
README.md 11/27/2018

1 / 96

About launchlaunch binderbinder

Basic cheatsheet for Python mostly based on the book written by Al Sweigart, Automate the Boring Stuff with
Python under the Creative Commons license and many other sources.

Contribute
All contributions are welcome:

Read the issues, Fork the project and do a Pull Request.
Request a new topic creating a New issue with the enhancement tag.
Find any kind of errors in the cheat sheet and create a New issue with the details or fork the project
and do a Pull Request.
Suggest a better or more pythonic way for existing examples.

Read It
Website
Github
PDF
Jupyter Notebook

Python Cheatsheet
The Zen of Python
Python Basics

Math Operators
Data Types
String Concatenation and Replication
Variables
Comments
The print() Function
The input() Function
The len() Function
The str(), int(), and float() Functions

Flow Control
Comparison Operators
Boolean evaluation
Boolean Operators
Mixing Boolean and Comparison Operators
if Statements
else Statements
elif Statements
while Loop Statements
break Statements
continue Statements

https://mybinder.org/v2/gh/wilfredinni/python-cheatsheet/master?filepath=jupyter_notebooks
https://automatetheboringstuff.com/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.pythoncheatsheet.org/
https://github.com/wilfredinni/python-cheatsheet
https://github.com/wilfredinni/Python-cheatsheet/raw/master/python_cheat_sheet.pdf
https://mybinder.org/v2/gh/wilfredinni/python-cheatsheet/master?filepath=jupyter_notebooks

README.md 11/27/2018

2 / 96

for Loops and the range() Function
For else statement
Importing Modules
Ending a Program Early with sys.exit()

Functions
Return Values and return Statements
The None Value
Keyword Arguments and print()
Local and Global Scope
The global Statement

Exception Handling
Basic exception handling
Final code in exception handling

Lists
Getting Individual Values in a List with Indexes
Negative Indexes
Getting Sublists with Slices
Getting a List’s Length with len()
Changing Values in a List with Indexes
List Concatenation and List Replication
Removing Values from Lists with del Statements
Using for Loops with Lists
Looping Through Multiple Lists with zip()
The in and not in Operators
The Multiple Assignment Trick
Augmented Assignment Operators
Finding a Value in a List with the index() Method
Adding Values to Lists with the append() and insert() Methods
Removing Values from Lists with remove()
Sorting the Values in a List with the sort() Method
Tuple Data Type
Converting Types with the list() and tuple() Functions

Dictionaries and Structuring Data
The keys(), values(), and items() Methods
Checking Whether a Key or Value Exists in a Dictionary
The get() Method
The setdefault() Method
Pretty Printing
Merge two dictionaries

sets
Initializing a set
sets: unordered collections of unique elements
set add() and update()
set remove() and discard()
set union()
set intersection

README.md 11/27/2018

3 / 96

set difference
set symetric_difference

itertools Module
accumulate()
combinations()
combinations_with_replacement()
count()
cycle()
chain()
compress()
dropwhile()
filterfalse()
groupby()
islice()
permutations()
product()
repeat()
starmap()
takewhile()
tee()
zip_longest()

Comprehensions
List comprehension
Set comprehension
Dict comprehension

Manipulating Strings
Escape Characters
Raw Strings
Multiline Strings with Triple Quotes
Indexing and Slicing Strings
The in and not in Operators with Strings
The in and not in Operators with list
The upper(), lower(), isupper(), and islower() String Methods
The isX String Methods
The startswith() and endswith() String Methods
The join() and split() String Methods
Justifying Text with rjust(), ljust(), and center()
Removing Whitespace with strip(), rstrip(), and lstrip()
Copying and Pasting Strings with the pyperclip Module (need pip install)

String Formatting
% operator
String Formatting (str.format)
Lazy string formatting
Formatted String Literals or f-strings (Python 3.6+)
Template Strings

Regular Expressions

README.md 11/27/2018

4 / 96

Matching Regex Objects
Grouping with Parentheses
Matching Multiple Groups with the Pipe
Optional Matching with the Question Mark
Matching Zero or More with the Star
Matching One or More with the Plus
Matching Specific Repetitions with Curly Brackets
Greedy and Nongreedy Matching
The findall() Method
Making Your Own Character Classes
The Caret and Dollar Sign Characters
The Wildcard Character
Matching Everything with Dot-Star
Matching Newlines with the Dot Character
Review of Regex Symbols
Case-Insensitive Matching
Substituting Strings with the sub() Method
Managing Complex Regexes

Handling File and Directory Paths
Backslash on Windows and Forward Slash on OS X and Linux
The Current Working Directory
Creating New Folders
Absolute vs. Relative Paths
Handling Absolute and Relative Paths
Checking Path Validity
Finding File Sizes and Folder Contents
Copying Files and Folders
Moving and Renaming Files and Folders
Permanently Deleting Files and Folders
Safe Deletes with the send2trash Module
Walking a Directory Tree

Reading and Writing Files
The File Reading/Writing Process
Opening and reading files with the open() function
Writing to Files
Saving Variables with the shelve Module
Saving Variables with the pprint.pformat() Function
Reading ZIP Files
Extracting from ZIP Files
Creating and Adding to ZIP Files

JSON, YAML and configuration files
JSON
YAML
Anyconfig

Debugging
Raising Exceptions

README.md 11/27/2018

5 / 96

Getting the Traceback as a String
Assertions
Logging
Logging Levels
Disabling Logging
Logging to a File

Lambda Functions
Ternary Conditional Operator
args and kwargs

Thinks to Remember(args)
Thinks to remember(kwargs)

Context Manager
with statement
Writing your own contextmanager using generator syntax

__main__ Top-level script environment
Advantages

setup.py
Dataclasses

Features
Default values
Type hints

Virtual Environment
virtualenv
poetry
pipenv
anaconda

The Zen of Python
From the PEP 20 -- The Zen of Python:

Long time Pythoneer Tim Peters succinctly channels the BDFL's guiding principles for Python's design
into 20 aphorisms, only 19 of which have been written down.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.

https://www.python.org/dev/peps/pep-0020/

README.md 11/27/2018

6 / 96

In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Return to the Top

Python Basics

Math Operators

From Highest to Lowest precedence:

Operators Operation Example

** Exponent 2 ** 3 = 8

% Modulus/Remaider 22 % 8 = 6

// Integer division 22 // 8 = 2

/ Division 22 / 8 = 2.75

* Multiplication 3 * 3 = 9

- Subtraction 5 - 2 = 3

+ Addition 2 + 2 = 4

Examples of expressions in the interactive shell:

>>> 2 + 3 * 6
20

>>> (2 + 3) * 6
30

>>> 2 ** 8
256

>>> 23 // 7
3

README.md 11/27/2018

7 / 96

>>> 23 % 7
2

>>> (5 - 1) * ((7 + 1) / (3 - 1))
16.0

Return to the Top

Data Types

Data Type Examples

Integers -2, -1, 0, 1, 2, 3, 4, 5

Floating-point numbers -1.25, -1.0, --0.5, 0.0, 0.5, 1.0, 1.25

Strings 'a', 'aa', 'aaa', 'Hello!', '11 cats'

Return to the Top

String Concatenation and Replication

String concatenation:

>>> 'Alice' 'Bob'
'AliceBob'

Note: Avoid + operator for string concatenation. Prefer string formatting.

String Replication:

>>> 'Alice' * 5
'AliceAliceAliceAliceAlice'

Return to the Top

Variables

You can name a variable anything as long as it obeys the following three rules:

1. It can be only one word.
2. It can use only letters, numbers, and the underscore (_) character.
3. It can’t begin with a number.

README.md 11/27/2018

8 / 96

4. Variable name starting with an underscore (_) are considered as "unuseful`.

Example:

>>> spam = 'Hello'
>>> spam
'Hello'

>>> _spam = 'Hello'

_spam should not be used again in the code.

Return to the Top

Comments

Inline comment:

This is a comment

Multiline comment:

This is a
multiline comment

Code with a comment:

a = 1 # initialization

Please note the two spaces in front of the comment.

Function docstring:

def foo():
 """
 This is a function docstring
 You can also use:
 ''' Function Docstring '''
 """

Return to the Top

README.md 11/27/2018

9 / 96

The print() Function

>>> print('Hello world!')
Hello world!

>>> a = 1
>>> print('Hello world!', a)
Hello world! 1

Return to the Top

The input() Function

Example Code:

>>> print('What is your name?') # ask for their name
>>> myName = input()
>>> print('It is good to meet you, {}'.format(myName))
What is your name?
Al
It is good to meet you, Al

Return to the Top

The len() Function

Evaluates to the integer value of the number of characters in a string:

>>> len('hello')
5

Note: test of emptiness of strings, lists, dictionary, etc, should not use len, but prefer direct boolean
evaluation.

>>> a = [1, 2, 3]
>>> if a:
>>> print("the list is not empty!")

Return to the Top

The str(), int(), and float() Functions

README.md 11/27/2018

10 / 96

Integer to String or Float:

>>> str(29)
'29'

>>> print('I am {} years old.'.format(str(29)))
I am 29 years old.

>>> str(-3.14)
'-3.14'

Float to Integer:

>>> int(7.7)
7

>>> int(7.7) + 1
8

Return to the Top

Flow Control

Comparison Operators

Operator Meaning

== Equal to

!= Not equal to

< Less than

> Greater Than

<= Less than or Equal to

>= Greater than or Equal to

These operators evaluate to True or False depending on the values you give them.

Examples:

README.md 11/27/2018

11 / 96

>>> 42 == 42
True

>>> 40 == 42
False

>>> 'hello' == 'hello'
True

>>> 'hello' == 'Hello'
False

>>> 'dog' != 'cat'
True

>>> 42 == 42.0
True

>>> 42 == '42'
False

Boolean evaluation

Never use == or != operator to evaluate boolean operation. Use the is or is not operators, or use implicit
boolean evaluation.

NO (even if they are valid Python):

>>> True == True
True

>>> True != False
True

README.md 11/27/2018

12 / 96

YES (even if they are valid Python):

>>> True is True
True

>>> True is not False
True

These statements are equivalent:

>>> if a is True:
>>> pass
>>> if a is not False:
>>> pass
>>> if a:
>>> pass

And these as well:

>>> if a is False:
>>> pass
>>> if a is not True:
>>> pass
>>> if not a:
>>> pass

Return to the Top

Boolean Operators

There are three Boolean operators: and, or, and not.

The and Operator’s Truth Table:

Expression Evaluates to

True and True True

True and False False

False and True False

False and False False

The or Operator’s Truth Table:

README.md 11/27/2018

13 / 96

Expression Evaluates to

True or True True

True or False True

False or True True

False or False False

The not Operator’s Truth Table:

Expression Evaluates to

not True False

not False True

Return to the Top

Mixing Boolean and Comparison Operators

>>> (4 < 5) and (5 < 6)
True

>>> (4 < 5) and (9 < 6)
False

>>> (1 == 2) or (2 == 2)
True

You can also use multiple Boolean operators in an expression, along with the comparison operators:

>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2
True

Return to the Top

if Statements

if name == 'Alice':
 print('Hi, Alice.')

README.md 11/27/2018

14 / 96

Return to the Top

else Statements

name = 'Bob'
if name == 'Alice':
 print('Hi, Alice.')
else:
 print('Hello, stranger.')

Return to the Top

elif Statements

name = 'Bob'
age = 5
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')

name = 'Bob'
age = 30
if name == 'Alice':
 print('Hi, Alice.')
elif age < 12:
 print('You are not Alice, kiddo.')
else:
 print('You are neither Alice nor a little kid.')

Return to the Top

while Loop Statements

spam = 0
while spam < 5:
 print('Hello, world.')
 spam = spam + 1

Return to the Top

break Statements

If the execution reaches a break statement, it immediately exits the while loop’s clause:

README.md 11/27/2018

15 / 96

while True:
 print('Please type your name.')
 name = input()
 if name == 'your name':
 break
print('Thank you!')

Return to the Top

continue Statements

When the program execution reaches a continue statement, the program execution immediately jumps back
to the start of the loop.

while True:
 print('Who are you?')
 name = input()
 if name != 'Joe':
 continue
 print('Hello, Joe. What is the password? (It is a fish.)')
 password = input()
 if password == 'swordfish':
 break
print('Access granted.')

