ�Á�Æ0Í�Í½Ò2Ñ�Ò�Æ�Ç�Ä!Üæïu�
Æ¨ÀXÜÓÆn÷¨Ì!Ò1Ç�Ä)�uÅ2ÁxÊ!Æ0Ä�Å"Ò�Ç+�ÈÛ�Æ�Ç�ÄPÛ�Ì�ÁÓÇ��oõ�Ü�Á0Ì2Ì�Ïj�u�

Æ��XÑ�Æ�¨Ä6ÐXÂ1ÊÎÆ / Ì�Ì¨Á0Ì�÷�Ì!Ò1Ç�Ä)�´ÓÇ���Á�ÉÝÃ½Ò�Ã�Ç��ùÄÝÆ�Ç¨Ä�Æ0Ì9Ä�Å�Ì¨Æ�Æ Ç2É0Ê�ËXÆ0Ì!ÜæïG�
Æ��XÑ�Æ�¨Ä6��Ï�½Æ / Ì�Ì¨Á0Ì�÷�Ì!Ò1Ç�Ä)�´ÓÇ���Á�É¨Ì¡Ò�Ç��É¨ÄÎÜ Û�Æ0Ì�ÆÈÇXÁ0ÄàÂ2À�À Ç�É�Ê�ËXÆ0ÌÎÜ¬ïG�
Æ��XÑ�Æ�¨Ä5Å�Ï�Ç�Ä�ÂC� / Ì�Ì¨Á0Ìc÷�Ì!Ò1Ç�Ä)�´ÓÇ���Á�É¨Ì¡Ò�Ç��É¨Ä?Û½Â�Ü Ç½Á0ÄÿÒ1ÇÐÄ0ÅXÆàÑ�Á0Ì2Ì�Æ�ÑÓÄ9Í�Á0Ì�Ê_ï öÎÒ�Ü�Ü0Ò�Ç��ÐÑ�ÁxÊ2Ê"Â?23�
Æ��XÑ�Æ�¨Äc÷�Ì!Ò1Ç�Ä)�´ÓÇmÅ2ÁxÊ!Æ0Ä�Å"Ò�Ç+�ÈÛ�Æ�Ç�Ä7Û¨Ì�ÁÓÇ��Tõ Ü�Á�Ì�Ì�Ïj�u�

Ê"Â¨Ò�Çoñ1ú
The multiple

ÆC�½Ñ�Æ��Ä
s are similar to

Æ�À�Ò�Í½Ü
. If an error occurs, Python will try

¿0� ´0��bxyè�v�1ç $ �ãé"{ô� $ ����´¬ä²u&�_��å(ã�tx}�{ô{ r�~�¿

each
ÆC�½Ñ�Æ��Ä

in turn looking for one that matches the type of error. The bareÆ��XÑ�Æ��Ä
at the bottom acts like an

Æ¨ÀXÜÓÆ
and will be used if none of the others

match. If there is no default at the bottom and none of the
ÆC�½Ñ�Æ��Ä

types match

the error, then the program crashes and Python reports the error.

Notice how I handled the two different kinds of
ÛXÂ�ÀxÉ½Æ / Ì�Ì¨Á0Ì s. Exceptions

are actually a kind of object. If you follow the error type with an identifier in

an
ÆC�½Ñ�Æ��Ä

clause, Python will assign that identifier the actual exception object.

In this case, I turned that exception into a string and looked at the message to

see what caused the
ÛXÂ2ÀÓÉXÆ / Ì2Ì�Á�Ì . Notice that this text is exactly what Python

prints out if the error is not caught (e.g., “ValueError: math domain error”). If

the message doesn’t match one of the two known error messages, the program

just prints a general apology. As a challenge, you might see if you can find an

erroneous input that produces the apology.

You can see how the
Ä�Ì2Ïcï�ï2ïðÆC�½Ñ�Æ��Ä

statement allows us to write bullet-proof

programs. You can use this same technique by observing the error messages that

Python prints and designing
ÆC�½Ñ�Æ��Ä

clauses to catch and handle them. Whether

you need to go to this much trouble depends on the type of program you are

writing. In your beginning programs, you might not worry too much about bad

input; however, professional quality software should do whatever is feasible to

shield users from unexpected results.

H«^|º ©²UÎ¦�·§í Wpeq«ªRT[XWZ�Ge`²àkëi f �hì�a;b§g1RTR

Now that we have decisions that can alter the control flow of a program, our

algorithms are liberated from the monotony of step-by-step, strictly sequential

processing. This is both a blessing and a curse. The positive side is that we can

now develop more sophisticated algorithms, as we did for our quadratic solver.

The negative side is that designing these more sophisticated algorithms is much

harder. In this section, we’ll step through the design of a more difficult decision

problem to illustrate some of the challenge and excitement of the design process.

Suppose we need an algorithm to find the largest of three numbers. This

algorithm could be part of a larger problem such as determining grades or com-

puting taxes, but we are not interested in the final details, just the crux of the

problem. That is, how can a computer determine which of three user inputs is

the largest? Here is a program outline. We need to fill in the missing part.

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�"Ö(õÆ��Ô�õÆ��ÞPß¡Ò�Ç��É�Ä�ñ���ØXÀ2Æ�ÂXÜÓÆ?Æ�Ç¨Ä�Æ�ÌPÄ0Å¨Ì�Æ�Æ<9XÂ�ÀxÉ½ÆXÜæ÷��Óú

r�~�â s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
ó Ê�Ò�Ü�Ü2Ò1Ç��àÑ�Á2Ã�Æ¡Ü�Æ0Ä!Ü�Ê"Â��PÄ�ÁPÄ0ÅXÆ�9XÂ2ÀÓÉXÆ9Á2ÍPÄ0ÅXÆÝÀ�Â�Ì?�¨ÆXÜxÄ
�Ì½Ò�Ç�Ä��:�0ÅXÆÝÀ�Â�Ì?�¨ÆXÜxÄ69�Â�ÀxÉ½ÆÐÒ�Ü��Îõ ÊÎÂC�

Before reading the following analysis, you might want to try your hand at solv-

ing this problem.û�È�×�ÈSÊ Ø t��0��tui+� ¤ Ê ¨ ª vx�æÍ����Bi-�x���º �tuv-Ú Ù�Ù
Obviously, this program presents us with a decision problem. We need a se-

quence of statements that sets the value of
ÊÎÂC�

to the largest of the three inputs�"Ö
,
�¨Ô

, and
��Þ

. At first glance, this looks like a three-way decision; we need to

execute one of the following assignments:

Ê"Â��9ß��"Ö
Ê"Â��9ß���Ô
Ê"Â��9ß��¨Þ
It would seem we just need to preface each one with the appropriate condi-

tion(s), so that it is executed only in the proper situation.

Let’s consider the first possibility, that
�"Ö

is the largest. To determine that�"Ö
is actually the largest, we just need to check that it is at least as large as the

other two. Here is a first attempt:

Ò�Í��ÎÖ � ß ��Ô � ß��¨Þo÷Ê"Â��9ß��"Ö
Your first concern here should be whether this statement is syntactically correct.

The condition
�"Ö � º �¨Ô � º �¨Þ

does not match the template for conditions

shown above. Most computer languages would not accept this as a valid ex-

pression. It turns out that Python does allow this compound condition, and it

behaves exactly like the mathematical relations]xU>G�]Î�HG<]_O . That is, the con-

dition is true when
�"Ö

is at least as large as
�¨Ô

and
��Ô

is at least as large as
��Þ

.

Python has no problem with this condition.

Whenever you write a decision, you should ask yourself two crucial ques-

tions. First, when the condition is true, are you absolutely certain that executing

the body of the decision is the right action to take? In this case, the condition

clearly states that
�"Ö

is at least as large as
��Ô

and
�¨Þ

, so assigning its value toÊ"Â��
should be correct. Always pay particular attention to borderline values. No-

tice that our condition includes equal as well as greater. We should convince

¿0� ´0��bxyè�v�1ç $ �ãé"{ô� $ ����´¬ä²u&�_��å(ã�tx}�{ô{ r�~�é

ourselves that this is correct. Suppose that
�"Ö

,
�¨Ô

, and
�¨Þ

are all the same; this

condition will return true. That’s OK because it doesn’t matter which we choose,

the first is at least as big as the others, and hence, the max.

The second question to ask is the converse of the first. Are we certain that

this condition is true in all cases where
�"Ö

is the max? Unfortunately, our con-

dition does not meet this test. Suppose the values are 5, 2, and 4. Clearly,
�"Ö

is

the largest, but our condition returns false since the relationship NIGÈ�IGèZ does

not hold. We need to fix this.

We want to ensure that
�ÎÖ

is the largest, but we don’t care about the relative

ordering of
��Ô

and
�¨Þ

. What we really need is two separate tests to determine

that
�ÎÖ � ß���Ô

and that
�¨Ô � ß��¨Þ

. Python allows us to test multiple conditions

like this by combining them with the keyword
ÂÓÇ�Ã

. We’ll discuss the exact se-

mantics of
ÂÓÇ�Ã

in Chapter 8. Intuitively, the following condition seems to be

what we are looking for:

Ò�Í��ÎÖ � ß ��Ô9ÂxÇXÃ��ÎÖ � ß��¨Þo÷ ó �"Ö7Ò¨Ü8�0Ì�Æ�Â�Ä�Æ�ÌPÄ0Å½ÂÓÇ¡Æ�Â�Ñ�ÅÐÁ2ÍPÄ0ÅXÆ9Á0Ä�Å½Æ0Ì!Ü
Ê"Â��9ß��"Ö

To complete the program, we just need to implement analogous tests for the

other possibilities.

Ò�Í��ÎÖ � ß ��Ô9ÂxÇXÃ��ÎÖ � ß��¨Þo÷Ê"Â��9ß��"Ö
Æ¨À¨Ò�Í��¨Ô � ß��"Ö ÂxÇXÃ��¨Ô � ß��¨Þo÷Ê"Â��9ß���Ô
Æ¨À�Ü�Æo÷

Ê"Â��9ß��¨Þ
Summing up this approach, our algorithm is basically checking each possible

value against all the others to determine if it is the largest.

With just three values the result is quite simple, but how would this solution

look if we were trying to find the max of five values? Then we would need four

Boolean expressions, each consisting of four conditions
ÂÓÇXÃ

ed together. The

complex expressions result from the fact that each decision is designed to stand

on its own; information from one test is ignored in the subsequent tests. To

see what I mean, look back at our simple max of three code. Suppose the first

decision discovers that
�"Ö

is greater than
�¨Ô

, but not greater than
��Þ

. At this

point, we know that
�¨Þ

must be the max. Unfortunately, our code ignores this;

Python will go ahead and evaluate the next expression, discover it to be false,

and finally execute the
Æ¨À�Ü�Æ

.

r1r�% s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
û�È�×�È�Ç Ø t��0��tui+� ¤ Ç ¨ �ãi��	lns�lnvxwÅÿ �0i�i

One way to avoid the redundant tests of the previous algorithm is to use a

decision tree approach. Suppose we start with a simple test
�"Ö � º �¨Ô

. This

knocks either
�ÎÖ

or
��Ô

out of contention to be the max. If the condition is true,

we just need to see which is larger,
�"Ö

or
�¨Þ

. Should the initial condition be

false, the result boils down to a choice between
�¨Ô

and
�¨Þ

. As you can see, the

first decision “branches” into two possibilities, each of which is another decision,

hence the name decision tree. Figure
�
.
�

shows the situation in a flowchart. This

flowchart translates easily into nested
ÒÓÍ+�0Æ¨ÀXÜÓÆ

statements.

Ò�Í��ÎÖ � ß ��ÔT÷Ò�Í��ÎÖ � ß��¨Þo÷Ê"ÂC�9ß��ÎÖ
Æ¨À�Ü�Æn÷

Ê"ÂC�9ß���Þ
Æ¨À�Ü�Æo÷

Ò�Í��¨Ô � ß��¨Þo÷Ê"ÂC�9ß��¨Ô
Æ¨À�Ü�Æn÷

Ê"ÂC�9ß���Þ

noyes

yes no yes no

max = x3 max = x2max = x1 max = x3

x1 >= x3 x2 > =x3

x1 >= x2

Figure
�
.
�
: Flowchart of the decision tree approach to max of three

.

¿0� ´0��bxyè�v�1ç $ �ãé"{ô� $ ����´¬ä²u&�_��å(ã�tx}�{ô{ r1r0~

The strength of this approach is its efficiency. No matter what the ordering

of the three values, this algorithm will make exactly two comparisons and as-

sign the correct value to
Ê"ÂC�

. However, the structure of this approach is more

complicated than the first, and it suffers a similar complexity explosion should

we try this design with more than three values. As a challenge, you might see

if you can design a decision tree to find the max of four values. (You will needÒ�Í?�2Æ�ÀXÜ�Æ
s nested three levels deep leading to eight assignment statements.)û�È�×�È�É Ø t��0��tui+� ¤ É ¨ Ø i�Jxr�i*wmtGln�3Ù����Bv��	i�sGs�l�wm�

So far, we have designed two very different algorithms, but neither one seems

particularly elegant. Perhaps there is yet a third way. When designing an algo-

rithm, a good starting place is to ask yourself how you would solve the problem

if you were asked to do the job. For finding the max of three numbers, you

probably don’t have a very good intuition about the steps you go through. You’d

just look at the numbers and know which is the largest. But what if you were

handed a book containing hundreds of numbers in no particular order? How

would you find the largest in this collection?

When confronted with the larger problem, most people develop a simple

strategy. Scan through the numbers until you find a big one, and put your finger

on it. Continue scanning; if you find a number bigger than the one your finger

is on, move your finger to the new one. When you get to the end of the list, your

finger will remain on the largest value. In a nutshell, this strategy has us look

through the list sequentially, keeping track of the largest number seen so far.

A computer doesn’t have fingers, but we can use a variable to keep track

of the max so far. In fact, the easiest approach is just to use
ÊÎÂC�

to do this

job. That way, when we get to the end,
Ê"Â��

automatically contains the value of

the largest. A flowchart depicting this strategy for the max of three problem is

shown in Figure
�
.
�
. Here is the translation into Python code:

Ê"Â��9ß��"Ö
Ò�Í��¨Ô � Ê"ÂC�n÷Ê"Â��9ß���Ô
Ò�Í���Þ � Ê"ÂC�n÷Ê"Â��9ß��¨Þ

Clearly, the sequential approach is the best of our three algorithms. The code

itself is quite simple, containing only two simple decisions, and the sequencing

is easier to understand than the nesting used in the previous algorithm. Further-

r1r�r s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�

max = x1

x2 > max

max = x2

max = x3

x3 > max

Figure
�
.
�
: Flowchart of a sequential approach to the max of three problem.

more, the idea scales well to larger problems; adding a fourth item adds only

one more statement.

Ê"Â��9ß��"Ö
Ò�Í��¨Ô � Ê"ÂC�n÷Ê"Â��9ß���Ô
Ò�Í���Þ � Ê"ÂC�n÷Ê"Â��9ß��¨Þ
Ò�Í���@ � Ê"ÂC�n÷Ê"Â��9ß��	@

It should not be surprising that the last solution scales to larger problems; we

invented the algorithm by explicitly considering how to solve a more complex

problem. In fact, you can see that the code is very repetitive. We can easily write

¿0� ´0��bxyè�v�1ç $ �ãé"{ô� $ ����´¬ä²u&�_��å(ã�tx}�{ô{ r1r��

a program that allows the user to find the largest of ø numbers by folding our

algorithm into a loop. Rather than having separate variables for
�ÎÖ

,
�¨Ô

,
��Þ

, etc.,

we can just get the values one at a time and keep reusing a single variable
�
.

Each time, we compare the newest
�

against the current value of
ÊÎÂC�

to see if it

is larger.

ó��Ì¨Á��0ÌXÂ�Ê_÷ Ê"Â���Çhï7�Ï
ó ,!Ò1ÇXÃ!Ü Ä0Å½Æ;ÊÎÂC�XÒ�Ê�É�ÊÿÁ2ÍÐÂ¡ÜÓÆ0Ì!Ò�Æ½Ü Á0Í7Ç�É�Ê�Ë½Æ�ÌÎÜ
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ÇàßÿÒ�Ç	2É�Ä�ñ��!��Á�Û;Ê"ÂÓÇ¨Ï7Ç�É�Ê�ËXÆ0ÌÎÜ Â�Ì�Æ?Ä�Å½Æ�Ì�Æ�2¡��ú
ó5Å2Æ�ÄÈÊ"ÂC�PÄ¨ÁÈË½ÆPÄ0ÅXÆ?Í½ÒxÌÎÜ�Ä�9XÂ�ÀxÉ½Æ
Ê"Â��9ß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÝÂ Ç2É0Ê¨Ë½Æ0Ì �	� ��ú
ó6Ð�Á�Û Ñ�ÁxÊ?!Â�Ì�Æ7Ä�Å½ÆÈÇ��½Ö?Ü1ÉÎÑ�Ñ�ÆXÜ�Ü0Ò�9�Æ89XÂ2ÀÓÉ½ÆXÜ
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇm�!Ö0ú¬÷�9ß Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì9ÂÈÇ2É0Ê�ËXÆ0Ì ��� ��úÒ�Í�� � Ê"Â���÷ÊÎÂC�9ß��
�Ì½Ò�Ç�Ä��:�0ÅXÆÝÀ�Â�Ì?�¨ÆXÜxÄ69�Â�ÀxÉ½ÆÐÒ�Ü��Îõ ÊÎÂC�

Ê"Â¨Ò�Çoñ1ú

This code uses a decision nested inside of a loop to get the job done. On each

iteration of the loop,
Ê"ÂC�

contains the largest value seen so far.

û�È�×�È � Ø t��0��tui+� ¤h�B¨ ¼`sGi6��¤?t� �vxw
Before leaving this problem, I really should mention that none of the algorithm

development we have so painstakingly pursued was necessary. Python actually

has a built-in function called
Ê"Â��

that returns the largest of its parameters. Here

is the simplest version of our program:

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�"Ö(õÆ��Ô�õÆ��ÞPß¡Ò�Ç��É�Ä�ñ���ØXÀ2Æ�ÂXÜÓÆ?Æ�Ç¨Ä�Æ�ÌPÄ0Å¨Ì�Æ�Æ<9XÂ�ÀxÉ½ÆXÜæ÷��Óú�Ì½Ò�Ç�Ä��:�0ÅXÆÝÀ�Â�Ì?�¨ÆXÜxÄ69�Â�ÀxÉ½ÆÐÒ�Ü��Îõ ÊÎÂC�æñë�"Ö(õç��Ôæõç�¨Þ½ú

r1r ¯ s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
Of course, this version didn’t require any algorithm development at all, which

rather defeats the point of the exercise! Sometimes Python is just too simple for

our own good.û�È�×�È�× Ø vx��i�¸�i�sGs�vxw�s
The max of three problem is not particularly earth shattering, but the attempt

to solve this problem has illustrated some important ideas in algorithm and

program design.

\ There is more than one way to do it. For any non-trivial computing prob-

lem, there are many ways to approach the problem. While this may seem

obvious, many beginning programmers do not really take this point to

heart. What does this mean for you? Don’t rush to code up the first idea

that pops into your head. Think about your design, ask yourself if there is

a better way to approach the problem. Once you have written the code,

ask yourself again if there might be a better way. Your first task is to find

a correct algorithm. After that, strive for clarity, simplicity, efficiency, scal-

ability, and elegance. Good algorithms and programs are like poems of

logic. They are a pleasure to read and maintain.

\ Be the computer. Especially for beginning programmers, one of the best

ways to formulate an algorithm is to simply ask yourself how you would

solve the problem. There are other techniques for designing good algo-

rithms (see Chapter 13); however, the straightforward approach is often

simple, clear, and efficient enough.

\ Generality is good. We arrived at the best solution to the max of three

problem by considering the more general max of ø numbers problem. It

is not unusual that consideration of a more general problem can lead to a

better solution for some special case. Don’t be afraid to step back and think

about the overarching problem. Similarly, when designing programs, you

should always have an eye toward making your program more generally

useful. If the max of ø program is just as easy to write as max of three, you

may as well write the more general program because it is more likely to

be useful in other situations. That way you get the maximum utility from

your programming effort.

\ Don’t reinvent the wheel. Our fourth solution was to use Python’s
Ê"ÂC�

function. You may think that was cheating, but this example illustrates an

¿0� ¹0�0s(t�uxw�y|{�}3b¨������u�}�ç r1r�´

important point. A lot of very smart programmers have designed countless

good algorithms and programs. If the problem you are trying to solve

seems to be one that lots of others must have encountered, you might

begin by finding out if the problem has already been solved for you. As

you are learning to program, designing from scratch is great experience.

Truly expert programmers, however, know when to borrow.

H«^�ê �b�i�¤nU�Rcg © ¦§�¥� ing1í

This chapter has laid out the basic control structures for making decisions. Here

are the key points.

\ Decision structures are control structures that allow a program to execute

different sequences of instructions for different cases.

\ Decisions are implemented in Python with
Ò�Í

statements. Simple decisions

are implemented with a plain
Ò�Í

. Two-way decisions generally use anÒ�Í+�0Æ¨À�Ü�Æ
. Multi-way decisions are implemented with

Ò�Í+�0Æ¨À¨Ò�Í+�0Æ¨À�Ü�Æ
.

\ Decisions are based on the evaluation of conditions, which are simple

Boolean expressions. A Boolean expression is either true or false. Python

has a dedicated
Ë½Á2Á¨À

data type with literals
��Ì�É½Æ

and
,�Â�À�Ü�Æ

. Conditions

are formed using the relational operators: . , . ß , �pß , ß�ß , � , and
� ß

.

\ Some programming languages provide exception handling mechanisms

which help to make programs more “bulletproof.” Python provides aÄ�Ì�Ï+�2ÆC�½Ñ�Æ��Ä
statement for exception handling.

\ Algorithms that incorporate decisions can become quite complicated as

decision structures are nested. Usually a number of solutions are possible,

and careful thought should be given to produce a correct, efficient, and

understandable program.

H«^IH egfTRcg1SæW�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. A simple decision can be implemented with an
ÒÓÍ

statement.

r1r�¹ s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
2. In Python conditions, Kº is written as

�0ß
.

3. Strings are compared by lexicographic ordering.

4. A two-way decision is implemented using an
ÒÓÍ+�2Æ�À�ÒÓÍ

statement.

5. The
ÊÎÂ�Ä0ÅhïzÜ�í2Ì�Ä

function cannot compute the square root of a negative

number.

6. A single
Ä�Ì�Ï

statement can catch multiple kinds of errors.

7. Multi-way decisions must be handled by nesting multiple
Ò�Í?�2Æ�ÀXÜ�Æ

state-

ments.

8. There is usually only one correct solution to a problem involving decision

structures.

9. The condition
� . ßPÏ . ß�D is allowed in Python.

10. Input validation means prompting a user when input is required.

� |��Q�!�����X}1�j�?������}
1. A statement that controls the execution of other statements is called a

a) boss structure b) super structure

c) control structure d) branch

2. The best structure for implementing a multi-way decision in Python is

a)
Ò�Í

b)
ÒÓÍ+�0Æ¨ÀXÜÓÆ

c)
Ò�Í?�2Æ�À�Ò�Í?�2Æ�ÀXÜ�Æ

d)
Ä�Ì�Ï

3. An expression that evaluates to either true or false is called

a) operational b) Boolean c) simple d) compound

4. When a program is being run directly (not imported),the value ofÇ!Â1ÊÎÆ
is

a)
Ü2ÑxÌ!Ò�¨Ä

b)
ÊÎÂ�Ò�Ç

c)
Ê"Â�Ò1Ç

d)
��Ì�É½Æ

5. The literals for type
ËXÁ�Á¨À

are

a)
�
,
,

b)
��Ì0ÉXÆ

,
,�Â�ÀXÜÓÆ

c)
Ä�Ì�É½Æ

,
Í�Â2ÀXÜ�Æ

d)
Ö
,
Õ

6. Placing a decision inside of another decision is an example of

a) cloning b) spooning c) nesting d) procrastination

¿2� ¿2�+����{1} ³�$ ��{ô� r1r�¿

7. In Python, the body of a decision is indicated by

a) indentation b) parentheses c) curly braces d) a colon

8. A structure in which one decision leads to another set of decisions, which

leads to another set of decisions, etc., is called a decision

a) network b) web c) tree d) trap

9. Taking the square root of a negative value with
Ê"Â�Ä�Å�ïôÜ�í2Ì2Ä

produces a(n)

a) ValueError b) imaginary number

c) program crash d) stomachache

10. A multiple choice question is most similar to

a) simple decision b) two-way decision

c) multi-way decisions d) an exception handler

� ���!��|?�&�:���m�
1. Explain the following patterns in your own words:

(a) simple decision

(b) two-way decision

(c) multi-way decision

2. The following is a (silly) decision structure:

Â�õ Ëcõ�ÑÈßÿÒ�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÄ0Å¨Ì�Æ2Æ Ç�É�Ê�Ë½Æ�ÌÎÜ¬÷��vúÒ�ÍÐÂ � Ë�÷ÒÓÍ7Ë � Ñ�÷¨Ì!Ò�Ç¨Ä)�GÅ�!Â1Ê¡ØXÀ2Æ�ÂXÜÓÆ �u�
Æ�ÀXÜÓÆn÷¨Ì!Ò�Ç¨Ä)��¢�Ä���Ü7Â9À�Â�Ä¨Æ<!Â�Ì�Ì�Á�Äå���

Æ¨À�ÒÓÍ7Ë � Ñ�÷¨Ì!Ò1Ç�Ä���×ÓÅ½Æ2Æ½Ü�Æ-ÅÓÅXÁ�	XÆ��
ÒÓÍÐÂ � ß¡Ñ�÷¨Ì!Ò�Ç¨Ä)��×ÓÅ½Æ0Ã�Ã�Â�Ì��
Æ�À�ÒÓÍÐÂ . Ëh÷¨Ì!Ò�Ç¨Ä)� ü Á�É�Ã�Â*�
Æ�À�ÒÓÍ¡ÑÈß�ß7Ë�÷¨Ì!Ò�Ç¨Ä)�GÅÓÛÎÒ�Ü�Ü��

Æ¨ÀXÜÓÆn÷

r1r�â s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
¨Ì!Ò1Ç�Ä��:�2Ì�Æ2Æ½Ü��
ÒÓÍÐÂPß�ß7Ë�÷¨Ì!Ò�Ç¨Ä)��×ÓÅ½ÆXÜxÄ0Ç2É�Ä$�
Æ�ÀXÜÓÆn÷¨Ì!Ò�Ç¨Ä)�:��Â�Ì½Ñ�Å���Ì!Ò1Ç�Ä��H�XÁ�ÇXÆ��

Show the output that would result from each of the following possible

inputs:

(a) 3, 4, 5

(b) 3, 3, 3

(c) 5, 4, 3

(d) 3, 5, 2

(e) 5, 4, 7

(f) 3, 3, 2

3. How is exception-handling using
Ä�Ì2Ï��0Æ��½Ñ�Æ�¨Ä

similar to and different from

handling exceptional cases using ordinary decision structures (variations

on
Ò�Í

)?

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. Many companies pay time-and-a-half for any hours worked above 40 in a

given week. Write a program to input the number of hours worked and

the hourly rate and calculate the total wages for the week.

2. A certain CS professor gives 5-point quizzes that are graded on the scale

5-A, 4-B, 3-C, 2-D, 1-F, 0-F. Write a program that accepts a quiz score as an

input and uses a decision structure to calculate the corresponding grade.

3. A certain CS professor gives 100-point exams that are graded on the scale

90–100:A, 80–89:B, 70–79:C, 60–69:D, Ó 60:F. Write a program that ac-

cepts an exam score as input and uses a decision structure to calculate the

corresponding grade.

4. A certain college classifies students according to credits earned. A student

with less than 7 credits is a Freshman. At least 7 credits are required to be

a Sophomore, 16 to be a Junior and 26 to be classified as a Senior. Write a

program that calculates class standing from the number of credits earned.

¿2� ¿2�+����{1} ³�$ ��{ô� r1r�é

5. The body mass index (BMI) is calculated as a person’s weight (in pounds)

times 720, divided by the square of the person’s height (in inches). A BMI

in the range 19–25, inclusive, is considered healthy. Write a program that

calculates a person’s BMI and prints a message telling whether they are

above, within, or below the healthy range.

6. The speeding ticket fine policy in Podunksville is $50 plus $5 for each mph

over the limit plus a penalty of $200 for any speed over 90 mph. Write a

program that accepts a speed limit and a clocked speed and either prints

a message indicating the speed was legal or prints the amount of the fine,

if the speed is illegal.

7. A babysitter charges $2.50 an hour until 9:00 PM when the rate drops to

$1.75 an hour (the children are in bed). Write a program that accepts a

starting time and ending time in hours and minutes and calculates the total

babysitting bill. You may assume that the starting and ending times are in

a single 24 hour period. Partial hours should be appropriately prorated.

8. A person is eligible to be a US senator if they are at least 30 years old

and have been a US citizen for at least 9 years. To be a US representative

these numbers are 25 and 7, respectively. Write a program that accepts a

person’s age and years of citizenship as input and outputs their eligibility

for the Senate and House.

9. A formula for computing Easter in the years 1982–2048, inclusive, is as

follows: let ú º ` ' ú�öK�#UuP , � º ` ' ú�öK� Z , ù º ` ' úCöK� W , b º R0UuP�ú Â ��Z�TM� O�M ,' º R ��� Â Z�ù Â E b Â N�TM� W . The date of Easter is March ��� Â b Â ' (which

could be in April). Write a program that inputs a year, verifies that it is in

the proper range, and then prints out the date of Easter that year.

10. The formula for Easter in the previous problem works for every year in

the range 1900–2099 except for 1954, 1981, 2049, and 2076. For these

4 years it produces a date that is one week too late. Modify the above

program to work for the entire range 1900–2099.

11. A year is a leap year if it is divisible by 4, unless it is a century year that is

not divisible by 400. (1800 and 1900 are not leap years while 1600 and

2000 are.) Write a program that calculates whether a year is a leap year.

12. Write a program that accepts a date in the form month/day/year and out-

puts whether or not the date is valid. For example 5/24/1962 is valid, but

9/31/2000 is not. (September has only 30 days.)

r1��% s(t�uxw�y|{�}!¿2�æé"{ ³�$ � $ �0� bxyè} � ³ yè�x}�{ô�
13. The days of the year are often numbered from 1 through 365 (or 366).

This number can be computed in three steps using int arithmetic:

(a)
b ú ` L ��� º O?U�R���^�ø clk V8UGT Â b ú `(b) if the month is after February subtract R^Z���^�ø clk Â ��O�T�ý	U�M

(c) if it’s a leap year and after February 29, add 1

Write a program that accepts a date as month/day/year, verifies that it is a

valid date (see previous problem), and then calculates the corresponding

day number.

14. Do Programming Exercise 7 from Chapter 5, but add a decision to handle

the case where the line does not intersect the circle.

15. Do Programming Exercise 8 from Chapter 5, but add a decision to prevent

the program from dividing by zero if the line is vertical.

16. Archery Scorer. Write a program that draws an archery target (see Pro-

gramming Exercise 2 from Chapter 5) and allows the user to click five

times to represent arrows shot at the target. Using five-band scoring, a

bulls-eye (yellow) is worth 9 points and each successive ring is worth 2

fewer points down to 1 for white. The program should output a score for

each click and keep track of a running sum for the entire series.

17. Write a program to animate a circle bouncing around a window. The basic

idea is to start the circle somewhere in the interior of the window. Use

variables
Ã	�

and
Ã2Ï

(both initialized to 1) to control the movement of the

circle. Use a large counted loop (say 10000 iterations), and each time

through the loop move the circle using
Ã	�

and
Ã0Ï

. When the x-value of the

center of the circle gets too high (it hits the edge), change
Ã��

to -1. When

it gets too low, change
Ã��

back to 1. Use a similar approach for
Ã0Ï

.

Note: Your animation will probably run too fast. You can slow it down by

using the
Ü�À2Æ2Æ�

function from the
Ä½Ò�ÊÎÆ

library module.

Í2Ì�Á�Ê¡Ä!ÒvÊÎÆàÒ�Ê?½Á�Ì�ÄÿÜ�À2Æ�Æ�
ï�ï�ï
Ü�À2Æ2Æ�oñzÕnïùÕ�Õ	'½ú ó�½ÂÓÉ"Ü�Æ½Ü Ä0Å½Æ<¨Ì�ÁC�2ÌXÂ1Ê¡Í¨Á�Ì('7Ä0ÅXÁ�É(Ü�ÂÓÇ�Ã2Ä0Å"Ü;Á0ÍÐÂÿÜÓÆXÑ�Á�ÇXÃnï

18. Take a favorite programming problem from a previous chapter and add

decisions and/or exception handling as required to make it truly robust

¿2� ¿2�+����{1} ³�$ ��{ô� r1�0~

(will not crash on any inputs). Trade your program with a friend and have

a contest to see who can “break” the other’s program.

3547698;:=<?>�M N ���5B ¨��ÈE C ÆÐ�ÈC EG

H �FJ O ��� ©�
 H �m

NPO!Q�RTSVUXWZYTRT[
\ To understand the concepts of definite and indefinite loops as they are

realized in the Python
Í¨Á�Ì

and
Û2ÅÎÒ0À2Æ

statements.

\ To understand the programming patterns interactive loop and sentinel

loop and their implementations using a Python
Û0Å"Ò0À0Æ

statement.

\ To understand the programming pattern end-of-file loop and ways of im-

plementing such loops in Python.

\ To be able to design and implement solutions to problems involving loop

patterns including nested loop structures.

\ To understand the basic ideas of Boolean algebra and be able to analyze

and write Boolean expressions involving Boolean operators.

[«^`] ð��hgÈ¼��G�²¤c[�²èÖ P9¦hW�SRQ ?îR�YoW�R��
In Chapter

�
, we looked in detail at the Python

Ò�Í
statement and its use in

implementing programming patterns such as one-way, two-way, and multi-way

decisions. In this chapter, we’ll wrap up our tour of control structures with a

detailed look at loops and Boolean expressions.

You already know that the Python
Í¨Á0Ì

statement provides a kind of loop. It

allows us to iterate through a sequence of values.�É�É

r1� ¯ s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
Í¨Á�Ì . 9�Â�Ì � Ò�Ç . ÜÓÆ�í�É½Æ�ÇÎÑ�Æ � ÷. ËXÁ2Ã2Ï �
The loop index variable

9XÂ�Ì
takes on each successive value in the sequence, and

the statements in the body of the loop are executed once for each value.

Suppose we want to write a program that can compute the average of a series

of numbers entered by the user. To make the program general, it should work

for any size set of numbers. You know that an average is calculated by summing

up the numbers and dividing by the count of how many numbers there are. We

don’t need to keep track of all the numbers that have been entered; we just need

a running sum so that we can calculate the average at the end.

This problem description should start some bells ringing in your head. It

suggests the use of some design patterns you have seen before. We are dealing

with a series of numbers—that will be handled by some form of loop. If there

are ø numbers, the loop should execute ø times; we can use the counted loop

pattern. We also need a running sum; that calls for a loop accumulator. Putting

the two ideas together, we can generate a design for this problem.¢1Ç��É¨ÄPÄ0ÅXÆàÑ�Á�É2Ç�ÄÐÁ0ÍPÄ0Å½ÆÈÇ2É0Ê¨Ë½Æ0Ì!Üõ Ç¢1ÇÎÒÓÄ½Ò0Â�À¨Ò�D�ÆÐÜ1É�Ê¡Ä�Á9Õ��Á2Á�9ÇÐÄ½Ò�ÊÎÆXÜ¢1Ç��É�ÄÝÂ7Ç2É0Ê¨Ë½Æ0Ìoõç�
Ú Ã2Ã��PÄ�Á¡Ü1É�ÊÄ É¨ÄC2É�ÄÐÂ�9�Æ0Ì�ÂC��Æ9ÂXÜ9Ü�É0ÊÏ� Ç

Hopefully, you see both the counted loop and accumulator patterns integrated

into this design. We can translate this design almost directly into a Python

implementation.óÐÂ�9¨Æ0Ì�ÂC�¨Æ!Öï>�Ï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ÇàßÿÒ�Ç	2É�Ä�ñ��!��Á�Û;Ê"ÂÓÇ¨Ï7Ç�É�Ê�ËXÆ0ÌÎÜ Ã¨Á?Ï�ÁÓÉ9Å!Â�9�Æ�2L�Óú
Ü1É�ÊÿßÝÕnïðÕ
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷�9ß Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì9ÂÈÇ2É0Ê�ËXÆ0Ì ��� ��úÜ1É0ÊÿßÿÜ�É0Êÿá ��Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ� Ç

The running sum starts at 0, and each number is added in turn. Notice that
Ü�É0Ê

is initialized to a float 0.0. This ensures that the division
Ü1É�ÊL�ÈÇ

on the last

line returns a float even if all the input values were ints.

â0� r0�?K �v�1{ëê�� $ y|{£¾v�Ó��w�� r1��´

Here is the program in action.�XÁ�Û7Ê"ÂxÇ�Ï?Ç�É�Ê�ËXÆ0ÌÎÜ Ã¨ÁPÏ�ÁÓÉPÅ!Â�9�Æ+2-'/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� Þ�Ô/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� @?'/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� ÞC@/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� þ2ø/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� @?'�0ÅXÆÝÂ�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü8@¨ønïF@
Well, that wasn’t too bad. Knowing a couple of common patterns, counted

loop and accumulator, got us to a working program with minimal difficulty in

design and implementation. Hopefully, you can see the worth of committing

these sorts of programming clichés to memory.

[«^�� J`e�·§R{ì�ecW U�R�¼��G�²¤c[

Our averaging program is certainly functional, but it doesn’t have the best user

interface. It begins by asking the user how many numbers there are. For a

handful of numbers this is OK, but what if I have a whole page of numbers to

average? It might be a significant burden to go through and count them up.

It would be much nicer if the computer could take care of counting the num-

bers for us. Unfortunately, as you no doubt recall, the
Í¨Á�Ì

loop is a definite loop,

and that means the number of iterations is determined when the loop starts. We

can’t use a definite loop unless we know the number of iterations ahead of time,

and we can’t know how many iterations this loop needs until all of the numbers

have been entered. We seem to be stuck.

The solution to this dilemma lies in another kind of loop, the indefinite or

conditional loop. An indefinite loop keeps iterating until certain conditions are

met. There is no guarantee ahead of time regarding how many times the loop

will go around.

In Python, an indefinite loop is implemented using a
Û0Å"Ò0À0Æ

statement. Syn-

tactically, the
Û0Å"Ò�À2Æ

is very simple.

Û2ÅÎÒ0À0Æ . Ñ�Á�ÇXÃXÒÓÄ½Ò�Á�Ç � ÷. ËXÁ2Ã2Ï �
Here

Ñ�Á�Ç�Ã½ÒÓÄ½Ò�ÁÓÇ
is a Boolean expression, just like in

Ò�Í
statements. The body is,

as usual, a sequence of one or more statements.

r1��¹ s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
The semantics of

Û0Å"Ò0À0Æ
is straightforward. The body of the loop executes

repeatedly as long as the condition remains true. When the condition is false,

the loop terminates. Figure
�
.
�

shows a flowchart for the
Û0Å"Ò0À0Æ

. Notice that

the condition is always tested at the top of the loop, before the loop body is

executed. This kind of structure is called a pre-test loop. If the loop condition is

initially false, the loop body will not execute at all.

<body>

yes

no
<condition>?

Figure
�
.
�
: Flowchart of a

Û0Å"Ò�À2Æ
loop.

Here is an example of a simple
Û2Å"Ò�À2Æ

loop that counts from 0 to 10:

ÒÈßÐÕ
Û2ÅÎÒ0À0ÆÐÒ . ß ÖxÕo÷�Ì½Ò�Ç�ÄàÒ

ÒÈßÿÒÈá Ö
This code will have the same output as if we had written a

Í¨Á0Ì
loop like this:

Í¨Á�ÌÿÒ9Ò�ÇàÌXÂxÇ���Ææñ�Ö2Ö2ú÷�Ì½Ò�Ç�ÄàÒ
Notice that the

Û0Å"Ò0À0Æ
version requires us to take care of initializing

Ò
before the

loop and incrementing
Ò

at the bottom of the loop body. In the
Í�Á0Ì

loop, the

loop variable is handled automatically.

â2� �2��s��0���o���«¾v�Ó�0w«�0u�y y|{�}Z��� r1��¿

The simplicity of the
Û2ÅÎÒ0À0Æ

statement makes it both powerful and dangerous.

Because it is less rigid, it is more versatile; it can do more than just iterate

through sequences. But it is also a common source of errors.

Suppose we forget to increment
Ò

at the bottom of the loop body in the

counting example.

ÒÈßÐÕ
Û2ÅÎÒ0À0ÆÐÒ . ß ÖxÕo÷�Ì½Ò�Ç�ÄàÒ
What will the output from this program be? When Python gets to the loop,

Ò
will be 0, which is less than 10, so the loop body executes, printing a 0. Now

control returns to the condition;
Ò

is still 0, so the loop body executes again,

printing a 0. Now control returns to the condition;
Ò

is still 0, so the loop body

executes again, printing a 0....

You get the picture. This is an example of an infinite loop. Usually, infinite

loops are a bad thing. Clearly this version of the program does nothing useful.

That reminds me, did you hear about the computer scientist who died of ex-

haustion while washing his hair? The instructions on the bottle said: “Lather.

Rinse. Repeat.”

As a beginning programmer, it would be surprising if you did not accidentally

write a few programs with infinite loops—it’s a rite of passage for programmers.

Even more experienced programmers have been known to do this from time to

time. Usually, you can break out of a loop by pressing Ó Ctrl � -c (holding down

the Ó Ctrl � key and pressing “c”). If your loop is really tight, this might not

work, and you’ll have to resort to more drastic means (such as Ó Ctrl � - Ó Alt � -Ó Delete � on a PC). If all else fails, there is always the trusty reset button on

your computer. The best idea is to avoid writing infinite loops in the first place.

[«^�� ¢�£� � �GeF¼n�G�£¤ ��iTU�U¨Rhg�e�[��È�É�ÈSÊ ä7wmtui_�0����tGl�k�i�¸�vxvxÍ�s
One good use of the indefinite loop is to write interactive loops. The idea be-

hind an interactive loop is that it allows the user to repeat certain portions of a

program on demand. Let’s take a look at this loop pattern in the context of our

number averaging problem.

Recall that the previous version of the program forced the user to count up

how many numbers there were to be averaged. We want to modify the program

r1��â s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
so that it keeps track of how many numbers there are. We can do this with

another accumulator—call it
Ñ�Á�É2Ç�Ä

—that starts at zero and increases by 1 each

time through the loop.

To allow the user to stop at any time, each iteration of the loop will ask

whether there is more data to process. The general pattern for an interactive

loop looks like this:

Ü�Æ�ÄÈÊÎÁ�Ì�Æ2Ã¨Â�Ä�Â Ä�Á)��Ï�Æ½Üm�
Û2ÅÎÒ0À0Æ ÊÎÁ�Ì�Æ2Ã¨Â�Ä�ÂÝÒ¨Ü=��Ï�Æ½Üm��¨Æ�Ä9Ä0Å½ÆÈÇXÆ��0Ä9Ã�Â�ÄXÂÐÒÓÄ¨ÆxÊ�Ì¨ÁXÑ�ÆXÜ�Ü Ä�Å½ÆàÒxÄ�ÆxÊ

ÂXÜGÎPÉ(Ü�Æ�Ì¡Ò�Í9Ä�Å½Æ0Ì¨ÆÐÒ¨ÜfÊ!Á0Ì¨Æ2Ã�Â�ÄXÂ
Combining the interactive loop pattern with accumulators for the sum and

count yields this algorithm for the averaging program:

Ò�ÇÎÒÓÄ½Ò0Â�À¨Ò�D�ÆÐÜ1É�Ê¡Ä�Á9ÕoïðÕ
Ò�ÇÎÒÓÄ½Ò0Â�À¨Ò�D�ÆÝÑ�ÁÓÉ�Ç¨ÄPÄ�ÁÝÕ
Ü�Æ�ÄÈÊÎÁ�Ì�Æ2Ã¨Â�Ä�Â Ä�Á)��Ï�Æ½Üm�
Û2ÅÎÒ0À0Æ ÊÎÁ�Ì�Æ2Ã¨Â�Ä�ÂÝÒ¨Ü=��Ï�Æ½Üm�

Ò�Ç��É�ÄÝÂ7Ç2É0Ê¨Ë½Æ0Ìoõç�
Â0Ã2Ã��PÄ�Á¡Ü1É�Ê
Â0Ã2Ã Ö Ä�ÁàÑ�ÁÓÉ�Ç¨Ä
ÂXÜGÎPÉ(Ü�Æ�Ì¡Ò�Í9Ä�Å½Æ0Ì¨ÆÐÒ¨ÜfÊ!Á0Ì¨Æ2Ã�Â�ÄXÂ

Á�É¨ÄC2É�ÄÿÜ�É0ÊÏ�ÐÑ�ÁÓÉ�Ç¨Ä
Notice how the two accumulators are interleaved into the basic structure of the

interactive loop.

Here is the corresponding Python program:

óÐÂ�9¨Æ0Ì�ÂC�¨Æ�Ôoï>�Ï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Ü1É�ÊÿßÝÕnïðÕ
Ñ�ÁÓÉ�Ç�ÄPßàÕ
ÊÎÁ�Ì�Æ2Ã¨Â�Ä�ÂÈß���Ï¨Æ½Ü��
Û2ÅÎÒ0À2Æ ÊÎÁ0Ì¨Æ2Ã¨Â�ÄXÂ û ÕC
?ß�ß)��Ï��"÷�9ß Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì9ÂÈÇ2É0Ê�ËXÆ0Ì ��� ��úÜ1É0ÊÿßÿÜ�É0Êÿá �

Ñ�Á�É2Ç�Ä9ßÿÑ�Á�É�Ç¨Ä9á Ö

â2� �2��s��0���o���«¾v�Ó�0w«�0u�y y|{�}Z��� r1��é

ÊÎÁ0Ì¨Æ2Ã¨Â�ÄXÂ ß9ÌXÂ�Û�Ì�Ò1Ç	�É¨ÄTñ����XÁ;Ï�ÁÓÉ9Å!Â�9�Æ;ÊÎÁ�Ì�Æ Ç2É0Ê¨Ë½Æ0Ì!Ü»ñ`Ï¨Æ½ÜÈÁ�Ì?Ç½Á!ú�2=��ú�Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ�ÐÑ�Á�É�Ç¨Ä
Notice this program uses string indexing (

ÊÎÁ�Ì�Æ2Ã¨Â�Ä�Â û ÕC

) to look just at the first

letter of the user’s input. This allows for varied responses such as “yes,” “y,”

“yeah,” etc. All that matters is that the first letter is a “y.” Also note the use ofÌXÂÓÛ Ò1Ç	2É�Ä
to get this value. Remember you should use

ÌXÂÓÛ Ò1Ç	2É�Ä
to get string

data.

Here is sample output from this program:

/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� Þ�Ô�XÁ?Ï¨Á�É9Å½Â�9�Æ;Ê!Á0Ì¨Æ Ç�É�Ê�Ë½Æ�ÌÎÜ»ñèÏ�ÆXÜÈÁ0Ì?Ç½Á½úC2 Ï¨Æ½Ü/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� @?'�XÁ?Ï¨Á�É9Å½Â�9�Æ;Ê!Á0Ì¨Æ Ç�É�Ê�Ë½Æ�ÌÎÜ»ñèÏ�ÆXÜÈÁ0Ì?Ç½Á½úC2 Ï/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� ÞC@�XÁ?Ï¨Á�É9Å½Â�9�Æ;Ê!Á0Ì¨Æ Ç�É�Ê�Ë½Æ�ÌÎÜ»ñèÏ�ÆXÜÈÁ0Ì?Ç½Á½úC2 Ï/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� þ2ø�XÁ?Ï¨Á�É9Å½Â�9�Æ;Ê!Á0Ì¨Æ Ç�É�Ê�Ë½Æ�ÌÎÜ»ñèÏ�ÆXÜÈÁ0Ì?Ç½Á½úC2 Ï/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì �	� @?'�XÁ?Ï¨Á�É9Å½Â�9�Æ;Ê!Á0Ì¨Æ Ç�É�Ê�Ë½Æ�ÌÎÜ»ñèÏ�ÆXÜÈÁ0Ì?Ç½Á½úC2 ÇXÁ�½Æ
�0ÅXÆÝÂ�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü8@¨ønï0'

In this version, the user doesn’t have to count the data values, but the inter-

face is still not good. The user will almost certainly be annoyed by the constant

prodding for more data. The interactive loop has many good applications; this

is not one of them.��È�É�È�Ç Ø i*wmtGl�w�i�Ù"¸mvxvxÍ�s
A better solution to the number averaging problem is to employ a pattern com-

monly known as a sentinel loop. A sentinel loop continues to process data until

reaching a special value that signals the end. The special value is called the

sentinel. Any value may be chosen for the sentinel. The only restriction is that it

be distinguishable from actual data values. The sentinel is not processed as part

of the data.

Here is a general pattern for designing sentinel loops:�¨Æ�Ä9Ä0ÅXÆPÍ½ÒÓÌ!ÜxÄ9Ã¨Â�Ä�ÂÐÒÓÄ�Æ�Ê
Û2ÅÎÒ0À0ÆÐÒÓÄ¨ÆxÊ Ò¨Ü ÇXÁ0Ä9Ä�Å½Æ¡Ü�ÆÓÇ�Ä½Ò�Ç½Æ�À

r ¯ % s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
�Ì¨ÁXÑ�ÆXÜ�Ü Ä�Å½ÆàÒxÄ�ÆxÊ�¨Æ�Ä9Ä0Å½ÆÈÇXÆ��0Ä9Ã�Â�ÄXÂÐÒÓÄ¨ÆxÊ

Notice how this pattern avoids processing the sentinel item. The first item is

retrieved before the loop starts. This is sometimes called the priming read, as it

gets the process started. If the first item is the sentinel, the loop immediately

terminates and no data is processed. Otherwise, the item is processed and the

next one is read. The loop test at the top ensures this next item is not the sentinel

before processing it. When the sentinel is reached, the loop terminates.

We can apply the sentinel pattern to our number averaging problem. The

first step is to pick a sentinel. Suppose we are using the program to average

exam scores. In that case, we can safely assume that no score will be below 0.

The user can enter a negative number to signal the end of the data. Combining

the sentinel loop with the two accumulators from the interactive loop version

yields this program.óÐÂ�9¨Æ0Ì�ÂC�¨Æ2Þnï>�Ï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Ü1É�ÊÿßÝÕnïðÕ
Ñ�ÁÓÉ�Ç�ÄPßàÕ�9ßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂ7Ç2É0Ê¨Ë½Æ0ÌòñðÇ½ÆC��Â�Ä!Ò�9¨ÆÈÄ¨Á6í�É"ÒxÄ"ú ��� ��úÛ2ÅÎÒ0À2Æ�� � ßÝÕn÷Ü1É0ÊÿßÿÜ�É0Êÿá �

Ñ�Á�É2Ç�Ä9ßÿÑ�Á�É�Ç¨Ä9á Ö�9ß Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì9ÂÈÇ2É0Ê�ËXÆ0Ì ñùÇ½ÆC��Â�Ä½Ò�9¨ÆÈÄ�Á6í�É"ÒxÄ"ú �	� �Óú�Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ�ÐÑ�Á�É�Ç¨Ä
I have changed the prompt so that the user knows how to signal the end of the

data. Notice that the prompt is identical at the priming read and the bottom of

the loop body.

Now we have a useful form of the program. Here it is in action:/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñðÇXÆ���Â�Ä!Ò�9�ÆÈÄ¨Á6í�ÉÎÒÓÄ"ú ��� Þ¨Ô/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñðÇXÆ���Â�Ä!Ò�9�ÆÈÄ¨Á6í�ÉÎÒÓÄ"ú ��� @+'/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñðÇXÆ���Â�Ä!Ò�9�ÆÈÄ¨Á6í�ÉÎÒÓÄ"ú ��� Þ�@/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñðÇXÆ���Â�Ä!Ò�9�ÆÈÄ¨Á6í�ÉÎÒÓÄ"ú ��� þ�ø/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñðÇXÆ���Â�Ä!Ò�9�ÆÈÄ¨Á6í�ÉÎÒÓÄ"ú ��� @+'/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñðÇXÆ���Â�Ä!Ò�9�ÆÈÄ¨Á6í�ÉÎÒÓÄ"ú ��� �!Ö
�0ÅXÆÝÂ�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü8@¨ønïF@

â2� �2��s��0���o���«¾v�Ó�0w«�0u�y y|{�}Z��� r ¯ ~

This version provides the ease of use of the interactive loop without the hassle

of having to type “yes” all the time. The sentinel loop is a very handy pattern for

solving all sorts of data processing problems. It’s another cliché that you should

commit to memory.

This sentinel loop solution is quite good, but there is still a limitation. The

program can’t be used to average a set of numbers containing negative as well

as positive values. Let’s see if we can’t generalize the program a bit. What we

need is a sentinel value that is distinct from any possible valid number, positive

or negative. Of course, this is impossible as long as we restrict ourselves to

working with numbers. No matter what number or range of numbers we pick as

a sentinel, it is always possible that some data set may contain such a number.

In order to have a truly unique sentinel, we need to broaden the possible

inputs. Suppose that we get the input from the user as a string. We can have

a distinctive, non-numeric string that indicates the end of the input; all others

would be converted into numbers and treated as data. One simple solution is

to have the sentinel value be an empty string. Remember, an empty string is

represented in Python as
�	�

(quotes with no space between). If the user types

a blank line in response to a
ÌXÂÓÛ Ò�Ç	2É�Ä

(just hits Óå/ Ç¨Ä�Æ0Ì �), Python returns an

empty string. We can use this as a simple way to terminate input. The design

looks like this:¢1ÇÎÒÓÄ½Ò0Â�À¨Ò�D�ÆÐÜ1É�Ê¡Ä�Á9ÕoïðÕ¢1ÇÎÒÓÄ½Ò0Â�À¨Ò�D�ÆÝÑ�ÁÓÉ�Ç¨ÄPÄ�ÁÝÕ¢1Ç��É¨Ä9Ã�Â�ÄXÂÐÒÓÄ¨ÆxÊ Â�Ü7ÂàÜxÄ�Ì½Ò�Ç+�oõç�?Å�Ä�Ì
Û2ÅÎÒ0À0Æ-�+Å�Ä�ÌÿÒ¨Ü ÇXÁ0ÄÐÆ�Ê+�Ä2Ï

×�ÁÓÇ+9�Æ�Ì�Ä��?Å�Ä2ÌPÄ�ÁÐÂ Ç�É�Ê�ËXÆ0Ìnõ°�
Ú Ã2Ã��PÄ�Á¡Ü1É�Ê
Ú Ã2Ã Ö Ä�ÁàÑ�ÁÓÉ�Ç¨Ä¢1Ç��É�ÄÈÇ½Æ��0ÄÝÃ�Â�ÄXÂÐÒÓÄ¨ÆxÊ Â�Ü7Â¡ÜxÄ�Ì½Ò�Ç+�oõç�?Å�Ä�ÌÄ É¨ÄC2É�ÄÿÜ�É0ÊÏ�ÐÑ�ÁÓÉ�Ç¨Ä

Comparing this to the previous algorithm, you can see that converting the string

to a number has been added to the processing section of the sentinel loop.

Translating it into Python yields this program:

óÐÂ�9¨Æ0Ì�ÂC�¨ÆC@�ï>�Ï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Ü1É�ÊÿßÝÕnïðÕ
Ñ�ÁÓÉ�Ç�ÄPßàÕ

r ¯ r s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
�+Å�Ä�ÌÝßPÌXÂÓÛmÌ¨Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?ÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� �ÓúÛ2ÅÎÒ0À2Æ��+Å�Ä2Ì �pß)���(÷�9ßàÆ�9XÂ2À¬ñë�?Å�Ä2Ì"ú

Ü1É0ÊÿßÿÜ�É0Êÿá �
Ñ�Á�É2Ç�Ä9ßÿÑ�Á�É�Ç¨Ä9á Ö�+Å�Ä2Ì9ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì?Â7Ç2É0Ê¨Ë½Æ0Ìòñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�ÉÎÒÓÄÎú �	� �Óú�Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ�ÐÑ�Á�É�Ç¨Ä

This code makes use of
Æ�9XÂ�À

(from Chapter 4) to convert the input string into a

number.

Here is an example run, showing that it is now possible to average arbitrary

sets of numbers:

/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� ÞC@/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� Ô0Þ/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� Õ/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� �2Ô	'/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� �0Þ�@nïB@/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� Ô2Ôoïùþ/ Ç¨Ä�Æ�ÌÐÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	��0ÅXÆÝÂ�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�ÜÈÞnïðÞ�A�Þ2Þ�Þ�Þ2Þ�Þ2Þ�Þ�Þ
We finally have an excellent solution to our original problem. You should study

this solution so that you can incorporate these techniques into your own pro-

grams.��È�É�È�É ¢ l�Ù�i�¸�v�vxÍ3s
One disadvantage of all the averaging programs presented so far is that they are

interactive. Imagine you are trying to average 87 numbers and you happen to

make a typo near the end. With our interactive program, you will need to start

all over again.

A better approach to the problem might be to type all of the numbers into

a file. The data in the file can be perused and edited before sending it to a

program that generates a report. This file-oriented approach is typically used

for data processing applications.

Back in Chapter 4, we looked at reading data from files by treating the file

variable as a sequence in a
Í¨Á�Ì

loop. We can apply this technique directly to

â2� �2��s��0���o���«¾v�Ó�0w«�0u�y y|{�}Z��� r ¯ �

the number averaging problem. Assuming that the numbers are typed into a file

one per line, we can compute the average with this program.

óÐÂ�9¨Æ0Ì�ÂC�¨Æ	'oï>�Ï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Í½Ò�À2ÆCÐ�Â�Ê!Æ7ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ��!"0Å!Â�Ä7Í½Ò�À2Æ9Â�Ì�Æ?Ä�Å½ÆÈÇ�É�Ê�ËXÆ0ÌÎÜ7Ò�Ç_2L�Óú
Ò�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñôÍ½Ò�À2Æ�ÐXÂ�Ê!ÆTõP�ðÌ���ú
Ü1É�ÊÿßÝÕnïðÕ
Ñ�ÁÓÉ�Ç�ÄPßàÕ
Í¨Á�ÌàÀ�Ò�ÇXÆÐÒ�Ç»Ò1ÇXÍ½Ò�À2Æo÷

Ü1É0ÊÿßÿÜ�É0ÊÿáÐÆC9�Â�Àñ�À�Ò1Ç½Æ½ú
Ñ�Á�É2Ç�Ä9ßÿÑ�Á�É�Ç¨Ä9á Ö�Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ�ÐÑ�Á�É�Ç¨Ä

In this code, the loop variable
À�Ò1Ç½Æ

iterates through the file as a sequence of

lines; each line is converted to a number and added to the running sum.

Many programming languages do not have a special mechanism for looping

through files like this. In these languages, the lines of a file can be read one at

a time using a form of sentinel loop. We can illustrate this method in Python by

using
Ì¨Æ¨Â�Ã�À�Ò1Ç½Æ¬ñ1ú

. Remember, the
Ì�Æ¨Â�Ã�À¨Ò�Ç½Æ¬ñ1ú

method gets the next line from

a file as a string. At the end of the file,
Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú

returns an empty string,

which we can use as a sentinel value. Here is a general pattern for an end-of-file

loop using
Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú

in Python.

À�Ò1Ç½ÆPß¡Ò1ÇXÍ½Ò�À2ÆoïpÌ�Æ�Â0Ã¨À�Ò�ÇXÆæñ�ú
Û2ÅÎÒ0À0Æ9À�Ò1Ç½Æ �pß)���(÷

ó��Ì¨ÁXÑ�ÆXÜ�ÜÈÀ¨Ò�ÇXÆ
À�Ò1Ç½ÆPß¡Ò�Ç�Í½Ò�À2Ænï�Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú

At first glance, you may be concerned that this loop stops prematurely if it

encounters an empty line in the file. This is not the case. Remember, a blank

line in a text file contains a single newline character (
�í¹�Çx�

), and the
Ì¨Æ¨Â0Ã¨À�Ò1Ç½Æ

method includes the newline character in its return value. Since
�í¹�Çx���pß)���

,

the loop will continue.

Here is the code that results from applying the end-of-file sentinel loop to

our number averaging problem:

óÐÂ�9¨Æ0Ì�ÂC�¨Æ2ønï>�Ï

r ¯�¯ s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Í½Ò�À2ÆCÐ�Â�Ê!Æ7ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ��!"0Å!Â�Ä7Í½Ò�À2Æ9Â�Ì�Æ?Ä�Å½ÆÈÇ�É�Ê�ËXÆ0ÌÎÜ7Ò�Ç_2L�Óú
Ò�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñôÍ½Ò�À2Æ�ÐXÂ�Ê!ÆTõP�ðÌ���ú
Ü1É�ÊÿßÝÕnïðÕ
Ñ�ÁÓÉ�Ç�ÄPßàÕ
À�Ò1Ç½ÆPß¡Ò�Ç�Í½Ò�À2Ænï�Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú
Û2ÅÎÒ0À2ÆPÀ�Ò�ÇXÆ �pß)���(÷

Ü1É0ÊÿßÿÜ�É0ÊÿáÐÆC9�Â�Àñ�À�Ò1Ç½Æ½ú
Ñ�Á�É2Ç�Ä9ßÿÑ�Á�É�Ç¨Ä9á Ö
À�Ò�ÇXÆ?ßÿÒ�Ç�Í½Ò0À0Ænï�Ì�Æ¨Â�Ã�À¨Ò�Ç½Æ¬ñ1ú�Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ�ÐÑ�Á�É�Ç¨Ä

Obviously, this version is not quite as concise as the version using the
Í�Á0Ì

loop.

In Python, you might as well use the latter, but it is still good to know about

end-of-file loops in case you’re stuck programming in a less elegant language.��È�É�È � Ë i�sGtuiº�ä¸�vxvxÍ�s
In the last chapter, you saw how control structures such as decisions and loops

could be nested inside one another to produce sophisticated algorithms. One

particularly useful, but somewhat tricky technique is the nesting of loops.

Let’s take a look at an example program. How about one last version of our

number averaging problem? I promise this is the last time I’ll use this example.1

Suppose we modify the specification of our file averaging problem slightly. This

time, instead of typing the numbers into the file one-per-line, we’ll allow any

number of values on a line. When multiple values appear on a line, they will be

separated by commas.

At the top level, the basic algorithm will be some sort of file-processing loop

that computes a running sum and count. For practice, let’s use an end-of-file

loop. Here is the code comprising the top-level loop:

Ü1É�ÊÿßÝÕnïùÕ
Ñ�ÁÓÉ�Ç¨Ä9ßÐÕ
À�Ò1Ç½ÆPß¡Ò1ÇXÍ½Ò�À2ÆoïpÌ�Æ�Â0Ã¨À�Ò�ÇXÆæñ�ú
Û2ÅÎÒ0À0Æ9À�Ò1Ç½Æ �pß)���(÷

ó7É	�Ã�Â�Ä¨ÆàÜ1É�Ê ÂÓÇ�Ã¡Ñ�Á�É2Ç�ÄÝÍ�Á0Ì�9XÂ2ÀÓÉXÆ½Ü?Ò1ÇÿÀ�Ò�ÇXÆ
À�Ò1Ç½ÆPß¡Ò�Ç�Í½Ò�À2Ænï�Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú�Ì½Ò�Ç¨Ä)�í´xÇ+�0ÅXÆ9Â�9¨Æ0Ì�ÂC�¨Æ?Á2ÍPÄ0ÅXÆÈÇ�É�Ê�Ë½Æ�ÌÎÜ?Ò�Ü��!õ�Ü1É0ÊÏ�ÐÑ�Á�É2Ç�Ä

1until Chapter 11.

â2� �2��s��0���o���«¾v�Ó�0w«�0u�y y|{�}Z��� r ¯ ´

Now we need to figure out how to update the
Ü�É0Ê

and
Ñ�ÁÓÉ�Ç�Ä

in the body of

the loop. Since each individual line of the file contains one or more numbers

separated by commas, we can split the line into substrings, each of which repre-

sents a number. Then we need to loop through these substrings, convert each to

a number, and add it to
Ü�É0Ê

. We also need to add 1 to
Ñ�Á�É2Ç�Ä

for each number.

Here is a code fragment that processes a line:

Í¨Á�Ì �+Å�Ä�ÌÿÒ�Ç»Ü�Ä�Ì½Ò�Ç��nïzÜu!À�ÒxÄTñzÀ�Ò�ÇXÆTõ��Îõ��Óú¬÷
Ü1É�ÊÿßÿÜ1É0ÊÿáÐÆ�9XÂ�Àñë�?Å�Ä�ÌÎú
Ñ�ÁÓÉ�Ç�ÄPß Ñ�Á�É2Ç�Ä9áÎÖ

Notice that the iteration of the
Í¨Á�Ì

loop in this fragment is controlled by the

value of
À�Ò1Ç½Æ

, which just happens to be the loop-control variable for the file-

processing loop we outlined above. Knitting these two loops together, here is

our program:

óÐÂ�9¨Æ0Ì�ÂC�¨Æ2þnï>�Ï
Ò�Ê?½Á�Ì�ÄÿÜ�Ä�Ì!Ò1Ç��
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Í½Ò�À2ÆCÐ�Â�Ê!Æ7ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ��!"0Å!Â�Ä7Í½Ò�À2Æ9Â�Ì�Æ?Ä�Å½ÆÈÇ�É�Ê�ËXÆ0ÌÎÜ7Ò�Ç_2L�Óú
Ò�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñôÍ½Ò�À2Æ�ÐXÂ�Ê!ÆTõP�ðÌ���ú
Ü1É�ÊÿßÝÕnïðÕ
Ñ�ÁÓÉ�Ç�ÄPßàÕ
À�Ò1Ç½ÆPß¡Ò�Ç�Í½Ò�À2Ænï�Ì�Æ�Â0Ã�À¨Ò�ÇXÆæñ1ú
Û2ÅÎÒ0À2ÆPÀ�Ò�ÇXÆ �pß)���(÷

ó7É	XÃ¨Â�Ä¨ÆàÜ1É�Ê ÂÓÇXÃ¡Ñ�Á�É2Ç�ÄÝÍ¨Á�Ì69XÂ2ÀÓÉXÆ½ÜPÒ�ÇÿÀ¨Ò�ÇXÆ
Í¨Á0Ì �?Å�Ä2Ì¡Ò�Ç ÜxÄ2Ì!Ò1Ç���ïôÜG½À�ÒÓÄ�ñ�À¨Ò�Ç½Æ½ú¬÷

Ü�É0ÊÿßÿÜ�É0ÊÿáÝÆC9�Â�Àñë�+Å�Ä�ÌÎú
Ñ�Á�É2Ç�Ä9ßÿÑ�ÁÓÉ�Ç¨Ä9á Ö

À�Ò�ÇXÆ?ßÿÒ�Ç�Í½Ò0À0Ænï�Ì�Æ¨Â�Ã�À¨Ò�Ç½Æ¬ñ1ú�Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ�ÐÑ�Á�É�Ç¨Ä
As you can see, the loop that processes the numbers in a line is indented inside

of the file processing loop. The outer
Û2ÅÎÒ0À2Æ

loop iterates once for each line of

the file. On each iteration of the outer loop, the inner
Í¨Á�Ì

loop iterates as many

times as there are numbers on that line. When the inner loop finishes, the next

line of the file is read, and the outer loop goes through its next iteration.

The individual fragments of this problem are not complex when taken sepa-

rately, but the final result is fairly intricate. The best way to design nested loops

r ¯ ¹ s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
is to follow the process we did here. First design the outer loop without worry-

ing about what goes inside. Then design what goes inside, ignoring the outer

loop(s). Finally, put the pieces together, taking care to preserve the nesting. If

the individual loops are correct, the nested result will work just fine; trust it.

With a little practice, you’ll be implementing double-, even triple-nested loops

with ease.

[«^|µ ¢�£�¥¤§¦oUXWpen�m� W UÎb ¸¢�G�²j RTi_e�[

We now have two control structures,
Ò�Í

and
Û2ÅÎÒ0À0Æ

, that use conditions, which

are Boolean expressions. Conceptually, a Boolean expression evaluates to one of

two values: false or true. In Python, these values are represented by the literals,XÂ2ÀXÜÓÆ
and

��Ì�É½Æ
. So far, we have used simple Boolean expressions that compare

two values (e.g.,
Û0Å"Ò�À2Æ-� � ßàÕ

).��È � ÈSÊ ² v�v$Ù�im�*w��1Í�i_�0��tuv��Bs
Sometimes the simple conditions that we have been using do not seem expres-

sive enough. For example, suppose you need to determine whether two point

objects are in the same position—that is, they have equal x coordinates and

equal y coordinates. One way of handling this would be a nested decision.

Ò�Í��ÖïF�¨Æ0ÄCÐ�ñ�ú ß�ß-½ÔoïB��Æ0ÄCÐ�ñ1ú÷
Ò�Í��ÖïB��Æ0ÄP�Tñ1úªß�ß-!ÔTïB��Æ0ÄC��ñ1ú÷

ó�½ÁXÒ1Ç�Ä!ÜÈÂ�Ì¨Æ?Ä0Å½Æ¡Ü�Â�Ê!Æ
Æ¨À�Ü�Æn÷

ó�½ÁXÒ1Ç�Ä!ÜÈÂ�Ì¨ÆPÃ½Ò�Í2Í¨Æ�Ì�Æ�Ç¨Ä
Æ¨À�Ü�Æo÷

ó�½Á�Ò�Ç�Ä!ÜÈÂ�Ì¨ÆPÃ½ÒÓÍ�Í¨Æ�Ì�ÆÓÇ�Ä
You can see how awkward this is.

Instead of working around this problem with a decision structure, another

approach would be to construct a more complex expression using Boolean op-

erations. Like most programming languages, Python provides three Boolean

operators:
ÂÓÇ�Ã

,
Á�Ì

and
ÇXÁ0Ä

. Let’s take a look at these three operators and then

see how they can be used to simplify our problem.

The Boolean operators
ÂÓÇ�Ã

and
Á0Ì

are used to combine two Boolean expres-

sions and produce a Boolean result.

â0� ¯ �0sX����wx�zy $ ���§� $ yèt«±��Ó��± {�ux��� r ¯ ¿

. ÆC��¨Ì � ÂxÇXÃ . ÆC��¨Ì �. ÆC��¨Ì � Á�Ì . Æ����Ì �
The

ÂÓÇ�Ã
of two expressions is true exactly when both of the expressions are true.

We can represent this definition in a truth table.S T S ÂÓÇXÃ T
T T T

T F F

F T F

F F F

In this table,
S

and
T

represent smaller Boolean expressions. Since each ex-

pression has two possible values, there are four possible combinations of values,

each shown as one row in the table. The last column gives the value of
S ÂÓÇ�ÃT

for each possible combination. By definition, the
ÂÓÇ�Ã

is true only in the case

where both
S

and
T

are true.

The
Á0Ì

of two expressions is true when either expression is true. Here is the

truth table defining
Á�Ì

: S T S Á�Ì T
T T T

T F T

F T T

F F F

The only time the
Á�Ì

is false is when both expressions are false. Notice espe-

cially that
Á0Ì

is true when both expressions are true. This is the mathematical

definition of
Á�Ì

, but the word “or” is sometimes used in an exclusive sense in

everyday English. If your mom said that you could have cake or cookies for

dessert, she would probably scold you for taking both.

The
Ç½Á0Ä

operator computes the opposite of a Boolean expression. It is a

unary operator, meaning that it operates on a single expression. The truth table

is very simple. S Ç½Á�Ä S
T F

F T

Using Boolean operators, it is possible to build arbitrarily complex Boolean

expressions. As with arithmetic operators, the exact meaning of a complex ex-

r ¯ â s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
pression depends on the precedence rules for the operators. Consider this ex-

pression:

ÂPÁ0ÌPÇXÁ0Ä?ËÿÂÓÇ�Ã¡Ñ
How should this be evaluated?

Python follows a standard convention that the order of precedence from

high to low is
Ç½Á0Ä

, followed by
ÂÓÇ�Ã

, followed by
Á�Ì

. So the expression would be

equivalent to this parenthesized version:

ñ�ÂPÁ�Ì	ñ�ñùÇ½Á0Ä?Ë(úÈÂÓÇ�Ã¡Ñ�ú�ú
Unlike arithmetic, however, most people don’t tend to know or remember the

precedence rules for Booleans. I suggest that you always parenthesize your

complex expressions to prevent confusion.

Now that we have some Boolean operators, we are ready to return to our

example problem. To test for the co-location of two points, we could use an
ÂxÇXÃ

operation.

Ò�Í��ÖïF�¨Æ0ÄCÐ�ñ�ú ß�ß-½ÔoïB��Æ0ÄCÐ�ñ1ú ÂÓÇ�Ã�!ÔoïF�¨Æ�ÄC�Tñ�ú ß2ß�VÖïF�¨Æ�ÄC�Tñ�ú¬÷
ó�½Á�Ò�Ç�Ä!ÜÈÂ�Ì¨Æ?Ä0ÅXÆ¡Ü�Â�Ê!Æ

Æ¨À�Ü�Æo÷
ó�½Á�Ò�Ç�Ä!ÜÈÂ�Ì¨ÆPÃ½ÒÓÍ�Í¨Æ�Ì�ÆÓÇ�Ä

Here the entire expression will only be true when both of the simple conditions

are true. This ensures that both the x and y coordinates have to match for the

points to be the same. Obviously, this is much simpler and clearer than the

nested
Ò�Í

s from the previous version.

Let’s look at a slightly more complex example. In the next chapter, we will

develop a simulation for the game of racquetball. Part of the simulation will

need to determine when a game has ended. Suppose that
Ü0Ñ�Á�Ì�Æ Ú

and
Ü0Ñ�Á�Ì�ÆK�

represent the scores of two racquetball players. The game is over as soon as

either of the players has reached 15 points. Here is a Boolean expression that is

true when the game is over:

Ü2Ñ�Á0Ì¨Æ Ú ß2ß Ö�'PÁ0Ì Ü0Ñ�Á0Ì¨ÆK�9ß2ß Ö�'
When either score reaches 15, one of the two simple conditions becomes true,

and, by definition of
Á0Ì

, the entire Boolean expression is true. As long as both

conditions remain false (neither player has reached 15) the entire expression is

false.

â0� ¯ �0sX����wx�zy $ ���§� $ yèt«±��Ó��± {�ux��� r ¯ é

Our simulation will need a loop that continues as long as the game is not

over. We can construct an appropriate loop condition by taking the negation of

the game-over condition.

Û2ÅÎÒ0À0Æ Ç½Á�Ä	ñ�Ü2Ñ�Á0Ì¨Æ Ú ß2ß Ö�'PÁ0Ì Ü0Ñ�Á0Ì¨ÆK�9ß2ß Ö�'Xú¬÷
ó¡Ñ�ÁÓÇ�Ä!Ò1Ç�ÉXÆ8!À2Â�Ï!Ò1Ç��

We can also construct more complex Boolean expressions that reflect differ-

ent possible stopping conditions. Some racquetball players play shutouts (some-

times called a skunk). For these players, a game also ends when one of the play-

ers reaches 7 and the other has not yet scored a point. For brevity, I’ll use
Â

forÜ2Ñ�Á0Ì¨Æ Ú
and

Ë
for

Ü2Ñ�Á�Ì�Æ!�
. Here is an expression for game-over when shutouts

are included:

Â?ß�ß»Ö�'PÁ0Ì?Ëàß�ß»Ö�'PÁ0Ì	ñ�Â?ß2ßÝþÐÂÓÇXÃ7Ëàß2ßÝÕ!úÈÁ0Ì	ñùËàß�ßÝþÐÂÓÇ�ÃÝÂPß�ßÝÕ½ú

Do you see how I have added two more situations to the original condition? The

new parts reflect the two possible ways a shutout can occur, and each requires

checking both scores. The result is a fairly complex expression.

While we’re at it, let’s try one more example. Suppose we were writing

a simulation for volleyball, rather than racquetball. Volleyball does not have

shutouts, but it requires a team to win by at least two points. If the score is 15

to 14, or even 21 to 20, the game continues.

Let’s write a condition that computes when a volleyball game is over. Here’s

one approach:

ñ�Â � ß Ö�'ÝÂÓÇ�ÃÝÂ � Ë � ßÐÔ½ú Á�Ì	ñðË � ß Ö�'9ÂÓÇ�Ã7Ë=�ÐÂ � ßÐÔ½ú
Do you see how this expression works? It basically says the game is over when

team A has won (scored at least 15 and leading by at least 2) or when team B

has won.

Here is another way to do it:

ñ�Â � ß Ö�'9Á0Ì?Ë � ß Ö�'XúÈÂÓÇXÃÐÂxË(Ü(ñ�Â�� Ë�ú � ßÐÔ
This version is a bit more succinct. It states that the game is over when one of

the teams has reached a winning total and the difference in the scores is at least

2. Remember that
ÂxË(Ü

returns the absolute value of an expression.

r1´�% s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux�����È � È�Ç ² v�v$Ù�im�*w8Ú ÙX��ij¾3�B�
All decisions in computer programs boil down to appropriate Boolean expres-

sions. The ability to formulate, manipulate, and reason with these expressions

is an important skill for programmers and computer scientists. Boolean expres-

sions obey certain algebraic laws similar to those that apply to numeric opera-

tions. These laws are called Boolean logic or Boolean algebra.

Let’s look at a few examples. The following table shows some rules of algebra

with their correlates in Boolean algebra:

Algebra Boolean algebraú � M º M ú ÂÓÇ�Ã false == falseú � U º ú ú ÂÓÇ�Ã true == aú Â M º ú ú Á0Ì false == a

From these examples, you can see that
ÂÓÇ�Ã

has similarities to multiplication, andÁ0Ì
has similarities to addition; while 0 and 1 correspond to false and true.

Here are some other interesting properties of Boolean operations. AnythingÁ0Ì
ed with true is just true.

ÂPÁ0ÌÝÄ2Ì0É½Æ7ß�ßPÄ�Ì�É½Æ
Both

ÂxÇXÃ
and

Á0Ì
distribute over each other.

ÂPÁ0Ì ñùËÿÂÓÇXÃ¡Ñ¨ú;ß�ß ñzÂPÁ0Ì?Ë�ú7ÂxÇXÃ ñ�ÂPÁ�ÌÿÑ�ú
Â9ÂÓÇ�Ã ñðËÿÁ0ÌÿÑ¨ú;ß�ß ñzÂ9ÂÓÇXÃ7Ë(ú Á0Ì ñ�Â9ÂxÇXÃ¡Ñ¨ú
A double negative cancels out.

Ç½Á�ÄTñùÇ½Á0ÄÝÂ½ú;ß�ßÐÂ
The next two identities are known as DeMorgan’s laws.

Ç½Á�ÄTñzÂ?Á0ÌPË�ú;ß2ß ñðÇXÁ0ÄàÂ½úÈÂxÇXÃ ñùÇ½Á0ÄÈË�ú
Ç½Á�ÄTñzÂPÂÓÇ�Ã7Ë�ú;ß�ß	ñùÇ½Á0ÄÝÂ½ú Á0Ì ñùÇ½Á0ÄÈË�ú
Notice how the operator changes between

ÂÓÇXÃ
and

Á0Ì
when the

Ç½Á�Ä
is pushed

into an expression.

One application of Boolean algebra is the analysis and simplification of Boolean

expressions inside of programs. For example, let’s go back to the racquetball

game one more time. Above, we developed a loop condition for continuing the

game that looked like this:

â2� ´2�CÑyèt�{�}ÎsX�����o�0��bxyè}Z� ³ yè��}�{ô� r1´0~

Û2ÅÎÒ0À0Æ Ç½Á�Ä	ñ�Ü2Ñ�Á0Ì¨Æ Ú ß2ß Ö�'PÁ0Ì Ü0Ñ�Á0Ì¨ÆK�9ß2ß Ö�'Xú¬÷
ó¡Ñ�Á�Ç�Ä½Ò�Ç2É½Æ8½À�Â�Ï½Ò�Ç+�

You can read this condition as something like: While it is not the case that player

A has 15 or player B has 15, continue playing. We’re pretty sure that’s correct,

but negating complex conditions like this can be somewhat awkward, to say the

least. Using a little Boolean algebra, we can transform this result.

Applying DeMorgan’s law, we know that the expression is equivalent to this:

ñðÇXÁ0Ä Ü0Ñ�Á0Ì¨Æ Ú ß2ß Ö�'Xú ÂÓÇ�Ã ñùÇ½Á�Ä Ü2Ñ�Á�Ì�Æ!�9ß�ß Ö�'½ú
Remember, we have to change the

Á0Ì
to
ÂÓÇXÃ

when “distributing” the
Ç½Á�Ä

. This

condition is no better than the first, but we can go one step farther by pushing

the
Ç½Á�Ä

s into the conditions themselves.

Û2ÅÎÒ0À0ÆàÜ2Ñ�Á0Ì�Æ Ú �pß»Ö�'9ÂÓÇXÃÿÜ0Ñ�Á�Ì�ÆK� �pß Ö�'T÷
ó¡Ñ�ÁÓÇ�Ä!Ò1Ç�ÉXÆ8!À2Â�Ï!Ò1Ç��

Now we have a version that is much easier to understand. This reads simply

as while player A has not reached 15 and player B has not reached 15, continue

playing.

This particular example illustrates a generally useful approach to loop con-

ditions. Sometimes it’s easier to figure out when a loop should stop, rather than

when the loop should continue. In that case, simply write the loop termination

condition and then put a
ÇXÁ0Ä

in front of it. An application or two of DeMorgan’s

laws can then get you to a simpler but equivalent version suitable for use in aÛ2ÅÎÒ0À0Æ
statement.

[«^|º N;U!bcRcg ¢�£� � �Geë©²UÎg�¦�SVU!¦§g1RT[

Taken together, the decision structure (
Ò�Í

) along with a pre-test loop (
Û2Å"Ò�À2Æ

)

provide a complete set of control structures. This means that every algorithm

can be expressed using just these. Once you’ve mastered the
Û0Å"Ò�À2Æ

and the
ÒÓÍ

,

you can write every conceivable algorithm, in principle. However, for certain

kinds of problems, alternative structures can sometimes be convenient. This

section outlines some of those alternatives.��È�×�ÈSÊ �dv*sut/·/ÿ i�sGtù¸�v�vxÍ
Suppose you are writing an input algorithm that is supposed to get a nonnega-

tive number from the user. If the user types an incorrect input, the program asks

r1´�r s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
for another value. It continues to reprompt until the user enters a valid value.

This process is called input validation. Well-engineered programs validate inputs

whenever possible.

Here is a simple algorithm:

Ì�Æ�½Æ�Â�Ä�¨Æ�ÄàÂ Ç�É0Ê¨Ë½Æ�Ì9Í2Ì¨ÁxÊ¡Ä0ÅXÆÈÉ(ÜÓÆ0Ì
É�Ç¨Ä!Ò�À;Ç�É�Ê�Ë½Æ�Ì¡Ò¨Ü � ßÝÕ
The idea here is that the loop keeps getting inputs until the value is acceptable.

The flowchart depicting this design in shown in Figure
�
.
�
. Notice how this

algorithm contains a loop where the condition test comes after the loop body.

This is a post-test loop. A post-test loop must always execute the body of the loop

at least once.

yes

no

number < 0?

Get a number

Figure U . V : Flowchart of a post-test loop.

Unlike some other languages, Python does not have a statement that directly

implements a post-test loop. However, this algorithm can be implemented with

a áPÜ§ÚKÓKÔ by “seeding” the loop condition for the first iteration.ìCö3W8XéÔKÙ�çZY<ø ÝZ[Ö�â!ÙCÖ�á§Ú�Ö!Üeâ�ì Ú!ÓCÓPÔKÛ�âPÓ]\éâPÓ�öºÔ�Ö à Û�Ô!ÖeÚmì�Ö à ÖKÜéÔ¡Ó àPà�^ æáPÜ§ÚKÓKÔ®ìCö3W8XºÔ!Ù`_�ïbaìCö3W8XºÔ!Ù�çãÚmì ^ ö�Ö}ê�c�×Kì�Ö�ÔKÙ�â ^ºà åPÚ�ÖºÚ�\�Ô®ìCö3W8XºÔ!ÙDadc�ò
This forces the loop body to execute at least once and is equivalent to the post-

test algorithm. You might notice that this is similar to the structure given earlier

â2� ´2�CÑyèt�{�}ÎsX�����o�0��bxyè}Z� ³ yè��}�{ô� r1´��

for the interactive loop pattern. Interactive loops are naturally suited to a post-

test implementation.

Some programmers prefer to simulate a post-test loop more directly by us-

ing a Python
Ë¨Ì�Æ�Â�Î

statement. Executing
Ë�Ì¨Æ¨Â�Î

causes Python to immediately

exit the enclosing loop. Often a
Ë¨Ì�Æ�Â�Î

statement is used to leave what looks

syntactically like an infinite loop.

Here is the same algorithm implemented with a
Ë�Ì�Æ�Â�Î

:

Û2ÅÎÒ0À0Æ���Ì�É½Æn÷
Ç�É�Ê�Ë½Æ�Ì9ß¡Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0Ì9Â8½ÁXÜ2ÒÓÄ½Ò�9¨Æ Ç�É�Ê�Ë½Æ�Ìc÷��ÓúÒ�Í�� � ßÝÕo÷ Ë�Ì¨Æ¨Â�Î9ó / �½ÒxÄÐÀ2Á2Á� Ò�Í7Ç2É0Ê¨Ë½Æ0ÌàÒ¨Üè9XÂ2À�ÒÓÃ�ï

The first line may look a bit strange to you. Remember that a while loop contin-

ues as long as the expression in the loop heading evaluates to true. Since
��Ì�É½Æ

is always true, this appears to be an infinite loop. However, when the value

of
�

is nonnegative, the
Ë¨Ì�Æ¨Â�Î

statement executes, which terminates the loop.

Notice that I placed the
Ë¨Ì�Æ¨Â�Î

on the same line as the
Ò�Í

. This is legal when

the body of the
ÒÓÍ

only contains one statement. It’s common to see a one-lineÒ�Í?�ÓË¨Ì�Æ¨Â�Î
combination used as a loop exit.

Even this small example can be improved. It would be nice if the program

issued a warning explaining why the input was invalid. In the
Û2Å"Ò�À2Æ

version

of the post-test loop, this is a bit awkward. We need to add an
ÒÓÍ

so that the

warning is not displayed for valid inputs.

Ç�É�Ê�ËXÆ0Ì9ß(�!Ö ó(Å�Ä�Â�Ì�Ä7ÛÎÒÓÄ�ÅÿÂÓÇ Ò�À�À2ÆC��Â2À<9XÂ2ÀÓÉ½ÆÈÄ�Á6�¨Æ�ÄÿÒ�Ç¨Ä�Á?Ä0ÅXÆÝÀ2Á2Á��ï
Û2ÅÎÒ0À0Æ Ç�É�Ê�Ë½Æ�Ì . Õn÷Ç�É�Ê�Ë½Æ�Ì9ß¡Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0Ì9Â8½ÁXÜ2ÒÓÄ½Ò�9¨Æ Ç�É�Ê�Ë½Æ�Ìc÷��ÓúÒ�Í7Ç2É0Ê�ËXÆ0Ì . Õo÷�Ì!Ò1Ç�Ä)�!�0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌPÏ�ÁÓÉ¡Æ�Ç�Ä¨Æ0Ì¨Æ2Ã7ÛXÂXÜ Ç½Á�Ä�½ÁXÜ2ÒxÄ!Ò�9¨Æ��
Do you see how the validity check gets repeated in two places?

Adding a warning to the version using
Ë¨Ì�Æ¨Â�Î

only requires adding an
Æ¨À�Ü�Æ

to the existing
Ò�Í

.

Û2ÅÎÒ0À0Æ���Ì�É½Æn÷
Ç�É�Ê�Ë½Æ�Ì9ß¡Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0Ì9Â8½ÁXÜ2ÒÓÄ½Ò�9¨Æ Ç�É�Ê�Ë½Æ�Ìc÷��ÓúÒ�Í�� � ßÝÕo÷Ë�Ì�Æ�Â�ÎÝó / �½ÒÓÄÝÀ2Á�Á� Ò�Í7Ç2É0Ê�ËXÆ0Ì¡Ò�Üè9XÂ2À�Ò�ÃnïÆ¨À�Ü�Æn÷�Ì!Ò1Ç�Ä)�!�0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌPÏ�ÁÓÉ¡Æ�Ç�Ä¨Æ0Ì¨Æ2Ã7ÛXÂXÜ Ç½Á�Ä�½ÁXÜ2ÒxÄ!Ò�9¨Æ��

r1´ ¯ s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux�����È�×�È�Ç ¸�v�vxÍ§�*w§��� þ �3Ù�'
Some programmers would solve the warning problem from the previous section

using a slightly different style.

Û2ÅÎÒ0À0Æ���Ì�É½Æn÷
Ç�É�Ê�Ë½Æ�Ì9ß¡Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0Ì9Â8½ÁXÜ2ÒÓÄ½Ò�9¨Æ Ç�É�Ê�Ë½Æ�Ìc÷��ÓúÒ�Í�� � ßÝÕo÷ Ë�Ì¨Æ¨Â�Î ó6�¨Á�Á�¡Æ��½ÒxÄ�Ì½Ò�Ç�Ä��:�0ÅXÆÈÇ�É�Ê�Ë½Æ�ÌPÏ�ÁÓÉ¡Æ�Ç¨Ä�Æ0Ì¨Æ2Ã7ÛXÂXÜ ÇXÁ0Ä-½ÁXÜ2ÒxÄ!Ò�9¨Æ��

Here the loop exit is actually in the middle of the loop body. This is called a loop

and a half. Some purists frown on exits in the midst of a loop like this, but the

pattern can be quite handy.

The loop and a half is an elegant way to avoid the priming read in a sentinel

loop. Here is the general pattern of a sentinel loop implemented as a loop and

a half:

Û2ÅÎÒ0À0Æ���Ì�É½Æn÷ü Æ�Ä?Ç½Æ��0Ä9Ã�Â�ÄXÂÐÒxÄ�ÆxÊ
Ò�ÍPÄ�Å½ÆàÒÓÄ¨ÆxÊ Ò�Ü;Ä0Å½Æ¡ÜÓÆ�Ç¨Ä!Ò�ÇXÆ¨ÀT÷ Ë�Ì¨Æ¨Â�Î�Ì¨ÁXÑ�ÆXÜ�Ü Ä�Å½ÆàÒxÄ�ÆxÊ

Figure
�
.
�

shows a flowchart of this approach to sentinel loops. You can see that

this implementation is faithful to the first rule of sentinel loops: avoid processing

the sentinel value.

The choice of whether to use
Ë¨Ì�Æ¨Â�Î

statements or not is largely a matter

of taste. Either style is acceptable. One temptation that should generally be

avoided is peppering the body of a loop with multiple
Ë¨Ì�Æ¨Â�Î

statements. The

logic of a loop is easily lost when there are multiple exits. However, there are

times when even this rule should be broken to provide the most elegant solution

to a problem.��È�×�È�É ² v�v$Ù�im�*w �$�_Í3�BimsGs�lnvxw3s ��s±� im�?lns�lnvxw�s
So far, we have talked about Boolean expressions only within the context of

other control structures. Sometimes, Boolean expressions themselves can act as

control structures. In fact, Boolean expressions are so flexible in Python that

they can sometimes lead to subtle programming errors.

Consider writing an interactive loop that keeps going as long as the user

response starts with a “y.” To allow the user to type either an upper or lower

case response, you could use a loop like this:

â2� ´2�CÑyèt�{�}ÎsX�����o�0��bxyè}Z� ³ yè��}�{ô� r1´�´

no

yes

Process the item

Item is the sentinel?

Get next Data item

Figure
�
.
�
: Loop-and-a-half implementation of sentinel loop pattern.

Û2ÅÎÒ0À0Æ7Ì�ÆXÜG½ÁÓÇ(ÜÓÆ û ÕC
?ß2ß)��Ï��ªÁ�Ì9Ì�ÆXÜG½ÁÓÇ(ÜÓÆ û ÕC
?ß2ß)�/���"÷
You must be careful not to abbreviate this condition as you might think of it in

English: “While the first letter is ’y’ or ’Y”’. The following form does not work.

Û2ÅÎÒ0À0Æ7Ì�ÆXÜG½ÁÓÇ(ÜÓÆ û ÕC
?ß2ß)��Ï��ªÁ�Ì��/�$�(÷
In fact, this is an infinite loop. Understanding why this condition is always true

requires digging into some idiosyncrasies of Python Boolean expressions.

You already know that Python has a bool type. Actually, this is a fairly recent

addition to the language (version 2.3). Before that, Python just used the ints

1 and 0 to represent true and false. In fact, the bool type is just a “special” int

where the values of 0 and 1 print as
,XÂ2ÀXÜÓÆ

and
��Ì�É½Æ

. You can test this out by

evaluating the Expression
��Ì�É½Æ?á��2Ì0É½Æ

.

We have been using the bool literals
��Ì�É½Æ

and
,XÂ�À�Ü�Æ

to represent the Boolean

values true and false, respectively. The Python condition operators (i.e.,
ß�ß

)

always evaluate to a value of type bool. However, Python is actually very flexible

about what data type can appear as a Boolean expression. Any built-in type can

be interpreted as a Boolean. For numbers (ints, floats, and long ints) a zero

value is considered as false, anything other than zero is taken as true. You

can see how a value will be interpreted when used as a Boolean expression by

explicitly converting the value to type bool. Here are a few examples:

r1´�¹ s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
�	��� Ë½Á2Á¨À¬ñôÕ!ú,XÂ2ÀXÜÓÆ�	��� Ë½Á2Á¨À¬ñ1Ö2ú��Ì�É½Æ�	��� Ë½Á2Á¨À¬ñôÞ¨ÔXú��Ì�É½Æ�	��� Ë½Á2Á¨À¬ñ��zÅXÆ¨À�À0Á��Óú��Ì�É½Æ�	��� Ë½Á2Á¨À¬ñ��	�Óú,XÂ2ÀXÜÓÆ�	��� Ë½Á2Á¨À¬ñ û Ö(õôÔ�õèÞ�
!ú��Ì�É½Æ�	��� Ë½Á2Á¨À¬ñ û
!ú,XÂ2ÀXÜÓÆ
As you can see, for sequence types, an empty sequence is interpreted as false

whereas any non-empty sequence is taken to indicate true.

The flexibility of Python Booleans extends to the Boolean operators. Al-

though the main use of these operators is forming Boolean expressions, they

have operational definitions that make them useful for other purposes as well.

This table summarizes the behavior of these operators:

operator operational definition] ÂxÇXÃ ` If] is false, return] . Otherwise, return ` .] Á�Ì ` If] is true, return] . Otherwise, return ` .Ç½Á�Ä] If] is false, return
��Ì�É½Æ

. Otherwise, return
,XÂ�À�Ü�Æ

.

The definition of
Ç½Á�Ä

is straightforward. It might take a bit of thinking to con-

vince yourself that these descriptions of
ÂÓÇXÃ

and
Á�Ì

faithfully reflect the truth

tables you saw at the beginning of the chapter.

Consider the expression] ÂÓÇ�Ã ` . In order for this to be true, both expressions] and ` must be true. As soon as one of them is discovered to be false, the party

is over. Python looks at the expressions left-to-right. If] is false, Python should

return a false result. Whatever the false value of] was, that is what is returned.

If] turns out to be true, then the truth or falsity of the whole expression turns

on the result of ` . Simply returning ` guarantees that if ` is true, the whole

result is true, and if ` is false, the whole result is false. Similar reasoning can be

used to show that the description of
Á�Ì

is faithful to the logical definition of
Á0Ì

given in the truth table.

â2� ´2�CÑyèt�{�}ÎsX�����o�0��bxyè}Z� ³ yè��}�{ô� r1´�¿

These operational definitions show that Python’s Boolean operators are short-

circuit operators. That means that a true or false value is returned as soon as the

result is known. In an
ÂÓÇXÃ

where the first expression is false and in an
Á0Ì

where

the first expression is true, Python will not even evaluate the second expression.

Now let’s take a look at our infinite loop problem:

Ì�ÆXÜGXÁ�Ç(ÜÓÆ û Õ�
?ß2ß)��Ï$�ªÁ0Ì��/�$�
Treated as a Boolean expression, this will always evaluate to true. The first thing

to notice is that the Boolean operator is combining two expressions; the first is a

simple condition, and the second is a string. Here is an equivalent parenthesized

version:

ñ`Ì¨Æ½Üu½Á�Ç"Ü�Æ û Õ�
Èß�ß���Ï���ú Á0Ì	ñ������Óú¬÷
By the operational description of

Á�Ì
, this expression returns either

�2Ì0É½Æ
(re-

turned by
ß�ß

when
Ì�ÆXÜGXÁ�Ç(ÜÓÆ û Õ�

is “y”) or
�����

(when
Ì¨Æ½ÜGXÁ�Ç"Ü�Æ û Õ�

is not a

“y”). Either of these results is interpreted by Python as true.

A more logic-oriented way to think about this is to simply look at the second

expression. It is a nonempty string, so Python will always interpret it as true.

Since at least one of the two expressions is always true, the
Á�Ì

of the expressions

must always be true as well.

So, the strange behavior of this example is due to some quirks in the defini-

tions of the Boolean operators. This is one of the few places where the design of

Python has a potential pitfall for the beginning programmer. You may wonder

about the wisdom of this design, yet the flexibility of Python allows for certain

succinct programming idioms that many programmers find useful. Let’s look at

an example.

Frequently, programs prompt users for information but offer a default value

for the response. The default value, sometimes listed in square brackets, is used

if the user simply hits the Ó Enter � key. Here is an example code fragment:

ÂÓÇ"Ü ßPÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ��!"0Å!Â�Ä7Í�À2Â�9¨Á0Ì9Ã�Á?Ï�Á�ÉÝÛXÂÓÇ¨Ä û 9XÂxÇ"Ò�À�À�Â�
�÷ü��ú
Ò�ÍÐÂxÇ(Ü½��ß)�	�(÷

Í�À2Â�9�Á�Ì9ßÐÂÓÇ"Ü
Æ¨À�Ü�Æo÷

Í�À2Â�9�Á�Ì9ß)�:9�ÂÓÇÎÒ0À�À2Â*�
Exploiting the fact that the string in

ÂÓÇ"Ü
can be treated as a Boolean, the

condition in this code can be simplified as follows:

r1´�â s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
ÂÓÇ"Ü ßPÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ��!"0Å!Â�Ä7Í�À2Â�9¨Á0Ì9Ã�Á?Ï�Á�ÉÝÛXÂÓÇ¨Ä û 9XÂxÇ"Ò�À�À�Â�
�÷ü��ú
Ò�ÍÐÂxÇ(Ü¬÷

Í�À2Â�9�Á�Ì9ßÐÂÓÇ"Ü
Æ¨À�Ü�Æo÷

Í�À2Â�9�Á�Ì9ß)�:9�ÂÓÇÎÒ0À�À2Â*�
Here a Boolean condition is being used to decide how to set a string variable. If

the user just hits Óå/ Ç¨Ä�Æ�Ì � ,
ÂÓÇ"Ü

will be an empty string, which Python interprets

as false. In this case, the empty string will be replaced by
�:9�ÂÓÇ"Ò�À�À2Â*�

in the
Æ¨À�Ü�Æ

clause.

The same idea can be more succinctly coded by treating the strings them-

selves as Booleans and using an
Á�Ì

.

ÂÓÇ"Ü ßPÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ��!"0Å!Â�Ä7Í�À2Â�9¨Á0Ì9Ã�Á?Ï�Á�ÉÝÛXÂÓÇ¨Ä û 9XÂxÇ"Ò�À�À�Â�
�÷ü��ú
Í�À2Â�9¨Á0Ì9ßàÂÓÇ"Ü Á0Ìò�!9XÂÓÇÎÒ0À2À�Â*�
The operational definition of

Á�Ì
guarantees that this is equivalent to the

ÒÓÍ+�0Æ¨ÀXÜÓÆ
version. Remember, any nonempty answer is interpreted as “true.”

In fact, this task can easily be accomplished in a single line of code.

Í�À2Â�9¨Á0Ì9ß9ÌXÂÓÛmÌ¨Ò�Ç	2É�Ä�ñ��!"0Å!Â�Ä7Í¨À�Â�9�Á0ÌPÃ¨Á?Ï�ÁÓÉÝÛ½ÂxÇ�Ä û 9�ÂÓÇÎÒ0À�À2ÂC
n÷æ��ú Á�Ì��:9�ÂÓÇ"Ò�À�À2Â*�
I don’t know whether it’s really worthwhile to save a few lines of code using

Boolean operators this way. If you like this style, by all means, feel free to use

it. Just make sure that your code doesn’t get so tricky that others (or you) have

trouble understanding it.

[«^�ê �b�i�¤nU�Rcg © ¦§�¥� ing1í

This chapter has filled in details of Python loops and Boolean expressions. Here

are the highlights:

\ A Python
Í¨Á�Ì

loop is a definite loop that iterates through a sequence.

\ A Python
Û0Å"Ò�À2Æ

statement is an example of an indefinite loop. It continues

to iterate as long as the loop condition remains true. When using an indef-

inite loop, programmers must guard against the possibility of accidentally

writing an infinite loop.

\ One important use for an indefinite loop is for implementing the program-

ming pattern interactive loop. An interactive loop allows portions of a

program to be repeated according to the wishes of the user.

â2� ¿2�+����{1} ³�$ ��{ô� r1´�é

\ A sentinel loop is a loop that handles input until a special value (the sen-

tinel) is encountered. Sentinel loops are a common programming pattern.

In writing a sentinel loop, a programmer must be careful that the sentinel

is not processed.

\ Loops are useful for reading files. Python treats a file as a sequence of lines,

so it is particularly easy to process a file line-by-line using a
Í¨Á�Ì

loop. In

other languages, a file loop is generally implemented using a sentinel loop

pattern.

\ Loops, like other control structures, can be nested. When designing nested

loop algorithms, it is best to consider the loops one at a time.

\ Complex Boolean expressions can be built from simple conditions using

the Boolean operators
ÂÓÇXÃ

,
Á0Ì

, and
Ç½Á�Ä

. Boolean operators obey the rules

of Boolean algebra. DeMorgan’s laws describe how to negate Boolean

expressions involving
ÂxÇXÃ

and
Á�Ì

.