Return to the Top

for Loops and the range() Function

>>> print('My name is')
>>> for i in range(5):
>>> print('Jimmy Five Times ({})'.format(str(i)))
My name is
Jimmy Five Times (0)
Jimmy Five Times (1)
Jimmy Five Times (2)
Jimmy Five Times (3)
Jimmy Five Times (4)

The range() function can also be called with three arguments. The first two arguments will be the start and
stop values, and the third will be the step argument. The step is the amount that the variable is increased by
after each iteration.

>>> for i in range(0, 10, 2):
>>> print(i)

README.md 11/27/2018

16 / 96

0
2
4
6
8

You can even use a negative number for the step argument to make the for loop count down instead of up.

>>> for i in range(5, -1, -1):
>>> print(i)
5
4
3
2
1
0

For else statement

This allows to specify a statement to execute in case of the full loop has been executed. Only useful when a
break condition can occur in the loop:

>>> for i in [1, 2, 3, 4, 5]:
>>> if i == 3:
>>> break
>>> else:
>>> print("only executed when no item of the list is equal to 3")

Return to the Top

Importing Modules

import random
for i in range(5):
 print(random.randint(1, 10))

import random, sys, os, math

from random import *.

Return to the Top

README.md 11/27/2018

17 / 96

Ending a Program Early with sys.exit()

import sys

while True:
 print('Type exit to exit.')
 response = input()
 if response == 'exit':
 sys.exit()
 print('You typed {}.'.format(response))

Return to the Top

Functions

>>> def hello(name):
>>> print('Hello {}'.format(name))
>>>
>>> hello('Alice')
>>> hello('Bob')
Hello Alice
Hello Bob

Return to the Top

Return Values and return Statements

When creating a function using the def statement, you can specify what the return value should be with a
return statement. A return statement consists of the following:

The return keyword.

The value or expression that the function should return.

import random
def getAnswer(answerNumber):
 if answerNumber == 1:
 return 'It is certain'
 elif answerNumber == 2:
 return 'It is decidedly so'
 elif answerNumber == 3:
 return 'Yes'
 elif answerNumber == 4:
 return 'Reply hazy try again'
 elif answerNumber == 5:
 return 'Ask again later'
 elif answerNumber == 6:
 return 'Concentrate and ask again'

README.md 11/27/2018

18 / 96

 elif answerNumber == 7:
 return 'My reply is no'
 elif answerNumber == 8:
 return 'Outlook not so good'
 elif answerNumber == 9:
 return 'Very doubtful'

r = random.randint(1, 9)
fortune = getAnswer(r)
print(fortune)

Return to the Top

The None Value

>>> spam = print('Hello!')
Hello!

>>> spam is None
True

Note: never compare to None with the == operator. Always use is.

Return to the Top

Keyword Arguments and print()

>>> print('Hello', end='')
>>> print('World')
HelloWorld

>>> print('cats', 'dogs', 'mice')
cats dogs mice

>>> print('cats', 'dogs', 'mice', sep=',')
cats,dogs,mice

Return to the Top

Local and Global Scope

README.md 11/27/2018

19 / 96

Code in the global scope cannot use any local variables.

However, a local scope can access global variables.

Code in a function’s local scope cannot use variables in any other local scope.

You can use the same name for different variables if they are in different scopes. That is, there can be a
local variable named spam and a global variable also named spam.

Return to the Top

The global Statement

If you need to modify a global variable from within a function, use the global statement:

>>> def spam():
>>> global eggs
>>> eggs = 'spam'
>>>
>>> eggs = 'global'
>>> spam()
>>> print(eggs)
spam

There are four rules to tell whether a variable is in a local scope or global scope:

1. If a variable is being used in the global scope (that is, outside of all functions), then it is always a global
variable.

2. If there is a global statement for that variable in a function, it is a global variable.

3. Otherwise, if the variable is used in an assignment statement in the function, it is a local variable.

4. But if the variable is not used in an assignment statement, it is a global variable.

Return to the Top

Exception Handling

Basic exception handling

>>> def spam(divideBy):
>>> try:
>>> return 42 / divideBy
>>> except ZeroDivisionError as e:
>>> print('Error: Invalid argument: {}'.format(e))
>>>
>>> print(spam(2))
>>> print(spam(12))
>>> print(spam(0))
>>> print(spam(1))

README.md 11/27/2018

20 / 96

21.0
3.5
Error: Invalid argument: division by zero
None
42.0

Return to the Top

Final code in exception handling

Code inside the finally section is always executed, no matter if an exception has been raised or not, and
even if an exception is not caught.

>>> def spam(divideBy):
>>> try:
>>> return 42 / divideBy
>>> except ZeroDivisionError as e:
>>> print('Error: Invalid argument: {}'.format(e))
>>> finally:
>>> print("-- division finished --")
>>> print(spam(12))
>>> print(spam(0))
21.0
-- division finished --
3.5
-- division finished --
Error: Invalid argument: division by zero
-- division finished --
None
-- division finished --
42.0
-- division finished --

Return to the Top

Lists

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam
['cat', 'bat', 'rat', 'elephant']

Return to the Top

Getting Individual Values in a List with Indexes

README.md 11/27/2018

21 / 96

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0]
'cat'

>>> spam[1]
'bat'

>>> spam[2]
'rat'

>>> spam[3]
'elephant'

Return to the Top

Negative Indexes

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[-1]
'elephant'

>>> spam[-3]
'bat'

>>> 'The {} is afraid of the {}.'.format(spam[-1], spam[-3])
'The elephant is afraid of the bat.'

Return to the Top

Getting Sublists with Slices

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[0:4]
['cat', 'bat', 'rat', 'elephant']

README.md 11/27/2018

22 / 96

>>> spam[1:3]
['bat', 'rat']

>>> spam[0:-1]
['cat', 'bat', 'rat']

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[:2]
['cat', 'bat']

>>> spam[1:]
['bat', 'rat', 'elephant']

Slicing the complete list will perform a copy:

>>> spam2 = spam[:]
['cat', 'bat', 'rat', 'elephant']
>>> spam.append('dog')
>>> spam
['cat', 'bat', 'rat', 'elephant', 'dog']
>>> spam2
['cat', 'bat', 'rat', 'elephant']

Return to the Top

Getting a List’s Length with len()

>>> spam = ['cat', 'dog', 'moose']
>>> len(spam)
3

Return to the Top

Changing Values in a List with Indexes

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> spam[1] = 'aardvark'

>>> spam

README.md 11/27/2018

23 / 96

['cat', 'aardvark', 'rat', 'elephant']

>>> spam[2] = spam[1]

>>> spam
['cat', 'aardvark', 'aardvark', 'elephant']

>>> spam[-1] = 12345

>>> spam
['cat', 'aardvark', 'aardvark', 12345]

Return to the Top

List Concatenation and List Replication

>>> [1, 2, 3] + ['A', 'B', 'C']
[1, 2, 3, 'A', 'B', 'C']

>>> ['X', 'Y', 'Z'] * 3
['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z']

>>> spam = [1, 2, 3]

>>> spam = spam + ['A', 'B', 'C']

>>> spam
[1, 2, 3, 'A', 'B', 'C']

Return to the Top

Removing Values from Lists with del Statements

>>> spam = ['cat', 'bat', 'rat', 'elephant']
>>> del spam[2]
>>> spam
['cat', 'bat', 'elephant']

>>> del spam[2]
>>> spam
['cat', 'bat']

Return to the Top

Using for Loops with Lists

README.md 11/27/2018

24 / 96

>>> supplies = ['pens', 'staplers', 'flame-throwers', 'binders']
>>> for i, supply in enumerate(supplies):
>>> print('Index {} in supplies is: {}'.format(str(i), supply))
Index 0 in supplies is: pens
Index 1 in supplies is: staplers
Index 2 in supplies is: flame-throwers
Index 3 in supplies is: binders

Return to the Top

Looping Through Multiple Lists with zip()

>>> name = ['Pete', 'John', 'Elizabeth']
>>> age = [6, 23, 44]
>>> for n, a in zip(name, age):
>>> print('{} is {} years old'.format(n, a))
Pete is 6 years old
John is 23 years old
Elizabeth is 44 years old

The in and not in Operators

>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']
True

>>> spam = ['hello', 'hi', 'howdy', 'heyas']
>>> 'cat' in spam
False

>>> 'howdy' not in spam
False

>>> 'cat' not in spam
True

Return to the Top

The Multiple Assignment Trick

README.md 11/27/2018

25 / 96

The multiple assignment trick is a shortcut that lets you assign multiple variables with the values in a list in
one line of code. So instead of doing this:

>>> cat = ['fat', 'orange', 'loud']

>>> size = cat[0]

>>> color = cat[1]

>>> disposition = cat[2]

You could type this line of code:

>>> cat = ['fat', 'orange', 'loud']

>>> size, color, disposition = cat

The multiple assignment trick can also be used to swap the values in two variables:

>>> a, b = 'Alice', 'Bob'
>>> a, b = b, a
>>> print(a)
'Bob'

>>> print(b)
'Alice'

Return to the Top

Augmented Assignment Operators

Operator Equivalent

spam += 1 spam = spam + 1

spam -= 1 spam = spam - 1

spam *= 1 spam = spam * 1

spam /= 1 spam = spam / 1

spam %= 1 spam = spam % 1

Examples:

README.md 11/27/2018

26 / 96

>>> spam = 'Hello'
>>> spam += ' world!'
>>> spam
'Hello world!'

>>> bacon = ['Zophie']
>>> bacon *= 3
>>> bacon
['Zophie', 'Zophie', 'Zophie']

Return to the Top

Finding a Value in a List with the index() Method

>>> spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']

>>> spam.index('Pooka')
1

Return to the Top

Adding Values to Lists with the append() and insert() Methods

append():

>>> spam = ['cat', 'dog', 'bat']

>>> spam.append('moose')

>>> spam
['cat', 'dog', 'bat', 'moose']

insert():

>>> spam = ['cat', 'dog', 'bat']

>>> spam.insert(1, 'chicken')

>>> spam
['cat', 'chicken', 'dog', 'bat']

Return to the Top

Removing Values from Lists with remove()

README.md 11/27/2018

27 / 96

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam.remove('bat')

>>> spam
['cat', 'rat', 'elephant']

If the value appears multiple times in the list, only the first instance of the value will be removed.

Return to the Top

Sorting the Values in a List with the sort() Method

>>> spam = [2, 5, 3.14, 1, -7]
>>> spam.sort()
>>> spam
[-7, 1, 2, 3.14, 5]

>>> spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
>>> spam.sort()
>>> spam
['ants', 'badgers', 'cats', 'dogs', 'elephants']

You can also pass True for the reverse keyword argument to have sort() sort the values in reverse order:

>>> spam.sort(reverse=True)
>>> spam
['elephants', 'dogs', 'cats', 'badgers', 'ants']

If you need to sort the values in regular alphabetical order, pass str. lower for the key keyword argument in
the sort() method call:

>>> spam = ['a', 'z', 'A', 'Z']
>>> spam.sort(key=str.lower)
>>> spam
['a', 'A', 'z', 'Z']

You can use the built-in function sorted to return a new list:

>>> spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
>>> sorted(spam)
['ants', 'badgers', 'cats', 'dogs', 'elephants']

README.md 11/27/2018

28 / 96

Return to the Top

Tuple Data Type

>>> eggs = ('hello', 42, 0.5)
>>> eggs[0]
'hello'

>>> eggs[1:3]
(42, 0.5)

>>> len(eggs)
3

The main way that tuples are different from lists is that tuples, like strings, are immutable.

Return to the Top

Converting Types with the list() and tuple() Functions

>>> tuple(['cat', 'dog', 5])
('cat', 'dog', 5)

>>> list(('cat', 'dog', 5))
['cat', 'dog', 5]

>>> list('hello')
['h', 'e', 'l', 'l', 'o']

Return to the Top

Dictionaries and Structuring Data
Example Dictionary:

myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}

README.md 11/27/2018

29 / 96

Return to the Top

The keys(), values(), and items() Methods

values():

>>> spam = {'color': 'red', 'age': 42}
>>> for v in spam.values():
>>> print(v)
red
42

keys():

>>> for k in spam.keys():
>>> print(k)
color
age

items():

>>> for i in spam.items():
>>> print(i)
('color', 'red')
('age', 42)

Using the keys(), values(), and items() methods, a for loop can iterate over the keys, values, or key-value pairs
in a dictionary, respectively.

>>> spam = {'color': 'red', 'age': 42}
>>>
>>> for k, v in spam.items():
>>> print('Key: {} Value: {}'.format(k, str(v)))
Key: age Value: 42
Key: color Value: red

Return to the Top

Checking Whether a Key or Value Exists in a Dictionary

>>> spam = {'name': 'Zophie', 'age': 7}

README.md 11/27/2018

30 / 96

>>> 'name' in spam.keys()
True

>>> 'Zophie' in spam.values()
True

>>> # You can omit the call to keys() when checking for a key
>>> 'color' in spam
False

>>> 'color' not in spam
True

>>> 'color' in spam
False

Return to the Top

The get() Method

>>> picnic_items = {'apples': 5, 'cups': 2}

>>> 'I am bringing {} cups.'.format(str(picnic_items.get('cups', 0)))
'I am bringing 2 cups.'

>>> 'I am bringing {} eggs.'.format(str(picnic_items.get('eggs', 0)))
'I am bringing 0 eggs.'

Return to the Top

The setdefault() Method

Let's consider this code:

spam = {'name': 'Pooka', 'age': 5}

README.md 11/27/2018

31 / 96

if 'color' not in spam:
 spam['color'] = 'black'

Using setdefault we could make the same code more shortly:

>>> spam = {'name': 'Pooka', 'age': 5}
>>> spam.setdefault('color', 'black')
'black'

>>> spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}

>>> spam.setdefault('color', 'white')
'black'

>>> spam
{'color': 'black', 'age': 5, 'name': 'Pooka'}

Return to the Top

Pretty Printing

>>> import pprint
>>>
>>> message = 'It was a bright cold day in April, and the clocks were striking
>>> thirteen.'
>>> count = {}
>>>
>>> for character in message:
>>> count.setdefault(character, 0)
>>> count[character] = count[character] + 1
>>>
>>> pprint.pprint(count)
{' ': 13,
 ',': 1,
 '.': 1,
 'A': 1,
 'I': 1,
 'a': 4,
 'b': 1,
 'c': 3,
 'd': 3,

README.md 11/27/2018

32 / 96

 'e': 5,
 'g': 2,
 'h': 3,
 'i': 6,
 'k': 2,
 'l': 3,
 'n': 4,
 'o': 2,
 'p': 1,
 'r': 5,
 's': 3,
 't': 6,
 'w': 2,
 'y': 1}

Return to the Top

Merge two dictionaries

in Python 3.5+:
>>> x = {'a': 1, 'b': 2}
>>> y = {'b': 3, 'c': 4}
>>> z = {**x, **y}
>>> z
{'c': 4, 'a': 1, 'b': 3}

in Python 2.7
>>> z = dict(x, **y)
>>> z
{'c': 4, 'a': 1, 'b': 3}

sets
From the Python 3 documentation

A set is an unordered collection with no duplicate elements. Basic uses include membership testing
and eliminating duplicate entries. Set objects also support mathematical operations like union,
intersection, difference, and symmetric difference.

Initializing a set

There are two ways to create sets: using curly braces {} and the bult-in function set()

>>> s = {1, 2, 3}
>>> s = set([1, 2, 3])

https://docs.python.org/3/tutorial/datastructures.html

README.md 11/27/2018

33 / 96

When creating an empty set, be sure to not use the curly braces {} or you will get an empty dictionary
instead.

>>> s = {}
>>> type(s)
<class 'dict'>

sets: unordered collections of unique elements

A set automatically remove all the duplicate values.

>>> s = {1, 2, 3, 2, 3, 4}
>>> s
{1, 2, 3, 4}

And as an unordered data type, they can't be indexed.

>>> s = {1, 2, 3}
>>> s[0]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'set' object does not support indexing
>>>

set add() and update()

Using the add() method we can add a single element to the set.

>>> s = {1, 2, 3}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

And with update(), multiple ones .

>>> s = {1, 2, 3}
>>> s.update([2, 3, 4, 5, 6])
>>> s
{1, 2, 3, 4, 5, 6} # remember, sets automatically remove duplicates

set remove() and discard()

README.md 11/27/2018

34 / 96

Both methods will remove an element from the set, but remove() will raise a key error if the value doesn't
exist.

>>> s = {1, 2, 3}
>>> s.remove(3)
>>> s
{1, 2}
>>> s.remove(3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 3

discard() won't raise any errors.

>>> s = {1, 2, 3}
>>> s.discard(3)
>>> s
{1, 2}
>>> s.discard(3)
>>>

set union()

union() or | will create a new set that contains all the elements from the sets provided.

>>> s1 = {1, 2, 3}
>>> s2 = {3, 4, 5}
>>> s1.union(s2) # or 's1 | s2'
{1, 2, 3, 4, 5}

set intersection

intersection or & will return a set containing only the elements that are common to all of them.

>>> s1 = {1, 2, 3}
>>> s2 = {2, 3, 4}
>>> s3 = {3, 4, 5}
>>> s1.intersection(s2, s3) # or 's1 & s2 & s3'
{3}

set difference

difference or - will return only the elements that are in one of the sets.

README.md 11/27/2018

35 / 96

>>> s1 = {1, 2, 3}
>>> s2 = {2, 3, 4}
>>> s1.difference(s2) # or 's1 - s2'
{1}

set symetric_difference

symetric_difference or ^ will return all the elements that are not common between them.

>>> s1 = {1, 2, 3}
>>> s2 = {2, 3, 4}
>>> s1.symmetric_difference(s2) # or 's1 ^ s2'
{1, 4}

Return to the Top

itertools Module
The itertools module is a colection of tools intented to be fast and use memory efficiently when handling
iterators (like lists or dictionaries).

From the official Python 3.x documentation:

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in
combination. Together, they form an “iterator algebra” making it possible to construct specialized tools
succinctly and efficiently in pure Python.

The itertools module comes in the standard library and must be imported.

The operator module will also be used. This module is not necessary when using itertools, but needed for
some of the examples below.

Return to the Top

accumulate()

Makes an iterator that returns the results of a function.

itertools.accumulate(iterable[, func])

Example:

>>> data = [1, 2, 3, 4, 5]
>>> result = itertools.accumulate(data, operator.mul)
>>> for each in result:
>>> print(each)

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/operator.html

README.md 11/27/2018

36 / 96

1
2
6
24
120

The operator.mul takes two numbers and multiplies them:

operator.mul(1, 2)
2
operator.mul(2, 3)
6
operator.mul(6, 4)
24
operator.mul(24, 5)
120

Passing a function is optional:

>>> data = [5, 2, 6, 4, 5, 9, 1]
>>> result = itertools.accumulate(data)
>>> for each in result:
>>> print(each)
5
7
13
17
22
31
32

If no function is designated the items will be summed:

5
5 + 2 = 7
7 + 6 = 13
13 + 4 = 17
17 + 5 = 22
22 + 9 = 31
31 + 1 = 32

Return to the Top

combinations()

Takes an iterable and a integer. This will create all the unique combination that have r members.

README.md 11/27/2018

37 / 96

itertools.combinations(iterable, r)

Example:

>>> shapes = ['circle', 'triangle', 'square',]
>>> result = itertools.combinations(shapes, 2)
>>> for each in result:
>>> print(each)
('circle', 'triangle')
('circle', 'square')
('triangle', 'square')

Return to the Top

combinations_with_replacement()

Just like combinations(), but allows individual elements to be repeated more than once.

itertools.combinations_with_replacement(iterable, r)

Example:

>>> shapes = ['circle', 'triangle', 'square']
>>> result = itertools.combinations_with_replacement(shapes, 2)
>>> for each in result:
>>> print(each)
('circle', 'circle')
('circle', 'triangle')
('circle', 'square')
('triangle', 'triangle')
('triangle', 'square')
('square', 'square')

Return to the Top

count()

Makes an iterator that returns evenly spaced values starting with number start.

itertools.count(start=0, step=1)

Example:

README.md 11/27/2018

38 / 96

>>> for i in itertools.count(10,3):
>>> print(i)
>>> if i > 20:
>>> break
10
13
16
19
22

Return to the Top

cycle()

This function cycles through an iterator endlessly.

itertools.cycle(iterable)

Example:

>>> colors = ['red', 'orange', 'yellow', 'green', 'blue', 'violet']
>>> for color in itertools.cycle(colors):
>>> print(color)
red
orange
yellow
green
blue
violet
red
orange

When reached the end of the iterable it start over again from the beginning.

Return to the Top

chain()

Take a series of iterables and return them as one long iterable.

itertools.chain(*iterables)

Example:

README.md 11/27/2018

39 / 96

>>> colors = ['red', 'orange', 'yellow', 'green', 'blue']
>>> shapes = ['circle', 'triangle', 'square', 'pentagon']
>>> result = itertools.chain(colors, shapes)
>>> for each in result:
>>> print(each)
red
orange
yellow
green
blue
circle
triangle
square
pentagon

Return to the Top

compress()

Filters one iterable with another.

itertools.compress(data, selectors)

Example:

>>> shapes = ['circle', 'triangle', 'square', 'pentagon']
>>> selections = [True, False, True, False]
>>> result = itertools.compress(shapes, selections)
>>> for each in result:
>>> print(each)
circle
square

Return to the Top

dropwhile()

Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element.

itertools.dropwhile(predicate, iterable)

Example:

README.md 11/27/2018

40 / 96

>>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1]
>>> result = itertools.dropwhile(lambda x: x<5, data)
>>> for each in result:
>>> print(each)
5
6
7
8
9
10
1

Return to the Top

filterfalse()

Makes an iterator that filters elements from iterable returning only those for which the predicate is False.

itertools.filterfalse(predicate, iterable)

Example:

>>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> result = itertools.filterfalse(lambda x: x<5, data)
>>> for each in result:
>>> print(each)
5
6
7
8
9
10

Return to the Top

groupby()

Simply put, this function groups things together.

itertools.groupby(iterable, key=None)

Example:

README.md 11/27/2018

41 / 96

>>> robots = [{
 'name': 'blaster',
 'faction': 'autobot'
}, {
 'name': 'galvatron',
 'faction': 'decepticon'
}, {
 'name': 'jazz',
 'faction': 'autobot'
}, {
 'name': 'metroplex',
 'faction': 'autobot'
}, {
 'name': 'megatron',
 'faction': 'decepticon'
}, {
 'name': 'starcream',
 'faction': 'decepticon'
}]
>>> for key, group in itertools.groupby(robots, key=lambda x: x['faction']):
>>> print(key)
>>> print(list(group))
autobot
[{'name': 'blaster', 'faction': 'autobot'}]
decepticon
[{'name': 'galvatron', 'faction': 'decepticon'}]
autobot
[{'name': 'jazz', 'faction': 'autobot'}, {'name': 'metroplex', 'faction':
'autobot'}]
decepticon
[{'name': 'megatron', 'faction': 'decepticon'}, {'name': 'starcream', 'faction':
'decepticon'}]

Return to the Top

islice()

This function is very much like slices. This allows you to cut out a piece of an iterable.

itertools.islice(iterable, start, stop[, step])

Example:

>>> colors = ['red', 'orange', 'yellow', 'green', 'blue',]
>>> few_colors = itertools.islice(colors, 2)
>>> for each in few_colors:
>>> print(each)

README.md 11/27/2018

42 / 96

red
orange

Return to the Top

permutations()

itertools.permutations(iterable, r=None)

Example:

>>> alpha_data = ['a', 'b', 'c']
>>> result = itertools.permutations(alpha_data)
>>> for each in result:
>>> print(each)
('a', 'b', 'c')
('a', 'c', 'b')
('b', 'a', 'c')
('b', 'c', 'a')
('c', 'a', 'b')
('c', 'b', 'a')

Return to the Top

product()

Creates the cartesian products from a series of iterables.