\ Nonstandard loop structures such as a loop-and-a-half can be built using aÛ2Å"Ò�À2Æ
loop having a loop condition of

��Ì�É½Æ
and using a

Ë¨Ì�Æ�Â�Î
statement

to provide a loop exit.

\ Python Boolean operators
ÂÓÇ�Ã

and
Á�Ì

employ short-circuit evaluation.

They also have operational definitions that allow them to be used in cer-

tain decision contexts. Even though Python has a built-in
ËXÁ�Á�À

data type,

other data types (e.g., int) may also be used where Boolean expressions

are expected.

[«^IH egfTRcg1SæW�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. A Python
Û0Å"Ò0À0Æ

implements a definite loop.

2. The counted loop pattern uses a definite loop.

3. A sentinel loop asks the user whether to continue on each iteration.

4. A sentinel loop should not actually process the sentinel value.

r1¹�% s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
5. The easiest way to iterate through the lines of a file in Python is to use aÛ2Å"Ò�À2Æ

loop.

6. A
Û0Å"Ò0À0Æ

is a post-test loop.

7. The Boolean operator
Á0Ì

returns
��Ì�É½Æ

when both of its operands are true.

8.
ÂÝÂÓÇXÃ ñùË¡Á0ÌÿÑ¨ú;ß�ß ñ�ÂÝÂxÇXÃÈË(ú7Á�Ì	ñ�Â9ÂxÇXÃ¡Ñ�ú

9.
Ç½Á�ÄTñ�ÂPÁ�Ì?Ë�ú;ß2ß ñðÇ½Á�ÄàÂ½ú Á�Ì?Ç½Á0Ä�ñðË(ú

10.
��Ì�É½Æ9Á�Ì�,XÂ�À�Ü�Æ

� |��Q�!�����X}1�j�?������}
1. A loop pattern that asks the user whether to continue on each iteration is

called a(n)

a) interactive loop b) end-of-file loop

c) sentinel loop d) infinite loop

2. A loop pattern that continues until a special value is input is called a(n)

a) interactive loop b) end-of-file loop

c) sentinel loop d) infinite loop

3. A loop structure that tests the loop condition after executing the loop body

is called a

a) pre-test loop b) loop-and-a-half

c) sentinel loop d) post-test loop

4. A priming read is part of the pattern for a(n)

a) interactive loop b) end-of-file loop

c) sentinel loop d) infinite loop

5. What statement can be executed in the body of a loop to cause it to termi-

nate?

a)
Ò�Í

b)
Ò1Ç	2É�Ä

c)
Ë�Ì¨Æ¨Â�Î

d)
Æ��½ÒxÄ

6. Which of the following is not a valid rule of Boolean algebra?

a)
ñÒ�2Ì0É½Æ?Á0Ì �Îú;ß2ß6��Ì�É½Æ

b)
ñ�,XÂ2ÀXÜ�ÆÝÂxÇXÃ6�!ú ß�ß6,XÂ2ÀXÜÓÆ

c)
Ç½Á�ÄTñzÂPÂÓÇ�Ã7Ë�ú;ß�ß?ÇXÁ0ÄTñzÂ½ú ÂxÇXÃ7ÇXÁ0ÄTñùË�ú

d)
ñÒ�2Ì0É½Æ?Á0Ì�,XÂ2ÀXÜÓÆ!ú ß2ß �2Ì0ÉXÆ

â2� ¿2�+����{1} ³�$ ��{ô� r1¹0~

7. A loop that never terminates is called a(n)

a) busy b) indefinite c) tight d) infinite

8. Which line would not be found in a truth table for
ÂxÇXÃ

?

a) T T T b) T F T c) F T F d) F F F

9. Which line would not be found in a truth table for
Á�Ì

?

a) T T T b) T F T c) F T F d) F F F

10. The term for an operator that may not evaluate one of its subexpressions

is

a) short-circuit b) faulty c) exclusive d) indefinite

� ���!��|?�&�:���m�
1. Compare and contrast the following pairs of terms:

(a) Definite loop vs. Indefinite loop

(b) For loop vs. While loop

(c) Interactive loop vs. Sentinel loop

(d) Sentinel loop vs. End-of-file loop

2. Give a truth table that shows the (Boolean) value of each of the follow-

ing Boolean expressions, for every possible combination of “input” values.

Hint: including columns for intermediate expressions is helpful.

(a)
Ç½Á�Ä	ñ S ÂxÇXÃ T ú

(b)
ñðÇXÁ0Ä S úÈÂÓÇ�Ã T

(c)
ñðÇXÁ0Ä S ú Á0Ì ñùÇ½Á0Ä T ú

(d)
ñ S ÂÓÇXÃ T ú Á0Ìfe

(e)
ñ S Á0Ìfe úÈÂÓÇ�Ã ñ T Á�Ìfe ú

3. Write a
Û2ÅÎÒ0À0Æ

loop fragment that calculates the following values:

(a) Sum of the first n ù�^g��ø c ÷7øji numbers: U Â � Â O Â D�D�D Â ø
(b) Sum of the first n odd numbers: U Â O Â N Â D�D�D Â ��øçV8U
(c) Sum of a series of numbers entered by the user until the value 999 is

entered. Note: 999 should not be part of the sum.

(d) The number of times a whole number ø can be divided by 2 (using

integer division) before reaching 1 (i.e., û ^mi µ ø).

r1¹�r s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
���Bv_���0�*����l�wm�5���0v£¾_Ù�i_�îs

1. The Fibonacci sequence starts U�GuU�Gô�CGëOCGëNCG3�CG�D�D�D . Each number in the se-

quence (after the first two) is the sum of the previous two. Write a pro-

gram that computes and outputs the nth Fibonacci number, where ø is a

value entered by the user.

2. The National Weather Service computes the windchill index using the fol-

lowing formula:O�N	DXW�Z Â M?DQE��?UuNih VæO�N	DXW�N+R \ ¹kj ¶�l T Â M?D Z0��W�Nih¦R \ ¹kj ¶�l T
Where h is the temperature in degrees Fahrenheit, and

\
is the wind speed

in miles per hour.

Write a program that prints a nicely formatted table of windchill values.

Rows should represent wind speed for 0 to 50 in 5 mph increments, and

the columns represent temperatures from -20 to +60 in 10-degree incre-

ments.

3. Write a program that uses a
Û2ÅÎÒ0À0Æ

loop to determine how long it takes

for an investment to double at a given interest rate. The input will be an

annualized interest rate, and the output is the number of years it takes an

investment to double. Note: the amount of the initial investment does not

matter; you can use $1.

4. The Syracuse (also called Collatz or Hailstone) sequence is generated by

starting with a natural number and repeatedly applying the following func-

tion until reaching 1:] ` ö�R^]_T º
m]*ýÓ� if x is evenO�] Â U if x is odd

For example, the Syracuse sequence starting with N is: NCGuUuECG3�CG�Z�Gô�CGuU . It is

an open question in mathematics whether this sequence will always go to

1 for every possible starting value.

Write a program that gets a starting value from the user and then prints

the Syracuse sequence for that starting value.

5. A positive whole number øè�Ð� is prime if no number between � and % ø
(inclusive) evenly divides ø . Write a program that accepts a value of ø as

input and determines if the value is prime. If ø is not prime, your program

should quit as soon as it finds a value that evenly divides ø .

â2� ¿2�+����{1} ³�$ ��{ô� r1¹��

6. Modify the previous program to find every prime number less than or

equal to ø .

7. The Goldbach conjecture asserts that every even number is the sum of two

prime numbers. Write a program that gets a number from the user, checks

to make sure that it is even, and then finds two prime numbers that sum

to the number.

8. The greatest common divisor (GCD) of two values can be computed using

Euclid’s algorithm. Starting with the values � and ø , we repeatedly apply

the formula:
Çcõ ÊÿßÈÊ�õ Ç��ÓÊ

until � is 0. At that point, ø is the GCD of

the original � and ø . Write a program that finds the GCD of two numbers

using this algorithm.

9. Write a program that computes the fuel efficiency of a multi-leg journey.

The program will first prompt for the starting odometer reading and then

get information about a series of legs. For each leg, the user enters the

current odometer reading and the amount of gas used (separated by a

space). The user signals the end of the trip with a blank line. The program

should print out the miles per gallon achieved on each leg and the total

MPG for the trip.

10. Modify the previous program to get its input from a file.

11. Heating and cooling degree-days are measures used by utility companies

to estimate energy requirements. If the average temperature for a day is

below 60, then the number of degrees below 60 is added to the heating

degree-days. If the temperature is above 80, the amount over 80 is added

to the cooling degree-days. Write a program that accepts a sequence of

average daily temps and computes the running total of cooling and heating

degree-days. The program should print these two totals after all the data

has been processed.

12. Modify the previous program to get its input from a file.

13. Write a program that graphically plots a regression line, that is, the line

with the best fit through a collection of points. First ask the user to specify

the data points by clicking on them in a graphics window. To find the end

of input, place a small rectangle labeled “Done” in the lower left corner of

the window; the program will stop gathering points when the user clicks

inside that rectangle.

r1¹ ¯ s(t�uxw�y|{�}½â2��¾v�Ó��w�bÓyè} � ³ yè�x}�{z�Tux����±��Ó�C± {zux���
The regression line is the line with the following equation:

` ºon` Â �æR^] V n]_T
where � ºqp]�r ` r3VYø n] n`p] µr VYø n] µn] is the mean of the x-values, n` is the mean of the y-values, and ø is the

number of points.

As the user clicks on points, the program should draw them in the graphics

window and keep track of the count of input values and the running sum

of] , ` ,] µ and] ` values. When the user clicks inside the “Done” rect-

angle, the program then computes value of ` (using the equations above)

corresponding to the] values at the left and right edges of the window to

compute the endpoints of the regression line spanning the window. After

the line is drawn, the program will pause for another mouse click before

closing the window and quitting.

3547698;:=<?>�s ¨ ¥"A Cq©0H �§¥���� HI��J�
ò8¥0L �

NPO!Q�RTSVUXWZYTRT[
\ To understand the potential applications of simulation as a way to solve

real-world problems.

\ To understand pseudorandom numbers and their application in Monte

Carlo simulations.

\ To understand and be able to apply top-down and spiral design techniques

in writing complex programs.

\ To understand unit-testing and be able to apply this technique in the im-

plementation and debugging of complex programs.

a«^`] ©«Wp� ¦_j iTUXWpen�@?îi�S©�«¦�RæU!Oci�j j
You may not realize it, but you have reached a significant milestone in the jour-

ney to becoming a computer scientist. You now have all the tools to write pro-

grams that solve interesting problems. By interesting, I mean problems that

would be difficult or impossible to solve without the ability to write and imple-

ment computer algorithms. You are probably not yet ready to write the next

great killer application, but you can do some nontrivial computing.

One particularly powerful technique for solving real-world problems is sim-

ulation. Computers can model real-world processes to provide otherwise unob-

tainable information. Computer simulation is used every day to perform myriad # ®

r1¹�¹ s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
tasks such as predicting the weather, designing aircraft, creating special effects

for movies, and entertaining video game players, to name just a few. Most

of these applications require extremely complex programs, but even relatively

modest simulations can sometimes shed light on knotty problems.

In this chapter we are going to develop a simple simulation of the game of

racquetball. Along the way, you will learn some important design and imple-

mentation strategies that will help you in tackling your own problems.t�ÈSÊ�ÈSÊ Ú Ø l���r_Ù���tGlnvxw ���Bv£¾*Ù�i_�
Susan Computewell’s friend, Denny Dibblebit, plays racquetball. Over years of

playing, he has noticed a strange quirk in the game. He often competes with

players who are just a little bit better than he is. In the process, he always seems

to get thumped, losing the vast majority of matches. This has led him to question

what is going on. On the surface, one would think that players who are slightly

better should win slightly more often, but against Denny, they seem to win the

lion’s share.

One obvious possibility is that Denny Dibblebit’s problem is in his head.

Maybe his mental game isn’t up to par with his physical skills. Or perhaps the

other players are really much better than he is, and he just refuses to see it.

One day, Denny was discussing racquetball with Susan, when she suggested

another possibility. Maybe it is the nature of the game itself that small differ-

ences in ability lead to lopsided matches on the court. Denny was intrigued by

the idea; he didn’t want to waste money on an expensive sports psychologist if

it wasn’t going to help. But how could he figure out if the problem was mental

or just part of the game?

Susan suggested she could write a computer program to simulate certain

aspects of racquetball. Using the simulation, they could let the computer model

thousands of games between players of differing skill levels. Since there would

not be any mental aspects involved, the simulation would show whether Denny

is losing more than his share of matches.

Let’s write our own racquetball simulation and see what Susan and Denny

discovered.t�ÈSÊ�È�Ç Ú w��3Ù ¤+s�lns°�*w§� Ø Í�im�?l(u{���mtGlnvxw
Racquetball is a sport played between two players using racquets to strike a ball

in a four-walled court. It has aspects similar to many other ball and racquet

é2� ~x��b $ ����± u�y $ ��� E¨u ³ �0��{ôyM
�u�± ± r1¹�¿

games such as tennis, volleyball, badminton, squash, table tennis, etc. We don’t

need to understand all the rules of racquetball to write the program, just the

basic outline of the game.

To start the game, one of the players puts the ball into play—this is called

serving. The players then alternate hitting the ball to keep it in play; this is a

rally. The rally ends when one of the players fails to hit a legal shot. The player

who misses the shot loses the rally. If the loser is the player who served, then

service passes to the other player. If the server wins the rally, a point is awarded.

Players can only score points during their own service. The first player to reach

15 points wins the game.

In our simulation, the ability-level of the players will be represented by the

probability that the player wins the rally when he or she serves. Thus, players

with a 0.6 probability win a point on 60% of their serves. The program will

prompt the user to enter the service probability for both players and then sim-

ulate multiple games of racquetball using those probabilities. The program will

then print a summary of the results.

Here is a detailed specification:

Input The program first prompts for and gets the service probabilities of the

two players (called “Player A” and “Player B”). Then the program prompts

for and gets the number of games to be simulated.

Output The program will provide a series of initial prompts such as the follow-

ing:"2Å!Â�ÄÿÒ¨Ü;Ä�Å½Æ<�Ì¨Á�Ëhï !À2Â�Ï�Æ�Ì Ú ÛÎÒ1Ç(Ü7ÂàÜ�Æ�Ì	9¨Æ�2"2Å!Â�ÄÿÒ¨Ü;Ä�Å½Æ<�Ì¨Á�Ëhï !À2Â�Ï�Æ�Ì��9ÛÎÒ1Ç(Ü7ÂàÜ�Æ�Ì	9¨Æ�2�XÁ�Û7ÊÎÂÓÇ¨Ï ��Â�Ê!Æ½Ü Ä¨Á¡Ü2ÒvÊ�É!À2Â�Ä¨Æ�2
The program will print out a nicely formatted report showing the number

of games simulated and the number of wins and winning percentage for

each player. Here is an example:

ü Â�Ê!Æ½Ü�Å¨Ò�Ê�É½À�Â�Ä�Æ2Ãn÷°'0Õ�Õ"ÎÒ�Ç"Ü Í¨Á�Ì Ú ÷�Ô2ø�Aòñ!'0ÞnïðøK�Îú"ÎÒ�Ç"Ü Í¨Á�Ì��c÷�Ô2Þ�Ô ñë@�ønïB@P�Îú
Notes: All inputs are assumed to be legal numeric values, no error or validity

checking is required.

In each simulated game, player A serves first.

r1¹�â s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
a«^�� �î[�Rc¦�·§�	?îi�ec·_�£� � ¦_�¥O²Rcg1[

Our simulation program will have to deal with uncertain events. When we say

that a player wins 50% of the serves, that does not mean that every other serve

is a winner. It’s more like a coin toss. Overall, we expect that half the time

the coin will come up heads and half the time it will come up tails, but there is

nothing to prevent a run of five tails in a row. Similarly, our racquetball player

should win or lose rallies randomly. The service probability provides a likelihood

that a given serve will be won, but there is no set pattern.

Many simulations share this property of requiring events to occur with a

certain likelihood. A driving simulation must model the unpredictability of other

drivers; a bank simulation has to deal with the random arrival of customers.

These sorts of simulations are sometimes called Monte Carlo algorithms because

the results depend on “chance” probabilities.1 Of course, you know that there

is nothing random about computers; they are instruction-following machines.

How can computer programs model seemingly random happenings?

Simulating randomness is a well-studied problem in computer science. Re-

member the chaos program from Chapter 1? The numbers produced by that pro-

gram seemed to jump around randomly between zero and one. This apparent

randomness came from repeatedly applying a function to generate a sequence

of numbers. A similar approach can be used to generate random (actually pseu-

dorandom) numbers.

A pseudorandom number generator works by starting with some seed value.

This value is fed to a function to produce a “random” number. The next time

a random number is needed, the current value is fed back into the function to

produce a new number. With a carefully chosen function, the resulting sequence

of values looks essentially random. Of course, if you start the process over

again with the same seed value, you end up with exactly the same sequence of

numbers. It’s all determined by the generating function and the value of the

seed.

Python provides a library module that contains a number of useful functions

for generating pseudorandom numbers. The functions in this module derive an

initial seed value from the date and time when the module is loaded, so you

get a different seed value each time the program is run. This means that you

will also get a unique sequence of pseudorandom values. The two functions of

greatest interest to us are
Ì�ÂÓÇXÃ0ÌXÂxÇ��¨Æ

and
ÌXÂÓÇ�Ã¨Á�Ê

.

1So probabilistic simulations written in Python could be called Monte Python programs (nudge,

nudge; wink,wink).

é0� r0�¨����{1�����PE¨ux�v�1�0������Í
�{�}�� r1¹�é

The
Ì�ÂÓÇXÃ0ÌXÂxÇ��¨Æ

function is used to select a pseudorandom int from a given

range. It can be used with one, two, or three parameters to specify a range

exactly as with the
ÌXÂxÇ��¨Æ

function. For example,
Ì�ÂÓÇ�Ã2ÌXÂxÇ���Ææñ�Ö(õ`ø½ú

returns some

number from the range
û Ö(õôÔ�õèÞTõ0@oõë'�

, and
Ì�ÂÓÇXÃ0ÌXÂxÇ��¨Æ¬ñ!'æõ�ÖxÕ	'�õÒ'½ú

returns a mul-

tiple of 5 between 5 and 100, inclusive. (Remember, ranges go up to, but do not

include, the stopping value.)

Each call to
Ì�ÂÓÇXÃ0ÌXÂxÇ��¨Æ

generates a new pseudorandom int. Here is an inter-

active session that shows
ÌXÂÓÇ�Ã2Ì�ÂÓÇ���Æ

in action:�	��� Í2Ì¨ÁxÊ¡ÌXÂxÇXÃ�ÁxÊ»ÒvÊ+½Á�Ì�ÄPÌ�ÂÓÇ�Ã2ÌXÂxÇ���Æ�	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!úÞ �	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!úÞ �	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!ú'�	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!ú'�	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!ú'�	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!úÖ�	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!ú'�	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!ú@ �	��� ÌXÂxÇXÃ2Ì�ÂÓÇ+�¨Ææñ1Ö�õèø!úÔ
Notice it took nine calls to

ÌXÂÓÇ�Ã2Ì�ÂÓÇ���Æ
to eventually generate every number in

the range 1–5. The value 5 came up almost half of the time. This shows the

probabilistic nature of random numbers. Over the long haul, this function pro-

duces a uniform distribution, which means that all values will appear an (ap-

proximately) equal number of times.

The
Ì�ÂÓÇXÃ�ÁxÊ

function can be used to generate pseudorandom floating point

values. It takes no parameters and returns values uniformly distributed between

0 and 1 (including 0, but excluding 1). Here are some interactive examples:�	��� Í2Ì¨ÁxÊ¡ÌXÂxÇXÃ�ÁxÊ»ÒvÊ+½Á�Ì�ÄPÌ�ÂÓÇ�Ã¨ÁxÊ�	��� ÌXÂxÇXÃ¨Á�Êcñ�ú

r1¿�% s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
Õnï0'C@?'!Ö�@�ø�@�Õ�ø�þ�Ô	'�	��� ÌXÂxÇXÃ¨Á�Êcñ�úÕnïðÔ�Ô½Öxø¨Ô½Öxø	'	'�A!Ö�@�	��� ÌXÂxÇXÃ¨Á�Êcñ�úÕnïùý¨ÔCA	A�þ2þ�Þ2Þ?'!Ö�'2þ�	��� ÌXÂxÇXÃ¨Á�Êcñ�úÕnïðÔ	'CA�ø�ø2Õ	A�Ô�A?'0Þ	A�	��� ÌXÂxÇXÃ¨Á�Êcñ�úÕnïBA?'0ý�Þ�@�ø�þ2ý�Þ�@�Þ�ø
The name of the module (

ÌXÂÓÇ�Ã¨Á�Ê
) is the same as the name of the function,

which gives rise to the funny-looking import line.

Our racquetball simulation can make use of the
ÌXÂÓÇ�Ã¨Á�Ê

function to deter-

mine whether or not a player wins a serve. Let’s look at a specific example.

Suppose a player’s service probability is 0.70. This means that they should win

70% of their serves. You can imagine a decision in the program something like

this:

Ò�Í . !À2Â�Ï�Æ�Ì?ÛÎÒ1Ç(Ü9ÜÓÆ0Ì	9¨Æ � ÷Ü2Ñ�Á0Ì�Æ7ß Ü0Ñ�Á�Ì�Æ?á»Ö
We need to insert a probabilistic condition that will succeed 70% of the time.

Suppose we generate a random value between 0 and 1. Exactly 70% of the

interval 0 D�D�D 1 is to the left of 0.7. So 70% of the time the random number will beÓ 0.7, and it will be G 0.7 the other 30% of the time. (The º goes on the upper

end, because the random generator can produce a 0, but never a 1.) In general,

if
�Ì¨Á�Ë

represents the probability that the player wins a serve, the conditionÌXÂxÇXÃ�ÁxÊcñ�ú . �Ì¨Á�Ë will succeed with just the right probability. Here is how the

decision will look:

Ò�ÍPÌ�ÂÓÇ�Ã¨ÁxÊ�ñ1ú . ¨Ì�ÁÓË�÷Ü2Ñ�Á0Ì�Æ7ß Ü0Ñ�Á�Ì�Æ?á»Ö

a«^�� a �²¤bC_«ª�T�?e «ªRT[XWZ�Ge
Now you have the complete specification for our simulation and the necessary

knowledge of random numbers to get the job done. Go ahead and take a few

minutes to write up the program; I’ll wait.

é2� �2��ã¨��wkE0é"���n� é"{z� $ ��� r1¿0~

OK, seriously, this is a more complicated program than you’ve probably at-

tempted so far. You may not even know where to begin. If you’re going to make

it through with minimal frustration, you’ll need a systematic approach.

One proven technique for tackling complex problems is called top-down de-

sign. The basic idea is to start with the general problem and try to express a

solution in terms of smaller problems. Then each of the smaller problems is at-

tacked in turn using the same technique. Eventually the problems get so small

that they are trivial to solve. Then you just put all the pieces back together and,

voilà, you’ve got a program.t�È�É�ÈSÊ ÿ vxÍé·�¸mi+k�i3Ù � i�s�l���w
Top-down design is easier to illustrate than it is to define. Let’s give it a try on

our racquetball simulation and see where it takes us. As always, a good start is

to study the program specification. In very broad brush strokes, this program

follows the basic input, process, output pattern. We need to get the simulation

inputs from the user, simulate a bunch of games, and print out a report. Here is

a basic algorithm:Ø�Ì½Ò�Ç¨ÄÐÂÓÇ�¢1Ç¨Ä�Ì¨Á2Ã�ÉÎÑÓÄ½Ò�Á�Çü Æ�Ä9Ä0ÅXÆàÒ�Ç	2É�Ä!Üæ÷ ¨Ì�Á�Ë Ú õ1¨Ì�ÁÓË��nõ ÇÅ�ÒvÊ�É½À�Â�Ä¨Æ Ç(��Â1ÊÎÆXÜ Á2Í9ÌXÂ¨Ñ�í�É½Æ0Ä�Ë!Â2À�ÀªÉ(Ü2Ò1Ç���¨Ì�Á�Ë Ú ÂÓÇ�Ã��Ì¨Á�Ë��
Ø�Ì½Ò�Ç¨ÄÐÂ?Ì�Æ�XÁ0Ì2ÄÝÁ�ÇÐÄ�Å½Æ7ÛÎÒ1Ç(Ü Í�Á0Ì-!À2Â�Ï¨Æ0Ì Ú ÂÓÇ�Ã�!À�Â�Ï�Æ�ÌC�

Now that we’ve got an algorithm, we’re ready to write a program. I know

what you’re thinking: this design is too high-level; you don’t have any idea yet

how it’s all going to work. That’s OK. Whatever we don’t know how to do, we’ll

just ignore for now. Imagine that all of the components you need to implement

the algorithm have already been written for you. Your job is to finish this top-

level algorithm using those components.

First we have to print an introduction. I think I know how to do this. It

just requires a few print statements, but I don’t really want to bother with it

right now. It seems an unimportant part of the algorithm. I’ll procrastinate

and pretend that someone else will do it for me. Here’s the beginning of the

program:Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú
Do you see how this works? I’m just assuming there is a

¨Ì!Ò�Ç¨Ä3¢�Ç�Ä�Ì¨Á
function

that takes care of printing the instructions. That step was easy! Let’s move on.

r1¿�r s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
Next, I need to get some inputs from the user. I also know how to do that—I

just need a few input statements. Again, that doesn’t seem very interesting, and

I feel like putting off the details. Let’s assume that a component already exists to

solve that problem. We’ll call the function
�¨Æ�Ä3¢1Ç��É¨ÄÎÜ

. The point of this function

is to get values for variables
�Ì�ÁÓË Ú

,
�Ì�ÁÓË��

, and
Ç
. The function must return

these values for the main program to use. Here is our program so far:Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú�Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��nõîÇ¡ß��¨Æ�Ä3¢�Ç	�É¨ÄÎÜ(ñ1ú
We’re making progress, let’s move on to the next line.

Here we’ve hit the crux of the problem. We need to simulate
Ç

games of

racquetball using the values of
�Ì¨Á�Ë Ú

and
�Ì¨Á�Ë��

. This time, I really don’t have

a very good idea how that will even be accomplished. Let’s procrastinate again

and push the details off into a function. (Maybe we can get someone else to

write that part for us later.) But what should we put into
ÊÎÂ�Ò1Ç

? Let’s call our

function
Ü2ÒvÊmÐ ü Â�Ê!Æ½Ü

. We need to figure out what the call of this function looks

like.

Suppose you were asking a friend to actually carry out a simulation of
Ç

games. What information would you have to give him? Your friend would need

to know how many games he was supposed to simulate and what the values of�Ì¨Á�Ë Ú
and

�Ì�ÁÓË��
should be for those simulations. These three values will, in a

sense, be inputs to the function.

What information do you need to get back from your friend? Well, in order to

finish out the program (print a report) you need to know how many games were

won by player A and how many games were won by Player B. These must be

outputs from the
Ü2Ò�Ê�Ð ü Â�ÊÎÆXÜ

function. Remember in the discussion of functions

in Chapter 6, I said that parameters were used as function inputs, and return

values serve as function outputs. Given this analysis, we now know how the

next step of the algorithm can be coded.Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú�Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��nõîÇ¡ß��¨Æ�Ä3¢�Ç	�É¨ÄÎÜ(ñ1ú
ÛÎÒ1Ç(Ü Ú õ ÛÎÒ1Ç(Üm�9ß Ü2Ò�Ê�Ð ü Â�ÊÎÆXÜ�ñùÇcõ �Ì�ÁÓË Ú õ1�Ì¨Á�Ë��Îú

Are you getting the hang of this? The last step is to print a report. If you told

your friend to type up the report, you would have to tell him how many wins

there were for each player; these values are inputs to the function. Here’s the

complete program:

é2� �2��ã¨��wkE0é"���n� é"{z� $ ��� r1¿��

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú�Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��nõîÇ¡ß��¨Æ�Ä3¢�Ç	�É¨ÄÎÜ(ñ1ú
ÛÎÒ1Ç(Ü Ú õ ÛÎÒ1Ç(Üm�9ß Ü2Ò�Ê�Ð ü Â�ÊÎÆXÜ�ñùÇcõ �Ì�ÁÓË Ú õ1�Ì¨Á�Ë��Îú�Ì½Ò�Ç�Ä+ÅÓÉ�Ê�Ê"Â�Ì�Ï�ñèÛÎÒ1Ç(Ü Ú õ ÛÎÒ1Ç(Üm�"ú

That wasn’t very hard. The
Ê"Â�Ò1Ç

function is only five lines long, and the program

looks like a more precise formulation of the rough algorithm.t�È�É�È�Ç Ø i*Í����B��tGlnvxw8v�'Ìª vxw3�	i_�&w�s
Of course, the

ÊÎÂ�Ò�Ç
function alone won’t do very much; we’ve put off all of the

interesting details. In fact, you may think that we have not yet accomplished

anything at all, but that is far from true.

We have broken the original problem into four independent tasks:
�Ì!Ò1Ç�Ä�¢1Ç�Ä2Ì�Á

,�¨Æ�Ä3¢�Ç	�É¨ÄÎÜ
,
Ü2ÒvÊmÐ ü Â�Ê!Æ½Ü

and
�Ì!Ò1Ç�Ä+ÅÓÉ0Ê2Ê"Â�Ì�Ï

. Further, we have specified the name,

parameters, and expected return values of the functions that perform these

tasks. This information is called the interface or signature of a function.

Having signatures allows us to tackle pieces independently. For the purposes

of
Ê"Â¨Ò�Ç

, we don’t care how
Ü2Ò�Ê�Ð ü Â�ÊÎÆXÜ

does its job. The only concern is that,

when given the number of games to simulate and the two probabilities, it must

hand back the correct number of wins for each player. The
ÊÎÂ�Ò1Ç

function only

cares what each (sub-)function does.

Our work so far can be represented as a structure chart (also called a module

hierarchy chart). Figure
�
.
�

illustrates this. Each component in the design is a

rectangle. A line connecting two rectangles indicates that the one above uses

the one below. The arrows and annotations show the interfaces between the

components in terms of information flow.

At each level of a design, the interface tells us which details of the lower level

are important. Anything else can be ignored (for the moment). The general

process of determining the important characteristics of something and ignoring

other details is called abstraction. Abstraction is the fundamental tool of design.

You might view the entire process of top-down design as a systematic method

for discovering useful abstractions.t�È�É�È�É Ø i���vxwj�§·�¸�i+k�i�Ù�� i�s�l���w
Now all we need to do is repeat the design process for each of the remaining

components. Let’s take them in order. The
�Ì!Ò1Ç�Ä�¢1Ç�Ä2Ì�Á

function should print

r1¿ ¯ s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���

probA
probB
n

probA
probB
n

winsA
winsB

winsA
winsB

main

printIntro getInputs simNGames printSummary

Figure
�
.
�
: First-level structure chart for racquetball simulation.

an introduction to the program. Let’s compose a suitable sequence of
¨Ì!Ò�Ç¨Ä

statements.

Ã¨Æ0Í��Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê»Ü2ÒvÊ�É½À�Â�Ä¨Æ½ÜÈÂ-�¨Â�Ê!Æ9Á2ÍPÌXÂ¨Ñ�í�É½Æ0Ä�Ë!Â2À�À ËXÆ0Ä0ÛXÆ�ÆÓÇÝÄ2Û�Á���Ì½Ò�Ç�Äa�F!À2Â�Ï¨Æ0ÌÎÜ7Ñ0Â�À2À2Æ0Ã�� Ú � ÂÓÇXÃ)�����"ï ��Å½ÆÝÂÓËÎÒ0À¨ÒÓÄ!Ò�Æ½Ü Á2ÍÝÆ¨Â¨Ñ�Å�½À�Â�Ï¨Æ0Ì¡Ò�Ü©��Ì½Ò�Ç�Ä��xÒ�Ç�Ã½Ò2Ñ0Â�Ä¨Æ2Ã;Ë�ÏàÂ<�Ì¨Á�Ë!ÂxË"Ò�À�ÒÓÄ2ÏòñzÂ Ç�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ Ö0ú Ä0Å!Â�Ä���Ì½Ò�Ç�Ä���Ä0ÅXÆ<!À2Â�Ï�Æ�Ì?ÛÎÒ1Ç(Ü;Ä�Å½Æ<½Á�Ò�Ç¨Ä?Û2ÅXÆ�Ç»Ü�Æ�Ì	9½Ò�Ç��nï Ø�À�Â�Ï¨Æ0Ì Ú Â2À�Û½Â�ÏÎÜm��Ì½Ò�Ç�Ä��zÅ!Â�Ü;Ä0ÅXÆPÍ½ÒÓÌ!ÜxÄÿÜÓÆ0Ì�9�Ænïu�
Notice the second line. I wanted to put double quotes around “A” and “B” so

that the entire string is enclosed in apostrophes. This function comprises only

primitive Python instructions. Since we didn’t introduce any new functions,

there is no change to our structure chart.

Now let’s tackle
��Æ0Ä3¢�Ç	2É�ÄÎÜ

. We need to prompt for and get three values,

which are returned to the main program. Again, this is simple to code.

Ã¨Æ0Í��¨Æ�Ä3¢1Ç��É¨ÄÎÜ�ñ�ú¬÷
ó-�XÆ�Ä0É�Ì�Ç(Ü Ä�Å½Æ?Ä�Å�Ì�Æ2ÆàÜ2ÒvÊ�É½À�Â�Ä½Ò�ÁÓÇ-!Â�ÌXÂ1ÊÎÆ0Ä¨Æ0Ì!Üæ�Ì¨Á�Ë Ú õ#�Ì¨Á�Ë��ÐÂÓÇ�Ã7Ç
Â?ßÿÒ�Ç	2É�Ä�ñ��!"0Å!Â�ÄàÒ¨Ü;Ä�Å½Æ<¨Ì�Á�Ëhï !À2Â�Ï¨Æ0Ì Ú ÛÎÒ1Ç(ÜÈÂ¡ÜÓÆ0Ì	9¨Æ�2=�Óú
ËàßÿÒ�Ç	2É�Ä�ñ��!"0Å!Â�ÄàÒ¨Ü;Ä�Å½Æ<¨Ì�Á�Ëhï !À2Â�Ï¨Æ0Ì��9ÛÎÒ1Ç(ÜÈÂ¡ÜÓÆ0Ì	9¨Æ�2=�Óú
ÇàßÿÒ�Ç	2É�Ä�ñ��!��Á�Û;Ê"ÂÓÇ¨Ï���Â1ÊÎÆXÜ;Ä�Á¡Ü2ÒvÊ�É½À�Â�Ä¨Æ�2(��ú
Ì�Æ�Ä0É�Ì�Ç¡Â�õ Ë�õ Ç

Notice that I have taken some shortcuts with the variable names. Remember,

variables inside of a function are local to that function. This function is so short,

it’s very easy to see what the three values represent. The main concern here

é2� �2��ã¨��wkE0é"���n� é"{z� $ ��� r1¿�´

is to make sure the values are returned in the correct order to match with the

interface we established between
��Æ0Ä�¢1Ç	2É�Ä!Ü

and
Ê"Â¨Ò�Ç

.t�È�É�È � � i�s�l���w3l�wm��s�l�� Ë ü �*�îims
Now that we are getting some experience with the top-down design technique,

we are ready to try our hand at the real problem,
Ü2Ò�Ê�Ð ü Â�ÊÎÆXÜ

. This one requires

a bit more thought. The basic idea is to simulate
Ç

games and keep track of how

many wins there are for each player. Well, “simulate
Ç

games” sounds like a

counted loop, and tracking wins sounds like the job for a couple of accumulators.

Using our familiar patterns, we can piece together an algorithm.¢1ÇÎÒÓÄ½Ò0Â�À¨Ò�D�Æ ÛÎÒ1Ç(Ü Ú ÂÓÇ�Ã?ÛÎÒ�Ç"ÜI�9Ä¨Á9Õ
À2Á2Á�9ÇÐÄ½Ò�ÊÎÆXÜ

Ü2ÒvÊ�É!À2Â�Ä¨ÆPÂ6��Â1ÊÎÆ
Ò�Í�½À�Â�Ï¨Æ0Ì Ú ÛÎÒ1Ç(Ü

Ú Ã�ÃÝÁÓÇ½Æ?Ä¨Á7ÛÎÒ�Ç"Ü Ú
Æ¨À�Ü�Æ

Ú Ã�ÃÝÁÓÇ½Æ?Ä¨Á7ÛÎÒ�Ç"ÜI�
It’s a pretty rough design, but then so was our top-level algorithm. We’ll fill in

the details by turning it into Python code.

Remember, we already have the signature for our function.

Ã¨Æ0ÍÿÜ2ÒvÊmÐ ü Â�Ê!Æ½Ü�ñùÇcõ �Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��"ú¬÷
ó5Å�ÒvÊ�É!À2Â�Ä¨Æ½ÜªÇ(�¨Â�ÊÎÆXÜÈÂÓÇ�ÃPÌ�Æ�Ä0É�Ì�Ç(Ü Û!Ò�Ç"Ü Ú ÂÓÇ�Ã7ÛÎÒ1Ç(Üm�

We’ll add to this by initializing the two accumulator variables and adding the

counted loop heading.

Ã¨Æ0ÍÿÜ2ÒvÊmÐ ü Â�Ê!Æ½Ü�ñùÇcõ �Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��"ú¬÷
ó5Å�ÒvÊ�É!À2Â�Ä¨Æ½ÜªÇ(�¨Â�ÊÎÆXÜÈÂÓÇ�ÃPÌ�Æ�Ä0É�Ì�Ç(Ü Û!Ò�Ç"Ü Ú ÂÓÇ�Ã7ÛÎÒ1Ç(Üm�
ÛÎÒ1Ç(Ü Ú ßàÕ
ÛÎÒ1Ç(ÜI�PßàÕ
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷

The next step in the algorithm calls for simulating a game of racquetball.

I’m not quite sure how to do that, so as usual, I’ll put off the details. Let’s just

assume there’s a function called
Ü0Ò�Ê Ä Ç½Æ ü Â1ÊÎÆ

to take care of this.

We need to figure out what the interface for this function will be. The inputs

for the function seem straightforward. In order to accurately simulate a game,

r1¿�¹ s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
we need to know what the probabilities are for each player. But what should the

output be? In the next step of the algorithm, we will need to know who won the

game. How do you know who won? Generally, you look at the final score.

Let’s have
Ü2ÒvÊ Ä ÇXÆ ü Â�ÊÎÆ

return the final scores for the two players. We can

update our structure chart to reflect these decisions. The result is shown in

Figure
�
.
�
. Translating this structure into code yields this nearly completed

function:

Ã¨Æ0ÍÿÜ2ÒvÊmÐ ü Â�Ê!Æ½Ü�ñùÇcõ �Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��"ú¬÷
ó5Å�ÒvÊ�É!À2Â�Ä¨Æ½ÜªÇ(�¨Â�ÊÎÆXÜÈÂÓÇ�ÃPÌ�Æ�Ä0É�Ì�Ç(Ü Û!Ò�Ç"Ü Ú ÂÓÇ�Ã7ÛÎÒ1Ç(Üm�
ÛÎÒ1Ç(Ü Ú ßàÕ
ÛÎÒ1Ç(ÜI�PßàÕ
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷

Ü2Ñ�Á�Ì�Æ Ú õ Ü0Ñ�Á0Ì¨ÆK�9ßÿÜ0Ò�Ê Ä Ç½Æ ü Â1ÊÎÆæñB�Ì¨Á�Ë Ú õ �Ì�ÁÓË��Îú

probA
probB
n

probA
probB
n

winsA
winsB

winsA
winsB

simOneGame

probA
probB

scoreA
scoreB

main

printIntro getInputs simNGames printSummary

Figure
�
.
�
: Level 2 structure chart for racquetball simulation.

Finally, we need to check the scores to see who won and update the appro-

priate accumulator. Here is the result:

Ã¨Æ0ÍÿÜ2ÒvÊmÐ ü Â�Ê!Æ½Ü�ñùÇcõ �Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��"ú¬÷
ÛÎÒ1Ç(Ü Ú ß9Û!Ò�Ç"ÜI�9ßÐÕ
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷

é2� �2��ã¨��wkE0é"���n� é"{z� $ ��� r1¿�¿

Ü2Ñ�Á�Ì�Æ Ú õ Ü0Ñ�Á0Ì¨ÆK�9ßÿÜ0Ò�Ê Ä Ç½Æ ü Â1ÊÎÆæñB�Ì¨Á�Ë Ú õ �Ì�ÁÓË��Îú
Ò�ÍÿÜ2Ñ�Á0Ì¨Æ Ú � Ü2Ñ�Á0Ì¨ÆK�c÷Û!Ò�Ç"Ü Ú ßPÛÎÒ1Ç(Ü Ú á Ö
Æ¨ÀXÜÓÆn÷

Û!Ò�Ç"ÜI�9ßPÛÎÒ1Ç(Üm�9á Ö
Ì�Æ�Ä0É�Ì�Ç9ÛÎÒ1Ç(Ü Ú õ Û!Ò�Ç(Üm�t�È�É�È�× ÿ 3l��l�j·�¸�i+k�i�Ù�� i�s�l���w

Everything seems to be coming together nicely. Let’s keep working on the guts

of the simulation. The next obvious point of attack is
Ü0Ò�Ê Ä Ç½Æ ü Â1ÊÎÆ

. Here’s where

we actually have to code up the logic of the racquetball rules. Players keep

doing rallies until the game is over. That suggests some kind of indefinite loop

structure; we don’t know how many rallies it will take before one of the players

gets to 15. The loop just keeps going until the game is over.

Along the way, we need to keep track of the score(s), and we also need to

know who is currently serving. The scores will probably just be a couple of int-

valued accumulators, but how do we keep track of who’s serving? It’s either

player A or player B. One approach is to use a string variable that stores either� Ú �
or
�/�$�

. It’s also an accumulator of sorts, but to update its value we just

switch it from one value to the other.

That’s enough analysis to put together a rough algorithm. Let’s try this:¢1ÇÎÒÓÄ½Ò0Â�À¨Ò�D�ÆÐÜ2Ñ�Á0Ì¨Æ½Ü Ä¨Á9ÕÅ2Æ�Ä Ü�Æ�Ì	9!Ò1Ç��?Ä¨Á�� Ú ���Á2Á�ÝÛ0Å"Ò0À0Æ-��Â1ÊÎÆàÒ�Ü Ç½Á0ÄÐÁ�9�Æ�Ìc÷Å�ÒvÊ�É!À2Â�Ä¨Æ?Á�ÇXÆ¡Ü�Æ�Ì	9�Æ9Á0Í?Û2ÅÎÒ�Ñ�ÅXÆC9¨Æ0Ì<½À�Â�Ï�Æ0ÌàÒ¨Ü9Ü�Æ�Ì	9½Ò�Ç��
É	�Ã�Â�Ä¨Æ7Ä0ÅXÆ¡ÜxÄ�Â�Ä0É"Ü Á2ÍPÄ�Å½Æ6�¨Â�ÊÎÆ�XÆ�Ä0É¨Ì0Ç Ü0Ñ�Á0Ì¨Æ½Ü

It’s a start, at least. Clearly there’s still some work to be done on this one.

We can quickly fill in the first couple of steps of the algorithm to get the

following.

Ã¨Æ0ÍÿÜ2ÒvÊ Ä ÇXÆ ü Â�ÊÎÆ¬ñ0¨Ì�Á�Ë Ú õ �Ì¨Á�Ë��"ú¬÷
Ü2Ñ�Á0Ì�Æ Ú ßÝÕ
Ü2Ñ�Á0Ì�Æ!�9ßÝÕ
Ü�Æ�Ì	9!Ò1Ç��Pß)� Ú �
Û2ÅÎÒ0À2Æ . Ñ�ÁÓÇXÃXÒÓÄ!Ò�Á�Ç � ÷

r1¿�â s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
The question at this point is exactly what the condition will be. We need to

keep looping as long as the game is not over. We should be able to tell if the

game is over by looking at the scores. We discussed a number of possibilities

for this condition in the previous chapter, some of which were fairly complex.

Let’s hide the details in another function,
��Â�Ê!Æ Ä 9�Æ0Ì

, that looks at the scores and

returns
��Ì�É½Æ

if the game is over, and
,XÂ2ÀXÜ�Æ

if it is not. That gets us on to the

rest of the loop for now.

Figure
�
.
�

shows the structure chart with our new function. The code forÜ2ÒvÊ Ä Ç½Æ ü Â�Ê!Æ
now looks like this:

Ã¨Æ0ÍÿÜ2ÒvÊ Ä ÇXÆ ü Â�ÊÎÆ¬ñ0¨Ì�Á�Ë Ú õ �Ì¨Á�Ë��"ú¬÷
Ü2Ñ�Á0Ì�Æ Ú ßÝÕ
Ü2Ñ�Á0Ì�Æ!�9ßÝÕ
Ü�Æ�Ì	9!Ò1Ç��Pß)� Ú �
Û2ÅÎÒ0À2Æ;Ç½Á0Ä �¨Â�Ê!Æ Ä 9¨Æ0Ì�ñ�Ü2Ñ�Á0Ì¨Æ Ú õ Ü2Ñ�Á0Ì¨ÆK�"ú÷

probA
probB
n

probA
probB
n winsA

winsB

winsA
winsB

simOneGame

probA
probB

scoreA
scoreB

main

scoreA
scoreB true|false

printIntro getInputs simNGames printSummary

gameOver

Figure
�
.
�
: Level 3 structure chart for racquetball simulation.

é2� �2��ã¨��wkE0é"���n� é"{z� $ ��� r1¿�é

Inside the loop, we need to do a single serve. Remember, we are going to

compare a random number to a probability in order to determine if the server

wins the point (
ÌXÂxÇXÃ�ÁxÊcñ�ú . �Ì¨Á�Ë). The correct probability to use is determined

by the value of
ÜÓÆ0Ì	9½Ò�Ç+�

. We will need a decision based on this value. If A is

serving, then we need to use A’s probability, and, based on the result of the serve,

update either A’s score or change the service to B. Here is the code:

Ò�ÍÿÜÓÆ0Ì�9!Ò�Ç+�Pß�ß)� Ú �"÷
Ò�ÍPÌ�ÂÓÇXÃ�ÁxÊ�ñ1ú . ¨Ì�Á�Ë Ú ÷ ó Ú ÛÎÒ�Ç"Ü Ä0ÅXÆ¡Ü�Æ�Ì	9�Æ

Ü2Ñ�Á�Ì�Æ Ú ßÿÜ2Ñ�Á0Ì�Æ Ú á»Ö
Æ¨À�Ü�Æn÷ ó Ú À2Á½ÜÓÆ½Ü Ä�Å½Æ¡ÜÓÆ0Ì	9¨Æ

Ü�Æ0Ì�9!Ò1Ç��Pß)�����
Of course, if A is not serving, we need to do the same thing, only for B. We

just need to attach a mirror image
Æ�ÀXÜÓÆ

clause.

Ò�ÍÿÜÓÆ0Ì�9!Ò�Ç+�Pß�ß)� Ú �"÷
Ò�ÍPÌ�ÂÓÇXÃ�ÁxÊ�ñ1ú . ¨Ì�Á�Ë Ú ÷ ó Ú ÛÎÒ1Ç(Ü;Ä�Å½Æ¡Ü�Æ�Ì	9¨Æ

Ü2Ñ�Á�Ì�Æ Ú ßÿÜ2Ñ�Á0Ì�Æ Ú á»Ö
Æ¨À�Ü�Æn÷ ó Ú À2ÁXÜ�ÆXÜPÜ�Æ�Ì	9�Æ

Ü�Æ0Ì�9!Ò1Ç��Pß)�����
Æ¨À�Ü�Æo÷

Ò�ÍPÌ�ÂÓÇXÃ�ÁxÊ�ñ1ú . ¨Ì�Á�Ë��c÷ ó��PÛÎÒ1Ç(Ü;Ä�Å½Æ¡Ü�Æ�Ì	9¨Æ
Ü2Ñ�Á�Ì�Æ!�9ßÿÜ2Ñ�Á0Ì�Æ!�9á»Ö

Æ¨À�Ü�Æn÷ ó��àÀ2ÁXÜ�ÆXÜ Ä0ÅXÆ¡Ü�Æ0Ì�9�Æ
Ü�Æ0Ì�9!Ò1Ç��Pß)� Ú �

That pretty much completes the function. It got a bit complicated, but seems

to reflect the rules of the simulation as they were laid out. Putting the function

together, here is the result:

Ã¨Æ0ÍÿÜ2ÒvÊ Ä ÇXÆ ü Â�ÊÎÆ¬ñ0¨Ì�Á�Ë Ú õ �Ì¨Á�Ë��"ú¬÷
Ü2Ñ�Á0Ì�Æ Ú ßÝÕ
Ü2Ñ�Á0Ì�Æ!�9ßÝÕ
Ü�Æ�Ì	9!Ò1Ç��Pß)� Ú �
Û2ÅÎÒ0À2Æ;Ç½Á0Ä �¨Â�Ê!Æ Ä 9¨Æ0Ì�ñ�Ü2Ñ�Á0Ì¨Æ Ú õ Ü2Ñ�Á0Ì¨ÆK�"ú÷

Ò�ÍÿÜ�Æ�Ì	9½Ò�Ç��?ß�ß)� Ú �(÷
ÒÓÍPÌXÂxÇXÃ¨Á�Êcñ�ú . �Ì¨Á�Ë Ú ÷Ü0Ñ�Á0Ì¨Æ Ú ßÿÜ0Ñ�Á�Ì�Æ Ú á Ö
Æ�ÀXÜÓÆn÷

r1â�% s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
ÜÓÆ0Ì	9½Ò�Ç+�?ß��/�$�

Æ¨ÀXÜÓÆn÷
ÒÓÍPÌXÂxÇXÃ¨Á�Êcñ�ú . �Ì¨Á�Ë���÷Ü0Ñ�Á0Ì¨ÆK�9ßÿÜ0Ñ�Á�Ì�ÆK�Pá Ö
Æ�ÀXÜÓÆn÷

ÜÓÆ0Ì	9½Ò�Ç+�?ß�� Ú �
Ì�Æ�Ä0É�Ì�Ç Ü2Ñ�Á0Ì¨Æ Ú õ�Ü2Ñ�Á�Ì�Æ!�t�È�É�È5µ ¢ l�w_lns� 3l�wm� ¼ Í

Whew! We have just one more troublesome function left,
��Â1ÊÎÆ Ä 9�Æ�Ì

. Here is

what we know about it so far:

Ã¨Æ0Í���Â1ÊÎÆ Ä 9�Æ�ÌTñ�ÂæõpË(ú¬÷
óÐÂÝÂÓÇXÃ7ËÐÌ¨Æ�¨Ì�Æ½ÜÓÆ�Ç¨Ä¡Ü2Ñ�Á0Ì¨Æ½Ü Í¨Á�ÌÐÂ?ÌXÂ¨Ñ�í�ÉXÆ0Ä�Ë!Â�À2À<�¨Â�ÊÎÆ
ó-�XÆ�Ä0É�Ì�Ç(Ü§�2Ì0ÉXÆàÒ�ÍPÄ0ÅXÆ6��Â1ÊÎÆàÒ¨ÜÈÁ�9�Æ�Ìnõ°,�Â�ÀXÜÓÆPÁ0Ä�Å½Æ�Ì2ÛÎÒ�Ü�Æoï

According to the rules for our simulation, a game is over when either player

reaches a total of 15. We can check this with a simple Boolean condition.

Ã¨Æ0Í���Â1ÊÎÆ Ä 9�Æ�ÌTñ�ÂæõpË(ú¬÷
óÐÂÝÂÓÇXÃ7ËÐÌ¨Æ�¨Ì�Æ½ÜÓÆ�Ç¨Ä¡Ü2Ñ�Á0Ì¨Æ½Ü Í¨Á�ÌÐÂ?ÌXÂ¨Ñ�í�ÉXÆ0Ä�Ë!Â�À2À<�¨Â�ÊÎÆ
ó-�XÆ�Ä0É�Ì�Ç(Ü§�2Ì0ÉXÆàÒ�ÍPÄ0ÅXÆ6��Â1ÊÎÆàÒ¨ÜÈÁ�9�Æ�Ìnõ°,�Â�ÀXÜÓÆPÁ0Ä�Å½Æ�Ì2ÛÎÒ�Ü�Æoï
Ì�Æ�Ä0É�Ì�Ç¡Â0ß2ß"Ö�'?Á0ÌPËXß2ß"Ö�'

Notice how this function directly computes and returns the Boolean result all in

one step.

We’ve done it! Except for
¨Ì!Ò�Ç¨Ä�ÅxÉ0Ê�ÊÎÂ�Ì2Ï

, the program is complete. Let’s fill

in the missing details and call it a wrap. Here is the complete program from

start to finish:

óPÌ0Ë½Â�À2Àoï7¨Ï
Í2Ì¨ÁxÊ¡Ì�ÂÓÇXÃ�ÁxÊ»ÒvÊ+XÁ0Ì�Ä?ÌXÂÓÇ�Ã¨Á�Ê
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú�Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��nõîÇ¡ß��¨Æ�Ä3¢�Ç	�É¨ÄÎÜ(ñ1ú

ÛÎÒ1Ç(Ü Ú õ ÛÎÒ1Ç(Üm�9ß Ü2Ò�Ê�Ð ü Â�ÊÎÆXÜ�ñùÇcõ �Ì�ÁÓË Ú õ1�Ì¨Á�Ë��Îú�Ì½Ò�Ç�Ä+ÅÓÉ�Ê�Ê"Â�Ì�Ï�ñèÛÎÒ1Ç(Ü Ú õ ÛÎÒ1Ç(Üm�"ú
Ã¨Æ0Í��Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú÷

é2� �2��ã¨��wkE0é"���n� é"{z� $ ��� r1â0~

�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê»Ü2ÒvÊ�É½À�Â�Ä¨Æ½ÜÈÂ-�¨Â�Ê!Æ9Á2ÍPÌXÂ¨Ñ�í�É½Æ0Ä�Ë!Â2À�À ËXÆ0Ä0ÛXÆ�ÆÓÇÝÄ2Û�Á���Ì½Ò�Ç�Äa�F!À2Â�Ï¨Æ0ÌÎÜ7Ñ0Â�À2À2Æ0Ã�� Ú � ÂÓÇXÃ)�����"ï ��Å½ÆÝÂÓËÎÒ0À¨ÒÓÄ!Ò�Æ½Ü Á2ÍÝÆ¨Â¨Ñ�Å�½À�Â�Ï¨Æ0Ì¡Ò�Ü©��Ì½Ò�Ç�Ä��xÒ�Ç�Ã½Ò2Ñ0Â�Ä¨Æ2Ã;Ë�ÏàÂ<�Ì¨Á�Ë!ÂxË"Ò�À�ÒÓÄ2ÏòñzÂ Ç�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ Ö0ú Ä0Å!Â�Ä���Ì½Ò�Ç�Ä���Ä0ÅXÆ<!À2Â�Ï�Æ�Ì?ÛÎÒ1Ç(Ü;Ä�Å½Æ<½Á�Ò�Ç¨Ä?Û2ÅXÆ�Ç»Ü�Æ�Ì	9½Ò�Ç��nï Ø�À�Â�Ï¨Æ0Ì Ú Â2À�Û½Â�ÏÎÜm��Ì½Ò�Ç�Ä��zÅ!Â�Ü;Ä0ÅXÆPÍ½ÒÓÌ!ÜxÄÿÜÓÆ0Ì�9�Ænïu�
Ã¨Æ0Í��¨Æ�Ä3¢1Ç��É¨ÄÎÜ�ñ�ú¬÷

ó-�XÆ�Ä0É�Ì�Ç(Ü Ä�Å½Æ?Ä�Å�Ì�Æ2ÆàÜ2ÒvÊ�É½À�Â�Ä½Ò�ÁÓÇ-!Â�ÌXÂ1ÊÎÆ0Ä¨Æ0Ì!Ü
Â?ßÿÒ�Ç	2É�Ä�ñ��!"0Å!Â�ÄàÒ¨Ü;Ä�Å½Æ<¨Ì�Á�Ëhï !À2Â�Ï¨Æ0Ì Ú ÛÎÒ1Ç(ÜÈÂ¡ÜÓÆ0Ì	9¨Æ�2=�Óú
ËàßÿÒ�Ç	2É�Ä�ñ��!"0Å!Â�ÄàÒ¨Ü;Ä�Å½Æ<¨Ì�Á�Ëhï !À2Â�Ï¨Æ0Ì��9ÛÎÒ1Ç(ÜÈÂ¡ÜÓÆ0Ì	9¨Æ�2=�Óú
ÇàßÿÒ�Ç	2É�Ä�ñ��!��Á�Û;Ê"ÂÓÇ¨Ï���Â1ÊÎÆXÜ;Ä�Á¡Ü2ÒvÊ�É½À�Â�Ä¨Æ�2(��ú
Ì�Æ�Ä0É�Ì�Ç¡Â�õ Ë�õ Ç

Ã¨Æ0ÍÿÜ2ÒvÊmÐ ü Â�Ê!Æ½Ü�ñùÇcõ �Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��"ú¬÷
ó5Å�ÒvÊ�É!À2Â�Ä¨Æ½ÜªÇ(�¨Â�ÊÎÆXÜ Á2Í9Ì�Â�Ñ�í�É½Æ�Ä0Ë!Â2À�ÀªË½Æ�Ä2ÛXÆ2Æ�Ç6½À�Â�Ï�Æ0Ì!Ü Û2ÅXÁ½ÜÓÆ
ó ÂÓËÎÒ0À¨ÒÓÄ!Ò�Æ½Ü;Â�Ì�Æ?Ì¨Æ�¨Ì�Æ½ÜÓÆ�Ç¨Ä�Æ2Ã Ë�ÏÝÄ�Å½Æ<�Ì¨Á�Ë½ÂÓË"Ò�À�ÒxÄ�Ï?Á2Í?ÛÎÒ1Ç�ÇÎÒ�Ç��9ÂÿÜÓÆ0Ì�9�Ænï
ó-�XÆ�Ä0É�Ì�Ç(ÜªÇ2É0Ê¨Ë½Æ0Ì9Á2Í?ÛÎÒ1Ç(Ü Í�Á0Ì Ú ÂÓÇ�Ã��
ÛÎÒ1Ç(Ü Ú ß9Û!Ò�Ç"ÜI�9ßÐÕ
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷

Ü2Ñ�Á�Ì�Æ Ú õ Ü0Ñ�Á0Ì¨ÆK�9ßÿÜ0Ò�Ê Ä Ç½Æ ü Â1ÊÎÆæñB�Ì¨Á�Ë Ú õ �Ì�ÁÓË��Îú
Ò�ÍÿÜ2Ñ�Á0Ì¨Æ Ú � Ü2Ñ�Á0Ì¨ÆK�c÷Û!Ò�Ç"Ü Ú ßPÛÎÒ1Ç(Ü Ú á Ö
Æ¨ÀXÜÓÆn÷

Û!Ò�Ç"ÜI�9ßPÛÎÒ1Ç(Üm�9á Ö
Ì�Æ�Ä0É�Ì�Ç9ÛÎÒ1Ç(Ü Ú õ Û!Ò�Ç(Üm�

Ã¨Æ0ÍÿÜ2ÒvÊ Ä ÇXÆ ü Â�ÊÎÆ¬ñ0¨Ì�Á�Ë Ú õ �Ì¨Á�Ë��"ú¬÷
ó5Å�ÒvÊ�É!À2Â�Ä¨Æ½ÜÈÂàÜ0Ò�Ç��¨À2Æ-�¨Â�Ê!Æ9Á0Ì9ÌXÂ¨Ñ�í�É½Æ0Ä�Ë!Â2À�À ËXÆ0Ä0ÛXÆ�ÆÓÇ6!À2Â�Ï¨Æ0ÌÎÜfÛ2ÅXÁ½Ü�Æ
ó ÂÓËÎÒ0À¨ÒÓÄ!Ò�Æ½Ü;Â�Ì�Æ?Ì¨Æ�¨Ì�Æ½ÜÓÆ�Ç¨Ä�Æ2Ã Ë�ÏÝÄ�Å½Æ<�Ì¨Á�Ë½ÂÓË"Ò�À�ÒxÄ�Ï?Á2Í?ÛÎÒ1Ç�ÇÎÒ�Ç��9ÂÿÜÓÆ0Ì�9�Ænï
ó-�XÆ�Ä0É�Ì�Ç(Ü;ÍXÒ�Ç½Â�ÀàÜ2Ñ�Á0Ì¨Æ½Ü;Í�Á0Ì Ú ÂÓÇ�Ã��
Ü�Æ�Ì	9!Ò1Ç��Pß)� Ú �
Ü2Ñ�Á0Ì�Æ Ú ßÝÕ
Ü2Ñ�Á0Ì�Æ!�9ßÝÕ
Û2ÅÎÒ0À2Æ;Ç½Á0Ä �¨Â�Ê!Æ Ä 9¨Æ0Ì�ñ�Ü2Ñ�Á0Ì¨Æ Ú õ Ü2Ñ�Á0Ì¨ÆK�"ú÷

Ò�ÍÿÜ�Æ�Ì	9½Ò�Ç��?ß�ß)� Ú �(÷
ÒÓÍPÌXÂxÇXÃ¨Á�Êcñ�ú . �Ì¨Á�Ë Ú ÷Ü0Ñ�Á0Ì¨Æ Ú ßÿÜ0Ñ�Á�Ì�Æ Ú á Ö
Æ�ÀXÜÓÆn÷

r1â�r s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
ÜÓÆ0Ì	9½Ò�Ç+�?ß��/�$�

Æ¨ÀXÜÓÆn÷
ÒÓÍPÌXÂxÇXÃ¨Á�Êcñ�ú . �Ì¨Á�Ë���÷Ü0Ñ�Á0Ì¨ÆK�9ßÿÜ0Ñ�Á�Ì�ÆK�Pá Ö
Æ�ÀXÜÓÆn÷

ÜÓÆ0Ì	9½Ò�Ç+�?ß�� Ú �
Ì�Æ�Ä0É�Ì�Ç Ü2Ñ�Á0Ì¨Æ Ú õ�Ü2Ñ�Á�Ì�Æ!�

Ã¨Æ0Í���Â1ÊÎÆ Ä 9�Æ�ÌTñ�Âæõ Ë(ú¬÷
óÐÂÝÂÓÇXÃ7ËÐÌ¨Æ�¨Ì�Æ½ÜÓÆ�Ç¨Ä¡Ü2Ñ�Á0Ì¨Æ½Ü Í¨Á�ÌÐÂ?ÌXÂ¨Ñ�í�ÉXÆ0Ä�Ë!Â�À2À<�¨Â�ÊÎÆ
ó-�XÆ�Ä0É�Ì�Ç(Ü§�2Ì0ÉXÆàÒ�ÍPÄ0ÅXÆ6��Â1ÊÎÆàÒ¨ÜÈÁ�9�Æ�Ìnõ°,�Â�ÀXÜÓÆPÁ0Ä�Å½Æ�Ì2ÛÎÒ�Ü�Æoï
Ì�Æ�Ä0É�Ì�Ç¡Â0ß2ß"Ö�'?Á0ÌPËXß2ß"Ö�'

Ã¨Æ0Í��Ì½Ò�Ç�Ä+ÅÓÉ�Ê�Ê"Â�Ì�Ï�ñèÛÎÒ1Ç(Ü Ú õ ÛÎÒ1Ç(Üm�"ú¬÷
óPØ�Ì½Ò�Ç�Ä!ÜÈÂ¡Ü1É�Ê�Ê"Â�Ì�ÏÝÁ0Í?ÛÎÒ1Ç(Ü Í¨Á�ÌÝÆ¨Â¨Ñ�Å�½À�Â�Ï¨Æ0Ì�ï
ÇàßPÛÎÒ�Ç"Ü Ú áPÛ!Ò�Ç(Üm��Ì½Ò�Ç�Ä��í´ÓÇ ü Â1ÊÎÆ½Ü?Ü2Ò�Ê¨É!À2Â�Ä�Æ0Ã�÷u�Îõ Ç�Ì½Ò�Ç�Ä��!"ÎÒ1Ç(Ü Í�Á0Ì Ú ÷ �2Ã ñ3��Õnï�Ö1ÍC�P�Îúm�±� ñèÛ!Ò�Ç(Ü Ú õ¢Í¨À2Á�Â�ÄTñðÛÎÒ1Ç(Ü Ú ú��xÇ_;XÖ�Õ�Õ½ú�Ì½Ò�Ç�Ä��!"ÎÒ1Ç(Ü Í�Á0Ì��c÷ �2Ã ñ3��Õnï�Ö1ÍC�P�Îúm�±� ñèÛ!Ò�Ç(Üm�nõ¢Í¨À2Á�Â�ÄTñðÛÎÒ1Ç(ÜI�Îú��xÇ_;XÖ�Õ�Õ½ú

Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷�ÊÎÂ�Ò�Çoñ1ú
You might take notice of the string formatting in

¨Ì!Ò1Ç�Ä�ÅxÉ0Ê2Ê"Â�Ì2Ï
. Since a percent

sign normally marks the beginning of a slot specifier, to get a normal percent

sign at the end of the output, I had to use a double percent (
�C�

).t�È�É�È5û Ø r$�æ�î���l¤üv�' t� �i�� i�s�l���w����0vx�	i�s�s
You have just seen an example of top-down design in action. Now you can

really see why it’s called top-down design. We started at the highest level of

our structure chart and worked our way down. At each level, we began with a

general algorithm and then gradually refined it into precise code. This approach

is sometimes called step-wise refinement. The whole process can be summarized

in four steps:

1. Express the algorithm as a series of smaller problems.

2. Develop an interface for each of the small problems.

3. Detail the algorithm by expressing it in terms of its interfaces with the

smaller problems.

é0� ¯ ��±���y y|�0�REq�Vw�K �_w�± {1�o{���y�u�y $ ��� r1â��

4. Repeat the process for each smaller problem.

Top-down design is an invaluable tool for developing complex algorithms.

The process may seem easy, since I’ve walked you through it step by step.

When you first try it out for yourself, though, things probably won’t go quite

so smoothly. Stay with it—the more you do it, the easier it will get. Initially,

you may think writing all of those functions is a lot of trouble. The truth is,

developing any sophisticated system is virtually impossible without a modular

approach. Keep at it, and soon expressing your own programs in terms of coop-

erating functions will become second nature.

a«^|µ ¸l�hU2U��£�vC"d�¤qJ`�¥¤_j Rc� RcenU¨ioUXW��£e

Now that we’ve got a program in hand, your inclination might be to run off, type

the whole thing in, and give it a try. If you do that, the result will probably be

disappointment and frustration. Even though we have been very careful in our

design, there is no guarantee that we haven’t introduced some silly errors. Even

if the code is flawless, you’ll probably make some mistakes when you enter it.

Just as designing a program one piece at a time is easier than trying to tackle

the whole problem at once, implementation is best approached in small doses.t�È � ÈSÊ ¼ w_l�tSÿ i�sGtGl�wm�
A good way to approach the implementation of a modest size program is to

start at the lowest levels of the structure chart and work your way up, testing

each component as you complete it. Looking back at the structure chart for our

simulation, we could start with the
��Â�Ê!Æ Ä 9�Æ0Ì

function. Once this function is

typed into a module file, we can immediately import the file and test it. Here is

a sample session testing out just this function:�	��� Ò�Ê?½Á0Ì2ÄPÌ0Ë½Â�À2À�	��� Ì0Ë½Â�À�À½ÖïF��Â�Ê!Æ Ä 9�Æ0Ì�ñzÕ�õ`Õ!ú,XÂ2ÀXÜÓÆ�	��� Ì0Ë½Â�À�À½ÖïF��Â�Ê!Æ Ä 9�Æ0Ì�ñ!'æõ�ÖxÕ½ú,XÂ2ÀXÜÓÆ�	��� Ì0Ë½Â�À�À½ÖïF��Â�Ê!Æ Ä 9�Æ0Ì�ñ�Ö�'�õ`Þ½ú��Ì�É½Æ�	��� Ì0Ë½Â�À�À½ÖïF��Â�Ê!Æ Ä 9�Æ0Ì�ñzÞ�õ�Ö�'Xú��Ì�É½Æ

r1â ¯ s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
I have selected test data that tries all the important cases for the function. The

first time it is called, the score will be 0 to 0. The function correctly responds

with
,�Â�ÀXÜÓÆ

; the game is not over. As the game progresses, the function will be

called with intermediate scores. The second example shows that the function

again responded that the game is still in progress. The last two examples show

that the function correctly identifies that the game is over when either player

reaches 15.

Having confidence that
��Â�Ê!Æ Ä 9�Æ0Ì

is functioning correctly, now we can go

back and implement the
Ü2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ

function. This function has some proba-

bilistic behavior, so I’m not sure exactly what the output will be. The best we

can do in testing it is to see that it behaves reasonably. Here is a sample session:�	��� Ò�Ê?½Á0Ì2ÄPÌ0Ë½Â�À2À�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ï�'æõ�ï0'½úñ�Ö�ÞTõªÖ�'½ú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ï�'æõ�ï0'½úñ�Ö�'�õªÖ2Ö2ú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïðÞ�õ�ïùÞ!úñ�Ö�'�õªÖ2Ö2ú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïðÞ�õ�ïùÞ!úñ�Ö2Ö�õªÖ�'½ú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïB@Tõ�ïùý!úñë@TõªÖ�'Xú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïB@Tõ�ïùý!úñ�Ö(õªÖ�'Xú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïðý�õ�ïF@Îúñ�Ö�'�õ Þ½ú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïðý�õ�ïF@Îúñ�Ö�'�õ Õ½ú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïB@Tõ�ïùø!úñzý�õªÖ�'Xú�	��� Ì0Ë½Â�À�À½ÖïôÜ2Ò�Ê Ä ÇXÆ ü Â1ÊÎÆ¬ñ½ïB@Tõ�ïùø!úñzø�õªÖ�'Xú
Notice that when the probabilities are equal, the scores are close. When the

probabilities are farther apart, the game is a rout. That squares with how we

think this function should behave.

We can continue this piecewise implementation, testing out each component

as we add it into the code. Software engineers call this process unit testing.

é0� ¯ ��±���y y|�0�REq�Vw�K �_w�± {1�o{���y�u�y $ ��� r1â�´

Testing each function independently makes it easier to spot errors. By the time

you get around to testing the entire program, chances are that everything will

work smoothly.

Separating concerns through a modular design makes it possible to design

sophisticated programs. Separating concerns through unit testing makes it pos-

sible to implement and debug sophisticated programs. Try these techniques for

yourself, and you’ll see that you are getting your programs working with less

overall effort and far less frustration.t�È � È�Ç Ø l���r_Ù���tGlnvxw5hji�s�r_ÙXtus
Finally, we can take a look at Denny Dibblebit’s question. Is it the nature of

racquetball that small differences in ability lead to large differences in the out-

come? Suppose Denny wins about 60% of his serves and his opponent is 5%

better. How often should Denny win the game? Here’s an example run where

Denny’s opponent always serves first.�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê»Ü2ÒvÊ�É½À�Â�Ä¨Æ½ÜÈÂ-�¨Â�Ê!Æ9Á2ÍPÌXÂ¨Ñ�í�É½Æ0Ä�Ë!Â2À�À ËXÆ0Ä0ÛXÆ�ÆÓÇÝÄ2Û�Á!À2Â�Ï¨Æ0ÌÎÜ7Ñ0Â�À2À2Æ0Ã�� Ú � ÂÓÇXÃ)�����"ï ��Å½ÆÝÂÓËÎÒ0À¨ÒÓÄ!Ò�Æ½Ü Á2ÍÝÆ¨Â¨Ñ�Å�½À�Â�Ï¨Æ0Ì¡Ò�Ü
Ò�Ç�Ã½Ò2Ñ0Â�Ä¨Æ2Ã;Ë�ÏàÂ<�Ì¨Á�Ë!ÂxË"Ò�À�ÒÓÄ2ÏòñzÂ Ç�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ Ö0ú Ä0Å!Â�Ä
Ä0ÅXÆ<!À2Â�Ï�Æ�Ì?ÛÎÒ1Ç(Ü;Ä�Å½Æ<½Á�Ò�Ç¨Ä?Û2ÅXÆ�Ç»Ü�Æ�Ì	9½Ò�Ç��nï Ø�À�Â�Ï¨Æ0Ì Ú Â2À�Û½Â�ÏÎÜ
Å!Â�Ü;Ä0ÅXÆPÍ½ÒÓÌ!ÜxÄÿÜÓÆ0Ì�9�Ænï
"2Å½Â�ÄÿÒ�Ü;Ä0Å½Æ<¨Ì�ÁÓË�ï ½À�Â�Ï¨Æ0Ì Ú Û!Ò�Ç(Ü ÂÿÜÓÆ0Ì�9�Æ�2 ïðø?'"2Å½Â�ÄÿÒ�Ü;Ä0Å½Æ<¨Ì�ÁÓË�ï ½À�Â�Ï¨Æ0Ì��9Û!Ò�Ç(Ü ÂÿÜÓÆ0Ì�9�Æ�2 ïðø�XÁ�Û7Ê"ÂxÇ�Ï ��Â1ÊÎÆXÜ Ä�Á¡Ü0Ò�Ê�É½À�Â�Ä�Æ�28'2Õ2Õ�Õ
ü Â1ÊÎÆXÜPÜ2ÒvÊ�É!À2Â�Ä¨Æ2Ã�÷#'2Õ2Õ�Õ"ÎÒ1Ç(Ü Í�Á0Ì Ú ÷¢Þ2Þ�ø2Õ ñzø2þnïèÔ!�Îú"ÎÒ1Ç(Ü Í�Á0Ì��c÷�Ö�ø�@�Õ ñzÞ�Ôoï0AK�Îú
Even though there is only a small difference in ability, Denny should win only

about one in three games. His chances of winning a three- or five-game match

are pretty slim. Apparently, Denny is winning his share. He should skip the

shrink and work harder on his game.

Speaking of matches, expanding this program to compute the probability of

winning multi-game matches would be a great exercise. Why don’t you give it a

try?

r1â�¹ s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
a«^|º N;U!bcRcg-«ªRT[XWZ�Gema RTSob_ehW_�G¦�Ro[

Top-down design is a very powerful technique for program design, but it is not

the only way to go about creating a program. Sometimes you may get stuck at

a step and not know how to go about refining it. Or the original specification

might be so complicated that refining it level-by-level is just too daunting.t�È�×�ÈSÊ ���0v_tuv_tH¤3Í3l�wm�-�*w§� Ø Í3l��0�3ÙÍ�ãi�k�i�Ù�vxÍ��îi*wmt
Another approach to design is to start with a simple version of a program or pro-

gram component and then try to gradually add features until it meets the full

specification. The initial stripped-down version is called a prototype. Prototyp-

ing often leads to a sort of spiral development process. Rather than taking the

entire problem and proceeding through specification, design, implementation,

and testing, we first design, implement, and test a prototype. Then new features

are designed, implemented, and tested. We make many mini-cycles through the

development process as the prototype is incrementally expanded into the final

program.

As an example, consider how we might have approached the racquetball

simulation. The very essence of the problem is simulating a game of racquetball.

We might have started with just the
Ü2ÒvÊ Ä Ç½Æ ü Â�Ê!Æ

function. Simplifying even

further, our prototype could assume that each player has a 50-50 chance of

winning any given point and just play a series of 30 rallies. That leaves the crux

of the problem, which is handling the awarding of points and change of service.

Here is an example prototype:

Í2Ì¨ÁxÊ¡Ì�ÂÓÇXÃ�ÁxÊ»ÒvÊ+XÁ0Ì�Ä?ÌXÂÓÇ�Ã¨Á�Ê
Ã¨Æ0ÍÿÜ2ÒvÊ Ä ÇXÆ ü Â�ÊÎÆ¬ñ1ú÷

Ü2Ñ�Á0Ì�Æ Ú ßÝÕ
Ü2Ñ�Á0Ì�Æ!�9ßÝÕ
Ü�Æ�Ì	9!Ò1Ç��Pß)� Ú �
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñzÞ2Õ!ú÷

Ò�ÍÿÜ�Æ�Ì	9½Ò�Ç��?ß�ß)� Ú �(÷
ÒÓÍPÌXÂxÇXÃ¨Á�Êcñ�ú . ï�'T÷

Ü0Ñ�Á0Ì¨Æ Ú ßÿÜ0Ñ�Á�Ì�Æ Ú á Ö
Æ�ÀXÜÓÆn÷

ÜÓÆ0Ì	9½Ò�Ç+�?ß��/�$�
Æ¨ÀXÜÓÆn÷

é2� ´2�CÑyèt�{1}�é"{ô� $ ����ã¨{ ³ t�� $ �0��{z� r1â�¿

ÒÓÍPÌXÂxÇXÃ¨Á�Êcñ�ú . ï�'T÷
Ü0Ñ�Á0Ì¨ÆK�9ßÿÜ0Ñ�Á�Ì�ÆK�Pá Ö

Æ�ÀXÜÓÆn÷
ÜÓÆ0Ì	9½Ò�Ç+�?ß�� Ú ��Ì!Ò1Ç�ÄÿÜ0Ñ�Á�Ì�Æ Ú õ Ü2Ñ�Á0Ì¨ÆK�

Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷ Ü0Ò�Ê Ä Ç½Æ ü Â�Ê!Ææñ�ú
You can see that I have added a print statement at the bottom of the loop.

Printing out the scores as we go along allows us to see that the prototype is

playing a game. Here is some example output:Ö;Õ
Ö;Õ
ÔPÕ
ï�ï2ï
þ9þ
þ�A
It’s not pretty, but it shows that we have gotten the scoring and change of service

working.

We could then work on augmenting the program in phases. Here’s a project

plan:

Phase 1 Initial prototype. Play 30 rallies where the server always has a 50%

chance of winning. Print out the scores after each serve.

Phase 2 Add two parameters to represent different probabilities for the two

players.

Phase 3 Play the game until one of the players reaches 15 points. At this point,

we have a working simulation of a single game.

Phase 4 Expand to play multiple games. The output is the count of games won

by each player.

Phase 5 Build the complete program. Add interactive inputs and a nicely for-

matted report of the results.

Spiral development is particularly useful when dealing with new or unfamil-

iar features or technologies. It’s helpful to “get your hands dirty” with a quick

prototype just to see what you can do. As a novice programmer, everything may

seem new to you, so prototyping might prove useful. If full-blown top-down

design does not seem to be working for you, try some spiral development.

r1â�â s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���t�È�×�È�Ç ÿ �i§Ú �Bt v�' � i�s�l���w
It is important to note that spiral development is not an alternative to top-down

design. Rather, they are complementary approaches. When designing the pro-

totype, you will still use top-down techniques. In Chapter 12, you will see yet

another approach called object-oriented design.

There is no “one true way” of design. The truth is that good design is as

much a creative process as a science. Designs can be meticulously analyzed

after the fact, but there are no hard and fast rules for producing a design. The

best software designers seem to employ a variety of techniques. You can learn

about techniques by reading books like this one, but books can’t teach how and

when to apply them. That you have to learn for yourself through experience. In

design, as in almost anything, the key to success is practice.

a«^�ê �b�i�¤nU�Rcg © ¦§�¥� ing1í
\ Computer simulation is a powerful technique for answering questions about

real-world processes. Simulation techniques that rely on probabilistic or

chance events are known as Monte Carlo simulations. Computers use

pseudorandom numbers to perform Monte Carlo simulations.

\ Top-down design is a technique for designing complex programs. The

basic steps are:

1. Express an algorithm in terms of smaller problems.

2. Develop an interface for each of the smaller problems.

3. Express the algorithm in terms of its interfaces with the smaller prob-

lems.

4. Repeat the process for each of the smaller problems.

\ Top-down design was illustrated by the development of a program to sim-

ulate the game of racquetball.

\ Unit-testing is the process of trying out each component of a larger pro-

gram independently. Unit-testing and bottom-up implementation are use-

ful in coding complex programs.

\ Spiral development is the process of first creating a simple version (proto-

type) of a complex program and gradually adding more features. Prototyp-

é2� ¿2�+����{1} ³�$ ��{ô� r1â�é

ing and spiral development are often useful in conjunction with top-down

design.

\ Design is a combination of art and science. Practice is the best way to

become a better designer.

a«^IH egfTRcg1SæW�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. Computers can generate truly random numbers.

2. The Python
ÌXÂxÇXÃ�ÁxÊ

function returns a pseudorandom int.

3. Top-down design is also called stepwise refinement.

4. In top-down design, the main algorithm is written in terms of functions

that don’t yet exist.

5. The
Ê"Â¨Ò�Ç

function is at the top of a functional structure chart.

6. A top-down design is best implemented from the top down.

7. Unit-testing is the process of trying out a component of a larger program

in isolation.

8. A developer should use either top-down or spiral design, but not both.

9. The best way to learn about design is to read design books.

10. A simplified version of a program is called a simulation.

� |��Q�!�����X}1�j�?������}
1. Which expression is true approximately 66% of the time?

a)
ÌXÂxÇXÃ¨Á�Êcñ�ú � ßÝø2ø

c)
ÌXÂÓÇ�Ã¨Á�Êcñ1ú . ø�ø

b)
Ì�ÂÓÇ�Ã¨ÁxÊ�ñ1ú . Õoïðø2ø d)

Ì�ÂÓÇ�Ã¨ÁxÊ�ñ1ú � ßÝÕnïùø�ø

r1é�% s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
2. Which of the following is not a step in pure top-down design?

a) repeat the process on smaller problems

b) detail the algorithm in terms of its interfaces with smaller problems

c) construct a simplified prototype of the system

d) express the algorithm in terms of smaller problems

3. A graphical view of the dependencies among components of a design is

called a(n)

a) flowchart b) prototype c) interface d) structure chart

4. The arrows in a module hierarchy chart depict

a) information flow b) control flow c) sticky-note attachment

d) one-way streets

5. In top-down design, the subcomponents of the design are

a) objects b) loops c) functions d) programs

6. A simulation that uses probabilistic events is called

a) Monte-Carlo b) pseudorandom c) Monty-Python d) chaotic

7. The initial version of a system used in spiral development is called a

a) starter kit b) prototype c) mock-up d) beta-version

8. In the racquetball simulation, what data type is returned by the
��Â�Ê!Æ Ä 9�Æ0Ì

function?

a) bool b) int c) string d) float

9. How is a percent sign indicated in a string formatting template?

a)
�

b)
¹I�

c)
�C�

d)
¹I�C�

10. The easiest place in a system structure to start unit-testing is

a) the top b) the bottom c) the middle d) the
Ê"Â¨Ò�Ç

function

� ���!��|?�&�:���m�
1. Draw the top levels of a structure chart for a program having the followingÊ"Â�Ò1Ç

function:

Ã¨Æ2Í ÊÎÂ�Ò1Çnñ1ú÷¨Ì!Ò1Ç�Ä3¢�Ç�Ä2Ì�Áæñ�ú
À0Æ�Ç+�2Ä0Å�õ ÛÎÒÓÃ2Ä�ÅÐß �¨Æ0ÄK�ÎÒvÊÎÆ�Ç"Ü2Ò�Á�Ç(Ü(ñ1ú
Â1Ê½Ä�Ð�Æ�Æ0Ã¨Æ0Ã?ßÿÑ�Á�Ê+�É¨Ä�Æ Ú ÊÎÁÓÉ�Ç¨ÄTñ�À0Æ�Ç+�2Ä0Å�õùÛ!Ò�Ã�Ä0Å�ú

é2� ¿2�+����{1} ³�$ ��{ô� r1é0~

¨Ì!Ò1Ç�Ä���Æ�XÁ0Ì�Ä�ñ�À0Æ�Ç��0Ä0Å�õ Û!Ò�Ã0Ä0Åcõ�Â�Ê½Ä�Ð�Æ2Æ2Ã¨Æ0ÃÎú
2. Write an expression using either

ÌXÂÓÇ�Ã¨Á�Ê
or
Ì�ÂÓÇXÃ0ÌXÂxÇ��¨Æ

to calculate the

following:

\ A random int in the range 0–10\ A random float in the range -0.5–0.5\ A random number representing the roll of a six-sided die\ A random number representing the sum resulting from rolling two

six-sided dice\ A random float in the range -10.0–10.0

3. In your own words, describe what factors might lead a designer to choose

spiral development over a top-down approach.

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. Revise the racquetball simulation so that it keeps track of results for best

of ø game matches.

2. Revise the racquetball simulation to take shutouts into account. Your up-

dated version should report for both players the number of wins, percent-

age of wins, number of shutouts, and percentage of wins that are shutouts.

3. Design and implement a simulation of the game of volleyball. Normal

volleyball is played like racquetball, in that a team can only score points

when it is serving. Games are played to 15, but must be won by at least

two points.

4. College volleyball is now played using rally scoring. In this system, the

team that wins a rally is awarded a point, even if they were not the serv-

ing team. Games are played to a score of 30. Design and implement a

simulation of volleyball using rally scoring.

5. Design and implement a system that compares regular volleyball games

to those using rally scoring. Your program should be able to investigate

whether rally scoring magnifies, reduces, or has no effect on the relative

advantage enjoyed by the better team.

6. Design and implement a simulation of some other racquet sport (e.g., ten-

nis or table tennis).

r1é�r s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
7. Craps is a dice game played at many casinos. A player rolls a pair of normal

six-sided dice. If the initial roll is 2, 3, or 12, the player loses. If the roll is

7 or 11, the player wins. Any other initial roll causes the player to “roll for

point.” That is, the player keeps rolling the dice until either rolling a 7 or

re-rolling the value of the initial roll. If the player re-rolls the initial value

before rolling a 7, it’s a win. Rolling a 7 first is a loss.

Write a program to simulate multiple games of craps and estimate the

probability that the player wins. For example, if the player wins 249 out of

500 games, then the estimated probability of winning is ��ZCP�ý�N�M�M º M?D ZCP��
8. Blackjack (twenty-one) is a casino game played with cards. The goal of the

game is to draw cards that total as close to 21 points as possible without

going over. All face cards count as 10 points, aces count as 1 or 11, and all

other cards count their numeric value.

The game is played against a dealer. The player tries to get closer to

21 (without going over) than the dealer. If the dealer busts (goes over

21), the player automatically wins (provided the player had not already

busted). The dealer must always take cards according to a fixed set of

rules. The dealer takes cards until he or she achieves a total of at least

17. If the dealer’s hand contains an ace, it will be counted as 11 when

that results in a total between 17 and 21 inclusive; otherwise, the ace is

counted as 1.

Write a program that simulates multiple games of blackjack and estimates

the probability that the dealer will bust. Hints: treat the deck of cards as

infinite (casinos use a “shoe” containing many decks). You do not need to

keep track of the cards in the hand, just the total so far (treating an ace as

1) and a bool variable
Å!ÂXÜ Ú Ñ�Æ

that tells whether or not the hand contains

an ace. A hand containing an ace should have 10 points added to the

total exactly when doing so would produce a stopping total (something

between 17 and 21 inclusive).

9. A blackjack dealer always starts with one card showing. It would be useful

for a player to know the dealer’s bust probability (see previous problem)

for each possible starting value. Write a simulation program that runs

multiple hands of blackjack for each possible starting value (ace–10) and

estimates the probability that the dealer busts for each starting value.

10. Monte Carlo techniques can be used to estimate the value of pi. Suppose

you have a round dart board that just fits inside of a square cabinet. If

é2� ¿2�+����{1} ³�$ ��{ô� r1é��

you throw darts randomly, the proportion that hit the dart board vs. those

that hit the cabinet (in the corners not covered by the board) will be de-

termined by the relative area of the dart board and the cabinet. If ø is the

total number of darts randomly thrown (that land within the confines of

the cabinet), and k is the number that hit the board, it is easy to show that&xw ZmR kø T
Write a program that accepts the “number of darts” as an input and then

performs a simulation to estimate
&

. Hint: you can use
Ô?;ÓÌ�ÂÓÇXÃ�ÁxÊ�ñ1úè�ÿÖ

to generate the] and ` coordinates of a random point inside a 2x2 square

centered at RSM�GÒMCT . The point lies inside the inscribed circle if] µ Â ` µzy U .
11. Write a program that performs a simulation to estimate the probability of

rolling five-of-a-kind in a single roll of five six-sided dice.

12. A random walk is a particular kind of probabilistic simulation that models

certain statistical systems such as the Brownian motion of molecules. You

can think of a one-dimensional random walk in terms of coin flipping.

Suppose you are standing on a very long straight sidewalk that extends

both in front of and behind you. You flip a coin. If it comes up heads, you

take a step forward; tails means to take a step backward.

Suppose you take a random walk of ø steps. On average, how many steps

away from the starting point will you end up? Write a program to help

you investigate this question.

13. Suppose you are doing a random walk (see previous problem) on the

blocks of a city street. At each “step” you choose to walk one block (at

random) either forward, backward, left or right. In ø steps, how far do

you expect to be from your starting point? Write a program to help an-

swer this question.

14. Write a graphical program to trace a random walk (see previous two prob-

lems) in two dimensions. In this simulation you should allow the step to

be taken in any direction. You can generate a random direction as an angle

off of the] axis.

ÂÓÇ+��À0Æ?ß9ÌXÂÓÇ�Ã¨Á�Êcñ1ú8;PÔ5; ÊÎÂ�Ä�Å�ï7ÎÒ
The new] and ` positions are then given by these formulas:

r1é ¯ s"tvuxwzy|{1}!é0�îb $ ����± u�y $ ����ux�v� é"{ô� $ ���
�Ðß��Ýá¡Ñ�Á½Ü�ñzÂÓÇ+��À2Æ½ú
ÏàßPÏÐáÿÜ0Ò�ÇnñzÂÓÇ+��À2Æ½ú
The program should take the number of steps as an input. Start your

walker at the center of a 100x100 grid and draw a line that traces the

walk as it progresses.

15. (Advanced) Here is a puzzle problem that can be solved with either some

fancy analytic geometry (calculus) or a (relatively) simple simulation.

Suppose you are located at the exact center of a cube. If you could look

all around you in every direction, each wall of the cube would occupy ¶l of

your field of vision. Suppose you move toward one of the walls so that you

are now half-way between it and the center of the cube. What fraction of

your field of vision is now taken up by the closest wall? Hint: use a Monte

Carlo simulation that repeatedly “looks” in a random direction and counts

how many times it sees the wall.

3547698;:=<?> @&{ �
! � ¥"� L � ©0H	ªf
ò

NPO!Q�RTSVUXWZYTRT[
\ To appreciate how defining new classes can provide structure for a com-

plex program.

\ To be able to read and write Python class definitions.

\ To understand the concept of encapsulation and how it contributes to

building modular and maintainable programs.

\ To be able to write programs involving simple class definitions.

\ To be able to write interactive graphics programs involving novel (pro-

grammer designed) widgets.

]dc«^`] P9¦cW�S|QQ? RTYoW�R�� �hìfNPOÎQ�RTS�U�[

In the last three chapters, we have developed techniques for structuring the

computations of a program. In the next few chapters, we will take a look at

techniques for structuring the data that our programs use. You already know

that objects are one important tool for managing complex data. So far, our

programs have made use of objects created from pre-defined classes such as×XÒxÌ!Ñ�À2Æ
. In this chapter, you will learn how to write your own classes so that you

can create novel objects.

Remember back in Chapter 5 I defined an object as an active data type that

knows stuff and can do stuff. More precisely, an object consists of

1. A collection of related information. , ®

r1é�¹ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
2. A set of operations to manipulate that information.

The information is stored inside the object in instance variables. The operations,

called methods, are functions that “live” inside the object. Collectively, the in-

stance variables and methods are called the attributes of an object.

To take a now familiar example, a
×XÒÓÌ½Ñ0À0Æ

object will have instance variables

such as
Ñ�Æ�Ç¨Ä�Æ0Ì

, which remembers the center point of the circle, and
ÌXÂ�Ã½Ò�É"Ü

,

which stores the length of the circle’s radius. The methods of the circle will

need this data to perform actions. The
Ã2Ì�Â�Û

method examines the
Ñ�Æ�Ç�Ä¨Æ0Ì

andÌXÂ�Ã½Ò1É(Ü
to decide which pixels in a window should be colored. The

Ê!ÁC9¨Æ
method

will change the value of
Ñ�ÆÓÇ�Ä�Æ�Ì

to reflect the new position of the circle.

Recall that every object is said to be an instance of some class. The class of

the object determines what attributes the object will have. Basically a class is

a description of what its instances will know and do. New objects are created

from a class by invoking a constructor. You can think of the class itself as a sort

of factory for stamping out new instances.

Consider making a new circle object:

Ê½Ï¨×XÒxÌ!Ñ0À0Æ?ßÝ×XÒxÌ!Ñ�À2ÆæñèØ�Á�Ò�Ç�Ä�ñzÕ�õ`Õ!ú�õ Ô2Õ!ú
×XÒxÌ!Ñ�À2Æ

, the name of the class, is used to invoke the constructor. This state-

ment creates a new
×XÒÓÌ½Ñ0À0Æ

instance and stores a reference to it in the variableÊ½Ï¨×XÒxÌ!Ñ0À0Æ
. The parameters to the constructor are used to initialize some of the

instance variables (namely
Ñ�Æ�Ç�Ä¨Æ0Ì

and
ÌXÂ�Ã½Ò1É(Ü

) inside of
Ê½Ï�×�ÒÓÌ½Ñ0À2Æ

. Once the

instance has been created, it is manipulated by calling on its methods:

Ê½Ï¨×XÒxÌ!Ñ0À0ÆnïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
Ê½Ï¨×XÒxÌ!Ñ0À0ÆnïZÊÎÁC9¨Ææñ`Ã	�oõ Ã0Ï"ú
ï�ï2ï
]dc«^�� egfTi_�¥¤_j Rm��g1�h�Gg1i_�½²; ¢i_e_e��Ge�Oci�j j

Before launching into a detailed discussion of how to write your own classes,

let’s take a short detour to see how useful new classes can be.

Ê�}�È�Ç�ÈSÊ ���0v_���B�*� Ø Í�im�?l(u{���mtGlnvxw
Suppose we want to write a program that simulates the flight of a cannonball (or

any other projectile such as a bullet, baseball, or shot put). We are particularly

interested in finding out how far the cannonball will travel when fired at various

~&%0� r0�+����ux��w�± {£�½}��1�0}�ux��´�s½ux�������I
vu�± ± r1é�¿

launch angles and initial velocities. The input to the program will be the launch

angle (in degrees), the initial velocity (in meters per second), and the initial

height (in meters) of the cannonball. The output will be the distance that the

projectile travels before striking the ground (in meters).

If we ignore the effects of wind resistance and assume that the cannonball

stays close to earth’s surface (i.e., we’re not trying to put it into orbit), this is

a relatively simple classical physics problem. The acceleration of gravity near

the earth’s surface is about 9.8 meters per second, per second. That means if an

object is thrown upward at a speed of 20 meters per second, after one second

has passed, its upward speed will have slowed to ��M V�P	D�� º U�M?D � meters per

second. After another second, the speed will be only M?D Z meters per second, and

shortly thereafter it will start coming back down.

For those who know a little bit of calculus, it’s not hard to derive a for-

mula that gives the position of our cannonball at any given moment in its flight.

Rather than take the calculus approach, however, our program will use simu-

lation to track the cannonball moment by moment. Using just a bit of simple

trigonometry to get started, along with the obvious relationship that the dis-

tance an object travels in a given amount of time is equal to its rate times the

amount of time (
b º ö c), we can solve this problem algorithmically.

Ê�}�È�Ç�È�Ç � i�s�l���w3l�wm�<t� 3i-���0v_���B�*�
Let’s start by designing an algorithm for this problem. Given the problem state-

ment, it’s clear that we need to consider the flight of the cannonball in two

dimensions: height, so we know when it hits the ground; and distance, to keep

track of how far it goes. We can think of the position of the cannonball as a pointR^]�G ` T in a 2D graph where the value of ` gives the height above the ground and

the value of] gives the distance from the starting point.

Our simulation will have to update the position of the cannonball to account

for its flight. Suppose the ball starts at position RSM�GÒMCT , and we want to check its

position, say, every tenth of a second. In that interval, it will have moved some

distance upward (positive `) and some distance forward (positive]). The exact

distance in each dimension is determined by its velocity in that direction.

Separating out the] and ` components of the velocity makes the problem

easier. Since we are ignoring wind resistance, the] velocity remains constant for

the entire flight. However, the ` velocity changes over time due to the influence

of gravity. In fact, the ` velocity will start out being positive and then become

negative as the cannonball starts back down.

r1é�â s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Given this analysis, it’s pretty clear what our simulation will have to do. Here

is a rough outline:¢1Ç��É¨ÄPÄ0ÅXÆ¡Ü2Ò�Ê¨É!À2Â�Ä!Ò�Á�Ç�!Â�Ì�Â�Ê!Æ0Ä�Æ�ÌÎÜ¬÷lÂÓÇ+��À0ÆTõ°9¨Æ¨À2Á�Ñ�ÒxÄ�Ïnõ Å½Æ�Ò���Å¨Änõ�Ò1Ç�Ä¨Æ0Ì	9�Â�ÀTï
×¨Â2À�Ñ1É!À�Â�Ä�Æ Ä0Å½ÆàÒ1Ç"ÒxÄ!Ò0Â2Àè½ÁXÜ2ÒxÄ!Ò�ÁÓÇàÁ2ÍPÄ�Å½ÆàÑ�ÂÓÇ�ÇXÁ�Ç2Ë!Â�À2Ào÷ ��XÁ½Üõ¢Ï�½ÁXÜ
×¨Â2À�Ñ1É!À�Â�Ä�Æ Ä0Å½ÆàÒ1Ç"ÒxÄ!Ò0Â2À<9�Æ�À2Á�Ñ�ÒÓÄ½Ò�ÆXÜ;Á2ÍPÄ�Å½ÆàÑ�ÂÓÇ�ÇXÁ�Ç2Ë!Â�À2Ào÷ ��9�Æ�À�õlÏ�9�Æ�À"2ÅÎÒ0À0Æ7Ä0ÅXÆàÑ0ÂÓÇ2Ç½ÁÓÇ�Ë!Â2À�ÀPÒ¨Ü9ÜxÄ½Ò0À2À?Í�À�Ï½Ò�Ç+��÷

É	�Ã�Â�Ä¨Æ7Ä0ÅXÆ-9XÂ2ÀÓÉ½ÆXÜ Á2Í���½ÁXÜõ¢ÏCXÁ½ÜVõ ÂÓÇ�ÃPÏ	9�Æ�À7Í¨Á�ÌÿÒ�Ç¨Ä�Æ0Ì�9XÂ2ÀÐÜ�Æ�Ñ�Á�Ç�Ã!Ü
Í�É�Ì2Ä0ÅXÆ0Ì¡Ò1Ç�Ä�ÁÈÄ0Å½ÆPÍ¨À�Ò���Å�ÄÄ É¨ÄC2É�ÄPÄ�Å½ÆPÃ½Ò�ÜxÄ�ÂÓÇ"Ñ�Æ7Ä�Ì�Â�9¨Æ¨À2Æ0Ã9Â�Ü8��½ÁXÜ

Let’s turn this into a program using stepwise refinement.

The first line of the algorithm is straightforward. We just need an appropriate

sequence of input statements. Here’s a start:

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ÂÓÇ+��À2Æ7ß Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì7Ä�Å½ÆÝÀ2ÂÓÉ�ÇÎÑ�Å¡ÂxÇ��¨À2ÆòñvÒ1ÇÐÃ¨ÆC�2Ì¨Æ�Æ½Ü�ú¬÷��Óú9�Æ�À?ß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆàÒ1Ç"ÒÓÄ½Ò0Â2À89�Æ�À2Á�Ñ�ÒÓÄ2Ï ñvÒ1Ç?ÊÎÆ�Ä�Æ0Ì!Ü���Ü�ÆXÑ¨ú¬÷Y��ú
Å½ÕPßÿÒ�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÄ0ÅXÆàÒ�ÇÎÒÓÄ!Ò�Â�À;ÅXÆXÒ���Å�ÄòñvÒ�Ç?Ê!Æ0Ä¨Æ0ÌÎÜ�ú¬÷ü��ú
Ä!ÒvÊÎÆPß¡Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÄ0ÅXÆ?Ä!ÒvÊÎÆàÒ�Ç¨Ä�Æ�Ì	9XÂ2À;Ë½Æ�Ä2Û�Æ�Æ�Ç�½ÁXÜ2ÒÓÄ½Ò�ÁÓÇ Ñ0Â2À�Ñ�É½À�Â�Ä!Ò�ÁÓÇ(Ü¬÷ü�Óú

Calculating the initial position for the cannonball is also easy. It will start at

distance 0 and height
ÅXÕ

. We just need a couple of assignment statements.��½ÁXÜ ßÝÕnïùÕ
ÏC½ÁXÜ ß7Å½Õ

Next we need to calculate the] and ` components of the initial velocity. We’ll

need a little high-school trigonometry. (See, they told you you’d use that some

day.) If we consider the initial velocity as consisting of some amount of change

in ` and some amount of change in] , then these three components (velocity,] -velocity and ` -velocity) form a right triangle. Figure
���

.
�

illustrates the situ-

ation. If we know the magnitude of the velocity and the launch angle (labeledcMk ' c ú , because the Greek letter ~ is often used as the measure of angles), we can

easily calculate the magnitude of]�� ' û by the equation]�� ' û º � ' û_^�ù!÷ c ` -/.!(clk ' c ú .A similar formula (using
(3)5+ clk ' c ú) provides ` � ' û .Even if you don’t completely understand the trigonometry, the important

thing is that we can translate these formulas into Python code. There’s still one

subtle issue to consider. Our input angle is in degrees, and the Python
Ê"Â�Ä�Å

library uses radian measures. We’ll have to convert our angle before applying

the formulas. There are � & radians in a circle (360 degrees); so clk ' c ú º���� � J n���p¶I»�¹ .

These three formulas give us the code for computing the initial velocities:

~&%0� r0�+����ux��w�± {£�½}��1�0}�ux��´�s½ux�������I
vu�± ± r1é�é

yvel = velocity * sin(theta)vel
oci

ty

theta

xvel = velocity * cos(theta)

Figure �3� . � : Finding the x and y components of velocity.