>>> num_data = [1, 2, 3]
>>> alpha_data = ['a', 'b', 'c']
>>> result = itertools.product(num_data, alpha_data)
>>> for each in result:
 print(each)
(1, 'a')
(1, 'b')
(1, 'c')
(2, 'a')
(2, 'b')
(2, 'c')
(3, 'a')
(3, 'b')
(3, 'c')

Return to the Top

repeat()

README.md 11/27/2018

43 / 96

This function will repeat an object over and over again. Unless, there is a times argument.

itertools.repeat(object[, times])

Example:

>>> for i in itertools.repeat("spam", 3):
 print(i)
spam
spam
spam

Return to the Top

starmap()

Makes an iterator that computes the function using arguments obtained from the iterable.

itertools.starmap(function, iterable)

Example:

>>> data = [(2, 6), (8, 4), (7, 3)]
>>> result = itertools.starmap(operator.mul, data)
>>> for each in result:
>>> print(each)
12
32
21

Return to the Top

takewhile()

The opposite of dropwhile(). Makes an iterator and returns elements from the iterable as long as the predicate
is true.

itertools.takwwhile(predicate, iterable)

Example:

README.md 11/27/2018

44 / 96

>>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1]
>>> result = itertools.takewhile(lambda x: x<5, data)
>>> for each in result:
>>> print(each)
1
2
3
4

Return to the Top

tee()

Return n independent iterators from a single iterable.

itertools.tee(iterable, n=2)

Example:

>>> colors = ['red', 'orange', 'yellow', 'green', 'blue']
>>> alpha_colors, beta_colors = itertools.tee(colors)
>>> for each in alpha_colors:
>>> print(each)
red
orange
yellow
green
blue

>>> colors = ['red', 'orange', 'yellow', 'green', 'blue']
>>> alpha_colors, beta_colors = itertools.tee(colors)
>>> for each in beta_colors:
>>> print(each)
red
orange
yellow
green
blue

Return to the Top

zip_longest()

Makes an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted.

README.md 11/27/2018

45 / 96

itertools.zip_longest(*iterables, fillvalue=None)

Example:

>>> colors = ['red', 'orange', 'yellow', 'green', 'blue',]
>>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,]
>>> for each in itertools.zip_longest(colors, data, fillvalue=None):
>>> print(each)
('red', 1)
('orange', 2)
('yellow', 3)
('green', 4)
('blue', 5)
(None, 6)
(None, 7)
(None, 8)
(None, 9)
(None, 10)

Return to the Top

Comprehensions

List comprehension

>>> a = [1, 3, 5, 7, 9, 11]

>>> [i - 1 for i in a]
[0, 2, 4, 6, 8, 10]

Set comprehension

>>> b = {"abc", "def"}
>>> {s.upper() for s in b}
{"ABC", "DEF}

Dict comprehension

>>> c = {'name': 'Pooka', 'age': 5}
>>> {v, k for k, v in c.items()}
{'Pooka': 'name', 5: 'age'}

README.md 11/27/2018

46 / 96

A List comprehension can be generated from a dictionary:

>>> c = {'name': 'Pooka', 'first_name': 'Oooka'}
>>> ["{}:{}".format(k.upper(), v.upper()) for k, v in c.items()]
['NAME:POOKA', 'FIRST_NAME:OOOKA']

Manipulating Strings

Escape Characters

Escape character Prints as

\' Single quote

\" Double quote

\t Tab

\n Newline (line break)

\\ Backslash

Example:

>>> print("Hello there!\nHow are you?\nI\'m doing fine.")
Hello there!
How are you?
I'm doing fine.

Return to the Top

Raw Strings

A raw string completely ignores all escape characters and prints any backslash that appears in the string.

>>> print(r'That is Carol\'s cat.')
That is Carol\'s cat.

Note: mostly used for regular expression definition (see re package)

Return to the Top

Multiline Strings with Triple Quotes

>>> print('''Dear Alice,
>>>
>>> Eve's cat has been arrested for catnapping, cat burglary, and extortion.

README.md 11/27/2018

47 / 96

>>>
>>> Sincerely,
>>> Bob''')
Dear Alice,

Eve's cat has been arrested for catnapping, cat burglary, and extortion.

Sincerely,
Bob

To keep a nicer flow in your code, you can use the dedent function from the textwrap standard package.

>>> from textwrap import dedent
>>>
>>> def my_function():
>>> print('''
>>> Dear Alice,
>>>
>>> Eve's cat has been arrested for catnapping, cat burglary, and
extortion.
>>>
>>> Sincerely,
>>> Bob
>>> ''').strip()

This generates the same string than before.

Return to the Top

Indexing and Slicing Strings

H e l l o w o r l d !
0 1 2 3 4 5 6 7 8 9 10 11

>>> spam = 'Hello world!'

>>> spam[0]
'H'

>>> spam[4]
'o'

README.md 11/27/2018

48 / 96

>>> spam[-1]
'!'

Slicing:

>>> spam[0:5]
'Hello'

>>> spam[:5]
'Hello'

>>> spam[6:]
'world!'

>>> spam[6:-1]
'world'

>>> spam[:-1]
'Hello world'

>>> spam[::-1]
'!dlrow olleH'

>>> spam = 'Hello world!'
>>> fizz = spam[0:5]
>>> fizz
'Hello'

Return to the Top

The in and not in Operators with Strings

>>> 'Hello' in 'Hello World'
True

README.md 11/27/2018

49 / 96

>>> 'Hello' in 'Hello'
True

>>> 'HELLO' in 'Hello World'
False

>>> '' in 'spam'
True

>>> 'cats' not in 'cats and dogs'
False

The in and not in Operators with list

>>> a = [1, 2, 3, 4]
>>> 5 in a
False

>>> 2 in a
True

Return to the Top

The upper(), lower(), isupper(), and islower() String Methods

upper() and lower():

>>> spam = 'Hello world!'
>>> spam = spam.upper()
>>> spam
'HELLO WORLD!'

>>> spam = spam.lower()
>>> spam
'hello world!'

README.md 11/27/2018

50 / 96

isupper() and islower():

>>> spam = 'Hello world!'
>>> spam.islower()
False

>>> spam.isupper()
False

>>> 'HELLO'.isupper()
True

>>> 'abc12345'.islower()
True

>>> '12345'.islower()
False

>>> '12345'.isupper()
False

Return to the Top

The isX String Methods

isalpha() returns True if the string consists only of letters and is not blank.
isalnum() returns True if the string consists only of lettersand numbers and is not blank.
isdecimal() returns True if the string consists only ofnumeric characters and is not blank.
isspace() returns True if the string consists only of spaces,tabs, and new-lines and is not blank.
istitle() returns True if the string consists only of wordsthat begin with an uppercase letter followed by
onlylowercase letters.

Return to the Top

The startswith() and endswith() String Methods

README.md 11/27/2018

51 / 96

>>> 'Hello world!'.startswith('Hello')
True

>>> 'Hello world!'.endswith('world!')
True

>>> 'abc123'.startswith('abcdef')
False

>>> 'abc123'.endswith('12')
False

>>> 'Hello world!'.startswith('Hello world!')
True

>>> 'Hello world!'.endswith('Hello world!')
True

Return to the Top

The join() and split() String Methods

join():

>>> ', '.join(['cats', 'rats', 'bats'])
'cats, rats, bats'

>>> ' '.join(['My', 'name', 'is', 'Simon'])
'My name is Simon'

>>> 'ABC'.join(['My', 'name', 'is', 'Simon'])
'MyABCnameABCisABCSimon'

split():

README.md 11/27/2018

52 / 96

>>> 'My name is Simon'.split()
['My', 'name', 'is', 'Simon']

>>> 'MyABCnameABCisABCSimon'.split('ABC')
['My', 'name', 'is', 'Simon']

>>> 'My name is Simon'.split('m')
['My na', 'e is Si', 'on']

Return to the Top

Justifying Text with rjust(), ljust(), and center()

rjust() and ljust():

>>> 'Hello'.rjust(10)
' Hello'

>>> 'Hello'.rjust(20)
' Hello'

>>> 'Hello World'.rjust(20)
' Hello World'

>>> 'Hello'.ljust(10)
'Hello '

An optional second argument to rjust() and ljust() will specify a fill character other than a space character.
Enter the following into the interactive shell:

>>> 'Hello'.rjust(20, '*')
'***************Hello'

README.md 11/27/2018

53 / 96

>>> 'Hello'.ljust(20, '-')
'Hello---------------'

center():

>>> 'Hello'.center(20)
' Hello '

>>> 'Hello'.center(20, '=')
'=======Hello========'

Return to the Top

Removing Whitespace with strip(), rstrip(), and lstrip()

>>> spam = ' Hello World '
>>> spam.strip()
'Hello World'

>>> spam.lstrip()
'Hello World '

>>> spam.rstrip()
' Hello World'

>>> spam = 'SpamSpamBaconSpamEggsSpamSpam'
>>> spam.strip('ampS')
'BaconSpamEggs'

Return to the Top

Copying and Pasting Strings with the pyperclip Module (need pip install)

>>> import pyperclip

>>> pyperclip.copy('Hello world!')

README.md 11/27/2018

54 / 96

>>> pyperclip.paste()
'Hello world!'

Return to the Top

String Formatting

% operator

>>> name = 'Pete'
>>> 'Hello %s' % name
"Hello Pete"

We can use the %x format specifier to convert an int value to a string:

>>> num = 5
>>> 'I have %x apples' % num
"I have 5 apples"

Note: For new code, using str.format or f-strings (Python 3.6+) is strongly recommended over the % operator.

Return to the Top

String Formatting (str.format)

Python 3 introduced a new way to do string formatting that was later back-ported to Python 2.7. This makes
the syntax for string formatting more regular.

>>> name = 'John'
>>> age = 20'

>>> "Hello I'm {}, my age is {}".format(name, age)
"Hello I'm John, my age is 20"

>>> "Hello I'm {0}, my age is {1}".format(name, age)
"Hello I'm John, my age is 20"

The official Python 3.x documentation recommend str.format over the % operator:

The formatting operations described here exhibit a variety of quirks that lead to a number of common
errors (such as failing to display tuples and dictionaries correctly). Using the newer formatted string
literals or the str.format() interface helps avoid these errors. These alternatives also provide more
powerful, flexible and extensible approaches to formatting text.

https://docs.python.org/3/library/stdtypes.html?highlight=sprintf#printf-style-string-formatting

README.md 11/27/2018

55 / 96

Return to the Top

Lazy string formatting

You would only use %s string formatting on functions that can do lazy parameters evaluation, the most
common being logging:

Prefer:

>>> name = "alice"
>>> logging.debug("User name: %s", name)

Over:

>>> logging.debug("User name: {}".format(name))

Or:

>>> logging.debug("User name: " + name)

Return to the Top

Formatted String Literals or f-strings (Python 3.6+)

>>> name = 'Elizabeth'
>>> f'Hello {name}!'
'Hello Elizabeth!

It is even possible to do inline arithmetic with it:

>>> a = 5
>>> b = 10
>>> f'Five plus ten is {a + b} and not {2 * (a + b)}.'
'Five plus ten is 15 and not 30.'

Return to the Top

Template Strings

A simpler and less powerful mechanism, but it is recommended when handling format strings generated by
users. Due to their reduced complexity template strings are a safer choice.

README.md 11/27/2018

56 / 96

>>> from string import Template
>>> name = 'Elizabeth'
>>> t = Template('Hey $name!')
>>> t.substitute(name=name)
'Hey Elizabeth!'

Return to the Top

Regular Expressions
1. Import the regex module with import re.
2. Create a Regex object with the re.compile() function. (Remember to use a raw string.)
3. Pass the string you want to search into the Regex object’s search() method. This returns a Match

object.
4. Call the Match object’s group() method to return a string of the actual matched text.

All the regex functions in Python are in the re module:

>>> import re

Return to the Top

Matching Regex Objects

>>> phone_num_regex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phone_num_regex.search('My number is 415-555-4242.')

>>> print('Phone number found: {}'.format(mo.group()))
Phone number found: 415-555-4242

Return to the Top

Grouping with Parentheses

>>> phone_num_regex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')

>>> mo = phone_num_regex.search('My number is 415-555-4242.')

>>> mo.group(1)
'415'

>>> mo.group(2)
'555-4242'

README.md 11/27/2018

57 / 96

>>> mo.group(0)
'415-555-4242'

>>> mo.group()
'415-555-4242'

To retrieve all the groups at once: use the groups() method—note the plural form for the name.

>>> mo.groups()
('415', '555-4242')

>>> area_code, main_number = mo.groups()

>>> print(area_code)
415

>>> print(main_number)
555-4242

Return to the Top

Matching Multiple Groups with the Pipe

The | character is called a pipe. You can use it anywhere you want to match one of many expressions. For
example, the regular expression r'Batman|Tina Fey' will match either 'Batman' or 'Tina Fey'.

>>> hero_regex = re.compile (r'Batman|Tina Fey')

>>> mo1 = hero_regex.search('Batman and Tina Fey.')

>>> mo1.group()
'Batman'

>>> mo2 = hero_regex.search('Tina Fey and Batman.')

>>> mo2.group()
'Tina Fey'

You can also use the pipe to match one of several patterns as part of your regex:

>>> bat_regex = re.compile(r'Bat(man|mobile|copter|bat)')

>>> mo = bat_regex.search('Batmobile lost a wheel')

>>> mo.group()
'Batmobile'

README.md 11/27/2018

58 / 96

>>> mo.group(1)
'mobile'

Return to the Top

Optional Matching with the Question Mark

The ? character flags the group that precedes it as an optional part of the pattern.

>>> bat_regex = re.compile(r'Bat(wo)?man')
>>> mo1 = bat_regex.search('The Adventures of Batman')
>>> mo1.group()
'Batman'

>>> mo2 = bat_regex.search('The Adventures of Batwoman')
>>> mo2.group()
'Batwoman'

Return to the Top

Matching Zero or More with the Star

The * (called the star or asterisk) means “match zero or more”—the group that precedes the star can occur
any number of times in the text.

>>> bat_regex = re.compile(r'Bat(wo)*man')
>>> mo1 = bat_regex.search('The Adventures of Batman')
>>> mo1.group()
'Batman'

>>> mo2 = bat_regex.search('The Adventures of Batwoman')
>>> mo2.group()
'Batwoman'

>>> mo3 = bat_regex.search('The Adventures of Batwowowowoman')
>>> mo3.group()
'Batwowowowoman'

Return to the Top

Matching One or More with the Plus

While * means “match zero or more,” the + (or plus) means “match one or more”. The group preceding a plus
must appear at least once. It is not optional:

>>> bat_regex = re.compile(r'Bat(wo)+man')
>>> mo1 = bat_regex.search('The Adventures of Batwoman')

README.md 11/27/2018

59 / 96

>>> mo1.group()
'Batwoman'

>>> mo2 = bat_regex.search('The Adventures of Batwowowowoman')
>>> mo2.group()
'Batwowowowoman'

>>> mo3 = bat_regex.search('The Adventures of Batman')
>>> mo3 is None
True

Return to the Top

Matching Specific Repetitions with Curly Brackets

If you have a group that you want to repeat a specific number of times, follow the group in your regex with a
number in curly brackets. For example, the regex (Ha){3} will match the string 'HaHaHa', but it will not match
'HaHa', since the latter has only two repeats of the (Ha) group.

Instead of one number, you can specify a range by writing a minimum, a comma, and a maximum in between
the curly brackets. For example, the regex (Ha){3,5} will match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.

>>> ha_regex = re.compile(r'(Ha){3}')
>>> mo1 = ha_regex.search('HaHaHa')
>>> mo1.group()
'HaHaHa'

>>> mo2 = ha_regex.search('Ha')
>>> mo2 is None
True

Return to the Top

Greedy and Nongreedy Matching

Python’s regular expressions are greedy by default, which means that in ambiguous situations they will match
the longest string possible. The non-greedy version of the curly brackets, which matches the shortest string
possible, has the closing curly bracket followed by a question mark.

>>> greedy_ha_regex = re.compile(r'(Ha){3,5}')
>>> mo1 = greedy_ha_regex.search('HaHaHaHaHa')

README.md 11/27/2018

60 / 96

>>> mo1.group()
'HaHaHaHaHa'

>>> nongreedy_ha_regex = re.compile(r'(Ha){3,5}?')
>>> mo2 = nongreedy_ha_regex.search('HaHaHaHaHa')
>>> mo2.group()
'HaHaHa'

Return to the Top

The findall() Method

In addition to the search() method, Regex objects also have a findall() method. While search() will return a
Match object of the first matched text in the searched string, the findall() method will return the strings of
every match in the searched string.

>>> phone_num_regex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups

>>> phone_num_regex.findall('Cell: 415-555-9999 Work: 212-555-0000')
['415-555-9999', '212-555-0000']

To summarize what the findall() method returns, remember the following:

When called on a regex with no groups, such as \d-\d\d\d-\d\d\d\d, the method findall() returns a list
of ng matches, such as ['415-555-9999', '212-555-0000'].

When called on a regex that has groups, such as (\d\d\d)-d\d)-(\d\ d\d\d), the method findall() returns
a list of es of strings (one string for each group), such as [('415', ', '9999'), ('212', '555', '0000')].

Return to the Top

Making Your Own Character Classes

There are times when you want to match a set of characters but the shorthand character classes (\d, \w, \s,
and so on) are too broad. You can define your own character class using square brackets. For example, the
character class [aeiouAEIOU] will match any vowel, both lowercase and uppercase.

>>> vowel_regex = re.compile(r'[aeiouAEIOU]')

>>> vowel_regex.findall('Robocop eats baby food. BABY FOOD.')
['o', 'o', 'o', 'e', 'a', 'a', 'o', 'o', 'A', 'O', 'O']

You can also include ranges of letters or numbers by using a hyphen. For example, the character class [a-zA-
Z0-9] will match all lowercase letters, uppercase letters, and numbers.

README.md 11/27/2018

61 / 96

By placing a caret character (^) just after the character class’s opening bracket, you can make a negative
character class. A negative character class will match all the characters that are not in the character class. For
example, enter the following into the interactive shell:

>>> consonant_regex = re.compile(r'[^aeiouAEIOU]')

>>> consonant_regex.findall('Robocop eats baby food. BABY FOOD.')
['R', 'b', 'c', 'p', ' ', 't', 's', ' ', 'b', 'b', 'y', ' ', 'f', 'd', '.', '
', 'B', 'B', 'Y', ' ', 'F', 'D', '.']

Return to the Top

The Caret and Dollar Sign Characters

You can also use the caret symbol (^) at the start of a regex to indicate that a match must occur at the
beginning of the searched text.

Likewise, you can put a dollar sign ($) at the end of the regex to indicate the string must end with this
regex pattern.

And you can use the ^ and $ together to indicate that the entire string must match the regex—that is,
it’s not enough for a match to be made on some subset of the string.

The r'^Hello' regular expression string matches strings that begin with 'Hello':

>>> begins_with_hello = re.compile(r'^Hello')

>>> begins_with_hello.search('Hello world!')
<_sre.SRE_Match object; span=(0, 5), match='Hello'>

>>> begins_with_hello.search('He said hello.') is None
True

The r'\d$' regular expression string matches strings that end with a numeric character from 0 to 9:

>>> whole_string_is_num = re.compile(r'^\d+$')

>>> whole_string_is_num.search('1234567890')
<_sre.SRE_Match object; span=(0, 10), match='1234567890'>

>>> whole_string_is_num.search('12345xyz67890') is None
True

>>> whole_string_is_num.search('12 34567890') is None
True

Return to the Top

README.md 11/27/2018

62 / 96

The Wildcard Character

The . (or dot) character in a regular expression is called a wildcard and will match any character except for a
newline:

>>> at_regex = re.compile(r'.at')

>>> at_regex.findall('The cat in the hat sat on the flat mat.')
['cat', 'hat', 'sat', 'lat', 'mat']

Return to the Top

Matching Everything with Dot-Star

>>> name_regex = re.compile(r'First Name: (.*) Last Name: (.*)')

>>> mo = name_regex.search('First Name: Al Last Name: Sweigart')

>>> mo.group(1)
'Al'

>>> mo.group(2)
'Sweigart'

The dot-star uses greedy mode: It will always try to match as much text as possible. To match any and all text
in a nongreedy fashion, use the dot, star, and question mark (.*?). The question mark tells Python to match in
a nongreedy way:

>>> nongreedy_regex = re.compile(r'<.*?>')
>>> mo = nongreedy_regex.search('<To serve man> for dinner.>')
>>> mo.group()
'<To serve man>'

>>> greedy_regex = re.compile(r'<.*>')
>>> mo = greedy_regex.search('<To serve man> for dinner.>')
>>> mo.group()
'<To serve man> for dinner.>'

Return to the Top

Matching Newlines with the Dot Character

README.md 11/27/2018

63 / 96

The dot-star will match everything except a newline. By passing re.DOTALL as the second argument to
re.compile(), you can make the dot character match all characters, including the newline character:

>>> no_newline_regex = re.compile('.*')
>>> no_newline_regex.search('Serve the public trust.\nProtect the
innocent.\nUphold the law.').group()
'Serve the public trust.'

>>> newline_regex = re.compile('.*', re.DOTALL)
>>> newline_regex.search('Serve the public trust.\nProtect the innocent.\nUphold
the law.').group()
'Serve the public trust.\nProtect the innocent.\nUphold the law.'

Return to the Top

Review of Regex Symbols

Symbol Matches

? zero or one of the preceding group.

* zero or more of the preceding group.

+ one or more of the preceding group.

{n} exactly n of the preceding group.

{n,} n or more of the preceding group.

{,m} 0 to m of the preceding group.

{n,m} at least n and at most m of the preceding p.

{n,m}? or *? or +? performs a nongreedy match of the preceding p.

^spam means the string must begin with spam.

spam$ means the string must end with spam.

. any character, except newline characters.

\d, \w, and \s a digit, word, or space character, ectively.

\D, \W, and \S anything except a digit, word, or space acter, respectively.

[abc] any character between the brackets (such as a, b,).

[^abc] any character that isn’t between the brackets.

Return to the Top

Case-Insensitive Matching

README.md 11/27/2018

64 / 96

To make your regex case-insensitive, you can pass re.IGNORECASE or re.I as a second argument to
re.compile():

>>> robocop = re.compile(r'robocop', re.I)

>>> robocop.search('Robocop is part man, part machine, all cop.').group()
'Robocop'

>>> robocop.search('ROBOCOP protects the innocent.').group()
'ROBOCOP'

>>> robocop.search('Al, why does your programming book talk about robocop so
much?').group()
'robocop'

Return to the Top

Substituting Strings with the sub() Method

The sub() method for Regex objects is passed two arguments:

1. The first argument is a string to replace any matches.
2. The second is the string for the regular expression.

The sub() method returns a string with the substitutions applied:

>>> names_regex = re.compile(r'Agent \w+')

>>> names_regex.sub('CENSORED', 'Agent Alice gave the secret documents to Agent
Bob.')
'CENSORED gave the secret documents to CENSORED.'

Another example:

>>> agent_names_regex = re.compile(r'Agent (\w)\w*')

>>> agent_names_regex.sub(r'\1****', 'Agent Alice told Agent Carol that Agent Eve
knew Agent Bob was a double agent.')
A**** told C**** that E**** knew B**** was a double agent.'

Return to the Top

README.md 11/27/2018

65 / 96

Managing Complex Regexes

To tell the re.compile() function to ignore whitespace and comments inside the regular expression string,
“verbose mode” can be enabled by passing the variable re.VERBOSE as the second argument to re.compile().

Now instead of a hard-to-read regular expression like this:

phone_regex = re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}(\s*
(ext|x|ext.)\s*\d{2,5})?)')

you can spread the regular expression over multiple lines with comments like this:

phone_regex = re.compile(r'''(
 (\d{3}|\(\d{3}\))? # area code
 (\s|-|\.)? # separator
 \d{3} # first 3 digits
 (\s|-|\.) # separator
 \d{4} # last 4 digits
 (\s*(ext|x|ext.)\s*\d{2,5})? # extension
)''', re.VERBOSE)

Return to the Top

Handling File and Directory Paths
There are two main modules in Python that deals with path manipulation. One is the os.path module and the
other is the pathlib module. The pathlib module was added in Python 3.4, offering an object-oriented way
to handle file system paths.

Return to the Top

Backslash on Windows and Forward Slash on OS X and Linux

On Windows, paths are written using backslashes () as the separator between folder names. On Unix based
operating system such as macOS, Linux, and BSDs, the forward slash (/) is used as the path separator. Joining
paths can be a headache if your code needs to work on different platforms.