ÖKÜºÔ!Öéâ�ç�W§â!ÖKÜ æ ^ Ú���â�ì�Û�ÓPÔf�eømîCïUælï� \�ÔCÓ�ç�\�ÔCÓ àéß Ú�ÖPØv�dWjâ�ÖKÜ�æ ß!à å ê*Ö!ÜºÔ!ÖéâºòØ�\�ÔCÓ�ç�\�ÔCÓ àéß Ú�ÖPØv�dWjâ�ÖKÜ�æ3åPÚíì�ê*Ö!ÜºÔ!Öéâºò
That brings us to the main loop in our program. We want to keep updating

the position and velocity of the cannonball until it reaches the ground. We can

do this by examining the value of Ø ^ºà å .áPÜjÚ!ÓPÔ�Ø ^ºà å��Kç¡ï�æqïba
I used ��� as the relationship so that we can start with the cannonball on the

ground (= 0) and still get the loop going. The loop will quit as soon as the value

of Ø ^éà å dips just below 0, indicating the cannonball has embedded itself slightly

in the ground.

Now we arrive at the crux of the simulation. Each time we go through the

loop, we want to update the state of the cannonball to move it ÖºÚ$W<Ô seconds far-

ther in its flight. Let’s start by considering movement in the horizontal direction.

Since our specification says that we can ignore wind resistance, the horizontal

speed of the cannonball will remain constant and is given by the value of � \�ÔCÓ .
As a concrete example, suppose the ball is traveling at 30 meters per second

and is currently 50 meters from the firing point. In another second, it will go

30 more meters and be 80 meters from the firing point. If the interval is only

0.1 second (rather than a full second), then the cannonball will only fly another�5���3�����1� � �
meters and be at a distance of � � meters. You can see that the new

distance traveled is always given by ÖºÚ$W§Ôf� � \�ÔCÓ . To update the horizontal

position, we need just one statement:� ^ºà å®ç � ^ºà å���Ö<Ú�W§ÔZ� � \�Ô�Ó

�G%�% s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
The situation for the vertical component is slightly more complicated, since

gravity causes the ` -velocity to change over time. Each second,
Ï	9¨Æ¨À

must de-

crease by 9.8 meters per second, the acceleration of gravity. In 0.1 seconds the

velocity will decrease by M?D�U�R>P	D���T º M?DQP�� meters per second. The new velocity at

the end of the interval is calculated as

Ï�9�Æ�À!Ö ßPÏ	9¨Æ¨À��7Ä½Ò�ÊÎÆ(;7ýoï0A
To calculate how far the cannonball travels during this interval, we need

to know its average vertical velocity. Since the acceleration due to gravity is

constant, the average velocity will just be the average of the starting and ending

velocities:
ñèÏ	9¨Æ¨À0á0Ï	9¨Æ¨À!Ö0ú��2ÔoïðÕ

. Multiplying this average velocity by the amount

of time in the interval gives us the change in height.

Here is the completed loop:

Û2Å"Ò�À2Æ?Ï�9�Æ¨À � ßÝÕnïùÕn÷��½ÁXÜ ß���½ÁXÜ áPÄ!ÒvÊÎÆ(;<��9¨Æ¨À
Ï�9�Æ�À!Ö ßPÏ	9¨Æ¨À��7Ä½Ò�ÊÎÆ(;7ýoï0A
Ï�½ÁXÜ ßPÏC½ÁXÜ áPÄ!ÒvÊÎÆ(;¥ñ`Ï�9�Æ�À?áPÏ	9�Æ�À!Ö0ú���ÔTïðÕ
Ï�9�Æ�À?ßPÏ	9�Æ�À!Ö

Notice how the velocity at the end of the time interval is first stored in the

temporary variable
Ï�9�Æ�À!Ö

. This is done to preserve the initial
Ï�9�Æ¨À

so that the

average velocity can be computed from the two values. Finally, the value of
Ï	9¨Æ¨À

is assigned its value at the end of the loop. This represents the correct vertical

velocity of the cannonball at the end of the interval.

The last step of our program simply outputs the distance traveled. Adding

this step gives us the complete program.

ó¡Ñ�Ë½Â�À2À!Öï>�Ï
Í2Ì¨ÁxÊ9ÊÎÂ�Ä0ÅÿÒ�Ê+XÁ0Ì2Ä�"Òõ�Ü2Ò�Ç�õ Ñ�ÁXÜ
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ÂÓÇ+��À2Æ7ß Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì7Ä�Å½ÆÝÀ2ÂÓÉ�ÇÎÑ�Å¡ÂxÇ��¨À2ÆòñvÒ1ÇÐÃ¨ÆC�2Ì¨Æ�Æ½Ü�ú¬÷��Óú9�Æ�À?ß¡Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?Ä�Å½ÆàÒ1Ç"ÒÓÄ½Ò0Â2À89�Æ�À2Á�Ñ�ÒÓÄ2Ï ñvÒ1Ç?ÊÎÆ�Ä�Æ0Ì!Ü���Ü�ÆXÑ¨ú¬÷Y��ú
Å½ÕPßÿÒ�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÄ0ÅXÆàÒ�ÇÎÒÓÄ!Ò�Â�À;ÅXÆXÒ���Å�ÄòñvÒ�Ç?Ê!Æ0Ä¨Æ0ÌÎÜ�ú¬÷ü��ú
Ä!ÒvÊÎÆPß¡Ò�Ç��É¨ÄTñ�� / Ç¨Ä�Æ0ÌÈÄ0ÅXÆ?Ä!ÒvÊÎÆàÒ�Ç¨Ä�Æ�Ì	9XÂ2À;Ë½Æ�Ä2Û�Æ�Æ�Ç�½ÁXÜ2ÒÓÄ½Ò�ÁÓÇ Ñ0Â2À�Ñ�É½À�Â�Ä!Ò�ÁÓÇ(Ü¬÷ü�Óú
ó¡Ñ�ÁÓÇ+9�Æ�Ì�ÄÐÂxÇ��¨À2Æ?Ä�Á?Ì�Â0ÃXÒ0ÂÓÇ"Ü
Ä0ÅXÆ0ÄXÂÈß ñzÂÓÇ+��À2Æ ;§"Ò�ú��!Ö�A�ÕnïùÕ

~&%0� r0�+����ux��w�± {£�½}��1�0}�ux��´�s½ux�������I
vu�± ± �G%0~
óÿÜ�Æ�Ä9Ä0Å½ÆàÒ1Ç"ÒxÄ!Ò0Â2Àè½ÁXÜ2ÒxÄ!Ò�ÁÓÇ¡ÂÓÇ�Ã-9�Æ�À2Á�Ñ�ÒÓÄ½Ò�ÆXÜ7Ò�Ç¡�ÐÂxÇXÃPÏÝÃ½ÒxÌ�Æ�ÑÓÄ!Ò�Á�Ç"Ü��XÁ½Ü ßÝÕ
ÏCXÁ½Ü ß7Å½Õ��9¨Æ¨À?ß69�Æ�À5;9Ñ�ÁXÜ�ñ`Ä�Å½Æ�ÄXÂ½ú
Ï	9¨Æ¨À?ß69�Æ�À5;ÝÜ2Ò1Çnñ`Ä�Å½Æ�ÄXÂ½ú
óÐÀ2Á2Á�9É�Ç¨Ä!Ò�ÀÈÄ0ÅXÆÈË!Â�À2À Å"ÒxÄÎÜ;Ä0ÅXÆ-�2Ì¨Á�É2ÇXÃ
Û2ÅÎÒ0À2ÆÈÏC½ÁXÜ � ßÝÕo÷ó¡Ñ0Â�À¨Ñ�É½À�Â�Ä¨Æ8½ÁXÜ2ÒxÄ!Ò�ÁÓÇàÂxÇXÃ69�Æ�À2Á�Ñ�ÒÓÄ2Ï¡Ò�ÇÐÄ½Ò�Ê!ÆàÜ�Æ�Ñ�Á�Ç�Ã!Ü��½ÁXÜ;ß ��XÁ½Ü áPÄ!ÒvÊÎÆ(;<�C9�Æ¨À

Ï	9�Æ�À!Ö ß9Ï�9�Æ¨À-�PÄ½Ò�Ê!Æ5;?ýnï0A
ÏC½ÁXÜ;ß9ÏCXÁ½Ü áPÄ!ÒvÊÎÆ(;¥ñèÏ	9�Æ�À7á9Ï	9¨Æ¨À!Ö0ú��2ÔoïðÕ
Ï	9�Æ�À7ß9Ï	9¨Æ¨À!Ö

�Ì½Ò�Ç�Ä��í´ÓÇC�ÎÒ�ÜxÄXÂxÇ"Ñ�ÆÈÄ�Ì�Â�9¨Æ¨À2Æ0Ã�÷ �¨Õnï�Ö�Í Ê!Æ0Ä�Æ�ÌÎÜ¬ïG� �	ñÒ��½ÁXÜ¨ú
Ê�}�È�Ç�È�É ¶ v£�xr*Ù��m��l���l�wm�6t� �i-���Bv_���0�*�

You may have noticed during the design discussion that I employed stepwise

refinement (top-down design) to develop the program, but I did not divide the

program into separate functions. We are going to modularize the program in

two different ways. First, we’ll use functions (á la top-down design).

While the final program is not too long, it is fairly complex for its length.

One cause of the complexity is that it uses ten variables, and that is a lot for the

reader to keep track of. Let’s try dividing the program into functional pieces to

see if that helps. Here’s a version of the main algorithm using helper functions:

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ÂÓÇ+��À2Æ�õ°9�Æ�À�õ ÅXÕTõ¢Ä!ÒvÊÎÆ?ß ��Æ0Ä3¢�Ç	2É�ÄÎÜ(ñ1ú��XÁ½Üõ ÏC½ÁXÜ ßÝÕTõlÅ½Õ��9¨Æ¨À�õ Ï	9�Æ�À?ß��¨Æ�Ä�ÐP�¨×�Á�Ê+½ÁÓÇ½ÆÓÇ�ÄÎÜ(ñÒ9¨Æ¨À2Á�Ñ�ÒxÄ�Ïnõ ÂÓÇ��¨À2Æ½ú
Û2ÅÎÒ0À2ÆÈÏC½ÁXÜ � ßÝÕo÷��½ÁXÜõlÏ�½ÁXÜõ¢Ï	9¨Æ¨À7ß?É�XÃ�Â�Ä�Æ2×¨ÂÓÇ2Ç½ÁÓÇ��XÂ2À�Àñ`Ä!ÒvÊÎÆ�õ ��XÁ½Üõ¢Ï�½ÁXÜõç�C9�Æ¨ÀæõlÏ	9¨Æ¨ÀXú�Ì½Ò�Ç�Ä��í´ÓÇC�ÎÒ�ÜxÄXÂxÇ"Ñ�ÆÈÄ�Ì�Â�9¨Æ¨À2Æ0Ã�÷ �¨Õnï�Ö�Í Ê!Æ0Ä�Æ�ÌÎÜ¬ïG� �	ñÒ��½ÁXÜ¨ú

It should be obvious what each of these functions does based on their names

and the original program code. You might take a couple of minutes to code up

the three helper functions.

�G%�r s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
This second version of the main algorithm is certainly more concise. The

number of variables has been reduced to eight, since
Ä0Å½Æ�ÄXÂ

and
Ï�9�Æ�À!Ö

have been

eliminated from the main algorithm. Do you see where they went? The value

of
Ä0ÅXÆ0ÄXÂ

is only needed locally inside of
��Æ0Ä�ÐK��×2ÁxÊ+XÁ�ÇXÆ�Ç�Ä!Ü

. Similarly,
Ï�9�Æ¨À½Ö

is

now local to
É	XÃ¨Â�Ä¨Æ�×¨ÂxÇ�ÇXÁ�Ç���Â�À2À

. Being able to hide some of the intermediate

variables is a major benefit of the separation of concerns provided by top-down

design.

Even this version seems overly complicated. Look especially at the loop.

Keeping track of the state of the cannonball requires four pieces of information,

three of which must change from moment to moment. All four variables along

with the value of
Ä½Ò�Ê!Æ

are needed to compute the new values of the three that

change. That results in an ugly function call having five parameters and three

return values. An explosion of parameters is often an indication that there might

be a better way to organize a program. Let’s try another approach.

The original problem specification itself suggests a better way to look at the

variables in our program. There is a single real-world cannonball object, but

describing it in the current program requires four pieces of information:
��XÁ½Ü

,ÏCXÁ½Ü
,
�C9�Æ�À

, and
Ï	9¨Æ¨À

. Suppose we had a
Ø�Ì�Á ï Æ�ÑÓÄ!Ò�À2Æ class that “understood”

the physics of objects like cannonballs. Using such a class, we could express the

main algorithm in terms of creating and updating a suitable object stored in a

single variable. Using this object-based approach, we might write
Ê"Â¨Ò�Ç

like this:

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ÂÓÇ+��À2Æ�õ°9�Æ�À�õ ÅXÕTõ¢Ä!ÒvÊÎÆ?ß ��Æ0Ä3¢�Ç	2É�ÄÎÜ(ñ1ú
Ñ�Ë½Â�À�ÀÈßÝØ2Ì�Á ï ÆXÑxÄ!Ò�À2ÆæñzÂÓÇ+��À2Æ�õ 9�Æ¨ÀæõîÅ½Õ½úÛ2ÅÎÒ0À2ÆÝÑ�Ë!Â2À�ÀTïB�¨Æ�ÄC��ñ1ú � ßÝÕn÷Ñ�Ë!Â2À�ÀTï|É	�Ã�Â�Ä�ÆæñèÄ!ÒvÊÎÆ!ú�Ì½Ò�Ç�Ä��í´ÓÇC�ÎÒ�ÜxÄXÂxÇ"Ñ�ÆÈÄ�Ì�Â�9¨Æ¨À2Æ0Ã�÷ �¨Õnï�Ö�Í Ê!Æ0Ä�Æ�ÌÎÜ¬ïG� �	ñ�Ñ�Ë!Â2À�ÀTïB�¨Æ�Ä�Ðæñ1ú�ú

Obviously, this is a much simpler and more direct expression of the algorithm.

The initial values of
ÂÓÇ+��À2Æ

,
9¨Æ¨À

, and
Å½Õ

are used as parameters to create aØ�Ì¨Á ï ÆXÑÓÄ½Ò0À0Æ called
Ñ�Ë½Â�À2À

. Each time through the loop,
Ñ�Ë½Â�À�À

is asked to update

its state to account for
Ä!ÒvÊÎÆ

. We can get the position of
Ñ�Ë½Â�À�À

at any moment

by using its
��Æ0ÄCÐ

and
��Æ0ÄC�

methods. To make this work, we just need to define

a suitable
Ø2Ì�Á ï ÆXÑxÄ!Ò0À0Æ class that implements the methods

É	�Ã�Â�Ä¨Æ
,
�¨Æ0ÄCÐ

, and�¨Æ�ÄC�
.

~&%2� �2�?é"{Òê�� $ ��� �Î{`�ªs*± u�����{z� �G%��
]dc«^�� «ªR{ì�ehWpen� �ªR�� j in[�[�RT[

Before designing a Projectile class, let’s take an even simpler example to examine

the basic ideas.

Ê�}�È�É�ÈSÊ �����*��Í_Ù�i ¨ ¶ r*ÙXtGlW· Ø l7�*i<�ã�¦l��	i
You know that a normal die (the singular of dice) is a cube, and each face shows

a number from one to six. Some games employ nonstandard dice that may have

fewer (e.g., four) or more (e.g., thirteen) sides. Let’s design a general classömÅ��ÎÒ�Æ
to model multi-sided dice. We could use such an object in any number of

simulation or game programs.

Each
ömÅ��ÎÒ�Æ

object will know two things:

1. How many sides it has.

2. Its current value.

When a new
ömÅ��ÎÒ�Æ

is created, we specify how many sides it will have, ø . We

can then operate on the die through three provided methods:
Ì�Á¨À2À

, to set the

die to a random value between 1 and ø , inclusive;
Ü�Æ�Ä	ÛXÂ2ÀÓÉXÆ

, to set the die to a

specific value (i.e., cheat); and
�¨Æ0Ä�ÛXÂ2ÀÓÉ½Æ

, to see what the current value is.

Here is an interactive example showing what our class will do:�	��� Ã½Ò�ÆÎÖ ß?ömÅ��ÎÒ�Ææñzø½ú�	��� Ã½Ò�ÆÎÖïF�¨Æ�Ä	ÛXÂ2ÀÓÉXÆæñ1úÖ�	��� Ã½Ò�ÆÎÖï�Ì�Á�À�À¬ñ�ú�	��� Ã½Ò�ÆÎÖïF�¨Æ�Ä	ÛXÂ2ÀÓÉXÆæñ1ú@ �	��� Ã½Ò�Æ¨Ô?ß?ömÅ��ÎÒ�Ææñ�Ö�Þ!ú�	��� Ã½Ò�Æ¨ÔoïF�¨Æ�Ä	ÛXÂ2ÀÓÉXÆæñ1úÖ�	��� Ã½Ò�Æ¨Ôoï�Ì�Á�À�À¬ñ�ú�	��� Ã½Ò�Æ¨ÔoïF�¨Æ�Ä	ÛXÂ2ÀÓÉXÆæñ1úÖÓÔ�	��� Ã½Ò�Æ¨ÔoïôÜ�Æ�Ä	ÛXÂ2ÀÓÉXÆæñ&A½ú�	��� Ã½Ò�Æ¨ÔoïF�¨Æ�Ä	ÛXÂ2ÀÓÉXÆæñ1úA

�G% ¯ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Do you see how this might be useful? I can define any number of dice having

arbitrary numbers of sides. Each die can be rolled independently and will always

produce a random value in the proper range determined by the number of sides.

Using our object-oriented terminology, we create a die by invoking the
ö�Å��!Ò�Æ

constructor and providing the number of sides as a parameter. Our die object

will keep track of this number internally using an instance variable. Another

instance variable will be used to store the current value of the die. Initially, the

value of the die will be set to be 1, since that is a legal value for any die. The

value can be changed by the
Ì¨Á¨À2À

and
Ü�Æ0ÄC�XÁ�À�À

methods and returned from the�¨Æ�Ä	Û�Â�ÀÓÉXÆ
method.

Writing a definition for the
ö�Å��!Ò�Æ

class is really quite simple. A class is a col-

lection of methods, and methods are just functions. Here is the class definition

for
ömÅ��ÎÒ�Æ

:

ó ÊVÜxÃ½Ò�Ænï7¨Ï
ó ×�À�ÂXÜ2Ü;Ã¨Æ0Í½Ò1Ç"ÒÓÄ½Ò�ÁÓÇÝÍ¨Á�ÌàÂÓÇ9Çm�XÜ2ÒÓÃ¨Æ0ÃPÃ½Ò�Ænï
Í2Ì¨ÁxÊ¡Ì�ÂÓÇXÃ�ÁxÊ»ÒvÊ+XÁ0Ì�Ä?ÌXÂÓÇ�Ã2Ì�ÂÓÇ���Æ
Ñ0À2ÂXÜ2Ü ömÅ��ÎÒ�Æo÷

Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ Ü0Ò�Ã�Æ½Ü¨ú÷
Ü�Æ¨À�Í�ïôÜ2Ò�Ã�Æ½Ü ßÿÜ2Ò�Ã�Æ½Ü
Ü�Æ¨À�Í�ïI9XÂ�ÀxÉ½ÆÈß Ö

Ã¨Æ0ÍPÌ�Á¨À2À¬ñvÜ�Æ¨À�ÍÎú÷
Ü�Æ¨À�Í�ïI9XÂ�ÀxÉ½ÆÈßPÌXÂÓÇ�Ã2Ì�ÂÓÇ���Ææñ1Ö�õ�ÜÓÆ¨À�Í�ïzÜ0Ò�Ã�Æ½ÜÓáÎÖ2ú

Ã¨Æ0Í��¨Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0Í!ú¬÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïI9XÂ2ÀÓÉ½Æ

Ã¨Æ0ÍÿÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0ÍTõ19�Â�ÀxÉ½Æ!ú÷
Ü�Æ¨À�Í�ïI9XÂ�ÀxÉ½ÆÈß69XÂ�ÀxÉ½Æ

As you can see, a class definition has a simple form:

Ñ0À2ÂXÜ2Ü . Ñ�À�ÂXÜ2Ü��xÇ!Â�Ê!Æ � ÷. Ê!Æ0Ä0ÅXÁ2Ã?�0Ã¨Æ0Í½Ò1Ç"ÒÓÄ½Ò�ÁÓÇ(Ü �
Each method definition looks like a normal function definition. Placing the func-

~&%2� �2�?é"{Òê�� $ ��� �Î{`�ªs*± u�����{z� �G%�´
tion inside a class makes it a method of that class, rather than a stand-alone func-

tion.

Let’s take a look at the three methods defined in this class. You’ll notice that

each method has a first parameter named
Ü�Æ�À0Í

. The first parameter of a method

is special—it always contains a reference to the object on which the method is

acting. As usual, you can use any name you want for this parameter, but the

traditional name is
ÜÓÆ¨À0Í

, so that is what I will always use.

An example might be helpful in making sense of
ÜÓÆ¨À�Í

. Suppose we have aÊ"Â¨Ò�Ç
function that executes

Ã½Ò�Æ!ÖïôÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ&A½ú
. A method invocation is a func-

tion call. Just as in normal function calls, Python executes a four-step sequence:

1. The calling program (
Ê"Â�Ò1Ç

) suspends at the point of the method applica-

tion. Python locates the appropriate method definition inside the class of

the object to which the method is being applied. In this case, control is

transferring to the
Ü�Æ0Ä�ÛXÂ2ÀÓÉ½Æ

method in the
ömÅ��ÎÒ�Æ

class, since
ÃXÒ�Æ!Ö

is an

instance of
ö�Å��!Ò�Æ

.

2. The formal parameters of the method get assigned the values supplied by

the actual parameters of the call. In the case of a method call, the first

formal parameter corresponds to the object. In our example, it is as if the

following assignments are done before executing the method body:

Ü�Æ¨À�Í9ß9Ã½Ò�ÆÎÖ9XÂ�ÀxÉ½ÆPß A
3. The body of the method is executed.

4. Control returns to the point just after where the method was called, in this

case, the statement immediately following
ÃXÒ�ÆÎÖVïzÜÓÆ0Ä	Û�Â�ÀxÉ½ÆæñëA!ú

.

Figure
���

.
�

illustrates the method-calling sequence for this example. No-

tice how the method is called with one parameter (the value), but the method

definition has two parameters, due to
Ü�Æ�À0Í

. Generally speaking, we would sayÜ�Æ�Ä	Û�Â�ÀÓÉXÆ
requires one parameter. The

ÜÓÆ¨À�Í
parameter in the definition is a

bookkeeping detail. Some languages do this implicitly; Python requires us to

add the extra parameter. To avoid confusion, I will always refer to the first

formal parameter of a method as the self parameter and any others as normal

parameters. So, I would say
ÜÓÆ0Ä	Û�Â�ÀxÉ½Æ

uses one normal parameter.

OK, so
ÜÓÆ¨À0Í

is a parameter that represents an object. But what exactly can

we do with it? The main thing to remember is that objects contain their own

�G%�¹ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
class MSDie:
 ...
 def setValue(self,value)

 self.value = value

def main():
 die1 = MSDie(12)

 die1.setValue(8)

 print die1.getValue()

self=die1; value=8

Figure Ý1� . Ü : Flow of control in call: ��� 0 á ��¡ 01¢¤£�¥¤7g¦�0¨§�©�ª .
data. Instance variables provide storage locations inside of an object. Just as

with regular variables, instance variables are accessed by name. We can use

our familiar dot notation:
;

object
?

.
;

instance-var
?

. Look at the definition of¡ 03¢�£:¥�7g¦:0 ; ¡ 087�« �¬ ¥�7i¦�0 refers to the instance variable ¬ ¥¤7g¦:0 that is stored inside

the object. Each instance of a class has its own instance variables, so each ®�¯�°�� 0
object has its very own ¬ ¥¤7g¦:0 .

Certain methods in a class have special meaning to Python. These meth-

ods have names that begin and end with two underscores. The special method�²±�� ¢ is the object constructor. Python calls this method to initialize a new®�¯g°	� 0 . The role of �²±�� ¢ is to provide initial values for the instance variables

of an object.

From outside the class, the constructor is referred to by the class name.��� 0 á§ß³®�¯�°	� 0´§¶µ�ª
When executing this statement, Python creates a new ®�¯�°�� 0 and executes �i±	� ¢
on that object. The net result is that ��� 0 á·�¸¡¤��� 0 ¡ is set to 6 and �:� 0 á·�¬ ¥�7g¦:0 is

set to 1.

The power of instance variables is that we can use them to remember the

state of a particular object, and this information then gets passed around the

program as part of the object. The values of instance variables can be referred

to again in other methods or even in successive calls to the same method. This

is different from regular local function variables, whose values disappear once

the function terminates.

Here is a simple illustration:6�6¤6¹��� 0 á§ß³°	� 0´§ ágº ª6�6¤6»284��i± ¢ ��� 0 á �¼ 01¢¤£�¥¤7g¦�0¨§$ªá6�6¤6¹��� 0 á ��¡ 03¢�£�¥¤7g¦:0´§�©�ª6�6¤6»284��i± ¢ ��� 0 á �¼ 01¢¤£�¥¤7g¦�0¨§$ª

~&%2� �2�?é"{Òê�� $ ��� �Î{`�ªs*± u�����{z� �G%�¿
A
The call to the constructor sets the instance variable

ÃXÒ�Æ!ÖïF9�Â�ÀxÉ½Æ
to 1. The next

line prints out this value. The value set by the constructor persists as part of the

object, even though the constructor is over and done with. Similarly, executingÃ½Ò�ÆÎÖVïzÜ�Æ�Ä	Û�Â�ÀÓÉXÆæñëA!ú
changes the object by setting its value to 8. When the object

is asked for its value the next time, it responds with 8.

That’s just about all there is to know about defining new classes in Python.

Now it’s time to put this new knowledge to use.

Ê�}�È�É�È�Ç �����*��Í_Ù�i ¨ ÿ �i����0v!¿&i��CtGl�Ù�i�ªgÙ��ms�s
Returning to the cannonball example, we want a class that can represent projec-

tiles. This class will need a constructor to initialize instance variables, an
É	XÃ¨Â�Ä¨Æ

method to change the state of the projectile, and
��Æ0Ä�Ð

and
�¨Æ�ÄC�

methods so that

we can find the current position.

Let’s start with the constructor. In the main program, we will create a can-

nonball from the initial angle, velocity and height.

Ñ�Ë½Â�À2À7ß9Ø�Ì�Á ï Æ�ÑÓÄ!Ò�À2Æ¬ñ�ÂÓÇ+��À0ÆTõ 9�Æ�À�õ Å½Õ½ú
The

Ø2Ì�Á ï ÆXÑxÄ!Ò�À2Æ class must have an
Ò�Ç"ÒxÄ

method that uses these values to

initialize the instance variables of
Ñ�Ë½Â�À�À

. But what should the instance variables

be? Of course, they will be the four pieces of information that characterize the

flight of the cannonball:
��XÁ½Ü

,
ÏCXÁ½Ü

,
��9¨Æ¨À

, and
Ï	9¨Æ¨À

. We will calculate these

values using the same formulas that were in the original program.

Here is how our class looks with the constructor:

Ñ0À2ÂXÜ2Ü Ø�Ì¨Á ï Æ�ÑÓÄ½Ò0À2Æo÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ¢ÂxÇ��¨À2ÆTõ#9�Æ¨À0ÁXÑ2ÒÓÄ�Ïoõ ÅXÆXÒ���Å�ÄÎú¬÷

Ü�Æ¨À�Í�ïF��½ÁXÜ ßÐÕnïùÕ
Ü�Æ¨À�Í�ï�ÏC½ÁXÜ ß?Å½Æ�Ò���Å�Ä
Ä0Å½Æ�ÄXÂ7ßÈÊÎÂ�Ä0Åhï7ÎÒ-;PÂÓÇ+��À2Æ6� Ö�A�ÕoïðÕ
Ü�Æ¨À�Í�ïF��9�Æ�ÀÈß�9�Æ�À2Á�Ñ�ÒÓÄ2Ï(; Ê"Â�Ä0ÅhïôÑ�ÁXÜ�ñèÄ0Å½Æ�ÄXÂXú
Ü�Æ¨À�Í�ï�Ï	9�Æ�ÀÈß�9�Æ�À2Á�Ñ�ÒÓÄ2Ï(; Ê"Â�Ä0ÅhïzÜ2Ò1ÇnñèÄ0Å½Æ�ÄXÂXú

Notice how we have created four instance variables inside the object using theÜ�Æ�À0Í
dot notation. The value of

Ä0ÅXÆ0Ä�Â
is not needed after

Ò�ÇÎÒÓÄ
terminates,

so it is just a normal (local) function variable.

�G%�â s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
The methods for accessing the position of our projectiles are straightforward;

the current position is given by the instance variables
��½ÁXÜ

and
Ï�½ÁXÜ

. We just

need a couple of methods that return these values.

Ã¨Æ2Í���Æ0ÄCÐ�ñ�ÜÓÆ¨À�ÍÎú¬÷
Ì¨Æ0Ä�É�Ì0Ç Ü�Æ¨À�Í�ïF��½ÁXÜ

Ã¨Æ2Í���Æ0ÄP�Tñ�ÜÓÆ¨À�ÍÎú¬÷
Ì¨Æ0Ä�É�Ì0Ç Ü�Æ¨À�Í�ï�ÏC½ÁXÜ

Finally, we come to the
É�XÃ¨Â�Ä�Æ

method. This method takes a single normal

parameter that represents an interval of time. We need to update the state of

the projectile to account for the passage of that much time. Here’s the code:

Ã¨Æ2Í7É�XÃ¨Â�Ä�Æ¬ñ�ÜÓÆ¨À0ÍTõ Ä½Ò�ÊÎÆ½ú¬÷
ÜÓÆ¨À�Í�ïB��½ÁXÜ ß Ü�Æ�À0Í�ïF��XÁ½Ü á9Ä½Ò�ÊÎÆ ;àÜÓÆ¨À�Í�ïB�C9�Æ�À
Ï�9�Æ�À!Ö ßÿÜ�Æ�À0ÍnïpÏ	9¨Æ¨À��PÄ½Ò�Ê!Æ5;?ýnï0A
ÜÓÆ¨À�Í�ïpÏ�½ÁXÜ ß Ü�Æ�À0Í�ï�ÏCXÁ½Ü á9Ä½Ò�ÊÎÆ ; ñvÜ�Æ�À0Í�ï�Ï	9¨Æ¨ÀÈáPÏ�9�Æ�À!Ö2ú���ÔTïðÕ
ÜÓÆ¨À�Í�ïpÏ�9�Æ�ÀÈß9Ï	9¨Æ¨À!Ö

Basically, this is the same code that we used in the original program updated

to use and modify instance variables. Notice the use of
Ï	9¨Æ¨À½Ö

as a temporary

(ordinary) variable. This new value is saved by storing it into the object in the

last line of the method.

That completes our projectile class. We now have a complete object-based

solution to the cannonball problem.

ó¡Ñ�Ë½Â�À2À2Þnï>�Ï
Í2Ì¨ÁxÊ9ÊÎÂ�Ä0ÅÿÒ�Ê+XÁ0Ì2Ä�"Òõ�Ü2Ò�Ç�õ Ñ�ÁXÜ
Ñ0À2ÂXÜ2Ü Ø�Ì¨Á ï Æ�ÑÓÄ½Ò0À2Æo÷

Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ¢ÂxÇ��¨À2ÆTõ#9�Æ¨À0ÁXÑ2ÒÓÄ�Ïoõ ÅXÆXÒ���Å�ÄÎú¬÷
Ü�Æ¨À�Í�ïF��½ÁXÜ ßÐÕnïùÕ
Ü�Æ¨À�Í�ï�ÏC½ÁXÜ ß?Å½Æ�Ò���Å�Ä
Ä0Å½Æ�ÄXÂ7ß-ÎÒ�;?ÂÓÇ��¨À2Æ �ÿÖ�A�ÕnïùÕ
Ü�Æ¨À�Í�ïF��9�Æ�ÀÈß�9�Æ�À2Á�Ñ�ÒÓÄ2Ï(;ÝÑ�ÁXÜ�ñèÄ0Å½Æ�ÄXÂXú
Ü�Æ¨À�Í�ï�Ï	9�Æ�ÀÈß�9�Æ�À2Á�Ñ�ÒÓÄ2Ï(;ÐÜ2Ò1ÇnñèÄ0Å½Æ�ÄXÂXú

Ã¨Æ0Í7É	XÃ¨Â�Ä¨Ææñ�ÜÓÆ¨À�Íoõ Ä!Ò�Ê!Æ!ú÷

~&%0� ¯ �?é(u�y�u �½}�� ³ {z��� $ ���§� $ yèt£s*± u���� �G%�é
Ü�Æ¨À�Í�ïF��½ÁXÜ ß Ü�Æ�À0ÍnïB��XÁ½Ü áPÄ!Ò�Ê!Æ(;ÝÜ�Æ�À0Í�ïF��9¨Æ¨À
Ï	9�Æ�À!Ö ß ÜÓÆ¨À0ÍnïpÏ�9�Æ¨À��PýnïBA(;7Ä½Ò�Ê!Æ
Ü�Æ¨À�Í�ï�ÏC½ÁXÜ ß Ü�Æ�À0ÍnïpÏCXÁ½Ü áPÄ!Ò�Ê!Æ(;¥ñ�ÜÓÆ¨À0ÍnïpÏ�9�Æ¨À á9Ï	9�Æ�À!Ö0ú8�9ÔoïùÕ
Ü�Æ¨À�Í�ï�Ï	9�Æ�ÀÈß9Ï	9¨Æ¨À½Ö

Ã¨Æ0Í��¨Æ0ÄP�TñvÜ�Æ¨À�ÍÎú÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ï�ÏCXÁ½Ü

Ã¨Æ0Í��¨Æ0ÄCÐ�ñvÜ�Æ¨À�ÍÎú÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïF��XÁ½Ü

Ã¨Æ0Í��¨Æ�Ä3¢1Ç��É¨ÄÎÜ�ñ�ú¬÷
Â?ßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½ÆÝÀ2ÂÓÉ2Ç"Ñ�ÅàÂÓÇ��¨À2Æòñ�Ò�ÇàÃ¨ÆC�2Ì¨Æ�Æ½Ü�ú¬÷ü��ú9ÝßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½ÆàÒ1Ç"ÒxÄ!Ò0Â2À<9�Æ�À2Á�Ñ�ÒÓÄ2Ï ñvÒ1Ç7ÊÎÆ�Ä�Æ�ÌÎÜ���Ü�Æ�Ñ�ú¬÷ü��ú
ÅàßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½ÆàÒ1Ç"ÒxÄ!Ò0Â2À;Å½Æ�Ò���Å�Ä ñ�Ò�Ç?ÊÎÆ�Ä�Æ�ÌÎÜ¨ú÷���ú
ÄÝßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½Æ?Ä½Ò�Ê!ÆàÒ�Ç�Ä¨Æ0Ì�9XÂ�À Ë½Æ�Ä2ÛXÆ2Æ�Ç6XÁ½Ü0ÒÓÄ!Ò�Á�Ç Ñ�Â�À¨Ñ�É!À2Â�Ä½Ò�Á�Ç"Üæ÷Y��ú
Ì�Æ�Ä0É�Ì�Ç¡Â�õB9nõ�ÅcõðÄ

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ÂÓÇ+��À2Æ�õ°9�Æ�À�õ ÅXÕTõ¢Ä!ÒvÊÎÆ?ß ��Æ0Ä3¢�Ç	2É�ÄÎÜ(ñ1ú
Ñ�Ë½Â�À�ÀÈßÝØ2Ì�Á ï ÆXÑxÄ!Ò�À2ÆæñzÂÓÇ+��À2Æ�õ 9�Æ¨ÀæõîÅ½Õ½úÛ2ÅÎÒ0À2ÆÝÑ�Ë!Â2À�ÀTïB�¨Æ�ÄC��ñ1ú � ßÝÕn÷Ñ�Ë!Â2À�ÀTï|É	�Ã�Â�Ä�ÆæñèÄ!ÒvÊÎÆ!ú�Ì½Ò�Ç�Ä��í´ÓÇC�ÎÒ�ÜxÄXÂxÇ"Ñ�ÆÈÄ�Ì�Â�9¨Æ¨À2Æ0Ã�÷ �¨Õnï�Ö�Í Ê!Æ0Ä�Æ�ÌÎÜ¬ïG� �	ñ�Ñ�Ë!Â2À�ÀTïB�¨Æ�Ä�Ðæñ1ú�ú

]dc«^|µ «ªioU¨i���g1�GS¬RT[�[XWpen���;W UÎb� j i�[�[

The projectile example shows how useful a class can be for modeling a real-

world object that has complex behavior. Another common use for objects is

simply to group together a set of information that describes a person or thing.

For example, a company needs to keep track of information about all of its

employees. Their personnel system might make use of an / Ê+½À2Á0Ï¨Æ�Æ object that

contains data such as the employee’s name, social security number, address,

salary, department, etc. A grouping of information of this sort is often called a

record.

Let’s try our hand at some simple data processing involving university stu-

dents. In a typical university, courses are measured in terms of credit hours,

and grade point averages are calculated on a 4 point scale where an “A” is 4

��~!% s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
points, a “B” is 3 points, etc. Grade point averages are generally computed us-

ing quality points. If a class is worth 3 credit hours and the student gets an “A,”

then he or she earns 3(4) = 12 quality points. To calculate a student’s grade

point average (GPA), we divide the total quality points by the number of credit

hours completed.

Suppose we have a data file that contains student grade information. Each

line of the file consists of a student’s name, credit-hours, and quality points.

These three values are separated by a tab character. For example, the contents

of the file might look something like this:

Ú Ã¨Â�Ê�Üõ#��Æ�Ç�Ì2Ï ÖxÔ2þ Ô2Ô�A
×�Á�Ê+2É�Ä�Æ�ÛXÆ�À�À�õ°ÅÓÉ"Ü�ÂxÇ ÖxÕ2Õ @¨Õ�Õ�ÎÒ1Ë�Ë½À2ÆK�½ÒÓÄoõ½�XÆÓÇ�Ç¨Ï Ö�A @"Öï0'4�ÁÓÇ½ÆXÜõ�42Ò�Ê @	Anï�' Ö�'�'Å�Ê(ÒÓÄ�Åcõ°,2ÌXÂÓÇ	Î Þ2þ ÖÓÔ�'oïùÞ�Þ

Our job is to write a program that reads through this file to find the student

with the best GPA and print out his/her name, credits-hours, and GPA. We can

begin by creating a
Å�Ä0ÉXÃ�Æ�Ç¨Ä

class. An object of type
Å�Ä0É�Ã¨Æ�Ç¨Ä

will be a record of

information for a single student. In this case, we have three pieces of informa-

tion: name, credit-hours, and quality points. We can store this information as

instance variables that are initialized in the constructor.

Ñ0À2ÂXÜ2Ü<Å�Ä�ÉXÃ¨ÆÓÇ�Ä�÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ Ç½Â�Ê!ÆTõîÅXÁ�É�Ì!Üõçí�½Á�Ò�Ç�Ä!Ü¨ú÷

Ü�Æ¨À�Í�ï Ç!Â�Ê!Æ7ß?Ç!Â1ÊÎÆ
Ü�Æ¨À�Í�ï Å½Á�É¨ÌÎÜ ß9Í�À2Á�Â�Ä�ñðÅ½ÁÓÉ�Ì!Ü¨ú
Ü�Æ¨À�Í�ïFí�½Á�Ò�Ç¨ÄÎÜªßÐÍ¨À2Á�Â�ÄTñÒí�XÁXÒ�Ç¨ÄÎÜ�ú

Notice that I have used parameter names that match the instance variable names.

This looks a bit strange at first, but it is a very common style for this sort of class.

I have also
Í¨À2Á¨Â�Ä

ed the values of
Å½ÁÓÉ�ÌÎÜ

and
í�½Á�Ò�Ç¨ÄÎÜ

. This makes the construc-

tor a bit more versatile by allowing it to accept parameters that may be floats,

ints, or even strings.

Now that we have a constructor, it’s easy to create student records. For

example, we can make a record for Henry Adams like this.

Â	Å�Ä0É�Ã¨Æ�Ç¨Ä9ß5Å�Ä�ÉXÃ�Æ�Ç�Ä�ñ�� Ú Ã�Â1ÊVÜVõ ��Æ�Ç�Ì2Ï��!õ�ÖÓÔ0þTõ Ô2Ô�A!ú
Using objects allows us to store all of the information about an individual in a

single variable.

~&%0� ¯ �?é(u�y�u �½}�� ³ {z��� $ ���§� $ yèt£s*± u���� ��~�~

Next we must decide what methods a student object should have. Obviously,

we would like to be able to access the student’s information, so we should define

a set of accessor methods.

Ã¨Æ0Í��¨Æ�Ä	ÐXÂ1ÊÎÆ¬ñ�Ü�Æ�À0Í!ú¬÷
Ì�Æ�Ä0É�Ì�Ç Ü�Æ�À0Ínï|Ç!Â1ÊÎÆ

Ã¨Æ0Í��¨Æ�Ä��XÁÓÉ�Ì!Ü�ñ�ÜÓÆ¨À�ÍÎú¬÷
Ì�Æ�Ä0É�Ì�Ç Ü�Æ�À0Ínï|Å½ÁÓÉ�Ì!Ü

Ã¨Æ0Í��¨Æ�Äé��Ø¨ÁXÒ1Ç�ÄÎÜ(ñ�ÜÓÆ¨À0Í!ú¬÷
Ì�Æ�Ä0É�Ì�Ç Ü�Æ�À0ÍnïBí�XÁXÒ1Ç�ÄÎÜ

These methods allow us to get information back out of a student record. For

example, to print a student’s name we could write:�Ì½Ò�Ç¨ÄÐÂ	Å�Ä0ÉXÃ�Æ�Ç¨ÄcïB��Æ0Ä�ÐXÂ�Ê!Ææñ�ú
One method that we have not yet included in our class is a way of comput-

ing GPA. We could compute it separately using the
��Æ0Ä���Á�É¨ÌÎÜ

and
��Æ0Äé��Ø�Á�Ò�Ç�Ä!Ü

methods, but GPA is so handy that it probably warrants its own method.

Ã¨Æ0Í���½Â¬ñ�ÜÓÆ¨À�ÍÎú¬÷
Ì�Æ�Ä0É�Ì�Ç Ü�Æ�À0ÍnïBí�XÁXÒ1Ç�ÄÎÜ��XÜÓÆ¨À0Ínï|ÅXÁ�É�Ì!Ü

With this class in hand, we are ready to attack the problem of finding the

best student. Our algorithm will be similar to the one used for finding the max

of n numbers. We’ll look through the file of students one by one keeping track

of the best student seen so far. Here’s the algorithm for our program:

ü Æ�Ä9Ä0ÅXÆPÍ½Ò0À0Æ Ç!Â1ÊÎÆPÍ0Ì�ÁxÊ¡Ä�Å½ÆÈÉ"Ü�Æ0ÌÄ XÆ�ÇÐÄ�Å½ÆPÍ½Ò�À2Æ?Í�Á0Ì9Ì¨Æ¨Â0ÃXÒ�Ç+�Å2Æ�Ä?Ë½ÆXÜxÄ9Ä�ÁÈËXÆ?Ä0ÅXÆPÍ½ÒÓÌ!ÜxÄÿÜ�Ä0É�Ã¨Æ�Ç¨Ä,�Á�ÌÐÆ¨Â¨Ñ�Å»ÜxÄ�ÉXÃ�Æ�Ç�ÄàÜ9Ò�ÇÐÄ0ÅXÆPÍ½Ò�À2Æ
Ò�ÍÿÜ¬ïB��½Â¬ñ�ú � Ë½ÆXÜxÄcïF��½ÂÜ�Æ0Ä?ËXÆ½Ü�ÄPÄ�ÁÿÜ�Ì½Ò�Ç¨ÄÝÁ�É¨ÄÿÒ�ÇXÍ�Á0ÌÓÊ"Â�Ä½Ò�ÁÓÇàÂÓËXÁ�É¨Ä7Ë½ÆXÜxÄ

The completed program looks like this:

ó���½Âoï>�Ï
ó Ø2Ì�Á��0ÌXÂ1ÊÐÄ�Á9ÍXÒ�ÇXÃàÜxÄ0É�Ã¨ÆÓÇ�Ä?Û!ÒÓÄ0Å9ÅÎÒ���Å½Æ½Ü�Ä ü Ø Ú

��~�r s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Ò�Ê?½Á�Ì�ÄÿÜ�Ä�Ì!Ò1Ç��
Ñ0À2ÂXÜ2Ü<Å�Ä�ÉXÃ¨ÆÓÇ�Ä�÷

Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ Ç½Â�Ê!ÆTõîÅXÁ�É�Ì!Üõçí�½Á�Ò�Ç�Ä!Ü¨ú÷
Ü�Æ¨À�Í�ï Ç!Â�Ê!Æ7ß?Ç!Â1ÊÎÆ
Ü�Æ¨À�Í�ï Å½Á�É¨ÌÎÜ ß9Í�À2Á�Â�Ä�ñðÅ½ÁÓÉ�Ì!Ü¨ú
Ü�Æ¨À�Í�ïFí�½Á�Ò�Ç¨ÄÎÜªßÐÍ¨À2Á�Â�ÄTñÒí�XÁXÒ�Ç¨ÄÎÜ�ú

Ã¨Æ0Í��¨Æ0Ä�ÐXÂ1ÊÎÆæñvÜ�Æ�À0ÍÎú÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ï Ç!Â1ÊÎÆ

Ã¨Æ0Í��¨Æ0ÄC�XÁÓÉ�ÌÎÜ(ñ�ÜÓÆ¨À0Í!ú¬÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ï Å½ÁÓÉ�ÌÎÜ

Ã¨Æ0Í��¨Æ0Ä���Ø¨ÁXÒ�Ç¨ÄÎÜ(ñ�Ü�Æ�À0Í!ú¬÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïFí�XÁXÒ�Ç¨ÄÎÜ

Ã¨Æ0Í���!Âñ�ÜÓÆ¨À0Í!ú¬÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïFí�XÁXÒ�Ç¨ÄÎÜ��XÜ�Æ�À0Ínï|Å½ÁÓÉ�Ì!Ü

Ã¨Æ0Í Ê"Â�ÎXÆ?Å�Ä0É�Ã¨Æ�Ç¨ÄTñ�Ò�ÇXÍ�Á?Å�Ä�Ì"ú÷
ó¡Ò�Ç�Í¨Á?Å�Ä�Ì¡Ò�Ü7Â?ÄXÂÓËm�XÜÓÆ�!Â�ÌXÂ�Ä�Æ2Ã?À�Ò1Ç½Æo÷ Ç!Â1ÊÎÆÈÅ½ÁÓÉ�Ì!Üèí�XÁXÒ�Ç¨ÄÎÜ
óPÌ�Æ�Ä0É�Ì�Ç(ÜÈÂàÑ�Á0Ì�Ì¨Æ½Üu½Á�Ç�Ã½Ò1Ç��-Å�Ä0É�Ã¨ÆÓÇ�ÄÝÁÓË ï Æ�ÑÓÄÇ!Â1ÊÎÆTõ Å½Á�É¨ÌÎÜVõçí�XÁXÒ�Ç¨ÄÎÜ;ß Ü�Ä�Ì!Ò1Ç��nïzÜG½À�ÒxÄTñvÒ1ÇXÍ�Á?Å�Ä2Ìnõ��í´ÓÄ���ú
Ì�Æ�Ä0É�Ì�Ç¡Å�Ä�ÉXÃ�Æ�Ç�Ä�ñðÇ½Â�ÊÎÆ�õ ÅXÁ�É¨ÌÎÜõ°í�½Á�Ò�Ç¨ÄÎÜ¨ú

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
óÝÁ�XÆ�ÇÐÄ0ÅXÆàÒ�Ç��É�ÄPÍ½Ò0À0ÆPÍ¨Á�Ì9Ì�Æ¨Â�Ã½Ò1Ç��
Í½Ò�À2Æ�Ç½Â�Ê!Æ7ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì Ç!Â�Ê!Æ?Ä0ÅXÆ6�2ÌXÂ�Ã¨Æ?ÍXÒ0À0Æn÷���úÒ�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñôÍ½Ò�À2ÆÓÇ!Â�Ê!ÆTõ��ðÌU�vú
óÿÜ�Æ�Ä?Ë½Æ½Ü�Ä9Ä�Á?Ä�Å½Æ?Ì�Æ�Ñ�Á�Ì¨ÃPÍ�Á0Ì9Ä0ÅXÆPÍ½ÒxÌÎÜxÄ¡ÜxÄ0É�Ã¨ÆÓÇ�Ä¡Ò1ÇÐÄ0Å½ÆPÍXÒ0À0Æ
Ë½ÆXÜxÄÝß Ê"Â�ÎXÆ	Å�Ä0É�Ã¨ÆÓÇ�ÄTñ�Ò�Ç�Í½Ò0À0Ænï�Ì�Æ¨Â�Ã�À�Ò�ÇXÆæñvú�ú
ó��Ì¨ÁXÑ�ÆXÜ�ÜPÜ�É�Ë"Ü�Æ�í�É½ÆÓÇ�ÄÝÀ¨Ò�ÇXÆ½ÜÈÁ2ÍPÄ�Å½ÆPÍXÒ0À2Æ
Í¨Á�ÌàÀ�Ò�ÇXÆÐÒ�Ç»Ò1ÇXÍ½Ò�À2Æo÷

óPÄ0É�Ì�ÇÐÄ0ÅXÆÝÀ�Ò�ÇXÆÐÒ�Ç¨Ä�ÁÝÂ¡ÜxÄ�ÉXÃ�Æ�Ç�Ä7Ì�Æ�Ñ�Á0Ì�Ã

~&%2� ´2��Ñ�
 Ê�{ ³ y|�Tux�v� ��� ³ uxw��`��± u�y $ ��� ��~��

Ü ß7ÊÎÂ�Î�Æ?Å�Ä�ÉXÃ�Æ�Ç�Ä�ñ�À¨Ò�Ç½Æ½ú
ó¡Ò�ÍPÄ0ÅÎÒ¨Ü9Ü�Ä0ÉXÃ�Æ�Ç¨Ä¡Ò¨Ü ËXÆ½ÜxÄ ÜÓÁPÍ�Â�Ìnõ¢Ì�Æ�ÊÎÆ�Ê�Ë½Æ�ÌàÒxÄcï
Ò�ÍÿÜæïF��½Â¬ñ1ú � Ë½Æ½Ü�ÄcïF��!Âñ1ú÷ËXÆ½Ü�Ä9ß Ü

Ò�Ç�Í½Ò0À0Ænï`Ñ0À2ÁXÜ�Æ¬ñ1ú
ó��Ì½Ò�Ç�ÄÿÒ1ÇXÍ�Á0Ì�ÊÎÂ�Ä½Ò�Á�ÇÝÂÓËXÁ�É¨Ä9Ä0Å½ÆÈËXÆ½Ü�ÄÿÜxÄ�ÉXÃ¨ÆÓÇ�Ä�Ì½Ò�Ç�Ä��:�0ÅXÆÈË½ÆXÜxÄ ÜxÄ�ÉXÃ�Æ�Ç�ÄÐÒ¨Ü¬÷G�Îõ ËXÆ½Ü�ÄcïB��Æ0Ä�ÐXÂ�Ê!Ææñ�ú�Ì½Ò�Ç�Ä��zÅ½ÁÓÉ�Ì!Üæ÷G�!õîË½ÆXÜxÄ�ïB�¨Æ�Ä���Á�É�Ì!Ü�ñ�ú�Ì½Ò�Ç�Ä�� ü Ø Ú ÷u�ÎõîËXÆ½ÜxÄ�ïB��!Â¬ñ�ú

Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷
Ê"Â¨Ò�Çnñ�ú

You will notice that I added a helper function called
Ê"Â�ÎXÆ	Å�Ä0É�Ã¨ÆÓÇ�Ä

. This

function takes a single line of the file, splits it into its three tab-separated fields,

and returns a corresponding
Å�Ä0É�Ã¨Æ�Ç¨Ä

object. Right before the loop, this function

is used to create a record for the first student in the file:

Ë½ÆXÜxÄÝß Ê"Â�ÎXÆ	Å�Ä0É�Ã¨ÆÓÇ�ÄTñ�Ò�Ç�Í½Ò0À0Ænï�Ì�Æ¨Â�Ã�À�Ò�ÇXÆæñvú�ú
It is called again inside the loop to process each subsequent line of the file.

Ü ßÈÊ"Â�ÎXÆ	Å�Ä0É�Ã¨ÆÓÇ�ÄTñzÀ�Ò1Ç½Æ!ú
Here’s how it looks running the program on the sample data./ Ç¨Ä�Æ�Ì7Ç!Â1ÊÎÆ?Ä0ÅXÆ6�2Ì�Â0Ã¨Æ7Í½Ò0À0Æn÷�Ü�Ä0ÉXÃ�Æ�Ç¨ÄÎÜæïpÃ�Â�Ä�0ÅXÆÈË½ÆXÜxÄ ÜxÄ�ÉXÃ�Æ�Ç�ÄÐÒ¨Ü¬÷¢×�ÁxÊ?�É¨Ä�Æ�Û�Æ¨À2À�õÆÅxÉ(Ü�ÂÓÇ

Å½ÁÓÉ�Ì!Üæ÷ Ö�Õ�ÕnïùÕü Ø Ú ÷°@nïðÕ
]dc«^|º NPO!Q�RTSVU�[9i�ec· e ecSi�¤c[Î¦_j iTUXW��£e
Ê�}�È�×�ÈSÊ �dw3�	�*Í3s�r_Ù��mtGl�wm�e¼�sGi8'&r_Ù Ú ¾�sGt��B����tGlnvxw�s

Hopefully, you are seeing how defining new classes like
Ø�Ì�Á ï Æ�ÑÓÄ!Ò�À2Æ and

Å�Ä�ÉXÃ�Æ�Ç�Ä
can be a good way to modularize a program. Once we identify some useful

objects, we can write an algorithm using those objects and push the implemen-

tation details into a suitable class definition. This gives us the same kind of

��~ ¯ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
separation of concerns that we had using functions in top-down design. The

main program only has to worry about what objects can do, not about how they

are implemented.

Computer scientists call this separation of concerns encapsulation. The im-

plementation details of an object are encapsulated in the class definition, which

insulates the rest of the program from having to deal with them. This is another

application of abstraction (ignoring irrelevant details), which is the essence of

good design.

For completeness, I should mention that encapsulation is only a program-

ming convention in Python. It is not enforced by the language, per se. In ourØ�Ì¨Á ï ÆXÑÓÄ½Ò0À0Æ class we included two short methods,
�¨Æ�Ä�Ð

and
�¨Æ�ÄC�

, that sim-

ply returned the values of instance variables
��XÁ½Ü

and
ÏCXÁ½Ü

, respectively. OurÅ�Ä�ÉXÃ�Æ�Ç�Ä
class has similar accessor methods for its instance variables. Strictly

speaking, these methods are not absolutely necessary. In Python, you can access

the instance variables of any object with the regular dot notation. For example,

we could test the constructor for the
Ø2Ì�Á ï ÆXÑxÄ!Ò0À0Æ class interactively by creating

an object and then directly inspecting the values of the instance variables.�	��� ÑÈß9Ø�Ì�Á ï Æ�ÑÓÄ!Ò�À2Æ¬ñzø�Õ�õç'0ÕTõ Ô0Õ!ú�	��� Ñ�ïF��½ÁXÜÕnïùÕ�	��� Ñ�ï�ÏC½ÁXÜÔ2Õ�	��� Ñ�ïF��9�Æ�ÀÔ	'TïðÕ�	��� Ñ�ï�Ï	9�Æ�À@¨ÞoïðÞ2ÕÎÖÓÔ0þ�Õ
Accessing the instance variables of an object is very handy for testing pur-

poses, but it is generally considered poor practice to do this in programs. One

of the main reasons for using objects is to hide the internal complexities of

those objects from the programs that use them. References to instance variables

should remain inside the class definition with the rest of the implementation

details. From outside the class, all interaction with an object can be done using

the interface provided by its methods.

One immediate advantage to this approach is that it allows us to modify and

improve classes independently without worrying about “breaking” other parts of

the program. As long as the interface provided by the methods stays the same,

the rest of the program can’t even tell that a class has changed. As you begin to

~&%2� ´2��Ñ�
 Ê�{ ³ y|�Tux�v� ��� ³ uxw��`��± u�y $ ��� ��~�´

design classes of your own, you should strive to provide each with a complete

set of methods to make it useful.

Ê�}�È�×�È�Ç ��rmt�tGl�w��¡ªgÙ��ms�sGi�sçl�w ¶ v$�xr_Ù�i�s
Often a well-defined class or set of classes provides useful abstractions that can

be leveraged in many different programs. For example, we might want to turn

our projectile class into its own module file so that it can be used in other pro-

grams. In doing so, it would be a good idea to add documentation that describes

how the class can be used so that programmers who want to use the module

don’t have to study the code to figure out (or remember) what the class and its

methods do.

Ê�}�È�×�È�É ¶ v£�xr*Ù�i�� v���r$�îi_wmtu�mtGlnvxw
You are already familiar with one way of documenting programs, namely com-

ments. It’s always a good idea to provide comments explaining the contents of a

module and its uses. In fact, comments of this sort are so important that Python

incorporates a special kind of commenting convention called a docstring. You

can insert a plain string literal as the first line of a module, class or function

to document that component. The advantage of docstrings is that, while ordi-

nary comments are simply ignored by Python, docstrings are actually carried

along during execution in a special attribute called
Ã�ÁXÑ

. These strings can be

examined dynamically.

Most of the Python library modules have extensive docstrings that you can

use to get help on using the module or its contents. For example, if you can’t

remember how to use the
Ì�ÂÓÇXÃ�ÁxÊ

function, you can print its docstring directly

like this:�	��� Ò�Ê?½Á0Ì2ÄPÌXÂxÇXÃ�ÁxÊ�	��� �Ì½Ò�Ç�Ä?ÌXÂÓÇ�Ã¨Á�Ê§ïpÌ�ÂÓÇ�Ã¨ÁxÊ_ï�Ì�Ì0Ã¨Á�ÑCÌ�ÌÌXÂxÇXÃ�ÁxÊcñ�ú8� � �¡Ò1ÇÐÄ0ÅXÆàÒ�Ç�Ä¨Æ0Ì�9XÂ�À û ÕTõªÖ0ú¬ï
Docstrings are also used by the Python online help system and by a utility called

PyDoc that automatically builds documentation for Python modules. You could

get the same information using interactive help like this:�	��� Ò�Ê?½Á0Ì2ÄPÌXÂxÇXÃ�ÁxÊ�	��� Å½Æ�À�nñèÌXÂxÇXÃ¨Á�Ê§ï�ÌXÂÓÇ�Ã¨Á�Êú�XÆ�À�¡ÁÓÇ9Ë�É"Ò�À�Ä+��Ò�Ç9Í�É2Ç"ÑÓÄ½Ò�ÁÓÇÝÌXÂxÇXÃ¨Á�Ê§÷

��~�¹ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
ÌXÂxÇXÃ�ÁxÊcñXï�ï2ï�ú

ÌXÂxÇXÃ¨Á�Êcñ�úè� � �¡Ò1ÇÐÄ0Å½ÆàÒ1Ç�Ä¨Æ0Ì	9�Â�À û ÕTõªÖ0ú¬ï
If you want to see a whole bunch of information about the entire random mod-

ule, try typing
Å½Æ�À�nñèÌXÂxÇXÃ¨Á�Êú

.

Here is a version of our
Ø2Ì�Á ï ÆXÑxÄ!Ò�À2Æ class as a module file with docstrings

included:

ó��Ì¨Á ï ÆXÑÓÄ½Ò0À0Ænï7¨Ï�	���&¨Ì�Á ï ÆXÑxÄ!Ò0À0Ænï>�ÏØ�Ì¨ÁC9½Ò�Ã¨ÆXÜÈÂàÜ2ÒvÊ+½À2ÆÐÑ�À�ÂXÜ2Ü;Í¨Á�ÌÈÊÎÁ0Ã¨Æ¨À¨Ò�Ç+�?Ä0ÅXÆ
Í�À¨Ò���Å�ÄÝÁ0Í��Ì�Á ï Æ�ÑÓÄ!Ò�À2ÆXÜæïG���	�
Í2Ì¨ÁxÊ9ÊÎÂ�Ä0ÅÿÒ�Ê+XÁ0Ì2Ä�"Òõ�Ü2Ò�Ç�õ Ñ�ÁXÜ
Ñ0À2ÂXÜ2Ü Ø�Ì¨Á ï Æ�ÑÓÄ½Ò0À2Æo÷�	���GÅ�ÒvÊ�É½À�Â�Ä¨Æ½ÜfÄ0ÅXÆPÍ�À�Ò���Å¨ÄÝÁ2Í Ü2ÒvÊ+½À2Æ8¨Ì�Á ï ÆXÑxÄ!Ò0À0Æ½Ü Ç½Æ�Â�Ì9Ä0ÅXÆ9Æ¨Â�Ì�Ä0Å���ÜÜ1É¨Ì¨Í�Â¨Ñ�Æ�õ Ò���Ç½Á�Ì!Ò�Ç+�7ÛÎÒ1ÇXÃPÌ¨Æ½Ü2Ò�ÜxÄ�ÂÓÇ"Ñ�Ænï ��Ì�Â�Ñ�Î!Ò�Ç+�àÒ¨Ü Ã�Á�Ç½ÆàÒ1ÇÐÄ2Û�Á

Ã½ÒvÊÎÆ�Ç"Ü2Ò�Á�Ç(ÜVõ ÅXÆXÒ���Å�Ä ñèÏ"úÈÂxÇXÃ9Ã½Ò�ÜxÄ�ÂÓÇ"Ñ�Æ ñÒ�Îú¬ïu�	���
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ¢ÂxÇ��¨À2ÆTõ#9�Æ¨À0ÁXÑ2ÒÓÄ�Ïoõ ÅXÆXÒ���Å�ÄÎú¬÷�	�	�v×0Ì¨Æ¨Â�Ä¨ÆPÂ<�Ì¨Á ï ÆXÑÓÄ½Ò0À0Æ ÛÎÒxÄ0Å5�XÒ�9¨Æ�ÇÿÀ�ÂxÉ�ÇÎÑ�Å¡ÂxÇ���À0ÆTõ�Ò1Ç"ÒxÄ!Ò0Â2À9�Æ¨À0ÁXÑ2ÒÓÄ�Ï9ÂÓÇ�Ã7Å½ÆXÒ���Å¨ÄcïG���	�

Ü�Æ¨À�Í�ïF��½ÁXÜ ßÐÕnïùÕ
Ü�Æ¨À�Í�ï�ÏC½ÁXÜ ß?Å½Æ�Ò���Å�Ä
Ä0Å½Æ�ÄXÂ7ß-ÎÒ�;?ÂÓÇ��¨À2Æ �ÿÖ�A�ÕnïùÕ
Ü�Æ¨À�Í�ïF��9�Æ�ÀÈß�9�Æ�À2Á�Ñ�ÒÓÄ2Ï(;ÝÑ�ÁXÜ�ñèÄ0Å½Æ�ÄXÂXú
Ü�Æ¨À�Í�ï�Ï	9�Æ�ÀÈß�9�Æ�À2Á�Ñ�ÒÓÄ2Ï(;ÐÜ2Ò1ÇnñèÄ0Å½Æ�ÄXÂXú

Ã¨Æ0Í7É	XÃ¨Â�Ä¨Ææñ�ÜÓÆ¨À�Íoõ Ä!Ò�Ê!Æ!ú÷�	�	�ôÙ	�Ã�Â�Ä¨ÆÈÄ�Å½Æ¡ÜxÄ�Â�Ä¨ÆPÁ2Í9Ä0ÅÎÒ¨Ü�¨Ì�Á ï ÆXÑxÄ!Ò�À2ÆÈÄ¨Á;ÊÎÁ�9�ÆàÒÓÄ9Ä½Ò�Ê!Æ¡Ü�ÆXÑ�Á�Ç�Ã!ÜÍ�Â�Ì2Ä0ÅXÆ0Ì¡Ò1Ç�Ä�ÁÝÒÓÄÎÜ Í¨À�Ò���Å�Ä$�	���
Ü�Æ¨À�Í�ïF��½ÁXÜ ß Ü�Æ�À0ÍnïB��XÁ½Ü áPÄ!Ò�Ê!Æ(;ÝÜ�Æ�À0Í�ïF��9¨Æ¨À
Ï	9�Æ�À!Ö ß ÜÓÆ¨À0ÍnïpÏ�9�Æ¨À��PýnïBA(;7Ä½Ò�Ê!Æ
Ü�Æ¨À�Í�ï�ÏC½ÁXÜ ß Ü�Æ�À0ÍnïpÏCXÁ½Ü áPÄ!Ò�Ê!Æ(;¥ñ�ÜÓÆ¨À0ÍnïpÏ�9�Æ¨À á9Ï	9�Æ�À!Ö0ú8�9ÔoïùÕ
Ü�Æ¨À�Í�ï�Ï	9�Æ�ÀÈß9Ï	9¨Æ¨À½Ö

~&%2� ´2��Ñ�
 Ê�{ ³ y|�Tux�v� ��� ³ uxw��`��± u�y $ ��� ��~�¿

Ã¨Æ0Í��¨Æ0ÄP�TñvÜ�Æ¨À�ÍÎú÷�!�XÆ�Ä0É¨Ì0Ç(ÜªÄ0ÅXÆ?Ï�XÁ½Ü0ÒÓÄ!Ò�Á�Ç ñðÅ½Æ�Ò���Å�Ä"ú Á2ÍPÄ0ÅÎÒ¨Ü�¨Ì�Á ï ÆXÑxÄ!Ò0À0Ænïu�Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ï�ÏCXÁ½Ü
Ã¨Æ0Í��¨Æ0ÄCÐ�ñvÜ�Æ¨À�ÍÎú÷�!�XÆ�Ä0É¨Ì0Ç(ÜªÄ0ÅXÆ6�6XÁ½Ü0ÒÓÄ!Ò�Á�Ç ñôÃ½Ò�ÜxÄ�ÂÓÇ"Ñ�Æ!ú Á2ÍPÄ0ÅÎÒ¨Ü�¨Ì�Á ï ÆXÑxÄ!Ò0À0Ænïu�Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïF��XÁ½Ü

You might notice that many of the docstrings in this code are enclosed in

triple quotes (”””). This is a third way that Python allows string literals to be

delimited. Triple quoting allows us to directly type multi-line strings. Here is an

example of how the docstrings appear when they are printed:�	��� �Ì½Ò�Ç�Ä<�Ì�Á ï Æ�ÑÓÄ!Ò�À2ÆoïpØ�Ì¨Á ï ÆXÑÓÄ½Ò0À0Ænï�Ì�Ì0Ã2ÁXÑ�Ì	ÌÅ�ÒvÊ�É½À�Â�Ä¨Æ½ÜªÄ0Å½ÆPÍ¨À�Ò���Å�Ä9Á2ÍÿÜ2ÒvÊ+½À2Æ<�Ì¨Á ï ÆXÑÓÄ½Ò0À0Æ½Ü Ç½Æ¨Â�Ì9Ä0ÅXÆ9Æ¨Â�Ì2Ä0Å���ÜÜ1É¨Ì¨Í�Â¨Ñ�Æ�õ Ò���Ç½Á�Ì!Ò�Ç+�7ÛÎÒ1ÇXÃPÌ¨Æ½Ü2Ò�ÜxÄ�ÂÓÇ"Ñ�Ænï ��Ì�Â�Ñ�Î!Ò�Ç+�àÒ¨Ü Ã�Á�Ç½ÆàÒ1ÇÐÄ2Û�Á
Ã½ÒvÊÎÆ�Ç"Ü2Ò�Á�Ç(ÜVõ ÅXÆXÒ���Å�Ä ñèÏ"úÈÂxÇXÃ9Ã½Ò�ÜxÄ�ÂÓÇ"Ñ�Æ ñÒ�Îú¬ï

You might try
Å½Æ�À�oñ0�Ì¨Á ï ÆXÑÓÄ½Ò0À0Æ!ú to see how the complete documentation looks

for this module.

Ê�}�È�×�È � �âv��Hý+l�wm�8o l�t� ¶ r_ÙXtGl�Í_Ù�i ¶ v£��r_Ù�i�s
Our main program can now simply import from the

�Ì¨Á ï Æ�ÑÓÄ½Ò0À2Æ module in order

to solve the original problem.

ó¡Ñ�Ë½Â�À2ÀC@�ï>�Ï
Í2Ì¨ÁxÊ5¨Ì�Á ï ÆXÑxÄ!Ò0À0ÆÝÒvÊ+½Á�Ì�ÄPØ2Ì�Á ï ÆXÑxÄ!Ò�À2Æ
Ã¨Æ0Í��¨Æ�Ä3¢1Ç��É¨ÄÎÜ�ñ�ú¬÷

Â?ßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½ÆÝÀ2ÂÓÉ2Ç"Ñ�ÅàÂÓÇ��¨À2Æòñ�Ò�ÇàÃ¨ÆC�2Ì¨Æ�Æ½Ü�ú¬÷ü��ú9ÝßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½ÆàÒ1Ç"ÒxÄ!Ò0Â2À<9�Æ�À2Á�Ñ�ÒÓÄ2Ï ñvÒ1Ç7ÊÎÆ�Ä�Æ�ÌÎÜ���Ü�Æ�Ñ�ú¬÷ü��ú
ÅàßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½ÆàÒ1Ç"ÒxÄ!Ò0Â2À;Å½Æ�Ò���Å�Ä ñ�Ò�Ç?ÊÎÆ�Ä�Æ�ÌÎÜ¨ú÷���ú
ÄÝßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌÈÄ0Å½Æ?Ä½Ò�Ê!ÆàÒ�Ç�Ä¨Æ0Ì�9XÂ�À Ë½Æ�Ä2ÛXÆ2Æ�Ç6XÁ½Ü0ÒÓÄ!Ò�Á�Ç Ñ�Â�À¨Ñ�É!À2Â�Ä½Ò�Á�Ç"Üæ÷Y��ú
Ì�Æ�Ä0É�Ì�Ç¡Â�õB9nõ�ÅcõðÄ

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
ÂÓÇ+��À2Æ�õ°9�Æ�À�õ ÅXÕTõ¢Ä!ÒvÊÎÆ?ß ��Æ0Ä3¢�Ç	2É�ÄÎÜ(ñ1ú
Ñ�Ë½Â�À�ÀÈßÝØ2Ì�Á ï ÆXÑxÄ!Ò�À2ÆæñzÂÓÇ+��À2Æ�õ 9�Æ¨ÀæõîÅ½Õ½ú

��~�â s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Û2ÅÎÒ0À2ÆÝÑ�Ë!Â2À�ÀTïB�¨Æ�ÄC��ñ1ú � ßÝÕn÷Ñ�Ë!Â2À�ÀTï|É	�Ã�Â�Ä�ÆæñèÄ!ÒvÊÎÆ!ú�Ì½Ò�Ç�Ä��í´ÓÇC�ÎÒ�ÜxÄXÂxÇ"Ñ�ÆÈÄ�Ì�Â�9¨Æ¨À2Æ0Ã�÷ �¨Õnï�Ö�Í Ê!Æ0Ä�Æ�ÌÎÜ¬ïG� �	ñ�Ñ�Ë!Â2À�ÀTïB�¨Æ�Ä�Ðæñ1ú�ú

In this version, details of projectile motion are now hidden in the projectile

module file.

If you are testing multi-module Python projects interactively (a good thing to

do), you need to be aware of a subtlety in the Python module importing mech-

anism. When Python first imports a given module, it creates a module object

that contains all of the things defined in the module (technically, this is called

a namespace). If a module imports successfully (it has no syntax errors), subse-

quent imports do not reload the module, they just create additional references

to the existing module object. Even if a module has been changed (its source

file edited) re-
ÒvÊ+XÁ0Ì�Ä

ing it into an ongoing interactive session will not get you

an updated version.

It is possible to interactively replace a module object using the built-in func-

tion
Ì�Æ¨À0Á¨Â�Ã�ñ Ó Ê!Á2Ã�É½À2Æ � ú (consult the Python documentation for details). But

often this won’t give you the results you want. That’s because
Ì�Æ�À2Á�Â0Ã

ing a

module doesn’t change the values of any identifiers in the current session that

already refer to objects from the old version of the module. In the context of

the
Ñ�Ë½Â�À�À�@

code, executing
Ì�Æ¨À0Á¨Â�Ã�ñ0¨Ì�Á ï ÆXÑxÄ!Ò�À2Æ!ú , causes

¨Ì�Á ï ÆXÑxÄ!Ò�À2Æ to refer

to a new module object, but
Ø2Ì�Á ï ÆXÑxÄ!Ò0À0Æ still refers to the class definition from

the old module object. Hence, the behavior of
ÊÎÂ�Ò�Ç

will not be affected by theÌ�Æ�À2Á�Â0Ã
. In fact, it’s pretty easy to create a situation where objects from both the

old and new version of a module are active at the same time, which is confusing

to say the least.

The simplest way to avoid this confusion is to make sure you start a new

interactive session for testing each time any of the modules involved in your

tests is modified. That way you are guaranteed to get a fresh (updated) import

of all the modules that you are using.

]dc«^�ê � W�·��_R�U¨[

One very common use of objects is in the design of graphical user interfaces

(GUIs). Back in Chapter 5, we talked about GUIs being composed of visual in-

terface objects called widgets. The / Ç�Ä�Ì2Ï object defined in our
�2Ì�Â��ÅÎÒ�Ñ�Ü

library

is one example of a widget. Now that we know how to define new classes, we

can create our own custom widgets.

~&%2� ¹2��¯ $ ���1{ôy|� ��~�é
Ê�}�È5µ�ÈSÊ �����*��Í_Ù�i����0v_���B���»¨ �¦l���i6hjv$Ù�Ù�i_�

Let’s try our hand at building a couple of useful widgets. As an example applica-

tion, consider a program that rolls a pair of standard (six-sided) dice. The pro-

gram will display the dice graphically and provide two buttons, one for rolling

the dice and one for quitting the program. Figure
���

.
�

shows a snapshot of the

user interface.

Figure
���

.
�
: Snapshot of dice roller in action.

You can see that this program has two kinds of widgets: buttons and dice.

We can start by developing suitable classes. The two buttons will be instances

of a
�0É¨Ä�Ä�ÁÓÇ

class, and the class that provides a graphical view of the value of a

die will be
�!Ò�Æ�Û!Ò�Æ�Û

.

Ê�}�È5µ�È�Ç ² r3l�Ù ��l�wm� ² rmt�tuvxw�s
Buttons, of course, are standard elements of virtually every GUI these days.

Modern buttons are very sophisticated, usually having a 3-dimensional look and

feel. Our simple graphics package does not have the machinery to produce but-

tons that appear to depress as they are clicked. The best we can do is find out

�1r�% s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
where the mouse was clicked after the click has already completed. Neverthe-

less, we can make a useful, if less pretty, button class.

Our buttons will be rectangular regions in a graphics window where user

clicks can influence the behavior of the running application. We will need to

create buttons and determine when they have been clicked. In addition, it is

also nice to be able to activate and deactivate individual buttons. That way, our

applications can signal which options are available to the user at any given mo-

ment. Typically, an inactive button is grayed-out to show that it is not available.

Summarizing this description, our buttons will support the following meth-

ods:

constructor Create a button in a window. We will have to specify the window

in which the button will be displayed, the location/size of the button, and

the label that will be on the button.

activate Set the state of the button to active.

deactivate Set the state of the button to inactive.

clicked Indicate if the button was clicked. If the button is active, this method

will determine if the point clicked is inside the button region. The point

will have to be sent as a parameter to the method.

getLabel Returns the label string of the button. This is provided so that we can

identify a particular button.

In order to support these operations, our buttons will need a number of in-

stance variables. For example, the button itself will be drawn as a rectangle with

some text centered in it. Invoking the
Â�ÑxÄ!Ò�9XÂ�Ä¨Æ

and
Ã¨Æ�Â�ÑÓÄ½Ò�9�Â�Ä�Æ

methods will

change the appearance of the button. Saving the
�XÆXÑxÄXÂxÇ���À0Æ

and
��ÆC�2Ä

objects as

instance variables will allow us to change the width of the outline and the color

of the label. We might start by implementing the various methods to see what

other instance variables might be needed. Once we have identified the relevant

variables, we can write a constructor that initializes these values.

Let’s start with the
Â¨ÑÓÄ½Ò�9XÂ�Ä�Æ

method. We can signal that the button is active

by making the outline thicker and making the label text black. Here is the code

(remember the
ÜÓÆ¨À�Í

parameter refers to the button object):

Ã¨Æ0ÍÐÂ�ÑÓÄ½Ò�9�Â�Ä�Æ¬ñ�ÜÓÆ¨À0Í!ú¬÷�GÅ2Æ�ÄÎÜ Ä�Å"Ò�Ü Ë�É�Ä2Ä�ÁÓÇÝÄ�Áa�`Â�ÑÓÄ½Ò�9¨Æ}��ïu�
Ü�Æ¨À�Í�ïðÀ�ÂÓËXÆ¨ÀTïzÜ�Æ�Ä	,½Ò0À�Àñ���Ë!À�Â¨Ñ�Î��vú

~&%2� ¹2��¯ $ ���1{ôy|� �1r0~

Ü�Æ¨À�Í�ï�Ì�ÆXÑxÄcïôÜ�Æ0ÄC"ÎÒÓÃ2Ä0Åoñ�ÔXú
Ü�Æ¨À�Í�ïðÂ�ÑÓÄ½Ò�9¨Æ7ß6��Ì�É½Æ

As I mentioned above, in order for this code to work, our constructor will

have to initialize
Ü�Æ�À0Í�ïðÀ�ÂxË½Æ¨À

as an appropriate
��Æ��0Ä

object and
Ü�Æ�À0Í�ï�Ì�Æ�ÑÓÄ

as

a
�XÆXÑxÄXÂxÇ���À0Æ

object. In addition, the
ÜÓÆ¨À0ÍnïèÂ¨ÑÓÄ!Ò�9�Æ

instance variable stores a

Boolean value to remember whether or not the button is currently active.

Our
Ã¨Æ¨Â¨ÑÓÄ½Ò�9XÂ�Ä�Æ

method will do the inverse of
Â�ÑxÄ!Ò�9�Â�Ä¨Æ

. It looks like this:

Ã¨Æ0Í9Ã¨Æ¨Â¨ÑÓÄ½Ò�9XÂ�Ä�Æ¬ñ�Ü�Æ�À0Í!ú¬÷�GÅ2Æ�ÄÎÜ Ä�Å"Ò�Ü Ë�É�Ä2Ä�ÁÓÇÝÄ�Áa�zÒ�Ç!Â¨ÑÓÄ½Ò�9�ÆB��ïu�
Ü�Æ¨À�Í�ïðÀ�ÂÓËXÆ¨ÀTïzÜ�Æ�Ä	,½Ò0À�Àñ��ðÃ�Â�ÌCÎ?�0Ì�Æ�Ï���ú
Ü�Æ¨À�Í�ï�Ì�ÆXÑxÄcïôÜ�Æ0ÄC"ÎÒÓÃ2Ä0Åoñ�Ö0ú
Ü�Æ¨À�Í�ïðÂ�ÑÓÄ½Ò�9¨Æ7ß6,XÂ2ÀXÜÓÆ

Of course, the main point of a button is being able to determine if it has

been clicked. Let’s try to write the
Ñ�À�Ò2Ñ�ÎXÆ0Ã

method. As you know, the
�2Ì�Â��ÅÎÒ�Ñ�Ü

package provides a
��Æ0Ä0öXÁ�É"Ü�Æ

method that returns the point where the mouse

was clicked. If an application needs to get a button click, it will first have to call�¨Æ�Ä2ö�Á�É(ÜÓÆ
and then see which active button (if any) the point is inside of. We

could imagine the button processing code looking something like the following:�ÄÝßPÛ!Ò�Ç�ïF�¨Æ�Ä2öXÁÓÉ(ÜÓÆæñ1ú
Ò�Í7Ë2É�Ä2Ä�Á�Ç�Öï`Ñ0À�Ò2Ñ�Î�Æ2Ã�ñB�ÄÎú¬÷

ó��XÁ7Ë�É¨Ä�Ä¨Á�ÇVÖ ÜxÄ�ÉXÍ�Í
Æ¨À¨Ò�Í7Ë2É�Ä�Ä¨Á�Ç½ÔoïôÑ�À�Ò2Ñ�ÎXÆ0Ã�ñB�Ä"ú÷

ó��XÁ7Ë�É¨Ä�Ä¨Á�Ç!Ô9ÜxÄ�ÉXÍ�Í
Æ¨À¨Ò�Í7Ë2É�Ä�Ä¨Á�Ç½ÔoïôÑ�À�Ò2Ñ�ÎXÆ0Ã�ñB�Ä"ú

ó��XÁ7Ë�É¨Ä�Ä¨Á�Ç½ÞÝÜxÄ�ÉXÍ�Í
ï�ï2ï

The main job of the
Ñ0À�Ò2Ñ�Î�Æ2Ã

method is to determine whether a given point

is inside the rectangular button. The point is inside the rectangle if its] and `coordinates lie between the extreme] and ` values of the rectangle. This would

be easiest to figure out if we just assume that the button object has instance

variables that record the min and max values of] and ` .Assuming the existence of instance variables
�ÓÊ(Ò�Ç

,
�xÊ"ÂC�

,
ÏÓÊ�Ò�Ç

, and
Ï�ÊÎÂC�

, we

can implement the
Ñ�À�Ò2Ñ�ÎXÆ0Ã

method with a single Boolean expression.

Ã¨Æ0Í¡Ñ0À�Ò2Ñ�Î�Æ2Ã�ñvÜ�Æ�À0Íoõ �ú÷�!�XÆ�Ä0É¨Ì0Ç(ÜªÄ�Ì�É½ÆàÒ�Í7Ë2É�Ä2Ä�Á�ÇÿÒ¨Ü7Â�ÑxÄ!Ò�9�ÆÝÂÓÇ�Ã<»Ò¨ÜPÒ1Ç(Ü2ÒÓÃ¨Æ*�

�1r�r s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïðÂ�ÑxÄ!Ò�9¨ÆPÂxÇXÃ ´

Ü�Æ�À0Í�ïF�ÓÊ(Ò�Ç . ß��ïF�¨Æ0ÄCÐ�ñ�ú . ßÿÜÓÆ¨À0ÍnïB�xÊ"ÂC�PÂÓÇ�Ã ´Ü�Æ�À0Í�ï�Ï�Ê(Ò�Ç . ß��ïF�¨Æ0ÄP�Tñ�ú . ßÿÜÓÆ¨À0ÍnïpÏÓÊ"ÂC�
Here we have a single large Boolean expression composed by

ÂÓÇ�Ã
ing together

three simpler expressions; all three must be true for the function to return a true

value. Recall that the backslash at the end of a line is used to extend a statement

over multiple lines.

The first of the three subexpressions simply retrieves the value of the in-

stance variable
ÜÓÆ¨À�Í�ïèÂ¨ÑÓÄ½Ò�9�Æ

. This ensures that only active buttons will report

that they have been clicked. If
Ü�Æ�À0Í�ïðÂ�ÑxÄ!Ò�9¨Æ

is false, then
Ñ�À�Ò�Ñ�ÎXÆ0Ã

will return

false. The second two subexpressions are compound conditions to check that

the] and ` values of the point fall between the edges of the button rectan-

gle. (Remember,
� . ßPÏ . ß¡D means the same as the mathematical expression] y ` y�½ (section
�!���!���

)).

Now that we have the basic operations of the button ironed out, we just need

a constructor to get all the instance variables properly initialized. It’s not hard,

but it is a bit tedious. Here is the complete class with a suitable constructor:

ó7Ë�É¨Ä�Ä¨Á�Ç�ï>�Ï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ñ0À2ÂXÜ2Ü �0É¨Ä�Ä�ÁÓÇ�÷

�	��� Ú Ë�É¨Ä�Ä¨Á�Ç Ò�Ü7Â9À�ÂÓËXÆ¨À0Æ2Ã?Ì¨ÆXÑÓÄ�ÂÓÇ+��À2Æ9Ò�Ç ÂÈÛÎÒ1ÇXÃ�Á�Ûhï¢xÄÿÒ�Ü7Â�ÑÓÄ½Ò�9�Â�Ä�Æ0Ã9Á0ÌÝÃ�Æ¨Â¨ÑÓÄ!Ò�9XÂ�Ä�Æ2Ã;ÛÎÒxÄ0ÅÐÄ�Å½ÆÝÂ�ÑxÄ!Ò�9XÂ�Ä¨Ææñ�ú
ÂÓÇ�Ã9Ã¨Æ¨Â¨ÑÓÄ½Ò�9XÂ�Ä�Æ¬ñ1ú ÊÎÆ0Ä�Å½Á0Ã!Üæï �0Å½ÆàÑ�À�Ò2Ñ�ÎXÆ0Ã�ñB�ú�Ê!Æ0Ä�Å½Á2Ã
Ì�Æ�Ä0É�Ì�Ç(Ü Ä2Ì0ÉXÆÐÒ�Í9Ä0ÅXÆ Ë�É¨Ä�Ä¨Á�Ç Ò¨Ü7Â¨ÑÓÄ½Ò�9�ÆPÂÓÇXÃ� Ò�ÜPÒ�Ç"Ü2Ò�Ã�ÆÐÒÓÄ�ïG���	�
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ Û!Ò�Ç�õ�Ñ�ÆÓÇ�Ä�Æ�Ìnõ Û!Ò�Ã0Ä0Åcõ Å½ÆXÒ���Å¨Änõ À2ÂÓË½Æ�À½ú÷�	�	�ª×�Ì�Æ�Â�Ä�ÆXÜÈÂ7Ì�Æ�ÑÓÄ�ÂÓÇ���É!À2Â�ÌÈË2É�Ä2Ä�Á�Ç�õ�Æ��n÷í�Ëàß��0É¨Ä�Ä¨Á�Çnñ�Ê½ÏC"ÎÒ�Ç�õ Ñ�Æ�Ç�Ä¨Æ0Ì2Ø�ÁXÒ1Ç�Äoõ Û!Ò�Ã2Ä�ÅcõîÅXÆXÒ���Å�Äoõ��3�xÉ"ÒxÄ��vú5�	�	�

Û�õpÅàß?Û!Ò�Ã0Ä0Å��2ÔoïùÕTõ ÅXÆXÒ���Å�Ä+��ÔTïðÕ�oõðÏÝß¡Ñ�Æ�Ç¨Ä�Æ0Ì�ïB��Æ0Ä�Ðæñ1ú�õ Ñ�Æ�Ç�Ä¨Æ0Ì�ïB�¨Æ�ÄC��ñ1ú
Ü�Æ¨À�Í�ïF�ÓÊ"Â��oõ Ü�Æ¨À�Í�ïF�ÓÊ�Ò1ÇÝß ��á�Û�õç�?��Û
Ü�Æ¨À�Í�ï�Ï�Ê"Â��oõ Ü�Æ¨À�Í�ï�Ï�Ê�Ò1ÇÝß9Ï¨á�ÅcõlÏ+�ÓÅVÖ ßPØ�Á�Ò�Ç¨ÄTñ�ÜÓÆ¨À�Í�ïB�xÊ�Ò1Çcõ Ü�Æ¨À�Í�ï�Ï�Ê�Ò1Ç�ú!Ô?ßPØ�Á�Ò�Ç¨ÄTñ�ÜÓÆ¨À�Í�ïB�xÊ"Â��oõ Ü�Æ¨À�Í�ï�Ï�Ê"Â��Îú

~&%2� ¹2��¯ $ ���1{ôy|� �1r��

Ü�Æ¨À�Í�ï�Ì�ÆXÑxÄPß6�XÆ�ÑÓÄ�ÂÓÇ��¨À2Æ¬ñ0VÖ(õF½Ô½ú
Ü�Æ¨À�Í�ï�Ì�ÆXÑxÄcïôÜ�Æ0Ä�,!Ò�À�À¬ñ��ôÀ¨Ò���Å¨Ä	�0ÌXÂÓÏ���ú
Ü�Æ¨À�Í�ï�Ì�ÆXÑxÄcïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
Ü�Æ¨À�Í�ïðÀ�ÂÓËXÆ¨À ß6��Æ��0ÄTñ�Ñ�Æ�Ç¨Ä�Æ�Ìnõ�À2ÂÓËXÆ¨À½ú
Ü�Æ¨À�Í�ïðÀ�ÂÓËXÆ¨ÀTïùÃ2Ì�Â�ÛTñèÛÎÒ1Ç�ú
Ü�Æ¨À�Í�ïpÃ¨Æ¨Â¨ÑÓÄ½Ò�9XÂ�Ä�Æ¬ñ1ú

Ã¨Æ0Í¡Ñ0À�Ò2Ñ�Î�Æ2Ã�ñvÜ�Æ�À0Íoõ �ú÷�!�XÆ�Ä0É¨Ì0Ç(ÜªÄ�Ì�É½ÆàÒ�Í7Ë2É�Ä2Ä�Á�ÇàÂ�ÑÓÄ½Ò�9¨Æ9ÂÓÇ�Ã� Ò�ÜPÒ�Ç"Ü2Ò�Ã�Æ��
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïðÂ�ÑxÄ!Ò�9¨ÆPÂxÇXÃ ´

Ü�Æ�À0Í�ïF�ÓÊ(Ò�Ç . ß��ïF�¨Æ0ÄCÐ�ñ�ú . ßÿÜÓÆ¨À0ÍnïB�xÊ"ÂC�PÂÓÇ�Ã ´Ü�Æ�À0Í�ï�Ï�Ê(Ò�Ç . ß��ïF�¨Æ0ÄP�Tñ�ú . ßÿÜÓÆ¨À0ÍnïpÏÓÊ"ÂC�
Ã¨Æ0Í��¨Æ0Ä��XÂxË½Æ¨Àñ�ÜÓÆ¨À0Í!ú¬÷�!�XÆ�Ä0É¨Ì0Ç(ÜªÄ0ÅXÆÝÀ�ÂÓËXÆ¨ÀàÜ�Ä�Ì!Ò1Ç��9Á0ÍPÄ0ÅÎÒ¨Ü Ë�É¨Ä�Ä¨Á�Ç�ïu�

Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïðÀ�ÂxË½Æ¨ÀTïB��Æ0Ä	�¨Æ��0ÄTñ1ú
Ã¨Æ0ÍÐÂ�ÑÓÄ½Ò�9�Â�Ä�Æ¬ñ�ÜÓÆ¨À0Í!ú¬÷�GÅ2Æ�ÄÎÜ Ä�Å"Ò�Ü Ë�É�Ä2Ä�ÁÓÇÝÄ�Áa�`Â�ÑÓÄ½Ò�9¨Æ}��ïu�

Ü�Æ¨À�Í�ïðÀ�ÂÓËXÆ¨ÀTïzÜ�Æ�Ä	,½Ò0À�Àñ���Ë!À�Â¨Ñ�Î��vú
Ü�Æ¨À�Í�ï�Ì�ÆXÑxÄcïôÜ�Æ0ÄC"ÎÒÓÃ2Ä0Åoñ�ÔXú
Ü�Æ¨À�Í�ïðÂ�ÑÓÄ½Ò�9¨Æ7ß6��Ì�É½Æ

Ã¨Æ0Í9Ã¨Æ¨Â¨ÑÓÄ½Ò�9XÂ�Ä�Æ¬ñ�Ü�Æ�À0Í!ú¬÷�GÅ2Æ�ÄÎÜ Ä�Å"Ò�Ü Ë�É�Ä2Ä�ÁÓÇÝÄ�Áa�zÒ�Ç!Â¨ÑÓÄ½Ò�9�ÆB��ïu�
Ü�Æ¨À�Í�ïðÀ�ÂÓËXÆ¨ÀTïzÜ�Æ�Ä	,½Ò0À�Àñ��ðÃ�Â�ÌCÎ?�0Ì�Æ�Ï���ú
Ü�Æ¨À�Í�ï�Ì�ÆXÑxÄcïôÜ�Æ0ÄC"ÎÒÓÃ2Ä0Åoñ�Ö0ú
Ü�Æ¨À�Í�ïðÂ�ÑÓÄ½Ò�9¨Æ7ß6,XÂ2ÀXÜÓÆ

You should study the constructor in this class to make sure you understand

all of the instance variables and how they are initialized. A button is positioned

by providing a center point, width, and height. Other instance variables are

calculated from these parameters.

Ê�}�È5µ�È�É ² r3l�Ù ��l�wm� �¦l��	i
Now we’ll turn our attention to the

�ÎÒ�ÆCÛ½Ò�Æ�Û
class. The purpose of this class is

to display the value of a die in a graphical fashion. The face of the die will be a

square (via
�XÆXÑxÄXÂxÇ���À0Æ

) and the pips will be circles.

�1r ¯ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Our

�ÎÒ�Æ�Û!Ò�Æ�Û
will have the following interface:

constructor Create a die in a window. We will have to specify the window, the

center point of the die, and the size of the die as parameters.

setValue Change the view to show a given value. The value to display will be

passed as a parameter.

Obviously, the heart of
�!Ò�ÆCÛ½Ò�Æ�Û

is turning various pips “on” and “off” to

indicate the current value of the die. One simple approach is to pre-place circles

in all the possible locations where a pip might be and then turn them on or off

by changing their colors.

Using the standard position of pips on a die, we will need seven circles:

three down the left edge, three down the right edge, and one in the center.

The constructor will create the background square and the seven circles. TheÜ�Æ�Ä	Û�Â�ÀÓÉXÆ
method will set the colors of the circles based on the value of the die.

Without further ado, here is the code for our
�ÎÒ�ÆCÛ!Ò�Æ�Û

class. The comments

will help you to follow how it works:

ó9Ã½Ò�ÆC9½Ò�Æ�Ûcï7¨Ï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ñ0À2ÂXÜ2Ü»�ÎÒ�ÆCÛ!Ò�Æ�Ûc÷�	��� �ÎÒ�Æ�Û!Ò�Æ�ÛÿÒ�Ü7ÂÈÛÎÒ�Ã��¨Æ�ÄPÄ0Å½Â�ÄÝÃ½Ò�ÜG½À�Â�Ï!ÜÈÂ-�2Ì�Â�2Å"Ò�Ñ�Â�À;Ì�Æ�¨Ì�ÆXÜ�Æ�Ç¨ÄXÂ�Ä!Ò�ÁÓÇ

Á2ÍÐÂ¡ÜxÄ�ÂÓÇ�Ã�Â�Ì�ÃàÜ0Ò��+��Ü2ÒÓÃ¨Æ2Ã7Ã½Ò�ÆnïG���	�
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ Û!Ò�Ç�õ�Ñ�ÆÓÇ�Ä�Æ�Ìnõ Ü0Ò�D�Æ!ú¬÷�	�	�v×0Ì¨Æ¨Â�Ä¨ÆPÂ-9!Ò�Æ�ÛÐÁ0ÍÐÂPÃ½Ò�Æ�õ�ÆnïF��ï2÷

Ã"Ö ß��!Ò�ÆCÛ½Ò�Æ�ÛoñpÊXÏ�"!Ò�Çcõ Ø�Á�Ò�Ç¨ÄTñë@�ÕTõÒ'2Õ!ú�õ¢Ô0Õ!ú
ÑÓÌ�Æ�Â�Ä¨Æ½ÜÈÂ?ÃXÒ�ÆàÑ�ÆÓÇ�Ä¨Æ0Ì�Æ0ÃÝÂ�Ä	ñÒ@¨Õ�õë'2Õ½úfÅ!Â�9!Ò1Ç��¡Ü0Ò�Ã¨ÆXÜ
Á2ÍÐÀ2ÆÓÇ��0Ä0Å¡Ô0ÕnïG���	�
ó9Í½ÒÓÌ!ÜxÄÝÃ�Æ2Í½Ò1Ç½ÆàÜÓÁxÊ!ÆàÜxÄ�ÂÓÇXÃ¨Â�Ì�Ã-9XÂ2ÀÓÉ½ÆXÜ
Ü�Æ¨À�Í�ï|ÛÎÒ�Ç9ßPÛÎÒ�Ç óÿÜ�Â�9¨Æ?Ä0Å"Ò�Ü;Í¨Á�ÌÝÃ2Ì�Â�ÛÎÒ1Ç��<ÎÒ�"Ü7À�Â�Ä¨Æ0Ì
Ü�Æ¨À�Í�ï Ë!Â�Ñ�Î+�0Ì�Á�É2ÇXÃ ß���Û0Å"ÒÓÄ¨Æ���ó¡Ñ�Á¨À0Á0ÌÐÁ2Í9ÃXÒ�ÆPÍ¨Â�Ñ�Æ
Ü�Æ¨À�Í�ïpÍ¨Á0Ì¨Æ��0Ì�Á�É2ÇXÃ ß��zË½À�Â�Ñ�Îx��ó¡Ñ�Á¨À0Á0ÌÐÁ2ÍPÄ�Å½Æ<ÎÒ�(Ü
Ü�Æ¨À�Í�ï>(Ü2Ò�D¨ÆÈßÝÕnï�Ö�;ÐÜ0Ò�D¨Æ óPÌ�Â0ÃXÒ�É(Ü;Á2ÍÝÆ¨Â¨Ñ�Å�ÎÒ�
Å(Ü2Ò�D¨Æ?ß Ü0Ò�D¨Æ6�ÐÔTïðÕ ó7Å½Â�À�ÍPÄ0Å½Æ¡Ü0Ò�D�ÆPÁ2Í9Ä0ÅXÆ?Ã½Ò�Æ
Á2Í�Í½Ü�Æ�Ä9ßÝÕnïùø(; Å"Ü2Ò�D¨Æ ó9ÃXÒ¨Ü�ÄXÂÓÇÎÑ�Æ?Í0Ì�Á�Ê»Ñ�ÆÓÇ�Ä�Æ�ÌPÄ�ÁÝÁÓÉ�Ä�Æ�Ì�"ÒG(Ü
ó¡ÑÓÌ�Æ�Â�Ä¨Æ9Â¡Ü�í�É½Â�Ì¨Æ?Í¨Á�Ì9Ä0Å½ÆPÍ¨Â�Ñ�Æ

~&%2� ¹2��¯ $ ���1{ôy|� �1r�´

Ñ��oõ ÑxÏÝß¡Ñ�ÆÓÇ�Ä�Æ�ÌcïF�¨Æ0ÄCÐ�ñ�úVõ�Ñ�Æ�Ç¨Ä�Æ�ÌcïB��Æ0ÄP�Tñ1úVÖ ßPØ�Á�Ò�Ç¨ÄTñvÑ��+�xÅ(Ü2Ò�D¨Æ�õ ÑxÏ��ÓÅ"Ü2Ò�D¨Æ!ú!Ô?ßPØ�Á�Ò�Ç¨ÄTñvÑ���á�Å(Ü2Ò�D¨Æ�õ ÑxÏ¨á�Å"Ü2Ò�D¨Æ!ú
Ì�ÆXÑxÄ9ß6�XÆ�ÑÓÄXÂxÇ��¨À2ÆæñBVÖ(õF!ÔXú
Ì�ÆXÑxÄcïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
Ì�ÆXÑxÄcïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë!Â¨Ñ�Î+�0Ì¨ÁÓÉ�Ç¨ÃÎú
óÝ×0Ì�Æ�Â�Ä¨ÆPþ¡Ñ�ÒÓÌ½Ñ0À0Æ½Ü;Í�Á0Ì ÜxÄ�ÂÓÇ�Ã�Â�Ì�Ã8ÎÒ�ÿÀ2Á�Ñ0Â�Ä!Ò�ÁÓÇ(Ü
Ü�Æ¨À�Í�ï>"Ò��Öªß Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��?�2Á0Í�Í!ÜÓÆ�Äoõ ÑÓÏ+�2Á0Í�Í!ÜÓÆ0ÄÎú
Ü�Æ¨À�Í�ï>"Ò�½ÔÈß Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��?�2Á0Í�Í!ÜÓÆ�Äoõ ÑÓÏÎú
Ü�Æ¨À�Í�ï>"Ò�XÞ7ß Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��?�2Á0Í�Í!ÜÓÆ�Äoõ ÑÓÏ�á¨Á0Í�Í!ÜÓÆ0ÄÎú
Ü�Æ¨À�Í�ï>"Ò�+@?ß Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��TõlÑÓÏÎú
Ü�Æ¨À�Í�ï>"Ò�m'Èß Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��2á¨Á0Í�Í!ÜÓÆ�Äoõ ÑÓÏ+�2Á0Í�Í!ÜÓÆ0ÄÎú
Ü�Æ¨À�Í�ï>"Ò�Xø7ß Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��2á¨Á0Í�Í!ÜÓÆ�Äoõ ÑÓÏÎú
Ü�Æ¨À�Í�ï>"Ò�Xþ7ß Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��2á¨Á0Í�Í!ÜÓÆ�Äoõ ÑÓÏ�á¨Á0Í�Í!ÜÓÆ0ÄÎú
ó��¨ÌXÂÓÛ¡ÂÓÇ Ò1Ç"ÒÓÄ½Ò0Â2À<9XÂ2ÀÓÉ½Æ
Ü�Æ¨À�Í�ïôÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�Ö0ú

Ã¨Æ0Í5Ì	Ì�ÊÎÂ�Î�Æ0Ø!ÒGnñvÜ�Æ¨À�Íoõ �oõ�ÏÎú¬÷��¢1Ç¨Ä�Æ�Ì0Ç!Â2À ÅXÆ¨À�XÆ0Ì Ê!Æ0Ä�Å½Á2Ã7Ä�ÁPÃ2Ì�Â�Û¡Â<"ÒG¡Â�Ä ñÒ�oõðÏÎúm�"Ò�àßÝ×�ÒÓÌ½Ñ0À2Æ¬ñ`Ø¨ÁXÒ�Ç¨ÄTñÒ�oõðÏÎúVõ�Ü�Æ�À0Ínï7(Ü0Ò�D�Æ!ú"Ò�hïzÜÓÆ0Ä	,½Ò0À2À¬ñ�ÜÓÆ¨À�Í�ï|Ë½Â�Ñ�Î+�2Ì¨ÁÓÉ2ÇXÃ½ú"Ò�hïzÜÓÆ0Ä Ä É�Ä�À�Ò�ÇXÆæñvÜ�Æ¨À�Í�ï Ë!Â�Ñ�Î?�0Ì�ÁxÉ�Ç�ÃÎú"Ò�hïùÃ0ÌXÂ�ÛTñ�ÜÓÆ¨À0Ínï�Û!Ò�Ç�ú
Ì�Æ0Ä�É�Ì�Ç6"ÒG

Ã¨Æ0ÍÿÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0ÍTõ19�Â�ÀxÉ½Æ!ú÷�GÅ2Æ�ÄPÄ0ÅÎÒ¨Ü ÃXÒ�Æ?Ä�ÁPÃXÒ¨Üu!À�Â�Ï69XÂ2ÀÓÉXÆnïG�
óPÄ0É�Ì�ÇÿÂ�À2À8"Ò�"Ü Á2Í2Í
Ü�Æ¨À�Í�ï>"Ò��ÖïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë½Â¨Ñ�Î	�2Ì¨Á�É0ÇXÃÎú
Ü�Æ¨À�Í�ï>"Ò�½ÔoïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë½Â¨Ñ�Î	�2Ì¨Á�É0ÇXÃÎú
Ü�Æ¨À�Í�ï>"Ò�XÞnïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë½Â¨Ñ�Î	�2Ì¨Á�É0ÇXÃÎú
Ü�Æ¨À�Í�ï>"Ò�+@�ïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë½Â¨Ñ�Î	�2Ì¨Á�É0ÇXÃÎú
Ü�Æ¨À�Í�ï>"Ò�m'oïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë½Â¨Ñ�Î	�2Ì¨Á�É0ÇXÃÎú
Ü�Æ¨À�Í�ï>"Ò�XønïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë½Â¨Ñ�Î	�2Ì¨Á�É0ÇXÃÎú
Ü�Æ¨À�Í�ï>"Ò�XþnïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë½Â¨Ñ�Î	�2Ì¨Á�É0ÇXÃÎú

�1r�¹ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
óPÄ0É�Ì�Ç Ñ�Á�Ì�Ì�Æ�ÑÓÄ�ÎÒ�"Ü Á�Ç
Ò�Í69XÂ2ÀÓÉXÆ?ß�ß»Ö÷

ÜÓÆ¨À�Í�ï7ÎÒ�+@�ïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
Æ¨À�ÒÓÍ-9XÂ2ÀÓÉXÆPß�ßÐÔo÷

ÜÓÆ¨À�Í�ï7ÎÒ��ÖïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XþnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú

Æ¨À�ÒÓÍ-9XÂ2ÀÓÉXÆPß�ßÝÞn÷
ÜÓÆ¨À�Í�ï7ÎÒ��ÖïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XþnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�+@�ïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú

Æ¨À�ÒÓÍ-9XÂ2ÀÓÉXÆPß�ß�@�÷
ÜÓÆ¨À�Í�ï7ÎÒ��ÖïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XÞnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�m'oïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XþnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú

Æ¨À�ÒÓÍ-9XÂ2ÀÓÉXÆPß�ß5'o÷
ÜÓÆ¨À�Í�ï7ÎÒ��ÖïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XÞnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�+@�ïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�m'oïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XþnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú

Æ¨ÀXÜÓÆn÷
ÜÓÆ¨À�Í�ï7ÎÒ��ÖïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�½ÔoïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XÞnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�m'oïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XønïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú
ÜÓÆ¨À�Í�ï7ÎÒ�XþnïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï�Í¨Á�Ì�Æ��2Ì�ÁÓÉ2Ç�ÃÎú

There are a couple of things worth noticing in this code. First, in the con-

structor, I have defined a set of values that determine various aspects of the

die such as its color and the size of the pips. Calculating these values in the

constructor and then using them in other places allows us to easily tweak the

appearance of the die without having to search through the code to find all the

places where those values are used. I actually figured out the specific calcula-

tions (such as the pip size being one-tenth of the die size) through a process of

trial and error.