Fortunately, Python provides easy ways to handle this. We will showcase how to deal with this with both
os.path.join and pathlib.Path.joinpath

Using os.path.join on Windows:

>>> import os

>>> os.path.join('usr', 'bin', 'spam')
'usr\\bin\\spam'

README.md 11/27/2018

66 / 96

And using pathlib on *nix:

>>> from pathlib import Path

>>> print(Path('usr').joinpath('bin').joinpath('spam'))
usr/bin/spam

pathlib also provides a shortcut to joinpath using the / operator:

>>> from pathlib import Path

>>> print(Path('usr') / 'bin' / 'spam')
usr/bin/spam

Notice the path separator is different between Windows and Unix based operating system, that's why you
want to use one of the above methods instead of adding strings together to join paths together.

Joining paths is helpful if you need to create different file paths under the same directory.

Using os.path.join on Windows:

>>> my_files = ['accounts.txt', 'details.csv', 'invite.docx']

>>> for filename in my_files:
>>> print(os.path.join('C:\\Users\\asweigart', filename))
C:\Users\asweigart\accounts.txt
C:\Users\asweigart\details.csv
C:\Users\asweigart\invite.docx

Using pathlib on *nix:

>>> my_files = ['accounts.txt', 'details.csv', 'invite.docx']
>>> home = Path.home()
>>> for filename in my_files:
>>> print(home / filename)
/home/asweigart/accounts.txt
/home/asweigart/details.csv
/home/asweigart/invite.docx

Return to the Top

The Current Working Directory

Using os on Windows:

README.md 11/27/2018

67 / 96

>>> import os

>>> os.getcwd()
'C:\\Python34'
>>> os.chdir('C:\\Windows\\System32')

>>> os.getcwd()
'C:\\Windows\\System32'

Using pathlib on *nix:

>>> from pathlib import Path
>>> from os import chdir

>>> print(Path.cwd())
/home/asweigart

>>> chdir('/usr/lib/python3.6')
>>> print(Path.cwd())
/usr/lib/python3.6

Return to the Top

Creating New Folders

Using os on Windows:

>>> import os
>>> os.makedirs('C:\\delicious\\walnut\\waffles')

Using pathlib on *nix:

>>> from pathlib import Path
>>> cwd = Path.cwd()
>>> (cwd / 'delicious' / 'walnut' / 'waffles').mkdir()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.6/pathlib.py", line 1226, in mkdir
 self._accessor.mkdir(self, mode)
 File "/usr/lib/python3.6/pathlib.py", line 387, in wrapped
 return strfunc(str(pathobj), *args)
FileNotFoundError: [Errno 2] No such file or directory:
'/home/asweigart/delicious/walnut/waffles'

README.md 11/27/2018

68 / 96

Oh no, we got a nasty error! The reason is that the 'delicious' directory does not exist, so we cannot make the
'walnut' and the 'waffles' directories under it. To fix this, do:

>>> from pathlib import Path
>>> cwd = Path.cwd()
>>> (cwd / 'delicious' / 'walnut' / 'waffles').mkdir(parents=True)

And all is good

Return to the Top

Absolute vs. Relative Paths

There are two ways to specify a file path.

An absolute path, which always begins with the root folder
A relative path, which is relative to the program’s current working directory

There are also the dot (.) and dot-dot (..) folders. These are not real folders but special names that can be used
in a path. A single period (“dot”) for a folder name is shorthand for “this directory.” Two periods (“dot-dot”)
means “the parent folder.”

Return to the Top

Handling Absolute and Relative Paths

To see if a path is an absolute path:

Using os.path on *nix:

>>> import os
>>> os.path.isabs('/')
True
>>> os.path.isabs('..')
False

Using pathlib on *nix:

>>> from pathlib import Path
>>> Path('/').is_absolute()
True
>>> Path('..').is_absolute()
False

You can extract an absolute path with both os.path and pathlib

Using os.path on *nix:

README.md 11/27/2018

69 / 96

>>> import os
>>> os.getcwd()
'/home/asweigart'
>>> os.path.abspath('..')
'/home'

Using pathlib on *nix:

from pathlib import Path
print(Path.cwd())
/home/asweigart
print(Path('..').resolve())
/home

You can get a relative path from a starting path to another path.

Using os.path on *nix:

>>> import os
>>> os.path.relpath('/etc/passwd', '/')
'etc/passwd'

Using pathlib on *nix:

>>> from pathlib import Path
>>> print(Path('/etc/passwd').relative_to('/'))
etc/passwd

Return to the Top

Checking Path Validity

Checking if a file/directory exists:

Using os.path on *nix:

import os
>>> os.path.exists('.')
True
>>> os.path.exists('setup.py')
True
>>> os.path.exists('/etc')
True

README.md 11/27/2018

70 / 96

>>> os.path.exists('nonexistentfile')
False

Using pathlib on *nix:

from pathlib import Path
>>> Path('.').exists()
True
>>> Path('setup.py').exists()
True
>>> Path('/etc').exists()
True
>>> Path('nonexistentfile').exists()
False

Checking if a path is a file:

Using os.path on *nix:

>>> import os
>>> os.path.isfile('setup.py')
True
>>> os.path.isfile('/home')
False
>>> os.path.isfile('nonexistentfile')
False

Using pathlib on *nix:

>>> from pathlib import Path
>>> Path('setup.py').is_file()
True
>>> Path('/home').is_file()
False
>>> Path('nonexistentfile').is_file()
False

Checking if a path is a directory:

Using os.path on *nix:

>>> import os
>>> os.path.isdir('/')
True
>>> os.path.isdir('setup.py')

README.md 11/27/2018

71 / 96

False
>>> os.path.isdir('/spam')
False

Using pathlib on *nix:

>>> from pathlib import Path
>>> Path('/').is_dir()
True
>>> Path('setup.py').is_dir()
False
>>> Path('/spam').is_dir()
False

Return to the Top

Finding File Sizes and Folder Contents

Getting a file's size in bytes:

Using os.path on Windows:

>>> import os
>>> os.path.getsize('C:\\Windows\\System32\\calc.exe')
776192

Using pathlib on *nix:

>>> from pathlib import Path
>>> stat = Path('/bin/python3.6').stat()
>>> print(stat) # stat contains some other information about the file as well
os.stat_result(st_mode=33261, st_ino=141087, st_dev=2051, st_nlink=2, st_uid=0,
--snip--
st_gid=0, st_size=10024, st_atime=1517725562, st_mtime=1515119809,
st_ctime=1517261276)
>>> print(stat.st_size) # size in bytes
10024

Listing directory contents using os.listdir on Windows:

>>> import os
>>> os.listdir('C:\\Windows\\System32')
['0409', '12520437.cpx', '12520850.cpx', '5U877.ax', 'aaclient.dll',
--snip--
'xwtpdui.dll', 'xwtpw32.dll', 'zh-CN', 'zh-HK', 'zh-TW', 'zipfldr.dll']

README.md 11/27/2018

72 / 96

Listing directory contents using pathlib on *nix:

>>> from pathlib import Path
>>> for f in Path('/usr/bin').iterdir():
>>> print(f)
...
/usr/bin/tiff2rgba
/usr/bin/iconv
/usr/bin/ldd
/usr/bin/cache_restore
/usr/bin/udiskie
/usr/bin/unix2dos
/usr/bin/t1reencode
/usr/bin/epstopdf
/usr/bin/idle3
...

To find the total size of all the files in this directory:

WARNING: Directories themselves also have a size! So you might want to check for whether a path is a file or
directory using the methods in the methods discussed in the above section!

Using os.path.getsize() and os.listdir() together on Windows:

>>> import os
>>> total_size = 0

>>> for filename in os.listdir('C:\\Windows\\System32'):
 total_size = total_size +
os.path.getsize(os.path.join('C:\\Windows\\System32', filename))

>>> print(total_size)
1117846456

Using pathlib on *nix:

>>> from pathlib import Path
>>> total_size = 0

>>> for sub_path in Path('/usr/bin').iterdir():
... total_size += sub_path.stat().st_size
>>>
>>> print(total_size)
1903178911

Return to the Top

README.md 11/27/2018

73 / 96

Copying Files and Folders

The shutil module provides functions for copying files, as well as entire folders.

>>> import shutil, os

>>> os.chdir('C:\\')

>>> shutil.copy('C:\\spam.txt', 'C:\\delicious')
 'C:\\delicious\\spam.txt'

>>> shutil.copy('eggs.txt', 'C:\\delicious\\eggs2.txt')
 'C:\\delicious\\eggs2.txt'

While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and every folder and file
contained in it:

>>> import shutil, os

>>> os.chdir('C:\\')

>>> shutil.copytree('C:\\bacon', 'C:\\bacon_backup')
'C:\\bacon_backup'

Return to the Top

Moving and Renaming Files and Folders

>>> import shutil
>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')
'C:\\eggs\\bacon.txt'

The destination path can also specify a filename. In the following example, the source file is moved and
renamed:

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs\\new_bacon.txt')
'C:\\eggs\\new_bacon.txt'

If there is no eggs folder, then move() will rename bacon.txt to a file named eggs.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')
'C:\\eggs'

README.md 11/27/2018

74 / 96

Return to the Top

Permanently Deleting Files and Folders

Calling os.unlink(path) or Path.unlink() will delete the file at path.

Calling os.rmdir(path) or Path.rmdir() will delete the folder at path. This folder must be empty of any
files or folders.

Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it contains will also be
deleted.

Return to the Top

Safe Deletes with the send2trash Module

You can install this module by running pip install send2trash from a Terminal window.

>>> import send2trash

>>> with open('bacon.txt', 'a') as bacon_file: # creates the file
... bacon_file.write('Bacon is not a vegetable.')
25

>>> send2trash.send2trash('bacon.txt')

Return to the Top

Walking a Directory Tree

>>> import os
>>>
>>> for folder_name, subfolders, filenames in os.walk('C:\\delicious'):
>>> print('The current folder is {}'.format(folder_name))
>>>
>>> for subfolder in subfolders:
>>> print('SUBFOLDER OF {}: {}'.format(folder_name, subfolder))
>>> for filename in filenames:
>>> print('FILE INSIDE {}: {}'.format(folder_name, filename))
>>>
>>> print('')
The current folder is C:\delicious
SUBFOLDER OF C:\delicious: cats
SUBFOLDER OF C:\delicious: walnut
FILE INSIDE C:\delicious: spam.txt

The current folder is C:\delicious\cats
FILE INSIDE C:\delicious\cats: catnames.txt
FILE INSIDE C:\delicious\cats: zophie.jpg

README.md 11/27/2018

75 / 96

The current folder is C:\delicious\walnut
SUBFOLDER OF C:\delicious\walnut: waffles

The current folder is C:\delicious\walnut\waffles
FILE INSIDE C:\delicious\walnut\waffles: butter.txt

Return to the Top

pathlib provides a lot more functionality than the ones listed above, like getting file name, getting file
extension, reading/writing a file without manually opening it, etc. Check out the official documentation if you
want to know more!

Reading and Writing Files

The File Reading/Writing Process

To read/write to a file in Python, you will want to use the with statement, which will close the file for you after
you are done.

Return to the Top

Opening and reading files with the open() function

>>> with open('C:\\Users\\your_home_folder\\hello.txt') as hello_file:
... hello_content = hello_file.read()
>>> hello_content
'Hello World!'

>>> # Alternatively, you can use the *readlines()* method to get a list of string
values from the file, one string for each line of text:

>>> with open('sonnet29.txt') as sonnet_file:
... sonnet_file.readlines()
[When, in disgrace with fortune and men's eyes,\n', ' I all alone beweep my
outcast state,\n', And trouble deaf heaven with my bootless cries,\n', And
look upon myself and curse my fate,']

>>> # You can also iterate through the file line by line:
>>> with open('sonnet29.txt') as sonnet_file:
... for line in sonnet_file: # note the new line character will be included in
the line
... print(line, end='')

When, in disgrace with fortune and men's eyes,
I all alone beweep my outcast state,
And trouble deaf heaven with my bootless cries,
And look upon myself and curse my fate,

Return to the Top

https://docs.python.org/3/library/pathlib.html

README.md 11/27/2018

76 / 96

Writing to Files

>>> with open('bacon.txt', 'w') as bacon_file:
... bacon_file.write('Hello world!\n')
13

>>> with open('bacon.txt', 'a') as bacon_file:
... bacon_file.write('Bacon is not a vegetable.')
25

>>> with open('bacon.txt') as bacon_file:
... content = bacon_file.read()

>>> print(content)
Hello world!
Bacon is not a vegetable.