Another important thing to notice is that I have added an extra methodÊÎÂ�Î�Æ0Ø!ÒG
that was not part of the original specification. This method is just a

~&%2� ¹2��¯ $ ���1{ôy|� �1r�¿

helper function that executes the four lines of code necessary to draw each of

the seven pips. Since this is a function that is only useful within the
�!Ò�ÆCÛ½Ò�Æ�Û

class, it is appropriate to make it a class method. Inside the constructor, it is

invoked by lines such as
Ü�Æ�À0Í�ï ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��oõ�ÑÓÏÎú

. Method names beginning

with a single or double underscore are used in Python to indicate that a method

is “private” to the class and not intended for use by outside programs.

Ê�}�È5µ�È � ÿ �i ¶ ��l�w ���Bv_���0�*�
Now we are ready to write our main program. The

��É�Ä2Ä�Á�Ç
and

�!Ò�Æ�9!Ò�Æ�Û
classes

are imported from their respective modules. Here is the program that uses our

new widgets:

óPÌ�Á�À�À0Æ0Ìcï>�Ï
ó ü Ì�Â�2Å"Ò�Ñ�Ü��Ì¨Á��0ÌXÂ�ÊÐÄ�Á?Ì�Á�À�À9Â8½Â�ÒÓÌÐÁ0Í9Ã½Ò2Ñ�Ænï Ù(Ü�ÆXÜPÑ�É"ÜxÄ�Á�ÊÐÛÎÒÓÃ	��Æ0ÄÎÜ
ó��0É¨Ä�Ä¨Á�ÇÿÂÓÇ�Ã��ÎÒ�ÆCÛ½Ò�Æ�Ûcï
Í2Ì¨ÁxÊ¡Ì�ÂÓÇXÃ�ÁxÊ»ÒvÊ+XÁ0Ì�Ä?ÌXÂÓÇ�Ã2Ì�ÂÓÇ���Æ
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä ü ÌXÂ��Å	"ÎÒ�Ç�õlØ�Á�Ò�Ç¨Ä
Í2Ì¨ÁxÊÐË2É�Ä�Ä¨Á�Ç ÒvÊ+XÁ0Ì�Ä��0É�Ä2Ä�ÁÓÇ
Í2Ì¨ÁxÊÿÃXÒ�ÆC9½Ò�Æ�Û¡Ò�Ê?½Á�Ì�Ä��ÎÒ�ÆCÛ½Ò�Æ�Û
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

ó¡ÑÓÌ¨Æ¨Â�Ä¨Æ7Ä0ÅXÆÝÂ��!À�Ò2Ñ0Â�Ä!Ò�ÁÓÇPÛ!Ò�ÇXÃ�Á�Û
ÛÎÒ1Çàß ü ÌXÂ��Å	"ÎÒ�Çoñ��H�ÎÒ�Ñ�Æè��Á¨À2À2Æ0Ì$��ú
ÛÎÒ1Ç�ïzÜÓÆ0Ä¨×�Á�Á�Ì¨Ã½Ü�ñzÕ�õîÕTõªÖxÕ�õªÖxÕ½ú
ÛÎÒ1Ç�ïzÜÓÆ0ÄP�XÂ�Ñ�Î+�0Ì�Á�É2ÇXÃæñ����0Ì�Æ2Æ�ÇXÔ*��ú
ó��¨Ì�Â�ÛÝÄ0ÅXÆàÒ�Ç¨Ä�Æ0Ì�Í�Â¨Ñ�Æ Û!Ò�Ã��¨Æ0Ä!Ü
Ã½Ò�ÆÎÖ ß��ÎÒ�ÆCÛ½Ò�Æ�ÛTñèÛ!Ò�Çcõ Ø�Á�Ò�Ç¨ÄTñzÞ�õ`þ½úVõ�ÔXú
Ã½Ò�Æ¨Ô?ß��ÎÒ�ÆCÛ½Ò�Æ�ÛTñèÛ!Ò�Çcõ Ø�Á�Ò�Ç¨ÄTñzþ�õ`þ½úVõ�ÔXú
Ì�Á�À�À!��É�Ä2Ä�Á�Ç9ß��0É¨Ä�Ä�ÁÓÇnñðÛÎÒ�Ç�õ Ø¨ÁXÒ�Ç¨ÄTñ&'�õ�@nï�'XúVõ øTõªÖ�õ8�&�XÁ¨À2À®�ÎÒ2Ñ�Æ*��ú
Ì�Á�À�À!��É�Ä2Ä�Á�ÇhïèÂ¨ÑÓÄ!Ò�9XÂ�Ä�Ææñ�úí�ÉÎÒÓÄC��É�Ä2Ä�Á�Ç9ß��0É¨Ä�Ä�ÁÓÇnñðÛÎÒ�Ç�õ Ø¨ÁXÒ�Ç¨ÄTñ&'�õ�Ö0úVõ¢Ô�õªÖ�õè��ÓÉÎÒÓÄ��Óú
ó / 9¨Æ�Ç�ÄàÀ0Á�Á��ÄÝßPÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1ú

�1r�â s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Û2ÅÎÒ0À2Æ;Ç½Á0Ä í�É"ÒxÄC�0É¨Ä�Ä¨Á�Ç�ï`Ñ0À¨Ò�Ñ�Î�Æ2Ãæñ0�ÄÎú¬÷

Ò�ÍPÌ�Á�À�À��0É�Ä2Ä�ÁÓÇ�ïôÑ�À�Ò2Ñ�ÎXÆ0Ã�ñB�Ä"ú÷9�Â�ÀxÉ½ÆÎÖªßPÌXÂÓÇ�Ã2Ì�ÂÓÇ���Ææñ1Ö�õ`þ½ú
ÃXÒ�Æ!ÖïzÜÓÆ0Ä�ÛXÂ�ÀxÉ½Æ¬ñÒ9XÂ2ÀÓÉXÆÎÖ2ú9�Â�ÀxÉ½Æ¨ÔÈßPÌXÂÓÇ�Ã2Ì�ÂÓÇ���Ææñ1Ö�õ`þ½ú
ÃXÒ�Æ�ÔoïzÜÓÆ0Ä�ÛXÂ�ÀxÉ½Æ¬ñÒ9XÂ2ÀÓÉXÆ¨Ô½úí�É"ÒxÄC�0É¨Ä�Ä¨Á�Ç�ïðÂ�ÑxÄ!Ò�9�Â�Ä¨Ææñ1ú�ÄÝß?ÛÎÒ1Ç�ïF�¨Æ0Ä0öXÁÓÉ(Ü�Æ¬ñ1ú

ó¡Ñ0À0Á½Ü�ÆÈÉ�»Ü1ÅXÁ�
ÛÎÒ1Ç�ïôÑ�À2ÁXÜ�Ææñ�ú

Ê"Â¨Ò�Çoñ1ú
Notice that near the top of the program I have built the visual interface by

creating the two
�ÎÒ�Æ�Û!Ò�Æ�Û

s and two
�0É�Ä2Ä�ÁÓÇ

s. To demonstrate the activation

feature of buttons, the roll button is initially active, but the quit button is left

deactivated. The quit button is activated inside the event loop below when the

roll button is clicked. This approach forces the user to roll the dice at least once

before quitting.

The heart of the program is the event loop. It is just a sentinel loop that

gets mouse clicks and processes them until the user successfully clicks the quit

button. The
Ò�Í

inside the loop ensures that the rolling of the dice only happens

when the roll button is clicked. Clicking a point that is not inside either button

causes the loop to iterate, but nothing is actually done.

]dc«^IH �b�i�¤nU�Rcg © ¦§� � ing1í

This chapter has shown you how to work with class definitions. Here is a sum-

mary of some key points:

\ An object comprises a collection of related data and a set of operations to

manipulate that data. Data is stored in instance variables and manipulated

via methods.

\ Every object is an instance of some class. It is the class definition that

determines what the attributes of the object will be. Programmers can

create new kinds of objects by writing suitable class definitions.

~!%0� â0�?����{1} ³�$ ��{z� �1r�é

\ A Python class definition is a collection of function definitions. These func-

tions implement the methods of the class. Every method definition has a

special first parameter called
Ü�Æ�À0Í

. The actual parameter of
ÜÓÆ¨À0Í

is the

object to which the method is being applied. The
Ü�Æ�À0Í

parameter is used

to access the attributes of the object via dot notation.

\ The special method
Ò1Ç"ÒÓÄ

is the constructor for a class. Its job is to

initialize the instance variables of an object.

\ Defining new objects (via
Ñ�À�Â�Ü�Ü

) can simplify the structure of a program

by allowing a single variable to store a constellation of related data. Ob-

jects are useful for modeling real world entities. These entities may have

complex behavior that is captured in method algorithms (e.g., a projectile)

or they may be little more than a collection of relevant information about

some individual (e.g., a student record).

\ Correctly designed classes provide encapsulation. The internal details of

an object are hidden inside the class definition so that other portions of

the program do not need to know how an object is implemented. This

separation of concerns is a programming convention in Python; the in-

stance variables of an object should only be accessed or modified through

the interface methods of the class.

\ Most GUI systems are built using an object-oriented approach. We can

build novel GUI widgets by defining suitable classes.

]dc«^I[egfTRhg1S¬W�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. New objects are created by invoking a constructor.

2. Functions that live in objects are called instance variables.

3. The first parameter of a Python method definition is called
Ä�Å"Ò�Ü

.

4. An object may have only one instance variable.

5. In data processing, a collection of information about a person or thing is

called a file.

�1��% s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
6. In a Python class, the constructor is called

Ò1Ç"ÒÓÄ
.

7. “Docstring” is another word for comment.

8. Instance variables go away once a method terminates.

9. Method names should always begin with one or two underscores.

10. It is considered bad style to directly access an instance variable outside of

a class definition.

� |��Q�!�����X}1�j�?������}
1. What Python reserved word starts a class definition?

a)
Ã¨Æ0Í

b)
Ñ0À2ÂXÜ2Ü

c)
Á�Ë ï ÆXÑxÄ d)

Ò�Ç"ÒxÄ
2. A method definition with four formal parameters is generally called with

how many actual parameters?

a) three b) four c) five d) it depends

3. A method definition is similar to a(n)

a) loop b) module c) import statement d) function definition

4. Within a method definition, the instance variable
�

could be accessed via

which expression?

a)
�

b)
Ü�Æ�À0ÍnïB�

c)
Ü�Æ�À0Í û �	

d)
ÜÓÆ2ÍnïB�¨Æ�Ä�Ðæñ1ú

5. A Python convention for defining methods that are “private” to a class is

to begin the method name with

a) “private” b) a pound sign (#)

c) an underscore () d) a hyphen (-)

6. The term applied to hiding details inside class definitions is

a) obscuring b) subclassing

c) documentation d) encapsualtion

7. A Python string literal can span multiple lines if enclosed with

a)
�

b)
�

c)
�	���

d)
¹

8. In a
�ÎÒ�ÆCÛ!Ò�Æ�Û

widget, what is the data type of the instance variable
Â�ÑÓÄ½Ò�9¨Æ

?

a) bool b) int c) float d)
ömÅ��!Ò�Æ

~!%0� â0�?����{1} ³�$ ��{z� �1�0~

9. Which of the following methods is not part of the
��É�Ä2Ä�Á�Ç

class in this

chapter?

a)
Â�ÑxÄ!Ò�9�Â�Ä¨Æ

b)
Ã�Æ¨Â�ÑxÄ!Ò�9XÂ�Ä¨Æ

c)
Ü�Æ�Ä	��ÂÓË½Æ�À

d)
Ñ0À¨Ò�Ñ�Î�Æ2Ã

10. Which of the following methods is part of the
�!Ò�Æ�Û!Ò�Æ�Û

class in this chap-

ter?

a)
Â�ÑxÄ!Ò�9�Â�Ä¨Æ

b)
ÜÓÆ0Ä�×2Á¨À0Á0Ì

c)
ÜÓÆ0Ä	Û�Â�ÀxÉ½Æ

d)
Ñ0À¨Ò�Ñ�ÎXÆ2Ã

� ���!��|?�&�:���m�
1. Explain the similarities and differences between instance variables and

“regular” function variables.

2. Explain the following in terms of actual code that might be found in a class

definition:

(a) method

(b) instance variable

(c) constructor

(d) accessor

(e) mutator

3. Show the output that would result from the following nonsense program:

Ñ0À�Â�Ü�ÜÅ�¨ÁPD¨Áo÷
Ã�Æ2Í5Ì�Ì�Ò�ÇÎÒÓÄ+Ì	Ì¬ñvÜ�Æ�À0Íoõ 9XÂ2ÀÓÉXÆ!ú¬÷¨Ì!Ò�Ç¨Ä)��×�Ì�Æ�Â�Ä!Ò1Ç��ÝÂ��¨ÁPD�ÁPÍ2Ì�Á�Ê§÷u�Îõ°9�Â�ÀÓÉXÆ

ÜÓÆ¨À0ÍnïF9�Â�ÀÓÉXÆ7ßàÔ5;89XÂ2ÀÓÉXÆ
Ã�Æ2Í¡Ñ�À2Á�Û0ÇnñvÜ�Æ¨À�Íoõ#�Îú¬÷¨Ì!Ò�Ç¨Ä)��×�À2Á�Û2Ç"Ò1Ç��n÷G�Îõ#�¨Ì!Ò�Ç¨Ä��=;ÝÜ�Æ�À0Í�ïI9XÂ2ÀÓÉ½Æ

Ì¨Æ0Ä0É¨Ì0Ç5�ÝáÿÜÓÆ¨À0ÍnïF9�Â�ÀÓÉXÆ
Ã¨Æ2Í ÊÎÂ�Ò1Çnñ1ú÷¨Ì!Ò1Ç�Ä���×�À2Á�Û2Ç"Ò1Ç��PÂ�Ì�ÁÓÉ�Ç�ÃÈÇ½Á�ÛhïG�

Ñ�Ö ß���ÁPD�ÁæñôÞ!ú
Ñ�Ô?ß���ÁPD�ÁæñÒ@Îú

�1��r s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
¨Ì!Ò1Ç�ÄÿÑXÖVïôÑ�À2Á�Û0ÇnñôÞ!ú¨Ì!Ò1Ç�ÄÿÑ0ÔTïôÑ�À2Á�Û0Çnñ�ÑXÖï`Ñ0À0Á�Û2Çoñ�ÔXú�ú

Ê"Â�Ò1Çnñ�ú
���Bv_���0�*����l�wm�5����i_���	lns�i�s

1. Modify the cannonball simulation from the chapter so that it also calcu-

lates the maximum height achieved by the cannonball.

2. Use the
��É�Ä�Ä¨Á�Ç

class discussed in this chapter to build a GUI for one (or

more) of your projects from previous chapters.

3. Write a program to play “Three Button Monte.” Your program should draw

three buttons labeled “Door 1”, “Door 2,” and “Door 3” in a window and

randomly select one of the buttons (without telling the user which one

is selected). The program then prompts the user to click on one of the

buttons. A click on the special button is a win, and a click on one of the

other two is a loss. You should tell the user whether they won or lost, and

in the case of a loss, which was the correct button.Your program should be

entirely graphical; that is, all prompts and messages should be displayed

in the graphics window.

4. Extend the program from the previous problem by allowing the player to

play multiple rounds and displaying the number of wins and losses. Add a

“Quit” button for ending the game.

5. Modify the
Å�Ä�ÉXÃ�Æ�Ç�Ä

class from the chapter by adding a mutator method

that records a grade for the student. Here is the specification of the new

method:

Â0Ã�Ã ü Ì�Â0Ã¨Æ¬ñ�ÜÓÆ¨À0ÍTõ#�0ÌXÂ�Ã¨Æ0Ø¨ÁXÒ1Ç�Änõ ÑÓÌ¨Æ2Ã½ÒxÄÎÜ�úæ�0ÌXÂ�Ã¨Æ0Ø¨ÁXÒ1Ç�Ä
is a float that rep-

resents a grade (e.g., A = 4.0, A– = 3.7 B+ = 3.3, etc.), and
ÑÓÌ¨Æ2ÃXÒÓÄÎÜ

is a float indicating the number of credit hours for the class. Modifies

the student object by adding this grade information.

Use the updated class to implement a simple program for calculating GPA.

Your program should create a new student object that has 0 credits and 0

quality points (the name is irrelevant). Your program should then prompt

the user to enter course information (gradepoint and credits) and then

print out the final GPA achieved.

~!%0� â0�?����{1} ³�$ ��{z� �1���

6. Extend the previous exercise by implementing an
Â0Ã�ÃC��Æ�Ä�Ä�Æ�Ì ü ÌXÂ0Ã�Æ

method.

This is similar to
Â�Ã�Ã ü ÌXÂ�Ã¨Æ

except that it accepts a letter grade as a string

(instead of a gradepoint). Use the updated class to improve the GPA cal-

culator by allowing the entry of letter grades.

7. Write a modified
�0É¨Ä�Ä¨Á�Ç

class that creates circular buttons. Call your class×K�0É¨Ä�Ä¨Á�Ç
and implement the exact same methods that are in the exist-

ing
��É�Ä�Ä¨Á�Ç

class. Your constructor should take the center of the button

and its radius as normal parameters. Place your class in a module calledÑ�Ë�É¨Ä�Ä¨Á�Ç�ï>�Ï
. Test your class by modifying

Ì�Á�À�À0Æ0Ìcï>�Ï
to use your buttons.

8. Modify the
�!Ò�ÆCÛ½Ò�Æ�Û

class from the chapter by adding a method that allows

the color of the pips to be specified.

Ü�Æ0Ä¨×�Á�À2Á0Ì�ñ�ÜÓÆ¨À0ÍTõ Ñ�Á¨À0Á0Ì"ú
Changes the color of the pips to

Ñ�Á¨À2Á�Ì
.

Hints: You can change the color by changing the value of the instance

variable
Í�Á0Ì�ÆC�2Ì¨Á�É�Ç�Ã

, but you also need to redraw the die after doing this.

Modify
Ü�Æ�Ä	Û�Â�ÀÓÉXÆ

so that it remembers the value of the die in an instance

variable. Then
ÜÓÆ0Ä¨×�Á¨À0Á0Ì

can call
ÜÓÆ0Ä	Û�Â�ÀxÉ½Æ

and pass the stored value to

redraw the die. You can test your new class with the
Ì¨Á¨À2À2Æ0Ì�ï7¨Ï

program.

Have the dice change to a random color after each roll (you can generate

a random color with the
Ñ�Á¨À0Á0Ì Ì?��Ë

function).

9. Write a class to represent the geometric solid sphere. Your class should

implement the following methods:

Ò�ÇÎÒÓÄ ñ�ÜÓÆ¨À0ÍTõlÌXÂ�Ã½Ò1É(Ü¨ú
Creates a sphere having the given

ÌXÂ�Ã½Ò1É(Ü
.�¨Æ0ÄC�½Â�Ã½Ò�É"Ü�ñvÜ�Æ¨À�ÍÎú

Returns the radius of this sphere.Ü1É�Ì�Í�Â¨Ñ�Æ Ú Ì�Æ�Â¬ñ�ÜÓÆ¨À�ÍÎú
Returns the surface area of the sphere.9�Á¨ÀxÉ0Ê!Ææñ�ÜÓÆ¨À�ÍÎú

Returns the volume of the sphere.

Use your new class to solve Programming Exercise 1 from Chapter 3.

10. Same as the previous problem, but for a cube. The constructor should

accept the length of a side as a parameter.

11. Implement a class to represent a playing card. Your class should have the

following methods:

�1� ¯ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
Ò�ÇÎÒÓÄ ñ�ÜÓÆ¨À0ÍTõlÌXÂxÇ?Înõ Ü1ÉÎÒÓÄ"ú�ÌXÂxÇ?Î

is an int in the range 1–13 indicating

the ranks Ace–King, and
Ü1ÉÎÒÓÄ

is a single character “d”, “c”, “h”, or “s”

indicating the suit (diamonds, clubs, hearts, or spades). Create the

corresponding card.�¨Æ0ÄC�½ÂxÇ?ÎoñvÜ�Æ�À0ÍÎú
Returns the rank of the card.�¨Æ0Ä+ÅÓÉÎÒÓÄTñvÜ�Æ�À0ÍÎú
Returns the suit of the card.��4�Û�Â�ÀxÉ½ÆæñvÜ�Æ�À0ÍÎú
Returns the Blackjack value of a card. Ace counts as 1,

face cards count as 10.ÜxÄ2Ì ñvÜ�Æ�À0ÍÎú
Returns a string that names the card. For example,

� Ú Ñ�Æ
Á2Í5Å�½Â0Ã�Æ½Ü��

.

Note: A method named
Ü�Ä�Ì

is special in Python. If asked to convert an

object into a string, Python uses this method, if it’s present. For example,

Ñ?ßÝ×�Â�Ì�Ã�ñ�Ö(õ��xÜ���ú�Ì!Ò1Ç�ÄÿÑ
will print “Ace of Spades.”

Test your card class with a program that prints out ø randomly generated

cards and the associated Blackjack value where ø is a number supplied by

the user.

12. Extend your card class from the previous problem with a
Ã2Ì�Â�ÛoñvÜ�Æ�À0Íoõ

ÛÎÒ�Ç�õ Ñ�ÆÓÇ�Ä�Æ�Ì"ú
method that displays the card in a graphics window. Use

your extended class to create and display a hand of five random cards.

Hint: the easiest way to do this is to search the Internet for a free set of

card images and use the
¢vÊÎÂC��Æ

object in the graphics library to display

them.

13. Here is a simple class that draws a (grim) face in a graphics window:

óÐÍ¨Â�Ñ�Ænï7¨Ï
Í2Ì�Á�Ê=�2Ì�Â��ÅÎÒ�Ñ�Ü7Ò�Ê?½Á�Ì�Ä=;
Ñ0À�Â�Ü�Üè,�Â�Ñ�Æo÷

Ã�Æ2Í5Ì�Ì�Ò�ÇÎÒÓÄ+Ì	Ì¬ñvÜ�Æ�À0Íoõ ÛÎÒ1ÇXÃ�Á�Û�õ Ñ�Æ�Ç¨Ä�Æ�Ìnõ Ü0Ò�D¨Æ½ú¬÷
Æ�Ï�Æ?Å¨Ò�D�Æ?ßÝÕnï�Ö�'5;ÝÜ2Ò�D¨Æ

~!%0� â0�?����{1} ³�$ ��{z� �1��´

Æ�Ï�Æ Ä Í�ÍPß Ü0Ò�D¨Æ6�ÝÞoïðÕ
Ê!Á�É�Ä�Å�Å¨Ò�D¨ÆÈßÐÕnï0A(;ÝÜ0Ò�D�Æ
Ê!Á�É�Ä�Å Ä Í�ÍPßÿÜ0Ò�D¨Æ �9ÔTïðÕ
ÜÓÆ¨À0Ínï|ÅXÆ¨Â0Ã7ßÐ×XÒÓÌ½Ñ0À0ÆæñvÑ�Æ�Ç¨Ä�Æ0Ìoõ Ü0Ò�D�Æ!ú
ÜÓÆ¨À0Ínï|ÅXÆ¨Â0ÃnïùÃ0ÌXÂ�ÛTñèÛ!Ò�ÇXÃ�Á�Û"ú
ÜÓÆ¨À0ÍnïèÀ0Æ2Í2Ä / Ï¨Æ7ßÝ×XÒxÌ!Ñ�À2Ææñ�Ñ�ÆÓÇ�Ä�Æ�Ìnõ Æ0Ï¨Æ?Å�Ò�D¨Æ½úÜÓÆ¨À0ÍnïèÀ0Æ2Í2Ä / Ï¨Ænï�Ê!ÁC9¨Ææñ!�0Æ0Ï¨Æ Ä Í2ÍTõ1�0Æ0Ï¨Æ Ä Í2ÍÎúÜÓÆ¨À0ÍnïpÌ½Ò���Å¨Ä / Ï�Æ ßà×�ÒÓÌ½Ñ0À2Æ¬ñvÑ�Æ�Ç�Ä¨Æ0ÌoõlÆ�Ï�Æ?Å¨Ò�D�Æ!úÜÓÆ¨À0ÍnïpÌ½Ò���Å¨Ä / Ï�ÆnïZÊÎÁ�9�ÆæñôÆ0Ï¨Æ Ä Í2ÍTõ1�0Æ0Ï¨Æ Ä Í2ÍÎúÜÓÆ¨À0ÍnïèÀ0Æ2Í2Ä / Ï¨ÆnïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç�Ã¨Á�Û"úÜÓÆ¨À0ÍnïpÌ½Ò���Å¨Ä / Ï�ÆnïpÃ2Ì�Â�ÛoñðÛÎÒ1ÇXÃ¨Á�Û"ú�Ö ß Ñ�Æ�Ç¨Ä�Æ0Ì�ïôÑ�À2Á�ÇXÆæñ�ú�Öï�Ê!ÁC9¨Ææñ!�1ÊÎÁÓÉ�Ä0ÅmÅ�Ò�D¨Æ?�2Ô�õ Ê!Á�É�Ä�Å Ä Í�ÍÎú½Ô?ß Ñ�Æ�Ç¨Ä�Æ0Ì�ïôÑ�À2Á�ÇXÆæñ�ú½Ôoï�Ê!ÁC9¨ÆæñpÊ!Á�É¨Ä0Å�Å¨Ò�D�Æ?��Ôæõ ÊÎÁÓÉ�Ä0Å Ä Í2ÍÎú
ÜÓÆ¨À0Ínï�Ê!Á�É�Ä�ÅÝß��!Ò1Ç½Æ¬ñ0VÖ(õF½Ô½ú
ÜÓÆ¨À0Ínï�Ê!Á�É�Ä�Å�ïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç�Ã¨Á�Û(ú

Add methods to this class that cause the face to change expression. For

example you might add methods such as
ÜvÊ(Ò0À0Æ

,
Û!Ò�Ç	Î

,
Í2Ì�Á�Û2Ç

,
Í¨À�Ò�ÇÎÑ�Å

, etc.

Your class should implement at least three such methods.

Use your class to write a program that draws a face and provides the user

with buttons to change the facial expression.

14. Modify the face class from the previous problem to include a
Ê!ÁC9�Æ

method

similar to other graphics objects. Using the move method, create a pro-

gram that makes a face bounce around in a window (see Programming

Exercise 17 from Chapter 7). Bonus: have the face change expression

each time it “hits” the edge of the window.

15. Create a
�2ÌXÂ�Ñ�ÎXÆ�Ì

class that displays a circle in a graphics window to show

the current location of an object. Here is a quick specification of the class:

Ñ0À�Â�Ü�Üè�2ÌXÂ�Ñ�ÎXÆ�Ìc÷
Ã�Æ2Í5Ì�Ì�Ò�ÇÎÒÓÄ+Ì	Ì¬ñvÜ�Æ�À0Íoõ ÛÎÒ1ÇXÃ�Á�Û�õ¢Á�Ë ï ��Á���ÌXÂ¨Ñ�Î"ú¬÷

óPÛÎÒ1ÇXÃ�Á�ÛÿÒ�Ü7Â-�2ÌXÂ��Å	"ÎÒ�ÇàÂÓÇXÃÝÁÓË ï ��ÁC�2ÌXÂ¨Ñ�Î¡Ò�Ü7ÂÓÇ¡ÁÓË ï Æ�ÑÓÄ?Û0Å½ÁXÜ�Æó XÁ½Ü0ÒÓÄ!Ò�Á�Ç¡Ò¨Ü;Ä�Á7ËXÆ¡Ü1Å½Á�Û2Ç Ò1ÇÐÄ0ÅXÆ7ÛÎÒ�Ç�Ã¨Á�ÛhïlÁÓË ï �¨ÁC�2ÌXÂ�Ñ�Î¡Ò�Ü

�1��¹ s"tvuxwzy|{1}V~&%2�üé"{Òê�� $ ���«s*± u����p{ô�
ó ÂxÇ¡Á�Ë ï ÆXÑxÄPÄ0Å½Â�Ä?Å½ÂXÜ8�¨Æ�Ä�Ðæñ1ú ÂxÇXÃ��¨Æ�ÄC��ñ1ú Ê!Æ0Ä0ÅXÁ2Ã½Ü Ä0Å½Â�Äó Ì¨Æ�XÁ0Ì�ÄàÒÓÄÎÜPÑ1É�Ì2Ì�Æ�Ç¨Ä�½ÁXÜ2ÒxÄ!Ò�ÁÓÇ�ï
óÐ×0Ì¨Æ¨Â�Ä�Æ½Ü;Â-��ÌXÂ¨Ñ�Î�Æ0ÌÝÁÓË ï Æ�ÑÓÄÐÂxÇXÃ9Ã0ÌXÂ�ÛÎÜÈÂÐÑ�ÒxÌ!Ñ�À2ÆàÒ�ÇÝÛ!Ò�Ç�Ã¨Á�Ûó Â�Ä9Ä0ÅXÆàÑ�É�Ì2Ì�ÆÓÇ�Ä�XÁ½Ü2ÒxÄ!Ò�Á�ÇÐÁ0ÍÝÁ�Ë ï ��Á���Ì�Â�Ñ�Îcï

Ã�Æ2Í7É�XÃ�Â�Ä�Æ¬ñ1ú¬÷
óPöXÁ�9�ÆXÜ Ä0ÅXÆàÑ�ÒÓÌ½Ñ0À0ÆÐÒ�ÇÐÄ�Å½Æ7ÛÎÒ1ÇXÃ�Á�Û9Ä¨Á?Ä0Å½ÆàÑ1É�Ì2Ì�Æ�Ç¨Ä�½ÁXÜ2ÒxÄ!Ò�ÁÓÇ
ó Á0ÍPÄ0ÅXÆ9Á�Ë ï ÆXÑxÄ7Ë½Æ�Ò�Ç��7Ä�ÌXÂ¨Ñ�Î�Æ2Ã�ï

Use your new
��ÌXÂ¨Ñ�Î�Æ0Ì

class in conjunction with the
Ø�Ì¨Á ï ÆXÑÓÄ½Ò0À0Æ class to

write a program that graphically depicts the flight of a cannonball.

16. Advanced: Add a
�XÂ�Ì?��Æ0Ä

class to the cannonball program from the previ-

ous problem. A target should be a rectangle placed at a random
�

position

at the bottom of the window. Allow users to keep firing until they hit the

target.

17. Redo the regression problem from Chapter 8 (Programming Exercise 13)

using a
�XÆC�2Ì¨Æ½Ü�Ü0Ò�ÁÓÇ

class. Your new class will keep track of the various

quantities that are needed to compute a line of regression (the running

sums of] , ` ,] µ , and] `). The regression class should have the following

methods:

init Creates a new regression object to which points can be added.

addPoint Adds a point to the regression object.

predict Accepts a value of] as a parameter, and returns the value of the

corresponding ` on the line of best fit.

Note: Your class might also use some internal helper methods to do such

things as compute the slope of the regression line.

3547698;:=<?> @9@ � Hò� H � � ©m©0
aÆÐ�§¥����m

NPO!Q�RTSVUXWZYTRT[
\ To understand the use of lists (arrays) to represent a collection of related

data.

\ To be familiar with the functions and methods available for manipulating

Python lists.

\ To be able to write programs that use lists to manage a collection of infor-

mation.

\ To be able to write programs that use lists and classes to structure complex

data.

\ To understand the use of Python dictionaries for storing nonsequential

collections.

]�]_^`] egfTi_�¥¤_j Rm��g1�²O_j Rh�³²È©=Wp�¥¤_j R ©£U�iTUXW�[�U�W�S¬[

As you saw in the last chapter, classes are one mechanism for structuring the

data in our programs. Classes alone, however, are not enough to satisfy all of

our data-handling needs.

If you think about the kinds of data that most real-world programs manipu-

late, you will quickly realize that many programs deal with large collections of

similar information. A few examples of the collections that you might find in a

modern program include:

\ Words in a document. É�É {

�1��â s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
\ Students in a course.

\ Data from an experiment.

\ Customers of a business.

\ Graphics objects drawn on the screen.

\ Cards in a deck.

In this chapter, you will learn techniques for writing programs that manipulate

collections like these.

Let’s start with a simple example: a collection of numbers. Back in Chapter 8,

we wrote a simple but useful program to compute the mean (average) of a set

of numbers entered by the user. Just to refresh your memory (as if you could

forget it), here is the program again:

óÐÂ�9¨Æ0Ì�ÂC�¨ÆC@�ï>�Ï
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷

Ü1É�ÊÿßÝÕnïðÕ
Ñ�ÁÓÉ�Ç�ÄPßàÕ�+Å�Ä�ÌÝßPÌXÂÓÛmÌ¨Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?ÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� �ÓúÛ2ÅÎÒ0À2Æ��+Å�Ä2Ì �pß)���(÷�9ßàÆ�9XÂ2À¬ñë�?Å�Ä2Ì"ú

Ü1É0ÊÿßÿÜ�É0Êÿá �
Ñ�Á�É2Ç�Ä9ßÿÑ�Á�É�Ç¨Ä9á Ö�+Å�Ä2Ì9ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì?Â7Ç2É0Ê¨Ë½Æ0Ìòñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�ÉÎÒÓÄÎú �	� �Óú�Ì½Ò�Ç�Ä��í´ÓÇ?�0ÅXÆ9Â�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆÈÇ�É0Ê¨Ë½Æ�ÌÎÜ?Ò�Ü��Îõ�Ü�É0ÊÏ�ÐÑ�Á�É�Ç¨Ä

Ê"Â¨Ò�Çoñ1ú
This program allows the user to enter a sequence of numbers, but the program

itself does not keep track of what numbers were entered. Instead, it just keeps a

summary of the numbers in the form of a running sum. That’s all that’s needed

to compute the mean.

Suppose we want to extend this program so that it computes not only the

mean, but two other standard statistical measures—median and standard devia-

tion —of the data. You are probably familiar with the concept of a median. This

is the value that splits the data set into equal-sized parts. For the data 2, 4, 6,

9, 13, the median value is 6, since there are two values greater than 6 and two

~�~�� r0��Õæw�w�± ç $ ��� ¾ $ ��y|� �1��é

that are smaller. One way to calculate the median is to store all the numbers

and put them in order so that we can identify the middle value.

The standard deviation is a measure of how spread out the data is relative

to the mean. If the data is tightly clustered around the mean, then the standard

deviation is small. When the data is more spread out, the standard deviation is

larger. The standard deviation provides a yardstick for determining how excep-

tional a value is. For example, some teachers define an “A” as any score that is

at least two standard deviations above the mean.

The standard deviation,] , is defined as] º¿¾ p R n]1VY]�r>T µøçV8U
In this formula n] is the mean,]�r represents the ith data value and ø is the num-

ber of data values. The formula looks complicated, but it is not hard to compute.

The expression R n]ÆV§] r T µ is the square of the “deviation” of an individual item

from the mean. The numerator of the fraction is the sum of the deviations

(squared) across all the data values.

Let’s take a simple example. If we again use the values 2, 4, 6, 9, and 13, the

mean of this data (n]) is 6.8. So the numerator of the fraction is computed as

R>E	D��`Vf��T µ Â R>E	D��`VYZ�T µ Â R>E	D���VæE�T µ Â R>E	D��`V�P�T µ Â R>E	D��`V8UuO�T µ º U:ZCP	DQE
Finishing out the calculation gives us] º ¾ U:ZCP	DQEN V<U º % O�W�D Z º E	D�U�U
The standard deviation is about 6.1. You can see how the first step of this cal-

culation uses both the mean (which can’t be computed until all of the numbers

have been entered) and each individual value as well. Computing the standard

deviation this way requires some method to remember all of the individual val-

ues that were entered.

]�]_^�� Ö;¤_¤_j íTWpe�� ¼cW�[�U¨[

In order to complete our enhanced statistics program, we need a way to store

and manipulate an entire collection of numbers. We can’t just use a bunch of

independent variables, because we don’t know how many numbers there will

be.

� ¯ % s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
What we need is some way of combining an entire collection of values into

one object. Actually, we’ve already done something like this, but we haven’t

discussed the details. Take a look at these interactive examples:�	��� ÌXÂxÇ��¨Æ¬ñ�Ö�Õ!úû Õ�õªÖ�õ Ôæõ ÞTõÆ@oõ�'æõ øTõ þTõÔA�õ ý�
�	��� ÜxÄ2Ì!Ò�Ç+��ïôÜG!À¨ÒÓÄ�ñ��:��Å"Ò�Ü Ò�Ü7ÂÓÇ¡ÆC�+��½Â�Ì2Ì�Á0Äj�u�Óúû �B�0ÅÎÒ¨Ü©�2õ���Ò�Ü©�2õ��ôÂxÇ���õ��`Æ��?��½Â�Ì�Ì¨Á0Äj�!��

Both of these familiar functions return a collection of values denoted by the

enclosing square brackets. These are lists, of course.

Ê*Ê�È�Ç�ÈSÊ ¸3lnsutus#�*wj��Ú �ë�0�C¤+s
As you know, Python lists are ordered sequences of items. In fact, the ideas and

notations that we use for manipulating lists are borrowed from the mathematical

notion of sequence. Mathematicians sometimes give an entire sequence of items

a single name. For instance, a sequence of ø numbers might just be called À :À º] ¹ G] ¶ G] µ G] ¸ G�D�D�D7G] J ·*¶
When they want to refer to specific values in the sequence, these values are

denoted by subscripts. In this example, the first item in the sequence is denoted

with the subscript M ,] ¹ .
By using numbers as subscripts, mathematicians are able to succinctly sum-

marize computations over items in the sequence using subscript variables. For

example, the sum of the sequence is written using standard summation notation

as J ·*¶Á r�Â ¹] r
A similar idea can be applied to computer programs. With a list, we can use

a single variable to represent an entire sequence, and the individual items in the

sequence can be accessed through subscripting. Well, almost; We don’t have a

way of typing subscripts, but we use indexing instead.

Suppose that our sequence is stored in a variable called
Ü
. We could write a

loop to calculate the sum of the items in the sequence like this:

Ü1É�ÊÿßÝÕ
Í¨Á�ÌÿÒ9Ò�ÇàÌXÂxÇ���ÆæñðÇ(ú¬÷

Ü1É�ÊÿßÿÜ1É0Êÿá Ü û Ò�

~�~�� r0��Õæw�w�± ç $ ��� ¾ $ ��y|� � ¯ ~

Virtually all computer languages provide some sort of sequence structure similar

to Python’s list; in other languages, it is called an array. To summarize, a list or

array is a sequence of items where the entire sequence is referred to by a single

name (in this case,
Ü
) and individual items can be selected by indexing (e.g.,Ü û Ò�

).

Arrays in other programming languages are generally fixed size. When you

create an array, you have to specify how many items it will hold. If you don’t

know how many items you will have, then you have to allocate a large array,

just in case, and keep track of how many “slots” you actually fill. Arrays are

also usually homogeneous. That means they are restricted to holding objects of a

single data type. You can have an array of ints or an array of strings but cannot

mix strings and ints in a single array.

In contrast, Python lists are dynamic. They can grow and shrink on demand.

They are also heterogeneous. You can mix arbitrary data types in a single list. In

a nutshell, Python lists are mutable sequences of arbitrary objects.

Ê*Ê�È�Ç�È�Ç ¸3lnsut°�1Í�i_�0��tGlnvxw�s
Because lists are sequences, you know that all of the Python built-in sequence

operations also apply to lists. To jog your memory, here’s a summary of those

operations:

Operator MeaningÓ seq � + Ó seq � ConcatenationÓ seq � * Ó int-expr � RepetitionÓ seq � [] Indexing

len(Ó seq �) LengthÓ seq � [:] Slicing

for Ó var � in Ó seq � : IterationÓ expr � in Ó seq � Membership check (Returns a Boolean)

Except for the last (membership check), these are the same operations that we

used before on strings. The membership operation can be used to see if a certain

value appears anywhere in a sequence. Here are a couple of quick examples

checking for membership in lists and string:�	��� ÀXÜ�ÄÝß û Ö�õ`Ô�õèÞTõ�@�
�	��� ÞàÒ�Ç ÀXÜ�Ä��Ì�É½Æ

� ¯ r s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
�	��� 'ÐÒ�Ç ÀXÜ�Ä,XÂ2ÀXÜÓÆ�	��� ÂÓÇ"Ü ß|�l����	��� ÂÓÇ"ÜPÒ�ÇQ�l�2Ï����Ì�É½Æ

By the way, since we can iterate through lists, the summing example from

above can be written more simply and clearly this way:

Ü1É�ÊÿßÝÕ
Í¨Á�Ì �¡Ò�Ç Üæ÷

Ü1É�ÊÿßÿÜ1É0Êÿá �
Recall that one important difference between lists and strings is that lists are

mutable. You can use assignment to change the value of items in a list.�	��� ÀXÜ�ÄÝß û Ö�õ Ôæõ ÞTõÔ@	
�	��� ÀXÜ�Ä û ÞC
@�	��� ÀXÜ�Ä û ÞC
Pß)�!��Æ¨À2À2Á���	��� ÀXÜ�Äû Ö(õ Ô�õ Þ�õ��B�XÆ�À�À0Á}��
�	��� ÀXÜ�Ä û Ô�
PßÝþ�	��� ÀXÜ�Äû Ö(õ Ô�õ þ�õ��B�XÆ�À�À0Á}��
�	��� ÀXÜ�Ä û ÖV÷ðÞC
?ß û �uÅ�À�Ò2Ñ�Æ*�Îõ�� Ú Ü2Ü2Ò���Ç0Ê!Æ�Ç�Ä$��
�	��� ÀXÜ�Äû Ö(õ��ëÅ2À�Ò�Ñ�Æ}�2õ�� Ú Ü�Ü0Ò���Ç�ÊÎÆÓÇ�Ä��2õ��F�XÆ¨À2À2ÁB��

As the last example shows, it’s even possible to change an entire subsequence in

a list by assigning a list into a slice. Python lists are very flexible. Don’t attempt

this in other languages!

As you know, lists can be created by listing items inside square brackets.

Á2Ã2Ã!Ü ß û Ö�õ ÞTõî'æõ þTõ ý�

Í¨Á2Á2Ã9ß û �ÓÜG½Â�Ê{�Îõ§�vÆ��	�½Ü��!õ��zË½Â�Ñ�ÎPË!Â�Ñ�Á�Çx��

Ü2Ò�À�À�Ï9ß û Ö�õè�xÜG½Â�Ê �!õç@oõè�ôÙ��:

ÆxÊ?�Ä2Ï9ß û

In the last example,

ÆxÊ+¨Ä�Ï
is a list containing no items at all—an empty list.

A list of identical items can be created using the repetition operator. This

example creates a list containing 50 zeroes:

~�~�� r0��Õæw�w�± ç $ ��� ¾ $ ��y|� � ¯ �

D¨Æ�Ì�Á2Æ½Ü;ß û ÕC
(;6'2Õ
Often lists are built up one piece at a time using the

Â��½Æ�Ç�Ã
method. Here is

a fragment of code that fills a list with positive numbers typed by the user:

Ç�É�ÊVÜ ß û
�9ßÿÒ�Ç��É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂÈÇ�É0Ê¨Ë½Æ�Ìc÷���úÛ2ÅÎÒ0À0Æ-� � ßÝÕn÷Ç�É�ÊVÜæïðÂ��½Æ�Ç�Ã�ñÒ�Îú�9ßÿÒ�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÂ7Ç2É0Ê¨Ë½Æ0Ì�÷���ú
In essence,

Ç�É0Ê�Ü
is being used as an accumulator. The accumulator starts out

empty, and each time through the loop a new value is tacked on.

The
Â�	XÆ�ÇXÃ

method is just one example of a number of useful list-specific

methods. The following table briefly summarizes some things you can do to a

list:

Method MeaningÓ list � .append(x) Add element x to end of list.Ó list � .sort() Sort (order) the list. A comparison function

may be passed as parameter.Ó list � .reverse() Reverse the list.Ó list � .index(x) Returns index of first occurrence of x.Ó list � .insert(i,x) Insert x into list at index i.Ó list � .count(x) Returns the number of occurrences of x in list.Ó list � .remove(x) Deletes the first occurrence of x in list.Ó list � .pop(i) Deletes the ith element of the list and returns its value.

The best way to become comfortable with these methods is simply to try

them out in an interactive session.�	��� ÀXÜ�ÄÝß û ÞTõvÖ�õ0@oõ�Ö(õë'æõ`ý�
�	��� ÀXÜ�ÄcïèÂ�	XÆ�ÇXÃæñ�ÔXú�	��� ÀXÜ�Äû Þ�õªÖ�õÆ@TõªÖ�õî'�õ ý�õ ÔC
�	��� ÀXÜ�ÄcïzÜÓÁ0Ì2ÄTñ1ú�	��� ÀXÜ�Äû Ö(õªÖ�õ Ôæõ ÞTõÆ@oõ�'æõ ý�
�	��� ÀXÜ�ÄcïpÌ¨ÆC9¨Æ0ÌÎÜÓÆæñ�ú

� ¯�¯ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
�	��� ÀXÜ�Äû ý�õî'�õÆ@Tõ ÞTõ Ô�õ Ö(õªÖ�
�	��� ÀXÜ�ÄcïôÒ1ÇXÃ�Æ���ñÒ@ÎúÔ�	��� ÀXÜ�ÄcïôÒ1Ç(ÜÓÆ0Ì�Ä�ñë@Tõ��!��Æ¨À2À2Á��Óú�	��� ÀXÜ�Äû ý�õî'�õÆ@Tõ ÞTõ��B��Æ¨À2À2Á}�2õ Ô�õªÖ(õªÖ�
�	��� ÀXÜ�ÄcïôÑ�Á�É2Ç�ÄTñ1Ö2úÔ�	��� ÀXÜ�ÄcïpÌ¨ÆxÊ!ÁC9�Æ¬ñ�Ö0ú�	��� ÀXÜ�Äû ý�õî'�õÆ@Tõ ÞTõ��B��Æ¨À2À2Á}�2õ Ô�õªÖG
�	��� ÀXÜ�Äcï7XÁ�oñzÞ!úÞ �	��� ÀXÜ�Äû ý�õî'�õÆ@Tõ��B�XÆ�À�À0Á}��õ�Ô�õªÖ�

Note that most of these methods do not return a value, instead they change the

contents of the list in some way. The exceptions are
Ñ�ÁÓÉ�Ç�Ä

and
Ò1ÇXÃ�Æ��

, which

return a value but do not change the list, and
XÁ�

, which both returns a value

and changes the list.

We have seen how lists can grow by appending new items. Lists can also

shrink when items are deleted. Individual items or entire slices can be removed

from a list using the
Ã¨Æ�À

operator.�	��� Ê½Ï��!Ò¨Ü�Äû ÞC@oõ Ô0øTõ ÕTõªÖ�Õ�
�	��� Ã¨Æ�À Ê½Ï	�½Ò¨Ü�Ä û ÖG
�	��� Ê½Ï��!Ò¨Ü�Äû ÞC@oõ Õ�õªÖxÕ�
�	��� Ã¨Æ�À Ê½Ï	�½Ò¨Ü�Ä û ÖV÷ðÞC
�	��� Ê½Ï��!Ò¨Ü�Äû ÞC@	

Notice that

Ã¨Æ�À
is not a list method, but a built-in operation that can be used on

list items.

As you can see, Python lists provide a very flexible mechanism for handling

arbitrarily large sequences of data. Using lists is easy if you keep these basic

principles in mind:

\ A list is a sequence of items stored as a single object.

~�~�� r0��Õæw�w�± ç $ ��� ¾ $ ��y|� � ¯ ´

\ Items in a list can be accessed by indexing, and sublists can be accessed by

slicing.

\ Lists are mutable; individual items or entire slices can be replaced through

assignment statements.

\ Lists support a number of convenient and frequently used methods.

\ Lists will grow and shrink as needed.

Ê*Ê�È�Ç�È�É Ø tu�mtGlnsutGl��	s#o l�t� ¸�lnsGtus
Now that you know more about lists, we are ready to solve our little statistics

problem. Recall that we are trying to develop a program that can compute the

mean, median, and standard deviation of a sequence of numbers entered by the

user. One obvious way to approach this problem is to store the numbers in a list.

We can write a series of functions—
ÊÎÆ�ÂÓÇ

,
ÜxÄ�ÃK��ÆC9

, and
ÊÎÆ0Ã½Ò�ÂÓÇ

—that take a list

of numbers and calculate the corresponding statistics.

Let’s start by using lists to rewrite our original program that only computes

the mean. First, we need a function that gets the numbers from the user. Let’s

call it
�¨Æ�Ä	Ð0É�Ê�ËXÆ0ÌÎÜ

. This function will implement the basic sentinel loop from our

original program to input a sequence of numbers. We will use an initially empty

list as an accumulator to collect the numbers. The list will then be returned from

the function.

Here’s the code for
��Æ0Ä	Ð�É0Ê¨Ë½Æ0Ì!Ü

:

Ã¨Æ0Í��¨Æ�Ä	Ð0É�Ê�ËXÆ0ÌÎÜ(ñ1ú÷
Ç�É�ÊVÜ ß û
 ó ÜxÄ�Â�Ì2Ä?ÛÎÒxÄ0ÅÿÂÓÇ¡Æ�Ê+¨Ä�ÏÐÀ¨Ò¨ÜxÄ
óÿÜ�ÆÓÇ�Ä!Ò1Ç½Æ�ÀPÀ2Á2Á�ÐÄ�Á6��Æ0Ä?Ç2É0Ê�ËXÆ0Ì!Ü�+Å�Ä�ÌÝßPÌXÂÓÛmÌ¨Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?ÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� �ÓúÛ2ÅÎÒ0À2Æ��+Å�Ä2Ì �pß)���(÷�9ßàÆ�9XÂ2À¬ñë�?Å�Ä2Ì"ú

Ç�É0Ê�ÜæïðÂ�	XÆ�Ç�Ã�ñë�!ú óàÂ�Ã�ÃPÄ0ÅÎÒ¨Ü§9�Â�ÀxÉ½Æ?Ä�Á?Ä�Å½ÆÝÀ¨Ò¨ÜxÄ�+Å�Ä2Ì9ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì?Â7Ç2É0Ê¨Ë½Æ0Ìòñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�ÉÎÒÓÄÎú �	� �ÓúÌ�Æ�Ä0É�Ì�ÇPÇ�É�ÊVÜ
Using this function, we can get a list of numbers from the user with a single line

of code.

Ã�Â�ÄXÂ?ß���Æ0Ä	Ð�É0Ê¨Ë½Æ0Ì!Ü�ñ�ú

� ¯ ¹ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Next, let’s implement a function that computes the mean of the numbers in a

list. This function takes a list of numbers as a parameter and returns the mean.

We will use a loop to go through the list and compute the sum.

Ã¨Æ0Í ÊÎÆ�ÂÓÇnñùÇ�É�ÊVÜ¨ú÷
Ü1É�ÊÿßÝÕnïðÕ
Í¨Á�Ì?Ç�É0Ê Ò1Ç9Ç�É�ÊVÜæ÷

Ü1É0ÊÿßÿÜ�É0Êÿá?Ç�É�Ê
Ì�Æ�Ä0É�Ì�Ç Ü1É�ÊÏ�9À2ÆÓÇnñðÇ2É0Ê�Ü¨ú

Notice how the average is computed and returned in the last line of this function.

The
À2Æ�Ç

operation returns the length of a list; we don’t need a separate loop

accumulator to determine how many numbers there are.

With these two functions, our original program to average a series of num-

bers can now be done in two simple lines:

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷
Ã�Â�ÄXÂ?ß��¨Æ�Ä	Ð�É0Ê�ËXÆ0Ì!Ü�ñ1ú�Ì½Ò�Ç�Äa�0�0ÅXÆ;ÊÎÆ�ÂÓÇ Ò¨Ü���õ Ê!Æ¨ÂxÇnñôÃ¨Â�Ä�Â½ú

Next, let’s tackle the standard deviation function,
ÜxÄ�ÃK��ÆC9

. In order use the

standard deviation formula discussed above, we first need to compute the mean.

We have a design choice here. The value of the mean can either be calculated

inside of
Ü�Ä¨Ã!�XÆC9

or passed to the function as a parameter. Which way should

we do it?

On the one hand, calculating the mean inside of
Ü�Ä¨ÃK��ÆC9

seems cleaner, as it

makes the interface to the function simpler. To get the standard deviation of a set

of numbers, we just call
Ü�Ä¨Ã!�XÆC9

and pass it the list of numbers. This is exactly

analogous to how
ÊÎÆ�ÂÓÇ

(and
ÊÎÆ2ÃXÒ0ÂxÇ

below) works. On the other hand, pro-

grams that need to compute the standard deviation will almost certainly need

to compute the mean as well. Computing it again inside of
ÜxÄ�ÃK��ÆC9

results in the

calculations being done twice. If our data set is large, this seems inefficient.

Since our program is going to output both the mean and the standard devia-

tion, let’s have the main program compute the mean and pass it as a parameter

to
ÜxÄ¨Ã!�XÆ�9

. Other options are explored in the exercises at the end of the chapter.

Here is the code to compute the standard deviation using the mean (
��Ë½Â�Ì

)

as a parameter:

Ã¨Æ0ÍÿÜxÄ�ÃK�XÆ�9TñùÇ�É0Ê�Üõ1��Ë½Â�Ì"ú÷
Ü1É�Êé�XÆ�9�Å�í?ßÐÕnïùÕ

~�~�� r0��Õæw�w�± ç $ ��� ¾ $ ��y|� � ¯ ¿

Í¨Á�Ì?Ç�É0Ê Ò1Ç9Ç�É�ÊVÜæ÷
Ã¨ÆC9Ýß���Ë!Â�Ì(� Ç�É0Ê
Ü1É0Ê��XÆ�9�ÅCí7ß Ü1É0Ê��XÆ�9�ÅCí7áÝÃ¨ÆC9=;ÈÃ�ÆC9

Ì�Æ�Ä0É�Ì�Ç Ü�í0Ì�Ä�ñ�Ü1É�Êé��ÆC9�Å�í+�ñ�À2ÆÓÇnñùÇ�É0Ê�Ü¨ú��!Ö0ú�ú
Notice how the summation from the standard deviation formula is computed

using a loop with an accumulator. The variable
Ü�É0Êé��ÆC9+ÅCí

stores the running

sum of the squares of the deviations. Once this sum has been computed, the last

line of the function calculates the rest of the formula.

Finally, we come to the
Ê!Æ2Ã½Ò�ÂÓÇ

function. This one is a little bit trickier, as we

do not have a formula to calculate the median. We need an algorithm that picks

out the middle value. The first step is to arrange the numbers in increasing order.

Whatever value ends up in the middle of the pack is, by definition, the median.

There is just one small complication. If we have an even number of values, there

is no exact middle number. In that case, the median is determined by averaging

the two middle values. So the median of 3, 5, 6, and 9 is R>N Â E�T�ýÓ� º N	DQN .
In pseudocode our median algorithm looks like this:Ü�Á�Ì�Ä9Ä�Å½ÆÈÇ�É�Ê�ËXÆ0ÌÎÜÈÒ�Ç¨Ä�ÁÝÂXÜ0Ñ�ÆÓÇXÃ½Ò1Ç��?Á0Ì¨Ã�Æ0Ì

Ò�ÍPÄ�Å½Æ¡Ü0Ò�D¨Æ9Á0Í Ã¨Â�ÄXÂ9Ò¨ÜÈÁ2Ã2Ã�÷
ÊÎÆ0Ã½Ò0ÂxÇÐßPÄ0ÅXÆ;Ê�ÒÓÃ�Ã�À0Æ�9XÂ2ÀÓÉXÆ

Æ¨À�Ü�Æo÷
ÊÎÆ0Ã½Ò0ÂxÇÐßPÄ0ÅXÆÝÂ�9¨Æ0ÌXÂ��¨ÆPÁ0ÍPÄ0ÅXÆ?Ä2ÛXÁ;Ê(Ò�Ã2Ã�À2Æ<9XÂ�ÀxÉ½ÆXÜ

Ì�Æ�Ä0É¨Ì0Ç7Ê!Æ2Ã½Ò�ÂÓÇ
This algorithm translates almost directly into Python code. We can take advan-

tage of the
ÜÓÁ0Ì�Ä

method to put the list in order. To test whether the size is

even, we need to see if it is divisible by two. This is a perfect application of the

remainder operation. The size is even if
Ü2Ò�D�Æ��àÔ?ß�ßÝÕ

, that is, dividing by 2

leaves a remainder of 0.

With these insights, we are ready to write the code.Ã¨Æ0Í ÊÎÆ0Ã½Ò0ÂxÇnñùÇ�É0Ê�Ü¨ú÷
Ç�É�ÊVÜæïôÜ�Á�Ì�ÄTñ�ú
Ü2Ò�D¨ÆPßÐÀ2ÆÓÇnñùÇ�É0Ê�Ü¨ú
Ê�ÒÓÃ2Ø�ÁXÜ;ßÿÜ2Ò�D¨Æ �ÝÔ
Ò�ÍÿÜ0Ò�D¨Æ��ÐÔPß2ßÝÕn÷

ÊÎÆ2ÃXÒ0ÂxÇÐß ñðÇ2É0ÊVÜ û Ê(Ò�Ã2Ø¨Á½Ü�
?á7Ç�É�ÊVÜ û Ê�ÒÓÃ2Ø¨Á½Ü��½Ö�
!ú§�9ÔTïðÕ
Æ¨À�Ü�Æn÷

ÊÎÆ2ÃXÒ0ÂxÇÐß7Ç�É�ÊVÜ û Ê�ÒÓÃ2Ø�ÁXÜ�

Ì�Æ�Ä0É�Ì�Ç7ÊÎÆ0Ã½Ò�ÂÓÇ

� ¯ â s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
You should study this code carefully to be sure you understand how it selects

the correct median from the sorted list.

The middle position of the list is calculated using integer division as
Ü0Ò�D�Æ��ÝÔ

.

If
Ü0Ò�D�Æ

is 3, then
Ê�ÒÓÃ2Ø�ÁXÜ

is 1 (2 goes into 3 just one time). This is the correct

middle position, since the three values in the list will have the indexes 0, 1, 2.

Now suppose
Ü0Ò�D�Æ

is 4. In this case,
Ê�Ò�Ã0Ø�ÁXÜ

will be 2, and the four values will

be in locations 0, 1, 2, 3. The correct median is found by averaging the values

at
Ê�ÒÓÃ2Ø�ÁXÜ

(2) and
Ê�ÒÓÃ2Ø¨Á½Ü��½Ö

(1).

Now that we have all the basic functions, finishing out the program is a

cinch.

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Äa�0�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ�Á�Ê+2É�Ä�ÆXÜ�ÊÎÆ�ÂÓÇ�õ ÊÎÆ0Ã½Ò0ÂxÇ¡ÂÓÇ�ÃÿÜxÄ�ÂÓÇXÃ¨Â�Ì�ÃPÃ¨Æ�9!Ò0Â�Ä!Ò�Á�Ç�ï!�
Ã�Â�ÄXÂ?ß��¨Æ�Ä	Ð�É0Ê�ËXÆ0Ì!Ü�ñ1ú��Ë½Â�ÌÝß ÊÎÆ�ÂÓÇoñôÃ�Â�ÄXÂXú
ÜxÄ�Ã9ßÿÜxÄ¨Ã!�XÆ�9TñôÃ¨Â�Ä�Â�õ°��Ë!Â�Ì"ú
ÊÎÆ0Ã9ß ÊÎÆ2ÃXÒ0ÂxÇnñôÃ¨Â�Ä�Â½ú
�Ì½Ò�Ç�Äa�3´ÓÇ?�0ÅXÆ ÊÎÆ�ÂÓÇ Ò¨Ü���õÆ��Ë!Â�Ì�Ì½Ò�Ç�Äa�0�0ÅXÆ¡ÜxÄ�ÂÓÇXÃ¨Â�Ì�Ã?Ã¨Æ�9!Ò�Â�Ä!Ò�Á�Ç Ò�Ü©�2õ ÜxÄ�Ã�Ì½Ò�Ç�Äa�0�0ÅXÆ;ÊÎÆ0Ã½Ò0ÂxÇ Ò¨Ü���õ Ê!Æ2Ã

Many computational tasks from assigning grades to monitoring flight sys-

tems on the space shuttle require some sort of statistical analysis. By using theÒ�Í Ç!Â�Ê!Æ ß2ß|� ÊÎÂ�Ò�Ç �
technique, we can make our code useful as a stand-

alone program and as a general statistical library module.

Here’s the complete program:

óÿÜxÄ�Â�Ä!Üæï7¨Ï
Í2Ì¨ÁxÊ9ÊÎÂ�Ä0ÅÿÒ�Ê+XÁ0Ì2ÄÿÜ�í0Ì�Ä
Ã¨Æ0Í��¨Æ�Ä	Ð0É�Ê�ËXÆ0ÌÎÜ(ñ1ú÷

Ç�É�ÊVÜ ß û
 ó ÜxÄ�Â�Ì2Ä?ÛÎÒxÄ0ÅÿÂÓÇ¡Æ�Ê+¨Ä�ÏÐÀ¨Ò¨ÜxÄ
óÿÜ�ÆÓÇ�Ä!Ò1Ç½Æ�ÀPÀ2Á2Á�ÐÄ�Á6��Æ0Ä?Ç2É0Ê�ËXÆ0Ì!Ü�+Å�Ä�ÌÝßPÌXÂÓÛmÌ¨Ò�Ç	2É�Ä�ñ�� / Ç�Ä¨Æ0Ì?ÂÈÇ�É0Ê¨Ë½Æ�Ì ñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�É"ÒÓÄÎú �	� �ÓúÛ2ÅÎÒ0À2Æ��+Å�Ä2Ì �pß)���(÷�9ßàÆ�9XÂ2À¬ñë�?Å�Ä2Ì"ú

Ç�É0Ê�ÜæïðÂ�	XÆ�Ç�Ã�ñë�!ú óàÂ�Ã�ÃPÄ0ÅÎÒ¨Ü§9�Â�ÀxÉ½Æ?Ä�Á?Ä�Å½ÆÝÀ¨Ò¨ÜxÄ

~�~�� r0��Õæw�w�± ç $ ��� ¾ $ ��y|� � ¯ é

�+Å�Ä2Ì9ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì?Â7Ç2É0Ê¨Ë½Æ0Ìòñ .�/ Ç�Ä¨Æ0Ì � Ä�Á�í�ÉÎÒÓÄÎú �	� �ÓúÌ�Æ�Ä0É�Ì�ÇPÇ�É�ÊVÜ
Ã¨Æ0Í ÊÎÆ�ÂÓÇnñùÇ�É�ÊVÜ¨ú÷

Ü1É�ÊÿßÝÕnïðÕ
Í¨Á�Ì?Ç�É0Ê Ò1Ç9Ç�É�ÊVÜæ÷

Ü1É0ÊÿßÿÜ�É0Êÿá?Ç�É�Ê
Ì�Æ�Ä0É�Ì�Ç Ü1É�ÊÏ�9À2ÆÓÇnñðÇ2É0Ê�Ü¨ú

Ã¨Æ0ÍÿÜxÄ�ÃK�XÆ�9TñùÇ�É0Ê�Üõ1��Ë½Â�Ì"ú÷
Ü1É�Êé�XÆ�9�Å�í?ßÐÕnïùÕ
Í¨Á�Ì?Ç�É0Ê Ò1Ç9Ç�É�ÊVÜæ÷

Ã¨ÆC9Ýß7Ç2É0ÊÏ�6��Ë½Â�Ì
Ü1É0Ê��XÆ�9�ÅCí7ß Ü1É0Ê��XÆ�9�ÅCí7áÝÃ¨ÆC9=;ÈÃ�ÆC9

Ì�Æ�Ä0É�Ì�Ç Ü�í0Ì�Ä�ñ�Ü1É�Êé��ÆC9�Å�í+�ñ�À2ÆÓÇnñùÇ�É0Ê�Ü¨ú��!Ö0ú�ú
Ã¨Æ0Í ÊÎÆ0Ã½Ò0ÂxÇnñùÇ�É0Ê�Ü¨ú÷

Ç�É�ÊVÜæïôÜ�Á�Ì�ÄTñ�ú
Ü2Ò�D¨ÆPßÐÀ2ÆÓÇnñùÇ�É0Ê�Ü¨ú
Ê�ÒÓÃ2Ø�ÁXÜ;ßÿÜ2Ò�D¨Æ �ÝÔ
Ò�ÍÿÜ0Ò�D¨Æ��ÐÔPß2ßÝÕn÷

ÊÎÆ2ÃXÒ0ÂxÇÐß ñðÇ2É0ÊVÜ û Ê(Ò�Ã2Ø¨Á½Ü�
?á7Ç�É�ÊVÜ û Ê�ÒÓÃ2Ø¨Á½Ü��½Ö�
!ú§�9ÔTïðÕ
Æ¨À�Ü�Æn÷

ÊÎÆ2ÃXÒ0ÂxÇÐß7Ç�É�ÊVÜ û Ê�ÒÓÃ2Ø�ÁXÜ�

Ì�Æ�Ä0É�Ì�Ç7ÊÎÆ0Ã½Ò�ÂÓÇ

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Äa�0�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê Ñ�Á�Ê+2É�Ä�ÆXÜ�ÊÎÆ�ÂÓÇ�õ ÊÎÆ0Ã½Ò0ÂxÇ¡ÂÓÇ�ÃÿÜxÄ�ÂÓÇXÃ¨Â�Ì�ÃPÃ¨Æ�9!Ò0Â�Ä!Ò�Á�Ç�ï!�
Ã�Â�ÄXÂ?ß��¨Æ�Ä	Ð�É0Ê�ËXÆ0Ì!Ü�ñ1ú��Ë½Â�ÌÝß ÊÎÆ�ÂÓÇoñôÃ�Â�ÄXÂXú
ÜxÄ�Ã9ßÿÜxÄ¨Ã!�XÆ�9TñôÃ¨Â�Ä�Â�õ°��Ë!Â�Ì"ú
ÊÎÆ0Ã9ß ÊÎÆ2ÃXÒ0ÂxÇnñôÃ¨Â�Ä�Â½ú
�Ì½Ò�Ç�Äa�3´ÓÇ?�0ÅXÆ ÊÎÆ�ÂÓÇ Ò¨Ü���õÆ��Ë!Â�Ì�Ì½Ò�Ç�Äa�0�0ÅXÆ¡ÜxÄ�ÂÓÇXÃ¨Â�Ì�Ã?Ã¨Æ�9!Ò�Â�Ä!Ò�Á�Ç Ò�Ü©�2õ ÜxÄ�Ã�Ì½Ò�Ç�Äa�0�0ÅXÆ;ÊÎÆ0Ã½Ò0ÂxÇ Ò¨Ü���õ Ê!Æ2Ã

�1´�% s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷�ÊÎÂ�Ò�Çoñ1ú
]�]_^�� ¼cW�[�U¨[Ð�hì NPO!Q�RTSVU¨[

All of the list examples we’ve looked at so far have involved lists of simple types

like numbers and strings. However, a list can be used to store collections of any

type. One particularly useful application is storing a collection of records. We

can illustrate this idea by building on the student GPA data processing program

from last chapter.

Recall that our previous grade processing program read through a file of

student grade information to find and print information about the student with

the highest GPA. One of the most common operations performed on this kind of

data is sorting. We might want the list in different orders for different purposes.

An academic advisor might like to have a file with grade information sorted

alphabetically by the name of the student. To determine which students have

enough credit hours for graduation, it would be useful to have the file in order

according to credit-hours. And a GPA sort would be useful for deciding which

students are in the top 10% of the class.

Let’s write a program that sorts a file of students according to their GPA. The

program will make use of a list of
Å�Ä0ÉXÃ�Æ�Ç¨Ä

objects. We just need to borrow theÅ�Ä�ÉXÃ�Æ�Ç�Ä
class from our previous program and add a bit of list processing. The

basic algorithm for our program is very simple.ü Æ�Ä9Ä0ÅXÆÈÇ!Â�Ê!ÆPÁ2Í9Ä�Å½ÆàÒ�Ç��É¨Ä9Í½Ò�À2ÆPÍ2Ì¨ÁxÊàÄ�Å½ÆÈÉ"Ü�Æ0Ì�XÆ�Â0ÃÿÜ�Ä0ÉXÃ�Æ�Ç¨ÄàÒ�Ç�Í¨Á�Ì�Ê"Â�Ä!Ò�Á�ÇÿÒ1Ç�Ä¨ÁÝÂ9À�Ò¨Ü�ÄÅ2Á�Ì�Ä9Ä�Å½ÆÝÀ�Ò�ÜxÄ7Ë¨Ï ü Ø Úü Æ�Ä9Ä0ÅXÆÈÇ!Â�Ê!ÆPÁ2Í9Ä�Å½Æ9Á�É¨ÄC2É�Ä9ÍXÒ0À2Æ7Í2Ì�Á�Ê¡Ä0ÅXÆÈÉ(Ü�Æ�Ì"¨Ì½ÒÓÄ¨Æ7Ä0ÅXÆ¡ÜxÄ0É�Ã¨ÆÓÇ�Ä¡Ò1ÇXÍ¨Á�Ì�ÊÎÂ�Ä!Ò�Á�Ç9Í2Ì�Á�ÊàÄ0ÅXÆÝÀ�Ò�ÜxÄÿÒ�Ç¨Ä�ÁÝÂ?ÍXÒ0À2Æ
Let’s begin with the file processing. We want to read through the data file and

create a list of students. Here’s a function that takes a filename as a parameter

and returns a list of
Å�Ä0É�Ã¨Æ�Ç¨Ä

objects from the file:Ã¨Æ0ÍPÌ�Æ�Â0Ã+Å�Ä0É�Ã¨Æ�Ç¨ÄÎÜ(ñôÍ½Ò�À2ÆÓÇ!Â�Ê!Æ!ú÷
Ò�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñôÍ½Ò�À2ÆÓÇ!Â�Ê!ÆTõ��ðÌU�vú
ÜxÄ�ÉXÃ¨ÆÓÇ�Ä!Ü ß û

Í¨Á�ÌàÀ�Ò�ÇXÆÐÒ�Ç»Ò1ÇXÍ½Ò�À2Æo÷

ÜxÄ0É�Ã¨ÆÓÇ�ÄÎÜ¬ïèÂ�	½ÆÓÇXÃæñpÊ"Â�ÎXÆ	Å�Ä0É�Ã�ÆÓÇ�Äæñ�À¨Ò�Ç�Æ!ú�ú
Ò�Ç�Í½Ò0À0Ænï`Ñ0À2ÁXÜ�Æ¬ñ1ú
Ì�Æ�Ä0É�Ì�Ç ÜxÄ�ÉXÃ�Æ�Ç�Ä!Ü

~1~x� �2��¾ $ �|y|�æ��å$Ñ�
YÊZ{ ³ y|� �1´0~

This function first opens the file for reading and then reads line by line, append-

ing a student object to the
ÜxÄ0É�Ã¨ÆÓÇ�ÄÎÜ

list for each line of the file. Notice that

I am borrowing the
ÊÎÂ�ÎXÆ	Å�Ä�ÉXÃ¨ÆÓÇ�Ä

function from the
��!Â

program; it creates aÜxÄ�ÉXÃ�Æ�Ç�Ä
object from a line of the file. We will have to be sure to import this

function (along with the
Å�Ä�ÉXÃ¨ÆÓÇ�Ä

class) at the top of our program.

While we’re thinking about files, let’s also write a function that can write the

list of students back out to a file. Remember, each line of the file should contain

three pieces of information (name, credit hours, and quality points) separated

by tabs. The code to do this is straightforward.

Ã¨Æ0Í?Û¨Ì½ÒÓÄ�Æ	Å�Ä�ÉXÃ¨ÆÓÇ�Ä!Ü�ñ�Ü�Ä0É�Ã¨Æ�Ç¨ÄÎÜVõ Í½Ò�À2Æ�Ç½Â�Ê!Æ!ú¬÷
óÿÜxÄ�ÉXÃ¨ÆÓÇ�Ä!Ü?Ò¨Ü7ÂÝÀ�Ò�ÜxÄÝÁ0Í5Å�Ä�ÉXÃ¨ÆÓÇ�ÄÝÁÓË ï ÆXÑÓÄ!ÜÁ�É¨Ä¨Í½Ò�À2Æ?ßÝÁ�½ÆÓÇnñôÍXÒ0À0Æ�Ç!Â1ÊÎÆ�õ��pÛ��vú
Í¨Á�Ì ÜPÒ�Ç»ÜxÄ�ÉXÃ�Æ�Ç�Ä!Üæ÷

Á�É�Ä�Í½Ò�À2Ænï|Û¨Ì½ÒÓÄ�Æ¬ñ��/�!Ü!´�Ä��2Í�´�ÄC�2Í�´ÓÇ��°�
ñ�Ü¬ïB��Æ0Ä	Ð�Â�Ê!Ææñ1ú�õ Ü¬ïB��Æ0Ä���Á�É¨ÌÎÜ�ñ�úVõ ÜæïF�¨Æ0Ä���Ø¨ÁXÒ�Ç¨ÄÎÜ(ñ1ú�ú2ú

Á�É¨Ä¨Í½Ò�À2ÆoïôÑ0À0Á½ÜÓÆæñ1ú
Notice that I used the string formatting operator to generate the appropriate line

of output. The
¹�Ä

represents a tab character, and
¹�Ç

is the newline so that each

student’s information occupies one line of the file.

Using the functions
Ì�Æ�Â0Ã+Å�Ä0É�Ã¨Æ�Ç¨ÄÎÜ

and
Û¨Ì!ÒxÄ�Æ	Å�Ä0É�Ã¨ÆÓÇ�ÄÎÜ

, we can easily con-

vert our data file into a list of students and then write it back out to a file. All

we have to do now is figure how to sort the records by GPA.

In the statistics program, we used the
ÜÓÁ0Ì�Ä

method to sort a list of num-

bers. What happens if we try to sort a list that contains something other than

numbers? How does Python know what order to put things in? If we don’t tell

Python any differently, it compares the items in the list using a special built-in

function called
Ñ�Ê?

. The
Ñ�Ê?

function takes two parameters and returns -1, 0,

or 1 according to Python’s default ordering. A result of -1 indicates that the first

parameter comes before the second. A 0 means that the two parameters are

equal, and a 1 indicates that the first comes after the second.

Here are some examples showing how
Ñ�Ê?

operates:�	��� Ñ�Ê?nñ�Ö(õôÔXú�!Ö�	��� Ñ�Ê?nñ�Ôæõ�Ö0úÖ�	��� Ñ�Ê?nñ���Â*�!õ��zËx��ú�!Ö

�1´�r s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
�	��� Ñ�Ê?nñ�Ö(õfÖïùÕ!úÕ �	��� Ñ�Ê?nñ���Â*�!õë'½úÖ
The comparison function works pretty much as you would expect on all the

compatible built-in types. For types that aren’t directly comparable, the standard

ordering uses general rules like “numbers always come before strings.”

In order to make the sorting work with our own objects, we need to tellÜ�Á�Ì�Ä
how our objects should be compared. We do this by creating our own

custom compare function for student objects and then telling
Ü�Á�Ì�Ä

to use it

when sorting the list. To order by GPA, we need a function that takes two

students as parameters and then returns -1, 0, or 1 depending on their relative

GPA ordering. The easiest way to do this is just to use the built-in
Ñ�Ê?

function

on the two student GPAs like this:

Ã¨Æ0Í¡Ñ�Ê? ü Ø Ú ñvÜ�Ö�õ Ü�ÔXú¬÷
Ì�Æ�Ä0É�Ì�Ç Ñ�Ê?nñvÜ�ÖïF��½Â¬ñ1ú�õ Ü�ÔoïF��!Âñ1ú2ú

Now sorting our list of students is as easy as calling its
Ü�Á�Ì�Ä

method and

passing the name of the appropriate comparison function (
Ñ�Ê? ü Ø Ú

) as a param-

eter. If
Ã¨Â�ÄXÂ

is the list of students, we can sort it in GPA order with this line of

code:

Ã�Â�ÄXÂTïzÜ�Á�Ì�Ä�ñvÑ�Ê? ü Ø Ú ú
An important point to notice here is that I did not put parentheses on the func-

tion name (
Ñ�Ê+ ü Ø Ú ñ1ú

). I do not want to call the function. Rather, I am sendingÑ�Ê? ü Ø Ú
to the

ÜÓÁ0Ì�Ä
method, and it will call this function anytime it needs to

compare two items to see what their relative ordering should be in the sorted

list.

I think we now have all the components in place for our program. Here’s the

completed code:

ó���½ÂXÜÓÁ0Ì�Ä�ï7¨Ï
ó Ú ¨Ì�Á��0ÌXÂ1ÊàÄ�Á¡ÜÓÁ0Ì�Ä Ü�Ä0É�Ã¨Æ�Ç¨Ä¡Ò�Ç�Í¨Á�Ì�Ê"Â�Ä!Ò�Á�ÇàÒ�Ç�Ä¨Á ü Ø Ú Á0Ì¨Ã�Æ0Ì�ï
Í2Ì¨ÁxÊ=��!ÂÐÒ�Ê?½Á�Ì�Ä5Å�Ä0ÉXÃ�Æ�Ç¨Änõ ÊÎÂ�Î�Æ?Å�Ä�ÉXÃ�Æ�Ç�Ä
Ã¨Æ0ÍPÌ�Æ�Â0Ã+Å�Ä0É�Ã¨Æ�Ç¨ÄÎÜ(ñôÍ½Ò�À2ÆÓÇ!Â�Ê!Æ!ú÷

Ò�Ç�Í½Ò0À0Æ?ßÝÁ�XÆ�ÇoñôÍ½Ò�À2ÆÓÇ!Â�Ê!ÆTõ��ðÌU�vú

~1~�� ¯ �?é"{z� $ ��� $ ���_� $ yèt«¾ $ �|y|��ux���=s*± u����p{ô� �1´��

ÜxÄ�ÉXÃ¨ÆÓÇ�Ä!Ü ß û

Í¨Á�ÌàÀ�Ò�ÇXÆÐÒ�Ç»Ò1ÇXÍ½Ò�À2Æo÷

ÜxÄ0É�Ã¨ÆÓÇ�ÄÎÜ¬ïèÂ�	½ÆÓÇXÃæñpÊ"Â�ÎXÆ	Å�Ä0É�Ã�ÆÓÇ�Äæñ�À¨Ò�Ç�Æ!ú�ú
Ò�Ç�Í½Ò0À0Ænï`Ñ0À2ÁXÜ�Æ¬ñ1ú
Ì�Æ�Ä0É�Ì�Ç ÜxÄ�ÉXÃ�Æ�Ç�Ä!Ü

Ã¨Æ0Í?Û¨Ì½ÒÓÄ�Æ	Å�Ä�ÉXÃ¨ÆÓÇ�Ä!Ü�ñ�Ü�Ä0É�Ã¨Æ�Ç¨ÄÎÜVõ Í½Ò�À2Æ�Ç½Â�Ê!Æ!ú¬÷
Á�É¨Ä¨Í½Ò�À2Æ?ßÝÁ�½ÆÓÇnñôÍXÒ0À0Æ�Ç!Â1ÊÎÆ�õ��pÛ��vú
Í¨Á�Ì ÜPÒ�Ç»ÜxÄ�ÉXÃ�Æ�Ç�Ä!Üæ÷

Á�É�Ä�Í½Ò�À2Ænï|Û¨Ì½ÒÓÄ�Æ¬ñ��/�!Ü!´�Ä��2Í�´�ÄC�2Í�´ÓÇ��°�
ñ�Ü¬ïB��Æ0Ä	Ð�Â�Ê!Ææñ1ú�õ Ü¬ïB��Æ0Ä���Á�É¨ÌÎÜ�ñ�úVõ ÜæïF�¨Æ0Ä���Ø¨ÁXÒ�Ç¨ÄÎÜ(ñ1ú�ú2ú

Á�É¨Ä¨Í½Ò�À2ÆoïôÑ0À0Á½ÜÓÆæñ1ú
Ã¨Æ0Í¡Ñ�Ê? ü Ø Ú ñvÜ�Ö�õ Ü�ÔXú¬÷

ó9Í�É2Ç"ÑÓÄ½Ò�ÁÓÇÝÄ0Å½Â�ÄÿÑ�Á�Ê+½Â�Ì�ÆXÜ Ä0ÛXÁ¡ÜxÄ�ÉXÃ�Æ�Ç�Ä!ÜªË!Â�Ü�Æ0Ã9Á�Ç ü Ø Ú ï
Ì�Æ�Ä0É�Ì�Ç Ñ�Ê?nñvÜ�ÖïF��½Â¬ñ1ú�õ Ü�ÔoïF��!Âñ1ú2ú

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê»Ü�Á�Ì�Ä!Ü9ÜxÄ0É�Ã¨ÆÓÇ�Ä��0ÌXÂ0Ã�ÆÐÒ�Ç�Í¨Á�Ì�Ê"Â�Ä!Ò�Á�Ç?Ë¨Ï ü Ø Ú �
Í½Ò�À2Æ�Ç½Â�Ê!Æ7ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì Ä0Å½ÆÈÇ½Â�Ê!Æ9Á2ÍPÄ0ÅXÆPÃ�Â�ÄXÂ?Í½Ò�À2Æo÷���úÃ�Â�ÄXÂ?ßPÌ�Æ�Â0Ã?Å�Ä0É�Ã¨ÆÓÇ�ÄÎÜ(ñôÍXÒ0À2ÆÓÇ!Â1ÊÎÆ!ú
Ã�Â�ÄXÂoïôÜ�Á�Ì�ÄTñ�Ñ�Ê? ü Ø Ú ú
Í½Ò�À2Æ�Ç½Â�Ê!Æ7ß9ÌXÂÓÛmÌ�Ò1Ç	2É�ÄTñ�� / Ç�Ä�Æ�Ì?Â7Ç½Â�Ê!Æ?Í¨Á�Ì9Ä0Å½Æ9ÁÓÉ�Ä��É�ÄPÍ½Ò0À0Æn÷��ÓúÛ¨Ì½ÒÓÄ�Æ	Å�Ä�ÉXÃ¨ÆÓÇ�Ä!Ü�ñôÃ¨Â�Ä�Â�õ Í½Ò�À2ÆÓÇ!Â�Ê!Æ!ú�Ì½Ò�Ç�Ä��:�0ÅXÆPÃ�Â�ÄXÂ Å!Â�ÜªË½Æ2Æ�ÇÝÛ�Ì!ÒÓÄ2Ä�ÆÓÇÝÄ�Á*�Îõ�Í½Ò�À2ÆÓÇ!Â�Ê!Æ

Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷
Ê"Â¨Ò�Çnñ�ú

]�]_^|µ «ªRT[XWZ�GehWpen� � W UÎbI¼cW�[�U�[Ýi�ec· j in[�[�RT[

Lists and classes taken together give us powerful tools for structuring the data

in our programs. Let’s put these tools to work in some more sophisticated ex-

amples.

Remember the
�!Ò�Æ�Û!Ò�Æ�Û

class from last chapter? In order to display the six

possible values of a die, each
�ÎÒ�ÆCÛ½Ò�Æ�Û

object keeps track of seven circles rep-

resenting the position of pips on the face of a die. In the previous version, we

saved these circles using instance variables,
"ÒGVÖ

,
"Ò�½Ô

,
ÎÒ�XÞ

, etc.

�1´ ¯ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Let’s consider how the code looks using a collection of circle objects stored

as a list. The basic idea is to replace our seven instance variables with a single

list called
"ÒG(Ü

. Our first problem is to create a suitable list. This will be done

in the constructor for the
�ÎÒ�ÆCÛ!Ò�Æ�Û

class.

In our previous version, the pips were created with this sequence of state-

ments inside of
Ò�ÇÎÒÓÄ

:

Ü�Æ�À0Ínï7"ÒGVÖfß ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��+�0Á2Í�Í½Ü�Æ�ÄnõlÑxÏ��2Á0Í�Í½Ü�Æ0ÄÎú
Ü�Æ�À0Ínï7"ÒG!Ô ß ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��+�0Á2Í�Í½Ü�Æ�ÄnõlÑxÏ"ú
Ü�Æ�À0Ínï7"ÒG½ÞÈß ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��+�0Á2Í�Í½Ü�Æ�ÄnõlÑxÏ¨á¨Á0Í�Í½Ü�Æ0ÄÎú
Ü�Æ�À0Ínï7"ÒG�@7ß ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��oõ¢ÑÓÏÎú
Ü�Æ�À0Ínï7"ÒG�' ß ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ���á�Á2Í�Í½Ü�Æ�ÄnõlÑxÏ��2Á0Í�Í½Ü�Æ0ÄÎú
Ü�Æ�À0Ínï7"ÒG½øÈß ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ���á�Á2Í�Í½Ü�Æ�ÄnõlÑxÏ"ú
Ü�Æ�À0Ínï7"ÒG½þÈß ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ���á�Á2Í�Í½Ü�Æ�ÄnõlÑxÏ¨á¨Á0Í�Í½Ü�Æ0ÄÎú
Recall that

ÊÎÂ�Î�Æ0Ø!ÒG
is a local method of the

�ÎÒ�Æ�Û!Ò�Æ�Û
class that creates a circle

centered at the position given by its parameters.

We want to replace these lines with code to create a list of pips. One ap-

proach would be to start with an empty list of pips and build up the final list one

pip at a time."ÒG(Ü ß û
"ÒG(Ü¬ïèÂ��½ÆÓÇXÃ�ñvÜ�Æ�À0Í�ï0Ì	Ì1Ê"Â�Î�Æ0ØXÒ�oñvÑ��+�2Á0Í2Í½Ü�Æ�ÄnõlÑxÏ��2Á0Í�Í½Ü�Æ0ÄÎú�ú"ÒG(Ü¬ïèÂ��½ÆÓÇXÃ�ñvÜ�Æ�À0Í�ï0Ì	Ì1Ê"Â�Î�Æ0ØXÒ�oñvÑ��+�2Á0Í2Í½Ü�Æ�ÄnõlÑxÏ"ú�ú"ÒG(Ü¬ïèÂ��½ÆÓÇXÃ�ñvÜ�Æ�À0Í�ï0Ì	Ì1Ê"Â�Î�Æ0ØXÒ�oñvÑ��+�2Á0Í2Í½Ü�Æ�ÄnõlÑxÏ¨á¨Á0Í�Í½Ü�Æ0ÄÎú�ú"ÒG(Ü¬ïèÂ��½ÆÓÇXÃ�ñvÜ�Æ�À0Í�ï0Ì	Ì1Ê"Â�Î�Æ0ØXÒ�oñvÑ��oõlÑÓÏÎú�ú"ÒG(Ü¬ïèÂ��½ÆÓÇXÃ�ñvÜ�Æ�À0Í�ï0Ì	Ì1Ê"Â�Î�Æ0ØXÒ�oñvÑ���á¨Á0Í2Í½Ü�Æ�ÄnõlÑxÏ��2Á0Í�Í½Ü�Æ0ÄÎú�ú"ÒG(Ü¬ïèÂ��½ÆÓÇXÃ�ñvÜ�Æ�À0Í�ï0Ì	Ì1Ê"Â�Î�Æ0ØXÒ�oñvÑ���á¨Á0Í2Í½Ü�Æ�ÄnõlÑxÏ"ú�ú"ÒG(Ü¬ïèÂ��½ÆÓÇXÃ�ñvÜ�Æ�À0Í�ï0Ì	Ì1Ê"Â�Î�Æ0ØXÒ�oñvÑ���á¨Á0Í2Í½Ü�Æ�ÄnõlÑxÏ¨á¨Á0Í�Í½Ü�Æ0ÄÎú�ú
Ü�Æ�À0Ínï7"ÒG(Ü ß6ÎÒ�"Ü

An even more straightforward approach is to create the list directly, enclosing

the calls to
ÊÎÂ�ÎXÆ�Ø!ÒG

inside list construction brackets, like this:

Ü�Æ�À0Ínï7"ÒG(Ü ß û ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��+�0Á2Í�Í½Ü�Æ�Änõ ÑxÏ��2Á0Í�Í½Ü�Æ0ÄÎú�ú�õ
ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��+�0Á2Í�Í½Ü�Æ�Änõ ÑxÏ"ú�ú�õ
ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��+�0Á2Í�Í½Ü�Æ�Änõ ÑxÏ¨á¨Á0Í�Í½Ü�Æ0ÄÎú�ú�õ
ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ��oõ¢ÑÓÏÎú�ú�õ
ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ���á�Á2Í�Í½Ü�Æ�Änõ ÑxÏ��2Á0Í�Í½Ü�Æ0ÄÎú�ú�õ
ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ���á�Á2Í�Í½Ü�Æ�Änõ ÑxÏ"ú�ú�õ

~1~�� ¯ �?é"{z� $ ��� $ ���_� $ yèt«¾ $ �|y|��ux���=s*± u����p{ô� �1´�´

ÜÓÆ¨À�Í�ï�Ì�Ì�ÊÎÂ�ÎXÆ�Ø!ÒGnñvÑ���á�Á2Í�Í½Ü�Æ�Änõ ÑxÏ¨á¨Á0Í�Í½Ü�Æ0ÄÎú�ú

Notice how I have formatted this statement. Rather than making one giant line,

I put one list element on each line. Python is smart enough to know that the end

of the statement has not been reached until it finds the matching square bracket.

Listing complex objects one per line like this makes it much easier to see what

is happening. Just make sure to include the commas at the end of intermediate

lines to separate the items of the list.

The advantage of a pip list is that it is much easier to perform actions on the

entire set. For example, we can blank out the die by setting all of the pips to

have the same color as the background.

Í¨Á�Ì-"ÒG Ò�Ç»Ü�Æ�À0Ínï7"ÒG(Ü¬÷"ÒG�ïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï Ë!Â�Ñ�Î+�0Ì�ÁxÉ�ÇXÃ!ú
See how these two lines of code loop through the entire collection of pips to

change their color? This required seven lines of code in the previous version

using separate instance variables.

Similarly, we can turn a set of pips back on by indexing the appropriate spot

in the pips list. In the original program, pips 1, 4, and 7 were turned on for the

value 3.

Ü�Æ�À0Ínï7"ÒGVÖVïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À0ÍnïùÍ2Á0Ì¨Æ���Ì�Á�É2Ç�Ã!ú
Ü�Æ�À0Ínï7"ÒG�@nïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À0ÍnïùÍ2Á0Ì¨Æ���Ì�Á�É2Ç�Ã!ú
Ü�Æ�À0Ínï7"ÒG½þoïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À0ÍnïùÍ2Á0Ì¨Æ���Ì�Á�É2Ç�Ã!ú
In the new version, this corresponds to pips in positions 0, 3, and 6, since the

pips list is indexed starting at 0. A parallel approach could accomplish this task

with these three lines of code:

Ü�Æ�À0Ínï7"ÒG(Ü û Õ�
nïzÜÓÆ0Ä	,½Ò0À2À¬ñ�ÜÓÆ¨À�Í�ïpÍ¨Á�Ì�Æ��0Ì¨ÁÓÉ�Ç¨ÃÎú
Ü�Æ�À0Ínï7"ÒG(Ü û Þ�
nïzÜÓÆ0Ä	,½Ò0À2À¬ñ�ÜÓÆ¨À�Í�ïpÍ¨Á�Ì�Æ��0Ì¨ÁÓÉ�Ç¨ÃÎú
Ü�Æ�À0Ínï7"ÒG(Ü û ø�
nïzÜÓÆ0Ä	,½Ò0À2À¬ñ�ÜÓÆ¨À�Í�ïpÍ¨Á�Ì�Æ��0Ì¨ÁÓÉ�Ç¨ÃÎú
Doing it this way makes explicit the correspondence between the individual in-

stance variables used in the first version and the list elements used in the second

version. By subscripting the list, we can get at the individual pip objects, just as

if they were separate variables. However, this code does not really take advan-

tage of the new representation.

Here is an easier way to turn on the same three pips:

�1´�¹ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Í¨Á�ÌÿÒ9Ò�Ç û Õ�õ`Þ�õ`ø�
n÷

Ü�Æ�À0Í�ï>"ÒG(Ü û Ò�
nïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À�Í�ïùÍ�Á�Ì¨Æ���Ì�ÁÓÉ�Ç¨ÃÎú
Using an index variable in a loop, we can turn all three pips on using the same

line of code.

The second approach considerably shortens the code needed in the
ÜÓÆ0Ä�ÛXÂ�ÀxÉ½Æ

method of the
�!Ò�Æ�Û!Ò�Æ�Û

class. Here is the updated algorithm:��Á2Á�ÐÄ�Å�Ì�ÁÓÉ���Å-"ÒG(Ü7ÂxÇXÃPÄ0É¨Ì0ÇÿÂ2À�ÀPÁ2Í2Í�XÆ�Ä�Æ�Ì�Ê�Ò1Ç½Æ Ä0Å½ÆÝÀ¨Ò¨Ü�ÄÐÁ2Í�"ÒG Ò�Ç�Ã¨Æ���Æ½Ü Ä¨Á?Ä0É¨Ì0Ç¡Á�Ç��Á2Á�ÐÄ�Å�Ì�ÁÓÉ���Å9Ä0ÅXÆÝÀ�Ò�ÜxÄÐÁ2Í¡Ò1ÇXÃ�Æ��¨ÆXÜÈÂÓÇ�ÃPÄ0É¨Ì0Ç¡Á�ÇÐÄ�Å½ÁXÜ�Æ8ÎÒ�(Ü¬ï
We could implement this algorithm using a multi-way selection followed by a

loop.

Í¨Á�Ì-"ÒG Ò�Ç»Ü�Æ�À0Ínï7"ÒG(Ü¬÷
Ü�Æ�À0Í�ï>"ÒG�ïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï Ë!Â�Ñ�Î+�0Ì¨ÁÓÉ�Ç¨ÃÎú

Ò�Í69�Â�ÀxÉ½ÆPß�ß ÖV÷
Á�Çàß û ÞC

Æ¨À¨Ò�Í69�Â�ÀÓÉXÆ?ß�ßÐÔT÷
Á�Çàß û Õ�õ`øC

Æ¨À¨Ò�Í69�Â�ÀÓÉXÆ?ß�ßÝÞo÷
Á�Çàß û Õ�õ`Þ�õ`ø�

Æ¨À¨Ò�Í69�Â�ÀÓÉXÆ?ß�ß�@n÷
Á�Çàß û Õ�õôÔæõ�@oõèø�

Æ¨À¨Ò�Í69�Â�ÀÓÉXÆ?ß�ß5'T÷
Á�Çàß û Õ�õôÔæõ`ÞTõ0@oõèø�

Æ¨À�Ü�Æo÷
Á�Çàß û Õ�õ�Ö(õôÔ�õ0@oõÒ'�õ`øC

Í¨Á�ÌÿÒ9Ò�ÇÿÁ�Çh÷
Ü�Æ�À0Í�ï>"ÒG(Ü û Ò�
nïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À�Í�ïùÍ�Á�Ì¨Æ���Ì�ÁÓÉ�Ç¨ÃÎú

The version without lists required 36 lines of code to accomplish the same task.

But we can do even better than this.

Notice that this code still uses the
ÒÓÍ+�2Æ�À�ÒÓÍ

structure to determine which pips

should be turned on. The correct list of indexes is determined by
9XÂ2ÀÓÉ½Æ

; we can

make this decision table-driven instead. The idea is to use a list where each item

in the list is itself a list of pip indexes. For example, the item in position 3 should

be the list
û ÕTõ`Þ�õ`øC

, since these are the pips that must be turned on to show a

value of 3.

Here is how a table-driven approach can be coded:

~1~�� ¯ �?é"{z� $ ��� $ ���_� $ yèt«¾ $ �|y|��ux���=s*± u����p{ô� �1´�¿

Á�Ç?�XÂxË!À2Æ7ß ûÐû
oõ û Þ�
oõ û Ô�õ0@	
Tõ û Ôæõ`ÞTõ0@	
Tõû ÕTõ`Ô�õ�@Tõ`øC
oõ û ÕTõ`Ô�õ`Þ�õ�@Tõ`ø�
Tõ û ÕTõvÖ�õôÔæõ�@Tõë'�õèø�
<

Í¨Á�Ì-"ÒG Ò�Ç»Ü�Æ�À0Ínï7"ÒG(Ü¬÷

Ü�Æ�À0Í�ï>"ÒG�ïzÜÓÆ0Ä�,!Ò0À2À¬ñvÜ�Æ¨À�Í�ï Ë!Â�Ñ�Î+�0Ì¨ÁÓÉ�Ç¨ÃÎú
Á�ÇàßÐÁÓÇ+�XÂxË!À0Æ û 9�Â�ÀxÉ½Æ�

Í¨Á�ÌÿÒ9Ò�ÇÿÁ�Çh÷

Ü�Æ�À0Í�ï>"ÒG(Ü û Ò�
nïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À�Í�ïùÍ�Á�Ì¨Æ���Ì�ÁÓÉ�Ç¨ÃÎú
I have called the table of pip indexes

ÁÓÇ+�XÂxË!À0Æ
. Notice that I padded the table

by placing an empty list in the first position. If
9�Â�ÀxÉ½Æ

is 0, the
�ÎÒ�Æ�Û!Ò�Æ�Û

will

be blank. Now we have reduced our 36 lines of code to seven. In addition, this

version is much easier to modify; if you want to change which pips are displayed

for various values, you simply modify the entries in
Á�Ç+��ÂÓË½À2Æ

.

There is one last issue to address. The
ÁÓÇ+�XÂxË!À0Æ

will remain unchanged

throughout the life of any particular
�ÎÒ�ÆCÛ½Ò�Æ�Û

. Rather than (re)creating this

table each time a new value is displayed, it would be better to create the table

in the constructor and save it in an instance variable. Putting the definition ofÁ�Ç?�XÂxË!À2Æ
into

Ò1Ç"ÒxÄ
yields this nicely completed class:

ó9Ã½Ò�ÆC9½Ò�Æ�ÛXÔoï>�Ï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Ñ0À2ÂXÜ2Ü»�ÎÒ�ÆCÛ!Ò�Æ�Ûc÷�	��� �ÎÒ�Æ�Û!Ò�Æ�ÛÿÒ�Ü7ÂÈÛÎÒ�Ã��¨Æ�ÄPÄ0Å½Â�ÄÝÃ½Ò�ÜG½À�Â�Ï!ÜÈÂ-�2Ì�Â�2Å"Ò�Ñ�Â�À

Ì�Æ��Ì�ÆXÜ�ÆÓÇ�ÄXÂ�Ä!Ò�Á�Ç9Á2ÍÐÂàÜxÄ�ÂÓÇ�Ã�Â�Ì�Ã¡Ü2Ò��+��Ü2Ò�Ã�Æ2Ã7Ã½Ò�ÆoïG���	�
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ Û!Ò�Ç�õ�Ñ�ÆÓÇ�Ä�Æ�Ìnõ Ü0Ò�D�Æ!ú¬÷�	�	�v×0Ì¨Æ¨Â�Ä¨ÆPÂ-9!Ò�Æ�ÛÐÁ0ÍÐÂPÃ½Ò�Æ�õ�ÆnïF��ï2÷

Ã"Ö ß ü �ÎÒ�Æ¬ñpÊXÏ�"ÎÒ1Çcõ Ø�Á�Ò�Ç�Ä�ñë@�ÕTõë'0Õ!ú�õ�Ô2Õ½ú
ÑÓÌ�Æ�Â�Ä¨Æ½ÜÈÂ?ÃXÒ�ÆàÑ�ÆÓÇ�Ä¨Æ0Ì�Æ0ÃÝÂ�Ä	ñÒ@¨Õ�õë'2Õ½úfÅ!Â�9!Ò1Ç��¡Ü0Ò�Ã¨ÆXÜ
Á2ÍÐÀ2ÆÓÇ��0Ä0Å¡Ô0ÕnïG���	�
ó9Í½ÒÓÌ!ÜxÄÝÃ�Æ2Í½Ò1Ç½ÆàÜÓÁxÊ!ÆàÜxÄ�ÂÓÇXÃ¨Â�Ì�Ã-9XÂ2ÀÓÉ½ÆXÜ
Ü�Æ¨À�Í�ï|ÛÎÒ�Ç9ßPÛÎÒ�Ç
Ü�Æ¨À�Í�ï Ë!Â�Ñ�Î+�0Ì�Á�É2ÇXÃ ß���Û0Å"ÒÓÄ¨Æ���ó¡Ñ�Á¨À0Á0ÌÐÁ2Í9ÃXÒ�ÆPÍ¨Â�Ñ�Æ
Ü�Æ¨À�Í�ïpÍ¨Á0Ì¨Æ��0Ì�Á�É2ÇXÃ ß��zË½À�Â�Ñ�Îx��ó¡Ñ�Á¨À0Á0ÌÐÁ2ÍPÄ�Å½Æ<ÎÒ�(Ü
Ü�Æ¨À�Í�ï>(Ü2Ò�D¨ÆÈßÝÕnï�Ö�;ÐÜ0Ò�D¨Æ óPÌ�Â0ÃXÒ�É(Ü;Á2ÍÝÆ¨Â¨Ñ�Å�ÎÒ�
Å(Ü2Ò�D¨Æ?ß Ü0Ò�D¨Æ6�ÐÔTïðÕ ó7Å½Â�À�ÍÝÁ2ÍÿÜ2Ò�D¨Æ
Á2Í�Í½Ü�Æ�Ä9ßÝÕnïùø(; Å"Ü2Ò�D¨Æ ó9ÃXÒ¨Ü�ÄXÂÓÇÎÑ�Æ?Í0Ì�Á�Ê»Ñ�ÆÓÇ�Ä�Æ�Ì

�1´�â s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Ä¨Á9Á�É¨Ä�Æ0Ì-ÎÒ�"Ü

ó¡ÑÓÌ�Æ�Â�Ä¨Æ9Â¡Ü�í�É½Â�Ì¨Æ?Í¨Á�Ì9Ä0Å½ÆPÍ¨Â�Ñ�Æ
Ñ��oõ ÑxÏÝß¡Ñ�ÆÓÇ�Ä�Æ�ÌcïF�¨Æ0ÄCÐ�ñ�úVõ�Ñ�Æ�Ç¨Ä�Æ�ÌcïB��Æ0ÄP�Tñ1úVÖ ßPØ�Á�Ò�Ç¨ÄTñvÑ��+�xÅ(Ü2Ò�D¨Æ�õ ÑxÏ��ÓÅ"Ü2Ò�D¨Æ!ú!Ô?ßPØ�Á�Ò�Ç¨ÄTñvÑ���á�Å(Ü2Ò�D¨Æ�õ ÑxÏ¨á�Å"Ü2Ò�D¨Æ!ú
Ì�ÆXÑxÄ9ß6�XÆ�ÑÓÄXÂxÇ��¨À2ÆæñBVÖ(õF!ÔXú
Ì�ÆXÑxÄcïpÃ2ÌXÂÓÛoñðÛÎÒ�Ç(ú
Ì�ÆXÑxÄcïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ�À0Í�ï Ë!Â¨Ñ�Î+�0Ì¨ÁÓÉ�Ç¨ÃÎú
óÝ×0Ì�Æ�Â�Ä¨ÆPþ¡Ñ�ÒÓÌ½Ñ0À0Æ½Ü;Í�Á0Ì ÜxÄ�ÂÓÇ�Ã�Â�Ì�Ã8ÎÒ�ÿÀ2Á�Ñ0Â�Ä!Ò�ÁÓÇ(Ü
Ü�Æ¨À�Í�ï>"Ò�"Ü ß û Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��?�2Á0Í�Í!ÜÓÆ0ÄTõlÑÓÏ+�2Á2Í2Í!ÜÓÆ0Ä"ú�õ

Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��?�2Á0Í�Í!ÜÓÆ0ÄTõlÑÓÏÎúVõ
Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��?�2Á0Í�Í!ÜÓÆ0ÄTõlÑÓÏ�á¨Á2Í2Í!ÜÓÆ0Ä"ú�õ
Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��Tõ¢ÑÓÏ"ú�õ
Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��2á¨Á0Í�Í!ÜÓÆ0ÄTõlÑÓÏ+�2Á2Í2Í!ÜÓÆ0Ä"ú�õ
Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��2á¨Á0Í�Í!ÜÓÆ0ÄTõlÑÓÏÎúVõ
Ü�Æ�À0Ínï�Ì	Ì1Ê"Â�ÎXÆ0Ø½Ò�oñvÑ��2á¨Á0Í�Í!ÜÓÆ0ÄTõlÑÓÏ�á¨Á2Í2Í!ÜÓÆ0Ä"ú�

óÝ×0Ì�Æ�Â�Ä¨Æ9Â?ÄXÂÓË½À2Æ?Í�Á0ÌPÛ0Å"Ò�Ñ1Å6"ÒG(Ü7Â�Ì�Æ9Á�ÇàÍ�Á0ÌÐÆ�Â�Ñ�Å59�Â�ÀxÉ½Æ
Ü�Æ¨À�Í�ïùÁ�Ç+��ÂÓË½À2Æ ß û9û
oõ û Þ�
oõ û Ô�õ0@	
oõ û Ô�õèÞTõ0@	
oõû ÕTõ`Ô�õ�@Tõ`øC
oõ û ÕTõ`Ô�õ`Þ�õ�@Tõ`ø�
Tõ û ÕTõvÖ�õôÔæõ�@Tõë'�õèø�
<

Ü�Æ¨À�Í�ïôÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�Ö0ú

Ã¨Æ0Í5Ì	Ì�ÊÎÂ�Î�Æ0Ø!ÒGnñvÜ�Æ¨À�Íoõ �oõ�ÏÎú¬÷�	�	��¢1Ç¨Ä�Æ0Ì�Ç!Â2À Å½Æ�À�XÆ0Ì Ê!Æ0Ä0ÅXÁ2Ã?Ä¨ÁPÃ2Ì�Â�Û¡Â8"ÒGÿÂ�Ä	ñÒ�oõðÏÎúm���	�"Ò�àßÝ×�ÒÓÌ½Ñ0À2Æ¬ñ`Ø¨ÁXÒ�Ç¨ÄTñÒ�oõðÏÎúVõ�Ü�Æ�À0Ínï7(Ü0Ò�D�Æ!ú"Ò�hïzÜÓÆ0Ä	,½Ò0À2À¬ñ�ÜÓÆ¨À�Í�ï|Ë½Â�Ñ�Î+�2Ì¨ÁÓÉ2ÇXÃ½ú"Ò�hïzÜÓÆ0Ä Ä É�Ä�À�Ò�ÇXÆæñvÜ�Æ¨À�Í�ï Ë!Â�Ñ�Î?�0Ì�ÁxÉ�Ç�ÃÎú"Ò�hïùÃ0ÌXÂ�ÛTñ�ÜÓÆ¨À0Ínï�Û!Ò�Ç�ú
Ì�Æ0Ä�É�Ì�Ç6"ÒG

Ã¨Æ0ÍÿÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0ÍTõ19�Â�ÀxÉ½Æ!ú÷�	�	��Å0Æ0Ä9Ä�Å"Ò¨Ü Ã½Ò�Æ?Ä¨ÁPÃ½Ò�ÜG!À2Â�Ï69�Â�ÀxÉ½Ænïu�	���
ó6�0É�Ì�ÇÿÂ�À2À7Ä0Å½Æ<ÎÒ�"Ü Á2Í2Í
Í¨Á0Ì-ÎÒ� Ò1Ç»Ü�Æ¨À�Í�ï>"Ò�"Üæ÷ÎÒ�hïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À0Ínï|Ë½Â�Ñ�Î?�2Ì�Á�É2ÇXÃ½ú

~1~�� ´0��s½u���{ bxyè�v�1ç�´æ�2çzyèt����²s½u�± ³ ��± u�y|�Ó} �1´�é

ó6�0É�Ì�ÇÐÄ0ÅXÆÝÂ�	¨Ì�Á��Ì!Ò�Â�Ä¨Æè"ÒG(ÜªË½Â�Ñ�ÎàÁ�Ç
Í¨Á0ÌÿÒ9Ò1Ç»Ü�Æ�À0Í�ïùÁ�Ç?�XÂÓË½À2Æ û 9XÂ2ÀÓÉXÆ�
�÷

ÜÓÆ¨À�Í�ï7ÎÒ�"Ü û Ò�
�ïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ2À0ÍnïùÍ2Á0Ì�ÆC�0Ì¨Á�É0ÇXÃ!ú
This example also showcases the advantages of encapsulation that I talked

about in Chapter 10. We have significantly improved the implementation of the�ÎÒ�ÆCÛ½Ò�Æ�Û
class, but we have not changed the set of methods that it supports.

We can substitute this improved version into any program that uses a
�ÎÒ�ÆCÛ½Ò�Æ�Û

without having to modify any of the other code. The encapsulation of objects

allows us to build complex software systems as a set of “pluggable modules.”

]�]_^|º ¢in[�R	©£UÎ¦�·_í ²9�îí¬UÎb��£e� li�j So¦�j ioU¨��g

The reworked
�ÎÒ�Æ�Û!Ò�Æ�Û

class shows how lists can be used effectively as instance

variables of objects. Interestingly, our pips list and
ÁÓÇ+�XÂxË!À0Æ

list contain circles

and lists, respectively, which are themselves objects. By nesting and combining

collections and objects we can devise elegant ways of storing data in or pro-

grams.

We can even go one step further and view a program itself as a collection

of data structures (collections and objects) and a set of algorithms that operate

on those data structures. Now, if a program contains data and operations, one

natural way to organize the program is to treat the entire application itself as an

object.

Ê*Ê�È�×�ÈSÊ Ú ª �_Ùn��r*Ù���tuv*� ��s ��w��S¾I¿!im��t
As an example, we’ll develop a program that implements a simple Python calcu-

lator. Our calculator will have buttons for the ten digits (0–9), a decimal point

(.), four operations (+, -, *, /), and a few special keys: “C” to clear the display,

“ Ó -” to backspace over characters in the display, and “=” to do the calculation.

We’ll take a very simple approach to performing calculations. As buttons

are clicked, the corresponding characters will show up in the display, allowing

the user to create a formula. When the “=” key is pressed, the formula will be

evaluated and the resulting value shown in the display. Figure
���

.
�

shows a

snapshot of the calculator in action.

Basically, we can divide the functioning of the calculator into two parts:

creating the interface and interacting with the user. The user interface in this

�1¹�% s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���

Figure
���

.
�
: Python calculator in action.

case consists of a display widget and a bunch of buttons. We can keep track of

these GUI widgets with instance variables. The user interaction can be managed

by a set of methods that manipulate the widgets.

To implement this division of labor, we will create a
×�Â�À�Ñ1É!À2Â�Ä�Á�Ì

class that

represents the calculator in our program. The constructor for the class will cre-

ate the initial interface. We will make the calculator respond to user interaction

by invoking a special
Ì�É�Ç

method.

Ê*Ê�È�×�È�Ç ª vxw�sGt��ër3��tGl�wm��t� �i�ä7wmtui_�Ã'B�3�	i
Let’s take a detailed look at the constructor for the

×¨Â�À¨Ñ�É½À�Â�Ä¨Á0Ì
class. First, we’ll

need to create a graphics window to draw the interface.

Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷
ó¡ÑÓÌ�Æ�Â�Ä¨Æ7Ä0ÅXÆ7ÛÎÒ�Ç�Ã¨Á�ÛÝÍ¨Á�Ì9Ä0Å½ÆàÑ�Â�À¨Ñ�É!À2Â�Ä¨Á0Ì
ÛÎÒ�Çàß ü ÌXÂ��Å?"!Ò�Çoñ���×�Â�À¨Ñ�É!À2Â�Ä¨Á0Ì��Óú
ÛÎÒ�ÇhïzÜÓÆ0Ä�×2Á�Á�Ì¨Ã!Ü(ñzÕ�õ`ÕTõèøTõèþ!ú
ÛÎÒ�ÇhïzÜÓÆ0ÄC��Â�Ñ�Î+�2Ì¨Á�É2ÇXÃ�ñ��ÓÜ�À�Â�Ä¨ÆC�0ÌXÂÓÏ��Óú
Ü�Æ¨À�Í�ï|ÛÎÒ�Ç9ßPÛÎÒ�Ç

The coordinates for the window were chosen to simplify the layout of the but-

tons. In the last line, the window object is tucked into an instance variable so

that other methods can refer to it.

~1~�� ´0��s½u���{ bxyè�v�1ç�´æ�2çzyèt����²s½u�± ³ ��± u�y|�Ó} �1¹0~

The next step is to create the buttons. We will reuse the button class from

last chapter. Since there are a lot of similar buttons, we will use a list to store

them. Here is the code that creates the button list:

óÿÑÓÌ¨Æ¨Â�Ä¨Æ9À�Ò�ÜxÄÐÁ0Í7Ë�É�Ä2Ä�ÁÓÇ(Ü
ó ÜxÄ�Â�Ì�Ä7ÛÎÒÓÄ�ÅÿÂ�À2À7Ä0Å½Æ¡Ü�ÄXÂxÇXÃ�Â�Ì¨ÃÐÜ2Ò�D�Æ2Ã7Ë2É�Ä�Ä¨Á�Ç"Ü
ó?Ë�Å�½ÆXÑ�Üè�½Ò�9�ÆXÜ?Ñ�ÆÓÇ�Ä�Æ�Ì¡Ñ�Á2Á0Ì�Ã!Ü7ÂÓÇ�ÃÝÀ�ÂxË½Æ�ÀPÁ2Í7Ë�É¨Ä�Ä¨Á�Ç(Ü
Ë�Å�½Æ�Ñ¨Ü ß û ñzÔ�õvÖ�õC�èÕ}��úVõÈñôÞTõvÖ�õC�¨ïK��úVõ

ñ1Ö�õ`Ô�õC�vÖ ��úVõÈñzÔ�õ`Ô�õC�`ÔB��úVõÈñôÞTõ`Ô�õC�èÞ}��úVõÈñÒ@oõ`Ô�õC�ðáU��úVõÈñ&'�õ`Ô�õC�Ò�B��úVõ
ñ1Ö�õèÞTõC�0@U��úVõÈñzÔ�õèÞTõC�Ò'B��úVõÈñôÞTõèÞTõC�èø}��úVõÈñÒ@oõèÞTõC�&;£��úVõÈñ&'�õèÞTõC�Ò�B��úVõ
ñ1Ö�õ0@oõC�èþ}��úVõÈñzÔ�õ0@oõC��A}��úVõÈñôÞTõ0@oõC�èý}��úVõÈñÒ@oõ0@oõC� . �$�vúVõ�ñ!'æõ�@oõP�`×B�vú�
Ü�Æ�À0Ínï|Ë�É¨Ä�Ä¨Á�Ç(Ü ß û

Í¨Á�Ì	ñvÑ��oõ�ÑxÏnõ`À�ÂÓËXÆ¨ÀXúÈÒ�Ç9ËmÅ�XÆXÑ¨Ü¬÷
Ü�Æ�À0Í�ï Ë�É¨Ä�Ä�ÁÓÇ(Ü¬ïèÂ��½ÆÓÇXÃ�ñM�0É¨Ä�Ä�ÁÓÇoñvÜ�Æ2À0Ínï�Û½Ò�ÇcõùØ¨Á�Ò�Ç�ÄTñ�Ñ���õ�ÑÓÏÎú�õ

ïðþ	'�õ¨ïðþ?'æõôÀ2ÂÓË½Æ�À½ú2ú
óÿÑÓÌ¨Æ¨Â�Ä¨Æ7Ä0ÅXÆÝÀ�Â�Ì?�¨Æ�Ì|�èß}� Ë�É¨Ä�Ä�ÁÓÇ
Ü�Æ�À0Ínï|Ë�É¨Ä�Ä¨Á�Ç(Ü¬ïèÂ�	½ÆÓÇXÃæñ*�0É¨Ä�Ä¨Á�ÇTñ�Ü�Æ�À�Ínï�Û½Ò�Ç�õ Ø�Á�Ò�Ç�Ä�ñë@nï�'�õvÖ2ú�õ

ÖVïðþ?'æõÝïðþ	'�õè��ß$��ú2ú
óàÂ�ÑxÄ!Ò�9�Â�Ä¨ÆPÂ�À2À Ë�É¨Ä�Ä�ÁÓÇ(Ü
Í¨Á�Ì?Ë»Ò�Ç»Ü�Æ�À0Ínï|Ë�É¨Ä�Ä¨Á�Ç(Ü¬÷

Ë�ïðÂ�ÑÓÄ½Ò�9�Â�Ä�Æ¬ñ1ú
Study this code carefully. A button is normally specified by providing a center

point, width, height, and label. Typing out calls to the
��É�Ä2Ä�Á�Ç

constructor with

all this information for each button would be tedious. Rather than creating the

buttons directly, this code first creates a list of button specifications,
ËmÅ�½Æ�Ñ¨Ü

.

This list of specifications is then used to create the buttons.

Each specification is a tuple consisting of the] and ` coordinates of the

center of the button and its label. A tuple looks like a list except that it is

enclosed in round parentheses
ñ1ú

instead of square brackets
û

. A tuple is just

another kind of sequence in Python. Tuples are like lists except that tuples are

immutable—the items can’t be changed. If the contents of a sequence won’t be

changed after it is created, using a tuple is more efficient than using a list.

The next step is to iterate through the specification list and create a corre-

sponding button for each entry. Take a look at the loop heading:

Í¨Á0Ì	ñ�Ñ��Tõ�ÑÓÏoõôÀ2ÂÓË½Æ�À½ú;Ò�Ç9ËmÅ�½Æ�Ñ¨Ü¬÷
According to the definition of a

Í�Á0Ì
loop, the tuple

ñvÑ��oõ�ÑxÏnõ`À�ÂÓËXÆ¨ÀXú
will be as-

signed each successive item in the list
ËmÅ�XÆXÑ¨Ü

.

�1¹�r s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Put another way, conceptually, each iteration of the loop starts with an as-

signment.

ñvÑ��oõzÑÓÏnõ`À�ÂxË½Æ¨ÀXúªß . Ç½Æ��0Ä¡ÒÓÄ¨ÆxÊÿÍ0Ì�ÁxÊ9Ë�Å�XÆXÑ�Ü �
Of course, each item in

Ë�Å�XÆXÑ�Ü
is also a tuple. When a tuple of variables is used

on the left side of an assignment, the corresponding components of the tuple on

the right side are unpacked into the variables on the left side. In fact, this is how

Python actually implements all simultaneous assignments.

The first time through the loop, it is as if we had done this simultaneous

assignment:

Ñ��Tõ ÑÓÏoõ À�ÂÓËXÆ¨À7ßàÔæõªÖ�õè��Õ*�
Each time through the loop, another tuple from

ËmÅ�XÆXÑ¨Ü
is unpacked into the

variables in the loop heading. The values are then used to create a
��É�Ä�Ä¨Á�Ç

that

is appended to the list of buttons.

After all of the standard-sized buttons have been created, the larger
ß

button

is created and tacked onto the list.

Ü�Æ�À0Ínï|Ë�É¨Ä�Ä¨Á�Ç(Ü¬ïèÂ�	½ÆÓÇXÃæñ*�0É¨Ä�Ä�Á�Çoñ�ÜxÆ¨À0Ínï|Û!Ò�Çnõ Ø�Á�Ò�Ç�Ä�ñë@nï�'�õvÖ2ú�õ ÖVïðþ?'æõÝïðþ	'�õè��ß$��ú2ú
I could have written a line like this for each of the previous buttons, but I think

you can see the appeal of the specification-list/loop approach for creating the

17 similar buttons.

In contrast to the buttons, creating the calculator display is quite simple. The

display will just be a rectangle with some text centered on it. We need to save

the text object as an instance variable so that its contents can be accessed and

changed during processing of button clicks. Here is the code that creates the

display:

Ë��9ß-�XÆ�ÑÓÄ�ÂÓÇ��¨À2Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñ½ï0'�õÒ'oï�'XúVõ Ø¨ÁXÒ�Ç¨ÄTñ&'oï�'æõ`øoï�'½ú2ú
Ë���ïôÜ�Æ�Ä	,!Ò�À�Àñ��ùÛ0Å"ÒxÄ�Æ}��ú
Ë���ïpÃ2Ì�Â�ÛoñvÜ�Æ�À0Í�ï|ÛÎÒ1Ç�ú
Ä�Æ��0Ä9ß���ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñzÞ�õ`ø!ú�õü�	��ú
Ä�Æ��0ÄcïpÃ2ÌXÂÓÛoñvÜ�Æ¨À�Í�ï|ÛÎÒ�Ç(ú
Ä�Æ��0ÄcïôÜ�Æ0Ä�,XÂ¨Ñ�Ææñ��xÑ�Á�É�Ì½Ò�Æ�Ì���ú
Ä�Æ��0ÄcïôÜ�Æ0Ä+Å�Ä2ÏXÀ2Æ¬ñ��ôË½Á¨À�Ã$�Óú
Ä�Æ��0ÄcïôÜ�Æ0Ä+Å�Ò�D¨Ææñ1Öxø½ú
Ü�Æ¨À�Í�ïpÃ½Ò¨Üu!À2Â�Ï7ßÝÄ¨Æ��0Ä

~1~�� ´0��s½u���{ bxyè�v�1ç�´æ�2çzyèt����²s½u�± ³ ��± u�y|�Ó} �1¹��
Ê*Ê�È�×�È�É ���0vx�	i�s�s�l�wm� ² rmt�tuvxw�s

Now that we have an interface drawn, we need a method that actually gets the

calculator running. Our calculator will use a classic event loop that waits for a

button to be clicked and then processes that button. Let’s encapsulate this in a

method called
Ì0É2Ç

.

Ã¨Æ0ÍPÌ0É�Çoñ�ÜÓÆ¨À0Í!ú¬÷
Û2Å"Ò�À2Æ��2Ì0ÉXÆn÷Î�Æ0ÏÝßÿÜÓÆ¨À0ÍnïB��Æ0ÄPÀ�Æ0Ï2Ø�Ì�ÆXÜ�Ü(ñ1ú

ÜÓÆ¨À�Í�ï7¨Ì�Á�Ñ�Æ½Ü2ÜmÀ�Æ0ÏTñ0ÎXÆ�Ï"ú
Notice that this is an infinite loop. To quit the program, the user will have to

“kill” the calculator window. All that’s left is to implement the
��Æ0ÄKÀXÆ0Ï2Ø�Ì¨Æ½Ü�Ü

and�Ì¨ÁXÑ�Æ½Ü�ÜíÀXÆ�Ï
methods.

Getting key presses is easy; we continue getting mouse clicks until one of

those mouse clicks is on a button. To determine whether a button has been

clicked, we loop through the list of buttons and check each one. The result is a

nested loop.

Ã¨Æ0Í��¨Æ0ÄKÀXÆ�Ï�Ø�Ì¨Æ½Ü2Ü�ñ�ÜÓÆ¨À�ÍÎú¬÷
ó-"½Â�ÒxÄÎÜ Í�Á0ÌàÂ Ë�É¨Ä�Ä¨Á�ÇÝÄ¨ÁÈË½ÆàÑ0À¨Ò�Ñ�ÎXÆ2Ã
ó-�XÆ0Ä�É�Ì�Ç(Ü Ä�Å½ÆÝÀ�ÂxË½Æ�À?Á2Í9Ä0ÅXÆ Ë�É¨Ä�Ä¨Á�ÇÐÄ0Å½Â�Ä?ÛXÂXÜPÑ�À�Ò�Ñ�ÎXÆ0Ã�ï
Û2Å"Ò�À2Æ��2Ì0ÉXÆn÷

óÐÀ0Á�Á�àÍ¨Á0ÌÐÆ�Â�Ñ1Å7ÊÎÁÓÉ(Ü�ÆàÑ�À�Ò2Ñ�Îàß ÜÓÆ¨À0Ínï�Û!Ò�Ç�ïF�¨Æ�Ä2öXÁÓÉ(ÜÓÆæñ1ú
Í�Á0Ì?Ë Ò1Ç»Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(Üæ÷

óÐÀ0Á�Á�àÍ�Á0ÌÐÆ�Â�Ñ�Å?Ë�É�Ä2Ä�ÁÓÇ
ÒÓÍ7Ë�ïôÑ�À�Ò2Ñ�ÎXÆ0Ã�ñB�ú¬÷

Ì�Æ�Ä0É¨Ì0ÇPËhïB�¨Æ�Ä	��ÂÓË½Æ�À¬ñ�úªóÈÊÎÆ�Ä0ÅXÁ2Ã9ÆC�½ÒÓÄ
You can see how having the buttons in a list is a big win here. We can use a

Í¨Á�Ì
loop to look at each button in turn. If the clicked point

turns out to be in one

of the buttons, the label of that button is returned, providing an exit from the

otherwise infinite
Û0Å"Ò0À0Æ

loop.

The last step is to update the display of the calculator according to which

button was clicked. This is accomplished in
¨Ì�Á�Ñ�Æ½Ü2ÜmÀ�Æ0Ï

. Basically, this is a

multi-way decision that checks the key label and takes the appropriate action.

A digit or operator is simply appended to the display. If
Î�Æ0Ï

contains the

label of the button, and
Ä¨Æ��2Ä

contains the current contents of the display, the

appropriate line of code looks like this:

�1¹ ¯ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñèÄ�Æ��2Ä�áCÎ¨Æ0Ï"ú

The clear key blanks the display.

ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñ��	�xú
The backspace strips off one character.

ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñèÄ�Æ��2Ä û ÷B�!Ö�
!ú
Finally, the equal key causes the expression in the display to be evaluated and

the result displayed.

Ä2Ì�Ï�÷
Ì¨Æ½Ü1É½À�Ä9ßÝÆ�9XÂ2À¬ñ`Ä¨Æ��0Ä"ú

ÆC�½Ñ�Æ��Ä�÷
Ì¨Æ½Ü1É½À�Ä9ß|� / ��� Ä ���ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñvÜxÄ0ÌTñèÌ�Æ�Ü1É!À�ÄÎú2ú

The
Ä2Ì�Ï��0Æ��XÑ�Æ�¨Ä

here is necessary to catch run-time errors caused by entries that

are not legal Python expressions. If an error occurs, the calculator will display/ ��� Ä � rather than causing the program to crash.

Here is the complete program:

ó¡Ñ0Â2À�Ñæï7�Ï0Û(�	� Ú Í�Á�É�ÌPÍ�É�ÇÎÑÓÄ½Ò�Á�ÇÿÑ0Â�À¨Ñ�É½À�Â�Ä¨Á0Ì É(Ü2Ò1Ç��?Ø2Ï�Ä�Å½Á�ÇàÂ�Ì!ÒxÄ0Å�ÊÎÆ0Ä½Ò�Ñæï
ó ¢�À2ÀÓÉ(Ü�Ä�Ì�Â�Ä�ÆXÜfÉ"Ü�Æ9Á2ÍÝÁÓË ï ÆXÑÓÄ!ÜÈÂÓÇ�ÃÐÀ�Ò�ÜxÄÎÜ Ä�ÁÈË�ÉÎÒ0À�ÃÐÂàÜ2Ò�Ê?!À0Æ ü Ù_¢æï
Í2Ì¨ÁxÊ=�0ÌXÂ�2Å"Ò2Ñ¨Ü7ÒvÊ+XÁ0Ì�Ä(;
Í2Ì¨ÁxÊÐË2É�Ä�Ä¨Á�Ç ÒvÊ+XÁ0Ì�Ä��0É�Ä2Ä�ÁÓÇ
Ñ0À2ÂXÜ2Ü ×¨Â2À�Ñ�É½À�Â�Ä�Á0Ì�÷

ó6�0ÅÎÒ¨ÜPÑ0À2ÂXÜ2Ü?Ò�Ê?!À2Æ�ÊÎÆÓÇ�ÄÎÜ;Â¡Ü2Ò�Ê?!À0ÆÐÑ0Â2À�Ñ�É½À�Â�Ä�Á0Ì ü Ù_¢
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷

ó¡ÑÓÌ�Æ�Â�Ä¨Æ7Ä0ÅXÆ7ÛÎÒ�Ç�Ã¨Á�ÛÝÍ¨Á�Ì9Ä0Å½ÆàÑ�Â�À¨Ñ�É!À2Â�Ä¨Á0Ì
ÛÎÒ�Çàß ü ÌXÂ��Å?"!Ò�Çoñ��xÑ�Â�À¨Ñ�É!À2Â�Ä¨Á0Ì��Óú
ÛÎÒ�ÇhïzÜÓÆ0Ä�×2Á�Á�Ì¨Ã!Ü(ñzÕ�õ`ÕTõèøTõèþ!ú
ÛÎÒ�ÇhïzÜÓÆ0ÄC��Â�Ñ�Î+�2Ì¨Á�É2ÇXÃ�ñ��ÓÜ�À�Â�Ä¨ÆC�0ÌXÂÓÏ��Óú
Ü�Æ¨À�Í�ï|ÛÎÒ�Ç9ßPÛÎÒ�Ç
ó6Ð�Á�Û ÑxÌ�Æ�Â�Ä�ÆÈÄ0Å½Æ7Û!Ò�Ã��¨Æ0Ä!Ü
Ü�Æ¨À�Í�ï0Ì	Ì�ÑxÌ�Æ�Â�Ä�Æ!�0É¨Ä�Ä�ÁÓÇ(Ü(ñ1ú

~1~�� ´0��s½u���{ bxyè�v�1ç�´æ�2çzyèt����²s½u�± ³ ��± u�y|�Ó} �1¹�´

Ü�Æ¨À�Í�ï0Ì	Ì�ÑxÌ�Æ�Â�Ä�Æ��ÎÒ�ÜG!À2Â�Ï�ñ1ú
Ã¨Æ0Í5Ì	Ì�ÑxÌ�Æ�Â�Ä�Æ!�0É¨Ä�Ä�ÁÓÇ(Ü(ñ�Ü�Æ�À0Í!ú¬÷

ó¡ÑÓÌ�Æ�Â�Ä¨Æ9À�Ò�ÜxÄÐÁ2Í7Ë2É�Ä2Ä�Á�Ç"Ü
óÿÜxÄXÂ�Ì�ÄPÛ!ÒÓÄ0ÅàÂ�À�À7Ä�Å½Æ¡Ü�ÄXÂÓÇ�Ã�Â�Ì¨Ã¡Ü0Ò�D¨Æ0ÃÈË�É¨Ä�Ä¨Á�Ç(Ü
ó7Ë�Å�XÆXÑ�Üè�½Ò�9�Æ½ÜPÑ�Æ�Ç¨Ä�Æ0ÌàÑ�Á�Á�Ì¨Ã½ÜÈÂÓÇ�ÃÐÀ�ÂÓËXÆ¨À?Á0Í7Ë�É¨Ä�Ä�ÁÓÇ(Ü
Ë�Å�XÆXÑ�Ü;ß û ñzÔ�õ�Ö(õC�èÕ}�vú�õÈñôÞTõ�Ö(õC�¨ïK�vú�õ

ñ1Ö�õôÔæõC�vÖ �vú�õÈñzÔ�õôÔæõC�`ÔB�vú�õÈñôÞTõôÔæõC�èÞ}�vú�õÈñÒ@oõôÔæõC�ðáU�vú�õÈñ&'�õôÔæõC�Ò�B�vú�õ
ñ1Ö�õ`Þ�õC�0@U�vú�õÈñzÔ�õ`Þ�õC�Ò'B�vú�õÈñôÞTõ`Þ�õC�èø}�vú�õÈñÒ@oõ`Þ�õC�&;£�vú�õÈñ&'�õ`Þ�õC�Ò�B�vú�õ
ñ1Ö�õ�@TõC�èþ}�vú�õÈñzÔ�õ�@TõC��A}�vú�õÈñôÞTõ�@TõC�èý}�vú�õÈñÒ@oõ�@TõC� . �B��úVõ�ñ!'�õ0@oõP�`×}��ú�
Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(Üªß û

Í¨Á0Ì	ñ�Ñ��Tõ�ÑÓÏoõôÀ2ÂÓË½Æ�À½ú;Ò�Ç9ËmÅ�½Æ�Ñ¨Ü¬÷
ÜÓÆ¨À�Í�ï|Ë2É�Ä2Ä�Á�Ç"ÜæïðÂ�	XÆ�Ç�Ã�ñ*��É�Ä0Ä�ÁÓÇnñ�Ü�Æ¨À�Ínï|ÛÎÒ�ÇcõùØ�Á¨Ò�Ç�Ä�ñ�Ñ��oõôÑÓÏÎúVõ�ïðþ?'æõ¨ïùþ?'¬õôÀ2ÂÓË�Æ¨À½ú2ú

ó¡ÑÓÌ�Æ�Â�Ä¨Æ7Ä0ÅXÆÝÀ�Â�Ì	�¨Æ�Ì9ß?Ë�É�Ä2Ä�ÁÓÇ
Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(ÜæïðÂ��½Æ�Ç�Ã�ñM�0É�Ä2Ä¨ÁÓÇnñ�Ü�Æ�À0Íoï�ÛÎÒ1Ç�õ Ø¨ÁXÒ1Ç�ÄTñÒ@�ï0'�õ�Ö0úVõ�Öïùþ?'�õ9ïðþ?'æõè�vß���ú�ú
óÐÂ�ÑÓÄ½Ò�9�Â�Ä�ÆPÂ�À�À Ë2É�Ä2Ä�Á�Ç"Ü
Í¨Á0Ì?Ë Ò1Ç»Ü�Æ�À0Í�ï Ë�É¨Ä�Ä�ÁÓÇ(Ü¬÷

ËhïèÂ¨ÑÓÄ!Ò�9XÂ�Ä�Ææñ�ú
Ã¨Æ0Í5Ì	Ì�ÑxÌ�Æ�Â�Ä�Æ��ÎÒ�ÜG!À2Â�Ï�ñ�Ü�Æ�À0Í!ú¬÷

Ë��9ß-�XÆ�ÑÓÄ�ÂÓÇ��¨À2Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñ½ï0'�õÒ'oï�'XúVõ Ø¨ÁXÒ�Ç¨ÄTñ&'oï�'æõ`øoï�'½ú2ú
Ë���ïôÜ�Æ�Ä	,!Ò�À�Àñ��ùÛ0Å"ÒxÄ�Æ}��ú
Ë���ïpÃ2Ì�Â�ÛoñvÜ�Æ�À0Í�ï|ÛÎÒ1Ç�ú
Ä�Æ��0Ä9ß���ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñzÞ�õ`ø!ú�õü�	��ú
Ä�Æ��0ÄcïpÃ2ÌXÂÓÛoñvÜ�Æ¨À�Í�ï|ÛÎÒ�Ç(ú
Ä�Æ��0ÄcïôÜ�Æ0Ä�,XÂ¨Ñ�Ææñ��xÑ�Á�É�Ì½Ò�Æ�Ì���ú
Ä�Æ��0ÄcïôÜ�Æ0Ä+Å�Ä2ÏXÀ2Æ¬ñ��ôË½Á¨À�Ã$�Óú
Ä�Æ��0ÄcïôÜ�Æ0Ä+Å�Ò�D¨Ææñ1Öxø½ú
Ü�Æ¨À�Í�ïpÃ½Ò¨Üu!À2Â�Ï7ßÝÄ¨Æ��0Ä

Ã¨Æ0Í��¨Æ0ÄP�0É¨Ä�Ä�ÁÓÇnñvÜ�Æ¨À�ÍÎú÷
ó-"½Â�ÒxÄÎÜ Í�Á0ÌàÂ Ë�É¨Ä�Ä¨Á�ÇÝÄ¨ÁÈË½ÆàÑ0À¨Ò�Ñ�ÎXÆ2Ã9ÂÓÇXÃPÌ¨Æ0Ä�É�Ì0Ç"Ü Ä0ÅXÆÝÀ�ÂxË½Æ¨À7Á2Í
ó Ä0ÅXÆÈË�É¨Ä�Ä�ÁÓÇÝÄ0Å½Â�ÄPÛXÂXÜPÑ0À¨Ò�Ñ�ÎXÆ2Ãnï
Û2Å"Ò�À2Æ��2Ì0ÉXÆn÷àß ÜÓÆ¨À0Ínï�Û!Ò�Ç�ïF�¨Æ�Ä2öXÁÓÉ(ÜÓÆæñ1ú

Í�Á0Ì?Ë Ò1Ç»Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(Üæ÷
ÒÓÍ7Ë�ïôÑ�À�Ò2Ñ�ÎXÆ0Ã�ñB�ú¬÷

Ì�Æ�Ä0É¨Ì0ÇPËhïB�¨Æ�Ä	��ÂÓË½Æ�À¬ñ�úªóÈÊÎÆ�Ä0ÅXÁ2Ã9ÆC�½ÒÓÄ

�1¹�¹ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Ã¨Æ0Í��Ì�Á�Ñ�ÆXÜ�ÜI��É�Ä2Ä�Á�Çoñ�ÜÓÆ¨À0ÍTõ ÎXÆ�Ï"ú¬÷

ó7Ù	XÃ¨Â�Ä¨Æ½Ü Ä�Å½ÆPÃ½Ò�ÜG½À�Â�Ï9Á2ÍPÄ0ÅXÆàÑ0Â2À�Ñ�É½À�Â�Ä�Á0Ì?Í¨Á�Ì-�Ì�ÆXÜ�Ü Á0ÍPÄ0ÅÎÒ¨Ü§ÎXÆ�Ï
Ä�Æ��0Ä9ß Ü�Æ�À0Í�ïpÃ½Ò�ÜG!À2Â�Ï�ïB�¨Æ�Ä	�¨Æ��2Ä�ñ1ú
Ò�Í-ÎXÆ�ÏÝß�ß|�è×}��÷

ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñ��	�xú
Æ¨À�ÒÓÍ�ÎXÆ�ÏÝß�ßÏ� . �B�¨÷ó���Â�Ñ�Î"ÜG½Â�Ñ�ÆTõ�Ü�À�Ò2Ñ�Æ9Á2Í2Í?Ä0ÅXÆÝÀ�Â�ÜxÄÿÑ�Å½Â�Ì�Â�ÑÓÄ¨Æ0Ì�ï

ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñèÄ�Æ��2Ä û ÷B�!Ö�
!ú
Æ¨À�ÒÓÍ�ÎXÆ�ÏÝß�ßÏ�èß}��÷

ó / 9XÂ2ÀÓÉ!Â�Ä�Æ7Ä�Å½Æ9ÆC���Ì¨Æ½Ü2Ü�Ü2Ò�Á�ÇÝÂÓÇ�Ã9Ã½Ò¨Üu!À2Â�ÏPÄ�Å½Æ?Ì�ÆXÜ1É½À�ÄcïóPÄ�Å½Æ?Ä2Ì�Ïcï2ï�ïùÆ��½Ñ�Æ�¨Ä;ÊÎÆ�Ñ�Å½ÂÓÇ"Ò�ÜvÊò�xÑ0Â�Ä!Ñ1Å½Æ½Üm��Æ�Ì�Ì�Á�ÌÎÜ?Ò1ÇÐÄ0ÅXÆ
ó9Í�Á0ÌÓÊ�É!À2Â;Ë½Æ�Ò�Ç+�9ÆC9�Â�ÀÓÉ½Â�Ä¨Æ2Ã�ï
Ä2Ì�Ï�÷

Ì¨Æ½Ü1É½À�Ä9ßÝÆ�9XÂ2À¬ñ`Ä¨Æ��0Ä"ú
ÆC�½Ñ�Æ��Ä�÷

Ì¨Æ½Ü1É½À�Ä9ß|� / ��� Ä ���ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñvÜxÄ0ÌTñèÌ�Æ�Ü1É!À�ÄÎú2ú
Æ¨ÀXÜÓÆn÷

ó6Ð¨Á0ÌÓÊ"Â�ÀèÎXÆ0Ï-¨Ì�ÆXÜ�Üõ�Â�	XÆ�Ç�ÃàÒÓÄÝÄ�Á?Ä�Å½Æ9ÆÓÇXÃÝÁ2ÍPÄ�Å½ÆPÃXÒ¨ÜG½À�Â�Ï
ÜÓÆ¨À�Í�ïùÃXÒ¨Üu!À�Â�ÏcïôÜ�Æ0Ä���ÆC�2ÄTñèÄ�Æ��2Ä�áCÎ¨Æ0Ï"ú

Ã¨Æ0ÍPÌ0É�Çoñ�ÜÓÆ¨À0Í!ú¬÷
ó=¢1ÇXÍXÒ�ÇÎÒÓÄ�Æ �`ÆC9¨Æ�Ç¨ÄÐÀ2Á2Á��� Ä�Á<�Ì¨ÁXÑ�Æ½Ü�ÜfË�É�Ä2Ä�ÁÓÇ Ñ0À¨Ò�Ñ�ÎÎÜæï
Û2Å"Ò�À2Æ��2Ì0ÉXÆn÷Î�Æ0ÏÝßÿÜÓÆ¨À0ÍnïB��Æ0ÄC��É�Ä2Ä�Á�Çoñ1ú

ÜÓÆ¨À�Í�ï7¨Ì�Á�Ñ�Æ½Ü2ÜI��É�Ä�Ä¨Á�Çoñ�ÎXÆ�Ï"ú
ó6�0ÅÎÒ¨Ü;Ì�É�Ç(Ü;Ä�Å½Æ<¨Ì�Á��0ÌXÂ1Ê§ï
Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷

ó6,!ÒxÌÎÜxÄÿÑxÌ�Æ�Â�Ä�ÆPÂÐÑ0Â�À¨Ñ�É½À�Â�Ä¨Á0ÌPÁ�Ë ï ÆXÑxÄÄ0ÅXÆ�×¨Â2À�Ñ ßÝ×�Â�À¨Ñ�É!À2Â�Ä¨Á0ÌTñ�ú
ó6Ð�Á�Û Ñ0Â�À2À7Ä0ÅXÆàÑ0Â�À¨Ñ�É½À�Â�Ä¨Á0ÌU��ÜfÌ0É�Ç?Ê!Æ0Ä�Å½Á2Ãnï
Ä0ÅXÆ�×¨Â2À�ÑæïpÌ0É2Çnñ�ú

Notice especially the very end of the program. To run the application, we

create an instance of the
×¨Â2À�Ñ1É!À�Â�Ä�Á�Ì

class and then call its
Ì0É2Ç

method.

~1~x� ¹2���Î���kE>bÓ{�����{���y $ u�±xsX��± ± { ³ y $ ����� �1¹�¿
]�]_^�ê �ª�£e|C�©«R}�«¦�RcenU�W�i�j ¢�²j j RTSVU�W��£ec[

Python provides another built-in data type for collections, called a dictionary.

While dictionaries are incredibly useful, they are not as common in other lan-

guages as lists (arrays). The example programs in the rest of the book will not

use dictionaries, so you can skip the rest of this section if you’ve learned all you

want to about collections for the moment.

Ê*Ê�È5µ�ÈSÊ �¦l���tGlnvxw����q¤ ² ��s�l��	s
Lists allow us to store and retrieve items from sequential collections. When

we want to access an item in the collection, we look it up by index—its posi-

tion in the collection. Many applications require a more flexible way to look

up information. For example, we might want to retrieve information about stu-

dents or employees based on their social security numbers. In programming

terminology, this is a key-value pair. We access the value (student information)

associated with a particular key (social security number). If you think a bit, you

can come up with lots of other examples of useful key-value pairs: names and

phone numbers, usernames and passwords, zip codes and shipping costs, state

names and capitals, sales items and quantity in stock, etc.

A collection that allows us to look up information associated with arbitrary

keys is called a mapping. Python dictionaries are mappings. Some other pro-

gramming languages provide similar structures called hashes or associative ar-

rays. A dictionary can be created in Python by listing key-value pairs inside of

curly braces. Here is a simple dictionary that stores some fictional usernames

and passwords:�	��� !Â�Ü�Ü�Û¨ÃPß`Ä*�:��ÉÎÒ�Ã¨Á*�(÷u�ÓÜ1É�½Æ�ÌC�Ì¨Á��0ÌXÂ�Ê2ÊÎÆ�Ì��½õY��Ä0É¨Ì!Ò1Ç��$�"÷G�:�¨Æ�ÇÎÒ�É"Ü��Îõ�ôË"Ò�À�À*�"÷G�èÊÎÁ�ÇXÁ�XÁ¨À�Ï$�²Å
Notice that keys and values are joined with a “:”, and commas are used to sepa-

rate the pairs.

The main use for a dictionary is to look up the value associated with a par-

ticular key. This is done through indexing notation.�	��� !Â�Ü�Ü�Û¨Ã û ����ÉÎÒ�Ã�Á���
��Ü�É	XÆ0ÌC¨Ì�ÁC�2ÌXÂ1Ê�Ê!Æ0Ì���	��� !Â�Ü�Ü�Û¨Ã û �zË"Ò�À�À_��
�|Ê!Á�ÇXÁ�½Á�À�ÏU�

�1¹�â s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
In general,

. ÃXÒ�ÑxÄ!Ò�ÁÓÇ!Â�Ì�Ï � û . ÎXÆ0Ï �

returns the object associated with the given

Î�Æ0Ï
.

Dictionaries are mutable; the value associated with a key can be changed

through assignment.�	��� !Â�Ü�Ü�Û¨Ã û �zË"Ò�À�À_��
Èß)�zË!ÀxÉ½ÆXÜ2ÑÓÌ¨Æ�ÆÓÇ���	��� !Â�Ü�Ü�Û¨ÃÄB�ùÄ0É¨Ì!Ò�Ç+�U�¨÷�����Æ�ÇÎÒ�É(Ü���õ��pË"Ò�À�À$��÷���Ë!ÀÓÉXÆ½Ü0ÑÓÌ�Æ2Æ�Ç���õ ´�0��ÉÎÒ�Ã¨ÁB��÷®��Ü1É�½Æ�ÌC�Ì¨Á��0ÌXÂ�Ê2ÊÎÆ�Ì���Å
In this example, you can see that the value associated with

�pËÎÒ0À2ÀB�
has changed

to
��Ë!ÀÓÉXÆ½Ü0ÑÓÌ�Æ2Æ�Ç��

.

Also notice that the dictionary prints out in a different order from how it was

originally created. This is not a mistake. Mappings are inherently unordered.

Internally, Python stores dictionaries in a way that makes key lookup very effi-

cient. When a dictionary is printed out, the order of keys will look essentially

random. If you want to keep a collection of items in a certain order, you need a

sequence, not a mapping.

To summarize, dictionaries are mutable collections that implement a map-

ping from keys to values. Our password example showed a dictionary having

strings as both keys and values. In general, keys can be any immutable type, and

values can be any type at all, including programmer-defined classes. Python dic-

tionaries are very efficient and can routinely store even hundreds of thousands

of items.

Ê*Ê�È5µ�È�Ç �¦l���tGlnvxw����q¤��#Í*i*�B��tGlnvxw3s
Like lists, Python dictionaries support a number of handy built-in operations.

You have already seen how dictionaries can be defined by explicitly listing the

key-value pairs in curly braces. You can also extend a dictionary by adding new

entries. Suppose a new user is added to our password system. We can expand

the dictionary by assigning a password for the new username.�	��� !Â�Ü�Ü�Û¨Ã û �pÇ½Æ�Û2É"Ü�Æ0ÌU��
 ß|�:¢�Ê Ú Ð�Æ�Û0Ë"Ò�Æ}��	��� !Â�Ü�Ü�Û¨ÃÄB�ùÄ0É¨Ì!Ò�Ç+�U�¨÷�����Æ�ÇÎÒ�É(Ü���õ��pË"Ò�À�À$��÷���Ë!ÀÓÉXÆ½Ü0ÑÓÌ�Æ2Æ�Ç���õ ´��Ç½Æ�Û2É(ÜÓÆ0ÌU��÷��!¢vÊ Ú Ð�Æ�Û2ËÎÒ�Æ}�2õ��0��ÉÎÒ�Ã¨ÁB��÷���Ü1É�½Æ0Ì��Ì¨Á��2Ì�Â�Ê2ÊÎÆ0ÌU��Å

~1~x� ¹2���Î���kE>bÓ{�����{���y $ u�±xsX��± ± { ³ y $ ����� �1¹�é

In fact, a common method for building dictionaries is to start with an empty

collection and add the key-value pairs one at a time. Suppose that usernames

and passwords were stored in a file called
½ÂXÜ2Ü�ÛXÁ�Ì¨Ã½Ü

, where each line of the

file contains a username and password with a space between. We could easily

create the
½ÂXÜ2Ü�Û�Ã

dictionary from the file.!Â�Ü�Ü1Û�ÃPßZÄ�Å
Í¨Á�ÌàÀ�Ò1Ç½ÆàÒ�Ç¡Á�½ÆÓÇnñ��I!Â�Ü�Ü�Û�Á0Ì�Ã!Ü©�2õC�ùÌ��vú÷

É(ÜÓÆ0Ìnõ !ÂXÜ2Ü ßÿÜxÄ2Ì!Ò�Ç+��ïôÜG!À¨ÒÓÄ�ñ�À�Ò1Ç½Æ½ú!Â�Ü�Ü�Û¨Ã û É(Ü�Æ�Ì?
Èß-!ÂXÜ2Ü
To manipulate the contents of a dictionary, Python provides the following

methods:

Method MeaningÓ ÃXÒ�ÑÓÄ � ï|Å!Â�Ü ÎXÆ�ÏTñ Ó Î�Æ0Ï � ú Returns true if dictionary contains

the specified key, false if it doesn’t.Ó ÎXÆ0Ï � Ò1Ç Ó ÃXÒ�ÑxÄ � Same as
Å!ÂXÜ Î�Æ0ÏÓ ÃXÒ�ÑÓÄ � ïIÎXÆ�ÏÎÜ(ñ1ú Returns a list of the keys.Ó ÃXÒ�ÑxÄ � ïF9�Â�ÀÓÉXÆ½Ü(ñ1ú Returns a list of the values.Ó Ã½Ò2ÑÓÄ � ï`ÒÓÄ�Æ�ÊVÜ(ñ1ú Returns a list of tuples

ñ�Î�Æ0Ïoõ09XÂ2ÀÓÉXÆ!ú
representing the key-value pairs.Ó Ã½Ò2ÑÓÄ � ïF�¨Æ0Ä�ñ Ó ÎXÆ�Ï � õ Ó Ã¨Æ2Í¨ÂÓÉ½À�Ä � ú If dictionary has

Î�Æ0Ï
returns its value;

otherwise returns
Ã¨Æ0Í�ÂÓÉ½À�Ä

.Ã¨Æ�À Ó ÃXÒ�ÑxÄ � û Ó ÎXÆ�Ï �
 Deletes the specified entry.Ó Ã½Ò2ÑÓÄ � ï`Ñ0À2Æ�Â�Ì�ñ1ú Deletes all entries.

These methods are mostly self-explanatory. For illustration, here is an inter-

active session using our password dictionary:�	��� !Â�Ü�Ü�Û¨Ã�ï7ÎXÆ0Ï!Ü�ñ�úû �ùÄ0É¨Ì!Ò�Ç+�U�2õ��pËÎÒ0À2ÀB��õ��pÇ½Æ�Û2É"Ü�Æ0ÌU��õ�����ÉÎÒ�Ã�Á}��
�	��� !Â�Ü�Ü�Û¨Ã�ïI9XÂ�ÀxÉ½ÆXÜ�ñ1úû �0�¨ÆÓÇ"Ò�É"Ü©�2õ��pË½ÀÓÉXÆ½Ü2ÑxÌ�Æ2Æ�Ç��2õ��!¢vÊ Ú Ð�Æ�Û2ËÎÒ�Æ}�2õ���Ü1É	XÆ0Ì��Ì�ÁC�2Ì�Â�Ê�Ê!Æ0ÌU��
�	��� !Â�Ü�Ü�Û¨Ã�ï`ÒÓÄ�Æ�ÊVÜ(ñ1úû ñ��ðÄ�É�Ì!Ò1Ç��}��õ��0�¨ÆÓÇ"Ò�É"Ü©��úVõÈñ��pËÎÒ0À�À$��õ��pË!ÀxÉ½ÆXÜ2ÑÓÌ¨Æ�ÆÓÇ��vú�õ3´
ñ��pÇXÆ�Û2É"Ü�Æ�Ì���õ��:¢�Ê Ú Ð�Æ�Û0Ë"Ò�Æ}�vú�õ0ñ�����ÉÎÒ�Ã�Á}��õÅ��Ü1É�½Æ0Ì��Ì¨Á��2Ì�Â�Ê2ÊÎÆ0ÌU�vú�
�	��� !Â�Ü�Ü�Û¨Ã�ï Å!ÂXÜ�Ì�Î�Æ0ÏTñ��pËÎÒ0À�À$�vú��Ì�É½Æ

�1¿�% s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
�	��� �èÍ0Ì�Æ2Ã}��Ò�Ç�½ÂXÜ2Ü�Û�Ã,XÂ2ÀXÜÓÆ�	��� !Â�Ü�Ü�Û¨Ã�ïF�¨Æ0Ä�ñ���Ë"Ò0À2ÀB�2õC�pÉ2Ç?Î0Ç½ÁÓÛ2Ç���ú�pË½ÀÓÉXÆ½Ü2ÑxÌ�Æ2Æ�Ç���	��� ½ÂXÜ�Ü1Û�ÃnïB�¨Æ�ÄTñ�� ï ÁÓÅ�Ç���õC��É�Ç	Î2Ç�Á�Û2Ç���ú�pÉ2Ç?Î0Ç½Á�Û0Ç���	��� !Â�Ü�Ü�Û¨Ã�ï`Ñ0À2Æ�Â�Ì�ñ1ú�	��� !Â�Ü�Ü�Û¨ÃÄ�Å
Ê*Ê�È5µ�È�É �����*��Í_Ù�i����0v_���B���»¨Æ�âv*�M� ¢ �Bi�J�r�i_w3�C¤

Let’s write a program that analyzes text documents and counts how many times

each word appears in the document. This kind of analysis is sometimes used

as a crude measure of the style similarity between two documents and is also

used by automatic indexing and archiving programs (such as Internet search

engines).

At the highest level, this is just a multi-accumulator problem. We need a

count for each word that appears in the document. We can use a loop that iter-

ates through each word in the document and adds one to the appropriate count.

The only catch is that we will need hundreds or thousands of accumulators, one

for each unique word in the document. This is where a (Python) dictionary

comes in handy.

We will use a dictionary where the keys are strings representing words in the

document and the values are ints that count how many times the word appears.

Let’s call our dictionary
Ñ�Á�É2Ç�Ä!Ü

. To update the count for a particular word,
Û
,

we just need a line of code something like this:

Ñ�ÁÓÉ�Ç¨ÄÎÜ û Û+
7ß Ñ�Á�É2Ç�ÄÎÜ û Û?
?á Ö
This says to set the count associated with word

Û
to be one more than the current

count for
Û
.

There is one small complication with using a dictionary here. The first time

we encounter a word, it will not yet be in
Ñ�ÁÓÉ�Ç¨ÄÎÜ

. Attempting to access a non-

existent key produces a run-time
À�Æ0Ï / Ì�Ì¨Á0Ì . To guard against this, we need a

decision in our algorithm.

Ò�Í?Û Ò�Ü7Â�À�Ì¨Æ¨Â�Ã2Ï¡Ò1Ç Ñ�Á�É2Ç�Ä!Üæ÷
Â0Ã2ÃÝÁ�Ç½Æ?Ä¨Á?Ä0ÅXÆàÑ�Á�É2Ç�Ä9Í�Á0ÌPÛ

Æ¨À�Ü�Æo÷

~1~x� ¹2���Î���kE>bÓ{�����{���y $ u�±xsX��± ± { ³ y $ ����� �1¿0~

Ü�Æ�ÄÿÑ�Á�É2Ç�Ä9Í�Á0ÌPÛÐÄ�Á Ö
This decision ensures that the first time a word is encountered, it will be entered

into the dictionary with a count of 1.

One way to implement this decision is to use the
Å!Â�Ü Î�Æ0Ï

method for dictio-

naries.

Ò�Í¡Ñ�Á�É2Ç�ÄÎÜ¬ï|Å½ÂXÜ�Ì�ÎXÆ�ÏTñèÛ"ú¬÷
Ñ�ÁÓÉ�Ç�Ä!Ü û Û+
?ßÿÑ�Á�É�Ç¨ÄÎÜ û Û+
7á Ö

Æ¨À�Ü�Æo÷
Ñ�ÁÓÉ�Ç�Ä!Ü û Û+
?ß»Ö

A more elegant approach is to use the
��Æ0Ä

method.

Ñ�ÁÓÉ�Ç¨ÄÎÜ û Û+
7ß Ñ�Á�É2Ç�ÄÎÜ¬ïB��Æ0ÄTñðÛ�õèÕ!ú�á»Ö
If
Û

is not already in the dictionary, this
�¨Æ�Ä

will return 0, and the result is that

the entry for
Û

is set to 1.

The dictionary updating code will form the heart of our program. We just

need to fill in the parts around it. The first task is to split our text document

into a sequence of words. In the process, we will also convert all the text to

lowercase (so occurrences of “Foo” match “foo”) and eliminate punctuation (so

“foo,” matches “foo”). Here’s the code to do that:

Í�Ç½Â�ÊÎÆ7ßÝÌ�Â�Û�Ì�Ò�Ç��É¨ÄTñ��!,!Ò�À2Æ Ä�ÁÐÂÓÇ½Â�À�Ï�D¨Æo÷æ�Óú
óPÌ�Æ�Â0Ã9Í½Ò�À2ÆÝÂ�ÜÈÁ�Ç½ÆÝÀ0Á�Ç+�¡ÜxÄ2Ì!Ò�Ç+�
Ä�ÆC�2ÄÝßÝÁ�XÆ�ÇoñôÍ�Ç½Â�Ê!ÆTõC�ùÌ���ú¬ïpÌ¨Æ¨Â�Ã�ñ1ú
ó¡Ñ�ÁÓÇ+9�Æ�Ì�ÄÐÂ2À�À9À0Æ0Ä�Ä¨Æ0Ì!Ü Ä�ÁÝÀ0Á�ÛXÆ�Ì¡Ñ0Â�Ü�Æ
Ä�ÆC�2ÄÝßÿÜxÄ2Ì!Ò1Ç���ïðÀ2Á�ÛXÆ0Ì�ñ`Ä¨Æ��2ÄÎú
óPÌ�Æ�!À�Â¨Ñ�ÆPÆ�Â�Ñ1Å��É�ÇÎÑÓÄ�É!Â�Ä½Ò�ÁÓÇÿÑ�Å½Â�Ì�Â�ÑÓÄ¨Æ0ÌÈÛÎÒÓÄ�Å¡Â¡ÜG½Â�Ñ�Æ
Í¨Á�ÌÿÑ�Å Ò�ÇQ�+�u��ó ¬ �¤Ç�ñ�úC;�áTõë�Tï��o÷3È . ß � 2�É û ´C´�
j«�Ì$ú¶ÄbÊÃÅ8Ë��¨÷Ä�Æ��0Ä9ß ÜxÄ2Ì!Ò�Ç+��ï�Ì�Æ�½À�Â¨Ñ�ÆæñèÄ�ÆC�2ÄnõlÑ1Åcõ��¡�vú
óÿÜG½À�ÒÓÄ Ü�Ä�Ì½Ò�Ç��9Â�ÄPÛ2ÅÎÒÓÄ¨Æ½ÜG½Â�Ñ�ÆÈÄ�ÁPÍ�Á0ÌÓÊ Â9À�Ò¨Ü�ÄÐÁ2Í?Û�Á0Ì¨Ã½Ü
ÛXÁ�Ì¨Ã!Ü ß Ü�Ä�Ì½Ò�Ç��nïzÜu!À�ÒxÄTñèÄ�Æ��0Ä"ú

Now we can easily loop through the words to build the
Ñ�Á�É2Ç�Ä!Ü

dictionary.

�1¿�r s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Ñ�ÁÓÉ�Ç�Ä!Ü;ß`Ä�Å
Í¨Á�ÌPÛ Ò�ÇÝÛXÁ�Ì¨Ã½Üæ÷

Ñ�Á�É2Ç�Ä!Ü û Û?
?ßÿÑ�ÁÓÉ�Ç¨ÄÎÜæïF�¨Æ�ÄTñèÛnõ`Õ½úfá»Ö
Our last step is to print a report that summarizes the contents of

Ñ�Á�É�Ç¨ÄÎÜ
.

One approach might be to print out the list of words and their associated counts

in alphabetical order. Here’s how that could be done:

ó��¨Æ�ÄàÀ�Ò�ÜxÄÐÁ2Í?Û�Á0Ì�Ã!Ü;Ä0Å½Â�ÄÐÂ�	XÆ¨Â�ÌàÒ�ÇàÃ¨Á�Ñ�É�ÊÎÆ�Ç¨Ä
É�ÇÎÒ�í�É½Æ�"�Á0Ì�Ã!Ü ß¡Ñ�Á�É2Ç�ÄÎÜ¬ïIÎ�Æ0ÏÎÜ(ñ1ú
ó��É¨ÄàÀ�Ò�ÜxÄÐÁ2Í?Û�Á0Ì�Ã!ÜPÒ�ÇÿÂ2À�2Å!ÂÓËXÆ0Ä½Ò�Ñ0Â2ÀÈÁ�Ì¨Ã�Æ0Ì
É�ÇÎÒ�í�É½Æ�"�Á0Ì�Ã!ÜæïôÜ�Á�Ì�ÄTñ�ú
ó��Ì½Ò�Ç¨ÄPÛXÁ0Ì�Ã!ÜÈÂxÇXÃÐÂ�Ü�Ü�Á�Ñ�Ò�Â�Ä�Æ0ÃÐÑ�Á�É�Ç¨ÄÎÜ
Í¨Á�ÌPÛ Ò�ÇÝÉ�ÇÎÒ�í�É½Æ�"�Á0Ì�Ã!Üæ÷�Ì½Ò�Ç�Ä7Û�õ Ñ�ÁÓÉ�Ç¨ÄÎÜ û Û+

For a large document, however, this is unlikely to be useful. There will be

far too many words, most of which only appear a few times. A more interesting

analysis is to print out the counts for the ø most frequent words in the document.

In order to do that, we will need to create a list that is sorted by counts (most to

fewest) and then select the first ø items in the list.

We can start by getting a list of key-value pairs using the
ÒxÄ�Æ�ÊVÜ

method for

dictionaries.

ÒÓÄ¨ÆxÊ�Ü;ßÿÑ�Á�É2Ç�Ä!ÜæïôÒxÄ�Æ�ÊVÜ�ñ�ú
Here

ÒxÄ�Æ�ÊVÜ
will be a list of tuples (e.g.,

û ñ��èÍ¨Á2Á}�2õë'½ú�õ ñ��pË½Â�Ì��2õ`þ½úVõÈñ���Üu!Â�Ê ��õèÞ�þ�ø½úVõD�D�D
). If we simply sort this list (
ÒÓÄ¨ÆxÊ�ÜæïzÜÓÁ0Ì2ÄTñ1ú

) Python will put them in a stan-

dard order. Unfortunately, when Python compares tuples, it orders them by

components, left to right. Since the first component of each pair is the word,ÒÓÄ¨ÆxÊ�ÜæïzÜÓÁ0Ì2ÄTñ1ú
will put this list in alphabetical order, which is not what we want.

To sort our list of items, we need a custom comparison function that takes

two items (i.e., word-count pairs) and returns either -1, 0, or 1, giving the rela-

tive order in which we want those two items to appear in the sorted list. Here is

the code for a suitable comparison function:

Ã¨Æ0Í¡Ñ�Á�Ê+!Â�Ì�Æ�¢xÄ�Æ�ÊVÜ(ñ�ñèÛ(Ö�õzÑXÖ2ú�õ ñèÛXÔ�õ�Ñ�Ô½ú2ú¬÷
Ò�Í¡Ñ�Ö � Ñ�Ôo÷Ì�Æ0Ä�É�Ì�Ç¡�ÿÖ

~1~x� ¹2���Î���kE>bÓ{�����{���y $ u�±xsX��± ± { ³ y $ ����� �1¿��

Æ¨À¨Ò�Í¡ÑXÖ ß2ß¡Ñ0ÔT÷
Ì�Æ0Ä�É�Ì�Ç Ñ�Ê?nñèÛ(Ö�õ ÛXÔ½ú

Æ¨À�Ü�Æn÷
Ì�Æ0Ä�É�Ì�Ç Ö

This function accepts two parameters, each of which is a tuple of two val-

ues. Notice I have taken advantage of Python’s automatic tuple unpacking and

written each parameter as a pair of variables. Take a look at the decision struc-

ture. If the count in the first item is greater than the count in the second item,

then the first item should precede the second in the sorted list (since we want

the most frequent words at the front of the list) and the function returns -1. If

the counts are equal, then we let Python compare the two word strings withÑ�Ê?
. This ensures that groups of words with the same frequency will appear

in alphabetical order relative to each other. Finally, the
Æ¨ÀXÜÓÆ

handles the case

when the second count is larger; the function returns a 1 to indicate that the

first parameter should follow the second.

With this comparison function, it is now a simple matter to sort our items

into the correct order.

ÒÓÄ¨ÆxÊ�ÜæïzÜÓÁ0Ì2ÄTñvÑ�ÁxÊ?!Â�Ì¨Æm¢�Ä�ÆxÊ�Ü¨ú
Now that our items are sorted in order from most to least frequent, we are

ready to print a report of the ø most frequent words. Here’s a loop that does the

trick:

Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷�Ì!Ò1Ç�Ä)�/�+�½ÖxÕ½ÜI�+'�Ã$� �ÿÒxÄ�ÆxÊ�Ü û Ò�

Notice especially the formatted print statement. It prints a string, left-justified in

ten spaces, followed by an int right-justified in five spaces. Normally, we would

supply a pair of values to fill in the slots (e.g.,
�Ì½Ò�Ç¨Ä)�4�?�!ÖxÕXÜ��?'0Ã$�±�	ñèÛXÁ�Ì¨ÃTõ

Ñ�ÁÓÉ�Ç¨Ä"ú
). In this case, however,

ÒÓÄ�Æ�ÊVÜ û Ò�

is a pair, so Python can extract the

two values that it needs.

That about does it. Here is the complete program:

ó?ÛXÁ�Ì¨Ã2Í2Ì�ÆCí�ï>�Ï
Ò�Ê?½Á�Ì�ÄÿÜ�Ä�Ì!Ò1Ç��
Ã¨Æ0Í¡Ñ�Á�Ê+!Â�Ì�Æ�¢xÄ�Æ�ÊVÜ(ñ�ñèÛ(Ö�õzÑXÖ2ú�õ ñèÛXÔ�õ�Ñ�Ô½ú2ú¬÷

Ò�Í¡Ñ�Ö � Ñ�Ôo÷Ì�Æ0Ä�É�Ì�Ç¡�ÿÖ

�1¿ ¯ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
Æ¨À¨Ò�Í¡ÑXÖ ß2ß¡Ñ0ÔT÷

Ì�Æ0Ä�É�Ì�Ç Ñ�Ê?nñèÛ(Ö�õ ÛXÔ½ú
Æ¨À�Ü�Æn÷

Ì�Æ0Ä�É�Ì�Ç Ö
Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊÿÂÓÇ½Â�À�Ï�D¨ÆXÜ ÛXÁ�Ì¨Ã9Í0Ì�Æ�í�É½ÆÓÇ"ÑÓÏÐÒ�ÇÿÂPÍ½Ò�À2Æ*��Ì½Ò�Ç�Ä��1ÂÓÇ�Ã��Ì½Ò�Ç�Ä!ÜÈÂ7Ì�Æ�½Á�Ì�ÄÐÁ�ÇÐÄ�Å½ÆÈÇ?Ê!Á½ÜxÄÝÍ0Ì�ÆCí�É½ÆÓÇ�ÄÈÛXÁ0Ì�Ã!Ü¬ïM´ÓÇx�

ó��¨Æ�Ä9Ä0Å½Æ¡ÜÓÆ�í�É½Æ�ÇÎÑ�ÆPÁ0Í?ÛXÁ�Ì¨Ã!Ü Í2Ì�Á�Ê¡Ä0ÅXÆPÍ½Ò0À0Æ
Í�Ç½Â�ÊÎÆ7ßÝÌ�Â�Û�Ì�Ò�Ç��É¨ÄTñ��!,!Ò�À2Æ Ä�ÁÐÂÓÇ½Â�À�Ï�D¨Æo÷æ�Óú
Ä�ÆC�2ÄÝßÝÁ�XÆ�ÇoñôÍ�Ç½Â�Ê!ÆTõC�ùÌ���ú¬ïpÌ¨Æ¨Â�Ã�ñ1ú
Ä�ÆC�2ÄÝßÿÜxÄ2Ì!Ò1Ç���ïðÀ2Á�ÛXÆ0Ì�ñ`Ä¨Æ��2ÄÎú
Í¨Á�ÌÿÑ�Å Ò�ÇQ�+�u��ó ¬ �¤Ç�ñ�úC;�áTõë�Tï��o÷3È . ß � 2�É û ´C´�
j«�Ì$ú¶ÄbÊÃÅ8Ë��¨÷Ä�Æ��0Ä9ß ÜxÄ2Ì!Ò�Ç+��ï�Ì�Æ�½À�Â¨Ñ�ÆæñèÄ�ÆC�2ÄnõlÑ1Åcõ��¡�vú
ÛXÁ�Ì¨Ã!Ü ß Ü�Ä�Ì½Ò�Ç��nïzÜu!À�ÒxÄTñèÄ�Æ��0Ä"ú
ó¡Ñ�ÁÓÇ(ÜxÄ2Ì0ÉÎÑÓÄÐÂ?ÃXÒ�ÑÓÄ½Ò�ÁÓÇ!Â�Ì2Ï9Á0Í?ÛXÁ0Ì�Ã¡Ñ�ÁÓÉ�Ç�Ä!Ü
Ñ�ÁÓÉ�Ç�Ä!Ü;ß`Ä�Å
Í¨Á�ÌPÛ Ò�ÇÝÛXÁ�Ì¨Ã½Üæ÷

Ñ�Á�É2Ç�Ä!Ü û Û?
?ßÿÑ�ÁÓÉ�Ç¨ÄÎÜæïF�¨Æ�ÄTñèÛnõ`Õ½úfá»Ö
óÝÁ�É¨ÄC�É¨ÄÐÂÓÇ½Â�À�ÏÎÜ2Ò�Ü Á2Í7ÇPÊ!Á½ÜxÄPÍ2Ì�ÆCí�ÉXÆ�Ç�Ä7ÛXÁ0Ì�Ã!Ü¬ï
ÇàßÿÒ�Ç	2É�Ä�ñ�� Ä É�Ä��É�ÄPÂÓÇ½Â�À�ÏÎÜ2Ò�Ü Á2Í7ÅXÁ�Û7ÊÎÂÓÇ�Ï7ÛXÁ0Ì�Ã!ÜC2=��ú
ÒÓÄ¨ÆxÊVÜ ß Ñ�Á�É2Ç�ÄÎÜ¬ïôÒxÄ�ÆxÊ�Ü�ñ�ú
ÒÓÄ¨ÆxÊVÜ¬ïzÜÓÁ0Ì�Ä�ñvÑ�ÁxÊ+½Â�Ì¨Æm¢xÄ¨ÆxÊ�Ü¨ú
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷�Ì!Ò1Ç�Ä)�/�+�½ÖxÕ½ÜI�+'�Ã$� �ÿÒxÄ�ÆxÊ�Ü û Ò�

Ò�Í5Ì�ÌÓÇ½Â�ÊÎÆ	Ì	Ì7ß2ß|�ëÌ�Ì�Ê"Â¨Ò�ÇmÌ	ÌB�¨÷�ÊÎÂ�Ò�Çoñ1ú
Just for fun, here’s the result of running this program to find the twenty most

frequent words in the book you’re reading right now:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1ÊÿÂÓÇ½Â�À�Ï�D¨ÆXÜ ÛXÁ�Ì¨Ã9Í0Ì�Æ�í�É½ÆÓÇ"ÑÓÏÐÒ�ÇÿÂPÍ½Ò�À2Æ
ÂÓÇ�Ã��Ì½Ò�Ç�Ä!ÜÈÂ7Ì�Æ�½Á�Ì�ÄÐÁ�ÇÐÄ�Å½ÆÈÇ?Ê!Á½ÜxÄÝÍ0Ì�ÆCí�É½ÆÓÇ�ÄÈÛXÁ0Ì�Ã!Ü¬ï
,!Ò�À2Æ?Ä¨ÁÝÂÓÇ!Â2À�ÏCD¨Æn÷ Ë½Á2Á�Îhï�Ä?�0ÄÄ É¨ÄC2É�ÄÐÂxÇ!Â�À�ÏÎÜ0Ò¨Ü Á0Í7Å½Á�Û7ÊÎÂÓÇ¨Ï?ÛXÁ�Ì¨Ã!ÜC27Ô2Õ

~�~�� ¿0�0s(t�uxw�y|{�}�b¨������u�}�ç �1¿�´

Ä0ÅXÆ ø�@¨Ô�A
Â Ô�AC@+'
Á2Í Ô2ø�Ô�Ô
Ä�Á ÔC@�ø	A
Ò¨Ü Öxý2Þ�ø
Ä0Å½Â�Ä ÖxÞ2Þ¨Ô
ÂÓÇ�Ã ÖÓÔ�'2ý
Ò�Ç ÖÓÔ�@¨Õ
ÛXÆ ÖxÕ2Þ�Õ
Ä0ÅÎÒ¨Ü ý�A?'
Í¨Á�Ì þ!Öxý
Ï�ÁÓÉ þ2Õ¨Ô�Ì¨Á��0ÌXÂ�Ê ø�A�@
Ë½Æ ø2þ�Õ
ÒÓÄ ø!Ö�A
Â�Ì¨Æ ø!ÖÓÔ
ÂXÜ ø2Õ�þ
Ñ0ÂxÇ 'CA�Þ
ÛÎÒ�À�À @	A�Õ
ÂÓÇ @�þ�Õ
]�]_^IH �b�i�¤nU�Rcg © ¦§� � ing1í

This chapter has discussed techniques for handling collections of related infor-

mation. Here is a summary of some key ideas:

\ A list object is a mutable sequence of arbitrary objects. Items can be ac-

cessed by indexing and slicing. The items of a list can be changed by

assignment.

\ Python lists are similar to arrays in other programming languages. Python

lists are more flexible because their size can vary and they are heteroge-

neous. Python lists also support a number of useful methods.

\ One particularly important data processing operation is sorting. Python

lists have a
Ü�Á0Ì2Ä

method that can be customized by supplying a suitable

comparison function. This allows programs to sort lists of arbitrary objects.

�1¿�¹ s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
\ Classes can use lists to maintain collections stored as instance variables.

Oftentimes using a list is more flexible than using separate instance vari-

ables. For example, a GUI application might use a list of buttons instead

of an instance variable for each button.

\ An entire program can be viewed as a collection of data and a set of

operations—an object. This is a common approach to structuring GUI

applications.

\ A Python dictionary implements an arbitrary mapping from keys into val-

ues. It is very useful for representing nonsequential collections.

]�]_^I[egfTRhg1S¬W�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. The median is the average of a set of data.

2. Standard deviation measures how spread out a data set is.

3. Arrays are usually heterogeneous, but lists are homogeneous.

4. A Python list cannot grow and shrink in size.

5. Unlike strings, Python lists are not mutable.

6. A list must contain at least one item.

7. Items can be removed from a list with the
Ã�Æ¨À

operator.

8. A comparison function returns either
��Ì0ÉXÆ

or
,XÂ2ÀXÜ�Æ

.

9. A tuple is similar to a immutable list.

10. A Python dictionary is a kind of sequence.

~�~�� â0�?����{1} ³�$ ��{z� �1¿�¿
� |��Q�!�����X}1�j�?������}

1. Where mathematicians use subscripting, computer programmers use

a) slicing b) indexing c) Python d) caffeine

2. Which of the following is not a built-in sequence operation in Python?

a) sorting b) concatenation c) slicing d) repetition

3. The method that adds a single item to the end of a list is

a)
Æ��0Ä�Æ�Ç�Ã

b)
Â�Ã�Ã

c)
!ÀxÉ(Ü

d)
Â��½ÆÓÇXÃ

4. Which of the following is not a Python list method?

a)
Ò�Ç�Ã¨Æ��

b)
Ò�Ç"Ü�Æ0Ì2Ä

c)
�¨Æ�Ä

d)
XÁ�

5. Which of the following is not a characteristic of a Python list?

a) it is an object

b) it is a sequence

c) it can hold objects

d) it is immutable

6. Which of the following expressions correctly tests if
�

is even?

a)
���ÐÔPß�ßÝÕ

b)
ÆC9¨Æ�Çoñë�Îú

c)
Ç½Á0ÄÐÁ0Ã�Ãæñë�Îú

d)
���àÔ?ß2ß5�

7. The parameter
��Ë!Â�Ì

in
ÜxÄ�ÃK�XÆ�9

is what?

a) median b) mode c) spread d) mean

8. What is the result of
Ñ�Ê?nñ��1Â*�!õ§�4D���ú

?

a) -1 b) 1 c) True d) Error

9. Which of the following is not a dictionary method?

a)
Å!Â�Ü Î�Æ0Ï

b)
Î�Æ0Ï!Ü

c)
Ü�Á0Ì2Ä

d)
Ñ0À2Æ�Â�Ì

10. The
ÒÓÄ¨ÆxÊ�Ü

dictionary method returns a(n)

a) int b) list of tuples c) bool d) dictionary

� ���!��|?�&�:���m�
1. Given the initial statements

Ò�Ê+XÁ0Ì2ÄÿÜxÄ2Ì!Ò�Ç+�
Ü�Ö ß û Ôæõ�Ö�õ0@oõèÞ�

Ü�Ô?ß û �zÑ£��õP�ôÂ$��õC��Ë��0

�1¿�â s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
show the result of evaluating each of the following sequence expressions:

(a)
Ü�Ö á Ü�Ô

(b)
Þ¡;ÝÜ�Ö áàÔ5;ÐÜ�Ô

(c)
Ü�Ö û ÖG

(d)
Ü�Ö û ÖV÷ðÞ�

(e)
Ü�Ö á Ü�Ô û �½Ö�

2. Given the same initial statements as in the previous problem, show the val-

ues of
Ü�Ö

and
Ü�Ô

after executing each of the following statements. Treat

each part independently (i.e., assume that
Ü¨Ö

and
Ü�Ô

start with their orig-

inal values each time).

(a)
Ü�ÖVïpÌ¨ÆxÊÎÁ�9�Æ¬ñ�Ô½ú

(b)
Ü�ÖVïzÜÓÁ0Ì�Ä�ñ1ú

(c)
Ü�ÖVïèÂ�	½ÆÓÇXÃæñ û Ü�Ôoï`Ò�ÇXÃ�Æ��æñ��pË��vú�
!ú

(d)
Ü�ÔTï7XÁ�nñvÜ�ÖVï7½Á�nñzÔ½ú�ú

(e)
Ü�ÔTïôÒ1Ç(Ü�Æ�Ì�Ä�ñ�Ü�Ö û ÕC
oõ��èÃU��ú

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. Modify the statistics package from the chapter so that client programs have

more flexibility in computing the mean and/or standard deviation. Specif-

ically, redesign the library to have the following functions:

ÊÎÆ¨ÂxÇnñùÇ�É0Ê�Ü¨ú
Returns the mean of numbers in

Ç2É0Ê�Ü
.ÜxÄ¨Ã!�XÆ�9TñðÇ2É0Ê�Ü¨ú

Returns the standard deviation of
Ç�É0Ê�Ü

.ÊÎÆ¨ÂxÇ�Å�Ä¨ÃK��ÆC9�ñðÇ�É�ÊVÜ�ú
Returns both the mean and standard deviation of

Ç�É0Ê�Ü
.

2. Extend the
��!ÂXÜÓÁ0Ì2Ä

program so that it allows the user to sort a file of

students based on gpa, name, or credits. Your program should prompt for

the input file, the field to sort on, and the output file.

3. Extend your solution to the previous problem by adding an option to sort

the list in either ascending or descending order.

4. Give the program from the previous exercise(s) a graphical interface. You

should have / Ç�Ä�Ì2Ï s for the input and output file names and a button for

each sorting order. Bonus: Allow the user to do multiple sorts and add a

button for quitting.

~�~�� â0�?����{1} ³�$ ��{z� �1¿�é

5. Most languages do not have the flexible built-in list (array) operations

that Python has. Write an algorithm for each of the following Python

operations and test your algorithm by writing it up in a suitable func-

tion. For example, as a function,
Ì�ÆC9¨Æ0Ì!Ü�Ææñ�Ê½Ï��!Ò¨Ü�Ä"ú

should do the same asÊ½Ï	�½Ò¨Ü�ÄcïpÌ¨ÆC9¨Æ0ÌÎÜÓÆæñ�ú
. Obviously, you are not allowed to use the correspond-

ing Python method to implement your function.

(a)
Ñ�ÁÓÉ�Ç¨ÄTñpÊXÏ	�½Ò¨ÜxÄoõ#�!ú

(like
ÊXÏ	�½Ò¨ÜxÄ�ïôÑ�Á�É�Ç¨ÄTñÒ�Îú

)

(b)
Ò¨Ü0Ò�ÇoñpÊ½Ï��!Ò�ÜxÄnõ#�Îú

(like
�ÿÒ�Ç?ÊXÏ	�!Ò�ÜxÄ

))

(c)
Ò�Ç�Ã¨ÆC��ñpÊXÏ	�½Ò¨ÜxÄoõ#�!ú

(like
ÊXÏ	�½Ò¨ÜxÄ�ïôÒ1ÇXÃ¨ÆC��ñÒ�Îú

)

(d)
Ì�Æ�9�Æ�ÌÎÜ�Æ¬ñpÊXÏ	�!Ò�ÜxÄÎú

(like
Ê½Ï��!Ò�ÜxÄcï�Ì�Æ�9�Æ0Ì!Ü�Æ¬ñ1ú

)

(e)
Ü�Á�Ì�Ä�ñpÊ½Ï��!Ò�ÜxÄ"ú

(like
Ê½Ï	�½Ò¨Ü�ÄcïzÜÓÁ0Ì2ÄTñ1ú

)

6. Write and test a function
Ü�Å�É�Í�Í�À0Ææñ�Ê½Ï	�½Ò¨Ü�Ä"ú

that scrambles a list into a

random order, like shuffling a deck of cards.

7. Write and test a function
Ò1Ç�ÇXÆ0Ì�Ø2Ì�Á0Ã�ñë�TõðÏÎú

that computes the inner product

of two (same length) lists. The inner product of] and ` is computed as:J ·*¶Á rÌÂ ¹]�r ` r
8. Write and test a function

Ì¨ÆxÊ!ÁC9�Æ��2É�!À�Ò2Ñ0Â�Ä�Æ½Ü(ñ�ÜÓÁxÊÎÆ�À�Ò�Ü�ÄÎú
that removes du-

plicate values from a list.

9. One disadvantage of passing a function to the list
ÜÓÁ0Ì�Ä

method is that it

makes the sorting slower, since this function is called repeatedly as Python

needs to compare various items. Usually, sorting with the default
Ñ�Ê+

is

much faster.

An alternative to creating a special comparison function is to create a “dec-

orated” list that will sort in the desired order using the standard Python

ordering. For example, to sort
Å�Ä�ÉXÃ�Æ�Ç�Ä

objects by GPA, we could first

create a list of tuples
û ñÒ��!Â0ÕTõÔÅ�Ä0É�Ã¨Æ�Ç¨Ä�Õ½úVõÈñÒ��½Â!Ö�õÒÅ�Ä�ÉXÃ¨ÆÓÇ�Ä"Ö2úVõ7ï2ïB

and

then sort this list without passing a comparison function. These tuples

will get sorted into GPA order. The resulting list can then be traversed to

rebuild a list of student objects in GPA order. Redo the
��!Â�Ü�Á0Ì2Ä

program

using this approach.

�1â�% s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
10. The Sieve of Eratosthenes is an elegant algorithm for finding all of the

prime numbers up to some limit ø . The basic idea is to first create a list

of numbers from 2 to ø . The first number is removed from the list, and

announced as a prime number, and all multiples of this number up to ø
are removed from the list. This process continues until the list is empty.

For example, if we wished to find all the primes up to 10, the list would

originally contain 2, 3, 4, 5, 6, 7, 8, 9, 10. The 2 is removed and an-

nounced to be prime. Then 4, 6, 8, and 10 are removed, since they are

multiples of 2. That leaves 3, 5, 7, 9. Repeating the process, 3 is an-

nounced as prime and removed, and 9 is removed because it is a multiple

of 3. That leaves 5 and 7. The algorithm continues by announcing that 5 is

prime and removing it from the list. Finally, 7 is announced and removed,

and we’re done.

Write a program that prompts a user for ø and then uses the sieve algo-

rithm to find all the primes less than or equal to ø .

11. Write an automated censor program that reads in the text from a file and

creates a new file where all of the four-letter words have been replaced by

”****”. You can ignore punctuation, and you may assume that no words

in the file are split across multiple lines.

12. Extend the program from the previous exercise to accept a file of censored

words as another input. The words in the original file that appear in the

censored words file are replaced by an appropriate number of ”*”s.

13. Write a program that creates a list of card objects (see Programming Exer-

cise 11 from Chapter 10) and prints out the cards grouped by suit and in

rank order within suit. Your program should read the list of cards from a

file, where each line in the file represents a single card with the rank and

suit separated by a space. Hint: first sort by rank and then by suit.

14. Extend the previous program to analyze a list of five cards as a poker hand.

After printing the cards, the program categorizes accordingly.

Royal Flush 10, Jack, Queen, King, Ace, all of the same suit

Straight Flush Five ranks in a row, all of the same suit

Four of a Kind Four of the same rank

Full House Three of one rank and two of another

Flush Five cards of the same suit

~�~�� â0�?����{1} ³�$ ��{z� �1â0~

Straight Five ranks in a row

Three of a kind Three of one rank (but not a full house or four of a kind)

Two pair Two each of two different ranks

Pair Two of the same rank (but not two pair, three or four of a kind)

X High If none of the previous categories fit, X is the value of the highest

rank. For example, if the largest rank is 11, the hand is “Jack high.”

15. Create a class
��ÆXÑ�Î

that represents a deck of cards (see previous exercise).

Your class should have the following methods:

constructor Creates a new deck of 52 cards in a standard order.

shuffle Randomizes the order of the cards.

dealCard Returns a single card from the top of the deck and removes the

card from the deck.

cardsLeft Returns the number of cards remaining in the deck.

Test your program by having it deal out a sequence of ø cards from a

shuffled deck where ø is a user input. You could also use your deck object

to implement a Blackjack simulation where the pool of cards is finite. See

Programming Exercises 8 and 9 in Chapter 9.

16. Create a class called
Å�ÄXÂ�Ä+Å2Æ�Ä

that can be used to do simple statistical

calculations. The methods for the class are:

Ò�ÇÎÒÓÄ ñ�ÜÓÆ¨À0Í!ú
Creates a statSet with no data in it.Â0Ã�ÃCÐ0É�Ê�Ë½Æ�ÌTñvÜ�Æ¨À�Íoõ0�Îú��

is a number. Adds the value
�

to the
ÜxÄXÂ�Ä�Å0Æ0Ä

.ÊÎÆ¨ÂxÇnñvÜ�Æ¨À�ÍÎú
Returns the mean of the numbers in this

ÜxÄ�Â�Ä+Å2Æ0Ä
.ÊÎÆ2ÃXÒ0ÂxÇnñ�ÜÓÆ¨À�ÍÎú

Returns the median of the numbers in this
ÜxÄ�Â�Ä+Å2Æ0Ä

.ÜxÄ¨Ã!�XÆ�9Tñ�ÜÓÆ¨À�ÍÎú
Returns the standard deviation of the numbers in this

ÜxÄXÂ�Ä�Å0Æ0Ä
.Ñ�Á�É2Ç�Ä�ñ�Ü�Æ�À0Í!ú

Returns the count of numbers in this
ÜxÄ�Â�Ä�Å0Æ0Ä

.Ê�Ò�Çoñ�ÜÓÆ¨À0Í!ú
Returns the smallest value in this

Ü�ÄXÂ�Ä+Å2Æ�Ä
.Ê"ÂC�æñ�ÜÓÆ¨À0Í!ú

Returns the largest value in this
Ü�ÄXÂ�Ä+Å2Æ�Ä

.

Test your class with a program similar to the simple statistics program

from this chapter.

�1â�r s"tvuxwzy|{1}V~1~x�üé(u�y�uGs��C± ± { ³ y $ �0���
17. In graphics applications, it often useful to group separate pieces of a draw-

ing together into a single object. For example, a face might be drawn from

individual shapes, but then positioned as a whole group. Create a new

class
ü Ì�Â�2Å"Ò�Ñ�Ü ü Ì�Á�É�

that can be used for this purpose. A
ü Ì�Â��ÅÎÒ�Ñ�Ü ü Ì¨Á�É�

will manage a list of graphics objects and have the following methods:

Ò�ÇÎÒÓÄ ñ�ÜÓÆ¨À0ÍTõ ÂÓÇÎÑ�ÅXÁ0Ì"úªÂxÇ"Ñ�ÅXÁ0Ì
is a

Ø¨ÁXÒ1Ç�Ä
. Creates an empty group with

the given anchor point.�¨Æ0Ä Ú ÇÎÑ�Å½Á�ÌTñvÜ�Æ¨À�ÍÎú
Returns a clone of the anchor point.Â0Ã�Ã Ä Ë ï ÆXÑxÄTñvÜ�Æ¨À�Íoõ1� Ä Ë ï Æ�ÑÓÄÎúæ� Ä Ë ï ÆXÑxÄ is a graphics object. Adds

� Ä Ë ï ÆXÑxÄ
to the group.ÊÎÁC9¨ÆæñvÜ�Æ¨À�Íoõ Ã	�oõðÃ2ÏÎú

Move all of the objects in the group (including the

anchor point).Ã2ÌXÂÓÛoñvÜ�Æ¨À�Íoõ ÛÎÒ�Ç(ú
Draws all the objects in the group into

Û!Ò�Ç
. The anchor

point is not drawn.É�ÇXÃ0ÌXÂÓÛoñ�ÜÓÆ¨À�ÍÎú
Undraws all the objects in the group.

Use your new class to write a program that draws some simple picture

with multiple components and move it to wherever the user clicks.

18. Extend the random walk program from Chapter 9 (Programming Exer-

cise 12) to keep track of how many times each square of the sidewalk is

crossed. Start your walker in the middle of a sidewalk of length ø whereø is a user input, and continue the simulation until it drops off one of

the ends. Then print out the counts of how many times each square was

landed on.

19. Create and test a
Å2Æ�Ä

class to represent a classical set. Your sets should

support the following methods:Å2Æ0Ä�ñzÆ�À2ÆxÊ!Æ�Ç¨ÄÎÜ¨ú
Create a set (

Æ¨À2Æ�ÊÎÆÓÇ�ÄÎÜ
is the initial list of items in the

set).Â0Ã�Ã / À0ÆxÊÎÆÓÇ�Ä�ñë�Îú Adds
�

to the set.Ã¨Æ¨À0Æ0Ä¨Æ / À0ÆxÊ!Æ�Ç�Ä�ñë�!ú Removes
�

from the set, if present. If
�

is not in the

set, the set is left unchanged.ÊÎÆxÊ¨Ë½Æ�ÌTñë�!ú
Returns true if

�
is in the set and false otherwise.Ò�Ç�Ä¨Æ0Ì!Ü�ÆXÑxÄ!Ò�Á�ÇnñvÜ�Æ�ÄXÔ½ú

Returns a new set containing just those elements

that are common to this set and
Ü�Æ�ÄXÔ

.

~�~�� â0�?����{1} ³�$ ��{z� �1â��

É�Ç"Ò�Á�Çoñ�Ü�Æ�ÄXÔXú
Returns a new set containing all of elements that are in this

set,
Ü�Æ0Ä�Ô

, or both.Ü1É�Ë¨Ä�Ì�Â�ÑÓÄ�ñ�ÜÓÆ0ÄXÔXú
Returns a new set containing all the elements of this set

that are not in
ÜÓÆ0Ä�Ô

.

3547698;:=<?> @è£ Ã � Ä
aÆÐ�xÍ Ã E ¥¨
��	��
	J�
ò8¥0L �

NPO!Q�RTSVUXWZYTRT[
\ To understand the process of object-oriented design.

\ To be able to read and understand object-oriented programs.

\ To understand the concepts of encapsulation, polymorphism and inheri-

tance as they pertain to object-oriented design and programming.

\ To be able to design moderately complex software using object-oriented

design.

]o�«^`] a b�Rm��g1�GSRT[�[9��ìfN9N=«
Now that you know some data structuring techniques, it’s time to stretch your

wings and really put those tools to work. Most modern computer applications

are designed using a data-centered view of computing. This so-called object-

oriented design (OOD) process is a powerful complement to top-down design

for the development of reliable, cost-effective software systems. In this chapter,

we will look at the basic principles of OOD and apply them in a couple of case

studies.

The essence of design is describing a system in terms of magical black boxes

and their interfaces. Each component provides a set of services through its in-

terface. Other components are users or clients of the services.É�Î�®

�1â�¹ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
A client only needs to understand the interface of a service; the details of

how that service is implemented are not important. In fact, the internal details

may change radically and not affect the client at all. Similarly, the component

providing the service does not have to consider how the service might be used.

The black box just has to make sure that the service is faithfully delivered. This

separation of concerns is what makes the design of complex systems possible.

In top-down design, functions serve the role of our magical black boxes. A

client program can use a function as long as it understands what the function

does. The details of how the task is accomplished are encapsulated in the func-

tion definition.

In object-oriented design, the black boxes are objects. The magic behind

objects lies in class definitions. Once a suitable class definition has been written,

we can completely ignore how the class works and just rely on the external

interface—the methods. This is what allows you to draw circles in graphics

windows without so much as a glance at the code in the
�2ÌXÂ��ÅÎÒ�Ñ¨Ü

module. All

the nitty-gritty details are encapsulated in the class definitions for
ü ÌXÂ�2Å?"!Ò�Ç

and×XÒxÌ!Ñ�À2Æ
.

If we can break a large problem into a set of cooperating classes, we dras-

tically reduce the complexity that must be considered to understand any given

part of the program. Each class stands on its own. Object-oriented design is the

process of finding and defining a useful set of classes for a given problem. Like

all design, it is part art and part science.

There are many different approaches to OOD, each with its own special tech-

niques, notations, gurus, and textbooks. I can’t pretend to teach you all about

OOD in one short chapter. On the other hand, I’m not convinced that reading

many thick volumes will help much either. The best way to learn about design

is to do it. The more you design, the better you will get.

Just to get you started, here are some intuitive guidelines for object-oriented

design:

1. Look for object candidates. Your goal is to define a set of objects that will

be helpful in solving the problem. Start with a careful consideration of the

problem statement. Objects are usually described by nouns. You might

underline all of the nouns in the problem statement and consider them

one by one. Which of them will actually be represented in the program?

Which of them have “interesting” behavior? Things that can be repre-

sented as primitive data types (numbers or strings) are probably not im-

portant candidates for objects. Things that seem to involve a grouping of

related data items (e.g., coordinates of a point or personal data about an

~zr2� ~x��ã�t�{£�½}�� ³ {ô�p�æ��å$Ñ Ñjé �1â�¿

employee) probably are.

2. Identify instance variables. Once you have uncovered some possible ob-

jects, think about the information that each object will need to do its job.

What kinds of values will the instance variables have? Some object at-

tributes will have primitive values; others might themselves be complex

types that suggest other useful objects/classes. Strive to find good “home”

classes for all the data in your program.

3. Think about interfaces. When you have identified a potential object/class

and some associated data, think about what operations would be required

for objects of that class to be useful. You might start by considering the

verbs in the problem statement. Verbs are used to describe actions—what

must be done. List the methods that the class will require. Remember that

all manipulation of the object’s data should be done through the methods

you provide.

4. Refine the nontrivial methods. Some methods will look like they can be

accomplished with a couple of lines of code. Other methods will require

considerable work to develop an algorithm. Use top-down design and

stepwise refinement to flesh out the details of the more difficult methods.

As you go along, you may very well discover that some new interactions

with other classes are needed, and this might force you to add new meth-

ods to other classes. Sometimes you may discover a need for a brand-new

kind of object that calls for the definition of another class.

5. Design iteratively. As you work through the design, you will bounce back

and forth between designing new classes and adding methods to existing

classes. Work on whatever seems to be demanding your attention. No

one designs a program top to bottom in a linear, systematic fashion. Make

progress wherever it seems progress needs to be made.

6. Try out alternatives. Don’t be afraid to scrap an approach that doesn’t seem

to be working or to follow an idea and see where it leads. Good design

involves a lot of trial and error. When you look at the programs of others,

you are seeing finished work, not the process they went through to get

there. If a program is well designed, it probably is not the result of a first

try. Fred Brooks, a legendary software engineer, coined the maxim: “Plan

to throw one away.” Often you won’t really know how a system should be

built until you’ve already built it the wrong way.

�1â�â s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
7. Keep it simple. At each step in the design, try to find the simplest approach

that will solve the problem at hand. Don’t design in extra complexity until

it is clear that a more complex approach is needed.

The next sections will walk you through a couple case studies that illustrate

aspects of OOD. Once you thoroughly understand these examples, you will be

ready to tackle your own programs and refine your design skills.

]o�«^�� ¢in[�R	©£UÎ¦�·_í ²�?îi�S©�«¦�RæU!Oci�j j ©=Wp� ¦�j ioU�W��£e

For our first case study, let’s return to the racquetball simulation from Chapter 9.

You might want to go back and review the program that we developed the first

time around using top-down design.

The crux of the problem is to simulate multiple games of racquetball where

the ability of the two opponents is represented by the probability that they win

a point when they are serving. The inputs to the simulation are the probability

for player A, the probability for player B, and the number of games to simulate.

The output is a nicely formatted summary of the results.

In the original version of the program, we ended a game when one of

the players reached a total of 15 points. This time around, let’s also consider

shutouts. If one player gets to 7 before the other player has scored a point, the

game ends. Our simulation should keep track of both the number of wins for

each player and the number of wins that are shutouts.

ÊmÇ�È�Ç�ÈSÊ ª ��w§��l7�*�mtui��S¾I¿!im��tus1�*w§� ¶ i+t� 3v£�*s
Our first task is to find a set of objects that could be useful in solving this prob-

lem. We need to simulate a series of racquetball games between two players and

record some statistics about the series of games. This short description already

suggests one way of dividing up the work in the program. We need to do two

basic things: simulate a game and keep track of some statistics.

Let’s tackle simulation of the game first. We can use an object to represent a

single game of racquetball. A game will have to keep track of information about

two players. When we create a new game, we will specify the skill levels of the

players. This suggests a class, let’s call it
����Â�À�À ü Â1ÊÎÆ

, with a constructor that

requires parameters for the probabilities of the two players.

What does our program need to do with a game? Obviously, it needs to play

it. Let’s give our class a
!À�Â�Ï

method that simulates the game until it is over. We

could create and play a racquetball game with two lines of code:

~zr2� r2��sXu��p{ bxyè���1ç�´BE�u ³ ����{`yM
vu�± ±�b $ �_��± u�y $ �0� �1â�é

Ä0ÅXÆ ü Â�ÊÎÆ7ß-���XÂ2À�À ü Â�Ê!ÆæñB�Ì�ÁÓË Ú õ ¨Ì�Á�Ë��"ú
Ä0ÅXÆ ü Â�ÊÎÆoï7½À�Â�Ï�ñ1ú
To play lots of games, we just need to put a loop around this code. That’s all we

really need in
����Â�À2À ü Â1ÊÎÆ

to write the main program. Let’s turn our attention to

collecting statistics about the games.

Obviously, we will have to keep track of at least four counts in order to print a

summary of our simulations: wins for A, wins for B, shutouts for A, and shutouts

for B. We will also print out the number of games simulated, but this can be

calculated by adding the wins for A and B. Here we have four related pieces of

information. Rather than treating them independently, let’s group them into a

single object. This object will be an instance of a class called
Å¨Ò�Ê3Å�ÄXÂ�ÄÎÜ

.

A
Å¨Ò�Ê3Å�ÄXÂ�ÄÎÜ

object will keep track of all the information about a series of

games. We have already analyzed the four crucial pieces of information. Now

we have to decide what operations will be useful. For starters, we need a con-

structor that initializes all of the counts to 0.

We also need a way of updating the counts as each new game is simulated.

Let’s give our object an
É	XÃ¨Â�Ä¨Æ

method. The update of the statistics will be

based on the outcome of a game. We will have to send some information to

the statistics object so that the update can be done appropriately. An easy ap-

proach would be to just send the entire game and let
É�XÃ¨Â�Ä�Æ

extract whatever

information it needs.

Finally, when all of the games have been simulated, we need to print out a

report of the results. This suggests a
�Ì½Ò�Ç¨Ä��XÆ�½Á�Ì�Ä

method that prints out a nice

report of the accumulated statistics.