Return to the Top

Saving Variables with the shelve Module

To save variables:

>>> import shelve

>>> cats = ['Zophie', 'Pooka', 'Simon']
>>> with shelve.open('mydata') as shelf_file:
... shelf_file['cats'] = cats

To open and read variables:

>>> with shelve.open('mydata') as shelf_file:
... print(type(shelf_file))
... print(shelf_file['cats'])
<class 'shelve.DbfilenameShelf'>
['Zophie', 'Pooka', 'Simon']

Just like dictionaries, shelf values have keys() and values() methods that will return list-like values of the keys
and values in the shelf. Since these methods return list-like values instead of true lists, you should pass them
to the list() function to get them in list form.

>>> with shelve.open('mydata') as shelf_file:
... print(list(shelf_file.keys()))
... print(list(shelf_file.values()))
['cats']
[['Zophie', 'Pooka', 'Simon']]

README.md 11/27/2018

77 / 96

Return to the Top

Saving Variables with the pprint.pformat() Function

>>> import pprint

>>> cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc':
'fluffy'}]

>>> pprint.pformat(cats)
"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]"

>>> with open('myCats.py', 'w') as file_obj:
... file_obj.write('cats = {}\n'.format(pprint.pformat(cats)))
83

Return to the Top

Reading ZIP Files

>>> import zipfile, os

>>> os.chdir('C:\\') # move to the folder with example.zip
>>> with zipfile.ZipFile('example.zip') as example_zip:
... print(example_zip.namelist())
... spam_info = example_zip.getinfo('spam.txt')
... print(spam_info.file_size)
... print(spam_info.compress_size)
... print('Compressed file is %sx smaller!' % (round(spam_info.file_size /
spam_info.compress_size, 2)))

['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']
13908
3828
'Compressed file is 3.63x smaller!'

Return to the Top

Extracting from ZIP Files

The extractall() method for ZipFile objects extracts all the files and folders from a ZIP file into the current
working directory.

>>> import zipfile, os

>>> os.chdir('C:\\') # move to the folder with example.zip

README.md 11/27/2018

78 / 96

>>> with zipfile.ZipFile('example.zip') as example_zip:
... example_zip.extractall()

The extract() method for ZipFile objects will extract a single file from the ZIP file. Continue the interactive shell
example:

>>> with zipfile.ZipFile('example.zip') as example_zip:
... print(example_zip.extract('spam.txt'))
... print(example_zip.extract('spam.txt', 'C:\\some\\new\\folders'))
'C:\\spam.txt'
'C:\\some\\new\\folders\\spam.txt'

Return to the Top

Creating and Adding to ZIP Files

>>> import zipfile

>>> with zipfile.ZipFile('new.zip', 'w') as new_zip:
... new_zip.write('spam.txt', compress_type=zipfile.ZIP_DEFLATED)

This code will create a new ZIP file named new.zip that has the compressed contents of spam.txt.

Return to the Top

JSON, YAML and configuration files

JSON

Open a JSON file with:

import json
with open("filename.json", "r") as f:
 content = json.loads(f.read())

Write a JSON file with:

import json

content = {"name": "Joe", "age": 20}
with open("filename.json", "w") as f:
 f.write(json.dumps(content, indent=2))

README.md 11/27/2018

79 / 96

Return to the Top

YAML

Compared to JSON, YAML allows a much better humain maintainance and gives ability to add comments. It is
a convinient choice for configuration files where human will have to edit.

There are two main librairies allowing to access to YAML files:

PyYaml
Ruamel.yaml

Install them using pip install in your virtual environment.

The first one it easier to use but the second one, Ruamel, implements much better the YAML specification, and
allow for example to modify a YAML content without altering comments.

Open a YAML file with:

from ruamel.yaml import YAML

with open("filename.yaml") as f:
 yaml=YAML()
 yaml.load(f)

Return to the Top

Anyconfig

Anyconfig is a very handy package allowing to abstract completly the underlying configuration file format. It
allows to load a Python dictionary from JSON, YAML, TOML, and so on.

Install it with:

pip install anyconfig

Usage:

import anyconfig

conf1 = anyconfig.load("/path/to/foo/conf.d/a.yml")

Return to the Top

Debugging

Raising Exceptions

https://pypi.python.org/pypi/PyYAML
https://pypi.python.org/pypi/ruamel.yaml
https://pypi.python.org/pypi/anyconfig

README.md 11/27/2018

80 / 96

Exceptions are raised with a raise statement. In code, a raise statement consists of the following:

The raise keyword
A call to the Exception() function
A string with a helpful error message passed to the Exception() function

>>> raise Exception('This is the error message.')
Traceback (most recent call last):
 File "<pyshell#191>", line 1, in <module>
 raise Exception('This is the error message.')
Exception: This is the error message.

Often it’s the code that calls the function, not the function itself, that knows how to handle an expection. So
you will commonly see a raise statement inside a function and the try and except statements in the code
calling the function.

def box_print(symbol, width, height):
 if len(symbol) != 1:
 raise Exception('Symbol must be a single character string.')
 if width <= 2:
 raise Exception('Width must be greater than 2.')
 if height <= 2:
 raise Exception('Height must be greater than 2.')
 print(symbol * width)
 for i in range(height - 2):
 print(symbol + (' ' * (width - 2)) + symbol)
 print(symbol * width)
for sym, w, h in (('*', 4, 4), ('O', 20, 5), ('x', 1, 3), ('ZZ', 3, 3)):
 try:
 box_print(sym, w, h)
 except Exception as err:
 print('An exception happened: ' + str(err))

Return to the Top

Getting the Traceback as a String

The traceback is displayed by Python whenever a raised exception goes unhandled. But can also obtain it as a
string by calling traceback.format_exc(). This function is useful if you want the information from an exception’s
traceback but also want an except statement to gracefully handle the exception. You will need to import
Python’s traceback module before calling this function.

>>> import traceback

>>> try:
>>> raise Exception('This is the error message.')
>>> except:

README.md 11/27/2018

81 / 96

>>> with open('errorInfo.txt', 'w') as error_file:
>>> error_file.write(traceback.format_exc())
>>> print('The traceback info was written to errorInfo.txt.')
116
The traceback info was written to errorInfo.txt.

The 116 is the return value from the write() method, since 116 characters were written to the file. The
traceback text was written to errorInfo.txt.

Traceback (most recent call last):
 File "<pyshell#28>", line 2, in <module>
Exception: This is the error message.

Return to the Top

Assertions

An assertion is a sanity check to make sure your code isn’t doing something obviously wrong. These sanity
checks are performed by assert statements. If the sanity check fails, then an AssertionError exception is raised.
In code, an assert statement consists of the following:

The assert keyword
A condition (that is, an expression that evaluates to True or False)
A comma
A string to display when the condition is False

>>> pod_bay_door_status = 'open'

>>> assert pod_bay_door_status == 'open', 'The pod bay doors need to be "open".'

>>> pod_bay_door_status = 'I\'m sorry, Dave. I\'m afraid I can\'t do that.'

>>> assert pod_bay_door_status == 'open', 'The pod bay doors need to be "open".'

Traceback (most recent call last):
 File "<pyshell#10>", line 1, in <module>
 assert pod_bay_door_status == 'open', 'The pod bay doors need to be "open".'
AssertionError: The pod bay doors need to be "open".

In plain English, an assert statement says, “I assert that this condition holds true, and if not, there is a bug
somewhere in the program.” Unlike exceptions, your code should not handle assert statements with try and
except; if an assert fails, your program should crash. By failing fast like this, you shorten the time between the
original cause of the bug and when you first notice the bug. This will reduce the amount of code you will have
to check before finding the code that’s causing the bug.

Disabling Assertions

README.md 11/27/2018

82 / 96

Assertions can be disabled by passing the -O option when running Python.

Return to the Top

Logging

To enable the logging module to display log messages on your screen as your program runs, copy the
following to the top of your program (but under the #! python shebang line):

import logging

logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)s- %
(message)s')

Say you wrote a function to calculate the factorial of a number. In mathematics, factorial 4 is 1 × 2 × 3 × 4, or
24. Factorial 7 is 1 × 2 × 3 × 4 × 5 × 6 × 7, or 5,040. Open a new file editor window and enter the following
code. It has a bug in it, but you will also enter several log messages to help yourself figure out what is going
wrong. Save the program as factorialLog.py.

>>> import logging
>>>
>>> logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)s-
%(message)s')
>>>
>>> logging.debug('Start of program')
>>>
>>> def factorial(n):
>>>
>>> logging.debug('Start of factorial(%s)' % (n))
>>> total = 1
>>>
>>> for i in range(1, n + 1):
>>> total *= i
>>> logging.debug('i is ' + str(i) + ', total is ' + str(total))
>>>
>>> logging.debug('End of factorial(%s)' % (n))
>>>
>>> return total
>>>
>>> print(factorial(5))
>>> logging.debug('End of program')
2015-05-23 16:20:12,664 - DEBUG - Start of program
2015-05-23 16:20:12,664 - DEBUG - Start of factorial(5)
2015-05-23 16:20:12,665 - DEBUG - i is 0, total is 0
2015-05-23 16:20:12,668 - DEBUG - i is 1, total is 0
2015-05-23 16:20:12,670 - DEBUG - i is 2, total is 0
2015-05-23 16:20:12,673 - DEBUG - i is 3, total is 0
2015-05-23 16:20:12,675 - DEBUG - i is 4, total is 0
2015-05-23 16:20:12,678 - DEBUG - i is 5, total is 0
2015-05-23 16:20:12,680 - DEBUG - End of factorial(5)

README.md 11/27/2018

83 / 96

0
2015-05-23 16:20:12,684 - DEBUG - End of program

Return to the Top

Logging Levels

Logging levels provide a way to categorize your log messages by importance. There are five logging levels,
described in Table 10-1 from least to most important. Messages can be logged at each level using a different
logging function.

Level Logging Function Description

DEBUG logging.debug()
The lowest level. Used for small details. Usually you care about
these messages only when diagnosing problems.

INFO logging.info()
Used to record information on general events in your program or
confirm that things are working at their point in the program.

WARNING logging.warning()
Used to indicate a potential problem that doesn’t prevent the
program from working but might do so in the future.

ERROR logging.error()
Used to record an error that caused the program to fail to do
something.

CRITICAL logging.critical()
The highest level. Used to indicate a fatal error that has caused or is
about to cause the program to stop running entirely.

Return to the Top

Disabling Logging

After you’ve debugged your program, you probably don’t want all these log messages cluttering the screen.
The logging.disable() function disables these so that you don’t have to go into your program and remove all
the logging calls by hand.

>>> import logging

>>> logging.basicConfig(level=logging.INFO, format=' %(asctime)s -%(levelname)s -
%(message)s')

>>> logging.critical('Critical error! Critical error!')
2015-05-22 11:10:48,054 - CRITICAL - Critical error! Critical error!

>>> logging.disable(logging.CRITICAL)

>>> logging.critical('Critical error! Critical error!')

>>> logging.error('Error! Error!')

README.md 11/27/2018

84 / 96

Return to the Top

Logging to a File

Instead of displaying the log messages to the screen, you can write them to a text file. The
logging.basicConfig() function takes a filename keyword argument, like so:

import logging

logging.basicConfig(filename='myProgramLog.txt', level=logging.DEBUG, format='%
(asctime)s - %(levelname)s - %(message)s')

Return to the Top

Lambda Functions
This function:

>>> def add(x, y):
 return x + y

>>> add(5, 3)
8

Is equivalent to the lambda function:

>>> add = lambda x, y: x + y
>>> add(5, 3)
8

It's not even need to bind it to a name like add before:

>>> (lambda x, y: x + y)(5, 3)
8

Like regular nested functions, lambdas also work as lexical closures:

>>> def make_adder(n):
 return lambda x: x + n

>>> plus_3 = make_adder(3)
>>> plus_5 = make_adder(5)

>>> plus_3(4)

README.md 11/27/2018

85 / 96

7
>>> plus_5(4)
9

Note: lambda can only evaluate an expression, like a single line of code.

Return to the Top

Ternary Conditional Operator
Many programming languages have a ternary operator, which define a conditional expression. The most
common usage is to make a terse simple conditional assignment statement. In other words, it offers one-line
code to evaluate the first expression if the condition is true, otherwise it evaluates the second expression.