We have now done enough design that we can actually write the main func-

tion for our program. Most of the details have been pushed off into the definition

of our two classes.Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú�Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��nõîÇ¡ß��¨Æ�Ä3¢�Ç	�É¨ÄÎÜ(ñ1ú
óPØXÀ2Â�Ï9Ä0ÅXÆ6��Â1ÊÎÆ½Ü
ÜxÄ�Â�ÄÎÜ ß¡Å¨Ò�Ê3Å�ÄXÂ�ÄÎÜ(ñ1ú
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷

Ä0Å½Æ ü Â1ÊÎÆ?ß-�C�XÂ�À2À ü Â�ÊÎÆ¬ñ0¨Ì�Á�Ë Ú õ �Ì¨Á�Ë��"ú;ó¡ÑÓÌ¨Æ¨Â�Ä�Æ9ÂÈÇ½Æ�Û ��Â1ÊÎÆ
Ä0Å½Æ ü Â1ÊÎÆnï>!À2Â�ÏTñ�ú ó�!À2Â�ÏÿÒxÄ
ÜxÄXÂ�ÄÎÜ¬ï|É	�Ã�Â�Ä�ÆæñèÄ0ÅXÆ ü Â1ÊÎÆ½ú ó��¨Æ�ÄÿÒ�Ç�Í¨ÁÝÂÓËXÁ�É¨Ä¡Ñ�Á�Ê+!À0Æ0Ä¨Æ2Ã-�¨Â�Ê!Æ

óPØ�Ì½Ò�Ç�Ä9Ä�Å½Æ?Ì¨Æ½Ü1É½À�Ä!Ü
ÜxÄ�Â�ÄÎÜ¬ï7¨Ì!Ò�Ç¨Ä���Æ�½Á�Ì�Ä�ñ1ú

�1é�% s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
I have also used a couple of helper functions to print an introduction and get

the inputs. You should have no trouble writing these functions.

Now we have to flesh out the details of our two classes. The
Å�ÒvÊ_Å�Ä�Â�Ä!Ü

class

looks pretty easy—let’s tackle that one first.

ÊmÇ�È�Ç�È�Ç ä7�æÍ_Ù�i*�îi_wmtGl�w�� Ø l�� Ø tu��tus
The constructor for

Å�ÒvÊ_Å�ÄXÂ�Ä!Ü
just needs to initialize the four counts to 0. Here

is an obvious approach:

Ñ0À2ÂXÜ2Ü<Å�ÒvÊ_Å�Ä�Â�Ä!Üæ÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷

Ü�Æ¨À�Í�ï|ÛÎÒ�Ç"Ü Ú ßÝÕ
Ü�Æ¨À�Í�ï|ÛÎÒ�Ç"ÜI�?ßÝÕ
Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜ Ú ßÝÕ
Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜm�PßÝÕ

Now let’s take a look at the
É	XÃ¨Â�Ä¨Æ

method. It takes a game as a normal

parameter and must update the four counts accordingly. The heading of the

method will look like this:

Ã¨Æ0Í7É	XÃ¨Â�Ä¨Ææñ�ÜÓÆ¨À�ÍoõlÂ ü Â1ÊÎÆ½ú¬÷
But how exactly do we know what to do? We need to know the final score of

the game, but this information resides inside of
Â ü Â�Ê!Æ

. Remember, we are not

allowed to directly access the instance variables of
Â ü Â�Ê!Æ

. We don’t even know

yet what those instance variables will be.

Our analysis suggests the need for a new method in the
���XÂ2À�À ü Â�Ê!Æ

class. We

need to extend the interface so that
Â ü Â1ÊÎÆ

has a way of reporting the final score.

Let’s call the new method
�¨Æ�Ä�Å¨Ñ�Á0Ì¨Æ½Ü

and have it return the score for player A

and the score for player B.

Now the algorithm for
É	XÃ¨Â�Ä¨Æ

is straightforward.

Ã¨Æ0Í7É	XÃ¨Â�Ä¨Ææñ�ÜÓÆ¨À�ÍoõlÂ ü Â1ÊÎÆ½ú¬÷
Â�õ ËàßàÂ ü Â�ÊÎÆoïB��Æ0Ä�Å¨Ñ�Á�Ì�Æ½Ü(ñ1ú
Ò�ÍÐÂ � Ë�÷ ó Ú ÛXÁÓÇÐÄ0Å½Æ6�¨Â�Ê!Æ

ÜÓÆ¨À�Í�ï�Û!Ò�Ç"Ü Ú ßÿÜÓÆ¨À�Í�ï�Û!Ò�Ç"Ü Ú á»Ö
ÒÓÍ7Ëàß�ßÐÕn÷

ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!Ü Ú ß Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜ Ú á Ö
Æ¨ÀXÜÓÆn÷ ó��PÛXÁÓÇÐÄ0Å½Æ6�¨Â�Ê!Æ

~zr2� r2��sXu��p{ bxyè���1ç�´BE�u ³ ����{`yM
vu�± ±�b $ �_��± u�y $ �0� �1é0~

ÜÓÆ¨À�Í�ï�Û!Ò�Ç"ÜI�PßÿÜÓÆ¨À�Í�ï�Û!Ò�Ç"ÜI�Pá»Ö
ÒÓÍÐÂ?ß�ßÐÕn÷

ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!ÜI�7ß Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜm�Pá Ö
We can complete the

Å¨Ò�Ê_Å�ÄXÂ�ÄÎÜ
class by writing a method to print out the

results. Our
¨Ì!Ò�Ç¨Ä���Æ�½Á�Ì�Ä

method will generate a table that shows the wins,

win percentage, shutouts, and shutout percentage for each player. Here is a

sample output:ÅÓÉ�Ê�ÊÎÂ�Ì�Ï9Á2Í5'2Õ2Õ6��Â1ÊÎÆ½Ü¬÷
ÛÎÒ�Ç"Ü ñ3�PÄ¨Á0ÄXÂ2À½ú Ü�Å�É�Ä¨Á�É¨ÄÎÜ ñ*�?ÛÎÒ1Ç(Ü¨ú�	���	���	�	���	���	�	���	���	�	���	���	�	���	�C�	���	�C�	�	�������	�C�	���	�C�	�	�����

ØXÀ2Â�Ï¨Æ0Ì Ú ÷ @ÎÖ�Ö A¨ÔTïèÔK� ø�Õ ÖG@�ïùøP�
ØXÀ2Â�Ï¨Æ0Ì���÷ A�ý Öxþoï0AP� þ þnïùýP�

It is easy to print out the headings for this table, but the formatting of the

lines takes a little more care. We want to get the columns lined up nicely, and

we must avoid division by zero in calculating the shutout percentage for a player

who didn’t get any wins. Let’s write the basic method, but procrastinate a bit

and push off the details of formatting the line into another method,
¨Ì!Ò�Ç¨Ä	�½Ò�Ç½Æ

.

The
¨Ì!Ò1Ç�Ä	�½Ò�ÇXÆ

method will need the player label (A or B), number of wins and

shutouts, and the total number of games (for calculation of percentages).

Ã¨Æ0Í��Ì!Ò1Ç�ÄC�XÆ�XÁ0Ì2ÄTñ�ÜÓÆ¨À�ÍÎú¬÷
óPØ�Ì!Ò1Ç�ÄàÂ ÇÎÒ�Ñ�Æ�À�Ï9Í�Á0ÌÓÊ"Â�Ä2Ä�Æ0Ã7Ì�Æ�½Á�Ì�Ä
Çàß ÜÓÆ¨À�Í�ï�Û!Ò�Ç"Ü Ú áÿÜÓÆ¨À�Í�ï�Û!Ò�Ç"ÜI��Ì!Ò1Ç�Ä)�uÅÓÉ�Ê�Ê"Â�Ì�ÏÝÁ0Í$�!õîÇ�õè����Â1ÊÎÆXÜæ÷G��Ì!Ò1Ç�Ä�Ì!Ò1Ç�Ä)� Û!Ò�Ç"Ü ñ3�PÄ�Á�ÄXÂ2À½ú Ü1Å2É�Ä¨Á�É�Ä!Ü ñ*�?ÛÎÒ�Ç"Ü¨ú ��Ì!Ò1Ç�Ä)�u�	���	�	���	���	�	���	���	�	���	���	�	���	���	�C�	�	�������	�C�	���	�C�	�	�������	�C�	�_�
Ü�Æ¨À�Í�ï>�Ì!Ò1Ç�Ä��!Ò�ÇXÆæñ�� Ú �!õ¢Ü�Æ�À0Í�ï|ÛÎÒ1Ç(Ü Ú õ�ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!Ü Ú õ Ç�ú
Ü�Æ¨À�Í�ï>�Ì!Ò1Ç�Ä��!Ò�ÇXÆæñ��/���!õ¢Ü�Æ�À0Í�ï|ÛÎÒ1Ç(ÜI�oõ�ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!ÜI�oõ Ç�ú

To finish out the class, we implement the
�Ì!Ò1Ç�Ä��!Ò�ÇXÆ

method. This method

will make heavy use of string formatting. A good start is to define a template

for the information that will appear in each line.

Ã¨Æ0Í��Ì!Ò1Ç�Ä��!Ò�ÇXÆæñvÜ�Æ¨À�Íoõ À�ÂxË½Æ�À�õlÛÎÒ1Ç(ÜVõ Ü1Å2É�ÄÎÜVõîÇ�ú÷
Ä�ÆxÊ?!À2Â�Ä�ÆÈß���ØXÀ2Â�Ï¨Æ0Ì��½Üæ÷ �	@�Ã��?'oï�Ö�ÍC�P���"Ö2Ö�Ã �!Üm�
Ò�Í?ÛÎÒ1Ç(Ü ß2ßÝÕn÷ ó Ú 9¨ÁXÒÓÃPÃ½Ò�9!Ò¨Ü0Ò�ÁÓÇ?Ë�Ï D�Æ0Ì�Á �

�1é�r s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
Ü�Å�É¨Ä�Å�Ä2Ì9ß)�G���	���	�*�

Æ¨ÀXÜÓÆn÷
Ü�Å�É¨Ä�Å�Ä2Ì9ß)�4��@�ï�Ö�ÍC�P�$�±� ñ`Í�À0Á¨Â�Ä�ñ�Ü�Å�É�Ä!Ü¨ú���ÛÎÒ1Ç(ÜC;XÖxÕ2Õ!ú�Ì!Ò1Ç�ÄPÄ¨ÆxÊ?!À�Â�Ä�Æ�� ñzÀ�ÂxË½Æ¨Àæõ ÛÎÒ1Ç(ÜVõ¢Í�À0Á¨Â�Ä�ñèÛ!Ò�Ç(Ü�ú��xÇ_;XÖ�Õ�Õ�õ

Ü1Å2É�ÄÎÜVõ Ü1Å2É�Ä+Å�Ä�ÌÎú
Notice how the shutout percentage is handled. The main template includes it

as a string, and the
ÒÓÍ

statement takes care of formatting this piece to prevent

division by zero.

ÊmÇ�È�Ç�È�É ä7�æÍ_Ù�i*�îi_wmtGl�w��(h ² �_Ù�Ù ü ���îi
Now that we have wrapped up the

Å¨Ò�Ê_Å�ÄXÂ�ÄÎÜ
class, we need to turn our attention

to
����Â�À2À ü Â1ÊÎÆ

. Summarizing what we have decided so far, this class needs a

constructor that accepts two probabilities as parameters, a
½À�Â�Ï

method that

plays the game, and a
�¨Æ0Ä+Å�Ñ�Á0Ì�ÆXÜ

method that reports the scores.

What will a racquetball game need to know? To actually play the game,

we have to remember the probability for each player, the score for each player,

and which player is serving. If you think about this carefully, you will see that

probability and score are properties related to particular players, while the server

is a property of the game between the two players. That suggests that we might

simply consider that a game needs to know who the players are and which is

serving. The players themselves can be objects that know their probability and

score. Thinking about the
����Â�À�À ü Â1ÊÎÆ

class this way leads us to design some new

objects.

If the players are objects, then we will need another class to define their

behavior. Let’s name that class
Ø�À�Â�Ï¨Æ0Ì

. A
ØXÀ2Â�Ï�Æ�Ì

object will keep track of its

probability and current score. When a
ØXÀ2Â�Ï�Æ�Ì

is first created the probability will

be supplied as a parameter, but the score will just start out at 0. We’ll flesh out

the design of
ØXÀ2Â�Ï�Æ�Ì

class methods as we work on
����Â�À�À ü Â1ÊÎÆ

.

We are now in a position to define the constructor for
���XÂ2À�À ü Â�Ê!Æ

. The game

will need instance variables for the two players and another variable to keep

track of which player is serving.

Ñ0À2ÂXÜ2Ü�����Â�À�À ü Â1ÊÎÆn÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ ¨Ì�ÁÓË Ú õ �Ì�ÁÓË��Îú¬÷

Ü�Æ¨À�Í�ï>!À�Â�Ï�Æ�Ì Ú ßÝØ�À�Â�Ï�Æ0Ì�ñ0¨Ì�Á�Ë Ú ú
Ü�Æ¨À�Í�ï>!À�Â�Ï�Æ�ÌC�7ßÝØ�À�Â�Ï�Æ0Ì�ñ0¨Ì�Á�Ë��"ú
Ü�Æ¨À�Í�ïôÜ�Æ0Ì�9�Æ�ÌPßÿÜ�Æ�À0ÍnïpØXÀ2Â�Ï¨Æ0Ì Ú ó9Ø�À�Â�Ï¨Æ0Ì Ú Â2À�ÛXÂ�ÏÎÜ?Ü�Æ0Ì�9�ÆXÜ;Í½ÒxÌÎÜxÄ

~zr2� r2��sXu��p{ bxyè���1ç�´BE�u ³ ����{`yM
vu�± ±�b $ �_��± u�y $ �0� �1é��

Sometimes it helps to draw a picture to see the relationships among the

objects that we are creating. Suppose we create an instance of
����Â�À2À ü Â1ÊÎÆ

like

this:

Ä0ÅXÆ ü Â�ÊÎÆ7ß-���XÂ2À�À ü Â�Ê!ÆæñXïðøTõ¨ï�'Xú
Figure

�2�
.
�

shows an abstract picture of the objects created by this statement

and their inter-relationships.

playerB:

RBallGame

server:

playerA:

Player

Player

prob:

score:

prob:

score:

0

0.6

0.5

0

Figure �¤V . � : Abstract view of Ï�ÐéâCÓPÓ1Ñ�âiW§Ô object.

OK, now that we can create an Ï�ÐéâCÓPÓ1Ñ�âiW§Ô , we need to figure out how to

play it. Going back to the discussion of racquetball from Chapter 9, we need

an algorithm that continues to serve rallies and either award points or change

the server as appropriate until the game is over. We can translate this loose

algorithm almost directly into our object-based code.

First, we need a loop that continues as long as the game is not over. Obvi-

ously, the decision of whether the game has ended or not can only be made by

looking at the game object itself. Let’s just assume that an appropriate Ú�å�õ3\�Ô!Ù
method can be written. The beginning of our

^ ÓPâ!Ø method can make use of this

(yet-to-be-written) method.÷�ÔKÕ ^ ÓPâ!Ø}ê4å�ÔCÓKÕ§ò aáPÜ§ÚKÓPÔÅì à Ö å�Ô�Ó!Õ�æ3ÚCå!õ�\�ÔKÙBêíò a
Inside of the loop, we need to have the serving player serve and, based on

the result, decide what to do. This suggests that ëéÓPâ!Ø�Ô!Ù objects should have a

�1é ¯ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
method that performs a serve. After all, whether the serve is won or not depends

on the probability that is stored inside of each player object. We’ll just ask the

server if the serve is won or lost.

ÒÓÍÿÜ�Æ�À0Í�ïôÜ�Æ�Ì	9�Æ�Ìcï|ÛÎÒ�Ç"Ü�Å0Æ0Ì	9¨Ææñ�ú¬÷
Based on this result, we either award a point or change the server. To award

a point, we need to change a player’s score. This again requires the player to do

something, namely increment the score. Changing servers, on the other hand,

is done at the game level, since this information is kept in the
Ü�Æ�Ì	9¨Æ0Ì

instance

variable of
����Â�À2À ü Â1ÊÎÆ

.

Putting it all together, here is our
½À�Â�Ï

method:

Ã¨Æ0Í�!À�Â�ÏTñvÜ�Æ¨À�ÍÎú÷
Û2Å"Ò�À2Æ ÇXÁ0Ä ÜÓÆ¨À0ÍnïôÒ�Ü Ä 9¨Æ0Ì�ñ1ú¬÷

ÒÓÍÿÜ�Æ�À0Í�ïôÜ�Æ�Ì	9�Æ�Ìcï|ÛÎÒ�Ç"Ü�Å0Æ0Ì	9¨Ææñ�ú¬÷
ÜÓÆ¨À0ÍnïzÜÓÆ0Ì	9¨Æ0Ì�ïôÒ�ÇÎÑCÅ¨Ñ�Á0Ì¨Ææñ�ú

Æ�ÀXÜÓÆn÷
ÜÓÆ¨À0ÍnïôÑ1Å!ÂÓÇ+�¨Æ	Å2Æ0Ì�9�Æ�ÌTñ1ú

As long as you remember that
ÜÓÆ¨À0Í

is an
����Â�À�À ü Â1ÊÎÆ

, this code should be clear.

While the game is not over, if the server wins a serve, award a point to the

server; otherwise change the server.

Of course, the price we pay for this simple algorithm is that we now have

two new methods (
Ò�Ü Ä 9¨Æ0Ì

and
Ñ�Å½ÂÓÇ���Æ?Å0Æ0Ì	9¨Æ0Ì

) that need to be implemented in

the
����Â�À�À ü Â1ÊÎÆ

class and two more (
ÛÎÒ1Ç(Ü�Å2Æ0Ì�9�Æ

and
Ò1Ç"ÑCÅ¨Ñ�Á�Ì�Æ

) for the
Ø�À�Â�Ï�Æ0Ì

class.

Before attacking these new methods, let’s go back and finish up the other

top-level method of the
���XÂ2À�À ü Â�Ê!Æ

class, namely
�¨Æ0Ä+Å�Ñ�Á0Ì�ÆXÜ

. This one just re-

turns the scores of the two players. Of course, we run into the same problem

again. It is the player objects that actually know the scores, so we will need a

method that asks a player to return its score.

Ã¨Æ0Í��¨Æ0Ä+Å�Ñ�Á0Ì�ÆXÜ�ñvÜ�Æ¨À�ÍÎú÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ï>!À2Â�Ï�Æ�Ì Ú ïB�¨Æ�Ä�Å¨Ñ�Á0Ì¨Ææñ�úVõlÜÓÆ¨À0Ínï7½À�Â�Ï¨Æ0ÌP�cïB��Æ0Ä+Å�Ñ�Á�Ì�Æ¬ñ1ú

This adds one more method to be implemented in the
ØXÀ2Â�Ï¨Æ0Ì

class. Make sure

you put that on our list to complete later.

To finish out the
����Â�À2À ü Â1ÊÎÆ

class, we need to write the
Ò¨Ü Ä 9�Æ�Ì

and
Ñ1Å!ÂÓÇ+�¨Æ	Å2Æ0Ì�9�Æ�Ì

methods. Given what we have developed already and our previous version of

this program, these methods are straightforward. I’ll leave those as an exercise

~zr2� r2��sXu��p{ bxyè���1ç�´BE�u ³ ����{`yM
vu�± ±�b $ �_��± u�y $ �0� �1é�´

for you at the moment. If you’re looking for my solutions, skip to the complete

code at the end of this section.

ÊmÇ�È�Ç�È � ä7�æÍ_Ù�i*�îi_wmtGl�w��(� Ù���¤Ci_�
In developing the

�C�XÂ�À2À ü Â�ÊÎÆ
class, we discovered the need for a

Ø�À�Â�Ï�Æ0Ì
class

that encapsulates the service probability and current score for a player. TheØXÀ2Â�Ï¨Æ0Ì
class needs a suitable constructor and methods for

ÛÎÒ1Ç(Ü�Å0Æ0Ì�9�Æ
,
Ò�ÇÎÑCÅ�Ñ�Á0Ì¨Æ

,

and
�¨Æ0Ä+Å�Ñ�Á0Ì�Æ

.

If you are getting the hang of this object-oriented approach, you should have

no trouble coming up with a constructor. We just need to initialize the instance

variables. The player’s probability will be passed as a parameter, and the score

starts at 0.

Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ ¨Ì�ÁÓË�ú¬÷
óÝ×0Ì�Æ�Â�Ä¨Æ9Â<!À�Â�Ï�Æ�Ì?ÛÎÒxÄ0ÅÐÄ0ÅÎÒ¨Ü�¨Ì�ÁÓË!ÂÓËÎÒ0À¨ÒÓÄ�Ï
Ü�Æ¨À�Í�ï>�Ì�ÁÓËÝß-�Ì¨Á�Ë
Ü�Æ¨À�Í�ïôÜ2Ñ�Á�Ì�ÆÈßÝÕ

The other methods for our
Ø�À�Â�Ï�Æ0Ì

class are even simpler. To see if a player

wins a serve, we compare the probability to a random number between 0 and 1.

Ã¨Æ0Í?ÛÎÒ�Ç"Ü�Å0Æ0Ì	9¨ÆæñvÜ�Æ¨À�ÍÎú÷
Ì�Æ0Ä�É�Ì�ÇÝÌXÂxÇXÃ¨Á�Êcñ�ú . ß ÜÓÆ¨À0Ínï7¨Ì�Á�Ë

To give a player a point, we simply add one to the score.

Ã¨Æ0Í¡Ò�Ç"Ñ�Å�Ñ�Á0Ì�Æ¬ñ�ÜÓÆ¨À0Í!ú¬÷
Ü�Æ¨À�Í�ïôÜ2Ñ�Á�Ì�ÆÈßÿÜ�Æ¨À�Í�ïôÜ2Ñ�Á�Ì�ÆÈá Ö

The final method just returns the value of the score.

Ã¨Æ0Í��¨Æ0Ä+Å�Ñ�Á0Ì�Æ¬ñ�ÜÓÆ¨À0Í!ú¬÷
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïôÜ2Ñ�Á0Ì�Æ

Initially, you may think that it’s silly to create a class with a bunch of one- or

two-line methods. Actually, it’s quite common for a well-modularized, objected-

oriented program to have lots of trivial methods. The point of design is to break

a problem down into simpler pieces. If those pieces are so simple that their

implementations are obvious, that gives us confidence that we must have gotten

it right.

�1é�¹ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
ÊmÇ�È�Ç�È�× ÿ �i�ª vx�æÍ_Ù�i+tui-���Bv_���0�*�

That pretty much wraps up our object-oriented version of the racquetball sim-

ulation. The complete program follows. You should read through it and make

sure you understand exactly what each class does and how it does it. If you have

questions about any parts, go back to the discussion above to figure it out.

óÝÁ�Ë ï Ì�Ë!Â�À2Àoï>�Ï ����Å�ÒvÊ�É!À2Â�Ä½Ò�Á�ÇÝÁ2ÍàÂ7ÌXÂ¨Ñ�í�É½Æ0Ä6��Â�Ê!Ænïó ¢�À�ÀxÉ(ÜxÄ2ÌXÂ�Ä�Æ½Ü Ã¨ÆXÜ2Ò���Ç9ÛÎÒxÄ0Å¡ÁÓË ï Æ�ÑÓÄ!Üæï
Í2Ì¨ÁxÊ¡Ì�ÂÓÇXÃ�ÁxÊ»ÒvÊ+XÁ0Ì�Ä?ÌXÂÓÇ�Ã¨Á�Ê
Ñ0À2ÂXÜ2Ü ØXÀ2Â�Ï�Æ�Ìc÷

ó Ú ØXÀ�Â�Ï�Æ�Ì-ÎXÆ2Æ�(Ü Ä�ÌXÂ¨Ñ�ÎàÁ0ÍÿÜ�Æ0Ì�9!Ò2Ñ�Æ8¨Ì�Á�Ë½ÂÓËÎÒ0À�ÒxÄ�ÏPÂÓÇ�ÃÿÜ2Ñ�Á�Ì�Æ
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ ¨Ì�ÁÓË�ú¬÷

óÝ×0Ì�Æ�Â�Ä¨Æ9Â<!À�Â�Ï�Æ�Ì?ÛÎÒxÄ0ÅÐÄ0ÅÎÒ¨Ü�¨Ì�ÁÓË!ÂÓËÎÒ0À¨ÒÓÄ�Ï
Ü�Æ¨À�Í�ï>�Ì�ÁÓËÝß-�Ì¨Á�Ë
Ü�Æ¨À�Í�ïôÜ2Ñ�Á�Ì�ÆÈßÝÕ

Ã¨Æ0Í?ÛÎÒ�Ç"Ü�Å0Æ0Ì	9¨ÆæñvÜ�Æ¨À�ÍÎú÷
ó-�XÆ0Ä�É�Ì�Ç(ÜÈÂ���Á2Á¨À0Æ¨ÂÓÇPÄ0Å½Â�ÄÿÒ¨Ü;Ä2Ì0ÉXÆ7ÛÎÒÓÄ�Å6�Ì¨Á�Ë½ÂÓË"Ò�À�ÒxÄ�Ï¡ÜÓÆ¨À�Í�ï7¨Ì�ÁÓË
Ì�Æ0Ä�É�Ì�ÇÝÌXÂxÇXÃ¨Á�Êcñ�ú . ß ÜÓÆ¨À0Ínï7¨Ì�Á�Ë

Ã¨Æ0Í¡Ò�Ç"Ñ�Å�Ñ�Á0Ì�Æ¬ñ�ÜÓÆ¨À0Í!ú¬÷
ó Ú Ã�ÃÐÂ<XÁXÒ�Ç¨ÄPÄ�Á?Ä�Å"Ò�Ü�!À�Â�Ï�Æ�Ì���Ü7Ü2Ñ�Á0Ì�Æ
Ü�Æ¨À�Í�ïôÜ2Ñ�Á�Ì�ÆÈßÿÜ�Æ¨À�Í�ïôÜ2Ñ�Á�Ì�ÆÈá Ö

Ã¨Æ0Í��¨Æ0Ä+Å�Ñ�Á0Ì�Æ¬ñ�ÜÓÆ¨À0Í!ú¬÷
ó-�XÆ0Ä�É�Ì�Ç(Ü Ä�Å"Ò¨Ü�½À�Â�Ï�Æ0ÌU��ÜÈÑ�É�Ì2Ì�ÆÓÇ�ÄÿÜ0Ñ�Á0Ì¨Æ
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïôÜ2Ñ�Á0Ì�Æ

Ñ0À2ÂXÜ2Ü�����Â�À�À ü Â1ÊÎÆn÷
ó Ú ���XÂ2À�À ü Â�Ê!ÆÈÌ¨Æ��Ì¨Æ½ÜÓÆ�Ç�Ä!Ü Â6��Â1ÊÎÆÐÒ1Ç��Ì¨Á��2Ì¨Æ½Ü2Üæï Ú �¨Â�ÊÎÆÈÅ½ÂXÜ;Ä0ÛXÁ<!À2Â�Ï¨Æ0ÌÎÜ
óÐÂÓÇ�Ã-ÎXÆ�Æ�(Ü;Ä2ÌXÂ�Ñ�ÎÐÁ2Í?Û0Å"Ò2Ñ�Å¡Á�ÇXÆÐÒ¨Ü9Ñ1É�Ì�Ì¨Æ�Ç¨ÄXÀ�ÏàÜ�Æ�Ì	9!Ò1Ç��nï
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ ¨Ì�ÁÓË Ú õ �Ì�ÁÓË��Îú¬÷

óÝ×0Ì�Æ�Â�Ä¨Æ9ÂÈÇ½Æ�Û5�¨Â�Ê!Æ Å!Â�9!Ò�Ç+�<!À2Â�Ï¨Æ0ÌÎÜªÛÎÒÓÄ�ÅÐÄ0ÅXÆ6�½Ò�9¨Æ�Ç6¨Ì�ÁÓË(Üæï
Ü�Æ¨À�Í�ï>!À�Â�Ï�Æ�Ì Ú ßÝØ�À�Â�Ï�Æ0Ì�ñ0¨Ì�Á�Ë Ú ú

~zr2� r2��sXu��p{ bxyè���1ç�´BE�u ³ ����{`yM
vu�± ±�b $ �_��± u�y $ �0� �1é�¿

Ü�Æ¨À�Í�ï>!À�Â�Ï�Æ�ÌC�7ßÝØ�À�Â�Ï�Æ0Ì�ñ0¨Ì�Á�Ë��"ú
Ü�Æ¨À�Í�ïôÜ�Æ0Ì�9�Æ�ÌPßÿÜ�Æ�À0Ínï7!À2Â�Ï¨Æ0Ì Ú ó9Ø�À�Â�Ï¨Æ0Ì Ú Â2À�ÛXÂ�ÏÎÜ?Ü�Æ0Ì�9�ÆXÜ;Í½ÒxÌÎÜxÄ

Ã¨Æ0Í�!À�Â�ÏTñvÜ�Æ¨À�ÍÎú÷
óPØXÀ�Â�Ï9Ä0ÅXÆ6��Â�Ê!Æ7Ä�Á¡Ñ�ÁxÊ+½À2Æ�Ä!Ò�ÁÓÇ
Û2Å"Ò�À2Æ ÇXÁ0Ä ÜÓÆ¨À0ÍnïôÒ�Ü Ä 9¨Æ0Ì�ñ1ú¬÷

ÒÓÍÿÜ�Æ�À0Í�ïôÜ�Æ�Ì	9�Æ�Ìcï|ÛÎÒ�Ç"Ü�Å0Æ0Ì	9¨Ææñ�ú¬÷
ÜÓÆ¨À0ÍnïzÜÓÆ0Ì	9¨Æ0Ì�ïôÒ�ÇÎÑCÅ¨Ñ�Á0Ì¨Ææñ�ú

Æ�ÀXÜÓÆn÷
ÜÓÆ¨À0ÍnïôÑ1Å!ÂÓÇ+�¨Æ	Å2Æ0Ì�9�Æ�ÌTñ1ú

Ã¨Æ0Í¡Ò¨Ü Ä 9�Æ�ÌTñ�ÜÓÆ¨À�ÍÎú¬÷
ó-�XÆ0Ä�É�Ì�Ç(Üè�¨Â�ÊÎÆàÒ�Ü Í½Ò1Ç"Ò¨Ü�Å½Æ0Ã ñvÒæïðÆoï¢Á�Ç½Æ9Á0ÍPÄ0ÅXÆ<!À�Â�Ï�Æ�ÌÎÜªÅ½ÂXÜ ÛXÁÓÇ�úï
Â�õpËàßÿÜÓÆ¨À�Í�ïB��Æ0Ä+Å�Ñ�Á�Ì�ÆXÜ�ñ1ú
Ì�Æ0Ä�É�Ì�Ç¡Â?ß�ß»Ö�'PÁ�Ì?Ëàß�ß»Ö�'PÁ�Ìä´

ñ�Â?ß2ßÝþàÂxÇXÃ7Ëàß2ßÝÕ!ú Á0Ì ñùËXß�ß�þ9ÂÓÇ�ÃÐÂ?ß�ßÐÕ!ú
Ã¨Æ0Í¡Ñ�Å!ÂxÇ���Æ?Å2Æ�Ì	9¨Æ0ÌTñvÜ�Æ�À0ÍÎú÷

ó5Å�ÛÎÒxÄ!Ñ1Å9Û2ÅÎÒ�Ñ�Å�½À�Â�Ï�Æ0ÌàÒ¨Ü9Ü�Æ�Ì	9½Ò�Ç��
Ò�ÍÿÜ�Æ�À0ÍnïzÜ�Æ�Ì	9¨Æ0ÌPß2ßÿÜ�Æ�À0Í�ï>!À2Â�Ï�Æ�Ì Ú ÷

ÜÓÆ¨À�Í�ïzÜÓÆ0Ì�9�Æ0Ì7ß Ü�Æ�À0Í�ï>!À2Â�Ï�Æ�ÌC�
Æ¨ÀXÜÓÆn÷

ÜÓÆ¨À�Í�ïzÜÓÆ0Ì�9�Æ0Ì7ß Ü�Æ�À0Í�ï>!À2Â�Ï�Æ�Ì Ú
Ã¨Æ0Í��¨Æ0Ä+Å�Ñ�Á0Ì�ÆXÜ�ñvÜ�Æ¨À�ÍÎú÷

ó-�XÆ0Ä�É�Ì�Ç(Ü Ä�Å½ÆàÑ�É¨Ì�Ì¨Æ�Ç�Ä¡Ü2Ñ�Á�Ì�ÆXÜ Á2Í�½À�Â�Ï¨Æ0Ì Ú ÂxÇXÃ�!À2Â�Ï¨Æ0Ì��
Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ï>!À2Â�Ï�Æ�Ì Ú ïB�¨Æ�Ä�Å¨Ñ�Á0Ì¨Ææñ�úVõlÜÓÆ¨À0Ínï7½À�Â�Ï¨Æ0ÌP�cïB��Æ0Ä+Å�Ñ�Á�Ì�Æ¬ñ1ú

Ñ0À2ÂXÜ2Ü<Å�ÒvÊ_Å�Ä�Â�Ä!Üæ÷
ó5Å�ÒvÊ_Å�Ä�Â�Ä!ÜªÅ!ÂxÇXÃ�À0Æ½ÜÈÂ¨Ñ�Ñ1É0Ê�É½À�Â�Ä!Ò�ÁÓÇÝÁ0ÍÿÜxÄ�Â�Ä!Ò�ÜxÄ½Ò�Ñ¨Ü;Â�ÑxÌ�Á½Ü2Ü�Ê�É½À�Ä½Ò�!À0Æ
ó ñvÑ�Á�Ê+½À2Æ0Ä¨Æ2Ã!ú���Â1ÊÎÆXÜæï1��Å"Ò¨Ü�9�Æ0Ì!Ü2Ò�Á�ÇÝÄ2ÌXÂ�Ñ�Î"Ü Ä�Å½Æ7Û!Ò�Ç(Ü7ÂxÇXÃÿÜ�Å�É�Ä¨Á�É¨ÄÎÜ Í�Á0Ì
ó Æ¨Â�Ñ1Å6!À2Â�Ï¨Æ0Ìcï
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷

óÝ×0Ì�Æ�Â�Ä¨Æ9ÂÈÇ½Æ�Û¡Â¨Ñ�Ñ1É0Ê�É½À�Â�Ä�Á0Ì7Í¨Á�ÌàÂ¡Ü�Æ0Ì½Ò�ÆXÜ Á2Í��¨Â�ÊÎÆXÜ
Ü�Æ¨À�Í�ï|ÛÎÒ�Ç"Ü Ú ßÝÕ
Ü�Æ¨À�Í�ï|ÛÎÒ�Ç"ÜI�?ßÝÕ
Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜ Ú ßÝÕ

�1é�â s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜm�PßÝÕ

Ã¨Æ0Í7É	XÃ¨Â�Ä¨Ææñ�ÜÓÆ¨À�ÍoõlÂ ü Â1ÊÎÆ½ú¬÷
ó��XÆ0Ä¨Æ0ÌÓÊ�Ò�ÇXÆ7Ä0ÅXÆPÁ�É¨Ä!Ñ�ÁxÊÎÆ?Á2ÍÐÂ ü Â�Ê!ÆÝÂÓÇXÃ7É�XÃ¨Â�Ä�ÆÐÜxÄXÂ�Ä!Ò�ÜxÄ!Ò2Ñ¨Ü
Â�õ ËàßàÂ ü Â�ÊÎÆoïB��Æ0Ä�Å¨Ñ�Á�Ì�Æ½Ü(ñ1ú
Ò�ÍÐÂ � Ë�÷ ó Ú ÛXÁÓÇÐÄ0Å½Æ6�¨Â�Ê!Æ

ÜÓÆ¨À�Í�ï�Û!Ò�Ç"Ü Ú ßÿÜÓÆ¨À�Í�ï�Û!Ò�Ç"Ü Ú á»Ö
ÒÓÍ7Ëàß�ßÐÕn÷

ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!Ü Ú ß Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜ Ú á Ö
Æ¨ÀXÜÓÆn÷ ó��PÛXÁÓÇÐÄ0Å½Æ6�¨Â�Ê!Æ

ÜÓÆ¨À�Í�ï�Û!Ò�Ç"ÜI�PßÿÜÓÆ¨À�Í�ï�Û!Ò�Ç"ÜI�Pá»Ö
ÒÓÍÐÂ?ß�ßÐÕn÷

ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!ÜI�7ß Ü�Æ¨À�Í�ïôÜ1Å�É¨ÄÎÜm�Pá Ö
Ã¨Æ0Í��Ì!Ò1Ç�ÄC�XÆ�XÁ0Ì2ÄTñ�ÜÓÆ¨À�ÍÎú¬÷

óPØ�Ì!Ò1Ç�ÄàÂ ÇÎÒ�Ñ�Æ�À�Ï9Í�Á0ÌÓÊ"Â�Ä2Ä�Æ0Ã7Ì�Æ�½Á�Ì�Ä
Çàß ÜÓÆ¨À�Í�ï�Û!Ò�Ç"Ü Ú áÿÜÓÆ¨À�Í�ï�Û!Ò�Ç"ÜI��Ì!Ò1Ç�Ä)�uÅÓÉ�Ê�Ê"Â�Ì�ÏÝÁ0Í$�!õîÇ�õè����Â1ÊÎÆXÜæ÷G��Ì!Ò1Ç�Ä�Ì!Ò1Ç�Ä)� Û!Ò�Ç"Ü ñ3�PÄ�Á�ÄXÂ2À½ú Ü1Å2É�Ä¨Á�É�Ä!Ü ñ*�?ÛÎÒ�Ç"Ü¨ú ��Ì!Ò1Ç�Ä)�u�	���	�	���	���	�	���	���	�	���	���	�	���	���	�C�	�	�������	�C�	���	�C�	�	�������	�C�	�_�
Ü�Æ¨À�Í�ï>�Ì!Ò1Ç�Ä��!Ò�ÇXÆæñ�� Ú �!õ¢Ü�Æ�À0Í�ï|ÛÎÒ1Ç(Ü Ú õ�ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!Ü Ú õ Ç�ú
Ü�Æ¨À�Í�ï>�Ì!Ò1Ç�Ä��!Ò�ÇXÆæñ��/���!õ¢Ü�Æ�À0Í�ï|ÛÎÒ1Ç(ÜI�oõ�ÜÓÆ¨À0ÍnïzÜ�Å�É�Ä!ÜI�oõ Ç�ú

Ã¨Æ0Í��Ì!Ò1Ç�Ä��!Ò�ÇXÆæñvÜ�Æ¨À�Íoõ À�ÂxË½Æ�À�õlÛÎÒ1Ç(ÜVõ Ü1Å2É�ÄÎÜVõîÇ�ú÷
Ä�ÆxÊ?!À2Â�Ä�ÆÈß���ØXÀ2Â�Ï¨Æ0Ì��½Üæ÷ �	@�Ã��?'oï�Ö�ÍC�P���"Ö2Ö�Ã �!Üm�
Ò�Í?ÛÎÒ1Ç(Ü ß2ßÝÕn÷ ó Ú 9¨ÁXÒÓÃPÃ½Ò�9!Ò¨Ü0Ò�ÁÓÇ?Ë�Ï D�Æ0Ì�Á �

Ü�Å�É¨Ä�Å�Ä2Ì9ß)�G���	���	�*�
Æ¨ÀXÜÓÆn÷

Ü�Å�É¨Ä�Å�Ä2Ì9ß)�4��@�ï�Ö�ÍC�P�$�±� ñ`Í�À0Á¨Â�Ä�ñ�Ü�Å�É�Ä!Ü¨ú���ÛÎÒ1Ç(ÜC;XÖxÕ2Õ!ú�Ì!Ò1Ç�ÄPÄ¨ÆxÊ?!À�Â�Ä�Æ�� ñzÀ�ÂxË½Æ¨Àæõ ÛÎÒ1Ç(ÜVõ¢Í�À0Á¨Â�Ä�ñèÛ!Ò�Ç(Ü�ú��xÇ_;XÖ�Õ�Õ�õ
Ü1Å2É�ÄÎÜVõ Ü1Å2É�Ä+Å�Ä�ÌÎú

Ã¨Æ0Í��Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú÷�Ì½Ò�Ç�Ä��:�0ÅÎÒ¨Ü�¨Ì�Á��0ÌXÂ1Ê»Ü2ÒvÊ�É½À�Â�Ä¨Æ½Üè�¨Â�Ê!Æ½Ü Á0ÍPÌXÂ�Ñ�í�ÉXÆ0Ä0Ë½Â�À2À Ë½Æ�Ä2Û�Æ�Æ�Ç9Ä2ÛXÁ*��Ì½Ò�Ç�Äa�F!À2Â�Ï¨Æ0ÌÎÜ7Ñ0Â�À2À2Æ0Ã�� Ú � ÂÓÇXÃ)�����"ï ��Å½ÆÝÂÓËÎÒ0À¨ÒÓÄ�Ï9Á2ÍÝÆ¨Â¨Ñ�Å�½À�Â�Ï¨Æ0Ì¡Ò�Ü©��Ì½Ò�Ç�Ä��xÒ�Ç�Ã½Ò2Ñ0Â�Ä¨Æ2Ã;Ë�ÏàÂ<�Ì¨Á�Ë!ÂxË"Ò�À�ÒÓÄ2ÏòñzÂ Ç�É0Ê¨Ë½Æ�Ì7Ë½Æ�Ä2ÛXÆ2Æ�ÇàÕÝÂxÇXÃ Ö0ú Ä0Å!Â�Ä���Ì½Ò�Ç�Ä���Ä0ÅXÆ<!À2Â�Ï�Æ�Ì?ÛÎÒ1Ç(Ü;Ä�Å½Æ<½Á�Ò�Ç¨Ä?Û2ÅXÆ�Ç»Ü�Æ�Ì	9½Ò�Ç��nï Ø�À�Â�Ï¨Æ0Ì Ú Â2À�Û½Â�ÏÎÜm�

~zr0� �0��s½u���{ bxyè�v��ç�´{é $ ³ {G�0�3Òè{�} �1é�é

�Ì½Ò�Ç�Ä��zÅ!Â�Ü;Ä0ÅXÆPÍ½ÒÓÌ!ÜxÄÿÜÓÆ0Ì�9�Ænïl´ÓÇx�
Ã¨Æ0Í��¨Æ�Ä3¢1Ç��É¨ÄÎÜ�ñ�ú¬÷

ó-�XÆ�Ä0É�Ì�Ç(Ü Ä�Å½Æ?Ä�Å�Ì�Æ2ÆàÜ2ÒvÊ�É½À�Â�Ä½Ò�ÁÓÇ-!Â�ÌXÂ1ÊÎÆ0Ä¨Æ0Ì!Ü
Â?ßÿÒ�Ç	2É�Ä�ñ��!"0Å!Â�ÄàÒ¨Ü;Ä�Å½Æ<¨Ì�Á�Ëhï !À2Â�Ï¨Æ0Ì Ú ÛÎÒ1Ç(ÜÈÂ¡ÜÓÆ0Ì	9¨Æ�2=�Óú
ËàßÿÒ�Ç	2É�Ä�ñ��!"0Å!Â�ÄàÒ¨Ü;Ä�Å½Æ<¨Ì�Á�Ëhï !À2Â�Ï¨Æ0Ì��9ÛÎÒ1Ç(ÜÈÂ¡ÜÓÆ0Ì	9¨Æ�2=�Óú
ÇàßÿÒ�Ç	2É�Ä�ñ��!��Á�Û;Ê"ÂÓÇ¨Ï���Â1ÊÎÆXÜ;Ä�Á¡Ü2ÒvÊ�É½À�Â�Ä¨Æ�2(��ú
Ì�Æ�Ä0É�Ì�Ç¡Â�õ Ë�õ Ç

Ã¨Æ0Í Ê"Â¨Ò�Çnñ�ú¬÷�Ì½Ò�Ç�Ä�¢1Ç¨Ä�Ì�Á¬ñ1ú
�Ì¨Á�Ë Ú õ1�Ì¨Á�Ë��nõîÇ¡ß��¨Æ�Ä3¢�Ç	�É¨ÄÎÜ(ñ1ú
óPØXÀ2Â�Ï9Ä0ÅXÆ6��Â1ÊÎÆ½Ü
ÜxÄ�Â�ÄÎÜ ß¡Å¨Ò�Ê3Å�ÄXÂ�ÄÎÜ(ñ1ú
Í¨Á�ÌÿÒ9Ò�ÇÐÌXÂxÇ���ÆæñðÇ(ú¬÷

Ä0Å½Æ ü Â1ÊÎÆ?ß-�C�XÂ�À2À ü Â�ÊÎÆ¬ñ0¨Ì�Á�Ë Ú õ �Ì¨Á�Ë��"ú;ó¡ÑÓÌ¨Æ¨Â�Ä�Æ9ÂÈÇ½Æ�Û ��Â1ÊÎÆ
Ä0Å½Æ ü Â1ÊÎÆnï>!À2Â�ÏTñ�ú ó�!À2Â�ÏÿÒxÄ
ÜxÄXÂ�ÄÎÜ¬ï|É	�Ã�Â�Ä�ÆæñèÄ0ÅXÆ ü Â1ÊÎÆ½ú óÝÆ��0Ä�Ì�Â�ÑÓÄàÒ�ÇXÍ�Á

óPØ�Ì½Ò�Ç�Ä9Ä�Å½Æ?Ì¨Æ½Ü1É½À�Ä!Ü
ÜxÄ�Â�ÄÎÜ¬ï7¨Ì!Ò�Ç¨Ä���Æ�½Á�Ì�Ä�ñ1ú

Ê"Â¨Ò�Çoñ1ú
ÌXÂÓÛmÌ¨Ò�Ç	2É�Ä�ñ��í´xÇ�Ø2Ì�Æ½Ü2Ü .�/ Ç¨Ä�Æ�Ì � Ä¨Á6í�É"ÒxÄ��Óú
]o�«^�� ¢in[�R	©£UÎ¦�·_í ²5« W�S¬R�����Q�Rcg

Back in Chapter 10, I suggested that objects are particularly useful for the design

of graphical user interfaces. I want to finish up this chapter by looking at a

graphical application using some of the widgets that we developed in previous

chapters.

ÊmÇ�È�É�ÈSÊ ���0v_���B�*� Ø Í�im�?l(u{���mtGlnvxw
Our goal is to write a game program that allows a user to play video poker using

dice. The program will display a hand consisting of five dice. The basic set of

¯ %�% s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
rules is as follows:

\ The player starts with $100.

\ Each round costs $10 to play. This amount is subtracted from the user’s

money at the start of the round.

\ The player initially rolls a completely random hand (i.e., all five dice are

rolled).

\ The player gets two chances to enhance the hand by rerolling some or all

of the dice.

\ At the end of the hand, the player’s money is updated according to the

following payout schedule:

Hand Pay

Two Pairs 5

Three of a Kind 8

Full House (A Pair and a Three of a Kind) 12

Four of a Kind 15

Straight (1–5 or 2–6) 20

Five of a Kind 30

Ultimately, we want this program to present a nice graphical interface. Our

interaction will be through mouse clicks. The interface should have the follow-

ing characteristics:

\ The current score (amount of money) is constantly displayed.

\ The program automatically terminates if the player goes broke.

\ The player may choose to quit at appropriate points during play.

\ The interface will present visual cues to indicate what is going on at any

given moment and what the valid user responses are.

ÊmÇ�È�É�È�Ç ä �*i_wmtGl('l¤�l�wm�äª �*w§�$l7�*��tui��S¾I¿!im��tus
Our first step is to analyze the program description and identify some objects

that will be useful in attacking this problem. This is a game involving dice and

money. Are either of these good candidates for objects? Both the money and an

individual die can be simply represented as numbers. By themselves, they do

~zr0� �0��s½u���{ bxyè�v��ç�´{é $ ³ {G�0�3Òè{�} ¯ %0~
not seem to be good object candidates. However, the game uses five dice, and

this sounds like a collection. We will need to be able to roll all the dice or a

selection of dice as well as analyze the collection to see what it scores.

We can encapsulate the information about the dice in a
�ÎÒ2Ñ�Æ

class. Here are

a few obvious operations that this class will have to implement:

constructor Create the initial collection.

rollAll Assign random values to each of the five dice.

roll Assign a random value to some subset of the dice, while maintaining the

current value of others.

values Return the current values of the five dice.

score Return the score for the dice.

We can also think of the entire program as an object. Let’s call the classØ�Á�ÎXÆ�Ì Ú �
. A

Ø�Á�ÎXÆ�Ì Ú �
object will keep track of the current amount of money,

the dice, the number of rolls, etc. It will implement a
Ì0É2Ç

method that we use

to get things started and also some helper methods that are used to implementÌ0É2Ç
. We won’t know exactly what methods are needed until we design the main

algorithm.

Up to this point, I have concentrated on the actual game that we are imple-

menting. Another component to this program will be the user interface. One

good way to break down the complexity of a more sophisticated program is to

separate the user interface from the main guts of the program. This is often

called the model-view approach. Our program implements some model (in this

case, it models a poker game), and the interface is a view of the current state of

the model.

One way of separating out the interface is to encapsulate the decisions about

the interface in a separate interface object. An advantage of this approach is that

we can change the look and feel of the program simply by substituting a different

interface object. For example, we might have a text-based version of a progam

and a graphical version.

Let’s assume that our program will make use of an interface object, call it aØ�Á�ÎXÆ�Ì3¢1Ç¨Ä�Æ�Ì¨Í�Â¨Ñ�Æ
. It’s not clear yet exactly what behaviors we will need from this

class, but as we refine the
Ø�Á�Î�Æ0Ì Ú 	

class, we will need to get information from

the user and also display information about the game. These will correspond to

methods implemented by the
Ø�Á�ÎXÆ�Ì3¢1Ç¨Ä�Æ�Ì¨Í�Â¨Ñ�Æ

class.

¯ %�r s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
ÊmÇ�È�É�È�É ä7�æÍ_Ù�i*�îi_wmtGl�w��8t� �i ¶ v£��i�Ù

So far, we have a pretty good picture of what the
�ÎÒ�Ñ�Æ

class will do and a starting

point for implementing the
Ø�Á�ÎXÆ0Ì Ú �

class. We could proceed by working on

either of these classes. We won’t really be able to try out the
Ø�Á�ÎXÆ0Ì Ú �

class

until we have dice, so let’s start with the lower-level
�ÎÒ�Ñ�Æ

class.ÓFÔ ���X} Ô }��?�!����� � ����}
The

�ÎÒ2Ñ�Æ
class implements a collection of dice, which are just changing num-

bers. The obvious representation is to use a list of five ints. Our constructor

needs to create a list and assign some initial values.

Ñ0À2ÂXÜ2Ü»�ÎÒ2Ñ�Æn÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷

Ü�Æ¨À�Í�ïpÃ½Ò�Ñ�Æ7ß û ÕC
m;�'
Ü�Æ¨À�Í�ï�Ì�Á¨À2À Ú À�À¬ñ�ú

This code first creates a list of five zeroes. These need to be set to some random

values. Since we are going to implement a
Ì¨Á¨À2À Ú À2À

function anyway, calling it

here saves duplicating that code.

We need methods to roll selected dice and also to roll all of the dice. Since

the latter is a special case of the former, let’s turn our attention to the
Ì�Á�À�À

function, which rolls a subset. We can specify which dice to roll by passing a list

of indexes. For example,
Ì¨Á¨À�Àñ û ÕTõ`Þ�õ�@�
Îú

would roll the dice in positions 0, 3

and 4 of the dice list. We just need a loop that goes through the parameter and

generates a new random value for each listed position.

Ã¨Æ0ÍPÌ�Á¨À2À¬ñvÜ�Æ¨À�Íoõ Û2Å"Ò2Ñ�Å(ú¬÷
Í¨Á0Ì-XÁ½ÜPÒ1ÇÝÛ2Å"Ò2Ñ�Åh÷

ÜÓÆ¨À�Í�ïùÃXÒ�Ñ�Æ û XÁ½Ü�
7ßPÌ�ÂÓÇXÃ0ÌXÂxÇ��¨Æ¬ñ�Ö(õ`þ!ú
Next, we can use

Ì�Á¨À2À
to implement

Ì¨Á¨À2À Ú À2À
as follows:

Ã¨Æ0ÍPÌ�Á¨À2À Ú À�À¬ñvÜ�Æ�À0ÍÎú÷
Ü�Æ¨À�Í�ï�Ì�Á¨À2À¬ñèÌXÂÓÇ+�¨Æ¬ñ!'½ú2ú

I used
ÌXÂxÇ��¨Æ¬ñ!'Xú

to generate a list of all the indexes.

The
9�Â�ÀÓÉXÆ½Ü

function is used to return the values of the dice so that they can

be displayed. Another one-liner suffices.

~zr0� �0��s½u���{ bxyè�v��ç�´{é $ ³ {G�0�3Òè{�} ¯ %��
Ã¨Æ0Í69XÂ�ÀxÉ½ÆXÜ�ñ�ÜÓÆ¨À�ÍÎú¬÷

Ì�Æ0Ä�É�Ì�Ç Ü�Æ�À0Í�ïpÃ½Ò2Ñ�Æ û ÷B

Notice that I created a copy of the dice list by slicing it. That way, if a

�ÎÒ�Ñ�Æ
client

modifies the list that it gets back from
9XÂ2ÀÓÉ½ÆXÜ

, it will not affect the original copy

stored in the
�!Ò�Ñ�Æ

object. This defensive programming prevents other parts of

the code from accidentally messing with our object.

Finally, we come to the
Ü0Ñ�Á0Ì¨Æ

method. This is the function that will deter-

mine the worth of the current dice. We need to examine the values and deter-

mine whether we have any of the patterns that lead to a payoff, namely, Five of

a Kind, Four of a Kind, Full House, Three of a Kind, Two Pairs, or Straight. Our

function will need some way to indicate what the payoff is. Let’s return a string

labeling what the hand is and an int that gives the payoff amount.

We can think of this function as a multi-way decision. We simply need to

check for each possible hand. If we do so in a sensible order, we can guarantee

giving the correct payout. For example, a full house also contains a three of a

kind. We need to check for the full house before checking for three of a kind,

since the full house is more valuable.

One simple way of checking the hand is to generate a list of the counts

of each value. That is,
Ñ�Á�É2Ç�ÄÎÜ û Ò�

will be the number of times that the valueÒ
occurs in dice. If the dice are:

û Þ�õôÔæõë'�õ`Ô�õèÞ�

then the count list would beû Õ�õ`Õ�õôÔ�õ`Ô�õèÕTõ�Ö(õ`ÕC

. Notice that
Ñ�Á�É2Ç�ÄÎÜ û ÕC

will always be zero, since dice values

are in the range 1–6. Checking for various hands can then be done by looking

for various values in
Ñ�Á�É2Ç�Ä!Ü

. For example, if
Ñ�Á�É2Ç�Ä!Ü

contains a
Þ

and a
Ô
, the

hand contains a triple and a pair; hence, it is a full house.

Here’s the code:

Ã¨Æ0ÍÿÜ2Ñ�Á�Ì�Æ¬ñ�Ü�Æ�À0Í!ú¬÷
óÝ×0Ì�Æ�Â�Ä¨Æ7Ä0ÅXÆàÑ�Á�É2Ç�Ä!ÜÈÀ�Ò�ÜxÄ
Ñ�Á�É2Ç�Ä!Ü;ß û ÕC
¡;Pþ
Í¨Á0Ì�9�Â�ÀxÉ½ÆÐÒ1Ç»Ü�Æ¨À�Í�ïpÃ½Ò�Ñ�Æn÷

Ñ�Á�É2Ç�ÄÎÜ û 9�Â�ÀÓÉXÆ�
Èß¡Ñ�ÁÓÉ�Ç�Ä!Ü û 9XÂ�ÀxÉ½ÆC
?á Ö
óÿÜ2Ñ�Á�Ì�Æ?Ä�Å½ÆÈÅ!ÂxÇXÃ
Ò�Í5'ÐÒ�Ç»Ñ�Á�É�Ç¨ÄÎÜ¬÷

Ì¨Æ0Ä�É�Ì0Ç��:,!Ò�9�ÆPÁ0ÍÐÂ�ÀÎÒ�Ç�Ã$�!õ�Þ�Õ
Æ¨À�ÒÓÍ6@ÿÒ�Ç Ñ�Á�É�Ç¨ÄÎÜ¬÷

Ì¨Æ0Ä�É�Ì0Ç��:,�ÁÓÉ�ÌÝÁ0ÍÐÂ�ÀÎÒ�Ç�Ã$�!õfÖ�'
Æ¨À�ÒÓÍòñzÞ¡Ò1Ç Ñ�Á�É2Ç�Ä!Ü¨ú ÂxÇXÃ ñ�ÔÐÒ1Ç Ñ�ÁÓÉ�Ç�Ä!Ü¨ú÷

¯ % ¯ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
Ì¨Æ0Ä�É�Ì0Ç��:,0É½À�À8��Á�É"Ü�Æ��!õfÖÓÔ

Æ¨À�ÒÓÍ9Þ¡Ò�Ç Ñ�Á�É�Ç¨ÄÎÜ¬÷
Ì¨Æ0Ä�É�Ì0Ç��:�0Å¨Ì�Æ2ÆPÁ2ÍÐÂ�ÀÎÒ1ÇXÃ��ÎõÆA

Æ¨À�ÒÓÍÈÇ½Á�Ä	ñ�ÔàÒ�Ç Ñ�Á�É2Ç�ÄÎÜ�ú ÂÓÇ�ÃòñvÑ�Á�É2Ç�ÄÎÜ û ÖG
�ß�ß�Õ?Á�ÌÿÑ�Á�É2Ç�Ä!Ü û øC
?ß2ßÝÕ!ú¬÷
Ì¨Æ0Ä�É�Ì0Ç��GÅ�Ä2ÌXÂ¨Ò���Å¨Ä��!õ�Ô2Õ

Æ¨À�ÒÓÍàÑ�ÁÓÉ�Ç¨ÄÎÜæï`Ñ�ÁÓÉ�Ç�Ä�ñ�ÔXúªß2ßÐÔo÷
Ì¨Æ0Ä�É�Ì0Ç��:�2Û�Á7ØXÂ¨ÒÓÌ!Ü��ÎõÆ'

Æ¨ÀXÜÓÆn÷
Ì¨Æ0Ä�É�Ì0Ç�� ü Â�Ì0Ë½ÂC�¨Æ*�ÎõlÕ

The only tricky part is the testing for straights. Since we have already checked

for 5, 4, and 3 of a kind, checking that there are no pairs—
Ç½Á0ÄàÔàÒ1Ç Ñ�Á�É2Ç�Ä!Ü

—

guarantees that the dice show five distinct values. If there is no 6, then the

values must be 1–5; likewise, no 1 means the values must be 2–6.

At this point, we could try out the
�!Ò�Ñ�Æ

class to make sure that it is working

correctly. Here is a short interaction showing some of what the class can do:�	��� Í2Ì¨ÁxÊÿÃ½Ò2Ñ�ÆÐÒvÊ+XÁ0Ì�Ä��ÎÒ�Ñ�Æ�	��� Ã9ß��ÎÒ�Ñ�Ææñ�ú�	��� Ã�ïI9XÂ�ÀxÉ½ÆXÜ�ñ1úû ø�õ ÞTõ Þ�õ øTõî'C
�	��� Ã�ïôÜ2Ñ�Á�Ì�Æ¬ñ1úñ��B�2Û�Á7ØXÂ¨ÒÓÌÎÜ���õÔ'Xú�	��� Ã�ï�Ì�Á¨À2À¬ñ û @	
!ú�	��� Ã�ïI9XÂ�ÀxÉ½ÆXÜ�ñ1úû ø�õ ÞTõ Þ�õ øTõÆ@	
�	��� Ã�ï�Ì�Á¨À2À¬ñ û @	
!ú�	��� Ã�ïI9XÂ�ÀxÉ½ÆXÜ�ñ1úû ø�õ ÞTõ Þ�õ øTõ Þ�
�	��� Ã�ïôÜ2Ñ�Á�Ì�Æ¬ñ1úñ��B,0É½À�À8��Á�É(ÜÓÆ}�2õfÖÓÔXú
We would want to be sure that each kind of hand scores properly.ÓFÔ ���X} Ô }��?�!����� � �	ÕG}�zÃÖg���
Now we are ready to turn our attention to the task of actually implementing the

poker game. We can use top-down design to flesh out the details and also sug-

gest what methods will have to be implemented in the
Ø¨Á�Î�Æ0Ì3¢�Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�Æ

class.

~zr0� �0��s½u���{ bxyè�v��ç�´{é $ ³ {G�0�3Òè{�} ¯ %�´
Initially, we know that the

Ø�Á�ÎXÆ�Ì Ú �
will need to keep track of the dice, the

amount of money, and some user interface. Let’s initialize these values in the

constructor.

Ñ0À2ÂXÜ2Ü Ø�Á�ÎXÆ0Ì Ú ��÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷

Ü�Æ¨À�Í�ïpÃ½Ò�Ñ�Æ7ß��ÎÒ2Ñ�Æ¬ñ1ú
Ü�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï?ß ÖxÕ�Õ
Ü�Æ¨À�Í�ï`Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�ÆÈßPØ¨Á�Î�Æ0Ì3¢�Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�Ææñ1ú

To run the program, we will create an instance of this class and call its
Ì0É2Ç

method. Basically, the program will loop, allowing the user to continue playing

hands until he or she is either out of money or chooses to quit. Since it costs

$10 to play a hand, we can continue as long as
Ü�Æ�À0Í�ïZÊÎÁÓÇ½Æ0Ï � ß Ö�Õ

. Determining

whether the user actually wants to play another hand must come from the user

interface. Here is one way we might code the
Ì�É�Ç

method:

Ã¨Æ0ÍPÌ0É�Çoñ�ÜÓÆ¨À0Í!ú¬÷
Û2Å"Ò�À2ÆàÜÓÆ¨À�Í�ï�Ê!Á�ÇXÆ0Ï � ß ÖxÕÐÂÓÇ�Ã¡Ü�Æ�À0ÍnïôÒ�Ç¨Ä�Æ�Ì¨Í�Â¨Ñ�Æoï�Û½ÂxÇ�Ä���Á0Ø�À�Â�ÏTñvú¬÷

ÜÓÆ¨À�Í�ï7½À�Â�Ï��XÁÓÉ�Ç�Ã�ñ1ú
Ü�Æ¨À�Í�ï`Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�Ænï`Ñ0À2ÁXÜ�Æ¬ñ1ú

Notice the call to
Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�Ænï`Ñ0À2ÁXÜ�Æ

at the bottom. This will allow us to do any

necessary cleaning up such as printing a final message for the user or closing a

graphics window.

Most of the work of the program has now been pushed into the
½À�Â�ÏC�XÁÓÉ�ÇXÃ

method. Let’s continue the top-down process by focusing our attention here.

Each round will consist of a series of rolls. Based on these rolls, the program

will have to adjust the player’s score.

Ã¨Æ0Í�!À�Â�Ï���Á�É�Ç�Ã�ñvÜ�Æ¨À�ÍÎú÷
Ü�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï?ßÿÜ�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï�� Ö�Õ
Ü�Æ¨À�Í�ï`Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�ÆnïôÜ�Æ0Ä0öXÁÓÇ½Æ0Ï�ñvÜÓÆ¨À�Í�ïZÊÎÁxÇ½Æ0ÏÎú
Ü�Æ¨À�Í�ïpÃ¨Á���Á¨À2ÀXÜ�ñ�ú
Ì�Æ½Ü�É!À�Änõ Ü0Ñ�Á0Ì¨Æ?ßÿÜ�Æ�À0ÍnïùÃ½Ò2Ñ�ÆoïzÜ2Ñ�Á0Ì¨Ææñ1ú
Ü�Æ¨À�Í�ï`Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�ÆnïôÜ1Å½Á�Û	��Æ½Ü1É½À�Ä�ñ`Ì�Æ½Ü�É!ÀÓÄnõ¢Ü2Ñ�Á0Ì¨Æ!ú
Ü�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï?ßÿÜ�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï?á Ü0Ñ�Á�Ì�Æ
Ü�Æ¨À�Í�ï`Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�ÆnïôÜ�Æ0Ä0öXÁÓÇ½Æ0Ï�ñvÜÓÆ¨À�Í�ïZÊÎÁxÇ½Æ0ÏÎú

This code only really handles the scoring aspect of a round. Anytime new infor-

mation must be shown to the user, a suitable method from
Ò�Ç¨Ä�Æ�Ì¨Í�Â¨Ñ�Æ

is invoked.

¯ %�¹ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
The $10 fee to play a round is first deducted and the interface is updated with

the new amount of money remaining. The program then processes a series of

rolls (
Ã�Á��XÁ�À�À�Ü

), shows the user the result, and updates the amount of money

accordingly.

Finally, we are down to the nitty-gritty details of implementing the dice

rolling process. Initially, all of the dice will be rolled. Then we need a loop

that continues rolling user-selected dice until either the user chooses to quit

rolling or the limit of three rolls is reached. Let’s use a local variable
Ì¨Á¨À�À�Ü

to

keep track of how many times the dice have been rolled. Obviously, displaying

the dice and getting the list of dice to roll must come from interaction with the

user through
Ò1Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�Æ

.

Ã¨Æ0Í9Ã¨Á���Á¨À2ÀXÜ�ñvÜ�Æ�À0ÍÎú÷
Ü�Æ¨À�Í�ïpÃ½Ò�Ñ�Ænï�Ì�Á¨À2À Ú À�À¬ñ�ú
Ì�Á¨À2À7ß»Ö
Ü�Æ¨À�Í�ï`Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�ÆnïôÜ�Æ0ÄK�ÎÒ2Ñ�ÆæñvÜÓÆ�À0ÍoïùÃXÒ�ÑÓÆnïF9�Â2ÀxÉ½Æ�Ü�ñ�ú�ú
Ä�Á���Á¨À2À7ßÿÜ�Æ�À0Í�ï`Ò�Ç¨Ä�Æ0Ì�Í�Â¨Ñ�Ænï`Ñ�ÅXÁ�Á½ÜÓÆ!�!Ò�Ñ�Æ¬ñ�ú
Û2Å"Ò�À2Æ7Ì¨Á¨À2À . ÞàÂxÇXÃPÄ¨Á��XÁ�À�ÀÃ��ß û
n÷

ÜÓÆ¨À�Í�ïùÃXÒ�Ñ�ÆnïpÌ¨Á¨À2À¬ñ`Ä¨Á���Á¨À�ÀXú
Ì¨Á¨À2À7ß9Ì�Á¨À2À7á»Ö
ÜÓÆ¨À�Í�ïôÒ1Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�ÆnïzÜÓÆ0ÄK�ÎÒ�Ñ�Ææñ�Ü�Æ�À0ÍoïùÃ½Ò2Ñ�ÆoïF9¨Â�ÀxÉ½Æ�Ü�ñ1ú2ú
ÒÓÍPÌ�Á�À�À . Þn÷Ä¨Á��XÁ�À�À7ßÿÜÓÆ¨À�Í�ïôÒ1Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�ÆnïôÑ1Å½Á2Á½Ü�Æ��ÎÒ2Ñ�Æñ1ú

At this point, we have completed the basic functions of our interactive poker

program. That is, we have a model of the process for playing poker. We can’t

really test out this program yet, however, because we don’t have a user interface.

ÊmÇ�È�É�È � Ú ÿ i+�+t/· ² ��sGiº�ä¼ ä
In designing

Ø¨Á�ÎXÆ�Ì Ú 	
we have also developed a specification for a genericØ�Á�ÎXÆ�Ì3¢1Ç¨Ä�Æ�Ì¨Í�Â¨Ñ�Æ

class. Our interface must support the methods for displaying

information:
Ü�Æ�Ä2öXÁÓÇ½Æ�Ï

,
ÜÓÆ0ÄP�!Ò�Ñ�Æ

, and
Ü1ÅXÁ�Û	��Æ½Ü�É!À�Ä

. It must also have methods

that allow for input from the user:
Û½ÂxÇ�Ä���Á0Ø�À�Â�Ï

, and
Ñ�ÅXÁ�ÁXÜ�Æ!�!Ò�Ñ�Æ

. These meth-

ods can be implemented in many different ways, producing programs that look

quite different even though the underlying model,
Ø¨Á�Î�Æ0Ì Ú 	

, remains the same.

Usually, graphical interfaces are much more complicated to design and build

than text-based ones. If we are in a hurry to get our application running, we

might first try building a simple text-based interface. We can use this for testing

~zr0� �0��s½u���{ bxyè�v��ç�´{é $ ³ {G�0�3Òè{�} ¯ %�¿
and debugging of the model without all the extra complication of a full-blown

GUI.

First, let’s tweak our
Ø�Á�Î�Æ0Ì Ú 	

class a bit so that the user interface is supplied

as a parameter to the constructor.

Ñ0À2ÂXÜ2Ü Ø�Á�ÎXÆ0Ì Ú ��÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0ÍTõ Ò1Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�Æ!ú¬÷

Ü�Æ¨À�Í�ïpÃ½Ò�Ñ�Æ7ß��ÎÒ2Ñ�Æ¬ñ1ú
Ü�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï?ß ÖxÕ�Õ
Ü�Æ¨À�Í�ï`Ò�Ç�Ä¨Æ0Ì�Í�Â�Ñ�ÆÈß¡Ò1Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�Æ

Then we can easily create versions of the poker program using different inter-

faces.

Now let’s consider a bare-bones interface to test out the poker program. Our

text-based version will not present a finished application, but rather, it provides

a minimalist interface solely to get the program running. Each of the necessary

methods can be given a trivial implementation.

Here is a complete
��ÆC�2Ä�¢1Ç�Ä¨Æ0Ì�Í�Â�Ñ�Æ

class using this approach:

ó9Í½Ò�À2Æo÷ Ä�Æ��0ÄCXÁ�ÎXÆ�Ìcï>�Ï
Ñ0À2ÂXÜ2Ü§��ÆC�2Ä3¢�Ç�Ä¨Æ0Ì¨Í¨Â�Ñ�Æn÷

Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷�Ì!Ò1Ç�Ä)�&"XÆ�À�Ñ�Á�ÊÎÆ7Ä¨Á-9!ÒÓÃ¨Æ�Áè½Á�Î�Æ0Ì�ïG�
Ã¨Æ0ÍÿÜ�Æ0Ä0öXÁÓÇ½Æ0Ï�ñ�ÜÓÆ¨À0ÍTõ¢Â1Ê½ÄÎú¬÷�Ì!Ò1Ç�Ä)����ÁÓÉ Ñ�É�Ì2Ì�ÆÓÇ�ÄXÀ�ÏÈÅ½Â�9�Æ ¬ ��ÃnïG��	ñ�Â1Ê½ÄÎú
Ã¨Æ0ÍÿÜ�Æ0ÄK�ÎÒ2Ñ�ÆæñvÜ�Æ�À0Íoõ 9XÂ2ÀÓÉXÆ½Ü¨ú÷�Ì!Ò1Ç�Ä)�H�ÎÒ2Ñ�Æn÷u�Îõ°9�Â�ÀxÉ½Æ½Ü
Ã¨Æ0Í?Û½ÂÓÇ¨Ä	�¨Á0ØXÀ2Â�Ï�ñ�Ü�Æ�À0Í!ú¬÷

ÂÓÇ(Ü ßPÌ�Â�Û�Ì�Ò�Ç��É¨ÄTñ��H�XÁ;Ï�ÁÓÉÝÛÎÒ¨Ü�ÅÐÄ�Á?Ä2Ì�Ï9Ï�ÁÓÉ�ÌàÀxÉ"Ñ�Î�2=��ú
Ì�Æ0Ä�É�Ì�Ç¡ÂÓÇ"Ü û ÕC
àÒ�Ç³��ÏC�$�

Ã¨Æ0Í¡Ñ0À2ÁXÜ�Æ¬ñ�Ü�Æ�À0Í!ú¬÷�Ì!Ò1Ç�Ä)�´ÓÇ?�0Å!ÂxÇ?ÎÎÜ Í¨Á�Ì-!À2Â�Ï!Ò1Ç�� �u�
Ã¨Æ0ÍÿÜ1Å½Á�Û	��Æ½Ü1É½À�Ä�ñ�Ü�Æ�À0ÍTõ�Ê�Ü��Tõ�Ü2Ñ�Á�Ì�Æ½ú¬÷�Ì!Ò1Ç�Ä)�/�!Ü¬ïS��Á�ÉÝÛ!Ò�Ç ¬ ��Ã�ïu�� ñpÊ�Ü��Tõ�Ü2Ñ�Á�Ì�Æ½ú

¯ %�â s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
Ã¨Æ0Í¡Ñ�Å½Á2Á½ÜÓÆ!�ÎÒ2Ñ�Æ¬ñ�Ü�Æ�À0Í!ú¬÷

Ì�Æ0Ä�É�Ì�Ç Ò�Ç��É�Ä�ñ�� / Ç�Ä¨Æ0ÌPÀ�Ò�ÜxÄÐÁ2Í?Û0Å"Ò2Ñ�ÅÐÄ�ÁàÑ1Å!ÂxÇ��¨Æ ñ û
PÄ¨Á¡ÜxÄ¨Á��ú5��ú
Using this interface, we can test out our

Ø�Á�ÎXÆ�Ì Ú �
program to see if we have

implemented a correct model. Here is a complete program making use of the

modules that we have developed:

óPÄ�ÆC�2Ä�½Á�Î�Æ0Ì�ï7�Ï��	��9½Ò�Ã¨Æ2Á?Ã½Ò2Ñ�Æ<XÁ�ÎXÆ�Ì7É(Ü0Ò�Ç+�ÐÂ7Ä�Æ��0Ä��xË!ÂXÜÓÆ2ÃÝÒ�Ç�Ä¨Æ0Ì�Í�Â�Ñ�Ænï
Í2Ì¨ÁxÊ5XÁ�ÎXÆ�ÌXÂ�	ÿÒvÊ+XÁ0Ì�Ä?Ø�Á�Î�Æ0Ì Ú 	
Í2Ì¨ÁxÊ¡Ä¨Æ��2Ä½Ò�Ç¨Ä�Æ0ÌÐÒ�Ê?½Á0Ì2Ä6��ÆC�2Ä�¢1Ç�Ä¨Æ0Ì�Í�Â�Ñ�Æ
Ò�Ç¨Ä�Æ�Ì9ß���Æ��0Ä3¢�Ç�Ä�Æ�Ì¨Í¨Â�Ñ�Æ¬ñ1ú
Â��àßPØ�Á�ÎXÆ0Ì Ú �nñvÒ1Ç�Ä¨Æ0Ì"ú
Â���ï�Ì0É�Çoñ1ú
Basically, all this program does is create a text-based interface and then build aØ�Á�ÎXÆ�Ì Ú �

using this interface and start it running.

When running this program, we get a rough but useable interaction."XÆ�À�Ñ�ÁxÊÎÆÈÄ�Á-9!ÒÓÃ¨Æ2Á8½Á�ÎXÆ0Ì�ï�XÁ?Ï¨Á�ÉÝÛ!Ò¨Ü1ÅÐÄ¨Á?Ä�Ì2Ï9Ï�Á�É¨ÌÐÀÓÉÎÑ�Î�2 Ï��ÁÓÉ Ñ�É¨Ì�Ì�ÆÓÇ�Ä�À�ÏÈÅ½Â�9¨Æ ¬ ý�Õoï�ÎÒ2Ñ�Æo÷ û ø�õÆ@oõÆ@oõ�ÔæõÆ@	
/ Ç¨Ä�Æ�ÌÐÀ�Ò�ÜxÄÐÁ2Í?Û0Å"Ò2Ñ�ÅÐÄ�ÁàÑ1Å!ÂxÇ��¨Æ ñ û
PÄ¨Á¡ÜxÄ¨Á��ú û ÕTõ0@	
�ÎÒ2Ñ�Æo÷ û Ö(õÆ@oõÆ@oõ�Ôæõ ÔC
/ Ç¨Ä�Æ�ÌÐÀ�Ò�ÜxÄÐÁ2Í?Û0Å"Ò2Ñ�ÅÐÄ�ÁàÑ1Å!ÂxÇ��¨Æ ñ û
PÄ¨Á¡ÜxÄ¨Á��ú û Õ�
�ÎÒ2Ñ�Æo÷ û ÔæõÆ@oõÆ@oõ�Ôæõ ÔC
,0É½À�À<��Á�É(ÜÓÆnï½�¨Á�ÉÝÛ!Ò�Ç ¬ ÖxÔoï��ÁÓÉ Ñ�É¨Ì�Ì�ÆÓÇ�Ä�À�ÏÈÅ½Â�9¨Æ ¬ ÖxÕ�Ôoï�XÁ?Ï¨Á�ÉÝÛ!Ò¨Ü1ÅÐÄ¨Á?Ä�Ì2Ï9Ï�Á�É¨ÌÐÀÓÉÎÑ�Î�2 Ï��ÁÓÉ Ñ�É¨Ì�Ì�ÆÓÇ�Ä�À�ÏÈÅ½Â�9¨Æ ¬ ý¨ÔTï�ÎÒ2Ñ�Æo÷ û 'æõ øTõÆ@oõÔ@Tõî'C
/ Ç¨Ä�Æ�ÌÐÀ�Ò�ÜxÄÐÁ2Í?Û0Å"Ò2Ñ�ÅÐÄ�ÁàÑ1Å!ÂxÇ��¨Æ ñ û
PÄ¨Á¡ÜxÄ¨Á��ú û Ö�
�ÎÒ2Ñ�Æo÷ û 'æõî'�õÆ@oõÔ@Tõî'C
/ Ç¨Ä�Æ�ÌÐÀ�Ò�ÜxÄÐÁ2Í?Û0Å"Ò2Ñ�ÅÐÄ�ÁàÑ1Å!ÂxÇ��¨Æ ñ û
PÄ¨Á¡ÜxÄ¨Á��ú û
,0É½À�À<��Á�É(ÜÓÆnï½�¨Á�ÉÝÛ!Ò�Ç ¬ ÖxÔoï��ÁÓÉ Ñ�É¨Ì�Ì�ÆÓÇ�Ä�À�ÏÈÅ½Â�9¨Æ ¬ ÖxÕC@�ï�XÁ?Ï¨Á�ÉÝÛ!Ò¨Ü1ÅÐÄ¨Á?Ä�Ì2Ï9Ï�Á�É¨ÌÐÀÓÉÎÑ�Î�2 Ï

~zr0� �0��s½u���{ bxyè�v��ç�´{é $ ³ {G�0�3Òè{�} ¯ %�é
��ÁÓÉ Ñ�É¨Ì�Ì�ÆÓÇ�Ä�À�ÏÈÅ½Â�9¨Æ ¬ ý�@nï�ÎÒ2Ñ�Æo÷ û Þ�õ Ô�õªÖ�õ Ö(õªÖ�
/ Ç¨Ä�Æ�ÌÐÀ�Ò�ÜxÄÐÁ2Í?Û0Å"Ò2Ñ�ÅÐÄ�ÁàÑ1Å!ÂxÇ��¨Æ ñ û
PÄ¨Á¡ÜxÄ¨Á��ú û ÕTõvÖ�
�ÎÒ2Ñ�Æo÷ û 'æõ øTõªÖ�õ Ö(õªÖ�
/ Ç¨Ä�Æ�ÌÐÀ�Ò�ÜxÄÐÁ2Í?Û0Å"Ò2Ñ�ÅÐÄ�ÁàÑ1Å!ÂxÇ��¨Æ ñ û
PÄ¨Á¡ÜxÄ¨Á��ú û ÕTõvÖ�
�ÎÒ2Ñ�Æo÷ û Ö(õî'�õªÖ�õ Ö(õªÖ�
,�ÁÓÉ�ÌÐÁ0ÍÐÂ�ÀÎÒ�Ç�Ã�ïS�¨Á�ÉÝÛÎÒ1Ç ¬ Ö�'oï��ÁÓÉ Ñ�É¨Ì�Ì�ÆÓÇ�Ä�À�ÏÈÅ½Â�9¨Æ ¬ ÖxÕ2ýnï�XÁ?Ï¨Á�ÉÝÛ!Ò¨Ü1ÅÐÄ¨Á?Ä�Ì2Ï9Ï�Á�É¨ÌÐÀÓÉÎÑ�Î�2 Ç
�0Å½ÂÓÇ	Î"Ü;Í�Á0Ì-!À2Â�Ï½Ò�Ç�� �
You can see how this interface provides just enough so that we can test out the

model. In fact, we’ve got a game that’s already quite a bit of fun to play!

ÊmÇ�È�É�È�× � i+k�i�Ù�vxÍ_l�wm��� ü ¼ ä
Now that we have a working program, let’s turn our attention to a graphical

interface. Our first step must be to decide exactly how we want our interface to

look and function. The interface will have to support the various methods found

in the text-based version and will also probably have some additional helper

methods.

� }C�!�����+�����î�:�?} Ó �	�!}�zF�����:�X�m�
Let’s start with the basic methods that must be supported and decide exactly

how interaction with the user will occur. Clearly, in a graphical interface, the

faces of the dice and the current score should be continuously displayed. TheÜ�Æ�ÄP�!Ò�Ñ�Æ
and

ÜÓÆ0Ä0öXÁ�ÇXÆ0Ï
methods will be used to change those displays. That

leaves one output method,
Ü1ÅXÁ�Û	��Æ½Ü�É!À�Ä

, that we need to accommodate. One

common way to handle this sort of transient information is with a message at

the bottom of the window. This is sometimes called a status bar.

To get information from the user, we will make use of buttons. In
Û½ÂxÇ�Ä���Á0Ø�À�Â�Ï

,

the user will have to decide between either rolling the dice or quitting. We could

include “Roll Dice” and “Quit” buttons for this choice. That leaves us with figur-

ing out how the user should choose dice.

To implement
Ñ1Å½Á�ÁXÜ�Æ��ÎÒ�Ñ�Æ

, we could provide a button for each die and have

the user click the buttons for the dice they want to roll. When the user is done

¯ ~!% s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn} $ {���y|{z� é"{z� $ �0�
choosing the dice, they could click the “Roll Dice” button again to roll the se-

lected dice. Elaborating on this idea, it would be nice if we allowed the user to

change his or her mind while selecting the dice. Perhaps clicking the button of a

currently selected die would cause it to become unselected. The clicking of the

button will serve as a sort of toggle that selects/unselects a particular die. The

user commits to a certain selection by clicking on “Roll Dice.”

Our vision for
Ñ�ÅXÁ�ÁXÜ�Æ!�!Ò�Ñ�Æ

suggests a couple of tweaks for the interface.

First, we should have some way of showing the user which dice are currently

selected. There are lots of ways we could do this. One simple approach would

be to change the color of the die. Let’s “gray out” the pips on the dice selected

for rolling. Second, we need a good way for the user to indicate that they wish

to stop rolling. That is, they would like the dice scored just as they stand. We

could handle this by having them click the “Roll Dice” button when no dice are

selected, hence asking the program to roll no dice. Another approach would be

to provide a separate button to click that causes the dice to be scored. The latter

approach seems a bit more intuitive/informative. Let’s add a “Score” button to

the interface.

Now we have a basic idea of how the interface will function. We still need to

figure out how it will look. What is the exact layout of the widgets? Figure
�2�

.
�

is a sample of how the interface might look. I’m sure those of you with a more

artistic eye can come up with a more pleasing interface, but we’ll use this one as

our working design.

� �?�+�1�m�����Ô�:�?}Ø× �(�8��}��&�
The graphical interface that we are developing makes use of buttons and dice.

Our intent is to reuse the
�0É¨Ä�Ä¨Á�Ç

and
�!Ò�ÆCÛ½Ò�Æ�Û

classes for these widgets that

were developed in previous chapters. The
�0É�Ä2Ä�ÁÓÇ

class can be used as is, and

since we have quite a number of buttons to manage, we can use a list of
�0É¨Ä�Ä�ÁÓÇ

s,

similar to the approach we used in the calculator program from Chapter 11.

Unlike the buttons in the calculator program, the buttons of our poker inter-

face will not be active all of the time. For example, the dice buttons will only

be active when the user is actually in the process of choosing dice. When user

input is required, the valid buttons for that interaction will be set active and the

others will be inactive. To implement this behavior, we can add a helper method

called
Ñ�ÅXÁ�Á½ÜÓÆ

to the
Ø�Á�ÎXÆ0Ì�¢1Ç¨Ä�Æ0Ì�Í�Â¨Ñ�Æ

class.

The
Ñ�ÅXÁ�ÁXÜ�Æ

method takes a list of button labels as a parameter, activates

them, and then waits for the user to click one of them. The return value of

~zr0� �0��s½u���{ bxyè�v��ç�´{é $ ³ {G�0�3Òè{�} ¯ ~�~

Figure Ý�Ü . Ü : GUI interface for video dice poker.

the function is the label of the button that was clicked. We can call the ÙiÚ 9¤9 ¡ 0
method whenever we need input from the user. For example, if we are waiting

for the user to choose either the “Roll Dice” or “Quit” button, we would use a

sequence of code like this:ÙiÚ 9 �¤Ù 0 ßÛ¡ 0573« ��ÙiÚ 9�9 ¡ 0´§:Ü$Ý¸Þ:987¤7 °	�¤Ù 0ßÝ�à&Ýiái¦ � ¢ Ý�â�ª� « Ù²Ú 9 ��Ù 0 ß	ß ÝkÞ8987¤7 °	��Ù 0ßÝ�ã���¤�
Assuming the buttons are stored in an instance variable called ä ¦8¢�¢59 ±�¡ , here

is one possible implementation of ÙiÚ 9�9 ¡ 0 :� 01« ÙiÚ 9¤9 ¡ 0´§ ¡ 087�«|à ÙiÚ 9 ��Ù 0 ¡ ª ãä ¦8¢¤¢89 ±*¡èß¿¡ 0873« �åä ¦8¢�¢59 ±�¡æ ¥ Ù ¢ ��¬ ¥�¢80 ÙiÚ 9 ��Ù 0 ä ¦5¢�¢89 ±*¡ à � 05¥ Ù ¢ ��¬ ¥�¢50³91¢ Ú 0 4	¡«59 4³äç�²±èä ¦5¢�¢89 ±*¡ ã� « äé�¼ 01¢¤ê�¥ ä 087 §$ª �i±ëÙiÚ 9 �¤Ù 0 ¡ ã

¯ ~�r s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn}Fì {���y|{z� é"{z�íì �0�
ËhïèÂ�ÑxÄ!Ò�9XÂ�Ä¨Ææñ�ú

Æ�ÀXÜÓÆn÷
ËhïùÃ¨Æ�Â�ÑxÄ!Ò�9�Â�Ä¨Ææñ1ú

ó��¨Æ0ÄÈÊ!Á�É"Ü�ÆàÑ0À¨Ò�Ñ�Î"ÜªÉ2Ç�Ä!Ò�ÀPÂÓÇÿÂ¨ÑÓÄ½Ò�9�Æ;Ë�É�Ä2Ä�ÁÓÇ Ò¨Ü9Ñ0À¨Ò�Ñ�ÎXÆ2Ã
Û2Å"Ò�À2Æ��2Ì0ÉXÆn÷àß ÜÓÆ¨À0Ínï�Û!Ò�Ç�ïF�¨Æ�Ä2öXÁÓÉ(ÜÓÆæñ1ú

Í�Á0Ì?Ë Ò1Ç9Ë�É�Ä2Ä�ÁÓÇ(Üæ÷
ÒÓÍ7Ë�ïôÑ�À�Ò2Ñ�ÎXÆ0Ã�ñB�ú¬÷

Ì�Æ�Ä0É¨Ì0ÇPËhïB�¨Æ�Ä	��ÂÓË½Æ�À¬ñ�ú ó9Í�É�ÇÎÑÓÄ½Ò�Á�ÇÐÆ��½ÒxÄ7Å½Æ�Ì�Æoï
The other widgets in our interface will be our

�ÎÒ�Æ�Û!Ò�Æ�Û
that we developed

in the last two chapters. Basically, we will use the same class as before, but

we need to add just a bit of new functionality. As discussed above, we want to

change the color of a die to indicate whether it is selected for rerolling.

You might want to go back and review the
�ÎÒ�Æ�Û!Ò�Æ�Û

class. Remember, the

class constructor draws a square and seven circles to represent the positions

where the pips of various values will appear. The
Ü�Æ�Ä	ÛXÂ2ÀÓÉXÆ

method turns on the

appropriate pips to display a given value. To refresh your memory a bit, here is

the
Ü�Æ�Ä	Û�Â�ÀÓÉXÆ

method as we left it:

Ã¨Æ0ÍÿÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0ÍTõ19�Â�ÀxÉ½Æ!ú÷
ó6�0É�Ì�ÇÿÂ�À2À7Ä0Å½Æ<ÎÒ�"Ü Á2Í2Í
Í¨Á0Ì-ÎÒ� Ò1Ç»Ü�Æ¨À�Í�ï>"Ò�"Üæ÷ÎÒ�hïzÜ�Æ�Ä	,½Ò0À�Àñ�ÜÓÆ¨À0Ínï|Ë½Â�Ñ�Î?�2Ì�Á�É2ÇXÃ½ú
ó6�0É�Ì�ÇÐÄ0ÅXÆÝÂ�	¨Ì�Á��Ì!Ò�Â�Ä¨Æè"ÒG(ÜªË½Â�Ñ�ÎàÁ�Ç
Í¨Á0ÌÿÒ9Ò1Ç»Ü�Æ�À0Í�ïùÁ�Ç?�XÂÓË½À2Æ û 9XÂ2ÀÓÉXÆ�
�÷

ÜÓÆ¨À�Í�ï7ÎÒ�"Ü û Ò�
�ïôÜ�Æ0Ä�,!Ò�À�À¬ñvÜ�Æ2À0ÍnïùÍ2Á0Ì�ÆC�0Ì¨Á�É0ÇXÃ!ú
We need to modify the

�!Ò�Æ�Û!Ò�Æ�Û
class by adding a

Ü�Æ0Ä¨×�Á�À2Á0Ì
method. This

method will be used to change the color that is used for drawing the pips. As

you can see in the code for
Ü�Æ�Ä	ÛXÂ2ÀÓÉXÆ

, the color of the pips is determined by

the value of the instance variable
Í�Á0Ì�ÆC�2Ì¨Á�É�Ç�Ã

. Of course, changing the value ofÍ¨Á�Ì�ÆC�2Ì�ÁÓÉ�Ç�Ã
will not actually change the appearance of the die until it is redrawn

using the new color.

The algorithm for
ÜÓÆ0Ä�×2Á¨À0Á0Ì

seems straightforward. We need two steps:

Ñ�Å½ÂÓÇ+�¨Æ?Í�Á0Ì�ÆC�2Ì¨Á�É�Ç�Ã7Ä¨Á?Ä0Å½ÆÈÇXÆ�Û Ñ�Á¨À2Á�Ì
Ì�Æ0Ã2Ì�Â�Û9Ä�Å½ÆàÑ�É¨Ì�Ì¨Æ�Ç�Ä-9XÂ�ÀxÉ½ÆPÁ0ÍPÄ0ÅXÆPÃ½Ò�Æ

~zr0� �0��s½u���{ bxyè�v��ç�´{é·ì ³ {G�0�3Òè{�} ¯ ~��

Unfortunately, the second step presents a slight snag. We already have code

that draws a value, namely
ÜÓÆ0Ä	Û�Â�ÀxÉ½Æ

. But
ÜÓÆ0Ä�ÛXÂ�ÀxÉ½Æ

requires us to send the

value as a parameter, and the current version of
�!Ò�ÆCÛ½Ò�Æ�Û

does not store this

value anywhere. Once the proper pips have been turned on, the actual value is

discarded.

In order to implement
Ü�Æ�Ä�×�Á�À2Á�Ì

, we need to tweak
Ü�Æ�Ä	Û�Â�ÀÓÉXÆ

so that it re-

members the current value. Then
Ü�Æ0Ä¨×�Á�À2Á0Ì

can redraw the die using its current

value. The change to
ÜÓÆ0Ä�ÛXÂ�ÀxÉ½Æ

is easy; we just need to add a single line.

Ü�Æ�À0ÍnïF9XÂ2ÀÓÉXÆ7ß69XÂ2ÀÓÉXÆ
This line stores the value parameter in an instance variable called

9XÂ�ÀxÉ½Æ
.

With the modified version of
Ü�Æ0Ä�ÛXÂ2ÀÓÉ½Æ

, implementing
Ü�Æ�Ä�×�Á�À2Á�Ì

is a breeze.

Ã¨Æ0ÍÿÜ�Æ0Ä¨×�Á�À2Á0Ì�ñ�ÜÓÆ¨À0ÍTõ Ñ�Á¨À0Á0Ì"ú÷
Ü�Æ¨À�Í�ïpÍ¨Á0Ì¨Æ��0Ì�Á�É2ÇXÃ ßÿÑ�Á�À2Á0Ì
Ü�Æ¨À�Í�ïôÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0ÍnïF9�Â�ÀÓÉXÆ½ú

Notice how the last line simply calls
Ü�Æ�Ä	ÛXÂ2ÀÓÉXÆ

to (re)draw the die, passing along

the value that was saved from the last time
ÜÓÆ0Ä�ÛXÂ�ÀxÉ½Æ

was called.

�jzF}��C�:�����Æ���?} Ó �	�&}	zåîF����}
Now that we have our widgets under control, we are ready to actually imple-

ment our GUI poker interface. The constructor will create all of our widgets,

setting up the interface for later interactions.

Ñ0À2ÂXÜ2Ü ü Ì�Â��ÅÎÒ�Ñ�Ü	¢1Ç¨Ä�Æ�Ì¨Í�Â¨Ñ�Æo÷
Ã¨Æ0Í5Ì	Ì�Ò1Ç"ÒxÄ�Ì	Ìñ�ÜÓÆ¨À0Í!ú¬÷

Ü�Æ¨À�Í�ï|ÛÎÒ�Ç9ß ü ÌXÂ��Å	"ÎÒ�Çoñ��H�ÎÒ�Ñ�Æ Ø¨Á�Î�Æ0Ì��!õ�ø�Õ2ÕTõç@�Õ�Õ½ú
Ü�Æ¨À�Í�ï|ÛÎÒ�ÇhïzÜÓÆ0ÄC��Â�Ñ�Î+�2Ì¨Á�É2ÇXÃ�ñ��:�0Ì�Æ0Æ�ÇXÞ��xú
Ë!ÂÓÇ2Ç½Æ�Ì9ß6��ÆC�2ÄTñèØ�Á�Ò�Ç�Ä�ñzÞ2Õ�ÕTõèÞ�Õ½úVõü��Ø2Ï�Ä0ÅXÁ�Ç Ø�Á�ÎXÆ�Ì ØXÂ�ÌXÀ0Á0Ì��Óú
Ë!ÂÓÇ2Ç½Æ�ÌcïzÜÓÆ0Ä+Å�Ò�D�ÆæñzÔC@Îú
Ë!ÂÓÇ2Ç½Æ�ÌcïzÜÓÆ0Ä�,!Ò0À2À¬ñ���Ï�Æ�À�À0Á�Û½Ô_�Óú
Ë!ÂÓÇ2Ç½Æ�ÌcïzÜÓÆ0Ä+Å�Ä�Ï�À2Æ¬ñ��zËXÁ¨À�Ã$��ú
Ë!ÂÓÇ2Ç½Æ�ÌcïùÃ0ÌXÂÓÛoñ�ÜÓÆ¨À�Í�ï�Û!Ò�Ç(ú
Ü�Æ¨À�Í�ïZÊVÜ��7ß���Æ��0ÄTñèØ�ÁXÒ1Ç�Ä�ñzÞ�Õ2ÕTõèÞ	A�Õ½úVõY�&"XÆ¨À¨Ñ�Á�ÊÎÆ7Ä¨Á?Ä0Å½Æ��!Ò�Ñ�Æ��XÂxË!À2Æ*��ú
Ü�Æ¨À�Í�ïZÊVÜ��nïzÜÓÆ0Ä�Å¨Ò�D�Ææñ�Ö�A!ú
Ü�Æ¨À�Í�ïZÊVÜ��nïùÃ0ÌXÂ�ÛTñ�ÜÓÆ¨À0Ínï�Û!Ò�Ç�ú
Ü�Æ¨À�Í�ï`ÑÓÌ�Æ�Â�Ä¨Æ!�ÎÒ2Ñ�Æ¬ñ`Ø�Á�Ò�Ç¨ÄTñzÞ2Õ2Õ�õ�Ö1Õ�Õ½úVõ þ	'½ú
Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(Üªß û

¯ ~ ¯ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn}Fì {���y|{z� é"{z�íì �0�
Ü�Æ¨À�Í�ïðÂ0Ã�Ã!�ÎÒ2Ñ�ÆK��É�Ä2Ä�Á�Ç"Ü�ñèØ�ÁXÒ1Ç¨Ä�ñzÞ0Õ�Õ�õ�Ö1þ�Õ!ú�õ þ?'æõ Þ�Õ½ú
Ëàß¡��É�Ä2Ä�Á�Çoñ�ÜÓÆ¨À0Ínï�Û!Ò�Çcõ Ø¨ÁXÒ�Ç¨ÄTñôÞ�Õ�Õ�õ�Ô0Þ�Õ!ú�õç@¨Õ2ÕTõÆ@�ÕTõè�!��Á¨À2À®�ÎÒ2Ñ�Æ��Óú
Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(ÜæïðÂ��½Æ�Ç�Ã�ñùË�ú
Ëàß¡��É�Ä2Ä�Á�Çoñ�ÜÓÆ¨À0Ínï�Û!Ò�Çcõ Ø¨ÁXÒ�Ç¨ÄTñôÞ�Õ�Õ�õ�ÔCA�Õ!ú�õfÖ�'0ÕTõÆ@�ÕTõè�GÅ¨Ñ�Á�Ì�Æ��Óú
Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(ÜæïðÂ��½Æ�Ç�Ã�ñùË�ú
Ëàß¡��É�Ä2Ä�Á�Çoñ�ÜÓÆ¨À0Ínï�Û!Ò�Çcõ Ø¨ÁXÒ�Ç¨ÄTñ&'2þ�Õ�õ`Þ2þ?'½ú�õ#@�ÕTõ Þ2ÕTõè�í�xÉ"ÒxÄ���ú
Ü�Æ¨À�Í�ï Ë�É�Ä2Ä�ÁÓÇ(ÜæïðÂ��½Æ�Ç�Ã�ñùË�ú
Ü�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï?ß6��Æ��0ÄTñèØ�ÁXÒ1Ç�Ä�ñzÞ�Õ2ÕTõèÞ¨Ô	'XúVõü� ¬ ÖxÕ2Õ���úÜ�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï�ïzÜ�Æ�Ä�Å¨Ò�D¨Æ¬ñ�Ö�A!ú
Ü�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï�ïùÃ2Ì�Â�ÛTñ�Ü�Æ�À0Ínï�ÛÎÒ1Ç(ú

You should compare this code to Figure ï¤ð . ð to make sure you understand how

the elements of the interface are created and positioned.

I hope you noticed that I pushed the creation of the dice and their associated

buttons into a couple of helper methods. Here are the necessary definitions:Ã¨Æ0Í¡ÑÓÌ�Æ�Â�Ä¨Æ!�ÎÒ2Ñ�Æ¬ñ�Ü�Æ�À0ÍTõ�Ñ�Æ�Ç¨Ä�Æ0Ìoõ Ü2Ò�D¨Æ½ú¬÷
Ñ�Æ�Ç¨Ä�Æ�Ìcï�Ê!ÁC9¨Ææñ!�0Þ�;�Ü2Ò�D�ÆTõèÕ!ú
Ü�Æ¨À�Í�ïpÃ½Ò�Ñ�Æ7ß û

Í¨Á0ÌÿÒ9Ò1ÇÐÌXÂxÇ��¨Æ¬ñ!'Xú¬÷9½Ò�Æ�ÛÝß��ÎÒ�Æ�Û!Ò�Æ�ÛoñvÜ�Æ�À0Í�ï|ÛÎÒ1Çcõ¢Ñ�ÆÓÇ�Ä�Æ�Ìnõ Ü0Ò�D�Æ!ú

ÜÓÆ¨À�Í�ïùÃXÒ�Ñ�ÆnïèÂ�	XÆ�ÇXÃæñÒ9½Ò�Æ�Û"ú
Ñ�Æ�Ç¨Ä�Æ0Ì�ï�Ê!ÁC9�Æ¬ñ�ÖVï�'+;�Ü2Ò�D¨ÆTõèÕ!ú

Ã¨Æ0ÍÐÂ0Ã�Ã!�ÎÒ2Ñ�ÆK��É�Ä2Ä�Á�Ç"Ü�ñvÜ�Æ¨À�ÍoõlÑ�Æ�Ç�Ä¨Æ0Ìoõ ÛÎÒÓÃ2Ä0Å�õîÅ½Æ�Ò���Å�Ä"ú÷
Ñ�Æ�Ç¨Ä�Æ�Ìcï�Ê!ÁC9¨Ææñ!�0Þ�;�ÛÎÒ�Ã0Ä0Å�õ Õ!ú
Í¨Á0ÌÿÒ9Ò1ÇÐÌXÂxÇ��¨Æ¬ñ�Ö(õ`ø!ú÷

À2ÂÓËXÆ¨À7ß����!Ò�Æ��2Ã$�¯�	ñvÒ¨ú
Ëàß���É�Ä�Ä¨Á�Çoñ�Ü�Æ�À0Ínï�ÛÎÒ1Çcõ¢Ñ�ÆÓÇ�Ä¨Æ0ÌnõîÛÎÒ�Ã0Ä0Å�õîÅ½Æ�Ò���Å¨Änõ À2ÂÓËXÆ¨À½ú
ÜÓÆ¨À�Í�ï|Ë2É�Ä2Ä�Á�Ç"ÜæïðÂ�	XÆ�Ç�Ã�ñðË(ú
Ñ�Æ�Ç¨Ä�Æ0Ì�ï�Ê!ÁC9�Æ¬ñ�ÖVï�'+;�ÛÎÒÓÃ2Ä0Å�õ Õ!ú

These two methods are similar in that they employ a loop to draw five similar

widgets. In both cases, a
Ø�Á�Ò�Ç�Ä

variable,
Ñ�Æ�Ç�Ä¨Æ0Ì

, is used to calculate the correct

position of the next widget.ÓFÔ ���X} Ô }��?�!�����°�:�+} Ó �	�&}�zF�	���!���m�
You might be a little scared at this point that the constructor for our GUI in-

terface was so complex. Even simple graphical interfaces involve many inde-

pendent components. Getting them all set up and initialized is often the most

~zr0� �0��s½u���{ bxyè�v��ç�´{é·ì ³ {G�0�3Òè{�} ¯ ~�´

tedious part of coding the interface. Now that we have that part out of the

way, actually writing the code that handles the interaction will not be too hard,

provided we attack it one piece at a time.

Let’s start with the simple output methods
Ü�Æ0Ä0öXÁÓÇ½Æ0Ï

and
Ü1ÅXÁ�Û��XÆ½Ü�É!À�Ä

. These

two methods display some text in our interface window. Since our constructor

took care of creating and positioning the relevant
��Æ��0Ä

objects, all our methods

have to do is call the
Ü�Æ�Ä	�¨Æ��2Ä

methods for the appropriate objects.

Ã¨Æ0ÍÿÜ�Æ0Ä0öXÁÓÇ½Æ0Ï�ñ�ÜÓÆ¨À0ÍTõ¢Â1Ê½ÄÎú¬÷
Ü�Æ¨À�Í�ïZÊÎÁ�ÇXÆ0Ï�ïzÜ�Æ�Ä	�¨Æ��2Ä�ñ�� ¬ ��Ã���� ñ�Â1Ê½ÄÎú�ú

Ã¨Æ0ÍÿÜ1Å½Á�Û	��Æ½Ü1É½À�Ä�ñ�Ü�Æ�À0ÍTõ�Ê�Ü��Tõ�Ü2Ñ�Á�Ì�Æ½ú¬÷
Ò�ÍÿÜ2Ñ�Á0Ì¨Æ � Õn÷Ä¨Æ��0Ä9ß��4�!Ü�� ��ÁÓÉÝÛÎÒ1Ç ¬ ��Ã��¯� ñpÊ�Ü��oõ�Ü0Ñ�Á�Ì�Æ!ú
Æ¨ÀXÜÓÆn÷

Ä¨Æ��0Ä9ß��/��ÁÓÉÝÌ�Á�À�À0Æ2Ã��!Üm��	ñpÊ�Ü��Îú
Ü�Æ¨À�Í�ïZÊVÜ��nïzÜÓÆ0Ä	�¨Æ��0ÄTñ`Ä¨Æ��0Ä"ú

In a similar spirit, the output method
ÜÓÆ0ÄP�!Ò�Ñ�Æ

must make a call to theÜ�Æ�Ä	Û�Â�ÀÓÉXÆ
method of the approriate

�!Ò�ÆCÛ½Ò�Æ�Û
objects in

ÃXÒ�Ñ�Æ
. We can do this

with a
Í¨Á�Ì

loop.

Ã¨Æ0ÍÿÜ�Æ0ÄK�ÎÒ2Ñ�ÆæñvÜ�Æ�À0Íoõ 9XÂ2ÀÓÉXÆ½Ü¨ú÷
Í¨Á0ÌÿÒ9Ò1ÇÐÌXÂxÇ��¨Æ¬ñ!'Xú¬÷

ÜÓÆ¨À�Í�ïùÃXÒ�Ñ�Æ û Ò�
�ïôÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñÒ9¨Â�ÀxÉ½Æ�Ü û Ò�
!ú
Take a good look at the line in the loop body. It sets the ith die to show the ith

value.

As you can see, once the interface has been constructed, making it functional

is not overly difficult. Our output methods are completed with just a few lines

of code. The input methods are only slightly more complicated.

The
ÛXÂÓÇ¨Ä	��Á�ØXÀ2Â�Ï

method will wait for the user to click either “Roll Dice” or

“Quit.” We can use our
Ñ1Å½Á2Á½Ü�Æ

helper method to do this.

Ã¨Æ0Í?Û½ÂÓÇ¨Ä	�¨Á0ØXÀ2Â�Ï�ñ�Ü�Æ�À0Í!ú¬÷
ÂÓÇ(Ü ßÿÜÓÆ¨À�Í�ïôÑ1Å½Á2Á½Ü�Æ¬ñ û �!�XÁ�À�Àh�ÎÒ2Ñ�Æ*�Îõ§��ÓÉ"ÒxÄ��:
Îú
Ü�Æ¨À�Í�ïZÊVÜ��nïzÜÓÆ0Ä	�¨Æ��0ÄTñ�����ú
Ì�Æ0Ä�É�Ì�Ç¡ÂÓÇ"Ü ß�ß)�!��Á¨À2À®�ÎÒ2Ñ�Æ��

After waiting for the user to click an appropriate button, this method then clears

out any message—such as the previous results—by setting the
ÊVÜ��

text to the

¯ ~�¹ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn}Fì {���y|{z� é"{z�íì �0�
empty string. The method then returns a Boolean value by examining the label

returned by
Ñ1Å½Á2Á½Ü�Æ

.

That brings us to the
Ñ�Å½Á2Á½ÜÓÆ!�ÎÒ2Ñ�Æ

method. Here we must implement a more

extensive user interaction. The
Ñ�ÅXÁ�Á½ÜÓÆ!�!Ò�Ñ�Æ

method returns a list of the indexes

of the dice that the user wishes to roll.

In our GUI, the user will choose dice by clicking on corresponding buttons.

We need to maintain a list of which dice have been chosen. Each time a die

button is clicked, that die is either chosen (its index is appended to the list)

or unchosen (its index is removed from the list). In addition, the color of the

corresponding
�!Ò�ÆCÛ½Ò�Æ�Û

reflects the status of the die. The interaction ends when

the user clicks either the roll button or the score button. If the roll button is

clicked, the method returns the list of currently chosen indexes. If the score

button is clicked, the function returns an empty list to signal that the player is

done rolling.

Here is one way to implement the choosing of dice. The comments in this

code explain the algorithm:

Ã�Æ2Í¡Ñ1Å½Á�ÁXÜ�Æ��ÎÒ�Ñ�ÆæñvÜ�Æ¨À�ÍÎú÷
ó¡Ñ1Å½ÁXÒ2Ñ�ÆXÜ?Ò¨Ü7ÂÝÀ�Ò�ÜxÄÝÁ0ÍPÄ0ÅXÆàÒ�ÇXÃ�Æ���Æ½Ü Á0ÍPÄ0Å½Æ¡ÜÓÆ¨À0ÆXÑÓÄ¨Æ2ÃPÃXÒ�Ñ�Æ
Ñ1Å½ÁXÒ2Ñ�ÆXÜ ß û
 ó�Ð¨ÁPÃ½Ò�Ñ�ÆÐÑ�ÅXÁ½ÜÓÆ�ÇÐÏ�Æ�Ä
Û0Å"Ò0À0Æ���Ì�É½Æo÷

ó?Û½Â¨ÒÓÄÝÍ�Á0Ì?É(ÜÓÆ0ÌPÄ¨ÁàÑ0À¨Ò�Ñ�Î¡Â�9�Â�À¨Ò�Ã7Ë�É¨Ä�Ä¨Á�Ç
ËàßÿÜ�Æ�À0ÍnïôÑ�ÅXÁ�ÁXÜ�Ææñ û �H�ÎÒ�ÆÐÖ��!õ§���!Ò�ÆÝÔ_�Îõè���!Ò�Æ9Þ*�Îõè���!Ò�Æ-@��Îõè�H�ÎÒ�Æ '_�Îõ�!��Á¨À�ÀÅ�ÎÒ�Ñ�Æ��!õ§�GÅ¨Ñ�Á0Ì¨Æ��:
Îú
Ò�Í7Ë û ÕC
Pß�ß������(÷ ó?Ù"Ü�Æ0ÌàÑ0À�Ò2Ñ�Î�Æ2ÃÝÂPÃ½Ò�Æ Ë�É¨Ä�Ä¨Á�Ç

Ò7ßÝÆC9�Â�À¬ñùË û @	
Îú§� Ö ó��2ÌXÂÓÇ"Ü�À2Â�Ä�Æ?À�ÂxË½Æ¨À Ä�ÁPÃ½Ò�ÆàÒ�Ç�Ã¨Æ��
Ò�ÍÿÒ9Ò1Ç Ñ�Å½Á�Ò�Ñ�Æ½Üæ÷ óÐ×ÓÉ�Ì�Ì¨Æ�Ç¨ÄXÀ�ÏàÜ�Æ�À2ÆXÑxÄ�Æ0Ãoõ É2Ç(ÜÓÆ¨À2Æ�ÑÓÄ¡ÒxÄ

Ñ�ÅXÁXÒ�Ñ�Æ½Ü¬ïpÌ�Æ�ÊÎÁ�9�Ææñ�Ò�ú
Ü�Æ�À0Í�ïpÃ½Ò2Ñ�Æ û Ò�
nïzÜ�Æ�Ä�×2Á¨À2Á�ÌTñ��zË!À2Â¨Ñ�Îx�xú

Æ¨À�Ü�Æo÷ óÐ×ÓÉ�Ì�Ì¨Æ�Ç¨ÄXÀ�Ï É�Ç"Ü�Æ¨À0ÆXÑxÄ�Æ2ÃTõ�ÜÓÆ¨À2Æ�ÑÓÄ¡ÒxÄ
Ñ�ÅXÁXÒ�Ñ�Æ½Ü¬ïèÂ��½ÆÓÇXÃ�ñ�Ò�ú
Ü�Æ�À0Í�ïpÃ½Ò2Ñ�Æ û Ò�
nïzÜ�Æ�Ä�×2Á¨À2Á�ÌTñ����2Ì�Â�Ï$��ú

Æ¨À�Ü�Æo÷ ó?Ù"Ü�Æ0ÌàÑ0À�Ò2Ñ�Î�Æ2Ã���Á¨À�ÀPÁ�Ì(Å�Ñ�Á0Ì�Æ
Í¨Á�ÌÝÃÿÒ�Ç»Ü�Æ�À0ÍnïùÃ½Ò2Ñ�Æo÷ ó6��ÆC9�Æ�Ì�ÄÐÂ�	XÆ¨Â�Ì�ÂÓÇÎÑ�Æ?Á0ÍÐÂ�À2À?Ã½Ò�Ñ�Æ

Ã�ïôÜ�Æ0Ä¨×�Á�À2Á0Ì�ñ��ôË!À�Â¨Ñ�Î���ú
Ò�Í?Ëàß2ß)�GÅ�Ñ�Á0Ì¨Æ��(÷ ó(Å¨Ñ�Á0Ì¨ÆÐÑ0À¨Ò�Ñ�ÎXÆ2ÃTõ�Ò���Ç½Á�Ì�ÆÐÑ1Å½ÁXÒ2Ñ�ÆXÜ

Ì�Æ�Ä0É�Ì�Ç û

Æ¨À¨Ò�Í¡Ñ1Å½ÁXÒ2Ñ�ÆXÜ³�pß û
�÷ ó���Á�Ç��ùÄÐÂ�Ñ2Ñ�Æ��Ä-��Á¨À�À É2Ç!À0Æ½Ü�Ü?Ü�ÁxÊ!Æ

~zr0� ¯ ��Ñ Ñ sX��� ³ {1wzy|� ¯ ~�¿

Ì�Æ�Ä0É�Ì�Ç Ñ�ÅXÁXÒ2Ñ�Æ½Ü ó ÃXÒ�Ñ�ÆÝÂ�Ì�ÆÝÂ¨ÑÓÄ0É½Â�À2À�Ï¡ÜÓÆ¨À0ÆXÑÓÄ¨Æ2Ã
That about wraps up our program. The only missing piece of our interface

class is the
Ñ0À2ÁXÜ�Æ

method. To close up the graphical version, we just need to

close the graphics window.

Ã¨Æ0Í¡Ñ0À2ÁXÜ�Æ¬ñ�Ü�Æ�À0Í!ú¬÷
Ü�Æ¨À�Í�ï|ÛÎÒ�ÇhïôÑ�À2Á½ÜÓÆæñ�ú

Finally, we need a few lines to actually get our graphical poker playing pro-

gram started. This code is exactly like the start code for the textual version,

except that we use a
ü Ì�Â�2Å"Ò�Ñ�Ü	¢�Ç�Ä�Æ�Ì¨Í¨Â�Ñ�Æ

in place of the
��ÆC�2Ä�¢1Ç�Ä¨Æ0Ì�Í�Â�Ñ�Æ

.

Ò�Ç¨Ä�Æ�Ì9ß ü ÌXÂ��ÅÎÒ�Ñ¨Ü�¢1Ç¨Ä�Æ0Ì�Í�Â¨Ñ�Ææñ�ú
Â��àßPØ�Á�ÎXÆ0Ì Ú �nñvÒ1Ç�Ä¨Æ0Ì"ú
Â���ï�Ì0É�Çoñ1ú

We now have a complete, useable video dice poker game. Of course, our

game is lacking a lot of bells and whistles such as printing a nice introduction,

providing help with the rules, and keeping track of high scores. I have tried to

keep this example relatively simple, while still illustrating important issues in

the design of GUIs using objects. Improvements are left as exercises for you.

Have fun with them!

]o�«^|µ N9N ¢�£e�S¬R�¤nU�[

My goal for the racquetball and video poker case studies was to give you a taste

for what OOD is all about. Actually, what you’ve seen is only a distillation of the

design process for these two programs. Basically, I have walked you through the

algorithms and rationale for two completed designs. I did not document every

single decision, false start, and detour along the way. Doing so would have

at least tripled the size of this (already long) chapter. You will learn best by

making your own decisions and discovering your own mistakes, not by reading

about mine.

Still, these smallish examples illustrate much of the power and allure of

the object-oriented approach. Hopefully, you can see why OO techniques are

becoming standard practice in software development. The bottom line is that

the OO approach helps us to produce complex software that is more reliable and

cost-effective. However, I still have not defined exactly what counts as objected-

oriented development.

¯ ~�â s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn}Fì {���y|{z� é"{z�íì �0�
Most OO gurus talk about three features that together make development

truly object-oriented: encapsulation, polymorphism, and inheritance. I don’t

want to belabor these concepts too much, but your introduction to object-oriented

design and programming would not be complete without at least some under-

standing of what is meant by these terms.

ÊmÇ�È � ÈSÊ �dw3�	�*Í3s�r_Ù��mtGlnvxw
I have already mentioned the term encapsulation in previous discussion of ob-

jects. As you know, objects know stuff and do stuff. They combine data and

operations. This process of packaging some data along with the set of opera-

tions that can be performed on the data is called encapsulation.

Encapsulation is one of the major attractions of using objects. It provides a

convenient way to compose complex problems that corresponds to our intuitive

view of how the world works. We naturally think of the world around us as

consisting of interacting objects. Each object has its own identity, and knowing

what kind of object it is allows us to understand its nature and capabilities. I

look out my window and I see houses, cars, and trees, not a swarming mass of

countless molecules or atoms.

From a design standpoint, encapsulation also provides a critical service of

separating the concerns of “what” vs. “how.” The actual implementation of an

object is independent of its use. The implementation can change, but as long

as the interface is preserved, other components that rely on the object will not

break. Encapsulation allows us to isolate major design decisions, especially ones

that are subject to change.

Another advantage of encapsulation is that it supports code reuse. It allows

us to package up general components that can be used from one program to

the next. The
�ÎÒ�ÆCÛ½Ò�Æ�Û

class and
��É�Ä�Ä¨Á�Ç

classes are good examples of reusable

components.

Encapsulation is probably the chief benefit of using objects, but alone it only

makes a system object-based. To be truly objected-oriented, the approach must

also have the characteristics of polymorphism and inheritance.

ÊmÇ�È � È�Ç �dv$Ù ¤3�îv*�&Í 3lns��
Literally, the word polymorphism means “many forms.” When used in object-

oriented literature, this refers to the fact that what an object does in response to

a message (a method call) depends on the type or class of the object.

~zr0� ¯ ��Ñ Ñ sX��� ³ {1wzy|� ¯ ~�é

Our poker program illustrated one aspect of polymorphism. The
Ø¨Á�ÎXÆ�Ì Ú 	

class was used both with a
�¨Æ��0Ä3¢1Ç¨Ä�Æ�Ì¨Í�Â¨Ñ�Æ

and a
ü ÌXÂ��ÅÎÒ�Ñ¨Ü�¢1Ç¨Ä�Æ0Ì�Í�Â¨Ñ�Æ

. There

were two different forms of interface, and the
Ø�Á�ÎXÆ0Ì Ú �

class could function

quite well with either. When the
Ø�Á�ÎXÆ�Ì Ú �

called the
Ü1ÅXÁ�ÛP�ÎÒ�Ñ�Æ

method, for ex-

ample, the
�¨Æ��2Ä�¢1Ç¨Ä�Æ0Ì�Í�Â¨Ñ�Æ

showed the dice one way and the
ü ÌXÂ��Å"Ò2Ñ¨Ü�¢1Ç�Ä¨Æ0Ì�Í�Â�Ñ�Æ

did it another way.

In our poker example, we used either the text interface or the graphics inter-

face. The remarkable thing about polymorphism, however, is that a given line in

a program may invoke a completely different method from one moment to the

next. As a simple example, suppose you had a list of graphics objects to draw

on the screen. The list might contain a mixture of
×�ÒÓÌ!Ñ�À2Æ

,
��ÆXÑÓÄ�ÂÓÇ+��À2Æ

,
Ø¨Á¨À�Ï?�¨ÁÓÇ

,

etc. You could draw all the items in a list with this simple code:Í¨Á�ÌÐÁ�Ë ï Ò�Ç¡Á�Ë ï Æ�ÑÓÄÎÜ¬÷Á�Ë ï ïùÃ0ÌXÂÓÛoñèÛ!Ò�Ç(ú
Now ask yourself, what operation does this loop actually execute? When

ÁÓË ï
is a circle, it executes the

Ã2Ì�Â�Û
method from the circle class. When

ÁÓË ï is a

rectangle, it is the
Ã2ÌXÂÓÛ

method from the rectangle class, etc.

Polymorphism gives object-oriented systems the flexibility for each object

to perform an action just the way that it should be performed for that object.

Before object orientation, this kind of flexibility was much harder to achieve.

ÊmÇ�È � È�É ä7w �i_��l�tu�*w3�	i
The third important property for object-oriented approaches, inheritance, is one

that we have not yet used. The idea behind inheritance is that a new class

can be defined to borrow behavior from another class. The new class (the one

doing the borrowing) is called a subclass, and the existing class (the one being

borrowed from) is its superclass.

For example, if we are building a system to keep track of employees, we

might have a class / Ê+!À0Á0Ï¨Æ�Æ that contains the general information that is com-

mon to all employees. One example attribute would be a
Å½Á�ÊÎÆ Ú Ã�Ã0Ì�ÆXÜ�Ü

method

that returns the home address of an employee. Within the class of all employ-

ees, we might distinguish between
Å2Â�À�Â�Ì!Ò�Æ2Ã / Ê+½À2Á0Ï¨Æ�Æ and

�XÁÓÉ�Ì�À�Ï / Ê+½À2Á0Ï¨Æ�Æ .
We could make these subclasses of / Ê+½À2Á0Ï¨Æ�Æ , so they would share methods likeÅ½Á�ÊÎÆ Ú Ã�Ã0Ì�ÆXÜ�Ü

. However, each subclass would have its own
ÊÎÁ�Ç¨Ä0Å½À�Ï�Ø�Â�Ï

function,

since pay is computed differently for these different classes of employees.

Inheritance provides two benefits. One is that we can structure the classes of

a system to avoid duplication of operations. We don’t have to write a separate

¯ r�% s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn}Fì {���y|{z� é"{z�íì �0�
Å½Á�ÊÎÆ Ú Ã�Ã0Ì�ÆXÜ�Ü

method for the
�XÁÓÉ�ÌXÀ�Ï / Ê+!À0Á0Ï¨Æ�Æ and

Å�Â�À2Â�Ì½Ò�Æ2Ã / Ê?!À2Á�Ï�Æ2Æ classes.

A closely related benefit is that new classes can often be based on existing

classes, promoting code reuse.

We could have used inheritance to build our poker program. When we first

wrote the
�!Ò�ÆCÛ½Ò�Æ�Û

class, it did not provide a way of changing the appearance

of the die. We solved this problem by modifying the original class definition. An

alternative would have been to leave the original class unchanged and create a

new subclass
×2Á¨À2Á�ÌP�!Ò�ÆCÛ½Ò�Æ�Û

. A
×2Á¨À0Á0ÌP�!Ò�Æ�Û!Ò�Æ�Û

is just like a
�ÎÒ�Æ�Û!Ò�Æ�Û

except that

it contains an additional method that allows us to change its color. Here is how

it would look in Python:

Ñ0À2ÂXÜ2Ü ×�Á�À2Á0ÌK�ÎÒ�ÆCÛ!Ò�Æ�ÛTñM�ÎÒ�ÆCÛ½Ò�Æ�Û"ú¬÷
Ã¨Æ0ÍÿÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0ÍTõ19�Â�ÀxÉ½Æ!ú÷

Ü�Æ¨À�Í�ïI9XÂ�ÀxÉ½ÆÈß69XÂ�ÀxÉ½Æ�ÎÒ�Æ�Û!Ò�Æ�ÛhïôÜ�Æ�Ä	ÛXÂ2ÀÓÉXÆæñ�ÜÓÆ¨À�Íoõ 9XÂ2ÀÓÉXÆ!ú
Ã¨Æ0ÍÿÜ�Æ0Ä¨×�Á�À2Á0Ì�ñ�ÜÓÆ¨À0ÍTõ Ñ�Á¨À0Á0Ì"ú÷

Ü�Æ¨À�Í�ïpÍ¨Á0Ì¨Æ��0Ì�Á�É2ÇXÃ ßÿÑ�Á�À2Á0Ì
Ü�Æ¨À�Í�ïôÜ�Æ0Ä�ÛXÂ2ÀÓÉ½Æ¬ñ�ÜÓÆ¨À0ÍnïF9�Â�ÀÓÉXÆ½ú

The first line of this definition says that we are defining a new class
×2Á¨À2Á�ÌP�!Ò�ÆCÛ½Ò�Æ�Û

that is based on (i.e., a subclass of)
�ÎÒ�Æ�Û!Ò�Æ�Û

. Inside the new class, we define two

methods. The second method,
Ü�Æ�Ä�×2Á¨À2Á�Ì

, adds the new operation. Of course, in

order to make
ÜÓÆ0Ä¨×�Á¨À0Á0Ì

work, we also need to modify the
Ü�Æ�Ä	Û�Â�ÀÓÉXÆ

operation

slightly.

The
Ü�Æ�Ä	Û�Â�ÀÓÉXÆ

method in
×2Á¨À2Á�ÌP�!Ò�ÆCÛ½Ò�Æ�Û

redefines or overrides the definition

of
Ü�Æ0Ä�ÛXÂ2ÀÓÉ½Æ

that was provided in the
�ÎÒ�ÆCÛ½Ò�Æ�Û

class. The
Ü�Æ0Ä�ÛXÂ2ÀÓÉ½Æ

method in

the new class first stores the value and then relies on the
Ü�Æ�Ä	ÛXÂ2ÀÓÉXÆ

method

of the superclass
�!Ò�Æ�Û!Ò�Æ�Û

to actually draw the pips. Notice especially how

the call to the method from the superclass is made. The normal approachÜ�Æ�À0ÍnïzÜ�Æ�Ä	Û�Â�ÀÓÉXÆæñ�9XÂ�ÀxÉ½Æ½ú
would refer to the

ÜÓÆ0Ä	Û�Â�ÀxÉ½Æ
method of the

×�Á�À2Á�ÌP�ÎÒ�ÆCÛ½Ò�Æ�Û
class, since

ÜÓÆ¨À0Í
is an instance of

×2Á¨À2Á�ÌP�!Ò�ÆCÛ½Ò�Æ�Û
. In order to call the originalÜ�Æ�Ä	Û�Â�ÀÓÉXÆ

method from the superclass, it is necessary to put the class name

where the object would normally go.�ÎÒ�ÆCÛ½Ò�Æ�ÛcïzÜÓÆ0Ä	Û�Â�ÀxÉ½ÆæñvÜ�Æ�À0ÍoõB9XÂ0ÀÓÉXÆ!ú
The actual object to which the method is applied is then sent as the first param-

eter.

~�r0� ´0�0s(t�uxw�y|{�}�b¨������u�}�ç ¯ r0~
]o�«^|º �b�i�¤nU�Rcg © ¦§� � ing1í

This chapter has not introduced very much in the way of new technical con-

tent. Rather it has illustrated the process of object-oriented design through the

racquetball simulation and dice poker case studies. The key ideas of OOD are

summarized here:

\ Object-oriented design (OOD) is the process of developing a set of classes

to solve a problem. It is similar to top-down design in that the goal is to

develop a set of black boxes and associated interfaces. Where top-down

design looks for functions, OOD looks for objects.

\ There are many different ways to do OOD. The best way to learn is by

doing it. Some intuitive guidelines can help:

1. Look for object candidates.

2. Identify instance variables.

3. Think about interfaces.

4. Refine nontrivial methods.

5. Design iteratively.

6. Try out alternatives.

7. Keep it simple.

\ In developing programs with sophisticated user interfaces, it’s useful to

separate the program into model and view components. One advantage

of this approach is that it allows the program to sport multiple looks (e.g.,

text and GUI interfaces).

\ There are three fundamental principles that make software object ori-

ented:

Encapsulation Separating the implementation details of an object from

how the object is used. This allows for modular design of complex

programs.

Polymorphism Different classes may implement methods with the same

signature. This makes programs more flexible, allowing a single line

of code to call different methods in different situations.

Inheritance A new class can be derived from an existing class. This sup-

ports sharing of methods among classes and code reuse.

¯ r�r s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn}Fì {���y|{z� é"{z�íì �0�
]o�«^�ê egfTRhg1S¬W�[�RT[
hji+kmlni+oqp1r3i�sutGlnvxw�s
y{z0|?}�~3�	�?�X�!}

1. Object-oriented design is the process of finding and defining a useful set

of functions for solving a problem.

2. Candidate objects can be found by looking at the verbs in a problem de-

scription.

3. Typically, the design process involves considerable trial-and-error.

4. GUIs are often built with a model-view architecture.

5. Hiding the details of an object in a class definition is called instantiation.

6. Polymorphism literally means “many changes.”

7. A superclass inherits behaviors from its subclasses.

8. GUIs are generally easier to write than text-based interfaces.

� |��Q�!�����X}1�j�?������}
1. Which of the following was not a class in the racquetball simulation?

a)
ØXÀ2Â�Ï�Æ�Ì

b)
Å¨Ò�Ê_Å�ÄXÂ�ÄÎÜ

c)
�C�XÂ�À2À ü Â�ÊÎÆ

d)
Å�Ñ�Á�Ì�Æ

2. What is the data type of
Ü�Æ�Ì	9¨Æ0Ì

in an
�C�XÂ�À2À ü Â�ÊÎÆ

?

a) int b)
Ø�À�Â�Ï�Æ0Ì

c) bool d)
Å�Ò�Ê3Å�Ä�Â�ÄÎÜ

3. The
Ò¨Ü Ä 9¨Æ0Ì

method is defined in which class?

a)
Å�ÒvÊ_Å�Ä�Â�Ä!Ü

b)
�C�XÂ�À2À ü Â�ÊÎÆ

c)
ØXÀ�Â�Ï�Æ�Ì

d)
Ø�Á�Î�Æ0Ì Ú 	

4. Which of the following is not one of the fundamental characteristics of

object-oriented design/programming?

a) inheritance b) polymorphism

c) generality d) encapsulation

5. Separating the user interface from the “guts” of an application is called

a(n) approach.

a) abstract b) object-oriented

c) model-theoretic d) model-view

~�r0� ¹0�?����{1} ³ ì ��{z� ¯ r��
� ���!��|?�&�:���m�

1. In your own words, describe the process of OOD.

2. In your own words, define encapsulation, polymorphism, and inheritance.

���Bv_���0�*����l�wm�5����i_���	lns�i�s
1. Modify the Dice Poker program from this chapter to include any or all of

the following features:

(a) Splash Screen. When the program first fires up, have it print a short

introductory message about the program and buttons for “Let’s Play”

and “Exit.” The main interface shouldn’t appear unless the user se-

lects “Let’s Play.”

(b) Add a help button that pops up another window displaying the rules

of the game (the payoffs table is the most important part).

(c) Add a high score feature. The program should keep track of the 10

best scores. When a user quits with a good enough score, he/she is

invited to type in a name for the list. The list should be printed in

the splash screen when the program first runs. The high-scores list

will have to be stored in a file so that it persists between program

invocations.

2. Using the ideas from this chapter, implement a simulation of another rac-

quet game. See the programming exercises from Chapter 9 for some ideas.

3. Write a program to keep track of conference attendees. For each attendee,

your program should keep track of name, company, state, and email ad-

dress. Your program should allow users to do things such as add a new

attendee, display info on an attendee, delete an attendee, list the name

and email addresses of all attendees, and list the name and email address

of all attendees from a given state. The attendee list should be stored in a

file and loaded when the program starts.

4. Write a program that simulates an Automatic Teller Machine (ATM). Since

you probably don’t have access to a card reader, have the initial screen

ask for user id and a PIN. The user id will be used to look up the info for

the user’s accounts (including the PIN to see if it matches what the user

types). Each user will have access to a checking account and a savings

¯ r ¯ s(t�uxw�y|{�}V~�r0��Ñ�
 Ê�{ ³ y�E7Ñn}Fì {���y|{z� é"{z�íì �0�
account. The user should able to check balances, withdraw cash, and

transfer money between accounts. Design your interface to be similar to

what you see on your local ATM. The user account information should be

stored in a file when the program terminates. This file is read in again

when the program restarts.

5. Find the rules to an interesting dice game and write an interactive program

to play it. Some examples are Craps, Yacht, Greed, and Skunk.

6. Write a program that deals four bridge hands, counts how many points

they have, and gives opening bids. You will probably need to consult a

beginner’s guide to bridge to help you out.

7. Find a simple card game that you like and implement an interactive pro-

gram to play that game. Some possibilities are War, Blackjack, various

solitaire games, and Crazy Eights.

8. Write an interactive program for a board game. Some examples are Oth-

ello(Reversi), Connect Four, Battleship, Sorry!, and Parcheesi.

ñóò¹ôèõ»ö>÷³ø ù»ú û ü�ýÿþ��������	�
 ����1ý��
� ��� � �����������þ��

������ "!$#&%('" ")
* To understand basic techniques for analyzing the efficiency of algorithms.

* To know what searching is and understand the algorithms for linear and

binary search.

* To understand the basic principles of recursive definitions and functions

and be able to write simple recursive functions.

* To understand sorting in depth and know the algorithms for selection sort

and merge sort.

* To appreciate how the analysis of algorithms can demonstrate that some

problems are intractable and others are unsolvable.

If you have worked your way through to this point in the book, you are well

on the way to becoming a programmer. Way back in Chapter 1, I discussed the

relationship between programming and the study of computer science. Now

that you have some programming skills, you are ready to start considering some

broader issues in the field. Here we will take up one of the central issues, namely

the design and analysis of algorithms. Along the way, you’ll get a glimpse of

recursion, a particularly powerful way of thinking about algorithms.+-,/.

02123 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
^`_bac^ db "egfh!"ij%lkgm

Let’s begin by considering a very common and well-studied programming prob-

lem: searching. Searching is the process of looking for a particular value in a

collection. For example, a program that maintains the membership list for a club

might need to look up the information about a particular member. This involves

some form of search process.

npoGqrnsqrn tvuxwzy|{6}�~�ux~&���S�p��wz�p���������6}�~6y
To make the discussion of searching algorithms as simple as possible, let’s boil

the problem down to its essence. Here is the specification of a simple searching

function:���-���/�Z�����h�g�c�`�����-�s�� �¡
¢ �Z���$��£��¤�¦¥�£��:§©¨��¤�Z���«ª&�-�����J�&�©��£Z�¤���Z�-��ªp���¢P¬ ��§-�«����®§��p��¯&¨p��£:§�£/¨/�°£h�±§-�p�¦¥�£��2§P²��&�-�«���¦¨«�Z�h�«���³¨-�µ´�¶P£J�¢ �·£����&¨-§�£h�±§-�p�¦¥�£��2§¹¸

Here are a couple interactive examples that illustrate its behavior:ºZº�º �/�Z�����h�g�c»`�¦¼l½"�|¶�¾»`�À¿x�ÂÁ�Ã� ¿
ºZº�º �/�Z�����h�g�ÅÄ"�¦¼l½"�|¶�¾»`�À¿x�ÂÁ�Ã� ´�¶
In the first example, the function returns the index where

»
appears in the list.

In the second example, the return value

´�¶
indicates that

Ä
is not in the list.

You may recall from our discussion of list operations that Python actually

provides a number of built-in search-related methods. For example, we can test

to see if a value appears in a sequence using

£h�
.£/�©��£h�©�Z�-�s�G¡

¢ ��¨��/¨2����§-�6£h�&Æ
If we want to know the position of

�
in a list, the

£h�&�Z���
method fills the bill

nicely.ºZº�º �Z���$��Çv¼�½x�@¶�M»`�c¿x�cÁ-Ã
ºZº�º �Z���$�G¸c£2�«�����G�Å»� ¿

ARB�CÈA:C�ÉJ=R7h?][@5@KÈTWH 0212Ê
In fact, the only difference between our

�J�����p�2�
function and

£2�«���-�
is that

the latter raises an exception if the target value does not appear in the list.

We could implement

�J�����p�2�
using

£2�«�����
by simply catching the exception and

returning -1 for that case.���-���/�Z�����h�g�c�`�����-�s�� �¡§Z��Ë¹¡ �«�-§��«�����Z���$�G¸c£2�«�����G�Å�� ���&���/¯�§¹¡�«�-§��«���·´�¶
This approach avoids the question, however. The real issue is how does Python

actually search the list? What is the algorithm?

npoGqrnsqLÌ u�ÍJ�S�&Í@~«�sÎ�nsÏÑÐ�wz��~p�p�ÒuG~p�p�M�p�
Let’s try our hand at developing a search algorithm using a simple “be the com-

puter” strategy. Suppose that I gave you a page full of numbers in no particular

order and asked whether the number 13 is in the list. How would you solve

this problem? If you are like most people, you would simply scan down the list

comparing each value to 13. When you see 13 in the list, you quit and tell me

that you found it. If you get to the very end of the list without seeing 13, then

you tell me it’s not there.

This strategy is called a linear search. You are searching through the list

of items one by one until the target value is found. This algorithm translates

directly into simple code.���-���/�Z�����h�g�c�`�����-�s�� �¡��¨���£©£2�±�&�:�&ÆZ�G�<¥-�/�`�S�Z���$�Z Z �¡£/�¤�Z���$�G¼c£/ÃPÇZÇ©�Ó¡ ¢ £:§«�:���Z¨/���&�`�Ô�«�-§��«���¦§-�&�µ£2�&�Z���PÕ«�Z¥:�p����-§��«�-��£�«��§-�«���·´�¶ ¢ ¥-¨Z¨/¯µ�&£2��£��h�&���"�À£J§��:�µ²&�&���p¨�§·£2�°¥�£��:§
This algorithm was not hard to develop, and it will work very nicely for

modest-sized lists. For an unordered list, this algorithm is as good as any. The

Python

£2�
and

£h�&�Z���
operations both implement linear searching algorithms.

If we have a very large collection of data, we might want to organize it in

some way so that we don’t have to look at every single item to determine where,

or if, a particular value appears in the list. Suppose that the list is stored in sorted

order (lowest to highest). As soon as we encounter a value that is greater than

0212Ö 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
the target value, we can quit the linear search without looking at the rest of the

list. On average, that saves us about half of the work. But, if the list is sorted,

we can do even better than this.

npoGqrnsqLo u�ÍJ�S�&Í@~«�sÎ�ÌGÏÑ×�wz�����SÎ�uG~&���M�&�
When a list is ordered, there is a much better searching strategy, one that you

probably already know. Have you ever played the number guessing game? I

pick a number between 1 and 100, and you try to guess what it is. Each time

you guess, I will tell you if your guess is correct, too high, or too low. What is

your strategy?

If you play this game with a very young child, they might well adopt a strat-

egy of simply guessing numbers at random. An older child might employ a

systematic approach corresponding to linear search, guessing ØJÙÅÚZÙÅÛZÙMÜ«Ù8Ý8Ý8Ý until

the mystery value is found.

Of course, virtually any adult will first guess 50. If told that the number is

higher, then the range of possible values is 50–100. The next logical guess is 75.

Each time we guess the middle of the remaining numbers to try to narrow down

the possible range. This strategy is called a binary search. Binary means two,

and at each step, we are dividing the remaining numbers into two parts.

We can employ a binary search strategy to look through a sorted list. The

basic idea is that we use two variables to keep track of the endpoints of the range

in the list where the item could be. Initially, the target could be anywhere in the

list, so we start with variables

¥�¨/²
and

�6£JÆ��
set to the first and last positions of

the list, respectively.

The heart of the algorithm is a loop that looks at the item in the middle of

the remaining range to compare it to

�
. If

�
is smaller than the middle item,

then we move

§«¨J¯
, so that the search is narrowed to the lower half. If

�
is

larger, then we move

¥�¨�²
, and the search is narrowed to the upper half. The

loop terminates when

�
is found or there are no longer any more places to look

(i.e.,

¥�¨/² º �6£/Æ/�
). Here is the code:���-���/�Z�����h�g�c�`�����-�s�� �¡¥�¨/²±Ç¦Þ�6£JÆ��µÇ±¥��J�g���Z�-�s�� ®´ß¶²���£-¥���¥�¨�²·à�Ç¤�6£JÆ��á¡ ¢¦â �p���«�±£Z�©�:§�£�¥Z¥©�¤�«�J�&ÆZ�¤§«¨��J�����p�2��s£/�©Çã�R¥�¨/²±ä¤�6£/Æ/�s �å©¿ ¢ ¯&¨p�-£J§�£/¨/�¦¨����s£J�Z��¥��µ£J§��:�£J§«�2�·ÇP�Z���$�x¼z�s£J�ZÃ£/�©�©ÇZÇ�£:§«�:�æ¡ ¢¦ç ¨/���&�µ£:§jè ¬ ��§-���-�¦§��p�µ£2�«���-�

ARB�CÈA:C�ÉJ=R7h?][@5@KÈTWH 0212é���-§��«�-���s£/���¥«£J���µà±£J§��:��¡ ¢ �·£Z��£2�°¥�¨/²&���¤����¥-�¦¨����«�J�«Æ����£/Æ/�±Ç��s£/�±´�¶ ¢ ��¨-Õ«��§«¨/¯P�����-ê&�-����¨�²-���¥&�J�g¡ ¢ �·£Z��£2�¦�Z¯�¯p���¤����¥-�¥-¨�²±Ç��£/�©äß¶ ¢ ��¨-Õ«�³ªp¨-§�§«¨2���6�/��ê&���¤�Z¯�«��§-�«���·´�¶ ¢ �&¨P�&�:�&Æ���¥����-§©§«¨·�J�����p�2�Ó�¢ �·£Z���p¨�§©§-�p���«�
This algorithm is quite a bit more sophisticated than the simple linear search.

You might want to trace through a couple of example searches to convince your-

self that it actually works.

npoGqrnsqìë íU��y|{����Swz�p�¤t�}î�s��Mw�ÍJ�syÀï
So far, we have developed two solutions to our simple searching problem. Which

one is better? Well, that depends on what exactly we mean by better. The linear

search algorithm is much easier to understand and implement. On the other

hand, we expect that the binary search is more efficient, because it doesn’t have

to look at every value in the list. Intuitively, then, we might expect the linear

search to be a better choice for small lists and binary search a better choice for

larger lists. How could we actually confirm such intuitions?

One approach would be to do an empirical test. We could simply code up

both algorithms and try them out on various sized lists to see how long the

search takes. These algorithms are both quite short, so it would not be diffi-

cult to run a few experiments. When I tested the algorithms on my particular

computer (a somewhat dated laptop), linear search was faster for lists of length

10 or less, and there was not much noticeable difference in the range of length

10–1000. After that, binary search was a clear winner. For a list of a million

elements, linear search averaged 2.5 seconds to find a random value, whereas

binary search averaged only 0.0003 seconds.

The empirical analysis has confirmed our intuition, but these are results from

one particular machine under specific circumstances (amount of memory, pro-

cessor speed, current load, etc.). How can we be sure that the results will always

be the same?

Another approach is to analyze our algorithms abstractly to see how efficient

they are. Other factors being equal, we expect the algorithm with the fewest

number of “steps” to be the more efficient. But how do we count the number of

steps? For example, the number of times that either algorithm goes through its

02B2ð 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
main loop will depend on the particular inputs. We have already guessed that

the advantage of binary search increases as the size of the list increases.

Computer scientists attack these problems by analyzing the number of steps

that an algorithm will take relative to the size or difficulty of the specific problem

instance being solved. For searching, the difficulty is determined by the size of

the collection. Obviously, it takes more steps to find a number in a collection of

a million than it does in a collection of ten. The pertinent question is how many

steps are needed to find a value in a list of size ñ . We are particularly interested

in what happens as ñ gets very large.

Let’s consider the linear search first. If we have a list of ten items, the most

work our algorithm might have to do is to look at each item in turn. The loop

will iterate at most ten times. Suppose the list is twice as big. Then we might

have to look at twice as many items. If the list is three times as large, it will

take three times as long, etc. In general, the amount of time required is linearly

related to the size of the list ñ . This is what computer scientists call a linear time

algorithm. Now you really know why it’s called a linear search.

What about the binary search? Let’s start by considering a concrete example.

Suppose the list contains sixteen items. Each time through the loop, the remain-

ing range is cut in half. After one pass, there are eight items left to consider. The

next time through there will be four, then two, and finally one. How many times

will the loop execute? It depends on how many times we can halve the range

before running out of data. This table might help you to sort things out:

List size Halvings

1 0

2 1

4 2

8 3

16 4

Can you see the pattern here? Each extra iteration of the loop doubles the

size of the list. If the binary search loops ò times, it can find a single value in a

list of size ÚJó . Each time through the loop, it looks at one value (the middle) in

the list. To see how many items are examined in a list of size ñ , we need to solve

this relationship: ñõô±Ú/ó for ò . In this formula, ò is just an exponent with a base

of 2. Using the appropriate logarithm gives us this relationship: òöôø÷ìù/ú�û�ñ . If

you are not entirely comfortable with logarithms, just remember that this value

is the number of times that a collection of size ñ can be cut in half.

A<B-C 1-C�XZ=R[8\:?]QSK üW=�ýp?]I�þ:F =@N"ÿ>ÉJI-F ü@KÈTWH 02B-A
OK, so what does this bit of math tell us? Binary search is an example of a

log time algorithm. The amount of time it takes to solve a given problem grows

as the log of the problem size. In the case of binary search, each additional

iteration doubles the size of the problem that we can solve.

You might not appreciate just how efficient binary search really is. Let me

try to put it in perspective. Suppose you have a New York City phone book with,

say, twelve million names listed in alphabetical order. You walk up to a typical

New Yorker on the street and make the following proposition (assuming their

number is listed): “I’m going to try guessing your name. Each time I guess a

name, you tell me if your name comes alphabetically before or after the name I

guess.” How many guesses will you need?

Our analysis above shows the answer to this question is �_^�� û Ø@ÚZÙ�������Ù������ . If

you don’t have a calculator handy, here is a quick way to estimate the result.Ú��	�Ñô�Ø
��Ú:Ü or roughly 1000, and Ø
��������Ø
�����õô�ØJÙ�������Ù������ . That means thatÚ �	� �®Ú �	� ô�Ú û �� ØJÙ�������Ù������ . That is, Ú û � is approximately one million. So,

searching a million items requires only 20 guesses. Continuing on, we need 21

guesses for two million, 22 for four million, 23 for eight million, and 24 guesses

to search among sixteen million names. We can figure out the name of a total

stranger in New York City using only 24 guesses! By comparison, a linear search

would require (on average) 6 million guesses. Binary search is a phenomenally

good algorithm!

I said earlier that Python uses a linear search algorithm to implement its

built-in searching methods. If a binary search is so much better, why doesn’t

Python use it? The reason is that the binary search is less general; in order to

work, the list must be in order. If you want to use binary search on an unordered

list, the first thing you have to do is put it in order or sort it. This is another well-

studied problem in computer science, and one that we should look at. Before we

turn to sorting, however, we need to generalize the algorithm design technique

that we used to develop the binary search.

^`_ba	� � "!��Ufh)&%('" ��¾f��ö���z ����Zd���� '`%lkÓm
Remember, the basic idea behind the binary search algorithm was to succes-

sively divide the problem in half. This is sometimes referred to as a “divide

and conquer” approach to algorithm design, and it often leads to very efficient

algorithms.

One interesting aspect of divide and conquer algorithms is that the original

problem divides into subproblems that are just smaller versions of the original.

02B21 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
To see what I mean, think about the binary search again. Initially, the range to

search is the entire list. Our first step is to look at the middle item in the list.

Should the middle item turn out to be the target, then we are finished. If it is

not the target, we continue by performing binary search on either the top-half or

the bottom half of the list.

Using this insight, we might express the binary search algorithm in another

way.� ¥�Æ�¨���£J§��-�U¡ ª6£h���/�ZË � ���/���2�¦´Z´·�J�����p�2�±�Z¨-�¦�·£h�©�Z�-�s�x¼�¥�¨�²�ÃÓ¸�¸Z¸>���-�s�x¼ ��£/Æ/�&Ã�s£J�©Çã�<¥-¨�²±ä¤�6£JÆ�� �å©¿£/�±¥-¨�² º �6£JÆ���·£��®�p¨�§·£2�¦���-�$���¥�£/�©�±à��Z���$�G¼(�s£J�ZÃ¯p������¨��/�¦ª�£2�p���ZË·�/���/���h�±��¨��¦�·£2�©�Z���$�G¼S¥�¨/²«Ãg¸Z¸Z¸ �Z���$�x¼z�s£J�«´�¶hÃ��¥«�/� ¯p������¨��/�¦ª�£2�p���ZË·�/���/���h�±��¨��¦�·£2�©�Z���$�G¼(�s£J�Zä�¶2ÃÓ¸�¸Z¸ �Z�-�s�x¼r�6£/Æ/�&Ã
Rather than using a loop, this definition of the binary search seems to refer to

itself. What is going on here? Can we actually make sense of such a thing?

npoGqLÌGqrn ¹~p�"!s�Sï2w$#&~&% ~('`�6w�Íhw]����ï
A description of something that refers to itself is called a recursive definition. In

our last formulation, the binary search algorithm makes use of its own descrip-

tion. A “call” to binary search “recurs” inside of the definition—hence, the label

“recursive definition.”

At first glance, you might think recursive definitions are just nonsense. Surely

you have had a teacher who insisted that you can’t use a word inside its own

definition? That’s called a circular definition and is usually not worth much

credit on an exam.

In mathematics, however, certain recursive definitions are used all the time.

As long as we exercise some care in the formulation and use of recursive defini-

tions, they can be quite handy and surprisingly powerful. The classic recursive

example in mathematics is the definition of factorial.

Back in Chapter 3, we defined the factorial of a value like this:

ñ*)�ôPñ�+(ñ-,�Ø�./+(ñ0,|Ú1.�Ý8Ý8Ý2+SØ�.

A<B-C 1-C�XZ=R[8\:?]QSK üW=�ýp?]I�þ:F =@N"ÿ>ÉJI-F ü@KÈTWH 02B2B
For example, we can compute 3)Zô 3 +(Ü�./+ Û1./+ Ú1./+SØ�.
Recall that we implemented a program to compute factorials using a simple loop

that accumulates the factorial product.

Looking at the calculation of

3) , you will notice something interesting. If we

remove the

3
from the front, what remains is a calculation of Ü() . In general,ñ*)&ôµñ�+(ñ0,�Ø�.4) . In fact, this relation gives us another way of expressing what is

meant by factorial in general. Here is a recursive definition:

ñ*)�ô 5 Ø if ñ ô6�ñ�+(ñ-,�Ø�.4) otherwise

This definition says that the factorial of � is, by definition, Ø , while the factorial

of any other number is defined to be that number times the factorial of one less

than that number.

Even though this definition is recursive, it is not circular. In fact, it provides

a very simple method of calculating a factorial. Consider the value of Ü() . By

definition we have Ü()ZôPÜ"+(Ü7,�Ø�.4)ZôPÜ"+ Û8)9.
But what is Û8) ? To find out, we apply the definition again.Ü()ZôPÜ"+ Û8)9.`ô�Ü":;+ Û1./+ Û<,�Ø�.4) =ôPÜ"+ Û1./+ Ú8)9.
Now, of course, we have to expand Ú8) , which requires Ø>) , which requires �?) . Since�?) is simply Ø , that’s the end of it.Ü()ZôPÜ"+ Û8)9.`ô�Ü"+ Û1./+ Ú8)9.Óô�Ü"+ Û1./+ Ú1./+SØ>)9.Óô�Ü"+ Û1./+ Ú1./+SØ�./+@�?)9.áô¤Ü"+ Û1./+ Ú1./+SØ�./+SØ�.áô©Ú:Ü

You can see that the recursive definition is not circular because each appli-

cation causes us to request the factorial of a smaller number. Eventually we get

down to � , which doesn’t require another application of the definition. This is

called a base case for the recursion. When the recursion bottoms out, we get a

closed expression that can be directly computed. All good recursive definitions

have these key characteristics:

1. There are one or more base cases for which no recursion is required.

2. All chains of recursion eventually end up at one of the base cases.

The simplest way to guarantee that these two conditions are met is to make

sure that each recursion always occurs on a smaller version of the original prob-

lem. A very small version of the problem that can be solved without recursion

then becomes the base case. This is exactly how the factorial definition works.

02Bh0 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
npoGqLÌGqLÌ ¹~p�"!s�Sï2w$#&~&AB!$����Íhw]����ï

You already know that the factorial can be computed using a loop with an ac-

cumulator. That implementation has a natural correspondence to the original

definition of factorial. Can we also implement a version of factorial that follows

the recursive definition?

If we write factorial as a separate function, the recursive definition translates

directly into code.���-�©�«���J§"���s ¡£/�¤�·ÇZÇ¦Þ`¡�«�-§��«��� ¶��¥«�/�g¡�«�-§��«�����DC¤�«�«�:§"����´�¶-
Do you see how the definition that refers to itself turns into a function that calls

itself? This is called a recursive function. The function first checks to see if we

are at the base case

�·ÇZÇ¦Þ
and, if so, returns 1. If we are not yet at the base

case, the function returns the result of multiplying

�
by the factorial of

�p´�¶
. The

latter is calculated by a recursive call to

���«�J§x�S�p´�¶�
.

I think you will agree that this is a reasonable translation of the recursive

definition. The really cool part is that it actually works! We can use this recursive

function to compute factorial values.ºZº�º ����¨:�·�«�«�/���«�J§±£@��¯p¨-��§©�«���J§ºZº�º �«���J§"�c»� ¿-»
ºZº�º �«���J§"�h¶:Þp ½8EZ¿�F�FZÞZÞ

Some beginning programmers are surprised by this result, but it follows nat-

urally from the semantics for functions that we discussed way back in Chapter 6.

Remember that each call to a function starts that function anew. That means it

has its own copy of any local values, including the values of the parameters.

Figure G1H . G shows the sequence of recursive calls that computes

3) . Note espe-

cially how each return value is multiplied by a value of

�
appropriate for each

function invocation. The values of

�
are stored on the way down the chain and

then used on the way back up as the function calls return.

There are many problems for which recursion can yield an elegant and ef-

ficient solution. The next few sections present examples of recursive problem

solving.

A<B-C 1-C�XZ=R[8\:?]QSK üW=�ýp?]I�þ:F =@N"ÿ>ÉJI-F ü@KÈTWH 02BJI

n =
 1

1

1n =
 0

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n1)

n:

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n1)

n:2 1

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n1)

n: 0

fact(5) n =
 4

24

n =
 3n =

 5
def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n1)

n:

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n1)

n: 4

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n1)

n: 3

2

120

n = 2

6

Figure G1H . G : Recursive computation of 5!

npoGqLÌGqLo KML&�y|{6}�~sÏ u�ÍJ�Mwz�p�� ¹~(#&~��ïh�6}
Python lists have a built-in method that can be used to reverse the list. Sup-

pose that you want to compute the reverse of a string. One way to handle this

problem effectively would be to convert the string into a list of characters, re-

verse the list, and turn the list back into a string. Using recursion, however, we

can easily write a function that computes the reverse directly, without having to

detour through a list representation.

The basic idea is to think of a string as a recursive object; a large string is

composed out of smaller objects, which are also strings. In fact, one very handy

way to divide up virtually any sequence is to think of it as a single first item that

just happens to be followed by another sequence. In the case of a string, we can

divide it up into its first character and “all the rest.” If we reverse the rest of the

string and then put the first character on the end of that, we’ll have the reverse

of the whole string.

Let’s code up that algorithm and see what happens.���-���«��Õ«�-���/���@�� ¡���-§-���-�¦���-Õ��-���J�G�8�x¼<¶$¡�Ã� |ä��G¼�Þ�Ã
Notice how this function works. The slice

�G¼<¶ ¡lÃ
gives all but the first character

of the string. We reverse the slice (recursively) and then concatenate the first

02B23 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
character (

�x¼lÞ�Ã
) onto the end of the result. It might be helpful to think in terms

of a specific example. If

�
is the string N �Jª�� N , then

�x¼<¶$¡�Ã
is the string N ª6� N .

Reversing this yields N �2ª N and tacking on

�G¼�Þ-Ã
yields N �2ª�� N . That’s just what

we want.

Unfortunately, this function doesn’t quite work. Here’s what happens when

I try it out:ºZº�º �«��Õ«�-���/��� NPO ��¥�¥�¨ N â �«�«�/�/ª����:ê�l��¨&�:§©���&���J�«§·���Z¥�¥�¥Z�«�:§6 ¡
ç £�¥�� N à&�:§Z�p£h� º N �¾¥�£2�p�°¶� £2�DQ
ç £�¥�� N à&�:§Z�p£h� º N �¾¥�£2�p�¦¿G� £2�±���-Õ«�����J�ç £�¥�� N à&�:§Z�p£h� º N �¾¥�£2�p�¦¿G� £2�±���-Õ«�����J�¸Z¸�¸
ç £�¥�� N à&�:§Z�p£h� º N �¾¥�£2�p�¦¿G� £2�±���-Õ«�����J�¬ ���«§p£@���1RZ���«¨-�Ó¡ ���-�&£@�«���µ�«�«�2������£/¨/�©���/¯�§-�·�-�p�������Z���

I’ve only shown a portion of the output, it actually consisted of 1000 lines!

What’s happened here?

Remember, to build a correct recursive function we need a base case for

which no recursion is required, otherwise the recursion is circular. In our haste

to code up the function, we forgot to include a base case. What we have written

is actually an infinite recursion. Every call to

�«��Õ«�-���/�
contains another call to

�«��Õ«�����/�
, so none of them ever return. Of course, each time a function is called

it takes up some memory (to store the parameters and local variables), so this

process can’t go on forever. Python puts a stop to it after 1000 calls, the default

“maximum recursion depth.”

Let’s go back and put in a suitable base case. When performing recursion on

sequences, the base case is often an empty sequence or a sequence containing

just one item. For our reversing problem we can use an empty string as the base

case, since an empty string is its own reverse. The recursive calls to

���-Õ«�����J�
are always on a string that is one character shorter than the original, so we’ll

eventually end up at an empty string. Here’s a correct version of reverse:���-���«��Õ«�-���/���@�� ¡£/����ÇZÇ N�N ¡�«�-§��«���ß���¥«�/�g¡�«�-§��«���¦�«��Õ«�-���/���@�x¼R¶ ¡lÃ� ä��x¼�Þ-Ã
This version works as advertised.

A<B-C 1-C�XZ=R[8\:?]QSK üW=�ýp?]I�þ:F =@N"ÿ>ÉJI-F ü@KÈTWH 02B2Ê
ºZº�º �«��Õ«�-���/��� NPO ��¥�¥�¨ N S ¨Z¥Z¥-� O S
npoGqLÌGqìë KML&�y|{6}�~sÏYt ���&�G�S�yÀï

An anagram is formed by rearranging the letters of a word. Anagrams are often

used in word games, and forming anagrams is a special case of generating the

possible permutations (rearrangements) of a sequence, a problem that pops up

frequently in many areas of computing and mathematics.

Let’s try our hand at writing a function that generates a list of all the possible

anagrams of a string. We’ll apply the same approach that we used in the previous

example by slicing the first character off of the string. Suppose the original

string is N �Jª6� N , then the tail of the string is N ª6� N . Generating the list of all

the anagrams of the tail gives us

¼ N ª6� N � N �2ª N Ã , as there are only two possible

arrangements of two characters. To add back the first letter, we need to place it

in all possible positions in each of these two smaller anagrams:

¼ N �:ª6� N � N ªp�«� N �N ª��-� N � N �«�2ª N � N �-�:ª N � N �2ªp� N Ã . The first three anagrams come from placingN � N in every possible place in N ª�� N , and the second three come from insertingN � N into N �2ª N .
Just as in our previous example, we can use an empty string as the base

case for the recursion. The only possible arrangement of characters in an empty

string is the empty string itself. Here is the completed recursive function:���-�±�J�p�-Æ��«�2�s�s�@�Z �¡£/����ÇZÇ N�N ¡�«�-§��«���æ¼Å�:Ã��¥«�/�g¡�J���Çv¼ Ã��¨-��²°£h���J�p�-Æ��«�2�s�s�@�G¼<¶$¡�Ã� ¡�Z¨-�P¯&¨p��£2�±�«�J�«Æ��G�R¥��J�g�M²6 :ä�¶� �¡�:��G¸S�J¯�¯p�/�«�x�S²á¼�¡ ¯p¨&�JÃZäp�x¼lÞ�Ã-ä-²á¼r¯&¨&�G¡ Ã� �«�-§��«���·�J�6�
Notice in the

�Z¥&�/�
I have used a list to accumulate the final results. In the

nested

�Z¨-�
loops, the outer loop iterates through each anagram of the tail of

�
,

and the inner loop goes through each position in the anagram and creates a new

string with the original first character inserted into that position. The expression
²á¼-¡>¯&¨p�JÃ�ä��G¼�Þ�Ã�ä-²j¼ ¯p¨&�G¡lÃ

looks a bit tricky, but it’s not too hard to decipher. Tak-

ing

²á¼�¡ ¯p¨&�JÃ
gives the portion of

²
up to (but not including)

¯p¨p�
, and

²á¼r¯p¨p��¡�Ã

02B2Ö 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
yields everything from

¯&¨p�
through the end. Sticking

�G¼�Þ-Ã
between these two

effectively inserts it into

²
at

¯p¨&�
. The inner loop goes up to

¥-�/�g�S² 2ä6¶
so that

the new character can be added to the very end of the anagram.

Here is our function in action:ºZº�º �J�p�-Æ��«�2�s�s� N �Jª�� N ¼ S �Jª�� S � S ª���� S � S ª��-� S � S ���2ª S � S �-�Jª S � S �2ªp� S Ã
I didn’t use N Hello” for this example because that generates more anagrams

than I wanted to print. The number of anagrams of a word is the factorial of the

length of the word.

npoGqLÌGqUT KML&�y|{6}�~sÏVA��pï@ÍWKML6{����~6�pÍhw]�&Íhw]���
Another good example of recursion is a clever algorithm for raising values to

an integer power. The naive way to compute X(Y for an integer ñ is simply to

multiply X by itself ñ times X Y ô&X<Z[X�Z�X<ZUÝ8Ý8Ý�Z�X . We can easily implement this

using a simple accumulator loop.���-�±¥�¨�¨/¯(\�¨�²«�-�"�R�x� �s ¡�J�6��Çß¶��¨���£©£2�±�&�:�&ÆZ�G�S� �¡�J���Ç±�:��&C���«��§-�«���·�J�6�
Divide and conquer suggests another way to perform this calculation. Sup-

pose we want to calculate Ú^] . By the laws of exponents, we know that Ú�] ôÚ2_^+ Ú2_J. . So if we first calculate Ú�_ , we can just do one more multiply to get Ú] .
To compute Ú>_ , we can use the fact that Ú1_�ô·Ú û + Ú û . . And, of course, Ú û ô·Ú(+ Ú1. .
Putting the calculation together we start with Ú(+ Ú1. ô Ü and Ü"+(Ü�. ô Øa` andØa`(+SØa`1. ô Ú 3 ` . We have calculated the value of Ú] using just three multiplica-

tions. The basic insight is to use the relationship X Y ô&X Y�b û +@X Y>b û . .
In the example I gave, the exponents were all even. In order to turn this idea

into a general algorithm, we also have to handle odd values of ñ . This can be

done with one more multiplication. For example, Ú�c ô�Ú _ + Ú _ ./+ Ú1. . Here is the

general relationship:

X Y ô 5 X Y�b û +@X Y�b û . if ñ is evenX Y�b û +@X Y�b û ./+@X(. if ñ is odd

In this formula I am exploiting integer division; if ñ is d then ñMeJÚ is Ü .

A<B-C 1-C�XZ=R[8\:?]QSK üW=�ýp?]I�þ:F =@N"ÿ>ÉJI-F ü@KÈTWH 02B2é
We can use this relationship as the basis of a recursive function, we just

need to find a suitable base case. Notice that computing the nth power requires

computing two smaller powers (ñMeJÚ). If we keep using smaller and smaller

values of ñ , it will eventually get to � (Ø�eJÚ ô&� in integer division). As you know

from math class, X(�Uô�Ø for any value of X (except 0). There’s our base case.

If you’ve followed all the math, the implementation of the function is straight-

forward.���-���«�«�>\«¨/²&���"�<�G��� �¡
¢ �«�«£��J�p���P§�¨P§-�p�µ£h�«§P¯&¨�²&���¤�£/�¤�·ÇZÇ¦Þ`¡�«�-§��«��� ¶��¥«�/�g¡�«�«�:§«¨��©Ç��«�«�>\«¨/²&���"�<�G���påZ¿p £/�¤�gf�¿PÇZÇ¦Þ`¡ ¢ �ß£Z���-Õ��/����-§��«�-�¦�«�«�:§«¨���C��«���J§«¨����¥&�J�g¡ ¢ �ß£Z��¨�������-§��«�-�¦�«�«�:§«¨���C��«���J§«¨���C��

One thing to notice is that I used an intermediate variable

�«���J§�¨-�
so that X"Y�b û

only needs to be calculated once. This makes the function more efficient.

npoGqLÌGqUh KML&�y|{6}�~sÏÑ×öwz������Î�ux~&���S�p�
Now that you know how to implement recursive functions, we are ready to go

back and look again at binary search recursively. Remember, the basic idea was

to look at the middle value and then recursively search either the lower half or

the upper half of the array.

The base cases for the recursion are the conditions when we can stop; namely,

when the target value is found or we run out of places to look. The recursive

calls will cut the size of the problem in half each time. In order to do this, we

need to specify the range of locations in the list that are still “in play” for each

recursive call. We can do this by passing the values of

¥�¨/²
and

�6£/Æ/�
as parame-

ters along with the list. Each invocation will search the list between the low and

high indexes.

Here is a direct implementation of the recursive algorithm using these ideas:���-���«�«�>i�£h� � �����p�2�`�Å�`� �Z���$�$� ¥�¨/²Ó�Ô�6£JÆ�� �¡£/�±¥-¨�² º �6£JÆ��j¡ ¢&j ¨�¯p¥Z�����¦¥��-��§�§�¨¦¥�¨�¨�êÓ�E���-§��«�-�µ´�¶

0h0:ð 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T�«�-§��«���·´�¶�s£J�©Çã�<¥�¨/²±ä¤�6£JÆ��s �å©¿£J§��:��Ç¤�Z���$�G¼(�s£J�ZÃ£/�·£:§«�:��Ç�Ç©�Ó¡ ¢�ç ¨J�Z�«�µ£J§¹è ¬ �-§��«���¦§-�&�µ£2�&�Z����«�-§��«���¤�s£J���¥�£/�©�±à±£J§��:�U¡ ¢&k ¨�¨�ê°£h��¥�¨�²«�-�¤�p�Z¥���«�-§��«���¦�«�«�>i�£h� � �����p�2�`�Å�`� �Z���$�$� ¥�¨/²Ó���s£J�«´p¶� ��¥«�/�g¡ ¢&k ¨�¨�ê°£h�©�Z¯Z¯&�-�¤�p�Z¥���«�-§��«���¦�«�«�>i�£h� � �����p�2�`�Å�`� �Z���$�$� �s£J�Zä6¶� �6£JÆ��
We can then implement our original search function using a suitable call to the

recursive binary search, telling it to start the search between 0 and

¥-�/�`�S�Z���$�Z /´�¶
.���-���/�Z�����h�g�c�`�����-�s�� �¡�«��§-�«���¦�«�«�>ip£2� � ���/���2�`�Å�"� ���-�$�$�¾Þ"�À¥-�/�`�S�Z���$�Z /´�¶-

Of course, our original looping version is probably a bit faster than this re-

cursive version because calling functions is generally slower than iterating a

loop. The recursive version, however, makes the divide-and-conquer structure

of binary search much more obvious. Below we will see examples where recur-

sive divide-and-conquer approaches provide a natural solution to some problems

where loops are awkward.

npoGqLÌGqUl ¹~p�"!s�Sï2w]���m#&ï-qVnLÍ@~���&Íhw]���
I’m sure by now you’ve noticed that there are some similarities between iteration

(looping) and recursion. In fact, recursive functions are a generalization of

loops. Anything that can be done with a loop can also be done by a simple

kind of recursive function. In fact, there are programming languages that use

recursion exclusively. On the other hand, some things that can be done very

simply using recursion are quite difficult to do with loops.

For a number of the problems we’ve looked at so far, we have had both

iterative and recursive solutions. In the case of factorial and binary search, the

loop version and the recursive version do basically the same calculations, and

they will have roughly the same efficiency. The looping versions are probably a

bit faster because calling functions is generally slower than iterating a loop, but

in a modern language the recursive algorithms are probably fast enough.

In the case of the exponentiation algorithm, the recursive version and the

looping version actually implement very different algorithms. If you think about

it a bit, you will see that the looping version is linear and the recursive version

A<B-C 1-C�XZ=R[8\:?]QSK üW=�ýp?]I�þ:F =@N"ÿ>ÉJI-F ü@KÈTWH 0h0�A
executes in log time. The difference between these two is similar to the dif-

ference between linear search and binary search, so the recursive algorithm is

clearly superior. In the next section, you’ll be introduced to a recursive sorting

algorithm that is also very efficient.

As you have seen, recursion can be a very useful problem-solving technique

that can lead to efficient and effective algorithms. But you have to be careful.

It’s also possible to write some very inefficient recursive algorithms. One classic

example is calculating the nth Fibonacci number.

The Fibonacci sequence is the sequence of numbers ØJÙ@ØJÙÅÚZÙÅÛZÙ 3 ÙpoZÙ8Ý8Ý8Ý It starts

with two 1s and successive numbers are the sum of the previous two. One way

to compute the nth Fibonacci value is to use a loop that produces successive

terms of the sequence.

In order to compute the next Fibonacci number, we always need to keep

track of the previous two. We can use two variables,

�2���Z�
and

¯��«�-Õ
, to keep

track these values. Then we just need a loop that adds these together to get the

next value. At that point, the old value of

�2�«���
becomes the new value of

¯��«�-Õ
.

Here is one way to do it in Python:���-�±¥�¨�¨/¯&�&£2ª`�S�s ¡
¢ �«��§-�«����®§��p����§-� ç £hªp¨J���«���Z£ �Z�-��ªp����2���Z�¦Çß¶¯«���-Õ¦Çß¶��¨���£©£2�±�&�:�&ÆZ�G�S�p´Z¿& �¡�2�«���g� ¯��«��Õ¦Ç·�2�«����ä/¯«�«��Õg� �2�«����«��§-�«���°�2���Z�

I used simultaneous assignment to compute the next values of

�2�«���
and

¯«���-Õ
in a single step. Notice that the loop only goes around ñ-,|Ú times, because the

first two values have already been assigned and do not require an addition.

The Fibonacci sequence also has an elegant recursive definition.q òsr>+(ñM.xô 5 Ø if ñut�Ûq òvr2+(ñ-,�Ø�.xw q òsr>+(ñ-,õÚ1. otherwise

We can turn this recursive definition directly into a recursive function.���-�©�p£hªg�S� �¡£/�¤�°à�½g¡�«�-§��«��� ¶

0h0:1 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T��¥«�/�g¡�«�-§��«���±�p£hªg�S�p´�¶- �ä¦�p£hªg�S�p´Z¿&
This function obeys the rules that we’ve set out. The recursion is always on

smaller values, and we have identified some non-recursive base cases. There-

fore, this function will work, sort of. It turns out that this is a horribly inefficient

algorithm. While our looping version can easily compute results for very large

values of

�
(

¥-¨Z¨J¯ ç £hªg�RÁ�ÞZÞ�ÞZÞp
is almost instantaneous on my computer), the re-

cursive version is useful only up to around 30.

The problem with this recursive formulation of the Fibonacci function is that

it performs lots of duplicate computations. Figure G1H . y shows a diagram of the

computations that are performed to compute

�p£hªg�pE�
. Notice that

�p£2ª`�Å»�
is

calculated twice,

�p£hªg�R½p
is calculated three times,

�&£2ª`�<¿p
four times, etc. If you

start with a larger number, you can see how this redundancy really piles up!

fib(2)

fib(3)

fib(1)

fib(5)

fib(6)

fib(2)

fib(4)

fib(2)

fib(3)

fib(1)

1

1 1 1

fib(2)

fib(4)

fib(2)

fib(3)

fib(1)

1

1

1

1

Figure G1H . y : Computations performed for

�&£2ª`�4E�
.

So what does this tell us? Recursion is just one more tool in your problem-

solving arsenal. Sometimes a recursive solution is a good one, either because

it is more elegant or more efficient than a looping version; in that case use

recursion. Often, the looping and recursive versions are quite similar; in that

case, the edge probably goes to the loop, as it will be slightly faster. Sometimes

the recursive version is terribly inefficient. In that case, avoid it; unless, of

course, you can’t come up with an iterative algorithm. As you’ll see later in the

chapter, sometimes there just isn’t a good solution.

A<B-C B-C/ÉJIJ?�;�KÈT<H DGF HhIJ? K ;M5:N`Q 0h0:B
^`_ba _ d��jf8#&%lkgm�z{� m|�jf2%z#�i|�ß)

The sorting problem provides a nice test bed for the algorithm design techniques

we have been discussing. Remember, the basic sorting problem is to take a list

and rearrange it so that the values are in increasing (actually, nondecreasing)

order.

npoGqLoGqrn } ��w$#&~³uG�s�lÍhwz�p�"Ï uG~�}�~p��Íhw]���³uG�s�lÍ
Let’s start with a simple “be the computer” approach to sorting. Suppose you

have a stack of index cards, each with a number on it. The stack has been shuf-

fled, and you need to put the cards back in order. How would you accomplish

this task?

There are any number of good systematic approaches. One simple method

is to look through the deck to find the smallest value and then place that value

at the front of the stack (or perhaps in a separate stack). Then you could go

through and find the smallest of the remaining cards and put it next in line, etc.

Of course, this means that you’ll also need an algorithm for finding the smallest

remaining value. You can use the same approach we used for finding the max of

a list (see Chapter 7). As you go through, you keep track of the smallest value

seen so far, updating that value whenever you find a smaller one.

The algorithm I just described is called selection sort. Basically, the algorithm

consists of a loop and each time through the loop, we select the smallest of

the remaining elements and move it into its proper position. Applying this idea

to a list of ñ elements, we proceed by finding the smallest value in the list

and putting it into the �1~U� position. Then we find the smallest remaining value

(from positions 1–(ñ -1)) and put it in position 1. Next, the smallest value from

positions 2–(ñ -1) goes into position 2, etc. When we get to the end of the list,

everything will be in its proper place.

There is one subtlety in implementing this algorithm. When we place a value

into its proper position, we need to make sure that we do not accidentally lose

the value that was originally stored in that position. For example, if the smallest

item is in position 10, moving it into position 0 involves an assignment.�Z���$�G¼�Þ�ÃPÇ¤�Z�-�s�x¼R¶:Þ�Ã
But this wipes out the value currently in

�Z�-�s�x¼lÞ�Ã
; it really needs to be moved

to another location in the list. A simple way to save the value is to swap it with

the one that we are moving. Using simultaneous assignment, the statement

0h020 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T�Z���$�G¼�Þ�Ã"� �Z���$�G¼<¶:Þ-ÃPÇP�Z���$�G¼<¶:Þ-Ã`� �Z�-�s�x¼lÞ�Ã

places the value from position 10 at the front of the list, but preserves the origi-

nal first value by stashing it into location 10.

Using this idea, it is a simple matter to write a selection sort in Python. I

will use a variable called

ªp¨�§Z§�¨:�
to keep track of which position in the list we

are currently filling, and the variable

�«¯
will be used to track the location of the

smallest remaining value. The comments in this code explain this implementa-

tion of selection sort:���-���/�Z¥ � ¨��Z§x�S�Z���$�Z �¡¢ �/¨��Z§P�Z���$��£h�«§«¨��&���/�/�«�p£2�«Æ©¨-�Z������µÇµ¥��/�`�S���-�$�Z
¢�ç ¨��±���«�h�©¯p¨&��£J§p£�¨J��£2�µ§��p�¦¥«£Z�:§ã�Å���&���/¯�§�§-�&�PÕ«���ZËµ¥Z�«�:§� ��¨��Pªp¨-§�§«¨2� £2�±�«�J�&ÆZ�G����´�¶- �¡

¢ �p£2�«��§-�&�·�8�6��¥Z¥-�p�:§±£J§��:� £2�©���-�s�x¼ ª&¨-§�§«¨:�pÃÓ¸�¸>�Z���$�G¼ ��´p¶2Ã
�«¯µÇ¤ªp¨�§Z§�¨:� ¢ ªp¨�§Z§«¨2� £��¦�W�6�Z¥�¥��&�:§µ£h�6£:§�£-��¥Z¥/Ë��¨-��£©£h�±�&�:�&Æ����Sª&¨-§Z§�¨:�pä6¶s� �s ¡ ¢ ¥�¨�¨�ê·��§±�Z�«�h�©¯p¨p�-£J§p£�¨/�£J�¤�Z���$�x¼M£/Ã¦à����-�s�x¼(��¯&Ãg¡ ¢ §-��£���¨/�&�µ£��©�W�6�Z¥�¥������¯µÇ·£ ¢ �«�:���:��ªp�-�µ£J§���£h�&�Z���
¢ �2²p�:¯ �8���Z¥Z¥-�p�2§µ£J§��:�·§�¨P§-�p��ª&¨-§�§«¨:��Z�-�s�x¼rªp¨-§�§«¨2��Ã`� �Z���$�G¼(�«¯«Ã�Ç¤�Z���$�G¼(�«¯«Ã`� �Z�-�s�x¼rªp¨-§�§«¨2��Ã

One thing to notice about this algorithm is the accumulator for finding the min-

imum value. Rather than actually storing the minimum seen so far,

�«¯
just

remembers the position of the minimum. A new value is tested by comparing

the item in position

£
to the item in position

�«¯
. You should also notice that

ªp¨�§Z§�¨:�
stops at the second to last item in the list. Once all of the items up to

the last have been put in the proper place, the last item has to be the largest, so

there is no need to bother looking at it.

The selection sort algorithm is easy to write and works well for moderate-

sized lists, but it is not a very efficient sorting algorithm. We’ll come back and

analyze it after we’ve developed another algorithm.

A<B-C B-C/ÉJIJ?�;�KÈT<H DGF HhIJ? K ;M5:N`Q 0h02I
npoGqLoGqLÌ %�w$#pw;�~�����¦íU������!�~6�<ÏV��~�l�s~�ux��lÍ

As discussed above, one technique that often works for developing efficient algo-

rithms is the divide-and-conquer approach. Suppose a friend and I were working

together trying to put our deck of cards in order. We could divide the problem

up by splitting the deck of cards in half with one of us sorting each of the halves.

Then we just need to figure out a way of combining the two sorted stacks.

The process of combining two sorted lists into a single sorted result is called

merging. The basic outline of our divide and conquer algorithm, called merge-

Sort looks like this:� ¥�Æ�¨���£J§��-�U¡�������ÆZ� � ¨��Z§��Z�-�s��h¯p¥«£:§¤�Z���$��£2��§«¨P§-²&¨�����¥�Õ��p��/¨��Z§©§��p���p£:���2§¤����¥-��/¨��Z§©§��p�·�/�«��¨J�&���p�Z¥-�������ÆZ�¤§-�&�P§�²&¨·�J¨-��§«�������Z¥/Õ«�&�|ª����:ê°£2��§«¨����-�$�
The first step in the algorithm is simple, we can just use list slicing to handle

that. The last step is to merge the lists together. If you think about it, merging

is pretty simple. Let’s go back to our card stack example to flesh out the details.

Since our two stacks are sorted, each has its smallest value on top. Whichever

of the top values is the smallest will be the first item in the merged list. Once

the smaller value is removed, we can look at the tops of the stacks again, and

whichever top card is smaller will be the next item in the list. We just continue

this process of placing the smaller of the two top values into the big list until

one of the stacks runs out. At that point, we finish out the list with the cards

from the remaining stack.

Here is a Python implementation of the merge process. In this code,

¥«�:§6¶
and

¥«�:§&¿
are the smaller lists and

¥&�2§«½
is the larger list where the results are

placed. In order for the merging process to work, the length of

¥«�:§�½
must be

equal to the sum of the lengths of

¥&�:§6¶
and

¥&�2§&¿
. You should be able to follow

this code by studying the accompanying comments:���-��������Æ����<¥«�:§¶�¾¥«�:§&¿G� ¥&�2§«½p �¡
¢ ������Æ��·�J¨-��§«���©¥«£��2§���¥«�:§6¶��J�&�±¥«�:§«¿¦£2��§«¨¦¥&�2§«½
¢ §-�&�p�/�µ£h�&�Z�����&��ê&���/¯¦§��&���:êµ¨��·�h�«���«�/��§¤¯p¨&��£:§�£�¨J��£h�·���«�h��¥«£Z�:§£&¶� £-¿x� £/½�Ç¦Þ"�ÀÞ"� Þ ¢ �Z¥�¥µ�:§&�/�Z§µ�/§©§-�p���-�«¨J�«§

0h0:3 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T�$¶�Ô��¿PÇ±¥��J�g�R¥&�:§6¶� s�¾¥��J�g�R¥&�:§«¿p
¢&k ¨�¨/¯¦²���£-¥-��ªp¨�§-��¥&�2§¶��:�&�±¥&�2§&¿³�p��Õ��³��¨-���±£J§��:�s�²���£-¥��¦£&¶�à��$¶��:�&�·£-¿©à��p¿`¡£/�±¥&�2§¶ ¼c£&¶hÃ¦à©¥&�2§&¿`¼c£-¿�ÃÓ¡ ¢ §«¨J¯·¨��µ¥&�2§¶�£Z�©�8���Z¥Z¥-�-�¥«�:§�½Ó¼c£/½�Ã¤Ç·¥«�:§6¶�¼c£«¶2Ã ¢ �/¨/¯�Ë�£J§�£2��§«¨µ�h�«�Z���/��§·�h¯&¨-§�£h��¥&�:§�½£«¶®Ç·£&¶³äß¶��¥&�J�g¡ ¢ §«¨J¯·¨��µ¥&�2§&¿¦£Z�©�8���Z¥Z¥-�-�¥«�:§�½Ó¼c£/½�Ã¤Ç·¥«�:§«¿g¼c£�¿-Ã ¢ �/¨/¯�Ë�£J§�£2��§«¨µ�h�«�Z���/��§·�h¯&¨-§�£h��¥&�:§�½£�¿PÇ·£-¿�äß¶£�½�Ç·£�½©äß¶ ¢ £J§��:�ß���Z���-�P§«¨±¥«�:§«½x� �Z¯«�«�/§«��¯&¨p��£:§�£/¨/�
¢ O ���«�©�&£:§-�&�-�±¥«�:§¶³¨��µ¥&�2§&¿±£����Z¨/�&�g¸-�:�p�©¨���§��p���Z¨�¥Z¥-¨�²�£2�&Æ�¥�¨�¨/¯�®²�£-¥�¥¢ ���Z�&�2��§«�¤§�¨��p£h�6£��@���Z¯µ§��p�³������ÆZ�g¸
¢�� ¨J¯«Ë©�«�2�6��£2�6£h�&Æ¦£J§«�2�$� �W£/�±�J��Ë6 ®�-�«¨2�ß¥&�:§6¶²���£-¥��¦£&¶�à��$¶$¡¥&�:§�½Ó¼M£�½�Ã¤Çµ¥&�:§6¶�¼M£&¶2Ã£&¶®Ç·£&¶³äß¶£�½�Ç·£�½©äß¶
¢�� ¨J¯«Ë©�«�2�6��£2�6£h�&Æ¦£J§«�2�$� �W£/�±�J��Ë6 ®�-�«¨2�ß¥&�:§«¿²���£-¥��¦£-¿©à���¿"¡¥&�:§�½Ó¼M£�½�Ã¤Çµ¥&�:§«¿g¼M£-¿-Ã£-¿PÇ·£-¿�äß¶£�½�Ç·£�½©äß¶

OK, now we can slice a list into two, and if those lists are sorted, we know

how to merge them back into a single list. But how are we going to sort the

smaller lists? Well, let’s think about it. We are trying to sort a list, and our

algorithm requires us to sort two smaller lists. This sounds like a perfect place

to use recursion. Maybe we can use

������Æ�� � ¨��Z§
itself to sort the two lists. Let’s

go back to our recursion guidelines to develop a proper recursive algorithm.

In order for recursion to work, we need to find at least one base case that

does not require a recursive call, and we also have to make sure that recursive

calls are always made on smaller versions of the original problem. The recursion

in our

���-�ZÆ�� � ¨-��§
will always occur on a list that is half as large as the original,

so the latter property is automatically met. Eventually, our lists will be very

small, containing only a single item. Fortunately, a list with just one item is

already sorted! Voilá, we have a base case. When the length of the list is less

A<B-C B-C/ÉJIJ?�;�KÈT<H DGF HhIJ? K ;M5:N`Q 0h0:Ê
than 2, we do nothing, leaving the list unchanged.

Given our analysis, we can update the

������Æ�� � ¨��Z§
algorithm to make it prop-

erly recursive.£/�±¥-�/�`�S�Z���$�Z º ¶ ¡�h¯p¥«£J§��Z�-�s��£2��§«¨P§�²«¨�����¥�Õ��p�������Æ�� � ¨��Z§P§��p���&£J���2§¤����¥-�������Æ�� � ¨��Z§P§��p�·�J�&��¨J�&���p�Z¥��������Æ���§-�p�P§-²&¨·�J¨-�Z§������p�Z¥/Õ«�p� ª��«�2ê°£2��§«¨��Z���$�
We can translate this algorithm directly into Python code.���-��������Æ�� � ¨��Z§"���Z���$�� ¡¢ \-��§�£J§«�2�$��¨-�¤�Z�-�s�P£2�°�«�����J�&�&£2�&ÆP¨-�Z���-��µÇµ¥��/�`�S���-�$�Z
¢�� ¨¤�p¨�§-��£2�&Æ¦£/�P�Z���$�P�/¨/��§&�«£h���Þ©¨�� ¶P£J§«�2�$�£/�¤� º ¶ ¡¢ �h¯�¥�£J§�£h�«§«¨�§�²&¨·�@�Zªp¥«£��2§����Ç���å¦¿�Z�-�s�«¶� �Z���$��¿�Ç����-�s�x¼�¡(��Ã"���Z���$�G¼(��¡lÃ

¢ �«�&�h�«����£JÕ���¥/Ë·�/¨��Z§±�Z�«�2�P¯6£��«������-�ZÆ�� � ¨-��§"���Z�-�s�«¶- ���-�ZÆ�� � ¨-��§"���Z�-�s��¿& ¢ ���-�ZÆ��P§��p�·�/¨��Z§�����¯�£��&�/�p�|ªp�«�2ê�£2��§«¨©¨-�p£/Æ&£2����¥�¥«£Z�:§���-�ZÆ����S�Z���$��¶s� �Z�-�s��¿G� �Z���$��
You might try tracing this algorithm with a small list (say eight elements), just

to convince yourself that it really works. In general, though, tracing through

recursive algorithms can be tedious and often not very enlightening.

Recursion is closely related to mathematical induction, and it requires prac-

tice before it becomes comfortable. As long as you follow the rules and make

sure that every recursive chain of calls eventually reaches a base case, your al-

gorithms will work. You just have to trust and let go of the grungy details. Let

Python worry about that for you!

npoGqLoGqLo íU��y|{����Swz�p�Pux��lÍ@ï
Now that we have developed two sorting algorithms, which one should we use?

Before we actually try them out, let’s do some analysis. As in the searching

problem, the difficulty of sorting a list depends on the size of the list. We need to

0h0:Ö 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
figure out how many steps each of our sorting algorithms requires as a function

of the size of the list to be sorted.

Take a look back at the algorithm for selection sort. Remember, this algo-

rithm works by first finding the smallest item, then finding the smallest of the

remaining items, and so on. Suppose we start with a list of size ñ . In order to

find the smallest value, the algorithm has to inspect each of the ñ items. The

next time around the outer loop, it has to find the smallest of the remainingñ0,¤Ø items. The third time around, there are ñ0,�Ú items of interest. This pro-

cess continues until there is only one item left to place. Thus, the total number

of iterations of the inner loop for the selection sort can be computed as the sum

of a decreasing sequence.

ñ�w6+(ñ-,�Ø�.xw6+(ñ-, Ú1.xw�+(ñ-, Û1.xw��
�
�2w©Ø
In other words, the time required by selection sort to sort a list of ñ items

is proportional to the sum of the first ñ whole numbers. There is a well-known

formula for this sum, but even if you do not know the formula, it is easy to

derive. If you add the first and last numbers in the series you get ñ�w¦Ø . Adding

the second and second to last values gives +(ñ�,ÔØ�.Jw Ú ô�ñ�w Ø . If you keep pairing

up the values working from the outside in, all of the pairs add to ñ-wµØ . Since

there are ñ numbers, there must be Y û pairs. That means the sum of all the pairs

is Y��9Y�� �s�û .

You can see that the final formula contains an ñ û term. That means that the

number of steps in the algorithm is proportional to the square of the size of the

list. If the size of the list doubles, the number of steps quadruples. If the size

triples, it will take nine times as long to finish. Computer scientists call this a

quadratic or ñ û algorithm.

Let’s see how that compares to the merge sort algorithm. In the case of

merge sort, we divided a list into two pieces and sorted the individual pieces

before merging them together. The real work is done during the merge process

when the values in the sublists are copied back into the original list.

Figure G1H . H depicts the merging process to sort the list

¼�½"�|¶�¾»`�|¶�ÀÁx���"�¿x��E-Ã
. The dashed lines show how the original list is continually halved until

each item is its own list with the values shown at the bottom. The single-item

lists are then merged back up into the two item lists to produce the values shown

in the second level. The merging process continues up the diagram to produce

the final sorted version of the list shown at the top.

The diagram makes analysis of the merge sort easy. Starting at the bottom

level, we have to copy the ñ values into the second level. From the second to

A<B-C B-C/ÉJIJ?�;�KÈT<H DGF HhIJ? K ;M5:N`Q 0h0:é
1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

Figure G1H . H : Merges required to sort [3, 1, 4, 1, 5, 9, 2, 6].

third level, the ñ values need to be copied again. Each level of merging involves

copying ñ values. The only question left to answer is how many levels are there?

This boils down to how many times a list of size ñ can be split in half. You already

know from the analysis of binary search that this is just ÷Lù/úpû�ñ . Therefore, the

total work required to sort ñ items is ñb÷ìù/ú û ñ . Computer scientists call this an n

log n algorithm.

So which is going to be better, the ñ û selection sort or the ñb÷ìù/úgñ merge sort?

If the input size is small, the selection sort might be a little faster because the

code is simpler and there is less overhead. What happens, though as ñ gets

larger? We saw in the analysis of binary search that the log function grows very

slowly (÷ìù/ú�ûxØa`ZÙ�������Ù������ Ú:Ü) so ñ�+r÷ìù/úZû�ñM. will grow much slower than ñ�+(ñM. .
Empirical testing of these two algorithms confirms this analysis. On my com-

puter, selection sort beats merge sort on lists up to size about 50, which takes

around 0.008 seconds. On larger lists, the merge sort dominates. Figure G1H . �
shows a comparison of the time required to sort lists up to size 3000. You can

see that the curve for selection sort veers rapidly upward (forming half of a

parabola), while the merge sort curve looks almost straight (look at the bot-

tom). For 3000 items, selection sort requires over 30 seconds while merge sort

completes the task in about �_ of a second. Merge sort can sort a list of 20,000

items in less than six seconds; selection sort takes around 20 minutes. That’s

quite a difference!

0JI2ð 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

S
ec

o
n
d
s

List Size

’selSort’
’mergeSort’

Figure G1H . � : Experimental comparison of selection sort and merge sort.

^`_ba�� �|egf����¾f��ö�|�z ��ß)
Using our divide-and-conquer approach we were able to design good algorithms

for the searching and sorting problems. Divide and conquer and recursion are

very powerful techniques for algorithm design. However, not all problems have

efficient solutions.

npoGqìëxqrn �Ó�g�Ò~6��ï ����� ����sw
One very elegant application of recursive problem solving is the solution to a

mathematical puzzle usually called the Tower of Hanoi or Tower of Brahma.

This puzzle is generally attributed to the French mathematician Édouard Lucas,

who published an article about it in 1883. The legend surrounding the puzzle

goes something like this:

ARB-C 0�C?�67h?]VYý�?]I�þ:F =@N`Q 0JI-A
Somewhere in a remote region of the world is a monastery of a very devout

religious order. The monks have been charged with a sacred task that keeps

time for the universe. At the beginning of all things, the monks were given a

table that supports three vertical posts. On one of the posts was a stack of 64

concentric golden disks. The disks are of varying radii and stacked in the shape

of a beautiful pyramid. The monks were charged with the task of moving the

disks from the first post to the third post. When the monks have completed their

task, all things will crumble to dust and the universe will end.

Of course, if that’s all there were to the problem, the universe would have

ended long ago. To maintain divine order, the monks must abide by certain

rules.

1. Only one disk may be moved at a time.

2. A disk may not be “set aside.” It may only be stacked on one of the three

posts.

3. A larger disk may never be placed on top of a smaller one.

Versions of this puzzle were quite popular at one time, and you can still find

variations on this theme in toy and puzzle stores. Figure G1H . depicts a small

version containing only eight disks. The task is to move the tower from the first

post to the third post using the center post as sort of a temporary resting place

during the process. Of course, you have to follow the three sacred rules given

above.

We want to develop an algorithm for this puzzle. You can think of our algo-

rithm either as a set of steps that the monks need to carry out, or as a program

that generates a set of instructions. For example, if we label the three posts A,

B, and C. The instructions might start out like this:¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸¸Z¸�¸

This is a difficult puzzle for most people to solve. Of course, that is not

surprising, since most people are not trained in algorithm design. The solution

process is actually quite simple—if you know about recursion.

Let’s start by considering some really easy cases. Suppose we have a version

of the puzzle with only one disk. Moving a tower consisting of a single disk is

simple enough; we just remove it from A and put it on C. Problem solved. OK,

0JI21 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T

Figure ¢1£ . ¤ : Tower of Hanoi puzzle with eight disks.

what if there are two disks? I need to get the larger of the two disks over to post

C, but the smaller one is sitting on top of it. I need to move the smaller disk out

of the way, and I can do this by moving it to post B. Now the large disk on A is

clear; I can move it to C and then move the smaller disk from post B onto post

C.

Now let’s think about a tower of size three. In order to move the largest disk

to post C, I first have to move the two smaller disks out of the way. The two

smaller disks form a tower of size two. Using the process I outlined above, I

could move this tower of two onto post B, and that would free up the largest

disk so that I can move it to post C. Then I just have to move the tower of two

disks from post B onto post C. Solving the three disk case boils down to three

steps:

1. Move a tower of two from A to B.

2. Move one disk from A to C.

3. Move a tower of two from B to C.

The first and third steps involve moving a tower of size two. Fortunately, we

have already figured out how to do this. It’s just like solving the puzzle with

ARB-C 0�C?�67h?]VYý�?]I�þ:F =@N`Q 0JI2B
two disks, except that we move the tower from A to B using C as the temporary

resting place, and then from B to C using A as the temporary.

We have just developed the outline of a simple recursive algorithm for the

general process of moving a tower of any size from one post to another.� ¥�Æ�¨���£J§��-�U¡���¨�Õ«���p´-�p£Z�2ê©§�¨�²«�-�©�-�«¨:�ø�J¨/��������§«¨����&�:§p£2���/§�£/¨/�©Õp£-�¤���p�:§p£2�«Æ�¯�¥��«�/�
��¨�Õ«���p´�¶®�p£Z�2ê©§�¨�²«�-�¦����¨:� �J¨/��������§«¨P�«�&�:§p£2�&Æ�¯�¥Z�������¨�Õ«�°¶®�&£��2ê¦§�¨�²«�-�©�-�«¨:�ø�J¨/��������§«¨����&�:§p£2���/§�£/¨/���¨�Õ«���p´�¶®�p£Z�2ê©§�¨�²«�-�¦����¨:�µ���p�2§�£2�«Æ�¯�¥��«�/�¤§«¨©���&�:§p£2���/§�£/¨/�
What is the base case for this recursive process? Notice how a move of ñ disks

results in two recursive moves of ñW,©Ø disks. Since we are reducing ñ by one

each time, the size of the tower will eventually be Ø . A tower of size 1 can be

moved directly by just moving a single disk; we don’t need any recursive calls to

remove disks above it.

Fixing up our general algorithm to include the base case gives us a working
��¨�Õ«� â ¨�²«�-�

algorithm. Let’s code it up in Python. Our

��¨-Õ�� â ¨�²&���
function will

need parameters to represent the size of the tower,

�
; the source post,

�J¨/�������
;

the destination post,

���&�:§
; and the temporary resting post,

§«�2�«¯
. We can use an

int for

�
and the strings “A,” “B,” and “C” to represent the posts. Here is the code

for

��¨�Õ«� â ¨�²«�-�
:���-����¨�Õ«� â ¨�²«�-�"���¹� �/¨J�«���/�"�E�Z�p�2§g�E§«�2�«¯ �¡£/�¤�·ÇZÇß¶$¡¯«��£h�«§ N ¡ ¨�Õ«���p£Z�2ê¦�-�«¨2� N �Â�/¨/�����/�"� N §«¨ N �E���&�:§Zä N ¸ N��¥«�/�g¡��¨-Õ�� â ¨�²&���"����´�¶�À�J¨/�������x�Ñ§«�2�«¯Ó�E���&�:§6 ��¨-Õ�� â ¨�²&���"�h¶s� �/¨/�����/�"�E�Z�p�:§`�Ñ§«�2�«¯ ��¨-Õ�� â ¨�²&���"����´�¶� §��:��¯¹�E�Z�p�:§`� �/¨J�«�p����

See how easy that was? Sometimes using recursion can make otherwise difficult

problems almost trivial.

To get things started, we just need to supply values for our four parameters.

Let’s write a little function that prints out instructions for moving a tower of sizeñ from post A to post C.���-�¤���:�p¨&£s�S� �¡��¨�Õ«� â ¨�²«�-�"���¹� N � N � N � N � N i N

0JIh0 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
Now we’re ready to try it out. Here are solutions to the three- and four-disk

puzzles. You might want to trace through these solutions to convince yourself

that they work.ºZº�º ���:�p¨&£s�R½p ¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2��i©§«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2��i©§«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸
ºZº�º ���:�p¨&£s�Å»� ¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2��i©§«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2��i©§«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2��i©§«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2��i©§«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨&i¹¸
¡ ¨�Õ«���&£��2ê©���«¨2� � §«¨ � ¸¡ ¨�Õ«���&£��2ê©���«¨2��i©§«¨ � ¸

So, our solution to the Tower of Hanoi is a “trivial” algorithm requiring only

nine lines of code. What is this problem doing in a section labeled hard prob-

lems? To answer that question, we have to look at the efficiency of our solution.

Remember, when I talk about the efficiency of an algorithm I mean how many

steps it requires to solve a given size problem. In this case, the difficulty is de-

termined by the number of disks in the tower. The question we want to answer

is how many steps does it take to move a tower of size ñ ?

Just looking at the structure of our algorithm, you can see that moving a

tower of size ñ requires us to move a tower of size ñ�,©Ø twice, once to move

ARB-C 0�C?�67h?]VYý�?]I�þ:F =@N`Q 0JIJI
it off the largest disk, and again to put it back on top. If we add another disk

to the tower, we essentially double the number of steps required to solve it.

The relationship becomes clear if you simply try out the program on increasing

puzzle sizes.

Number of Disks Steps in Solution

1 1

2 3

3 7

4 15

5 31

In general, solving a puzzle of size ñ will require Ú^Y¥,�Ø steps.

Computer scientists call this an exponential time algorithm, since the mea-

sure of the size of the problem, ñ , appears in the exponent of this formula.

Exponential algorithms blow up very quickly and can only be practically solved

for relatively small sizes, even on the fastest computers. Just to illustrate the

point, if our monks really started with a tower of just 64 disks and moved one

disk every second, 24 hours a day, every day, without making a mistake, it would

still take them over 580 billion years to complete their task. Considering that the

universe is roughly 15 billion years old now, I’m not too worried about turning

to dust just yet.

Even though the algorithm for Towers of Hanoi is easy to express, it belongs

to a class known as intractable problems. These are problems that require too

much computing power (either time or memory) to be solved in practice, except

for the simplest cases. And in this sense, our toy-store puzzle does indeed repre-

sent a hard problem. But some problems are even harder than intractable, and

we’ll meet one of those in the next section.

npoGqìëxqLÌ � ��~&�Ò�6}îÍhwz�p�·���S���6}�~6y
Let’s just imagine for a moment that this book has inspired you to pursue a

career as a computer professional. It’s now six years later, and you are a well-

established software developer. One day, your boss comes to you with an im-

portant new project, and you are supposed to drop everything and get right on

it.

It seems that your boss has had a sudden inspiration on how your company

can double its productivity. You’ve recently hired a number of rather inexperi-

enced programmers, and debugging their code is taking an inordinate amount of

0JI23 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
time. Apparently, these wet-behind-the-ears newbies tend to accidentally write

a lot of programs with infinite loops (you’ve been there, right?). They spend

half the day waiting for their computers to reboot so they can track down the

bugs. Your boss wants you to design a program that can analyze source code

and detect whether it contains an infinite loop before actually running it on test

data. This sounds like an interesting problem, so you decide to give it a try.

As usual, you start by carefully considering the specifications. Basically, you

want a program that can read other programs and determine whether they con-

tain an infinite loop. Of course, the behavior of a program is determined not just

by its code, but also by the input it is given when it runs. In order to determine

if there is an infinite loop, you will have to know what the input will be. You

decide on the following specification:

Program: Halting Analyzer

Inputs: A Python program file.

The input for the program.

Outputs: “OK” if the program will eventually stop.

“FAULTY” if the program has an infinite loop.

Right away you notice something interesting about this program. This is a

program that examines other programs. You may not have written many of these

before, but you know that it’s not a problem in principle. After all, compilers and

interpreters are common examples of programs that analyze other programs.

You can represent both the program that is being analyzed and the proposed

input to the program as Python strings.

There is something else very interesting about this assignment. You are be-

ing asked to solve a very famous puzzle known and the Halting Problem, and

it’s unsolvable. There is no possible algorithm that can meet this specification!

Notice, I’m not just saying that no one has been able to do this before; I’m saying

that this problem can never be solved, in principle.

How do I know that there is no solution to this problem? This is a question

that all the design skills in the world will not answer. Design can show that

problems are solvable, but it can never prove that a problem is not solvable. To

do that, we need to use our analytical skills.

One way to prove that something is impossible is to first assume that it is

possible and show that this leads to a contradiction. Mathematicians call this

proof by contradiction. We’ll use this technique to show that the halting problem

cannot be solved.

ARB-C 0�C?�67h?]VYý�?]I�þ:F =@N`Q 0JI2Ê
We begin by assuming that there is some algorithm that can determine if any

program terminates when executed on a particular input. If such an algorithm

could be written, we could package it up in a function.���-��§«���/�s£h���/§«�p��S¯��«¨�Æ-�&�h�á�Ñ£2��¯Z��§ � �/§&�& �¡¢ ¯«��¨�Æ��«�2�°�:�&�·£h�Z¯Z��§ � ��§&�¤������ªp¨-§�� �:§���£2�«Æ��
¢P¬ ��§-�«����®§��-�&�µ£/�¤¯«��¨�Æ-�&�2�¦²&¨/�p¥-���p�Z¥/§�²��p�J�¦�-���¦²�£:§-�ß£2��¯Z��§ � �/§&�¢ �&��£:§���£h�Z¯Z��§¹¸

Of course, I can’t actually write the function, but let’s just assume that this func-

tion exists.

Using the

§��-�J�s£2�p��§��p�
function, we can write an interesting program.¢ §-����£h�&ÆÓ¸ ¯«Ë£@��¯p¨��Z§��2§Z��£h�&Æ

���-��§«���/�s£h���/§«�p��S¯��«¨�Æ-�&�h�á�Ñ£2��¯Z��§ � �/§&�& �¡¢ ¯«��¨�Æ��«�2�°�:�&�·£h�Z¯Z��§ � ��§&�¤������ªp¨-§�� �:§���£2�«Æ��
¢P¬ ��§-�«����®§��-�&�µ£/�¤¯«��¨�Æ-�&�2�¦²&¨/�p¥-���p�Z¥/§�²��p�J�¦�-���¦²�£:§-�ß£2��¯Z��§ � �/§&�¢ �&��£:§���£h�Z¯Z��§¹¸

���-���6��£2�g�@ �¡
¢P¬ �Z�-�±��¯«��¨�Æ-�&�2�µ���«¨2�ø�:§«�J�&�����Z�±£2��¯Z��§¥«£h�p�p�®Çæ¼ Ã¯«�p£2�«§ N â Ë�¯p�µ£h����¯«�«¨-Æ��«�2� �M§ZË-¯&� S �Z¨/�&� S §«¨&¦/�6£:§6 �¸ N¥«£h�p��Ç��&�J²"§�£2�Z¯��«§x� N8N ²���£-¥���¥«£2�&� èlÇ N ��¨/�&� N ¡¥«£2�&�p��¸M�J¯�¯p�J�&�x�R¥«£h�p�� ¥«£2�&�PÇ©�&�J²"§«£h�Z¯��«§"� N8N §«�&�:§8\��«¨-ÆPÇ°�:§���£2�«ÆÓ¸v¨Z¨&£h�g�R¥«£2�&�p�$� Na© � N ¢«ª �P¯«��¨�Æ-�&�2������¥�§���¨J�ß£J§��/��¥��¦�&��£h�Z¯��«§g�ÑÆ�¨µ£2��§«¨¦�:�ß£2�&�&£2��£J§«��¥�¨Z¨J¯£/��§��-�/�£2�p��§«�&�s�M§«�p�2§8\��«¨�Æ"� §«�&�:§8\��«¨-Æ� �¡²��6£�¥�� â �-�&�g¡¯p�&��� ¢ ��¯��«�Z�©�2§&��§��:���/�«§P��¨��p���p¨�§-��£2�&Æ�6��£2�`�h

I have called this program

§-����£h�&Æ
in honor of Alan Turing, the British mathe-

matician considered by many to be the “Father of Computer Science.” He was

the one who first proved that the halting problem could not be solved.