<expression1> if <condition> else <expression2>

Example:

>>> age = 15

>>> print('kid' if age < 18 else 'adult')
kid

Ternary operators can be changed:

>>> age = 15

>>> print('kid' if age < 13 else 'teenager' if age < 18 else 'adult')
teenager

The code above is equivalent to:

if age < 18:
 if age < 12:
 print('kid')
 else:
 print('teenager')
else:
 print('adult')

Return to the Top

args and kwargs

README.md 11/27/2018

86 / 96

The names args and kwargs are arbitrary - the important thing are the * and ** operators. They can mean:

1. In a function declaration, * means “pack all remaining positional arguments into a tuple named
<name>”, while ** is the same for keyword arguments (except it uses a dictionary, not a tuple).

2. In a function call, * means “unpack tuple or list named <name> to positional arguments at this position”,
while ** is the same for keyword arguments.

For example you can make a function that you can use to call any other function, no matter what parameters
it has:

def forward(f, *args, **kwargs):
 return f(*args, **kwargs)

Inside forward, args is a tuple (of all positional arguments except the first one, because we specified it - the f),
kwargs is a dict. Then we call f and unpack them so they become normal arguments to f.

You use *args when you have an indefinite amount of positional arguments.

>>> def fruits(*args):
>>> for fruit in args:
>>> print(fruit)

>>> fruits("apples", "bananas", "grapes")

"apples"
"bananas"
"grapes"

Similarly, you use **kwargs when you have an indefinite number of keyword arguments.

>>> def fruit(**kwargs):
>>> for key, value in kwargs.items():
>>> print("{0}: {1}".format(key, value))

>>> fruit(name = "apple", color = "red")

name: apple
color: red

>>> def show(arg1, arg2, *args, kwarg1=None, kwarg2=None, **kwargs):
>>> print(arg1)
>>> print(arg2)
>>> print(args)
>>> print(kwarg1)
>>> print(kwarg2)

README.md 11/27/2018

87 / 96

>>> print(kwargs)

>>> data1 = [1,2,3]
>>> data2 = [4,5,6]
>>> data3 = {'a':7,'b':8,'c':9}

>>> show(*data1,*data2, kwarg1="python",kwarg2="cheatsheet",**data3)
1
2
(3, 4, 5, 6)
python
cheatsheet
{'a': 7, 'b': 8, 'c': 9}

>>> show(*data1, *data2, **data3)
1
2
(3, 4, 5, 6)
None
None
{'a': 7, 'b': 8, 'c': 9}

If you do not specify ** for kwargs
>>> show(*data1, *data2, *data3)
1
2
(3, 4, 5, 6, "a", "b", "c")
None
None
{}

Thinks to Remember(args)

1. Functions can accept a variable number of positional arguments by using *args in the def statement.
2. You can use the items from a sequence as the positional arguments for a function with the * operator.
3. Using the * operator with a generator may cause your program to run out of memory and crash.
4. Adding new positional parameters to functions that accept *args can introduce hard-to-find bugs.

Thinks to remember(kwargs)

1. Function arguments can be specified by position or by keyword.
2. Keywords make it clear what the purpose of each argument is when it would be confusing with only

positional arguments.
3. Keyword arguments with default values make it easy to add new behaviors to a function, especially

when the function has existing callers.
4. Optional keyword arguments should always be passed by keyword instead of by position.

Return to the Top

Context Manager

README.md 11/27/2018

88 / 96

While Python's context managers are widely used, few understand the purpose behind their use. These
statements, commonly used with reading and writing files, assist the application in conserving system memory
and improve resource management by ensuring specific resources are only in use for certain processes.

with statement

A context manager is an object that is notified when a context (a block of code) starts and ends. You
commonly use one with the with statement. It takes care of the notifying.

For example, file objects are context managers. When a context ends, the file object is closed automatically:

>>> with open(filename) as f:
>>> file_contents = f.read()

the open_file object has automatically been closed.

Anything that ends execution of the block causes the context manager's exit method to be called. This
includes exceptions, and can be useful when an error causes you to prematurely exit from an open file or
connection. Exiting a script without properly closing files/connections is a bad idea, that may cause data loss
or other problems. By using a context manager you can ensure that precautions are always taken to prevent
damage or loss in this way.

Writing your own contextmanager using generator syntax

It is also possible to write a context manager using generator syntax thanks to the
contextlib.contextmanager decorator:

>>> import contextlib
>>> @contextlib.contextmanager
... def context_manager(num):
... print('Enter')
... yield num + 1
... print('Exit')
>>> with context_manager(2) as cm:
... # the following instructions are run when the 'yield' point of the context
... # manager is reached.
... # 'cm' will have the value that was yielded
... print('Right in the middle with cm = {}'.format(cm))
Enter
Right in the middle with cm = 3
Exit

>>>

Return to the Top

__main__ Top-level script environment

README.md 11/27/2018

89 / 96

__main__ is the name of the scope in which top-level code executes. A module’s name is set equal to
__main__ when read from standard input, a script, or from an interactive prompt.

A module can discover whether or not it is running in the main scope by checking its own __name__, which
allows a common idiom for conditionally executing code in a module when it is run as a script or with python
-m but not when it is imported:

>>> if __name__ == "__main__":
... # execute only if run as a script
... main()

For a package, the same effect can be achieved by including a main.py module, the contents of which will be
executed when the module is run with -m

For example we are developing script which is designed to be used as module, we should do:

>>> # Python program to execute function directly
>>> def add(a, b):
... return a+b
...
>>> add(10, 20) # we can test it by calling the function save it as calculate.py
30
>>> # Now if we want to use that module by importing we have to comment out our
call,
>>> # Instead we can write like this in calculate.py
>>> if __name__ == "__main__":
... add(3, 5)
...
>>> import calculate
>>> calculate.add(3, 5)
8

Advantages

1. Every Python module has it’s __name__ defined and if this is __main__, it implies that the module is
being run standalone by the user and we can do corresponding appropriate actions.

2. If you import this script as a module in another script, the name is set to the name of the
script/module.

3. Python files can act as either reusable modules, or as standalone programs.
4. if __name__ == “main”: is used to execute some code only if the file was run directly, and not

imported.

Return to the Top

setup.py

README.md 11/27/2018

90 / 96

The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils.
The main purpose of the setup script is to describe your module distribution to the Distutils, so that the
various commands that operate on your modules do the right thing.

The setup.py file is at the heart of a Python project. It describes all of the metadata about your project. There
a quite a few fields you can add to a project to give it a rich set of metadata describing the project. However,
there are only three required fields: name, version, and packages. The name field must be unique if you wish
to publish your package on the Python Package Index (PyPI). The version field keeps track of different releases
of the project. The packages field describes where you’ve put the Python source code within your project.

This allows you to easily install Python packages. Often it's enough to write:

python setup.py install

and module will install itself.

Our initial setup.py will also include information about the license and will re-use the README.txt file for the
long_description field. This will look like:

>>> from distutils.core import setup
>>> setup(
... name='pythonCheatsheet',
... version='0.1',
... packages=['pipenv',],
... license='MIT',
... long_description=open('README.txt').read(),
...)

Find more information visit http://docs.python.org/install/index.html.

Return to the Top

Dataclasses
Dataclasses are python classes but are suited for storing data objects. This module provides a decorator and
functions for automatically adding generated special methods such as __init__() and __repr__() to user-
defined classes.

Features

1. They store data and represent a certain data type. Ex: A number. For people familiar with ORMs, a
model instance is a data object. It represents a specific kind of entity. It holds attributes that define or
represent the entity.

2. They can be compared to other objects of the same type. Ex: A number can be greater than, less than,
or equal to another number.

Python 3.7 provides a decorator dataclass that is used to convert a class into a dataclass.

http://docs.python.org/install/index.html

README.md 11/27/2018

91 / 96

python 2.7

>>> class Number:
... def __init__(self, val):
... self.val = val
...
>>> obj = Number(2)
>>> obj.val
2

with dataclass

>>> @dataclass
... class Number:
... val: int
...
>>> obj = Number(2)
>>> obj.val
2

Return to the Top

Default values

It is easy to add default values to the fields of your data class.

>>> @dataclass
... class Product:
... name: str
... count: int = 0
... price: float = 0.0
...
>>> obj = Product("Python")
>>> obj.name
Python
>>> obj.count
0
>>> obj.price
0.0

Type hints

It is mandatory to define the data type in dataclass. However, If you don't want specify the datatype then, use
typing.Any.

README.md 11/27/2018

92 / 96

>>> from dataclasses import dataclass
>>> from typing import Any

>>> @dataclass
... class WithoutExplicitTypes:
... name: Any
... value: Any = 42
...

Return to the Top

Virtual Environment
The use of a Virtual Environment is to test python code in encapsulated environments and to also avoid filling
the base Python installation with libraries we might use for only one project.

Return to the Top

virtualenv

1. Install virtualenv

 pip install virtualenv

2. Install virtualenvwrapper-win (Windows)

 pip install virtualenvwrapper-win

Usage:

1. Make a Virtual Environment

 mkvirtualenv HelloWold

Anything we install now will be specific to this project. And available to the projects we connect to this
environment.

2. Set Project Directory

To bind our virtualenv with our current working directory we simply enter:

 setprojectdir .

README.md 11/27/2018

93 / 96

3. Deactivate

To move onto something else in the command line type ‘deactivate’ to deactivate your environment.

 deactivate

Notice how the parenthesis disappear.

4. Workon

Open up the command prompt and type ‘workon HelloWold’ to activate the environment and move
into your root project folder

 workon HelloWold

Return to the Top

poetry

Poetry is a tool for dependency management and packaging in Python. It allows you to declare the
libraries your project depends on and it will manage (install/update) them for you.

1. Install Poetry

 pip install --user poetry

2. Create a new project

 poetry new my-project

This will create a my-project directory:

 my-project
 ├── pyproject.toml
 ├── README.rst
 ├── poetry_demo
 │ └── __init__.py
 └── tests
 ├── __init__.py
 └── test_poetry_demo.py

The pyproject.toml file will orchestrate your project and its dependencies:

https://poetry.eustace.io/

README.md 11/27/2018

94 / 96

 [tool.poetry]
 name = "my-project"
 version = "0.1.0"
 description = ""
 authors = ["your name <your@mail.com>"]

 [tool.poetry.dependencies]
 python = "*"

 [tool.poetry.dev-dependencies]
 pytest = "^3.4"

3. Packages

To add dependencies to your project, you can specify them in the tool.poetry.dependencies section:

 [tool.poetry.dependencies]
 pendulum = "^1.4"

Also, instead of modifying the pyproject.toml file by hand, you can use the add command and it will
automatically find a suitable version constraint.

 $ poetry add pendulum

To install the dependencies listed in the pyproject.toml:

 poetry install

To remove dependencies:

 poetry remove pendulum

For more information, check the documentation.

Return to the Top

pipenv

Pipenv is a tool that aims to bring the best of all packaging worlds (bundler, composer, npm, cargo,
yarn, etc.) to the Python world. Windows is a first-class citizen, in our world.

1. Install pipenv

https://poetry.eustace.io/docs/
https://pipenv.readthedocs.io/en/latest/

README.md 11/27/2018

95 / 96

 pip install pipenv

2. Enter your Project directory and install the Packages for your project

 cd my_project
 pipenv install <package>

Pipenv will install your package and create a Pipfile for you in your project’s directory. The Pipfile is
used to track which dependencies your project needs in case you need to re-install them.

3. Uninstall Packages

 pipenv uninstall <package>

4. Activate the Virtual Environment associated with your Python project

 pipenv shell

5. Exit the Virtual Environment

 exit

Find more information and a video in docs.pipenv.org.

Return to the Top

anaconda

Anaconda is another popular tool to manage python packages.

Where packages, notebooks, projects and environments are shared. Your place for free public conda
package hosting.

Usage:

1. Make a Virtual Environment

 conda create -n HelloWorld

2. To use the Virtual Environment, activate it by:

https://docs.pipenv.org/
https://anaconda.org/

README.md 11/27/2018

96 / 96

 conda activate HelloWorld

Anything installed now will be specific to the project HelloWorld

3. Exit the Virtual Environment

 conda deactivate

Return to the Top