0JI2Ö 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
The first thing

§-�«�p£2�«ÆÓ¸>¯�Ë
does is read in a program typed by the user. This

is accomplished with a sentinel loop that accumulates lines in a list one at a

time. The

�:§���£2�«ÆÓ¸v¨Z¨&£h�
function then concatenates the lines together using a

newline character (N�¬ � N) between them. This effectively creates a multi-line

string representing the program that was typed.â ����£2�«ÆÓ¸ ¯«Ë
then calls the

§«�-�J�s£h����§��p�
function and sends the input program

as both the program to test and the input data for the program. Essentially, this

is a test to see if the program read from the input terminates when given itself

as input. The

¯p�&���
statement actually does nothing; if the

§��-�J�s£2�p��§��p�
function

returns true,

§��«��£h�&Æg¸>¯«Ë
will go into an infinite loop.

OK, this seems like a silly program, but there is nothing in principle that

keeps us from writing it, provided that the

§��-�J�s£2�p��§��p�
function exists.

â �«��£h�&Æg¸>¯«Ë
is constructed in this peculiar way simply to illustrate a point. Here’s the million

dollar question: What happens if we run

§��«�p£2�&Æg¸>¯�Ë
and, when prompted to

type in a program, type in the contents of

§-�«�p£2�«ÆÓ¸>¯�Ë
itself? Put more specifi-

cally, does

§��«�p£2�&Æg¸>¯�Ë
halt when given itself as its input?

Let’s think it through. We are running

§��«��£h�&Æg¸>¯«Ë
and providing

§-����£2�«ÆÓ¸ ¯«Ë
as its input. In the call to

§«���/�s£h���/§«�p�
, both the program and the data will be a

copy of

§-�«�p£2�«ÆÓ¸>¯�Ë
, so if

§��«�p£2�&Æg¸>¯�Ë
halts when given itself as input,

§«�-�J�s£h����§��p�
will return true. But if

§��-�/�£2�p��§«�&�
returns true,

§-����£h�&ÆÓ¸ ¯«Ë
then goes into an

infinite loop, so it doesn’t halt! That’s a contradiction;

§-�«�p£2�«ÆÓ¸>¯�Ë
can’t both halt

and not halt. It’s got to be one or the other.

Let’s try it the other way around. Suppose that

§��-�/�£2�p��§«�&�
returns a false

value. That means that

§-�«�p£2�«ÆÓ¸>¯�Ë
, when given itself as input goes into an

infinite loop. But as soon as

§«�-�J�s£h����§��p�
returns false,

§-����£h�&ÆÓ¸ ¯«Ë
quits, so it

does halt! It’s still a contradiction.

If you’ve gotten your head around the previous two paragraphs, you should

be convinced that

§��«�p£2�&Æg¸>¯�Ë
represents an impossible program. The existence

of a function meeting the specification for

§«�-�J�s£h����§��p�
leads to a logical impos-

sibility. Therefore, we can safely conclude that no such function exists. That

means that there cannot be an algorithm for solving the halting problem.

There you have it. Your boss has assigned you an impossible task. Fortu-

nately, your knowledge of computer science is sufficient to recognize this. You

can explain to your boss why the problem can’t be solved and then move on to

more productive pursuits.

A<B-C I-C-45W7:9<;>=@?�É�\2NáNÓ7@?$ 0JI2é
npoGqìëxqLo íU�����«}®!�ï:w]���

I hope this chapter has given you a taste of what computer science is all about.

As the examples in this chapter have shown, computer science is much more

than “just” programming. The most important computer for any computing

professional is still the one between the ears.

Hopefully this book has helped you along the road to becoming a computer

programmer. Along the way, I have tried to pique your curiosity about the sci-

ence of computing. If you have mastered the concepts in this text, you can

already write interesting and useful programs. You should also have a firm foun-

dation of the fundamental ideas of computer science and software engineering.

Should you be interested in studying these fields in more depth, I can only say

“go for it.” Perhaps one day you will also consider yourself a computer scientist;

I would be delighted if my book played even a very small part in that process.

^`_ba�¯ °ÂiÓe²±g#« ¹f�d¥���³�°egf�´
This chapter has introduced you to a number of important concepts in computer

science that go beyond just programming. Here are the key ideas:

* One core subfield of computer science is analysis of algorithms. Computer

scientists analyze the time efficiency of an algorithm by considering how

many steps the algorithm requires as a function of the input size.

* Searching is the process of finding a particular item among a collection.

Linear search scans the collection from start to end and requires time lin-

early proportional to the size of the collection. If the collection is sorted,

it can be searched using the binary search algorithm. Binary search only

requires time proportional to the log of the collection size.

* Binary search is an example of a divide and conquer approach to algorithm

development. Divide and conquer often yields efficient solutions.

* A definition or function is recursive if it refers to itself. To be well-founded,

a recursive definition must meet two properties:

1. There must be one or more base cases that require no recursion.

2. All chains of recursion must eventually reach a base case.

0232ð 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
A simple way to guarantee these conditions is for recursive calls to always

be made on smaller versions of the problem. The base cases are then

simple versions that can be solved directly.* Sequences can be considered recursive structures containing a first item

followed by a sequence. Recursive functions can be written following this

approach.* Recursion is more general than iteration. Choosing between recursion and

looping involves the considerations of efficiency and elegance.* Sorting is the process of placing a collection in order. A selection sort

requires time proportional to the square of the size of the collection. Merge

sort is a divide and conquer algorithm that can sort a collection in ñ log ñ
time.* Problems that are solvable in theory but not in practice are called in-

tractable. The solution to the famous Towers of Hanoi can be expressed as

a simple recursive algorithm, but the algorithm is intractable.* Some problems are in principle unsolvable. The Halting problem is one

example of an unsolvable problem.* You should consider becoming a computer scientist.

^`_ba	µ ¶�·" jfh!�%r)« ")
 ¹~(#pw]~(��¸¹!�~&ï@Íhw]����ïº*»½¼?¾�¿�À8Á?Â9ÃP¾

1. Linear search requires a number of steps proportional to the size of the list

being searched.

2. The Python operator

£2�
performs a binary search.

3. Binary search is an ñ log ñ algorithm.

4. The number of times ñ can be divided by 2 is Ä
Å^Æ�+(ñM. .
5. All proper recursive definitions must have exactly one non-recursive base

case.

A<B-C 3-C?ÇJÈW=h?][WK Q =RQ 023-A
6. A sequence can be viewed as a recursive data collection.

7. A word of length ñ has ñ*) anagrams.

8. Loops are more general than recursion.

9. Merge sort is an example of an ñ log ñ algorithm.

10. Exponential algorithms are generally considered intractable.É ¼gÂËÊPÌ;ÍgÂ9¾¹Î�Ï?ÐgÌ$Ñ>¾
1. Which algorithm requires time directly proportional to the size of the in-

put?

a) linear search b) binary search

c) merge sort d) selection sort

2. Approximately how many iterations will binary search need to find a value

in a list of 512 items?

a) 512 b) 256 c) 9 d) 3

3. Recursions on sequences often use this as a base case:

a) 0 b) 1 c) an empty sequence d)
j ¨/�&�

4. An infinite recursion will result in

a) a program that “hangs”

b) a broken computer

c) a reboot

d) a run-time exception

5. The recursive Fibonacci function is inefficient because

a) it does many repeated computations

b) recursion is inherently inefficient compared to iteration

c) calculating Fibonacci numbers is intractable

d) fibbing is morally wrong

6. Which is a quadratic time algorithm?

a) linear search b) binary search

c) tower of Hanoi d) selection sort

7. The process of combining two sorted sequences is called

a) sorting b) shuffling c) dovetailing d) merging

02321 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
8. Recursion is related to the mathematical technique called

a) looping b) sequencing c) induction d) contradiction

9. How many steps would be needed to solve the Towers of Hanoi for a tower

of size 5?

a) 5 b) 10 c) 25 d) 31

10. Which of the following is not true of the Halting Problem?

a) It was studied by Alan Turing

b) It is harder than intractable

c) Someday a clever algorithm may be found to solve it

d) It involves a program that analyzes other programsÒ Ì$ÃPÑ1¼?Ã4Ã/Ì$Ð"Ó
1. Place these algorithm classes in order from fastest to slowest: ñb÷ìù/ú`ñ , ñ ,ñ û , ÷ìù/ú`ñ , Ú2Y
2. In your own words, explain the two rules that a proper recursive definition

or function must follow.

3. What is the exact result of

�J�p�-Æ-�&�2�Ó� N ��¨Z¨ N ?
4. Trace

�«�«�>\«¨/²&���"�R½x��Ep
and figure out exactly how many multiplications it

performs.

5. Why are divide-and-conquer algorithms often very efficient?

�����6�G�S�y|yÂwz�p�ÔKML&~6�M�Zw]ï2~&ï
1. Modify the recursive Fibonacci program given in the chapter so that it

prints tracing information. Specifically, have the function print a message

when it is called and when it returns. For example, the output should

contain lines like these:� ¨:��¯Z��§�£2�«Æ��p£hªg�c»� ¸Z¸Z¸
k ���/Õ�£h�&Æ��&£2ªg�c»� ����-§��«�-��£2�«Æ�½
Use your modified version of

�&£2ª
to compute

�p£hªg�2¶2Þ�
and count how

many times

�p£hªg�R½p
is computed in the process.

A<B-C 3-C?ÇJÈW=h?][WK Q =RQ 0232B
2. This exercise is another variation on “instrumenting” the recursive Fi-

bonacci program to better understand its behavior. Write a program that

counts how many times the

�&£2ª
function is called to compute

�&£2ªg���s
where

�
is a user input.

Hint: To solve this problem, you need an accumulator variable whose

value “persists” between calls to

�p£hª
. You can do this by making the count

an instance variable of an object. Create a
ç £hª � ¨/�Z��§«���

class with the

following methods:£2��£J§ �@�J��¥-��
Creates a new FibCounter setting its count instance vari-

able to 0.
Æ��-§ � ¨J�Z�«§x�@�J��¥-��

Returns the value of count.
�p£2ª`�@�J��¥-�"�l�

Recursive function to compute the nth Fibonacci number. It

increments the count each time it is called.
�«�p�J�-§ � ¨/���«§x�@�/�Z¥-��

Set the count back to 0

3. A palindrome is a sentence that contains the same sequence of letters read-

ing it either forwards or backwards. A classic example is: “Able was I, ere

I saw Elba.” Write a recursive function that detects whether a string is a

palindrome. The basic idea is to check that the first and last letters of the

string are the same letter; if they are, then the entire string is a palindrome

if everything between those letters is a palindrome. There are a couple of

special cases to check for. If either the first or last character of the string

is not a letter, you can check to see if the rest of the string is a palindrome

with that character removed. Also, when you compare letters, make sure

that you do it in a case-insensitive way.

Use your function in a program that prompts a user for a phrase and then

tells whether or not it is a palindrome. Here’s another classic for testing:

“A man, a plan, a canal, Panama!”

4. Write and test a recursive function

�6���
to find the largest number in a list.

The max is the larger of the first item and the max of all the other items.

5. Computer scientists and mathematicians often use numbering systems other

than base 10. Write a program that allows a user to enter a number and a

base and then prints out the digits of the number in the new base. Use a

recursive function

ª��«�/� � ¨/��Õ«�-����£/¨/�g���Z���á�lªp�&�J��
to print the digits.

Hint: Consider base 10. To get the rightmost digit of a base 10 number,

simply look at the remainder after dividing by 10. For example, Ø 3 Û1ÕÑØ
� is

023h0 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
3. To get the remaining digits, you repeat the process on Ø 3 , which is justØ 3 Û1eZØ
� . This same process works for any base. The only problem is that

we get the digits in reverse order (right to left).

Write a recursive function that first prints the digits of ñBÖØ×�e>r4X] Ä and then

prints the last digit, namely ñBÖ"×�ÕÙrPX] Ä . You should put a space between

successive digits, since bases greater than 10 will print out with multi-

character digits. For example,

ª��&�J� � ¨/�«Õ��-����£�¨J�g�R¿-»«ÁG� ¶2Ep
should print

¶:ÁÁ
.

6. Write a recursive function to print out the digits of a number in English.

For example, if the number is 153, the output should be “One Five Three.”

See the hint from the previous problem for help on how this might be

done.

7. In mathematics, Ú�YÛ denotes the number of different ways that Ü things

can be selected from among ñ different choices. For example, if you are

choosing among six desserts and are allowed to take two, the number

of different combinations you could choose is Ú¥Ýû . Here’s one formula to

compute this value: Ú YÛ ô ñ*)Ü�)®+(ñ-,ÞÜg.4)
This value also gives rise to an interesting recursion:Ú YÛ ô�Ú Y�ß �Û ß � wàÚ Y�ß �Û
Write both an iterative and a recursive function to compute combinations

and compare the efficiency of your two solutions. Hints: when Ü�ô Ø ,ÚáYÛ ôPñ and when ñutâÜ , Ú�YÛ ô&� .
8. Some interesting geometric curves can be described recursively. One fa-

mous example is the Koch curve. It is a curve that can be infinitely long in

a finite amount of space. It can also be used to generate pretty pictures.

The Koch curve is described in terms of “levels” or “degrees.” The Koch

curve of degree 0 is just a straight line segment. A first degree curve

is formed by placing a “bump” in the middle of the line segment (see

Figure G1H . ã). The original segment has been divided into four, each of

which is 1/3 the length of the original. The bump rises at 60 degrees, so

it forms two sides of an equilateral triangle. To get a second degree curve,

you put a bump in each of the line segments of the first degree curve.

A<B-C 3-C?ÇJÈW=h?][WK Q =RQ 023JI
Successive curves are constructed by placing bumps on each segment of

the previous curve.

Figure ä^å . æ : Koch curves of degree 0 to 2

.

You can draw interesting pictures by “Kochizing” the sides of a polygon.

Figure ä^å . ç shows the result of applying a fourth degree curve to the sides

of an equilateral triangle. This is often called a “Koch snowflake.” You are

to write a program to draw a snowflake.

Hints: Think of drawing a Koch curve as if you were giving instructions to

a turtle. The turtle always knows where it currently sits and what direction

it is facing. To draw a Koch curve of a given length and degree, you might

use an algorithm like this:ègé1ê8ë^ì"í>î^ï1ðÔñgë(òJï[óõô^ö?ì8îgé^÷ùø-é^÷>úgê^î^ï�øVû?÷�ê^ì(÷�÷Øü�ýí>þ6û?÷^ê�ì(÷�÷�ÿ8ÿ���ýô?÷(é8éâî1ï"÷�î1ö(ì8îgé^÷ î?ë&û�ì����Ôþ?ë1ì é^÷>úgê^î^ï��2î?÷	�
�÷?é��>÷[ýé1÷�úgê^î^ï�mÿ é^÷>úgê�î1ï����û8÷�ê�ì?÷8÷��mÿ6û?÷^ê�ì(÷�÷����ñ(ëgòJï[óõô1ö(ì8îgé^÷*ø�é^÷>úgê^î^ï��BøVû8÷�ê�ì?÷8÷���üô?÷(é8éâî1ï"÷�î1ö(ì8îgé^÷ î?ë�î^ö?ì^ú é^÷^þ�î����&û?÷^ê�ì(÷�÷��ñ(ëgòJï[óõô1ö(ì8îgé^÷*ø�é^÷>úgê^î^ï��BøVû8÷�ê�ì?÷8÷���üô?÷(é8éâî1ï"÷�î1ö(ì8îgé^÷ î?ë�î^ö?ì^úÔìØí>ê1ï?î��	���&û?÷�ê^ì(÷�÷��ñ(ëgòJï[óõô1ö(ì8îgé^÷*ø�é^÷>úgê^î^ï��BøVû8÷�ê�ì?÷8÷���ü

02323 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T

Figure G1H . � : Koch snowflake

.

â ��¥Z¥¤§��p�P§��«�Z§«¥��¤§�¨P§-���-��¥��-��§�E�Þ����-Æ��«���p�
� ¨&�2�`� â �«�Z§«¥��x�¾¥��J�&Æ-§-�$¶�Ñ�Z��Æ����Z��¶�

Implement this algorithm with a
â �«��§&¥-�

class that contains instance vari-

ables

¥-¨&����§�£/¨/�
(a

\«¨«£2�«§
) and

� £J���&�J§p£�¨J�
(a float) and methods such as

��¨-Õ�� â ¨G�@�J¨:���^\«¨«£2��§6
,

�-�&�J²`�<¥-�/�«Æ�§-�
, and

§-���-�g�c���-Æ��«���p�Z
. If you main-

tain direction as an angle in radians, the point you are going to can eas-

ily be computed from your current location. Just use

�Z�©Ç±¥-�/�&Æ-§-� C��¨p��Å�&£J�«�«�J§p£�¨/�
and

�-Ë¦Çµ¥��/�«Æ�§�� C¦��£h�g�Å�&£J���&�J§p£�¨J�s
.

9. Another interesting recursive curve (see previous problem) is the C-curve.

It is formed similarly to the Koch curve except whereas the Koch curve

breaks a segment into four pieces of � Ä8ñ�������eJÛ , the C-curve replaces each

segment with just two segments of �@Ä@ñ�� �!�Øe�" Ú that form a 90 degree elbow.

Figure G1H . # shows a degree 12 C-curve.

Using an approach similar to the previous exercise, write a program that

draws a C-curve. Hint: your turtle will do the following:§-�«����¥��-��§¦»«ÁP�Z��Æ-�«�Z�&����&�J²·�±�-´��2�«��Õ«��¨-����£
$
�¦¥��J�&Æ-§-��å«�>¦-�Z§"�R¿p

A<B-C 3-C?ÇJÈW=h?][WK Q =RQ 0232Ê

Figure G1H . # : C-curve of degree 12

.§-�«���±��£JÆ��«§6�ZÞ����-Æ����Z�p����&�J²·�±�-´��2�«��Õ«��¨-����£
$
�¦¥��J�&Æ-§-��å«�>¦-�Z§"�R¿p §-�«����¥��-��§¦»«ÁP�Z��Æ-�«�Z�&�

10. Automated spell checkers are used to analyze documents and locate words

that might be misspelled. These programs work by comparing each word

in the document to a large dictionary (in the non-Python sense) of words.

If the word is not found in the dictionary, it is flagged as potentially incor-

rect.

Write a program to perform spell-checking on a text file. To do this, you

will need to get a large file of English words in alphabetical order. If you

have a Unix or Linux system available, you might poke around for a file

called

²«¨-���p�
, usually located in

åJ�6�:�&å��p£��J§
or

åJ�6�:�«å&�h�p������å-�&£Z�:§
. Other-

wise, a quick search on the Internet should turn up something usable.

Your program should prompt for a file to analyze and then try to look up

every word in the file using binary search. If a word is not found in the

dictionary, print it on the screen as potentially incorrect.

0232Ö 46587:9<;>=@?$A<B-CEDGF H2IJ?LK ;M5:NPO6=RQSK H-TU7:TWVYXZ=R[@\2?]QSK I-T
11. Write a program that solves word jumble problems. You will need a large

dictionary of English words (see previous problem). The user types in a

scrambled word, and your program generates all anagrams of the word

and then checks which (if any) are in the dictionary. The anagrams ap-

pearing in the dictionary are printed as solutions to the puzzle.

% &'&�(*)*+-,/. % 0 1 ��� þ�� 2 � �&�43
� �65b�æ���æ�����

°ÂiÓe²±g#« ¹fÞ�87:9 f2%z#«%lkÓm d %s� ±|�z �¾f��jm�fhe|�ß)
 ¹~&ï2~6�s#&~"�<; ��õ�ï

and del for is raise

assert elif from lambda return

break else global not try
class except if or while

continue exec import pass yield
def finally in print

���Swz��ÍÔu�Í@�pÍ@~6yÀ~6��Í
=	>@?BA	C=	>@?BA	CEDGFIHG=	>�J=	>@?BA	CEDGFIHG=	>�J
KLDGFIHI=	> J
KNM�MGMIKODGFIHG=	>�J=	>@?BA	CEDGFIHG=	>�J
KLDGFIHI=	> J
KNM�MGMIKODGFIHG=	>�J
K
tÒïhï2w��G�$yÀ~6�pÍÔu�Í@�&Í@~6yÂ~6�pÍ
DQP�RQ>@?SRQT�UIF	JWVXDGFIHG=	>�JDQP�RQ>@?SRQT�UIF@YZJ
K[DQP�RI>@?ZRQT�UGF�\�J
K]MGM�MIKODQP�RI>^?SRQT�UGFQ_ JWVEDGFIHG=�>�YZJ
K�DIFIHG=	>�\�J
K`M�M�MIKODGFIHI=	>�_ J
n>�s{x!pÍWah�x!syÂ~6�Swì��b
DQP�RQ>@?SRQT�UIF	JWVc?dA�=�e	Cgf!DS=	>�hdi =	C J jDQP�RQ>@?SRQT�UIF@YZJ
K[DQP�RI>@?ZRQT�UGF�\�J
K]MGM�MIKODQP�RI>^?SRQT�UGFQ_ JWV<?dA�=�e�Cf!DS=	>	h/i =	C J�j

+ k	l

02Ê2ð DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c=
% ~('g��w�Í@~©Ðp����{
r hI>EDQP	RI> JE?dAsD�tQFGuIe�FQA@vQF	JgwDST�hGxGy J
°ÂiÓe²±g#« ¹f _87â°-��� ±��`#&%lkgm{z³%z#�i}|à��� � ¹fh)
}�!syÀ~�Swì�:~Ô{s~6���pÍ@���ï
operator operation�

addition� subtraction� multiplication�
division�Q� exponentiation

% remainderRQT@t�fBj absolute value

��� ��!6}�~&n>y {s���Í
?qi =�hI>�C:Ddi@hIxIe�UGF	�ZA R/i@F	J
���pÍJ�©Ð�wz��������Î�AB!s�6�-Íhw]����ï
Python Mathematics English=�? � An approximation of pi.F � An approximation of � .t	?dAf�H@j ������� Returns sine of x.vQh t�f�H@j �q�I��� Returns cosine of x.C�RQAf�H@j ���S��� Returns tangent of x.R t	?BA�f�H@j �S����������� Returns inverse of sine x.R vQh�t�f�H@j �S�����q�G��� Returns inverse of cosine x.RIC�RSA�f�H@j �S���!���Q��� Returns inverse of tangent x.UGhI�gf�H@j ����� Returns natural (base �) logarithm of xUGhI��Y/�
f�H@j ���I������� Returns common (base 10) logarithm of x.FIHG=f�H@j �d� Returns exponential of x.vQF�?SU�f�H@j � ��¡ Returns smallest whole number ¢¤£ � .r UGhGhI>f�H@j ¥ ��¦ Returns largest whole number §¤£ � .

DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c= 02Ê-A
×�!�wL}îÍ/¨Wwz�ÔAx!s����Íhw]����ï
Function Description>�RQA���F
f�tZC	hQ=�j Returns list of ints from � to tZC�hQ=�©�Y .>�RQA���F
f�tZC	RI>�C�KªtZC�hQ=@j Returns list of ints from tZC�RQ>�C to tZC�hQ= ©^Y .>�RQA���F
f�tZC	RI>�C�KªtZC�hQ=�K«t/C�FQ=�j Returns a list of ints from tZC�RQ>�C to tZC�hQ=

counting by t/C�FQ= .C�yG=�F
f�H@j Returns the Python data type of x.?dA	Cgf�H@j Returns value of x converted to int.

x may be either numeric or string.r UGhGRICf�H@j Returns value of x converted to a float.

x may be either numeric or string.>�hQeGA�xgf�H@j Returns nearest whole value of x (as a float).

°ÂiÓe²±g#« ¹fu�¬7â°-��� ±��`#&%lkgm{z³%z#�i d #�f2%lkÓmU)
n>�s{x!pÍWa<ï@ÍJ�Mwz�p��b
DQP�RQ>@?SRQT�UIF	JWVN>�RQ�� ?BA�=�e	Cf�DS=	>�h/i	=	C J	j

uG~"� !�~6���Z~s~Ô{s~6�S�&Íhw]����ï]a<ï@ÍJ�Swz���sï �s���¤}]w]ïhÍ@ï	b
Operator Meaning§ tQFGuQe FQA@vQF ¢¯®^§ tQFGuIe	FQA^vSF ¢ Returns concatenation of sequences.

Sequences must be of same type.§ tQFGuQe FQA@vQF ¢±°	§ A ¢ Returns sequence concatenated

with itself n times.
n must be int.§ tQFGuQe FQA@vQF ¢³²�§ A ¢¯´ Returns item at n (0 based from left).

n must be int.§ tQFGuQe FQA@vQF ¢³²�§ A ¢¯´ where µ«§`¶ Returns item at n (1 based from right).

n must be int.UGFQAf § tQFGuIe�FQA@vQF ¢ j Returns the length of the sequence.§ tQFGuQe FQA@vQF ¢³²�§ tZC�RI>IC ¢ w § FQA�x ¢'´ Returns subsequence from start up to

(not including) end.r hI> § P�RQ> ¢ ?BA § tSFGuIe FQA^vQF ¢ w Iterates through items in sequence.

02Ê21 DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c=
u�ÍJ�Mwz�p�·Ð�wz���S����Î Ax!s����Íhw]����ï
Function MeaningvQRQ=@?/C�R	U ?/·	F
f�t	j Copy of t with only the first character capitalized.vQRQ=G hI>	x�t�f�t	j Copy of t with first character

of each word capitalized.vQFQA�C�FI>f�t�K8�?ZxGCI¸�j Center t in a field of given �?ZxICG¸ .vQhQeGA	Cf�t�K³t/e�T�j Count the number of occurrences of t/e�T in t .r ?dA	xgf�t�K¹t/eGT�j Find the first position where tde�T occurs in t .º h�?BA�f!U ?Gt/C@j Concatenate U ?Gt/C of strings into one large string.U º e^tZCf�t�K»�?ZxGCG¸@j Like vSFQA	C�FI> , but t is left-justified.UGhQ�FI>f�t	j Copy of t in all lowercase characters.U�tZCG>@?d=�f�t�j Copy of t with leading whitespace removed.>�FQ= UGR vQF
fqt�K�h	UIx t/e�T�K¼A�FQ@tBe�T@j Replace all occurrences of h	UIx�t/eGT in t with A FQ@tde�T .> r ?BA�xgf�t�K³t/e�T�j Like
r ?dA�x , but returns the rightmost position.> º e^tZCf�t�K¼�?ZxGCG¸@j Like vSFQA	C�FI> , but t is right-justified.>^tZCG>@?d=�f�t�j Copy of t with trailing whitespace removed.t/=�U�?/Cf�t	j Split t into a list of substrings (see text).e�=�=�FI>f�t	j Copy of t with all characters converted

to upper case.

Note: These functions are also available as string methods.

�ÓÎ�{s~³íU���"#&~6�Sï2w]���6AB!s�6�-Íhw]����ï
Function Meaningr UGhGRICf!DGFQHG=	> J j Convert FIHG=	> to a floating point value.?dA	Cgf!DGFIHG=�> J j Convert FIHG=	> to an integer value.UGhQA��f!DGFIHI=	> J Convert FIHG=	> to a long integer value.tZC�>gf!DGFIHG=�> J j Return a string representation of FIHI=	> .FIP�R�U�f!D�tZCG>@?dA	� J�j Evaluate t/C�>@?dA	� as an expression.

u�ÍJ�Mwz�p��A���RyÀ�&Í8Íhwz���
½�¾ Í�»s¾1ÃPÃPÌ$Ð"ÓÀ¿Á^Ó8Ê4Á ¾
DQC�Fdi =�UGRIC	F	©�tZC�>^?dA	��JÃÂ'f!DQP�R	UZe F tIJ j
¿ ÍØ¾1Ñ�Ì�Ä�¾8»Å¿gÁ^Ó8ÊPÁ ¾
Â�DS@?ZxGCG¸�JgM�DS=	>�F�v	?Gt�?ZhQA J�DZC�yI=�F	©	v/¸	RI> J

DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c= 02Ê2B
type-char Data Typex ?dA�Cr r UIh�RICt tZCG>@?dA	�

Notes:Æ
Width and precision are optional.Æ
0 width means use whatever space is required.Æ
Width with leading zero means pad as necessary with 0 (space is default).Æ
Negative width means left justify (right is default).AswL}�~������G�Z~&ïhï:wz�p�

Ç ÍØ¾�ÓgÌ Ó@È�Á(Ó@ÉuÎ�ÂËÐ(Ã/Ì;Ó^È ÀØÌ Â9¾1Ã
D r ?SUGFIP�RI>�J`VEhS= FQA�f!DZA R/i@F	J�KªDdi@hIx	F	J j
Mode is Ê > Ê for reading, Ê Ê for writing, Ê R Ê for appending.D r ?SUGFIP�RI>�JM�vIUGh�tQF
f�j
Ë ¾1Á^É"Ì;Ó^È�ÁÞÀ"Ì;ÂË¾
§ r ?QUIFIP�RI> ¢ MÌ>�F�RGxgf�j Returns the entire remaining contents of the file as a single (po-

tentially large, multi-line) string.§ r ?QUIFIP�RI> ¢ MÌ>�F�RGx�U�?BA F
fqj Returns the next line of the file. That is all text up to and

including the next newline character.§ r ?QUIFIP�RI> ¢ MÌ>�F�RGx�U�?BA F t�fBj Returns a list of the remaining lines in the file. Each list

item is a single line including the newline character at the end.

Note: The file variable may also be used in a
r hI> loop where it is treated as a sequence

of lines.

Í »vÌ9ÊPÌ;Ó^È�ÁuÀ"Ì;Â9¾
D r ?SUGF	©QP�RQ> JMÌ	>^?/C�F�f�D�t/C�>�?dA���J j
°ÂiÓe²±g#« ¹fu¯¬7������� "!$#�)±eák��ÏÎ|fhe²±�ij%r!)
%�wz��~p��ÍWn y|{�s�lÍ �R����y ��� ��!6}�~
r >�hdiÐDBi@hGxIe�UIF	JN?qi =�hI>�C:DSA Rdi@F@YZJ
K³DZA R/i@F�\�J
KÑM�M�Mr >�hdiÐDBi@hGxIe�UIF	JN?qi =�hI>�C °

02Êh0 DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c=
~Ô�GÒ<~p��ÍÑíU����ïhÍJ�p!���Í@��
D�vIUIR t�tI©SA�R/i@F	J�f�DS= RQ>	R/i�YZJ�K8DS= RI>�Rdi@\	J
KÑMGM�M«j
~Ô�GÒ<~p��Í���~&ÍJ�����¦íU��}ì}
DGhQT º F vZC JgM�Ddi@FICI¸ hGx	©ZA Rdi@FGJ�f�DZ= RQ>�RBi
YZJ�K¬DZ= RI>�R/i^\	J
KÑM�MGM«j

For a summary of the objects and methods contained in the ��>�RQ=G¸�?Gv�t module in-
cluded with the book, see Section Ó�Ô�Õ .°ÂiÓe²±g#« ¹fÞµ87�Ö| �×�k¹%lkÓmÙØ|�Uk¹!s#&%@� kÓ)
Ax!s����Íhw]���&% ~('g��w�Íhw]���
x	F r DSA�R/i@F	J�f�D r hI>Si^R	U�©S= RS>�Rdi�YZJ�K8D r hQ>Si@R	U�©Z= RI>�R/i^\	J
K`M�M�MÚjDST�hGxGy J
Ax!s����Íhw]����íU�6}ì}
DSA Rdi@F	J�f!DIR vZCGe R�U�©S=�RQ>�Rdi
YdJ
K8DGR vZCIe R	U�©S=�RI>�R/i@\�J
K`M�M�M¹j
 ¹~«Í>!s�R��uGÍ@�&Í@~6yÂ~6�pÍ
>�FICIe	>GAEDQP�R�USe F@YZJ�KLDQP�R	UZe F�\	J
KÀM�M�M
°ÂiÓe²±g#« ¹fNÛ87�Ö| "!G%r)&%@� k�d #�f��Ó!$#Ø��fh ")
uxwzy|{6}�~³íU�����$w�Íhw]����ï
DGFIHI=	> J�DQ>	F	UGhQ=�JGDGFIHI=�> J
Relational Operators

Python Mathematics Meaning§ § Less than.§¤£ Ü Less than or equal to.£Ý£ £ Equal to.¢¤£ Þ Greater than or equal to.¢ ¢ Greater than.ß £ à£ Not equal to.

Note: These operators return a bool value (á >Ge F / â R	U�tQF)

DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c= 02ÊJI
n®�Òu�Í@�&Í@~6yÂ~6�pÍ
? r D�vQhQA	x^?/C@?ShSA�JwD�t/C�RIC�F/i^FQA	C^tIJ
? r D�vQhQA	x^?/C@?ShSA�JwD�t/C�RIC�F/i^FQA	C^t Y/JF	U�tSF�wD�t/C�RIC�F/i^FQA	C^tQ\�J
? r D�vQhQA	x^?/C@?ShSA�YZJwD�vSR tQF@Y`tZC	RIC�F/i@FSA	C^tIJF	U ? r D	vQhQA�x^?dC@?ShQA \�JwD�vSR tQF�\:tZC	RIC�F/i@FSA	C^tIJM�M�MF	U�tSF�wDIx�F r RQe�USCXtZC�RIC�Fdi@FQA	C^tQJ
Note: F	U�tQF clause is optional in F�U ? r form.

����~g#&~6�pÍhwz�p�«K L&~��g!�Íhw]�������&n>y {s�s�lÍ
? r ���SA Rdi@F	���`VGV Ê �G�di@R�?dA ��� Ê wi@R ?dA�fBj
KMLp�Z~6{pÍhw]���&� �s���$}]wz�p�
C�>�yãw D�t/C�RIC�F/i^FQA	C^tIJFIH^vSFQ=	C:DQä�H�vQFQ=	C@?ZhQA á yG=�F	J
K8DQP�RI>^?SRQT�UGF�JwDS¸�RQA�x�UGFQ>�YZJFIH^vSFQ=	C:DQä�H�vQFQ=	C@?ZhQA á yG=�F	J
K8DQP�RI>^?SRQT�UGF�JwDS¸�RQA�x�UGFQ>�\	JM�M�MFIH^vSFQ=	CåwDIx�F r RQe�USC]¸ RQA�x�UIFI> J
Note: The variable portion of the FIH^vQFQ=�C clause is optional. If present, it will be assigned

the actual exception object that was raised.

02Ê23 DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c=
°ÂiÓe²±g#« ¹fNæ87èç �á��±vd #�f��¹!s#��Ufh ")©eUk �Ùé-�á���z "eUkÓ)
A��� Ðp����{
r hI>EDQP	RI> JE?dAsD�tQFGuIe�FQA@vQF	JgwDST�hGxGy J
; ��wL}�~�Ðp����{
�¸�?SUGFND�vQhQA�x�?/C@?ShQA JwDST�hGxGy J
×b��~&��ê|u�Í@�&Í@~6yÂ~6�pÍ
�¸�?SUGF á >Ge F�wM�MGM? r D�vQhSA�x�Jw»T	>	F�RIëM�MGM�M
×�� �$}�~&�s�6KML6{���~&ï2ï2w]����ï
Literals: á >Ge F , â R�U�tQF
Operators: RQA�x , hQ> , A hIC

operator operational definition�¬RQA	xÅì If � is false, return � . Otherwise, return ì .�[hI>Åì If � is true, return � . Otherwise, return ì .A hICÅ� If � is false, return á >Ie F . Otherwise, return â R	U�tQF .
Type conversion function: T�h�h	U
°ÂiÓe²±g#« ¹fNí87�db%s�³�|�ze"#&%@� k eák��ÙÖ| ")&%(m�k
 ¹������y Ð�wz��������Î
>�RQA	x	h/i�fBj Returns a uniformly distributed pseudorandom value in the range [0,1).

>�RQA	xG>�RQA	�	F
f!DS= RQ>�R/i�tQJ j Returns a uniformly distributed pseudorandom
from >	RQA	��F
f�DS= RI>�Rdi�tIJ j .

DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c= 02Ê2Ê
°ÂiÓe²±g#« ¹f�^îí87�Ö| �×�kj%lkgm °��zeÓ)«)« ")
íö}��pï2ï %Ò~g'`��w�Íhw]���
vIUGR�t�t]D�vIUGR tGtI©SA R/i^F	JwDdi^FICG¸ hGx	©Ix	F r ?BA�?/C@?ShZA@tQJ

Notes:Æ
A method definition is a function with a special first parameter, tQF	U r , that refers

to the object to which the method is being applied.

Æ
The constructor is a method named ?BA�?/C .

% ���"!syÂ~6�pÍ@�pÍhw]���³u�ÍJ�Mwz�p�sï
A string at the beginning of a module, class, function, or method can be used for doc-

umentation. Docstrings are carried along at runtime and are used for interactive help

and the PyDoc utility.

°ÂiÓe²±g#« ¹f�^á^ï7�Ö|e`#�e °V��� �z "!s#&%@� k¹)
uG~"� !�~6���Z~s~Ô{s~6�S�&Íhw]����ï]aJÐ�w]ïhÍ�����¤u�ÍJ�Mwz�p�sï	b

Operator Meaning§ seq ¢ + § seq ¢ Concatenation§ seq ¢ * § int-expr ¢ Repetition§ seq ¢ [] Indexing

len(§ seq ¢) Length§ seq ¢ [:] Slicing

for § var ¢ in § seq ¢ : Iteration§ expr ¢ in § seq ¢ Membership check (Returns a Boolean)

02Ê2Ö DG9:9@=@T8VJK ÈöD"C«ý^<;M5WI�Tnmg\hK [Zo�XZ=qpL=@?]=@T8[c=
Ð�w]ï@Í���~«ÍJ��� �ï

Method Meaning§ list ¢ .append(x) Add element x to end of list.§ list ¢ .sort() Sort (order) the list. A comparison function may be

passed as parameter.§ list ¢ .reverse() Reverse the list.§ list ¢ .index(x) Returns index of first occurrence of x.§ list ¢ .insert(i,x) Insert x into list at index i.§ list ¢ .count(x) Returns the number of occurrences of x in list.§ list ¢ .remove(x) Deletes the first occurrence of x in list.§ list ¢ .pop(i) Deletes the ith element of the list and returns its value.%�wì��Íhw]�������Sw]~&ï
Dictionary Literal: ðG§ ê�FQy�Y ¢ w § P�R�USe F@Y ¢ K § ê	FIy�\ ¢ w § P	R	USe F�\ ¢ KñMGM�M�ò

Method Meaning§ x^?Gv/C ¢ MÌ¸ R t ê�FQyf § ê�FIy ¢ j Returns true if dictionary contains the

specified key, false if it doesn’t.§ ê�FIy ¢ ?BA § x^?IvZC ¢ Same as ¸ R t ê	FIy§ x^?IvZC ¢ M¼ê�FQy^t�fBj Returns a list of the keys.§ x^?GvZC ¢ MÌP�R	USe F�t�fBj Returns a list of the values.§ x^?Gv/C ¢ M!?/C�Fdi�t�fBj Returns a list of tuples f�ê�FIy�K�P�R	USe F j
representing the key-value pairs.§ x^?GvZC ¢ M¼��FICf § ê�FIy ¢ K § x	F r RQe�UQC ¢ j If ê�FQy is not in the dictionary, returnsx	F r RQe UQC ; otherwise returns the value

for ê	FIy .x	F	U § x^?GvZC ¢³²�§ ê�FIy ¢¯´ Delete the specified entry.§ x^?Gv/C ¢ M�vIUGFGRI>fBj Delete all entries.íU��y {��p�Mw]ïh���6AB!s�6�-Íhw]���
The built-in function v�i =�f�RgK�T�j compares two objects and returns -1, 0, or 1 according

to their relative ordering.

% &'&�(*)*+-,/. ó ô ���6�öõ 0 1 ��� þ�� � ���
÷
 øúù

Python is an exceptionally easy language to start programming with. Nevertheless, you

still might have to do a bit of initial setup to get Python and other textbook resources

up and running on your computer. This appendix contains step-by-step instructions
for setting up Python on a Windows-based computer and also gives some pointers on

running Python on other platforms.

�¾fh �(%s� %lkÓegf2%r ")
Ð����Z�&Íhwz���� ¹~&ï2��!s�S�Z~&ï
The place to go for all things Pythonic is the python web site: ¸�C�CG=�w�ûGûS���Mü=	y�CG¸	hQA�M�hQ>G� .

There you can download the latest version of Python, browse documentation, find in-
formation on Python books, and get pointers to lots of interesting Python-related appli-

cations and projects.

For resources specifically related to this textbook, including the graphics module,

source code for all of the example programs, and supplementary materials, go to the
publisher’s website: ¸	C�CG=åw�û�ûS�G�M r T FGFGx�UIFM�vSh/i .

t ���!�Í �¹Î�ÍJ�����sý�~6��ï:w]����ï
As I am writing this book, the current version of Python is version 2.2.3. However,
version 2.3 is in final beta testing and will be released in a matter of weeks. The exam-

ples in the book have been developed with version 2.3 and should also work with later

versions of Python.

Most of the code in the book will also run with little or no modification on older
versions of Python. However, in both code and discussion I have tried to describe a

subset of “modern” Python. In particular, I use the T h�h�U data type which was new in+ þ	l

02Ö2ð DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç
2.3, so some of the examples and descriptions may need slight tweaking to conform to

older versions.

If you are using a Python that is older than version 2.3, I suggest that you upgrade

to at least 2.3. If you are upgrading, you should probably get the latest stable release.

One very nice aspect of Python is that its developers are very careful to make sure that
updates do not generally break existing code.�¹´�#�i�� k � k 9 %lk��|�îz®)
n>��ï@Í@�6}ì}]wz�p���¹Î�ÍJ�����
Information on downloading and installing Python can be found on the Python web

site. For Windows users, installation is simply a matter of downloading the Windows

installer program (it will be called something like � y�CG¸ hSA�©G\�M��M�FIH�F) to a temporary
location on your hard drive (the desktop is fine), running the installer, and following the

instructions. You can probably accept all of the offered default settings (keep clicking

“Next”).

Once the installation wizard has finished you should see a program group for Python

on your start menu. If you accepted the default values, this group will be labeled
something like “Python 2.3” (see Figure B.). You should see the following items:

IDLE(Python GUI) Starts IDLE, a program development environment for Python. I’ll

walk you through using this below.

Module Docs Starts PyDoc, a utility for browsing the internal documentation of mod-
ules in the Python library.

Python (command line) Starts an interactive session with the Python interpreter.

Python Manuals Opens the standard Python HTML manual set inside your default
web browser. This should probably be your starting place for answering Python-

specific questions. The “Library Reference Manual” is particularly helpful.n>�pÍ@~6������Íhw$#&~P�¹Î�ÍJ�����
Now that you’ve got Python installed, it’s time to try it out. First, fire-up the command-

line interpreter. Selecting the � y�CG¸ hQA'fqvQh/i�i@RSA�xNU ?dA F j option will pop up a console
window running Python. At this point, you are ready to try out some of the interactive

examples that are discussed in Chapter 1. For example, give this a try:

� y�CI¸ hQA:\�M��-M�MGMá yG=�F Ê ¸ F	US= Ê K Ê vQhQ=	yG>@?/�G¸	C Ê K Ê vZ>�FGx^?dC^t Ê hI> Ê U ?IvQFQA@tQF Ê r hI>`i@hI>	Fs?BA r hI>Si^RIC@?ShQAåMJ�J�J`=	>^?dA	C Ê�
 F	UGUGhgK� hI>�UIx Ê
 F	UGUGhgK� hI>�UIxJ�J�J`=	>^?dA	C:\ ® �

DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç 02Ö-A

Figure B. G : Python menu items.

� J�J�J`=	>^?dA	C Ê \ ® �ÑV Ê K³\ ® �\ ® �NV �J�J�J
After you’ve played around a bit, you can quit the interactive session by typing ctrl-z

(holding the ctrl key and pressing “z”) or by typing >�R�?GtQF��Iy�tZC�F/i�äGH@?/C at the Python

prompt.

; �Mw�Íhwz�p�¤�©�����6�G�S�y
The next step is to try your hand at writing and running a small Python program. You

will want to create a folder on your computer in which to store your Python programs.
Usually, you would create a folder somewhere inside � y��	h v/eQi@FSA	C^t . If you plan to use

multiple machines, you might want to put the folder on a floppy disk or some other
mobile media. For this walkthrough, I created a folder called � y�CG¸ hSA � >�hI��>	R/i�t inside

of � y���h vdeQi@FQA	C�t .
In order to create a program, you will have to use a text editor. IMPORTANT: Do not

type your programs into the interactive Python shell; the shell is for experimentation

with Python, not program creation. For now, you can just use Window’s Notepad to

02Ö21 DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç
create a program file. Start Notepad (it’s under � vGvQF tQhI>^?SF t on the � >�hI��>	R/i�t menu)

and type in the following lines exactly as shown here. Do not indent at the beginnings of

the lines!=	>@?BA	C Ê�
 F	U�UIhgK�� hI>�UIx�� Ê>�RQ � ?dA�=�e�Cf Ê�� >	F t�t DQäGA	C	FI> J Ê j
Figure B. � shows how your notepad window will look. Double check your typing, and

Figure B. y : Notepad with short Python program.

then save this file into your new � yGCG¸ hQA � >	hI��>�R/i�t folder with the name “hello.py.”

Don’t forget the MÌ=	y extension—that tells windows this is a Python module file.

Once you have saved the file, go ahead and quit notepad; you are ready to try
running your file. Go to your � y�CG¸�hQA � >�hI�G>�R/i�t folder; it should now have the ¸ F�U�UGh�MÌ=�y
file in it with a happy Python icon (see Figure B. �). Double-click on your program to
run it. This will pop up a console window with the output from your program. Pressing

the DQäGA	C�FQ> J key will cause the window to vanish again. Congratulations, you have just

run your first Python program.
Another way to run Python programs is to import them into an interactive Python

session. In order to do this, you need to start a Python command line session inside

the folder where your program file is. Probably the easiest way to do this is to create a
shortcut to Python inside your � y�CG¸ hQA � >�hI��>�Rdi�t folder. Here’s one way to do it:

1. Go to the Python group on the Start menu, then right-click on the � y�CI¸ hQA'f�vQhdi�i@RQA�xU ?dA F�j entry and select � hQ=	y .

2. Go to your � y�CI¸ hQA � >�hQ��>�R/i�t folder and do a right-click � R tZC	F .

3. Right-click on the new shortcut icon and select � >�hS= FI>�C@?ZF t .
4. In the dialog box, delete the “Start in:” entry. The properties should look similar

to Figure B. � .

DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç 02Ö2B

Figure B. H : Python program file: hello.py.

5. Click OK.

Now you should be able to click on the Python (command line) shortcut and type?qi =�hI>�C]¸ F	UGUGh to run your program inside the interactive session (see Figure B. Ó).

By the way, after importing your ¸ F	U�UIh program, you will notice a new file in your

Python programs directory called ¸ F	UGUGh�MÌ=	y�v . This is the byte-code intermediate file
that is described in Chapter 1.

That’s all it takes to create and run your own Python programs. If you are going

to do a lot of programming, however, you will want a text editor that is Python aware.
There are many good freely available programming editors that include a Python mode;

I personally use Emacs for most of my Python development. Another option is to use an
integrated development environment, and that is where IDLE comes in.

� ï:wz�p��nv%ÔÐMK
IDLE combines an interactive Python interpreter and editor into a single package. To use

IDLE effectively, you must start it in your ���� "!$#&%'�)($#"*$(,+�-). folder. You can make a copy
of the / �10Gä'f � yGCG¸ hQA�243 / j shortcut from the Start Menu, the same way you created the

command line shortcut above. Don’t forget to blank out the �IC�RI>�Cs?BA�w property of the

shortcut. Your Python Programs folder should now look something like Figure B. 5 .
Now run IDLE using this shortcut. IDLE may take a little while to start up, and then

you will be greeted with a Python shell window (see Figure B. 6). This window is an

02Öh0 DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç

Figure B. � : Properties for Python command line shortcut.

interactive Python session that can be used much the same way as the Python command

line.

IDLE can be used to edit Python programs, but this is done in an editor window,
not the shell window. Let’s take a look at the ¸ F�U�UGh program file using IDLE. Use theâ ?QUIF	û87S= FSA�M�M�M menu to open the file ¸�F	U�UGh�Mü=	y . You will get an editing window that

looks like Figure B. Õ .

Notice that the IDLE editor provides color highlighting of your code; this is just
one of many nice features that you’ll uncover if you spend some time playing with the

editor. IDLE allows you to do things you’d expect of any editor such as opening, saving

and printing files; cutting, pasting, and searching for text; and undoing and redoing
commands. In addition, the

r hI>Si^RIC menu gives you many Python-specific options such

as indenting, dedenting, commenting, and uncommenting regions of code.

IDLE is called an “integrated” environment because it also allows you to directly test

out the program that you’re editing. To give it a try, you can go to the 9 e�A menu and
select 9 e�A � hGxQe�UGF , or you can just hit the § F5 ¢ key. Doing so will bring the Python

Shell window to the top and run your program in it.

Let’s finish up by creating another program. Try the following steps:

1. Close the ¸ F	U�UIh�MÌ=	y window (using â ?QUGF�û � UGh tSF).

DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç 02ÖJI

Figure B. : Interactive session running

�&��¥�¥�¨g¸ ¯«Ë
.

2. Create a new editor window by selecting â ?QUGF	ûQ_	FQ:��?dA	x	hQ .

3. Give your file a name by saving it (â ?QUGF�û;��RIP�F) with the name vd¸ R�h t
Mü=	y . You

need to give the file a name right away so that IDLE knows that this is a Python

file, not just regular text. That way you get the Python-specific editing features
such as color highlighting and automatic indentation.

4. Type in the v/¸ R�h t program from Chapter 1. I’ve duplicated it here for your con-

venience:

< â ?SUGF�wOv/¸ R�h�t
MÌ=	y< � t	?qi =�UIF`=	>�hI��>	R/iÐ?QU�UZe@tZC�>�RQC@?dA	�Nv/¸ R�hIC^?GvÃT FQ¸ RQP@?ShI>åM
x	F r i@R�?dA�f�j�w=	>@?dA	C Ê�á ¸�?Gt =	>�hQ��>�R/iÐ?SU�USe@tZCG>�RIC�F tÃR<v/¸�R�hIC@?Gv r e�A@vZC^?ShQA ÊHEV<?dA�=�e�Cf Ê äGA�C�FI>ÀR]A�eQi�T FI>]T FICI F�FQA:�NRQA�xcY�w Ê jr hI><?:?BAE>�RSA	��F
f/Yd��j�wHEV=��M�> ° H ° f/Y`©ÀH@j=	>@?dA�CÀH
i@R�?dA�f�j
Be sure to make the file look exactly like this. You’ll notice that IDLE indents lines

for you. To unindent again, just use the backspace key.

02Ö23 DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç

Figure B. ã : Python Program folder with IDLE shortcut.

5. Run the program (use § F5 ¢). If there are error messages, go back and try to fix

the file and then run it again.

That should be enough to get you going with IDLE. You can consult the documen-

tation to learn more.

�³#�iÓ ¹fâ�-�ze"#)?a�jf��ß)
n>��ï@Í@�6}ì}��&Íhw]���
If you are a Linux or Unix user, chances are your distribution includes a version of
Python. Unfortunately, these aren’t always the most up to date. If your Python version

is pre-2.3, you will probably want to get an update. The easiest way is to check with
your distribution’s web site to see if they offer an updated binary package.

If you can’t find an appropriate linux/unix binary package, Python can easily be built

from source by downloading the complete tarball (called something like � yGCG¸ hQA�©I\�M���M¼CG�	·)
and performing the usual C	RI> , M�û�vQhQA r ?/�Ge	>	F , i@RIê�F ritual. Consult the documentation

files included in the tarball for details. By default, Python will install into the /usr/local

directory, so it won’t clobber any existing Python that your distribution might be using.
For the Apple Macintosh, the Python situation is currently in flux. OSX ships with

a version of Python (just type =	y�CI¸ hQA in a terminal window). Unfortunately, the ver-

DG9:9@=@T8V/K È[ÿsC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç 02Ö2Ê

Figure B. � : IDLE Python Shell window.

sion currently shipping does not include Tkinter support, which you will need to use

the graphics module for the text. There are other versions of Python available for

the Mac. One approach that supports Tkinter under OS X is to use the fink package
(¸	C�CI=�w�û�û r ?dA	êåM�tShQe�>^vSF r hS>���FMüA�FIC). Other options are probably available as well; look

at the MacPython resources on the Python web site.

 �!s�s�6wz�p�µ�¹Î�ÍJ�����¦�����6�G�S�yÀï
In a Linux/Unix/Mac OSX environment, you can run a program from a command line by
typing something like =	y�CI¸ hQAÀ¸ F	UGUGh�MÌ=	y . This assumes that the Python interpreter is in

your command path. If not, you’ll have to type the entire path to the Python interpreter

(or change your startup files to put Python on your path).

If you are running an integrated desktop such as KDE or Gnome, you should also be

able to configure your desktop manager to run Python programs at a mouse click. For
example, in KDE you can right-click on any MÌ=�y file and select 7QCG¸ FI>ãM�M�M from the 7S= FSA��?/CI¸ menu. In the pop-up dialog, type “python” (or browse around to find the Python

interpreter), click the 9 e�Ac?dA á FI>Si�?BA R	U and 9 Fdi@F/i T FQ>NRQ=�=�U ?IvQRIC@?ShSAÑR t�tSh v	?SRIC^?ShQA�M�MGM
boxes, and then 7A@ . Other desktops will have a similar process for associating python

files with the Python interpreter.

If you want to use the Python interpreter interactively to ?!i = hI>�C and experiment

with code (as demonstrated throughout the book), you need to be sure to start Python

in the directory/folder where your programs are. For command-line based systems,
you can just open a console in the appropriate directory and type “python” to start the

interpreter.

02Ö2Ö DG9:9@=@T8V/K È��sC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç

Figure B. # : IDLE editing window.

�����6�G�S�y % ~(#&~�}���{syÂ~6�pÍ
You can use the text editor of your choice for writing Python programs. Emacs and Vi

are obvious choices in any Unix-like environment. Chances are your distribution already
has a Python mode for your favorite editor. If not, look around; there is sure to be one

available.

Provided your platform supports TKinter, you can also use IDLE as an interactive
shell and programming environment. You should be able to start IDLE by typing ?Zx�UIF
on a command line. If that doesn’t work, you’ll have to poke around your Python

installation to find out where the tools directory was installed. It will probably be under
the /usr/lib/python or /usr/local/lib/python directories. Since IDLE is just a Python

application, you can also try a “locate” on idle.py. Once you’ve found it, try invoking

Python on the IDLE file explicitly: =	y�CG¸�hQA<?Zx�UGFMÌ=	y .

D kÓ)Z#«e²� �(%lkgm}Î�fhe�±öi¹%r!�)
To use the graphics module (��>	RQ=�¸�?GvGt
MÌ=	y), you need to place this file where Python

can locate it. One simple approach is to put it in the same folder where you keep your
Python programs. Starting Python in this folder will also let you import the graphics

library to experiment interactively.

Alternatively, you can place the ��>�RQ=�¸@?Gv�t
MÌ=�y file in a system-wide directory so that

it is available for import no matter what directory Python starts in. The standard di-
rectory for placing local additions to Python is the t�?/C�F	©S=�R vZë�RI�	F t directory. On my

Windows installation, the complete path to the folder is:

DG9:9@=@T8V/K È��sC��pQMKÈT<H�ý�R;M5WI�TU7:T8V��]O��1Ç 02Ö2é
� wFE � y�CG¸ hSA \:	3EG2�?dTHE	t�?/C	F	©/= R�v/ë�RQ��F	t
On my Linux system, the file resides in:üSe@t/> ü�UGh vSR	U�üST�?BA�ü�U�?BT�üZ=	yICG¸�hSA \M
	Gü�t	?BC�F�©S=�R�vZë�RI�	F t
You should be able to locate a similar folder on whatever system you are using. Sim-

ply copy ��>�RQ=G¸�?Gv�t
Mý=	y to that folder, and the graphics module will be available in any
Python session.

To test out your graphics installation, simply open up an interactive session of

Python and try to import the module.J�J�JE?qi�= hI>�CÀ��>	RQ=�¸�?GvGtJ�J�J
If you just get the prompt back, that means everything is fine. If you get the message1 i =�hI>�C�ä�>G>�hI>åw{_�hWi@hGxIe UGF`A R/i@FIxÑ�G>�RQ=�¸�?Iv�t , that means Python was unable to find
the file ��>	RQ=�¸�?GvGt
MÌ=	y . Double check to make sure that you named the file correctly (it

must have the extension Mý=	y) and placed it in the proper directory.

If importing the graphics module produces an error message about á ë^?dA	C�FI> , it prob-
ably means that your Python installation is not set up with the á ë^?dA	C�FI> standard library

module (this is most likely to happen on a Macintosh). You’ll have to consult the Python
documentation for your platform to figure how to install á ë^?dA	C�FI> .

% &'&�(*)*+-,/. H I J$K � � �ML 1

abstraction The purposeful hiding or ignoring of some details in order to concentrate

on those that are relevant.

accessor method A method that returns the value of one of more of an object’s instance
variable(s), but does not modify the object.

accumulator pattern A common programming pattern in which a final answer is built
a piece at a time in a loop.

accumulator variable A variable that is used to hold the result in the accumulator

programming pattern.

actual parameter A value that is passed to a function when it is called.

algorithm A detailed sequence of steps for carrying out some process. A recipe.

aliasing The situation in which two or more variables refer to exactly the same object.
If the object is mutable, then changes made through one variable will be seen by

the others.

analysis 1) In the context of the software development lifecycle, this refers to the pro-
cess of studying a problem and figuring out what a computer program might do to

solve it. 2) Studying a problem or algorithm mathematically to determine some
of its properties, such as time efficiency.

AND Binary Boolean operator that returns true when both of its subexpressions are

true.

API See Application Programming Interface

Application Programming Interface A specification of the functionality provided by a

library module. A programmer needs to understand the API to be able to use a
module.

argument Actual parameter. + l)N

02é21 DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$
array A collection of similar objects that can be accessed through indexing. Usually

arrays are fixed-size and homogeneous (all elements are of the same type). Com-
pare to Python lists.

ASCII American Standard Code for Information Interchange. A standard for encoding

text where each character is represented by a number 0-127.

assignment The process of giving a value to a variable.

associative array A collection where values are associated with keys. Called a dictio-
nary in Python.

attributes The instance variables and methods of an object.

base case In a recursive function or definition, a situation in which recursion is not
required. All proper recursions must have one or more base cases.

batch A mode of processing in which input and output is done through files rather than
interactively.

binary Base two numbering system in which the only digits are 0 and 1.

binary search A very efficient searching algorithm for finding items in a sorted collec-
tion. Requires time proportional to ���I�;O µ where µ is the size of the collection.

bit Binary digit. Fundamental unit of information. Usually represented using 0 and 1.

body Generic term for the block of statements inside of a control structure such as a

loop or decision.

Boolean Algebra The rules that govern simplification and rewriting of Boolean expres-

sions.

Boolean Expression A truth statement. A Boolean expression evaluates to either true
or false.

Boolean Logic See Boolean algebra.

Boolean Operations Connectives for constructing Boolean expressions. In Python,RQA�x , hI> , and A hIC .

bug An error in a program.

butterfly effect Classic example of dynamical systems in nature (chaos). Supposedly,

an event as small as the flapping of a butterfly’s wing can significantly influence
subsequent large-scale weather patterns.

byte code An intermediate form of computer language. High-level languages are some-

times compiled into byte code which is then interpreted. In Python, files with a=	y^v extension are byte code.

call The process of invoking a function’s definition.

DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$ 02é2B
Central Processing Unit The “brain” of the computer where numeric and logical oper-

ations are carried out.

cipher alphabet The symbols that are used to encrypt a message.

ciphertext The encrypted form of a message.

class A class describes a set of related objects. The vIUIR t�t mechanism in Python is used

as a “factory” to produce objects.

client In programming, a module that interfaces with another component is called a

client for the component.

coding The process of turning an algorithm into a computer program.

comment Text placed in a program for the benefit of human readers. Comments are

ignored by the computer.

compiler A complex program that translates a program written in a high-level lan-
guage into the machine language that can be executed by a particular computer.

computer A machine that stores and manipulates information under the control of a

changeable program.

computer science The study of what can be computed.

conditional Another term for a decision control structure.

constructor A function that creates a new object. In a Python class, it is the ?dA�?dC
method.

control codes Special characters that do not print, but are used in the interchange of

information.

control structure Programming language statement that controls the execution of other

statements (e.g., ? r and �¸�?QUGF).

coordinate transformation In Graphical programming, the mathematics of changing
a point or set of points from one coordinate system to a related one.

counted loop A loop written to iterate a specific number of times.

CPU See Central Processing Unit

cryptography The study of techniques for encoding information to keep it secure.

data The information that a computer program manipulates.

data type A particular way of representing data. The data type of an item determines

what values it can have and what operations it supports.

debugging The process of finding and eliminating errors in a program.

02éh0 DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$
decision structure A control structure that allows different parts of a program to exe-

cute depending on the exact situation. Usually decisions are controlled by Boolean
expressions.

decision tree A complex decision structure in which an initial decision branches into
more decisions, which branch into more decisions in a cascading fashion.

definite loop A kind of loop where the number of iterations is known at the time the

loop begins executing.

design The process of developing a system that can solve some problem. Also the

product of that process.

dictionary An unordered Python collection object that allows values to be associated
with arbitrary keys.

docstring A documentation technique in Python that associates a string with a program

component.

empty string An object that has the data type string, but does not contain any charac-

ters (ÊGÊ).

encapsulation Hiding the details of something. Usually this is the term used to de-
scribe the distinction between the implementation and use of an object or func-

tion. Details are encapsulated in the definition.

encryption The process of encoding information to keep it private.

end-of-file loop A programming pattern used to read a file line-by-line.

event In GUI programming, an outside action such a mouse click that causes some-

thing to happen in a program. Also used to describe the object that is created to

encapsulate the information about the event.

event-driven A style of programming in which the program waits for events to happen
and responds accordingly.

exception handling A programming language mechanism that allows the programmer

to gracefully deal with errors that the language detects when a program is run-

ning.

execute To run a program or segment of a program.

exponential time An algorithm that requires a number of steps proportional to a func-
tion having a measure of the size of the problem in an exponent. Such algorithms

are generally considered intractable.

expression Part of a program that produces data.

fetch-execute cycle The process a computer carries out to execute a machine code

program.

DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$ 02éJI
float A data type for representing numbers with fractional values. Short for “floating

point.”

floating point See float.

flowchart A graphical depiction of the flow of control in a program or algorithm.

function A subprogram within a program. Functions take parameters as input and can
return values.

functional decomposition See top-down Design.

garbage collection A process carried out by dynamic programming languages (e.g.,

Python, Lisp, Java) in which memory locations that contain values that are no

longer in use are freed up so that they can store new values.

Graphical User Interface A style of interaction with a computer application that in-

volves heavy use of graphical components such as windows, menus, and buttons.

graphics window A window on screen where graphics can be drawn.

GUI See Graphical User Interface.

halting problem A famous unsolvable problem. A program that determines if another
program will halt on a given input.

hardware The physical components of a computing system. If it goes “crash” when you

toss it out the window, then it’s hardware.

hashes Another term for associative array or dictionary.

Hello, World The ubiquitous first computer program.

heterogeneous Capable of containing more than a single data type at one time. Python

lists, for example.

homogeneous Capable of holding values of only a single type.

identifiers The names that are given to program entities.

if statement Control structure for implementing decisions in a program.

import statement Makes an external library module available for use within a pro-
gram.

indefinite loop A loop for which the number of iterations required is not necessarily
known at the time the loop begins to execute.

indexing Selecting a single item from a sequence based on its relative position in the

sequence.

infinite loop A loop that does not terminate. See Loop, infinite.

inheritance Defining a new class as a specialization of another class.

02é23 DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$
input, process, output A common programming pattern. The program prompts for

input, processes it, and outputs a response.

input validation The process of checking the values supplied by a user to make sure
that they are legitimate before performing a computation with those values.

instance A particular object of some class.

instance variable A piece of data stored inside an object.

int A data type for representing numbers with no fractional component. Int is short for

Integer and represents a number with a fixed number of bits (commonly 32).

integer Positive or negative whole number. See Int.

interactive loop A loop that allows part of a program to repeat according to the wishes

of the user.

interface The connection between two components. For a function or method, the

interface consists of the name of the function, its parameters and return values.
For an object, it is the set of methods (and their interfaces) that are used to

manipulate the object. The term “user interface” is used to describe how a person
interacts with a computer application.

interpreter A computer program that simulates the behavior of a computer that un-

derstands a high-level language. It executes the lines of source one-by-one and

carries out the operations.

intractable Too difficult to be solved in practice, usually because it would take too

long.

Invoke Making use of a function.

iterate To do multiple times. Each execution of a loop body is called an iteration.

key 1) In encryption, a special value that must be known to either encode or decode
a message. 2) In the context of data collections, a way to look up a value in a

dictionary. Values are associated with keys for future access.

lexicographic Having to do with string ordering. Lexicographic order is like alphabet-
ical order, but based on the underlying numeric codes of the string’s characters.

library An external collection of useful functions or classes that can be imported and

used in a program. For example, the Python i@RICG¸ and t/C�>@?dA	� modules.

linear search A search process that examines items in a collection sequentially.

linear time algorithm An algorithm that requires a number of steps proportional to
the size of the input problem.

local variable A variable defined inside a function. It may only be referred to within

the function definition. See scope.

DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$ 02é2Ê
log time algorithm An algorithm that requires a number of steps proportional to the

log of the size of the input problem.

loop and a half A loop structure that has an exit somewhere in the midst of the loop
body. In Python this is accomplished via a �¸�?QUGF á >Ge F�w / T	>�F�RIê combination.

list A general Python data type for representing sequential collections. List are het-

erogeneous and can grow and shrink as needed. Items are accessed through

subscripting.

literal A way of writing a specific value in a programming language. For example, � is
an int literal and Ê�
 F	U�UIh Ê is a string literal.

long int A Python data type that can represent indefinitely large (or small) integer

values.

loop A control construct for executing portions of a program multiple times.

loop index A variable that is used to control a loop. In the statement:
r hI>c?:?BA>�RQA	��F�f�A�j , ? is being used as a loop index.

loop, infinite See Infinite Loop.

machine code A program in machine language.

machine language The low-level (binary) instructions that a given CPU can execute.

main memory The place where all data and program instructions that the CPU is cur-

rently working on resides. Also known as random access memory (RAM).

mapping A general association between keys and values. Python dictionaries imple-

ment a mapping.

merge The process of combining two sorted lists into a single sorted list.

mergesort An efficient divide-and-conquer sorting algorithm.

meta-language A notation used to describe the syntax of a computer language.

method A Function that lives inside an object. Objects are manipulated by calling their

methods.

mixed-typed expression An expression involving more than one data type. Usually

used in the context of combining ints and floats in numeric computations.

model-view architecture Dividing up a GUI program by separating the problem (model)
from the user interface (view).

modular Consisting of multiple relatively independent pieces that work together.

module Generally, any relatively independent part of a program. In Python, the term

is also used to mean a file containing code that can be imported and executed.

02é2Ö DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$
module hierarchy chart A diagram showing the functional decomposition structure of

a program. A line between two components shows that the one above uses the
one below to accomplish its task.

Monte-Carlo A simulation technique that involves probabilistic (random or pseudoran-

dom) elements.

mutable Changeable. An object whose state can be changed is said to be mutable.
Python ints and strings are not mutable, but lists are.

mutator method A method that changes the state of an object (i.e., modifies one or

more of the instance variables).

n log n algorithm An algorithm that requires a number of steps that is proportional to

the size of the input times the log of the size of the input.

n-squared algorithm An algorithm that requires a number of steps that is proportional
to the square of the size of the input.

name error An exception that occurs when Python is asked to produce a value for a

variable that has not been assigned a value.

namespace An association between identifiers and the things that they represent in a

program. In Python modules, classes, and objects act as namespaces.

nesting The process of placing one control structure inside of another. Loops and deci-
sions may be arbitrarily nested.

newline A special character that marks the division between lines in a file or a multi-

line string. In Python, it is denoted Ê"P A Ê .
NOT Unary Boolean operator to negate an expression.

object A program entity that has some data and a set of operations to manipulate that

data.

object-based Design and programming that uses objects as the principle form of ab-
straction.

object-oriented Object-based design or programming that includes characteristics of

polymorphism and inheritance.

open The process of associating a file in secondary memory with a variable in a pro-

gram through which the file can be manipulated.

operator A function for combining expressions into more complex expressions.

OR Binary Boolean operator that returns true when either or both subexpressions are
true.

override When a subclass changes the behavior of an inherited method.

DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$ 02é2é
parameters Special variables in a function that are initialized at the time of call with

information passed from the caller.

pass by value Parameter passing technique used in Python. The formal parameters

are assigned the values from the actual parameters. The function cannot change

which object an actual parameter variable refers to.

pass by reference Parameter passing technique used in some computer languages that

allows the value of a variable used as an actual parameter to be changed by the
called function.

pixel Short for picture element. A single dot on a graphical display.

plaintext In encryption, this is the term used for an unencoded message.

polymorphism Literally “many forms.” In object-oriented programming, the ability for
a particular line of code to be implemented by different methods depending on

the data type of the object involved.

portability The ability to run a program unmodified on various different systems.

post-test loop A loop construct where the loop condition is not tested until after the

loop body has been executed.

pre-test loop A loop construct where the loop condition is tested before executing the

body of the loop.

precision The number of digits of accuracy in a number.

priming read In a sentinel loop, a read before the loop condition is tested.

private key A kind of encryption where the same key is used to both encrypt and de-

crypt and must therefore be kept secret.

program A detailed set of instructions for a computer to carry out.

programming The process of creating a computer program to solve some problem.

programming environment A special computer program that provides facilities to

make programming easier. IDLE (in the standard Python distribution) is an ex-

ample of a simple programming environment.

programming language A notation for writing computer programs. Usually used to

refer to high-level languages such as Python, Java, C++, etc.

prompt A printed message that signals to the user of a program that input is expected.

prototype An initial simplified version of a program.

pseudocode Writing down algorithms using precise natural language, instead of a

computer language.

pseudorandom Sequences of numbers generated by computer algorithms and used to

simulate random events.

Ihð2ð DG9:9@=@T8VJK È�4CHIF I2Q Ql7h?$
public key A form of encryption that uses two different keys. A message encoded with

a public key can only be decoded using a separate private key.

Random Access Memory (RAM) See main memory.

random walk A simulation process in which movement of some object is determined

probabilistically.

read A term used to describe computer input. A program is said to read information

from the keyboard or a file.

record A collection of information about a single individual or object. For example, a
personnel record contains information about an employee.

recursive A function or definition that refers to itself. See recursive.

recursive function A function that calls itself, either directly or indirectly.

relational operator A comparison between values that returns true or false
(e.g., §TSB§¤£US�£Ý£USB¢¤£US�¢TS ß £).

reserved words Identifiers that are part of the built-in syntax of a language.

resolution The number of pixels on a graphics screen. Usually expressed as horizontal
by vertical (e.g., 640x480).

scope The area of a program where a given variable may be referenced. For example,
variables defined in functions are said to have local scope.

script Another name for a program. Usually used to refer to a relatively simple program

written in an interpreted language.

search The problem of finding a particular item in a collection.

seed The value used to start generation of a pseudorandom sequence.

selection sort An n squared time sorting algorithm.

self parameter In Python, the first parameter of a method. It is a reference to the
object to which the method is being applied.

semantics The meaning of a construct.

sentinel A special value used to signal the end of a series of inputs.

Sentinel Loop A loop that continues until a special value is encountered.

short-circuit evaluation An evaluation process that returns an answer as soon as the
result is known, without necessarily evaluating all of its subexpressions. In the

expression f á >Ge�FÀhI>Ð?ItQhIP�FI>gfBj�j the ?GtQhIP	FI>fBj function will not be called.

signature Another term for the interface of a function. The signature includes the

name, parameter(s), and return value(s).

DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$ Ihð-A
simulation A program designed to abstractly mimic some real-world process.

simultaneous assignment A statement that allows multiple variables to be assigned in
a single step. For example, H�K�y:VÑy�K�H swaps two variables.

slicing Extracting a subsequence of a string, list, or other sequence object.

software Computer programs.

sorting The process of arranging the items in a sequence into a pre-determined order-

ing.

source code The text of a program in a high-level language.

spiral design Creating a system by first designing a simplified prototype and then grad-

ually adding features.

statement A single command in a programming language.

step-wise refinement The process of designing a system by starting with a very high-

level, abstract description and gradually adding in details.

string A data type for representing a sequence of characters (text).

structure chart See Module Hierarchy Chart.

subclass When one class inherits from another, the inheriting class is called a subclass

of the class from which it inherits.

substring A sequence of contiguous characters inside a string. See slicing.

superclass A class which is being inherited from.

syntax The form of a language.

Tkinter The Standard GUI framework that comes with Python. The �G>�RQ=�¸�?Iv�t
MÌ=	y mod-

ule used in this book is built on Tkinter.

top-down design The process of building a system by starting with a very high-level
algorithm that describes a solution in terms of subprograms. Each subprogram is

then designed in turn. Also called step-wise refinement or functional decomposi-

tion.

truth table A table showing the value of a Boolean expression for all possible combi-

nations of values of its subsexpressions.

tuple A Python sequence type that acts like an immutable list.

unary An operator that acts on a single operand.

Unicode An alternative to ASCII that encodes characters from all of the world’s written
languages. Unicode is designed to be ASCII compatible.

unit testing Trying out a component of a program independent of other pieces.

Ihð21 DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$
unpack In Python, the assignment of items in a sequence into independent variables.

For example, a list or tuple of two values can be unpacked into the variables like
this: H�K�y:Vñi�y80^?GtZC .

variable An identifier that labels a value for future reference. The value of a variable

can be changed through assignment.

widget A user interface component in a GUI.

write The process of outputting information. For example, data is said to be written to

a file.

Ihð2ð DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$
Public Key A form of encryption that uses two different keys. A message encoded with

a public key can only be decoded using a separate private key.

Random Access Memory (RAM) See main memory.

Random Walk A simulation process in which movement of some object is determined

probabilistically.

Read A term used to describe computer input. A program is said to read information

from the keyboard or a file.

Record A collection of information about a single individual or object. For example, a
personnel record contains information about an employee.

Recursive A function or definition that refers to itself. See recursive.

Recursive Function A function that calls itself, either directly or indirectly.

Relational Operator A comparison between values that returns true or false (e.g., §Q §¤£ Q £Ý£ Q ¢¤£ Q ¢ Q ß £).

Reserved Words Identifiers that are part of the built-in syntax of a language.

Resolution The number of pixels on a graphics screen. Usually expressed as horizontal
by vertical (e.g., 640x480).

Scope The area of a program where a given variable may be referenced. For example,
variables defined in functions are said to have local scope.

Script Another name for a program. Usually used to refer to a relatively simple pro-

gram written in an interpreted language.

Search The problem of finding a particular item in a collection.

Secondary Memory Generic term referring to nonvolatile storage devices such as hard

disks, floppy disks, magentic tapes, CD-ROMs, DVDs, etc.

Seed The value used to start generation of a pseudorandom sequence.

Selection Sort An n squared time sorting algorithm.

Self parameter In Python, the first parameter of a method. It is a reference to the

object to which the method is being applied.

Semantics The meaning of a construct.

Sentinel A special value used to signal the end of a series of inputs.

Sentinel Loop A loop that continues until a special value is encountered.

Short-Circuit Evaluation An evaluation process that returns an answer as soon as the
result is known, without necessarily evaluating all of its subexpressions. In the

expression f á >Ge�FÀhI>Ð?ItQhIP�FI>gfBj�j the ?GtQhIP	FI>fBj function will not be called.

DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$ Ihð-A
Signature Another term for the interface of a function. The signature includes the

name, parameter(s), and return value(s).

Simulation A program designed to abstractly mimic some real-world process.

Simultaneous Assignment A statement that allows multiple variables to be assigned
in a single step. For example, H�K�y:VÑy�K�H swaps two variables.

Slicing Extracting a subsequence of a string, list, or other sequence object.

Software Computer programs.

Sorting The process of arranging the items in a sequence into a pre-determined order-
ing.

Source Code The text of a program in a high-level language.

Spiral Design Creating a system by first designing a simplified prototype and then

gradually adding features.

Statement A single command in a programming language.

Step-wise Refinement The process of designing a system by starting with a very high-

level, abstract description and gradually adding in details.

String A data type for representing a sequence of characters (text).

Structure Chart See Module Hierarchy Chart.

Subclass When one class inherits from another, the inheriting class is called a subclass
of the class from which it inherits.

Substring A sequence of contiguous characters inside a string. See slicing.

Superclass A class which is being inherited from.

Syntax The form of a language.

Tkinter The Standard GUI framework that comes with Python. The �G>�RQ=�¸�?Iv�t
MÌ=	y mod-
ule used in this book is built on Tkinter.

Top-down Design The process of building a system by starting with a very high-level

algorithm that describes a solution in terms of subprograms. Each subprogram is

then designed in turn. Also called step-wise refinement or functional decomposi-
tion.

Truth Table A table showing the value of a Boolean expression for all possible combi-

nations of values of its subsexpressions.

Tuple A Python sequence type that acts like an immutable list.

Unary An operator that acts on a single operand.

Unicode An alternative to ASCII that encodes characters from all of the world’s written

languages. Unicode is designed to be ASCII compatible.

Ihð21 DG9:9@=@T8VJK È�4CFGF I2Q Ql7h?$
Unit Testing Trying out a component of a program independent of other pieces.

Unpack In Python, the assignment of items in a sequence into independent variables.
For example, a list or tuple of two values can be unpacked into the variables like

this: H�K�y:Vñi�y80^?GtZC .

Variable An identifier that labels a value for future reference. The value of a variable

can be changed through assignment.

Widget A user interface component in a GUI.

Write The process of outputting information. For example, data is said to be written to
a file.

÷ �����SR

doc , 315
init , 306

name , 205

abstraction, 273

accessor, 132
accumulator, 58

acronym, 119

addinterest1.py, 181
addinterest2.py, 184

addinterest3.py, 185
algorithm

analysis, 4, 429

definition of, 4
design strategy, 224

divide and conquer, 431

exponential time, 455
intractable, 455

linear time, 430
log time, 431

quadratic (n-squared) time, 448

algorithms
average n numbers

counted loop, 234

empty string sentinel, 241
interactive loop, 238

binary search, 428
cannonball simulation, 298

future value, 43

future value graph, 136, 140
input validation, 252

linear search, 427

max-of-three
comparing each to all, 219

decision tree, 220

sequential, 221

median, 347

merge sort, 445

message decoding, 91

message encoding, 89

quadratic equation three-way deci-
sion, 211

racquetball simulation

simOneGame, 277

selection sort, 443

simNGames, 275

temperature conversion, 28

alias, 134

anagrams

recursive function, 437

Analysis

software development, 26

analysis of algorithms, 4, 429

and, 246

operational definition, 256

Ants Go Marching, The, 194

append, 343

archery, 160, 230

argument, 174

array, 341

associative, 367

arrow (on Lines), 153

ASCII, 88

assignment statement, 16, 33–39

semantics, 33

simultaneous, 36

syntax, 33

associative array, 367

ATM simulation, 423.1T1U

Ihðh0 �ÈT8Vh=�È
attendee list, 423

attributes, 296
private, 327

average n numbers

algorithm
empty string sentinel, 241

problem description, 234

program
counted loop, 234

empty string sentinel, 241
end-of-file loop, 243

from file with readlines, 243

interactive loop, 238
negative sentinel, 240

average two numbers, 38

average1.py, 234
average2.py, 238

average3.py, 240
average4.py, 241

average5.py, 243

average6.py, 243
avg2.py, 38

babysitting, 229

base conversion, 463

batch processing, 111
example program, 111

binary, 7
binary search, 428

bit, 62

black box, 385
Blackjack, 292

BMI (Body Mass Index), 229

Boolean
algebra (logic), 250

expression, 204, 246
operator, 246

values, 204

break statement, 253
implementing post-test loop, 253

style considerations, 254

bridge (card game), 424
Brooks, Fred, 387

bug, 26

butterfly effect, 18

Button
class definition, 322

description, 320

methods, 320, 321
button.py, 322

byte code, 13

C-Curve, 466

Caesar cipher, 119
calculator

problem description, 359
program, 364

cannonball

algorithm, 298
graphical display, 335

problem description, 296

program, 300, 308, 317
Projectile class, 307

card, 333, 380
deck of, 381

cball1.py, 300

cball3.py, 308
cball4.py, 317

CButton, 333

CD, 6
Celsius, 26

censor, 380
change counter

program, 51, 105

change.py, 51
change2.py, 105

chaos

discussion, 17–18
program, 12

chaos.py, 12
chr, 88

Christmas, 160

cipher, 96
ciphertext, 96

Circle

constructor, 153
methods, 153

circle

�ÈT8Vh=�È IhðJI
area formula, 72

intersection with line, 160

class, 129, 296

class standing, 228

class statement, 304

classes

Button, 322

Calculator, 364

Dice, 402

DieView, 324, 357

GraphicsInterface, 413

MSDie, 304

Player, 395

PokerApp, 404

Projectile, 307

Projectile as module file, 316

RBallGame, 392

SimStats, 390

Student, 310

TextInterface, 407

client, 385

clone, 135, 152

close

GraphWin, 152

code duplication

in future value graph, 171

maintenance issues, 167

reducing with functions, 167

coffee, 73

Collatz sequence, 262

color

changing graphics object, 142

changing GraphWin, 142

fill, 142

outline, 142

specifying, 156

color rgb, 156

combinations, 464

comments, 14

compareItems, 372

compiler, 7

diagram, 8

vs. interpreter, 8

compound condition, 218

computer

definition of, 1

functional view, 5

program, 2

computer science

definition of, 3

methods of investigation, 4

concatenation

list, 341

string, 81

condition, 202

compound, 218

design issues, 218

for termination, 251

syntax, 202

conditional loop, 235

constructor, 130, 296

init , 306

parameters in, 130

control codes, 88

control structure, 200

decision, 200

definition of, 41

loop, 41

nested loops, 244

nesting, 211

control structures

Boolean operators, 256

for statement, 41

if, 202

if-elif-else, 212

if-else, 208

while, 235

convert.py, 28, 200

convert2.py, 201

convert gui.pyw, 148

coordinates

as instance variables, 131

changing with setCoords, 143

in a GraphWin, 128

of a Point, 127

setCoords example, 143

Ihð23 �ÈT8Vh=�È
transforming, 143

counted loop
definition of, 39

in Python, 41

CPU (Central Processing Unit), 5
craps, 292

createLabeledWindow, 189

cryptography, 95
cube, 333

data, 51, 295

data type
automatic conversion, 66

definition of, 52

explicit conversion, 67
in format specifiers, 103

mixed-type expressions, 66

string conversion, 100
string conversions, 92

data types
file, 106

float, 52

int, 52
long int, 64

string, 78

date, 229
date conversion

program, 100, 101
dateconvert.py, 100

dateconvert2.py, 101

day number, 230
debugging, 26

decision, 200

implementation via Boolean opera-
tor, 256

multi-way, 211
nested, 211

simple (one-way), 202

two-way, 208
decision tree, 220

deck, 381

decoding, 90
algorithm, 91

program, 93

definite loop, 235

definition of, 39

use as counted loop, 41

degree-days, 263

delete, 344

DeMorgan’s laws, 250

design, 26, 385

object-oriented, see object-oriented

design

top-down, 271

steps in, 282

design pattern

importance of, 235

design patterns

counted loop, 39, 234

end-of-file loop, 243

interactive loop, 238

IPO, 27

loop accumulator, 58, 234

model-view, 401

nested loops, 244, 245

sentinel loop, 239

loop and a half, 254

design techniques

divide and conquer, 431

spiral development, 286

when to use, 287

dice, 293

dice poker

classes

Dice, 401, 402

GraphicsInterface, 413

PokerApp, 404

TextInterface, 407

problem description, 399

dice roller

problem description, 319

program, 327

dictionary, 367

creation, 369

empty, 369

methods, 369

DieView, 353

�ÈT8Vh=�È Ihð2Ê
class definition, 324, 357

description, 323
Dijkstra, Edsgar, 3

disk, 6

distance function, 178
division, 54

docstring, 315

dot notation, 13, 112, 131
draw, 152

drawBar, 171
duplicate removal, 379

duplication, see code duplication

DVD, 6

Easter, 229
elif, 212

empty list, 342

empty string, 241
encapsulation, 314, 418

encoding, 87
algorithm, 89

program, 89

encryption, 95
Entry, 148, 155

environment, programming, 11

epact, 73
equality, 204

Eratosthenes, 380
error checking, 213

errors

KeyError, 370
math domain, 57

name, 31, 78

overflow, 62
Euclid’s algorithm, 263

eval, 92
event, 146

event loop, 328

event-driven, 146
exam grader, 118, 228

exception handling, 214

exponential notation, 64
expression

as input, 36

Boolean, 204, 246

definition of, 30
spaces in, 31

face, 160, 334

fact.py, 434

factorial
definition of, 58

program, 60

recursive definition, 432
factorial.py, 60

Fahrenheit, 26
fetch-execute cycle, 6

fib

recursive function, 441
Fibonacci numbers, 74, 262, 441, 462

file, 106

closing, 107
opening, 107

processing, 107
program to print, 109

read operations, 108

representation, 106
write operations, 110

float, 52

literal, 53
representation, 64

floppy, 6
flowchart, 41

flowcharts

for loop, 42
if semantics, 202

loop and a half sentinel, 255

max-of-three decision tree, 220
max-of-three sequential solution, 222

nested decisions, 212
post-test loop, 252

temperature conversion with warn-

ings, 201
two-way decision, 209

while loop, 236

for statement (for loop), 39, 233
as counted loop, 41

flowchart, 42

Ihð2Ö �ÈT8Vh=�È
semantics, 39

syntax, 39

using simultaneous assignment, 361

formal parameter, 174

format specifier, 103

from..import, 126

function, 10

actual parameters, 174

arguments, 174

as black box, 386

as subprogram, 167

call, 10, 174

createLabeledWindow, 189

defining, 10, 174

for modularity, 187

invoking, see function, call

missing return, 180

multiple parameters, 176

None as default return, 180

parameters, 11

recursive, 434

return value, 178

returning multiple values, 180

signature (interface), 273

to reduce duplication, 167

function definition, 167

functions

anagrams, 437

built-in

chr, 88

eval, 92

float, 67

int, 67

len, 81

long, 67

max, 223

open, 108

ord, 88

range, 59

raw input, 79

read, 108

readline, 108

readlines, 108

round, 68

str, 100

type, 53

write, 110

compareItems, 372

distance, 178

drawBar, 171

fib, 441

gameOver, 280

getInputs, 274

getNumbers, 345

happy, 168

loopfib, 441

loopPower, 438

main, 12

why use, 14

makeStudent, 313

math library, see math library, func-

tions

mean, 346

median, 347

merge, 445

mergeSort, 447

moveTower, 453

random library, see random library,

functions

recPower, 439

recursive binary search, 439

recursive factorial, 434

reverse, 435, 436

selsort, 444

simNGames, 276

simOneGame, 279

singFred, 168

singLucy, 169

square, 178

stdDev, 346

string library, see string library

future value

algorithm, 43

problem description, 42

program, 44, 189

program specification, 43

�ÈT8Vh=�È Ihð2é
future value graph

final algorithm, 140
problem, 135

program, 140, 144, 165, 172

rough algorithm, 136
futval.py, 44

futval graph.py, 140

futval graph2.py, 144, 165
futval graph3.py, 172

futval graph4.py, 189

gameOver, 280
GCD (Greatest Common Divisor), 263

getAnchor, 154, 155

getCenter, 153, 154
getInputs, 274

getMouse, 146, 152

example use, 146
getNumbers, 345

getP1, 153, 154
getP2, 153, 154

getPoints, 154

getRadius, 153
getText, 154, 155

getX, 153

getY, 153
gozinta, 54

GPA, 310
gpa, 332

program, 311

GPA sort, 378
program, 352

gpa.py, 311

gpasort, 378
gpasort.py, 352

Graphics Group, 382
graphics library, 126, 151–156

drawing example, 129

generic methods summary, 152
graphical objects, 152–154

methods

for Text, 154
clone, 135

for Circle, 153

for Entry, 155

for Image, 155

for Line, 153
for Oval, 154

for Point, 153

for Polygon, 154

for Rectangle, 153
getMouse, 146

move, 132

setCoords, 143

objects
Circle, 153

Entry, 148, 155

GraphWin, 126, 151–152
Image, 155

Line, 153

Oval, 154

Point, 127, 153
Polygon, 148, 154

Rectangle, 153

Text, 154

GraphWin, 126, 151–152
methods summary, 151

Gregorian epact, 73

GUI, 124

hailstone function, 262

halting problem, 456

happy, 168

happy birthday
lyrics, 167

problem description, 167

program, 170
happy.py, 170

hard drive, 6

hardware, 3

hash array, 367
hierarchy chart, 273, see structure chart

house, 161

house (of representatives), 229

identifier

definition of, 29

rules for forming, 29

I�A<ð �ÈT8Vh=�È
IDLE, 11

if statement

flowchart, 202

semantics, 202

syntax, 202

if-elif-else statement

semantics, 212

syntax, 212

if-else statement

decision tree, 220

nested, 211, 220

semantics, 209

syntax, 208

Image, 155

implementation, 26

import statement, 56, 205

with “from”, 126

indefinite loop, 235

indexing

dictionary, 368

from the right, 80

list, 340, 344

negative indexes, 80

string, 79

infinite loop, 237, 253

inheritance, 419

inner product, 379

innerProd, 379

input, 15

validation, 252

input statement, 35

multiple values, 38

semantics, 35

syntax, 35

Input/Output Devices, 6

instance, 129, 296

instance variable, 131, 296

accessing, 306

and object state, 306

int, 52

automatic conversion to float, 66

conversion to float, 67

literal, 53

range of, 62

representation, 62

integer division, 54
interest calculation

program, 181, 184, 185

interface, 273

interpreter, 8
diagram, 8

Python, 9

vs. compiler, 8

intractable problems, 4, 455
investment doubling, 262

IPO (Input, Process, Output), 27

iteration, 39

key

cipher, 96

private, 97
public, 97

with dictionary, 367

key-value pair, 367

KeyError, 370
Koch Curve, 464

label, 138

ladder, 74
leap year, 229

left-justification, 104

len

with string, 81
with list, 341, 346

lexicographic ordering, 204

library

definition of, 55
graphics, see graphics library

math, see math library

random, see random library
string, see string library

lightning, 73

Line, 153

line continuation
using backslash (P), 105

using brackets, 355

linear time, 430

�ÈT8Vh=�È I�A2A
list

as sequence, 341

creation, 343

empty, 342

indexing, 340

merging, 445

methods, 343

operators, 341

removing items, 344

slice, 344

vs. string, 341

lists

decorated, 379

literal, 30

float, 53

int, 53

string, 78, 317

log time, 431

long int, 64

when to use, 66

loop, 15

accumulator variable, 58

as control structure, 41

counted, 39, 41

definite, 39, 235

end-of-file, 243

event loop, 328

for statement, 39

indefinite (conditional), 235

index variable, 39

infinite, 237, 253

interactive, 238

loop and a half, 254

nested, 244

over a sequence, 39

post-test, 252

using break, 253

using while, 252

pre-test, 236

while statement, 235

loop and a half, 254

loopfib, 441

loopPower, 438

lower, 112

Lucas, Édouard, 450

machine code, 8
maintenance, 26

makeStudent, 313

mapping, 367
math domain error, 57

math library, 55

functions, 56, 57
using, 56

max, 223
max-of-n program, 223

max-of-three, 217, 219–221

maxn.py, 223
mean, 346

median, 338, 347

memory, 5
main, 5

secondary, 6
merge, 445

merge sort, 445, see sorting, merge sort

mergeSort, 447
analysis, 448

message encoding

algorithm, 89
message decoding

algorithm, 91
problem description, 90

program, 93

message encoding
problem description, 87

program, 89

meta-language, 32
method, 131, 296

parameterless, 131
accessor, 132

call (invoke), 131, 305

mutator, 132
normal parameter, 305

object parameters, 132

self parameter, 305
methods

activate, 320

I�A<1 �ÈT8Vh=�È
clicked, 321

deactivate, 321

dictionary, 369
list, 343

model-view, 401

module file, 11

module hierarchy chart, see structure chart
molecular weight, 72

Monte Carlo, 268, 292

month abbreviation

problem description, 83
program, 84, 85

month.py, 84

month2.py, 85
move, 132, 152

moveTower, 453

MPG, 263

MSDie, 303
mutable, 86, 368

mutator, 132

name error, 31, 78
names, 29

nesting, 211

newline character (P n), 106, 208

with readline, 243
Newton’s method, 74

None, 180

numbers2text.py, 93

numerology, 119

object, 295

aliasing, 134

application as, 359
as black box, 386

as parameter, 132

attributes, 296
definition of, 124

state, 132

object-oriented, 124

object-oriented design (OOD), 385, 386
objects

built-in

file, 113

None, 180

string, 113
graphics, see graphics library, ob-

jects

other, see classes
objrball.py, 396

Old MacDonald, 194

one-way decision, 202
open, 108

operator
Boolean, 246

as control structure, 256

definition of, 31
precedence, 31, 248

relational, 203

short-circuit, 257
operators

Boolean, 246
del, 344

list, 341

mathematical, 31
Python numeric operators, 54

relational, 203

string formatting, 103
or, 246

operational definition, 256
ord, 88

output labeling, 33

output statements, 31
Oval, 154

overflow error, 62

override, 420
overtime, 228

palindrome, 463

parameter, 11
actual, 174

as function input, 177

formal, 174
matching by order, 177

multiple, 176

objects as, 132
removing code duplication, 169

scope issues, 173, 174

�ÈT8Vh=�È I�A<B
self, 305

pi

math library, 57

Monte Carlo approximation, 292

series approximation, 74

pixel, 127

pizza, 72

plaintext, 96

Player, 395

plot, 151

plotPixel, 152

Point, 127, 153

poker, see dice poker

cards, 380

Polygon, 148, 154

polymorphism, 418

portability, 8

post-test loop, 252

precision, 103

prime number, 262, 380

priming read, 240

print statement, 10, 32–33

semantics, 32

syntax, 32

printfile.py, 109

private attributes, 327

private key encryption, 97

program, 2

programming

definition of, 3

environment, 11

event-driven, 146

why learn, 3

programming language, 6–9

and portability, 8

vs. natural language, 6

examples, 7

high-level, 7

syntax, 32

translation, 7

programs

average n numbers, 234, 238, 240,

241, 243

average two numbers, 38

calculator, 364

cannonball simulation, 300, 308, 317

change counter, 51, 105

chaos, 12

date conversion, 100, 101

dice roller, 327

factorial, 60

future value, 44

future value graph, 140, 144, 165,

172, 189

gpa, 311

GPA Sort, 352

happy birthday, 170

interest calculation, 181, 184, 185

max-of-n, 223

message decoding, 93

message encoding, 89

month abbreviation, 84, 85

print file, 109

quadratic equation, 55, 206, 207,

209, 213, 214, 216

racquetball simulation, 280

racquetball simulation (object ver-
sion, 396

simple statistics, 348

temperature conversion, 28, 148,

200, 201

triangle, 147, 179

turing: an impossible program, 457

username generation, 82, 111

word frequency, 373

prompt

Python, 9

using Text object, 148

prototype, 286

pseudocode, 28

pseudorandom numbers, 268

public key encryption, 97

pyc file, 13

Python

Boolean operators, 246

mathematical operators, 31

I�AR0 �ÈT8Vh=�È
numeric operators, 54

programming environment, 11

relational operators, 203
reserved words, 30

running programs, 12

pyw, 147

quadratic equation, 55

algorithm with three-way decision,

211

decision flowchart, 209
program, 55, 206

program (bullet-proof), 216

program (simple if), 207
program (two-way decision), 209

program (using exception), 214

program (using if-elif-else), 213

quadratic time, 448
quadratic.py, 55, 206

quadratic2.py, 207

quadratic3.py, 209

quadratic4.py, 213
quadratic5.py, 214

quadratic6.py, 216

quiz grader, 118, 228

racquetball, 248, 266

racquetball simulation

algorithms

simNGames, 275
simOneGmae, 277

classes

Player, 395

RBallGame, 392
SimStats, 390

discussion, 285

problem description, 266
program, 280

program (object version), 396

specification, 267

structure charts
level 2, 276

level 3, 278

top-level, 274

RAM (random access memory), 5

random, 269
random library, 268

functions

random, 269
randrange, 268

random numbers, 268

random walk, 293, 382
randrange, 268

range, 40
general form, 59

raw input, 79

RBallGame, 392
read, 108

readline, 108

readlines, 108
recBinSearch, 439

recPower
recursive function, 439

Rectangle, 153

recursion, 432
regression line, 263, 336

relational operator, 203

repetition
list, 341

string, 81
reserved words

definition of, 29

in Python, 30
resolution, 137

return statement, 178

multiple values, 180
reverse

recursive function, 435, 436
roller.py, 327

root beer, 58

round, 68

scientific notation, 64
scope, 173

screen resolution, 137

script, 11
search, 426

searching

�ÈT8Vh=�È I�API
binary search, 428

linear search, 427

problem description, 426

recursive formulation, 439

seed, 268

selection sort, see sorting, selection sort

self, 305

selSort, 444

semantics, 7

senate, 229

sentinel, 239

sentinel loop, 239

sequence operators, 341

setArrow, 153

setBackground, 152

setCoords, 143, 152

example, 143

setFace, 154, 155

setFill, 152

setOutline, 152

sets, 382

setSize, 154, 155

setStyle, 154, 155

setText, 154, 155

setWidth, 152

shuffle, 379

Sieve of Eratosthenes, 380

signature, 273

simNGames, 276

simOneGame, 279

simple decision, 202

simple statistics, 378

problem, 338

program, 348

SimStats, 390

simulation, 265

simultaneous assignment, 36

in for loop, 361

with multiple return values, 180

singFred, 168

singLucy, 169

slicing

list, 344

string, 80

slope of line, 73

snowman, 160

software, 3

software development, 25

phases

analysis, 26

design, 26

implementation, 26

maintenance, 26

specifications, 26

testing/debugging, 26

sorting, 431

merge sort

algorithm, 445

analysis, 448

implementation, 447

selection sort

algorithm, 443

analysis, 448

implementation, 444

space

between program lines, 45

blank line in output, 175, 208

in expressions, 31

in prompts, 36

specifications, 26

speeding fine, 229

spellchecker, 467

sphere, 72, 333

surface area formula, 72

volume formula, 72

split, 92

sqrt, 56

square function, 178

square root, 74

standard deviation, 339

statement, 9

statements

assignment, 16, 33–39

break, 253

class, 304

comment, 14

I�A<3 �ÈT8Vh=�È
def (function definition), 10, 167

for, 39, 233

from..import, 126

if, 202

if-elif-else, 212

if-else, 208

import, 56

input, 15, 35

multiple input, 38

print, 10, 32–33

return, 178

simultaneous assignment, 36

try-except, 215

while, 235

stats.py, 348

StatSet, 381

stdDev, 346

step-wise refinement, 282

str, 100

string, 33, 78

as input, 78

as lookup table, 83

ASCII encoding, 88

concatenation, 81

converting to, 100

converting to other types, 92

formatting, see string formatting

formatting operator (%), 103

indexing, 79

from back, 80

length, 81

library, see string library

literal, 78, 317

multi-line, 317

operators, 82

repetition, 81

representation, 87

slicing, 80

substring, 80

Unicode encoding, 88

vs. list, 341

string formatting, 102

examples, 103

format specifier, 103

leading zeroes, 106
left-justification, 104

using a tuple, 373

string library, 92
function summary, 96

lower, 112

split, 92
structure chart, 273

structure charts
racquetball simulation level 2, 276

racquetball simulation level 3, 278

racquetball simulation top level, 274
Student

class, 310

subprogram, 167
substitution cipher, 96

substring, 80
swap, 37

using simultaneous assignment, 38

syntax, 7, 32
Syracuse numbers, 262

table tennis, 291

table-driven, 356

temperature conversion
program, 200

temperature conversion
algorithm, 28

problem description, 26

program, 28
program with GUI, 148

temperature conversion with warnings

design, 200
flowchart, 201

problem description, 200
program, 201

tennis, 291

testing, 26
unit, 284

Text, 154

as prompt, 148
methods, 154

text file, 106

�ÈT8Vh=�È I�A<Ê
text2numbers.py, 89

textpoker.py, 407
Three Button Monte, 332

Tkinter, 124

top-down design, 271
steps in process, 282

Towers of Hanoi (Brahma), 450

recursive solution, 453
Tracker, 335

triangle
area formula, 73

program, 147, 179

triangle.pyw, 147
triangle2.py, 179

truth table, 247

truth tables
definition of and, 247

definition of not, 247
definition of or, 247

try-except statement

semantics, 215
syntax, 215

tuple, 361

as string formatting argument, 373
unpacking, 362

turing.py, 457
type conversion

to float, 67

automatic, 66
explicit, 67

from string, 92

summary of functions, 101
to int, 67

to long int, 67
to string, 100

type function, 53

undraw, 152
Unicode, 88

unit testing, 284

unpacking, 362
userfile.py, 111

username generation

program, 82, 111
username.py, 82

validation

of inputs, 252
value returning function, 178

ValueError, 57
variable

changing value, 33

definition of, 15
instance, 131, 296

local, 173

scope, 173
VGA, 137

volleyball, 249, 291

wc, 121
while statement

as post-test loop, 252
flow chart, 236

semantics, 235

syntax, 235
whitespace, see space

widget, 146, 318

width, 103
windchill, 262

winter, 160
word count, 121

word frequency

problem description, 370
program, 373

word jumble, 468

wordfreq.py, 373
write, 110

